Introduce dwarf2_per_objfile::obstack
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 struct variant_part_builder;
1086
1087 /* When reading a variant, we track a bit more information about the
1088 field, and store it in an object of this type. */
1089
1090 struct variant_field
1091 {
1092 int first_field = -1;
1093 int last_field = -1;
1094
1095 /* A variant can contain other variant parts. */
1096 std::vector<variant_part_builder> variant_parts;
1097
1098 /* If we see a DW_TAG_variant, then this will be set if this is the
1099 default branch. */
1100 bool default_branch = false;
1101 /* If we see a DW_AT_discr_value, then this will be the discriminant
1102 value. */
1103 ULONGEST discriminant_value = 0;
1104 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1105 data. */
1106 struct dwarf_block *discr_list_data = nullptr;
1107 };
1108
1109 /* This represents a DW_TAG_variant_part. */
1110
1111 struct variant_part_builder
1112 {
1113 /* The offset of the discriminant field. */
1114 sect_offset discriminant_offset {};
1115
1116 /* Variants that are direct children of this variant part. */
1117 std::vector<variant_field> variants;
1118
1119 /* True if we're currently reading a variant. */
1120 bool processing_variant = false;
1121 };
1122
1123 struct nextfield
1124 {
1125 int accessibility = 0;
1126 int virtuality = 0;
1127 /* Variant parts need to find the discriminant, which is a DIE
1128 reference. We track the section offset of each field to make
1129 this link. */
1130 sect_offset offset;
1131 struct field field {};
1132 };
1133
1134 struct fnfieldlist
1135 {
1136 const char *name = nullptr;
1137 std::vector<struct fn_field> fnfields;
1138 };
1139
1140 /* The routines that read and process dies for a C struct or C++ class
1141 pass lists of data member fields and lists of member function fields
1142 in an instance of a field_info structure, as defined below. */
1143 struct field_info
1144 {
1145 /* List of data member and baseclasses fields. */
1146 std::vector<struct nextfield> fields;
1147 std::vector<struct nextfield> baseclasses;
1148
1149 /* Set if the accessibility of one of the fields is not public. */
1150 int non_public_fields = 0;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 std::vector<struct fnfieldlist> fnfieldlists;
1156
1157 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1158 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1159 std::vector<struct decl_field> typedef_field_list;
1160
1161 /* Nested types defined by this class and the number of elements in this
1162 list. */
1163 std::vector<struct decl_field> nested_types_list;
1164
1165 /* If non-null, this is the variant part we are currently
1166 reading. */
1167 variant_part_builder *current_variant_part = nullptr;
1168 /* This holds all the top-level variant parts attached to the type
1169 we're reading. */
1170 std::vector<variant_part_builder> variant_parts;
1171
1172 /* Return the total number of fields (including baseclasses). */
1173 int nfields () const
1174 {
1175 return fields.size () + baseclasses.size ();
1176 }
1177 };
1178
1179 /* Loaded secondary compilation units are kept in memory until they
1180 have not been referenced for the processing of this many
1181 compilation units. Set this to zero to disable caching. Cache
1182 sizes of up to at least twenty will improve startup time for
1183 typical inter-CU-reference binaries, at an obvious memory cost. */
1184 static int dwarf_max_cache_age = 5;
1185 static void
1186 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("The upper bound on the age of cached "
1190 "DWARF compilation units is %s.\n"),
1191 value);
1192 }
1193 \f
1194 /* local function prototypes */
1195
1196 static void dwarf2_find_base_address (struct die_info *die,
1197 struct dwarf2_cu *cu);
1198
1199 static dwarf2_psymtab *create_partial_symtab
1200 (struct dwarf2_per_cu_data *per_cu, const char *name);
1201
1202 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1203 const gdb_byte *info_ptr,
1204 struct die_info *type_unit_die);
1205
1206 static void dwarf2_build_psymtabs_hard
1207 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1208
1209 static void scan_partial_symbols (struct partial_die_info *,
1210 CORE_ADDR *, CORE_ADDR *,
1211 int, struct dwarf2_cu *);
1212
1213 static void add_partial_symbol (struct partial_die_info *,
1214 struct dwarf2_cu *);
1215
1216 static void add_partial_namespace (struct partial_die_info *pdi,
1217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1218 int set_addrmap, struct dwarf2_cu *cu);
1219
1220 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1221 CORE_ADDR *highpc, int set_addrmap,
1222 struct dwarf2_cu *cu);
1223
1224 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1225 struct dwarf2_cu *cu);
1226
1227 static void add_partial_subprogram (struct partial_die_info *pdi,
1228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1229 int need_pc, struct dwarf2_cu *cu);
1230
1231 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1232
1233 static struct partial_die_info *load_partial_dies
1234 (const struct die_reader_specs *, const gdb_byte *, int);
1235
1236 /* A pair of partial_die_info and compilation unit. */
1237 struct cu_partial_die_info
1238 {
1239 /* The compilation unit of the partial_die_info. */
1240 struct dwarf2_cu *cu;
1241 /* A partial_die_info. */
1242 struct partial_die_info *pdi;
1243
1244 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1245 : cu (cu),
1246 pdi (pdi)
1247 { /* Nothing. */ }
1248
1249 private:
1250 cu_partial_die_info () = delete;
1251 };
1252
1253 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1254 struct dwarf2_cu *);
1255
1256 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1257 struct attribute *, struct attr_abbrev *,
1258 const gdb_byte *, bool *need_reprocess);
1259
1260 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1261 struct attribute *attr);
1262
1263 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1264
1265 static sect_offset read_abbrev_offset
1266 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1267 struct dwarf2_section_info *, sect_offset);
1268
1269 static const char *read_indirect_string
1270 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1271 const struct comp_unit_head *, unsigned int *);
1272
1273 static const char *read_indirect_string_at_offset
1274 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1275
1276 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1277 const gdb_byte *,
1278 unsigned int *);
1279
1280 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1281 ULONGEST str_index);
1282
1283 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1284 ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1292 struct dwarf2_cu *cu);
1293
1294 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1295
1296 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1297 struct dwarf2_cu *cu);
1298
1299 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1300
1301 static struct die_info *die_specification (struct die_info *die,
1302 struct dwarf2_cu **);
1303
1304 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1305 struct dwarf2_cu *cu);
1306
1307 static void dwarf_decode_lines (struct line_header *, const char *,
1308 struct dwarf2_cu *, dwarf2_psymtab *,
1309 CORE_ADDR, int decode_mapping);
1310
1311 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1312 const char *);
1313
1314 static struct symbol *new_symbol (struct die_info *, struct type *,
1315 struct dwarf2_cu *, struct symbol * = NULL);
1316
1317 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_const_value_attr (const struct attribute *attr,
1321 struct type *type,
1322 const char *name,
1323 struct obstack *obstack,
1324 struct dwarf2_cu *cu, LONGEST *value,
1325 const gdb_byte **bytes,
1326 struct dwarf2_locexpr_baton **baton);
1327
1328 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1329
1330 static int need_gnat_info (struct dwarf2_cu *);
1331
1332 static struct type *die_descriptive_type (struct die_info *,
1333 struct dwarf2_cu *);
1334
1335 static void set_descriptive_type (struct type *, struct die_info *,
1336 struct dwarf2_cu *);
1337
1338 static struct type *die_containing_type (struct die_info *,
1339 struct dwarf2_cu *);
1340
1341 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1342 struct dwarf2_cu *);
1343
1344 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1345
1346 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1347
1348 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1349
1350 static char *typename_concat (struct obstack *obs, const char *prefix,
1351 const char *suffix, int physname,
1352 struct dwarf2_cu *cu);
1353
1354 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1355
1356 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1357
1358 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1359
1360 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1361
1362 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1363
1364 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1365
1366 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *, dwarf2_psymtab *);
1368
1369 /* Return the .debug_loclists section to use for cu. */
1370 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1371
1372 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1373 values. Keep the items ordered with increasing constraints compliance. */
1374 enum pc_bounds_kind
1375 {
1376 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1377 PC_BOUNDS_NOT_PRESENT,
1378
1379 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1380 were present but they do not form a valid range of PC addresses. */
1381 PC_BOUNDS_INVALID,
1382
1383 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1384 PC_BOUNDS_RANGES,
1385
1386 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1387 PC_BOUNDS_HIGH_LOW,
1388 };
1389
1390 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1391 CORE_ADDR *, CORE_ADDR *,
1392 struct dwarf2_cu *,
1393 dwarf2_psymtab *);
1394
1395 static void get_scope_pc_bounds (struct die_info *,
1396 CORE_ADDR *, CORE_ADDR *,
1397 struct dwarf2_cu *);
1398
1399 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1400 CORE_ADDR, struct dwarf2_cu *);
1401
1402 static void dwarf2_add_field (struct field_info *, struct die_info *,
1403 struct dwarf2_cu *);
