[gdb/symtab] Store external var decls in psymtab
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 /* When reading a variant or variant part, we track a bit more
1086 information about the field, and store it in an object of this
1087 type. */
1088
1089 struct variant_field
1090 {
1091 /* If we see a DW_TAG_variant, then this will be the discriminant
1092 value. */
1093 ULONGEST discriminant_value;
1094 /* If we see a DW_TAG_variant, then this will be set if this is the
1095 default branch. */
1096 bool default_branch;
1097 /* While reading a DW_TAG_variant_part, this will be set if this
1098 field is the discriminant. */
1099 bool is_discriminant;
1100 };
1101
1102 struct nextfield
1103 {
1104 int accessibility = 0;
1105 int virtuality = 0;
1106 /* Extra information to describe a variant or variant part. */
1107 struct variant_field variant {};
1108 struct field field {};
1109 };
1110
1111 struct fnfieldlist
1112 {
1113 const char *name = nullptr;
1114 std::vector<struct fn_field> fnfields;
1115 };
1116
1117 /* The routines that read and process dies for a C struct or C++ class
1118 pass lists of data member fields and lists of member function fields
1119 in an instance of a field_info structure, as defined below. */
1120 struct field_info
1121 {
1122 /* List of data member and baseclasses fields. */
1123 std::vector<struct nextfield> fields;
1124 std::vector<struct nextfield> baseclasses;
1125
1126 /* Set if the accessibility of one of the fields is not public. */
1127 int non_public_fields = 0;
1128
1129 /* Member function fieldlist array, contains name of possibly overloaded
1130 member function, number of overloaded member functions and a pointer
1131 to the head of the member function field chain. */
1132 std::vector<struct fnfieldlist> fnfieldlists;
1133
1134 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1135 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1136 std::vector<struct decl_field> typedef_field_list;
1137
1138 /* Nested types defined by this class and the number of elements in this
1139 list. */
1140 std::vector<struct decl_field> nested_types_list;
1141
1142 /* Return the total number of fields (including baseclasses). */
1143 int nfields () const
1144 {
1145 return fields.size () + baseclasses.size ();
1146 }
1147 };
1148
1149 /* Loaded secondary compilation units are kept in memory until they
1150 have not been referenced for the processing of this many
1151 compilation units. Set this to zero to disable caching. Cache
1152 sizes of up to at least twenty will improve startup time for
1153 typical inter-CU-reference binaries, at an obvious memory cost. */
1154 static int dwarf_max_cache_age = 5;
1155 static void
1156 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1157 struct cmd_list_element *c, const char *value)
1158 {
1159 fprintf_filtered (file, _("The upper bound on the age of cached "
1160 "DWARF compilation units is %s.\n"),
1161 value);
1162 }
1163 \f
1164 /* local function prototypes */
1165
1166 static void dwarf2_find_base_address (struct die_info *die,
1167 struct dwarf2_cu *cu);
1168
1169 static dwarf2_psymtab *create_partial_symtab
1170 (struct dwarf2_per_cu_data *per_cu, const char *name);
1171
1172 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1173 const gdb_byte *info_ptr,
1174 struct die_info *type_unit_die);
1175
1176 static void dwarf2_build_psymtabs_hard
1177 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1178
1179 static void scan_partial_symbols (struct partial_die_info *,
1180 CORE_ADDR *, CORE_ADDR *,
1181 int, struct dwarf2_cu *);
1182
1183 static void add_partial_symbol (struct partial_die_info *,
1184 struct dwarf2_cu *);
1185
1186 static void add_partial_namespace (struct partial_die_info *pdi,
1187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1188 int set_addrmap, struct dwarf2_cu *cu);
1189
1190 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1191 CORE_ADDR *highpc, int set_addrmap,
1192 struct dwarf2_cu *cu);
1193
1194 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1195 struct dwarf2_cu *cu);
1196
1197 static void add_partial_subprogram (struct partial_die_info *pdi,
1198 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1199 int need_pc, struct dwarf2_cu *cu);
1200
1201 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1202
1203 static struct partial_die_info *load_partial_dies
1204 (const struct die_reader_specs *, const gdb_byte *, int);
1205
1206 /* A pair of partial_die_info and compilation unit. */
1207 struct cu_partial_die_info
1208 {
1209 /* The compilation unit of the partial_die_info. */
1210 struct dwarf2_cu *cu;
1211 /* A partial_die_info. */
1212 struct partial_die_info *pdi;
1213
1214 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1215 : cu (cu),
1216 pdi (pdi)
1217 { /* Nothing. */ }
1218
1219 private:
1220 cu_partial_die_info () = delete;
1221 };
1222
1223 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1224 struct dwarf2_cu *);
1225
1226 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1227 struct attribute *, struct attr_abbrev *,
1228 const gdb_byte *, bool *need_reprocess);
1229
1230 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1231 struct attribute *attr);
1232
1233 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1234
1235 static sect_offset read_abbrev_offset
1236 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1237 struct dwarf2_section_info *, sect_offset);
1238
1239 static const char *read_indirect_string
1240 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1241 const struct comp_unit_head *, unsigned int *);
1242
1243 static const char *read_indirect_string_at_offset
1244 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1245
1246 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1247 const gdb_byte *,
1248 unsigned int *);
1249
1250 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1251 ULONGEST str_index);
1252
1253 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1254 ULONGEST str_index);
1255
1256 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1257
1258 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1259 struct dwarf2_cu *);
1260
1261 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1262 struct dwarf2_cu *cu);
1263
1264 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1265
1266 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1267 struct dwarf2_cu *cu);
1268
1269 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1270
1271 static struct die_info *die_specification (struct die_info *die,
1272 struct dwarf2_cu **);
1273
1274 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1275 struct dwarf2_cu *cu);
1276
1277 static void dwarf_decode_lines (struct line_header *, const char *,
1278 struct dwarf2_cu *, dwarf2_psymtab *,
1279 CORE_ADDR, int decode_mapping);
1280
1281 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1282 const char *);
1283
1284 static struct symbol *new_symbol (struct die_info *, struct type *,
1285 struct dwarf2_cu *, struct symbol * = NULL);
1286
1287 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1288 struct dwarf2_cu *);
1289
1290 static void dwarf2_const_value_attr (const struct attribute *attr,
1291 struct type *type,
1292 const char *name,
1293 struct obstack *obstack,
1294 struct dwarf2_cu *cu, LONGEST *value,
1295 const gdb_byte **bytes,
1296 struct dwarf2_locexpr_baton **baton);
1297
1298 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1299
1300 static int need_gnat_info (struct dwarf2_cu *);
1301
1302 static struct type *die_descriptive_type (struct die_info *,
1303 struct dwarf2_cu *);
1304
1305 static void set_descriptive_type (struct type *, struct die_info *,
1306 struct dwarf2_cu *);
1307
1308 static struct type *die_containing_type (struct die_info *,
1309 struct dwarf2_cu *);
1310
1311 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1312 struct dwarf2_cu *);
1313
1314 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1315
1316 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1317
1318 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1319
1320 static char *typename_concat (struct obstack *obs, const char *prefix,
1321 const char *suffix, int physname,
1322 struct dwarf2_cu *cu);
1323
1324 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1325
1326 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1327
1328 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1329
1330 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1331
1332 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1333
1334 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1335
1336 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1337 struct dwarf2_cu *, dwarf2_psymtab *);
1338
1339 /* Return the .debug_loclists section to use for cu. */
1340 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1341
1342 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1343 values. Keep the items ordered with increasing constraints compliance. */
1344 enum pc_bounds_kind
1345 {
1346 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1347 PC_BOUNDS_NOT_PRESENT,
1348
1349 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1350 were present but they do not form a valid range of PC addresses. */
1351 PC_BOUNDS_INVALID,
1352
1353 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1354 PC_BOUNDS_RANGES,
1355
1356 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1357 PC_BOUNDS_HIGH_LOW,
1358 };
1359
1360 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1361 CORE_ADDR *, CORE_ADDR *,
1362 struct dwarf2_cu *,
1363 dwarf2_psymtab *);
1364
1365 static void get_scope_pc_bounds (struct die_info *,
1366 CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *);
1368
1369 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1370 CORE_ADDR, struct dwarf2_cu *);
1371
1372 static void dwarf2_add_field (struct field_info *, struct die_info *,
1373 struct dwarf2_cu *);
1374
1375 static void dwarf2_attach_fields_to_type (struct field_info *,
1376 struct type *, struct dwarf2_cu *);
1377
1378 static void dwarf2_add_member_fn (struct field_info *,
1379 struct die_info *, struct type *,
1380 struct dwarf2_cu *);
1381
1382 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1383 struct type *,
1384 struct dwarf2_cu *);
1385
1386 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1387
1388 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1389
1390 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1391
1392 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1393
1394 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1395
1396 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1397
1398 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1399
1400 static struct type *read_module_type (struct die_info *die,
1401 struct dwarf2_cu *cu);
1402
1403 static const char *namespace_name (struct die_info *die,
1404 int *is_anonymous, struct dwarf2_cu *);
1405
1406 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1407
1408 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1409
1410 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1411 struct dwarf2_cu *);
1412
1413 static struct die_info *read_die_and_siblings_1
1414 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1415 struct die_info *);
1416
1417 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1418 const gdb_byte *info_ptr,
1419 const gdb_byte **new_info_ptr,
1420 struct die_info *parent);
1421
1422 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1423 struct die_info **, const gdb_byte *,
1424 int);
1425
1426 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1427 struct die_info **, const gdb_byte *);
1428
1429 static void process_die (struct die_info *, struct dwarf2_cu *);
1430
1431 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1432 struct objfile *);
1433
1434 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1435
1436 static const char *dwarf2_full_name (const char *name,
1437 struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static const char *dwarf2_physname (const char *name, struct die_info *die,
1441 struct dwarf2_cu *cu);
1442
1443 static struct die_info *dwarf2_extension (struct die_info *die,
1444 struct dwarf2_cu **);
1445
1446 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1447
1448 static void dump_die_for_error (struct die_info *);
1449
1450 static void dump_die_1 (struct ui_file *, int level, int max_level,
1451 struct die_info *);
1452
1453 /*static*/ void dump_die (struct die_info *, int max_level);
1454
1455 static void store_in_ref_table (struct die_info *,
1456 struct dwarf2_cu *);
1457
1458 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1459 const struct attribute *,
1460 struct dwarf2_cu **);
1461
1462 static struct die_info *follow_die_ref (struct die_info *,
1463 const struct attribute *,
1464 struct dwarf2_cu **);
1465
1466 static struct die_info *follow_die_sig (struct die_info *,
1467 const struct attribute *,
1468 struct dwarf2_cu **);
1469
1470 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1471 struct dwarf2_cu *);
1472
1473 static struct type *get_DW_AT_signature_type (struct die_info *,
1474 const struct attribute *,
1475 struct dwarf2_cu *);
1476
1477 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1478
1479 static void read_signatured_type (struct signatured_type *);
1480
1481 static int attr_to_dynamic_prop (const struct attribute *attr,
1482 struct die_info *die, struct dwarf2_cu *cu,
1483 struct dynamic_prop *prop, struct type *type);
1484
1485 /* memory allocation interface */
1486
1487 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1488
1489 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1490
1491 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1492
1493 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1494 struct dwarf2_loclist_baton *baton,
1495 const struct attribute *attr);
1496
1497 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1498 struct symbol *sym,
1499 struct dwarf2_cu *cu,
1500 int is_block);
1501
1502 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1503 const gdb_byte *info_ptr,
1504 struct abbrev_info *abbrev);
1505
1506 static hashval_t partial_die_hash (const void *item);
1507
1508 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1509
1510 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1511 (sect_offset sect_off, unsigned int offset_in_dwz,
1512 struct dwarf2_per_objfile *dwarf2_per_objfile);
1513
1514 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1515 struct die_info *comp_unit_die,
1516 enum language pretend_language);
1517
1518 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1519
1520 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1521
1522 static struct type *set_die_type (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1524
1525 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1526
1527 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1528
1529 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1530 enum language);
1531
1532 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1533 enum language);
1534
1535 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1536 enum language);
1537
1538 static void dwarf2_add_dependence (struct dwarf2_cu *,
1539 struct dwarf2_per_cu_data *);
1540
1541 static void dwarf2_mark (struct dwarf2_cu *);
1542
1543 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1544
1545 static struct type *get_die_type_at_offset (sect_offset,
1546 struct dwarf2_per_cu_data *);
1547
1548 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1549
1550 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1551 enum language pretend_language);
1552
1553 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1554
1555 /* Class, the destructor of which frees all allocated queue entries. This
1556 will only have work to do if an error was thrown while processing the
1557 dwarf. If no error was thrown then the queue entries should have all
1558 been processed, and freed, as we went along. */
1559
1560 class dwarf2_queue_guard
1561 {
1562 public:
1563 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1564 : m_per_objfile (per_objfile)
1565 {
1566 }
1567
1568 /* Free any entries remaining on the queue. There should only be
1569 entries left if we hit an error while processing the dwarf. */
1570 ~dwarf2_queue_guard ()
1571 {
1572 /* Ensure that no memory is allocated by the queue. */
1573 std::queue<dwarf2_queue_item> empty;
1574 std::swap (m_per_objfile->queue, empty);
1575 }
1576
1577 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1578
1579 private:
1580 dwarf2_per_objfile *m_per_objfile;
1581 };
1582
1583 dwarf2_queue_item::~dwarf2_queue_item ()
1584 {
1585 /* Anything still marked queued is likely to be in an
1586 inconsistent state, so discard it. */
1587 if (per_cu->queued)
1588 {
1589 if (per_cu->cu != NULL)
1590 free_one_cached_comp_unit (per_cu);
1591 per_cu->queued = 0;
1592 }
1593 }
1594
1595 /* The return type of find_file_and_directory. Note, the enclosed
1596 string pointers are only valid while this object is valid. */
1597
1598 struct file_and_directory
1599 {
1600 /* The filename. This is never NULL. */
1601 const char *name;
1602
1603 /* The compilation directory. NULL if not known. If we needed to
1604 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1605 points directly to the DW_AT_comp_dir string attribute owned by
1606 the obstack that owns the DIE. */
1607 const char *comp_dir;
1608
1609 /* If we needed to build a new string for comp_dir, this is what
1610 owns the storage. */
1611 std::string comp_dir_storage;
1612 };
1613
1614 static file_and_directory find_file_and_directory (struct die_info *die,
1615 struct dwarf2_cu *cu);
1616
1617 static htab_up allocate_signatured_type_table ();
1618
1619 static htab_up allocate_dwo_unit_table ();
1620
1621 static struct dwo_unit *lookup_dwo_unit_in_dwp
1622 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1623 struct dwp_file *dwp_file, const char *comp_dir,
1624 ULONGEST signature, int is_debug_types);
1625
1626 static struct dwp_file *get_dwp_file
1627 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1628
1629 static struct dwo_unit *lookup_dwo_comp_unit
1630 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1631
1632 static struct dwo_unit *lookup_dwo_type_unit
1633 (struct signatured_type *, const char *, const char *);
1634
1635 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1636
1637 /* A unique pointer to a dwo_file. */
1638
1639 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1640
1641 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1642
1643 static void check_producer (struct dwarf2_cu *cu);
1644
1645 static void free_line_header_voidp (void *arg);
1646 \f
1647 /* Various complaints about symbol reading that don't abort the process. */
1648
1649 static void
1650 dwarf2_debug_line_missing_file_complaint (void)
1651 {
1652 complaint (_(".debug_line section has line data without a file"));
1653 }
1654
1655 static void
1656 dwarf2_debug_line_missing_end_sequence_complaint (void)
1657 {
1658 complaint (_(".debug_line section has line "
1659 "program sequence without an end"));
1660 }
1661
1662 static void
1663 dwarf2_complex_location_expr_complaint (void)
1664 {
1665 complaint (_("location expression too complex"));
1666 }
1667
1668 static void
1669 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1670 int arg3)
1671 {
1672 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1673 arg1, arg2, arg3);
1674 }
1675
1676 static void
1677 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1678 {
1679 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1680 arg1, arg2);
1681 }
1682
1683 /* Hash function for line_header_hash. */
1684
1685 static hashval_t
1686 line_header_hash (const struct line_header *ofs)
1687 {
1688 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1689 }
1690
1691 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1692
1693 static hashval_t
1694 line_header_hash_voidp (const void *item)
1695 {
1696 const struct line_header *ofs = (const struct line_header *) item;
1697
1698 return line_header_hash (ofs);
1699 }
1700
1701 /* Equality function for line_header_hash. */
1702
1703 static int
1704 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1705 {
1706 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1707 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1708
1709 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1710 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1711 }
1712
1713 \f
1714
1715 /* See declaration. */
1716
1717 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1718 const dwarf2_debug_sections *names,
1719 bool can_copy_)
1720 : objfile (objfile_),
1721 can_copy (can_copy_)
1722 {
1723 if (names == NULL)
1724 names = &dwarf2_elf_names;
1725
1726 bfd *obfd = objfile->obfd;
1727
1728 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1729 locate_sections (obfd, sec, *names);
1730 }
1731
1732 dwarf2_per_objfile::~dwarf2_per_objfile ()
1733 {
1734 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1735 free_cached_comp_units ();
1736
1737 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1738 per_cu->imported_symtabs_free ();
1739
1740 for (signatured_type *sig_type : all_type_units)
1741 sig_type->per_cu.imported_symtabs_free ();
1742
1743 /* Everything else should be on the objfile obstack. */
1744 }
1745
1746 /* See declaration. */
1747
1748 void
1749 dwarf2_per_objfile::free_cached_comp_units ()
1750 {
1751 dwarf2_per_cu_data *per_cu = read_in_chain;
1752 dwarf2_per_cu_data **last_chain = &read_in_chain;
1753 while (per_cu != NULL)
1754 {
1755 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1756
1757 delete per_cu->cu;
1758 *last_chain = next_cu;
1759 per_cu = next_cu;
1760 }
1761 }
1762
1763 /* A helper class that calls free_cached_comp_units on
1764 destruction. */
1765
1766 class free_cached_comp_units
1767 {
1768 public:
1769
1770 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1771 : m_per_objfile (per_objfile)
1772 {
1773 }
1774
1775 ~free_cached_comp_units ()
1776 {
1777 m_per_objfile->free_cached_comp_units ();
1778 }
1779
1780 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1781
1782 private:
1783
1784 dwarf2_per_objfile *m_per_objfile;
1785 };
1786
1787 /* Try to locate the sections we need for DWARF 2 debugging
1788 information and return true if we have enough to do something.
1789 NAMES points to the dwarf2 section names, or is NULL if the standard
1790 ELF names are used. CAN_COPY is true for formats where symbol
1791 interposition is possible and so symbol values must follow copy
1792 relocation rules. */
1793
1794 int
1795 dwarf2_has_info (struct objfile *objfile,
1796 const struct dwarf2_debug_sections *names,
1797 bool can_copy)
1798 {
1799 if (objfile->flags & OBJF_READNEVER)
1800 return 0;
1801
1802 struct dwarf2_per_objfile *dwarf2_per_objfile
1803 = get_dwarf2_per_objfile (objfile);
1804
1805 if (dwarf2_per_objfile == NULL)
1806 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1807 names,
1808 can_copy);
1809
1810 return (!dwarf2_per_objfile->info.is_virtual
1811 && dwarf2_per_objfile->info.s.section != NULL
1812 && !dwarf2_per_objfile->abbrev.is_virtual
1813 && dwarf2_per_objfile->abbrev.s.section != NULL);
1814 }
1815
1816 /* When loading sections, we look either for uncompressed section or for
1817 compressed section names. */
1818
1819 static int
1820 section_is_p (const char *section_name,
1821 const struct dwarf2_section_names *names)
1822 {
1823 if (names->normal != NULL
1824 && strcmp (section_name, names->normal) == 0)
1825 return 1;
1826 if (names->compressed != NULL
1827 && strcmp (section_name, names->compressed) == 0)
1828 return 1;
1829 return 0;
1830 }
1831
1832 /* See declaration. */
1833
1834 void
1835 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1836 const dwarf2_debug_sections &names)
1837 {
1838 flagword aflag = bfd_section_flags (sectp);
1839
1840 if ((aflag & SEC_HAS_CONTENTS) == 0)
1841 {
1842 }
1843 else if (elf_section_data (sectp)->this_hdr.sh_size
1844 > bfd_get_file_size (abfd))
1845 {
1846 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1847 warning (_("Discarding section %s which has a section size (%s"
1848 ") larger than the file size [in module %s]"),
1849 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1850 bfd_get_filename (abfd));
1851 }
1852 else if (section_is_p (sectp->name, &names.info))
1853 {
1854 this->info.s.section = sectp;
1855 this->info.size = bfd_section_size (sectp);
1856 }
1857 else if (section_is_p (sectp->name, &names.abbrev))
1858 {
1859 this->abbrev.s.section = sectp;
1860 this->abbrev.size = bfd_section_size (sectp);
1861 }
1862 else if (section_is_p (sectp->name, &names.line))
1863 {
1864 this->line.s.section = sectp;
1865 this->line.size = bfd_section_size (sectp);
1866 }
1867 else if (section_is_p (sectp->name, &names.loc))
1868 {
1869 this->loc.s.section = sectp;
1870 this->loc.size = bfd_section_size (sectp);
1871 }
1872 else if (section_is_p (sectp->name, &names.loclists))
1873 {
1874 this->loclists.s.section = sectp;
1875 this->loclists.size = bfd_section_size (sectp);
1876 }
1877 else if (section_is_p (sectp->name, &names.macinfo))
1878 {
1879 this->macinfo.s.section = sectp;
1880 this->macinfo.size = bfd_section_size (sectp);
1881 }
1882 else if (section_is_p (sectp->name, &names.macro))
1883 {
1884 this->macro.s.section = sectp;
1885 this->macro.size = bfd_section_size (sectp);
1886 }
1887 else if (section_is_p (sectp->name, &names.str))
1888 {
1889 this->str.s.section = sectp;
1890 this->str.size = bfd_section_size (sectp);
1891 }
1892 else if (section_is_p (sectp->name, &names.str_offsets))
1893 {
1894 this->str_offsets.s.section = sectp;
1895 this->str_offsets.size = bfd_section_size (sectp);
1896 }
1897 else if (section_is_p (sectp->name, &names.line_str))
1898 {
1899 this->line_str.s.section = sectp;
1900 this->line_str.size = bfd_section_size (sectp);
1901 }
1902 else if (section_is_p (sectp->name, &names.addr))
1903 {
1904 this->addr.s.section = sectp;
1905 this->addr.size = bfd_section_size (sectp);
1906 }
1907 else if (section_is_p (sectp->name, &names.frame))
1908 {
1909 this->frame.s.section = sectp;
1910 this->frame.size = bfd_section_size (sectp);
1911 }
1912 else if (section_is_p (sectp->name, &names.eh_frame))
1913 {
1914 this->eh_frame.s.section = sectp;
1915 this->eh_frame.size = bfd_section_size (sectp);
1916 }
1917 else if (section_is_p (sectp->name, &names.ranges))
1918 {
1919 this->ranges.s.section = sectp;
1920 this->ranges.size = bfd_section_size (sectp);
1921 }
1922 else if (section_is_p (sectp->name, &names.rnglists))
1923 {
1924 this->rnglists.s.section = sectp;
1925 this->rnglists.size = bfd_section_size (sectp);
1926 }
1927 else if (section_is_p (sectp->name, &names.types))
1928 {
1929 struct dwarf2_section_info type_section;
1930
1931 memset (&type_section, 0, sizeof (type_section));
1932 type_section.s.section = sectp;
1933 type_section.size = bfd_section_size (sectp);
1934
1935 this->types.push_back (type_section);
1936 }
1937 else if (section_is_p (sectp->name, &names.gdb_index))
1938 {
1939 this->gdb_index.s.section = sectp;
1940 this->gdb_index.size = bfd_section_size (sectp);
1941 }
1942 else if (section_is_p (sectp->name, &names.debug_names))
1943 {
1944 this->debug_names.s.section = sectp;
1945 this->debug_names.size = bfd_section_size (sectp);
1946 }
1947 else if (section_is_p (sectp->name, &names.debug_aranges))
1948 {
1949 this->debug_aranges.s.section = sectp;
1950 this->debug_aranges.size = bfd_section_size (sectp);
1951 }
1952
1953 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1954 && bfd_section_vma (sectp) == 0)
1955 this->has_section_at_zero = true;
1956 }
1957
1958 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1959 SECTION_NAME. */
1960
1961 void
1962 dwarf2_get_section_info (struct objfile *objfile,
1963 enum dwarf2_section_enum sect,
1964 asection **sectp, const gdb_byte **bufp,
1965 bfd_size_type *sizep)
1966 {
1967 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1968 struct dwarf2_section_info *info;
1969
1970 /* We may see an objfile without any DWARF, in which case we just
1971 return nothing. */
1972 if (data == NULL)
1973 {
1974 *sectp = NULL;
1975 *bufp = NULL;
1976 *sizep = 0;
1977 return;
1978 }
1979 switch (sect)
1980 {
1981 case DWARF2_DEBUG_FRAME:
1982 info = &data->frame;
1983 break;
1984 case DWARF2_EH_FRAME:
1985 info = &data->eh_frame;
1986 break;
1987 default:
1988 gdb_assert_not_reached ("unexpected section");
1989 }
1990
1991 info->read (objfile);
1992
1993 *sectp = info->get_bfd_section ();
1994 *bufp = info->buffer;
1995 *sizep = info->size;
1996 }
1997
1998 /* A helper function to find the sections for a .dwz file. */
1999
2000 static void
2001 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2002 {
2003 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2004
2005 /* Note that we only support the standard ELF names, because .dwz
2006 is ELF-only (at the time of writing). */
2007 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2008 {
2009 dwz_file->abbrev.s.section = sectp;
2010 dwz_file->abbrev.size = bfd_section_size (sectp);
2011 }
2012 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2013 {
2014 dwz_file->info.s.section = sectp;
2015 dwz_file->info.size = bfd_section_size (sectp);
2016 }
2017 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2018 {
2019 dwz_file->str.s.section = sectp;
2020 dwz_file->str.size = bfd_section_size (sectp);
2021 }
2022 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2023 {
2024 dwz_file->line.s.section = sectp;
2025 dwz_file->line.size = bfd_section_size (sectp);
2026 }
2027 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2028 {
2029 dwz_file->macro.s.section = sectp;
2030 dwz_file->macro.size = bfd_section_size (sectp);
2031 }
2032 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2033 {
2034 dwz_file->gdb_index.s.section = sectp;
2035 dwz_file->gdb_index.size = bfd_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2038 {
2039 dwz_file->debug_names.s.section = sectp;
2040 dwz_file->debug_names.size = bfd_section_size (sectp);
2041 }
2042 }
2043
2044 /* See dwarf2read.h. */
2045
2046 struct dwz_file *
2047 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2048 {
2049 const char *filename;
2050 bfd_size_type buildid_len_arg;
2051 size_t buildid_len;
2052 bfd_byte *buildid;
2053
2054 if (dwarf2_per_objfile->dwz_file != NULL)
2055 return dwarf2_per_objfile->dwz_file.get ();
2056
2057 bfd_set_error (bfd_error_no_error);
2058 gdb::unique_xmalloc_ptr<char> data
2059 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2060 &buildid_len_arg, &buildid));
2061 if (data == NULL)
2062 {
2063 if (bfd_get_error () == bfd_error_no_error)
2064 return NULL;
2065 error (_("could not read '.gnu_debugaltlink' section: %s"),
2066 bfd_errmsg (bfd_get_error ()));
2067 }
2068
2069 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2070
2071 buildid_len = (size_t) buildid_len_arg;
2072
2073 filename = data.get ();
2074
2075 std::string abs_storage;
2076 if (!IS_ABSOLUTE_PATH (filename))
2077 {
2078 gdb::unique_xmalloc_ptr<char> abs
2079 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2080
2081 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2082 filename = abs_storage.c_str ();
2083 }
2084
2085 /* First try the file name given in the section. If that doesn't
2086 work, try to use the build-id instead. */
2087 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2088 if (dwz_bfd != NULL)
2089 {
2090 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2091 dwz_bfd.reset (nullptr);
2092 }
2093
2094 if (dwz_bfd == NULL)
2095 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2096
2097 if (dwz_bfd == nullptr)
2098 {
2099 gdb::unique_xmalloc_ptr<char> alt_filename;
2100 const char *origname = dwarf2_per_objfile->objfile->original_name;
2101
2102 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2103 buildid_len,
2104 origname,
2105 &alt_filename));
2106
2107 if (fd.get () >= 0)
2108 {
2109 /* File successfully retrieved from server. */
2110 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2111
2112 if (dwz_bfd == nullptr)
2113 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2114 alt_filename.get ());
2115 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2116 dwz_bfd.reset (nullptr);
2117 }
2118 }
2119
2120 if (dwz_bfd == NULL)
2121 error (_("could not find '.gnu_debugaltlink' file for %s"),
2122 objfile_name (dwarf2_per_objfile->objfile));
2123
2124 std::unique_ptr<struct dwz_file> result
2125 (new struct dwz_file (std::move (dwz_bfd)));
2126
2127 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2128 result.get ());
2129
2130 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2131 result->dwz_bfd.get ());
2132 dwarf2_per_objfile->dwz_file = std::move (result);
2133 return dwarf2_per_objfile->dwz_file.get ();
2134 }
2135 \f
2136 /* DWARF quick_symbols_functions support. */
2137
2138 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2139 unique line tables, so we maintain a separate table of all .debug_line
2140 derived entries to support the sharing.
2141 All the quick functions need is the list of file names. We discard the
2142 line_header when we're done and don't need to record it here. */
2143 struct quick_file_names
2144 {
2145 /* The data used to construct the hash key. */
2146 struct stmt_list_hash hash;
2147
2148 /* The number of entries in file_names, real_names. */
2149 unsigned int num_file_names;
2150
2151 /* The file names from the line table, after being run through
2152 file_full_name. */
2153 const char **file_names;
2154
2155 /* The file names from the line table after being run through
2156 gdb_realpath. These are computed lazily. */
2157 const char **real_names;
2158 };
2159
2160 /* When using the index (and thus not using psymtabs), each CU has an
2161 object of this type. This is used to hold information needed by
2162 the various "quick" methods. */
2163 struct dwarf2_per_cu_quick_data
2164 {
2165 /* The file table. This can be NULL if there was no file table
2166 or it's currently not read in.
2167 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2168 struct quick_file_names *file_names;
2169
2170 /* The corresponding symbol table. This is NULL if symbols for this
2171 CU have not yet been read. */
2172 struct compunit_symtab *compunit_symtab;
2173
2174 /* A temporary mark bit used when iterating over all CUs in
2175 expand_symtabs_matching. */
2176 unsigned int mark : 1;
2177
2178 /* True if we've tried to read the file table and found there isn't one.
2179 There will be no point in trying to read it again next time. */
2180 unsigned int no_file_data : 1;
2181 };
2182
2183 /* Utility hash function for a stmt_list_hash. */
2184
2185 static hashval_t
2186 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2187 {
2188 hashval_t v = 0;
2189
2190 if (stmt_list_hash->dwo_unit != NULL)
2191 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2192 v += to_underlying (stmt_list_hash->line_sect_off);
2193 return v;
2194 }
2195
2196 /* Utility equality function for a stmt_list_hash. */
2197
2198 static int
2199 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2200 const struct stmt_list_hash *rhs)
2201 {
2202 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2203 return 0;
2204 if (lhs->dwo_unit != NULL
2205 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2206 return 0;
2207
2208 return lhs->line_sect_off == rhs->line_sect_off;
2209 }
2210
2211 /* Hash function for a quick_file_names. */
2212
2213 static hashval_t
2214 hash_file_name_entry (const void *e)
2215 {
2216 const struct quick_file_names *file_data
2217 = (const struct quick_file_names *) e;
2218
2219 return hash_stmt_list_entry (&file_data->hash);
2220 }
2221
2222 /* Equality function for a quick_file_names. */
2223
2224 static int
2225 eq_file_name_entry (const void *a, const void *b)
2226 {
2227 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2228 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2229
2230 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2231 }
2232
2233 /* Delete function for a quick_file_names. */
2234
2235 static void
2236 delete_file_name_entry (void *e)
2237 {
2238 struct quick_file_names *file_data = (struct quick_file_names *) e;
2239 int i;
2240
2241 for (i = 0; i < file_data->num_file_names; ++i)
2242 {
2243 xfree ((void*) file_data->file_names[i]);
2244 if (file_data->real_names)
2245 xfree ((void*) file_data->real_names[i]);
2246 }
2247
2248 /* The space for the struct itself lives on objfile_obstack,
2249 so we don't free it here. */
2250 }
2251
2252 /* Create a quick_file_names hash table. */
2253
2254 static htab_up
2255 create_quick_file_names_table (unsigned int nr_initial_entries)
2256 {
2257 return htab_up (htab_create_alloc (nr_initial_entries,
2258 hash_file_name_entry, eq_file_name_entry,
2259 delete_file_name_entry, xcalloc, xfree));
2260 }
2261
2262 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2263 have to be created afterwards. You should call age_cached_comp_units after
2264 processing PER_CU->CU. dw2_setup must have been already called. */
2265
2266 static void
2267 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2268 {
2269 if (per_cu->is_debug_types)
2270 load_full_type_unit (per_cu);
2271 else
2272 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2273
2274 if (per_cu->cu == NULL)
2275 return; /* Dummy CU. */
2276
2277 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2278 }
2279
2280 /* Read in the symbols for PER_CU. */
2281
2282 static void
2283 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2284 {
2285 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2286
2287 /* Skip type_unit_groups, reading the type units they contain
2288 is handled elsewhere. */
2289 if (per_cu->type_unit_group_p ())
2290 return;
2291
2292 /* The destructor of dwarf2_queue_guard frees any entries left on
2293 the queue. After this point we're guaranteed to leave this function
2294 with the dwarf queue empty. */
2295 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2296
2297 if (dwarf2_per_objfile->using_index
2298 ? per_cu->v.quick->compunit_symtab == NULL
2299 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2300 {
2301 queue_comp_unit (per_cu, language_minimal);
2302 load_cu (per_cu, skip_partial);
2303
2304 /* If we just loaded a CU from a DWO, and we're working with an index
2305 that may badly handle TUs, load all the TUs in that DWO as well.
2306 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2307 if (!per_cu->is_debug_types
2308 && per_cu->cu != NULL
2309 && per_cu->cu->dwo_unit != NULL
2310 && dwarf2_per_objfile->index_table != NULL
2311 && dwarf2_per_objfile->index_table->version <= 7
2312 /* DWP files aren't supported yet. */
2313 && get_dwp_file (dwarf2_per_objfile) == NULL)
2314 queue_and_load_all_dwo_tus (per_cu);
2315 }
2316
2317 process_queue (dwarf2_per_objfile);
2318
2319 /* Age the cache, releasing compilation units that have not
2320 been used recently. */
2321 age_cached_comp_units (dwarf2_per_objfile);
2322 }
2323
2324 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2325 the objfile from which this CU came. Returns the resulting symbol
2326 table. */
2327
2328 static struct compunit_symtab *
2329 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2330 {
2331 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2332
2333 gdb_assert (dwarf2_per_objfile->using_index);
2334 if (!per_cu->v.quick->compunit_symtab)
2335 {
2336 free_cached_comp_units freer (dwarf2_per_objfile);
2337 scoped_restore decrementer = increment_reading_symtab ();
2338 dw2_do_instantiate_symtab (per_cu, skip_partial);
2339 process_cu_includes (dwarf2_per_objfile);
2340 }
2341
2342 return per_cu->v.quick->compunit_symtab;
2343 }
2344
2345 /* See declaration. */
2346
2347 dwarf2_per_cu_data *
2348 dwarf2_per_objfile::get_cutu (int index)
2349 {
2350 if (index >= this->all_comp_units.size ())
2351 {
2352 index -= this->all_comp_units.size ();
2353 gdb_assert (index < this->all_type_units.size ());
2354 return &this->all_type_units[index]->per_cu;
2355 }
2356
2357 return this->all_comp_units[index];
2358 }
2359
2360 /* See declaration. */
2361
2362 dwarf2_per_cu_data *
2363 dwarf2_per_objfile::get_cu (int index)
2364 {
2365 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2366
2367 return this->all_comp_units[index];
2368 }
2369
2370 /* See declaration. */
2371
2372 signatured_type *
2373 dwarf2_per_objfile::get_tu (int index)
2374 {
2375 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2376
2377 return this->all_type_units[index];
2378 }
2379
2380 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2381 objfile_obstack, and constructed with the specified field
2382 values. */
2383
2384 static dwarf2_per_cu_data *
2385 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2386 struct dwarf2_section_info *section,
2387 int is_dwz,
2388 sect_offset sect_off, ULONGEST length)
2389 {
2390 struct objfile *objfile = dwarf2_per_objfile->objfile;
2391 dwarf2_per_cu_data *the_cu
2392 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2393 struct dwarf2_per_cu_data);
2394 the_cu->sect_off = sect_off;
2395 the_cu->length = length;
2396 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2397 the_cu->section = section;
2398 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2399 struct dwarf2_per_cu_quick_data);
2400 the_cu->is_dwz = is_dwz;
2401 return the_cu;
2402 }
2403
2404 /* A helper for create_cus_from_index that handles a given list of
2405 CUs. */
2406
2407 static void
2408 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2409 const gdb_byte *cu_list, offset_type n_elements,
2410 struct dwarf2_section_info *section,
2411 int is_dwz)
2412 {
2413 for (offset_type i = 0; i < n_elements; i += 2)
2414 {
2415 gdb_static_assert (sizeof (ULONGEST) >= 8);
2416
2417 sect_offset sect_off
2418 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2419 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2420 cu_list += 2 * 8;
2421
2422 dwarf2_per_cu_data *per_cu
2423 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2424 sect_off, length);
2425 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2426 }
2427 }
2428
2429 /* Read the CU list from the mapped index, and use it to create all
2430 the CU objects for this objfile. */
2431
2432 static void
2433 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2434 const gdb_byte *cu_list, offset_type cu_list_elements,
2435 const gdb_byte *dwz_list, offset_type dwz_elements)
2436 {
2437 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2438 dwarf2_per_objfile->all_comp_units.reserve
2439 ((cu_list_elements + dwz_elements) / 2);
2440
2441 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2442 &dwarf2_per_objfile->info, 0);
2443
2444 if (dwz_elements == 0)
2445 return;
2446
2447 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2448 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2449 &dwz->info, 1);
2450 }
2451
2452 /* Create the signatured type hash table from the index. */
2453
2454 static void
2455 create_signatured_type_table_from_index
2456 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2457 struct dwarf2_section_info *section,
2458 const gdb_byte *bytes,
2459 offset_type elements)
2460 {
2461 struct objfile *objfile = dwarf2_per_objfile->objfile;
2462
2463 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2464 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2465
2466 htab_up sig_types_hash = allocate_signatured_type_table ();
2467
2468 for (offset_type i = 0; i < elements; i += 3)
2469 {
2470 struct signatured_type *sig_type;
2471 ULONGEST signature;
2472 void **slot;
2473 cu_offset type_offset_in_tu;
2474
2475 gdb_static_assert (sizeof (ULONGEST) >= 8);
2476 sect_offset sect_off
2477 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2478 type_offset_in_tu
2479 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2480 BFD_ENDIAN_LITTLE);
2481 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2482 bytes += 3 * 8;
2483
2484 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2485 struct signatured_type);
2486 sig_type->signature = signature;
2487 sig_type->type_offset_in_tu = type_offset_in_tu;
2488 sig_type->per_cu.is_debug_types = 1;
2489 sig_type->per_cu.section = section;
2490 sig_type->per_cu.sect_off = sect_off;
2491 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2492 sig_type->per_cu.v.quick
2493 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2494 struct dwarf2_per_cu_quick_data);
2495
2496 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2497 *slot = sig_type;
2498
2499 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2500 }
2501
2502 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2503 }
2504
2505 /* Create the signatured type hash table from .debug_names. */
2506
2507 static void
2508 create_signatured_type_table_from_debug_names
2509 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2510 const mapped_debug_names &map,
2511 struct dwarf2_section_info *section,
2512 struct dwarf2_section_info *abbrev_section)
2513 {
2514 struct objfile *objfile = dwarf2_per_objfile->objfile;
2515
2516 section->read (objfile);
2517 abbrev_section->read (objfile);
2518
2519 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2520 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2521
2522 htab_up sig_types_hash = allocate_signatured_type_table ();
2523
2524 for (uint32_t i = 0; i < map.tu_count; ++i)
2525 {
2526 struct signatured_type *sig_type;
2527 void **slot;
2528
2529 sect_offset sect_off
2530 = (sect_offset) (extract_unsigned_integer
2531 (map.tu_table_reordered + i * map.offset_size,
2532 map.offset_size,
2533 map.dwarf5_byte_order));
2534
2535 comp_unit_head cu_header;
2536 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2537 abbrev_section,
2538 section->buffer + to_underlying (sect_off),
2539 rcuh_kind::TYPE);
2540
2541 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2542 struct signatured_type);
2543 sig_type->signature = cu_header.signature;
2544 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2545 sig_type->per_cu.is_debug_types = 1;
2546 sig_type->per_cu.section = section;
2547 sig_type->per_cu.sect_off = sect_off;
2548 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2549 sig_type->per_cu.v.quick
2550 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2551 struct dwarf2_per_cu_quick_data);
2552
2553 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2554 *slot = sig_type;
2555
2556 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2557 }
2558
2559 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2560 }
2561
2562 /* Read the address map data from the mapped index, and use it to
2563 populate the objfile's psymtabs_addrmap. */
2564
2565 static void
2566 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2567 struct mapped_index *index)
2568 {
2569 struct objfile *objfile = dwarf2_per_objfile->objfile;
2570 struct gdbarch *gdbarch = objfile->arch ();
2571 const gdb_byte *iter, *end;
2572 struct addrmap *mutable_map;
2573 CORE_ADDR baseaddr;
2574
2575 auto_obstack temp_obstack;
2576
2577 mutable_map = addrmap_create_mutable (&temp_obstack);
2578
2579 iter = index->address_table.data ();
2580 end = iter + index->address_table.size ();
2581
2582 baseaddr = objfile->text_section_offset ();
2583
2584 while (iter < end)
2585 {
2586 ULONGEST hi, lo, cu_index;
2587 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2588 iter += 8;
2589 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2590 iter += 8;
2591 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2592 iter += 4;
2593
2594 if (lo > hi)
2595 {
2596 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2597 hex_string (lo), hex_string (hi));
2598 continue;
2599 }
2600
2601 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2602 {
2603 complaint (_(".gdb_index address table has invalid CU number %u"),
2604 (unsigned) cu_index);
2605 continue;
2606 }
2607
2608 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2609 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2610 addrmap_set_empty (mutable_map, lo, hi - 1,
2611 dwarf2_per_objfile->get_cu (cu_index));
2612 }
2613
2614 objfile->partial_symtabs->psymtabs_addrmap
2615 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2616 }
2617
2618 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2619 populate the objfile's psymtabs_addrmap. */
2620
2621 static void
2622 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2623 struct dwarf2_section_info *section)
2624 {
2625 struct objfile *objfile = dwarf2_per_objfile->objfile;
2626 bfd *abfd = objfile->obfd;
2627 struct gdbarch *gdbarch = objfile->arch ();
2628 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2629
2630 auto_obstack temp_obstack;
2631 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2632
2633 std::unordered_map<sect_offset,
2634 dwarf2_per_cu_data *,
2635 gdb::hash_enum<sect_offset>>
2636 debug_info_offset_to_per_cu;
2637 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2638 {
2639 const auto insertpair
2640 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2641 if (!insertpair.second)
2642 {
2643 warning (_("Section .debug_aranges in %s has duplicate "
2644 "debug_info_offset %s, ignoring .debug_aranges."),
2645 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2646 return;
2647 }
2648 }
2649
2650 section->read (objfile);
2651
2652 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2653
2654 const gdb_byte *addr = section->buffer;
2655
2656 while (addr < section->buffer + section->size)
2657 {
2658 const gdb_byte *const entry_addr = addr;
2659 unsigned int bytes_read;
2660
2661 const LONGEST entry_length = read_initial_length (abfd, addr,
2662 &bytes_read);
2663 addr += bytes_read;
2664
2665 const gdb_byte *const entry_end = addr + entry_length;
2666 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2667 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2668 if (addr + entry_length > section->buffer + section->size)
2669 {
2670 warning (_("Section .debug_aranges in %s entry at offset %s "
2671 "length %s exceeds section length %s, "
2672 "ignoring .debug_aranges."),
2673 objfile_name (objfile),
2674 plongest (entry_addr - section->buffer),
2675 plongest (bytes_read + entry_length),
2676 pulongest (section->size));
2677 return;
2678 }
2679
2680 /* The version number. */
2681 const uint16_t version = read_2_bytes (abfd, addr);
2682 addr += 2;
2683 if (version != 2)
2684 {
2685 warning (_("Section .debug_aranges in %s entry at offset %s "
2686 "has unsupported version %d, ignoring .debug_aranges."),
2687 objfile_name (objfile),
2688 plongest (entry_addr - section->buffer), version);
2689 return;
2690 }
2691
2692 const uint64_t debug_info_offset
2693 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2694 addr += offset_size;
2695 const auto per_cu_it
2696 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2697 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2698 {
2699 warning (_("Section .debug_aranges in %s entry at offset %s "
2700 "debug_info_offset %s does not exists, "
2701 "ignoring .debug_aranges."),
2702 objfile_name (objfile),
2703 plongest (entry_addr - section->buffer),
2704 pulongest (debug_info_offset));
2705 return;
2706 }
2707 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2708
2709 const uint8_t address_size = *addr++;
2710 if (address_size < 1 || address_size > 8)
2711 {
2712 warning (_("Section .debug_aranges in %s entry at offset %s "
2713 "address_size %u is invalid, ignoring .debug_aranges."),
2714 objfile_name (objfile),
2715 plongest (entry_addr - section->buffer), address_size);
2716 return;
2717 }
2718
2719 const uint8_t segment_selector_size = *addr++;
2720 if (segment_selector_size != 0)
2721 {
2722 warning (_("Section .debug_aranges in %s entry at offset %s "
2723 "segment_selector_size %u is not supported, "
2724 "ignoring .debug_aranges."),
2725 objfile_name (objfile),
2726 plongest (entry_addr - section->buffer),
2727 segment_selector_size);
2728 return;
2729 }
2730
2731 /* Must pad to an alignment boundary that is twice the address
2732 size. It is undocumented by the DWARF standard but GCC does
2733 use it. */
2734 for (size_t padding = ((-(addr - section->buffer))
2735 & (2 * address_size - 1));
2736 padding > 0; padding--)
2737 if (*addr++ != 0)
2738 {
2739 warning (_("Section .debug_aranges in %s entry at offset %s "
2740 "padding is not zero, ignoring .debug_aranges."),
2741 objfile_name (objfile),
2742 plongest (entry_addr - section->buffer));
2743 return;
2744 }
2745
2746 for (;;)
2747 {
2748 if (addr + 2 * address_size > entry_end)
2749 {
2750 warning (_("Section .debug_aranges in %s entry at offset %s "
2751 "address list is not properly terminated, "
2752 "ignoring .debug_aranges."),
2753 objfile_name (objfile),
2754 plongest (entry_addr - section->buffer));
2755 return;
2756 }
2757 ULONGEST start = extract_unsigned_integer (addr, address_size,
2758 dwarf5_byte_order);
2759 addr += address_size;
2760 ULONGEST length = extract_unsigned_integer (addr, address_size,
2761 dwarf5_byte_order);
2762 addr += address_size;
2763 if (start == 0 && length == 0)
2764 break;
2765 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2766 {
2767 /* Symbol was eliminated due to a COMDAT group. */
2768 continue;
2769 }
2770 ULONGEST end = start + length;
2771 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2772 - baseaddr);
2773 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2774 - baseaddr);
2775 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2776 }
2777 }
2778
2779 objfile->partial_symtabs->psymtabs_addrmap
2780 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2781 }
2782
2783 /* Find a slot in the mapped index INDEX for the object named NAME.
2784 If NAME is found, set *VEC_OUT to point to the CU vector in the
2785 constant pool and return true. If NAME cannot be found, return
2786 false. */
2787
2788 static bool
2789 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2790 offset_type **vec_out)
2791 {
2792 offset_type hash;
2793 offset_type slot, step;
2794 int (*cmp) (const char *, const char *);
2795
2796 gdb::unique_xmalloc_ptr<char> without_params;
2797 if (current_language->la_language == language_cplus
2798 || current_language->la_language == language_fortran
2799 || current_language->la_language == language_d)
2800 {
2801 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2802 not contain any. */
2803
2804 if (strchr (name, '(') != NULL)
2805 {
2806 without_params = cp_remove_params (name);
2807
2808 if (without_params != NULL)
2809 name = without_params.get ();
2810 }
2811 }
2812
2813 /* Index version 4 did not support case insensitive searches. But the
2814 indices for case insensitive languages are built in lowercase, therefore
2815 simulate our NAME being searched is also lowercased. */
2816 hash = mapped_index_string_hash ((index->version == 4
2817 && case_sensitivity == case_sensitive_off
2818 ? 5 : index->version),
2819 name);
2820
2821 slot = hash & (index->symbol_table.size () - 1);
2822 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2823 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2824
2825 for (;;)
2826 {
2827 const char *str;
2828
2829 const auto &bucket = index->symbol_table[slot];
2830 if (bucket.name == 0 && bucket.vec == 0)
2831 return false;
2832
2833 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2834 if (!cmp (name, str))
2835 {
2836 *vec_out = (offset_type *) (index->constant_pool
2837 + MAYBE_SWAP (bucket.vec));
2838 return true;
2839 }
2840
2841 slot = (slot + step) & (index->symbol_table.size () - 1);
2842 }
2843 }
2844
2845 /* A helper function that reads the .gdb_index from BUFFER and fills
2846 in MAP. FILENAME is the name of the file containing the data;
2847 it is used for error reporting. DEPRECATED_OK is true if it is
2848 ok to use deprecated sections.
2849
2850 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2851 out parameters that are filled in with information about the CU and
2852 TU lists in the section.
2853
2854 Returns true if all went well, false otherwise. */
2855
2856 static bool
2857 read_gdb_index_from_buffer (const char *filename,
2858 bool deprecated_ok,
2859 gdb::array_view<const gdb_byte> buffer,
2860 struct mapped_index *map,
2861 const gdb_byte **cu_list,
2862 offset_type *cu_list_elements,
2863 const gdb_byte **types_list,
2864 offset_type *types_list_elements)
2865 {
2866 const gdb_byte *addr = &buffer[0];
2867
2868 /* Version check. */
2869 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2870 /* Versions earlier than 3 emitted every copy of a psymbol. This
2871 causes the index to behave very poorly for certain requests. Version 3
2872 contained incomplete addrmap. So, it seems better to just ignore such
2873 indices. */
2874 if (version < 4)
2875 {
2876 static int warning_printed = 0;
2877 if (!warning_printed)
2878 {
2879 warning (_("Skipping obsolete .gdb_index section in %s."),
2880 filename);
2881 warning_printed = 1;
2882 }
2883 return 0;
2884 }
2885 /* Index version 4 uses a different hash function than index version
2886 5 and later.
2887
2888 Versions earlier than 6 did not emit psymbols for inlined
2889 functions. Using these files will cause GDB not to be able to
2890 set breakpoints on inlined functions by name, so we ignore these
2891 indices unless the user has done
2892 "set use-deprecated-index-sections on". */
2893 if (version < 6 && !deprecated_ok)
2894 {
2895 static int warning_printed = 0;
2896 if (!warning_printed)
2897 {
2898 warning (_("\
2899 Skipping deprecated .gdb_index section in %s.\n\
2900 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2901 to use the section anyway."),
2902 filename);
2903 warning_printed = 1;
2904 }
2905 return 0;
2906 }
2907 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2908 of the TU (for symbols coming from TUs),
2909 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2910 Plus gold-generated indices can have duplicate entries for global symbols,
2911 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2912 These are just performance bugs, and we can't distinguish gdb-generated
2913 indices from gold-generated ones, so issue no warning here. */
2914
2915 /* Indexes with higher version than the one supported by GDB may be no
2916 longer backward compatible. */
2917 if (version > 8)
2918 return 0;
2919
2920 map->version = version;
2921
2922 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2923
2924 int i = 0;
2925 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2926 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2927 / 8);
2928 ++i;
2929
2930 *types_list = addr + MAYBE_SWAP (metadata[i]);
2931 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2932 - MAYBE_SWAP (metadata[i]))
2933 / 8);
2934 ++i;
2935
2936 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2937 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2938 map->address_table
2939 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2940 ++i;
2941
2942 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2943 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2944 map->symbol_table
2945 = gdb::array_view<mapped_index::symbol_table_slot>
2946 ((mapped_index::symbol_table_slot *) symbol_table,
2947 (mapped_index::symbol_table_slot *) symbol_table_end);
2948
2949 ++i;
2950 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2951
2952 return 1;
2953 }
2954
2955 /* Callback types for dwarf2_read_gdb_index. */
2956
2957 typedef gdb::function_view
2958 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2959 get_gdb_index_contents_ftype;
2960 typedef gdb::function_view
2961 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2962 get_gdb_index_contents_dwz_ftype;
2963
2964 /* Read .gdb_index. If everything went ok, initialize the "quick"
2965 elements of all the CUs and return 1. Otherwise, return 0. */
2966
2967 static int
2968 dwarf2_read_gdb_index
2969 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2970 get_gdb_index_contents_ftype get_gdb_index_contents,
2971 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2972 {
2973 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2974 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2975 struct dwz_file *dwz;
2976 struct objfile *objfile = dwarf2_per_objfile->objfile;
2977
2978 gdb::array_view<const gdb_byte> main_index_contents
2979 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
2980
2981 if (main_index_contents.empty ())
2982 return 0;
2983
2984 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
2985 if (!read_gdb_index_from_buffer (objfile_name (objfile),
2986 use_deprecated_index_sections,
2987 main_index_contents, map.get (), &cu_list,
2988 &cu_list_elements, &types_list,
2989 &types_list_elements))
2990 return 0;
2991
2992 /* Don't use the index if it's empty. */
2993 if (map->symbol_table.empty ())
2994 return 0;
2995
2996 /* If there is a .dwz file, read it so we can get its CU list as
2997 well. */
2998 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2999 if (dwz != NULL)
3000 {
3001 struct mapped_index dwz_map;
3002 const gdb_byte *dwz_types_ignore;
3003 offset_type dwz_types_elements_ignore;
3004
3005 gdb::array_view<const gdb_byte> dwz_index_content
3006 = get_gdb_index_contents_dwz (objfile, dwz);
3007
3008 if (dwz_index_content.empty ())
3009 return 0;
3010
3011 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3012 1, dwz_index_content, &dwz_map,
3013 &dwz_list, &dwz_list_elements,
3014 &dwz_types_ignore,
3015 &dwz_types_elements_ignore))
3016 {
3017 warning (_("could not read '.gdb_index' section from %s; skipping"),
3018 bfd_get_filename (dwz->dwz_bfd.get ()));
3019 return 0;
3020 }
3021 }
3022
3023 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3024 dwz_list, dwz_list_elements);
3025
3026 if (types_list_elements)
3027 {
3028 /* We can only handle a single .debug_types when we have an
3029 index. */
3030 if (dwarf2_per_objfile->types.size () != 1)
3031 return 0;
3032
3033 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3034
3035 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3036 types_list, types_list_elements);
3037 }
3038
3039 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3040
3041 dwarf2_per_objfile->index_table = std::move (map);
3042 dwarf2_per_objfile->using_index = 1;
3043 dwarf2_per_objfile->quick_file_names_table =
3044 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3045
3046 return 1;
3047 }
3048
3049 /* die_reader_func for dw2_get_file_names. */
3050
3051 static void
3052 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3053 const gdb_byte *info_ptr,
3054 struct die_info *comp_unit_die)
3055 {
3056 struct dwarf2_cu *cu = reader->cu;
3057 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3058 struct dwarf2_per_objfile *dwarf2_per_objfile
3059 = cu->per_cu->dwarf2_per_objfile;
3060 struct objfile *objfile = dwarf2_per_objfile->objfile;
3061 struct dwarf2_per_cu_data *lh_cu;
3062 struct attribute *attr;
3063 void **slot;
3064 struct quick_file_names *qfn;
3065
3066 gdb_assert (! this_cu->is_debug_types);
3067
3068 /* Our callers never want to match partial units -- instead they
3069 will match the enclosing full CU. */
3070 if (comp_unit_die->tag == DW_TAG_partial_unit)
3071 {
3072 this_cu->v.quick->no_file_data = 1;
3073 return;
3074 }
3075
3076 lh_cu = this_cu;
3077 slot = NULL;
3078
3079 line_header_up lh;
3080 sect_offset line_offset {};
3081
3082 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3083 if (attr != nullptr)
3084 {
3085 struct quick_file_names find_entry;
3086
3087 line_offset = (sect_offset) DW_UNSND (attr);
3088
3089 /* We may have already read in this line header (TU line header sharing).
3090 If we have we're done. */
3091 find_entry.hash.dwo_unit = cu->dwo_unit;
3092 find_entry.hash.line_sect_off = line_offset;
3093 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3094 &find_entry, INSERT);
3095 if (*slot != NULL)
3096 {
3097 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3098 return;
3099 }
3100
3101 lh = dwarf_decode_line_header (line_offset, cu);
3102 }
3103 if (lh == NULL)
3104 {
3105 lh_cu->v.quick->no_file_data = 1;
3106 return;
3107 }
3108
3109 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3110 qfn->hash.dwo_unit = cu->dwo_unit;
3111 qfn->hash.line_sect_off = line_offset;
3112 gdb_assert (slot != NULL);
3113 *slot = qfn;
3114
3115 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3116
3117 int offset = 0;
3118 if (strcmp (fnd.name, "<unknown>") != 0)
3119 ++offset;
3120
3121 qfn->num_file_names = offset + lh->file_names_size ();
3122 qfn->file_names =
3123 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3124 if (offset != 0)
3125 qfn->file_names[0] = xstrdup (fnd.name);
3126 for (int i = 0; i < lh->file_names_size (); ++i)
3127 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3128 fnd.comp_dir).release ();
3129 qfn->real_names = NULL;
3130
3131 lh_cu->v.quick->file_names = qfn;
3132 }
3133
3134 /* A helper for the "quick" functions which attempts to read the line
3135 table for THIS_CU. */
3136
3137 static struct quick_file_names *
3138 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3139 {
3140 /* This should never be called for TUs. */
3141 gdb_assert (! this_cu->is_debug_types);
3142 /* Nor type unit groups. */
3143 gdb_assert (! this_cu->type_unit_group_p ());
3144
3145 if (this_cu->v.quick->file_names != NULL)
3146 return this_cu->v.quick->file_names;
3147 /* If we know there is no line data, no point in looking again. */
3148 if (this_cu->v.quick->no_file_data)
3149 return NULL;
3150
3151 cutu_reader reader (this_cu);
3152 if (!reader.dummy_p)
3153 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3154
3155 if (this_cu->v.quick->no_file_data)
3156 return NULL;
3157 return this_cu->v.quick->file_names;
3158 }
3159
3160 /* A helper for the "quick" functions which computes and caches the
3161 real path for a given file name from the line table. */
3162
3163 static const char *
3164 dw2_get_real_path (struct objfile *objfile,
3165 struct quick_file_names *qfn, int index)
3166 {
3167 if (qfn->real_names == NULL)
3168 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3169 qfn->num_file_names, const char *);
3170
3171 if (qfn->real_names[index] == NULL)
3172 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3173
3174 return qfn->real_names[index];
3175 }
3176
3177 static struct symtab *
3178 dw2_find_last_source_symtab (struct objfile *objfile)
3179 {
3180 struct dwarf2_per_objfile *dwarf2_per_objfile
3181 = get_dwarf2_per_objfile (objfile);
3182 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3183 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3184
3185 if (cust == NULL)
3186 return NULL;
3187
3188 return compunit_primary_filetab (cust);
3189 }
3190
3191 /* Traversal function for dw2_forget_cached_source_info. */
3192
3193 static int
3194 dw2_free_cached_file_names (void **slot, void *info)
3195 {
3196 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3197
3198 if (file_data->real_names)
3199 {
3200 int i;
3201
3202 for (i = 0; i < file_data->num_file_names; ++i)
3203 {
3204 xfree ((void*) file_data->real_names[i]);
3205 file_data->real_names[i] = NULL;
3206 }
3207 }
3208
3209 return 1;
3210 }
3211
3212 static void
3213 dw2_forget_cached_source_info (struct objfile *objfile)
3214 {
3215 struct dwarf2_per_objfile *dwarf2_per_objfile
3216 = get_dwarf2_per_objfile (objfile);
3217
3218 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3219 dw2_free_cached_file_names, NULL);
3220 }
3221
3222 /* Helper function for dw2_map_symtabs_matching_filename that expands
3223 the symtabs and calls the iterator. */
3224
3225 static int
3226 dw2_map_expand_apply (struct objfile *objfile,
3227 struct dwarf2_per_cu_data *per_cu,
3228 const char *name, const char *real_path,
3229 gdb::function_view<bool (symtab *)> callback)
3230 {
3231 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3232
3233 /* Don't visit already-expanded CUs. */
3234 if (per_cu->v.quick->compunit_symtab)
3235 return 0;
3236
3237 /* This may expand more than one symtab, and we want to iterate over
3238 all of them. */
3239 dw2_instantiate_symtab (per_cu, false);
3240
3241 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3242 last_made, callback);
3243 }
3244
3245 /* Implementation of the map_symtabs_matching_filename method. */
3246
3247 static bool
3248 dw2_map_symtabs_matching_filename
3249 (struct objfile *objfile, const char *name, const char *real_path,
3250 gdb::function_view<bool (symtab *)> callback)
3251 {
3252 const char *name_basename = lbasename (name);
3253 struct dwarf2_per_objfile *dwarf2_per_objfile
3254 = get_dwarf2_per_objfile (objfile);
3255
3256 /* The rule is CUs specify all the files, including those used by
3257 any TU, so there's no need to scan TUs here. */
3258
3259 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3260 {
3261 /* We only need to look at symtabs not already expanded. */
3262 if (per_cu->v.quick->compunit_symtab)
3263 continue;
3264
3265 quick_file_names *file_data = dw2_get_file_names (per_cu);
3266 if (file_data == NULL)
3267 continue;
3268
3269 for (int j = 0; j < file_data->num_file_names; ++j)
3270 {
3271 const char *this_name = file_data->file_names[j];
3272 const char *this_real_name;
3273
3274 if (compare_filenames_for_search (this_name, name))
3275 {
3276 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3277 callback))
3278 return true;
3279 continue;
3280 }
3281
3282 /* Before we invoke realpath, which can get expensive when many
3283 files are involved, do a quick comparison of the basenames. */
3284 if (! basenames_may_differ
3285 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3286 continue;
3287
3288 this_real_name = dw2_get_real_path (objfile, file_data, j);
3289 if (compare_filenames_for_search (this_real_name, name))
3290 {
3291 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3292 callback))
3293 return true;
3294 continue;
3295 }
3296
3297 if (real_path != NULL)
3298 {
3299 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3300 gdb_assert (IS_ABSOLUTE_PATH (name));
3301 if (this_real_name != NULL
3302 && FILENAME_CMP (real_path, this_real_name) == 0)
3303 {
3304 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3305 callback))
3306 return true;
3307 continue;
3308 }
3309 }
3310 }
3311 }
3312
3313 return false;
3314 }
3315
3316 /* Struct used to manage iterating over all CUs looking for a symbol. */
3317
3318 struct dw2_symtab_iterator
3319 {
3320 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3321 struct dwarf2_per_objfile *dwarf2_per_objfile;
3322 /* If set, only look for symbols that match that block. Valid values are
3323 GLOBAL_BLOCK and STATIC_BLOCK. */
3324 gdb::optional<block_enum> block_index;
3325 /* The kind of symbol we're looking for. */
3326 domain_enum domain;
3327 /* The list of CUs from the index entry of the symbol,
3328 or NULL if not found. */
3329 offset_type *vec;
3330 /* The next element in VEC to look at. */
3331 int next;
3332 /* The number of elements in VEC, or zero if there is no match. */
3333 int length;
3334 /* Have we seen a global version of the symbol?
3335 If so we can ignore all further global instances.
3336 This is to work around gold/15646, inefficient gold-generated
3337 indices. */
3338 int global_seen;
3339 };
3340
3341 /* Initialize the index symtab iterator ITER. */
3342
3343 static void
3344 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3345 struct dwarf2_per_objfile *dwarf2_per_objfile,
3346 gdb::optional<block_enum> block_index,
3347 domain_enum domain,
3348 const char *name)
3349 {
3350 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3351 iter->block_index = block_index;
3352 iter->domain = domain;
3353 iter->next = 0;
3354 iter->global_seen = 0;
3355
3356 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3357
3358 /* index is NULL if OBJF_READNOW. */
3359 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3360 iter->length = MAYBE_SWAP (*iter->vec);
3361 else
3362 {
3363 iter->vec = NULL;
3364 iter->length = 0;
3365 }
3366 }
3367
3368 /* Return the next matching CU or NULL if there are no more. */
3369
3370 static struct dwarf2_per_cu_data *
3371 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3372 {
3373 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3374
3375 for ( ; iter->next < iter->length; ++iter->next)
3376 {
3377 offset_type cu_index_and_attrs =
3378 MAYBE_SWAP (iter->vec[iter->next + 1]);
3379 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3380 gdb_index_symbol_kind symbol_kind =
3381 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3382 /* Only check the symbol attributes if they're present.
3383 Indices prior to version 7 don't record them,
3384 and indices >= 7 may elide them for certain symbols
3385 (gold does this). */
3386 int attrs_valid =
3387 (dwarf2_per_objfile->index_table->version >= 7
3388 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3389
3390 /* Don't crash on bad data. */
3391 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3392 + dwarf2_per_objfile->all_type_units.size ()))
3393 {
3394 complaint (_(".gdb_index entry has bad CU index"
3395 " [in module %s]"),
3396 objfile_name (dwarf2_per_objfile->objfile));
3397 continue;
3398 }
3399
3400 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3401
3402 /* Skip if already read in. */
3403 if (per_cu->v.quick->compunit_symtab)
3404 continue;
3405
3406 /* Check static vs global. */
3407 if (attrs_valid)
3408 {
3409 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3410
3411 if (iter->block_index.has_value ())
3412 {
3413 bool want_static = *iter->block_index == STATIC_BLOCK;
3414
3415 if (is_static != want_static)
3416 continue;
3417 }
3418
3419 /* Work around gold/15646. */
3420 if (!is_static && iter->global_seen)
3421 continue;
3422 if (!is_static)
3423 iter->global_seen = 1;
3424 }
3425
3426 /* Only check the symbol's kind if it has one. */
3427 if (attrs_valid)
3428 {
3429 switch (iter->domain)
3430 {
3431 case VAR_DOMAIN:
3432 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3433 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3434 /* Some types are also in VAR_DOMAIN. */
3435 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3436 continue;
3437 break;
3438 case STRUCT_DOMAIN:
3439 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3440 continue;
3441 break;
3442 case LABEL_DOMAIN:
3443 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3444 continue;
3445 break;
3446 case MODULE_DOMAIN:
3447 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3448 continue;
3449 break;
3450 default:
3451 break;
3452 }
3453 }
3454
3455 ++iter->next;
3456 return per_cu;
3457 }
3458
3459 return NULL;
3460 }
3461
3462 static struct compunit_symtab *
3463 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3464 const char *name, domain_enum domain)
3465 {
3466 struct compunit_symtab *stab_best = NULL;
3467 struct dwarf2_per_objfile *dwarf2_per_objfile
3468 = get_dwarf2_per_objfile (objfile);
3469
3470 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3471
3472 struct dw2_symtab_iterator iter;
3473 struct dwarf2_per_cu_data *per_cu;
3474
3475 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3476
3477 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3478 {
3479 struct symbol *sym, *with_opaque = NULL;
3480 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3481 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3482 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3483
3484 sym = block_find_symbol (block, name, domain,
3485 block_find_non_opaque_type_preferred,
3486 &with_opaque);
3487
3488 /* Some caution must be observed with overloaded functions
3489 and methods, since the index will not contain any overload
3490 information (but NAME might contain it). */
3491
3492 if (sym != NULL
3493 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3494 return stab;
3495 if (with_opaque != NULL
3496 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3497 stab_best = stab;
3498
3499 /* Keep looking through other CUs. */
3500 }
3501
3502 return stab_best;
3503 }
3504
3505 static void
3506 dw2_print_stats (struct objfile *objfile)
3507 {
3508 struct dwarf2_per_objfile *dwarf2_per_objfile
3509 = get_dwarf2_per_objfile (objfile);
3510 int total = (dwarf2_per_objfile->all_comp_units.size ()
3511 + dwarf2_per_objfile->all_type_units.size ());
3512 int count = 0;
3513
3514 for (int i = 0; i < total; ++i)
3515 {
3516 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3517
3518 if (!per_cu->v.quick->compunit_symtab)
3519 ++count;
3520 }
3521 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3522 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3523 }
3524
3525 /* This dumps minimal information about the index.
3526 It is called via "mt print objfiles".
3527 One use is to verify .gdb_index has been loaded by the
3528 gdb.dwarf2/gdb-index.exp testcase. */
3529
3530 static void
3531 dw2_dump (struct objfile *objfile)
3532 {
3533 struct dwarf2_per_objfile *dwarf2_per_objfile
3534 = get_dwarf2_per_objfile (objfile);
3535
3536 gdb_assert (dwarf2_per_objfile->using_index);
3537 printf_filtered (".gdb_index:");
3538 if (dwarf2_per_objfile->index_table != NULL)
3539 {
3540 printf_filtered (" version %d\n",
3541 dwarf2_per_objfile->index_table->version);
3542 }
3543 else
3544 printf_filtered (" faked for \"readnow\"\n");
3545 printf_filtered ("\n");
3546 }
3547
3548 static void
3549 dw2_expand_symtabs_for_function (struct objfile *objfile,
3550 const char *func_name)
3551 {
3552 struct dwarf2_per_objfile *dwarf2_per_objfile
3553 = get_dwarf2_per_objfile (objfile);
3554
3555 struct dw2_symtab_iterator iter;
3556 struct dwarf2_per_cu_data *per_cu;
3557
3558 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3559
3560 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3561 dw2_instantiate_symtab (per_cu, false);
3562
3563 }
3564
3565 static void
3566 dw2_expand_all_symtabs (struct objfile *objfile)
3567 {
3568 struct dwarf2_per_objfile *dwarf2_per_objfile
3569 = get_dwarf2_per_objfile (objfile);
3570 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3571 + dwarf2_per_objfile->all_type_units.size ());
3572
3573 for (int i = 0; i < total_units; ++i)
3574 {
3575 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3576
3577 /* We don't want to directly expand a partial CU, because if we
3578 read it with the wrong language, then assertion failures can
3579 be triggered later on. See PR symtab/23010. So, tell
3580 dw2_instantiate_symtab to skip partial CUs -- any important
3581 partial CU will be read via DW_TAG_imported_unit anyway. */
3582 dw2_instantiate_symtab (per_cu, true);
3583 }
3584 }
3585
3586 static void
3587 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3588 const char *fullname)
3589 {
3590 struct dwarf2_per_objfile *dwarf2_per_objfile
3591 = get_dwarf2_per_objfile (objfile);
3592
3593 /* We don't need to consider type units here.
3594 This is only called for examining code, e.g. expand_line_sal.
3595 There can be an order of magnitude (or more) more type units
3596 than comp units, and we avoid them if we can. */
3597
3598 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3599 {
3600 /* We only need to look at symtabs not already expanded. */
3601 if (per_cu->v.quick->compunit_symtab)
3602 continue;
3603
3604 quick_file_names *file_data = dw2_get_file_names (per_cu);
3605 if (file_data == NULL)
3606 continue;
3607
3608 for (int j = 0; j < file_data->num_file_names; ++j)
3609 {
3610 const char *this_fullname = file_data->file_names[j];
3611
3612 if (filename_cmp (this_fullname, fullname) == 0)
3613 {
3614 dw2_instantiate_symtab (per_cu, false);
3615 break;
3616 }
3617 }
3618 }
3619 }
3620
3621 static void
3622 dw2_map_matching_symbols
3623 (struct objfile *objfile,
3624 const lookup_name_info &name, domain_enum domain,
3625 int global,
3626 gdb::function_view<symbol_found_callback_ftype> callback,
3627 symbol_compare_ftype *ordered_compare)
3628 {
3629 /* Used for Ada. */
3630 struct dwarf2_per_objfile *dwarf2_per_objfile
3631 = get_dwarf2_per_objfile (objfile);
3632
3633 if (dwarf2_per_objfile->index_table != nullptr)
3634 {
3635 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3636 here though if the current language is Ada for a non-Ada objfile
3637 using GNU index. As Ada does not look for non-Ada symbols this
3638 function should just return. */
3639 return;
3640 }
3641
3642 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3643 inline psym_map_matching_symbols here, assuming all partial symtabs have
3644 been read in. */
3645 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3646
3647 for (compunit_symtab *cust : objfile->compunits ())
3648 {
3649 const struct block *block;
3650
3651 if (cust == NULL)
3652 continue;
3653 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3654 if (!iterate_over_symbols_terminated (block, name,
3655 domain, callback))
3656 return;
3657 }
3658 }
3659
3660 /* Starting from a search name, return the string that finds the upper
3661 bound of all strings that start with SEARCH_NAME in a sorted name
3662 list. Returns the empty string to indicate that the upper bound is
3663 the end of the list. */
3664
3665 static std::string
3666 make_sort_after_prefix_name (const char *search_name)
3667 {
3668 /* When looking to complete "func", we find the upper bound of all
3669 symbols that start with "func" by looking for where we'd insert
3670 the closest string that would follow "func" in lexicographical
3671 order. Usually, that's "func"-with-last-character-incremented,
3672 i.e. "fund". Mind non-ASCII characters, though. Usually those
3673 will be UTF-8 multi-byte sequences, but we can't be certain.
3674 Especially mind the 0xff character, which is a valid character in
3675 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3676 rule out compilers allowing it in identifiers. Note that
3677 conveniently, strcmp/strcasecmp are specified to compare
3678 characters interpreted as unsigned char. So what we do is treat
3679 the whole string as a base 256 number composed of a sequence of
3680 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3681 to 0, and carries 1 to the following more-significant position.
3682 If the very first character in SEARCH_NAME ends up incremented
3683 and carries/overflows, then the upper bound is the end of the
3684 list. The string after the empty string is also the empty
3685 string.
3686
3687 Some examples of this operation:
3688
3689 SEARCH_NAME => "+1" RESULT
3690
3691 "abc" => "abd"
3692 "ab\xff" => "ac"
3693 "\xff" "a" "\xff" => "\xff" "b"
3694 "\xff" => ""
3695 "\xff\xff" => ""
3696 "" => ""
3697
3698 Then, with these symbols for example:
3699
3700 func
3701 func1
3702 fund
3703
3704 completing "func" looks for symbols between "func" and
3705 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3706 which finds "func" and "func1", but not "fund".
3707
3708 And with:
3709
3710 funcÿ (Latin1 'ÿ' [0xff])
3711 funcÿ1
3712 fund
3713
3714 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3715 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3716
3717 And with:
3718
3719 ÿÿ (Latin1 'ÿ' [0xff])
3720 ÿÿ1
3721
3722 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3723 the end of the list.
3724 */
3725 std::string after = search_name;
3726 while (!after.empty () && (unsigned char) after.back () == 0xff)
3727 after.pop_back ();
3728 if (!after.empty ())
3729 after.back () = (unsigned char) after.back () + 1;
3730 return after;
3731 }
3732
3733 /* See declaration. */
3734
3735 std::pair<std::vector<name_component>::const_iterator,
3736 std::vector<name_component>::const_iterator>
3737 mapped_index_base::find_name_components_bounds
3738 (const lookup_name_info &lookup_name_without_params, language lang) const
3739 {
3740 auto *name_cmp
3741 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3742
3743 const char *lang_name
3744 = lookup_name_without_params.language_lookup_name (lang);
3745
3746 /* Comparison function object for lower_bound that matches against a
3747 given symbol name. */
3748 auto lookup_compare_lower = [&] (const name_component &elem,
3749 const char *name)
3750 {
3751 const char *elem_qualified = this->symbol_name_at (elem.idx);
3752 const char *elem_name = elem_qualified + elem.name_offset;
3753 return name_cmp (elem_name, name) < 0;
3754 };
3755
3756 /* Comparison function object for upper_bound that matches against a
3757 given symbol name. */
3758 auto lookup_compare_upper = [&] (const char *name,
3759 const name_component &elem)
3760 {
3761 const char *elem_qualified = this->symbol_name_at (elem.idx);
3762 const char *elem_name = elem_qualified + elem.name_offset;
3763 return name_cmp (name, elem_name) < 0;
3764 };
3765
3766 auto begin = this->name_components.begin ();
3767 auto end = this->name_components.end ();
3768
3769 /* Find the lower bound. */
3770 auto lower = [&] ()
3771 {
3772 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3773 return begin;
3774 else
3775 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3776 } ();
3777
3778 /* Find the upper bound. */
3779 auto upper = [&] ()
3780 {
3781 if (lookup_name_without_params.completion_mode ())
3782 {
3783 /* In completion mode, we want UPPER to point past all
3784 symbols names that have the same prefix. I.e., with
3785 these symbols, and completing "func":
3786
3787 function << lower bound
3788 function1
3789 other_function << upper bound
3790
3791 We find the upper bound by looking for the insertion
3792 point of "func"-with-last-character-incremented,
3793 i.e. "fund". */
3794 std::string after = make_sort_after_prefix_name (lang_name);
3795 if (after.empty ())
3796 return end;
3797 return std::lower_bound (lower, end, after.c_str (),
3798 lookup_compare_lower);
3799 }
3800 else
3801 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3802 } ();
3803
3804 return {lower, upper};
3805 }
3806
3807 /* See declaration. */
3808
3809 void
3810 mapped_index_base::build_name_components ()
3811 {
3812 if (!this->name_components.empty ())
3813 return;
3814
3815 this->name_components_casing = case_sensitivity;
3816 auto *name_cmp
3817 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3818
3819 /* The code below only knows how to break apart components of C++
3820 symbol names (and other languages that use '::' as
3821 namespace/module separator) and Ada symbol names. */
3822 auto count = this->symbol_name_count ();
3823 for (offset_type idx = 0; idx < count; idx++)
3824 {
3825 if (this->symbol_name_slot_invalid (idx))
3826 continue;
3827
3828 const char *name = this->symbol_name_at (idx);
3829
3830 /* Add each name component to the name component table. */
3831 unsigned int previous_len = 0;
3832
3833 if (strstr (name, "::") != nullptr)
3834 {
3835 for (unsigned int current_len = cp_find_first_component (name);
3836 name[current_len] != '\0';
3837 current_len += cp_find_first_component (name + current_len))
3838 {
3839 gdb_assert (name[current_len] == ':');
3840 this->name_components.push_back ({previous_len, idx});
3841 /* Skip the '::'. */
3842 current_len += 2;
3843 previous_len = current_len;
3844 }
3845 }
3846 else
3847 {
3848 /* Handle the Ada encoded (aka mangled) form here. */
3849 for (const char *iter = strstr (name, "__");
3850 iter != nullptr;
3851 iter = strstr (iter, "__"))
3852 {
3853 this->name_components.push_back ({previous_len, idx});
3854 iter += 2;
3855 previous_len = iter - name;
3856 }
3857 }
3858
3859 this->name_components.push_back ({previous_len, idx});
3860 }
3861
3862 /* Sort name_components elements by name. */
3863 auto name_comp_compare = [&] (const name_component &left,
3864 const name_component &right)
3865 {
3866 const char *left_qualified = this->symbol_name_at (left.idx);
3867 const char *right_qualified = this->symbol_name_at (right.idx);
3868
3869 const char *left_name = left_qualified + left.name_offset;
3870 const char *right_name = right_qualified + right.name_offset;
3871
3872 return name_cmp (left_name, right_name) < 0;
3873 };
3874
3875 std::sort (this->name_components.begin (),
3876 this->name_components.end (),
3877 name_comp_compare);
3878 }
3879
3880 /* Helper for dw2_expand_symtabs_matching that works with a
3881 mapped_index_base instead of the containing objfile. This is split
3882 to a separate function in order to be able to unit test the
3883 name_components matching using a mock mapped_index_base. For each
3884 symbol name that matches, calls MATCH_CALLBACK, passing it the
3885 symbol's index in the mapped_index_base symbol table. */
3886
3887 static void
3888 dw2_expand_symtabs_matching_symbol
3889 (mapped_index_base &index,
3890 const lookup_name_info &lookup_name_in,
3891 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3892 enum search_domain kind,
3893 gdb::function_view<bool (offset_type)> match_callback)
3894 {
3895 lookup_name_info lookup_name_without_params
3896 = lookup_name_in.make_ignore_params ();
3897
3898 /* Build the symbol name component sorted vector, if we haven't
3899 yet. */
3900 index.build_name_components ();
3901
3902 /* The same symbol may appear more than once in the range though.
3903 E.g., if we're looking for symbols that complete "w", and we have
3904 a symbol named "w1::w2", we'll find the two name components for
3905 that same symbol in the range. To be sure we only call the
3906 callback once per symbol, we first collect the symbol name
3907 indexes that matched in a temporary vector and ignore
3908 duplicates. */
3909 std::vector<offset_type> matches;
3910
3911 struct name_and_matcher
3912 {
3913 symbol_name_matcher_ftype *matcher;
3914 const std::string &name;
3915
3916 bool operator== (const name_and_matcher &other) const
3917 {
3918 return matcher == other.matcher && name == other.name;
3919 }
3920 };
3921
3922 /* A vector holding all the different symbol name matchers, for all
3923 languages. */
3924 std::vector<name_and_matcher> matchers;
3925
3926 for (int i = 0; i < nr_languages; i++)
3927 {
3928 enum language lang_e = (enum language) i;
3929
3930 const language_defn *lang = language_def (lang_e);
3931 symbol_name_matcher_ftype *name_matcher
3932 = get_symbol_name_matcher (lang, lookup_name_without_params);
3933
3934 name_and_matcher key {
3935 name_matcher,
3936 lookup_name_without_params.language_lookup_name (lang_e)
3937 };
3938
3939 /* Don't insert the same comparison routine more than once.