1404
1405 static void dwarf2_attach_fields_to_type (struct field_info *,
1406 struct type *, struct dwarf2_cu *);
1407
1408 static void dwarf2_add_member_fn (struct field_info *,
1409 struct die_info *, struct type *,
1410 struct dwarf2_cu *);
1411
1412 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1413 struct type *,
1414 struct dwarf2_cu *);
1415
1416 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1419
1420 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1421
1422 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1423
1424 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1425
1426 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1427
1428 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1429
1430 static struct type *read_module_type (struct die_info *die,
1431 struct dwarf2_cu *cu);
1432
1433 static const char *namespace_name (struct die_info *die,
1434 int *is_anonymous, struct dwarf2_cu *);
1435
1436 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1439 bool * = nullptr);
1440
1441 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1442 struct dwarf2_cu *);
1443
1444 static struct die_info *read_die_and_siblings_1
1445 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1446 struct die_info *);
1447
1448 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1449 const gdb_byte *info_ptr,
1450 const gdb_byte **new_info_ptr,
1451 struct die_info *parent);
1452
1453 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1454 struct die_info **, const gdb_byte *,
1455 int);
1456
1457 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1458 struct die_info **, const gdb_byte *);
1459
1460 static void process_die (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1463 struct objfile *);
1464
1465 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1466
1467 static const char *dwarf2_full_name (const char *name,
1468 struct die_info *die,
1469 struct dwarf2_cu *cu);
1470
1471 static const char *dwarf2_physname (const char *name, struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct die_info *dwarf2_extension (struct die_info *die,
1475 struct dwarf2_cu **);
1476
1477 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1478
1479 static void dump_die_for_error (struct die_info *);
1480
1481 static void dump_die_1 (struct ui_file *, int level, int max_level,
1482 struct die_info *);
1483
1484 /*static*/ void dump_die (struct die_info *, int max_level);
1485
1486 static void store_in_ref_table (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_debug_line_missing_file_complaint (void)
1682 {
1683 complaint (_(".debug_line section has line data without a file"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_end_sequence_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line "
1690 "program sequence without an end"));
1691 }
1692
1693 static void
1694 dwarf2_complex_location_expr_complaint (void)
1695 {
1696 complaint (_("location expression too complex"));
1697 }
1698
1699 static void
1700 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1701 int arg3)
1702 {
1703 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1704 arg1, arg2, arg3);
1705 }
1706
1707 static void
1708 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1709 {
1710 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1711 arg1, arg2);
1712 }
1713
1714 /* Hash function for line_header_hash. */
1715
1716 static hashval_t
1717 line_header_hash (const struct line_header *ofs)
1718 {
1719 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1720 }
1721
1722 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1723
1724 static hashval_t
1725 line_header_hash_voidp (const void *item)
1726 {
1727 const struct line_header *ofs = (const struct line_header *) item;
1728
1729 return line_header_hash (ofs);
1730 }
1731
1732 /* Equality function for line_header_hash. */
1733
1734 static int
1735 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1736 {
1737 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1738 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1739
1740 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1741 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1742 }
1743
1744 \f
1745
1746 /* See declaration. */
1747
1748 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1749 const dwarf2_debug_sections *names,
1750 bool can_copy_)
1751 : objfile (objfile_),
1752 can_copy (can_copy_)
1753 {
1754 if (names == NULL)
1755 names = &dwarf2_elf_names;
1756
1757 bfd *obfd = objfile->obfd;
1758
1759 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1760 locate_sections (obfd, sec, *names);
1761 }
1762
1763 dwarf2_per_objfile::~dwarf2_per_objfile ()
1764 {
1765 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1766 free_cached_comp_units ();
1767
1768 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1769 per_cu->imported_symtabs_free ();
1770
1771 for (signatured_type *sig_type : all_type_units)
1772 sig_type->per_cu.imported_symtabs_free ();
1773
1774 /* Everything else should be on the objfile obstack. */
1775 }
1776
1777 /* See declaration. */
1778
1779 void
1780 dwarf2_per_objfile::free_cached_comp_units ()
1781 {
1782 dwarf2_per_cu_data *per_cu = read_in_chain;
1783 dwarf2_per_cu_data **last_chain = &read_in_chain;
1784 while (per_cu != NULL)
1785 {
1786 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1787
1788 delete per_cu->cu;
1789 *last_chain = next_cu;
1790 per_cu = next_cu;
1791 }
1792 }
1793
1794 /* A helper class that calls free_cached_comp_units on
1795 destruction. */
1796
1797 class free_cached_comp_units
1798 {
1799 public:
1800
1801 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1802 : m_per_objfile (per_objfile)
1803 {
1804 }
1805
1806 ~free_cached_comp_units ()
1807 {
1808 m_per_objfile->free_cached_comp_units ();
1809 }
1810
1811 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1812
1813 private:
1814
1815 dwarf2_per_objfile *m_per_objfile;
1816 };
1817
1818 /* Try to locate the sections we need for DWARF 2 debugging
1819 information and return true if we have enough to do something.
1820 NAMES points to the dwarf2 section names, or is NULL if the standard
1821 ELF names are used. CAN_COPY is true for formats where symbol
1822 interposition is possible and so symbol values must follow copy
1823 relocation rules. */
1824
1825 int
1826 dwarf2_has_info (struct objfile *objfile,
1827 const struct dwarf2_debug_sections *names,
1828 bool can_copy)
1829 {
1830 if (objfile->flags & OBJF_READNEVER)
1831 return 0;
1832
1833 struct dwarf2_per_objfile *dwarf2_per_objfile
1834 = get_dwarf2_per_objfile (objfile);
1835
1836 if (dwarf2_per_objfile == NULL)
1837 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1838 names,
1839 can_copy);
1840
1841 return (!dwarf2_per_objfile->info.is_virtual
1842 && dwarf2_per_objfile->info.s.section != NULL
1843 && !dwarf2_per_objfile->abbrev.is_virtual
1844 && dwarf2_per_objfile->abbrev.s.section != NULL);
1845 }
1846
1847 /* When loading sections, we look either for uncompressed section or for
1848 compressed section names. */
1849
1850 static int
1851 section_is_p (const char *section_name,
1852 const struct dwarf2_section_names *names)
1853 {
1854 if (names->normal != NULL
1855 && strcmp (section_name, names->normal) == 0)
1856 return 1;
1857 if (names->compressed != NULL
1858 && strcmp (section_name, names->compressed) == 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /* See declaration. */
1864
1865 void
1866 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1867 const dwarf2_debug_sections &names)
1868 {
1869 flagword aflag = bfd_section_flags (sectp);
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (elf_section_data (sectp)->this_hdr.sh_size
1875 > bfd_get_file_size (abfd))
1876 {
1877 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1878 warning (_("Discarding section %s which has a section size (%s"
1879 ") larger than the file size [in module %s]"),
1880 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1881 bfd_get_filename (abfd));
1882 }
1883 else if (section_is_p (sectp->name, &names.info))
1884 {
1885 this->info.s.section = sectp;
1886 this->info.size = bfd_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names.abbrev))
1889 {
1890 this->abbrev.s.section = sectp;
1891 this->abbrev.size = bfd_section_size (sectp);
1892 }
1893 else if (section_is_p (sectp->name, &names.line))
1894 {
1895 this->line.s.section = sectp;
1896 this->line.size = bfd_section_size (sectp);
1897 }
1898 else if (section_is_p (sectp->name, &names.loc))
1899 {
1900 this->loc.s.section = sectp;
1901 this->loc.size = bfd_section_size (sectp);
1902 }
1903 else if (section_is_p (sectp->name, &names.loclists))
1904 {
1905 this->loclists.s.section = sectp;
1906 this->loclists.size = bfd_section_size (sectp);
1907 }
1908 else if (section_is_p (sectp->name, &names.macinfo))
1909 {
1910 this->macinfo.s.section = sectp;
1911 this->macinfo.size = bfd_section_size (sectp);
1912 }
1913 else if (section_is_p (sectp->name, &names.macro))
1914 {
1915 this->macro.s.section = sectp;
1916 this->macro.size = bfd_section_size (sectp);
1917 }
1918 else if (section_is_p (sectp->name, &names.str))
1919 {
1920 this->str.s.section = sectp;
1921 this->str.size = bfd_section_size (sectp);
1922 }
1923 else if (section_is_p (sectp->name, &names.str_offsets))
1924 {
1925 this->str_offsets.s.section = sectp;
1926 this->str_offsets.size = bfd_section_size (sectp);
1927 }
1928 else if (section_is_p (sectp->name, &names.line_str))
1929 {
1930 this->line_str.s.section = sectp;
1931 this->line_str.size = bfd_section_size (sectp);
1932 }
1933 else if (section_is_p (sectp->name, &names.addr))
1934 {
1935 this->addr.s.section = sectp;
1936 this->addr.size = bfd_section_size (sectp);
1937 }
1938 else if (section_is_p (sectp->name, &names.frame))
1939 {
1940 this->frame.s.section = sectp;
1941 this->frame.size = bfd_section_size (sectp);
1942 }
1943 else if (section_is_p (sectp->name, &names.eh_frame))
1944 {
1945 this->eh_frame.s.section = sectp;
1946 this->eh_frame.size = bfd_section_size (sectp);
1947 }
1948 else if (section_is_p (sectp->name, &names.ranges))
1949 {
1950 this->ranges.s.section = sectp;
1951 this->ranges.size = bfd_section_size (sectp);
1952 }
1953 else if (section_is_p (sectp->name, &names.rnglists))
1954 {
1955 this->rnglists.s.section = sectp;