3940 Note that we do this linear walk. This is not a problem in
3941 practice because the number of supported languages is
3942 low. */
3943 if (std::find (matchers.begin (), matchers.end (), key)
3944 != matchers.end ())
3945 continue;
3946 matchers.push_back (std::move (key));
3947
3948 auto bounds
3949 = index.find_name_components_bounds (lookup_name_without_params,
3950 lang_e);
3951
3952 /* Now for each symbol name in range, check to see if we have a name
3953 match, and if so, call the MATCH_CALLBACK callback. */
3954
3955 for (; bounds.first != bounds.second; ++bounds.first)
3956 {
3957 const char *qualified = index.symbol_name_at (bounds.first->idx);
3958
3959 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3960 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3961 continue;
3962
3963 matches.push_back (bounds.first->idx);
3964 }
3965 }
3966
3967 std::sort (matches.begin (), matches.end ());
3968
3969 /* Finally call the callback, once per match. */
3970 ULONGEST prev = -1;
3971 for (offset_type idx : matches)
3972 {
3973 if (prev != idx)
3974 {
3975 if (!match_callback (idx))
3976 break;
3977 prev = idx;
3978 }
3979 }
3980
3981 /* Above we use a type wider than idx's for 'prev', since 0 and
3982 (offset_type)-1 are both possible values. */
3983 static_assert (sizeof (prev) > sizeof (offset_type), "");
3984 }
3985
3986 #if GDB_SELF_TEST
3987
3988 namespace selftests { namespace dw2_expand_symtabs_matching {
3989
3990 /* A mock .gdb_index/.debug_names-like name index table, enough to
3991 exercise dw2_expand_symtabs_matching_symbol, which works with the
3992 mapped_index_base interface. Builds an index from the symbol list
3993 passed as parameter to the constructor. */
3994 class mock_mapped_index : public mapped_index_base
3995 {
3996 public:
3997 mock_mapped_index (gdb::array_view<const char *> symbols)
3998 : m_symbol_table (symbols)
3999 {}
4000
4001 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4002
4003 /* Return the number of names in the symbol table. */
4004 size_t symbol_name_count () const override
4005 {
4006 return m_symbol_table.size ();
4007 }
4008
4009 /* Get the name of the symbol at IDX in the symbol table. */
4010 const char *symbol_name_at (offset_type idx) const override
4011 {
4012 return m_symbol_table[idx];
4013 }
4014
4015 private:
4016 gdb::array_view<const char *> m_symbol_table;
4017 };
4018
4019 /* Convenience function that converts a NULL pointer to a "<null>"
4020 string, to pass to print routines. */
4021
4022 static const char *
4023 string_or_null (const char *str)
4024 {
4025 return str != NULL ? str : "<null>";
4026 }
4027
4028 /* Check if a lookup_name_info built from
4029 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4030 index. EXPECTED_LIST is the list of expected matches, in expected
4031 matching order. If no match expected, then an empty list is
4032 specified. Returns true on success. On failure prints a warning
4033 indicating the file:line that failed, and returns false. */
4034
4035 static bool
4036 check_match (const char *file, int line,
4037 mock_mapped_index &mock_index,
4038 const char *name, symbol_name_match_type match_type,
4039 bool completion_mode,
4040 std::initializer_list<const char *> expected_list)
4041 {
4042 lookup_name_info lookup_name (name, match_type, completion_mode);
4043
4044 bool matched = true;
4045
4046 auto mismatch = [&] (const char *expected_str,
4047 const char *got)
4048 {
4049 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4050 "expected=\"%s\", got=\"%s\"\n"),
4051 file, line,
4052 (match_type == symbol_name_match_type::FULL
4053 ? "FULL" : "WILD"),
4054 name, string_or_null (expected_str), string_or_null (got));
4055 matched = false;
4056 };
4057
4058 auto expected_it = expected_list.begin ();
4059 auto expected_end = expected_list.end ();
4060
4061 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4062 NULL, ALL_DOMAIN,
4063 [&] (offset_type idx)
4064 {
4065 const char *matched_name = mock_index.symbol_name_at (idx);
4066 const char *expected_str
4067 = expected_it == expected_end ? NULL : *expected_it++;
4068
4069 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4070 mismatch (expected_str, matched_name);
4071 return true;
4072 });
4073
4074 const char *expected_str
4075 = expected_it == expected_end ? NULL : *expected_it++;
4076 if (expected_str != NULL)
4077 mismatch (expected_str, NULL);
4078
4079 return matched;
4080 }
4081
4082 /* The symbols added to the mock mapped_index for testing (in
4083 canonical form). */
4084 static const char *test_symbols[] = {
4085 "function",
4086 "std::bar",
4087 "std::zfunction",
4088 "std::zfunction2",
4089 "w1::w2",
4090 "ns::foo<char*>",
4091 "ns::foo<int>",
4092 "ns::foo<long>",
4093 "ns2::tmpl<int>::foo2",
4094 "(anonymous namespace)::A::B::C",
4095
4096 /* These are used to check that the increment-last-char in the
4097 matching algorithm for completion doesn't match "t1_fund" when
4098 completing "t1_func". */
4099 "t1_func",
4100 "t1_func1",
4101 "t1_fund",
4102 "t1_fund1",
4103
4104 /* A UTF-8 name with multi-byte sequences to make sure that
4105 cp-name-parser understands this as a single identifier ("função"
4106 is "function" in PT). */
4107 u8"u8função",
4108
4109 /* \377 (0xff) is Latin1 'ÿ'. */
4110 "yfunc\377",
4111
4112 /* \377 (0xff) is Latin1 'ÿ'. */
4113 "\377",
4114 "\377\377123",
4115
4116 /* A name with all sorts of complications. Starts with "z" to make
4117 it easier for the completion tests below. */
4118 #define Z_SYM_NAME \
4119 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4120 "::tuple<(anonymous namespace)::ui*, " \
4121 "std::default_delete<(anonymous namespace)::ui>, void>"
4122
4123 Z_SYM_NAME
4124 };
4125
4126 /* Returns true if the mapped_index_base::find_name_component_bounds
4127 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4128 in completion mode. */
4129
4130 static bool
4131 check_find_bounds_finds (mapped_index_base &index,
4132 const char *search_name,
4133 gdb::array_view<const char *> expected_syms)
4134 {
4135 lookup_name_info lookup_name (search_name,
4136 symbol_name_match_type::FULL, true);
4137
4138 auto bounds = index.find_name_components_bounds (lookup_name,
4139 language_cplus);
4140
4141 size_t distance = std::distance (bounds.first, bounds.second);
4142 if (distance != expected_syms.size ())
4143 return false;
4144
4145 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4146 {
4147 auto nc_elem = bounds.first + exp_elem;
4148 const char *qualified = index.symbol_name_at (nc_elem->idx);
4149 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4150 return false;
4151 }
4152
4153 return true;
4154 }
4155
4156 /* Test the lower-level mapped_index::find_name_component_bounds
4157 method. */
4158
4159 static void
4160 test_mapped_index_find_name_component_bounds ()
4161 {
4162 mock_mapped_index mock_index (test_symbols);
4163
4164 mock_index.build_name_components ();
4165
4166 /* Test the lower-level mapped_index::find_name_component_bounds
4167 method in completion mode. */
4168 {
4169 static const char *expected_syms[] = {
4170 "t1_func",
4171 "t1_func1",
4172 };
4173
4174 SELF_CHECK (check_find_bounds_finds (mock_index,
4175 "t1_func", expected_syms));
4176 }
4177
4178 /* Check that the increment-last-char in the name matching algorithm
4179 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4180 {
4181 static const char *expected_syms1[] = {
4182 "\377",
4183 "\377\377123",
4184 };
4185 SELF_CHECK (check_find_bounds_finds (mock_index,
4186 "\377", expected_syms1));
4187
4188 static const char *expected_syms2[] = {
4189 "\377\377123",
4190 };
4191 SELF_CHECK (check_find_bounds_finds (mock_index,
4192 "\377\377", expected_syms2));
4193 }
4194 }
4195
4196 /* Test dw2_expand_symtabs_matching_symbol. */
4197
4198 static void
4199 test_dw2_expand_symtabs_matching_symbol ()
4200 {
4201 mock_mapped_index mock_index (test_symbols);
4202
4203 /* We let all tests run until the end even if some fails, for debug
4204 convenience. */
4205 bool any_mismatch = false;
4206
4207 /* Create the expected symbols list (an initializer_list). Needed
4208 because lists have commas, and we need to pass them to CHECK,
4209 which is a macro. */
4210 #define EXPECT(...) { __VA_ARGS__ }
4211
4212 /* Wrapper for check_match that passes down the current
4213 __FILE__/__LINE__. */
4214 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4215 any_mismatch |= !check_match (__FILE__, __LINE__, \
4216 mock_index, \
4217 NAME, MATCH_TYPE, COMPLETION_MODE, \
4218 EXPECTED_LIST)
4219
4220 /* Identity checks. */
4221 for (const char *sym : test_symbols)
4222 {
4223 /* Should be able to match all existing symbols. */
4224 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4225 EXPECT (sym));
4226
4227 /* Should be able to match all existing symbols with
4228 parameters. */
4229 std::string with_params = std::string (sym) + "(int)";
4230 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4231 EXPECT (sym));
4232
4233 /* Should be able to match all existing symbols with
4234 parameters and qualifiers. */
4235 with_params = std::string (sym) + " ( int ) const";
4236 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4237 EXPECT (sym));
4238
4239 /* This should really find sym, but cp-name-parser.y doesn't
4240 know about lvalue/rvalue qualifiers yet. */
4241 with_params = std::string (sym) + " ( int ) &&";
4242 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4243 {});
4244 }
4245
4246 /* Check that the name matching algorithm for completion doesn't get
4247 confused with Latin1 'ÿ' / 0xff. */
4248 {
4249 static const char str[] = "\377";
4250 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4251 EXPECT ("\377", "\377\377123"));
4252 }
4253
4254 /* Check that the increment-last-char in the matching algorithm for
4255 completion doesn't match "t1_fund" when completing "t1_func". */
4256 {
4257 static const char str[] = "t1_func";
4258 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4259 EXPECT ("t1_func", "t1_func1"));
4260 }
4261
4262 /* Check that completion mode works at each prefix of the expected
4263 symbol name. */
4264 {
4265 static const char str[] = "function(int)";
4266 size_t len = strlen (str);
4267 std::string lookup;
4268
4269 for (size_t i = 1; i < len; i++)
4270 {
4271 lookup.assign (str, i);
4272 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4273 EXPECT ("function"));
4274 }
4275 }
4276
4277 /* While "w" is a prefix of both components, the match function
4278 should still only be called once. */
4279 {
4280 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4281 EXPECT ("w1::w2"));
4282 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4283 EXPECT ("w1::w2"));
4284 }
4285
4286 /* Same, with a "complicated" symbol. */
4287 {
4288 static const char str[] = Z_SYM_NAME;
4289 size_t len = strlen (str);
4290 std::string lookup;
4291
4292 for (size_t i = 1; i < len; i++)
4293 {
4294 lookup.assign (str, i);
4295 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4296 EXPECT (Z_SYM_NAME));
4297 }
4298 }
4299
4300 /* In FULL mode, an incomplete symbol doesn't match. */
4301 {
4302 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4303 {});
4304 }
4305
4306 /* A complete symbol with parameters matches any overload, since the
4307 index has no overload info. */
4308 {
4309 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4310 EXPECT ("std::zfunction", "std::zfunction2"));
4311 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4312 EXPECT ("std::zfunction", "std::zfunction2"));
4313 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4314 EXPECT ("std::zfunction", "std::zfunction2"));
4315 }
4316
4317 /* Check that whitespace is ignored appropriately. A symbol with a
4318 template argument list. */
4319 {
4320 static const char expected[] = "ns::foo<int>";
4321 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4322 EXPECT (expected));
4323 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4324 EXPECT (expected));
4325 }
4326
4327 /* Check that whitespace is ignored appropriately. A symbol with a
4328 template argument list that includes a pointer. */
4329 {
4330 static const char expected[] = "ns::foo<char*>";
4331 /* Try both completion and non-completion modes. */
4332 static const bool completion_mode[2] = {false, true};
4333 for (size_t i = 0; i < 2; i++)
4334 {
4335 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4336 completion_mode[i], EXPECT (expected));
4337 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4338 completion_mode[i], EXPECT (expected));
4339
4340 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4341 completion_mode[i], EXPECT (expected));
4342 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4343 completion_mode[i], EXPECT (expected));
4344 }
4345 }
4346
4347 {
4348 /* Check method qualifiers are ignored. */
4349 static const char expected[] = "ns::foo<char*>";
4350 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4351 symbol_name_match_type::FULL, true, EXPECT (expected));
4352 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4353 symbol_name_match_type::FULL, true, EXPECT (expected));
4354 CHECK_MATCH ("foo < char * > ( int ) const",
4355 symbol_name_match_type::WILD, true, EXPECT (expected));
4356 CHECK_MATCH ("foo < char * > ( int ) &&",
4357 symbol_name_match_type::WILD, true, EXPECT (expected));
4358 }
4359
4360 /* Test lookup names that don't match anything. */
4361 {
4362 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4363 {});
4364
4365 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4366 {});
4367 }
4368
4369 /* Some wild matching tests, exercising "(anonymous namespace)",
4370 which should not be confused with a parameter list. */
4371 {
4372 static const char *syms[] = {
4373 "A::B::C",
4374 "B::C",
4375 "C",
4376 "A :: B :: C ( int )",
4377 "B :: C ( int )",
4378 "C ( int )",
4379 };
4380
4381 for (const char *s : syms)
4382 {
4383 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4384 EXPECT ("(anonymous namespace)::A::B::C"));
4385 }
4386 }
4387
4388 {
4389 static const char expected[] = "ns2::tmpl<int>::foo2";
4390 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4391 EXPECT (expected));
4392 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4393 EXPECT (expected));
4394 }
4395
4396 SELF_CHECK (!any_mismatch);
4397
4398 #undef EXPECT
4399 #undef CHECK_MATCH
4400 }
4401
4402 static void
4403 run_test ()
4404 {
4405 test_mapped_index_find_name_component_bounds ();
4406 test_dw2_expand_symtabs_matching_symbol ();
4407 }
4408
4409 }} // namespace selftests::dw2_expand_symtabs_matching
4410
4411 #endif /* GDB_SELF_TEST */
4412
4413 /* If FILE_MATCHER is NULL or if PER_CU has
4414 dwarf2_per_cu_quick_data::MARK set (see
4415 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4416 EXPANSION_NOTIFY on it. */
4417
4418 static void
4419 dw2_expand_symtabs_matching_one
4420 (struct dwarf2_per_cu_data *per_cu,
4421 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4422 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4423 {
4424 if (file_matcher == NULL || per_cu->v.quick->mark)
4425 {
4426 bool symtab_was_null
4427 = (per_cu->v.quick->compunit_symtab == NULL);
4428
4429 dw2_instantiate_symtab (per_cu, false);
4430
4431 if (expansion_notify != NULL
4432 && symtab_was_null
4433 && per_cu->v.quick->compunit_symtab != NULL)
4434 expansion_notify (per_cu->v.quick->compunit_symtab);
4435 }
4436 }
4437
4438 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4439 matched, to expand corresponding CUs that were marked. IDX is the
4440 index of the symbol name that matched. */
4441
4442 static void
4443 dw2_expand_marked_cus
4444 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4445 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4446 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4447 search_domain kind)
4448 {
4449 offset_type *vec, vec_len, vec_idx;
4450 bool global_seen = false;
4451 mapped_index &index = *dwarf2_per_objfile->index_table;
4452
4453 vec = (offset_type *) (index.constant_pool
4454 + MAYBE_SWAP (index.symbol_table[idx].vec));
4455 vec_len = MAYBE_SWAP (vec[0]);
4456 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4457 {
4458 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4459 /* This value is only valid for index versions >= 7. */
4460 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4461 gdb_index_symbol_kind symbol_kind =
4462 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4463 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4464 /* Only check the symbol attributes if they're present.
4465 Indices prior to version 7 don't record them,
4466 and indices >= 7 may elide them for certain symbols
4467 (gold does this). */
4468 int attrs_valid =
4469 (index.version >= 7
4470 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4471
4472 /* Work around gold/15646. */
4473 if (attrs_valid)
4474 {
4475 if (!is_static && global_seen)
4476 continue;
4477 if (!is_static)
4478 global_seen = true;
4479 }
4480
4481 /* Only check the symbol's kind if it has one. */
4482 if (attrs_valid)
4483 {
4484 switch (kind)
4485 {
4486 case VARIABLES_DOMAIN:
4487 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4488 continue;
4489 break;
4490 case FUNCTIONS_DOMAIN:
4491 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4492 continue;
4493 break;
4494 case TYPES_DOMAIN:
4495 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4496 continue;
4497 break;
4498 case MODULES_DOMAIN:
4499 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4500 continue;
4501 break;
4502 default:
4503 break;
4504 }
4505 }
4506
4507 /* Don't crash on bad data. */
4508 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4509 + dwarf2_per_objfile->all_type_units.size ()))
4510 {
4511 complaint (_(".gdb_index entry has bad CU index"
4512 " [in module %s]"),
4513 objfile_name (dwarf2_per_objfile->objfile));
4514 continue;
4515 }
4516
4517 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4518 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4519 expansion_notify);
4520 }
4521 }
4522
4523 /* If FILE_MATCHER is non-NULL, set all the
4524 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4525 that match FILE_MATCHER. */
4526
4527 static void
4528 dw_expand_symtabs_matching_file_matcher
4529 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4530 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4531 {
4532 if (file_matcher == NULL)
4533 return;
4534
4535 objfile *const objfile = dwarf2_per_objfile->objfile;
4536
4537 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4538 htab_eq_pointer,
4539 NULL, xcalloc, xfree));
4540 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4541 htab_eq_pointer,
4542 NULL, xcalloc, xfree));
4543
4544 /* The rule is CUs specify all the files, including those used by
4545 any TU, so there's no need to scan TUs here. */
4546
4547 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4548 {
4549 QUIT;
4550
4551 per_cu->v.quick->mark = 0;
4552
4553 /* We only need to look at symtabs not already expanded. */
4554 if (per_cu->v.quick->compunit_symtab)
4555 continue;
4556
4557 quick_file_names *file_data = dw2_get_file_names (per_cu);
4558 if (file_data == NULL)
4559 continue;
4560
4561 if (htab_find (visited_not_found.get (), file_data) != NULL)
4562 continue;
4563 else if (htab_find (visited_found.get (), file_data) != NULL)
4564 {
4565 per_cu->v.quick->mark = 1;
4566 continue;
4567 }
4568
4569 for (int j = 0; j < file_data->num_file_names; ++j)
4570 {
4571 const char *this_real_name;
4572
4573 if (file_matcher (file_data->file_names[j], false))
4574 {
4575 per_cu->v.quick->mark = 1;
4576 break;
4577 }
4578
4579 /* Before we invoke realpath, which can get expensive when many
4580 files are involved, do a quick comparison of the basenames. */
4581 if (!basenames_may_differ
4582 && !file_matcher (lbasename (file_data->file_names[j]),
4583 true))
4584 continue;
4585
4586 this_real_name = dw2_get_real_path (objfile, file_data, j);
4587 if (file_matcher (this_real_name, false))
4588 {
4589 per_cu->v.quick->mark = 1;
4590 break;
4591 }
4592 }
4593
4594 void **slot = htab_find_slot (per_cu->v.quick->mark
4595 ? visited_found.get ()
4596 : visited_not_found.get (),
4597 file_data, INSERT);
4598 *slot = file_data;
4599 }
4600 }
4601
4602 static void
4603 dw2_expand_symtabs_matching
4604 (struct objfile *objfile,
4605 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4606 const lookup_name_info *lookup_name,
4607 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4608 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4609 enum search_domain kind)
4610 {
4611 struct dwarf2_per_objfile *dwarf2_per_objfile
4612 = get_dwarf2_per_objfile (objfile);
4613
4614 /* index_table is NULL if OBJF_READNOW. */
4615 if (!dwarf2_per_objfile->index_table)
4616 return;
4617
4618 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4619
4620 if (symbol_matcher == NULL && lookup_name == NULL)
4621 {
4622 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4623 {
4624 QUIT;
4625
4626 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4627 expansion_notify);
4628 }
4629 return;
4630 }
4631
4632 mapped_index &index = *dwarf2_per_objfile->index_table;
4633
4634 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4635 symbol_matcher,
4636 kind, [&] (offset_type idx)
4637 {
4638 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4639 expansion_notify, kind);
4640 return true;
4641 });
4642 }
4643
4644 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4645 symtab. */
4646
4647 static struct compunit_symtab *
4648 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4649 CORE_ADDR pc)
4650 {
4651 int i;
4652
4653 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4654 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4655 return cust;
4656
4657 if (cust->includes == NULL)
4658 return NULL;
4659
4660 for (i = 0; cust->includes[i]; ++i)
4661 {
4662 struct compunit_symtab *s = cust->includes[i];
4663
4664 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4665 if (s != NULL)
4666 return s;
4667 }
4668
4669 return NULL;
4670 }
4671
4672 static struct compunit_symtab *
4673 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4674 struct bound_minimal_symbol msymbol,
4675 CORE_ADDR pc,
4676 struct obj_section *section,
4677 int warn_if_readin)
4678 {
4679 struct dwarf2_per_cu_data *data;
4680 struct compunit_symtab *result;
4681
4682 if (!objfile->partial_symtabs->psymtabs_addrmap)
4683 return NULL;
4684
4685 CORE_ADDR baseaddr = objfile->text_section_offset ();
4686 data = (struct dwarf2_per_cu_data *) addrmap_find
4687 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4688 if (!data)
4689 return NULL;
4690
4691 if (warn_if_readin && data->v.quick->compunit_symtab)
4692 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4693 paddress (objfile->arch (), pc));
4694
4695 result
4696 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4697 false),
4698 pc);
4699 gdb_assert (result != NULL);
4700 return result;
4701 }
4702
4703 static void
4704 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4705 void *data, int need_fullname)
4706 {
4707 struct dwarf2_per_objfile *dwarf2_per_objfile
4708 = get_dwarf2_per_objfile (objfile);
4709
4710 if (!dwarf2_per_objfile->filenames_cache)
4711 {
4712 dwarf2_per_objfile->filenames_cache.emplace ();
4713
4714 htab_up visited (htab_create_alloc (10,
4715 htab_hash_pointer, htab_eq_pointer,
4716 NULL, xcalloc, xfree));
4717
4718 /* The rule is CUs specify all the files, including those used
4719 by any TU, so there's no need to scan TUs here. We can
4720 ignore file names coming from already-expanded CUs. */
4721
4722 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4723 {
4724 if (per_cu->v.quick->compunit_symtab)
4725 {
4726 void **slot = htab_find_slot (visited.get (),
4727 per_cu->v.quick->file_names,
4728 INSERT);
4729
4730 *slot = per_cu->v.quick->file_names;
4731 }
4732 }
4733
4734 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4735 {
4736 /* We only need to look at symtabs not already expanded. */
4737 if (per_cu->v.quick->compunit_symtab)
4738 continue;
4739
4740 quick_file_names *file_data = dw2_get_file_names (per_cu);
4741 if (file_data == NULL)
4742 continue;
4743
4744 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4745 if (*slot)
4746 {
4747 /* Already visited. */
4748 continue;
4749 }
4750 *slot = file_data;
4751
4752 for (int j = 0; j < file_data->num_file_names; ++j)
4753 {
4754 const char *filename = file_data->file_names[j];
4755 dwarf2_per_objfile->filenames_cache->seen (filename);
4756 }
4757 }
4758 }
4759
4760 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4761 {
4762 gdb::unique_xmalloc_ptr<char> this_real_name;
4763
4764 if (need_fullname)
4765 this_real_name = gdb_realpath (filename);
4766 (*fun) (filename, this_real_name.get (), data);
4767 });
4768 }
4769
4770 static int
4771 dw2_has_symbols (struct objfile *objfile)
4772 {
4773 return 1;
4774 }
4775
4776 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4777 {
4778 dw2_has_symbols,
4779 dw2_find_last_source_symtab,
4780 dw2_forget_cached_source_info,
4781 dw2_map_symtabs_matching_filename,
4782 dw2_lookup_symbol,
4783 NULL,
4784 dw2_print_stats,
4785 dw2_dump,
4786 dw2_expand_symtabs_for_function,
4787 dw2_expand_all_symtabs,
4788 dw2_expand_symtabs_with_fullname,
4789 dw2_map_matching_symbols,
4790 dw2_expand_symtabs_matching,
4791 dw2_find_pc_sect_compunit_symtab,
4792 NULL,
4793 dw2_map_symbol_filenames
4794 };
4795
4796 /* DWARF-5 debug_names reader. */
4797
4798 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4799 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4800
4801 /* A helper function that reads the .debug_names section in SECTION
4802 and fills in MAP. FILENAME is the name of the file containing the
4803 section; it is used for error reporting.
4804
4805 Returns true if all went well, false otherwise. */
4806
4807 static bool
4808 read_debug_names_from_section (struct objfile *objfile,
4809 const char *filename,
4810 struct dwarf2_section_info *section,
4811 mapped_debug_names &map)
4812 {
4813 if (section->empty ())
4814 return false;
4815
4816 /* Older elfutils strip versions could keep the section in the main
4817 executable while splitting it for the separate debug info file. */
4818 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4819 return false;
4820
4821 section->read (objfile);
4822
4823 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4824
4825 const gdb_byte *addr = section->buffer;
4826
4827 bfd *const abfd = section->get_bfd_owner ();
4828
4829 unsigned int bytes_read;
4830 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4831 addr += bytes_read;
4832
4833 map.dwarf5_is_dwarf64 = bytes_read != 4;
4834 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4835 if (bytes_read + length != section->size)
4836 {
4837 /* There may be multiple per-CU indices. */
4838 warning (_("Section .debug_names in %s length %s does not match "
4839 "section length %s, ignoring .debug_names."),
4840 filename, plongest (bytes_read + length),
4841 pulongest (section->size));
4842 return false;
4843 }
4844
4845 /* The version number. */
4846 uint16_t version = read_2_bytes (abfd, addr);
4847 addr += 2;
4848 if (version != 5)
4849 {
4850 warning (_("Section .debug_names in %s has unsupported version %d, "
4851 "ignoring .debug_names."),
4852 filename, version);
4853 return false;
4854 }
4855
4856 /* Padding. */
4857 uint16_t padding = read_2_bytes (abfd, addr);
4858 addr += 2;
4859 if (padding != 0)
4860 {
4861 warning (_("Section .debug_names in %s has unsupported padding %d, "
4862 "ignoring .debug_names."),
4863 filename, padding);
4864 return false;
4865 }
4866
4867 /* comp_unit_count - The number of CUs in the CU list. */
4868 map.cu_count = read_4_bytes (abfd, addr);
4869 addr += 4;
4870
4871 /* local_type_unit_count - The number of TUs in the local TU
4872 list. */
4873 map.tu_count = read_4_bytes (abfd, addr);
4874 addr += 4;
4875
4876 /* foreign_type_unit_count - The number of TUs in the foreign TU
4877 list. */
4878 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4879 addr += 4;
4880 if (foreign_tu_count != 0)
4881 {
4882 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4883 "ignoring .debug_names."),
4884 filename, static_cast<unsigned long> (foreign_tu_count));
4885 return false;
4886 }
4887
4888 /* bucket_count - The number of hash buckets in the hash lookup
4889 table. */
4890 map.bucket_count = read_4_bytes (abfd, addr);
4891 addr += 4;
4892
4893 /* name_count - The number of unique names in the index. */
4894 map.name_count = read_4_bytes (abfd, addr);
4895 addr += 4;
4896
4897 /* abbrev_table_size - The size in bytes of the abbreviations
4898 table. */
4899 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* augmentation_string_size - The size in bytes of the augmentation
4903 string. This value is rounded up to a multiple of 4. */
4904 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4905 addr += 4;
4906 map.augmentation_is_gdb = ((augmentation_string_size
4907 == sizeof (dwarf5_augmentation))
4908 && memcmp (addr, dwarf5_augmentation,
4909 sizeof (dwarf5_augmentation)) == 0);
4910 augmentation_string_size += (-augmentation_string_size) & 3;
4911 addr += augmentation_string_size;
4912
4913 /* List of CUs */
4914 map.cu_table_reordered = addr;
4915 addr += map.cu_count * map.offset_size;
4916
4917 /* List of Local TUs */
4918 map.tu_table_reordered = addr;
4919 addr += map.tu_count * map.offset_size;
4920
4921 /* Hash Lookup Table */
4922 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4923 addr += map.bucket_count * 4;
4924 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4925 addr += map.name_count * 4;
4926
4927 /* Name Table */
4928 map.name_table_string_offs_reordered = addr;
4929 addr += map.name_count * map.offset_size;
4930 map.name_table_entry_offs_reordered = addr;
4931 addr += map.name_count * map.offset_size;
4932
4933 const gdb_byte *abbrev_table_start = addr;
4934 for (;;)
4935 {
4936 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4937 addr += bytes_read;
4938 if (index_num == 0)
4939 break;
4940
4941 const auto insertpair
4942 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4943 if (!insertpair.second)
4944 {
4945 warning (_("Section .debug_names in %s has duplicate index %s, "
4946 "ignoring .debug_names."),
4947 filename, pulongest (index_num));
4948 return false;
4949 }
4950 mapped_debug_names::index_val &indexval = insertpair.first->second;
4951 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4952 addr += bytes_read;
4953
4954 for (;;)
4955 {
4956 mapped_debug_names::index_val::attr attr;
4957 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4958 addr += bytes_read;
4959 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4960 addr += bytes_read;
4961 if (attr.form == DW_FORM_implicit_const)
4962 {
4963 attr.implicit_const = read_signed_leb128 (abfd, addr,
4964 &bytes_read);
4965 addr += bytes_read;
4966 }
4967 if (attr.dw_idx == 0 && attr.form == 0)
4968 break;
4969 indexval.attr_vec.push_back (std::move (attr));
4970 }
4971 }
4972 if (addr != abbrev_table_start + abbrev_table_size)
4973 {
4974 warning (_("Section .debug_names in %s has abbreviation_table "
4975 "of size %s vs. written as %u, ignoring .debug_names."),
4976 filename, plongest (addr - abbrev_table_start),
4977 abbrev_table_size);
4978 return false;
4979 }
4980 map.entry_pool = addr;
4981
4982 return true;
4983 }
4984
4985 /* A helper for create_cus_from_debug_names that handles the MAP's CU
4986 list. */
4987
4988 static void
4989 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4990 const mapped_debug_names &map,
4991 dwarf2_section_info &section,
4992 bool is_dwz)
4993 {
4994 sect_offset sect_off_prev;
4995 for (uint32_t i = 0; i <= map.cu_count; ++i)
4996 {
4997 sect_offset sect_off_next;
4998 if (i < map.cu_count)
4999 {
5000 sect_off_next
5001 = (sect_offset) (extract_unsigned_integer
5002 (map.cu_table_reordered + i * map.offset_size,
5003 map.offset_size,
5004 map.dwarf5_byte_order));
5005 }
5006 else
5007 sect_off_next = (sect_offset) section.size;
5008 if (i >= 1)
5009 {
5010 const ULONGEST length = sect_off_next - sect_off_prev;
5011 dwarf2_per_cu_data *per_cu
5012 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5013 sect_off_prev, length);
5014 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5015 }
5016 sect_off_prev = sect_off_next;
5017 }
5018 }
5019
5020 /* Read the CU list from the mapped index, and use it to create all
5021 the CU objects for this dwarf2_per_objfile. */
5022
5023 static void
5024 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5025 const mapped_debug_names &map,
5026 const mapped_debug_names &dwz_map)
5027 {
5028 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5029 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5030
5031 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5032 dwarf2_per_objfile->info,
5033 false /* is_dwz */);
5034
5035 if (dwz_map.cu_count == 0)
5036 return;
5037
5038 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5039 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5040 true /* is_dwz */);
5041 }
5042
5043 /* Read .debug_names. If everything went ok, initialize the "quick"
5044 elements of all the CUs and return true. Otherwise, return false. */
5045
5046 static bool
5047 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5048 {
5049 std::unique_ptr<mapped_debug_names> map
5050 (new mapped_debug_names (dwarf2_per_objfile));
5051 mapped_debug_names dwz_map (dwarf2_per_objfile);
5052 struct objfile *objfile = dwarf2_per_objfile->objfile;
5053
5054 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5055 &dwarf2_per_objfile->debug_names,
5056 *map))
5057 return false;
5058
5059 /* Don't use the index if it's empty. */
5060 if (map->name_count == 0)
5061 return false;
5062
5063 /* If there is a .dwz file, read it so we can get its CU list as
5064 well. */
5065 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5066 if (dwz != NULL)
5067 {
5068 if (!read_debug_names_from_section (objfile,
5069 bfd_get_filename (dwz->dwz_bfd.get ()),
5070 &dwz->debug_names, dwz_map))
5071 {
5072 warning (_("could not read '.debug_names' section from %s; skipping"),
5073 bfd_get_filename (dwz->dwz_bfd.get ()));
5074 return false;
5075 }
5076 }
5077
5078 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5079
5080 if (map->tu_count != 0)
5081 {
5082 /* We can only handle a single .debug_types when we have an
5083 index. */
5084 if (dwarf2_per_objfile->types.size () != 1)
5085 return false;
5086
5087 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5088
5089 create_signatured_type_table_from_debug_names
5090 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5091 }
5092
5093 create_addrmap_from_aranges (dwarf2_per_objfile,
5094 &dwarf2_per_objfile->debug_aranges);
5095
5096 dwarf2_per_objfile->debug_names_table = std::move (map);
5097 dwarf2_per_objfile->using_index = 1;
5098 dwarf2_per_objfile->quick_file_names_table =
5099 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5100
5101 return true;
5102 }
5103
5104 /* Type used to manage iterating over all CUs looking for a symbol for
5105 .debug_names. */
5106
5107 class dw2_debug_names_iterator
5108 {
5109 public:
5110 dw2_debug_names_iterator (const mapped_debug_names &map,
5111 gdb::optional<block_enum> block_index,
5112 domain_enum domain,
5113 const char *name)
5114 : m_map (map), m_block_index (block_index), m_domain (domain),
5115 m_addr (find_vec_in_debug_names (map, name))
5116 {}
5117
5118 dw2_debug_names_iterator (const mapped_debug_names &map,
5119 search_domain search, uint32_t namei)
5120 : m_map (map),
5121 m_search (search),
5122 m_addr (find_vec_in_debug_names (map, namei))
5123 {}
5124
5125 dw2_debug_names_iterator (const mapped_debug_names &map,
5126 block_enum block_index, domain_enum domain,
5127 uint32_t namei)
5128 : m_map (map), m_block_index (block_index), m_domain (domain),
5129 m_addr (find_vec_in_debug_names (map, namei))
5130 {}
5131
5132 /* Return the next matching CU or NULL if there are no more. */
5133 dwarf2_per_cu_data *next ();
5134
5135 private:
5136 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5137 const char *name);
5138 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5139 uint32_t namei);
5140
5141 /* The internalized form of .debug_names. */
5142 const mapped_debug_names &m_map;
5143
5144 /* If set, only look for symbols that match that block. Valid values are
5145 GLOBAL_BLOCK and STATIC_BLOCK. */
5146 const gdb::optional<block_enum> m_block_index;
5147
5148 /* The kind of symbol we're looking for. */
5149 const domain_enum m_domain = UNDEF_DOMAIN;
5150 const search_domain m_search = ALL_DOMAIN;
5151
5152 /* The list of CUs from the index entry of the symbol, or NULL if
5153 not found. */
5154 const gdb_byte *m_addr;
5155 };
5156
5157 const char *
5158 mapped_debug_names::namei_to_name (uint32_t namei) const
5159 {
5160 const ULONGEST namei_string_offs
5161 = extract_unsigned_integer ((name_table_string_offs_reordered
5162 + namei * offset_size),
5163 offset_size,
5164 dwarf5_byte_order);
5165 return read_indirect_string_at_offset (dwarf2_per_objfile,
5166 namei_string_offs);
5167 }
5168
5169 /* Find a slot in .debug_names for the object named NAME. If NAME is
5170 found, return pointer to its pool data. If NAME cannot be found,
5171 return NULL. */
5172
5173 const gdb_byte *
5174 dw2_debug_names_iterator::find_vec_in_debug_names
5175 (const mapped_debug_names &map, const char *name)
5176 {
5177 int (*cmp) (const char *, const char *);
5178
5179 gdb::unique_xmalloc_ptr<char> without_params;
5180 if (current_language->la_language == language_cplus
5181 || current_language->la_language == language_fortran
5182 || current_language->la_language == language_d)
5183 {
5184 /* NAME is already canonical. Drop any qualifiers as
5185 .debug_names does not contain any. */
5186
5187 if (strchr (name, '(') != NULL)
5188 {
5189 without_params = cp_remove_params (name);
5190 if (without_params != NULL)
5191 name = without_params.get ();
5192 }
5193 }
5194
5195 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5196
5197 const uint32_t full_hash = dwarf5_djb_hash (name);
5198 uint32_t namei
5199 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5200 (map.bucket_table_reordered
5201 + (full_hash % map.bucket_count)), 4,
5202 map.dwarf5_byte_order);
5203 if (namei == 0)
5204 return NULL;
5205 --namei;
5206 if (namei >= map.name_count)
5207 {
5208 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5209 "[in module %s]"),
5210 namei, map.name_count,
5211 objfile_name (map.dwarf2_per_objfile->objfile));
5212 return NULL;
5213 }
5214
5215 for (;;)
5216 {
5217 const uint32_t namei_full_hash
5218 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5219 (map.hash_table_reordered + namei), 4,
5220 map.dwarf5_byte_order);
5221 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5222 return NULL;
5223
5224 if (full_hash == namei_full_hash)
5225 {
5226 const char *const namei_string = map.namei_to_name (namei);
5227
5228 #if 0 /* An expensive sanity check. */
5229 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5230 {
5231 complaint (_("Wrong .debug_names hash for string at index %u "
5232 "[in module %s]"),
5233 namei, objfile_name (dwarf2_per_objfile->objfile));
5234 return NULL;
5235 }
5236 #endif
5237
5238 if (cmp (namei_string, name) == 0)
5239 {
5240 const ULONGEST namei_entry_offs
5241 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5242 + namei * map.offset_size),
5243 map.offset_size, map.dwarf5_byte_order);
5244 return map.entry_pool + namei_entry_offs;
5245 }
5246 }
5247
5248 ++namei;
5249 if (namei >= map.name_count)
5250 return NULL;
5251 }
5252 }
5253
5254 const gdb_byte *
5255 dw2_debug_names_iterator::find_vec_in_debug_names
5256 (const mapped_debug_names &map, uint32_t namei)
5257 {
5258 if (namei >= map.name_count)
5259 {
5260 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5261 "[in module %s]"),
5262 namei, map.name_count,
5263 objfile_name (map.dwarf2_per_objfile->objfile));
5264 return NULL;
5265 }
5266
5267 const ULONGEST namei_entry_offs
5268 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5269 + namei * map.offset_size),
5270 map.offset_size, map.dwarf5_byte_order);
5271 return map.entry_pool + namei_entry_offs;
5272 }
5273
5274 /* See dw2_debug_names_iterator. */
5275
5276 dwarf2_per_cu_data *
5277 dw2_debug_names_iterator::next ()
5278 {
5279 if (m_addr == NULL)
5280 return NULL;
5281
5282 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5283 struct objfile *objfile = dwarf2_per_objfile->objfile;
5284 bfd *const abfd = objfile->obfd;
5285
5286 again:
5287
5288 unsigned int bytes_read;
5289 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5290 m_addr += bytes_read;
5291 if (abbrev == 0)
5292 return NULL;
5293
5294 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5295 if (indexval_it == m_map.abbrev_map.cend ())
5296 {
5297 complaint (_("Wrong .debug_names undefined abbrev code %s "
5298 "[in module %s]"),
5299 pulongest (abbrev), objfile_name (objfile));
5300 return NULL;
5301 }
5302 const mapped_debug_names::index_val &indexval = indexval_it->second;
5303 enum class symbol_linkage {
5304 unknown,
5305 static_,
5306 extern_,
5307 } symbol_linkage_ = symbol_linkage::unknown;
5308 dwarf2_per_cu_data *per_cu = NULL;
5309 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5310 {
5311 ULONGEST ull;
5312 switch (attr.form)
5313 {
5314 case DW_FORM_implicit_const:
5315 ull = attr.implicit_const;
5316 break;
5317 case DW_FORM_flag_present:
5318 ull = 1;
5319 break;
5320 case DW_FORM_udata:
5321 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5322 m_addr += bytes_read;
5323 break;
5324 default:
5325 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5326 dwarf_form_name (attr.form),
5327 objfile_name (objfile));
5328 return NULL;
5329 }
5330 switch (attr.dw_idx)
5331 {
5332 case DW_IDX_compile_unit:
5333 /* Don't crash on bad data. */
5334 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5335 {
5336 complaint (_(".debug_names entry has bad CU index %s"
5337 " [in module %s]"),
5338 pulongest (ull),
5339 objfile_name (dwarf2_per_objfile->objfile));
5340 continue;
5341 }
5342 per_cu = dwarf2_per_objfile->get_cutu (ull);
5343 break;
5344 case DW_IDX_type_unit:
5345 /* Don't crash on bad data. */
5346 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5347 {
5348 complaint (_(".debug_names entry has bad TU index %s"
5349 " [in module %s]"),
5350 pulongest (ull),
5351 objfile_name (dwarf2_per_objfile->objfile));
5352 continue;
5353 }
5354 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5355 break;
5356 case DW_IDX_GNU_internal:
5357 if (!m_map.augmentation_is_gdb)
5358 break;
5359 symbol_linkage_ = symbol_linkage::static_;
5360 break;
5361 case DW_IDX_GNU_external:
5362 if (!m_map.augmentation_is_gdb)
5363 break;
5364 symbol_linkage_ = symbol_linkage::extern_;
5365 break;
5366 }
5367 }
5368
5369 /* Skip if already read in. */
5370 if (per_cu->v.quick->compunit_symtab)
5371 goto again;
5372
5373 /* Check static vs global. */
5374 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5375 {
5376 const bool want_static = *m_block_index == STATIC_BLOCK;
5377 const bool symbol_is_static =
5378 symbol_linkage_ == symbol_linkage::static_;
5379 if (want_static != symbol_is_static)
5380 goto again;
5381 }
5382
5383 /* Match dw2_symtab_iter_next, symbol_kind
5384 and debug_names::psymbol_tag. */
5385 switch (m_domain)
5386 {
5387 case VAR_DOMAIN:
5388 switch (indexval.dwarf_tag)
5389 {
5390 case DW_TAG_variable:
5391 case DW_TAG_subprogram:
5392 /* Some types are also in VAR_DOMAIN. */
5393 case DW_TAG_typedef:
5394 case DW_TAG_structure_type:
5395 break;
5396 default:
5397 goto again;
5398 }
5399 break;
5400 case STRUCT_DOMAIN:
5401 switch (indexval.dwarf_tag)
5402 {
5403 case DW_TAG_typedef:
5404 case DW_TAG_structure_type:
5405 break;
5406 default:
5407 goto again;
5408 }
5409 break;
5410 case LABEL_DOMAIN:
5411 switch (indexval.dwarf_tag)
5412 {
5413 case 0:
5414 case DW_TAG_variable:
5415 break;
5416 default:
5417 goto again;
5418 }
5419 break;
5420 case MODULE_DOMAIN:
5421 switch (indexval.dwarf_tag)
5422 {
5423 case DW_TAG_module:
5424 break;
5425 default:
5426 goto again;
5427 }
5428 break;
5429 default:
5430 break;
5431 }
5432
5433 /* Match dw2_expand_symtabs_matching, symbol_kind and
5434 debug_names::psymbol_tag. */
5435 switch (m_search)
5436 {
5437 case VARIABLES_DOMAIN:
5438 switch (indexval.dwarf_tag)
5439 {
5440 case DW_TAG_variable:
5441 break;
5442 default:
5443 goto again;
5444 }
5445 break;
5446 case FUNCTIONS_DOMAIN:
5447 switch (indexval.dwarf_tag)
5448 {
5449 case DW_TAG_subprogram:
5450 break;
5451 default:
5452 goto again;
5453 }
5454 break;
5455 case TYPES_DOMAIN:
5456 switch (indexval.dwarf_tag)
5457 {
5458 case DW_TAG_typedef:
5459 case DW_TAG_structure_type:
5460 break;
5461 default:
5462 goto again;
5463 }
5464 break;
5465 case MODULES_DOMAIN:
5466 switch (indexval.dwarf_tag)
5467 {
5468 case DW_TAG_module:
5469 break;
5470 default:
5471 goto again;
5472 }
5473 default:
5474 break;
5475 }
5476
5477 return per_cu;
5478 }
5479
5480 static struct compunit_symtab *
5481 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5482 const char *name, domain_enum domain)
5483 {
5484 struct dwarf2_per_objfile *dwarf2_per_objfile
5485 = get_dwarf2_per_objfile (objfile);
5486
5487 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5488 if (!mapp)
5489 {
5490 /* index is NULL if OBJF_READNOW. */
5491 return NULL;
5492 }
5493 const auto &map = *mapp;
5494
5495 dw2_debug_names_iterator iter (map, block_index, domain, name);
5496
5497 struct compunit_symtab *stab_best = NULL;
5498 struct dwarf2_per_cu_data *per_cu;
5499 while ((per_cu = iter.next ()) != NULL)
5500 {
5501 struct symbol *sym, *with_opaque = NULL;
5502 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5503 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5504 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5505
5506 sym = block_find_symbol (block, name, domain,
5507 block_find_non_opaque_type_preferred,
5508 &with_opaque);
5509
5510 /* Some caution must be observed with overloaded functions and
5511 methods, since the index will not contain any overload
5512 information (but NAME might contain it). */
5513
5514 if (sym != NULL
5515 && strcmp_iw (sym->search_name (), name) == 0)
5516 return stab;
5517 if (with_opaque != NULL
5518 && strcmp_iw (with_opaque->search_name (), name) == 0)
5519 stab_best = stab;
5520
5521 /* Keep looking through other CUs. */
5522 }
5523
5524 return stab_best;
5525 }
5526
5527 /* This dumps minimal information about .debug_names. It is called
5528 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5529 uses this to verify that .debug_names has been loaded. */
5530
5531 static void
5532 dw2_debug_names_dump (struct objfile *objfile)
5533 {
5534 struct dwarf2_per_objfile *dwarf2_per_objfile
5535 = get_dwarf2_per_objfile (objfile);
5536
5537 gdb_assert (dwarf2_per_objfile->using_index);
5538 printf_filtered (".debug_names:");
5539 if (dwarf2_per_objfile->debug_names_table)
5540 printf_filtered (" exists\n");
5541 else
5542 printf_filtered (" faked for \"readnow\"\n");
5543 printf_filtered ("\n");
5544 }
5545
5546 static void
5547 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5548 const char *func_name)
5549 {
5550 struct dwarf2_per_objfile *dwarf2_per_objfile
5551 = get_dwarf2_per_objfile (objfile);
5552
5553 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5554 if (dwarf2_per_objfile->debug_names_table)
5555 {
5556 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5557
5558 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5559
5560 struct dwarf2_per_cu_data *per_cu;
5561 while ((per_cu = iter.next ()) != NULL)
5562 dw2_instantiate_symtab (per_cu, false);
5563 }
5564 }
5565
5566 static void
5567 dw2_debug_names_map_matching_symbols
5568 (struct objfile *objfile,
5569 const lookup_name_info &name, domain_enum domain,
5570 int global,
5571 gdb::function_view<symbol_found_callback_ftype> callback,
5572 symbol_compare_ftype *ordered_compare)
5573 {
5574 struct dwarf2_per_objfile *dwarf2_per_objfile
5575 = get_dwarf2_per_objfile (objfile);
5576
5577 /* debug_names_table is NULL if OBJF_READNOW. */
5578 if (!dwarf2_per_objfile->debug_names_table)
5579 return;
5580
5581 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5582 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5583
5584 const char *match_name = name.ada ().lookup_name ().c_str ();
5585 auto matcher = [&] (const char *symname)
5586 {
5587 if (ordered_compare == nullptr)
5588 return true;
5589 return ordered_compare (symname, match_name) == 0;
5590 };
5591
5592 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5593 [&] (offset_type namei)
5594 {
5595 /* The name was matched, now expand corresponding CUs that were
5596 marked. */
5597 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5598
5599 struct dwarf2_per_cu_data *per_cu;
5600 while ((per_cu = iter.next ()) != NULL)
5601 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5602 return true;
5603 });
5604
5605 /* It's a shame we couldn't do this inside the
5606 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5607 that have already been expanded. Instead, this loop matches what
5608 the psymtab code does. */
5609 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5610 {
5611 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5612 if (cust != nullptr)
5613 {
5614 const struct block *block
5615 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5616 if (!iterate_over_symbols_terminated (block, name,
5617 domain, callback))
5618 break;
5619 }
5620 }
5621 }
5622
5623 static void
5624 dw2_debug_names_expand_symtabs_matching
5625 (struct objfile *objfile,
5626 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5627 const lookup_name_info *lookup_name,
5628 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5629 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5630 enum search_domain kind)
5631 {
5632 struct dwarf2_per_objfile *dwarf2_per_objfile
5633 = get_dwarf2_per_objfile (objfile);
5634
5635 /* debug_names_table is NULL if OBJF_READNOW. */
5636 if (!dwarf2_per_objfile->debug_names_table)
5637 return;
5638
5639 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5640
5641 if (symbol_matcher == NULL && lookup_name == NULL)
5642 {
5643 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5644 {
5645 QUIT;
5646
5647 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5648 expansion_notify);
5649 }
5650 return;
5651 }
5652
5653 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5654
5655 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5656 symbol_matcher,
5657 kind, [&] (offset_type namei)
5658 {
5659 /* The name was matched, now expand corresponding CUs that were
5660 marked. */
5661 dw2_debug_names_iterator iter (map, kind, namei);
5662
5663 struct dwarf2_per_cu_data *per_cu;
5664 while ((per_cu = iter.next ()) != NULL)
5665 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5666 expansion_notify);
5667 return true;
5668 });
5669 }
5670
5671 const struct quick_symbol_functions dwarf2_debug_names_functions =
5672 {
5673 dw2_has_symbols,
5674 dw2_find_last_source_symtab,
5675 dw2_forget_cached_source_info,
5676 dw2_map_symtabs_matching_filename,
5677 dw2_debug_names_lookup_symbol,
5678 NULL,
5679 dw2_print_stats,
5680 dw2_debug_names_dump,
5681 dw2_debug_names_expand_symtabs_for_function,
5682 dw2_expand_all_symtabs,
5683 dw2_expand_symtabs_with_fullname,
5684 dw2_debug_names_map_matching_symbols,
5685 dw2_debug_names_expand_symtabs_matching,
5686 dw2_find_pc_sect_compunit_symtab,
5687 NULL,
5688 dw2_map_symbol_filenames
5689 };
5690
5691 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5692 to either a dwarf2_per_objfile or dwz_file object. */
5693
5694 template <typename T>
5695 static gdb::array_view<const gdb_byte>
5696 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5697 {
5698 dwarf2_section_info *section = &section_owner->gdb_index;
5699
5700 if (section->empty ())
5701 return {};
5702
5703 /* Older elfutils strip versions could keep the section in the main
5704 executable while splitting it for the separate debug info file. */
5705 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5706 return {};
5707
5708 section->read (obj);
5709
5710 /* dwarf2_section_info::size is a bfd_size_type, while
5711 gdb::array_view works with size_t. On 32-bit hosts, with
5712 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5713 is 32-bit. So we need an explicit narrowing conversion here.
5714 This is fine, because it's impossible to allocate or mmap an
5715 array/buffer larger than what size_t can represent. */
5716 return gdb::make_array_view (section->buffer, section->size);
5717 }
5718
5719 /* Lookup the index cache for the contents of the index associated to
5720 DWARF2_OBJ. */
5721
5722 static gdb::array_view<const gdb_byte>
5723 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5724 {
5725 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5726 if (build_id == nullptr)
5727 return {};
5728
5729 return global_index_cache.lookup_gdb_index (build_id,
5730 &dwarf2_obj->index_cache_res);
5731 }
5732
5733 /* Same as the above, but for DWZ. */
5734
5735 static gdb::array_view<const gdb_byte>
5736 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5737 {
5738 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5739 if (build_id == nullptr)
5740 return {};
5741
5742 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5743 }
5744
5745 /* See symfile.h. */
5746
5747 bool
5748 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5749 {
5750 struct dwarf2_per_objfile *dwarf2_per_objfile
5751 = get_dwarf2_per_objfile (objfile);
5752
5753 /* If we're about to read full symbols, don't bother with the
5754 indices. In this case we also don't care if some other debug
5755 format is making psymtabs, because they are all about to be
5756 expanded anyway. */
5757 if ((objfile->flags & OBJF_READNOW))
5758 {
5759 dwarf2_per_objfile->using_index = 1;
5760 create_all_comp_units (dwarf2_per_objfile);
5761 create_all_type_units (dwarf2_per_objfile);
5762 dwarf2_per_objfile->quick_file_names_table
5763 = create_quick_file_names_table
5764 (dwarf2_per_objfile->all_comp_units.size ());
5765
5766 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5767 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5768 {
5769 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5770
5771 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5772 struct dwarf2_per_cu_quick_data);
5773 }
5774
5775 /* Return 1 so that gdb sees the "quick" functions. However,
5776 these functions will be no-ops because we will have expanded
5777 all symtabs. */
5778 *index_kind = dw_index_kind::GDB_INDEX;
5779 return true;
5780 }
5781
5782 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5783 {
5784 *index_kind = dw_index_kind::DEBUG_NAMES;
5785 return true;
5786 }
5787
5788 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5789 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5790 get_gdb_index_contents_from_section<dwz_file>))
5791 {
5792 *index_kind = dw_index_kind::GDB_INDEX;
5793 return true;
5794 }
5795
5796 /* ... otherwise, try to find the index in the index cache. */
5797 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5798 get_gdb_index_contents_from_cache,
5799 get_gdb_index_contents_from_cache_dwz))
5800 {
5801 global_index_cache.hit ();
5802 *index_kind = dw_index_kind::GDB_INDEX;
5803 return true;
5804 }
5805
5806 global_index_cache.miss ();
5807 return false;
5808 }
5809
5810 \f
5811
5812 /* Build a partial symbol table. */
5813
5814 void
5815 dwarf2_build_psymtabs (struct objfile *objfile)
5816 {
5817 struct dwarf2_per_objfile *dwarf2_per_objfile
5818 = get_dwarf2_per_objfile (objfile);
5819
5820 init_psymbol_list (objfile, 1024);
5821
5822 try
5823 {
5824 /* This isn't really ideal: all the data we allocate on the
5825 objfile's obstack is still uselessly kept around. However,
5826 freeing it seems unsafe. */
5827 psymtab_discarder psymtabs (objfile);
5828 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5829 psymtabs.keep ();
5830
5831 /* (maybe) store an index in the cache. */
5832 global_index_cache.store (dwarf2_per_objfile);
5833 }
5834 catch (const gdb_exception_error &except)
5835 {
5836 exception_print (gdb_stderr, except);
5837 }
5838 }
5839
5840 /* Find the base address of the compilation unit for range lists and
5841 location lists. It will normally be specified by DW_AT_low_pc.
5842 In DWARF-3 draft 4, the base address could be overridden by
5843 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5844 compilation units with discontinuous ranges. */
5845
5846 static void
5847 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5848 {
5849 struct attribute *attr;
5850
5851 cu->base_address.reset ();
5852
5853 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5854 if (attr != nullptr)
5855 cu->base_address = attr->value_as_address ();
5856 else
5857 {
5858 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5859 if (attr != nullptr)
5860 cu->base_address = attr->value_as_address ();
5861 }
5862 }
5863
5864 /* Helper function that returns the proper abbrev section for
5865 THIS_CU. */
5866
5867 static struct dwarf2_section_info *
5868 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5869 {
5870 struct dwarf2_section_info *abbrev;
5871 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5872
5873 if (this_cu->is_dwz)
5874 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5875 else
5876 abbrev = &dwarf2_per_objfile->abbrev;
5877
5878 return abbrev;
5879 }
5880
5881 /* Fetch the abbreviation table offset from a comp or type unit header. */
5882
5883 static sect_offset
5884 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5885 struct dwarf2_section_info *section,
5886 sect_offset sect_off)
5887 {
5888 bfd *abfd = section->get_bfd_owner ();
5889 const gdb_byte *info_ptr;
5890 unsigned int initial_length_size, offset_size;
5891 uint16_t version;
5892
5893 section->read (dwarf2_per_objfile->objfile);
5894 info_ptr = section->buffer + to_underlying (sect_off);
5895 read_initial_length (abfd, info_ptr, &initial_length_size);
5896 offset_size = initial_length_size == 4 ? 4 : 8;
5897 info_ptr += initial_length_size;
5898
5899 version = read_2_bytes (abfd, info_ptr);
5900 info_ptr += 2;
5901 if (version >= 5)
5902 {
5903 /* Skip unit type and address size. */
5904 info_ptr += 2;
5905 }
5906
5907 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5908 }
5909
5910 /* A partial symtab that is used only for include files. */
5911 struct dwarf2_include_psymtab : public partial_symtab
5912 {
5913 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5914 : partial_symtab (filename, objfile)
5915 {
5916 }
5917
5918 void read_symtab (struct objfile *objfile) override
5919 {
5920 /* It's an include file, no symbols to read for it.
5921 Everything is in the includer symtab. */
5922
5923 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5924 expansion of the includer psymtab. We use the dependencies[0] field to
5925 model the includer. But if we go the regular route of calling
5926 expand_psymtab here, and having expand_psymtab call expand_dependencies
5927 to expand the includer, we'll only use expand_psymtab on the includer
5928 (making it a non-toplevel psymtab), while if we expand the includer via
5929 another path, we'll use read_symtab (making it a toplevel psymtab).
5930 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5931 psymtab, and trigger read_symtab on the includer here directly. */
5932 includer ()->read_symtab (objfile);
5933 }
5934
5935 void expand_psymtab (struct objfile *objfile) override
5936 {
5937 /* This is not called by read_symtab, and should not be called by any
5938 expand_dependencies. */
5939 gdb_assert (false);
5940 }
5941
5942 bool readin_p () const override
5943 {
5944 return includer ()->readin_p ();
5945 }
5946
5947 struct compunit_symtab *get_compunit_symtab () const override
5948 {
5949 return nullptr;
5950 }
5951
5952 private:
5953 partial_symtab *includer () const
5954 {
5955 /* An include psymtab has exactly one dependency: the psymtab that
5956 includes it. */
5957 gdb_assert (this->number_of_dependencies == 1);
5958 return this->dependencies[0];
5959 }
5960 };
5961
5962 /* Allocate a new partial symtab for file named NAME and mark this new
5963 partial symtab as being an include of PST. */
5964
5965 static void
5966 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5967 struct objfile *objfile)
5968 {
5969 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
5970
5971 if (!IS_ABSOLUTE_PATH (subpst->filename))
5972 {
5973 /* It shares objfile->objfile_obstack. */
5974 subpst->dirname = pst->dirname;
5975 }
5976
5977 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5978 subpst->dependencies[0] = pst;
5979 subpst->number_of_dependencies = 1;
5980 }
5981
5982 /* Read the Line Number Program data and extract the list of files
5983 included by the source file represented by PST. Build an include
5984 partial symtab for each of these included files. */
5985
5986 static void
5987 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5988 struct die_info *die,
5989 dwarf2_psymtab *pst)
5990 {
5991 line_header_up lh;
5992 struct attribute *attr;
5993
5994 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5995 if (attr != nullptr)
5996 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5997 if (lh == NULL)
5998 return; /* No linetable, so no includes. */
5999
6000 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6001 that we pass in the raw text_low here; that is ok because we're
6002 only decoding the line table to make include partial symtabs, and
6003 so the addresses aren't really used. */
6004 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6005 pst->raw_text_low (), 1);
6006 }
6007
6008 static hashval_t
6009 hash_signatured_type (const void *item)
6010 {
6011 const struct signatured_type *sig_type
6012 = (const struct signatured_type *) item;
6013
6014 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6015 return sig_type->signature;
6016 }
6017
6018 static int
6019 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6020 {
6021 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6022 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6023
6024 return lhs->signature == rhs->signature;
6025 }
6026
6027 /* Allocate a hash table for signatured types. */
6028
6029 static htab_up
6030 allocate_signatured_type_table ()
6031 {
6032 return htab_up (htab_create_alloc (41,
6033 hash_signatured_type,
6034 eq_signatured_type,
6035 NULL, xcalloc, xfree));
6036 }
6037
6038 /* A helper function to add a signatured type CU to a table. */
6039
6040 static int
6041 add_signatured_type_cu_to_table (void **slot, void *datum)
6042 {
6043 struct signatured_type *sigt = (struct signatured_type *) *slot;
6044 std::vector<signatured_type *> *all_type_units
6045 = (std::vector<signatured_type *> *) datum;
6046
6047 all_type_units->push_back (sigt);
6048
6049 return 1;
6050 }
6051
6052 /* A helper for create_debug_types_hash_table. Read types from SECTION
6053 and fill them into TYPES_HTAB. It will process only type units,
6054 therefore DW_UT_type. */
6055
6056 static void
6057 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6058 struct dwo_file *dwo_file,
6059 dwarf2_section_info *section, htab_up &types_htab,
6060 rcuh_kind section_kind)
6061 {
6062 struct objfile *objfile = dwarf2_per_objfile->objfile;
6063 struct dwarf2_section_info *abbrev_section;
6064 bfd *abfd;
6065 const gdb_byte *info_ptr, *end_ptr;
6066
6067 abbrev_section = (dwo_file != NULL
6068 ? &dwo_file->sections.abbrev
6069 : &dwarf2_per_objfile->abbrev);
6070
6071 if (dwarf_read_debug)
6072 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6073 section->get_name (),
6074 abbrev_section->get_file_name ());
6075
6076 section->read (objfile);
6077 info_ptr = section->buffer;
6078
6079 if (info_ptr == NULL)
6080 return;
6081
6082 /* We can't set abfd until now because the section may be empty or
6083 not present, in which case the bfd is unknown. */
6084 abfd = section->get_bfd_owner ();
6085
6086 /* We don't use cutu_reader here because we don't need to read
6087 any dies: the signature is in the header. */
6088
6089 end_ptr = info_ptr + section->size;
6090 while (info_ptr < end_ptr)
6091 {
6092 struct signatured_type *sig_type;
6093 struct dwo_unit *dwo_tu;
6094 void **slot;
6095 const gdb_byte *ptr = info_ptr;
6096 struct comp_unit_head header;
6097 unsigned int length;
6098
6099 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6100
6101 /* Initialize it due to a false compiler warning. */
6102 header.signature = -1;
6103 header.type_cu_offset_in_tu = (cu_offset) -1;
6104
6105 /* We need to read the type's signature in order to build the hash
6106 table, but we don't need anything else just yet. */
6107
6108 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6109 abbrev_section, ptr, section_kind);
6110
6111 length = header.get_length ();
6112
6113 /* Skip dummy type units. */
6114 if (ptr >= info_ptr + length
6115 || peek_abbrev_code (abfd, ptr) == 0
6116 || header.unit_type != DW_UT_type)
6117 {
6118 info_ptr += length;
6119 continue;
6120 }
6121
6122 if (types_htab == NULL)
6123 {
6124 if (dwo_file)
6125 types_htab = allocate_dwo_unit_table ();
6126 else
6127 types_htab = allocate_signatured_type_table ();
6128 }
6129
6130 if (dwo_file)
6131 {
6132 sig_type = NULL;
6133 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6134 struct dwo_unit);
6135 dwo_tu->dwo_file = dwo_file;
6136 dwo_tu->signature = header.signature;
6137 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6138 dwo_tu->section = section;
6139 dwo_tu->sect_off = sect_off;
6140 dwo_tu->length = length;
6141 }
6142 else
6143 {
6144 /* N.B.: type_offset is not usable if this type uses a DWO file.
6145 The real type_offset is in the DWO file. */
6146 dwo_tu = NULL;
6147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6148 struct signatured_type);
6149 sig_type->signature = header.signature;
6150 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6151 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6152 sig_type->per_cu.is_debug_types = 1;
6153 sig_type->per_cu.section = section;
6154 sig_type->per_cu.sect_off = sect_off;
6155 sig_type->per_cu.length = length;
6156 }
6157
6158 slot = htab_find_slot (types_htab.get (),
6159 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6160 INSERT);
6161 gdb_assert (slot != NULL);
6162 if (*slot != NULL)
6163 {
6164 sect_offset dup_sect_off;
6165
6166 if (dwo_file)
6167 {
6168 const struct dwo_unit *dup_tu
6169 = (const struct dwo_unit *) *slot;
6170
6171 dup_sect_off = dup_tu->sect_off;
6172 }
6173 else
6174 {
6175 const struct signatured_type *dup_tu
6176 = (const struct signatured_type *) *slot;
6177
6178 dup_sect_off = dup_tu->per_cu.sect_off;
6179 }
6180
6181 complaint (_("debug type entry at offset %s is duplicate to"
6182 " the entry at offset %s, signature %s"),
6183 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6184 hex_string (header.signature));
6185 }
6186 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6187
6188 if (dwarf_read_debug > 1)
6189 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6190 sect_offset_str (sect_off),
6191 hex_string (header.signature));
6192
6193 info_ptr += length;
6194 }
6195 }
6196
6197 /* Create the hash table of all entries in the .debug_types
6198 (or .debug_types.dwo) section(s).
6199 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6200 otherwise it is NULL.
6201
6202 The result is a pointer to the hash table or NULL if there are no types.
6203
6204 Note: This function processes DWO files only, not DWP files. */
6205
6206 static void
6207 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6208 struct dwo_file *dwo_file,
6209 gdb::array_view<dwarf2_section_info> type_sections,
6210 htab_up &types_htab)
6211 {
6212 for (dwarf2_section_info &section : type_sections)
6213 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6214 types_htab, rcuh_kind::TYPE);
6215 }
6216
6217 /* Create the hash table of all entries in the .debug_types section,
6218 and initialize all_type_units.
6219 The result is zero if there is an error (e.g. missing .debug_types section),
6220 otherwise non-zero. */
6221
6222 static int
6223 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6224 {
6225 htab_up types_htab;
6226
6227 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6228 &dwarf2_per_objfile->info, types_htab,
6229 rcuh_kind::COMPILE);
6230 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6231 dwarf2_per_objfile->types, types_htab);
6232 if (types_htab == NULL)
6233 {
6234 dwarf2_per_objfile->signatured_types = NULL;
6235 return 0;
6236 }
6237
6238 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6239
6240 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6241 dwarf2_per_objfile->all_type_units.reserve
6242 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6243
6244 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6245 add_signatured_type_cu_to_table,
6246 &dwarf2_per_objfile->all_type_units);
6247
6248 return 1;
6249 }
6250
6251 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6252 If SLOT is non-NULL, it is the entry to use in the hash table.
6253 Otherwise we find one. */
6254
6255 static struct signatured_type *
6256 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6257 void **slot)
6258 {
6259 struct objfile *objfile = dwarf2_per_objfile->objfile;
6260
6261 if (dwarf2_per_objfile->all_type_units.size ()
6262 == dwarf2_per_objfile->all_type_units.capacity ())
6263 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6264
6265 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6266 struct signatured_type);
6267
6268 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6269 sig_type->signature = sig;
6270 sig_type->per_cu.is_debug_types = 1;
6271 if (dwarf2_per_objfile->using_index)
6272 {
6273 sig_type->per_cu.v.quick =
6274 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6275 struct dwarf2_per_cu_quick_data);
6276 }
6277
6278 if (slot == NULL)
6279 {
6280 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6281 sig_type, INSERT);
6282 }
6283 gdb_assert (*slot == NULL);
6284 *slot = sig_type;
6285 /* The rest of sig_type must be filled in by the caller. */
6286 return sig_type;
6287 }
6288
6289 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6290 Fill in SIG_ENTRY with DWO_ENTRY. */
6291
6292 static void
6293 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6294 struct signatured_type *sig_entry,
6295 struct dwo_unit *dwo_entry)
6296 {
6297 /* Make sure we're not clobbering something we don't expect to. */
6298 gdb_assert (! sig_entry->per_cu.queued);
6299 gdb_assert (sig_entry->per_cu.cu == NULL);
6300 if (dwarf2_per_objfile->using_index)
6301 {
6302 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6303 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6304 }
6305 else
6306 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6307 gdb_assert (sig_entry->signature == dwo_entry->signature);
6308 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6309 gdb_assert (sig_entry->type_unit_group == NULL);
6310 gdb_assert (sig_entry->dwo_unit == NULL);
6311
6312 sig_entry->per_cu.section = dwo_entry->section;
6313 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6314 sig_entry->per_cu.length = dwo_entry->length;
6315 sig_entry->per_cu.reading_dwo_directly = 1;
6316 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6317 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6318 sig_entry->dwo_unit = dwo_entry;
6319 }
6320
6321 /* Subroutine of lookup_signatured_type.
6322 If we haven't read the TU yet, create the signatured_type data structure
6323 for a TU to be read in directly from a DWO file, bypassing the stub.
6324 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6325 using .gdb_index, then when reading a CU we want to stay in the DWO file
6326 containing that CU. Otherwise we could end up reading several other DWO
6327 files (due to comdat folding) to process the transitive closure of all the
6328 mentioned TUs, and that can be slow. The current DWO file will have every
6329 type signature that it needs.
6330 We only do this for .gdb_index because in the psymtab case we already have
6331 to read all the DWOs to build the type unit groups. */
6332
6333 static struct signatured_type *
6334 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6335 {
6336 struct dwarf2_per_objfile *dwarf2_per_objfile
6337 = cu->per_cu->dwarf2_per_objfile;
6338 struct dwo_file *dwo_file;
6339 struct dwo_unit find_dwo_entry, *dwo_entry;
6340 struct signatured_type find_sig_entry, *sig_entry;
6341 void **slot;
6342
6343 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6344
6345 /* If TU skeletons have been removed then we may not have read in any
6346 TUs yet. */
6347 if (dwarf2_per_objfile->signatured_types == NULL)
6348 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6349
6350 /* We only ever need to read in one copy of a signatured type.
6351 Use the global signatured_types array to do our own comdat-folding
6352 of types. If this is the first time we're reading this TU, and
6353 the TU has an entry in .gdb_index, replace the recorded data from
6354 .gdb_index with this TU. */
6355
6356 find_sig_entry.signature = sig;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6358 &find_sig_entry, INSERT);
6359 sig_entry = (struct signatured_type *) *slot;
6360
6361 /* We can get here with the TU already read, *or* in the process of being
6362 read. Don't reassign the global entry to point to this DWO if that's
6363 the case. Also note that if the TU is already being read, it may not
6364 have come from a DWO, the program may be a mix of Fission-compiled
6365 code and non-Fission-compiled code. */
6366
6367 /* Have we already tried to read this TU?
6368 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6369 needn't exist in the global table yet). */
6370 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6371 return sig_entry;
6372
6373 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6374 dwo_unit of the TU itself. */
6375 dwo_file = cu->dwo_unit->dwo_file;
6376
6377 /* Ok, this is the first time we're reading this TU. */
6378 if (dwo_file->tus == NULL)
6379 return NULL;
6380 find_dwo_entry.signature = sig;
6381 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6382 &find_dwo_entry);
6383 if (dwo_entry == NULL)
6384 return NULL;
6385
6386 /* If the global table doesn't have an entry for this TU, add one. */
6387 if (sig_entry == NULL)
6388 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6389
6390 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6391 sig_entry->per_cu.tu_read = 1;
6392 return sig_entry;
6393 }
6394
6395 /* Subroutine of lookup_signatured_type.
6396 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6397 then try the DWP file. If the TU stub (skeleton) has been removed then
6398 it won't be in .gdb_index. */
6399
6400 static struct signatured_type *
6401 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6402 {
6403 struct dwarf2_per_objfile *dwarf2_per_objfile
6404 = cu->per_cu->dwarf2_per_objfile;
6405 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6406 struct dwo_unit *dwo_entry;
6407 struct signatured_type find_sig_entry, *sig_entry;
6408 void **slot;
6409
6410 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6411 gdb_assert (dwp_file != NULL);
6412
6413 /* If TU skeletons have been removed then we may not have read in any
6414 TUs yet. */
6415 if (dwarf2_per_objfile->signatured_types == NULL)
6416 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6417
6418 find_sig_entry.signature = sig;
6419 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6420 &find_sig_entry, INSERT);
6421 sig_entry = (struct signatured_type *) *slot;
6422
6423 /* Have we already tried to read this TU?
6424 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6425 needn't exist in the global table yet). */
6426 if (sig_entry != NULL)
6427 return sig_entry;
6428
6429 if (dwp_file->tus == NULL)
6430 return NULL;
6431 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6432 sig, 1 /* is_debug_types */);
6433 if (dwo_entry == NULL)
6434 return NULL;
6435
6436 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6437 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6438
6439 return sig_entry;
6440 }
6441
6442 /* Lookup a signature based type for DW_FORM_ref_sig8.
6443 Returns NULL if signature SIG is not present in the table.
6444 It is up to the caller to complain about this. */
6445
6446 static struct signatured_type *
6447 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6448 {
6449 struct dwarf2_per_objfile *dwarf2_per_objfile
6450 = cu->per_cu->dwarf2_per_objfile;
6451
6452 if (cu->dwo_unit
6453 && dwarf2_per_objfile->using_index)
6454 {
6455 /* We're in a DWO/DWP file, and we're using .gdb_index.
6456 These cases require special processing. */
6457 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6458 return lookup_dwo_signatured_type (cu, sig);
6459 else
6460 return lookup_dwp_signatured_type (cu, sig);
6461 }
6462 else
6463 {
6464 struct signatured_type find_entry, *entry;
6465
6466 if (dwarf2_per_objfile->signatured_types == NULL)
6467 return NULL;
6468 find_entry.signature = sig;
6469 entry = ((struct signatured_type *)
6470 htab_find (dwarf2_per_objfile->signatured_types.get (),
6471 &find_entry));
6472 return entry;
6473 }
6474 }
6475
6476 /* Low level DIE reading support. */
6477
6478 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6479
6480 static void
6481 init_cu_die_reader (struct die_reader_specs *reader,
6482 struct dwarf2_cu *cu,
6483 struct dwarf2_section_info *section,
6484 struct dwo_file *dwo_file,
6485 struct abbrev_table *abbrev_table)
6486 {
6487 gdb_assert (section->readin && section->buffer != NULL);
6488 reader->abfd = section->get_bfd_owner ();
6489 reader->cu = cu;
6490 reader->dwo_file = dwo_file;
6491 reader->die_section = section;
6492 reader->buffer = section->buffer;
6493 reader->buffer_end = section->buffer + section->size;
6494 reader->abbrev_table = abbrev_table;
6495 }
6496
6497 /* Subroutine of cutu_reader to simplify it.
6498 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6499 There's just a lot of work to do, and cutu_reader is big enough
6500 already.
6501
6502 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6503 from it to the DIE in the DWO. If NULL we are skipping the stub.
6504 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6505 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6506 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6507 STUB_COMP_DIR may be non-NULL.
6508 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6509 are filled in with the info of the DIE from the DWO file.
6510 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6511 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6512 kept around for at least as long as *RESULT_READER.
6513
6514 The result is non-zero if a valid (non-dummy) DIE was found. */
6515
6516 static int
6517 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6518 struct dwo_unit *dwo_unit,
6519 struct die_info *stub_comp_unit_die,
6520 const char *stub_comp_dir,
6521 struct die_reader_specs *result_reader,
6522 const gdb_byte **result_info_ptr,
6523 struct die_info **result_comp_unit_die,
6524 abbrev_table_up *result_dwo_abbrev_table)
6525 {
6526 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6527 struct objfile *objfile = dwarf2_per_objfile->objfile;
6528 struct dwarf2_cu *cu = this_cu->cu;
6529 bfd *abfd;
6530 const gdb_byte *begin_info_ptr, *info_ptr;
6531 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6532 int i,num_extra_attrs;
6533 struct dwarf2_section_info *dwo_abbrev_section;
6534 struct die_info *comp_unit_die;
6535
6536 /* At most one of these may be provided. */
6537 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6538
6539 /* These attributes aren't processed until later:
6540 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6541 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6542 referenced later. However, these attributes are found in the stub
6543 which we won't have later. In order to not impose this complication
6544 on the rest of the code, we read them here and copy them to the
6545 DWO CU/TU die. */
6546
6547 stmt_list = NULL;
6548 low_pc = NULL;
6549 high_pc = NULL;
6550 ranges = NULL;
6551 comp_dir = NULL;
6552
6553 if (stub_comp_unit_die != NULL)
6554 {
6555 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6556 DWO file. */
6557 if (! this_cu->is_debug_types)
6558 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6559 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6560 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6561 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6562 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6563
6564 cu->addr_base = stub_comp_unit_die->addr_base ();
6565
6566 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6567 here (if needed). We need the value before we can process
6568 DW_AT_ranges. */
6569 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6570 }
6571 else if (stub_comp_dir != NULL)
6572 {
6573 /* Reconstruct the comp_dir attribute to simplify the code below. */
6574 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6575 comp_dir->name = DW_AT_comp_dir;
6576 comp_dir->form = DW_FORM_string;
6577 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6578 DW_STRING (comp_dir) = stub_comp_dir;
6579 }
6580
6581 /* Set up for reading the DWO CU/TU. */
6582 cu->dwo_unit = dwo_unit;
6583 dwarf2_section_info *section = dwo_unit->section;
6584 section->read (objfile);
6585 abfd = section->get_bfd_owner ();
6586 begin_info_ptr = info_ptr = (section->buffer
6587 + to_underlying (dwo_unit->sect_off));
6588 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6589
6590 if (this_cu->is_debug_types)
6591 {
6592 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6593
6594 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6595 &cu->header, section,
6596 dwo_abbrev_section,
6597 info_ptr, rcuh_kind::TYPE);
6598 /* This is not an assert because it can be caused by bad debug info. */
6599 if (sig_type->signature != cu->header.signature)
6600 {
6601 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6602 " TU at offset %s [in module %s]"),
6603 hex_string (sig_type->signature),
6604 hex_string (cu->header.signature),
6605 sect_offset_str (dwo_unit->sect_off),
6606 bfd_get_filename (abfd));
6607 }
6608 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6609 /* For DWOs coming from DWP files, we don't know the CU length
6610 nor the type's offset in the TU until now. */
6611 dwo_unit->length = cu->header.get_length ();
6612 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6613
6614 /* Establish the type offset that can be used to lookup the type.
6615 For DWO files, we don't know it until now. */
6616 sig_type->type_offset_in_section
6617 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6618 }
6619 else
6620 {
6621 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6622 &cu->header, section,
6623 dwo_abbrev_section,
6624 info_ptr, rcuh_kind::COMPILE);
6625 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6626 /* For DWOs coming from DWP files, we don't know the CU length
6627 until now. */
6628 dwo_unit->length = cu->header.get_length ();
6629 }
6630
6631 *result_dwo_abbrev_table
6632 = abbrev_table::read (objfile, dwo_abbrev_section,
6633 cu->header.abbrev_sect_off);
6634 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6635 result_dwo_abbrev_table->get ());
6636
6637 /* Read in the die, but leave space to copy over the attributes
6638 from the stub. This has the benefit of simplifying the rest of
6639 the code - all the work to maintain the illusion of a single
6640 DW_TAG_{compile,type}_unit DIE is done here. */
6641 num_extra_attrs = ((stmt_list != NULL)
6642 + (low_pc != NULL)
6643 + (high_pc != NULL)
6644 + (ranges != NULL)
6645 + (comp_dir != NULL));
6646 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6647 num_extra_attrs);
6648
6649 /* Copy over the attributes from the stub to the DIE we just read in. */
6650 comp_unit_die = *result_comp_unit_die;
6651 i = comp_unit_die->num_attrs;
6652 if (stmt_list != NULL)
6653 comp_unit_die->attrs[i++] = *stmt_list;
6654 if (low_pc != NULL)
6655 comp_unit_die->attrs[i++] = *low_pc;
6656 if (high_pc != NULL)
6657 comp_unit_die->attrs[i++] = *high_pc;
6658 if (ranges != NULL)
6659 comp_unit_die->attrs[i++] = *ranges;
6660 if (comp_dir != NULL)
6661 comp_unit_die->attrs[i++] = *comp_dir;
6662 comp_unit_die->num_attrs += num_extra_attrs;
6663
6664 if (dwarf_die_debug)
6665 {
6666 fprintf_unfiltered (gdb_stdlog,
6667 "Read die from %s@0x%x of %s:\n",
6668 section->get_name (),
6669 (unsigned) (begin_info_ptr - section->buffer),
6670 bfd_get_filename (abfd));
6671 dump_die (comp_unit_die, dwarf_die_debug);
6672 }
6673
6674 /* Skip dummy compilation units. */
6675 if (info_ptr >= begin_info_ptr + dwo_unit->length
6676 || peek_abbrev_code (abfd, info_ptr) == 0)
6677 return 0;
6678
6679 *result_info_ptr = info_ptr;
6680 return 1;
6681 }
6682
6683 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6684 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6685 signature is part of the header. */
6686 static gdb::optional<ULONGEST>
6687 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6688 {
6689 if (cu->header.version >= 5)
6690 return cu->header.signature;
6691 struct attribute *attr;
6692 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6693 if (attr == nullptr)
6694 return gdb::optional<ULONGEST> ();
6695 return DW_UNSND (attr);
6696 }
6697
6698 /* Subroutine of cutu_reader to simplify it.
6699 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6700 Returns NULL if the specified DWO unit cannot be found. */
6701
6702 static struct dwo_unit *
6703 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6704 struct die_info *comp_unit_die,
6705 const char *dwo_name)
6706 {
6707 struct dwarf2_cu *cu = this_cu->cu;
6708 struct dwo_unit *dwo_unit;
6709 const char *comp_dir;
6710
6711 gdb_assert (cu != NULL);
6712
6713 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6714 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6715 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6716
6717 if (this_cu->is_debug_types)
6718 {
6719 struct signatured_type *sig_type;
6720
6721 /* Since this_cu is the first member of struct signatured_type,
6722 we can go from a pointer to one to a pointer to the other. */
6723 sig_type = (struct signatured_type *) this_cu;
6724 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6725 }
6726 else
6727 {
6728 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6729 if (!signature.has_value ())
6730 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6731 " [in module %s]"),
6732 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6733 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6734 *signature);
6735 }
6736
6737 return dwo_unit;
6738 }
6739
6740 /* Subroutine of cutu_reader to simplify it.
6741 See it for a description of the parameters.
6742 Read a TU directly from a DWO file, bypassing the stub. */
6743
6744 void
6745 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6746 int use_existing_cu)
6747 {
6748 struct signatured_type *sig_type;
6749
6750 /* Verify we can do the following downcast, and that we have the
6751 data we need. */
6752 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6753 sig_type = (struct signatured_type *) this_cu;
6754 gdb_assert (sig_type->dwo_unit != NULL);
6755
6756 if (use_existing_cu && this_cu->cu != NULL)
6757 {
6758 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6759 /* There's no need to do the rereading_dwo_cu handling that
6760 cutu_reader does since we don't read the stub. */
6761 }
6762 else
6763 {
6764 /* If !use_existing_cu, this_cu->cu must be NULL. */
6765 gdb_assert (this_cu->cu == NULL);
6766 m_new_cu.reset (new dwarf2_cu (this_cu));
6767 }
6768
6769 /* A future optimization, if needed, would be to use an existing
6770 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6771 could share abbrev tables. */
6772
6773 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6774 NULL /* stub_comp_unit_die */,
6775 sig_type->dwo_unit->dwo_file->comp_dir,
6776 this, &info_ptr,
6777 &comp_unit_die,
6778 &m_dwo_abbrev_table) == 0)
6779 {
6780 /* Dummy die. */
6781 dummy_p = true;
6782 }
6783 }
6784
6785 /* Initialize a CU (or TU) and read its DIEs.
6786 If the CU defers to a DWO file, read the DWO file as well.
6787
6788 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6789 Otherwise the table specified in the comp unit header is read in and used.
6790 This is an optimization for when we already have the abbrev table.
6791
6792 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6793 Otherwise, a new CU is allocated with xmalloc. */
6794
6795 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6796 struct abbrev_table *abbrev_table,
6797 int use_existing_cu,
6798 bool skip_partial)
6799 : die_reader_specs {},
6800 m_this_cu (this_cu)
6801 {
6802 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6803 struct objfile *objfile = dwarf2_per_objfile->objfile;
6804 struct dwarf2_section_info *section = this_cu->section;
6805 bfd *abfd = section->get_bfd_owner ();
6806 struct dwarf2_cu *cu;
6807 const gdb_byte *begin_info_ptr;
6808 struct signatured_type *sig_type = NULL;
6809 struct dwarf2_section_info *abbrev_section;
6810 /* Non-zero if CU currently points to a DWO file and we need to
6811 reread it. When this happens we need to reread the skeleton die
6812 before we can reread the DWO file (this only applies to CUs, not TUs). */
6813 int rereading_dwo_cu = 0;
6814
6815 if (dwarf_die_debug)
6816 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6817 this_cu->is_debug_types ? "type" : "comp",
6818 sect_offset_str (this_cu->sect_off));
6819
6820 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6821 file (instead of going through the stub), short-circuit all of this. */
6822 if (this_cu->reading_dwo_directly)
6823 {
6824 /* Narrow down the scope of possibilities to have to understand. */
6825 gdb_assert (this_cu->is_debug_types);
6826 gdb_assert (abbrev_table == NULL);
6827 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6828 return;
6829 }
6830
6831 /* This is cheap if the section is already read in. */
6832 section->read (objfile);
6833
6834 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6835
6836 abbrev_section = get_abbrev_section_for_cu (this_cu);
6837
6838 if (use_existing_cu && this_cu->cu != NULL)
6839 {
6840 cu = this_cu->cu;
6841 /* If this CU is from a DWO file we need to start over, we need to
6842 refetch the attributes from the skeleton CU.
6843 This could be optimized by retrieving those attributes from when we
6844 were here the first time: the previous comp_unit_die was stored in
6845 comp_unit_obstack. But there's no data yet that we need this
6846 optimization. */
6847 if (cu->dwo_unit != NULL)
6848 rereading_dwo_cu = 1;
6849 }
6850 else
6851 {
6852 /* If !use_existing_cu, this_cu->cu must be NULL. */
6853 gdb_assert (this_cu->cu == NULL);
6854 m_new_cu.reset (new dwarf2_cu (this_cu));
6855 cu = m_new_cu.get ();
6856 }
6857
6858 /* Get the header. */
6859 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6860 {
6861 /* We already have the header, there's no need to read it in again. */
6862 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6863 }
6864 else
6865 {
6866 if (this_cu->is_debug_types)
6867 {
6868 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6869 &cu->header, section,
6870 abbrev_section, info_ptr,
6871 rcuh_kind::TYPE);
6872
6873 /* Since per_cu is the first member of struct signatured_type,
6874 we can go from a pointer to one to a pointer to the other. */
6875 sig_type = (struct signatured_type *) this_cu;
6876 gdb_assert (sig_type->signature == cu->header.signature);
6877 gdb_assert (sig_type->type_offset_in_tu
6878 == cu->header.type_cu_offset_in_tu);
6879 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6880
6881 /* LENGTH has not been set yet for type units if we're
6882 using .gdb_index. */
6883 this_cu->length = cu->header.get_length ();
6884
6885 /* Establish the type offset that can be used to lookup the type. */
6886 sig_type->type_offset_in_section =
6887 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6888
6889 this_cu->dwarf_version = cu->header.version;
6890 }
6891 else
6892 {
6893 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6894 &cu->header, section,
6895 abbrev_section,
6896 info_ptr,
6897 rcuh_kind::COMPILE);
6898
6899 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6900 gdb_assert (this_cu->length == cu->header.get_length ());
6901 this_cu->dwarf_version = cu->header.version;
6902 }
6903 }
6904
6905 /* Skip dummy compilation units. */
6906 if (info_ptr >= begin_info_ptr + this_cu->length
6907 || peek_abbrev_code (abfd, info_ptr) == 0)
6908 {
6909 dummy_p = true;
6910 return;
6911 }
6912
6913 /* If we don't have them yet, read the abbrevs for this compilation unit.
6914 And if we need to read them now, make sure they're freed when we're
6915 done. */
6916 if (abbrev_table != NULL)
6917 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6918 else
6919 {
6920 m_abbrev_table_holder
6921 = abbrev_table::read (objfile, abbrev_section,
6922 cu->header.abbrev_sect_off);
6923 abbrev_table = m_abbrev_table_holder.get ();
6924 }
6925
6926 /* Read the top level CU/TU die. */
6927 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6928 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6929
6930 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6931 {
6932 dummy_p = true;
6933 return;
6934 }
6935
6936 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6937 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6938 table from the DWO file and pass the ownership over to us. It will be
6939 referenced from READER, so we must make sure to free it after we're done
6940 with READER.
6941
6942 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6943 DWO CU, that this test will fail (the attribute will not be present). */
6944 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6945 if (dwo_name != nullptr)
6946 {
6947 struct dwo_unit *dwo_unit;
6948 struct die_info *dwo_comp_unit_die;
6949
6950 if (comp_unit_die->has_children)
6951 {
6952 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6953 " has children (offset %s) [in module %s]"),
6954 sect_offset_str (this_cu->sect_off),
6955 bfd_get_filename (abfd));
6956 }
6957 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6958 if (dwo_unit != NULL)
6959 {
6960 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6961 comp_unit_die, NULL,
6962 this, &info_ptr,
6963 &dwo_comp_unit_die,
6964 &m_dwo_abbrev_table) == 0)
6965 {
6966 /* Dummy die. */
6967 dummy_p = true;
6968 return;
6969 }
6970 comp_unit_die = dwo_comp_unit_die;
6971 }
6972 else
6973 {
6974 /* Yikes, we couldn't find the rest of the DIE, we only have
6975 the stub. A complaint has already been logged. There's
6976 not much more we can do except pass on the stub DIE to
6977 die_reader_func. We don't want to throw an error on bad
6978 debug info. */
6979 }
6980 }
6981 }
6982
6983 void
6984 cutu_reader::keep ()
6985 {
6986 /* Done, clean up. */
6987 gdb_assert (!dummy_p);
6988 if (m_new_cu != NULL)
6989 {
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = m_this_cu->dwarf2_per_objfile;
6992 /* Link this CU into read_in_chain. */
6993 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6994 dwarf2_per_objfile->read_in_chain = m_this_cu;
6995 /* The chain owns it now. */
6996 m_new_cu.release ();
6997 }
6998 }
6999
7000 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7001 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7002 assumed to have already done the lookup to find the DWO file).
7003
7004 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7005 THIS_CU->is_debug_types, but nothing else.
7006
7007 We fill in THIS_CU->length.
7008
7009 THIS_CU->cu is always freed when done.
7010 This is done in order to not leave THIS_CU->cu in a state where we have
7011 to care whether it refers to the "main" CU or the DWO CU.
7012
7013 When parent_cu is passed, it is used to provide a default value for
7014 str_offsets_base and addr_base from the parent. */
7015
7016 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7017 struct dwarf2_cu *parent_cu,
7018 struct dwo_file *dwo_file)
7019 : die_reader_specs {},
7020 m_this_cu (this_cu)
7021 {
7022 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7023 struct objfile *objfile = dwarf2_per_objfile->objfile;
7024 struct dwarf2_section_info *section = this_cu->section;
7025 bfd *abfd = section->get_bfd_owner ();
7026 struct dwarf2_section_info *abbrev_section;
7027 const gdb_byte *begin_info_ptr, *info_ptr;
7028
7029 if (dwarf_die_debug)
7030 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7031 this_cu->is_debug_types ? "type" : "comp",
7032 sect_offset_str (this_cu->sect_off));
7033
7034 gdb_assert (this_cu->cu == NULL);
7035
7036 abbrev_section = (dwo_file != NULL
7037 ? &dwo_file->sections.abbrev
7038 : get_abbrev_section_for_cu (this_cu));
7039
7040 /* This is cheap if the section is already read in. */
7041 section->read (objfile);
7042
7043 m_new_cu.reset (new dwarf2_cu (this_cu));
7044
7045 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7046 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7047 &m_new_cu->header, section,
7048 abbrev_section, info_ptr,
7049 (this_cu->is_debug_types
7050 ? rcuh_kind::TYPE
7051 : rcuh_kind::COMPILE));
7052
7053 if (parent_cu != nullptr)
7054 {
7055 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7056 m_new_cu->addr_base = parent_cu->addr_base;
7057 }
7058 this_cu->length = m_new_cu->header.get_length ();
7059
7060 /* Skip dummy compilation units. */
7061 if (info_ptr >= begin_info_ptr + this_cu->length
7062 || peek_abbrev_code (abfd, info_ptr) == 0)
7063 {
7064 dummy_p = true;
7065 return;
7066 }
7067
7068 m_abbrev_table_holder
7069 = abbrev_table::read (objfile, abbrev_section,
7070 m_new_cu->header.abbrev_sect_off);
7071
7072 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7073 m_abbrev_table_holder.get ());
7074 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7075 }
7076
7077 \f
7078 /* Type Unit Groups.
7079
7080 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7081 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7082 so that all types coming from the same compilation (.o file) are grouped
7083 together. A future step could be to put the types in the same symtab as
7084 the CU the types ultimately came from. */
7085
7086 static hashval_t
7087 hash_type_unit_group (const void *item)
7088 {
7089 const struct type_unit_group *tu_group
7090 = (const struct type_unit_group *) item;
7091
7092 return hash_stmt_list_entry (&tu_group->hash);
7093 }
7094
7095 static int
7096 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7097 {
7098 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7099 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7100
7101 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7102 }
7103
7104 /* Allocate a hash table for type unit groups. */
7105
7106 static htab_up
7107 allocate_type_unit_groups_table ()
7108 {
7109 return htab_up (htab_create_alloc (3,
7110 hash_type_unit_group,
7111 eq_type_unit_group,
7112 NULL, xcalloc, xfree));
7113 }
7114
7115 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7116 partial symtabs. We combine several TUs per psymtab to not let the size
7117 of any one psymtab grow too big. */
7118 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7119 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7120
7121 /* Helper routine for get_type_unit_group.
7122 Create the type_unit_group object used to hold one or more TUs. */
7123
7124 static struct type_unit_group *
7125 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7126 {
7127 struct dwarf2_per_objfile *dwarf2_per_objfile
7128 = cu->per_cu->dwarf2_per_objfile;
7129 struct objfile *objfile = dwarf2_per_objfile->objfile;
7130 struct dwarf2_per_cu_data *per_cu;
7131 struct type_unit_group *tu_group;
7132
7133 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7134 struct type_unit_group);
7135 per_cu = &tu_group->per_cu;
7136 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7137
7138 if (dwarf2_per_objfile->using_index)
7139 {
7140 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7141 struct dwarf2_per_cu_quick_data);
7142 }
7143 else
7144 {
7145 unsigned int line_offset = to_underlying (line_offset_struct);
7146 dwarf2_psymtab *pst;
7147 std::string name;
7148
7149 /* Give the symtab a useful name for debug purposes. */
7150 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7151 name = string_printf ("<type_units_%d>",
7152 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7153 else
7154 name = string_printf ("<type_units_at_0x%x>", line_offset);
7155
7156 pst = create_partial_symtab (per_cu, name.c_str ());
7157 pst->anonymous = true;
7158 }
7159
7160 tu_group->hash.dwo_unit = cu->dwo_unit;
7161 tu_group->hash.line_sect_off = line_offset_struct;
7162
7163 return tu_group;
7164 }
7165
7166 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7167 STMT_LIST is a DW_AT_stmt_list attribute. */
7168
7169 static struct type_unit_group *
7170 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7171 {
7172 struct dwarf2_per_objfile *dwarf2_per_objfile
7173 = cu->per_cu->dwarf2_per_objfile;
7174 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7175 struct type_unit_group *tu_group;
7176 void **slot;
7177 unsigned int line_offset;
7178 struct type_unit_group type_unit_group_for_lookup;
7179
7180 if (dwarf2_per_objfile->type_unit_groups == NULL)
7181 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7182
7183 /* Do we need to create a new group, or can we use an existing one? */
7184
7185 if (stmt_list)
7186 {
7187 line_offset = DW_UNSND (stmt_list);
7188 ++tu_stats->nr_symtab_sharers;
7189 }
7190 else
7191 {
7192 /* Ugh, no stmt_list. Rare, but we have to handle it.
7193 We can do various things here like create one group per TU or
7194 spread them over multiple groups to split up the expansion work.
7195 To avoid worst case scenarios (too many groups or too large groups)
7196 we, umm, group them in bunches. */
7197 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7198 | (tu_stats->nr_stmt_less_type_units
7199 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7200 ++tu_stats->nr_stmt_less_type_units;
7201 }
7202
7203 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7204 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7205 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7206 &type_unit_group_for_lookup, INSERT);
7207 if (*slot != NULL)
7208 {
7209 tu_group = (struct type_unit_group *) *slot;
7210 gdb_assert (tu_group != NULL);
7211 }
7212 else
7213 {
7214 sect_offset line_offset_struct = (sect_offset) line_offset;
7215 tu_group = create_type_unit_group (cu, line_offset_struct);
7216 *slot = tu_group;
7217 ++tu_stats->nr_symtabs;
7218 }
7219
7220 return tu_group;
7221 }
7222 \f
7223 /* Partial symbol tables. */
7224
7225 /* Create a psymtab named NAME and assign it to PER_CU.
7226
7227 The caller must fill in the following details:
7228 dirname, textlow, texthigh. */
7229
7230 static dwarf2_psymtab *
7231 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7232 {
7233 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7234 dwarf2_psymtab *pst;
7235
7236 pst = new dwarf2_psymtab (name, objfile, per_cu);
7237
7238 pst->psymtabs_addrmap_supported = true;
7239
7240 /* This is the glue that links PST into GDB's symbol API. */
7241 per_cu->v.psymtab = pst;
7242
7243 return pst;
7244 }
7245
7246 /* DIE reader function for process_psymtab_comp_unit. */
7247
7248 static void
7249 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7250 const gdb_byte *info_ptr,
7251 struct die_info *comp_unit_die,
7252 enum language pretend_language)
7253 {
7254 struct dwarf2_cu *cu = reader->cu;
7255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7256 struct gdbarch *gdbarch = objfile->arch ();
7257 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7258 CORE_ADDR baseaddr;
7259 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7260 dwarf2_psymtab *pst;
7261 enum pc_bounds_kind cu_bounds_kind;
7262 const char *filename;
7263
7264 gdb_assert (! per_cu->is_debug_types);
7265
7266 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7267
7268 /* Allocate a new partial symbol table structure. */
7269 gdb::unique_xmalloc_ptr<char> debug_filename;
7270 static const char artificial[] = "<artificial>";
7271 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7272 if (filename == NULL)
7273 filename = "";
7274 else if (strcmp (filename, artificial) == 0)
7275 {
7276 debug_filename.reset (concat (artificial, "@",
7277 sect_offset_str (per_cu->sect_off),
7278 (char *) NULL));
7279 filename = debug_filename.get ();
7280 }
7281
7282 pst = create_partial_symtab (per_cu, filename);
7283
7284 /* This must be done before calling dwarf2_build_include_psymtabs. */
7285 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7286
7287 baseaddr = objfile->text_section_offset ();
7288
7289 dwarf2_find_base_address (comp_unit_die, cu);
7290
7291 /* Possibly set the default values of LOWPC and HIGHPC from
7292 `DW_AT_ranges'. */
7293 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7294 &best_highpc, cu, pst);
7295 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7296 {
7297 CORE_ADDR low
7298 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7299 - baseaddr);
7300 CORE_ADDR high
7301 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7302 - baseaddr - 1);
7303 /* Store the contiguous range if it is not empty; it can be
7304 empty for CUs with no code. */
7305 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7306 low, high, pst);
7307 }
7308
7309 /* Check if comp unit has_children.
7310 If so, read the rest of the partial symbols from this comp unit.
7311 If not, there's no more debug_info for this comp unit. */
7312 if (comp_unit_die->has_children)
7313 {
7314 struct partial_die_info *first_die;
7315 CORE_ADDR lowpc, highpc;
7316
7317 lowpc = ((CORE_ADDR) -1);
7318 highpc = ((CORE_ADDR) 0);
7319
7320 first_die = load_partial_dies (reader, info_ptr, 1);
7321
7322 scan_partial_symbols (first_die, &lowpc, &highpc,
7323 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7324
7325 /* If we didn't find a lowpc, set it to highpc to avoid
7326 complaints from `maint check'. */
7327 if (lowpc == ((CORE_ADDR) -1))
7328 lowpc = highpc;
7329
7330 /* If the compilation unit didn't have an explicit address range,
7331 then use the information extracted from its child dies. */
7332 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7333 {
7334 best_lowpc = lowpc;
7335 best_highpc = highpc;
7336 }
7337 }
7338 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7339 best_lowpc + baseaddr)
7340 - baseaddr);
7341 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7342 best_highpc + baseaddr)
7343 - baseaddr);
7344
7345 end_psymtab_common (objfile, pst);
7346
7347 if (!cu->per_cu->imported_symtabs_empty ())
7348 {
7349 int i;
7350 int len = cu->per_cu->imported_symtabs_size ();
7351
7352 /* Fill in 'dependencies' here; we fill in 'users' in a
7353 post-pass. */
7354 pst->number_of_dependencies = len;
7355 pst->dependencies
7356 = objfile->partial_symtabs->allocate_dependencies (len);
7357 for (i = 0; i < len; ++i)
7358 {
7359 pst->dependencies[i]
7360 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7361 }
7362
7363 cu->per_cu->imported_symtabs_free ();
7364 }
7365
7366 /* Get the list of files included in the current compilation unit,
7367 and build a psymtab for each of them. */
7368 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7369
7370 if (dwarf_read_debug)
7371 fprintf_unfiltered (gdb_stdlog,
7372 "Psymtab for %s unit @%s: %s - %s"
7373 ", %d global, %d static syms\n",
7374 per_cu->is_debug_types ? "type" : "comp",
7375 sect_offset_str (per_cu->sect_off),
7376 paddress (gdbarch, pst->text_low (objfile)),
7377 paddress (gdbarch, pst->text_high (objfile)),
7378 pst->n_global_syms, pst->n_static_syms);
7379 }
7380
7381 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7382 Process compilation unit THIS_CU for a psymtab. */
7383
7384 static void
7385 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7386 bool want_partial_unit,
7387 enum language pretend_language)
7388 {
7389 /* If this compilation unit was already read in, free the
7390 cached copy in order to read it in again. This is
7391 necessary because we skipped some symbols when we first
7392 read in the compilation unit (see load_partial_dies).
7393 This problem could be avoided, but the benefit is unclear. */
7394 if (this_cu->cu != NULL)
7395 free_one_cached_comp_unit (this_cu);
7396
7397 cutu_reader reader (this_cu, NULL, 0, false);
7398
7399 switch (reader.comp_unit_die->tag)
7400 {
7401 case DW_TAG_compile_unit:
7402 this_cu->unit_type = DW_UT_compile;
7403 break;
7404 case DW_TAG_partial_unit:
7405 this_cu->unit_type = DW_UT_partial;
7406 break;
7407 default:
7408 abort ();
7409 }
7410
7411 if (reader.dummy_p)
7412 {
7413 /* Nothing. */
7414 }
7415 else if (this_cu->is_debug_types)
7416 build_type_psymtabs_reader (&reader, reader.info_ptr,
7417 reader.comp_unit_die);
7418 else if (want_partial_unit
7419 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7420 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7421 reader.comp_unit_die,
7422 pretend_language);
7423
7424 this_cu->lang = this_cu->cu->language;
7425
7426 /* Age out any secondary CUs. */
7427 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7428 }
7429
7430 /* Reader function for build_type_psymtabs. */
7431
7432 static void
7433 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7434 const gdb_byte *info_ptr,
7435 struct die_info *type_unit_die)
7436 {
7437 struct dwarf2_per_objfile *dwarf2_per_objfile
7438 = reader->cu->per_cu->dwarf2_per_objfile;
7439 struct objfile *objfile = dwarf2_per_objfile->objfile;
7440 struct dwarf2_cu *cu = reader->cu;
7441 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7442 struct signatured_type *sig_type;
7443 struct type_unit_group *tu_group;
7444 struct attribute *attr;
7445 struct partial_die_info *first_die;
7446 CORE_ADDR lowpc, highpc;
7447 dwarf2_psymtab *pst;
7448
7449 gdb_assert (per_cu->is_debug_types);
7450 sig_type = (struct signatured_type *) per_cu;
7451
7452 if (! type_unit_die->has_children)
7453 return;
7454
7455 attr = type_unit_die->attr (DW_AT_stmt_list);
7456 tu_group = get_type_unit_group (cu, attr);
7457
7458 if (tu_group->tus == nullptr)
7459 tu_group->tus = new std::vector<signatured_type *>;
7460 tu_group->tus->push_back (sig_type);
7461
7462 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7463 pst = create_partial_symtab (per_cu, "");
7464 pst->anonymous = true;
7465
7466 first_die = load_partial_dies (reader, info_ptr, 1);
7467
7468 lowpc = (CORE_ADDR) -1;
7469 highpc = (CORE_ADDR) 0;
7470 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7471
7472 end_psymtab_common (objfile, pst);
7473 }
7474
7475 /* Struct used to sort TUs by their abbreviation table offset. */
7476
7477 struct tu_abbrev_offset
7478 {
7479 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7480 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7481 {}
7482
7483 signatured_type *sig_type;
7484 sect_offset abbrev_offset;
7485 };
7486
7487 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7488
7489 static bool
7490 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7491 const struct tu_abbrev_offset &b)
7492 {
7493 return a.abbrev_offset < b.abbrev_offset;
7494 }
7495
7496 /* Efficiently read all the type units.
7497 This does the bulk of the work for build_type_psymtabs.
7498
7499 The efficiency is because we sort TUs by the abbrev table they use and
7500 only read each abbrev table once. In one program there are 200K TUs
7501 sharing 8K abbrev tables.
7502
7503 The main purpose of this function is to support building the
7504 dwarf2_per_objfile->type_unit_groups table.
7505 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7506 can collapse the search space by grouping them by stmt_list.
7507 The savings can be significant, in the same program from above the 200K TUs
7508 share 8K stmt_list tables.
7509
7510 FUNC is expected to call get_type_unit_group, which will create the
7511 struct type_unit_group if necessary and add it to
7512 dwarf2_per_objfile->type_unit_groups. */
7513
7514 static void
7515 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7516 {
7517 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7518 abbrev_table_up abbrev_table;
7519 sect_offset abbrev_offset;
7520
7521 /* It's up to the caller to not call us multiple times. */
7522 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7523
7524 if (dwarf2_per_objfile->all_type_units.empty ())
7525 return;
7526
7527 /* TUs typically share abbrev tables, and there can be way more TUs than
7528 abbrev tables. Sort by abbrev table to reduce the number of times we
7529 read each abbrev table in.
7530 Alternatives are to punt or to maintain a cache of abbrev tables.
7531 This is simpler and efficient enough for now.
7532
7533 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7534 symtab to use). Typically TUs with the same abbrev offset have the same
7535 stmt_list value too so in practice this should work well.
7536
7537 The basic algorithm here is:
7538
7539 sort TUs by abbrev table
7540 for each TU with same abbrev table:
7541 read abbrev table if first user
7542 read TU top level DIE
7543 [IWBN if DWO skeletons had DW_AT_stmt_list]
7544 call FUNC */
7545
7546 if (dwarf_read_debug)
7547 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7548
7549 /* Sort in a separate table to maintain the order of all_type_units
7550 for .gdb_index: TU indices directly index all_type_units. */
7551 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7552 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7553
7554 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7555 sorted_by_abbrev.emplace_back
7556 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7557 sig_type->per_cu.section,
7558 sig_type->per_cu.sect_off));
7559
7560 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7561 sort_tu_by_abbrev_offset);
7562
7563 abbrev_offset = (sect_offset) ~(unsigned) 0;
7564
7565 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7566 {
7567 /* Switch to the next abbrev table if necessary. */
7568 if (abbrev_table == NULL
7569 || tu.abbrev_offset != abbrev_offset)
7570 {
7571 abbrev_offset = tu.abbrev_offset;
7572 abbrev_table =
7573 abbrev_table::read (dwarf2_per_objfile->objfile,
7574 &dwarf2_per_objfile->abbrev,
7575 abbrev_offset);
7576 ++tu_stats->nr_uniq_abbrev_tables;
7577 }
7578
7579 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7580 0, false);
7581 if (!reader.dummy_p)
7582 build_type_psymtabs_reader (&reader, reader.info_ptr,
7583 reader.comp_unit_die);
7584 }
7585 }
7586
7587 /* Print collected type unit statistics. */
7588
7589 static void
7590 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7591 {
7592 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7593
7594 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7595 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7596 dwarf2_per_objfile->all_type_units.size ());
7597 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7598 tu_stats->nr_uniq_abbrev_tables);
7599 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7600 tu_stats->nr_symtabs);
7601 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7602 tu_stats->nr_symtab_sharers);
7603 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7604 tu_stats->nr_stmt_less_type_units);
7605 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7606 tu_stats->nr_all_type_units_reallocs);
7607 }
7608
7609 /* Traversal function for build_type_psymtabs. */
7610
7611 static int
7612 build_type_psymtab_dependencies (void **slot, void *info)
7613 {
7614 struct dwarf2_per_objfile *dwarf2_per_objfile
7615 = (struct dwarf2_per_objfile *) info;
7616 struct objfile *objfile = dwarf2_per_objfile->objfile;
7617 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7618 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7619 dwarf2_psymtab *pst = per_cu->v.psymtab;
7620 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7621 int i;
7622
7623 gdb_assert (len > 0);
7624 gdb_assert (per_cu->type_unit_group_p ());
7625
7626 pst->number_of_dependencies = len;
7627 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7628 for (i = 0; i < len; ++i)
7629 {
7630 struct signatured_type *iter = tu_group->tus->at (i);
7631 gdb_assert (iter->per_cu.is_debug_types);
7632 pst->dependencies[i] = iter->per_cu.v.psymtab;
7633 iter->type_unit_group = tu_group;
7634 }
7635
7636 delete tu_group->tus;
7637 tu_group->tus = nullptr;
7638
7639 return 1;
7640 }
7641
7642 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7643 Build partial symbol tables for the .debug_types comp-units. */
7644
7645 static void
7646 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7647 {
7648 if (! create_all_type_units (dwarf2_per_objfile))
7649 return;
7650
7651 build_type_psymtabs_1 (dwarf2_per_objfile);
7652 }
7653
7654 /* Traversal function for process_skeletonless_type_unit.
7655 Read a TU in a DWO file and build partial symbols for it. */
7656
7657 static int
7658 process_skeletonless_type_unit (void **slot, void *info)
7659 {
7660 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7661 struct dwarf2_per_objfile *dwarf2_per_objfile
7662 = (struct dwarf2_per_objfile *) info;
7663 struct signatured_type find_entry, *entry;
7664
7665 /* If this TU doesn't exist in the global table, add it and read it in. */
7666
7667 if (dwarf2_per_objfile->signatured_types == NULL)
7668 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7669
7670 find_entry.signature = dwo_unit->signature;
7671 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7672 &find_entry, INSERT);
7673 /* If we've already seen this type there's nothing to do. What's happening
7674 is we're doing our own version of comdat-folding here. */
7675 if (*slot != NULL)
7676 return 1;
7677
7678 /* This does the job that create_all_type_units would have done for
7679 this TU. */
7680 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7681 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7682 *slot = entry;
7683
7684 /* This does the job that build_type_psymtabs_1 would have done. */
7685 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7686 if (!reader.dummy_p)
7687 build_type_psymtabs_reader (&reader, reader.info_ptr,
7688 reader.comp_unit_die);
7689
7690 return 1;
7691 }
7692
7693 /* Traversal function for process_skeletonless_type_units. */
7694
7695 static int
7696 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7697 {
7698 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7699
7700 if (dwo_file->tus != NULL)
7701 htab_traverse_noresize (dwo_file->tus.get (),
7702 process_skeletonless_type_unit, info);
7703
7704 return 1;
7705 }
7706
7707 /* Scan all TUs of DWO files, verifying we've processed them.
7708 This is needed in case a TU was emitted without its skeleton.
7709 Note: This can't be done until we know what all the DWO files are. */
7710
7711 static void
7712 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7713 {
7714 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7715 if (get_dwp_file (dwarf2_per_objfile) == NULL
7716 && dwarf2_per_objfile->dwo_files != NULL)
7717 {
7718 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7719 process_dwo_file_for_skeletonless_type_units,
7720 dwarf2_per_objfile);
7721 }
7722 }
7723
7724 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7725
7726 static void
7727 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7728 {
7729 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7730 {
7731 dwarf2_psymtab *pst = per_cu->v.psymtab;
7732
7733 if (pst == NULL)
7734 continue;
7735
7736 for (int j = 0; j < pst->number_of_dependencies; ++j)
7737 {
7738 /* Set the 'user' field only if it is not already set. */
7739 if (pst->dependencies[j]->user == NULL)
7740 pst->dependencies[j]->user = pst;
7741 }
7742 }
7743 }
7744
7745 /* Build the partial symbol table by doing a quick pass through the
7746 .debug_info and .debug_abbrev sections. */
7747
7748 static void
7749 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7750 {
7751 struct objfile *objfile = dwarf2_per_objfile->objfile;
7752
7753 if (dwarf_read_debug)
7754 {
7755 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7756 objfile_name (objfile));
7757 }
7758
7759 scoped_restore restore_reading_psyms
7760 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7761 true);
7762
7763 dwarf2_per_objfile->info.read (objfile);
7764
7765 /* Any cached compilation units will be linked by the per-objfile
7766 read_in_chain. Make sure to free them when we're done. */
7767 free_cached_comp_units freer (dwarf2_per_objfile);
7768
7769 build_type_psymtabs (dwarf2_per_objfile);
7770
7771 create_all_comp_units (dwarf2_per_objfile);
7772
7773 /* Create a temporary address map on a temporary obstack. We later
7774 copy this to the final obstack. */
7775 auto_obstack temp_obstack;
7776
7777 scoped_restore save_psymtabs_addrmap
7778 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7779 addrmap_create_mutable (&temp_obstack));
7780
7781 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7782 {
7783 if (per_cu->v.psymtab != NULL)
7784 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7785 continue;
7786 process_psymtab_comp_unit (per_cu, false, language_minimal);
7787 }
7788
7789 /* This has to wait until we read the CUs, we need the list of DWOs. */
7790 process_skeletonless_type_units (dwarf2_per_objfile);
7791
7792 /* Now that all TUs have been processed we can fill in the dependencies. */
7793 if (dwarf2_per_objfile->type_unit_groups != NULL)
7794 {
7795 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7796 build_type_psymtab_dependencies, dwarf2_per_objfile);
7797 }
7798
7799 if (dwarf_read_debug)
7800 print_tu_stats (dwarf2_per_objfile);
7801
7802 set_partial_user (dwarf2_per_objfile);
7803
7804 objfile->partial_symtabs->psymtabs_addrmap
7805 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7806 objfile->partial_symtabs->obstack ());
7807 /* At this point we want to keep the address map. */
7808 save_psymtabs_addrmap.release ();
7809
7810 if (dwarf_read_debug)
7811 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7812 objfile_name (objfile));
7813 }
7814
7815 /* Load the partial DIEs for a secondary CU into memory.
7816 This is also used when rereading a primary CU with load_all_dies. */
7817
7818 static void
7819 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7820 {
7821 cutu_reader reader (this_cu, NULL, 1, false);
7822
7823 if (!reader.dummy_p)
7824 {
7825 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7826 language_minimal);
7827
7828 /* Check if comp unit has_children.
7829 If so, read the rest of the partial symbols from this comp unit.
7830 If not, there's no more debug_info for this comp unit. */
7831 if (reader.comp_unit_die->has_children)
7832 load_partial_dies (&reader, reader.info_ptr, 0);
7833
7834 reader.keep ();
7835 }
7836 }
7837
7838 static void
7839 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7840 struct dwarf2_section_info *section,
7841 struct dwarf2_section_info *abbrev_section,
7842 unsigned int is_dwz)
7843 {
7844 const gdb_byte *info_ptr;
7845 struct objfile *objfile = dwarf2_per_objfile->objfile;
7846
7847 if (dwarf_read_debug)
7848 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7849 section->get_name (),
7850 section->get_file_name ());
7851
7852 section->read (objfile);
7853
7854 info_ptr = section->buffer;
7855
7856 while (info_ptr < section->buffer + section->size)
7857 {
7858 struct dwarf2_per_cu_data *this_cu;
7859
7860 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7861
7862 comp_unit_head cu_header;
7863 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7864 abbrev_section, info_ptr,
7865 rcuh_kind::COMPILE);
7866
7867 /* Save the compilation unit for later lookup. */
7868 if (cu_header.unit_type != DW_UT_type)
7869 {
7870 this_cu = XOBNEW (&objfile->objfile_obstack,
7871 struct dwarf2_per_cu_data);
7872 memset (this_cu, 0, sizeof (*this_cu));
7873 }
7874 else
7875 {
7876 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7877 struct signatured_type);
7878 memset (sig_type, 0, sizeof (*sig_type));
7879 sig_type->signature = cu_header.signature;
7880 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7881 this_cu = &sig_type->per_cu;
7882 }
7883 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7884 this_cu->sect_off = sect_off;
7885 this_cu->length = cu_header.length + cu_header.initial_length_size;
7886 this_cu->is_dwz = is_dwz;
7887 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7888 this_cu->section = section;
7889
7890 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7891
7892 info_ptr = info_ptr + this_cu->length;
7893 }
7894 }
7895
7896 /* Create a list of all compilation units in OBJFILE.
7897 This is only done for -readnow and building partial symtabs. */
7898
7899 static void
7900 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7901 {
7902 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7903 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7904 &dwarf2_per_objfile->abbrev, 0);
7905
7906 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7907 if (dwz != NULL)
7908 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7909 1);
7910 }
7911
7912 /* Process all loaded DIEs for compilation unit CU, starting at
7913 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7914 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7915 DW_AT_ranges). See the comments of add_partial_subprogram on how
7916 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7917
7918 static void
7919 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7920 CORE_ADDR *highpc, int set_addrmap,
7921 struct dwarf2_cu *cu)
7922 {
7923 struct partial_die_info *pdi;
7924
7925 /* Now, march along the PDI's, descending into ones which have
7926 interesting children but skipping the children of the other ones,
7927 until we reach the end of the compilation unit. */
7928
7929 pdi = first_die;
7930
7931 while (pdi != NULL)
7932 {
7933 pdi->fixup (cu);
7934
7935 /* Anonymous namespaces or modules have no name but have interesting
7936 children, so we need to look at them. Ditto for anonymous
7937 enums. */
7938
7939 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7940 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7941 || pdi->tag == DW_TAG_imported_unit
7942 || pdi->tag == DW_TAG_inlined_subroutine)
7943 {
7944 switch (pdi->tag)
7945 {
7946 case DW_TAG_subprogram:
7947 case DW_TAG_inlined_subroutine:
7948 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7949 break;
7950 case DW_TAG_constant:
7951 case DW_TAG_variable:
7952 case DW_TAG_typedef:
7953 case DW_TAG_union_type:
7954 if (!pdi->is_declaration
7955 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7956 {
7957 add_partial_symbol (pdi, cu);
7958 }
7959 break;
7960 case DW_TAG_class_type:
7961 case DW_TAG_interface_type:
7962 case DW_TAG_structure_type:
7963 if (!pdi->is_declaration)
7964 {
7965 add_partial_symbol (pdi, cu);
7966 }
7967 if ((cu->language == language_rust
7968 || cu->language == language_cplus) && pdi->has_children)
7969 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7970 set_addrmap, cu);
7971 break;
7972 case DW_TAG_enumeration_type:
7973 if (!pdi->is_declaration)
7974 add_partial_enumeration (pdi, cu);
7975 break;
7976 case DW_TAG_base_type:
7977 case DW_TAG_subrange_type:
7978 /* File scope base type definitions are added to the partial
7979 symbol table. */
7980 add_partial_symbol (pdi, cu);
7981 break;
7982 case DW_TAG_namespace:
7983 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7984 break;
7985 case DW_TAG_module:
7986 if (!pdi->is_declaration)
7987 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7988 break;
7989 case DW_TAG_imported_unit:
7990 {
7991 struct dwarf2_per_cu_data *per_cu;
7992
7993 /* For now we don't handle imported units in type units. */
7994 if (cu->per_cu->is_debug_types)
7995 {
7996 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7997 " supported in type units [in module %s]"),
7998 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7999 }
8000
8001 per_cu = dwarf2_find_containing_comp_unit
8002 (pdi->d.sect_off, pdi->is_dwz,
8003 cu->per_cu->dwarf2_per_objfile);
8004
8005 /* Go read the partial unit, if needed. */
8006 if (per_cu->v.psymtab == NULL)
8007 process_psymtab_comp_unit (per_cu, true, cu->language);
8008
8009 cu->per_cu->imported_symtabs_push (per_cu);
8010 }
8011 break;
8012 case DW_TAG_imported_declaration:
8013 add_partial_symbol (pdi, cu);
8014 break;
8015 default:
8016 break;
8017 }
8018 }
8019
8020 /* If the die has a sibling, skip to the sibling. */
8021
8022 pdi = pdi->die_sibling;
8023 }
8024 }
8025
8026 /* Functions used to compute the fully scoped name of a partial DIE.
8027
8028 Normally, this is simple. For C++, the parent DIE's fully scoped
8029 name is concatenated with "::" and the partial DIE's name.
8030 Enumerators are an exception; they use the scope of their parent
8031 enumeration type, i.e. the name of the enumeration type is not
8032 prepended to the enumerator.
8033
8034 There are two complexities. One is DW_AT_specification; in this
8035 case "parent" means the parent of the target of the specification,
8036 instead of the direct parent of the DIE. The other is compilers
8037 which do not emit DW_TAG_namespace; in this case we try to guess
8038 the fully qualified name of structure types from their members'
8039 linkage names. This must be done using the DIE's children rather
8040 than the children of any DW_AT_specification target. We only need
8041 to do this for structures at the top level, i.e. if the target of
8042 any DW_AT_specification (if any; otherwise the DIE itself) does not
8043 have a parent. */
8044
8045 /* Compute the scope prefix associated with PDI's parent, in
8046 compilation unit CU. The result will be allocated on CU's
8047 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8048 field. NULL is returned if no prefix is necessary. */
8049 static const char *
8050 partial_die_parent_scope (struct partial_die_info *pdi,
8051 struct dwarf2_cu *cu)
8052 {
8053 const char *grandparent_scope;
8054 struct partial_die_info *parent, *real_pdi;
8055
8056 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8057 then this means the parent of the specification DIE. */
8058
8059 real_pdi = pdi;
8060 while (real_pdi->has_specification)
8061 {
8062 auto res = find_partial_die (real_pdi->spec_offset,
8063 real_pdi->spec_is_dwz, cu);
8064 real_pdi = res.pdi;
8065 cu = res.cu;
8066 }
8067
8068 parent = real_pdi->die_parent;
8069 if (parent == NULL)
8070 return NULL;
8071
8072 if (parent->scope_set)
8073 return parent->scope;
8074
8075 parent->fixup (cu);
8076
8077 grandparent_scope = partial_die_parent_scope (parent, cu);
8078
8079 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8080 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8081 Work around this problem here. */
8082 if (cu->language == language_cplus
8083 && parent->tag == DW_TAG_namespace
8084 && strcmp (parent->name, "::") == 0
8085 && grandparent_scope == NULL)
8086 {
8087 parent->scope = NULL;
8088 parent->scope_set = 1;
8089 return NULL;
8090 }
8091
8092 /* Nested subroutines in Fortran get a prefix. */
8093 if (pdi->tag == DW_TAG_enumerator)
8094 /* Enumerators should not get the name of the enumeration as a prefix. */
8095 parent->scope = grandparent_scope;
8096 else if (parent->tag == DW_TAG_namespace
8097 || parent->tag == DW_TAG_module
8098 || parent->tag == DW_TAG_structure_type
8099 || parent->tag == DW_TAG_class_type
8100 || parent->tag == DW_TAG_interface_type
8101 || parent->tag == DW_TAG_union_type
8102 || parent->tag == DW_TAG_enumeration_type
8103 || (cu->language == language_fortran
8104 && parent->tag == DW_TAG_subprogram
8105 && pdi->tag == DW_TAG_subprogram))
8106 {
8107 if (grandparent_scope == NULL)
8108 parent->scope = parent->name;
8109 else
8110 parent->scope = typename_concat (&cu->comp_unit_obstack,
8111 grandparent_scope,
8112 parent->name, 0, cu);
8113 }
8114 else
8115 {
8116 /* FIXME drow/2004-04-01: What should we be doing with
8117 function-local names? For partial symbols, we should probably be
8118 ignoring them. */
8119 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8120 dwarf_tag_name (parent->tag),
8121 sect_offset_str (pdi->sect_off));
8122 parent->scope = grandparent_scope;
8123 }
8124
8125 parent->scope_set = 1;
8126 return parent->scope;
8127 }
8128
8129 /* Return the fully scoped name associated with PDI, from compilation unit
8130 CU. The result will be allocated with malloc. */
8131
8132 static gdb::unique_xmalloc_ptr<char>
8133 partial_die_full_name (struct partial_die_info *pdi,
8134 struct dwarf2_cu *cu)
8135 {
8136 const char *parent_scope;
8137
8138 /* If this is a template instantiation, we can not work out the
8139 template arguments from partial DIEs. So, unfortunately, we have
8140 to go through the full DIEs. At least any work we do building
8141 types here will be reused if full symbols are loaded later. */
8142 if (pdi->has_template_arguments)
8143 {
8144 pdi->fixup (cu);
8145
8146 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8147 {
8148 struct die_info *die;
8149 struct attribute attr;
8150 struct dwarf2_cu *ref_cu = cu;
8151
8152 /* DW_FORM_ref_addr is using section offset. */
8153 attr.name = (enum dwarf_attribute) 0;
8154 attr.form = DW_FORM_ref_addr;
8155 attr.u.unsnd = to_underlying (pdi->sect_off);
8156 die = follow_die_ref (NULL, &attr, &ref_cu);
8157
8158 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8159 }
8160 }
8161
8162 parent_scope = partial_die_parent_scope (pdi, cu);
8163 if (parent_scope == NULL)
8164 return NULL;
8165 else
8166 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8167 pdi->name, 0, cu));
8168 }
8169
8170 static void
8171 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8172 {
8173 struct dwarf2_per_objfile *dwarf2_per_objfile
8174 = cu->per_cu->dwarf2_per_objfile;
8175 struct objfile *objfile = dwarf2_per_objfile->objfile;
8176 struct gdbarch *gdbarch = objfile->arch ();
8177 CORE_ADDR addr = 0;
8178 const char *actual_name = NULL;
8179 CORE_ADDR baseaddr;
8180
8181 baseaddr = objfile->text_section_offset ();
8182
8183 gdb::unique_xmalloc_ptr<char> built_actual_name
8184 = partial_die_full_name (pdi, cu);
8185 if (built_actual_name != NULL)
8186 actual_name = built_actual_name.get ();
8187
8188 if (actual_name == NULL)
8189 actual_name = pdi->name;
8190
8191 switch (pdi->tag)
8192 {
8193 case DW_TAG_inlined_subroutine:
8194 case DW_TAG_subprogram:
8195 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8196 - baseaddr);
8197 if (pdi->is_external
8198 || cu->language == language_ada
8199 || (cu->language == language_fortran
8200 && pdi->die_parent != NULL
8201 && pdi->die_parent->tag == DW_TAG_subprogram))
8202 {
8203 /* Normally, only "external" DIEs are part of the global scope.
8204 But in Ada and Fortran, we want to be able to access nested
8205 procedures globally. So all Ada and Fortran subprograms are
8206 stored in the global scope. */
8207 add_psymbol_to_list (actual_name,
8208 built_actual_name != NULL,
8209 VAR_DOMAIN, LOC_BLOCK,
8210 SECT_OFF_TEXT (objfile),
8211 psymbol_placement::GLOBAL,
8212 addr,
8213 cu->language, objfile);
8214 }
8215 else
8216 {
8217 add_psymbol_to_list (actual_name,
8218 built_actual_name != NULL,
8219 VAR_DOMAIN, LOC_BLOCK,
8220 SECT_OFF_TEXT (objfile),
8221 psymbol_placement::STATIC,
8222 addr, cu->language, objfile);
8223 }
8224
8225 if (pdi->main_subprogram && actual_name != NULL)
8226 set_objfile_main_name (objfile, actual_name, cu->language);
8227 break;
8228 case DW_TAG_constant:
8229 add_psymbol_to_list (actual_name,
8230 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8231 -1, (pdi->is_external
8232 ? psymbol_placement::GLOBAL
8233 : psymbol_placement::STATIC),
8234 0, cu->language, objfile);
8235 break;
8236 case DW_TAG_variable:
8237 if (pdi->d.locdesc)
8238 addr = decode_locdesc (pdi->d.locdesc, cu);
8239
8240 if (pdi->d.locdesc
8241 && addr == 0
8242 && !dwarf2_per_objfile->has_section_at_zero)
8243 {
8244 /* A global or static variable may also have been stripped
8245 out by the linker if unused, in which case its address
8246 will be nullified; do not add such variables into partial
8247 symbol table then. */
8248 }
8249 else if (pdi->is_external)
8250 {
8251 /* Global Variable.
8252 Don't enter into the minimal symbol tables as there is
8253 a minimal symbol table entry from the ELF symbols already.
8254 Enter into partial symbol table if it has a location
8255 descriptor or a type.
8256 If the location descriptor is missing, new_symbol will create
8257 a LOC_UNRESOLVED symbol, the address of the variable will then
8258 be determined from the minimal symbol table whenever the variable
8259 is referenced.
8260 The address for the partial symbol table entry is not
8261 used by GDB, but it comes in handy for debugging partial symbol
8262 table building. */
8263
8264 if (pdi->d.locdesc || pdi->has_type)
8265 add_psymbol_to_list (actual_name,
8266 built_actual_name != NULL,
8267 VAR_DOMAIN, LOC_STATIC,
8268 SECT_OFF_TEXT (objfile),
8269 psymbol_placement::GLOBAL,
8270 addr, cu->language, objfile);
8271 }
8272 else
8273 {
8274 int has_loc = pdi->d.locdesc != NULL;
8275
8276 /* Static Variable. Skip symbols whose value we cannot know (those
8277 without location descriptors or constant values). */
8278 if (!has_loc && !pdi->has_const_value)
8279 return;
8280
8281 add_psymbol_to_list (actual_name,
8282 built_actual_name != NULL,
8283 VAR_DOMAIN, LOC_STATIC,
8284 SECT_OFF_TEXT (objfile),
8285 psymbol_placement::STATIC,
8286 has_loc ? addr : 0,
8287 cu->language, objfile);
8288 }
8289 break;
8290 case DW_TAG_typedef:
8291 case DW_TAG_base_type:
8292 case DW_TAG_subrange_type:
8293 add_psymbol_to_list (actual_name,
8294 built_actual_name != NULL,
8295 VAR_DOMAIN, LOC_TYPEDEF, -1,
8296 psymbol_placement::STATIC,
8297 0, cu->language, objfile);
8298 break;
8299 case DW_TAG_imported_declaration:
8300 case DW_TAG_namespace:
8301 add_psymbol_to_list (actual_name,
8302 built_actual_name != NULL,
8303 VAR_DOMAIN, LOC_TYPEDEF, -1,
8304 psymbol_placement::GLOBAL,
8305 0, cu->language, objfile);
8306 break;
8307 case DW_TAG_module:
8308 /* With Fortran 77 there might be a "BLOCK DATA" module
8309 available without any name. If so, we skip the module as it
8310 doesn't bring any value. */
8311 if (actual_name != nullptr)
8312 add_psymbol_to_list (actual_name,
8313 built_actual_name != NULL,
8314 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8315 psymbol_placement::GLOBAL,
8316 0, cu->language, objfile);
8317 break;
8318 case DW_TAG_class_type:
8319 case DW_TAG_interface_type:
8320 case DW_TAG_structure_type:
8321 case DW_TAG_union_type:
8322 case DW_TAG_enumeration_type:
8323 /* Skip external references. The DWARF standard says in the section
8324 about "Structure, Union, and Class Type Entries": "An incomplete
8325 structure, union or class type is represented by a structure,
8326 union or class entry that does not have a byte size attribute
8327 and that has a DW_AT_declaration attribute." */
8328 if (!pdi->has_byte_size && pdi->is_declaration)
8329 return;
8330
8331 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8332 static vs. global. */
8333 add_psymbol_to_list (actual_name,
8334 built_actual_name != NULL,
8335 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8336 cu->language == language_cplus
8337 ? psymbol_placement::GLOBAL
8338 : psymbol_placement::STATIC,
8339 0, cu->language, objfile);
8340
8341 break;
8342 case DW_TAG_enumerator:
8343 add_psymbol_to_list (actual_name,
8344 built_actual_name != NULL,
8345 VAR_DOMAIN, LOC_CONST, -1,
8346 cu->language == language_cplus
8347 ? psymbol_placement::GLOBAL
8348 : psymbol_placement::STATIC,
8349 0, cu->language, objfile);
8350 break;
8351 default:
8352 break;
8353 }
8354 }
8355
8356 /* Read a partial die corresponding to a namespace; also, add a symbol
8357 corresponding to that namespace to the symbol table. NAMESPACE is
8358 the name of the enclosing namespace. */
8359
8360 static void
8361 add_partial_namespace (struct partial_die_info *pdi,
8362 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8363 int set_addrmap, struct dwarf2_cu *cu)
8364 {
8365 /* Add a symbol for the namespace. */
8366
8367 add_partial_symbol (pdi, cu);
8368
8369 /* Now scan partial symbols in that namespace. */
8370
8371 if (pdi->has_children)
8372 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8373 }
8374
8375 /* Read a partial die corresponding to a Fortran module. */
8376
8377 static void
8378 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8379 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8380 {
8381 /* Add a symbol for the namespace. */
8382
8383 add_partial_symbol (pdi, cu);
8384
8385 /* Now scan partial symbols in that module. */
8386
8387 if (pdi->has_children)
8388 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8389 }
8390
8391 /* Read a partial die corresponding to a subprogram or an inlined
8392 subprogram and create a partial symbol for that subprogram.
8393 When the CU language allows it, this routine also defines a partial
8394 symbol for each nested subprogram that this subprogram contains.
8395 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8396 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8397
8398 PDI may also be a lexical block, in which case we simply search
8399 recursively for subprograms defined inside that lexical block.
8400 Again, this is only performed when the CU language allows this
8401 type of definitions. */
8402
8403 static void
8404 add_partial_subprogram (struct partial_die_info *pdi,
8405 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8406 int set_addrmap, struct dwarf2_cu *cu)
8407 {
8408 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8409 {
8410 if (pdi->has_pc_info)
8411 {
8412 if (pdi->lowpc < *lowpc)
8413 *lowpc = pdi->lowpc;
8414 if (pdi->highpc > *highpc)
8415 *highpc = pdi->highpc;
8416 if (set_addrmap)
8417 {
8418 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8419 struct gdbarch *gdbarch = objfile->arch ();
8420 CORE_ADDR baseaddr;
8421 CORE_ADDR this_highpc;
8422 CORE_ADDR this_lowpc;
8423
8424 baseaddr = objfile->text_section_offset ();
8425 this_lowpc
8426 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8427 pdi->lowpc + baseaddr)
8428 - baseaddr);
8429 this_highpc
8430 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8431 pdi->highpc + baseaddr)
8432 - baseaddr);
8433 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8434 this_lowpc, this_highpc - 1,
8435 cu->per_cu->v.psymtab);
8436 }
8437 }
8438
8439 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8440 {
8441 if (!pdi->is_declaration)
8442 /* Ignore subprogram DIEs that do not have a name, they are
8443 illegal. Do not emit a complaint at this point, we will
8444 do so when we convert this psymtab into a symtab. */
8445 if (pdi->name)
8446 add_partial_symbol (pdi, cu);
8447 }
8448 }
8449
8450 if (! pdi->has_children)
8451 return;
8452
8453 if (cu->language == language_ada || cu->language == language_fortran)
8454 {
8455 pdi = pdi->die_child;
8456 while (pdi != NULL)
8457 {
8458 pdi->fixup (cu);
8459 if (pdi->tag == DW_TAG_subprogram
8460 || pdi->tag == DW_TAG_inlined_subroutine
8461 || pdi->tag == DW_TAG_lexical_block)
8462 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8463 pdi = pdi->die_sibling;
8464 }
8465 }
8466 }
8467
8468 /* Read a partial die corresponding to an enumeration type. */
8469
8470 static void
8471 add_partial_enumeration (struct partial_die_info *enum_pdi,
8472 struct dwarf2_cu *cu)
8473 {
8474 struct partial_die_info *pdi;
8475
8476 if (enum_pdi->name != NULL)
8477 add_partial_symbol (enum_pdi, cu);
8478
8479 pdi = enum_pdi->die_child;
8480 while (pdi)
8481 {
8482 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8483 complaint (_("malformed enumerator DIE ignored"));
8484 else
8485 add_partial_symbol (pdi, cu);
8486 pdi = pdi->die_sibling;
8487 }
8488 }
8489
8490 /* Return the initial uleb128 in the die at INFO_PTR. */
8491
8492 static unsigned int
8493 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8494 {
8495 unsigned int bytes_read;
8496
8497 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8498 }
8499
8500 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8501 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8502
8503 Return the corresponding abbrev, or NULL if the number is zero (indicating
8504 an empty DIE). In either case *BYTES_READ will be set to the length of
8505 the initial number. */
8506
8507 static struct abbrev_info *
8508 peek_die_abbrev (const die_reader_specs &reader,
8509 const gdb_byte *info_ptr, unsigned int *bytes_read)
8510 {
8511 dwarf2_cu *cu = reader.cu;
8512 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8513 unsigned int abbrev_number
8514 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8515
8516 if (abbrev_number == 0)
8517 return NULL;
8518
8519 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8520 if (!abbrev)
8521 {
8522 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8523 " at offset %s [in module %s]"),
8524 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8525 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8526 }
8527
8528 return abbrev;
8529 }
8530
8531 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8532 Returns a pointer to the end of a series of DIEs, terminated by an empty
8533 DIE. Any children of the skipped DIEs will also be skipped. */
8534
8535 static const gdb_byte *
8536 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8537 {
8538 while (1)
8539 {
8540 unsigned int bytes_read;
8541 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8542
8543 if (abbrev == NULL)
8544 return info_ptr + bytes_read;
8545 else
8546 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8547 }
8548 }
8549
8550 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8551 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8552 abbrev corresponding to that skipped uleb128 should be passed in
8553 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8554 children. */
8555
8556 static const gdb_byte *
8557 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8558 struct abbrev_info *abbrev)
8559 {
8560 unsigned int bytes_read;
8561 struct attribute attr;
8562 bfd *abfd = reader->abfd;
8563 struct dwarf2_cu *cu = reader->cu;
8564 const gdb_byte *buffer = reader->buffer;
8565 const gdb_byte *buffer_end = reader->buffer_end;
8566 unsigned int form, i;
8567
8568 for (i = 0; i < abbrev->num_attrs; i++)
8569 {
8570 /* The only abbrev we care about is DW_AT_sibling. */
8571 if (abbrev->attrs[i].name == DW_AT_sibling)
8572 {
8573 bool ignored;
8574 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8575 &ignored);
8576 if (attr.form == DW_FORM_ref_addr)
8577 complaint (_("ignoring absolute DW_AT_sibling"));
8578 else
8579 {
8580 sect_offset off = attr.get_ref_die_offset ();
8581 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8582
8583 if (sibling_ptr < info_ptr)
8584 complaint (_("DW_AT_sibling points backwards"));
8585 else if (sibling_ptr > reader->buffer_end)
8586 reader->die_section->overflow_complaint ();
8587 else
8588 return sibling_ptr;
8589 }
8590 }
8591
8592 /* If it isn't DW_AT_sibling, skip this attribute. */
8593 form = abbrev->attrs[i].form;
8594 skip_attribute:
8595 switch (form)
8596 {
8597 case DW_FORM_ref_addr:
8598 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8599 and later it is offset sized. */
8600 if (cu->header.version == 2)
8601 info_ptr += cu->header.addr_size;
8602 else
8603 info_ptr += cu->header.offset_size;
8604 break;
8605 case DW_FORM_GNU_ref_alt:
8606 info_ptr += cu->header.offset_size;
8607 break;
8608 case DW_FORM_addr:
8609 info_ptr += cu->header.addr_size;
8610 break;
8611 case DW_FORM_data1:
8612 case DW_FORM_ref1:
8613 case DW_FORM_flag:
8614 case DW_FORM_strx1:
8615 info_ptr += 1;
8616 break;
8617 case DW_FORM_flag_present:
8618 case DW_FORM_implicit_const:
8619 break;
8620 case DW_FORM_data2:
8621 case DW_FORM_ref2:
8622 case DW_FORM_strx2:
8623 info_ptr += 2;
8624 break;
8625 case DW_FORM_strx3:
8626 info_ptr += 3;
8627 break;
8628 case DW_FORM_data4:
8629 case DW_FORM_ref4:
8630 case DW_FORM_strx4:
8631 info_ptr += 4;
8632 break;
8633 case DW_FORM_data8:
8634 case DW_FORM_ref8:
8635 case DW_FORM_ref_sig8:
8636 info_ptr += 8;
8637 break;
8638 case DW_FORM_data16:
8639 info_ptr += 16;
8640 break;
8641 case DW_FORM_string:
8642 read_direct_string (abfd, info_ptr, &bytes_read);
8643 info_ptr += bytes_read;
8644 break;
8645 case DW_FORM_sec_offset:
8646 case DW_FORM_strp:
8647 case DW_FORM_GNU_strp_alt:
8648 info_ptr += cu->header.offset_size;
8649 break;
8650 case DW_FORM_exprloc:
8651 case DW_FORM_block:
8652 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8653 info_ptr += bytes_read;
8654 break;
8655 case DW_FORM_block1:
8656 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8657 break;
8658 case DW_FORM_block2:
8659 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8660 break;
8661 case DW_FORM_block4:
8662 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8663 break;
8664 case DW_FORM_addrx:
8665 case DW_FORM_strx:
8666 case DW_FORM_sdata:
8667 case DW_FORM_udata:
8668 case DW_FORM_ref_udata:
8669 case DW_FORM_GNU_addr_index:
8670 case DW_FORM_GNU_str_index:
8671 case DW_FORM_rnglistx:
8672 case DW_FORM_loclistx:
8673 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8674 break;
8675 case DW_FORM_indirect:
8676 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8677 info_ptr += bytes_read;
8678 /* We need to continue parsing from here, so just go back to
8679 the top. */
8680 goto skip_attribute;
8681
8682 default:
8683 error (_("Dwarf Error: Cannot handle %s "
8684 "in DWARF reader [in module %s]"),
8685 dwarf_form_name (form),
8686 bfd_get_filename (abfd));
8687 }
8688 }
8689
8690 if (abbrev->has_children)
8691 return skip_children (reader, info_ptr);
8692 else
8693 return info_ptr;
8694 }
8695
8696 /* Locate ORIG_PDI's sibling.
8697 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8698
8699 static const gdb_byte *
8700 locate_pdi_sibling (const struct die_reader_specs *reader,
8701 struct partial_die_info *orig_pdi,
8702 const gdb_byte *info_ptr)
8703 {
8704 /* Do we know the sibling already? */
8705
8706 if (orig_pdi->sibling)
8707 return orig_pdi->sibling;
8708
8709 /* Are there any children to deal with? */
8710
8711 if (!orig_pdi->has_children)
8712 return info_ptr;
8713
8714 /* Skip the children the long way. */
8715
8716 return skip_children (reader, info_ptr);
8717 }
8718
8719 /* Expand this partial symbol table into a full symbol table. SELF is
8720 not NULL. */
8721
8722 void
8723 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8724 {
8725 struct dwarf2_per_objfile *dwarf2_per_objfile
8726 = get_dwarf2_per_objfile (objfile);
8727
8728 gdb_assert (!readin);
8729 /* If this psymtab is constructed from a debug-only objfile, the
8730 has_section_at_zero flag will not necessarily be correct. We
8731 can get the correct value for this flag by looking at the data
8732 associated with the (presumably stripped) associated objfile. */
8733 if (objfile->separate_debug_objfile_backlink)
8734 {
8735 struct dwarf2_per_objfile *dpo_backlink
8736 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8737
8738 dwarf2_per_objfile->has_section_at_zero
8739 = dpo_backlink->has_section_at_zero;
8740 }
8741
8742 expand_psymtab (objfile);
8743
8744 process_cu_includes (dwarf2_per_objfile);
8745 }
8746 \f
8747 /* Reading in full CUs. */
8748
8749 /* Add PER_CU to the queue. */
8750
8751 static void
8752 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8753 enum language pretend_language)
8754 {
8755 per_cu->queued = 1;
8756 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8757 }
8758
8759 /* If PER_CU is not yet queued, add it to the queue.
8760 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8761 dependency.
8762 The result is non-zero if PER_CU was queued, otherwise the result is zero
8763 meaning either PER_CU is already queued or it is already loaded.
8764
8765 N.B. There is an invariant here that if a CU is queued then it is loaded.
8766 The caller is required to load PER_CU if we return non-zero. */
8767
8768 static int
8769 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8770 struct dwarf2_per_cu_data *per_cu,
8771 enum language pretend_language)
8772 {
8773 /* We may arrive here during partial symbol reading, if we need full
8774 DIEs to process an unusual case (e.g. template arguments). Do
8775 not queue PER_CU, just tell our caller to load its DIEs. */
8776 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8777 {
8778 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8779 return 1;
8780 return 0;
8781 }
8782
8783 /* Mark the dependence relation so that we don't flush PER_CU
8784 too early. */
8785 if (dependent_cu != NULL)
8786 dwarf2_add_dependence (dependent_cu, per_cu);
8787
8788 /* If it's already on the queue, we have nothing to do. */
8789 if (per_cu->queued)
8790 return 0;
8791
8792 /* If the compilation unit is already loaded, just mark it as
8793 used. */
8794 if (per_cu->cu != NULL)
8795 {
8796 per_cu->cu->last_used = 0;
8797 return 0;
8798 }
8799
8800 /* Add it to the queue. */
8801 queue_comp_unit (per_cu, pretend_language);
8802
8803 return 1;
8804 }
8805
8806 /* Process the queue. */
8807
8808 static void
8809 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8810 {
8811 if (dwarf_read_debug)
8812 {
8813 fprintf_unfiltered (gdb_stdlog,
8814 "Expanding one or more symtabs of objfile %s ...\n",
8815 objfile_name (dwarf2_per_objfile->objfile));
8816 }
8817
8818 /* The queue starts out with one item, but following a DIE reference
8819 may load a new CU, adding it to the end of the queue. */
8820 while (!dwarf2_per_objfile->queue.empty ())
8821 {
8822 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8823
8824 if ((dwarf2_per_objfile->using_index
8825 ? !item.per_cu->v.quick->compunit_symtab
8826 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8827 /* Skip dummy CUs. */
8828 && item.per_cu->cu != NULL)
8829 {
8830 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8831 unsigned int debug_print_threshold;
8832 char buf[100];
8833
8834 if (per_cu->is_debug_types)
8835 {
8836 struct signatured_type *sig_type =
8837 (struct signatured_type *) per_cu;
8838
8839 sprintf (buf, "TU %s at offset %s",
8840 hex_string (sig_type->signature),
8841 sect_offset_str (per_cu->sect_off));
8842 /* There can be 100s of TUs.
8843 Only print them in verbose mode. */
8844 debug_print_threshold = 2;
8845 }
8846 else
8847 {
8848 sprintf (buf, "CU at offset %s",
8849 sect_offset_str (per_cu->sect_off));
8850 debug_print_threshold = 1;
8851 }
8852
8853 if (dwarf_read_debug >= debug_print_threshold)
8854 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8855
8856 if (per_cu->is_debug_types)
8857 process_full_type_unit (per_cu, item.pretend_language);
8858 else
8859 process_full_comp_unit (per_cu, item.pretend_language);
8860
8861 if (dwarf_read_debug >= debug_print_threshold)
8862 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8863 }
8864
8865 item.per_cu->queued = 0;
8866 dwarf2_per_objfile->queue.pop ();
8867 }
8868
8869 if (dwarf_read_debug)
8870 {
8871 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8872 objfile_name (dwarf2_per_objfile->objfile));
8873 }
8874 }
8875
8876 /* Read in full symbols for PST, and anything it depends on. */
8877
8878 void
8879 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8880 {
8881 gdb_assert (!readin);
8882
8883 expand_dependencies (objfile);
8884
8885 dw2_do_instantiate_symtab (per_cu_data, false);
8886 gdb_assert (get_compunit_symtab () != nullptr);
8887 }
8888
8889 /* Trivial hash function for die_info: the hash value of a DIE
8890 is its offset in .debug_info for this objfile. */
8891
8892 static hashval_t
8893 die_hash (const void *item)
8894 {
8895 const struct die_info *die = (const struct die_info *) item;
8896
8897 return to_underlying (die->sect_off);
8898 }
8899
8900 /* Trivial comparison function for die_info structures: two DIEs
8901 are equal if they have the same offset. */
8902
8903 static int
8904 die_eq (const void *item_lhs, const void *item_rhs)
8905 {
8906 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8907 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8908
8909 return die_lhs->sect_off == die_rhs->sect_off;
8910 }
8911
8912 /* Load the DIEs associated with PER_CU into memory. */
8913
8914 static void
8915 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8916 bool skip_partial,
8917 enum language pretend_language)
8918 {
8919 gdb_assert (! this_cu->is_debug_types);
8920
8921 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8922 if (reader.dummy_p)
8923 return;
8924
8925 struct dwarf2_cu *cu = reader.cu;
8926 const gdb_byte *info_ptr = reader.info_ptr;
8927
8928 gdb_assert (cu->die_hash == NULL);
8929 cu->die_hash =
8930 htab_create_alloc_ex (cu->header.length / 12,
8931 die_hash,
8932 die_eq,
8933 NULL,
8934 &cu->comp_unit_obstack,
8935 hashtab_obstack_allocate,
8936 dummy_obstack_deallocate);
8937
8938 if (reader.comp_unit_die->has_children)
8939 reader.comp_unit_die->child
8940 = read_die_and_siblings (&reader, reader.info_ptr,
8941 &info_ptr, reader.comp_unit_die);
8942 cu->dies = reader.comp_unit_die;
8943 /* comp_unit_die is not stored in die_hash, no need. */
8944
8945 /* We try not to read any attributes in this function, because not
8946 all CUs needed for references have been loaded yet, and symbol
8947 table processing isn't initialized. But we have to set the CU language,
8948 or we won't be able to build types correctly.
8949 Similarly, if we do not read the producer, we can not apply
8950 producer-specific interpretation. */
8951 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8952
8953 reader.keep ();
8954 }
8955
8956 /* Add a DIE to the delayed physname list. */
8957
8958 static void
8959 add_to_method_list (struct type *type, int fnfield_index, int index,
8960 const char *name, struct die_info *die,
8961 struct dwarf2_cu *cu)
8962 {
8963 struct delayed_method_info mi;
8964 mi.type = type;
8965 mi.fnfield_index = fnfield_index;
8966 mi.index = index;
8967 mi.name = name;
8968 mi.die = die;
8969 cu->method_list.push_back (mi);
8970 }
8971
8972 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8973 "const" / "volatile". If so, decrements LEN by the length of the
8974 modifier and return true. Otherwise return false. */
8975
8976 template<size_t N>
8977 static bool
8978 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8979 {
8980 size_t mod_len = sizeof (mod) - 1;
8981 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8982 {
8983 len -= mod_len;
8984 return true;
8985 }
8986 return false;
8987 }
8988
8989 /* Compute the physnames of any methods on the CU's method list.
8990
8991 The computation of method physnames is delayed in order to avoid the
8992 (bad) condition that one of the method's formal parameters is of an as yet
8993 incomplete type. */
8994
8995 static void
8996 compute_delayed_physnames (struct dwarf2_cu *cu)
8997 {
8998 /* Only C++ delays computing physnames. */
8999 if (cu->method_list.empty ())
9000 return;
9001 gdb_assert (cu->language == language_cplus);
9002
9003 for (const delayed_method_info &mi : cu->method_list)
9004 {
9005 const char *physname;
9006 struct fn_fieldlist *fn_flp
9007 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9008 physname = dwarf2_physname (mi.name, mi.die, cu);
9009 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9010 = physname ? physname : "";
9011
9012 /* Since there's no tag to indicate whether a method is a
9013 const/volatile overload, extract that information out of the
9014 demangled name. */
9015 if (physname != NULL)
9016 {
9017 size_t len = strlen (physname);
9018
9019 while (1)
9020 {
9021 if (physname[len] == ')') /* shortcut */
9022 break;
9023 else if (check_modifier (physname, len, " const"))
9024 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9025 else if (check_modifier (physname, len, " volatile"))
9026 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9027 else
9028 break;
9029 }
9030 }
9031 }
9032
9033 /* The list is no longer needed. */
9034 cu->method_list.clear ();
9035 }
9036
9037 /* Go objects should be embedded in a DW_TAG_module DIE,
9038 and it's not clear if/how imported objects will appear.
9039 To keep Go support simple until that's worked out,
9040 go back through what we've read and create something usable.
9041 We could do this while processing each DIE, and feels kinda cleaner,
9042 but that way is more invasive.
9043 This is to, for example, allow the user to type "p var" or "b main"
9044 without having to specify the package name, and allow lookups
9045 of module.object to work in contexts that use the expression
9046 parser. */
9047
9048 static void
9049 fixup_go_packaging (struct dwarf2_cu *cu)
9050 {
9051 gdb::unique_xmalloc_ptr<char> package_name;
9052 struct pending *list;
9053 int i;
9054
9055 for (list = *cu->get_builder ()->get_global_symbols ();
9056 list != NULL;
9057 list = list->next)
9058 {
9059 for (i = 0; i < list->nsyms; ++i)
9060 {
9061 struct symbol *sym = list->symbol[i];
9062
9063 if (sym->language () == language_go
9064 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9065 {
9066 gdb::unique_xmalloc_ptr<char> this_package_name
9067 (go_symbol_package_name (sym));
9068
9069 if (this_package_name == NULL)
9070 continue;
9071 if (package_name == NULL)
9072 package_name = std::move (this_package_name);
9073 else
9074 {
9075 struct objfile *objfile
9076 = cu->per_cu->dwarf2_per_objfile->objfile;
9077 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9078 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9079 (symbol_symtab (sym) != NULL
9080 ? symtab_to_filename_for_display
9081 (symbol_symtab (sym))
9082 : objfile_name (objfile)),
9083 this_package_name.get (), package_name.get ());
9084 }
9085 }
9086 }
9087 }
9088
9089 if (package_name != NULL)
9090 {
9091 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9092 const char *saved_package_name = objfile->intern (package_name.get ());
9093 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9094 saved_package_name);
9095 struct symbol *sym;
9096
9097 sym = allocate_symbol (objfile);
9098 sym->set_language (language_go, &objfile->objfile_obstack);
9099 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9100 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9101 e.g., "main" finds the "main" module and not C's main(). */
9102 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9103 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9104 SYMBOL_TYPE (sym) = type;
9105
9106 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9107 }
9108 }
9109
9110 /* Allocate a fully-qualified name consisting of the two parts on the
9111 obstack. */
9112
9113 static const char *
9114 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9115 {
9116 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9117 }
9118
9119 /* A helper that allocates a struct discriminant_info to attach to a
9120 union type. */
9121
9122 static struct discriminant_info *
9123 alloc_discriminant_info (struct type *type, int discriminant_index,
9124 int default_index)
9125 {
9126 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9127 gdb_assert (discriminant_index == -1
9128 || (discriminant_index >= 0
9129 && discriminant_index < TYPE_NFIELDS (type)));
9130 gdb_assert (default_index == -1
9131 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9132
9133 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9134
9135 struct discriminant_info *disc
9136 = ((struct discriminant_info *)
9137 TYPE_ZALLOC (type,
9138 offsetof (struct discriminant_info, discriminants)
9139 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9140 disc->default_index = default_index;
9141 disc->discriminant_index = discriminant_index;
9142
9143 struct dynamic_prop prop;
9144 prop.kind = PROP_UNDEFINED;
9145 prop.data.baton = disc;
9146
9147 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9148
9149 return disc;
9150 }
9151
9152 /* Some versions of rustc emitted enums in an unusual way.
9153
9154 Ordinary enums were emitted as unions. The first element of each
9155 structure in the union was named "RUST$ENUM$DISR". This element
9156 held the discriminant.
9157
9158 These versions of Rust also implemented the "non-zero"
9159 optimization. When the enum had two values, and one is empty and
9160 the other holds a pointer that cannot be zero, the pointer is used
9161 as the discriminant, with a zero value meaning the empty variant.
9162 Here, the union's first member is of the form
9163 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9164 where the fieldnos are the indices of the fields that should be
9165 traversed in order to find the field (which may be several fields deep)
9166 and the variantname is the name of the variant of the case when the
9167 field is zero.
9168
9169 This function recognizes whether TYPE is of one of these forms,
9170 and, if so, smashes it to be a variant type. */
9171
9172 static void
9173 quirk_rust_enum (struct type *type, struct objfile *objfile)
9174 {
9175 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9176
9177 /* We don't need to deal with empty enums. */
9178 if (TYPE_NFIELDS (type) == 0)
9179 return;
9180
9181 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9182 if (TYPE_NFIELDS (type) == 1
9183 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9184 {
9185 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9186
9187 /* Decode the field name to find the offset of the
9188 discriminant. */
9189 ULONGEST bit_offset = 0;
9190 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9191 while (name[0] >= '0' && name[0] <= '9')
9192 {
9193 char *tail;
9194 unsigned long index = strtoul (name, &tail, 10);
9195 name = tail;
9196 if (*name != '$'
9197 || index >= TYPE_NFIELDS (field_type)
9198 || (TYPE_FIELD_LOC_KIND (field_type, index)
9199 != FIELD_LOC_KIND_BITPOS))
9200 {
9201 complaint (_("Could not parse Rust enum encoding string \"%s\""
9202 "[in module %s]"),
9203 TYPE_FIELD_NAME (type, 0),
9204 objfile_name (objfile));
9205 return;
9206 }
9207 ++name;
9208
9209 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9210 field_type = TYPE_FIELD_TYPE (field_type, index);
9211 }
9212
9213 /* Make a union to hold the variants. */
9214 struct type *union_type = alloc_type (objfile);
9215 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9216 TYPE_NFIELDS (union_type) = 3;
9217 TYPE_FIELDS (union_type)
9218 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9219 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9220 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9221
9222 /* Put the discriminant must at index 0. */
9223 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9224 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9225 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9226 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9227
9228 /* The order of fields doesn't really matter, so put the real
9229 field at index 1 and the data-less field at index 2. */
9230 struct discriminant_info *disc
9231 = alloc_discriminant_info (union_type, 0, 1);
9232 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9233 TYPE_FIELD_NAME (union_type, 1)
9234 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9235 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9236 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9237 TYPE_FIELD_NAME (union_type, 1));
9238
9239 const char *dataless_name
9240 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9241 name);
9242 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9243 dataless_name);
9244 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9245 /* NAME points into the original discriminant name, which
9246 already has the correct lifetime. */
9247 TYPE_FIELD_NAME (union_type, 2) = name;
9248 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9249 disc->discriminants[2] = 0;
9250
9251 /* Smash this type to be a structure type. We have to do this
9252 because the type has already been recorded. */
9253 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9254 TYPE_NFIELDS (type) = 1;
9255 TYPE_FIELDS (type)
9256 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9257
9258 /* Install the variant part. */
9259 TYPE_FIELD_TYPE (type, 0) = union_type;
9260 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9261 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9262 }
9263 /* A union with a single anonymous field is probably an old-style
9264 univariant enum. */
9265 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9266 {
9267 /* Smash this type to be a structure type. We have to do this
9268 because the type has already been recorded. */
9269 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9270
9271 /* Make a union to hold the variants. */
9272 struct type *union_type = alloc_type (objfile);
9273 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9274 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9275 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9276 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9277 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9278
9279 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9280 const char *variant_name
9281 = rust_last_path_segment (TYPE_NAME (field_type));
9282 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9283 TYPE_NAME (field_type)
9284 = rust_fully_qualify (&objfile->objfile_obstack,
9285 TYPE_NAME (type), variant_name);
9286
9287 /* Install the union in the outer struct type. */
9288 TYPE_NFIELDS (type) = 1;
9289 TYPE_FIELDS (type)
9290 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9291 TYPE_FIELD_TYPE (type, 0) = union_type;
9292 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9293 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9294
9295 alloc_discriminant_info (union_type, -1, 0);
9296 }
9297 else
9298 {
9299 struct type *disr_type = nullptr;
9300 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9301 {
9302 disr_type = TYPE_FIELD_TYPE (type, i);
9303
9304 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9305 {
9306 /* All fields of a true enum will be structs. */
9307 return;
9308 }
9309 else if (TYPE_NFIELDS (disr_type) == 0)
9310 {
9311 /* Could be data-less variant, so keep going. */
9312 disr_type = nullptr;
9313 }
9314 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9315 "RUST$ENUM$DISR") != 0)
9316 {
9317 /* Not a Rust enum. */
9318 return;
9319 }
9320 else
9321 {
9322 /* Found one. */
9323 break;
9324 }
9325 }
9326
9327 /* If we got here without a discriminant, then it's probably
9328 just a union. */
9329 if (disr_type == nullptr)
9330 return;
9331
9332 /* Smash this type to be a structure type. We have to do this
9333 because the type has already been recorded. */
9334 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9335
9336 /* Make a union to hold the variants. */
9337 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9338 struct type *union_type = alloc_type (objfile);
9339 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9340 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9341 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9342 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9343 TYPE_FIELDS (union_type)
9344 = (struct field *) TYPE_ZALLOC (union_type,
9345 (TYPE_NFIELDS (union_type)
9346 * sizeof (struct field)));
9347
9348 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9349 TYPE_NFIELDS (type) * sizeof (struct field));
9350
9351 /* Install the discriminant at index 0 in the union. */
9352 TYPE_FIELD (union_type, 0) = *disr_field;
9353 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9354 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9355
9356 /* Install the union in the outer struct type. */
9357 TYPE_FIELD_TYPE (type, 0) = union_type;
9358 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9359 TYPE_NFIELDS (type) = 1;
9360
9361 /* Set the size and offset of the union type. */
9362 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9363
9364 /* We need a way to find the correct discriminant given a
9365 variant name. For convenience we build a map here. */
9366 struct type *enum_type = FIELD_TYPE (*disr_field);
9367 std::unordered_map<std::string, ULONGEST> discriminant_map;
9368 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9369 {
9370 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9371 {
9372 const char *name
9373 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9374 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9375 }
9376 }
9377
9378 int n_fields = TYPE_NFIELDS (union_type);
9379 struct discriminant_info *disc
9380 = alloc_discriminant_info (union_type, 0, -1);
9381 /* Skip the discriminant here. */
9382 for (int i = 1; i < n_fields; ++i)
9383 {
9384 /* Find the final word in the name of this variant's type.
9385 That name can be used to look up the correct
9386 discriminant. */
9387 const char *variant_name
9388 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9389 i)));
9390
9391 auto iter = discriminant_map.find (variant_name);
9392 if (iter != discriminant_map.end ())
9393 disc->discriminants[i] = iter->second;
9394
9395 /* Remove the discriminant field, if it exists. */
9396 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9397 if (TYPE_NFIELDS (sub_type) > 0)
9398 {
9399 --TYPE_NFIELDS (sub_type);
9400 ++TYPE_FIELDS (sub_type);
9401 }
9402 TYPE_FIELD_NAME (union_type, i) = variant_name;
9403 TYPE_NAME (sub_type)
9404 = rust_fully_qualify (&objfile->objfile_obstack,
9405 TYPE_NAME (type), variant_name);
9406 }
9407 }
9408 }
9409
9410 /* Rewrite some Rust unions to be structures with variants parts. */
9411
9412 static void
9413 rust_union_quirks (struct dwarf2_cu *cu)
9414 {
9415 gdb_assert (cu->language == language_rust);
9416 for (type *type_ : cu->rust_unions)
9417 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9418 /* We don't need this any more. */
9419 cu->rust_unions.clear ();
9420 }
9421
9422 /* Return the symtab for PER_CU. This works properly regardless of
9423 whether we're using the index or psymtabs. */
9424
9425 static struct compunit_symtab *
9426 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9427 {
9428 return (per_cu->dwarf2_per_objfile->using_index
9429 ? per_cu->v.quick->compunit_symtab
9430 : per_cu->v.psymtab->compunit_symtab);
9431 }
9432
9433 /* A helper function for computing the list of all symbol tables
9434 included by PER_CU. */
9435
9436 static void
9437 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9438 htab_t all_children, htab_t all_type_symtabs,
9439 struct dwarf2_per_cu_data *per_cu,
9440 struct compunit_symtab *immediate_parent)
9441 {
9442 void **slot;
9443 struct compunit_symtab *cust;
9444
9445 slot = htab_find_slot (all_children, per_cu, INSERT);
9446 if (*slot != NULL)
9447 {
9448 /* This inclusion and its children have been processed. */
9449 return;
9450 }
9451
9452 *slot = per_cu;
9453 /* Only add a CU if it has a symbol table. */
9454 cust = get_compunit_symtab (per_cu);
9455 if (cust != NULL)
9456 {
9457 /* If this is a type unit only add its symbol table if we haven't
9458 seen it yet (type unit per_cu's can share symtabs). */
9459 if (per_cu->is_debug_types)
9460 {
9461 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9462 if (*slot == NULL)
9463 {
9464 *slot = cust;
9465 result->push_back (cust);
9466 if (cust->user == NULL)
9467 cust->user = immediate_parent;
9468 }
9469 }
9470 else
9471 {
9472 result->push_back (cust);
9473 if (cust->user == NULL)
9474 cust->user = immediate_parent;
9475 }
9476 }
9477
9478 if (!per_cu->imported_symtabs_empty ())
9479 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9480 {
9481 recursively_compute_inclusions (result, all_children,
9482 all_type_symtabs, ptr, cust);
9483 }
9484 }
9485
9486 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9487 PER_CU. */
9488
9489 static void
9490 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9491 {
9492 gdb_assert (! per_cu->is_debug_types);
9493
9494 if (!per_cu->imported_symtabs_empty ())
9495 {
9496 int len;
9497 std::vector<compunit_symtab *> result_symtabs;
9498 htab_t all_children, all_type_symtabs;
9499 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9500
9501 /* If we don't have a symtab, we can just skip this case. */
9502 if (cust == NULL)
9503 return;
9504
9505 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9506 NULL, xcalloc, xfree);
9507 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9508 NULL, xcalloc, xfree);
9509
9510 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9511 {
9512 recursively_compute_inclusions (&result_symtabs, all_children,
9513 all_type_symtabs, ptr, cust);
9514 }
9515
9516 /* Now we have a transitive closure of all the included symtabs. */
9517 len = result_symtabs.size ();
9518 cust->includes
9519 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9520 struct compunit_symtab *, len + 1);
9521 memcpy (cust->includes, result_symtabs.data (),
9522 len * sizeof (compunit_symtab *));
9523 cust->includes[len] = NULL;
9524
9525 htab_delete (all_children);
9526 htab_delete (all_type_symtabs);
9527 }
9528 }
9529
9530 /* Compute the 'includes' field for the symtabs of all the CUs we just
9531 read. */
9532
9533 static void
9534 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9535 {
9536 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9537 {
9538 if (! iter->is_debug_types)
9539 compute_compunit_symtab_includes (iter);
9540 }
9541
9542 dwarf2_per_objfile->just_read_cus.clear ();
9543 }
9544
9545 /* Generate full symbol information for PER_CU, whose DIEs have
9546 already been loaded into memory. */
9547
9548 static void
9549 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9550 enum language pretend_language)
9551 {
9552 struct dwarf2_cu *cu = per_cu->cu;
9553 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9554 struct objfile *objfile = dwarf2_per_objfile->objfile;
9555 struct gdbarch *gdbarch = objfile->arch ();
9556 CORE_ADDR lowpc, highpc;
9557 struct compunit_symtab *cust;
9558 CORE_ADDR baseaddr;
9559 struct block *static_block;
9560 CORE_ADDR addr;
9561
9562 baseaddr = objfile->text_section_offset ();
9563
9564 /* Clear the list here in case something was left over. */
9565 cu->method_list.clear ();
9566
9567 cu->language = pretend_language;
9568 cu->language_defn = language_def (cu->language);
9569
9570 /* Do line number decoding in read_file_scope () */
9571 process_die (cu->dies, cu);
9572
9573 /* For now fudge the Go package. */
9574 if (cu->language == language_go)
9575 fixup_go_packaging (cu);
9576
9577 /* Now that we have processed all the DIEs in the CU, all the types
9578 should be complete, and it should now be safe to compute all of the
9579 physnames. */
9580 compute_delayed_physnames (cu);
9581
9582 if (cu->language == language_rust)
9583 rust_union_quirks (cu);
9584
9585 /* Some compilers don't define a DW_AT_high_pc attribute for the
9586 compilation unit. If the DW_AT_high_pc is missing, synthesize
9587 it, by scanning the DIE's below the compilation unit. */
9588 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9589
9590 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9591 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9592
9593 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9594 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9595 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9596 addrmap to help ensure it has an accurate map of pc values belonging to
9597 this comp unit. */
9598 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9599
9600 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9601 SECT_OFF_TEXT (objfile),
9602 0);
9603
9604 if (cust != NULL)
9605 {
9606 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9607
9608 /* Set symtab language to language from DW_AT_language. If the
9609 compilation is from a C file generated by language preprocessors, do
9610 not set the language if it was already deduced by start_subfile. */
9611 if (!(cu->language == language_c
9612 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9613 COMPUNIT_FILETABS (cust)->language = cu->language;
9614
9615 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9616 produce DW_AT_location with location lists but it can be possibly
9617 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9618 there were bugs in prologue debug info, fixed later in GCC-4.5
9619 by "unwind info for epilogues" patch (which is not directly related).
9620
9621 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9622 needed, it would be wrong due to missing DW_AT_producer there.