1956 this->rnglists.size = bfd_section_size (sectp);
1957 }
1958 else if (section_is_p (sectp->name, &names.types))
1959 {
1960 struct dwarf2_section_info type_section;
1961
1962 memset (&type_section, 0, sizeof (type_section));
1963 type_section.s.section = sectp;
1964 type_section.size = bfd_section_size (sectp);
1965
1966 this->types.push_back (type_section);
1967 }
1968 else if (section_is_p (sectp->name, &names.gdb_index))
1969 {
1970 this->gdb_index.s.section = sectp;
1971 this->gdb_index.size = bfd_section_size (sectp);
1972 }
1973 else if (section_is_p (sectp->name, &names.debug_names))
1974 {
1975 this->debug_names.s.section = sectp;
1976 this->debug_names.size = bfd_section_size (sectp);
1977 }
1978 else if (section_is_p (sectp->name, &names.debug_aranges))
1979 {
1980 this->debug_aranges.s.section = sectp;
1981 this->debug_aranges.size = bfd_section_size (sectp);
1982 }
1983
1984 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1985 && bfd_section_vma (sectp) == 0)
1986 this->has_section_at_zero = true;
1987 }
1988
1989 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 SECTION_NAME. */
1991
1992 void
1993 dwarf2_get_section_info (struct objfile *objfile,
1994 enum dwarf2_section_enum sect,
1995 asection **sectp, const gdb_byte **bufp,
1996 bfd_size_type *sizep)
1997 {
1998 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1999 struct dwarf2_section_info *info;
2000
2001 /* We may see an objfile without any DWARF, in which case we just
2002 return nothing. */
2003 if (data == NULL)
2004 {
2005 *sectp = NULL;
2006 *bufp = NULL;
2007 *sizep = 0;
2008 return;
2009 }
2010 switch (sect)
2011 {
2012 case DWARF2_DEBUG_FRAME:
2013 info = &data->frame;
2014 break;
2015 case DWARF2_EH_FRAME:
2016 info = &data->eh_frame;
2017 break;
2018 default:
2019 gdb_assert_not_reached ("unexpected section");
2020 }
2021
2022 info->read (objfile);
2023
2024 *sectp = info->get_bfd_section ();
2025 *bufp = info->buffer;
2026 *sizep = info->size;
2027 }
2028
2029 /* A helper function to find the sections for a .dwz file. */
2030
2031 static void
2032 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2033 {
2034 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2035
2036 /* Note that we only support the standard ELF names, because .dwz
2037 is ELF-only (at the time of writing). */
2038 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2039 {
2040 dwz_file->abbrev.s.section = sectp;
2041 dwz_file->abbrev.size = bfd_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2044 {
2045 dwz_file->info.s.section = sectp;
2046 dwz_file->info.size = bfd_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2049 {
2050 dwz_file->str.s.section = sectp;
2051 dwz_file->str.size = bfd_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2054 {
2055 dwz_file->line.s.section = sectp;
2056 dwz_file->line.size = bfd_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2059 {
2060 dwz_file->macro.s.section = sectp;
2061 dwz_file->macro.size = bfd_section_size (sectp);
2062 }
2063 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2064 {
2065 dwz_file->gdb_index.s.section = sectp;
2066 dwz_file->gdb_index.size = bfd_section_size (sectp);
2067 }
2068 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2069 {
2070 dwz_file->debug_names.s.section = sectp;
2071 dwz_file->debug_names.size = bfd_section_size (sectp);
2072 }
2073 }
2074
2075 /* See dwarf2read.h. */
2076
2077 struct dwz_file *
2078 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2079 {
2080 const char *filename;
2081 bfd_size_type buildid_len_arg;
2082 size_t buildid_len;
2083 bfd_byte *buildid;
2084
2085 if (dwarf2_per_objfile->dwz_file != NULL)
2086 return dwarf2_per_objfile->dwz_file.get ();
2087
2088 bfd_set_error (bfd_error_no_error);
2089 gdb::unique_xmalloc_ptr<char> data
2090 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2091 &buildid_len_arg, &buildid));
2092 if (data == NULL)
2093 {
2094 if (bfd_get_error () == bfd_error_no_error)
2095 return NULL;
2096 error (_("could not read '.gnu_debugaltlink' section: %s"),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2101
2102 buildid_len = (size_t) buildid_len_arg;
2103
2104 filename = data.get ();
2105
2106 std::string abs_storage;
2107 if (!IS_ABSOLUTE_PATH (filename))
2108 {
2109 gdb::unique_xmalloc_ptr<char> abs
2110 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2111
2112 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2113 filename = abs_storage.c_str ();
2114 }
2115
2116 /* First try the file name given in the section. If that doesn't
2117 work, try to use the build-id instead. */
2118 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget));
2119 if (dwz_bfd != NULL)
2120 {
2121 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2122 dwz_bfd.reset (nullptr);
2123 }
2124
2125 if (dwz_bfd == NULL)
2126 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2127
2128 if (dwz_bfd == nullptr)
2129 {
2130 gdb::unique_xmalloc_ptr<char> alt_filename;
2131 const char *origname = dwarf2_per_objfile->objfile->original_name;
2132
2133 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2134 buildid_len,
2135 origname,
2136 &alt_filename));
2137
2138 if (fd.get () >= 0)
2139 {
2140 /* File successfully retrieved from server. */
2141 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget);
2142
2143 if (dwz_bfd == nullptr)
2144 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2145 alt_filename.get ());
2146 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2147 dwz_bfd.reset (nullptr);
2148 }
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 error (_("could not find '.gnu_debugaltlink' file for %s"),
2153 objfile_name (dwarf2_per_objfile->objfile));
2154
2155 std::unique_ptr<struct dwz_file> result
2156 (new struct dwz_file (std::move (dwz_bfd)));
2157
2158 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2159 result.get ());
2160
2161 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2162 result->dwz_bfd.get ());
2163 dwarf2_per_objfile->dwz_file = std::move (result);
2164 return dwarf2_per_objfile->dwz_file.get ();
2165 }
2166 \f
2167 /* DWARF quick_symbols_functions support. */
2168
2169 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2170 unique line tables, so we maintain a separate table of all .debug_line
2171 derived entries to support the sharing.
2172 All the quick functions need is the list of file names. We discard the
2173 line_header when we're done and don't need to record it here. */
2174 struct quick_file_names
2175 {
2176 /* The data used to construct the hash key. */
2177 struct stmt_list_hash hash;
2178
2179 /* The number of entries in file_names, real_names. */
2180 unsigned int num_file_names;
2181
2182 /* The file names from the line table, after being run through
2183 file_full_name. */
2184 const char **file_names;
2185
2186 /* The file names from the line table after being run through
2187 gdb_realpath. These are computed lazily. */
2188 const char **real_names;
2189 };
2190
2191 /* When using the index (and thus not using psymtabs), each CU has an
2192 object of this type. This is used to hold information needed by
2193 the various "quick" methods. */
2194 struct dwarf2_per_cu_quick_data
2195 {
2196 /* The file table. This can be NULL if there was no file table
2197 or it's currently not read in.
2198 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2199 struct quick_file_names *file_names;
2200
2201 /* The corresponding symbol table. This is NULL if symbols for this
2202 CU have not yet been read. */
2203 struct compunit_symtab *compunit_symtab;
2204
2205 /* A temporary mark bit used when iterating over all CUs in
2206 expand_symtabs_matching. */
2207 unsigned int mark : 1;
2208
2209 /* True if we've tried to read the file table and found there isn't one.
2210 There will be no point in trying to read it again next time. */
2211 unsigned int no_file_data : 1;
2212 };
2213
2214 /* Utility hash function for a stmt_list_hash. */
2215
2216 static hashval_t
2217 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2218 {
2219 hashval_t v = 0;
2220
2221 if (stmt_list_hash->dwo_unit != NULL)
2222 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2223 v += to_underlying (stmt_list_hash->line_sect_off);
2224 return v;
2225 }
2226
2227 /* Utility equality function for a stmt_list_hash. */
2228
2229 static int
2230 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2231 const struct stmt_list_hash *rhs)
2232 {
2233 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2234 return 0;
2235 if (lhs->dwo_unit != NULL
2236 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2237 return 0;
2238
2239 return lhs->line_sect_off == rhs->line_sect_off;
2240 }
2241
2242 /* Hash function for a quick_file_names. */
2243
2244 static hashval_t
2245 hash_file_name_entry (const void *e)
2246 {
2247 const struct quick_file_names *file_data
2248 = (const struct quick_file_names *) e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2259 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = (struct quick_file_names *) e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on the obstack, so we don't
2280 free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_up
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_up (htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree));
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2304
2305 if (per_cu->cu == NULL)
2306 return; /* Dummy CU. */
2307
2308 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2309 }
2310
2311 /* Read in the symbols for PER_CU. */
2312
2313 static void
2314 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2315 {
2316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2317
2318 /* Skip type_unit_groups, reading the type units they contain
2319 is handled elsewhere. */
2320 if (per_cu->type_unit_group_p ())
2321 return;
2322
2323 /* The destructor of dwarf2_queue_guard frees any entries left on
2324 the queue. After this point we're guaranteed to leave this function
2325 with the dwarf queue empty. */
2326 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->compunit_symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu, skip_partial);
2334
2335 /* If we just loaded a CU from a DWO, and we're working with an index
2336 that may badly handle TUs, load all the TUs in that DWO as well.
2337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2338 if (!per_cu->is_debug_types
2339 && per_cu->cu != NULL
2340 && per_cu->cu->dwo_unit != NULL
2341 && dwarf2_per_objfile->index_table != NULL
2342 && dwarf2_per_objfile->index_table->version <= 7
2343 /* DWP files aren't supported yet. */
2344 && get_dwp_file (dwarf2_per_objfile) == NULL)
2345 queue_and_load_all_dwo_tus (per_cu);
2346 }
2347
2348 process_queue (dwarf2_per_objfile);
2349
2350 /* Age the cache, releasing compilation units that have not
2351 been used recently. */
2352 age_cached_comp_units (dwarf2_per_objfile);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct compunit_symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2361 {
2362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2363
2364 gdb_assert (dwarf2_per_objfile->using_index);
2365 if (!per_cu->v.quick->compunit_symtab)
2366 {
2367 free_cached_comp_units freer (dwarf2_per_objfile);
2368 scoped_restore decrementer = increment_reading_symtab ();
2369 dw2_do_instantiate_symtab (per_cu, skip_partial);
2370 process_cu_includes (dwarf2_per_objfile);
2371 }
2372
2373 return per_cu->v.quick->compunit_symtab;
2374 }
2375
2376 /* See declaration. */
2377
2378 dwarf2_per_cu_data *
2379 dwarf2_per_objfile::get_cutu (int index)
2380 {
2381 if (index >= this->all_comp_units.size ())
2382 {
2383 index -= this->all_comp_units.size ();
2384 gdb_assert (index < this->all_type_units.size ());
2385 return &this->all_type_units[index]->per_cu;
2386 }
2387
2388 return this->all_comp_units[index];
2389 }
2390
2391 /* See declaration. */
2392
2393 dwarf2_per_cu_data *
2394 dwarf2_per_objfile::get_cu (int index)
2395 {
2396 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2397
2398 return this->all_comp_units[index];
2399 }
2400
2401 /* See declaration. */
2402
2403 signatured_type *
2404 dwarf2_per_objfile::get_tu (int index)
2405 {
2406 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2407
2408 return this->all_type_units[index];
2409 }
2410
2411 /* Return a new dwarf2_per_cu_data allocated on the dwarf2_per_objfile
2412 obstack, and constructed with the specified field values. */
2413
2414 static dwarf2_per_cu_data *
2415 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2416 struct dwarf2_section_info *section,
2417 int is_dwz,
2418 sect_offset sect_off, ULONGEST length)
2419 {
2420 dwarf2_per_cu_data *the_cu
2421 = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
2422 struct dwarf2_per_cu_data);
2423 the_cu->sect_off = sect_off;
2424 the_cu->length = length;
2425 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2426 the_cu->section = section;
2427 the_cu->v.quick = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
2428 struct dwarf2_per_cu_quick_data);
2429 the_cu->is_dwz = is_dwz;
2430 return the_cu;
2431 }
2432
2433 /* A helper for create_cus_from_index that handles a given list of
2434 CUs. */
2435
2436 static void
2437 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2438 const gdb_byte *cu_list, offset_type n_elements,
2439 struct dwarf2_section_info *section,
2440 int is_dwz)
2441 {
2442 for (offset_type i = 0; i < n_elements; i += 2)
2443 {
2444 gdb_static_assert (sizeof (ULONGEST) >= 8);
2445
2446 sect_offset sect_off
2447 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2448 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2449 cu_list += 2 * 8;
2450
2451 dwarf2_per_cu_data *per_cu
2452 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2453 sect_off, length);
2454 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2455 }
2456 }
2457
2458 /* Read the CU list from the mapped index, and use it to create all
2459 the CU objects for this objfile. */
2460
2461 static void
2462 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2463 const gdb_byte *cu_list, offset_type cu_list_elements,
2464 const gdb_byte *dwz_list, offset_type dwz_elements)
2465 {
2466 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2467 dwarf2_per_objfile->all_comp_units.reserve
2468 ((cu_list_elements + dwz_elements) / 2);
2469
2470 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2471 &dwarf2_per_objfile->info, 0);
2472
2473 if (dwz_elements == 0)
2474 return;
2475
2476 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2477 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2478 &dwz->info, 1);
2479 }
2480
2481 /* Create the signatured type hash table from the index. */
2482
2483 static void
2484 create_signatured_type_table_from_index
2485 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2486 struct dwarf2_section_info *section,
2487 const gdb_byte *bytes,
2488 offset_type elements)
2489 {
2490 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2491 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2492
2493 htab_up sig_types_hash = allocate_signatured_type_table ();
2494
2495 for (offset_type i = 0; i < elements; i += 3)
2496 {
2497 struct signatured_type *sig_type;
2498 ULONGEST signature;
2499 void **slot;
2500 cu_offset type_offset_in_tu;
2501
2502 gdb_static_assert (sizeof (ULONGEST) >= 8);
2503 sect_offset sect_off
2504 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2505 type_offset_in_tu
2506 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2507 BFD_ENDIAN_LITTLE);
2508 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2509 bytes += 3 * 8;
2510
2511 sig_type = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
2512 struct signatured_type);
2513 sig_type->signature = signature;
2514 sig_type->type_offset_in_tu = type_offset_in_tu;
2515 sig_type->per_cu.is_debug_types = 1;
2516 sig_type->per_cu.section = section;
2517 sig_type->per_cu.sect_off = sect_off;
2518 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2519 sig_type->per_cu.v.quick
2520 = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
2521 struct dwarf2_per_cu_quick_data);
2522
2523 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2524 *slot = sig_type;
2525
2526 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2527 }
2528
2529 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2530 }
2531
2532 /* Create the signatured type hash table from .debug_names. */
2533
2534 static void
2535 create_signatured_type_table_from_debug_names
2536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2537 const mapped_debug_names &map,
2538 struct dwarf2_section_info *section,
2539 struct dwarf2_section_info *abbrev_section)
2540 {
2541 struct objfile *objfile = dwarf2_per_objfile->objfile;
2542
2543 section->read (objfile);
2544 abbrev_section->read (objfile);
2545
2546 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2547 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2548
2549 htab_up sig_types_hash = allocate_signatured_type_table ();
2550
2551 for (uint32_t i = 0; i < map.tu_count; ++i)
2552 {
2553 struct signatured_type *sig_type;
2554 void **slot;
2555
2556 sect_offset sect_off
2557 = (sect_offset) (extract_unsigned_integer
2558 (map.tu_table_reordered + i * map.offset_size,
2559 map.offset_size,
2560 map.dwarf5_byte_order));
2561
2562 comp_unit_head cu_header;
2563 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2564 abbrev_section,
2565 section->buffer + to_underlying (sect_off),
2566 rcuh_kind::TYPE);
2567
2568 sig_type = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
2569 struct signatured_type);
2570 sig_type->signature = cu_header.signature;
2571 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2572 sig_type->per_cu.is_debug_types = 1;
2573 sig_type->per_cu.section = section;
2574 sig_type->per_cu.sect_off = sect_off;
2575 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2576 sig_type->per_cu.v.quick
2577 = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
2578 struct dwarf2_per_cu_quick_data);
2579
2580 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2581 *slot = sig_type;
2582
2583 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2584 }
2585
2586 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2587 }
2588
2589 /* Read the address map data from the mapped index, and use it to
2590 populate the objfile's psymtabs_addrmap. */
2591
2592 static void
2593 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2594 struct mapped_index *index)
2595 {
2596 struct objfile *objfile = dwarf2_per_objfile->objfile;
2597 struct gdbarch *gdbarch = objfile->arch ();
2598 const gdb_byte *iter, *end;
2599 struct addrmap *mutable_map;
2600 CORE_ADDR baseaddr;
2601
2602 auto_obstack temp_obstack;
2603
2604 mutable_map = addrmap_create_mutable (&temp_obstack);
2605
2606 iter = index->address_table.data ();
2607 end = iter + index->address_table.size ();
2608
2609 baseaddr = objfile->text_section_offset ();
2610
2611 while (iter < end)
2612 {
2613 ULONGEST hi, lo, cu_index;
2614 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2615 iter += 8;
2616 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2617 iter += 8;
2618 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2619 iter += 4;
2620
2621 if (lo > hi)
2622 {
2623 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2624 hex_string (lo), hex_string (hi));
2625 continue;
2626 }
2627
2628 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2629 {
2630 complaint (_(".gdb_index address table has invalid CU number %u"),