9623
9624 Still one can confuse GDB by using non-standard GCC compilation
9625 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9626 */
9627 if (cu->has_loclist && gcc_4_minor >= 5)
9628 cust->locations_valid = 1;
9629
9630 if (gcc_4_minor >= 5)
9631 cust->epilogue_unwind_valid = 1;
9632
9633 cust->call_site_htab = cu->call_site_htab;
9634 }
9635
9636 if (dwarf2_per_objfile->using_index)
9637 per_cu->v.quick->compunit_symtab = cust;
9638 else
9639 {
9640 dwarf2_psymtab *pst = per_cu->v.psymtab;
9641 pst->compunit_symtab = cust;
9642 pst->readin = true;
9643 }
9644
9645 /* Push it for inclusion processing later. */
9646 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9647
9648 /* Not needed any more. */
9649 cu->reset_builder ();
9650 }
9651
9652 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9653 already been loaded into memory. */
9654
9655 static void
9656 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9657 enum language pretend_language)
9658 {
9659 struct dwarf2_cu *cu = per_cu->cu;
9660 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9661 struct objfile *objfile = dwarf2_per_objfile->objfile;
9662 struct compunit_symtab *cust;
9663 struct signatured_type *sig_type;
9664
9665 gdb_assert (per_cu->is_debug_types);
9666 sig_type = (struct signatured_type *) per_cu;
9667
9668 /* Clear the list here in case something was left over. */
9669 cu->method_list.clear ();
9670
9671 cu->language = pretend_language;
9672 cu->language_defn = language_def (cu->language);
9673
9674 /* The symbol tables are set up in read_type_unit_scope. */
9675 process_die (cu->dies, cu);
9676
9677 /* For now fudge the Go package. */
9678 if (cu->language == language_go)
9679 fixup_go_packaging (cu);
9680
9681 /* Now that we have processed all the DIEs in the CU, all the types
9682 should be complete, and it should now be safe to compute all of the
9683 physnames. */
9684 compute_delayed_physnames (cu);
9685
9686 if (cu->language == language_rust)
9687 rust_union_quirks (cu);
9688
9689 /* TUs share symbol tables.
9690 If this is the first TU to use this symtab, complete the construction
9691 of it with end_expandable_symtab. Otherwise, complete the addition of
9692 this TU's symbols to the existing symtab. */
9693 if (sig_type->type_unit_group->compunit_symtab == NULL)
9694 {
9695 buildsym_compunit *builder = cu->get_builder ();
9696 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9697 sig_type->type_unit_group->compunit_symtab = cust;
9698
9699 if (cust != NULL)
9700 {
9701 /* Set symtab language to language from DW_AT_language. If the
9702 compilation is from a C file generated by language preprocessors,
9703 do not set the language if it was already deduced by
9704 start_subfile. */
9705 if (!(cu->language == language_c
9706 && COMPUNIT_FILETABS (cust)->language != language_c))
9707 COMPUNIT_FILETABS (cust)->language = cu->language;
9708 }
9709 }
9710 else
9711 {
9712 cu->get_builder ()->augment_type_symtab ();
9713 cust = sig_type->type_unit_group->compunit_symtab;
9714 }
9715
9716 if (dwarf2_per_objfile->using_index)
9717 per_cu->v.quick->compunit_symtab = cust;
9718 else
9719 {
9720 dwarf2_psymtab *pst = per_cu->v.psymtab;
9721 pst->compunit_symtab = cust;
9722 pst->readin = true;
9723 }
9724
9725 /* Not needed any more. */
9726 cu->reset_builder ();
9727 }
9728
9729 /* Process an imported unit DIE. */
9730
9731 static void
9732 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9733 {
9734 struct attribute *attr;
9735
9736 /* For now we don't handle imported units in type units. */
9737 if (cu->per_cu->is_debug_types)
9738 {
9739 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9740 " supported in type units [in module %s]"),
9741 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9742 }
9743
9744 attr = dwarf2_attr (die, DW_AT_import, cu);
9745 if (attr != NULL)
9746 {
9747 sect_offset sect_off = attr->get_ref_die_offset ();
9748 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9749 dwarf2_per_cu_data *per_cu
9750 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9751 cu->per_cu->dwarf2_per_objfile);
9752
9753 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9754 into another compilation unit, at root level. Regard this as a hint,
9755 and ignore it. */
9756 if (die->parent && die->parent->parent == NULL
9757 && per_cu->unit_type == DW_UT_compile
9758 && per_cu->lang == language_cplus)
9759 return;
9760
9761 /* If necessary, add it to the queue and load its DIEs. */
9762 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9763 load_full_comp_unit (per_cu, false, cu->language);
9764
9765 cu->per_cu->imported_symtabs_push (per_cu);
9766 }
9767 }
9768
9769 /* RAII object that represents a process_die scope: i.e.,
9770 starts/finishes processing a DIE. */
9771 class process_die_scope
9772 {
9773 public:
9774 process_die_scope (die_info *die, dwarf2_cu *cu)
9775 : m_die (die), m_cu (cu)
9776 {
9777 /* We should only be processing DIEs not already in process. */
9778 gdb_assert (!m_die->in_process);
9779 m_die->in_process = true;
9780 }
9781
9782 ~process_die_scope ()
9783 {
9784 m_die->in_process = false;
9785
9786 /* If we're done processing the DIE for the CU that owns the line
9787 header, we don't need the line header anymore. */
9788 if (m_cu->line_header_die_owner == m_die)
9789 {
9790 delete m_cu->line_header;
9791 m_cu->line_header = NULL;
9792 m_cu->line_header_die_owner = NULL;
9793 }
9794 }
9795
9796 private:
9797 die_info *m_die;
9798 dwarf2_cu *m_cu;
9799 };
9800
9801 /* Process a die and its children. */
9802
9803 static void
9804 process_die (struct die_info *die, struct dwarf2_cu *cu)
9805 {
9806 process_die_scope scope (die, cu);
9807
9808 switch (die->tag)
9809 {
9810 case DW_TAG_padding:
9811 break;
9812 case DW_TAG_compile_unit:
9813 case DW_TAG_partial_unit:
9814 read_file_scope (die, cu);
9815 break;
9816 case DW_TAG_type_unit:
9817 read_type_unit_scope (die, cu);
9818 break;
9819 case DW_TAG_subprogram:
9820 /* Nested subprograms in Fortran get a prefix. */
9821 if (cu->language == language_fortran
9822 && die->parent != NULL
9823 && die->parent->tag == DW_TAG_subprogram)
9824 cu->processing_has_namespace_info = true;
9825 /* Fall through. */
9826 case DW_TAG_inlined_subroutine:
9827 read_func_scope (die, cu);
9828 break;
9829 case DW_TAG_lexical_block:
9830 case DW_TAG_try_block:
9831 case DW_TAG_catch_block:
9832 read_lexical_block_scope (die, cu);
9833 break;
9834 case DW_TAG_call_site:
9835 case DW_TAG_GNU_call_site:
9836 read_call_site_scope (die, cu);
9837 break;
9838 case DW_TAG_class_type:
9839 case DW_TAG_interface_type:
9840 case DW_TAG_structure_type:
9841 case DW_TAG_union_type:
9842 process_structure_scope (die, cu);
9843 break;
9844 case DW_TAG_enumeration_type:
9845 process_enumeration_scope (die, cu);
9846 break;
9847
9848 /* These dies have a type, but processing them does not create
9849 a symbol or recurse to process the children. Therefore we can
9850 read them on-demand through read_type_die. */
9851 case DW_TAG_subroutine_type:
9852 case DW_TAG_set_type:
9853 case DW_TAG_array_type:
9854 case DW_TAG_pointer_type:
9855 case DW_TAG_ptr_to_member_type:
9856 case DW_TAG_reference_type:
9857 case DW_TAG_rvalue_reference_type:
9858 case DW_TAG_string_type:
9859 break;
9860
9861 case DW_TAG_base_type:
9862 case DW_TAG_subrange_type:
9863 case DW_TAG_typedef:
9864 /* Add a typedef symbol for the type definition, if it has a
9865 DW_AT_name. */
9866 new_symbol (die, read_type_die (die, cu), cu);
9867 break;
9868 case DW_TAG_common_block:
9869 read_common_block (die, cu);
9870 break;
9871 case DW_TAG_common_inclusion:
9872 break;
9873 case DW_TAG_namespace:
9874 cu->processing_has_namespace_info = true;
9875 read_namespace (die, cu);
9876 break;
9877 case DW_TAG_module:
9878 cu->processing_has_namespace_info = true;
9879 read_module (die, cu);
9880 break;
9881 case DW_TAG_imported_declaration:
9882 cu->processing_has_namespace_info = true;
9883 if (read_namespace_alias (die, cu))
9884 break;
9885 /* The declaration is not a global namespace alias. */
9886 /* Fall through. */
9887 case DW_TAG_imported_module:
9888 cu->processing_has_namespace_info = true;
9889 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9890 || cu->language != language_fortran))
9891 complaint (_("Tag '%s' has unexpected children"),
9892 dwarf_tag_name (die->tag));
9893 read_import_statement (die, cu);
9894 break;
9895
9896 case DW_TAG_imported_unit:
9897 process_imported_unit_die (die, cu);
9898 break;
9899
9900 case DW_TAG_variable:
9901 read_variable (die, cu);
9902 break;
9903
9904 default:
9905 new_symbol (die, NULL, cu);
9906 break;
9907 }
9908 }
9909 \f
9910 /* DWARF name computation. */
9911
9912 /* A helper function for dwarf2_compute_name which determines whether DIE
9913 needs to have the name of the scope prepended to the name listed in the
9914 die. */
9915
9916 static int
9917 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9918 {
9919 struct attribute *attr;
9920
9921 switch (die->tag)
9922 {
9923 case DW_TAG_namespace:
9924 case DW_TAG_typedef:
9925 case DW_TAG_class_type:
9926 case DW_TAG_interface_type:
9927 case DW_TAG_structure_type:
9928 case DW_TAG_union_type:
9929 case DW_TAG_enumeration_type:
9930 case DW_TAG_enumerator:
9931 case DW_TAG_subprogram:
9932 case DW_TAG_inlined_subroutine:
9933 case DW_TAG_member:
9934 case DW_TAG_imported_declaration:
9935 return 1;
9936
9937 case DW_TAG_variable:
9938 case DW_TAG_constant:
9939 /* We only need to prefix "globally" visible variables. These include
9940 any variable marked with DW_AT_external or any variable that
9941 lives in a namespace. [Variables in anonymous namespaces
9942 require prefixing, but they are not DW_AT_external.] */
9943
9944 if (dwarf2_attr (die, DW_AT_specification, cu))
9945 {
9946 struct dwarf2_cu *spec_cu = cu;
9947
9948 return die_needs_namespace (die_specification (die, &spec_cu),
9949 spec_cu);
9950 }
9951
9952 attr = dwarf2_attr (die, DW_AT_external, cu);
9953 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9954 && die->parent->tag != DW_TAG_module)
9955 return 0;
9956 /* A variable in a lexical block of some kind does not need a
9957 namespace, even though in C++ such variables may be external
9958 and have a mangled name. */
9959 if (die->parent->tag == DW_TAG_lexical_block
9960 || die->parent->tag == DW_TAG_try_block
9961 || die->parent->tag == DW_TAG_catch_block
9962 || die->parent->tag == DW_TAG_subprogram)
9963 return 0;
9964 return 1;
9965
9966 default:
9967 return 0;
9968 }
9969 }
9970
9971 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9972 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9973 defined for the given DIE. */
9974
9975 static struct attribute *
9976 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9977 {
9978 struct attribute *attr;
9979
9980 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9981 if (attr == NULL)
9982 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9983
9984 return attr;
9985 }
9986
9987 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9988 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9989 defined for the given DIE. */
9990
9991 static const char *
9992 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9993 {
9994 const char *linkage_name;
9995
9996 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9997 if (linkage_name == NULL)
9998 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9999
10000 return linkage_name;
10001 }
10002
10003 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10004 compute the physname for the object, which include a method's:
10005 - formal parameters (C++),
10006 - receiver type (Go),
10007
10008 The term "physname" is a bit confusing.
10009 For C++, for example, it is the demangled name.
10010 For Go, for example, it's the mangled name.
10011
10012 For Ada, return the DIE's linkage name rather than the fully qualified
10013 name. PHYSNAME is ignored..
10014
10015 The result is allocated on the objfile_obstack and canonicalized. */
10016
10017 static const char *
10018 dwarf2_compute_name (const char *name,
10019 struct die_info *die, struct dwarf2_cu *cu,
10020 int physname)
10021 {
10022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10023
10024 if (name == NULL)
10025 name = dwarf2_name (die, cu);
10026
10027 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10028 but otherwise compute it by typename_concat inside GDB.
10029 FIXME: Actually this is not really true, or at least not always true.
10030 It's all very confusing. compute_and_set_names doesn't try to demangle
10031 Fortran names because there is no mangling standard. So new_symbol
10032 will set the demangled name to the result of dwarf2_full_name, and it is
10033 the demangled name that GDB uses if it exists. */
10034 if (cu->language == language_ada
10035 || (cu->language == language_fortran && physname))
10036 {
10037 /* For Ada unit, we prefer the linkage name over the name, as
10038 the former contains the exported name, which the user expects
10039 to be able to reference. Ideally, we want the user to be able
10040 to reference this entity using either natural or linkage name,
10041 but we haven't started looking at this enhancement yet. */
10042 const char *linkage_name = dw2_linkage_name (die, cu);
10043
10044 if (linkage_name != NULL)
10045 return linkage_name;
10046 }
10047
10048 /* These are the only languages we know how to qualify names in. */
10049 if (name != NULL
10050 && (cu->language == language_cplus
10051 || cu->language == language_fortran || cu->language == language_d
10052 || cu->language == language_rust))
10053 {
10054 if (die_needs_namespace (die, cu))
10055 {
10056 const char *prefix;
10057 const char *canonical_name = NULL;
10058
10059 string_file buf;
10060
10061 prefix = determine_prefix (die, cu);
10062 if (*prefix != '\0')
10063 {
10064 gdb::unique_xmalloc_ptr<char> prefixed_name
10065 (typename_concat (NULL, prefix, name, physname, cu));
10066
10067 buf.puts (prefixed_name.get ());
10068 }
10069 else
10070 buf.puts (name);
10071
10072 /* Template parameters may be specified in the DIE's DW_AT_name, or
10073 as children with DW_TAG_template_type_param or
10074 DW_TAG_value_type_param. If the latter, add them to the name
10075 here. If the name already has template parameters, then
10076 skip this step; some versions of GCC emit both, and
10077 it is more efficient to use the pre-computed name.
10078
10079 Something to keep in mind about this process: it is very
10080 unlikely, or in some cases downright impossible, to produce
10081 something that will match the mangled name of a function.
10082 If the definition of the function has the same debug info,
10083 we should be able to match up with it anyway. But fallbacks
10084 using the minimal symbol, for instance to find a method
10085 implemented in a stripped copy of libstdc++, will not work.
10086 If we do not have debug info for the definition, we will have to
10087 match them up some other way.
10088
10089 When we do name matching there is a related problem with function
10090 templates; two instantiated function templates are allowed to
10091 differ only by their return types, which we do not add here. */
10092
10093 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10094 {
10095 struct attribute *attr;
10096 struct die_info *child;
10097 int first = 1;
10098
10099 die->building_fullname = 1;
10100
10101 for (child = die->child; child != NULL; child = child->sibling)
10102 {
10103 struct type *type;
10104 LONGEST value;
10105 const gdb_byte *bytes;
10106 struct dwarf2_locexpr_baton *baton;
10107 struct value *v;
10108
10109 if (child->tag != DW_TAG_template_type_param
10110 && child->tag != DW_TAG_template_value_param)
10111 continue;
10112
10113 if (first)
10114 {
10115 buf.puts ("<");
10116 first = 0;
10117 }
10118 else
10119 buf.puts (", ");
10120
10121 attr = dwarf2_attr (child, DW_AT_type, cu);
10122 if (attr == NULL)
10123 {
10124 complaint (_("template parameter missing DW_AT_type"));
10125 buf.puts ("UNKNOWN_TYPE");
10126 continue;
10127 }
10128 type = die_type (child, cu);
10129
10130 if (child->tag == DW_TAG_template_type_param)
10131 {
10132 c_print_type (type, "", &buf, -1, 0, cu->language,
10133 &type_print_raw_options);
10134 continue;
10135 }
10136
10137 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10138 if (attr == NULL)
10139 {
10140 complaint (_("template parameter missing "
10141 "DW_AT_const_value"));
10142 buf.puts ("UNKNOWN_VALUE");
10143 continue;
10144 }
10145
10146 dwarf2_const_value_attr (attr, type, name,
10147 &cu->comp_unit_obstack, cu,
10148 &value, &bytes, &baton);
10149
10150 if (TYPE_NOSIGN (type))
10151 /* GDB prints characters as NUMBER 'CHAR'. If that's
10152 changed, this can use value_print instead. */
10153 c_printchar (value, type, &buf);
10154 else
10155 {
10156 struct value_print_options opts;
10157
10158 if (baton != NULL)
10159 v = dwarf2_evaluate_loc_desc (type, NULL,
10160 baton->data,
10161 baton->size,
10162 baton->per_cu);
10163 else if (bytes != NULL)
10164 {
10165 v = allocate_value (type);
10166 memcpy (value_contents_writeable (v), bytes,
10167 TYPE_LENGTH (type));
10168 }
10169 else
10170 v = value_from_longest (type, value);
10171
10172 /* Specify decimal so that we do not depend on
10173 the radix. */
10174 get_formatted_print_options (&opts, 'd');
10175 opts.raw = 1;
10176 value_print (v, &buf, &opts);
10177 release_value (v);
10178 }
10179 }
10180
10181 die->building_fullname = 0;
10182
10183 if (!first)
10184 {
10185 /* Close the argument list, with a space if necessary
10186 (nested templates). */
10187 if (!buf.empty () && buf.string ().back () == '>')
10188 buf.puts (" >");
10189 else
10190 buf.puts (">");
10191 }
10192 }
10193
10194 /* For C++ methods, append formal parameter type
10195 information, if PHYSNAME. */
10196
10197 if (physname && die->tag == DW_TAG_subprogram
10198 && cu->language == language_cplus)
10199 {
10200 struct type *type = read_type_die (die, cu);
10201
10202 c_type_print_args (type, &buf, 1, cu->language,
10203 &type_print_raw_options);
10204
10205 if (cu->language == language_cplus)
10206 {
10207 /* Assume that an artificial first parameter is
10208 "this", but do not crash if it is not. RealView
10209 marks unnamed (and thus unused) parameters as
10210 artificial; there is no way to differentiate
10211 the two cases. */
10212 if (TYPE_NFIELDS (type) > 0
10213 && TYPE_FIELD_ARTIFICIAL (type, 0)
10214 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10215 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10216 0))))
10217 buf.puts (" const");
10218 }
10219 }
10220
10221 const std::string &intermediate_name = buf.string ();
10222
10223 if (cu->language == language_cplus)
10224 canonical_name
10225 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10226 objfile);
10227
10228 /* If we only computed INTERMEDIATE_NAME, or if
10229 INTERMEDIATE_NAME is already canonical, then we need to
10230 intern it. */
10231 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10232 name = objfile->intern (intermediate_name);
10233 else
10234 name = canonical_name;
10235 }
10236 }
10237
10238 return name;
10239 }
10240
10241 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10242 If scope qualifiers are appropriate they will be added. The result
10243 will be allocated on the storage_obstack, or NULL if the DIE does
10244 not have a name. NAME may either be from a previous call to
10245 dwarf2_name or NULL.
10246
10247 The output string will be canonicalized (if C++). */
10248
10249 static const char *
10250 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10251 {
10252 return dwarf2_compute_name (name, die, cu, 0);
10253 }
10254
10255 /* Construct a physname for the given DIE in CU. NAME may either be
10256 from a previous call to dwarf2_name or NULL. The result will be
10257 allocated on the objfile_objstack or NULL if the DIE does not have a
10258 name.
10259
10260 The output string will be canonicalized (if C++). */
10261
10262 static const char *
10263 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10264 {
10265 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10266 const char *retval, *mangled = NULL, *canon = NULL;
10267 int need_copy = 1;
10268
10269 /* In this case dwarf2_compute_name is just a shortcut not building anything
10270 on its own. */
10271 if (!die_needs_namespace (die, cu))
10272 return dwarf2_compute_name (name, die, cu, 1);
10273
10274 mangled = dw2_linkage_name (die, cu);
10275
10276 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10277 See https://github.com/rust-lang/rust/issues/32925. */
10278 if (cu->language == language_rust && mangled != NULL
10279 && strchr (mangled, '{') != NULL)
10280 mangled = NULL;
10281
10282 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10283 has computed. */
10284 gdb::unique_xmalloc_ptr<char> demangled;
10285 if (mangled != NULL)
10286 {
10287
10288 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10289 {
10290 /* Do nothing (do not demangle the symbol name). */
10291 }
10292 else if (cu->language == language_go)
10293 {
10294 /* This is a lie, but we already lie to the caller new_symbol.
10295 new_symbol assumes we return the mangled name.
10296 This just undoes that lie until things are cleaned up. */
10297 }
10298 else
10299 {
10300 /* Use DMGL_RET_DROP for C++ template functions to suppress
10301 their return type. It is easier for GDB users to search
10302 for such functions as `name(params)' than `long name(params)'.
10303 In such case the minimal symbol names do not match the full
10304 symbol names but for template functions there is never a need
10305 to look up their definition from their declaration so
10306 the only disadvantage remains the minimal symbol variant
10307 `long name(params)' does not have the proper inferior type. */
10308 demangled.reset (gdb_demangle (mangled,
10309 (DMGL_PARAMS | DMGL_ANSI
10310 | DMGL_RET_DROP)));
10311 }
10312 if (demangled)
10313 canon = demangled.get ();
10314 else
10315 {
10316 canon = mangled;
10317 need_copy = 0;
10318 }
10319 }
10320
10321 if (canon == NULL || check_physname)
10322 {
10323 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10324
10325 if (canon != NULL && strcmp (physname, canon) != 0)
10326 {
10327 /* It may not mean a bug in GDB. The compiler could also
10328 compute DW_AT_linkage_name incorrectly. But in such case
10329 GDB would need to be bug-to-bug compatible. */
10330
10331 complaint (_("Computed physname <%s> does not match demangled <%s> "
10332 "(from linkage <%s>) - DIE at %s [in module %s]"),
10333 physname, canon, mangled, sect_offset_str (die->sect_off),
10334 objfile_name (objfile));
10335
10336 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10337 is available here - over computed PHYSNAME. It is safer
10338 against both buggy GDB and buggy compilers. */
10339
10340 retval = canon;
10341 }
10342 else
10343 {
10344 retval = physname;
10345 need_copy = 0;
10346 }
10347 }
10348 else
10349 retval = canon;
10350
10351 if (need_copy)
10352 retval = objfile->intern (retval);
10353
10354 return retval;
10355 }
10356
10357 /* Inspect DIE in CU for a namespace alias. If one exists, record
10358 a new symbol for it.
10359
10360 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10361
10362 static int
10363 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10364 {
10365 struct attribute *attr;
10366
10367 /* If the die does not have a name, this is not a namespace
10368 alias. */
10369 attr = dwarf2_attr (die, DW_AT_name, cu);
10370 if (attr != NULL)
10371 {
10372 int num;
10373 struct die_info *d = die;
10374 struct dwarf2_cu *imported_cu = cu;
10375
10376 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10377 keep inspecting DIEs until we hit the underlying import. */
10378 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10379 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10380 {
10381 attr = dwarf2_attr (d, DW_AT_import, cu);
10382 if (attr == NULL)
10383 break;
10384
10385 d = follow_die_ref (d, attr, &imported_cu);
10386 if (d->tag != DW_TAG_imported_declaration)
10387 break;
10388 }
10389
10390 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10391 {
10392 complaint (_("DIE at %s has too many recursively imported "
10393 "declarations"), sect_offset_str (d->sect_off));
10394 return 0;
10395 }
10396
10397 if (attr != NULL)
10398 {
10399 struct type *type;
10400 sect_offset sect_off = attr->get_ref_die_offset ();
10401
10402 type = get_die_type_at_offset (sect_off, cu->per_cu);
10403 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10404 {
10405 /* This declaration is a global namespace alias. Add
10406 a symbol for it whose type is the aliased namespace. */
10407 new_symbol (die, type, cu);
10408 return 1;
10409 }
10410 }
10411 }
10412
10413 return 0;
10414 }
10415
10416 /* Return the using directives repository (global or local?) to use in the
10417 current context for CU.
10418
10419 For Ada, imported declarations can materialize renamings, which *may* be
10420 global. However it is impossible (for now?) in DWARF to distinguish
10421 "external" imported declarations and "static" ones. As all imported
10422 declarations seem to be static in all other languages, make them all CU-wide
10423 global only in Ada. */
10424
10425 static struct using_direct **
10426 using_directives (struct dwarf2_cu *cu)
10427 {
10428 if (cu->language == language_ada
10429 && cu->get_builder ()->outermost_context_p ())
10430 return cu->get_builder ()->get_global_using_directives ();
10431 else
10432 return cu->get_builder ()->get_local_using_directives ();
10433 }
10434
10435 /* Read the import statement specified by the given die and record it. */
10436
10437 static void
10438 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10439 {
10440 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10441 struct attribute *import_attr;
10442 struct die_info *imported_die, *child_die;
10443 struct dwarf2_cu *imported_cu;
10444 const char *imported_name;
10445 const char *imported_name_prefix;
10446 const char *canonical_name;
10447 const char *import_alias;
10448 const char *imported_declaration = NULL;
10449 const char *import_prefix;
10450 std::vector<const char *> excludes;
10451
10452 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10453 if (import_attr == NULL)
10454 {
10455 complaint (_("Tag '%s' has no DW_AT_import"),
10456 dwarf_tag_name (die->tag));
10457 return;
10458 }
10459
10460 imported_cu = cu;
10461 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10462 imported_name = dwarf2_name (imported_die, imported_cu);
10463 if (imported_name == NULL)
10464 {
10465 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10466
10467 The import in the following code:
10468 namespace A
10469 {
10470 typedef int B;
10471 }
10472
10473 int main ()
10474 {
10475 using A::B;
10476 B b;
10477 return b;
10478 }
10479
10480 ...
10481 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10482 <52> DW_AT_decl_file : 1
10483 <53> DW_AT_decl_line : 6
10484 <54> DW_AT_import : <0x75>
10485 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10486 <59> DW_AT_name : B
10487 <5b> DW_AT_decl_file : 1
10488 <5c> DW_AT_decl_line : 2
10489 <5d> DW_AT_type : <0x6e>
10490 ...
10491 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10492 <76> DW_AT_byte_size : 4
10493 <77> DW_AT_encoding : 5 (signed)
10494
10495 imports the wrong die ( 0x75 instead of 0x58 ).
10496 This case will be ignored until the gcc bug is fixed. */
10497 return;
10498 }
10499
10500 /* Figure out the local name after import. */
10501 import_alias = dwarf2_name (die, cu);
10502
10503 /* Figure out where the statement is being imported to. */
10504 import_prefix = determine_prefix (die, cu);
10505
10506 /* Figure out what the scope of the imported die is and prepend it
10507 to the name of the imported die. */
10508 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10509
10510 if (imported_die->tag != DW_TAG_namespace
10511 && imported_die->tag != DW_TAG_module)
10512 {
10513 imported_declaration = imported_name;
10514 canonical_name = imported_name_prefix;
10515 }
10516 else if (strlen (imported_name_prefix) > 0)
10517 canonical_name = obconcat (&objfile->objfile_obstack,
10518 imported_name_prefix,
10519 (cu->language == language_d ? "." : "::"),
10520 imported_name, (char *) NULL);
10521 else
10522 canonical_name = imported_name;
10523
10524 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10525 for (child_die = die->child; child_die && child_die->tag;
10526 child_die = child_die->sibling)
10527 {
10528 /* DWARF-4: A Fortran use statement with a “rename list” may be
10529 represented by an imported module entry with an import attribute
10530 referring to the module and owned entries corresponding to those
10531 entities that are renamed as part of being imported. */
10532
10533 if (child_die->tag != DW_TAG_imported_declaration)
10534 {
10535 complaint (_("child DW_TAG_imported_declaration expected "
10536 "- DIE at %s [in module %s]"),
10537 sect_offset_str (child_die->sect_off),
10538 objfile_name (objfile));
10539 continue;
10540 }
10541
10542 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10543 if (import_attr == NULL)
10544 {
10545 complaint (_("Tag '%s' has no DW_AT_import"),
10546 dwarf_tag_name (child_die->tag));
10547 continue;
10548 }
10549
10550 imported_cu = cu;
10551 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10552 &imported_cu);
10553 imported_name = dwarf2_name (imported_die, imported_cu);
10554 if (imported_name == NULL)
10555 {
10556 complaint (_("child DW_TAG_imported_declaration has unknown "
10557 "imported name - DIE at %s [in module %s]"),
10558 sect_offset_str (child_die->sect_off),
10559 objfile_name (objfile));
10560 continue;
10561 }
10562
10563 excludes.push_back (imported_name);
10564
10565 process_die (child_die, cu);
10566 }
10567
10568 add_using_directive (using_directives (cu),
10569 import_prefix,
10570 canonical_name,
10571 import_alias,
10572 imported_declaration,
10573 excludes,
10574 0,
10575 &objfile->objfile_obstack);
10576 }
10577
10578 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10579 types, but gives them a size of zero. Starting with version 14,
10580 ICC is compatible with GCC. */
10581
10582 static bool
10583 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10584 {
10585 if (!cu->checked_producer)
10586 check_producer (cu);
10587
10588 return cu->producer_is_icc_lt_14;
10589 }
10590
10591 /* ICC generates a DW_AT_type for C void functions. This was observed on
10592 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10593 which says that void functions should not have a DW_AT_type. */
10594
10595 static bool
10596 producer_is_icc (struct dwarf2_cu *cu)
10597 {
10598 if (!cu->checked_producer)
10599 check_producer (cu);
10600
10601 return cu->producer_is_icc;
10602 }
10603
10604 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10605 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10606 this, it was first present in GCC release 4.3.0. */
10607
10608 static bool
10609 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10610 {
10611 if (!cu->checked_producer)
10612 check_producer (cu);
10613
10614 return cu->producer_is_gcc_lt_4_3;
10615 }
10616
10617 static file_and_directory
10618 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10619 {
10620 file_and_directory res;
10621
10622 /* Find the filename. Do not use dwarf2_name here, since the filename
10623 is not a source language identifier. */
10624 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10625 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10626
10627 if (res.comp_dir == NULL
10628 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10629 && IS_ABSOLUTE_PATH (res.name))
10630 {
10631 res.comp_dir_storage = ldirname (res.name);
10632 if (!res.comp_dir_storage.empty ())
10633 res.comp_dir = res.comp_dir_storage.c_str ();
10634 }
10635 if (res.comp_dir != NULL)
10636 {
10637 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10638 directory, get rid of it. */
10639 const char *cp = strchr (res.comp_dir, ':');
10640
10641 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10642 res.comp_dir = cp + 1;
10643 }
10644
10645 if (res.name == NULL)
10646 res.name = "<unknown>";
10647
10648 return res;
10649 }
10650
10651 /* Handle DW_AT_stmt_list for a compilation unit.
10652 DIE is the DW_TAG_compile_unit die for CU.
10653 COMP_DIR is the compilation directory. LOWPC is passed to
10654 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10655
10656 static void
10657 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10658 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10659 {
10660 struct dwarf2_per_objfile *dwarf2_per_objfile
10661 = cu->per_cu->dwarf2_per_objfile;
10662 struct attribute *attr;
10663 struct line_header line_header_local;
10664 hashval_t line_header_local_hash;
10665 void **slot;
10666 int decode_mapping;
10667
10668 gdb_assert (! cu->per_cu->is_debug_types);
10669
10670 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10671 if (attr == NULL)
10672 return;
10673
10674 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10675
10676 /* The line header hash table is only created if needed (it exists to
10677 prevent redundant reading of the line table for partial_units).
10678 If we're given a partial_unit, we'll need it. If we're given a
10679 compile_unit, then use the line header hash table if it's already
10680 created, but don't create one just yet. */
10681
10682 if (dwarf2_per_objfile->line_header_hash == NULL
10683 && die->tag == DW_TAG_partial_unit)
10684 {
10685 dwarf2_per_objfile->line_header_hash
10686 .reset (htab_create_alloc (127, line_header_hash_voidp,
10687 line_header_eq_voidp,
10688 free_line_header_voidp,
10689 xcalloc, xfree));
10690 }
10691
10692 line_header_local.sect_off = line_offset;
10693 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10694 line_header_local_hash = line_header_hash (&line_header_local);
10695 if (dwarf2_per_objfile->line_header_hash != NULL)
10696 {
10697 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10698 &line_header_local,
10699 line_header_local_hash, NO_INSERT);
10700
10701 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10702 is not present in *SLOT (since if there is something in *SLOT then
10703 it will be for a partial_unit). */
10704 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10705 {
10706 gdb_assert (*slot != NULL);
10707 cu->line_header = (struct line_header *) *slot;
10708 return;
10709 }
10710 }
10711
10712 /* dwarf_decode_line_header does not yet provide sufficient information.
10713 We always have to call also dwarf_decode_lines for it. */
10714 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10715 if (lh == NULL)
10716 return;
10717
10718 cu->line_header = lh.release ();
10719 cu->line_header_die_owner = die;
10720
10721 if (dwarf2_per_objfile->line_header_hash == NULL)
10722 slot = NULL;
10723 else
10724 {
10725 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10726 &line_header_local,
10727 line_header_local_hash, INSERT);
10728 gdb_assert (slot != NULL);
10729 }
10730 if (slot != NULL && *slot == NULL)
10731 {
10732 /* This newly decoded line number information unit will be owned
10733 by line_header_hash hash table. */
10734 *slot = cu->line_header;
10735 cu->line_header_die_owner = NULL;
10736 }
10737 else
10738 {
10739 /* We cannot free any current entry in (*slot) as that struct line_header
10740 may be already used by multiple CUs. Create only temporary decoded
10741 line_header for this CU - it may happen at most once for each line
10742 number information unit. And if we're not using line_header_hash
10743 then this is what we want as well. */
10744 gdb_assert (die->tag != DW_TAG_partial_unit);
10745 }
10746 decode_mapping = (die->tag != DW_TAG_partial_unit);
10747 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10748 decode_mapping);
10749
10750 }
10751
10752 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10753
10754 static void
10755 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10756 {
10757 struct dwarf2_per_objfile *dwarf2_per_objfile
10758 = cu->per_cu->dwarf2_per_objfile;
10759 struct objfile *objfile = dwarf2_per_objfile->objfile;
10760 struct gdbarch *gdbarch = objfile->arch ();
10761 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10762 CORE_ADDR highpc = ((CORE_ADDR) 0);
10763 struct attribute *attr;
10764 struct die_info *child_die;
10765 CORE_ADDR baseaddr;
10766
10767 prepare_one_comp_unit (cu, die, cu->language);
10768 baseaddr = objfile->text_section_offset ();
10769
10770 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10771
10772 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10773 from finish_block. */
10774 if (lowpc == ((CORE_ADDR) -1))
10775 lowpc = highpc;
10776 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10777
10778 file_and_directory fnd = find_file_and_directory (die, cu);
10779
10780 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10781 standardised yet. As a workaround for the language detection we fall
10782 back to the DW_AT_producer string. */
10783 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10784 cu->language = language_opencl;
10785
10786 /* Similar hack for Go. */
10787 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10788 set_cu_language (DW_LANG_Go, cu);
10789
10790 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10791
10792 /* Decode line number information if present. We do this before
10793 processing child DIEs, so that the line header table is available
10794 for DW_AT_decl_file. */
10795 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10796
10797 /* Process all dies in compilation unit. */
10798 if (die->child != NULL)
10799 {
10800 child_die = die->child;
10801 while (child_die && child_die->tag)
10802 {
10803 process_die (child_die, cu);
10804 child_die = child_die->sibling;
10805 }
10806 }
10807
10808 /* Decode macro information, if present. Dwarf 2 macro information
10809 refers to information in the line number info statement program
10810 header, so we can only read it if we've read the header
10811 successfully. */
10812 attr = dwarf2_attr (die, DW_AT_macros, cu);
10813 if (attr == NULL)
10814 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10815 if (attr && cu->line_header)
10816 {
10817 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10818 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10819
10820 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10821 }
10822 else
10823 {
10824 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10825 if (attr && cu->line_header)
10826 {
10827 unsigned int macro_offset = DW_UNSND (attr);
10828
10829 dwarf_decode_macros (cu, macro_offset, 0);
10830 }
10831 }
10832 }
10833
10834 void
10835 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10836 {
10837 struct type_unit_group *tu_group;
10838 int first_time;
10839 struct attribute *attr;
10840 unsigned int i;
10841 struct signatured_type *sig_type;
10842
10843 gdb_assert (per_cu->is_debug_types);
10844 sig_type = (struct signatured_type *) per_cu;
10845
10846 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10847
10848 /* If we're using .gdb_index (includes -readnow) then
10849 per_cu->type_unit_group may not have been set up yet. */
10850 if (sig_type->type_unit_group == NULL)
10851 sig_type->type_unit_group = get_type_unit_group (this, attr);
10852 tu_group = sig_type->type_unit_group;
10853
10854 /* If we've already processed this stmt_list there's no real need to
10855 do it again, we could fake it and just recreate the part we need
10856 (file name,index -> symtab mapping). If data shows this optimization
10857 is useful we can do it then. */
10858 first_time = tu_group->compunit_symtab == NULL;
10859
10860 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10861 debug info. */
10862 line_header_up lh;
10863 if (attr != NULL)
10864 {
10865 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10866 lh = dwarf_decode_line_header (line_offset, this);
10867 }
10868 if (lh == NULL)
10869 {
10870 if (first_time)
10871 start_symtab ("", NULL, 0);
10872 else
10873 {
10874 gdb_assert (tu_group->symtabs == NULL);
10875 gdb_assert (m_builder == nullptr);
10876 struct compunit_symtab *cust = tu_group->compunit_symtab;
10877 m_builder.reset (new struct buildsym_compunit
10878 (COMPUNIT_OBJFILE (cust), "",
10879 COMPUNIT_DIRNAME (cust),
10880 compunit_language (cust),
10881 0, cust));
10882 }
10883 return;
10884 }
10885
10886 line_header = lh.release ();
10887 line_header_die_owner = die;
10888
10889 if (first_time)
10890 {
10891 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10892
10893 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10894 still initializing it, and our caller (a few levels up)
10895 process_full_type_unit still needs to know if this is the first
10896 time. */
10897
10898 tu_group->symtabs
10899 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10900 struct symtab *, line_header->file_names_size ());
10901
10902 auto &file_names = line_header->file_names ();
10903 for (i = 0; i < file_names.size (); ++i)
10904 {
10905 file_entry &fe = file_names[i];
10906 dwarf2_start_subfile (this, fe.name,
10907 fe.include_dir (line_header));
10908 buildsym_compunit *b = get_builder ();
10909 if (b->get_current_subfile ()->symtab == NULL)
10910 {
10911 /* NOTE: start_subfile will recognize when it's been
10912 passed a file it has already seen. So we can't
10913 assume there's a simple mapping from
10914 cu->line_header->file_names to subfiles, plus
10915 cu->line_header->file_names may contain dups. */
10916 b->get_current_subfile ()->symtab
10917 = allocate_symtab (cust, b->get_current_subfile ()->name);
10918 }
10919
10920 fe.symtab = b->get_current_subfile ()->symtab;
10921 tu_group->symtabs[i] = fe.symtab;
10922 }
10923 }
10924 else
10925 {
10926 gdb_assert (m_builder == nullptr);
10927 struct compunit_symtab *cust = tu_group->compunit_symtab;
10928 m_builder.reset (new struct buildsym_compunit
10929 (COMPUNIT_OBJFILE (cust), "",
10930 COMPUNIT_DIRNAME (cust),
10931 compunit_language (cust),
10932 0, cust));
10933
10934 auto &file_names = line_header->file_names ();
10935 for (i = 0; i < file_names.size (); ++i)
10936 {
10937 file_entry &fe = file_names[i];
10938 fe.symtab = tu_group->symtabs[i];
10939 }
10940 }
10941
10942 /* The main symtab is allocated last. Type units don't have DW_AT_name
10943 so they don't have a "real" (so to speak) symtab anyway.
10944 There is later code that will assign the main symtab to all symbols
10945 that don't have one. We need to handle the case of a symbol with a
10946 missing symtab (DW_AT_decl_file) anyway. */
10947 }
10948
10949 /* Process DW_TAG_type_unit.
10950 For TUs we want to skip the first top level sibling if it's not the
10951 actual type being defined by this TU. In this case the first top
10952 level sibling is there to provide context only. */
10953
10954 static void
10955 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10956 {
10957 struct die_info *child_die;
10958
10959 prepare_one_comp_unit (cu, die, language_minimal);
10960
10961 /* Initialize (or reinitialize) the machinery for building symtabs.
10962 We do this before processing child DIEs, so that the line header table
10963 is available for DW_AT_decl_file. */
10964 cu->setup_type_unit_groups (die);
10965
10966 if (die->child != NULL)
10967 {
10968 child_die = die->child;
10969 while (child_die && child_die->tag)
10970 {
10971 process_die (child_die, cu);
10972 child_die = child_die->sibling;
10973 }
10974 }
10975 }
10976 \f
10977 /* DWO/DWP files.
10978
10979 http://gcc.gnu.org/wiki/DebugFission
10980 http://gcc.gnu.org/wiki/DebugFissionDWP
10981
10982 To simplify handling of both DWO files ("object" files with the DWARF info)
10983 and DWP files (a file with the DWOs packaged up into one file), we treat
10984 DWP files as having a collection of virtual DWO files. */
10985
10986 static hashval_t
10987 hash_dwo_file (const void *item)
10988 {
10989 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10990 hashval_t hash;
10991
10992 hash = htab_hash_string (dwo_file->dwo_name);
10993 if (dwo_file->comp_dir != NULL)
10994 hash += htab_hash_string (dwo_file->comp_dir);
10995 return hash;
10996 }
10997
10998 static int
10999 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11000 {
11001 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11002 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11003
11004 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11005 return 0;
11006 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11007 return lhs->comp_dir == rhs->comp_dir;
11008 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11009 }
11010
11011 /* Allocate a hash table for DWO files. */
11012
11013 static htab_up
11014 allocate_dwo_file_hash_table ()
11015 {
11016 auto delete_dwo_file = [] (void *item)
11017 {
11018 struct dwo_file *dwo_file = (struct dwo_file *) item;
11019
11020 delete dwo_file;
11021 };
11022
11023 return htab_up (htab_create_alloc (41,
11024 hash_dwo_file,
11025 eq_dwo_file,
11026 delete_dwo_file,
11027 xcalloc, xfree));
11028 }
11029
11030 /* Lookup DWO file DWO_NAME. */
11031
11032 static void **
11033 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11034 const char *dwo_name,
11035 const char *comp_dir)
11036 {
11037 struct dwo_file find_entry;
11038 void **slot;
11039
11040 if (dwarf2_per_objfile->dwo_files == NULL)
11041 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11042
11043 find_entry.dwo_name = dwo_name;
11044 find_entry.comp_dir = comp_dir;
11045 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11046 INSERT);
11047
11048 return slot;
11049 }
11050
11051 static hashval_t
11052 hash_dwo_unit (const void *item)
11053 {
11054 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11055
11056 /* This drops the top 32 bits of the id, but is ok for a hash. */
11057 return dwo_unit->signature;
11058 }
11059
11060 static int
11061 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11062 {
11063 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11064 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11065
11066 /* The signature is assumed to be unique within the DWO file.
11067 So while object file CU dwo_id's always have the value zero,
11068 that's OK, assuming each object file DWO file has only one CU,
11069 and that's the rule for now. */
11070 return lhs->signature == rhs->signature;
11071 }
11072
11073 /* Allocate a hash table for DWO CUs,TUs.
11074 There is one of these tables for each of CUs,TUs for each DWO file. */
11075
11076 static htab_up
11077 allocate_dwo_unit_table ()
11078 {
11079 /* Start out with a pretty small number.
11080 Generally DWO files contain only one CU and maybe some TUs. */
11081 return htab_up (htab_create_alloc (3,
11082 hash_dwo_unit,
11083 eq_dwo_unit,
11084 NULL, xcalloc, xfree));
11085 }
11086
11087 /* die_reader_func for create_dwo_cu. */
11088
11089 static void
11090 create_dwo_cu_reader (const struct die_reader_specs *reader,
11091 const gdb_byte *info_ptr,
11092 struct die_info *comp_unit_die,
11093 struct dwo_file *dwo_file,
11094 struct dwo_unit *dwo_unit)
11095 {
11096 struct dwarf2_cu *cu = reader->cu;
11097 sect_offset sect_off = cu->per_cu->sect_off;
11098 struct dwarf2_section_info *section = cu->per_cu->section;
11099
11100 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11101 if (!signature.has_value ())
11102 {
11103 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11104 " its dwo_id [in module %s]"),
11105 sect_offset_str (sect_off), dwo_file->dwo_name);
11106 return;
11107 }
11108
11109 dwo_unit->dwo_file = dwo_file;
11110 dwo_unit->signature = *signature;
11111 dwo_unit->section = section;
11112 dwo_unit->sect_off = sect_off;
11113 dwo_unit->length = cu->per_cu->length;
11114
11115 if (dwarf_read_debug)
11116 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11117 sect_offset_str (sect_off),
11118 hex_string (dwo_unit->signature));
11119 }
11120
11121 /* Create the dwo_units for the CUs in a DWO_FILE.
11122 Note: This function processes DWO files only, not DWP files. */
11123
11124 static void
11125 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11126 dwarf2_cu *cu, struct dwo_file &dwo_file,
11127 dwarf2_section_info &section, htab_up &cus_htab)
11128 {
11129 struct objfile *objfile = dwarf2_per_objfile->objfile;
11130 const gdb_byte *info_ptr, *end_ptr;
11131
11132 section.read (objfile);
11133 info_ptr = section.buffer;
11134
11135 if (info_ptr == NULL)
11136 return;
11137
11138 if (dwarf_read_debug)
11139 {
11140 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11141 section.get_name (),
11142 section.get_file_name ());
11143 }
11144
11145 end_ptr = info_ptr + section.size;
11146 while (info_ptr < end_ptr)
11147 {
11148 struct dwarf2_per_cu_data per_cu;
11149 struct dwo_unit read_unit {};
11150 struct dwo_unit *dwo_unit;
11151 void **slot;
11152 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11153
11154 memset (&per_cu, 0, sizeof (per_cu));
11155 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11156 per_cu.is_debug_types = 0;
11157 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11158 per_cu.section = &section;
11159
11160 cutu_reader reader (&per_cu, cu, &dwo_file);
11161 if (!reader.dummy_p)
11162 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11163 &dwo_file, &read_unit);
11164 info_ptr += per_cu.length;
11165
11166 // If the unit could not be parsed, skip it.
11167 if (read_unit.dwo_file == NULL)
11168 continue;
11169
11170 if (cus_htab == NULL)
11171 cus_htab = allocate_dwo_unit_table ();
11172
11173 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11174 *dwo_unit = read_unit;
11175 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11176 gdb_assert (slot != NULL);
11177 if (*slot != NULL)
11178 {
11179 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11180 sect_offset dup_sect_off = dup_cu->sect_off;
11181
11182 complaint (_("debug cu entry at offset %s is duplicate to"
11183 " the entry at offset %s, signature %s"),
11184 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11185 hex_string (dwo_unit->signature));
11186 }
11187 *slot = (void *)dwo_unit;
11188 }
11189 }
11190
11191 /* DWP file .debug_{cu,tu}_index section format:
11192 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11193
11194 DWP Version 1:
11195
11196 Both index sections have the same format, and serve to map a 64-bit
11197 signature to a set of section numbers. Each section begins with a header,
11198 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11199 indexes, and a pool of 32-bit section numbers. The index sections will be
11200 aligned at 8-byte boundaries in the file.
11201
11202 The index section header consists of:
11203
11204 V, 32 bit version number
11205 -, 32 bits unused
11206 N, 32 bit number of compilation units or type units in the index
11207 M, 32 bit number of slots in the hash table
11208
11209 Numbers are recorded using the byte order of the application binary.
11210
11211 The hash table begins at offset 16 in the section, and consists of an array
11212 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11213 order of the application binary). Unused slots in the hash table are 0.
11214 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11215
11216 The parallel table begins immediately after the hash table
11217 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11218 array of 32-bit indexes (using the byte order of the application binary),
11219 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11220 table contains a 32-bit index into the pool of section numbers. For unused
11221 hash table slots, the corresponding entry in the parallel table will be 0.
11222
11223 The pool of section numbers begins immediately following the hash table
11224 (at offset 16 + 12 * M from the beginning of the section). The pool of
11225 section numbers consists of an array of 32-bit words (using the byte order
11226 of the application binary). Each item in the array is indexed starting
11227 from 0. The hash table entry provides the index of the first section
11228 number in the set. Additional section numbers in the set follow, and the
11229 set is terminated by a 0 entry (section number 0 is not used in ELF).
11230
11231 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11232 section must be the first entry in the set, and the .debug_abbrev.dwo must
11233 be the second entry. Other members of the set may follow in any order.
11234
11235 ---
11236
11237 DWP Version 2:
11238
11239 DWP Version 2 combines all the .debug_info, etc. sections into one,
11240 and the entries in the index tables are now offsets into these sections.
11241 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11242 section.
11243
11244 Index Section Contents:
11245 Header
11246 Hash Table of Signatures dwp_hash_table.hash_table
11247 Parallel Table of Indices dwp_hash_table.unit_table
11248 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11249 Table of Section Sizes dwp_hash_table.v2.sizes
11250
11251 The index section header consists of:
11252
11253 V, 32 bit version number
11254 L, 32 bit number of columns in the table of section offsets
11255 N, 32 bit number of compilation units or type units in the index
11256 M, 32 bit number of slots in the hash table
11257
11258 Numbers are recorded using the byte order of the application binary.
11259
11260 The hash table has the same format as version 1.
11261 The parallel table of indices has the same format as version 1,
11262 except that the entries are origin-1 indices into the table of sections
11263 offsets and the table of section sizes.
11264
11265 The table of offsets begins immediately following the parallel table
11266 (at offset 16 + 12 * M from the beginning of the section). The table is
11267 a two-dimensional array of 32-bit words (using the byte order of the
11268 application binary), with L columns and N+1 rows, in row-major order.
11269 Each row in the array is indexed starting from 0. The first row provides
11270 a key to the remaining rows: each column in this row provides an identifier
11271 for a debug section, and the offsets in the same column of subsequent rows
11272 refer to that section. The section identifiers are:
11273
11274 DW_SECT_INFO 1 .debug_info.dwo
11275 DW_SECT_TYPES 2 .debug_types.dwo
11276 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11277 DW_SECT_LINE 4 .debug_line.dwo
11278 DW_SECT_LOC 5 .debug_loc.dwo
11279 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11280 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11281 DW_SECT_MACRO 8 .debug_macro.dwo
11282
11283 The offsets provided by the CU and TU index sections are the base offsets
11284 for the contributions made by each CU or TU to the corresponding section
11285 in the package file. Each CU and TU header contains an abbrev_offset
11286 field, used to find the abbreviations table for that CU or TU within the
11287 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11288 be interpreted as relative to the base offset given in the index section.
11289 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11290 should be interpreted as relative to the base offset for .debug_line.dwo,
11291 and offsets into other debug sections obtained from DWARF attributes should
11292 also be interpreted as relative to the corresponding base offset.
11293
11294 The table of sizes begins immediately following the table of offsets.
11295 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11296 with L columns and N rows, in row-major order. Each row in the array is
11297 indexed starting from 1 (row 0 is shared by the two tables).
11298
11299 ---
11300
11301 Hash table lookup is handled the same in version 1 and 2:
11302
11303 We assume that N and M will not exceed 2^32 - 1.
11304 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11305
11306 Given a 64-bit compilation unit signature or a type signature S, an entry
11307 in the hash table is located as follows:
11308
11309 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11310 the low-order k bits all set to 1.
11311
11312 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11313
11314 3) If the hash table entry at index H matches the signature, use that
11315 entry. If the hash table entry at index H is unused (all zeroes),
11316 terminate the search: the signature is not present in the table.
11317
11318 4) Let H = (H + H') modulo M. Repeat at Step 3.
11319
11320 Because M > N and H' and M are relatively prime, the search is guaranteed
11321 to stop at an unused slot or find the match. */
11322
11323 /* Create a hash table to map DWO IDs to their CU/TU entry in
11324 .debug_{info,types}.dwo in DWP_FILE.
11325 Returns NULL if there isn't one.
11326 Note: This function processes DWP files only, not DWO files. */
11327
11328 static struct dwp_hash_table *
11329 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11330 struct dwp_file *dwp_file, int is_debug_types)
11331 {
11332 struct objfile *objfile = dwarf2_per_objfile->objfile;
11333 bfd *dbfd = dwp_file->dbfd.get ();
11334 const gdb_byte *index_ptr, *index_end;
11335 struct dwarf2_section_info *index;
11336 uint32_t version, nr_columns, nr_units, nr_slots;
11337 struct dwp_hash_table *htab;
11338
11339 if (is_debug_types)
11340 index = &dwp_file->sections.tu_index;
11341 else
11342 index = &dwp_file->sections.cu_index;
11343
11344 if (index->empty ())
11345 return NULL;
11346 index->read (objfile);
11347
11348 index_ptr = index->buffer;
11349 index_end = index_ptr + index->size;
11350
11351 version = read_4_bytes (dbfd, index_ptr);
11352 index_ptr += 4;
11353 if (version == 2)
11354 nr_columns = read_4_bytes (dbfd, index_ptr);
11355 else
11356 nr_columns = 0;
11357 index_ptr += 4;
11358 nr_units = read_4_bytes (dbfd, index_ptr);
11359 index_ptr += 4;
11360 nr_slots = read_4_bytes (dbfd, index_ptr);
11361 index_ptr += 4;
11362
11363 if (version != 1 && version != 2)
11364 {
11365 error (_("Dwarf Error: unsupported DWP file version (%s)"
11366 " [in module %s]"),
11367 pulongest (version), dwp_file->name);
11368 }
11369 if (nr_slots != (nr_slots & -nr_slots))
11370 {
11371 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11372 " is not power of 2 [in module %s]"),
11373 pulongest (nr_slots), dwp_file->name);
11374 }
11375
11376 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11377 htab->version = version;
11378 htab->nr_columns = nr_columns;
11379 htab->nr_units = nr_units;
11380 htab->nr_slots = nr_slots;
11381 htab->hash_table = index_ptr;
11382 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11383
11384 /* Exit early if the table is empty. */
11385 if (nr_slots == 0 || nr_units == 0
11386 || (version == 2 && nr_columns == 0))
11387 {
11388 /* All must be zero. */
11389 if (nr_slots != 0 || nr_units != 0
11390 || (version == 2 && nr_columns != 0))
11391 {
11392 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11393 " all zero [in modules %s]"),
11394 dwp_file->name);
11395 }
11396 return htab;
11397 }
11398
11399 if (version == 1)
11400 {
11401 htab->section_pool.v1.indices =
11402 htab->unit_table + sizeof (uint32_t) * nr_slots;
11403 /* It's harder to decide whether the section is too small in v1.
11404 V1 is deprecated anyway so we punt. */
11405 }
11406 else
11407 {
11408 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11409 int *ids = htab->section_pool.v2.section_ids;
11410 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11411 /* Reverse map for error checking. */
11412 int ids_seen[DW_SECT_MAX + 1];
11413 int i;
11414
11415 if (nr_columns < 2)
11416 {
11417 error (_("Dwarf Error: bad DWP hash table, too few columns"
11418 " in section table [in module %s]"),
11419 dwp_file->name);
11420 }
11421 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11422 {
11423 error (_("Dwarf Error: bad DWP hash table, too many columns"
11424 " in section table [in module %s]"),
11425 dwp_file->name);
11426 }
11427 memset (ids, 255, sizeof_ids);
11428 memset (ids_seen, 255, sizeof (ids_seen));
11429 for (i = 0; i < nr_columns; ++i)
11430 {
11431 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11432
11433 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11434 {
11435 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11436 " in section table [in module %s]"),
11437 id, dwp_file->name);
11438 }
11439 if (ids_seen[id] != -1)
11440 {
11441 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11442 " id %d in section table [in module %s]"),
11443 id, dwp_file->name);
11444 }
11445 ids_seen[id] = i;
11446 ids[i] = id;
11447 }
11448 /* Must have exactly one info or types section. */
11449 if (((ids_seen[DW_SECT_INFO] != -1)
11450 + (ids_seen[DW_SECT_TYPES] != -1))
11451 != 1)
11452 {
11453 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11454 " DWO info/types section [in module %s]"),
11455 dwp_file->name);
11456 }
11457 /* Must have an abbrev section. */
11458 if (ids_seen[DW_SECT_ABBREV] == -1)
11459 {
11460 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11461 " section [in module %s]"),
11462 dwp_file->name);
11463 }
11464 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11465 htab->section_pool.v2.sizes =
11466 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11467 * nr_units * nr_columns);
11468 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11469 * nr_units * nr_columns))
11470 > index_end)
11471 {
11472 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11473 " [in module %s]"),
11474 dwp_file->name);
11475 }
11476 }
11477
11478 return htab;
11479 }
11480
11481 /* Update SECTIONS with the data from SECTP.
11482
11483 This function is like the other "locate" section routines that are
11484 passed to bfd_map_over_sections, but in this context the sections to
11485 read comes from the DWP V1 hash table, not the full ELF section table.
11486
11487 The result is non-zero for success, or zero if an error was found. */
11488
11489 static int
11490 locate_v1_virtual_dwo_sections (asection *sectp,
11491 struct virtual_v1_dwo_sections *sections)
11492 {
11493 const struct dwop_section_names *names = &dwop_section_names;
11494
11495 if (section_is_p (sectp->name, &names->abbrev_dwo))
11496 {
11497 /* There can be only one. */
11498 if (sections->abbrev.s.section != NULL)
11499 return 0;
11500 sections->abbrev.s.section = sectp;
11501 sections->abbrev.size = bfd_section_size (sectp);
11502 }
11503 else if (section_is_p (sectp->name, &names->info_dwo)
11504 || section_is_p (sectp->name, &names->types_dwo))
11505 {
11506 /* There can be only one. */
11507 if (sections->info_or_types.s.section != NULL)
11508 return 0;
11509 sections->info_or_types.s.section = sectp;
11510 sections->info_or_types.size = bfd_section_size (sectp);
11511 }
11512 else if (section_is_p (sectp->name, &names->line_dwo))
11513 {
11514 /* There can be only one. */
11515 if (sections->line.s.section != NULL)
11516 return 0;
11517 sections->line.s.section = sectp;
11518 sections->line.size = bfd_section_size (sectp);
11519 }
11520 else if (section_is_p (sectp->name, &names->loc_dwo))
11521 {
11522 /* There can be only one. */
11523 if (sections->loc.s.section != NULL)
11524 return 0;
11525 sections->loc.s.section = sectp;
11526 sections->loc.size = bfd_section_size (sectp);
11527 }
11528 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11529 {
11530 /* There can be only one. */
11531 if (sections->macinfo.s.section != NULL)
11532 return 0;
11533 sections->macinfo.s.section = sectp;
11534 sections->macinfo.size = bfd_section_size (sectp);
11535 }
11536 else if (section_is_p (sectp->name, &names->macro_dwo))
11537 {
11538 /* There can be only one. */
11539 if (sections->macro.s.section != NULL)
11540 return 0;
11541 sections->macro.s.section = sectp;
11542 sections->macro.size = bfd_section_size (sectp);
11543 }
11544 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11545 {
11546 /* There can be only one. */
11547 if (sections->str_offsets.s.section != NULL)
11548 return 0;
11549 sections->str_offsets.s.section = sectp;
11550 sections->str_offsets.size = bfd_section_size (sectp);
11551 }
11552 else
11553 {
11554 /* No other kind of section is valid. */
11555 return 0;
11556 }
11557
11558 return 1;
11559 }
11560
11561 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11562 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11563 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11564 This is for DWP version 1 files. */
11565
11566 static struct dwo_unit *
11567 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11568 struct dwp_file *dwp_file,
11569 uint32_t unit_index,
11570 const char *comp_dir,
11571 ULONGEST signature, int is_debug_types)
11572 {
11573 struct objfile *objfile = dwarf2_per_objfile->objfile;
11574 const struct dwp_hash_table *dwp_htab =
11575 is_debug_types ? dwp_file->tus : dwp_file->cus;
11576 bfd *dbfd = dwp_file->dbfd.get ();
11577 const char *kind = is_debug_types ? "TU" : "CU";
11578 struct dwo_file *dwo_file;
11579 struct dwo_unit *dwo_unit;
11580 struct virtual_v1_dwo_sections sections;
11581 void **dwo_file_slot;
11582 int i;
11583
11584 gdb_assert (dwp_file->version == 1);
11585
11586 if (dwarf_read_debug)
11587 {
11588 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11589 kind,
11590 pulongest (unit_index), hex_string (signature),
11591 dwp_file->name);
11592 }
11593
11594 /* Fetch the sections of this DWO unit.
11595 Put a limit on the number of sections we look for so that bad data
11596 doesn't cause us to loop forever. */
11597
11598 #define MAX_NR_V1_DWO_SECTIONS \
11599 (1 /* .debug_info or .debug_types */ \
11600 + 1 /* .debug_abbrev */ \
11601 + 1 /* .debug_line */ \
11602 + 1 /* .debug_loc */ \
11603 + 1 /* .debug_str_offsets */ \
11604 + 1 /* .debug_macro or .debug_macinfo */ \
11605 + 1 /* trailing zero */)
11606
11607 memset (&sections, 0, sizeof (sections));
11608
11609 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11610 {
11611 asection *sectp;
11612 uint32_t section_nr =
11613 read_4_bytes (dbfd,
11614 dwp_htab->section_pool.v1.indices
11615 + (unit_index + i) * sizeof (uint32_t));
11616
11617 if (section_nr == 0)
11618 break;
11619 if (section_nr >= dwp_file->num_sections)
11620 {
11621 error (_("Dwarf Error: bad DWP hash table, section number too large"
11622 " [in module %s]"),
11623 dwp_file->name);
11624 }
11625
11626 sectp = dwp_file->elf_sections[section_nr];
11627 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11628 {
11629 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11630 " [in module %s]"),
11631 dwp_file->name);
11632 }
11633 }
11634
11635 if (i < 2
11636 || sections.info_or_types.empty ()
11637 || sections.abbrev.empty ())
11638 {
11639 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11640 " [in module %s]"),
11641 dwp_file->name);
11642 }
11643 if (i == MAX_NR_V1_DWO_SECTIONS)
11644 {
11645 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11646 " [in module %s]"),
11647 dwp_file->name);
11648 }
11649
11650 /* It's easier for the rest of the code if we fake a struct dwo_file and
11651 have dwo_unit "live" in that. At least for now.
11652
11653 The DWP file can be made up of a random collection of CUs and TUs.
11654 However, for each CU + set of TUs that came from the same original DWO
11655 file, we can combine them back into a virtual DWO file to save space
11656 (fewer struct dwo_file objects to allocate). Remember that for really
11657 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11658
11659 std::string virtual_dwo_name =
11660 string_printf ("virtual-dwo/%d-%d-%d-%d",
11661 sections.abbrev.get_id (),
11662 sections.line.get_id (),
11663 sections.loc.get_id (),
11664 sections.str_offsets.get_id ());
11665 /* Can we use an existing virtual DWO file? */
11666 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11667 virtual_dwo_name.c_str (),
11668 comp_dir);
11669 /* Create one if necessary. */
11670 if (*dwo_file_slot == NULL)
11671 {
11672 if (dwarf_read_debug)
11673 {
11674 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11675 virtual_dwo_name.c_str ());
11676 }
11677 dwo_file = new struct dwo_file;
11678 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11679 dwo_file->comp_dir = comp_dir;
11680 dwo_file->sections.abbrev = sections.abbrev;
11681 dwo_file->sections.line = sections.line;
11682 dwo_file->sections.loc = sections.loc;
11683 dwo_file->sections.macinfo = sections.macinfo;
11684 dwo_file->sections.macro = sections.macro;
11685 dwo_file->sections.str_offsets = sections.str_offsets;
11686 /* The "str" section is global to the entire DWP file. */
11687 dwo_file->sections.str = dwp_file->sections.str;
11688 /* The info or types section is assigned below to dwo_unit,
11689 there's no need to record it in dwo_file.
11690 Also, we can't simply record type sections in dwo_file because
11691 we record a pointer into the vector in dwo_unit. As we collect more
11692 types we'll grow the vector and eventually have to reallocate space
11693 for it, invalidating all copies of pointers into the previous
11694 contents. */
11695 *dwo_file_slot = dwo_file;
11696 }
11697 else
11698 {
11699 if (dwarf_read_debug)
11700 {
11701 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11702 virtual_dwo_name.c_str ());
11703 }
11704 dwo_file = (struct dwo_file *) *dwo_file_slot;
11705 }
11706
11707 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11708 dwo_unit->dwo_file = dwo_file;
11709 dwo_unit->signature = signature;
11710 dwo_unit->section =
11711 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11712 *dwo_unit->section = sections.info_or_types;
11713 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11714
11715 return dwo_unit;
11716 }
11717
11718 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11719 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11720 piece within that section used by a TU/CU, return a virtual section
11721 of just that piece. */
11722
11723 static struct dwarf2_section_info
11724 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11725 struct dwarf2_section_info *section,
11726 bfd_size_type offset, bfd_size_type size)
11727 {
11728 struct dwarf2_section_info result;
11729 asection *sectp;
11730
11731 gdb_assert (section != NULL);
11732 gdb_assert (!section->is_virtual);
11733
11734 memset (&result, 0, sizeof (result));
11735 result.s.containing_section = section;
11736 result.is_virtual = true;
11737
11738 if (size == 0)
11739 return result;
11740
11741 sectp = section->get_bfd_section ();
11742
11743 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11744 bounds of the real section. This is a pretty-rare event, so just
11745 flag an error (easier) instead of a warning and trying to cope. */
11746 if (sectp == NULL
11747 || offset + size > bfd_section_size (sectp))
11748 {
11749 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11750 " in section %s [in module %s]"),
11751 sectp ? bfd_section_name (sectp) : "<unknown>",
11752 objfile_name (dwarf2_per_objfile->objfile));
11753 }
11754
11755 result.virtual_offset = offset;
11756 result.size = size;
11757 return result;
11758 }
11759
11760 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11761 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11762 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11763 This is for DWP version 2 files. */
11764
11765 static struct dwo_unit *
11766 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11767 struct dwp_file *dwp_file,
11768 uint32_t unit_index,
11769 const char *comp_dir,
11770 ULONGEST signature, int is_debug_types)
11771 {
11772 struct objfile *objfile = dwarf2_per_objfile->objfile;
11773 const struct dwp_hash_table *dwp_htab =
11774 is_debug_types ? dwp_file->tus : dwp_file->cus;
11775 bfd *dbfd = dwp_file->dbfd.get ();
11776 const char *kind = is_debug_types ? "TU" : "CU";
11777 struct dwo_file *dwo_file;
11778 struct dwo_unit *dwo_unit;
11779 struct virtual_v2_dwo_sections sections;
11780 void **dwo_file_slot;
11781 int i;
11782
11783 gdb_assert (dwp_file->version == 2);
11784
11785 if (dwarf_read_debug)
11786 {
11787 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11788 kind,
11789 pulongest (unit_index), hex_string (signature),
11790 dwp_file->name);
11791 }
11792
11793 /* Fetch the section offsets of this DWO unit. */
11794
11795 memset (&sections, 0, sizeof (sections));
11796
11797 for (i = 0; i < dwp_htab->nr_columns; ++i)
11798 {
11799 uint32_t offset = read_4_bytes (dbfd,
11800 dwp_htab->section_pool.v2.offsets
11801 + (((unit_index - 1) * dwp_htab->nr_columns
11802 + i)
11803 * sizeof (uint32_t)));
11804 uint32_t size = read_4_bytes (dbfd,
11805 dwp_htab->section_pool.v2.sizes
11806 + (((unit_index - 1) * dwp_htab->nr_columns
11807 + i)
11808 * sizeof (uint32_t)));
11809
11810 switch (dwp_htab->section_pool.v2.section_ids[i])
11811 {
11812 case DW_SECT_INFO:
11813 case DW_SECT_TYPES:
11814 sections.info_or_types_offset = offset;
11815 sections.info_or_types_size = size;
11816 break;
11817 case DW_SECT_ABBREV:
11818 sections.abbrev_offset = offset;
11819 sections.abbrev_size = size;
11820 break;
11821 case DW_SECT_LINE:
11822 sections.line_offset = offset;
11823 sections.line_size = size;
11824 break;
11825 case DW_SECT_LOC:
11826 sections.loc_offset = offset;
11827 sections.loc_size = size;
11828 break;
11829 case DW_SECT_STR_OFFSETS:
11830 sections.str_offsets_offset = offset;
11831 sections.str_offsets_size = size;
11832 break;
11833 case DW_SECT_MACINFO:
11834 sections.macinfo_offset = offset;
11835 sections.macinfo_size = size;
11836 break;
11837 case DW_SECT_MACRO:
11838 sections.macro_offset = offset;
11839 sections.macro_size = size;
11840 break;
11841 }
11842 }
11843
11844 /* It's easier for the rest of the code if we fake a struct dwo_file and
11845 have dwo_unit "live" in that. At least for now.
11846
11847 The DWP file can be made up of a random collection of CUs and TUs.
11848 However, for each CU + set of TUs that came from the same original DWO
11849 file, we can combine them back into a virtual DWO file to save space
11850 (fewer struct dwo_file objects to allocate). Remember that for really
11851 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11852
11853 std::string virtual_dwo_name =
11854 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11855 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11856 (long) (sections.line_size ? sections.line_offset : 0),
11857 (long) (sections.loc_size ? sections.loc_offset : 0),
11858 (long) (sections.str_offsets_size
11859 ? sections.str_offsets_offset : 0));
11860 /* Can we use an existing virtual DWO file? */
11861 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11862 virtual_dwo_name.c_str (),
11863 comp_dir);
11864 /* Create one if necessary. */
11865 if (*dwo_file_slot == NULL)
11866 {
11867 if (dwarf_read_debug)
11868 {
11869 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11870 virtual_dwo_name.c_str ());
11871 }
11872 dwo_file = new struct dwo_file;
11873 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11874 dwo_file->comp_dir = comp_dir;
11875 dwo_file->sections.abbrev =
11876 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11877 sections.abbrev_offset, sections.abbrev_size);
11878 dwo_file->sections.line =
11879 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11880 sections.line_offset, sections.line_size);
11881 dwo_file->sections.loc =
11882 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11883 sections.loc_offset, sections.loc_size);
11884 dwo_file->sections.macinfo =
11885 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11886 sections.macinfo_offset, sections.macinfo_size);
11887 dwo_file->sections.macro =
11888 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11889 sections.macro_offset, sections.macro_size);
11890 dwo_file->sections.str_offsets =
11891 create_dwp_v2_section (dwarf2_per_objfile,
11892 &dwp_file->sections.str_offsets,
11893 sections.str_offsets_offset,
11894 sections.str_offsets_size);
11895 /* The "str" section is global to the entire DWP file. */
11896 dwo_file->sections.str = dwp_file->sections.str;
11897 /* The info or types section is assigned below to dwo_unit,
11898 there's no need to record it in dwo_file.
11899 Also, we can't simply record type sections in dwo_file because
11900 we record a pointer into the vector in dwo_unit. As we collect more
11901 types we'll grow the vector and eventually have to reallocate space
11902 for it, invalidating all copies of pointers into the previous
11903 contents. */
11904 *dwo_file_slot = dwo_file;
11905 }
11906 else
11907 {
11908 if (dwarf_read_debug)
11909 {
11910 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11911 virtual_dwo_name.c_str ());
11912 }
11913 dwo_file = (struct dwo_file *) *dwo_file_slot;
11914 }
11915
11916 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11917 dwo_unit->dwo_file = dwo_file;
11918 dwo_unit->signature = signature;
11919 dwo_unit->section =
11920 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11921 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11922 is_debug_types
11923 ? &dwp_file->sections.types
11924 : &dwp_file->sections.info,
11925 sections.info_or_types_offset,
11926 sections.info_or_types_size);
11927 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11928
11929 return dwo_unit;
11930 }
11931
11932 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11933 Returns NULL if the signature isn't found. */
11934
11935 static struct dwo_unit *
11936 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11937 struct dwp_file *dwp_file, const char *comp_dir,
11938 ULONGEST signature, int is_debug_types)
11939 {
11940 const struct dwp_hash_table *dwp_htab =
11941 is_debug_types ? dwp_file->tus : dwp_file->cus;
11942 bfd *dbfd = dwp_file->dbfd.get ();
11943 uint32_t mask = dwp_htab->nr_slots - 1;
11944 uint32_t hash = signature & mask;
11945 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11946 unsigned int i;
11947 void **slot;
11948 struct dwo_unit find_dwo_cu;
11949
11950 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11951 find_dwo_cu.signature = signature;
11952 slot = htab_find_slot (is_debug_types
11953 ? dwp_file->loaded_tus.get ()
11954 : dwp_file->loaded_cus.get (),
11955 &find_dwo_cu, INSERT);
11956
11957 if (*slot != NULL)
11958 return (struct dwo_unit *) *slot;
11959
11960 /* Use a for loop so that we don't loop forever on bad debug info. */
11961 for (i = 0; i < dwp_htab->nr_slots; ++i)
11962 {
11963 ULONGEST signature_in_table;
11964
11965 signature_in_table =
11966 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11967 if (signature_in_table == signature)
11968 {
11969 uint32_t unit_index =
11970 read_4_bytes (dbfd,
11971 dwp_htab->unit_table + hash * sizeof (uint32_t));
11972
11973 if (dwp_file->version == 1)
11974 {
11975 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11976 dwp_file, unit_index,
11977 comp_dir, signature,
11978 is_debug_types);
11979 }
11980 else
11981 {
11982 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11983 dwp_file, unit_index,
11984 comp_dir, signature,
11985 is_debug_types);
11986 }
11987 return (struct dwo_unit *) *slot;
11988 }
11989 if (signature_in_table == 0)
11990 return NULL;
11991 hash = (hash + hash2) & mask;
11992 }
11993
11994 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11995 " [in module %s]"),
11996 dwp_file->name);
11997 }
11998
11999 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12000 Open the file specified by FILE_NAME and hand it off to BFD for
12001 preliminary analysis. Return a newly initialized bfd *, which
12002 includes a canonicalized copy of FILE_NAME.
12003 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12004 SEARCH_CWD is true if the current directory is to be searched.
12005 It will be searched before debug-file-directory.
12006 If successful, the file is added to the bfd include table of the
12007 objfile's bfd (see gdb_bfd_record_inclusion).
12008 If unable to find/open the file, return NULL.
12009 NOTE: This function is derived from symfile_bfd_open. */
12010
12011 static gdb_bfd_ref_ptr
12012 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12013 const char *file_name, int is_dwp, int search_cwd)
12014 {
12015 int desc;
12016 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12017 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12018 to debug_file_directory. */
12019 const char *search_path;
12020 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12021
12022 gdb::unique_xmalloc_ptr<char> search_path_holder;
12023 if (search_cwd)
12024 {
12025 if (*debug_file_directory != '\0')
12026 {
12027 search_path_holder.reset (concat (".", dirname_separator_string,
12028 debug_file_directory,
12029 (char *) NULL));
12030 search_path = search_path_holder.get ();
12031 }
12032 else
12033 search_path = ".";
12034 }
12035 else
12036 search_path = debug_file_directory;
12037
12038 openp_flags flags = OPF_RETURN_REALPATH;
12039 if (is_dwp)
12040 flags |= OPF_SEARCH_IN_PATH;
12041
12042 gdb::unique_xmalloc_ptr<char> absolute_name;
12043 desc = openp (search_path, flags, file_name,
12044 O_RDONLY | O_BINARY, &absolute_name);
12045 if (desc < 0)
12046 return NULL;
12047
12048 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12049 gnutarget, desc));
12050 if (sym_bfd == NULL)
12051 return NULL;
12052 bfd_set_cacheable (sym_bfd.get (), 1);
12053
12054 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12055 return NULL;
12056
12057 /* Success. Record the bfd as having been included by the objfile's bfd.
12058 This is important because things like demangled_names_hash lives in the
12059 objfile's per_bfd space and may have references to things like symbol
12060 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12061 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12062
12063 return sym_bfd;
12064 }
12065
12066 /* Try to open DWO file FILE_NAME.
12067 COMP_DIR is the DW_AT_comp_dir attribute.
12068 The result is the bfd handle of the file.
12069 If there is a problem finding or opening the file, return NULL.
12070 Upon success, the canonicalized path of the file is stored in the bfd,
12071 same as symfile_bfd_open. */
12072
12073 static gdb_bfd_ref_ptr
12074 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12075 const char *file_name, const char *comp_dir)
12076 {
12077 if (IS_ABSOLUTE_PATH (file_name))
12078 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12079 0 /*is_dwp*/, 0 /*search_cwd*/);
12080
12081 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12082
12083 if (comp_dir != NULL)
12084 {
12085 gdb::unique_xmalloc_ptr<char> path_to_try
12086 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12087
12088 /* NOTE: If comp_dir is a relative path, this will also try the
12089 search path, which seems useful. */
12090 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12091 path_to_try.get (),
12092 0 /*is_dwp*/,
12093 1 /*search_cwd*/));
12094 if (abfd != NULL)
12095 return abfd;
12096 }
12097
12098 /* That didn't work, try debug-file-directory, which, despite its name,
12099 is a list of paths. */
12100
12101 if (*debug_file_directory == '\0')
12102 return NULL;
12103
12104 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12105 0 /*is_dwp*/, 1 /*search_cwd*/);
12106 }
12107
12108 /* This function is mapped across the sections and remembers the offset and
12109 size of each of the DWO debugging sections we are interested in. */
12110
12111 static void
12112 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12113 {
12114 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12115 const struct dwop_section_names *names = &dwop_section_names;
12116
12117 if (section_is_p (sectp->name, &names->abbrev_dwo))
12118 {
12119 dwo_sections->abbrev.s.section = sectp;
12120 dwo_sections->abbrev.size = bfd_section_size (sectp);
12121 }
12122 else if (section_is_p (sectp->name, &names->info_dwo))
12123 {
12124 dwo_sections->info.s.section = sectp;
12125 dwo_sections->info.size = bfd_section_size (sectp);
12126 }
12127 else if (section_is_p (sectp->name, &names->line_dwo))
12128 {
12129 dwo_sections->line.s.section = sectp;
12130 dwo_sections->line.size = bfd_section_size (sectp);
12131 }
12132 else if (section_is_p (sectp->name, &names->loc_dwo))
12133 {
12134 dwo_sections->loc.s.section = sectp;
12135 dwo_sections->loc.size = bfd_section_size (sectp);
12136 }
12137 else if (section_is_p (sectp->name, &names->loclists_dwo))
12138 {
12139 dwo_sections->loclists.s.section = sectp;
12140 dwo_sections->loclists.size = bfd_section_size (sectp);
12141 }
12142 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12143 {
12144 dwo_sections->macinfo.s.section = sectp;
12145 dwo_sections->macinfo.size = bfd_section_size (sectp);
12146 }
12147 else if (section_is_p (sectp->name, &names->macro_dwo))
12148 {
12149 dwo_sections->macro.s.section = sectp;
12150 dwo_sections->macro.size = bfd_section_size (sectp);
12151 }
12152 else if (section_is_p (sectp->name, &names->str_dwo))
12153 {
12154 dwo_sections->str.s.section = sectp;
12155 dwo_sections->str.size = bfd_section_size (sectp);
12156 }
12157 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12158 {
12159 dwo_sections->str_offsets.s.section = sectp;
12160 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12161 }
12162 else if (section_is_p (sectp->name, &names->types_dwo))
12163 {
12164 struct dwarf2_section_info type_section;
12165
12166 memset (&type_section, 0, sizeof (type_section));
12167 type_section.s.section = sectp;
12168 type_section.size = bfd_section_size (sectp);
12169 dwo_sections->types.push_back (type_section);
12170 }
12171 }
12172
12173 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12174 by PER_CU. This is for the non-DWP case.
12175 The result is NULL if DWO_NAME can't be found. */
12176
12177 static struct dwo_file *
12178 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12179 const char *dwo_name, const char *comp_dir)
12180 {
12181 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12182
12183 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12184 if (dbfd == NULL)
12185 {
12186 if (dwarf_read_debug)
12187 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12188 return NULL;
12189 }
12190
12191 dwo_file_up dwo_file (new struct dwo_file);
12192 dwo_file->dwo_name = dwo_name;
12193 dwo_file->comp_dir = comp_dir;
12194 dwo_file->dbfd = std::move (dbfd);
12195
12196 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12197 &dwo_file->sections);
12198
12199 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12200 dwo_file->sections.info, dwo_file->cus);
12201
12202 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12203 dwo_file->sections.types, dwo_file->tus);
12204
12205 if (dwarf_read_debug)
12206 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12207
12208 return dwo_file.release ();
12209 }
12210
12211 /* This function is mapped across the sections and remembers the offset and
12212 size of each of the DWP debugging sections common to version 1 and 2 that
12213 we are interested in. */
12214
12215 static void
12216 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12217 void *dwp_file_ptr)
12218 {
12219 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12220 const struct dwop_section_names *names = &dwop_section_names;
12221 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12222
12223 /* Record the ELF section number for later lookup: this is what the
12224 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12225 gdb_assert (elf_section_nr < dwp_file->num_sections);
12226 dwp_file->elf_sections[elf_section_nr] = sectp;
12227
12228 /* Look for specific sections that we need. */
12229 if (section_is_p (sectp->name, &names->str_dwo))
12230 {
12231 dwp_file->sections.str.s.section = sectp;
12232 dwp_file->sections.str.size = bfd_section_size (sectp);
12233 }
12234 else if (section_is_p (sectp->name, &names->cu_index))
12235 {
12236 dwp_file->sections.cu_index.s.section = sectp;
12237 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12238 }
12239 else if (section_is_p (sectp->name, &names->tu_index))
12240 {
12241 dwp_file->sections.tu_index.s.section = sectp;
12242 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12243 }
12244 }
12245
12246 /* This function is mapped across the sections and remembers the offset and
12247 size of each of the DWP version 2 debugging sections that we are interested
12248 in. This is split into a separate function because we don't know if we
12249 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12250
12251 static void
12252 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12253 {
12254 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12255 const struct dwop_section_names *names = &dwop_section_names;
12256 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12257
12258 /* Record the ELF section number for later lookup: this is what the
12259 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12260 gdb_assert (elf_section_nr < dwp_file->num_sections);
12261 dwp_file->elf_sections[elf_section_nr] = sectp;
12262
12263 /* Look for specific sections that we need. */
12264 if (section_is_p (sectp->name, &names->abbrev_dwo))
12265 {
12266 dwp_file->sections.abbrev.s.section = sectp;
12267 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12268 }
12269 else if (section_is_p (sectp->name, &names->info_dwo))
12270 {
12271 dwp_file->sections.info.s.section = sectp;
12272 dwp_file->sections.info.size = bfd_section_size (sectp);
12273 }
12274 else if (section_is_p (sectp->name, &names->line_dwo))
12275 {
12276 dwp_file->sections.line.s.section = sectp;
12277 dwp_file->sections.line.size = bfd_section_size (sectp);
12278 }
12279 else if (section_is_p (sectp->name, &names->loc_dwo))
12280 {
12281 dwp_file->sections.loc.s.section = sectp;
12282 dwp_file->sections.loc.size = bfd_section_size (sectp);
12283 }
12284 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12285 {
12286 dwp_file->sections.macinfo.s.section = sectp;
12287 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12288 }
12289 else if (section_is_p (sectp->name, &names->macro_dwo))
12290 {
12291 dwp_file->sections.macro.s.section = sectp;
12292 dwp_file->sections.macro.size = bfd_section_size (sectp);
12293 }
12294 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12295 {
12296 dwp_file->sections.str_offsets.s.section = sectp;
12297 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12298 }
12299 else if (section_is_p (sectp->name, &names->types_dwo))
12300 {
12301 dwp_file->sections.types.s.section = sectp;
12302 dwp_file->sections.types.size = bfd_section_size (sectp);
12303 }
12304 }
12305
12306 /* Hash function for dwp_file loaded CUs/TUs. */
12307
12308 static hashval_t
12309 hash_dwp_loaded_cutus (const void *item)
12310 {
12311 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12312
12313 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12314 return dwo_unit->signature;
12315 }
12316
12317 /* Equality function for dwp_file loaded CUs/TUs. */
12318
12319 static int
12320 eq_dwp_loaded_cutus (const void *a, const void *b)
12321 {
12322 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12323 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12324
12325 return dua->signature == dub->signature;
12326 }
12327
12328 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12329
12330 static htab_up
12331 allocate_dwp_loaded_cutus_table ()
12332 {
12333 return htab_up (htab_create_alloc (3,
12334 hash_dwp_loaded_cutus,
12335 eq_dwp_loaded_cutus,
12336 NULL, xcalloc, xfree));
12337 }
12338
12339 /* Try to open DWP file FILE_NAME.
12340 The result is the bfd handle of the file.
12341 If there is a problem finding or opening the file, return NULL.
12342 Upon success, the canonicalized path of the file is stored in the bfd,
12343 same as symfile_bfd_open. */
12344
12345 static gdb_bfd_ref_ptr
12346 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12347 const char *file_name)
12348 {
12349 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12350 1 /*is_dwp*/,
12351 1 /*search_cwd*/));
12352 if (abfd != NULL)
12353 return abfd;
12354
12355 /* Work around upstream bug 15652.
12356 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12357 [Whether that's a "bug" is debatable, but it is getting in our way.]
12358 We have no real idea where the dwp file is, because gdb's realpath-ing
12359 of the executable's path may have discarded the needed info.
12360 [IWBN if the dwp file name was recorded in the executable, akin to
12361 .gnu_debuglink, but that doesn't exist yet.]
12362 Strip the directory from FILE_NAME and search again. */
12363 if (*debug_file_directory != '\0')
12364 {
12365 /* Don't implicitly search the current directory here.
12366 If the user wants to search "." to handle this case,
12367 it must be added to debug-file-directory. */
12368 return try_open_dwop_file (dwarf2_per_objfile,
12369 lbasename (file_name), 1 /*is_dwp*/,
12370 0 /*search_cwd*/);
12371 }
12372
12373 return NULL;
12374 }
12375
12376 /* Initialize the use of the DWP file for the current objfile.
12377 By convention the name of the DWP file is ${objfile}.dwp.
12378 The result is NULL if it can't be found. */
12379
12380 static std::unique_ptr<struct dwp_file>
12381 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12382 {
12383 struct objfile *objfile = dwarf2_per_objfile->objfile;
12384
12385 /* Try to find first .dwp for the binary file before any symbolic links
12386 resolving. */
12387
12388 /* If the objfile is a debug file, find the name of the real binary
12389 file and get the name of dwp file from there. */
12390 std::string dwp_name;
12391 if (objfile->separate_debug_objfile_backlink != NULL)
12392 {
12393 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12394 const char *backlink_basename = lbasename (backlink->original_name);
12395
12396 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12397 }
12398 else
12399 dwp_name = objfile->original_name;
12400
12401 dwp_name += ".dwp";
12402
12403 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12404 if (dbfd == NULL
12405 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12406 {
12407 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12408 dwp_name = objfile_name (objfile);
12409 dwp_name += ".dwp";
12410 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12411 }
12412
12413 if (dbfd == NULL)
12414 {
12415 if (dwarf_read_debug)
12416 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12417 return std::unique_ptr<dwp_file> ();
12418 }
12419
12420 const char *name = bfd_get_filename (dbfd.get ());
12421 std::unique_ptr<struct dwp_file> dwp_file
12422 (new struct dwp_file (name, std::move (dbfd)));
12423
12424 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12425 dwp_file->elf_sections =
12426 OBSTACK_CALLOC (&objfile->objfile_obstack,
12427 dwp_file->num_sections, asection *);
12428
12429 bfd_map_over_sections (dwp_file->dbfd.get (),
12430 dwarf2_locate_common_dwp_sections,
12431 dwp_file.get ());
12432
12433 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12434 0);
12435
12436 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12437 1);
12438
12439 /* The DWP file version is stored in the hash table. Oh well. */
12440 if (dwp_file->cus && dwp_file->tus
12441 && dwp_file->cus->version != dwp_file->tus->version)
12442 {
12443 /* Technically speaking, we should try to limp along, but this is
12444 pretty bizarre. We use pulongest here because that's the established
12445 portability solution (e.g, we cannot use %u for uint32_t). */
12446 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12447 " TU version %s [in DWP file %s]"),
12448 pulongest (dwp_file->cus->version),
12449 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12450 }
12451
12452 if (dwp_file->cus)
12453 dwp_file->version = dwp_file->cus->version;
12454 else if (dwp_file->tus)
12455 dwp_file->version = dwp_file->tus->version;
12456 else
12457 dwp_file->version = 2;
12458
12459 if (dwp_file->version == 2)
12460 bfd_map_over_sections (dwp_file->dbfd.get (),
12461 dwarf2_locate_v2_dwp_sections,
12462 dwp_file.get ());
12463
12464 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12465 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12466
12467 if (dwarf_read_debug)
12468 {
12469 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12470 fprintf_unfiltered (gdb_stdlog,
12471 " %s CUs, %s TUs\n",
12472 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12473 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12474 }
12475
12476 return dwp_file;
12477 }
12478
12479 /* Wrapper around open_and_init_dwp_file, only open it once. */
12480
12481 static struct dwp_file *
12482 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12483 {
12484 if (! dwarf2_per_objfile->dwp_checked)
12485 {
12486 dwarf2_per_objfile->dwp_file
12487 = open_and_init_dwp_file (dwarf2_per_objfile);
12488 dwarf2_per_objfile->dwp_checked = 1;
12489 }
12490 return dwarf2_per_objfile->dwp_file.get ();
12491 }
12492
12493 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12494 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12495 or in the DWP file for the objfile, referenced by THIS_UNIT.
12496 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12497 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12498
12499 This is called, for example, when wanting to read a variable with a
12500 complex location. Therefore we don't want to do file i/o for every call.
12501 Therefore we don't want to look for a DWO file on every call.
12502 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12503 then we check if we've already seen DWO_NAME, and only THEN do we check
12504 for a DWO file.
12505
12506 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12507 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12508
12509 static struct dwo_unit *
12510 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12511 const char *dwo_name, const char *comp_dir,
12512 ULONGEST signature, int is_debug_types)
12513 {
12514 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12515 struct objfile *objfile = dwarf2_per_objfile->objfile;
12516 const char *kind = is_debug_types ? "TU" : "CU";
12517 void **dwo_file_slot;
12518 struct dwo_file *dwo_file;
12519 struct dwp_file *dwp_file;
12520
12521 /* First see if there's a DWP file.
12522 If we have a DWP file but didn't find the DWO inside it, don't
12523 look for the original DWO file. It makes gdb behave differently
12524 depending on whether one is debugging in the build tree. */
12525
12526 dwp_file = get_dwp_file (dwarf2_per_objfile);
12527 if (dwp_file != NULL)
12528 {
12529 const struct dwp_hash_table *dwp_htab =
12530 is_debug_types ? dwp_file->tus : dwp_file->cus;
12531
12532 if (dwp_htab != NULL)
12533 {
12534 struct dwo_unit *dwo_cutu =
12535 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12536 signature, is_debug_types);
12537
12538 if (dwo_cutu != NULL)
12539 {
12540 if (dwarf_read_debug)
12541 {
12542 fprintf_unfiltered (gdb_stdlog,
12543 "Virtual DWO %s %s found: @%s\n",
12544 kind, hex_string (signature),
12545 host_address_to_string (dwo_cutu));
12546 }
12547 return dwo_cutu;
12548 }
12549 }
12550 }
12551 else
12552 {
12553 /* No DWP file, look for the DWO file. */
12554
12555 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12556 dwo_name, comp_dir);
12557 if (*dwo_file_slot == NULL)
12558 {
12559 /* Read in the file and build a table of the CUs/TUs it contains. */
12560 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12561 }
12562 /* NOTE: This will be NULL if unable to open the file. */
12563 dwo_file = (struct dwo_file *) *dwo_file_slot;
12564
12565 if (dwo_file != NULL)
12566 {
12567 struct dwo_unit *dwo_cutu = NULL;
12568
12569 if (is_debug_types && dwo_file->tus)
12570 {
12571 struct dwo_unit find_dwo_cutu;
12572
12573 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12574 find_dwo_cutu.signature = signature;
12575 dwo_cutu
12576 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12577 &find_dwo_cutu);
12578 }
12579 else if (!is_debug_types && dwo_file->cus)
12580 {
12581 struct dwo_unit find_dwo_cutu;
12582
12583 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12584 find_dwo_cutu.signature = signature;
12585 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12586 &find_dwo_cutu);
12587 }
12588
12589 if (dwo_cutu != NULL)
12590 {
12591 if (dwarf_read_debug)
12592 {
12593 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12594 kind, dwo_name, hex_string (signature),
12595 host_address_to_string (dwo_cutu));
12596 }
12597 return dwo_cutu;
12598 }
12599 }
12600 }
12601
12602 /* We didn't find it. This could mean a dwo_id mismatch, or
12603 someone deleted the DWO/DWP file, or the search path isn't set up
12604 correctly to find the file. */
12605
12606 if (dwarf_read_debug)
12607 {
12608 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12609 kind, dwo_name, hex_string (signature));
12610 }
12611
12612 /* This is a warning and not a complaint because it can be caused by
12613 pilot error (e.g., user accidentally deleting the DWO). */
12614 {
12615 /* Print the name of the DWP file if we looked there, helps the user
12616 better diagnose the problem. */
12617 std::string dwp_text;
12618
12619 if (dwp_file != NULL)
12620 dwp_text = string_printf (" [in DWP file %s]",
12621 lbasename (dwp_file->name));
12622
12623 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12624 " [in module %s]"),
12625 kind, dwo_name, hex_string (signature),
12626 dwp_text.c_str (),
12627 this_unit->is_debug_types ? "TU" : "CU",
12628 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12629 }
12630 return NULL;
12631 }
12632
12633 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12634 See lookup_dwo_cutu_unit for details. */
12635
12636 static struct dwo_unit *
12637 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12638 const char *dwo_name, const char *comp_dir,
12639 ULONGEST signature)
12640 {
12641 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12642 }
12643
12644 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12645 See lookup_dwo_cutu_unit for details. */
12646
12647 static struct dwo_unit *
12648 lookup_dwo_type_unit (struct signatured_type *this_tu,
12649 const char *dwo_name, const char *comp_dir)
12650 {
12651 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12652 }
12653
12654 /* Traversal function for queue_and_load_all_dwo_tus. */
12655
12656 static int
12657 queue_and_load_dwo_tu (void **slot, void *info)
12658 {
12659 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12660 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12661 ULONGEST signature = dwo_unit->signature;
12662 struct signatured_type *sig_type =
12663 lookup_dwo_signatured_type (per_cu->cu, signature);
12664
12665 if (sig_type != NULL)
12666 {
12667 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12668
12669 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12670 a real dependency of PER_CU on SIG_TYPE. That is detected later
12671 while processing PER_CU. */
12672 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12673 load_full_type_unit (sig_cu);
12674 per_cu->imported_symtabs_push (sig_cu);
12675 }
12676
12677 return 1;
12678 }
12679
12680 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12681 The DWO may have the only definition of the type, though it may not be
12682 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12683 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12684
12685 static void
12686 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12687 {
12688 struct dwo_unit *dwo_unit;
12689 struct dwo_file *dwo_file;
12690
12691 gdb_assert (!per_cu->is_debug_types);
12692 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12693 gdb_assert (per_cu->cu != NULL);
12694
12695 dwo_unit = per_cu->cu->dwo_unit;
12696 gdb_assert (dwo_unit != NULL);
12697
12698 dwo_file = dwo_unit->dwo_file;
12699 if (dwo_file->tus != NULL)
12700 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12701 per_cu);
12702 }
12703
12704 /* Read in various DIEs. */
12705
12706 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12707 Inherit only the children of the DW_AT_abstract_origin DIE not being
12708 already referenced by DW_AT_abstract_origin from the children of the
12709 current DIE. */
12710
12711 static void
12712 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12713 {
12714 struct die_info *child_die;
12715 sect_offset *offsetp;
12716 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12717 struct die_info *origin_die;
12718 /* Iterator of the ORIGIN_DIE children. */
12719 struct die_info *origin_child_die;
12720 struct attribute *attr;
12721 struct dwarf2_cu *origin_cu;
12722 struct pending **origin_previous_list_in_scope;
12723
12724 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12725 if (!attr)
12726 return;
12727
12728 /* Note that following die references may follow to a die in a
12729 different cu. */
12730
12731 origin_cu = cu;
12732 origin_die = follow_die_ref (die, attr, &origin_cu);
12733
12734 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12735 symbols in. */
12736 origin_previous_list_in_scope = origin_cu->list_in_scope;
12737 origin_cu->list_in_scope = cu->list_in_scope;
12738
12739 if (die->tag != origin_die->tag
12740 && !(die->tag == DW_TAG_inlined_subroutine
12741 && origin_die->tag == DW_TAG_subprogram))
12742 complaint (_("DIE %s and its abstract origin %s have different tags"),
12743 sect_offset_str (die->sect_off),
12744 sect_offset_str (origin_die->sect_off));
12745
12746 std::vector<sect_offset> offsets;
12747
12748 for (child_die = die->child;
12749 child_die && child_die->tag;
12750 child_die = child_die->sibling)
12751 {
12752 struct die_info *child_origin_die;
12753 struct dwarf2_cu *child_origin_cu;
12754
12755 /* We are trying to process concrete instance entries:
12756 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12757 it's not relevant to our analysis here. i.e. detecting DIEs that are
12758 present in the abstract instance but not referenced in the concrete
12759 one. */
12760 if (child_die->tag == DW_TAG_call_site
12761 || child_die->tag == DW_TAG_GNU_call_site)
12762 continue;
12763
12764 /* For each CHILD_DIE, find the corresponding child of
12765 ORIGIN_DIE. If there is more than one layer of
12766 DW_AT_abstract_origin, follow them all; there shouldn't be,
12767 but GCC versions at least through 4.4 generate this (GCC PR
12768 40573). */
12769 child_origin_die = child_die;
12770 child_origin_cu = cu;
12771 while (1)
12772 {
12773 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12774 child_origin_cu);
12775 if (attr == NULL)
12776 break;
12777 child_origin_die = follow_die_ref (child_origin_die, attr,
12778 &child_origin_cu);
12779 }
12780
12781 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12782 counterpart may exist. */
12783 if (child_origin_die != child_die)
12784 {
12785 if (child_die->tag != child_origin_die->tag
12786 && !(child_die->tag == DW_TAG_inlined_subroutine
12787 && child_origin_die->tag == DW_TAG_subprogram))
12788 complaint (_("Child DIE %s and its abstract origin %s have "
12789 "different tags"),
12790 sect_offset_str (child_die->sect_off),
12791 sect_offset_str (child_origin_die->sect_off));
12792 if (child_origin_die->parent != origin_die)
12793 complaint (_("Child DIE %s and its abstract origin %s have "
12794 "different parents"),
12795 sect_offset_str (child_die->sect_off),
12796 sect_offset_str (child_origin_die->sect_off));
12797 else
12798 offsets.push_back (child_origin_die->sect_off);
12799 }
12800 }
12801 std::sort (offsets.begin (), offsets.end ());
12802 sect_offset *offsets_end = offsets.data () + offsets.size ();
12803 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12804 if (offsetp[-1] == *offsetp)
12805 complaint (_("Multiple children of DIE %s refer "
12806 "to DIE %s as their abstract origin"),
12807 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12808
12809 offsetp = offsets.data ();
12810 origin_child_die = origin_die->child;
12811 while (origin_child_die && origin_child_die->tag)
12812 {
12813 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12814 while (offsetp < offsets_end
12815 && *offsetp < origin_child_die->sect_off)
12816 offsetp++;
12817 if (offsetp >= offsets_end
12818 || *offsetp > origin_child_die->sect_off)
12819 {
12820 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12821 Check whether we're already processing ORIGIN_CHILD_DIE.
12822 This can happen with mutually referenced abstract_origins.
12823 PR 16581. */
12824 if (!origin_child_die->in_process)
12825 process_die (origin_child_die, origin_cu);
12826 }
12827 origin_child_die = origin_child_die->sibling;
12828 }
12829 origin_cu->list_in_scope = origin_previous_list_in_scope;
12830
12831 if (cu != origin_cu)
12832 compute_delayed_physnames (origin_cu);
12833 }
12834
12835 static void
12836 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12837 {
12838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12839 struct gdbarch *gdbarch = objfile->arch ();
12840 struct context_stack *newobj;
12841 CORE_ADDR lowpc;
12842 CORE_ADDR highpc;
12843 struct die_info *child_die;
12844 struct attribute *attr, *call_line, *call_file;
12845 const char *name;
12846 CORE_ADDR baseaddr;
12847 struct block *block;
12848 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12849 std::vector<struct symbol *> template_args;
12850 struct template_symbol *templ_func = NULL;
12851
12852 if (inlined_func)
12853 {
12854 /* If we do not have call site information, we can't show the
12855 caller of this inlined function. That's too confusing, so
12856 only use the scope for local variables. */
12857 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12858 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12859 if (call_line == NULL || call_file == NULL)
12860 {
12861 read_lexical_block_scope (die, cu);
12862 return;
12863 }
12864 }
12865
12866 baseaddr = objfile->text_section_offset ();
12867
12868 name = dwarf2_name (die, cu);
12869
12870 /* Ignore functions with missing or empty names. These are actually
12871 illegal according to the DWARF standard. */
12872 if (name == NULL)
12873 {
12874 complaint (_("missing name for subprogram DIE at %s"),
12875 sect_offset_str (die->sect_off));
12876 return;
12877 }
12878
12879 /* Ignore functions with missing or invalid low and high pc attributes. */
12880 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12881 <= PC_BOUNDS_INVALID)
12882 {
12883 attr = dwarf2_attr (die, DW_AT_external, cu);
12884 if (!attr || !DW_UNSND (attr))
12885 complaint (_("cannot get low and high bounds "
12886 "for subprogram DIE at %s"),
12887 sect_offset_str (die->sect_off));
12888 return;
12889 }
12890
12891 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12892 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12893
12894 /* If we have any template arguments, then we must allocate a
12895 different sort of symbol. */
12896 for (child_die = die->child; child_die; child_die = child_die->sibling)
12897 {
12898 if (child_die->tag == DW_TAG_template_type_param
12899 || child_die->tag == DW_TAG_template_value_param)
12900 {
12901 templ_func = allocate_template_symbol (objfile);
12902 templ_func->subclass = SYMBOL_TEMPLATE;
12903 break;
12904 }
12905 }
12906
12907 newobj = cu->get_builder ()->push_context (0, lowpc);
12908 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12909 (struct symbol *) templ_func);
12910
12911 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12912 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12913 cu->language);
12914
12915 /* If there is a location expression for DW_AT_frame_base, record
12916 it. */
12917 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12918 if (attr != nullptr)
12919 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12920
12921 /* If there is a location for the static link, record it. */
12922 newobj->static_link = NULL;
12923 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12924 if (attr != nullptr)
12925 {
12926 newobj->static_link
12927 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12928 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12929 cu->per_cu->addr_type ());
12930 }
12931
12932 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12933
12934 if (die->child != NULL)
12935 {
12936 child_die = die->child;
12937 while (child_die && child_die->tag)
12938 {
12939 if (child_die->tag == DW_TAG_template_type_param
12940 || child_die->tag == DW_TAG_template_value_param)
12941 {
12942 struct symbol *arg = new_symbol (child_die, NULL, cu);
12943
12944 if (arg != NULL)
12945 template_args.push_back (arg);
12946 }
12947 else
12948 process_die (child_die, cu);
12949 child_die = child_die->sibling;
12950 }
12951 }
12952
12953 inherit_abstract_dies (die, cu);
12954
12955 /* If we have a DW_AT_specification, we might need to import using
12956 directives from the context of the specification DIE. See the
12957 comment in determine_prefix. */
12958 if (cu->language == language_cplus
12959 && dwarf2_attr (die, DW_AT_specification, cu))
12960 {
12961 struct dwarf2_cu *spec_cu = cu;
12962 struct die_info *spec_die = die_specification (die, &spec_cu);
12963
12964 while (spec_die)
12965 {
12966 child_die = spec_die->child;
12967 while (child_die && child_die->tag)
12968 {
12969 if (child_die->tag == DW_TAG_imported_module)
12970 process_die (child_die, spec_cu);
12971 child_die = child_die->sibling;
12972 }
12973
12974 /* In some cases, GCC generates specification DIEs that
12975 themselves contain DW_AT_specification attributes. */
12976 spec_die = die_specification (spec_die, &spec_cu);
12977 }
12978 }
12979
12980 struct context_stack cstk = cu->get_builder ()->pop_context ();
12981 /* Make a block for the local symbols within. */
12982 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12983 cstk.static_link, lowpc, highpc);
12984
12985 /* For C++, set the block's scope. */
12986 if ((cu->language == language_cplus
12987 || cu->language == language_fortran
12988 || cu->language == language_d
12989 || cu->language == language_rust)
12990 && cu->processing_has_namespace_info)
12991 block_set_scope (block, determine_prefix (die, cu),
12992 &objfile->objfile_obstack);
12993
12994 /* If we have address ranges, record them. */
12995 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12996
12997 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12998
12999 /* Attach template arguments to function. */
13000 if (!template_args.empty ())
13001 {
13002 gdb_assert (templ_func != NULL);
13003
13004 templ_func->n_template_arguments = template_args.size ();
13005 templ_func->template_arguments
13006 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13007 templ_func->n_template_arguments);
13008 memcpy (templ_func->template_arguments,
13009 template_args.data (),
13010 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13011
13012 /* Make sure that the symtab is set on the new symbols. Even
13013 though they don't appear in this symtab directly, other parts
13014 of gdb assume that symbols do, and this is reasonably
13015 true. */
13016 for (symbol *sym : template_args)
13017 symbol_set_symtab (sym, symbol_symtab (templ_func));
13018 }
13019
13020 /* In C++, we can have functions nested inside functions (e.g., when
13021 a function declares a class that has methods). This means that
13022 when we finish processing a function scope, we may need to go
13023 back to building a containing block's symbol lists. */
13024 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13025 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13026
13027 /* If we've finished processing a top-level function, subsequent
13028 symbols go in the file symbol list. */
13029 if (cu->get_builder ()->outermost_context_p ())
13030 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13031 }
13032
13033 /* Process all the DIES contained within a lexical block scope. Start
13034 a new scope, process the dies, and then close the scope. */
13035
13036 static void
13037 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13038 {
13039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13040 struct gdbarch *gdbarch = objfile->arch ();
13041 CORE_ADDR lowpc, highpc;
13042 struct die_info *child_die;
13043 CORE_ADDR baseaddr;
13044
13045 baseaddr = objfile->text_section_offset ();
13046
13047 /* Ignore blocks with missing or invalid low and high pc attributes. */
13048 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13049 as multiple lexical blocks? Handling children in a sane way would
13050 be nasty. Might be easier to properly extend generic blocks to
13051 describe ranges. */
13052 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13053 {
13054 case PC_BOUNDS_NOT_PRESENT:
13055 /* DW_TAG_lexical_block has no attributes, process its children as if
13056 there was no wrapping by that DW_TAG_lexical_block.
13057 GCC does no longer produces such DWARF since GCC r224161. */
13058 for (child_die = die->child;
13059 child_die != NULL && child_die->tag;
13060 child_die = child_die->sibling)
13061 process_die (child_die, cu);
13062 return;
13063 case PC_BOUNDS_INVALID:
13064 return;
13065 }
13066 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13067 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13068
13069 cu->get_builder ()->push_context (0, lowpc);
13070 if (die->child != NULL)
13071 {
13072 child_die = die->child;
13073 while (child_die && child_die->tag)
13074 {
13075 process_die (child_die, cu);
13076 child_die = child_die->sibling;
13077 }
13078 }
13079 inherit_abstract_dies (die, cu);
13080 struct context_stack cstk = cu->get_builder ()->pop_context ();
13081
13082 if (*cu->get_builder ()->get_local_symbols () != NULL
13083 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13084 {
13085 struct block *block
13086 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13087 cstk.start_addr, highpc);
13088
13089 /* Note that recording ranges after traversing children, as we
13090 do here, means that recording a parent's ranges entails
13091 walking across all its children's ranges as they appear in
13092 the address map, which is quadratic behavior.
13093
13094 It would be nicer to record the parent's ranges before
13095 traversing its children, simply overriding whatever you find
13096 there. But since we don't even decide whether to create a
13097 block until after we've traversed its children, that's hard
13098 to do. */
13099 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13100 }
13101 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13102 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13103 }
13104
13105 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13106
13107 static void
13108 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13109 {
13110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13111 struct gdbarch *gdbarch = objfile->arch ();
13112 CORE_ADDR pc, baseaddr;
13113 struct attribute *attr;
13114 struct call_site *call_site, call_site_local;
13115 void **slot;
13116 int nparams;
13117 struct die_info *child_die;
13118
13119 baseaddr = objfile->text_section_offset ();
13120
13121 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13122 if (attr == NULL)
13123 {
13124 /* This was a pre-DWARF-5 GNU extension alias
13125 for DW_AT_call_return_pc. */
13126 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13127 }
13128 if (!attr)
13129 {
13130 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13131 "DIE %s [in module %s]"),
13132 sect_offset_str (die->sect_off), objfile_name (objfile));
13133 return;
13134 }
13135 pc = attr->value_as_address () + baseaddr;
13136 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13137
13138 if (cu->call_site_htab == NULL)
13139 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13140 NULL, &objfile->objfile_obstack,
13141 hashtab_obstack_allocate, NULL);
13142 call_site_local.pc = pc;
13143 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13144 if (*slot != NULL)
13145 {
13146 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13147 "DIE %s [in module %s]"),
13148 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13149 objfile_name (objfile));
13150 return;
13151 }
13152
13153 /* Count parameters at the caller. */
13154
13155 nparams = 0;
13156 for (child_die = die->child; child_die && child_die->tag;
13157 child_die = child_die->sibling)
13158 {
13159 if (child_die->tag != DW_TAG_call_site_parameter
13160 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13161 {
13162 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13163 "DW_TAG_call_site child DIE %s [in module %s]"),
13164 child_die->tag, sect_offset_str (child_die->sect_off),
13165 objfile_name (objfile));
13166 continue;
13167 }
13168
13169 nparams++;
13170 }
13171
13172 call_site
13173 = ((struct call_site *)
13174 obstack_alloc (&objfile->objfile_obstack,
13175 sizeof (*call_site)
13176 + (sizeof (*call_site->parameter) * (nparams - 1))));
13177 *slot = call_site;
13178 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13179 call_site->pc = pc;
13180
13181 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13182 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13183 {
13184 struct die_info *func_die;
13185
13186 /* Skip also over DW_TAG_inlined_subroutine. */
13187 for (func_die = die->parent;
13188 func_die && func_die->tag != DW_TAG_subprogram
13189 && func_die->tag != DW_TAG_subroutine_type;
13190 func_die = func_die->parent);
13191
13192 /* DW_AT_call_all_calls is a superset
13193 of DW_AT_call_all_tail_calls. */
13194 if (func_die
13195 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13196 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13197 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13198 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13199 {
13200 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13201 not complete. But keep CALL_SITE for look ups via call_site_htab,
13202 both the initial caller containing the real return address PC and
13203 the final callee containing the current PC of a chain of tail
13204 calls do not need to have the tail call list complete. But any
13205 function candidate for a virtual tail call frame searched via
13206 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13207 determined unambiguously. */
13208 }
13209 else
13210 {
13211 struct type *func_type = NULL;
13212
13213 if (func_die)
13214 func_type = get_die_type (func_die, cu);
13215 if (func_type != NULL)
13216 {
13217 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13218
13219 /* Enlist this call site to the function. */
13220 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13221 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13222 }
13223 else
13224 complaint (_("Cannot find function owning DW_TAG_call_site "
13225 "DIE %s [in module %s]"),
13226 sect_offset_str (die->sect_off), objfile_name (objfile));
13227 }
13228 }
13229
13230 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13231 if (attr == NULL)
13232 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13233 if (attr == NULL)
13234 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13235 if (attr == NULL)
13236 {
13237 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13238 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13239 }
13240 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13241 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13242 /* Keep NULL DWARF_BLOCK. */;
13243 else if (attr->form_is_block ())
13244 {
13245 struct dwarf2_locexpr_baton *dlbaton;
13246
13247 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13248 dlbaton->data = DW_BLOCK (attr)->data;
13249 dlbaton->size = DW_BLOCK (attr)->size;
13250 dlbaton->per_cu = cu->per_cu;
13251
13252 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13253 }
13254 else if (attr->form_is_ref ())
13255 {
13256 struct dwarf2_cu *target_cu = cu;
13257 struct die_info *target_die;
13258
13259 target_die = follow_die_ref (die, attr, &target_cu);
13260 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13261 if (die_is_declaration (target_die, target_cu))
13262 {
13263 const char *target_physname;
13264
13265 /* Prefer the mangled name; otherwise compute the demangled one. */
13266 target_physname = dw2_linkage_name (target_die, target_cu);
13267 if (target_physname == NULL)
13268 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13269 if (target_physname == NULL)
13270 complaint (_("DW_AT_call_target target DIE has invalid "
13271 "physname, for referencing DIE %s [in module %s]"),
13272 sect_offset_str (die->sect_off), objfile_name (objfile));
13273 else
13274 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13275 }
13276 else
13277 {
13278 CORE_ADDR lowpc;
13279
13280 /* DW_AT_entry_pc should be preferred. */
13281 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13282 <= PC_BOUNDS_INVALID)
13283 complaint (_("DW_AT_call_target target DIE has invalid "
13284 "low pc, for referencing DIE %s [in module %s]"),
13285 sect_offset_str (die->sect_off), objfile_name (objfile));
13286 else
13287 {
13288 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13289 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13290 }
13291 }
13292 }
13293 else
13294 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13295 "block nor reference, for DIE %s [in module %s]"),
13296 sect_offset_str (die->sect_off), objfile_name (objfile));
13297
13298 call_site->per_cu = cu->per_cu;
13299
13300 for (child_die = die->child;
13301 child_die && child_die->tag;
13302 child_die = child_die->sibling)
13303 {
13304 struct call_site_parameter *parameter;
13305 struct attribute *loc, *origin;
13306
13307 if (child_die->tag != DW_TAG_call_site_parameter
13308 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13309 {
13310 /* Already printed the complaint above. */
13311 continue;
13312 }
13313
13314 gdb_assert (call_site->parameter_count < nparams);
13315 parameter = &call_site->parameter[call_site->parameter_count];
13316
13317 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13318 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13319 register is contained in DW_AT_call_value. */
13320
13321 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13322 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13323 if (origin == NULL)
13324 {
13325 /* This was a pre-DWARF-5 GNU extension alias
13326 for DW_AT_call_parameter. */
13327 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13328 }
13329 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13330 {
13331 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13332
13333 sect_offset sect_off = origin->get_ref_die_offset ();
13334 if (!cu->header.offset_in_cu_p (sect_off))
13335 {
13336 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13337 binding can be done only inside one CU. Such referenced DIE
13338 therefore cannot be even moved to DW_TAG_partial_unit. */
13339 complaint (_("DW_AT_call_parameter offset is not in CU for "
13340 "DW_TAG_call_site child DIE %s [in module %s]"),
13341 sect_offset_str (child_die->sect_off),
13342 objfile_name (objfile));
13343 continue;
13344 }
13345 parameter->u.param_cu_off
13346 = (cu_offset) (sect_off - cu->header.sect_off);
13347 }
13348 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13349 {
13350 complaint (_("No DW_FORM_block* DW_AT_location for "
13351 "DW_TAG_call_site child DIE %s [in module %s]"),
13352 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13353 continue;
13354 }
13355 else
13356 {
13357 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13358 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13359 if (parameter->u.dwarf_reg != -1)
13360 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13361 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13362 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13363 &parameter->u.fb_offset))
13364 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13365 else
13366 {
13367 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13368 "for DW_FORM_block* DW_AT_location is supported for "
13369 "DW_TAG_call_site child DIE %s "
13370 "[in module %s]"),
13371 sect_offset_str (child_die->sect_off),
13372 objfile_name (objfile));
13373 continue;
13374 }
13375 }
13376
13377 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13378 if (attr == NULL)
13379 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13380 if (attr == NULL || !attr->form_is_block ())
13381 {
13382 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13383 "DW_TAG_call_site child DIE %s [in module %s]"),
13384 sect_offset_str (child_die->sect_off),
13385 objfile_name (objfile));
13386 continue;
13387 }
13388 parameter->value = DW_BLOCK (attr)->data;
13389 parameter->value_size = DW_BLOCK (attr)->size;
13390
13391 /* Parameters are not pre-cleared by memset above. */
13392 parameter->data_value = NULL;
13393 parameter->data_value_size = 0;
13394 call_site->parameter_count++;
13395
13396 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13397 if (attr == NULL)
13398 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13399 if (attr != nullptr)
13400 {
13401 if (!attr->form_is_block ())
13402 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13403 "DW_TAG_call_site child DIE %s [in module %s]"),
13404 sect_offset_str (child_die->sect_off),
13405 objfile_name (objfile));
13406 else
13407 {
13408 parameter->data_value = DW_BLOCK (attr)->data;
13409 parameter->data_value_size = DW_BLOCK (attr)->size;
13410 }
13411 }
13412 }
13413 }
13414
13415 /* Helper function for read_variable. If DIE represents a virtual
13416 table, then return the type of the concrete object that is
13417 associated with the virtual table. Otherwise, return NULL. */
13418
13419 static struct type *
13420 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13421 {
13422 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13423 if (attr == NULL)
13424 return NULL;
13425
13426 /* Find the type DIE. */
13427 struct die_info *type_die = NULL;
13428 struct dwarf2_cu *type_cu = cu;
13429
13430 if (attr->form_is_ref ())
13431 type_die = follow_die_ref (die, attr, &type_cu);
13432 if (type_die == NULL)
13433 return NULL;
13434
13435 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13436 return NULL;
13437 return die_containing_type (type_die, type_cu);
13438 }
13439
13440 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13441
13442 static void
13443 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13444 {
13445 struct rust_vtable_symbol *storage = NULL;
13446
13447 if (cu->language == language_rust)
13448 {
13449 struct type *containing_type = rust_containing_type (die, cu);
13450
13451 if (containing_type != NULL)
13452 {
13453 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13454
13455 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13456 initialize_objfile_symbol (storage);
13457 storage->concrete_type = containing_type;
13458 storage->subclass = SYMBOL_RUST_VTABLE;
13459 }
13460 }
13461
13462 struct symbol *res = new_symbol (die, NULL, cu, storage);
13463 struct attribute *abstract_origin
13464 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13465 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13466 if (res == NULL && loc && abstract_origin)
13467 {
13468 /* We have a variable without a name, but with a location and an abstract
13469 origin. This may be a concrete instance of an abstract variable
13470 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13471 later. */
13472 struct dwarf2_cu *origin_cu = cu;
13473 struct die_info *origin_die
13474 = follow_die_ref (die, abstract_origin, &origin_cu);
13475 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13476 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13477 }
13478 }
13479
13480 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13481 reading .debug_rnglists.
13482 Callback's type should be:
13483 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13484 Return true if the attributes are present and valid, otherwise,
13485 return false. */
13486
13487 template <typename Callback>
13488 static bool
13489 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13490 Callback &&callback)
13491 {
13492 struct dwarf2_per_objfile *dwarf2_per_objfile
13493 = cu->per_cu->dwarf2_per_objfile;
13494 struct objfile *objfile = dwarf2_per_objfile->objfile;
13495 bfd *obfd = objfile->obfd;
13496 /* Base address selection entry. */
13497 gdb::optional<CORE_ADDR> base;
13498 const gdb_byte *buffer;
13499 CORE_ADDR baseaddr;
13500 bool overflow = false;
13501
13502 base = cu->base_address;
13503
13504 dwarf2_per_objfile->rnglists.read (objfile);
13505 if (offset >= dwarf2_per_objfile->rnglists.size)
13506 {
13507 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13508 offset);
13509 return false;
13510 }
13511 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13512
13513 baseaddr = objfile->text_section_offset ();
13514
13515 while (1)
13516 {
13517 /* Initialize it due to a false compiler warning. */
13518 CORE_ADDR range_beginning = 0, range_end = 0;
13519 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13520 + dwarf2_per_objfile->rnglists.size);
13521 unsigned int bytes_read;
13522
13523 if (buffer == buf_end)
13524 {
13525 overflow = true;
13526 break;
13527 }
13528 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13529 switch (rlet)
13530 {
13531 case DW_RLE_end_of_list:
13532 break;
13533 case DW_RLE_base_address:
13534 if (buffer + cu->header.addr_size > buf_end)
13535 {
13536 overflow = true;
13537 break;
13538 }
13539 base = cu->header.read_address (obfd, buffer, &bytes_read);
13540 buffer += bytes_read;
13541 break;
13542 case DW_RLE_start_length:
13543 if (buffer + cu->header.addr_size > buf_end)
13544 {
13545 overflow = true;
13546 break;
13547 }
13548 range_beginning = cu->header.read_address (obfd, buffer,
13549 &bytes_read);
13550 buffer += bytes_read;
13551 range_end = (range_beginning
13552 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13553 buffer += bytes_read;
13554 if (buffer > buf_end)
13555 {
13556 overflow = true;
13557 break;
13558 }
13559 break;
13560 case DW_RLE_offset_pair:
13561 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13562 buffer += bytes_read;
13563 if (buffer > buf_end)
13564 {
13565 overflow = true;
13566 break;
13567 }
13568 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13569 buffer += bytes_read;
13570 if (buffer > buf_end)
13571 {
13572 overflow = true;
13573 break;
13574 }
13575 break;
13576 case DW_RLE_start_end:
13577 if (buffer + 2 * cu->header.addr_size > buf_end)
13578 {
13579 overflow = true;
13580 break;
13581 }
13582 range_beginning = cu->header.read_address (obfd, buffer,
13583 &bytes_read);
13584 buffer += bytes_read;
13585 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13586 buffer += bytes_read;
13587 break;
13588 default:
13589 complaint (_("Invalid .debug_rnglists data (no base address)"));
13590 return false;
13591 }
13592 if (rlet == DW_RLE_end_of_list || overflow)
13593 break;
13594 if (rlet == DW_RLE_base_address)
13595 continue;
13596
13597 if (!base.has_value ())
13598 {
13599 /* We have no valid base address for the ranges
13600 data. */
13601 complaint (_("Invalid .debug_rnglists data (no base address)"));
13602 return false;
13603 }
13604
13605 if (range_beginning > range_end)
13606 {
13607 /* Inverted range entries are invalid. */
13608 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13609 return false;
13610 }
13611
13612 /* Empty range entries have no effect. */
13613 if (range_beginning == range_end)
13614 continue;
13615
13616 range_beginning += *base;
13617 range_end += *base;
13618
13619 /* A not-uncommon case of bad debug info.
13620 Don't pollute the addrmap with bad data. */
13621 if (range_beginning + baseaddr == 0
13622 && !dwarf2_per_objfile->has_section_at_zero)
13623 {
13624 complaint (_(".debug_rnglists entry has start address of zero"
13625 " [in module %s]"), objfile_name (objfile));
13626 continue;
13627 }
13628
13629 callback (range_beginning, range_end);
13630 }
13631
13632 if (overflow)
13633 {
13634 complaint (_("Offset %d is not terminated "
13635 "for DW_AT_ranges attribute"),
13636 offset);
13637 return false;
13638 }
13639
13640 return true;
13641 }
13642
13643 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13644 Callback's type should be:
13645 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13646 Return 1 if the attributes are present and valid, otherwise, return 0. */
13647
13648 template <typename Callback>
13649 static int
13650 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13651 Callback &&callback)
13652 {
13653 struct dwarf2_per_objfile *dwarf2_per_objfile
13654 = cu->per_cu->dwarf2_per_objfile;
13655 struct objfile *objfile = dwarf2_per_objfile->objfile;
13656 struct comp_unit_head *cu_header = &cu->header;
13657 bfd *obfd = objfile->obfd;
13658 unsigned int addr_size = cu_header->addr_size;
13659 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13660 /* Base address selection entry. */
13661 gdb::optional<CORE_ADDR> base;
13662 unsigned int dummy;
13663 const gdb_byte *buffer;
13664 CORE_ADDR baseaddr;
13665
13666 if (cu_header->version >= 5)
13667 return dwarf2_rnglists_process (offset, cu, callback);
13668
13669 base = cu->base_address;
13670
13671 dwarf2_per_objfile->ranges.read (objfile);
13672 if (offset >= dwarf2_per_objfile->ranges.size)
13673 {
13674 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13675 offset);
13676 return 0;
13677 }
13678 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13679
13680 baseaddr = objfile->text_section_offset ();
13681
13682 while (1)
13683 {
13684 CORE_ADDR range_beginning, range_end;
13685
13686 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13687 buffer += addr_size;
13688 range_end = cu->header.read_address (obfd, buffer, &dummy);
13689 buffer += addr_size;
13690 offset += 2 * addr_size;
13691
13692 /* An end of list marker is a pair of zero addresses. */
13693 if (range_beginning == 0 && range_end == 0)
13694 /* Found the end of list entry. */
13695 break;
13696
13697 /* Each base address selection entry is a pair of 2 values.
13698 The first is the largest possible address, the second is
13699 the base address. Check for a base address here. */
13700 if ((range_beginning & mask) == mask)
13701 {
13702 /* If we found the largest possible address, then we already
13703 have the base address in range_end. */
13704 base = range_end;
13705 continue;
13706 }
13707
13708 if (!base.has_value ())
13709 {
13710 /* We have no valid base address for the ranges
13711 data. */
13712 complaint (_("Invalid .debug_ranges data (no base address)"));
13713 return 0;
13714 }
13715
13716 if (range_beginning > range_end)
13717 {
13718 /* Inverted range entries are invalid. */
13719 complaint (_("Invalid .debug_ranges data (inverted range)"));
13720 return 0;
13721 }
13722
13723 /* Empty range entries have no effect. */
13724 if (range_beginning == range_end)
13725 continue;
13726
13727 range_beginning += *base;
13728 range_end += *base;
13729
13730 /* A not-uncommon case of bad debug info.
13731 Don't pollute the addrmap with bad data. */
13732 if (range_beginning + baseaddr == 0
13733 && !dwarf2_per_objfile->has_section_at_zero)
13734 {
13735 complaint (_(".debug_ranges entry has start address of zero"
13736 " [in module %s]"), objfile_name (objfile));
13737 continue;
13738 }
13739
13740 callback (range_beginning, range_end);
13741 }
13742
13743 return 1;
13744 }
13745
13746 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13747 Return 1 if the attributes are present and valid, otherwise, return 0.
13748 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13749
13750 static int
13751 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13752 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13753 dwarf2_psymtab *ranges_pst)
13754 {
13755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13756 struct gdbarch *gdbarch = objfile->arch ();
13757 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13758 int low_set = 0;
13759 CORE_ADDR low = 0;
13760 CORE_ADDR high = 0;
13761 int retval;
13762
13763 retval = dwarf2_ranges_process (offset, cu,
13764 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13765 {
13766 if (ranges_pst != NULL)
13767 {
13768 CORE_ADDR lowpc;
13769 CORE_ADDR highpc;
13770
13771 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13772 range_beginning + baseaddr)
13773 - baseaddr);
13774 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13775 range_end + baseaddr)
13776 - baseaddr);
13777 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13778 lowpc, highpc - 1, ranges_pst);
13779 }
13780
13781 /* FIXME: This is recording everything as a low-high
13782 segment of consecutive addresses. We should have a
13783 data structure for discontiguous block ranges
13784 instead. */
13785 if (! low_set)
13786 {
13787 low = range_beginning;
13788 high = range_end;
13789 low_set = 1;
13790 }
13791 else
13792 {
13793 if (range_beginning < low)
13794 low = range_beginning;
13795 if (range_end > high)
13796 high = range_end;
13797 }
13798 });
13799 if (!retval)
13800 return 0;
13801
13802 if (! low_set)
13803 /* If the first entry is an end-of-list marker, the range
13804 describes an empty scope, i.e. no instructions. */
13805 return 0;
13806
13807 if (low_return)
13808 *low_return = low;
13809 if (high_return)
13810 *high_return = high;
13811 return 1;
13812 }
13813
13814 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13815 definition for the return value. *LOWPC and *HIGHPC are set iff
13816 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13817
13818 static enum pc_bounds_kind
13819 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13820 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13821 dwarf2_psymtab *pst)
13822 {
13823 struct dwarf2_per_objfile *dwarf2_per_objfile
13824 = cu->per_cu->dwarf2_per_objfile;
13825 struct attribute *attr;
13826 struct attribute *attr_high;
13827 CORE_ADDR low = 0;
13828 CORE_ADDR high = 0;
13829 enum pc_bounds_kind ret;
13830
13831 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13832 if (attr_high)
13833 {
13834 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13835 if (attr != nullptr)
13836 {
13837 low = attr->value_as_address ();
13838 high = attr_high->value_as_address ();
13839 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13840 high += low;
13841 }
13842 else
13843 /* Found high w/o low attribute. */
13844 return PC_BOUNDS_INVALID;
13845
13846 /* Found consecutive range of addresses. */
13847 ret = PC_BOUNDS_HIGH_LOW;
13848 }
13849 else
13850 {
13851 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13852 if (attr != NULL)
13853 {
13854 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13855 We take advantage of the fact that DW_AT_ranges does not appear
13856 in DW_TAG_compile_unit of DWO files. */
13857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13858 unsigned int ranges_offset = (DW_UNSND (attr)
13859 + (need_ranges_base
13860 ? cu->ranges_base
13861 : 0));
13862
13863 /* Value of the DW_AT_ranges attribute is the offset in the
13864 .debug_ranges section. */
13865 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13866 return PC_BOUNDS_INVALID;
13867 /* Found discontinuous range of addresses. */
13868 ret = PC_BOUNDS_RANGES;
13869 }
13870 else
13871 return PC_BOUNDS_NOT_PRESENT;
13872 }
13873
13874 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13875 if (high <= low)
13876 return PC_BOUNDS_INVALID;
13877
13878 /* When using the GNU linker, .gnu.linkonce. sections are used to
13879 eliminate duplicate copies of functions and vtables and such.
13880 The linker will arbitrarily choose one and discard the others.
13881 The AT_*_pc values for such functions refer to local labels in
13882 these sections. If the section from that file was discarded, the
13883 labels are not in the output, so the relocs get a value of 0.
13884 If this is a discarded function, mark the pc bounds as invalid,
13885 so that GDB will ignore it. */
13886 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13887 return PC_BOUNDS_INVALID;
13888
13889 *lowpc = low;
13890 if (highpc)
13891 *highpc = high;
13892 return ret;
13893 }
13894
13895 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13896 its low and high PC addresses. Do nothing if these addresses could not
13897 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13898 and HIGHPC to the high address if greater than HIGHPC. */
13899
13900 static void
13901 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13902 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13903 struct dwarf2_cu *cu)
13904 {
13905 CORE_ADDR low, high;
13906 struct die_info *child = die->child;
13907
13908 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13909 {
13910 *lowpc = std::min (*lowpc, low);
13911 *highpc = std::max (*highpc, high);
13912 }
13913
13914 /* If the language does not allow nested subprograms (either inside
13915 subprograms or lexical blocks), we're done. */
13916 if (cu->language != language_ada)
13917 return;
13918
13919 /* Check all the children of the given DIE. If it contains nested
13920 subprograms, then check their pc bounds. Likewise, we need to
13921 check lexical blocks as well, as they may also contain subprogram
13922 definitions. */
13923 while (child && child->tag)
13924 {
13925 if (child->tag == DW_TAG_subprogram
13926 || child->tag == DW_TAG_lexical_block)
13927 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13928 child = child->sibling;
13929 }
13930 }
13931
13932 /* Get the low and high pc's represented by the scope DIE, and store
13933 them in *LOWPC and *HIGHPC. If the correct values can't be
13934 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13935
13936 static void
13937 get_scope_pc_bounds (struct die_info *die,
13938 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13939 struct dwarf2_cu *cu)
13940 {
13941 CORE_ADDR best_low = (CORE_ADDR) -1;
13942 CORE_ADDR best_high = (CORE_ADDR) 0;
13943 CORE_ADDR current_low, current_high;
13944
13945 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13946 >= PC_BOUNDS_RANGES)
13947 {
13948 best_low = current_low;
13949 best_high = current_high;
13950 }
13951 else
13952 {
13953 struct die_info *child = die->child;
13954
13955 while (child && child->tag)
13956 {
13957 switch (child->tag) {
13958 case DW_TAG_subprogram:
13959 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13960 break;
13961 case DW_TAG_namespace:
13962 case DW_TAG_module:
13963 /* FIXME: carlton/2004-01-16: Should we do this for
13964 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13965 that current GCC's always emit the DIEs corresponding
13966 to definitions of methods of classes as children of a
13967 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13968 the DIEs giving the declarations, which could be
13969 anywhere). But I don't see any reason why the
13970 standards says that they have to be there. */
13971 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13972
13973 if (current_low != ((CORE_ADDR) -1))
13974 {
13975 best_low = std::min (best_low, current_low);
13976 best_high = std::max (best_high, current_high);
13977 }
13978 break;
13979 default:
13980 /* Ignore. */
13981 break;
13982 }
13983
13984 child = child->sibling;
13985 }
13986 }
13987
13988 *lowpc = best_low;
13989 *highpc = best_high;
13990 }
13991
13992 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13993 in DIE. */
13994
13995 static void
13996 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13997 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13998 {
13999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14000 struct gdbarch *gdbarch = objfile->arch ();
14001 struct attribute *attr;
14002 struct attribute *attr_high;
14003
14004 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14005 if (attr_high)
14006 {
14007 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14008 if (attr != nullptr)
14009 {
14010 CORE_ADDR low = attr->value_as_address ();
14011 CORE_ADDR high = attr_high->value_as_address ();
14012
14013 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14014 high += low;
14015
14016 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14017 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14018 cu->get_builder ()->record_block_range (block, low, high - 1);
14019 }
14020 }
14021
14022 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14023 if (attr != nullptr)
14024 {
14025 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14026 We take advantage of the fact that DW_AT_ranges does not appear
14027 in DW_TAG_compile_unit of DWO files. */
14028 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14029
14030 /* The value of the DW_AT_ranges attribute is the offset of the
14031 address range list in the .debug_ranges section. */
14032 unsigned long offset = (DW_UNSND (attr)
14033 + (need_ranges_base ? cu->ranges_base : 0));
14034
14035 std::vector<blockrange> blockvec;
14036 dwarf2_ranges_process (offset, cu,
14037 [&] (CORE_ADDR start, CORE_ADDR end)
14038 {
14039 start += baseaddr;
14040 end += baseaddr;
14041 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14042 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14043 cu->get_builder ()->record_block_range (block, start, end - 1);
14044 blockvec.emplace_back (start, end);
14045 });
14046
14047 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14048 }
14049 }
14050
14051 /* Check whether the producer field indicates either of GCC < 4.6, or the
14052 Intel C/C++ compiler, and cache the result in CU. */
14053
14054 static void
14055 check_producer (struct dwarf2_cu *cu)
14056 {
14057 int major, minor;
14058
14059 if (cu->producer == NULL)
14060 {
14061 /* For unknown compilers expect their behavior is DWARF version
14062 compliant.
14063
14064 GCC started to support .debug_types sections by -gdwarf-4 since
14065 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14066 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14067 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14068 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14069 }
14070 else if (producer_is_gcc (cu->producer, &major, &minor))
14071 {
14072 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14073 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14074 }
14075 else if (producer_is_icc (cu->producer, &major, &minor))
14076 {
14077 cu->producer_is_icc = true;
14078 cu->producer_is_icc_lt_14 = major < 14;
14079 }
14080 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14081 cu->producer_is_codewarrior = true;
14082 else
14083 {
14084 /* For other non-GCC compilers, expect their behavior is DWARF version
14085 compliant. */
14086 }
14087
14088 cu->checked_producer = true;
14089 }
14090
14091 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14092 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14093 during 4.6.0 experimental. */
14094
14095 static bool
14096 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14097 {
14098 if (!cu->checked_producer)
14099 check_producer (cu);
14100
14101 return cu->producer_is_gxx_lt_4_6;
14102 }
14103
14104
14105 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14106 with incorrect is_stmt attributes. */
14107
14108 static bool
14109 producer_is_codewarrior (struct dwarf2_cu *cu)
14110 {
14111 if (!cu->checked_producer)
14112 check_producer (cu);
14113
14114 return cu->producer_is_codewarrior;
14115 }
14116
14117 /* Return the default accessibility type if it is not overridden by
14118 DW_AT_accessibility. */
14119
14120 static enum dwarf_access_attribute
14121 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14122 {
14123 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14124 {
14125 /* The default DWARF 2 accessibility for members is public, the default
14126 accessibility for inheritance is private. */
14127
14128 if (die->tag != DW_TAG_inheritance)
14129 return DW_ACCESS_public;
14130 else
14131 return DW_ACCESS_private;
14132 }
14133 else
14134 {
14135 /* DWARF 3+ defines the default accessibility a different way. The same
14136 rules apply now for DW_TAG_inheritance as for the members and it only
14137 depends on the container kind. */
14138
14139 if (die->parent->tag == DW_TAG_class_type)
14140 return DW_ACCESS_private;
14141 else
14142 return DW_ACCESS_public;
14143 }
14144 }
14145
14146 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14147 offset. If the attribute was not found return 0, otherwise return
14148 1. If it was found but could not properly be handled, set *OFFSET
14149 to 0. */
14150
14151 static int
14152 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14153 LONGEST *offset)
14154 {
14155 struct attribute *attr;
14156
14157 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14158 if (attr != NULL)
14159 {
14160 *offset = 0;
14161
14162 /* Note that we do not check for a section offset first here.
14163 This is because DW_AT_data_member_location is new in DWARF 4,
14164 so if we see it, we can assume that a constant form is really
14165 a constant and not a section offset. */
14166 if (attr->form_is_constant ())
14167 *offset = attr->constant_value (0);
14168 else if (attr->form_is_section_offset ())
14169 dwarf2_complex_location_expr_complaint ();
14170 else if (attr->form_is_block ())
14171 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14172 else
14173 dwarf2_complex_location_expr_complaint ();
14174
14175 return 1;
14176 }
14177
14178 return 0;
14179 }
14180
14181 /* Add an aggregate field to the field list. */
14182
14183 static void
14184 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14185 struct dwarf2_cu *cu)
14186 {
14187 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14188 struct gdbarch *gdbarch = objfile->arch ();
14189 struct nextfield *new_field;
14190 struct attribute *attr;
14191 struct field *fp;
14192 const char *fieldname = "";
14193
14194 if (die->tag == DW_TAG_inheritance)
14195 {
14196 fip->baseclasses.emplace_back ();
14197 new_field = &fip->baseclasses.back ();
14198 }
14199 else
14200 {
14201 fip->fields.emplace_back ();
14202 new_field = &fip->fields.back ();
14203 }
14204
14205 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14206 if (attr != nullptr)
14207 new_field->accessibility = DW_UNSND (attr);
14208 else
14209 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14210 if (new_field->accessibility != DW_ACCESS_public)
14211 fip->non_public_fields = 1;
14212
14213 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14214 if (attr != nullptr)
14215 new_field->virtuality = DW_UNSND (attr);
14216 else
14217 new_field->virtuality = DW_VIRTUALITY_none;
14218
14219 fp = &new_field->field;
14220
14221 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14222 {
14223 LONGEST offset;
14224
14225 /* Data member other than a C++ static data member. */
14226
14227 /* Get type of field. */
14228 fp->type = die_type (die, cu);
14229
14230 SET_FIELD_BITPOS (*fp, 0);
14231
14232 /* Get bit size of field (zero if none). */
14233 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14234 if (attr != nullptr)
14235 {
14236 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14237 }
14238 else
14239 {
14240 FIELD_BITSIZE (*fp) = 0;
14241 }
14242
14243 /* Get bit offset of field. */
14244 if (handle_data_member_location (die, cu, &offset))
14245 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14246 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14247 if (attr != nullptr)
14248 {
14249 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14250 {
14251 /* For big endian bits, the DW_AT_bit_offset gives the
14252 additional bit offset from the MSB of the containing
14253 anonymous object to the MSB of the field. We don't
14254 have to do anything special since we don't need to
14255 know the size of the anonymous object. */
14256 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14257 }
14258 else
14259 {
14260 /* For little endian bits, compute the bit offset to the
14261 MSB of the anonymous object, subtract off the number of
14262 bits from the MSB of the field to the MSB of the
14263 object, and then subtract off the number of bits of
14264 the field itself. The result is the bit offset of
14265 the LSB of the field. */
14266 int anonymous_size;
14267 int bit_offset = DW_UNSND (attr);
14268
14269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14270 if (attr != nullptr)
14271 {
14272 /* The size of the anonymous object containing
14273 the bit field is explicit, so use the
14274 indicated size (in bytes). */
14275 anonymous_size = DW_UNSND (attr);
14276 }
14277 else
14278 {
14279 /* The size of the anonymous object containing
14280 the bit field must be inferred from the type
14281 attribute of the data member containing the
14282 bit field. */
14283 anonymous_size = TYPE_LENGTH (fp->type);
14284 }
14285 SET_FIELD_BITPOS (*fp,
14286 (FIELD_BITPOS (*fp)
14287 + anonymous_size * bits_per_byte
14288 - bit_offset - FIELD_BITSIZE (*fp)));
14289 }
14290 }
14291 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14292 if (attr != NULL)
14293 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14294 + attr->constant_value (0)));
14295
14296 /* Get name of field. */
14297 fieldname = dwarf2_name (die, cu);
14298 if (fieldname == NULL)
14299 fieldname = "";
14300
14301 /* The name is already allocated along with this objfile, so we don't
14302 need to duplicate it for the type. */
14303 fp->name = fieldname;
14304
14305 /* Change accessibility for artificial fields (e.g. virtual table
14306 pointer or virtual base class pointer) to private. */
14307 if (dwarf2_attr (die, DW_AT_artificial, cu))
14308 {
14309 FIELD_ARTIFICIAL (*fp) = 1;
14310 new_field->accessibility = DW_ACCESS_private;
14311 fip->non_public_fields = 1;
14312 }
14313 }
14314 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14315 {
14316 /* C++ static member. */
14317
14318 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14319 is a declaration, but all versions of G++ as of this writing
14320 (so through at least 3.2.1) incorrectly generate
14321 DW_TAG_variable tags. */
14322
14323 const char *physname;
14324
14325 /* Get name of field. */
14326 fieldname = dwarf2_name (die, cu);
14327 if (fieldname == NULL)
14328 return;
14329
14330 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14331 if (attr
14332 /* Only create a symbol if this is an external value.
14333 new_symbol checks this and puts the value in the global symbol
14334 table, which we want. If it is not external, new_symbol
14335 will try to put the value in cu->list_in_scope which is wrong. */
14336 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14337 {
14338 /* A static const member, not much different than an enum as far as
14339 we're concerned, except that we can support more types. */
14340 new_symbol (die, NULL, cu);
14341 }
14342
14343 /* Get physical name. */
14344 physname = dwarf2_physname (fieldname, die, cu);
14345
14346 /* The name is already allocated along with this objfile, so we don't
14347 need to duplicate it for the type. */
14348 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14349 FIELD_TYPE (*fp) = die_type (die, cu);
14350 FIELD_NAME (*fp) = fieldname;
14351 }
14352 else if (die->tag == DW_TAG_inheritance)
14353 {
14354 LONGEST offset;
14355
14356 /* C++ base class field. */
14357 if (handle_data_member_location (die, cu, &offset))
14358 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14359 FIELD_BITSIZE (*fp) = 0;
14360 FIELD_TYPE (*fp) = die_type (die, cu);
14361 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14362 }
14363 else if (die->tag == DW_TAG_variant_part)
14364 {
14365 /* process_structure_scope will treat this DIE as a union. */
14366 process_structure_scope (die, cu);
14367
14368 /* The variant part is relative to the start of the enclosing
14369 structure. */
14370 SET_FIELD_BITPOS (*fp, 0);
14371 fp->type = get_die_type (die, cu);
14372 fp->artificial = 1;
14373 fp->name = "<<variant>>";
14374
14375 /* Normally a DW_TAG_variant_part won't have a size, but our
14376 representation requires one, so set it to the maximum of the
14377 child sizes, being sure to account for the offset at which
14378 each child is seen. */
14379 if (TYPE_LENGTH (fp->type) == 0)
14380 {
14381 unsigned max = 0;
14382 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14383 {
14384 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14385 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14386 if (len > max)
14387 max = len;
14388 }
14389 TYPE_LENGTH (fp->type) = max;
14390 }
14391 }
14392 else
14393 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14394 }
14395
14396 /* Can the type given by DIE define another type? */
14397
14398 static bool
14399 type_can_define_types (const struct die_info *die)
14400 {
14401 switch (die->tag)
14402 {
14403 case DW_TAG_typedef:
14404 case DW_TAG_class_type:
14405 case DW_TAG_structure_type:
14406 case DW_TAG_union_type:
14407 case DW_TAG_enumeration_type:
14408 return true;
14409
14410 default:
14411 return false;
14412 }
14413 }
14414
14415 /* Add a type definition defined in the scope of the FIP's class. */
14416
14417 static void
14418 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14419 struct dwarf2_cu *cu)
14420 {
14421 struct decl_field fp;
14422 memset (&fp, 0, sizeof (fp));
14423
14424 gdb_assert (type_can_define_types (die));
14425
14426 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14427 fp.name = dwarf2_name (die, cu);
14428 fp.type = read_type_die (die, cu);
14429
14430 /* Save accessibility. */
14431 enum dwarf_access_attribute accessibility;
14432 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14433 if (attr != NULL)
14434 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14435 else
14436 accessibility = dwarf2_default_access_attribute (die, cu);
14437 switch (accessibility)
14438 {
14439 case DW_ACCESS_public:
14440 /* The assumed value if neither private nor protected. */
14441 break;
14442 case DW_ACCESS_private:
14443 fp.is_private = 1;
14444 break;
14445 case DW_ACCESS_protected:
14446 fp.is_protected = 1;
14447 break;
14448 default:
14449 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14450 }
14451
14452 if (die->tag == DW_TAG_typedef)
14453 fip->typedef_field_list.push_back (fp);
14454 else
14455 fip->nested_types_list.push_back (fp);
14456 }
14457
14458 /* Create the vector of fields, and attach it to the type. */
14459
14460 static void
14461 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14462 struct dwarf2_cu *cu)
14463 {
14464 int nfields = fip->nfields ();
14465
14466 /* Record the field count, allocate space for the array of fields,
14467 and create blank accessibility bitfields if necessary. */
14468 TYPE_NFIELDS (type) = nfields;
14469 TYPE_FIELDS (type) = (struct field *)
14470 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14471
14472 if (fip->non_public_fields && cu->language != language_ada)
14473 {
14474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14475
14476 TYPE_FIELD_PRIVATE_BITS (type) =
14477 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14478 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14479
14480 TYPE_FIELD_PROTECTED_BITS (type) =
14481 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14482 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14483
14484 TYPE_FIELD_IGNORE_BITS (type) =
14485 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14486 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14487 }
14488
14489 /* If the type has baseclasses, allocate and clear a bit vector for
14490 TYPE_FIELD_VIRTUAL_BITS. */
14491 if (!fip->baseclasses.empty () && cu->language != language_ada)
14492 {
14493 int num_bytes = B_BYTES (fip->baseclasses.size ());
14494 unsigned char *pointer;
14495
14496 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14497 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14498 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14499 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14500 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14501 }
14502
14503 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14504 {
14505 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14506
14507 for (int index = 0; index < nfields; ++index)
14508 {
14509 struct nextfield &field = fip->fields[index];
14510
14511 if (field.variant.is_discriminant)
14512 di->discriminant_index = index;
14513 else if (field.variant.default_branch)
14514 di->default_index = index;
14515 else
14516 di->discriminants[index] = field.variant.discriminant_value;
14517 }
14518 }
14519
14520 /* Copy the saved-up fields into the field vector. */
14521 for (int i = 0; i < nfields; ++i)
14522 {
14523 struct nextfield &field
14524 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14525 : fip->fields[i - fip->baseclasses.size ()]);
14526
14527 TYPE_FIELD (type, i) = field.field;
14528 switch (field.accessibility)
14529 {
14530 case DW_ACCESS_private:
14531 if (cu->language != language_ada)
14532 SET_TYPE_FIELD_PRIVATE (type, i);
14533 break;
14534
14535 case DW_ACCESS_protected:
14536 if (cu->language != language_ada)
14537 SET_TYPE_FIELD_PROTECTED (type, i);
14538 break;
14539
14540 case DW_ACCESS_public:
14541 break;
14542
14543 default:
14544 /* Unknown accessibility. Complain and treat it as public. */
14545 {
14546 complaint (_("unsupported accessibility %d"),
14547 field.accessibility);
14548 }
14549 break;
14550 }
14551 if (i < fip->baseclasses.size ())
14552 {
14553 switch (field.virtuality)
14554 {
14555 case DW_VIRTUALITY_virtual:
14556 case DW_VIRTUALITY_pure_virtual:
14557 if (cu->language == language_ada)
14558 error (_("unexpected virtuality in component of Ada type"));
14559 SET_TYPE_FIELD_VIRTUAL (type, i);
14560 break;
14561 }
14562 }
14563 }
14564 }
14565
14566 /* Return true if this member function is a constructor, false
14567 otherwise. */
14568
14569 static int
14570 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14571 {
14572 const char *fieldname;
14573 const char *type_name;
14574 int len;
14575
14576 if (die->parent == NULL)
14577 return 0;
14578
14579 if (die->parent->tag != DW_TAG_structure_type
14580 && die->parent->tag != DW_TAG_union_type
14581 && die->parent->tag != DW_TAG_class_type)
14582 return 0;
14583
14584 fieldname = dwarf2_name (die, cu);
14585 type_name = dwarf2_name (die->parent, cu);
14586 if (fieldname == NULL || type_name == NULL)
14587 return 0;
14588
14589 len = strlen (fieldname);
14590 return (strncmp (fieldname, type_name, len) == 0
14591 && (type_name[len] == '\0' || type_name[len] == '<'));
14592 }
14593
14594 /* Check if the given VALUE is a recognized enum
14595 dwarf_defaulted_attribute constant according to DWARF5 spec,
14596 Table 7.24. */
14597
14598 static bool
14599 is_valid_DW_AT_defaulted (ULONGEST value)
14600 {
14601 switch (value)
14602 {
14603 case DW_DEFAULTED_no:
14604 case DW_DEFAULTED_in_class:
14605 case DW_DEFAULTED_out_of_class:
14606 return true;
14607 }
14608
14609 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14610 return false;
14611 }
14612
14613 /* Add a member function to the proper fieldlist. */
14614
14615 static void
14616 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14617 struct type *type, struct dwarf2_cu *cu)
14618 {
14619 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14620 struct attribute *attr;
14621 int i;
14622 struct fnfieldlist *flp = nullptr;
14623 struct fn_field *fnp;
14624 const char *fieldname;
14625 struct type *this_type;
14626 enum dwarf_access_attribute accessibility;
14627
14628 if (cu->language == language_ada)
14629 error (_("unexpected member function in Ada type"));
14630
14631 /* Get name of member function. */
14632 fieldname = dwarf2_name (die, cu);
14633 if (fieldname == NULL)
14634 return;
14635
14636 /* Look up member function name in fieldlist. */
14637 for (i = 0; i < fip->fnfieldlists.size (); i++)
14638 {
14639 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14640 {
14641 flp = &fip->fnfieldlists[i];
14642 break;
14643 }
14644 }
14645
14646 /* Create a new fnfieldlist if necessary. */
14647 if (flp == nullptr)
14648 {
14649 fip->fnfieldlists.emplace_back ();
14650 flp = &fip->fnfieldlists.back ();
14651 flp->name = fieldname;
14652 i = fip->fnfieldlists.size () - 1;
14653 }
14654
14655 /* Create a new member function field and add it to the vector of
14656 fnfieldlists. */
14657 flp->fnfields.emplace_back ();
14658 fnp = &flp->fnfields.back ();
14659
14660 /* Delay processing of the physname until later. */
14661 if (cu->language == language_cplus)
14662 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14663 die, cu);
14664 else
14665 {
14666 const char *physname = dwarf2_physname (fieldname, die, cu);
14667 fnp->physname = physname ? physname : "";
14668 }
14669
14670 fnp->type = alloc_type (objfile);
14671 this_type = read_type_die (die, cu);
14672 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14673 {
14674 int nparams = TYPE_NFIELDS (this_type);
14675
14676 /* TYPE is the domain of this method, and THIS_TYPE is the type
14677 of the method itself (TYPE_CODE_METHOD). */
14678 smash_to_method_type (fnp->type, type,
14679 TYPE_TARGET_TYPE (this_type),
14680 TYPE_FIELDS (this_type),
14681 TYPE_NFIELDS (this_type),
14682 TYPE_VARARGS (this_type));
14683
14684 /* Handle static member functions.
14685 Dwarf2 has no clean way to discern C++ static and non-static
14686 member functions. G++ helps GDB by marking the first
14687 parameter for non-static member functions (which is the this
14688 pointer) as artificial. We obtain this information from
14689 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14690 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14691 fnp->voffset = VOFFSET_STATIC;
14692 }
14693 else
14694 complaint (_("member function type missing for '%s'"),
14695 dwarf2_full_name (fieldname, die, cu));
14696
14697 /* Get fcontext from DW_AT_containing_type if present. */
14698 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14699 fnp->fcontext = die_containing_type (die, cu);
14700
14701 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14702 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14703
14704 /* Get accessibility. */
14705 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14706 if (attr != nullptr)
14707 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14708 else
14709 accessibility = dwarf2_default_access_attribute (die, cu);
14710 switch (accessibility)
14711 {
14712 case DW_ACCESS_private:
14713 fnp->is_private = 1;
14714 break;
14715 case DW_ACCESS_protected:
14716 fnp->is_protected = 1;
14717 break;
14718 }
14719
14720 /* Check for artificial methods. */
14721 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14722 if (attr && DW_UNSND (attr) != 0)
14723 fnp->is_artificial = 1;
14724
14725 /* Check for defaulted methods. */
14726 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14727 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14728 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14729
14730 /* Check for deleted methods. */
14731 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14732 if (attr != nullptr && DW_UNSND (attr) != 0)
14733 fnp->is_deleted = 1;
14734
14735 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14736
14737 /* Get index in virtual function table if it is a virtual member
14738 function. For older versions of GCC, this is an offset in the
14739 appropriate virtual table, as specified by DW_AT_containing_type.
14740 For everyone else, it is an expression to be evaluated relative
14741 to the object address. */
14742
14743 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14744 if (attr != nullptr)
14745 {
14746 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14747 {
14748 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14749 {
14750 /* Old-style GCC. */
14751 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14752 }
14753 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14754 || (DW_BLOCK (attr)->size > 1
14755 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14756 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14757 {
14758 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14759 if ((fnp->voffset % cu->header.addr_size) != 0)
14760 dwarf2_complex_location_expr_complaint ();
14761 else
14762 fnp->voffset /= cu->header.addr_size;
14763 fnp->voffset += 2;
14764 }
14765 else
14766 dwarf2_complex_location_expr_complaint ();
14767
14768 if (!fnp->fcontext)
14769 {
14770 /* If there is no `this' field and no DW_AT_containing_type,
14771 we cannot actually find a base class context for the
14772 vtable! */
14773 if (TYPE_NFIELDS (this_type) == 0
14774 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14775 {
14776 complaint (_("cannot determine context for virtual member "
14777 "function \"%s\" (offset %s)"),
14778 fieldname, sect_offset_str (die->sect_off));
14779 }
14780 else
14781 {
14782 fnp->fcontext
14783 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14784 }
14785 }
14786 }
14787 else if (attr->form_is_section_offset ())
14788 {
14789 dwarf2_complex_location_expr_complaint ();
14790 }
14791 else
14792 {
14793 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14794 fieldname);
14795 }
14796 }
14797 else
14798 {
14799 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14800 if (attr && DW_UNSND (attr))
14801 {
14802 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14803 complaint (_("Member function \"%s\" (offset %s) is virtual "
14804 "but the vtable offset is not specified"),
14805 fieldname, sect_offset_str (die->sect_off));
14806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14807 TYPE_CPLUS_DYNAMIC (type) = 1;
14808 }
14809 }
14810 }
14811
14812 /* Create the vector of member function fields, and attach it to the type. */
14813
14814 static void
14815 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14816 struct dwarf2_cu *cu)
14817 {
14818 if (cu->language == language_ada)
14819 error (_("unexpected member functions in Ada type"));
14820
14821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14822 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14823 TYPE_ALLOC (type,
14824 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14825
14826 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14827 {
14828 struct fnfieldlist &nf = fip->fnfieldlists[i];
14829 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14830
14831 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14832 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14833 fn_flp->fn_fields = (struct fn_field *)
14834 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14835
14836 for (int k = 0; k < nf.fnfields.size (); ++k)
14837 fn_flp->fn_fields[k] = nf.fnfields[k];
14838 }
14839
14840 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14841 }
14842
14843 /* Returns non-zero if NAME is the name of a vtable member in CU's
14844 language, zero otherwise. */
14845 static int
14846 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14847 {
14848 static const char vptr[] = "_vptr";
14849
14850 /* Look for the C++ form of the vtable. */
14851 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14852 return 1;
14853
14854 return 0;
14855 }
14856
14857 /* GCC outputs unnamed structures that are really pointers to member
14858 functions, with the ABI-specified layout. If TYPE describes
14859 such a structure, smash it into a member function type.
14860
14861 GCC shouldn't do this; it should just output pointer to member DIEs.
14862 This is GCC PR debug/28767. */
14863
14864 static void
14865 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14866 {
14867 struct type *pfn_type, *self_type, *new_type;
14868
14869 /* Check for a structure with no name and two children. */
14870 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14871 return;
14872
14873 /* Check for __pfn and __delta members. */
14874 if (TYPE_FIELD_NAME (type, 0) == NULL
14875 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14876 || TYPE_FIELD_NAME (type, 1) == NULL
14877 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14878 return;
14879
14880 /* Find the type of the method. */
14881 pfn_type = TYPE_FIELD_TYPE (type, 0);
14882 if (pfn_type == NULL
14883 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14884 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14885 return;
14886
14887 /* Look for the "this" argument. */
14888 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14889 if (TYPE_NFIELDS (pfn_type) == 0
14890 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14891 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14892 return;
14893
14894 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14895 new_type = alloc_type (objfile);
14896 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14897 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14898 TYPE_VARARGS (pfn_type));
14899 smash_to_methodptr_type (type, new_type);
14900 }
14901
14902 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
14903 appropriate error checking and issuing complaints if there is a
14904 problem. */
14905
14906 static ULONGEST
14907 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14908 {
14909 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14910
14911 if (attr == nullptr)
14912 return 0;
14913
14914 if (!attr->form_is_constant ())
14915 {
14916 complaint (_("DW_AT_alignment must have constant form"
14917 " - DIE at %s [in module %s]"),
14918 sect_offset_str (die->sect_off),
14919 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14920 return 0;
14921 }
14922
14923 ULONGEST align;
14924 if (attr->form == DW_FORM_sdata)
14925 {
14926 LONGEST val = DW_SND (attr);
14927 if (val < 0)
14928 {
14929 complaint (_("DW_AT_alignment value must not be negative"
14930 " - DIE at %s [in module %s]"),
14931 sect_offset_str (die->sect_off),
14932 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14933 return 0;
14934 }
14935 align = val;
14936 }
14937 else
14938 align = DW_UNSND (attr);
14939
14940 if (align == 0)
14941 {
14942 complaint (_("DW_AT_alignment value must not be zero"
14943 " - DIE at %s [in module %s]"),
14944 sect_offset_str (die->sect_off),
14945 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14946 return 0;
14947 }
14948 if ((align & (align - 1)) != 0)
14949 {
14950 complaint (_("DW_AT_alignment value must be a power of 2"
14951 " - DIE at %s [in module %s]"),
14952 sect_offset_str (die->sect_off),
14953 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14954 return 0;
14955 }
14956
14957 return align;
14958 }
14959
14960 /* If the DIE has a DW_AT_alignment attribute, use its value to set
14961 the alignment for TYPE. */
14962
14963 static void
14964 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14965 struct type *type)
14966 {
14967 if (!set_type_align (type, get_alignment (cu, die)))
14968 complaint (_("DW_AT_alignment value too large"
14969 " - DIE at %s [in module %s]"),
14970 sect_offset_str (die->sect_off),
14971 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14972 }
14973
14974 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14975 constant for a type, according to DWARF5 spec, Table 5.5. */
14976
14977 static bool
14978 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14979 {
14980 switch (value)
14981 {
14982 case DW_CC_normal:
14983 case DW_CC_pass_by_reference:
14984 case DW_CC_pass_by_value:
14985 return true;
14986
14987 default:
14988 complaint (_("unrecognized DW_AT_calling_convention value "
14989 "(%s) for a type"), pulongest (value));
14990 return false;
14991 }
14992 }
14993
14994 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14995 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
14996 also according to GNU-specific values (see include/dwarf2.h). */
14997
14998 static bool
14999 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15000 {
15001 switch (value)
15002 {
15003 case DW_CC_normal:
15004 case DW_CC_program:
15005 case DW_CC_nocall:
15006 return true;
15007
15008 case DW_CC_GNU_renesas_sh:
15009 case DW_CC_GNU_borland_fastcall_i386:
15010 case DW_CC_GDB_IBM_OpenCL:
15011 return true;
15012
15013 default:
15014 complaint (_("unrecognized DW_AT_calling_convention value "
15015 "(%s) for a subroutine"), pulongest (value));
15016 return false;
15017 }
15018 }
15019
15020 /* Called when we find the DIE that starts a structure or union scope
15021 (definition) to create a type for the structure or union. Fill in
15022 the type's name and general properties; the members will not be
15023 processed until process_structure_scope. A symbol table entry for
15024 the type will also not be done until process_structure_scope (assuming
15025 the type has a name).
15026
15027 NOTE: we need to call these functions regardless of whether or not the
15028 DIE has a DW_AT_name attribute, since it might be an anonymous
15029 structure or union. This gets the type entered into our set of
15030 user defined types. */
15031
15032 static struct type *
15033 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15034 {
15035 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15036 struct type *type;
15037 struct attribute *attr;
15038 const char *name;
15039
15040 /* If the definition of this type lives in .debug_types, read that type.
15041 Don't follow DW_AT_specification though, that will take us back up
15042 the chain and we want to go down. */
15043 attr = die->attr (DW_AT_signature);
15044 if (attr != nullptr)
15045 {
15046 type = get_DW_AT_signature_type (die, attr, cu);
15047
15048 /* The type's CU may not be the same as CU.
15049 Ensure TYPE is recorded with CU in die_type_hash. */
15050 return set_die_type (die, type, cu);
15051 }
15052
15053 type = alloc_type (objfile);
15054 INIT_CPLUS_SPECIFIC (type);
15055
15056 name = dwarf2_name (die, cu);
15057 if (name != NULL)
15058 {
15059 if (cu->language == language_cplus
15060 || cu->language == language_d
15061 || cu->language == language_rust)
15062 {
15063 const char *full_name = dwarf2_full_name (name, die, cu);
15064
15065 /* dwarf2_full_name might have already finished building the DIE's
15066 type. If so, there is no need to continue. */
15067 if (get_die_type (die, cu) != NULL)
15068 return get_die_type (die, cu);
15069
15070 TYPE_NAME (type) = full_name;
15071 }
15072 else
15073 {
15074 /* The name is already allocated along with this objfile, so
15075 we don't need to duplicate it for the type. */
15076 TYPE_NAME (type) = name;
15077 }
15078 }
15079
15080 if (die->tag == DW_TAG_structure_type)
15081 {
15082 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15083 }
15084 else if (die->tag == DW_TAG_union_type)
15085 {
15086 TYPE_CODE (type) = TYPE_CODE_UNION;
15087 }
15088 else if (die->tag == DW_TAG_variant_part)
15089 {
15090 TYPE_CODE (type) = TYPE_CODE_UNION;
15091 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15092 }
15093 else
15094 {
15095 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15096 }
15097
15098 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15099 TYPE_DECLARED_CLASS (type) = 1;
15100
15101 /* Store the calling convention in the type if it's available in
15102 the die. Otherwise the calling convention remains set to
15103 the default value DW_CC_normal. */
15104 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15105 if (attr != nullptr
15106 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15107 {
15108 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15109 TYPE_CPLUS_CALLING_CONVENTION (type)
15110 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15111 }
15112
15113 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15114 if (attr != nullptr)
15115 {
15116 if (attr->form_is_constant ())
15117 TYPE_LENGTH (type) = DW_UNSND (attr);
15118 else
15119 {
15120 /* For the moment, dynamic type sizes are not supported
15121 by GDB's struct type. The actual size is determined
15122 on-demand when resolving the type of a given object,
15123 so set the type's length to zero for now. Otherwise,
15124 we record an expression as the length, and that expression
15125 could lead to a very large value, which could eventually
15126 lead to us trying to allocate that much memory when creating
15127 a value of that type. */
15128 TYPE_LENGTH (type) = 0;
15129 }
15130 }
15131 else
15132 {
15133 TYPE_LENGTH (type) = 0;
15134 }
15135
15136 maybe_set_alignment (cu, die, type);
15137
15138 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15139 {
15140 /* ICC<14 does not output the required DW_AT_declaration on
15141 incomplete types, but gives them a size of zero. */
15142 TYPE_STUB (type) = 1;
15143 }
15144 else
15145 TYPE_STUB_SUPPORTED (type) = 1;
15146
15147 if (die_is_declaration (die, cu))
15148 TYPE_STUB (type) = 1;
15149 else if (attr == NULL && die->child == NULL
15150 && producer_is_realview (cu->producer))
15151 /* RealView does not output the required DW_AT_declaration
15152 on incomplete types. */
15153 TYPE_STUB (type) = 1;
15154
15155 /* We need to add the type field to the die immediately so we don't
15156 infinitely recurse when dealing with pointers to the structure
15157 type within the structure itself. */
15158 set_die_type (die, type, cu);
15159
15160 /* set_die_type should be already done. */
15161 set_descriptive_type (type, die, cu);
15162
15163 return type;
15164 }
15165
15166 /* A helper for process_structure_scope that handles a single member
15167 DIE. */
15168
15169 static void
15170 handle_struct_member_die (struct die_info *child_die, struct type *type,
15171 struct field_info *fi,
15172 std::vector<struct symbol *> *template_args,
15173 struct dwarf2_cu *cu)
15174 {
15175 if (child_die->tag == DW_TAG_member
15176 || child_die->tag == DW_TAG_variable
15177 || child_die->tag == DW_TAG_variant_part)
15178 {
15179 /* NOTE: carlton/2002-11-05: A C++ static data member
15180 should be a DW_TAG_member that is a declaration, but
15181 all versions of G++ as of this writing (so through at
15182 least 3.2.1) incorrectly generate DW_TAG_variable
15183 tags for them instead. */
15184 dwarf2_add_field (fi, child_die, cu);
15185 }
15186 else if (child_die->tag == DW_TAG_subprogram)
15187 {
15188 /* Rust doesn't have member functions in the C++ sense.