2631 (unsigned) cu_index);
2632 continue;
2633 }
2634
2635 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2636 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2637 addrmap_set_empty (mutable_map, lo, hi - 1,
2638 dwarf2_per_objfile->get_cu (cu_index));
2639 }
2640
2641 objfile->partial_symtabs->psymtabs_addrmap
2642 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2643 }
2644
2645 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2646 populate the objfile's psymtabs_addrmap. */
2647
2648 static void
2649 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2650 struct dwarf2_section_info *section)
2651 {
2652 struct objfile *objfile = dwarf2_per_objfile->objfile;
2653 bfd *abfd = objfile->obfd;
2654 struct gdbarch *gdbarch = objfile->arch ();
2655 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2656
2657 auto_obstack temp_obstack;
2658 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2659
2660 std::unordered_map<sect_offset,
2661 dwarf2_per_cu_data *,
2662 gdb::hash_enum<sect_offset>>
2663 debug_info_offset_to_per_cu;
2664 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2665 {
2666 const auto insertpair
2667 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2668 if (!insertpair.second)
2669 {
2670 warning (_("Section .debug_aranges in %s has duplicate "
2671 "debug_info_offset %s, ignoring .debug_aranges."),
2672 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2673 return;
2674 }
2675 }
2676
2677 section->read (objfile);
2678
2679 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2680
2681 const gdb_byte *addr = section->buffer;
2682
2683 while (addr < section->buffer + section->size)
2684 {
2685 const gdb_byte *const entry_addr = addr;
2686 unsigned int bytes_read;
2687
2688 const LONGEST entry_length = read_initial_length (abfd, addr,
2689 &bytes_read);
2690 addr += bytes_read;
2691
2692 const gdb_byte *const entry_end = addr + entry_length;
2693 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2694 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2695 if (addr + entry_length > section->buffer + section->size)
2696 {
2697 warning (_("Section .debug_aranges in %s entry at offset %s "
2698 "length %s exceeds section length %s, "
2699 "ignoring .debug_aranges."),
2700 objfile_name (objfile),
2701 plongest (entry_addr - section->buffer),
2702 plongest (bytes_read + entry_length),
2703 pulongest (section->size));
2704 return;
2705 }
2706
2707 /* The version number. */
2708 const uint16_t version = read_2_bytes (abfd, addr);
2709 addr += 2;
2710 if (version != 2)
2711 {
2712 warning (_("Section .debug_aranges in %s entry at offset %s "
2713 "has unsupported version %d, ignoring .debug_aranges."),
2714 objfile_name (objfile),
2715 plongest (entry_addr - section->buffer), version);
2716 return;
2717 }
2718
2719 const uint64_t debug_info_offset
2720 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2721 addr += offset_size;
2722 const auto per_cu_it
2723 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2724 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2725 {
2726 warning (_("Section .debug_aranges in %s entry at offset %s "
2727 "debug_info_offset %s does not exists, "
2728 "ignoring .debug_aranges."),
2729 objfile_name (objfile),
2730 plongest (entry_addr - section->buffer),
2731 pulongest (debug_info_offset));
2732 return;
2733 }
2734 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2735
2736 const uint8_t address_size = *addr++;
2737 if (address_size < 1 || address_size > 8)
2738 {
2739 warning (_("Section .debug_aranges in %s entry at offset %s "
2740 "address_size %u is invalid, ignoring .debug_aranges."),
2741 objfile_name (objfile),
2742 plongest (entry_addr - section->buffer), address_size);
2743 return;
2744 }
2745
2746 const uint8_t segment_selector_size = *addr++;
2747 if (segment_selector_size != 0)
2748 {
2749 warning (_("Section .debug_aranges in %s entry at offset %s "
2750 "segment_selector_size %u is not supported, "
2751 "ignoring .debug_aranges."),
2752 objfile_name (objfile),
2753 plongest (entry_addr - section->buffer),
2754 segment_selector_size);
2755 return;
2756 }
2757
2758 /* Must pad to an alignment boundary that is twice the address
2759 size. It is undocumented by the DWARF standard but GCC does
2760 use it. */
2761 for (size_t padding = ((-(addr - section->buffer))
2762 & (2 * address_size - 1));
2763 padding > 0; padding--)
2764 if (*addr++ != 0)
2765 {
2766 warning (_("Section .debug_aranges in %s entry at offset %s "
2767 "padding is not zero, ignoring .debug_aranges."),
2768 objfile_name (objfile),
2769 plongest (entry_addr - section->buffer));
2770 return;
2771 }
2772
2773 for (;;)
2774 {
2775 if (addr + 2 * address_size > entry_end)
2776 {
2777 warning (_("Section .debug_aranges in %s entry at offset %s "
2778 "address list is not properly terminated, "
2779 "ignoring .debug_aranges."),
2780 objfile_name (objfile),
2781 plongest (entry_addr - section->buffer));
2782 return;
2783 }
2784 ULONGEST start = extract_unsigned_integer (addr, address_size,
2785 dwarf5_byte_order);
2786 addr += address_size;
2787 ULONGEST length = extract_unsigned_integer (addr, address_size,
2788 dwarf5_byte_order);
2789 addr += address_size;
2790 if (start == 0 && length == 0)
2791 break;
2792 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2793 {
2794 /* Symbol was eliminated due to a COMDAT group. */
2795 continue;
2796 }
2797 ULONGEST end = start + length;
2798 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2799 - baseaddr);
2800 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2801 - baseaddr);
2802 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2803 }
2804 }
2805
2806 objfile->partial_symtabs->psymtabs_addrmap
2807 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2808 }
2809
2810 /* Find a slot in the mapped index INDEX for the object named NAME.
2811 If NAME is found, set *VEC_OUT to point to the CU vector in the
2812 constant pool and return true. If NAME cannot be found, return
2813 false. */
2814
2815 static bool
2816 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2817 offset_type **vec_out)
2818 {
2819 offset_type hash;
2820 offset_type slot, step;
2821 int (*cmp) (const char *, const char *);
2822
2823 gdb::unique_xmalloc_ptr<char> without_params;
2824 if (current_language->la_language == language_cplus
2825 || current_language->la_language == language_fortran
2826 || current_language->la_language == language_d)
2827 {
2828 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2829 not contain any. */
2830
2831 if (strchr (name, '(') != NULL)
2832 {
2833 without_params = cp_remove_params (name);
2834
2835 if (without_params != NULL)
2836 name = without_params.get ();
2837 }
2838 }
2839
2840 /* Index version 4 did not support case insensitive searches. But the
2841 indices for case insensitive languages are built in lowercase, therefore
2842 simulate our NAME being searched is also lowercased. */
2843 hash = mapped_index_string_hash ((index->version == 4
2844 && case_sensitivity == case_sensitive_off
2845 ? 5 : index->version),
2846 name);
2847
2848 slot = hash & (index->symbol_table.size () - 1);
2849 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2850 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2851
2852 for (;;)
2853 {
2854 const char *str;
2855
2856 const auto &bucket = index->symbol_table[slot];
2857 if (bucket.name == 0 && bucket.vec == 0)
2858 return false;
2859
2860 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2861 if (!cmp (name, str))
2862 {
2863 *vec_out = (offset_type *) (index->constant_pool
2864 + MAYBE_SWAP (bucket.vec));
2865 return true;
2866 }
2867
2868 slot = (slot + step) & (index->symbol_table.size () - 1);
2869 }
2870 }
2871
2872 /* A helper function that reads the .gdb_index from BUFFER and fills
2873 in MAP. FILENAME is the name of the file containing the data;
2874 it is used for error reporting. DEPRECATED_OK is true if it is
2875 ok to use deprecated sections.
2876
2877 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2878 out parameters that are filled in with information about the CU and
2879 TU lists in the section.
2880
2881 Returns true if all went well, false otherwise. */
2882
2883 static bool
2884 read_gdb_index_from_buffer (const char *filename,
2885 bool deprecated_ok,
2886 gdb::array_view<const gdb_byte> buffer,
2887 struct mapped_index *map,
2888 const gdb_byte **cu_list,
2889 offset_type *cu_list_elements,
2890 const gdb_byte **types_list,
2891 offset_type *types_list_elements)
2892 {
2893 const gdb_byte *addr = &buffer[0];
2894
2895 /* Version check. */
2896 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2897 /* Versions earlier than 3 emitted every copy of a psymbol. This
2898 causes the index to behave very poorly for certain requests. Version 3
2899 contained incomplete addrmap. So, it seems better to just ignore such
2900 indices. */
2901 if (version < 4)
2902 {
2903 static int warning_printed = 0;
2904 if (!warning_printed)
2905 {
2906 warning (_("Skipping obsolete .gdb_index section in %s."),
2907 filename);
2908 warning_printed = 1;
2909 }
2910 return 0;
2911 }
2912 /* Index version 4 uses a different hash function than index version
2913 5 and later.
2914
2915 Versions earlier than 6 did not emit psymbols for inlined
2916 functions. Using these files will cause GDB not to be able to
2917 set breakpoints on inlined functions by name, so we ignore these
2918 indices unless the user has done
2919 "set use-deprecated-index-sections on". */
2920 if (version < 6 && !deprecated_ok)
2921 {
2922 static int warning_printed = 0;
2923 if (!warning_printed)
2924 {
2925 warning (_("\
2926 Skipping deprecated .gdb_index section in %s.\n\
2927 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2928 to use the section anyway."),
2929 filename);
2930 warning_printed = 1;
2931 }
2932 return 0;
2933 }
2934 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2935 of the TU (for symbols coming from TUs),
2936 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2937 Plus gold-generated indices can have duplicate entries for global symbols,
2938 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2939 These are just performance bugs, and we can't distinguish gdb-generated
2940 indices from gold-generated ones, so issue no warning here. */
2941
2942 /* Indexes with higher version than the one supported by GDB may be no
2943 longer backward compatible. */
2944 if (version > 8)
2945 return 0;
2946
2947 map->version = version;
2948
2949 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2950
2951 int i = 0;
2952 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2953 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2954 / 8);
2955 ++i;
2956
2957 *types_list = addr + MAYBE_SWAP (metadata[i]);
2958 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2959 - MAYBE_SWAP (metadata[i]))
2960 / 8);
2961 ++i;
2962
2963 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2964 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2965 map->address_table
2966 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2967 ++i;
2968
2969 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2970 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2971 map->symbol_table
2972 = gdb::array_view<mapped_index::symbol_table_slot>
2973 ((mapped_index::symbol_table_slot *) symbol_table,
2974 (mapped_index::symbol_table_slot *) symbol_table_end);
2975
2976 ++i;
2977 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2978
2979 return 1;
2980 }
2981
2982 /* Callback types for dwarf2_read_gdb_index. */
2983
2984 typedef gdb::function_view
2985 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2986 get_gdb_index_contents_ftype;
2987 typedef gdb::function_view
2988 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2989 get_gdb_index_contents_dwz_ftype;
2990
2991 /* Read .gdb_index. If everything went ok, initialize the "quick"
2992 elements of all the CUs and return 1. Otherwise, return 0. */
2993
2994 static int
2995 dwarf2_read_gdb_index
2996 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2997 get_gdb_index_contents_ftype get_gdb_index_contents,
2998 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2999 {
3000 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3001 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3002 struct dwz_file *dwz;
3003 struct objfile *objfile = dwarf2_per_objfile->objfile;
3004
3005 gdb::array_view<const gdb_byte> main_index_contents
3006 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3007
3008 if (main_index_contents.empty ())
3009 return 0;
3010
3011 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3012 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3013 use_deprecated_index_sections,
3014 main_index_contents, map.get (), &cu_list,
3015 &cu_list_elements, &types_list,
3016 &types_list_elements))
3017 return 0;
3018
3019 /* Don't use the index if it's empty. */
3020 if (map->symbol_table.empty ())
3021 return 0;
3022
3023 /* If there is a .dwz file, read it so we can get its CU list as
3024 well. */
3025 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3026 if (dwz != NULL)
3027 {
3028 struct mapped_index dwz_map;
3029 const gdb_byte *dwz_types_ignore;
3030 offset_type dwz_types_elements_ignore;
3031
3032 gdb::array_view<const gdb_byte> dwz_index_content
3033 = get_gdb_index_contents_dwz (objfile, dwz);
3034
3035 if (dwz_index_content.empty ())
3036 return 0;
3037
3038 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3039 1, dwz_index_content, &dwz_map,
3040 &dwz_list, &dwz_list_elements,
3041 &dwz_types_ignore,
3042 &dwz_types_elements_ignore))
3043 {
3044 warning (_("could not read '.gdb_index' section from %s; skipping"),
3045 bfd_get_filename (dwz->dwz_bfd.get ()));
3046 return 0;
3047 }
3048 }
3049
3050 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3051 dwz_list, dwz_list_elements);
3052
3053 if (types_list_elements)
3054 {
3055 /* We can only handle a single .debug_types when we have an
3056 index. */
3057 if (dwarf2_per_objfile->types.size () != 1)
3058 return 0;
3059
3060 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3061
3062 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3063 types_list, types_list_elements);
3064 }
3065
3066 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3067
3068 dwarf2_per_objfile->index_table = std::move (map);
3069 dwarf2_per_objfile->using_index = 1;
3070 dwarf2_per_objfile->quick_file_names_table =
3071 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3072
3073 return 1;
3074 }
3075
3076 /* die_reader_func for dw2_get_file_names. */
3077
3078 static void
3079 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3080 const gdb_byte *info_ptr,
3081 struct die_info *comp_unit_die)
3082 {
3083 struct dwarf2_cu *cu = reader->cu;
3084 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3085 struct dwarf2_per_objfile *dwarf2_per_objfile
3086 = cu->per_cu->dwarf2_per_objfile;
3087 struct dwarf2_per_cu_data *lh_cu;
3088 struct attribute *attr;
3089 void **slot;
3090 struct quick_file_names *qfn;
3091
3092 gdb_assert (! this_cu->is_debug_types);
3093
3094 /* Our callers never want to match partial units -- instead they
3095 will match the enclosing full CU. */
3096 if (comp_unit_die->tag == DW_TAG_partial_unit)
3097 {
3098 this_cu->v.quick->no_file_data = 1;
3099 return;
3100 }
3101
3102 lh_cu = this_cu;
3103 slot = NULL;
3104
3105 line_header_up lh;
3106 sect_offset line_offset {};
3107
3108 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3109 if (attr != nullptr)
3110 {
3111 struct quick_file_names find_entry;
3112
3113 line_offset = (sect_offset) DW_UNSND (attr);
3114
3115 /* We may have already read in this line header (TU line header sharing).
3116 If we have we're done. */
3117 find_entry.hash.dwo_unit = cu->dwo_unit;
3118 find_entry.hash.line_sect_off = line_offset;
3119 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3120 &find_entry, INSERT);
3121 if (*slot != NULL)
3122 {
3123 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3124 return;
3125 }
3126
3127 lh = dwarf_decode_line_header (line_offset, cu);
3128 }
3129 if (lh == NULL)
3130 {
3131 lh_cu->v.quick->no_file_data = 1;
3132 return;
3133 }
3134
3135 qfn = XOBNEW (&dwarf2_per_objfile->obstack, struct quick_file_names);
3136 qfn->hash.dwo_unit = cu->dwo_unit;
3137 qfn->hash.line_sect_off = line_offset;
3138 gdb_assert (slot != NULL);
3139 *slot = qfn;
3140
3141 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3142
3143 int offset = 0;
3144 if (strcmp (fnd.name, "<unknown>") != 0)
3145 ++offset;
3146
3147 qfn->num_file_names = offset + lh->file_names_size ();
3148 qfn->file_names =
3149 XOBNEWVEC (&dwarf2_per_objfile->obstack, const char *,
3150 qfn->num_file_names);
3151 if (offset != 0)
3152 qfn->file_names[0] = xstrdup (fnd.name);
3153 for (int i = 0; i < lh->file_names_size (); ++i)
3154 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3155 fnd.comp_dir).release ();
3156 qfn->real_names = NULL;
3157
3158 lh_cu->v.quick->file_names = qfn;
3159 }
3160
3161 /* A helper for the "quick" functions which attempts to read the line
3162 table for THIS_CU. */
3163
3164 static struct quick_file_names *
3165 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3166 {
3167 /* This should never be called for TUs. */
3168 gdb_assert (! this_cu->is_debug_types);
3169 /* Nor type unit groups. */
3170 gdb_assert (! this_cu->type_unit_group_p ());
3171
3172 if (this_cu->v.quick->file_names != NULL)
3173 return this_cu->v.quick->file_names;
3174 /* If we know there is no line data, no point in looking again. */
3175 if (this_cu->v.quick->no_file_data)
3176 return NULL;
3177
3178 cutu_reader reader (this_cu);
3179 if (!reader.dummy_p)
3180 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3181
3182 if (this_cu->v.quick->no_file_data)
3183 return NULL;
3184 return this_cu->v.quick->file_names;
3185 }
3186
3187 /* A helper for the "quick" functions which computes and caches the
3188 real path for a given file name from the line table. */
3189
3190 static const char *
3191 dw2_get_real_path (struct dwarf2_per_objfile *dwarf2_per_objfile,
3192 struct quick_file_names *qfn, int index)
3193 {
3194 if (qfn->real_names == NULL)
3195 qfn->real_names = OBSTACK_CALLOC (&dwarf2_per_objfile->obstack,
3196 qfn->num_file_names, const char *);
3197
3198 if (qfn->real_names[index] == NULL)
3199 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3200
3201 return qfn->real_names[index];
3202 }
3203
3204 static struct symtab *
3205 dw2_find_last_source_symtab (struct objfile *objfile)
3206 {
3207 struct dwarf2_per_objfile *dwarf2_per_objfile
3208 = get_dwarf2_per_objfile (objfile);
3209 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3210 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3211
3212 if (cust == NULL)
3213 return NULL;
3214
3215 return compunit_primary_filetab (cust);
3216 }
3217
3218 /* Traversal function for dw2_forget_cached_source_info. */
3219
3220 static int
3221 dw2_free_cached_file_names (void **slot, void *info)
3222 {