15189 However, it does emit ordinary functions as children
15190 of a struct DIE. */
15191 if (cu->language == language_rust)
15192 read_func_scope (child_die, cu);
15193 else
15194 {
15195 /* C++ member function. */
15196 dwarf2_add_member_fn (fi, child_die, type, cu);
15197 }
15198 }
15199 else if (child_die->tag == DW_TAG_inheritance)
15200 {
15201 /* C++ base class field. */
15202 dwarf2_add_field (fi, child_die, cu);
15203 }
15204 else if (type_can_define_types (child_die))
15205 dwarf2_add_type_defn (fi, child_die, cu);
15206 else if (child_die->tag == DW_TAG_template_type_param
15207 || child_die->tag == DW_TAG_template_value_param)
15208 {
15209 struct symbol *arg = new_symbol (child_die, NULL, cu);
15210
15211 if (arg != NULL)
15212 template_args->push_back (arg);
15213 }
15214 else if (child_die->tag == DW_TAG_variant)
15215 {
15216 /* In a variant we want to get the discriminant and also add a
15217 field for our sole member child. */
15218 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15219
15220 for (die_info *variant_child = child_die->child;
15221 variant_child != NULL;
15222 variant_child = variant_child->sibling)
15223 {
15224 if (variant_child->tag == DW_TAG_member)
15225 {
15226 handle_struct_member_die (variant_child, type, fi,
15227 template_args, cu);
15228 /* Only handle the one. */
15229 break;
15230 }
15231 }
15232
15233 /* We don't handle this but we might as well report it if we see
15234 it. */
15235 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15236 complaint (_("DW_AT_discr_list is not supported yet"
15237 " - DIE at %s [in module %s]"),
15238 sect_offset_str (child_die->sect_off),
15239 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15240
15241 /* The first field was just added, so we can stash the
15242 discriminant there. */
15243 gdb_assert (!fi->fields.empty ());
15244 if (discr == NULL)
15245 fi->fields.back ().variant.default_branch = true;
15246 else
15247 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15248 }
15249 }
15250
15251 /* Finish creating a structure or union type, including filling in
15252 its members and creating a symbol for it. */
15253
15254 static void
15255 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15256 {
15257 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15258 struct die_info *child_die;
15259 struct type *type;
15260
15261 type = get_die_type (die, cu);
15262 if (type == NULL)
15263 type = read_structure_type (die, cu);
15264
15265 /* When reading a DW_TAG_variant_part, we need to notice when we
15266 read the discriminant member, so we can record it later in the
15267 discriminant_info. */
15268 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15269 sect_offset discr_offset {};
15270 bool has_template_parameters = false;
15271
15272 if (is_variant_part)
15273 {
15274 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15275 if (discr == NULL)
15276 {
15277 /* Maybe it's a univariant form, an extension we support.
15278 In this case arrange not to check the offset. */
15279 is_variant_part = false;
15280 }
15281 else if (discr->form_is_ref ())
15282 {
15283 struct dwarf2_cu *target_cu = cu;
15284 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15285
15286 discr_offset = target_die->sect_off;
15287 }
15288 else
15289 {
15290 complaint (_("DW_AT_discr does not have DIE reference form"
15291 " - DIE at %s [in module %s]"),
15292 sect_offset_str (die->sect_off),
15293 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15294 is_variant_part = false;
15295 }
15296 }
15297
15298 if (die->child != NULL && ! die_is_declaration (die, cu))
15299 {
15300 struct field_info fi;
15301 std::vector<struct symbol *> template_args;
15302
15303 child_die = die->child;
15304
15305 while (child_die && child_die->tag)
15306 {
15307 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15308
15309 if (is_variant_part && discr_offset == child_die->sect_off)
15310 fi.fields.back ().variant.is_discriminant = true;
15311
15312 child_die = child_die->sibling;
15313 }
15314
15315 /* Attach template arguments to type. */
15316 if (!template_args.empty ())
15317 {
15318 has_template_parameters = true;
15319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15320 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15321 TYPE_TEMPLATE_ARGUMENTS (type)
15322 = XOBNEWVEC (&objfile->objfile_obstack,
15323 struct symbol *,
15324 TYPE_N_TEMPLATE_ARGUMENTS (type));
15325 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15326 template_args.data (),
15327 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15328 * sizeof (struct symbol *)));
15329 }
15330
15331 /* Attach fields and member functions to the type. */
15332 if (fi.nfields () > 0)
15333 dwarf2_attach_fields_to_type (&fi, type, cu);
15334 if (!fi.fnfieldlists.empty ())
15335 {
15336 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15337
15338 /* Get the type which refers to the base class (possibly this
15339 class itself) which contains the vtable pointer for the current
15340 class from the DW_AT_containing_type attribute. This use of
15341 DW_AT_containing_type is a GNU extension. */
15342
15343 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15344 {
15345 struct type *t = die_containing_type (die, cu);
15346
15347 set_type_vptr_basetype (type, t);
15348 if (type == t)
15349 {
15350 int i;
15351
15352 /* Our own class provides vtbl ptr. */
15353 for (i = TYPE_NFIELDS (t) - 1;
15354 i >= TYPE_N_BASECLASSES (t);
15355 --i)
15356 {
15357 const char *fieldname = TYPE_FIELD_NAME (t, i);
15358
15359 if (is_vtable_name (fieldname, cu))
15360 {
15361 set_type_vptr_fieldno (type, i);
15362 break;
15363 }
15364 }
15365
15366 /* Complain if virtual function table field not found. */
15367 if (i < TYPE_N_BASECLASSES (t))
15368 complaint (_("virtual function table pointer "
15369 "not found when defining class '%s'"),
15370 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15371 }
15372 else
15373 {
15374 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15375 }
15376 }
15377 else if (cu->producer
15378 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15379 {
15380 /* The IBM XLC compiler does not provide direct indication
15381 of the containing type, but the vtable pointer is
15382 always named __vfp. */
15383
15384 int i;
15385
15386 for (i = TYPE_NFIELDS (type) - 1;
15387 i >= TYPE_N_BASECLASSES (type);
15388 --i)
15389 {
15390 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15391 {
15392 set_type_vptr_fieldno (type, i);
15393 set_type_vptr_basetype (type, type);
15394 break;
15395 }
15396 }
15397 }
15398 }
15399
15400 /* Copy fi.typedef_field_list linked list elements content into the
15401 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15402 if (!fi.typedef_field_list.empty ())
15403 {
15404 int count = fi.typedef_field_list.size ();
15405
15406 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15407 TYPE_TYPEDEF_FIELD_ARRAY (type)
15408 = ((struct decl_field *)
15409 TYPE_ALLOC (type,
15410 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15411 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15412
15413 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15414 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15415 }
15416
15417 /* Copy fi.nested_types_list linked list elements content into the
15418 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15419 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15420 {
15421 int count = fi.nested_types_list.size ();
15422
15423 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15424 TYPE_NESTED_TYPES_ARRAY (type)
15425 = ((struct decl_field *)
15426 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15427 TYPE_NESTED_TYPES_COUNT (type) = count;
15428
15429 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15430 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15431 }
15432 }
15433
15434 quirk_gcc_member_function_pointer (type, objfile);
15435 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15436 cu->rust_unions.push_back (type);
15437
15438 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15439 snapshots) has been known to create a die giving a declaration
15440 for a class that has, as a child, a die giving a definition for a
15441 nested class. So we have to process our children even if the
15442 current die is a declaration. Normally, of course, a declaration
15443 won't have any children at all. */
15444
15445 child_die = die->child;
15446
15447 while (child_die != NULL && child_die->tag)
15448 {
15449 if (child_die->tag == DW_TAG_member
15450 || child_die->tag == DW_TAG_variable
15451 || child_die->tag == DW_TAG_inheritance
15452 || child_die->tag == DW_TAG_template_value_param
15453 || child_die->tag == DW_TAG_template_type_param)
15454 {
15455 /* Do nothing. */
15456 }
15457 else
15458 process_die (child_die, cu);
15459
15460 child_die = child_die->sibling;
15461 }
15462
15463 /* Do not consider external references. According to the DWARF standard,
15464 these DIEs are identified by the fact that they have no byte_size
15465 attribute, and a declaration attribute. */
15466 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15467 || !die_is_declaration (die, cu))
15468 {
15469 struct symbol *sym = new_symbol (die, type, cu);
15470
15471 if (has_template_parameters)
15472 {
15473 struct symtab *symtab;
15474 if (sym != nullptr)
15475 symtab = symbol_symtab (sym);
15476 else if (cu->line_header != nullptr)
15477 {
15478 /* Any related symtab will do. */
15479 symtab
15480 = cu->line_header->file_names ()[0].symtab;
15481 }
15482 else
15483 {
15484 symtab = nullptr;
15485 complaint (_("could not find suitable "
15486 "symtab for template parameter"
15487 " - DIE at %s [in module %s]"),
15488 sect_offset_str (die->sect_off),
15489 objfile_name (objfile));
15490 }
15491
15492 if (symtab != nullptr)
15493 {
15494 /* Make sure that the symtab is set on the new symbols.
15495 Even though they don't appear in this symtab directly,
15496 other parts of gdb assume that symbols do, and this is
15497 reasonably true. */
15498 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15499 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15500 }
15501 }
15502 }
15503 }
15504
15505 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15506 update TYPE using some information only available in DIE's children. */
15507
15508 static void
15509 update_enumeration_type_from_children (struct die_info *die,
15510 struct type *type,
15511 struct dwarf2_cu *cu)
15512 {
15513 struct die_info *child_die;
15514 int unsigned_enum = 1;
15515 int flag_enum = 1;
15516
15517 auto_obstack obstack;
15518
15519 for (child_die = die->child;
15520 child_die != NULL && child_die->tag;
15521 child_die = child_die->sibling)
15522 {
15523 struct attribute *attr;
15524 LONGEST value;
15525 const gdb_byte *bytes;
15526 struct dwarf2_locexpr_baton *baton;
15527 const char *name;
15528
15529 if (child_die->tag != DW_TAG_enumerator)
15530 continue;
15531
15532 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15533 if (attr == NULL)
15534 continue;
15535
15536 name = dwarf2_name (child_die, cu);
15537 if (name == NULL)
15538 name = "<anonymous enumerator>";
15539
15540 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15541 &value, &bytes, &baton);
15542 if (value < 0)
15543 {
15544 unsigned_enum = 0;
15545 flag_enum = 0;
15546 }
15547 else
15548 {
15549 if (count_one_bits_ll (value) >= 2)
15550 flag_enum = 0;
15551 }
15552
15553 /* If we already know that the enum type is neither unsigned, nor
15554 a flag type, no need to look at the rest of the enumerates. */
15555 if (!unsigned_enum && !flag_enum)
15556 break;
15557 }
15558
15559 if (unsigned_enum)
15560 TYPE_UNSIGNED (type) = 1;
15561 if (flag_enum)
15562 TYPE_FLAG_ENUM (type) = 1;
15563 }
15564
15565 /* Given a DW_AT_enumeration_type die, set its type. We do not
15566 complete the type's fields yet, or create any symbols. */
15567
15568 static struct type *
15569 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15570 {
15571 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15572 struct type *type;
15573 struct attribute *attr;
15574 const char *name;
15575
15576 /* If the definition of this type lives in .debug_types, read that type.
15577 Don't follow DW_AT_specification though, that will take us back up
15578 the chain and we want to go down. */
15579 attr = die->attr (DW_AT_signature);
15580 if (attr != nullptr)
15581 {
15582 type = get_DW_AT_signature_type (die, attr, cu);
15583
15584 /* The type's CU may not be the same as CU.
15585 Ensure TYPE is recorded with CU in die_type_hash. */
15586 return set_die_type (die, type, cu);
15587 }
15588
15589 type = alloc_type (objfile);
15590
15591 TYPE_CODE (type) = TYPE_CODE_ENUM;
15592 name = dwarf2_full_name (NULL, die, cu);
15593 if (name != NULL)
15594 TYPE_NAME (type) = name;
15595
15596 attr = dwarf2_attr (die, DW_AT_type, cu);
15597 if (attr != NULL)
15598 {
15599 struct type *underlying_type = die_type (die, cu);
15600
15601 TYPE_TARGET_TYPE (type) = underlying_type;
15602 }
15603
15604 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15605 if (attr != nullptr)
15606 {
15607 TYPE_LENGTH (type) = DW_UNSND (attr);
15608 }
15609 else
15610 {
15611 TYPE_LENGTH (type) = 0;
15612 }
15613
15614 maybe_set_alignment (cu, die, type);
15615
15616 /* The enumeration DIE can be incomplete. In Ada, any type can be
15617 declared as private in the package spec, and then defined only
15618 inside the package body. Such types are known as Taft Amendment
15619 Types. When another package uses such a type, an incomplete DIE
15620 may be generated by the compiler. */
15621 if (die_is_declaration (die, cu))
15622 TYPE_STUB (type) = 1;
15623
15624 /* Finish the creation of this type by using the enum's children.
15625 We must call this even when the underlying type has been provided
15626 so that we can determine if we're looking at a "flag" enum. */
15627 update_enumeration_type_from_children (die, type, cu);
15628
15629 /* If this type has an underlying type that is not a stub, then we
15630 may use its attributes. We always use the "unsigned" attribute
15631 in this situation, because ordinarily we guess whether the type
15632 is unsigned -- but the guess can be wrong and the underlying type
15633 can tell us the reality. However, we defer to a local size
15634 attribute if one exists, because this lets the compiler override
15635 the underlying type if needed. */
15636 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15637 {
15638 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15639 underlying_type = check_typedef (underlying_type);
15640 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15641 if (TYPE_LENGTH (type) == 0)
15642 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15643 if (TYPE_RAW_ALIGN (type) == 0
15644 && TYPE_RAW_ALIGN (underlying_type) != 0)
15645 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15646 }
15647
15648 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15649
15650 return set_die_type (die, type, cu);
15651 }
15652
15653 /* Given a pointer to a die which begins an enumeration, process all
15654 the dies that define the members of the enumeration, and create the
15655 symbol for the enumeration type.
15656
15657 NOTE: We reverse the order of the element list. */
15658
15659 static void
15660 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15661 {
15662 struct type *this_type;
15663
15664 this_type = get_die_type (die, cu);
15665 if (this_type == NULL)
15666 this_type = read_enumeration_type (die, cu);
15667
15668 if (die->child != NULL)
15669 {
15670 struct die_info *child_die;
15671 struct symbol *sym;
15672 std::vector<struct field> fields;
15673 const char *name;
15674
15675 child_die = die->child;
15676 while (child_die && child_die->tag)
15677 {
15678 if (child_die->tag != DW_TAG_enumerator)
15679 {
15680 process_die (child_die, cu);
15681 }
15682 else
15683 {
15684 name = dwarf2_name (child_die, cu);
15685 if (name)
15686 {
15687 sym = new_symbol (child_die, this_type, cu);
15688
15689 fields.emplace_back ();
15690 struct field &field = fields.back ();
15691
15692 FIELD_NAME (field) = sym->linkage_name ();
15693 FIELD_TYPE (field) = NULL;
15694 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15695 FIELD_BITSIZE (field) = 0;
15696 }
15697 }
15698
15699 child_die = child_die->sibling;
15700 }
15701
15702 if (!fields.empty ())
15703 {
15704 TYPE_NFIELDS (this_type) = fields.size ();
15705 TYPE_FIELDS (this_type) = (struct field *)
15706 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15707 memcpy (TYPE_FIELDS (this_type), fields.data (),
15708 sizeof (struct field) * fields.size ());
15709 }
15710 }
15711
15712 /* If we are reading an enum from a .debug_types unit, and the enum
15713 is a declaration, and the enum is not the signatured type in the
15714 unit, then we do not want to add a symbol for it. Adding a
15715 symbol would in some cases obscure the true definition of the
15716 enum, giving users an incomplete type when the definition is
15717 actually available. Note that we do not want to do this for all
15718 enums which are just declarations, because C++0x allows forward
15719 enum declarations. */
15720 if (cu->per_cu->is_debug_types
15721 && die_is_declaration (die, cu))
15722 {
15723 struct signatured_type *sig_type;
15724
15725 sig_type = (struct signatured_type *) cu->per_cu;
15726 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15727 if (sig_type->type_offset_in_section != die->sect_off)
15728 return;
15729 }
15730
15731 new_symbol (die, this_type, cu);
15732 }
15733
15734 /* Extract all information from a DW_TAG_array_type DIE and put it in
15735 the DIE's type field. For now, this only handles one dimensional
15736 arrays. */
15737
15738 static struct type *
15739 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15740 {
15741 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15742 struct die_info *child_die;
15743 struct type *type;
15744 struct type *element_type, *range_type, *index_type;
15745 struct attribute *attr;
15746 const char *name;
15747 struct dynamic_prop *byte_stride_prop = NULL;
15748 unsigned int bit_stride = 0;
15749
15750 element_type = die_type (die, cu);
15751
15752 /* The die_type call above may have already set the type for this DIE. */
15753 type = get_die_type (die, cu);
15754 if (type)
15755 return type;
15756
15757 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15758 if (attr != NULL)
15759 {
15760 int stride_ok;
15761 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15762
15763 byte_stride_prop
15764 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15765 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15766 prop_type);
15767 if (!stride_ok)
15768 {
15769 complaint (_("unable to read array DW_AT_byte_stride "
15770 " - DIE at %s [in module %s]"),
15771 sect_offset_str (die->sect_off),
15772 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15773 /* Ignore this attribute. We will likely not be able to print
15774 arrays of this type correctly, but there is little we can do
15775 to help if we cannot read the attribute's value. */
15776 byte_stride_prop = NULL;
15777 }
15778 }
15779
15780 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15781 if (attr != NULL)
15782 bit_stride = DW_UNSND (attr);
15783
15784 /* Irix 6.2 native cc creates array types without children for
15785 arrays with unspecified length. */
15786 if (die->child == NULL)
15787 {
15788 index_type = objfile_type (objfile)->builtin_int;
15789 range_type = create_static_range_type (NULL, index_type, 0, -1);
15790 type = create_array_type_with_stride (NULL, element_type, range_type,
15791 byte_stride_prop, bit_stride);
15792 return set_die_type (die, type, cu);
15793 }
15794
15795 std::vector<struct type *> range_types;
15796 child_die = die->child;
15797 while (child_die && child_die->tag)
15798 {
15799 if (child_die->tag == DW_TAG_subrange_type)
15800 {
15801 struct type *child_type = read_type_die (child_die, cu);
15802
15803 if (child_type != NULL)
15804 {
15805 /* The range type was succesfully read. Save it for the
15806 array type creation. */
15807 range_types.push_back (child_type);
15808 }
15809 }
15810 child_die = child_die->sibling;
15811 }
15812
15813 /* Dwarf2 dimensions are output from left to right, create the
15814 necessary array types in backwards order. */
15815
15816 type = element_type;
15817
15818 if (read_array_order (die, cu) == DW_ORD_col_major)
15819 {
15820 int i = 0;
15821
15822 while (i < range_types.size ())
15823 type = create_array_type_with_stride (NULL, type, range_types[i++],
15824 byte_stride_prop, bit_stride);
15825 }
15826 else
15827 {
15828 size_t ndim = range_types.size ();
15829 while (ndim-- > 0)
15830 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15831 byte_stride_prop, bit_stride);
15832 }
15833
15834 /* Understand Dwarf2 support for vector types (like they occur on
15835 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15836 array type. This is not part of the Dwarf2/3 standard yet, but a
15837 custom vendor extension. The main difference between a regular
15838 array and the vector variant is that vectors are passed by value
15839 to functions. */
15840 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15841 if (attr != nullptr)
15842 make_vector_type (type);
15843
15844 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15845 implementation may choose to implement triple vectors using this
15846 attribute. */
15847 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15848 if (attr != nullptr)
15849 {
15850 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15851 TYPE_LENGTH (type) = DW_UNSND (attr);
15852 else
15853 complaint (_("DW_AT_byte_size for array type smaller "
15854 "than the total size of elements"));
15855 }
15856
15857 name = dwarf2_name (die, cu);
15858 if (name)
15859 TYPE_NAME (type) = name;
15860
15861 maybe_set_alignment (cu, die, type);
15862
15863 /* Install the type in the die. */
15864 set_die_type (die, type, cu);
15865
15866 /* set_die_type should be already done. */
15867 set_descriptive_type (type, die, cu);
15868
15869 return type;
15870 }
15871
15872 static enum dwarf_array_dim_ordering
15873 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15874 {
15875 struct attribute *attr;
15876
15877 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15878
15879 if (attr != nullptr)
15880 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15881
15882 /* GNU F77 is a special case, as at 08/2004 array type info is the
15883 opposite order to the dwarf2 specification, but data is still
15884 laid out as per normal fortran.
15885
15886 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15887 version checking. */
15888
15889 if (cu->language == language_fortran
15890 && cu->producer && strstr (cu->producer, "GNU F77"))
15891 {
15892 return DW_ORD_row_major;
15893 }
15894
15895 switch (cu->language_defn->la_array_ordering)
15896 {
15897 case array_column_major:
15898 return DW_ORD_col_major;
15899 case array_row_major:
15900 default:
15901 return DW_ORD_row_major;
15902 };
15903 }
15904
15905 /* Extract all information from a DW_TAG_set_type DIE and put it in
15906 the DIE's type field. */
15907
15908 static struct type *
15909 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15910 {
15911 struct type *domain_type, *set_type;
15912 struct attribute *attr;
15913
15914 domain_type = die_type (die, cu);
15915
15916 /* The die_type call above may have already set the type for this DIE. */
15917 set_type = get_die_type (die, cu);
15918 if (set_type)
15919 return set_type;
15920
15921 set_type = create_set_type (NULL, domain_type);
15922
15923 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15924 if (attr != nullptr)
15925 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15926
15927 maybe_set_alignment (cu, die, set_type);
15928
15929 return set_die_type (die, set_type, cu);
15930 }
15931
15932 /* A helper for read_common_block that creates a locexpr baton.
15933 SYM is the symbol which we are marking as computed.
15934 COMMON_DIE is the DIE for the common block.
15935 COMMON_LOC is the location expression attribute for the common
15936 block itself.
15937 MEMBER_LOC is the location expression attribute for the particular
15938 member of the common block that we are processing.
15939 CU is the CU from which the above come. */
15940
15941 static void
15942 mark_common_block_symbol_computed (struct symbol *sym,
15943 struct die_info *common_die,
15944 struct attribute *common_loc,
15945 struct attribute *member_loc,
15946 struct dwarf2_cu *cu)
15947 {
15948 struct dwarf2_per_objfile *dwarf2_per_objfile
15949 = cu->per_cu->dwarf2_per_objfile;
15950 struct objfile *objfile = dwarf2_per_objfile->objfile;
15951 struct dwarf2_locexpr_baton *baton;
15952 gdb_byte *ptr;
15953 unsigned int cu_off;
15954 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
15955 LONGEST offset = 0;
15956
15957 gdb_assert (common_loc && member_loc);
15958 gdb_assert (common_loc->form_is_block ());
15959 gdb_assert (member_loc->form_is_block ()
15960 || member_loc->form_is_constant ());
15961
15962 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15963 baton->per_cu = cu->per_cu;
15964 gdb_assert (baton->per_cu);
15965
15966 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15967
15968 if (member_loc->form_is_constant ())
15969 {
15970 offset = member_loc->constant_value (0);
15971 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15972 }
15973 else
15974 baton->size += DW_BLOCK (member_loc)->size;
15975
15976 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15977 baton->data = ptr;
15978
15979 *ptr++ = DW_OP_call4;
15980 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15981 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15982 ptr += 4;
15983
15984 if (member_loc->form_is_constant ())
15985 {
15986 *ptr++ = DW_OP_addr;
15987 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15988 ptr += cu->header.addr_size;
15989 }
15990 else
15991 {
15992 /* We have to copy the data here, because DW_OP_call4 will only
15993 use a DW_AT_location attribute. */
15994 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15995 ptr += DW_BLOCK (member_loc)->size;
15996 }
15997
15998 *ptr++ = DW_OP_plus;
15999 gdb_assert (ptr - baton->data == baton->size);
16000
16001 SYMBOL_LOCATION_BATON (sym) = baton;
16002 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16003 }
16004
16005 /* Create appropriate locally-scoped variables for all the
16006 DW_TAG_common_block entries. Also create a struct common_block
16007 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16008 is used to separate the common blocks name namespace from regular
16009 variable names. */
16010
16011 static void
16012 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16013 {
16014 struct attribute *attr;
16015
16016 attr = dwarf2_attr (die, DW_AT_location, cu);
16017 if (attr != nullptr)
16018 {
16019 /* Support the .debug_loc offsets. */
16020 if (attr->form_is_block ())
16021 {
16022 /* Ok. */
16023 }
16024 else if (attr->form_is_section_offset ())
16025 {
16026 dwarf2_complex_location_expr_complaint ();
16027 attr = NULL;
16028 }
16029 else
16030 {
16031 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16032 "common block member");
16033 attr = NULL;
16034 }
16035 }
16036
16037 if (die->child != NULL)
16038 {
16039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16040 struct die_info *child_die;
16041 size_t n_entries = 0, size;
16042 struct common_block *common_block;
16043 struct symbol *sym;
16044
16045 for (child_die = die->child;
16046 child_die && child_die->tag;
16047 child_die = child_die->sibling)
16048 ++n_entries;
16049
16050 size = (sizeof (struct common_block)
16051 + (n_entries - 1) * sizeof (struct symbol *));
16052 common_block
16053 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16054 size);
16055 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16056 common_block->n_entries = 0;
16057
16058 for (child_die = die->child;
16059 child_die && child_die->tag;
16060 child_die = child_die->sibling)
16061 {
16062 /* Create the symbol in the DW_TAG_common_block block in the current
16063 symbol scope. */
16064 sym = new_symbol (child_die, NULL, cu);
16065 if (sym != NULL)
16066 {
16067 struct attribute *member_loc;
16068
16069 common_block->contents[common_block->n_entries++] = sym;
16070
16071 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16072 cu);
16073 if (member_loc)
16074 {
16075 /* GDB has handled this for a long time, but it is
16076 not specified by DWARF. It seems to have been
16077 emitted by gfortran at least as recently as:
16078 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16079 complaint (_("Variable in common block has "
16080 "DW_AT_data_member_location "
16081 "- DIE at %s [in module %s]"),
16082 sect_offset_str (child_die->sect_off),
16083 objfile_name (objfile));
16084
16085 if (member_loc->form_is_section_offset ())
16086 dwarf2_complex_location_expr_complaint ();
16087 else if (member_loc->form_is_constant ()
16088 || member_loc->form_is_block ())
16089 {
16090 if (attr != nullptr)
16091 mark_common_block_symbol_computed (sym, die, attr,
16092 member_loc, cu);
16093 }
16094 else
16095 dwarf2_complex_location_expr_complaint ();
16096 }
16097 }
16098 }
16099
16100 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16101 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16102 }
16103 }
16104
16105 /* Create a type for a C++ namespace. */
16106
16107 static struct type *
16108 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16109 {
16110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16111 const char *previous_prefix, *name;
16112 int is_anonymous;
16113 struct type *type;
16114
16115 /* For extensions, reuse the type of the original namespace. */
16116 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16117 {
16118 struct die_info *ext_die;
16119 struct dwarf2_cu *ext_cu = cu;
16120
16121 ext_die = dwarf2_extension (die, &ext_cu);
16122 type = read_type_die (ext_die, ext_cu);
16123
16124 /* EXT_CU may not be the same as CU.
16125 Ensure TYPE is recorded with CU in die_type_hash. */
16126 return set_die_type (die, type, cu);
16127 }
16128
16129 name = namespace_name (die, &is_anonymous, cu);
16130
16131 /* Now build the name of the current namespace. */
16132
16133 previous_prefix = determine_prefix (die, cu);
16134 if (previous_prefix[0] != '\0')
16135 name = typename_concat (&objfile->objfile_obstack,
16136 previous_prefix, name, 0, cu);
16137
16138 /* Create the type. */
16139 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16140
16141 return set_die_type (die, type, cu);
16142 }
16143
16144 /* Read a namespace scope. */
16145
16146 static void
16147 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16148 {
16149 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16150 int is_anonymous;
16151
16152 /* Add a symbol associated to this if we haven't seen the namespace
16153 before. Also, add a using directive if it's an anonymous
16154 namespace. */
16155
16156 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16157 {
16158 struct type *type;
16159
16160 type = read_type_die (die, cu);
16161 new_symbol (die, type, cu);
16162
16163 namespace_name (die, &is_anonymous, cu);
16164 if (is_anonymous)
16165 {
16166 const char *previous_prefix = determine_prefix (die, cu);
16167
16168 std::vector<const char *> excludes;
16169 add_using_directive (using_directives (cu),
16170 previous_prefix, TYPE_NAME (type), NULL,
16171 NULL, excludes, 0, &objfile->objfile_obstack);
16172 }
16173 }
16174
16175 if (die->child != NULL)
16176 {
16177 struct die_info *child_die = die->child;
16178
16179 while (child_die && child_die->tag)
16180 {
16181 process_die (child_die, cu);
16182 child_die = child_die->sibling;
16183 }
16184 }
16185 }
16186
16187 /* Read a Fortran module as type. This DIE can be only a declaration used for
16188 imported module. Still we need that type as local Fortran "use ... only"
16189 declaration imports depend on the created type in determine_prefix. */
16190
16191 static struct type *
16192 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16193 {
16194 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16195 const char *module_name;
16196 struct type *type;
16197
16198 module_name = dwarf2_name (die, cu);
16199 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16200
16201 return set_die_type (die, type, cu);
16202 }
16203
16204 /* Read a Fortran module. */
16205
16206 static void
16207 read_module (struct die_info *die, struct dwarf2_cu *cu)
16208 {
16209 struct die_info *child_die = die->child;
16210 struct type *type;
16211
16212 type = read_type_die (die, cu);
16213 new_symbol (die, type, cu);
16214
16215 while (child_die && child_die->tag)
16216 {
16217 process_die (child_die, cu);
16218 child_die = child_die->sibling;
16219 }
16220 }
16221
16222 /* Return the name of the namespace represented by DIE. Set
16223 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16224 namespace. */
16225
16226 static const char *
16227 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16228 {
16229 struct die_info *current_die;
16230 const char *name = NULL;
16231
16232 /* Loop through the extensions until we find a name. */
16233
16234 for (current_die = die;
16235 current_die != NULL;
16236 current_die = dwarf2_extension (die, &cu))
16237 {
16238 /* We don't use dwarf2_name here so that we can detect the absence
16239 of a name -> anonymous namespace. */
16240 name = dwarf2_string_attr (die, DW_AT_name, cu);
16241
16242 if (name != NULL)
16243 break;
16244 }
16245
16246 /* Is it an anonymous namespace? */
16247
16248 *is_anonymous = (name == NULL);
16249 if (*is_anonymous)
16250 name = CP_ANONYMOUS_NAMESPACE_STR;
16251
16252 return name;
16253 }
16254
16255 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16256 the user defined type vector. */
16257
16258 static struct type *
16259 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16260 {
16261 struct gdbarch *gdbarch
16262 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16263 struct comp_unit_head *cu_header = &cu->header;
16264 struct type *type;
16265 struct attribute *attr_byte_size;
16266 struct attribute *attr_address_class;
16267 int byte_size, addr_class;
16268 struct type *target_type;
16269
16270 target_type = die_type (die, cu);
16271
16272 /* The die_type call above may have already set the type for this DIE. */
16273 type = get_die_type (die, cu);
16274 if (type)
16275 return type;
16276
16277 type = lookup_pointer_type (target_type);
16278
16279 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16280 if (attr_byte_size)
16281 byte_size = DW_UNSND (attr_byte_size);
16282 else
16283 byte_size = cu_header->addr_size;
16284
16285 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16286 if (attr_address_class)
16287 addr_class = DW_UNSND (attr_address_class);
16288 else
16289 addr_class = DW_ADDR_none;
16290
16291 ULONGEST alignment = get_alignment (cu, die);
16292
16293 /* If the pointer size, alignment, or address class is different
16294 than the default, create a type variant marked as such and set
16295 the length accordingly. */
16296 if (TYPE_LENGTH (type) != byte_size
16297 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16298 && alignment != TYPE_RAW_ALIGN (type))
16299 || addr_class != DW_ADDR_none)
16300 {
16301 if (gdbarch_address_class_type_flags_p (gdbarch))
16302 {
16303 int type_flags;
16304
16305 type_flags = gdbarch_address_class_type_flags
16306 (gdbarch, byte_size, addr_class);
16307 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16308 == 0);
16309 type = make_type_with_address_space (type, type_flags);
16310 }
16311 else if (TYPE_LENGTH (type) != byte_size)
16312 {
16313 complaint (_("invalid pointer size %d"), byte_size);
16314 }
16315 else if (TYPE_RAW_ALIGN (type) != alignment)
16316 {
16317 complaint (_("Invalid DW_AT_alignment"
16318 " - DIE at %s [in module %s]"),
16319 sect_offset_str (die->sect_off),
16320 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16321 }
16322 else
16323 {
16324 /* Should we also complain about unhandled address classes? */
16325 }
16326 }
16327
16328 TYPE_LENGTH (type) = byte_size;
16329 set_type_align (type, alignment);
16330 return set_die_type (die, type, cu);
16331 }
16332
16333 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16334 the user defined type vector. */
16335
16336 static struct type *
16337 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16338 {
16339 struct type *type;
16340 struct type *to_type;
16341 struct type *domain;
16342
16343 to_type = die_type (die, cu);
16344 domain = die_containing_type (die, cu);
16345
16346 /* The calls above may have already set the type for this DIE. */
16347 type = get_die_type (die, cu);
16348 if (type)
16349 return type;
16350
16351 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16352 type = lookup_methodptr_type (to_type);
16353 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16354 {
16355 struct type *new_type
16356 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16357
16358 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16359 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16360 TYPE_VARARGS (to_type));
16361 type = lookup_methodptr_type (new_type);
16362 }
16363 else
16364 type = lookup_memberptr_type (to_type, domain);
16365
16366 return set_die_type (die, type, cu);
16367 }
16368
16369 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16370 the user defined type vector. */
16371
16372 static struct type *
16373 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16374 enum type_code refcode)
16375 {
16376 struct comp_unit_head *cu_header = &cu->header;
16377 struct type *type, *target_type;
16378 struct attribute *attr;
16379
16380 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16381
16382 target_type = die_type (die, cu);
16383
16384 /* The die_type call above may have already set the type for this DIE. */
16385 type = get_die_type (die, cu);
16386 if (type)
16387 return type;
16388
16389 type = lookup_reference_type (target_type, refcode);
16390 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16391 if (attr != nullptr)
16392 {
16393 TYPE_LENGTH (type) = DW_UNSND (attr);
16394 }
16395 else
16396 {
16397 TYPE_LENGTH (type) = cu_header->addr_size;
16398 }
16399 maybe_set_alignment (cu, die, type);
16400 return set_die_type (die, type, cu);
16401 }
16402
16403 /* Add the given cv-qualifiers to the element type of the array. GCC
16404 outputs DWARF type qualifiers that apply to an array, not the
16405 element type. But GDB relies on the array element type to carry
16406 the cv-qualifiers. This mimics section 6.7.3 of the C99
16407 specification. */
16408
16409 static struct type *
16410 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16411 struct type *base_type, int cnst, int voltl)
16412 {
16413 struct type *el_type, *inner_array;
16414
16415 base_type = copy_type (base_type);
16416 inner_array = base_type;
16417
16418 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16419 {
16420 TYPE_TARGET_TYPE (inner_array) =
16421 copy_type (TYPE_TARGET_TYPE (inner_array));
16422 inner_array = TYPE_TARGET_TYPE (inner_array);
16423 }
16424
16425 el_type = TYPE_TARGET_TYPE (inner_array);
16426 cnst |= TYPE_CONST (el_type);
16427 voltl |= TYPE_VOLATILE (el_type);
16428 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16429
16430 return set_die_type (die, base_type, cu);
16431 }
16432
16433 static struct type *
16434 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16435 {
16436 struct type *base_type, *cv_type;
16437
16438 base_type = die_type (die, cu);
16439
16440 /* The die_type call above may have already set the type for this DIE. */
16441 cv_type = get_die_type (die, cu);
16442 if (cv_type)
16443 return cv_type;
16444
16445 /* In case the const qualifier is applied to an array type, the element type
16446 is so qualified, not the array type (section 6.7.3 of C99). */
16447 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16448 return add_array_cv_type (die, cu, base_type, 1, 0);
16449
16450 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16451 return set_die_type (die, cv_type, cu);
16452 }
16453
16454 static struct type *
16455 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16456 {
16457 struct type *base_type, *cv_type;
16458
16459 base_type = die_type (die, cu);
16460
16461 /* The die_type call above may have already set the type for this DIE. */
16462 cv_type = get_die_type (die, cu);
16463 if (cv_type)
16464 return cv_type;
16465
16466 /* In case the volatile qualifier is applied to an array type, the
16467 element type is so qualified, not the array type (section 6.7.3
16468 of C99). */
16469 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16470 return add_array_cv_type (die, cu, base_type, 0, 1);
16471
16472 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16473 return set_die_type (die, cv_type, cu);
16474 }
16475
16476 /* Handle DW_TAG_restrict_type. */
16477
16478 static struct type *
16479 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16480 {
16481 struct type *base_type, *cv_type;
16482
16483 base_type = die_type (die, cu);
16484
16485 /* The die_type call above may have already set the type for this DIE. */
16486 cv_type = get_die_type (die, cu);
16487 if (cv_type)
16488 return cv_type;
16489
16490 cv_type = make_restrict_type (base_type);
16491 return set_die_type (die, cv_type, cu);
16492 }
16493
16494 /* Handle DW_TAG_atomic_type. */
16495
16496 static struct type *
16497 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16498 {
16499 struct type *base_type, *cv_type;
16500
16501 base_type = die_type (die, cu);
16502
16503 /* The die_type call above may have already set the type for this DIE. */
16504 cv_type = get_die_type (die, cu);
16505 if (cv_type)
16506 return cv_type;
16507
16508 cv_type = make_atomic_type (base_type);
16509 return set_die_type (die, cv_type, cu);
16510 }
16511
16512 /* Extract all information from a DW_TAG_string_type DIE and add to
16513 the user defined type vector. It isn't really a user defined type,
16514 but it behaves like one, with other DIE's using an AT_user_def_type
16515 attribute to reference it. */
16516
16517 static struct type *
16518 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16519 {
16520 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16521 struct gdbarch *gdbarch = objfile->arch ();
16522 struct type *type, *range_type, *index_type, *char_type;
16523 struct attribute *attr;
16524 struct dynamic_prop prop;
16525 bool length_is_constant = true;
16526 LONGEST length;
16527
16528 /* There are a couple of places where bit sizes might be made use of
16529 when parsing a DW_TAG_string_type, however, no producer that we know
16530 of make use of these. Handling bit sizes that are a multiple of the
16531 byte size is easy enough, but what about other bit sizes? Lets deal
16532 with that problem when we have to. Warn about these attributes being
16533 unsupported, then parse the type and ignore them like we always
16534 have. */
16535 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16536 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16537 {
16538 static bool warning_printed = false;
16539 if (!warning_printed)
16540 {
16541 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16542 "currently supported on DW_TAG_string_type."));
16543 warning_printed = true;
16544 }
16545 }
16546
16547 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16548 if (attr != nullptr && !attr->form_is_constant ())
16549 {
16550 /* The string length describes the location at which the length of
16551 the string can be found. The size of the length field can be
16552 specified with one of the attributes below. */
16553 struct type *prop_type;
16554 struct attribute *len
16555 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16556 if (len == nullptr)
16557 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16558 if (len != nullptr && len->form_is_constant ())
16559 {
16560 /* Pass 0 as the default as we know this attribute is constant
16561 and the default value will not be returned. */
16562 LONGEST sz = len->constant_value (0);
16563 prop_type = cu->per_cu->int_type (sz, true);
16564 }
16565 else
16566 {
16567 /* If the size is not specified then we assume it is the size of
16568 an address on this target. */
16569 prop_type = cu->per_cu->addr_sized_int_type (true);
16570 }
16571
16572 /* Convert the attribute into a dynamic property. */
16573 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16574 length = 1;
16575 else
16576 length_is_constant = false;
16577 }
16578 else if (attr != nullptr)
16579 {
16580 /* This DW_AT_string_length just contains the length with no
16581 indirection. There's no need to create a dynamic property in this
16582 case. Pass 0 for the default value as we know it will not be
16583 returned in this case. */
16584 length = attr->constant_value (0);
16585 }
16586 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16587 {
16588 /* We don't currently support non-constant byte sizes for strings. */
16589 length = attr->constant_value (1);
16590 }
16591 else
16592 {
16593 /* Use 1 as a fallback length if we have nothing else. */
16594 length = 1;
16595 }
16596
16597 index_type = objfile_type (objfile)->builtin_int;
16598 if (length_is_constant)
16599 range_type = create_static_range_type (NULL, index_type, 1, length);
16600 else
16601 {
16602 struct dynamic_prop low_bound;
16603
16604 low_bound.kind = PROP_CONST;
16605 low_bound.data.const_val = 1;
16606 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16607 }
16608 char_type = language_string_char_type (cu->language_defn, gdbarch);
16609 type = create_string_type (NULL, char_type, range_type);
16610
16611 return set_die_type (die, type, cu);
16612 }
16613
16614 /* Assuming that DIE corresponds to a function, returns nonzero
16615 if the function is prototyped. */
16616
16617 static int
16618 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16619 {
16620 struct attribute *attr;
16621
16622 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16623 if (attr && (DW_UNSND (attr) != 0))
16624 return 1;
16625
16626 /* The DWARF standard implies that the DW_AT_prototyped attribute
16627 is only meaningful for C, but the concept also extends to other
16628 languages that allow unprototyped functions (Eg: Objective C).
16629 For all other languages, assume that functions are always
16630 prototyped. */
16631 if (cu->language != language_c
16632 && cu->language != language_objc
16633 && cu->language != language_opencl)
16634 return 1;
16635
16636 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16637 prototyped and unprototyped functions; default to prototyped,
16638 since that is more common in modern code (and RealView warns
16639 about unprototyped functions). */
16640 if (producer_is_realview (cu->producer))
16641 return 1;
16642
16643 return 0;
16644 }
16645
16646 /* Handle DIES due to C code like:
16647
16648 struct foo
16649 {
16650 int (*funcp)(int a, long l);
16651 int b;
16652 };
16653
16654 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16655
16656 static struct type *
16657 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16658 {
16659 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16660 struct type *type; /* Type that this function returns. */
16661 struct type *ftype; /* Function that returns above type. */
16662 struct attribute *attr;
16663
16664 type = die_type (die, cu);
16665
16666 /* The die_type call above may have already set the type for this DIE. */
16667 ftype = get_die_type (die, cu);
16668 if (ftype)
16669 return ftype;
16670
16671 ftype = lookup_function_type (type);
16672
16673 if (prototyped_function_p (die, cu))
16674 TYPE_PROTOTYPED (ftype) = 1;
16675
16676 /* Store the calling convention in the type if it's available in
16677 the subroutine die. Otherwise set the calling convention to
16678 the default value DW_CC_normal. */
16679 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16680 if (attr != nullptr
16681 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16682 TYPE_CALLING_CONVENTION (ftype)
16683 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16684 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16685 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16686 else
16687 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16688
16689 /* Record whether the function returns normally to its caller or not
16690 if the DWARF producer set that information. */
16691 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16692 if (attr && (DW_UNSND (attr) != 0))
16693 TYPE_NO_RETURN (ftype) = 1;
16694
16695 /* We need to add the subroutine type to the die immediately so
16696 we don't infinitely recurse when dealing with parameters
16697 declared as the same subroutine type. */
16698 set_die_type (die, ftype, cu);
16699
16700 if (die->child != NULL)
16701 {
16702 struct type *void_type = objfile_type (objfile)->builtin_void;
16703 struct die_info *child_die;
16704 int nparams, iparams;
16705
16706 /* Count the number of parameters.
16707 FIXME: GDB currently ignores vararg functions, but knows about
16708 vararg member functions. */
16709 nparams = 0;
16710 child_die = die->child;
16711 while (child_die && child_die->tag)
16712 {
16713 if (child_die->tag == DW_TAG_formal_parameter)
16714 nparams++;
16715 else if (child_die->tag == DW_TAG_unspecified_parameters)
16716 TYPE_VARARGS (ftype) = 1;
16717 child_die = child_die->sibling;
16718 }
16719
16720 /* Allocate storage for parameters and fill them in. */
16721 TYPE_NFIELDS (ftype) = nparams;
16722 TYPE_FIELDS (ftype) = (struct field *)
16723 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16724
16725 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16726 even if we error out during the parameters reading below. */
16727 for (iparams = 0; iparams < nparams; iparams++)
16728 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16729
16730 iparams = 0;
16731 child_die = die->child;
16732 while (child_die && child_die->tag)
16733 {
16734 if (child_die->tag == DW_TAG_formal_parameter)
16735 {
16736 struct type *arg_type;
16737
16738 /* DWARF version 2 has no clean way to discern C++
16739 static and non-static member functions. G++ helps
16740 GDB by marking the first parameter for non-static
16741 member functions (which is the this pointer) as
16742 artificial. We pass this information to
16743 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16744
16745 DWARF version 3 added DW_AT_object_pointer, which GCC
16746 4.5 does not yet generate. */
16747 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16748 if (attr != nullptr)
16749 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16750 else
16751 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16752 arg_type = die_type (child_die, cu);
16753
16754 /* RealView does not mark THIS as const, which the testsuite
16755 expects. GCC marks THIS as const in method definitions,
16756 but not in the class specifications (GCC PR 43053). */
16757 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16758 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16759 {
16760 int is_this = 0;
16761 struct dwarf2_cu *arg_cu = cu;
16762 const char *name = dwarf2_name (child_die, cu);
16763
16764 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16765 if (attr != nullptr)
16766 {
16767 /* If the compiler emits this, use it. */
16768 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16769 is_this = 1;
16770 }
16771 else if (name && strcmp (name, "this") == 0)
16772 /* Function definitions will have the argument names. */
16773 is_this = 1;
16774 else if (name == NULL && iparams == 0)
16775 /* Declarations may not have the names, so like
16776 elsewhere in GDB, assume an artificial first
16777 argument is "this". */
16778 is_this = 1;
16779
16780 if (is_this)
16781 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16782 arg_type, 0);
16783 }
16784
16785 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16786 iparams++;
16787 }
16788 child_die = child_die->sibling;
16789 }
16790 }
16791
16792 return ftype;
16793 }
16794
16795 static struct type *
16796 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16797 {
16798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16799 const char *name = NULL;
16800 struct type *this_type, *target_type;
16801
16802 name = dwarf2_full_name (NULL, die, cu);
16803 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16804 TYPE_TARGET_STUB (this_type) = 1;
16805 set_die_type (die, this_type, cu);
16806 target_type = die_type (die, cu);
16807 if (target_type != this_type)
16808 TYPE_TARGET_TYPE (this_type) = target_type;
16809 else
16810 {
16811 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16812 spec and cause infinite loops in GDB. */
16813 complaint (_("Self-referential DW_TAG_typedef "
16814 "- DIE at %s [in module %s]"),
16815 sect_offset_str (die->sect_off), objfile_name (objfile));
16816 TYPE_TARGET_TYPE (this_type) = NULL;
16817 }
16818 if (name == NULL)
16819 {
16820 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
16821 anonymous typedefs, which is, strictly speaking, invalid DWARF.
16822 Handle these by just returning the target type, rather than
16823 constructing an anonymous typedef type and trying to handle this
16824 elsewhere. */
16825 set_die_type (die, target_type, cu);
16826 return target_type;
16827 }
16828 return this_type;
16829 }
16830
16831 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16832 (which may be different from NAME) to the architecture back-end to allow
16833 it to guess the correct format if necessary. */
16834
16835 static struct type *
16836 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16837 const char *name_hint, enum bfd_endian byte_order)
16838 {
16839 struct gdbarch *gdbarch = objfile->arch ();
16840 const struct floatformat **format;
16841 struct type *type;
16842
16843 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16844 if (format)
16845 type = init_float_type (objfile, bits, name, format, byte_order);
16846 else
16847 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16848
16849 return type;
16850 }
16851
16852 /* Allocate an integer type of size BITS and name NAME. */
16853
16854 static struct type *
16855 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16856 int bits, int unsigned_p, const char *name)
16857 {
16858 struct type *type;
16859
16860 /* Versions of Intel's C Compiler generate an integer type called "void"
16861 instead of using DW_TAG_unspecified_type. This has been seen on
16862 at least versions 14, 17, and 18. */
16863 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16864 && strcmp (name, "void") == 0)
16865 type = objfile_type (objfile)->builtin_void;
16866 else
16867 type = init_integer_type (objfile, bits, unsigned_p, name);
16868
16869 return type;
16870 }
16871
16872 /* Initialise and return a floating point type of size BITS suitable for
16873 use as a component of a complex number. The NAME_HINT is passed through
16874 when initialising the floating point type and is the name of the complex
16875 type.
16876
16877 As DWARF doesn't currently provide an explicit name for the components
16878 of a complex number, but it can be helpful to have these components
16879 named, we try to select a suitable name based on the size of the
16880 component. */
16881 static struct type *
16882 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16883 struct objfile *objfile,
16884 int bits, const char *name_hint,
16885 enum bfd_endian byte_order)
16886 {
16887 gdbarch *gdbarch = objfile->arch ();
16888 struct type *tt = nullptr;
16889
16890 /* Try to find a suitable floating point builtin type of size BITS.
16891 We're going to use the name of this type as the name for the complex
16892 target type that we are about to create. */
16893 switch (cu->language)
16894 {
16895 case language_fortran:
16896 switch (bits)
16897 {
16898 case 32:
16899 tt = builtin_f_type (gdbarch)->builtin_real;
16900 break;
16901 case 64:
16902 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16903 break;
16904 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16905 case 128:
16906 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16907 break;
16908 }
16909 break;
16910 default:
16911 switch (bits)
16912 {
16913 case 32:
16914 tt = builtin_type (gdbarch)->builtin_float;
16915 break;
16916 case 64:
16917 tt = builtin_type (gdbarch)->builtin_double;
16918 break;
16919 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16920 case 128:
16921 tt = builtin_type (gdbarch)->builtin_long_double;
16922 break;
16923 }
16924 break;
16925 }
16926
16927 /* If the type we found doesn't match the size we were looking for, then
16928 pretend we didn't find a type at all, the complex target type we
16929 create will then be nameless. */
16930 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16931 tt = nullptr;
16932
16933 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16934 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16935 }
16936
16937 /* Find a representation of a given base type and install
16938 it in the TYPE field of the die. */
16939
16940 static struct type *
16941 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16942 {
16943 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16944 struct type *type;
16945 struct attribute *attr;
16946 int encoding = 0, bits = 0;
16947 const char *name;
16948 gdbarch *arch;
16949
16950 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16951 if (attr != nullptr)
16952 encoding = DW_UNSND (attr);
16953 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16954 if (attr != nullptr)
16955 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16956 name = dwarf2_name (die, cu);
16957 if (!name)
16958 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16959
16960 arch = objfile->arch ();
16961 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16962
16963 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16964 if (attr)
16965 {
16966 int endianity = DW_UNSND (attr);
16967
16968 switch (endianity)
16969 {
16970 case DW_END_big:
16971 byte_order = BFD_ENDIAN_BIG;
16972 break;
16973 case DW_END_little:
16974 byte_order = BFD_ENDIAN_LITTLE;
16975 break;
16976 default:
16977 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16978 break;
16979 }
16980 }
16981
16982 switch (encoding)
16983 {
16984 case DW_ATE_address:
16985 /* Turn DW_ATE_address into a void * pointer. */
16986 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16987 type = init_pointer_type (objfile, bits, name, type);
16988 break;
16989 case DW_ATE_boolean:
16990 type = init_boolean_type (objfile, bits, 1, name);
16991 break;
16992 case DW_ATE_complex_float:
16993 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16994 byte_order);
16995 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
16996 {
16997 if (name == nullptr)
16998 {
16999 struct obstack *obstack
17000 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17001 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17002 nullptr);
17003 }
17004 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17005 }
17006 else
17007 type = init_complex_type (name, type);
17008 break;
17009 case DW_ATE_decimal_float:
17010 type = init_decfloat_type (objfile, bits, name);
17011 break;
17012 case DW_ATE_float:
17013 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17014 break;
17015 case DW_ATE_signed:
17016 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17017 break;
17018 case DW_ATE_unsigned:
17019 if (cu->language == language_fortran
17020 && name
17021 && startswith (name, "character("))
17022 type = init_character_type (objfile, bits, 1, name);
17023 else
17024 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17025 break;
17026 case DW_ATE_signed_char:
17027 if (cu->language == language_ada || cu->language == language_m2
17028 || cu->language == language_pascal
17029 || cu->language == language_fortran)
17030 type = init_character_type (objfile, bits, 0, name);
17031 else
17032 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17033 break;
17034 case DW_ATE_unsigned_char:
17035 if (cu->language == language_ada || cu->language == language_m2
17036 || cu->language == language_pascal
17037 || cu->language == language_fortran
17038 || cu->language == language_rust)
17039 type = init_character_type (objfile, bits, 1, name);
17040 else
17041 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17042 break;
17043 case DW_ATE_UTF:
17044 {
17045 if (bits == 16)
17046 type = builtin_type (arch)->builtin_char16;
17047 else if (bits == 32)
17048 type = builtin_type (arch)->builtin_char32;
17049 else
17050 {
17051 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17052 bits);
17053 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17054 }
17055 return set_die_type (die, type, cu);
17056 }
17057 break;
17058
17059 default:
17060 complaint (_("unsupported DW_AT_encoding: '%s'"),
17061 dwarf_type_encoding_name (encoding));
17062 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17063 break;
17064 }
17065
17066 if (name && strcmp (name, "char") == 0)
17067 TYPE_NOSIGN (type) = 1;
17068
17069 maybe_set_alignment (cu, die, type);
17070
17071 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17072
17073 return set_die_type (die, type, cu);
17074 }
17075
17076 /* Parse dwarf attribute if it's a block, reference or constant and put the
17077 resulting value of the attribute into struct bound_prop.
17078 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17079
17080 static int
17081 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17082 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17083 struct type *default_type)
17084 {
17085 struct dwarf2_property_baton *baton;
17086 struct obstack *obstack
17087 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17088
17089 gdb_assert (default_type != NULL);
17090
17091 if (attr == NULL || prop == NULL)
17092 return 0;
17093
17094 if (attr->form_is_block ())
17095 {
17096 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17097 baton->property_type = default_type;
17098 baton->locexpr.per_cu = cu->per_cu;
17099 baton->locexpr.size = DW_BLOCK (attr)->size;
17100 baton->locexpr.data = DW_BLOCK (attr)->data;
17101 switch (attr->name)
17102 {
17103 case DW_AT_string_length:
17104 baton->locexpr.is_reference = true;
17105 break;
17106 default:
17107 baton->locexpr.is_reference = false;
17108 break;
17109 }
17110 prop->data.baton = baton;
17111 prop->kind = PROP_LOCEXPR;
17112 gdb_assert (prop->data.baton != NULL);
17113 }
17114 else if (attr->form_is_ref ())
17115 {
17116 struct dwarf2_cu *target_cu = cu;
17117 struct die_info *target_die;
17118 struct attribute *target_attr;
17119
17120 target_die = follow_die_ref (die, attr, &target_cu);
17121 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17122 if (target_attr == NULL)
17123 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17124 target_cu);
17125 if (target_attr == NULL)
17126 return 0;
17127
17128 switch (target_attr->name)
17129 {
17130 case DW_AT_location:
17131 if (target_attr->form_is_section_offset ())
17132 {
17133 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17134 baton->property_type = die_type (target_die, target_cu);
17135 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17136 prop->data.baton = baton;
17137 prop->kind = PROP_LOCLIST;
17138 gdb_assert (prop->data.baton != NULL);
17139 }
17140 else if (target_attr->form_is_block ())
17141 {
17142 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17143 baton->property_type = die_type (target_die, target_cu);
17144 baton->locexpr.per_cu = cu->per_cu;
17145 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17146 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17147 baton->locexpr.is_reference = true;
17148 prop->data.baton = baton;
17149 prop->kind = PROP_LOCEXPR;
17150 gdb_assert (prop->data.baton != NULL);
17151 }
17152 else
17153 {
17154 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17155 "dynamic property");
17156 return 0;
17157 }
17158 break;
17159 case DW_AT_data_member_location:
17160 {
17161 LONGEST offset;
17162
17163 if (!handle_data_member_location (target_die, target_cu,
17164 &offset))
17165 return 0;
17166
17167 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17168 baton->property_type = read_type_die (target_die->parent,
17169 target_cu);
17170 baton->offset_info.offset = offset;
17171 baton->offset_info.type = die_type (target_die, target_cu);
17172 prop->data.baton = baton;
17173 prop->kind = PROP_ADDR_OFFSET;
17174 break;
17175 }
17176 }
17177 }
17178 else if (attr->form_is_constant ())
17179 {
17180 prop->data.const_val = attr->constant_value (0);
17181 prop->kind = PROP_CONST;
17182 }
17183 else
17184 {
17185 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17186 dwarf2_name (die, cu));
17187 return 0;
17188 }
17189
17190 return 1;
17191 }
17192
17193 /* See read.h. */
17194
17195 struct type *
17196 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17197 {
17198 struct objfile *objfile = dwarf2_per_objfile->objfile;
17199 struct type *int_type;
17200
17201 /* Helper macro to examine the various builtin types. */
17202 #define TRY_TYPE(F) \
17203 int_type = (unsigned_p \
17204 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17205 : objfile_type (objfile)->builtin_ ## F); \
17206 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17207 return int_type
17208
17209 TRY_TYPE (char);
17210 TRY_TYPE (short);
17211 TRY_TYPE (int);
17212 TRY_TYPE (long);
17213 TRY_TYPE (long_long);
17214
17215 #undef TRY_TYPE
17216
17217 gdb_assert_not_reached ("unable to find suitable integer type");
17218 }
17219
17220 /* See read.h. */
17221
17222 struct type *
17223 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17224 {
17225 int addr_size = this->addr_size ();
17226 return int_type (addr_size, unsigned_p);
17227 }
17228
17229 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17230 present (which is valid) then compute the default type based on the
17231 compilation units address size. */
17232
17233 static struct type *
17234 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17235 {
17236 struct type *index_type = die_type (die, cu);
17237
17238 /* Dwarf-2 specifications explicitly allows to create subrange types
17239 without specifying a base type.
17240 In that case, the base type must be set to the type of
17241 the lower bound, upper bound or count, in that order, if any of these
17242 three attributes references an object that has a type.
17243 If no base type is found, the Dwarf-2 specifications say that
17244 a signed integer type of size equal to the size of an address should
17245 be used.
17246 For the following C code: `extern char gdb_int [];'
17247 GCC produces an empty range DIE.
17248 FIXME: muller/2010-05-28: Possible references to object for low bound,
17249 high bound or count are not yet handled by this code. */
17250 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17251 index_type = cu->per_cu->addr_sized_int_type (false);
17252
17253 return index_type;
17254 }
17255
17256 /* Read the given DW_AT_subrange DIE. */
17257
17258 static struct type *
17259 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17260 {
17261 struct type *base_type, *orig_base_type;
17262 struct type *range_type;
17263 struct attribute *attr;
17264 struct dynamic_prop low, high;
17265 int low_default_is_valid;
17266 int high_bound_is_count = 0;
17267 const char *name;
17268 ULONGEST negative_mask;
17269
17270 orig_base_type = read_subrange_index_type (die, cu);
17271
17272 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17273 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17274 creating the range type, but we use the result of check_typedef
17275 when examining properties of the type. */
17276 base_type = check_typedef (orig_base_type);
17277
17278 /* The die_type call above may have already set the type for this DIE. */
17279 range_type = get_die_type (die, cu);
17280 if (range_type)
17281 return range_type;
17282
17283 low.kind = PROP_CONST;
17284 high.kind = PROP_CONST;
17285 high.data.const_val = 0;
17286
17287 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17288 omitting DW_AT_lower_bound. */
17289 switch (cu->language)
17290 {
17291 case language_c:
17292 case language_cplus:
17293 low.data.const_val = 0;
17294 low_default_is_valid = 1;
17295 break;
17296 case language_fortran:
17297 low.data.const_val = 1;
17298 low_default_is_valid = 1;
17299 break;
17300 case language_d:
17301 case language_objc:
17302 case language_rust:
17303 low.data.const_val = 0;
17304 low_default_is_valid = (cu->header.version >= 4);
17305 break;
17306 case language_ada:
17307 case language_m2:
17308 case language_pascal:
17309 low.data.const_val = 1;
17310 low_default_is_valid = (cu->header.version >= 4);
17311 break;
17312 default:
17313 low.data.const_val = 0;
17314 low_default_is_valid = 0;
17315 break;
17316 }
17317
17318 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17319 if (attr != nullptr)
17320 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17321 else if (!low_default_is_valid)
17322 complaint (_("Missing DW_AT_lower_bound "
17323 "- DIE at %s [in module %s]"),
17324 sect_offset_str (die->sect_off),
17325 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17326
17327 struct attribute *attr_ub, *attr_count;
17328 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17329 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17330 {
17331 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17332 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17333 {
17334 /* If bounds are constant do the final calculation here. */
17335 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17336 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17337 else
17338 high_bound_is_count = 1;
17339 }
17340 else
17341 {
17342 if (attr_ub != NULL)
17343 complaint (_("Unresolved DW_AT_upper_bound "
17344 "- DIE at %s [in module %s]"),
17345 sect_offset_str (die->sect_off),
17346 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17347 if (attr_count != NULL)
17348 complaint (_("Unresolved DW_AT_count "
17349 "- DIE at %s [in module %s]"),
17350 sect_offset_str (die->sect_off),
17351 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17352 }
17353 }
17354
17355 LONGEST bias = 0;
17356 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17357 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17358 bias = bias_attr->constant_value (0);
17359
17360 /* Normally, the DWARF producers are expected to use a signed
17361 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17362 But this is unfortunately not always the case, as witnessed
17363 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17364 is used instead. To work around that ambiguity, we treat
17365 the bounds as signed, and thus sign-extend their values, when
17366 the base type is signed. */
17367 negative_mask =
17368 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17369 if (low.kind == PROP_CONST
17370 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17371 low.data.const_val |= negative_mask;
17372 if (high.kind == PROP_CONST
17373 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17374 high.data.const_val |= negative_mask;
17375
17376 /* Check for bit and byte strides. */
17377 struct dynamic_prop byte_stride_prop;
17378 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17379 if (attr_byte_stride != nullptr)
17380 {
17381 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17382 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17383 prop_type);
17384 }
17385
17386 struct dynamic_prop bit_stride_prop;
17387 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17388 if (attr_bit_stride != nullptr)
17389 {
17390 /* It only makes sense to have either a bit or byte stride. */
17391 if (attr_byte_stride != nullptr)
17392 {
17393 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17394 "- DIE at %s [in module %s]"),
17395 sect_offset_str (die->sect_off),
17396 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17397 attr_bit_stride = nullptr;
17398 }
17399 else
17400 {
17401 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17402 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17403 prop_type);
17404 }
17405 }
17406
17407 if (attr_byte_stride != nullptr
17408 || attr_bit_stride != nullptr)
17409 {
17410 bool byte_stride_p = (attr_byte_stride != nullptr);
17411 struct dynamic_prop *stride
17412 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17413
17414 range_type
17415 = create_range_type_with_stride (NULL, orig_base_type, &low,
17416 &high, bias, stride, byte_stride_p);
17417 }
17418 else
17419 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17420
17421 if (high_bound_is_count)
17422 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17423
17424 /* Ada expects an empty array on no boundary attributes. */
17425 if (attr == NULL && cu->language != language_ada)
17426 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17427
17428 name = dwarf2_name (die, cu);
17429 if (name)
17430 TYPE_NAME (range_type) = name;
17431
17432 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17433 if (attr != nullptr)
17434 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17435
17436 maybe_set_alignment (cu, die, range_type);
17437
17438 set_die_type (die, range_type, cu);
17439
17440 /* set_die_type should be already done. */
17441 set_descriptive_type (range_type, die, cu);
17442
17443 return range_type;
17444 }
17445
17446 static struct type *
17447 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17448 {
17449 struct type *type;
17450
17451 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17452 NULL);
17453 TYPE_NAME (type) = dwarf2_name (die, cu);
17454
17455 /* In Ada, an unspecified type is typically used when the description
17456 of the type is deferred to a different unit. When encountering
17457 such a type, we treat it as a stub, and try to resolve it later on,
17458 when needed. */
17459 if (cu->language == language_ada)
17460 TYPE_STUB (type) = 1;
17461
17462 return set_die_type (die, type, cu);
17463 }
17464
17465 /* Read a single die and all its descendents. Set the die's sibling
17466 field to NULL; set other fields in the die correctly, and set all
17467 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17468 location of the info_ptr after reading all of those dies. PARENT
17469 is the parent of the die in question. */
17470
17471 static struct die_info *
17472 read_die_and_children (const struct die_reader_specs *reader,
17473 const gdb_byte *info_ptr,
17474 const gdb_byte **new_info_ptr,
17475 struct die_info *parent)
17476 {
17477 struct die_info *die;
17478 const gdb_byte *cur_ptr;
17479
17480 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17481 if (die == NULL)
17482 {
17483 *new_info_ptr = cur_ptr;
17484 return NULL;
17485 }
17486 store_in_ref_table (die, reader->cu);
17487
17488 if (die->has_children)
17489 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17490 else
17491 {
17492 die->child = NULL;
17493 *new_info_ptr = cur_ptr;
17494 }
17495
17496 die->sibling = NULL;
17497 die->parent = parent;
17498 return die;
17499 }
17500
17501 /* Read a die, all of its descendents, and all of its siblings; set
17502 all of the fields of all of the dies correctly. Arguments are as
17503 in read_die_and_children. */
17504
17505 static struct die_info *
17506 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17507 const gdb_byte *info_ptr,
17508 const gdb_byte **new_info_ptr,
17509 struct die_info *parent)
17510 {
17511 struct die_info *first_die, *last_sibling;
17512 const gdb_byte *cur_ptr;
17513
17514 cur_ptr = info_ptr;
17515 first_die = last_sibling = NULL;
17516
17517 while (1)
17518 {
17519 struct die_info *die
17520 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17521
17522 if (die == NULL)
17523 {
17524 *new_info_ptr = cur_ptr;
17525 return first_die;
17526 }
17527
17528 if (!first_die)
17529 first_die = die;
17530 else
17531 last_sibling->sibling = die;
17532
17533 last_sibling = die;
17534 }
17535 }
17536
17537 /* Read a die, all of its descendents, and all of its siblings; set
17538 all of the fields of all of the dies correctly. Arguments are as
17539 in read_die_and_children.
17540 This the main entry point for reading a DIE and all its children. */
17541
17542 static struct die_info *
17543 read_die_and_siblings (const struct die_reader_specs *reader,
17544 const gdb_byte *info_ptr,
17545 const gdb_byte **new_info_ptr,
17546 struct die_info *parent)
17547 {
17548 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17549 new_info_ptr, parent);
17550
17551 if (dwarf_die_debug)
17552 {
17553 fprintf_unfiltered (gdb_stdlog,
17554 "Read die from %s@0x%x of %s:\n",
17555 reader->die_section->get_name (),
17556 (unsigned) (info_ptr - reader->die_section->buffer),
17557 bfd_get_filename (reader->abfd));
17558 dump_die (die, dwarf_die_debug);
17559 }
17560
17561 return die;
17562 }
17563
17564 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17565 attributes.
17566 The caller is responsible for filling in the extra attributes
17567 and updating (*DIEP)->num_attrs.
17568 Set DIEP to point to a newly allocated die with its information,
17569 except for its child, sibling, and parent fields. */
17570
17571 static const gdb_byte *
17572 read_full_die_1 (const struct die_reader_specs *reader,
17573 struct die_info **diep, const gdb_byte *info_ptr,
17574 int num_extra_attrs)
17575 {
17576 unsigned int abbrev_number, bytes_read, i;
17577 struct abbrev_info *abbrev;
17578 struct die_info *die;
17579 struct dwarf2_cu *cu = reader->cu;
17580 bfd *abfd = reader->abfd;
17581
17582 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17583 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17584 info_ptr += bytes_read;
17585 if (!abbrev_number)
17586 {
17587 *diep = NULL;
17588 return info_ptr;
17589 }
17590
17591 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17592 if (!abbrev)
17593 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17594 abbrev_number,
17595 bfd_get_filename (abfd));
17596
17597 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17598 die->sect_off = sect_off;
17599 die->tag = abbrev->tag;
17600 die->abbrev = abbrev_number;
17601 die->has_children = abbrev->has_children;
17602
17603 /* Make the result usable.
17604 The caller needs to update num_attrs after adding the extra
17605 attributes. */
17606 die->num_attrs = abbrev->num_attrs;
17607
17608 std::vector<int> indexes_that_need_reprocess;
17609 for (i = 0; i < abbrev->num_attrs; ++i)
17610 {
17611 bool need_reprocess;
17612 info_ptr =
17613 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17614 info_ptr, &need_reprocess);
17615 if (need_reprocess)
17616 indexes_that_need_reprocess.push_back (i);
17617 }
17618
17619 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17620 if (attr != nullptr)
17621 cu->str_offsets_base = DW_UNSND (attr);
17622
17623 attr = die->attr (DW_AT_loclists_base);
17624 if (attr != nullptr)
17625 cu->loclist_base = DW_UNSND (attr);
17626
17627 auto maybe_addr_base = die->addr_base ();
17628 if (maybe_addr_base.has_value ())
17629 cu->addr_base = *maybe_addr_base;
17630 for (int index : indexes_that_need_reprocess)
17631 read_attribute_reprocess (reader, &die->attrs[index]);
17632 *diep = die;
17633 return info_ptr;
17634 }
17635
17636 /* Read a die and all its attributes.
17637 Set DIEP to point to a newly allocated die with its information,
17638 except for its child, sibling, and parent fields. */
17639
17640 static const gdb_byte *
17641 read_full_die (const struct die_reader_specs *reader,
17642 struct die_info **diep, const gdb_byte *info_ptr)
17643 {
17644 const gdb_byte *result;
17645
17646 result = read_full_die_1 (reader, diep, info_ptr, 0);
17647
17648 if (dwarf_die_debug)
17649 {
17650 fprintf_unfiltered (gdb_stdlog,
17651 "Read die from %s@0x%x of %s:\n",
17652 reader->die_section->get_name (),
17653 (unsigned) (info_ptr - reader->die_section->buffer),
17654 bfd_get_filename (reader->abfd));
17655 dump_die (*diep, dwarf_die_debug);
17656 }
17657
17658 return result;
17659 }
17660 \f
17661
17662 /* Returns nonzero if TAG represents a type that we might generate a partial
17663 symbol for. */
17664
17665 static int
17666 is_type_tag_for_partial (int tag)
17667 {
17668 switch (tag)
17669 {
17670 #if 0
17671 /* Some types that would be reasonable to generate partial symbols for,
17672 that we don't at present. */
17673 case DW_TAG_array_type:
17674 case DW_TAG_file_type:
17675 case DW_TAG_ptr_to_member_type:
17676 case DW_TAG_set_type:
17677 case DW_TAG_string_type:
17678 case DW_TAG_subroutine_type:
17679 #endif
17680 case DW_TAG_base_type:
17681 case DW_TAG_class_type:
17682 case DW_TAG_interface_type:
17683 case DW_TAG_enumeration_type:
17684 case DW_TAG_structure_type:
17685 case DW_TAG_subrange_type:
17686 case DW_TAG_typedef:
17687 case DW_TAG_union_type:
17688 return 1;
17689 default:
17690 return 0;
17691 }
17692 }
17693
17694 /* Load all DIEs that are interesting for partial symbols into memory. */
17695
17696 static struct partial_die_info *
17697 load_partial_dies (const struct die_reader_specs *reader,
17698 const gdb_byte *info_ptr, int building_psymtab)
17699 {
17700 struct dwarf2_cu *cu = reader->cu;
17701 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17702 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17703 unsigned int bytes_read;
17704 unsigned int load_all = 0;
17705 int nesting_level = 1;
17706
17707 parent_die = NULL;
17708 last_die = NULL;
17709
17710 gdb_assert (cu->per_cu != NULL);
17711 if (cu->per_cu->load_all_dies)
17712 load_all = 1;
17713
17714 cu->partial_dies
17715 = htab_create_alloc_ex (cu->header.length / 12,
17716 partial_die_hash,
17717 partial_die_eq,
17718 NULL,
17719 &cu->comp_unit_obstack,
17720 hashtab_obstack_allocate,
17721 dummy_obstack_deallocate);
17722
17723 while (1)
17724 {
17725 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17726
17727 /* A NULL abbrev means the end of a series of children. */
17728 if (abbrev == NULL)
17729 {
17730 if (--nesting_level == 0)
17731 return first_die;
17732
17733 info_ptr += bytes_read;
17734 last_die = parent_die;
17735 parent_die = parent_die->die_parent;
17736 continue;
17737 }
17738
17739 /* Check for template arguments. We never save these; if
17740 they're seen, we just mark the parent, and go on our way. */
17741 if (parent_die != NULL
17742 && cu->language == language_cplus
17743 && (abbrev->tag == DW_TAG_template_type_param
17744 || abbrev->tag == DW_TAG_template_value_param))
17745 {
17746 parent_die->has_template_arguments = 1;
17747
17748 if (!load_all)
17749 {
17750 /* We don't need a partial DIE for the template argument. */
17751 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17752 continue;
17753 }
17754 }
17755
17756 /* We only recurse into c++ subprograms looking for template arguments.
17757 Skip their other children. */
17758 if (!load_all
17759 && cu->language == language_cplus
17760 && parent_die != NULL
17761 && parent_die->tag == DW_TAG_subprogram)
17762 {
17763 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17764 continue;
17765 }
17766
17767 /* Check whether this DIE is interesting enough to save. Normally
17768 we would not be interested in members here, but there may be
17769 later variables referencing them via DW_AT_specification (for
17770 static members). */
17771 if (!load_all
17772 && !is_type_tag_for_partial (abbrev->tag)
17773 && abbrev->tag != DW_TAG_constant
17774 && abbrev->tag != DW_TAG_enumerator
17775 && abbrev->tag != DW_TAG_subprogram
17776 && abbrev->tag != DW_TAG_inlined_subroutine
17777 && abbrev->tag != DW_TAG_lexical_block
17778 && abbrev->tag != DW_TAG_variable
17779 && abbrev->tag != DW_TAG_namespace
17780 && abbrev->tag != DW_TAG_module
17781 && abbrev->tag != DW_TAG_member
17782 && abbrev->tag != DW_TAG_imported_unit
17783 && abbrev->tag != DW_TAG_imported_declaration)
17784 {
17785 /* Otherwise we skip to the next sibling, if any. */
17786 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17787 continue;
17788 }
17789
17790 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17791 abbrev);
17792
17793 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17794
17795 /* This two-pass algorithm for processing partial symbols has a
17796 high cost in cache pressure. Thus, handle some simple cases
17797 here which cover the majority of C partial symbols. DIEs
17798 which neither have specification tags in them, nor could have
17799 specification tags elsewhere pointing at them, can simply be
17800 processed and discarded.
17801
17802 This segment is also optional; scan_partial_symbols and
17803 add_partial_symbol will handle these DIEs if we chain
17804 them in normally. When compilers which do not emit large
17805 quantities of duplicate debug information are more common,
17806 this code can probably be removed. */
17807
17808 /* Any complete simple types at the top level (pretty much all
17809 of them, for a language without namespaces), can be processed
17810 directly. */
17811 if (parent_die == NULL
17812 && pdi.has_specification == 0
17813 && pdi.is_declaration == 0
17814 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17815 || pdi.tag == DW_TAG_base_type
17816 || pdi.tag == DW_TAG_subrange_type))
17817 {
17818 if (building_psymtab && pdi.name != NULL)
17819 add_psymbol_to_list (pdi.name, false,
17820 VAR_DOMAIN, LOC_TYPEDEF, -1,
17821 psymbol_placement::STATIC,
17822 0, cu->language, objfile);
17823 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17824 continue;
17825 }
17826
17827 /* The exception for DW_TAG_typedef with has_children above is
17828 a workaround of GCC PR debug/47510. In the case of this complaint
17829 type_name_or_error will error on such types later.
17830
17831 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17832 it could not find the child DIEs referenced later, this is checked
17833 above. In correct DWARF DW_TAG_typedef should have no children. */
17834
17835 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17836 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17837 "- DIE at %s [in module %s]"),
17838 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17839
17840 /* If we're at the second level, and we're an enumerator, and
17841 our parent has no specification (meaning possibly lives in a
17842 namespace elsewhere), then we can add the partial symbol now
17843 instead of queueing it. */
17844 if (pdi.tag == DW_TAG_enumerator
17845 && parent_die != NULL
17846 && parent_die->die_parent == NULL
17847 && parent_die->tag == DW_TAG_enumeration_type
17848 && parent_die->has_specification == 0)
17849 {
17850 if (pdi.name == NULL)
17851 complaint (_("malformed enumerator DIE ignored"));
17852 else if (building_psymtab)
17853 add_psymbol_to_list (pdi.name, false,
17854 VAR_DOMAIN, LOC_CONST, -1,
17855 cu->language == language_cplus
17856 ? psymbol_placement::GLOBAL
17857 : psymbol_placement::STATIC,
17858 0, cu->language, objfile);
17859
17860 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17861 continue;
17862 }
17863
17864 struct partial_die_info *part_die
17865 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17866
17867 /* We'll save this DIE so link it in. */
17868 part_die->die_parent = parent_die;
17869 part_die->die_sibling = NULL;
17870 part_die->die_child = NULL;
17871
17872 if (last_die && last_die == parent_die)
17873 last_die->die_child = part_die;
17874 else if (last_die)
17875 last_die->die_sibling = part_die;
17876
17877 last_die = part_die;
17878
17879 if (first_die == NULL)
17880 first_die = part_die;
17881
17882 /* Maybe add the DIE to the hash table. Not all DIEs that we
17883 find interesting need to be in the hash table, because we
17884 also have the parent/sibling/child chains; only those that we
17885 might refer to by offset later during partial symbol reading.
17886
17887 For now this means things that might have be the target of a
17888 DW_AT_specification, DW_AT_abstract_origin, or
17889 DW_AT_extension. DW_AT_extension will refer only to
17890 namespaces; DW_AT_abstract_origin refers to functions (and
17891 many things under the function DIE, but we do not recurse
17892 into function DIEs during partial symbol reading) and
17893 possibly variables as well; DW_AT_specification refers to
17894 declarations. Declarations ought to have the DW_AT_declaration
17895 flag. It happens that GCC forgets to put it in sometimes, but
17896 only for functions, not for types.
17897
17898 Adding more things than necessary to the hash table is harmless
17899 except for the performance cost. Adding too few will result in
17900 wasted time in find_partial_die, when we reread the compilation
17901 unit with load_all_dies set. */
17902
17903 if (load_all
17904 || abbrev->tag == DW_TAG_constant
17905 || abbrev->tag == DW_TAG_subprogram
17906 || abbrev->tag == DW_TAG_variable
17907 || abbrev->tag == DW_TAG_namespace
17908 || part_die->is_declaration)
17909 {
17910 void **slot;
17911
17912 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17913 to_underlying (part_die->sect_off),
17914 INSERT);
17915 *slot = part_die;
17916 }
17917
17918 /* For some DIEs we want to follow their children (if any). For C
17919 we have no reason to follow the children of structures; for other
17920 languages we have to, so that we can get at method physnames
17921 to infer fully qualified class names, for DW_AT_specification,
17922 and for C++ template arguments. For C++, we also look one level
17923 inside functions to find template arguments (if the name of the
17924 function does not already contain the template arguments).
17925
17926 For Ada and Fortran, we need to scan the children of subprograms
17927 and lexical blocks as well because these languages allow the
17928 definition of nested entities that could be interesting for the
17929 debugger, such as nested subprograms for instance. */
17930 if (last_die->has_children
17931 && (load_all
17932 || last_die->tag == DW_TAG_namespace
17933 || last_die->tag == DW_TAG_module
17934 || last_die->tag == DW_TAG_enumeration_type
17935 || (cu->language == language_cplus
17936 && last_die->tag == DW_TAG_subprogram
17937 && (last_die->name == NULL
17938 || strchr (last_die->name, '<') == NULL))
17939 || (cu->language != language_c
17940 && (last_die->tag == DW_TAG_class_type
17941 || last_die->tag == DW_TAG_interface_type
17942 || last_die->tag == DW_TAG_structure_type
17943 || last_die->tag == DW_TAG_union_type))
17944 || ((cu->language == language_ada
17945 || cu->language == language_fortran)
17946 && (last_die->tag == DW_TAG_subprogram
17947 || last_die->tag == DW_TAG_lexical_block))))
17948 {
17949 nesting_level++;
17950 parent_die = last_die;
17951 continue;
17952 }
17953
17954 /* Otherwise we skip to the next sibling, if any. */
17955 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17956
17957 /* Back to the top, do it again. */
17958 }
17959 }
17960
17961 partial_die_info::partial_die_info (sect_offset sect_off_,
17962 struct abbrev_info *abbrev)
17963 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17964 {
17965 }
17966
17967 /* Read a minimal amount of information into the minimal die structure.
17968 INFO_PTR should point just after the initial uleb128 of a DIE. */
17969
17970 const gdb_byte *
17971 partial_die_info::read (const struct die_reader_specs *reader,
17972 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17973 {
17974 struct dwarf2_cu *cu = reader->cu;
17975 struct dwarf2_per_objfile *dwarf2_per_objfile
17976 = cu->per_cu->dwarf2_per_objfile;
17977 unsigned int i;
17978 int has_low_pc_attr = 0;
17979 int has_high_pc_attr = 0;
17980 int high_pc_relative = 0;
17981
17982 for (i = 0; i < abbrev.num_attrs; ++i)
17983 {
17984 attribute attr;
17985 bool need_reprocess;
17986 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
17987 info_ptr, &need_reprocess);
17988 /* String and address offsets that need to do the reprocessing have
17989 already been read at this point, so there is no need to wait until
17990 the loop terminates to do the reprocessing. */
17991 if (need_reprocess)
17992 read_attribute_reprocess (reader, &attr);
17993 /* Store the data if it is of an attribute we want to keep in a
17994 partial symbol table. */
17995 switch (attr.name)
17996 {
17997 case DW_AT_name:
17998 switch (tag)
17999 {
18000 case DW_TAG_compile_unit:
18001 case DW_TAG_partial_unit:
18002 case DW_TAG_type_unit:
18003 /* Compilation units have a DW_AT_name that is a filename, not
18004 a source language identifier. */
18005 case DW_TAG_enumeration_type:
18006 case DW_TAG_enumerator:
18007 /* These tags always have simple identifiers already; no need
18008 to canonicalize them. */
18009 name = DW_STRING (&attr);
18010 break;
18011 default:
18012 {
18013 struct objfile *objfile = dwarf2_per_objfile->objfile;
18014
18015 name
18016 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18017 }
18018 break;
18019 }
18020 break;
18021 case DW_AT_linkage_name:
18022 case DW_AT_MIPS_linkage_name:
18023 /* Note that both forms of linkage name might appear. We
18024 assume they will be the same, and we only store the last
18025 one we see. */
18026 linkage_name = DW_STRING (&attr);
18027 break;
18028 case DW_AT_low_pc:
18029 has_low_pc_attr = 1;
18030 lowpc = attr.value_as_address ();
18031 break;
18032 case DW_AT_high_pc:
18033 has_high_pc_attr = 1;
18034 highpc = attr.value_as_address ();
18035 if (cu->header.version >= 4 && attr.form_is_constant ())
18036 high_pc_relative = 1;
18037 break;
18038 case DW_AT_location:
18039 /* Support the .debug_loc offsets. */
18040 if (attr.form_is_block ())
18041 {
18042 d.locdesc = DW_BLOCK (&attr);
18043 }
18044 else if (attr.form_is_section_offset ())
18045 {
18046 dwarf2_complex_location_expr_complaint ();
18047 }
18048 else
18049 {
18050 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18051 "partial symbol information");
18052 }
18053 break;
18054 case DW_AT_external:
18055 is_external = DW_UNSND (&attr);
18056 break;
18057 case DW_AT_declaration:
18058 is_declaration = DW_UNSND (&attr);
18059 break;
18060 case DW_AT_type:
18061 has_type = 1;
18062 break;
18063 case DW_AT_abstract_origin:
18064 case DW_AT_specification:
18065 case DW_AT_extension:
18066 has_specification = 1;
18067 spec_offset = attr.get_ref_die_offset ();
18068 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18069 || cu->per_cu->is_dwz);
18070 break;
18071 case DW_AT_sibling:
18072 /* Ignore absolute siblings, they might point outside of
18073 the current compile unit. */
18074 if (attr.form == DW_FORM_ref_addr)
18075 complaint (_("ignoring absolute DW_AT_sibling"));
18076 else
18077 {
18078 const gdb_byte *buffer = reader->buffer;
18079 sect_offset off = attr.get_ref_die_offset ();
18080 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18081
18082 if (sibling_ptr < info_ptr)
18083 complaint (_("DW_AT_sibling points backwards"));
18084 else if (sibling_ptr > reader->buffer_end)
18085 reader->die_section->overflow_complaint ();
18086 else
18087 sibling = sibling_ptr;
18088 }
18089 break;
18090 case DW_AT_byte_size:
18091 has_byte_size = 1;
18092 break;
18093 case DW_AT_const_value:
18094 has_const_value = 1;
18095 break;
18096 case DW_AT_calling_convention:
18097 /* DWARF doesn't provide a way to identify a program's source-level
18098 entry point. DW_AT_calling_convention attributes are only meant
18099 to describe functions' calling conventions.