3223 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3224
3225 if (file_data->real_names)
3226 {
3227 int i;
3228
3229 for (i = 0; i < file_data->num_file_names; ++i)
3230 {
3231 xfree ((void*) file_data->real_names[i]);
3232 file_data->real_names[i] = NULL;
3233 }
3234 }
3235
3236 return 1;
3237 }
3238
3239 static void
3240 dw2_forget_cached_source_info (struct objfile *objfile)
3241 {
3242 struct dwarf2_per_objfile *dwarf2_per_objfile
3243 = get_dwarf2_per_objfile (objfile);
3244
3245 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3246 dw2_free_cached_file_names, NULL);
3247 }
3248
3249 /* Helper function for dw2_map_symtabs_matching_filename that expands
3250 the symtabs and calls the iterator. */
3251
3252 static int
3253 dw2_map_expand_apply (struct objfile *objfile,
3254 struct dwarf2_per_cu_data *per_cu,
3255 const char *name, const char *real_path,
3256 gdb::function_view<bool (symtab *)> callback)
3257 {
3258 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3259
3260 /* Don't visit already-expanded CUs. */
3261 if (per_cu->v.quick->compunit_symtab)
3262 return 0;
3263
3264 /* This may expand more than one symtab, and we want to iterate over
3265 all of them. */
3266 dw2_instantiate_symtab (per_cu, false);
3267
3268 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3269 last_made, callback);
3270 }
3271
3272 /* Implementation of the map_symtabs_matching_filename method. */
3273
3274 static bool
3275 dw2_map_symtabs_matching_filename
3276 (struct objfile *objfile, const char *name, const char *real_path,
3277 gdb::function_view<bool (symtab *)> callback)
3278 {
3279 const char *name_basename = lbasename (name);
3280 struct dwarf2_per_objfile *dwarf2_per_objfile
3281 = get_dwarf2_per_objfile (objfile);
3282
3283 /* The rule is CUs specify all the files, including those used by
3284 any TU, so there's no need to scan TUs here. */
3285
3286 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3287 {
3288 /* We only need to look at symtabs not already expanded. */
3289 if (per_cu->v.quick->compunit_symtab)
3290 continue;
3291
3292 quick_file_names *file_data = dw2_get_file_names (per_cu);
3293 if (file_data == NULL)
3294 continue;
3295
3296 for (int j = 0; j < file_data->num_file_names; ++j)
3297 {
3298 const char *this_name = file_data->file_names[j];
3299 const char *this_real_name;
3300
3301 if (compare_filenames_for_search (this_name, name))
3302 {
3303 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3304 callback))
3305 return true;
3306 continue;
3307 }
3308
3309 /* Before we invoke realpath, which can get expensive when many
3310 files are involved, do a quick comparison of the basenames. */
3311 if (! basenames_may_differ
3312 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3313 continue;
3314
3315 this_real_name = dw2_get_real_path (dwarf2_per_objfile,
3316 file_data, j);
3317 if (compare_filenames_for_search (this_real_name, name))
3318 {
3319 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3320 callback))
3321 return true;
3322 continue;
3323 }
3324
3325 if (real_path != NULL)
3326 {
3327 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3328 gdb_assert (IS_ABSOLUTE_PATH (name));
3329 if (this_real_name != NULL
3330 && FILENAME_CMP (real_path, this_real_name) == 0)
3331 {
3332 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3333 callback))
3334 return true;
3335 continue;
3336 }
3337 }
3338 }
3339 }
3340
3341 return false;
3342 }
3343
3344 /* Struct used to manage iterating over all CUs looking for a symbol. */
3345
3346 struct dw2_symtab_iterator
3347 {
3348 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3349 struct dwarf2_per_objfile *dwarf2_per_objfile;
3350 /* If set, only look for symbols that match that block. Valid values are
3351 GLOBAL_BLOCK and STATIC_BLOCK. */
3352 gdb::optional<block_enum> block_index;
3353 /* The kind of symbol we're looking for. */
3354 domain_enum domain;
3355 /* The list of CUs from the index entry of the symbol,
3356 or NULL if not found. */
3357 offset_type *vec;
3358 /* The next element in VEC to look at. */
3359 int next;
3360 /* The number of elements in VEC, or zero if there is no match. */
3361 int length;
3362 /* Have we seen a global version of the symbol?
3363 If so we can ignore all further global instances.
3364 This is to work around gold/15646, inefficient gold-generated
3365 indices. */
3366 int global_seen;
3367 };
3368
3369 /* Initialize the index symtab iterator ITER. */
3370
3371 static void
3372 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3373 struct dwarf2_per_objfile *dwarf2_per_objfile,
3374 gdb::optional<block_enum> block_index,
3375 domain_enum domain,
3376 const char *name)
3377 {
3378 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3379 iter->block_index = block_index;
3380 iter->domain = domain;
3381 iter->next = 0;
3382 iter->global_seen = 0;
3383
3384 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3385
3386 /* index is NULL if OBJF_READNOW. */
3387 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3388 iter->length = MAYBE_SWAP (*iter->vec);
3389 else
3390 {
3391 iter->vec = NULL;
3392 iter->length = 0;
3393 }
3394 }
3395
3396 /* Return the next matching CU or NULL if there are no more. */
3397
3398 static struct dwarf2_per_cu_data *
3399 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3400 {
3401 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3402
3403 for ( ; iter->next < iter->length; ++iter->next)
3404 {
3405 offset_type cu_index_and_attrs =
3406 MAYBE_SWAP (iter->vec[iter->next + 1]);
3407 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3408 gdb_index_symbol_kind symbol_kind =
3409 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3410 /* Only check the symbol attributes if they're present.
3411 Indices prior to version 7 don't record them,
3412 and indices >= 7 may elide them for certain symbols
3413 (gold does this). */
3414 int attrs_valid =
3415 (dwarf2_per_objfile->index_table->version >= 7
3416 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3417
3418 /* Don't crash on bad data. */
3419 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3420 + dwarf2_per_objfile->all_type_units.size ()))
3421 {
3422 complaint (_(".gdb_index entry has bad CU index"
3423 " [in module %s]"),
3424 objfile_name (dwarf2_per_objfile->objfile));
3425 continue;
3426 }
3427
3428 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3429
3430 /* Skip if already read in. */
3431 if (per_cu->v.quick->compunit_symtab)
3432 continue;
3433
3434 /* Check static vs global. */
3435 if (attrs_valid)
3436 {
3437 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3438
3439 if (iter->block_index.has_value ())
3440 {
3441 bool want_static = *iter->block_index == STATIC_BLOCK;
3442
3443 if (is_static != want_static)
3444 continue;
3445 }
3446
3447 /* Work around gold/15646. */
3448 if (!is_static && iter->global_seen)
3449 continue;
3450 if (!is_static)
3451 iter->global_seen = 1;
3452 }
3453
3454 /* Only check the symbol's kind if it has one. */
3455 if (attrs_valid)
3456 {
3457 switch (iter->domain)
3458 {
3459 case VAR_DOMAIN:
3460 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3461 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3462 /* Some types are also in VAR_DOMAIN. */
3463 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3464 continue;
3465 break;
3466 case STRUCT_DOMAIN:
3467 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3468 continue;
3469 break;
3470 case LABEL_DOMAIN:
3471 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3472 continue;
3473 break;
3474 case MODULE_DOMAIN:
3475 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3476 continue;
3477 break;
3478 default:
3479 break;
3480 }
3481 }
3482
3483 ++iter->next;
3484 return per_cu;
3485 }
3486
3487 return NULL;
3488 }
3489
3490 static struct compunit_symtab *
3491 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3492 const char *name, domain_enum domain)
3493 {
3494 struct compunit_symtab *stab_best = NULL;
3495 struct dwarf2_per_objfile *dwarf2_per_objfile
3496 = get_dwarf2_per_objfile (objfile);
3497
3498 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3499
3500 struct dw2_symtab_iterator iter;
3501 struct dwarf2_per_cu_data *per_cu;
3502
3503 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3504
3505 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3506 {
3507 struct symbol *sym, *with_opaque = NULL;
3508 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3509 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3510 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3511
3512 sym = block_find_symbol (block, name, domain,
3513 block_find_non_opaque_type_preferred,
3514 &with_opaque);
3515
3516 /* Some caution must be observed with overloaded functions
3517 and methods, since the index will not contain any overload
3518 information (but NAME might contain it). */
3519
3520 if (sym != NULL
3521 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3522 return stab;
3523 if (with_opaque != NULL
3524 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3525 stab_best = stab;
3526
3527 /* Keep looking through other CUs. */
3528 }
3529
3530 return stab_best;
3531 }
3532
3533 static void
3534 dw2_print_stats (struct objfile *objfile)
3535 {
3536 struct dwarf2_per_objfile *dwarf2_per_objfile
3537 = get_dwarf2_per_objfile (objfile);
3538 int total = (dwarf2_per_objfile->all_comp_units.size ()
3539 + dwarf2_per_objfile->all_type_units.size ());
3540 int count = 0;
3541
3542 for (int i = 0; i < total; ++i)
3543 {
3544 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3545
3546 if (!per_cu->v.quick->compunit_symtab)
3547 ++count;
3548 }
3549 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3550 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3551 }
3552
3553 /* This dumps minimal information about the index.