18100
18101 However, because it's a necessary piece of information in
18102 Fortran, and before DWARF 4 DW_CC_program was the only
18103 piece of debugging information whose definition refers to
18104 a 'main program' at all, several compilers marked Fortran
18105 main programs with DW_CC_program --- even when those
18106 functions use the standard calling conventions.
18107
18108 Although DWARF now specifies a way to provide this
18109 information, we support this practice for backward
18110 compatibility. */
18111 if (DW_UNSND (&attr) == DW_CC_program
18112 && cu->language == language_fortran)
18113 main_subprogram = 1;
18114 break;
18115 case DW_AT_inline:
18116 if (DW_UNSND (&attr) == DW_INL_inlined
18117 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18118 may_be_inlined = 1;
18119 break;
18120
18121 case DW_AT_import:
18122 if (tag == DW_TAG_imported_unit)
18123 {
18124 d.sect_off = attr.get_ref_die_offset ();
18125 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18126 || cu->per_cu->is_dwz);
18127 }
18128 break;
18129
18130 case DW_AT_main_subprogram:
18131 main_subprogram = DW_UNSND (&attr);
18132 break;
18133
18134 case DW_AT_ranges:
18135 {
18136 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18137 but that requires a full DIE, so instead we just
18138 reimplement it. */
18139 int need_ranges_base = tag != DW_TAG_compile_unit;
18140 unsigned int ranges_offset = (DW_UNSND (&attr)
18141 + (need_ranges_base
18142 ? cu->ranges_base
18143 : 0));
18144
18145 /* Value of the DW_AT_ranges attribute is the offset in the
18146 .debug_ranges section. */
18147 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18148 nullptr))
18149 has_pc_info = 1;
18150 }
18151 break;
18152
18153 default:
18154 break;
18155 }
18156 }
18157
18158 /* For Ada, if both the name and the linkage name appear, we prefer
18159 the latter. This lets "catch exception" work better, regardless
18160 of the order in which the name and linkage name were emitted.
18161 Really, though, this is just a workaround for the fact that gdb
18162 doesn't store both the name and the linkage name. */
18163 if (cu->language == language_ada && linkage_name != nullptr)
18164 name = linkage_name;
18165
18166 if (high_pc_relative)
18167 highpc += lowpc;
18168
18169 if (has_low_pc_attr && has_high_pc_attr)
18170 {
18171 /* When using the GNU linker, .gnu.linkonce. sections are used to
18172 eliminate duplicate copies of functions and vtables and such.
18173 The linker will arbitrarily choose one and discard the others.
18174 The AT_*_pc values for such functions refer to local labels in
18175 these sections. If the section from that file was discarded, the
18176 labels are not in the output, so the relocs get a value of 0.
18177 If this is a discarded function, mark the pc bounds as invalid,
18178 so that GDB will ignore it. */
18179 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18180 {
18181 struct objfile *objfile = dwarf2_per_objfile->objfile;
18182 struct gdbarch *gdbarch = objfile->arch ();
18183
18184 complaint (_("DW_AT_low_pc %s is zero "
18185 "for DIE at %s [in module %s]"),
18186 paddress (gdbarch, lowpc),
18187 sect_offset_str (sect_off),
18188 objfile_name (objfile));
18189 }
18190 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18191 else if (lowpc >= highpc)
18192 {
18193 struct objfile *objfile = dwarf2_per_objfile->objfile;
18194 struct gdbarch *gdbarch = objfile->arch ();
18195
18196 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18197 "for DIE at %s [in module %s]"),
18198 paddress (gdbarch, lowpc),
18199 paddress (gdbarch, highpc),
18200 sect_offset_str (sect_off),
18201 objfile_name (objfile));
18202 }
18203 else
18204 has_pc_info = 1;
18205 }
18206
18207 return info_ptr;
18208 }
18209
18210 /* Find a cached partial DIE at OFFSET in CU. */
18211
18212 struct partial_die_info *
18213 dwarf2_cu::find_partial_die (sect_offset sect_off)
18214 {
18215 struct partial_die_info *lookup_die = NULL;
18216 struct partial_die_info part_die (sect_off);
18217
18218 lookup_die = ((struct partial_die_info *)
18219 htab_find_with_hash (partial_dies, &part_die,
18220 to_underlying (sect_off)));
18221
18222 return lookup_die;
18223 }
18224
18225 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18226 except in the case of .debug_types DIEs which do not reference
18227 outside their CU (they do however referencing other types via
18228 DW_FORM_ref_sig8). */
18229
18230 static const struct cu_partial_die_info
18231 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18232 {
18233 struct dwarf2_per_objfile *dwarf2_per_objfile
18234 = cu->per_cu->dwarf2_per_objfile;
18235 struct objfile *objfile = dwarf2_per_objfile->objfile;
18236 struct dwarf2_per_cu_data *per_cu = NULL;
18237 struct partial_die_info *pd = NULL;
18238
18239 if (offset_in_dwz == cu->per_cu->is_dwz
18240 && cu->header.offset_in_cu_p (sect_off))
18241 {
18242 pd = cu->find_partial_die (sect_off);
18243 if (pd != NULL)
18244 return { cu, pd };
18245 /* We missed recording what we needed.
18246 Load all dies and try again. */
18247 per_cu = cu->per_cu;
18248 }
18249 else
18250 {
18251 /* TUs don't reference other CUs/TUs (except via type signatures). */
18252 if (cu->per_cu->is_debug_types)
18253 {
18254 error (_("Dwarf Error: Type Unit at offset %s contains"
18255 " external reference to offset %s [in module %s].\n"),
18256 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18257 bfd_get_filename (objfile->obfd));
18258 }
18259 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18260 dwarf2_per_objfile);
18261
18262 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18263 load_partial_comp_unit (per_cu);
18264
18265 per_cu->cu->last_used = 0;
18266 pd = per_cu->cu->find_partial_die (sect_off);
18267 }
18268
18269 /* If we didn't find it, and not all dies have been loaded,
18270 load them all and try again. */
18271
18272 if (pd == NULL && per_cu->load_all_dies == 0)
18273 {
18274 per_cu->load_all_dies = 1;
18275
18276 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18277 THIS_CU->cu may already be in use. So we can't just free it and
18278 replace its DIEs with the ones we read in. Instead, we leave those
18279 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18280 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18281 set. */
18282 load_partial_comp_unit (per_cu);
18283
18284 pd = per_cu->cu->find_partial_die (sect_off);
18285 }
18286
18287 if (pd == NULL)
18288 internal_error (__FILE__, __LINE__,
18289 _("could not find partial DIE %s "
18290 "in cache [from module %s]\n"),
18291 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18292 return { per_cu->cu, pd };
18293 }
18294
18295 /* See if we can figure out if the class lives in a namespace. We do
18296 this by looking for a member function; its demangled name will
18297 contain namespace info, if there is any. */
18298
18299 static void
18300 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18301 struct dwarf2_cu *cu)
18302 {
18303 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18304 what template types look like, because the demangler
18305 frequently doesn't give the same name as the debug info. We
18306 could fix this by only using the demangled name to get the
18307 prefix (but see comment in read_structure_type). */
18308
18309 struct partial_die_info *real_pdi;
18310 struct partial_die_info *child_pdi;
18311
18312 /* If this DIE (this DIE's specification, if any) has a parent, then
18313 we should not do this. We'll prepend the parent's fully qualified
18314 name when we create the partial symbol. */
18315
18316 real_pdi = struct_pdi;
18317 while (real_pdi->has_specification)
18318 {
18319 auto res = find_partial_die (real_pdi->spec_offset,
18320 real_pdi->spec_is_dwz, cu);
18321 real_pdi = res.pdi;
18322 cu = res.cu;
18323 }
18324
18325 if (real_pdi->die_parent != NULL)
18326 return;
18327
18328 for (child_pdi = struct_pdi->die_child;
18329 child_pdi != NULL;
18330 child_pdi = child_pdi->die_sibling)
18331 {
18332 if (child_pdi->tag == DW_TAG_subprogram
18333 && child_pdi->linkage_name != NULL)
18334 {
18335 gdb::unique_xmalloc_ptr<char> actual_class_name
18336 (language_class_name_from_physname (cu->language_defn,
18337 child_pdi->linkage_name));
18338 if (actual_class_name != NULL)
18339 {
18340 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18341 struct_pdi->name = objfile->intern (actual_class_name.get ());
18342 }
18343 break;
18344 }
18345 }
18346 }
18347
18348 /* Return true if a DIE with TAG may have the DW_AT_const_value
18349 attribute. */
18350
18351 static bool
18352 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18353 {
18354 switch (tag)
18355 {
18356 case DW_TAG_constant:
18357 case DW_TAG_enumerator:
18358 case DW_TAG_formal_parameter:
18359 case DW_TAG_template_value_param:
18360 case DW_TAG_variable:
18361 return true;
18362 }
18363
18364 return false;
18365 }
18366
18367 void
18368 partial_die_info::fixup (struct dwarf2_cu *cu)
18369 {
18370 /* Once we've fixed up a die, there's no point in doing so again.
18371 This also avoids a memory leak if we were to call
18372 guess_partial_die_structure_name multiple times. */
18373 if (fixup_called)
18374 return;
18375
18376 /* If we found a reference attribute and the DIE has no name, try
18377 to find a name in the referred to DIE. */
18378
18379 if (name == NULL && has_specification)
18380 {
18381 struct partial_die_info *spec_die;
18382
18383 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18384 spec_die = res.pdi;
18385 cu = res.cu;
18386
18387 spec_die->fixup (cu);
18388
18389 if (spec_die->name)
18390 {
18391 name = spec_die->name;
18392
18393 /* Copy DW_AT_external attribute if it is set. */
18394 if (spec_die->is_external)
18395 is_external = spec_die->is_external;
18396 }
18397 }
18398
18399 if (!has_const_value && has_specification
18400 && can_have_DW_AT_const_value_p (tag))
18401 {
18402 struct partial_die_info *spec_die;
18403
18404 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18405 spec_die = res.pdi;
18406 cu = res.cu;
18407
18408 spec_die->fixup (cu);
18409
18410 if (spec_die->has_const_value)
18411 {
18412 /* Copy DW_AT_const_value attribute if it is set. */
18413 has_const_value = spec_die->has_const_value;
18414 }
18415 }
18416
18417 /* Set default names for some unnamed DIEs. */
18418
18419 if (name == NULL && tag == DW_TAG_namespace)
18420 name = CP_ANONYMOUS_NAMESPACE_STR;
18421
18422 /* If there is no parent die to provide a namespace, and there are
18423 children, see if we can determine the namespace from their linkage
18424 name. */
18425 if (cu->language == language_cplus
18426 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18427 && die_parent == NULL
18428 && has_children
18429 && (tag == DW_TAG_class_type
18430 || tag == DW_TAG_structure_type
18431 || tag == DW_TAG_union_type))
18432 guess_partial_die_structure_name (this, cu);
18433
18434 /* GCC might emit a nameless struct or union that has a linkage
18435 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18436 if (name == NULL
18437 && (tag == DW_TAG_class_type
18438 || tag == DW_TAG_interface_type
18439 || tag == DW_TAG_structure_type
18440 || tag == DW_TAG_union_type)
18441 && linkage_name != NULL)
18442 {
18443 gdb::unique_xmalloc_ptr<char> demangled
18444 (gdb_demangle (linkage_name, DMGL_TYPES));
18445 if (demangled != nullptr)
18446 {
18447 const char *base;
18448
18449 /* Strip any leading namespaces/classes, keep only the base name.
18450 DW_AT_name for named DIEs does not contain the prefixes. */
18451 base = strrchr (demangled.get (), ':');
18452 if (base && base > demangled.get () && base[-1] == ':')
18453 base++;
18454 else
18455 base = demangled.get ();
18456
18457 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18458 name = objfile->intern (base);
18459 }
18460 }
18461
18462 fixup_called = 1;
18463 }
18464
18465 /* Read the .debug_loclists header contents from the given SECTION in the
18466 HEADER. */
18467 static void
18468 read_loclist_header (struct loclist_header *header,
18469 struct dwarf2_section_info *section)
18470 {
18471 unsigned int bytes_read;
18472 bfd *abfd = section->get_bfd_owner ();
18473 const gdb_byte *info_ptr = section->buffer;
18474 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18475 info_ptr += bytes_read;
18476 header->version = read_2_bytes (abfd, info_ptr);
18477 info_ptr += 2;
18478 header->addr_size = read_1_byte (abfd, info_ptr);
18479 info_ptr += 1;
18480 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18481 info_ptr += 1;
18482 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18483 }
18484
18485 /* Return the DW_AT_loclists_base value for the CU. */
18486 static ULONGEST
18487 lookup_loclist_base (struct dwarf2_cu *cu)
18488 {
18489 /* For the .dwo unit, the loclist_base points to the first offset following
18490 the header. The header consists of the following entities-
18491 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18492 bit format)
18493 2. version (2 bytes)
18494 3. address size (1 byte)
18495 4. segment selector size (1 byte)
18496 5. offset entry count (4 bytes)
18497 These sizes are derived as per the DWARFv5 standard. */
18498 if (cu->dwo_unit != nullptr)
18499 {
18500 if (cu->header.initial_length_size == 4)
18501 return LOCLIST_HEADER_SIZE32;
18502 return LOCLIST_HEADER_SIZE64;
18503 }
18504 return cu->loclist_base;
18505 }
18506
18507 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18508 array of offsets in the .debug_loclists section. */
18509 static CORE_ADDR
18510 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18511 {
18512 struct dwarf2_per_objfile *dwarf2_per_objfile
18513 = cu->per_cu->dwarf2_per_objfile;
18514 struct objfile *objfile = dwarf2_per_objfile->objfile;
18515 bfd *abfd = objfile->obfd;
18516 ULONGEST loclist_base = lookup_loclist_base (cu);
18517 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18518
18519 section->read (objfile);
18520 if (section->buffer == NULL)
18521 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18522 "section [in module %s]"), objfile_name (objfile));
18523 struct loclist_header header;
18524 read_loclist_header (&header, section);
18525 if (loclist_index >= header.offset_entry_count)
18526 complaint (_("DW_FORM_loclistx pointing outside of "
18527 ".debug_loclists offset array [in module %s]"),
18528 objfile_name (objfile));
18529 if (loclist_base + loclist_index * cu->header.offset_size
18530 >= section->size)
18531 complaint (_("DW_FORM_loclistx pointing outside of "
18532 ".debug_loclists section [in module %s]"),
18533 objfile_name (objfile));
18534 const gdb_byte *info_ptr
18535 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18536
18537 if (cu->header.offset_size == 4)
18538 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18539 else
18540 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18541 }
18542
18543 /* Process the attributes that had to be skipped in the first round. These
18544 attributes are the ones that need str_offsets_base or addr_base attributes.
18545 They could not have been processed in the first round, because at the time
18546 the values of str_offsets_base or addr_base may not have been known. */
18547 static void
18548 read_attribute_reprocess (const struct die_reader_specs *reader,
18549 struct attribute *attr)
18550 {
18551 struct dwarf2_cu *cu = reader->cu;
18552 switch (attr->form)
18553 {
18554 case DW_FORM_addrx:
18555 case DW_FORM_GNU_addr_index:
18556 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18557 break;
18558 case DW_FORM_loclistx:
18559 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18560 break;
18561 case DW_FORM_strx:
18562 case DW_FORM_strx1:
18563 case DW_FORM_strx2:
18564 case DW_FORM_strx3:
18565 case DW_FORM_strx4:
18566 case DW_FORM_GNU_str_index:
18567 {
18568 unsigned int str_index = DW_UNSND (attr);
18569 if (reader->dwo_file != NULL)
18570 {
18571 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18572 DW_STRING_IS_CANONICAL (attr) = 0;
18573 }
18574 else
18575 {
18576 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18577 DW_STRING_IS_CANONICAL (attr) = 0;
18578 }
18579 break;
18580 }
18581 default:
18582 gdb_assert_not_reached (_("Unexpected DWARF form."));
18583 }
18584 }
18585
18586 /* Read an attribute value described by an attribute form. */
18587
18588 static const gdb_byte *
18589 read_attribute_value (const struct die_reader_specs *reader,
18590 struct attribute *attr, unsigned form,
18591 LONGEST implicit_const, const gdb_byte *info_ptr,
18592 bool *need_reprocess)
18593 {
18594 struct dwarf2_cu *cu = reader->cu;
18595 struct dwarf2_per_objfile *dwarf2_per_objfile
18596 = cu->per_cu->dwarf2_per_objfile;
18597 struct objfile *objfile = dwarf2_per_objfile->objfile;
18598 bfd *abfd = reader->abfd;
18599 struct comp_unit_head *cu_header = &cu->header;
18600 unsigned int bytes_read;
18601 struct dwarf_block *blk;
18602 *need_reprocess = false;
18603
18604 attr->form = (enum dwarf_form) form;
18605 switch (form)
18606 {
18607 case DW_FORM_ref_addr:
18608 if (cu->header.version == 2)
18609 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18610 &bytes_read);
18611 else
18612 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18613 &bytes_read);
18614 info_ptr += bytes_read;
18615 break;
18616 case DW_FORM_GNU_ref_alt:
18617 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18618 info_ptr += bytes_read;
18619 break;
18620 case DW_FORM_addr:
18621 {
18622 struct gdbarch *gdbarch = objfile->arch ();
18623 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18624 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18625 info_ptr += bytes_read;
18626 }
18627 break;
18628 case DW_FORM_block2:
18629 blk = dwarf_alloc_block (cu);
18630 blk->size = read_2_bytes (abfd, info_ptr);
18631 info_ptr += 2;
18632 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18633 info_ptr += blk->size;
18634 DW_BLOCK (attr) = blk;
18635 break;
18636 case DW_FORM_block4:
18637 blk = dwarf_alloc_block (cu);
18638 blk->size = read_4_bytes (abfd, info_ptr);
18639 info_ptr += 4;
18640 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18641 info_ptr += blk->size;
18642 DW_BLOCK (attr) = blk;
18643 break;
18644 case DW_FORM_data2:
18645 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18646 info_ptr += 2;
18647 break;
18648 case DW_FORM_data4:
18649 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18650 info_ptr += 4;
18651 break;
18652 case DW_FORM_data8:
18653 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18654 info_ptr += 8;
18655 break;
18656 case DW_FORM_data16:
18657 blk = dwarf_alloc_block (cu);
18658 blk->size = 16;
18659 blk->data = read_n_bytes (abfd, info_ptr, 16);
18660 info_ptr += 16;
18661 DW_BLOCK (attr) = blk;
18662 break;
18663 case DW_FORM_sec_offset:
18664 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18665 info_ptr += bytes_read;
18666 break;
18667 case DW_FORM_loclistx:
18668 {
18669 *need_reprocess = true;
18670 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18671 info_ptr += bytes_read;
18672 }
18673 break;
18674 case DW_FORM_string:
18675 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18676 DW_STRING_IS_CANONICAL (attr) = 0;
18677 info_ptr += bytes_read;
18678 break;
18679 case DW_FORM_strp:
18680 if (!cu->per_cu->is_dwz)
18681 {
18682 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18683 abfd, info_ptr, cu_header,
18684 &bytes_read);
18685 DW_STRING_IS_CANONICAL (attr) = 0;
18686 info_ptr += bytes_read;
18687 break;
18688 }
18689 /* FALLTHROUGH */
18690 case DW_FORM_line_strp:
18691 if (!cu->per_cu->is_dwz)
18692 {
18693 DW_STRING (attr)
18694 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
18695 &bytes_read);
18696 DW_STRING_IS_CANONICAL (attr) = 0;
18697 info_ptr += bytes_read;
18698 break;
18699 }
18700 /* FALLTHROUGH */
18701 case DW_FORM_GNU_strp_alt:
18702 {
18703 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18704 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18705 &bytes_read);
18706
18707 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
18708 DW_STRING_IS_CANONICAL (attr) = 0;
18709 info_ptr += bytes_read;
18710 }
18711 break;
18712 case DW_FORM_exprloc:
18713 case DW_FORM_block:
18714 blk = dwarf_alloc_block (cu);
18715 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18716 info_ptr += bytes_read;
18717 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18718 info_ptr += blk->size;
18719 DW_BLOCK (attr) = blk;
18720 break;
18721 case DW_FORM_block1:
18722 blk = dwarf_alloc_block (cu);
18723 blk->size = read_1_byte (abfd, info_ptr);
18724 info_ptr += 1;
18725 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18726 info_ptr += blk->size;
18727 DW_BLOCK (attr) = blk;
18728 break;
18729 case DW_FORM_data1:
18730 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18731 info_ptr += 1;
18732 break;
18733 case DW_FORM_flag:
18734 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18735 info_ptr += 1;
18736 break;
18737 case DW_FORM_flag_present:
18738 DW_UNSND (attr) = 1;
18739 break;
18740 case DW_FORM_sdata:
18741 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18742 info_ptr += bytes_read;
18743 break;
18744 case DW_FORM_udata:
18745 case DW_FORM_rnglistx:
18746 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18747 info_ptr += bytes_read;
18748 break;
18749 case DW_FORM_ref1:
18750 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18751 + read_1_byte (abfd, info_ptr));
18752 info_ptr += 1;
18753 break;
18754 case DW_FORM_ref2:
18755 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18756 + read_2_bytes (abfd, info_ptr));
18757 info_ptr += 2;
18758 break;
18759 case DW_FORM_ref4:
18760 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18761 + read_4_bytes (abfd, info_ptr));
18762 info_ptr += 4;
18763 break;
18764 case DW_FORM_ref8:
18765 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18766 + read_8_bytes (abfd, info_ptr));
18767 info_ptr += 8;
18768 break;
18769 case DW_FORM_ref_sig8:
18770 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18771 info_ptr += 8;
18772 break;
18773 case DW_FORM_ref_udata:
18774 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18775 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18776 info_ptr += bytes_read;
18777 break;
18778 case DW_FORM_indirect:
18779 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18780 info_ptr += bytes_read;
18781 if (form == DW_FORM_implicit_const)
18782 {
18783 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18784 info_ptr += bytes_read;
18785 }
18786 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18787 info_ptr, need_reprocess);
18788 break;
18789 case DW_FORM_implicit_const:
18790 DW_SND (attr) = implicit_const;
18791 break;
18792 case DW_FORM_addrx:
18793 case DW_FORM_GNU_addr_index:
18794 *need_reprocess = true;
18795 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18796 info_ptr += bytes_read;
18797 break;
18798 case DW_FORM_strx:
18799 case DW_FORM_strx1:
18800 case DW_FORM_strx2:
18801 case DW_FORM_strx3:
18802 case DW_FORM_strx4:
18803 case DW_FORM_GNU_str_index:
18804 {
18805 ULONGEST str_index;
18806 if (form == DW_FORM_strx1)
18807 {
18808 str_index = read_1_byte (abfd, info_ptr);
18809 info_ptr += 1;
18810 }
18811 else if (form == DW_FORM_strx2)
18812 {
18813 str_index = read_2_bytes (abfd, info_ptr);
18814 info_ptr += 2;
18815 }
18816 else if (form == DW_FORM_strx3)
18817 {
18818 str_index = read_3_bytes (abfd, info_ptr);
18819 info_ptr += 3;
18820 }
18821 else if (form == DW_FORM_strx4)
18822 {
18823 str_index = read_4_bytes (abfd, info_ptr);
18824 info_ptr += 4;
18825 }
18826 else
18827 {
18828 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18829 info_ptr += bytes_read;
18830 }
18831 *need_reprocess = true;
18832 DW_UNSND (attr) = str_index;
18833 }
18834 break;
18835 default:
18836 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18837 dwarf_form_name (form),
18838 bfd_get_filename (abfd));
18839 }
18840
18841 /* Super hack. */
18842 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18843 attr->form = DW_FORM_GNU_ref_alt;
18844
18845 /* We have seen instances where the compiler tried to emit a byte
18846 size attribute of -1 which ended up being encoded as an unsigned
18847 0xffffffff. Although 0xffffffff is technically a valid size value,
18848 an object of this size seems pretty unlikely so we can relatively
18849 safely treat these cases as if the size attribute was invalid and
18850 treat them as zero by default. */
18851 if (attr->name == DW_AT_byte_size
18852 && form == DW_FORM_data4
18853 && DW_UNSND (attr) >= 0xffffffff)
18854 {
18855 complaint
18856 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18857 hex_string (DW_UNSND (attr)));
18858 DW_UNSND (attr) = 0;
18859 }
18860
18861 return info_ptr;
18862 }
18863
18864 /* Read an attribute described by an abbreviated attribute. */
18865
18866 static const gdb_byte *
18867 read_attribute (const struct die_reader_specs *reader,
18868 struct attribute *attr, struct attr_abbrev *abbrev,
18869 const gdb_byte *info_ptr, bool *need_reprocess)
18870 {
18871 attr->name = abbrev->name;
18872 return read_attribute_value (reader, attr, abbrev->form,
18873 abbrev->implicit_const, info_ptr,
18874 need_reprocess);
18875 }
18876
18877 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18878
18879 static const char *
18880 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18881 LONGEST str_offset)
18882 {
18883 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
18884 str_offset, "DW_FORM_strp");
18885 }
18886
18887 /* Return pointer to string at .debug_str offset as read from BUF.
18888 BUF is assumed to be in a compilation unit described by CU_HEADER.
18889 Return *BYTES_READ_PTR count of bytes read from BUF. */
18890
18891 static const char *
18892 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18893 const gdb_byte *buf,
18894 const struct comp_unit_head *cu_header,
18895 unsigned int *bytes_read_ptr)
18896 {
18897 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18898
18899 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
18900 }
18901
18902 /* See read.h. */
18903
18904 const char *
18905 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
18906 const struct comp_unit_head *cu_header,
18907 unsigned int *bytes_read_ptr)
18908 {
18909 bfd *abfd = objfile->obfd;
18910 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18911
18912 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
18913 }
18914
18915 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18916 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18917 ADDR_SIZE is the size of addresses from the CU header. */
18918
18919 static CORE_ADDR
18920 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18921 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18922 int addr_size)
18923 {
18924 struct objfile *objfile = dwarf2_per_objfile->objfile;
18925 bfd *abfd = objfile->obfd;
18926 const gdb_byte *info_ptr;
18927 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18928
18929 dwarf2_per_objfile->addr.read (objfile);
18930 if (dwarf2_per_objfile->addr.buffer == NULL)
18931 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18932 objfile_name (objfile));
18933 if (addr_base_or_zero + addr_index * addr_size
18934 >= dwarf2_per_objfile->addr.size)
18935 error (_("DW_FORM_addr_index pointing outside of "
18936 ".debug_addr section [in module %s]"),
18937 objfile_name (objfile));
18938 info_ptr = (dwarf2_per_objfile->addr.buffer
18939 + addr_base_or_zero + addr_index * addr_size);
18940 if (addr_size == 4)
18941 return bfd_get_32 (abfd, info_ptr);
18942 else
18943 return bfd_get_64 (abfd, info_ptr);
18944 }
18945
18946 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18947
18948 static CORE_ADDR
18949 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18950 {
18951 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18952 cu->addr_base, cu->header.addr_size);
18953 }
18954
18955 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18956
18957 static CORE_ADDR
18958 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18959 unsigned int *bytes_read)
18960 {
18961 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18962 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18963
18964 return read_addr_index (cu, addr_index);
18965 }
18966
18967 /* See read.h. */
18968
18969 CORE_ADDR
18970 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
18971 {
18972 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18973 struct dwarf2_cu *cu = per_cu->cu;
18974 gdb::optional<ULONGEST> addr_base;
18975 int addr_size;
18976
18977 /* We need addr_base and addr_size.
18978 If we don't have PER_CU->cu, we have to get it.
18979 Nasty, but the alternative is storing the needed info in PER_CU,
18980 which at this point doesn't seem justified: it's not clear how frequently
18981 it would get used and it would increase the size of every PER_CU.
18982 Entry points like dwarf2_per_cu_addr_size do a similar thing
18983 so we're not in uncharted territory here.
18984 Alas we need to be a bit more complicated as addr_base is contained
18985 in the DIE.
18986
18987 We don't need to read the entire CU(/TU).
18988 We just need the header and top level die.
18989
18990 IWBN to use the aging mechanism to let us lazily later discard the CU.
18991 For now we skip this optimization. */
18992
18993 if (cu != NULL)
18994 {
18995 addr_base = cu->addr_base;
18996 addr_size = cu->header.addr_size;
18997 }
18998 else
18999 {
19000 cutu_reader reader (per_cu, NULL, 0, false);
19001 addr_base = reader.cu->addr_base;
19002 addr_size = reader.cu->header.addr_size;
19003 }
19004
19005 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19006 addr_size);
19007 }
19008
19009 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19010 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19011 DWO file. */
19012
19013 static const char *
19014 read_str_index (struct dwarf2_cu *cu,
19015 struct dwarf2_section_info *str_section,
19016 struct dwarf2_section_info *str_offsets_section,
19017 ULONGEST str_offsets_base, ULONGEST str_index)
19018 {
19019 struct dwarf2_per_objfile *dwarf2_per_objfile
19020 = cu->per_cu->dwarf2_per_objfile;
19021 struct objfile *objfile = dwarf2_per_objfile->objfile;
19022 const char *objf_name = objfile_name (objfile);
19023 bfd *abfd = objfile->obfd;
19024 const gdb_byte *info_ptr;
19025 ULONGEST str_offset;
19026 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19027
19028 str_section->read (objfile);
19029 str_offsets_section->read (objfile);
19030 if (str_section->buffer == NULL)
19031 error (_("%s used without %s section"
19032 " in CU at offset %s [in module %s]"),
19033 form_name, str_section->get_name (),
19034 sect_offset_str (cu->header.sect_off), objf_name);
19035 if (str_offsets_section->buffer == NULL)
19036 error (_("%s used without %s section"
19037 " in CU at offset %s [in module %s]"),
19038 form_name, str_section->get_name (),
19039 sect_offset_str (cu->header.sect_off), objf_name);
19040 info_ptr = (str_offsets_section->buffer
19041 + str_offsets_base
19042 + str_index * cu->header.offset_size);
19043 if (cu->header.offset_size == 4)
19044 str_offset = bfd_get_32 (abfd, info_ptr);
19045 else
19046 str_offset = bfd_get_64 (abfd, info_ptr);
19047 if (str_offset >= str_section->size)
19048 error (_("Offset from %s pointing outside of"
19049 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19050 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19051 return (const char *) (str_section->buffer + str_offset);
19052 }
19053
19054 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19055
19056 static const char *
19057 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19058 {
19059 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19060 ? reader->cu->header.addr_size : 0;
19061 return read_str_index (reader->cu,
19062 &reader->dwo_file->sections.str,
19063 &reader->dwo_file->sections.str_offsets,
19064 str_offsets_base, str_index);
19065 }
19066
19067 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19068
19069 static const char *
19070 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19071 {
19072 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19073 const char *objf_name = objfile_name (objfile);
19074 static const char form_name[] = "DW_FORM_GNU_str_index";
19075 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19076
19077 if (!cu->str_offsets_base.has_value ())
19078 error (_("%s used in Fission stub without %s"
19079 " in CU at offset 0x%lx [in module %s]"),
19080 form_name, str_offsets_attr_name,
19081 (long) cu->header.offset_size, objf_name);
19082
19083 return read_str_index (cu,
19084 &cu->per_cu->dwarf2_per_objfile->str,
19085 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19086 *cu->str_offsets_base, str_index);
19087 }
19088
19089 /* Return the length of an LEB128 number in BUF. */
19090
19091 static int
19092 leb128_size (const gdb_byte *buf)
19093 {
19094 const gdb_byte *begin = buf;
19095 gdb_byte byte;
19096
19097 while (1)
19098 {
19099 byte = *buf++;
19100 if ((byte & 128) == 0)
19101 return buf - begin;
19102 }
19103 }
19104
19105 static void
19106 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19107 {
19108 switch (lang)
19109 {
19110 case DW_LANG_C89:
19111 case DW_LANG_C99:
19112 case DW_LANG_C11:
19113 case DW_LANG_C:
19114 case DW_LANG_UPC:
19115 cu->language = language_c;
19116 break;
19117 case DW_LANG_Java:
19118 case DW_LANG_C_plus_plus:
19119 case DW_LANG_C_plus_plus_11:
19120 case DW_LANG_C_plus_plus_14:
19121 cu->language = language_cplus;
19122 break;
19123 case DW_LANG_D:
19124 cu->language = language_d;
19125 break;
19126 case DW_LANG_Fortran77:
19127 case DW_LANG_Fortran90:
19128 case DW_LANG_Fortran95:
19129 case DW_LANG_Fortran03:
19130 case DW_LANG_Fortran08:
19131 cu->language = language_fortran;
19132 break;
19133 case DW_LANG_Go:
19134 cu->language = language_go;
19135 break;
19136 case DW_LANG_Mips_Assembler:
19137 cu->language = language_asm;
19138 break;
19139 case DW_LANG_Ada83:
19140 case DW_LANG_Ada95:
19141 cu->language = language_ada;
19142 break;
19143 case DW_LANG_Modula2:
19144 cu->language = language_m2;
19145 break;
19146 case DW_LANG_Pascal83:
19147 cu->language = language_pascal;
19148 break;
19149 case DW_LANG_ObjC:
19150 cu->language = language_objc;
19151 break;
19152 case DW_LANG_Rust:
19153 case DW_LANG_Rust_old:
19154 cu->language = language_rust;
19155 break;
19156 case DW_LANG_Cobol74:
19157 case DW_LANG_Cobol85:
19158 default:
19159 cu->language = language_minimal;
19160 break;
19161 }
19162 cu->language_defn = language_def (cu->language);
19163 }
19164
19165 /* Return the named attribute or NULL if not there. */
19166
19167 static struct attribute *
19168 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19169 {
19170 for (;;)
19171 {
19172 unsigned int i;
19173 struct attribute *spec = NULL;
19174
19175 for (i = 0; i < die->num_attrs; ++i)
19176 {
19177 if (die->attrs[i].name == name)
19178 return &die->attrs[i];
19179 if (die->attrs[i].name == DW_AT_specification
19180 || die->attrs[i].name == DW_AT_abstract_origin)
19181 spec = &die->attrs[i];
19182 }
19183
19184 if (!spec)
19185 break;
19186
19187 die = follow_die_ref (die, spec, &cu);
19188 }
19189
19190 return NULL;
19191 }
19192
19193 /* Return the string associated with a string-typed attribute, or NULL if it
19194 is either not found or is of an incorrect type. */
19195
19196 static const char *
19197 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19198 {
19199 struct attribute *attr;
19200 const char *str = NULL;
19201
19202 attr = dwarf2_attr (die, name, cu);
19203
19204 if (attr != NULL)
19205 {
19206 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19207 || attr->form == DW_FORM_string
19208 || attr->form == DW_FORM_strx
19209 || attr->form == DW_FORM_strx1
19210 || attr->form == DW_FORM_strx2
19211 || attr->form == DW_FORM_strx3
19212 || attr->form == DW_FORM_strx4
19213 || attr->form == DW_FORM_GNU_str_index
19214 || attr->form == DW_FORM_GNU_strp_alt)
19215 str = DW_STRING (attr);
19216 else
19217 complaint (_("string type expected for attribute %s for "
19218 "DIE at %s in module %s"),
19219 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19220 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19221 }
19222
19223 return str;
19224 }
19225
19226 /* Return the dwo name or NULL if not present. If present, it is in either
19227 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19228 static const char *
19229 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19230 {
19231 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19232 if (dwo_name == nullptr)
19233 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19234 return dwo_name;
19235 }
19236
19237 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19238 and holds a non-zero value. This function should only be used for
19239 DW_FORM_flag or DW_FORM_flag_present attributes. */
19240
19241 static int
19242 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19243 {
19244 struct attribute *attr = dwarf2_attr (die, name, cu);
19245
19246 return (attr && DW_UNSND (attr));
19247 }
19248
19249 static int
19250 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19251 {
19252 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19253 which value is non-zero. However, we have to be careful with
19254 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19255 (via dwarf2_flag_true_p) follows this attribute. So we may
19256 end up accidently finding a declaration attribute that belongs
19257 to a different DIE referenced by the specification attribute,
19258 even though the given DIE does not have a declaration attribute. */
19259 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19260 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19261 }
19262
19263 /* Return the die giving the specification for DIE, if there is
19264 one. *SPEC_CU is the CU containing DIE on input, and the CU
19265 containing the return value on output. If there is no
19266 specification, but there is an abstract origin, that is
19267 returned. */
19268
19269 static struct die_info *
19270 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19271 {
19272 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19273 *spec_cu);
19274
19275 if (spec_attr == NULL)
19276 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19277
19278 if (spec_attr == NULL)
19279 return NULL;
19280 else
19281 return follow_die_ref (die, spec_attr, spec_cu);
19282 }
19283
19284 /* Stub for free_line_header to match void * callback types. */
19285
19286 static void
19287 free_line_header_voidp (void *arg)
19288 {
19289 struct line_header *lh = (struct line_header *) arg;
19290
19291 delete lh;
19292 }
19293
19294 /* A convenience function to find the proper .debug_line section for a CU. */
19295
19296 static struct dwarf2_section_info *
19297 get_debug_line_section (struct dwarf2_cu *cu)
19298 {
19299 struct dwarf2_section_info *section;
19300 struct dwarf2_per_objfile *dwarf2_per_objfile
19301 = cu->per_cu->dwarf2_per_objfile;
19302
19303 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19304 DWO file. */
19305 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19306 section = &cu->dwo_unit->dwo_file->sections.line;
19307 else if (cu->per_cu->is_dwz)
19308 {
19309 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19310
19311 section = &dwz->line;
19312 }
19313 else
19314 section = &dwarf2_per_objfile->line;
19315
19316 return section;
19317 }
19318
19319 /* Read the statement program header starting at OFFSET in
19320 .debug_line, or .debug_line.dwo. Return a pointer
19321 to a struct line_header, allocated using xmalloc.
19322 Returns NULL if there is a problem reading the header, e.g., if it
19323 has a version we don't understand.
19324
19325 NOTE: the strings in the include directory and file name tables of
19326 the returned object point into the dwarf line section buffer,
19327 and must not be freed. */
19328
19329 static line_header_up
19330 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19331 {
19332 struct dwarf2_section_info *section;
19333 struct dwarf2_per_objfile *dwarf2_per_objfile
19334 = cu->per_cu->dwarf2_per_objfile;
19335
19336 section = get_debug_line_section (cu);
19337 section->read (dwarf2_per_objfile->objfile);
19338 if (section->buffer == NULL)
19339 {
19340 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19341 complaint (_("missing .debug_line.dwo section"));
19342 else
19343 complaint (_("missing .debug_line section"));
19344 return 0;
19345 }
19346
19347 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19348 dwarf2_per_objfile, section,
19349 &cu->header);
19350 }
19351
19352 /* Subroutine of dwarf_decode_lines to simplify it.
19353 Return the file name of the psymtab for the given file_entry.
19354 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19355 If space for the result is malloc'd, *NAME_HOLDER will be set.
19356 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19357
19358 static const char *
19359 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19360 const dwarf2_psymtab *pst,
19361 const char *comp_dir,
19362 gdb::unique_xmalloc_ptr<char> *name_holder)
19363 {
19364 const char *include_name = fe.name;
19365 const char *include_name_to_compare = include_name;
19366 const char *pst_filename;
19367 int file_is_pst;
19368
19369 const char *dir_name = fe.include_dir (lh);
19370
19371 gdb::unique_xmalloc_ptr<char> hold_compare;
19372 if (!IS_ABSOLUTE_PATH (include_name)
19373 && (dir_name != NULL || comp_dir != NULL))
19374 {
19375 /* Avoid creating a duplicate psymtab for PST.
19376 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19377 Before we do the comparison, however, we need to account
19378 for DIR_NAME and COMP_DIR.
19379 First prepend dir_name (if non-NULL). If we still don't
19380 have an absolute path prepend comp_dir (if non-NULL).
19381 However, the directory we record in the include-file's
19382 psymtab does not contain COMP_DIR (to match the
19383 corresponding symtab(s)).
19384
19385 Example:
19386
19387 bash$ cd /tmp
19388 bash$ gcc -g ./hello.c
19389 include_name = "hello.c"
19390 dir_name = "."
19391 DW_AT_comp_dir = comp_dir = "/tmp"
19392 DW_AT_name = "./hello.c"
19393
19394 */
19395
19396 if (dir_name != NULL)
19397 {
19398 name_holder->reset (concat (dir_name, SLASH_STRING,
19399 include_name, (char *) NULL));
19400 include_name = name_holder->get ();
19401 include_name_to_compare = include_name;
19402 }
19403 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19404 {
19405 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19406 include_name, (char *) NULL));
19407 include_name_to_compare = hold_compare.get ();
19408 }
19409 }
19410
19411 pst_filename = pst->filename;
19412 gdb::unique_xmalloc_ptr<char> copied_name;
19413 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19414 {
19415 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19416 pst_filename, (char *) NULL));
19417 pst_filename = copied_name.get ();
19418 }
19419
19420 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19421
19422 if (file_is_pst)
19423 return NULL;
19424 return include_name;
19425 }
19426
19427 /* State machine to track the state of the line number program. */
19428
19429 class lnp_state_machine
19430 {
19431 public:
19432 /* Initialize a machine state for the start of a line number
19433 program. */
19434 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19435 bool record_lines_p);
19436
19437 file_entry *current_file ()
19438 {
19439 /* lh->file_names is 0-based, but the file name numbers in the
19440 statement program are 1-based. */
19441 return m_line_header->file_name_at (m_file);
19442 }
19443
19444 /* Record the line in the state machine. END_SEQUENCE is true if
19445 we're processing the end of a sequence. */
19446 void record_line (bool end_sequence);
19447
19448 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19449 nop-out rest of the lines in this sequence. */
19450 void check_line_address (struct dwarf2_cu *cu,
19451 const gdb_byte *line_ptr,
19452 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19453
19454 void handle_set_discriminator (unsigned int discriminator)
19455 {
19456 m_discriminator = discriminator;
19457 m_line_has_non_zero_discriminator |= discriminator != 0;
19458 }
19459
19460 /* Handle DW_LNE_set_address. */
19461 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19462 {
19463 m_op_index = 0;
19464 address += baseaddr;
19465 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19466 }
19467
19468 /* Handle DW_LNS_advance_pc. */
19469 void handle_advance_pc (CORE_ADDR adjust);
19470
19471 /* Handle a special opcode. */
19472 void handle_special_opcode (unsigned char op_code);
19473
19474 /* Handle DW_LNS_advance_line. */
19475 void handle_advance_line (int line_delta)
19476 {
19477 advance_line (line_delta);
19478 }
19479
19480 /* Handle DW_LNS_set_file. */
19481 void handle_set_file (file_name_index file);
19482
19483 /* Handle DW_LNS_negate_stmt. */
19484 void handle_negate_stmt ()
19485 {
19486 m_is_stmt = !m_is_stmt;
19487 }
19488
19489 /* Handle DW_LNS_const_add_pc. */
19490 void handle_const_add_pc ();
19491
19492 /* Handle DW_LNS_fixed_advance_pc. */
19493 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19494 {
19495 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19496 m_op_index = 0;
19497 }
19498
19499 /* Handle DW_LNS_copy. */
19500 void handle_copy ()
19501 {
19502 record_line (false);
19503 m_discriminator = 0;
19504 }
19505
19506 /* Handle DW_LNE_end_sequence. */
19507 void handle_end_sequence ()
19508 {
19509 m_currently_recording_lines = true;
19510 }
19511
19512 private:
19513 /* Advance the line by LINE_DELTA. */
19514 void advance_line (int line_delta)
19515 {
19516 m_line += line_delta;
19517
19518 if (line_delta != 0)
19519 m_line_has_non_zero_discriminator = m_discriminator != 0;
19520 }
19521
19522 struct dwarf2_cu *m_cu;
19523
19524 gdbarch *m_gdbarch;
19525
19526 /* True if we're recording lines.
19527 Otherwise we're building partial symtabs and are just interested in
19528 finding include files mentioned by the line number program. */
19529 bool m_record_lines_p;
19530
19531 /* The line number header. */
19532 line_header *m_line_header;
19533
19534 /* These are part of the standard DWARF line number state machine,
19535 and initialized according to the DWARF spec. */
19536
19537 unsigned char m_op_index = 0;
19538 /* The line table index of the current file. */
19539 file_name_index m_file = 1;
19540 unsigned int m_line = 1;
19541
19542 /* These are initialized in the constructor. */
19543
19544 CORE_ADDR m_address;
19545 bool m_is_stmt;
19546 unsigned int m_discriminator;
19547
19548 /* Additional bits of state we need to track. */
19549
19550 /* The last file that we called dwarf2_start_subfile for.
19551 This is only used for TLLs. */
19552 unsigned int m_last_file = 0;
19553 /* The last file a line number was recorded for. */
19554 struct subfile *m_last_subfile = NULL;
19555
19556 /* When true, record the lines we decode. */
19557 bool m_currently_recording_lines = false;
19558
19559 /* The last line number that was recorded, used to coalesce
19560 consecutive entries for the same line. This can happen, for
19561 example, when discriminators are present. PR 17276. */
19562 unsigned int m_last_line = 0;
19563 bool m_line_has_non_zero_discriminator = false;
19564 };
19565
19566 void
19567 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19568 {
19569 CORE_ADDR addr_adj = (((m_op_index + adjust)
19570 / m_line_header->maximum_ops_per_instruction)
19571 * m_line_header->minimum_instruction_length);
19572 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19573 m_op_index = ((m_op_index + adjust)
19574 % m_line_header->maximum_ops_per_instruction);
19575 }
19576
19577 void
19578 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19579 {
19580 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19581 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19582 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19583 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19584 / m_line_header->maximum_ops_per_instruction)
19585 * m_line_header->minimum_instruction_length);
19586 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19587 m_op_index = ((m_op_index + adj_opcode_d)
19588 % m_line_header->maximum_ops_per_instruction);
19589
19590 int line_delta = m_line_header->line_base + adj_opcode_r;
19591 advance_line (line_delta);
19592 record_line (false);
19593 m_discriminator = 0;
19594 }
19595
19596 void
19597 lnp_state_machine::handle_set_file (file_name_index file)
19598 {
19599 m_file = file;
19600
19601 const file_entry *fe = current_file ();
19602 if (fe == NULL)
19603 dwarf2_debug_line_missing_file_complaint ();
19604 else if (m_record_lines_p)
19605 {
19606 const char *dir = fe->include_dir (m_line_header);
19607
19608 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19609 m_line_has_non_zero_discriminator = m_discriminator != 0;
19610 dwarf2_start_subfile (m_cu, fe->name, dir);
19611 }
19612 }
19613
19614 void
19615 lnp_state_machine::handle_const_add_pc ()
19616 {
19617 CORE_ADDR adjust
19618 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19619
19620 CORE_ADDR addr_adj
19621 = (((m_op_index + adjust)
19622 / m_line_header->maximum_ops_per_instruction)
19623 * m_line_header->minimum_instruction_length);
19624
19625 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19626 m_op_index = ((m_op_index + adjust)
19627 % m_line_header->maximum_ops_per_instruction);
19628 }
19629
19630 /* Return non-zero if we should add LINE to the line number table.
19631 LINE is the line to add, LAST_LINE is the last line that was added,
19632 LAST_SUBFILE is the subfile for LAST_LINE.
19633 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19634 had a non-zero discriminator.
19635
19636 We have to be careful in the presence of discriminators.
19637 E.g., for this line:
19638
19639 for (i = 0; i < 100000; i++);
19640
19641 clang can emit four line number entries for that one line,
19642 each with a different discriminator.
19643 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19644
19645 However, we want gdb to coalesce all four entries into one.
19646 Otherwise the user could stepi into the middle of the line and
19647 gdb would get confused about whether the pc really was in the
19648 middle of the line.
19649
19650 Things are further complicated by the fact that two consecutive
19651 line number entries for the same line is a heuristic used by gcc
19652 to denote the end of the prologue. So we can't just discard duplicate
19653 entries, we have to be selective about it. The heuristic we use is
19654 that we only collapse consecutive entries for the same line if at least
19655 one of those entries has a non-zero discriminator. PR 17276.
19656
19657 Note: Addresses in the line number state machine can never go backwards
19658 within one sequence, thus this coalescing is ok. */
19659
19660 static int
19661 dwarf_record_line_p (struct dwarf2_cu *cu,
19662 unsigned int line, unsigned int last_line,
19663 int line_has_non_zero_discriminator,
19664 struct subfile *last_subfile)
19665 {
19666 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19667 return 1;
19668 if (line != last_line)
19669 return 1;
19670 /* Same line for the same file that we've seen already.
19671 As a last check, for pr 17276, only record the line if the line
19672 has never had a non-zero discriminator. */
19673 if (!line_has_non_zero_discriminator)
19674 return 1;
19675 return 0;
19676 }
19677
19678 /* Use the CU's builder to record line number LINE beginning at
19679 address ADDRESS in the line table of subfile SUBFILE. */
19680
19681 static void
19682 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19683 unsigned int line, CORE_ADDR address, bool is_stmt,
19684 struct dwarf2_cu *cu)
19685 {
19686 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19687
19688 if (dwarf_line_debug)
19689 {
19690 fprintf_unfiltered (gdb_stdlog,
19691 "Recording line %u, file %s, address %s\n",
19692 line, lbasename (subfile->name),
19693 paddress (gdbarch, address));
19694 }
19695
19696 if (cu != nullptr)
19697 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
19698 }
19699
19700 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19701 Mark the end of a set of line number records.
19702 The arguments are the same as for dwarf_record_line_1.
19703 If SUBFILE is NULL the request is ignored. */
19704
19705 static void
19706 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19707 CORE_ADDR address, struct dwarf2_cu *cu)
19708 {
19709 if (subfile == NULL)
19710 return;
19711
19712 if (dwarf_line_debug)
19713 {
19714 fprintf_unfiltered (gdb_stdlog,
19715 "Finishing current line, file %s, address %s\n",
19716 lbasename (subfile->name),
19717 paddress (gdbarch, address));
19718 }
19719
19720 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
19721 }
19722
19723 void
19724 lnp_state_machine::record_line (bool end_sequence)
19725 {
19726 if (dwarf_line_debug)
19727 {
19728 fprintf_unfiltered (gdb_stdlog,
19729 "Processing actual line %u: file %u,"
19730 " address %s, is_stmt %u, discrim %u%s\n",
19731 m_line, m_file,
19732 paddress (m_gdbarch, m_address),
19733 m_is_stmt, m_discriminator,
19734 (end_sequence ? "\t(end sequence)" : ""));
19735 }
19736
19737 file_entry *fe = current_file ();
19738
19739 if (fe == NULL)
19740 dwarf2_debug_line_missing_file_complaint ();
19741 /* For now we ignore lines not starting on an instruction boundary.
19742 But not when processing end_sequence for compatibility with the
19743 previous version of the code. */
19744 else if (m_op_index == 0 || end_sequence)
19745 {
19746 fe->included_p = 1;
19747 if (m_record_lines_p)
19748 {
19749 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
19750 || end_sequence)
19751 {
19752 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
19753 m_currently_recording_lines ? m_cu : nullptr);
19754 }
19755
19756 if (!end_sequence)
19757 {
19758 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
19759
19760 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
19761 m_line_has_non_zero_discriminator,
19762 m_last_subfile))
19763 {
19764 buildsym_compunit *builder = m_cu->get_builder ();
19765 dwarf_record_line_1 (m_gdbarch,
19766 builder->get_current_subfile (),
19767 m_line, m_address, is_stmt,
19768 m_currently_recording_lines ? m_cu : nullptr);
19769 }
19770 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19771 m_last_line = m_line;
19772 }
19773 }
19774 }
19775 }
19776
19777 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
19778 line_header *lh, bool record_lines_p)
19779 {
19780 m_cu = cu;
19781 m_gdbarch = arch;
19782 m_record_lines_p = record_lines_p;
19783 m_line_header = lh;
19784
19785 m_currently_recording_lines = true;
19786
19787 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
19788 was a line entry for it so that the backend has a chance to adjust it
19789 and also record it in case it needs it. This is currently used by MIPS
19790 code, cf. `mips_adjust_dwarf2_line'. */
19791 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
19792 m_is_stmt = lh->default_is_stmt;
19793 m_discriminator = 0;
19794 }
19795
19796 void
19797 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
19798 const gdb_byte *line_ptr,
19799 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
19800 {
19801 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
19802 the pc range of the CU. However, we restrict the test to only ADDRESS
19803 values of zero to preserve GDB's previous behaviour which is to handle
19804 the specific case of a function being GC'd by the linker. */
19805
19806 if (address == 0 && address < unrelocated_lowpc)
19807 {
19808 /* This line table is for a function which has been
19809 GCd by the linker. Ignore it. PR gdb/12528 */
19810
19811 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19812 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
19813
19814 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
19815 line_offset, objfile_name (objfile));
19816 m_currently_recording_lines = false;
19817 /* Note: m_currently_recording_lines is left as false until we see
19818 DW_LNE_end_sequence. */
19819 }
19820 }
19821
19822 /* Subroutine of dwarf_decode_lines to simplify it.
19823 Process the line number information in LH.
19824 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
19825 program in order to set included_p for every referenced header. */
19826
19827 static void
19828 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
19829 const int decode_for_pst_p, CORE_ADDR lowpc)
19830 {
19831 const gdb_byte *line_ptr, *extended_end;
19832 const gdb_byte *line_end;
19833 unsigned int bytes_read, extended_len;
19834 unsigned char op_code, extended_op;
19835 CORE_ADDR baseaddr;
19836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19837 bfd *abfd = objfile->obfd;
19838 struct gdbarch *gdbarch = objfile->arch ();
19839 /* True if we're recording line info (as opposed to building partial
19840 symtabs and just interested in finding include files mentioned by
19841 the line number program). */
19842 bool record_lines_p = !decode_for_pst_p;
19843
19844 baseaddr = objfile->text_section_offset ();
19845
19846 line_ptr = lh->statement_program_start;
19847 line_end = lh->statement_program_end;
19848
19849 /* Read the statement sequences until there's nothing left. */
19850 while (line_ptr < line_end)
19851 {
19852 /* The DWARF line number program state machine. Reset the state
19853 machine at the start of each sequence. */
19854 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
19855 bool end_sequence = false;
19856
19857 if (record_lines_p)
19858 {
19859 /* Start a subfile for the current file of the state
19860 machine. */
19861 const file_entry *fe = state_machine.current_file ();
19862
19863 if (fe != NULL)
19864 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
19865 }
19866
19867 /* Decode the table. */
19868 while (line_ptr < line_end && !end_sequence)
19869 {
19870 op_code = read_1_byte (abfd, line_ptr);
19871 line_ptr += 1;
19872
19873 if (op_code >= lh->opcode_base)
19874 {
19875 /* Special opcode. */
19876 state_machine.handle_special_opcode (op_code);
19877 }
19878 else switch (op_code)
19879 {
19880 case DW_LNS_extended_op:
19881 extended_len = read_unsigned_leb128 (abfd, line_ptr,
19882 &bytes_read);
19883 line_ptr += bytes_read;
19884 extended_end = line_ptr + extended_len;
19885 extended_op = read_1_byte (abfd, line_ptr);
19886 line_ptr += 1;
19887 switch (extended_op)
19888 {
19889 case DW_LNE_end_sequence:
19890 state_machine.handle_end_sequence ();
19891 end_sequence = true;
19892 break;
19893 case DW_LNE_set_address:
19894 {
19895 CORE_ADDR address
19896 = cu->header.read_address (abfd, line_ptr, &bytes_read);
19897 line_ptr += bytes_read;
19898
19899 state_machine.check_line_address (cu, line_ptr,
19900 lowpc - baseaddr, address);
19901 state_machine.handle_set_address (baseaddr, address);
19902 }
19903 break;
19904 case DW_LNE_define_file:
19905 {
19906 const char *cur_file;
19907 unsigned int mod_time, length;
19908 dir_index dindex;
19909
19910 cur_file = read_direct_string (abfd, line_ptr,
19911 &bytes_read);
19912 line_ptr += bytes_read;
19913 dindex = (dir_index)
19914 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19915 line_ptr += bytes_read;
19916 mod_time =
19917 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19918 line_ptr += bytes_read;
19919 length =
19920 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19921 line_ptr += bytes_read;
19922 lh->add_file_name (cur_file, dindex, mod_time, length);
19923 }
19924 break;
19925 case DW_LNE_set_discriminator:
19926 {
19927 /* The discriminator is not interesting to the
19928 debugger; just ignore it. We still need to
19929 check its value though:
19930 if there are consecutive entries for the same
19931 (non-prologue) line we want to coalesce them.
19932 PR 17276. */
19933 unsigned int discr
19934 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19935 line_ptr += bytes_read;
19936
19937 state_machine.handle_set_discriminator (discr);
19938 }
19939 break;
19940 default:
19941 complaint (_("mangled .debug_line section"));
19942 return;
19943 }
19944 /* Make sure that we parsed the extended op correctly. If e.g.
19945 we expected a different address size than the producer used,
19946 we may have read the wrong number of bytes. */
19947 if (line_ptr != extended_end)
19948 {
19949 complaint (_("mangled .debug_line section"));
19950 return;
19951 }
19952 break;
19953 case DW_LNS_copy:
19954 state_machine.handle_copy ();
19955 break;
19956 case DW_LNS_advance_pc:
19957 {
19958 CORE_ADDR adjust
19959 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19960 line_ptr += bytes_read;
19961
19962 state_machine.handle_advance_pc (adjust);
19963 }
19964 break;
19965 case DW_LNS_advance_line:
19966 {
19967 int line_delta
19968 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19969 line_ptr += bytes_read;
19970
19971 state_machine.handle_advance_line (line_delta);
19972 }
19973 break;
19974 case DW_LNS_set_file:
19975 {
19976 file_name_index file
19977 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19978 &bytes_read);
19979 line_ptr += bytes_read;
19980
19981 state_machine.handle_set_file (file);
19982 }
19983 break;
19984 case DW_LNS_set_column:
19985 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19986 line_ptr += bytes_read;
19987 break;
19988 case DW_LNS_negate_stmt:
19989 state_machine.handle_negate_stmt ();
19990 break;
19991 case DW_LNS_set_basic_block:
19992 break;
19993 /* Add to the address register of the state machine the
19994 address increment value corresponding to special opcode
19995 255. I.e., this value is scaled by the minimum
19996 instruction length since special opcode 255 would have
19997 scaled the increment. */
19998 case DW_LNS_const_add_pc:
19999 state_machine.handle_const_add_pc ();
20000 break;
20001 case DW_LNS_fixed_advance_pc:
20002 {
20003 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20004 line_ptr += 2;
20005
20006 state_machine.handle_fixed_advance_pc (addr_adj);
20007 }
20008 break;
20009 default:
20010 {
20011 /* Unknown standard opcode, ignore it. */
20012 int i;
20013
20014 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20015 {
20016 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20017 line_ptr += bytes_read;
20018 }
20019 }
20020 }
20021 }
20022
20023 if (!end_sequence)
20024 dwarf2_debug_line_missing_end_sequence_complaint ();
20025
20026 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20027 in which case we still finish recording the last line). */
20028 state_machine.record_line (true);
20029 }
20030 }
20031
20032 /* Decode the Line Number Program (LNP) for the given line_header
20033 structure and CU. The actual information extracted and the type
20034 of structures created from the LNP depends on the value of PST.
20035
20036 1. If PST is NULL, then this procedure uses the data from the program
20037 to create all necessary symbol tables, and their linetables.
20038
20039 2. If PST is not NULL, this procedure reads the program to determine
20040 the list of files included by the unit represented by PST, and
20041 builds all the associated partial symbol tables.
20042
20043 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20044 It is used for relative paths in the line table.
20045 NOTE: When processing partial symtabs (pst != NULL),
20046 comp_dir == pst->dirname.
20047
20048 NOTE: It is important that psymtabs have the same file name (via strcmp)
20049 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20050 symtab we don't use it in the name of the psymtabs we create.
20051 E.g. expand_line_sal requires this when finding psymtabs to expand.
20052 A good testcase for this is mb-inline.exp.
20053
20054 LOWPC is the lowest address in CU (or 0 if not known).
20055
20056 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20057 for its PC<->lines mapping information. Otherwise only the filename
20058 table is read in. */
20059
20060 static void
20061 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20062 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20063 CORE_ADDR lowpc, int decode_mapping)
20064 {
20065 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20066 const int decode_for_pst_p = (pst != NULL);
20067
20068 if (decode_mapping)
20069 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20070
20071 if (decode_for_pst_p)
20072 {
20073 /* Now that we're done scanning the Line Header Program, we can
20074 create the psymtab of each included file. */
20075 for (auto &file_entry : lh->file_names ())
20076 if (file_entry.included_p == 1)
20077 {
20078 gdb::unique_xmalloc_ptr<char> name_holder;
20079 const char *include_name =
20080 psymtab_include_file_name (lh, file_entry, pst,
20081 comp_dir, &name_holder);
20082 if (include_name != NULL)
20083 dwarf2_create_include_psymtab (include_name, pst, objfile);
20084 }
20085 }
20086 else
20087 {
20088 /* Make sure a symtab is created for every file, even files
20089 which contain only variables (i.e. no code with associated
20090 line numbers). */
20091 buildsym_compunit *builder = cu->get_builder ();
20092 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20093
20094 for (auto &fe : lh->file_names ())
20095 {
20096 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20097 if (builder->get_current_subfile ()->symtab == NULL)
20098 {
20099 builder->get_current_subfile ()->symtab
20100 = allocate_symtab (cust,
20101 builder->get_current_subfile ()->name);
20102 }
20103 fe.symtab = builder->get_current_subfile ()->symtab;
20104 }
20105 }
20106 }
20107
20108 /* Start a subfile for DWARF. FILENAME is the name of the file and
20109 DIRNAME the name of the source directory which contains FILENAME
20110 or NULL if not known.
20111 This routine tries to keep line numbers from identical absolute and
20112 relative file names in a common subfile.
20113
20114 Using the `list' example from the GDB testsuite, which resides in
20115 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20116 of /srcdir/list0.c yields the following debugging information for list0.c:
20117
20118 DW_AT_name: /srcdir/list0.c
20119 DW_AT_comp_dir: /compdir
20120 files.files[0].name: list0.h
20121 files.files[0].dir: /srcdir
20122 files.files[1].name: list0.c
20123 files.files[1].dir: /srcdir
20124
20125 The line number information for list0.c has to end up in a single
20126 subfile, so that `break /srcdir/list0.c:1' works as expected.
20127 start_subfile will ensure that this happens provided that we pass the
20128 concatenation of files.files[1].dir and files.files[1].name as the
20129 subfile's name. */
20130
20131 static void
20132 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20133 const char *dirname)
20134 {
20135 gdb::unique_xmalloc_ptr<char> copy;
20136
20137 /* In order not to lose the line information directory,
20138 we concatenate it to the filename when it makes sense.
20139 Note that the Dwarf3 standard says (speaking of filenames in line
20140 information): ``The directory index is ignored for file names
20141 that represent full path names''. Thus ignoring dirname in the
20142 `else' branch below isn't an issue. */
20143
20144 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20145 {
20146 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20147 filename = copy.get ();
20148 }
20149
20150 cu->get_builder ()->start_subfile (filename);
20151 }
20152
20153 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20154 buildsym_compunit constructor. */
20155
20156 struct compunit_symtab *
20157 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20158 CORE_ADDR low_pc)
20159 {
20160 gdb_assert (m_builder == nullptr);
20161
20162 m_builder.reset (new struct buildsym_compunit
20163 (per_cu->dwarf2_per_objfile->objfile,
20164 name, comp_dir, language, low_pc));
20165
20166 list_in_scope = get_builder ()->get_file_symbols ();
20167
20168 get_builder ()->record_debugformat ("DWARF 2");
20169 get_builder ()->record_producer (producer);
20170
20171 processing_has_namespace_info = false;
20172
20173 return get_builder ()->get_compunit_symtab ();
20174 }
20175
20176 static void
20177 var_decode_location (struct attribute *attr, struct symbol *sym,
20178 struct dwarf2_cu *cu)
20179 {
20180 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20181 struct comp_unit_head *cu_header = &cu->header;
20182
20183 /* NOTE drow/2003-01-30: There used to be a comment and some special
20184 code here to turn a symbol with DW_AT_external and a
20185 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20186 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20187 with some versions of binutils) where shared libraries could have
20188 relocations against symbols in their debug information - the
20189 minimal symbol would have the right address, but the debug info
20190 would not. It's no longer necessary, because we will explicitly
20191 apply relocations when we read in the debug information now. */
20192
20193 /* A DW_AT_location attribute with no contents indicates that a
20194 variable has been optimized away. */
20195 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20196 {
20197 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20198 return;
20199 }
20200
20201 /* Handle one degenerate form of location expression specially, to
20202 preserve GDB's previous behavior when section offsets are
20203 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20204 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20205
20206 if (attr->form_is_block ()
20207 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20208 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20209 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20210 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20211 && (DW_BLOCK (attr)->size
20212 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20213 {
20214 unsigned int dummy;
20215
20216 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20217 SET_SYMBOL_VALUE_ADDRESS
20218 (sym, cu->header.read_address (objfile->obfd,
20219 DW_BLOCK (attr)->data + 1,
20220 &dummy));
20221 else
20222 SET_SYMBOL_VALUE_ADDRESS
20223 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20224 &dummy));
20225 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20226 fixup_symbol_section (sym, objfile);
20227 SET_SYMBOL_VALUE_ADDRESS
20228 (sym,
20229 SYMBOL_VALUE_ADDRESS (sym)
20230 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20231 return;
20232 }
20233
20234 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20235 expression evaluator, and use LOC_COMPUTED only when necessary
20236 (i.e. when the value of a register or memory location is
20237 referenced, or a thread-local block, etc.). Then again, it might
20238 not be worthwhile. I'm assuming that it isn't unless performance
20239 or memory numbers show me otherwise. */
20240
20241 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20242
20243 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20244 cu->has_loclist = true;
20245 }
20246
20247 /* Given a pointer to a DWARF information entry, figure out if we need
20248 to make a symbol table entry for it, and if so, create a new entry
20249 and return a pointer to it.
20250 If TYPE is NULL, determine symbol type from the die, otherwise
20251 used the passed type.
20252 If SPACE is not NULL, use it to hold the new symbol. If it is
20253 NULL, allocate a new symbol on the objfile's obstack. */
20254
20255 static struct symbol *
20256 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20257 struct symbol *space)
20258 {
20259 struct dwarf2_per_objfile *dwarf2_per_objfile
20260 = cu->per_cu->dwarf2_per_objfile;
20261 struct objfile *objfile = dwarf2_per_objfile->objfile;
20262 struct gdbarch *gdbarch = objfile->arch ();
20263 struct symbol *sym = NULL;
20264 const char *name;
20265 struct attribute *attr = NULL;
20266 struct attribute *attr2 = NULL;
20267 CORE_ADDR baseaddr;
20268 struct pending **list_to_add = NULL;
20269
20270 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20271
20272 baseaddr = objfile->text_section_offset ();
20273
20274 name = dwarf2_name (die, cu);
20275 if (name)
20276 {
20277 const char *linkagename;
20278 int suppress_add = 0;
20279
20280 if (space)
20281 sym = space;
20282 else
20283 sym = allocate_symbol (objfile);
20284 OBJSTAT (objfile, n_syms++);
20285
20286 /* Cache this symbol's name and the name's demangled form (if any). */
20287 sym->set_language (cu->language, &objfile->objfile_obstack);
20288 linkagename = dwarf2_physname (name, die, cu);
20289 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20290
20291 /* Fortran does not have mangling standard and the mangling does differ
20292 between gfortran, iFort etc. */
20293 if (cu->language == language_fortran
20294 && symbol_get_demangled_name (sym) == NULL)
20295 symbol_set_demangled_name (sym,
20296 dwarf2_full_name (name, die, cu),
20297 NULL);
20298
20299 /* Default assumptions.
20300 Use the passed type or decode it from the die. */
20301 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20302 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20303 if (type != NULL)
20304 SYMBOL_TYPE (sym) = type;
20305 else
20306 SYMBOL_TYPE (sym) = die_type (die, cu);
20307 attr = dwarf2_attr (die,
20308 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20309 cu);
20310 if (attr != nullptr)
20311 {
20312 SYMBOL_LINE (sym) = DW_UNSND (attr);
20313 }
20314
20315 attr = dwarf2_attr (die,
20316 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20317 cu);
20318 if (attr != nullptr)
20319 {
20320 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20321 struct file_entry *fe;
20322
20323 if (cu->line_header != NULL)
20324 fe = cu->line_header->file_name_at (file_index);
20325 else
20326 fe = NULL;
20327
20328 if (fe == NULL)
20329 complaint (_("file index out of range"));
20330 else
20331 symbol_set_symtab (sym, fe->symtab);
20332 }
20333
20334 switch (die->tag)
20335 {
20336 case DW_TAG_label:
20337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20338 if (attr != nullptr)
20339 {
20340 CORE_ADDR addr;
20341
20342 addr = attr->value_as_address ();
20343 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20344 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20345 }
20346 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20347 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20348 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20349 add_symbol_to_list (sym, cu->list_in_scope);
20350 break;
20351 case DW_TAG_subprogram:
20352 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20353 finish_block. */
20354 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20355 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20356 if ((attr2 && (DW_UNSND (attr2) != 0))
20357 || cu->language == language_ada
20358 || cu->language == language_fortran)
20359 {
20360 /* Subprograms marked external are stored as a global symbol.
20361 Ada and Fortran subprograms, whether marked external or
20362 not, are always stored as a global symbol, because we want
20363 to be able to access them globally. For instance, we want
20364 to be able to break on a nested subprogram without having
20365 to specify the context. */
20366 list_to_add = cu->get_builder ()->get_global_symbols ();
20367 }
20368 else
20369 {
20370 list_to_add = cu->list_in_scope;
20371 }
20372 break;
20373 case DW_TAG_inlined_subroutine:
20374 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20375 finish_block. */
20376 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20377 SYMBOL_INLINED (sym) = 1;
20378 list_to_add = cu->list_in_scope;
20379 break;
20380 case DW_TAG_template_value_param:
20381 suppress_add = 1;
20382 /* Fall through. */
20383 case DW_TAG_constant:
20384 case DW_TAG_variable:
20385 case DW_TAG_member:
20386 /* Compilation with minimal debug info may result in
20387 variables with missing type entries. Change the
20388 misleading `void' type to something sensible. */
20389 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20390 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20391
20392 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20393 /* In the case of DW_TAG_member, we should only be called for
20394 static const members. */
20395 if (die->tag == DW_TAG_member)
20396 {
20397 /* dwarf2_add_field uses die_is_declaration,
20398 so we do the same. */
20399 gdb_assert (die_is_declaration (die, cu));
20400 gdb_assert (attr);
20401 }
20402 if (attr != nullptr)
20403 {
20404 dwarf2_const_value (attr, sym, cu);
20405 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20406 if (!suppress_add)
20407 {
20408 if (attr2 && (DW_UNSND (attr2) != 0))
20409 list_to_add = cu->get_builder ()->get_global_symbols ();
20410 else
20411 list_to_add = cu->list_in_scope;
20412 }
20413 break;
20414 }
20415 attr = dwarf2_attr (die, DW_AT_location, cu);
20416 if (attr != nullptr)
20417 {
20418 var_decode_location (attr, sym, cu);
20419 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20420
20421 /* Fortran explicitly imports any global symbols to the local
20422 scope by DW_TAG_common_block. */
20423 if (cu->language == language_fortran && die->parent
20424 && die->parent->tag == DW_TAG_common_block)
20425 attr2 = NULL;
20426
20427 if (SYMBOL_CLASS (sym) == LOC_STATIC
20428 && SYMBOL_VALUE_ADDRESS (sym) == 0
20429 && !dwarf2_per_objfile->has_section_at_zero)
20430 {
20431 /* When a static variable is eliminated by the linker,
20432 the corresponding debug information is not stripped
20433 out, but the variable address is set to null;
20434 do not add such variables into symbol table. */
20435 }
20436 else if (attr2 && (DW_UNSND (attr2) != 0))
20437 {
20438 if (SYMBOL_CLASS (sym) == LOC_STATIC
20439 && (objfile->flags & OBJF_MAINLINE) == 0
20440 && dwarf2_per_objfile->can_copy)
20441 {
20442 /* A global static variable might be subject to
20443 copy relocation. We first check for a local
20444 minsym, though, because maybe the symbol was
20445 marked hidden, in which case this would not
20446 apply. */
20447 bound_minimal_symbol found
20448 = (lookup_minimal_symbol_linkage
20449 (sym->linkage_name (), objfile));
20450 if (found.minsym != nullptr)
20451 sym->maybe_copied = 1;
20452 }
20453
20454 /* A variable with DW_AT_external is never static,
20455 but it may be block-scoped. */
20456 list_to_add
20457 = ((cu->list_in_scope
20458 == cu->get_builder ()->get_file_symbols ())
20459 ? cu->get_builder ()->get_global_symbols ()
20460 : cu->list_in_scope);
20461 }
20462 else
20463 list_to_add = cu->list_in_scope;
20464 }
20465 else
20466 {
20467 /* We do not know the address of this symbol.
20468 If it is an external symbol and we have type information
20469 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20470 The address of the variable will then be determined from
20471 the minimal symbol table whenever the variable is
20472 referenced. */
20473 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20474
20475 /* Fortran explicitly imports any global symbols to the local
20476 scope by DW_TAG_common_block. */
20477 if (cu->language == language_fortran && die->parent
20478 && die->parent->tag == DW_TAG_common_block)
20479 {
20480 /* SYMBOL_CLASS doesn't matter here because
20481 read_common_block is going to reset it. */
20482 if (!suppress_add)
20483 list_to_add = cu->list_in_scope;
20484 }
20485 else if (attr2 && (DW_UNSND (attr2) != 0)
20486 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20487 {
20488 /* A variable with DW_AT_external is never static, but it
20489 may be block-scoped. */
20490 list_to_add
20491 = ((cu->list_in_scope
20492 == cu->get_builder ()->get_file_symbols ())
20493 ? cu->get_builder ()->get_global_symbols ()
20494 : cu->list_in_scope);
20495
20496 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20497 }
20498 else if (!die_is_declaration (die, cu))
20499 {
20500 /* Use the default LOC_OPTIMIZED_OUT class. */
20501 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20502 if (!suppress_add)
20503 list_to_add = cu->list_in_scope;
20504 }
20505 }
20506 break;
20507 case DW_TAG_formal_parameter:
20508 {
20509 /* If we are inside a function, mark this as an argument. If
20510 not, we might be looking at an argument to an inlined function
20511 when we do not have enough information to show inlined frames;
20512 pretend it's a local variable in that case so that the user can
20513 still see it. */
20514 struct context_stack *curr
20515 = cu->get_builder ()->get_current_context_stack ();
20516 if (curr != nullptr && curr->name != nullptr)
20517 SYMBOL_IS_ARGUMENT (sym) = 1;
20518 attr = dwarf2_attr (die, DW_AT_location, cu);
20519 if (attr != nullptr)
20520 {
20521 var_decode_location (attr, sym, cu);
20522 }
20523 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20524 if (attr != nullptr)
20525 {
20526 dwarf2_const_value (attr, sym, cu);
20527 }
20528
20529 list_to_add = cu->list_in_scope;
20530 }
20531 break;
20532 case DW_TAG_unspecified_parameters:
20533 /* From varargs functions; gdb doesn't seem to have any
20534 interest in this information, so just ignore it for now.
20535 (FIXME?) */
20536 break;
20537 case DW_TAG_template_type_param:
20538 suppress_add = 1;
20539 /* Fall through. */
20540 case DW_TAG_class_type:
20541 case DW_TAG_interface_type:
20542 case DW_TAG_structure_type:
20543 case DW_TAG_union_type:
20544 case DW_TAG_set_type:
20545 case DW_TAG_enumeration_type:
20546 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20547 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20548
20549 {
20550 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20551 really ever be static objects: otherwise, if you try
20552 to, say, break of a class's method and you're in a file
20553 which doesn't mention that class, it won't work unless
20554 the check for all static symbols in lookup_symbol_aux
20555 saves you. See the OtherFileClass tests in
20556 gdb.c++/namespace.exp. */
20557
20558 if (!suppress_add)
20559 {
20560 buildsym_compunit *builder = cu->get_builder ();
20561 list_to_add
20562 = (cu->list_in_scope == builder->get_file_symbols ()
20563 && cu->language == language_cplus
20564 ? builder->get_global_symbols ()
20565 : cu->list_in_scope);
20566
20567 /* The semantics of C++ state that "struct foo {
20568 ... }" also defines a typedef for "foo". */
20569 if (cu->language == language_cplus
20570 || cu->language == language_ada
20571 || cu->language == language_d
20572 || cu->language == language_rust)
20573 {
20574 /* The symbol's name is already allocated along
20575 with this objfile, so we don't need to
20576 duplicate it for the type. */
20577 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20578 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20579 }
20580 }
20581 }
20582 break;
20583 case DW_TAG_typedef:
20584 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20585 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20586 list_to_add = cu->list_in_scope;
20587 break;
20588 case DW_TAG_base_type:
20589 case DW_TAG_subrange_type:
20590 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20591 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20592 list_to_add = cu->list_in_scope;
20593 break;
20594 case DW_TAG_enumerator:
20595 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20596 if (attr != nullptr)
20597 {
20598 dwarf2_const_value (attr, sym, cu);
20599 }
20600 {
20601 /* NOTE: carlton/2003-11-10: See comment above in the
20602 DW_TAG_class_type, etc. block. */
20603
20604 list_to_add
20605 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20606 && cu->language == language_cplus
20607 ? cu->get_builder ()->get_global_symbols ()
20608 : cu->list_in_scope);
20609 }
20610 break;
20611 case DW_TAG_imported_declaration:
20612 case DW_TAG_namespace:
20613 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20614 list_to_add = cu->get_builder ()->get_global_symbols ();
20615 break;
20616 case DW_TAG_module:
20617 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20618 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20619 list_to_add = cu->get_builder ()->get_global_symbols ();
20620 break;
20621 case DW_TAG_common_block:
20622 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20623 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20624 add_symbol_to_list (sym, cu->list_in_scope);
20625 break;
20626 default:
20627 /* Not a tag we recognize. Hopefully we aren't processing
20628 trash data, but since we must specifically ignore things
20629 we don't recognize, there is nothing else we should do at
20630 this point. */
20631 complaint (_("unsupported tag: '%s'"),
20632 dwarf_tag_name (die->tag));
20633 break;
20634 }
20635
20636 if (suppress_add)
20637 {
20638 sym->hash_next = objfile->template_symbols;
20639 objfile->template_symbols = sym;
20640 list_to_add = NULL;
20641 }
20642
20643 if (list_to_add != NULL)
20644 add_symbol_to_list (sym, list_to_add);
20645
20646 /* For the benefit of old versions of GCC, check for anonymous
20647 namespaces based on the demangled name. */
20648 if (!cu->processing_has_namespace_info
20649 && cu->language == language_cplus)
20650 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20651 }
20652 return (sym);
20653 }
20654
20655 /* Given an attr with a DW_FORM_dataN value in host byte order,
20656 zero-extend it as appropriate for the symbol's type. The DWARF
20657 standard (v4) is not entirely clear about the meaning of using
20658 DW_FORM_dataN for a constant with a signed type, where the type is
20659 wider than the data. The conclusion of a discussion on the DWARF
20660 list was that this is unspecified. We choose to always zero-extend
20661 because that is the interpretation long in use by GCC. */
20662
20663 static gdb_byte *
20664 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20665 struct dwarf2_cu *cu, LONGEST *value, int bits)
20666 {
20667 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20668 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20669 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20670 LONGEST l = DW_UNSND (attr);
20671
20672 if (bits < sizeof (*value) * 8)
20673 {
20674 l &= ((LONGEST) 1 << bits) - 1;
20675 *value = l;
20676 }
20677 else if (bits == sizeof (*value) * 8)
20678 *value = l;
20679 else
20680 {
20681 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20682 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20683 return bytes;
20684 }
20685
20686 return NULL;
20687 }
20688
20689 /* Read a constant value from an attribute. Either set *VALUE, or if
20690 the value does not fit in *VALUE, set *BYTES - either already
20691 allocated on the objfile obstack, or newly allocated on OBSTACK,
20692 or, set *BATON, if we translated the constant to a location
20693 expression. */
20694
20695 static void
20696 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20697 const char *name, struct obstack *obstack,
20698 struct dwarf2_cu *cu,
20699 LONGEST *value, const gdb_byte **bytes,
20700 struct dwarf2_locexpr_baton **baton)
20701 {
20702 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20703 struct comp_unit_head *cu_header = &cu->header;
20704 struct dwarf_block *blk;
20705 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20706 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20707
20708 *value = 0;
20709 *bytes = NULL;
20710 *baton = NULL;
20711
20712 switch (attr->form)
20713 {
20714 case DW_FORM_addr:
20715 case DW_FORM_addrx:
20716 case DW_FORM_GNU_addr_index:
20717 {
20718 gdb_byte *data;
20719
20720 if (TYPE_LENGTH (type) != cu_header->addr_size)
20721 dwarf2_const_value_length_mismatch_complaint (name,
20722 cu_header->addr_size,
20723 TYPE_LENGTH (type));
20724 /* Symbols of this form are reasonably rare, so we just
20725 piggyback on the existing location code rather than writing
20726 a new implementation of symbol_computed_ops. */
20727 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20728 (*baton)->per_cu = cu->per_cu;
20729 gdb_assert ((*baton)->per_cu);
20730
20731 (*baton)->size = 2 + cu_header->addr_size;
20732 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20733 (*baton)->data = data;
20734
20735 data[0] = DW_OP_addr;
20736 store_unsigned_integer (&data[1], cu_header->addr_size,
20737 byte_order, DW_ADDR (attr));
20738 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20739 }
20740 break;
20741 case DW_FORM_string:
20742 case DW_FORM_strp:
20743 case DW_FORM_strx:
20744 case DW_FORM_GNU_str_index:
20745 case DW_FORM_GNU_strp_alt:
20746 /* DW_STRING is already allocated on the objfile obstack, point
20747 directly to it. */
20748 *bytes = (const gdb_byte *) DW_STRING (attr);
20749 break;
20750 case DW_FORM_block1:
20751 case DW_FORM_block2:
20752 case DW_FORM_block4:
20753 case DW_FORM_block:
20754 case DW_FORM_exprloc:
20755 case DW_FORM_data16:
20756 blk = DW_BLOCK (attr);
20757 if (TYPE_LENGTH (type) != blk->size)
20758 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20759 TYPE_LENGTH (type));
20760 *bytes = blk->data;
20761 break;
20762
20763 /* The DW_AT_const_value attributes are supposed to carry the
20764 symbol's value "represented as it would be on the target
20765 architecture." By the time we get here, it's already been
20766 converted to host endianness, so we just need to sign- or
20767 zero-extend it as appropriate. */
20768 case DW_FORM_data1:
20769 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
20770 break;
20771 case DW_FORM_data2:
20772 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
20773 break;
20774 case DW_FORM_data4:
20775 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
20776 break;
20777 case DW_FORM_data8:
20778 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
20779 break;
20780
20781 case DW_FORM_sdata:
20782 case DW_FORM_implicit_const:
20783 *value = DW_SND (attr);
20784 break;
20785
20786 case DW_FORM_udata:
20787 *value = DW_UNSND (attr);
20788 break;
20789
20790 default:
20791 complaint (_("unsupported const value attribute form: '%s'"),
20792 dwarf_form_name (attr->form));
20793 *value = 0;
20794 break;
20795 }
20796 }
20797
20798
20799 /* Copy constant value from an attribute to a symbol. */
20800
20801 static void
20802 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
20803 struct dwarf2_cu *cu)
20804 {
20805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20806 LONGEST value;
20807 const gdb_byte *bytes;
20808 struct dwarf2_locexpr_baton *baton;
20809
20810 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
20811 sym->print_name (),
20812 &objfile->objfile_obstack, cu,
20813 &value, &bytes, &baton);
20814
20815 if (baton != NULL)
20816 {
20817 SYMBOL_LOCATION_BATON (sym) = baton;
20818 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
20819 }
20820 else if (bytes != NULL)
20821 {
20822 SYMBOL_VALUE_BYTES (sym) = bytes;
20823 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
20824 }
20825 else
20826 {
20827 SYMBOL_VALUE (sym) = value;
20828 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
20829 }
20830 }
20831
20832 /* Return the type of the die in question using its DW_AT_type attribute. */
20833
20834 static struct type *
20835 die_type (struct die_info *die, struct dwarf2_cu *cu)
20836 {
20837 struct attribute *type_attr;
20838
20839 type_attr = dwarf2_attr (die, DW_AT_type, cu);
20840 if (!type_attr)
20841 {
20842 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20843 /* A missing DW_AT_type represents a void type. */
20844 return objfile_type (objfile)->builtin_void;
20845 }
20846
20847 return lookup_die_type (die, type_attr, cu);
20848 }
20849
20850 /* True iff CU's producer generates GNAT Ada auxiliary information
20851 that allows to find parallel types through that information instead
20852 of having to do expensive parallel lookups by type name. */
20853
20854 static int
20855 need_gnat_info (struct dwarf2_cu *cu)
20856 {
20857 /* Assume that the Ada compiler was GNAT, which always produces
20858 the auxiliary information. */
20859 return (cu->language == language_ada);
20860 }
20861
20862 /* Return the auxiliary type of the die in question using its
20863 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
20864 attribute is not present. */
20865
20866 static struct type *
20867 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
20868 {
20869 struct attribute *type_attr;
20870
20871 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
20872 if (!type_attr)
20873 return NULL;
20874
20875 return lookup_die_type (die, type_attr, cu);
20876 }
20877
20878 /* If DIE has a descriptive_type attribute, then set the TYPE's
20879 descriptive type accordingly. */
20880
20881 static void
20882 set_descriptive_type (struct type *type, struct die_info *die,
20883 struct dwarf2_cu *cu)
20884 {
20885 struct type *descriptive_type = die_descriptive_type (die, cu);
20886
20887 if (descriptive_type)
20888 {
20889 ALLOCATE_GNAT_AUX_TYPE (type);
20890 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
20891 }
20892 }
20893
20894 /* Return the containing type of the die in question using its
20895 DW_AT_containing_type attribute. */
20896
20897 static struct type *
20898 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
20899 {
20900 struct attribute *type_attr;
20901 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20902
20903 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
20904 if (!type_attr)
20905 error (_("Dwarf Error: Problem turning containing type into gdb type "
20906 "[in module %s]"), objfile_name (objfile));
20907
20908 return lookup_die_type (die, type_attr, cu);
20909 }
20910
20911 /* Return an error marker type to use for the ill formed type in DIE/CU. */
20912
20913 static struct type *
20914 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
20915 {
20916 struct dwarf2_per_objfile *dwarf2_per_objfile
20917 = cu->per_cu->dwarf2_per_objfile;
20918 struct objfile *objfile = dwarf2_per_objfile->objfile;
20919 char *saved;
20920
20921 std::string message
20922 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
20923 objfile_name (objfile),
20924 sect_offset_str (cu->header.sect_off),
20925 sect_offset_str (die->sect_off));
20926 saved = obstack_strdup (&objfile->objfile_obstack, message);
20927
20928 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
20929 }
20930
20931 /* Look up the type of DIE in CU using its type attribute ATTR.
20932 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
20933 DW_AT_containing_type.
20934 If there is no type substitute an error marker. */
20935
20936 static struct type *
20937 lookup_die_type (struct die_info *die, const struct attribute *attr,
20938 struct dwarf2_cu *cu)
20939 {
20940 struct dwarf2_per_objfile *dwarf2_per_objfile
20941 = cu->per_cu->dwarf2_per_objfile;
20942 struct objfile *objfile = dwarf2_per_objfile->objfile;
20943 struct type *this_type;
20944
20945 gdb_assert (attr->name == DW_AT_type
20946 || attr->name == DW_AT_GNAT_descriptive_type
20947 || attr->name == DW_AT_containing_type);
20948
20949 /* First see if we have it cached. */
20950
20951 if (attr->form == DW_FORM_GNU_ref_alt)
20952 {
20953 struct dwarf2_per_cu_data *per_cu;
20954 sect_offset sect_off = attr->get_ref_die_offset ();
20955
20956 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
20957 dwarf2_per_objfile);
20958 this_type = get_die_type_at_offset (sect_off, per_cu);
20959 }
20960 else if (attr->form_is_ref ())
20961 {
20962 sect_offset sect_off = attr->get_ref_die_offset ();
20963
20964 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20965 }
20966 else if (attr->form == DW_FORM_ref_sig8)
20967 {
20968 ULONGEST signature = DW_SIGNATURE (attr);
20969
20970 return get_signatured_type (die, signature, cu);
20971 }
20972 else
20973 {
20974 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
20975 " at %s [in module %s]"),
20976 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
20977 objfile_name (objfile));
20978 return build_error_marker_type (cu, die);
20979 }
20980
20981 /* If not cached we need to read it in. */
20982
20983 if (this_type == NULL)
20984 {
20985 struct die_info *type_die = NULL;
20986 struct dwarf2_cu *type_cu = cu;
20987
20988 if (attr->form_is_ref ())
20989 type_die = follow_die_ref (die, attr, &type_cu);
20990 if (type_die == NULL)
20991 return build_error_marker_type (cu, die);
20992 /* If we find the type now, it's probably because the type came
20993 from an inter-CU reference and the type's CU got expanded before
20994 ours. */
20995 this_type = read_type_die (type_die, type_cu);
20996 }
20997
20998 /* If we still don't have a type use an error marker. */
20999
21000 if (this_type == NULL)
21001 return build_error_marker_type (cu, die);
21002
21003 return this_type;
21004 }
21005
21006 /* Return the type in DIE, CU.
21007 Returns NULL for invalid types.
21008
21009 This first does a lookup in die_type_hash,
21010 and only reads the die in if necessary.
21011
21012 NOTE: This can be called when reading in partial or full symbols. */
21013
21014 static struct type *
21015 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21016 {
21017 struct type *this_type;
21018
21019 this_type = get_die_type (die, cu);
21020 if (this_type)
21021 return this_type;
21022
21023 return read_type_die_1 (die, cu);
21024 }
21025
21026 /* Read the type in DIE, CU.
21027 Returns NULL for invalid types. */
21028
21029 static struct type *
21030 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21031 {
21032 struct type *this_type = NULL;
21033
21034 switch (die->tag)
21035 {
21036 case DW_TAG_class_type:
21037 case DW_TAG_interface_type:
21038 case DW_TAG_structure_type:
21039 case DW_TAG_union_type:
21040 this_type = read_structure_type (die, cu);
21041 break;
21042 case DW_TAG_enumeration_type:
21043 this_type = read_enumeration_type (die, cu);
21044 break;
21045 case DW_TAG_subprogram:
21046 case DW_TAG_subroutine_type:
21047 case DW_TAG_inlined_subroutine:
21048 this_type = read_subroutine_type (die, cu);
21049 break;
21050 case DW_TAG_array_type:
21051 this_type = read_array_type (die, cu);
21052 break;
21053 case DW_TAG_set_type:
21054 this_type = read_set_type (die, cu);
21055 break;
21056 case DW_TAG_pointer_type:
21057 this_type = read_tag_pointer_type (die, cu);
21058 break;
21059 case DW_TAG_ptr_to_member_type:
21060 this_type = read_tag_ptr_to_member_type (die, cu);
21061 break;
21062 case DW_TAG_reference_type:
21063 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21064 break;
21065 case DW_TAG_rvalue_reference_type:
21066 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21067 break;
21068 case DW_TAG_const_type:
21069 this_type = read_tag_const_type (die, cu);
21070 break;
21071 case DW_TAG_volatile_type:
21072 this_type = read_tag_volatile_type (die, cu);
21073 break;
21074 case DW_TAG_restrict_type:
21075 this_type = read_tag_restrict_type (die, cu);
21076 break;
21077 case DW_TAG_string_type:
21078 this_type = read_tag_string_type (die, cu);
21079 break;
21080 case DW_TAG_typedef:
21081 this_type = read_typedef (die, cu);
21082 break;
21083 case DW_TAG_subrange_type:
21084 this_type = read_subrange_type (die, cu);
21085 break;
21086 case DW_TAG_base_type:
21087 this_type = read_base_type (die, cu);
21088 break;
21089 case DW_TAG_unspecified_type:
21090 this_type = read_unspecified_type (die, cu);
21091 break;
21092 case DW_TAG_namespace:
21093 this_type = read_namespace_type (die, cu);
21094 break;
21095 case DW_TAG_module:
21096 this_type = read_module_type (die, cu);
21097 break;
21098 case DW_TAG_atomic_type:
21099 this_type = read_tag_atomic_type (die, cu);
21100 break;
21101 default:
21102 complaint (_("unexpected tag in read_type_die: '%s'"),
21103 dwarf_tag_name (die->tag));
21104 break;
21105 }
21106
21107 return this_type;
21108 }
21109
21110 /* See if we can figure out if the class lives in a namespace. We do
21111 this by looking for a member function; its demangled name will
21112 contain namespace info, if there is any.
21113 Return the computed name or NULL.
21114 Space for the result is allocated on the objfile's obstack.
21115 This is the full-die version of guess_partial_die_structure_name.
21116 In this case we know DIE has no useful parent. */
21117
21118 static const char *
21119 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21120 {
21121 struct die_info *spec_die;
21122 struct dwarf2_cu *spec_cu;
21123 struct die_info *child;
21124 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21125
21126 spec_cu = cu;
21127 spec_die = die_specification (die, &spec_cu);
21128 if (spec_die != NULL)
21129 {
21130 die = spec_die;
21131 cu = spec_cu;
21132 }
21133
21134 for (child = die->child;
21135 child != NULL;
21136 child = child->sibling)
21137 {
21138 if (child->tag == DW_TAG_subprogram)
21139 {
21140 const char *linkage_name = dw2_linkage_name (child, cu);
21141
21142 if (linkage_name != NULL)
21143 {
21144 gdb::unique_xmalloc_ptr<char> actual_name
21145 (language_class_name_from_physname (cu->language_defn,
21146 linkage_name));
21147 const char *name = NULL;
21148
21149 if (actual_name != NULL)
21150 {
21151 const char *die_name = dwarf2_name (die, cu);
21152
21153 if (die_name != NULL
21154 && strcmp (die_name, actual_name.get ()) != 0)
21155 {
21156 /* Strip off the class name from the full name.
21157 We want the prefix. */
21158 int die_name_len = strlen (die_name);
21159 int actual_name_len = strlen (actual_name.get ());
21160 const char *ptr = actual_name.get ();
21161
21162 /* Test for '::' as a sanity check. */
21163 if (actual_name_len > die_name_len + 2
21164 && ptr[actual_name_len - die_name_len - 1] == ':')
21165 name = obstack_strndup (
21166 &objfile->per_bfd->storage_obstack,
21167 ptr, actual_name_len - die_name_len - 2);
21168 }
21169 }
21170 return name;
21171 }
21172 }
21173 }
21174
21175 return NULL;
21176 }
21177
21178 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21179 prefix part in such case. See
21180 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21181
21182 static const char *
21183 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21184 {
21185 struct attribute *attr;
21186 const char *base;
21187
21188 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21189 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21190 return NULL;
21191
21192 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21193 return NULL;
21194
21195 attr = dw2_linkage_name_attr (die, cu);
21196 if (attr == NULL || DW_STRING (attr) == NULL)
21197 return NULL;
21198
21199 /* dwarf2_name had to be already called. */
21200 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21201
21202 /* Strip the base name, keep any leading namespaces/classes. */
21203 base = strrchr (DW_STRING (attr), ':');
21204 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21205 return "";
21206
21207 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21208 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21209 DW_STRING (attr),
21210 &base[-1] - DW_STRING (attr));
21211 }
21212
21213 /* Return the name of the namespace/class that DIE is defined within,
21214 or "" if we can't tell. The caller should not xfree the result.
21215
21216 For example, if we're within the method foo() in the following
21217 code:
21218
21219 namespace N {
21220 class C {
21221 void foo () {
21222 }
21223 };
21224 }
21225
21226 then determine_prefix on foo's die will return "N::C". */
21227
21228 static const char *
21229 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21230 {
21231 struct dwarf2_per_objfile *dwarf2_per_objfile
21232 = cu->per_cu->dwarf2_per_objfile;
21233 struct die_info *parent, *spec_die;
21234 struct dwarf2_cu *spec_cu;
21235 struct type *parent_type;
21236 const char *retval;
21237
21238 if (cu->language != language_cplus
21239 && cu->language != language_fortran && cu->language != language_d
21240 && cu->language != language_rust)
21241 return "";
21242
21243 retval = anonymous_struct_prefix (die, cu);
21244 if (retval)
21245 return retval;
21246
21247 /* We have to be careful in the presence of DW_AT_specification.
21248 For example, with GCC 3.4, given the code
21249
21250 namespace N {
21251 void foo() {
21252 // Definition of N::foo.
21253 }
21254 }
21255
21256 then we'll have a tree of DIEs like this:
21257
21258 1: DW_TAG_compile_unit
21259 2: DW_TAG_namespace // N
21260 3: DW_TAG_subprogram // declaration of N::foo
21261 4: DW_TAG_subprogram // definition of N::foo
21262 DW_AT_specification // refers to die #3
21263
21264 Thus, when processing die #4, we have to pretend that we're in
21265 the context of its DW_AT_specification, namely the contex of die
21266 #3. */
21267 spec_cu = cu;
21268 spec_die = die_specification (die, &spec_cu);
21269 if (spec_die == NULL)
21270 parent = die->parent;
21271 else
21272 {
21273 parent = spec_die->parent;
21274 cu = spec_cu;
21275 }
21276
21277 if (parent == NULL)
21278 return "";
21279 else if (parent->building_fullname)
21280 {
21281 const char *name;
21282 const char *parent_name;
21283
21284 /* It has been seen on RealView 2.2 built binaries,
21285 DW_TAG_template_type_param types actually _defined_ as
21286 children of the parent class:
21287
21288 enum E {};
21289 template class <class Enum> Class{};
21290 Class<enum E> class_e;
21291
21292 1: DW_TAG_class_type (Class)
21293 2: DW_TAG_enumeration_type (E)
21294 3: DW_TAG_enumerator (enum1:0)
21295 3: DW_TAG_enumerator (enum2:1)
21296 ...
21297 2: DW_TAG_template_type_param
21298 DW_AT_type DW_FORM_ref_udata (E)
21299
21300 Besides being broken debug info, it can put GDB into an
21301 infinite loop. Consider:
21302
21303 When we're building the full name for Class<E>, we'll start
21304 at Class, and go look over its template type parameters,
21305 finding E. We'll then try to build the full name of E, and
21306 reach here. We're now trying to build the full name of E,
21307 and look over the parent DIE for containing scope. In the
21308 broken case, if we followed the parent DIE of E, we'd again
21309 find Class, and once again go look at its template type
21310 arguments, etc., etc. Simply don't consider such parent die
21311 as source-level parent of this die (it can't be, the language
21312 doesn't allow it), and break the loop here. */
21313 name = dwarf2_name (die, cu);
21314 parent_name = dwarf2_name (parent, cu);
21315 complaint (_("template param type '%s' defined within parent '%s'"),
21316 name ? name : "<unknown>",
21317 parent_name ? parent_name : "<unknown>");
21318 return "";
21319 }
21320 else
21321 switch (parent->tag)
21322 {
21323 case DW_TAG_namespace:
21324 parent_type = read_type_die (parent, cu);
21325 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21326 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21327 Work around this problem here. */
21328 if (cu->language == language_cplus
21329 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21330 return "";
21331 /* We give a name to even anonymous namespaces. */
21332 return TYPE_NAME (parent_type);
21333 case DW_TAG_class_type:
21334 case DW_TAG_interface_type:
21335 case DW_TAG_structure_type:
21336 case DW_TAG_union_type:
21337 case DW_TAG_module:
21338 parent_type = read_type_die (parent, cu);
21339 if (TYPE_NAME (parent_type) != NULL)
21340 return TYPE_NAME (parent_type);
21341 else
21342 /* An anonymous structure is only allowed non-static data
21343 members; no typedefs, no member functions, et cetera.
21344 So it does not need a prefix. */
21345 return "";
21346 case DW_TAG_compile_unit:
21347 case DW_TAG_partial_unit:
21348 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21349 if (cu->language == language_cplus
21350 && !dwarf2_per_objfile->types.empty ()
21351 && die->child != NULL
21352 && (die->tag == DW_TAG_class_type
21353 || die->tag == DW_TAG_structure_type
21354 || die->tag == DW_TAG_union_type))
21355 {
21356 const char *name = guess_full_die_structure_name (die, cu);
21357 if (name != NULL)
21358 return name;
21359 }
21360 return "";
21361 case DW_TAG_subprogram:
21362 /* Nested subroutines in Fortran get a prefix with the name
21363 of the parent's subroutine. */
21364 if (cu->language == language_fortran)
21365 {
21366 if ((die->tag == DW_TAG_subprogram)
21367 && (dwarf2_name (parent, cu) != NULL))
21368 return dwarf2_name (parent, cu);
21369 }
21370 return determine_prefix (parent, cu);
21371 case DW_TAG_enumeration_type:
21372 parent_type = read_type_die (parent, cu);
21373 if (TYPE_DECLARED_CLASS (parent_type))
21374 {
21375 if (TYPE_NAME (parent_type) != NULL)
21376 return TYPE_NAME (parent_type);
21377 return "";
21378 }
21379 /* Fall through. */
21380 default:
21381 return determine_prefix (parent, cu);
21382 }
21383 }
21384
21385 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21386 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21387 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21388 an obconcat, otherwise allocate storage for the result. The CU argument is
21389 used to determine the language and hence, the appropriate separator. */
21390
21391 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21392
21393 static char *
21394 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21395 int physname, struct dwarf2_cu *cu)
21396 {
21397 const char *lead = "";
21398 const char *sep;
21399
21400 if (suffix == NULL || suffix[0] == '\0'
21401 || prefix == NULL || prefix[0] == '\0')
21402 sep = "";
21403 else if (cu->language == language_d)
21404 {
21405 /* For D, the 'main' function could be defined in any module, but it
21406 should never be prefixed. */
21407 if (strcmp (suffix, "D main") == 0)
21408 {
21409 prefix = "";
21410 sep = "";
21411 }
21412 else
21413 sep = ".";
21414 }
21415 else if (cu->language == language_fortran && physname)
21416 {
21417 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21418 DW_AT_MIPS_linkage_name is preferred and used instead. */
21419
21420 lead = "__";
21421 sep = "_MOD_";
21422 }
21423 else
21424 sep = "::";
21425
21426 if (prefix == NULL)
21427 prefix = "";
21428 if (suffix == NULL)
21429 suffix = "";
21430
21431 if (obs == NULL)
21432 {
21433 char *retval
21434 = ((char *)
21435 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21436
21437 strcpy (retval, lead);
21438 strcat (retval, prefix);
21439 strcat (retval, sep);
21440 strcat (retval, suffix);
21441 return retval;
21442 }
21443 else
21444 {
21445 /* We have an obstack. */
21446 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21447 }
21448 }
21449
21450 /* Get name of a die, return NULL if not found. */
21451
21452 static const char *
21453 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21454 struct objfile *objfile)
21455 {
21456 if (name && cu->language == language_cplus)
21457 {
21458 std::string canon_name = cp_canonicalize_string (name);
21459
21460 if (!canon_name.empty ())
21461 {
21462 if (canon_name != name)
21463 name = objfile->intern (canon_name);
21464 }
21465 }
21466
21467 return name;
21468 }
21469
21470 /* Get name of a die, return NULL if not found.
21471 Anonymous namespaces are converted to their magic string. */
21472
21473 static const char *
21474 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21475 {
21476 struct attribute *attr;
21477 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21478
21479 attr = dwarf2_attr (die, DW_AT_name, cu);
21480 if ((!attr || !DW_STRING (attr))
21481 && die->tag != DW_TAG_namespace
21482 && die->tag != DW_TAG_class_type
21483 && die->tag != DW_TAG_interface_type
21484 && die->tag != DW_TAG_structure_type
21485 && die->tag != DW_TAG_union_type)
21486 return NULL;
21487
21488 switch (die->tag)
21489 {
21490 case DW_TAG_compile_unit:
21491 case DW_TAG_partial_unit:
21492 /* Compilation units have a DW_AT_name that is a filename, not
21493 a source language identifier. */
21494 case DW_TAG_enumeration_type:
21495 case DW_TAG_enumerator:
21496 /* These tags always have simple identifiers already; no need
21497 to canonicalize them. */
21498 return DW_STRING (attr);
21499
21500 case DW_TAG_namespace:
21501 if (attr != NULL && DW_STRING (attr) != NULL)
21502 return DW_STRING (attr);
21503 return CP_ANONYMOUS_NAMESPACE_STR;
21504
21505 case DW_TAG_class_type:
21506 case DW_TAG_interface_type:
21507 case DW_TAG_structure_type:
21508 case DW_TAG_union_type:
21509 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21510 structures or unions. These were of the form "._%d" in GCC 4.1,
21511 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21512 and GCC 4.4. We work around this problem by ignoring these. */
21513 if (attr && DW_STRING (attr)
21514 && (startswith (DW_STRING (attr), "._")
21515 || startswith (DW_STRING (attr), "<anonymous")))
21516 return NULL;
21517
21518 /* GCC might emit a nameless typedef that has a linkage name. See
21519 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21520 if (!attr || DW_STRING (attr) == NULL)
21521 {
21522 attr = dw2_linkage_name_attr (die, cu);
21523 if (attr == NULL || DW_STRING (attr) == NULL)
21524 return NULL;
21525
21526 /* Avoid demangling DW_STRING (attr) the second time on a second
21527 call for the same DIE. */
21528 if (!DW_STRING_IS_CANONICAL (attr))
21529 {
21530 gdb::unique_xmalloc_ptr<char> demangled
21531 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21532 if (demangled == nullptr)
21533 return nullptr;
21534
21535 DW_STRING (attr) = objfile->intern (demangled.get ());
21536 DW_STRING_IS_CANONICAL (attr) = 1;
21537 }
21538
21539 /* Strip any leading namespaces/classes, keep only the base name.
21540 DW_AT_name for named DIEs does not contain the prefixes. */
21541 const char *base = strrchr (DW_STRING (attr), ':');
21542 if (base && base > DW_STRING (attr) && base[-1] == ':')
21543 return &base[1];
21544 else
21545 return DW_STRING (attr);
21546 }
21547 break;
21548
21549 default:
21550 break;
21551 }
21552
21553 if (!DW_STRING_IS_CANONICAL (attr))
21554 {
21555 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21556 objfile);
21557 DW_STRING_IS_CANONICAL (attr) = 1;
21558 }
21559 return DW_STRING (attr);
21560 }
21561
21562 /* Return the die that this die in an extension of, or NULL if there
21563 is none. *EXT_CU is the CU containing DIE on input, and the CU
21564 containing the return value on output. */
21565
21566 static struct die_info *
21567 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21568 {
21569 struct attribute *attr;
21570
21571 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21572 if (attr == NULL)
21573 return NULL;
21574
21575 return follow_die_ref (die, attr, ext_cu);
21576 }
21577
21578 static void
21579 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21580 {
21581 unsigned int i;
21582
21583 print_spaces (indent, f);
21584 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21585 dwarf_tag_name (die->tag), die->abbrev,
21586 sect_offset_str (die->sect_off));
21587
21588 if (die->parent != NULL)
21589 {
21590 print_spaces (indent, f);
21591 fprintf_unfiltered (f, " parent at offset: %s\n",
21592 sect_offset_str (die->parent->sect_off));
21593 }
21594
21595 print_spaces (indent, f);
21596 fprintf_unfiltered (f, " has children: %s\n",
21597 dwarf_bool_name (die->child != NULL));
21598
21599 print_spaces (indent, f);
21600 fprintf_unfiltered (f, " attributes:\n");
21601
21602 for (i = 0; i < die->num_attrs; ++i)
21603 {
21604 print_spaces (indent, f);
21605 fprintf_unfiltered (f, " %s (%s) ",
21606 dwarf_attr_name (die->attrs[i].name),
21607 dwarf_form_name (die->attrs[i].form));
21608
21609 switch (die->attrs[i].form)
21610 {
21611 case DW_FORM_addr:
21612 case DW_FORM_addrx:
21613 case DW_FORM_GNU_addr_index:
21614 fprintf_unfiltered (f, "address: ");
21615 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21616 break;
21617 case DW_FORM_block2:
21618 case DW_FORM_block4:
21619 case DW_FORM_block:
21620 case DW_FORM_block1:
21621 fprintf_unfiltered (f, "block: size %s",
21622 pulongest (DW_BLOCK (&die->attrs[i])->size));
21623 break;
21624 case DW_FORM_exprloc:
21625 fprintf_unfiltered (f, "expression: size %s",
21626 pulongest (DW_BLOCK (&die->attrs[i])->size));
21627 break;
21628 case DW_FORM_data16:
21629 fprintf_unfiltered (f, "constant of 16 bytes");
21630 break;
21631 case DW_FORM_ref_addr:
21632 fprintf_unfiltered (f, "ref address: ");
21633 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21634 break;
21635 case DW_FORM_GNU_ref_alt:
21636 fprintf_unfiltered (f, "alt ref address: ");
21637 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21638 break;
21639 case DW_FORM_ref1:
21640 case DW_FORM_ref2:
21641 case DW_FORM_ref4:
21642 case DW_FORM_ref8:
21643 case DW_FORM_ref_udata:
21644 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21645 (long) (DW_UNSND (&die->attrs[i])));
21646 break;
21647 case DW_FORM_data1:
21648 case DW_FORM_data2:
21649 case DW_FORM_data4:
21650 case DW_FORM_data8:
21651 case DW_FORM_udata:
21652 case DW_FORM_sdata:
21653 fprintf_unfiltered (f, "constant: %s",
21654 pulongest (DW_UNSND (&die->attrs[i])));
21655 break;
21656 case DW_FORM_sec_offset:
21657 fprintf_unfiltered (f, "section offset: %s",
21658 pulongest (DW_UNSND (&die->attrs[i])));
21659 break;
21660 case DW_FORM_ref_sig8:
21661 fprintf_unfiltered (f, "signature: %s",
21662 hex_string (DW_SIGNATURE (&die->attrs[i])));
21663 break;
21664 case DW_FORM_string:
21665 case DW_FORM_strp:
21666 case DW_FORM_line_strp:
21667 case DW_FORM_strx:
21668 case DW_FORM_GNU_str_index:
21669 case DW_FORM_GNU_strp_alt:
21670 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21671 DW_STRING (&die->attrs[i])
21672 ? DW_STRING (&die->attrs[i]) : "",
21673 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21674 break;
21675 case DW_FORM_flag:
21676 if (DW_UNSND (&die->attrs[i]))
21677 fprintf_unfiltered (f, "flag: TRUE");
21678 else
21679 fprintf_unfiltered (f, "flag: FALSE");
21680 break;
21681 case DW_FORM_flag_present:
21682 fprintf_unfiltered (f, "flag: TRUE");
21683 break;
21684 case DW_FORM_indirect:
21685 /* The reader will have reduced the indirect form to
21686 the "base form" so this form should not occur. */
21687 fprintf_unfiltered (f,
21688 "unexpected attribute form: DW_FORM_indirect");
21689 break;
21690 case DW_FORM_implicit_const:
21691 fprintf_unfiltered (f, "constant: %s",
21692 plongest (DW_SND (&die->attrs[i])));
21693 break;
21694 default:
21695 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21696 die->attrs[i].form);
21697 break;
21698 }
21699 fprintf_unfiltered (f, "\n");
21700 }
21701 }
21702
21703 static void
21704 dump_die_for_error (struct die_info *die)
21705 {
21706 dump_die_shallow (gdb_stderr, 0, die);
21707 }
21708
21709 static void
21710 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21711 {
21712 int indent = level * 4;
21713
21714 gdb_assert (die != NULL);
21715
21716 if (level >= max_level)
21717 return;
21718
21719 dump_die_shallow (f, indent, die);
21720
21721 if (die->child != NULL)
21722 {
21723 print_spaces (indent, f);
21724 fprintf_unfiltered (f, " Children:");
21725 if (level + 1 < max_level)
21726 {
21727 fprintf_unfiltered (f, "\n");
21728 dump_die_1 (f, level + 1, max_level, die->child);
21729 }
21730 else
21731 {
21732 fprintf_unfiltered (f,
21733 " [not printed, max nesting level reached]\n");
21734 }
21735 }
21736
21737 if (die->sibling != NULL && level > 0)
21738 {
21739 dump_die_1 (f, level, max_level, die->sibling);
21740 }
21741 }
21742
21743 /* This is called from the pdie macro in gdbinit.in.
21744 It's not static so gcc will keep a copy callable from gdb. */
21745
21746 void
21747 dump_die (struct die_info *die, int max_level)
21748 {
21749 dump_die_1 (gdb_stdlog, 0, max_level, die);
21750 }
21751
21752 static void
21753 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
21754 {
21755 void **slot;
21756
21757 slot = htab_find_slot_with_hash (cu->die_hash, die,
21758 to_underlying (die->sect_off),
21759 INSERT);
21760
21761 *slot = die;
21762 }
21763
21764 /* Follow reference or signature attribute ATTR of SRC_DIE.
21765 On entry *REF_CU is the CU of SRC_DIE.
21766 On exit *REF_CU is the CU of the result. */
21767
21768 static struct die_info *
21769 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
21770 struct dwarf2_cu **ref_cu)
21771 {
21772 struct die_info *die;
21773
21774 if (attr->form_is_ref ())
21775 die = follow_die_ref (src_die, attr, ref_cu);
21776 else if (attr->form == DW_FORM_ref_sig8)
21777 die = follow_die_sig (src_die, attr, ref_cu);
21778 else
21779 {
21780 dump_die_for_error (src_die);
21781 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
21782 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
21783 }
21784
21785 return die;
21786 }
21787
21788 /* Follow reference OFFSET.
21789 On entry *REF_CU is the CU of the source die referencing OFFSET.
21790 On exit *REF_CU is the CU of the result.
21791 Returns NULL if OFFSET is invalid. */
21792
21793 static struct die_info *
21794 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
21795 struct dwarf2_cu **ref_cu)
21796 {
21797 struct die_info temp_die;
21798 struct dwarf2_cu *target_cu, *cu = *ref_cu;
21799 struct dwarf2_per_objfile *dwarf2_per_objfile
21800 = cu->per_cu->dwarf2_per_objfile;
21801
21802 gdb_assert (cu->per_cu != NULL);
21803
21804 target_cu = cu;
21805
21806 if (cu->per_cu->is_debug_types)
21807 {
21808 /* .debug_types CUs cannot reference anything outside their CU.
21809 If they need to, they have to reference a signatured type via
21810 DW_FORM_ref_sig8. */
21811 if (!cu->header.offset_in_cu_p (sect_off))
21812 return NULL;
21813 }
21814 else if (offset_in_dwz != cu->per_cu->is_dwz
21815 || !cu->header.offset_in_cu_p (sect_off))
21816 {
21817 struct dwarf2_per_cu_data *per_cu;
21818
21819 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
21820 dwarf2_per_objfile);
21821
21822 /* If necessary, add it to the queue and load its DIEs. */
21823 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
21824 load_full_comp_unit (per_cu, false, cu->language);
21825
21826 target_cu = per_cu->cu;
21827 }
21828 else if (cu->dies == NULL)
21829 {
21830 /* We're loading full DIEs during partial symbol reading. */
21831 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21832 load_full_comp_unit (cu->per_cu, false, language_minimal);
21833 }
21834
21835 *ref_cu = target_cu;
21836 temp_die.sect_off = sect_off;
21837
21838 if (target_cu != cu)
21839 target_cu->ancestor = cu;
21840
21841 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21842 &temp_die,
21843 to_underlying (sect_off));
21844 }
21845
21846 /* Follow reference attribute ATTR of SRC_DIE.
21847 On entry *REF_CU is the CU of SRC_DIE.
21848 On exit *REF_CU is the CU of the result. */
21849
21850 static struct die_info *
21851 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21852 struct dwarf2_cu **ref_cu)
21853 {
21854 sect_offset sect_off = attr->get_ref_die_offset ();
21855 struct dwarf2_cu *cu = *ref_cu;
21856 struct die_info *die;
21857
21858 die = follow_die_offset (sect_off,
21859 (attr->form == DW_FORM_GNU_ref_alt
21860 || cu->per_cu->is_dwz),
21861 ref_cu);
21862 if (!die)
21863 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
21864 "at %s [in module %s]"),
21865 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
21866 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
21867
21868 return die;
21869 }
21870
21871 /* See read.h. */
21872
21873 struct dwarf2_locexpr_baton
21874 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21875 dwarf2_per_cu_data *per_cu,
21876 CORE_ADDR (*get_frame_pc) (void *baton),
21877 void *baton, bool resolve_abstract_p)
21878 {
21879 struct dwarf2_cu *cu;
21880 struct die_info *die;
21881 struct attribute *attr;
21882 struct dwarf2_locexpr_baton retval;
21883 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
21884 struct objfile *objfile = dwarf2_per_objfile->objfile;
21885
21886 if (per_cu->cu == NULL)
21887 load_cu (per_cu, false);
21888 cu = per_cu->cu;
21889 if (cu == NULL)
21890 {
21891 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21892 Instead just throw an error, not much else we can do. */
21893 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
21894 sect_offset_str (sect_off), objfile_name (objfile));
21895 }
21896
21897 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21898 if (!die)
21899 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
21900 sect_offset_str (sect_off), objfile_name (objfile));
21901
21902 attr = dwarf2_attr (die, DW_AT_location, cu);
21903 if (!attr && resolve_abstract_p
21904 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
21905 != dwarf2_per_objfile->abstract_to_concrete.end ()))
21906 {
21907 CORE_ADDR pc = (*get_frame_pc) (baton);
21908 CORE_ADDR baseaddr = objfile->text_section_offset ();
21909 struct gdbarch *gdbarch = objfile->arch ();
21910
21911 for (const auto &cand_off
21912 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
21913 {
21914 struct dwarf2_cu *cand_cu = cu;
21915 struct die_info *cand
21916 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
21917 if (!cand
21918 || !cand->parent
21919 || cand->parent->tag != DW_TAG_subprogram)
21920 continue;
21921
21922 CORE_ADDR pc_low, pc_high;
21923 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
21924 if (pc_low == ((CORE_ADDR) -1))
21925 continue;
21926 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
21927 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
21928 if (!(pc_low <= pc && pc < pc_high))
21929 continue;
21930
21931 die = cand;
21932 attr = dwarf2_attr (die, DW_AT_location, cu);
21933 break;
21934 }
21935 }
21936
21937 if (!attr)
21938 {
21939 /* DWARF: "If there is no such attribute, then there is no effect.".
21940 DATA is ignored if SIZE is 0. */
21941
21942 retval.data = NULL;
21943 retval.size = 0;
21944 }
21945 else if (attr->form_is_section_offset ())
21946 {
21947 struct dwarf2_loclist_baton loclist_baton;
21948 CORE_ADDR pc = (*get_frame_pc) (baton);
21949 size_t size;
21950
21951 fill_in_loclist_baton (cu, &loclist_baton, attr);
21952
21953 retval.data = dwarf2_find_location_expression (&loclist_baton,
21954 &size, pc);
21955 retval.size = size;
21956 }
21957 else
21958 {
21959 if (!attr->form_is_block ())
21960 error (_("Dwarf Error: DIE at %s referenced in module %s "
21961 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21962 sect_offset_str (sect_off), objfile_name (objfile));
21963
21964 retval.data = DW_BLOCK (attr)->data;
21965 retval.size = DW_BLOCK (attr)->size;
21966 }
21967 retval.per_cu = cu->per_cu;
21968
21969 age_cached_comp_units (dwarf2_per_objfile);
21970
21971 return retval;
21972 }
21973
21974 /* See read.h. */
21975
21976 struct dwarf2_locexpr_baton
21977 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21978 dwarf2_per_cu_data *per_cu,
21979 CORE_ADDR (*get_frame_pc) (void *baton),
21980 void *baton)
21981 {
21982 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21983
21984 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21985 }
21986
21987 /* Write a constant of a given type as target-ordered bytes into
21988 OBSTACK. */
21989
21990 static const gdb_byte *
21991 write_constant_as_bytes (struct obstack *obstack,
21992 enum bfd_endian byte_order,
21993 struct type *type,
21994 ULONGEST value,
21995 LONGEST *len)
21996 {
21997 gdb_byte *result;
21998
21999 *len = TYPE_LENGTH (type);
22000 result = (gdb_byte *) obstack_alloc (obstack, *len);
22001 store_unsigned_integer (result, *len, byte_order, value);
22002
22003 return result;
22004 }
22005
22006 /* See read.h. */
22007
22008 const gdb_byte *
22009 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22010 dwarf2_per_cu_data *per_cu,
22011 obstack *obstack,
22012 LONGEST *len)
22013 {
22014 struct dwarf2_cu *cu;
22015 struct die_info *die;
22016 struct attribute *attr;
22017 const gdb_byte *result = NULL;
22018 struct type *type;
22019 LONGEST value;
22020 enum bfd_endian byte_order;
22021 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22022
22023 if (per_cu->cu == NULL)
22024 load_cu (per_cu, false);
22025 cu = per_cu->cu;
22026 if (cu == NULL)
22027 {
22028 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22029 Instead just throw an error, not much else we can do. */
22030 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22031 sect_offset_str (sect_off), objfile_name (objfile));
22032 }
22033
22034 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22035 if (!die)
22036 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22037 sect_offset_str (sect_off), objfile_name (objfile));
22038
22039 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22040 if (attr == NULL)
22041 return NULL;
22042
22043 byte_order = (bfd_big_endian (objfile->obfd)
22044 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22045
22046 switch (attr->form)
22047 {
22048 case DW_FORM_addr:
22049 case DW_FORM_addrx:
22050 case DW_FORM_GNU_addr_index:
22051 {
22052 gdb_byte *tem;
22053
22054 *len = cu->header.addr_size;
22055 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22056 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22057 result = tem;
22058 }
22059 break;
22060 case DW_FORM_string:
22061 case DW_FORM_strp:
22062 case DW_FORM_strx:
22063 case DW_FORM_GNU_str_index:
22064 case DW_FORM_GNU_strp_alt:
22065 /* DW_STRING is already allocated on the objfile obstack, point
22066 directly to it. */
22067 result = (const gdb_byte *) DW_STRING (attr);
22068 *len = strlen (DW_STRING (attr));
22069 break;
22070 case DW_FORM_block1:
22071 case DW_FORM_block2:
22072 case DW_FORM_block4:
22073 case DW_FORM_block:
22074 case DW_FORM_exprloc:
22075 case DW_FORM_data16:
22076 result = DW_BLOCK (attr)->data;
22077 *len = DW_BLOCK (attr)->size;
22078 break;
22079
22080 /* The DW_AT_const_value attributes are supposed to carry the
22081 symbol's value "represented as it would be on the target
22082 architecture." By the time we get here, it's already been
22083 converted to host endianness, so we just need to sign- or
22084 zero-extend it as appropriate. */
22085 case DW_FORM_data1:
22086 type = die_type (die, cu);
22087 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22088 if (result == NULL)
22089 result = write_constant_as_bytes (obstack, byte_order,
22090 type, value, len);
22091 break;
22092 case DW_FORM_data2:
22093 type = die_type (die, cu);
22094 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22095 if (result == NULL)
22096 result = write_constant_as_bytes (obstack, byte_order,
22097 type, value, len);
22098 break;
22099 case DW_FORM_data4:
22100 type = die_type (die, cu);
22101 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22102 if (result == NULL)
22103 result = write_constant_as_bytes (obstack, byte_order,
22104 type, value, len);
22105 break;
22106 case DW_FORM_data8:
22107 type = die_type (die, cu);
22108 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22109 if (result == NULL)
22110 result = write_constant_as_bytes (obstack, byte_order,
22111 type, value, len);
22112 break;
22113
22114 case DW_FORM_sdata:
22115 case DW_FORM_implicit_const:
22116 type = die_type (die, cu);
22117 result = write_constant_as_bytes (obstack, byte_order,
22118 type, DW_SND (attr), len);
22119 break;
22120
22121 case DW_FORM_udata:
22122 type = die_type (die, cu);
22123 result = write_constant_as_bytes (obstack, byte_order,
22124 type, DW_UNSND (attr), len);
22125 break;
22126
22127 default:
22128 complaint (_("unsupported const value attribute form: '%s'"),
22129 dwarf_form_name (attr->form));
22130 break;
22131 }
22132
22133 return result;
22134 }
22135
22136 /* See read.h. */
22137
22138 struct type *
22139 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22140 dwarf2_per_cu_data *per_cu)
22141 {
22142 struct dwarf2_cu *cu;
22143 struct die_info *die;
22144
22145 if (per_cu->cu == NULL)
22146 load_cu (per_cu, false);
22147 cu = per_cu->cu;
22148 if (!cu)
22149 return NULL;
22150
22151 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22152 if (!die)
22153 return NULL;
22154
22155 return die_type (die, cu);
22156 }
22157
22158 /* See read.h. */
22159
22160 struct type *
22161 dwarf2_get_die_type (cu_offset die_offset,
22162 struct dwarf2_per_cu_data *per_cu)
22163 {
22164 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22165 return get_die_type_at_offset (die_offset_sect, per_cu);
22166 }
22167
22168 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22169 On entry *REF_CU is the CU of SRC_DIE.
22170 On exit *REF_CU is the CU of the result.
22171 Returns NULL if the referenced DIE isn't found. */
22172
22173 static struct die_info *
22174 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22175 struct dwarf2_cu **ref_cu)
22176 {
22177 struct die_info temp_die;
22178 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22179 struct die_info *die;
22180
22181 /* While it might be nice to assert sig_type->type == NULL here,
22182 we can get here for DW_AT_imported_declaration where we need
22183 the DIE not the type. */
22184
22185 /* If necessary, add it to the queue and load its DIEs. */
22186
22187 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22188 read_signatured_type (sig_type);
22189
22190 sig_cu = sig_type->per_cu.cu;
22191 gdb_assert (sig_cu != NULL);
22192 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22193 temp_die.sect_off = sig_type->type_offset_in_section;
22194 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22195 to_underlying (temp_die.sect_off));
22196 if (die)
22197 {
22198 struct dwarf2_per_objfile *dwarf2_per_objfile
22199 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22200
22201 /* For .gdb_index version 7 keep track of included TUs.
22202 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22203 if (dwarf2_per_objfile->index_table != NULL
22204 && dwarf2_per_objfile->index_table->version <= 7)
22205 {
22206 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22207 }
22208
22209 *ref_cu = sig_cu;
22210 if (sig_cu != cu)
22211 sig_cu->ancestor = cu;
22212
22213 return die;
22214 }
22215
22216 return NULL;
22217 }
22218
22219 /* Follow signatured type referenced by ATTR in SRC_DIE.
22220 On entry *REF_CU is the CU of SRC_DIE.
22221 On exit *REF_CU is the CU of the result.
22222 The result is the DIE of the type.
22223 If the referenced type cannot be found an error is thrown. */
22224
22225 static struct die_info *
22226 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22227 struct dwarf2_cu **ref_cu)
22228 {
22229 ULONGEST signature = DW_SIGNATURE (attr);
22230 struct signatured_type *sig_type;
22231 struct die_info *die;
22232
22233 gdb_assert (attr->form == DW_FORM_ref_sig8);
22234
22235 sig_type = lookup_signatured_type (*ref_cu, signature);
22236 /* sig_type will be NULL if the signatured type is missing from
22237 the debug info. */
22238 if (sig_type == NULL)
22239 {
22240 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22241 " from DIE at %s [in module %s]"),
22242 hex_string (signature), sect_offset_str (src_die->sect_off),
22243 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22244 }
22245
22246 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22247 if (die == NULL)
22248 {
22249 dump_die_for_error (src_die);
22250 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22251 " from DIE at %s [in module %s]"),
22252 hex_string (signature), sect_offset_str (src_die->sect_off),
22253 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22254 }
22255
22256 return die;
22257 }
22258
22259 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22260 reading in and processing the type unit if necessary. */
22261
22262 static struct type *
22263 get_signatured_type (struct die_info *die, ULONGEST signature,
22264 struct dwarf2_cu *cu)
22265 {
22266 struct dwarf2_per_objfile *dwarf2_per_objfile
22267 = cu->per_cu->dwarf2_per_objfile;
22268 struct signatured_type *sig_type;
22269 struct dwarf2_cu *type_cu;
22270 struct die_info *type_die;
22271 struct type *type;
22272
22273 sig_type = lookup_signatured_type (cu, signature);
22274 /* sig_type will be NULL if the signatured type is missing from
22275 the debug info. */
22276 if (sig_type == NULL)
22277 {
22278 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22279 " from DIE at %s [in module %s]"),
22280 hex_string (signature), sect_offset_str (die->sect_off),
22281 objfile_name (dwarf2_per_objfile->objfile));
22282 return build_error_marker_type (cu, die);
22283 }
22284
22285 /* If we already know the type we're done. */
22286 if (sig_type->type != NULL)
22287 return sig_type->type;
22288
22289 type_cu = cu;
22290 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22291 if (type_die != NULL)
22292 {
22293 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22294 is created. This is important, for example, because for c++ classes
22295 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22296 type = read_type_die (type_die, type_cu);
22297 if (type == NULL)
22298 {
22299 complaint (_("Dwarf Error: Cannot build signatured type %s"
22300 " referenced from DIE at %s [in module %s]"),
22301 hex_string (signature), sect_offset_str (die->sect_off),
22302 objfile_name (dwarf2_per_objfile->objfile));
22303 type = build_error_marker_type (cu, die);
22304 }
22305 }
22306 else
22307 {
22308 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22309 " from DIE at %s [in module %s]"),
22310 hex_string (signature), sect_offset_str (die->sect_off),
22311 objfile_name (dwarf2_per_objfile->objfile));
22312 type = build_error_marker_type (cu, die);
22313 }
22314 sig_type->type = type;
22315
22316 return type;
22317 }
22318
22319 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22320 reading in and processing the type unit if necessary. */
22321
22322 static struct type *
22323 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22324 struct dwarf2_cu *cu) /* ARI: editCase function */
22325 {
22326 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22327 if (attr->form_is_ref ())
22328 {
22329 struct dwarf2_cu *type_cu = cu;
22330 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22331
22332 return read_type_die (type_die, type_cu);
22333 }
22334 else if (attr->form == DW_FORM_ref_sig8)
22335 {
22336 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22337 }
22338 else
22339 {
22340 struct dwarf2_per_objfile *dwarf2_per_objfile
22341 = cu->per_cu->dwarf2_per_objfile;
22342
22343 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22344 " at %s [in module %s]"),
22345 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22346 objfile_name (dwarf2_per_objfile->objfile));
22347 return build_error_marker_type (cu, die);
22348 }
22349 }
22350
22351 /* Load the DIEs associated with type unit PER_CU into memory. */
22352
22353 static void
22354 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22355 {
22356 struct signatured_type *sig_type;
22357
22358 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22359 gdb_assert (! per_cu->type_unit_group_p ());
22360
22361 /* We have the per_cu, but we need the signatured_type.
22362 Fortunately this is an easy translation. */
22363 gdb_assert (per_cu->is_debug_types);
22364 sig_type = (struct signatured_type *) per_cu;
22365
22366 gdb_assert (per_cu->cu == NULL);
22367
22368 read_signatured_type (sig_type);
22369
22370 gdb_assert (per_cu->cu != NULL);
22371 }
22372
22373 /* Read in a signatured type and build its CU and DIEs.
22374 If the type is a stub for the real type in a DWO file,
22375 read in the real type from the DWO file as well. */
22376
22377 static void
22378 read_signatured_type (struct signatured_type *sig_type)
22379 {
22380 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22381
22382 gdb_assert (per_cu->is_debug_types);
22383 gdb_assert (per_cu->cu == NULL);
22384
22385 cutu_reader reader (per_cu, NULL, 0, false);
22386
22387 if (!reader.dummy_p)
22388 {
22389 struct dwarf2_cu *cu = reader.cu;
22390 const gdb_byte *info_ptr = reader.info_ptr;
22391
22392 gdb_assert (cu->die_hash == NULL);
22393 cu->die_hash =
22394 htab_create_alloc_ex (cu->header.length / 12,
22395 die_hash,
22396 die_eq,
22397 NULL,
22398 &cu->comp_unit_obstack,
22399 hashtab_obstack_allocate,
22400 dummy_obstack_deallocate);
22401
22402 if (reader.comp_unit_die->has_children)
22403 reader.comp_unit_die->child
22404 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22405 reader.comp_unit_die);
22406 cu->dies = reader.comp_unit_die;
22407 /* comp_unit_die is not stored in die_hash, no need. */
22408
22409 /* We try not to read any attributes in this function, because
22410 not all CUs needed for references have been loaded yet, and
22411 symbol table processing isn't initialized. But we have to
22412 set the CU language, or we won't be able to build types
22413 correctly. Similarly, if we do not read the producer, we can
22414 not apply producer-specific interpretation. */
22415 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22416
22417 reader.keep ();
22418 }
22419
22420 sig_type->per_cu.tu_read = 1;
22421 }
22422
22423 /* Decode simple location descriptions.
22424 Given a pointer to a dwarf block that defines a location, compute
22425 the location and return the value.
22426
22427 NOTE drow/2003-11-18: This function is called in two situations
22428 now: for the address of static or global variables (partial symbols
22429 only) and for offsets into structures which are expected to be
22430 (more or less) constant. The partial symbol case should go away,
22431 and only the constant case should remain. That will let this
22432 function complain more accurately. A few special modes are allowed
22433 without complaint for global variables (for instance, global
22434 register values and thread-local values).
22435
22436 A location description containing no operations indicates that the
22437 object is optimized out. The return value is 0 for that case.
22438 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22439 callers will only want a very basic result and this can become a
22440 complaint.
22441
22442 Note that stack[0] is unused except as a default error return. */
22443
22444 static CORE_ADDR
22445 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22446 {
22447 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22448 size_t i;
22449 size_t size = blk->size;
22450 const gdb_byte *data = blk->data;
22451 CORE_ADDR stack[64];
22452 int stacki;
22453 unsigned int bytes_read, unsnd;
22454 gdb_byte op;
22455
22456 i = 0;
22457 stacki = 0;
22458 stack[stacki] = 0;
22459 stack[++stacki] = 0;
22460
22461 while (i < size)
22462 {
22463 op = data[i++];
22464 switch (op)
22465 {
22466 case DW_OP_lit0:
22467 case DW_OP_lit1:
22468 case DW_OP_lit2:
22469 case DW_OP_lit3:
22470 case DW_OP_lit4:
22471 case DW_OP_lit5:
22472 case DW_OP_lit6:
22473 case DW_OP_lit7:
22474 case DW_OP_lit8:
22475 case DW_OP_lit9:
22476 case DW_OP_lit10:
22477 case DW_OP_lit11:
22478 case DW_OP_lit12:
22479 case DW_OP_lit13:
22480 case DW_OP_lit14:
22481 case DW_OP_lit15:
22482 case DW_OP_lit16:
22483 case DW_OP_lit17:
22484 case DW_OP_lit18:
22485 case DW_OP_lit19:
22486 case DW_OP_lit20:
22487 case DW_OP_lit21:
22488 case DW_OP_lit22:
22489 case DW_OP_lit23:
22490 case DW_OP_lit24:
22491 case DW_OP_lit25:
22492 case DW_OP_lit26:
22493 case DW_OP_lit27:
22494 case DW_OP_lit28:
22495 case DW_OP_lit29:
22496 case DW_OP_lit30:
22497 case DW_OP_lit31:
22498 stack[++stacki] = op - DW_OP_lit0;
22499 break;
22500
22501 case DW_OP_reg0:
22502 case DW_OP_reg1:
22503 case DW_OP_reg2:
22504 case DW_OP_reg3:
22505 case DW_OP_reg4:
22506 case DW_OP_reg5:
22507 case DW_OP_reg6:
22508 case DW_OP_reg7:
22509 case DW_OP_reg8:
22510 case DW_OP_reg9:
22511 case DW_OP_reg10:
22512 case DW_OP_reg11:
22513 case DW_OP_reg12:
22514 case DW_OP_reg13:
22515 case DW_OP_reg14:
22516 case DW_OP_reg15:
22517 case DW_OP_reg16:
22518 case DW_OP_reg17:
22519 case DW_OP_reg18:
22520 case DW_OP_reg19:
22521 case DW_OP_reg20:
22522 case DW_OP_reg21:
22523 case DW_OP_reg22:
22524 case DW_OP_reg23:
22525 case DW_OP_reg24:
22526 case DW_OP_reg25:
22527 case DW_OP_reg26:
22528 case DW_OP_reg27:
22529 case DW_OP_reg28:
22530 case DW_OP_reg29:
22531 case DW_OP_reg30:
22532 case DW_OP_reg31:
22533 stack[++stacki] = op - DW_OP_reg0;
22534 if (i < size)
22535 dwarf2_complex_location_expr_complaint ();
22536 break;
22537
22538 case DW_OP_regx:
22539 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22540 i += bytes_read;
22541 stack[++stacki] = unsnd;
22542 if (i < size)
22543 dwarf2_complex_location_expr_complaint ();
22544 break;
22545
22546 case DW_OP_addr:
22547 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22548 &bytes_read);
22549 i += bytes_read;
22550 break;
22551
22552 case DW_OP_const1u:
22553 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22554 i += 1;
22555 break;
22556
22557 case DW_OP_const1s:
22558 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22559 i += 1;
22560 break;
22561
22562 case DW_OP_const2u:
22563 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22564 i += 2;
22565 break;
22566
22567 case DW_OP_const2s:
22568 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22569 i += 2;
22570 break;
22571
22572 case DW_OP_const4u:
22573 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22574 i += 4;
22575 break;
22576
22577 case DW_OP_const4s:
22578 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22579 i += 4;
22580 break;
22581
22582 case DW_OP_const8u:
22583 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22584 i += 8;
22585 break;
22586
22587 case DW_OP_constu:
22588 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22589 &bytes_read);
22590 i += bytes_read;
22591 break;
22592
22593 case DW_OP_consts:
22594 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22595 i += bytes_read;
22596 break;
22597
22598 case DW_OP_dup:
22599 stack[stacki + 1] = stack[stacki];
22600 stacki++;
22601 break;
22602
22603 case DW_OP_plus:
22604 stack[stacki - 1] += stack[stacki];
22605 stacki--;
22606 break;
22607
22608 case DW_OP_plus_uconst:
22609 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22610 &bytes_read);
22611 i += bytes_read;
22612 break;
22613
22614 case DW_OP_minus:
22615 stack[stacki - 1] -= stack[stacki];
22616 stacki--;
22617 break;
22618
22619 case DW_OP_deref:
22620 /* If we're not the last op, then we definitely can't encode
22621 this using GDB's address_class enum. This is valid for partial
22622 global symbols, although the variable's address will be bogus
22623 in the psymtab. */
22624 if (i < size)
22625 dwarf2_complex_location_expr_complaint ();
22626 break;
22627
22628 case DW_OP_GNU_push_tls_address:
22629 case DW_OP_form_tls_address:
22630 /* The top of the stack has the offset from the beginning
22631 of the thread control block at which the variable is located. */
22632 /* Nothing should follow this operator, so the top of stack would
22633 be returned. */
22634 /* This is valid for partial global symbols, but the variable's
22635 address will be bogus in the psymtab. Make it always at least
22636 non-zero to not look as a variable garbage collected by linker
22637 which have DW_OP_addr 0. */
22638 if (i < size)
22639 dwarf2_complex_location_expr_complaint ();
22640 stack[stacki]++;
22641 break;
22642
22643 case DW_OP_GNU_uninit:
22644 break;
22645
22646 case DW_OP_addrx:
22647 case DW_OP_GNU_addr_index:
22648 case DW_OP_GNU_const_index:
22649 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22650 &bytes_read);
22651 i += bytes_read;
22652 break;
22653
22654 default:
22655 {
22656 const char *name = get_DW_OP_name (op);
22657
22658 if (name)
22659 complaint (_("unsupported stack op: '%s'"),
22660 name);
22661 else
22662 complaint (_("unsupported stack op: '%02x'"),
22663 op);
22664 }
22665
22666 return (stack[stacki]);
22667 }
22668
22669 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22670 outside of the allocated space. Also enforce minimum>0. */
22671 if (stacki >= ARRAY_SIZE (stack) - 1)
22672 {
22673 complaint (_("location description stack overflow"));
22674 return 0;
22675 }
22676
22677 if (stacki <= 0)
22678 {
22679 complaint (_("location description stack underflow"));
22680 return 0;
22681 }
22682 }
22683 return (stack[stacki]);
22684 }
22685
22686 /* memory allocation interface */
22687
22688 static struct dwarf_block *
22689 dwarf_alloc_block (struct dwarf2_cu *cu)
22690 {
22691 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22692 }
22693
22694 static struct die_info *
22695 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22696 {
22697 struct die_info *die;
22698 size_t size = sizeof (struct die_info);
22699
22700 if (num_attrs > 1)
22701 size += (num_attrs - 1) * sizeof (struct attribute);
22702
22703 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
22704 memset (die, 0, sizeof (struct die_info));
22705 return (die);
22706 }
22707
22708 \f
22709
22710 /* Macro support. */
22711
22712 /* An overload of dwarf_decode_macros that finds the correct section
22713 and ensures it is read in before calling the other overload. */
22714
22715 static void
22716 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22717 int section_is_gnu)
22718 {
22719 struct dwarf2_per_objfile *dwarf2_per_objfile
22720 = cu->per_cu->dwarf2_per_objfile;
22721 struct objfile *objfile = dwarf2_per_objfile->objfile;
22722 const struct line_header *lh = cu->line_header;
22723 unsigned int offset_size = cu->header.offset_size;
22724 struct dwarf2_section_info *section;
22725 const char *section_name;
22726
22727 if (cu->dwo_unit != nullptr)
22728 {
22729 if (section_is_gnu)
22730 {
22731 section = &cu->dwo_unit->dwo_file->sections.macro;
22732 section_name = ".debug_macro.dwo";
22733 }
22734 else
22735 {
22736 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22737 section_name = ".debug_macinfo.dwo";
22738 }
22739 }
22740 else
22741 {
22742 if (section_is_gnu)
22743 {
22744 section = &dwarf2_per_objfile->macro;
22745 section_name = ".debug_macro";
22746 }
22747 else
22748 {
22749 section = &dwarf2_per_objfile->macinfo;
22750 section_name = ".debug_macinfo";
22751 }
22752 }
22753
22754 section->read (objfile);
22755 if (section->buffer == nullptr)
22756 {
22757 complaint (_("missing %s section"), section_name);
22758 return;
22759 }
22760
22761 buildsym_compunit *builder = cu->get_builder ();
22762
22763 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
22764 offset_size, offset, section_is_gnu);
22765 }
22766
22767 /* Return the .debug_loc section to use for CU.
22768 For DWO files use .debug_loc.dwo. */
22769
22770 static struct dwarf2_section_info *
22771 cu_debug_loc_section (struct dwarf2_cu *cu)
22772 {
22773 struct dwarf2_per_objfile *dwarf2_per_objfile
22774 = cu->per_cu->dwarf2_per_objfile;
22775
22776 if (cu->dwo_unit)
22777 {
22778 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22779
22780 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22781 }
22782 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22783 : &dwarf2_per_objfile->loc);
22784 }
22785
22786 /* A helper function that fills in a dwarf2_loclist_baton. */
22787
22788 static void
22789 fill_in_loclist_baton (struct dwarf2_cu *cu,
22790 struct dwarf2_loclist_baton *baton,
22791 const struct attribute *attr)
22792 {
22793 struct dwarf2_per_objfile *dwarf2_per_objfile
22794 = cu->per_cu->dwarf2_per_objfile;
22795 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22796
22797 section->read (dwarf2_per_objfile->objfile);
22798
22799 baton->per_cu = cu->per_cu;
22800 gdb_assert (baton->per_cu);
22801 /* We don't know how long the location list is, but make sure we
22802 don't run off the edge of the section. */
22803 baton->size = section->size - DW_UNSND (attr);
22804 baton->data = section->buffer + DW_UNSND (attr);
22805 if (cu->base_address.has_value ())
22806 baton->base_address = *cu->base_address;
22807 else
22808 baton->base_address = 0;
22809 baton->from_dwo = cu->dwo_unit != NULL;
22810 }
22811
22812 static void
22813 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22814 struct dwarf2_cu *cu, int is_block)
22815 {
22816 struct dwarf2_per_objfile *dwarf2_per_objfile
22817 = cu->per_cu->dwarf2_per_objfile;
22818 struct objfile *objfile = dwarf2_per_objfile->objfile;
22819 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22820
22821 if (attr->form_is_section_offset ()
22822 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22823 the section. If so, fall through to the complaint in the
22824 other branch. */
22825 && DW_UNSND (attr) < section->get_size (objfile))
22826 {
22827 struct dwarf2_loclist_baton *baton;
22828
22829 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22830
22831 fill_in_loclist_baton (cu, baton, attr);
22832
22833 if (!cu->base_address.has_value ())
22834 complaint (_("Location list used without "
22835 "specifying the CU base address."));
22836
22837 SYMBOL_ACLASS_INDEX (sym) = (is_block
22838 ? dwarf2_loclist_block_index
22839 : dwarf2_loclist_index);
22840 SYMBOL_LOCATION_BATON (sym) = baton;
22841 }
22842 else
22843 {
22844 struct dwarf2_locexpr_baton *baton;
22845
22846 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22847 baton->per_cu = cu->per_cu;
22848 gdb_assert (baton->per_cu);
22849
22850 if (attr->form_is_block ())
22851 {
22852 /* Note that we're just copying the block's data pointer
22853 here, not the actual data. We're still pointing into the
22854 info_buffer for SYM's objfile; right now we never release
22855 that buffer, but when we do clean up properly this may
22856 need to change. */
22857 baton->size = DW_BLOCK (attr)->size;
22858 baton->data = DW_BLOCK (attr)->data;
22859 }
22860 else
22861 {
22862 dwarf2_invalid_attrib_class_complaint ("location description",
22863 sym->natural_name ());
22864 baton->size = 0;
22865 }
22866
22867 SYMBOL_ACLASS_INDEX (sym) = (is_block
22868 ? dwarf2_locexpr_block_index
22869 : dwarf2_locexpr_index);
22870 SYMBOL_LOCATION_BATON (sym) = baton;
22871 }
22872 }
22873
22874 /* See read.h. */
22875
22876 struct objfile *
22877 dwarf2_per_cu_data::objfile () const
22878 {
22879 struct objfile *objfile = dwarf2_per_objfile->objfile;
22880
22881 /* Return the master objfile, so that we can report and look up the
22882 correct file containing this variable. */
22883 if (objfile->separate_debug_objfile_backlink)
22884 objfile = objfile->separate_debug_objfile_backlink;
22885
22886 return objfile;
22887 }
22888
22889 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22890 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22891 CU_HEADERP first. */
22892
22893 static const struct comp_unit_head *
22894 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22895 const struct dwarf2_per_cu_data *per_cu)
22896 {
22897 const gdb_byte *info_ptr;
22898
22899 if (per_cu->cu)
22900 return &per_cu->cu->header;
22901
22902 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22903
22904 memset (cu_headerp, 0, sizeof (*cu_headerp));
22905 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22906 rcuh_kind::COMPILE);
22907
22908 return cu_headerp;
22909 }
22910
22911 /* See read.h. */
22912
22913 int
22914 dwarf2_per_cu_data::addr_size () const
22915 {
22916 struct comp_unit_head cu_header_local;
22917 const struct comp_unit_head *cu_headerp;
22918
22919 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
22920
22921 return cu_headerp->addr_size;
22922 }
22923
22924 /* See read.h. */
22925
22926 int
22927 dwarf2_per_cu_data::offset_size () const
22928 {
22929 struct comp_unit_head cu_header_local;
22930 const struct comp_unit_head *cu_headerp;
22931
22932 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
22933
22934 return cu_headerp->offset_size;
22935 }
22936
22937 /* See read.h. */
22938
22939 int
22940 dwarf2_per_cu_data::ref_addr_size () const
22941 {
22942 struct comp_unit_head cu_header_local;
22943 const struct comp_unit_head *cu_headerp;
22944
22945 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
22946
22947 if (cu_headerp->version == 2)
22948 return cu_headerp->addr_size;
22949 else
22950 return cu_headerp->offset_size;
22951 }
22952
22953 /* See read.h. */
22954
22955 CORE_ADDR
22956 dwarf2_per_cu_data::text_offset () const
22957 {
22958 struct objfile *objfile = dwarf2_per_objfile->objfile;
22959
22960 return objfile->text_section_offset ();
22961 }
22962
22963 /* See read.h. */
22964
22965 struct type *
22966 dwarf2_per_cu_data::addr_type () const
22967 {
22968 struct objfile *objfile = dwarf2_per_objfile->objfile;
22969 struct type *void_type = objfile_type (objfile)->builtin_void;
22970 struct type *addr_type = lookup_pointer_type (void_type);
22971 int addr_size = this->addr_size ();
22972
22973 if (TYPE_LENGTH (addr_type) == addr_size)
22974 return addr_type;
22975
22976 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
22977 return addr_type;
22978 }
22979
22980 /* A helper function for dwarf2_find_containing_comp_unit that returns
22981 the index of the result, and that searches a vector. It will
22982 return a result even if the offset in question does not actually
22983 occur in any CU. This is separate so that it can be unit
22984 tested. */
22985
22986 static int
22987 dwarf2_find_containing_comp_unit
22988 (sect_offset sect_off,
22989 unsigned int offset_in_dwz,
22990 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
22991 {
22992 int low, high;
22993
22994 low = 0;
22995 high = all_comp_units.size () - 1;
22996 while (high > low)
22997 {
22998 struct dwarf2_per_cu_data *mid_cu;
22999 int mid = low + (high - low) / 2;
23000
23001 mid_cu = all_comp_units[mid];
23002 if (mid_cu->is_dwz > offset_in_dwz
23003 || (mid_cu->is_dwz == offset_in_dwz
23004 && mid_cu->sect_off + mid_cu->length > sect_off))
23005 high = mid;
23006 else
23007 low = mid + 1;
23008 }
23009 gdb_assert (low == high);
23010 return low;
23011 }
23012
23013 /* Locate the .debug_info compilation unit from CU's objfile which contains
23014 the DIE at OFFSET. Raises an error on failure. */
23015
23016 static struct dwarf2_per_cu_data *
23017 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23018 unsigned int offset_in_dwz,
23019 struct dwarf2_per_objfile *dwarf2_per_objfile)
23020 {
23021 int low
23022 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23023 dwarf2_per_objfile->all_comp_units);
23024 struct dwarf2_per_cu_data *this_cu
23025 = dwarf2_per_objfile->all_comp_units[low];
23026
23027 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23028 {
23029 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23030 error (_("Dwarf Error: could not find partial DIE containing "
23031 "offset %s [in module %s]"),
23032 sect_offset_str (sect_off),
23033 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23034
23035 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23036 <= sect_off);
23037 return dwarf2_per_objfile->all_comp_units[low-1];
23038 }
23039 else
23040 {
23041 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23042 && sect_off >= this_cu->sect_off + this_cu->length)
23043 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23044 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23045 return this_cu;
23046 }
23047 }
23048
23049 #if GDB_SELF_TEST
23050
23051 namespace selftests {
23052 namespace find_containing_comp_unit {
23053
23054 static void
23055 run_test ()
23056 {
23057 struct dwarf2_per_cu_data one {};
23058 struct dwarf2_per_cu_data two {};
23059 struct dwarf2_per_cu_data three {};
23060 struct dwarf2_per_cu_data four {};
23061
23062 one.length = 5;
23063 two.sect_off = sect_offset (one.length);
23064 two.length = 7;
23065
23066 three.length = 5;
23067 three.is_dwz = 1;
23068 four.sect_off = sect_offset (three.length);
23069 four.length = 7;
23070 four.is_dwz = 1;
23071
23072 std::vector<dwarf2_per_cu_data *> units;
23073 units.push_back (&one);
23074 units.push_back (&two);
23075 units.push_back (&three);
23076 units.push_back (&four);
23077
23078 int result;
23079
23080 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23081 SELF_CHECK (units[result] == &one);
23082 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23083 SELF_CHECK (units[result] == &one);
23084 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23085 SELF_CHECK (units[result] == &two);
23086
23087 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23088 SELF_CHECK (units[result] == &three);
23089 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23090 SELF_CHECK (units[result] == &three);
23091 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23092 SELF_CHECK (units[result] == &four);
23093 }
23094
23095 }
23096 }
23097
23098 #endif /* GDB_SELF_TEST */
23099
23100 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23101
23102 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23103 : per_cu (per_cu_),
23104 mark (false),
23105 has_loclist (false),
23106 checked_producer (false),
23107 producer_is_gxx_lt_4_6 (false),
23108 producer_is_gcc_lt_4_3 (false),
23109 producer_is_icc (false),
23110 producer_is_icc_lt_14 (false),
23111 producer_is_codewarrior (false),
23112 processing_has_namespace_info (false)
23113 {
23114 per_cu->cu = this;
23115 }
23116
23117 /* Destroy a dwarf2_cu. */
23118
23119 dwarf2_cu::~dwarf2_cu ()
23120 {
23121 per_cu->cu = NULL;
23122 }
23123
23124 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23125
23126 static void
23127 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23128 enum language pretend_language)
23129 {
23130 struct attribute *attr;
23131
23132 /* Set the language we're debugging. */
23133 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23134 if (attr != nullptr)
23135 set_cu_language (DW_UNSND (attr), cu);
23136 else
23137 {
23138 cu->language = pretend_language;
23139 cu->language_defn = language_def (cu->language);
23140 }
23141
23142 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23143 }
23144
23145 /* Increase the age counter on each cached compilation unit, and free
23146 any that are too old. */
23147
23148 static void
23149 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23150 {
23151 struct dwarf2_per_cu_data *per_cu, **last_chain;
23152
23153 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23154 per_cu = dwarf2_per_objfile->read_in_chain;
23155 while (per_cu != NULL)
23156 {
23157 per_cu->cu->last_used ++;
23158 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23159 dwarf2_mark (per_cu->cu);
23160 per_cu = per_cu->cu->read_in_chain;
23161 }
23162
23163 per_cu = dwarf2_per_objfile->read_in_chain;
23164 last_chain = &dwarf2_per_objfile->read_in_chain;
23165 while (per_cu != NULL)
23166 {
23167 struct dwarf2_per_cu_data *next_cu;
23168
23169 next_cu = per_cu->cu->read_in_chain;
23170
23171 if (!per_cu->cu->mark)
23172 {
23173 delete per_cu->cu;
23174 *last_chain = next_cu;
23175 }
23176 else
23177 last_chain = &per_cu->cu->read_in_chain;
23178
23179 per_cu = next_cu;
23180 }
23181 }
23182
23183 /* Remove a single compilation unit from the cache. */
23184
23185 static void
23186 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23187 {
23188 struct dwarf2_per_cu_data *per_cu, **last_chain;
23189 struct dwarf2_per_objfile *dwarf2_per_objfile
23190 = target_per_cu->dwarf2_per_objfile;
23191
23192 per_cu = dwarf2_per_objfile->read_in_chain;
23193 last_chain = &dwarf2_per_objfile->read_in_chain;
23194 while (per_cu != NULL)
23195 {
23196 struct dwarf2_per_cu_data *next_cu;
23197
23198 next_cu = per_cu->cu->read_in_chain;
23199
23200 if (per_cu == target_per_cu)
23201 {
23202 delete per_cu->cu;
23203 per_cu->cu = NULL;
23204 *last_chain = next_cu;
23205 break;
23206 }
23207 else
23208 last_chain = &per_cu->cu->read_in_chain;
23209
23210 per_cu = next_cu;
23211 }
23212 }
23213
23214 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23215 We store these in a hash table separate from the DIEs, and preserve them
23216 when the DIEs are flushed out of cache.
23217
23218 The CU "per_cu" pointer is needed because offset alone is not enough to
23219 uniquely identify the type. A file may have multiple .debug_types sections,
23220 or the type may come from a DWO file. Furthermore, while it's more logical
23221 to use per_cu->section+offset, with Fission the section with the data is in
23222 the DWO file but we don't know that section at the point we need it.
23223 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23224 because we can enter the lookup routine, get_die_type_at_offset, from
23225 outside this file, and thus won't necessarily have PER_CU->cu.
23226 Fortunately, PER_CU is stable for the life of the objfile. */
23227
23228 struct dwarf2_per_cu_offset_and_type
23229 {
23230 const struct dwarf2_per_cu_data *per_cu;
23231 sect_offset sect_off;
23232 struct type *type;
23233 };
23234
23235 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23236
23237 static hashval_t
23238 per_cu_offset_and_type_hash (const void *item)
23239 {
23240 const struct dwarf2_per_cu_offset_and_type *ofs
23241 = (const struct dwarf2_per_cu_offset_and_type *) item;
23242
23243 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23244 }
23245
23246 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23247
23248 static int
23249 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23250 {
23251 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23252 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23253 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23254 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23255
23256 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23257 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23258 }
23259
23260 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23261 table if necessary. For convenience, return TYPE.
23262
23263 The DIEs reading must have careful ordering to:
23264 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23265 reading current DIE.
23266 * Not trying to dereference contents of still incompletely read in types
23267 while reading in other DIEs.
23268 * Enable referencing still incompletely read in types just by a pointer to
23269 the type without accessing its fields.
23270
23271 Therefore caller should follow these rules:
23272 * Try to fetch any prerequisite types we may need to build this DIE type
23273 before building the type and calling set_die_type.
23274 * After building type call set_die_type for current DIE as soon as
23275 possible before fetching more types to complete the current type.
23276 * Make the type as complete as possible before fetching more types. */
23277
23278 static struct type *
23279 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23280 {
23281 struct dwarf2_per_objfile *dwarf2_per_objfile
23282 = cu->per_cu->dwarf2_per_objfile;
23283 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23284 struct objfile *objfile = dwarf2_per_objfile->objfile;
23285 struct attribute *attr;
23286 struct dynamic_prop prop;
23287
23288 /* For Ada types, make sure that the gnat-specific data is always
23289 initialized (if not already set). There are a few types where
23290 we should not be doing so, because the type-specific area is
23291 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23292 where the type-specific area is used to store the floatformat).
23293 But this is not a problem, because the gnat-specific information
23294 is actually not needed for these types. */
23295 if (need_gnat_info (cu)
23296 && TYPE_CODE (type) != TYPE_CODE_FUNC
23297 && TYPE_CODE (type) != TYPE_CODE_FLT
23298 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23299 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23300 && TYPE_CODE (type) != TYPE_CODE_METHOD
23301 && !HAVE_GNAT_AUX_INFO (type))
23302 INIT_GNAT_SPECIFIC (type);
23303
23304 /* Read DW_AT_allocated and set in type. */
23305 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23306 if (attr != NULL && attr->form_is_block ())
23307 {
23308 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23309 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23310 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
23311 }
23312 else if (attr != NULL)
23313 {
23314 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23315 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23316 sect_offset_str (die->sect_off));
23317 }
23318
23319 /* Read DW_AT_associated and set in type. */
23320 attr = dwarf2_attr (die, DW_AT_associated, cu);
23321 if (attr != NULL && attr->form_is_block ())
23322 {
23323 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23324 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23325 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
23326 }
23327 else if (attr != NULL)
23328 {
23329 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23330 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23331 sect_offset_str (die->sect_off));
23332 }
23333
23334 /* Read DW_AT_data_location and set in type. */
23335 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23336 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23337 cu->per_cu->addr_type ()))
23338 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
23339
23340 if (dwarf2_per_objfile->die_type_hash == NULL)
23341 dwarf2_per_objfile->die_type_hash
23342 = htab_up (htab_create_alloc (127,
23343 per_cu_offset_and_type_hash,
23344 per_cu_offset_and_type_eq,
23345 NULL, xcalloc, xfree));
23346
23347 ofs.per_cu = cu->per_cu;
23348 ofs.sect_off = die->sect_off;
23349 ofs.type = type;
23350 slot = (struct dwarf2_per_cu_offset_and_type **)
23351 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23352 if (*slot)
23353 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23354 sect_offset_str (die->sect_off));
23355 *slot = XOBNEW (&objfile->objfile_obstack,
23356 struct dwarf2_per_cu_offset_and_type);
23357 **slot = ofs;
23358 return type;
23359 }
23360
23361 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23362 or return NULL if the die does not have a saved type. */
23363
23364 static struct type *
23365 get_die_type_at_offset (sect_offset sect_off,
23366 struct dwarf2_per_cu_data *per_cu)
23367 {
23368 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23369 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23370
23371 if (dwarf2_per_objfile->die_type_hash == NULL)
23372 return NULL;
23373
23374 ofs.per_cu = per_cu;
23375 ofs.sect_off = sect_off;
23376 slot = ((struct dwarf2_per_cu_offset_and_type *)
23377 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23378 if (slot)
23379 return slot->type;
23380 else
23381 return NULL;
23382 }
23383
23384 /* Look up the type for DIE in CU in die_type_hash,
23385 or return NULL if DIE does not have a saved type. */
23386
23387 static struct type *
23388 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23389 {
23390 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23391 }
23392
23393 /* Add a dependence relationship from CU to REF_PER_CU. */
23394
23395 static void
23396 dwarf2_add_dependence (struct dwarf2_cu *cu,
23397 struct dwarf2_per_cu_data *ref_per_cu)
23398 {
23399 void **slot;
23400
23401 if (cu->dependencies == NULL)
23402 cu->dependencies
23403 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23404 NULL, &cu->comp_unit_obstack,
23405 hashtab_obstack_allocate,
23406 dummy_obstack_deallocate);
23407
23408 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23409 if (*slot == NULL)
23410 *slot = ref_per_cu;
23411 }
23412
23413 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23414 Set the mark field in every compilation unit in the
23415 cache that we must keep because we are keeping CU. */
23416
23417 static int
23418 dwarf2_mark_helper (void **slot, void *data)
23419 {
23420 struct dwarf2_per_cu_data *per_cu;
23421
23422 per_cu = (struct dwarf2_per_cu_data *) *slot;
23423
23424 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23425 reading of the chain. As such dependencies remain valid it is not much
23426 useful to track and undo them during QUIT cleanups. */
23427 if (per_cu->cu == NULL)
23428 return 1;
23429
23430 if (per_cu->cu->mark)
23431 return 1;
23432 per_cu->cu->mark = true;
23433
23434 if (per_cu->cu->dependencies != NULL)
23435 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23436
23437 return 1;
23438 }
23439
23440 /* Set the mark field in CU and in every other compilation unit in the
23441 cache that we must keep because we are keeping CU. */
23442
23443 static void
23444 dwarf2_mark (struct dwarf2_cu *cu)
23445 {
23446 if (cu->mark)
23447 return;
23448 cu->mark = true;
23449 if (cu->dependencies != NULL)
23450 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23451 }
23452
23453 static void
23454 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23455 {
23456 while (per_cu)
23457 {
23458 per_cu->cu->mark = false;
23459 per_cu = per_cu->cu->read_in_chain;
23460 }
23461 }
23462
23463 /* Trivial hash function for partial_die_info: the hash value of a DIE
23464 is its offset in .debug_info for this objfile. */
23465
23466 static hashval_t
23467 partial_die_hash (const void *item)
23468 {
23469 const struct partial_die_info *part_die
23470 = (const struct partial_die_info *) item;
23471
23472 return to_underlying (part_die->sect_off);
23473 }
23474
23475 /* Trivial comparison function for partial_die_info structures: two DIEs
23476 are equal if they have the same offset. */
23477
23478 static int
23479 partial_die_eq (const void *item_lhs, const void *item_rhs)
23480 {
23481 const struct partial_die_info *part_die_lhs
23482 = (const struct partial_die_info *) item_lhs;
23483 const struct partial_die_info *part_die_rhs
23484 = (const struct partial_die_info *) item_rhs;
23485
23486 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23487 }
23488
23489 struct cmd_list_element *set_dwarf_cmdlist;
23490 struct cmd_list_element *show_dwarf_cmdlist;
23491
23492 static void
23493 show_check_physname (struct ui_file *file, int from_tty,
23494 struct cmd_list_element *c, const char *value)
23495 {
23496 fprintf_filtered (file,
23497 _("Whether to check \"physname\" is %s.\n"),
23498 value);
23499 }
23500
23501 void _initialize_dwarf2_read ();
23502 void
23503 _initialize_dwarf2_read ()
23504 {
23505 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23506 Set DWARF specific variables.\n\
23507 Configure DWARF variables such as the cache size."),
23508 &set_dwarf_cmdlist, "maintenance set dwarf ",
23509 0/*allow-unknown*/, &maintenance_set_cmdlist);
23510
23511 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23512 Show DWARF specific variables.\n\
23513 Show DWARF variables such as the cache size."),
23514 &show_dwarf_cmdlist, "maintenance show dwarf ",
23515 0/*allow-unknown*/, &maintenance_show_cmdlist);
23516
23517 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23518 &dwarf_max_cache_age, _("\
23519 Set the upper bound on the age of cached DWARF compilation units."), _("\
23520 Show the upper bound on the age of cached DWARF compilation units."), _("\
23521 A higher limit means that cached compilation units will be stored\n\
23522 in memory longer, and more total memory will be used. Zero disables\n\
23523 caching, which can slow down startup."),
23524 NULL,
23525 show_dwarf_max_cache_age,
23526 &set_dwarf_cmdlist,
23527 &show_dwarf_cmdlist);
23528
23529 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23530 Set debugging of the DWARF reader."), _("\
23531 Show debugging of the DWARF reader."), _("\
23532 When enabled (non-zero), debugging messages are printed during DWARF\n\
23533 reading and symtab expansion. A value of 1 (one) provides basic\n\
23534 information. A value greater than 1 provides more verbose information."),
23535 NULL,
23536 NULL,
23537 &setdebuglist, &showdebuglist);
23538
23539 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23540 Set debugging of the DWARF DIE reader."), _("\
23541 Show debugging of the DWARF DIE reader."), _("\
23542 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23543 The value is the maximum depth to print."),
23544 NULL,
23545 NULL,
23546 &setdebuglist, &showdebuglist);
23547
23548 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23549 Set debugging of the dwarf line reader."), _("\
23550 Show debugging of the dwarf line reader."), _("\
23551 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23552 A value of 1 (one) provides basic information.\n\
23553 A value greater than 1 provides more verbose information."),
23554 NULL,
23555 NULL,
23556 &setdebuglist, &showdebuglist);
23557
23558 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23559 Set cross-checking of \"physname\" code against demangler."), _("\
23560 Show cross-checking of \"physname\" code against demangler."), _("\
23561 When enabled, GDB's internal \"physname\" code is checked against\n\
23562 the demangler."),
23563 NULL, show_check_physname,
23564 &setdebuglist, &showdebuglist);
23565
23566 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23567 no_class, &use_deprecated_index_sections, _("\
23568 Set whether to use deprecated gdb_index sections."), _("\
23569 Show whether to use deprecated gdb_index sections."), _("\
23570 When enabled, deprecated .gdb_index sections are used anyway.\n\
23571 Normally they are ignored either because of a missing feature or\n\
23572 performance issue.\n\
23573 Warning: This option must be enabled before gdb reads the file."),
23574 NULL,
23575 NULL,
23576 &setlist, &showlist);
23577
23578 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23579 &dwarf2_locexpr_funcs);
23580 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23581 &dwarf2_loclist_funcs);
23582
23583 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23584 &dwarf2_block_frame_base_locexpr_funcs);
23585 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23586 &dwarf2_block_frame_base_loclist_funcs);
23587
23588 #if GDB_SELF_TEST
23589 selftests::register_test ("dw2_expand_symtabs_matching",
23590 selftests::dw2_expand_symtabs_matching::run_test);
23591 selftests::register_test ("dwarf2_find_containing_comp_unit",
23592 selftests::find_containing_comp_unit::run_test);
23593 #endif
23594 }
This page took 0.48876 seconds and 5 git commands to generate.