3554 It is called via "mt print objfiles".
3555 One use is to verify .gdb_index has been loaded by the
3556 gdb.dwarf2/gdb-index.exp testcase. */
3557
3558 static void
3559 dw2_dump (struct objfile *objfile)
3560 {
3561 struct dwarf2_per_objfile *dwarf2_per_objfile
3562 = get_dwarf2_per_objfile (objfile);
3563
3564 gdb_assert (dwarf2_per_objfile->using_index);
3565 printf_filtered (".gdb_index:");
3566 if (dwarf2_per_objfile->index_table != NULL)
3567 {
3568 printf_filtered (" version %d\n",
3569 dwarf2_per_objfile->index_table->version);
3570 }
3571 else
3572 printf_filtered (" faked for \"readnow\"\n");
3573 printf_filtered ("\n");
3574 }
3575
3576 static void
3577 dw2_expand_symtabs_for_function (struct objfile *objfile,
3578 const char *func_name)
3579 {
3580 struct dwarf2_per_objfile *dwarf2_per_objfile
3581 = get_dwarf2_per_objfile (objfile);
3582
3583 struct dw2_symtab_iterator iter;
3584 struct dwarf2_per_cu_data *per_cu;
3585
3586 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3587
3588 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3589 dw2_instantiate_symtab (per_cu, false);
3590
3591 }
3592
3593 static void
3594 dw2_expand_all_symtabs (struct objfile *objfile)
3595 {
3596 struct dwarf2_per_objfile *dwarf2_per_objfile
3597 = get_dwarf2_per_objfile (objfile);
3598 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3599 + dwarf2_per_objfile->all_type_units.size ());
3600
3601 for (int i = 0; i < total_units; ++i)
3602 {
3603 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3604
3605 /* We don't want to directly expand a partial CU, because if we
3606 read it with the wrong language, then assertion failures can
3607 be triggered later on. See PR symtab/23010. So, tell
3608 dw2_instantiate_symtab to skip partial CUs -- any important
3609 partial CU will be read via DW_TAG_imported_unit anyway. */
3610 dw2_instantiate_symtab (per_cu, true);
3611 }
3612 }
3613
3614 static void
3615 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3616 const char *fullname)
3617 {
3618 struct dwarf2_per_objfile *dwarf2_per_objfile
3619 = get_dwarf2_per_objfile (objfile);
3620
3621 /* We don't need to consider type units here.
3622 This is only called for examining code, e.g. expand_line_sal.
3623 There can be an order of magnitude (or more) more type units
3624 than comp units, and we avoid them if we can. */
3625
3626 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3627 {
3628 /* We only need to look at symtabs not already expanded. */
3629 if (per_cu->v.quick->compunit_symtab)
3630 continue;
3631
3632 quick_file_names *file_data = dw2_get_file_names (per_cu);
3633 if (file_data == NULL)
3634 continue;
3635
3636 for (int j = 0; j < file_data->num_file_names; ++j)
3637 {
3638 const char *this_fullname = file_data->file_names[j];
3639
3640 if (filename_cmp (this_fullname, fullname) == 0)
3641 {
3642 dw2_instantiate_symtab (per_cu, false);
3643 break;
3644 }
3645 }
3646 }
3647 }
3648
3649 static void
3650 dw2_expand_symtabs_matching_symbol
3651 (mapped_index_base &index,
3652 const lookup_name_info &lookup_name_in,
3653 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3654 enum search_domain kind,
3655 gdb::function_view<bool (offset_type)> match_callback);
3656
3657 static void
3658 dw2_expand_symtabs_matching_one
3659 (struct dwarf2_per_cu_data *per_cu,
3660 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3661 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3662
3663 static void
3664 dw2_map_matching_symbols
3665 (struct objfile *objfile,
3666 const lookup_name_info &name, domain_enum domain,
3667 int global,
3668 gdb::function_view<symbol_found_callback_ftype> callback,
3669 symbol_compare_ftype *ordered_compare)
3670 {
3671 /* Used for Ada. */
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = get_dwarf2_per_objfile (objfile);
3674
3675 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3676
3677 if (dwarf2_per_objfile->index_table != nullptr)
3678 {
3679 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3680 here though if the current language is Ada for a non-Ada objfile
3681 using GNU index. */
3682 mapped_index &index = *dwarf2_per_objfile->index_table;
3683
3684 const char *match_name = name.ada ().lookup_name ().c_str ();
3685 auto matcher = [&] (const char *symname)
3686 {
3687 if (ordered_compare == nullptr)
3688 return true;
3689 return ordered_compare (symname, match_name) == 0;
3690 };
3691
3692 dw2_expand_symtabs_matching_symbol (index, name, matcher, ALL_DOMAIN,
3693 [&] (offset_type namei)
3694 {
3695 struct dw2_symtab_iterator iter;
3696 struct dwarf2_per_cu_data *per_cu;
3697
3698 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_kind, domain,
3699 match_name);
3700 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3701 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
3702 return true;
3703 });
3704 }
3705 else
3706 {
3707 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3708 proceed assuming all symtabs have been read in. */
3709 }
3710
3711 for (compunit_symtab *cust : objfile->compunits ())
3712 {
3713 const struct block *block;
3714
3715 if (cust == NULL)
3716 continue;
3717 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3718 if (!iterate_over_symbols_terminated (block, name,
3719 domain, callback))
3720 return;
3721 }
3722 }
3723
3724 /* Starting from a search name, return the string that finds the upper
3725 bound of all strings that start with SEARCH_NAME in a sorted name
3726 list. Returns the empty string to indicate that the upper bound is
3727 the end of the list. */
3728
3729 static std::string
3730 make_sort_after_prefix_name (const char *search_name)
3731 {
3732 /* When looking to complete "func", we find the upper bound of all
3733 symbols that start with "func" by looking for where we'd insert
3734 the closest string that would follow "func" in lexicographical
3735 order. Usually, that's "func"-with-last-character-incremented,
3736 i.e. "fund". Mind non-ASCII characters, though. Usually those
3737 will be UTF-8 multi-byte sequences, but we can't be certain.
3738 Especially mind the 0xff character, which is a valid character in
3739 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3740 rule out compilers allowing it in identifiers. Note that
3741 conveniently, strcmp/strcasecmp are specified to compare
3742 characters interpreted as unsigned char. So what we do is treat
3743 the whole string as a base 256 number composed of a sequence of
3744 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3745 to 0, and carries 1 to the following more-significant position.
3746 If the very first character in SEARCH_NAME ends up incremented
3747 and carries/overflows, then the upper bound is the end of the
3748 list. The string after the empty string is also the empty
3749 string.
3750
3751 Some examples of this operation:
3752
3753 SEARCH_NAME => "+1" RESULT
3754
3755 "abc" => "abd"
3756 "ab\xff" => "ac"
3757 "\xff" "a" "\xff" => "\xff" "b"
3758 "\xff" => ""
3759 "\xff\xff" => ""
3760 "" => ""
3761
3762 Then, with these symbols for example:
3763
3764 func
3765 func1
3766 fund
3767
3768 completing "func" looks for symbols between "func" and
3769 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3770 which finds "func" and "func1", but not "fund".
3771
3772 And with:
3773
3774 funcÿ (Latin1 'ÿ' [0xff])
3775 funcÿ1
3776 fund
3777
3778 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3779 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3780
3781 And with:
3782
3783 ÿÿ (Latin1 'ÿ' [0xff])
3784 ÿÿ1
3785
3786 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3787 the end of the list.
3788 */
3789 std::string after = search_name;
3790 while (!after.empty () && (unsigned char) after.back () == 0xff)
3791 after.pop_back ();
3792 if (!after.empty ())
3793 after.back () = (unsigned char) after.back () + 1;
3794 return after;
3795 }
3796
3797 /* See declaration. */
3798
3799 std::pair<std::vector<name_component>::const_iterator,
3800 std::vector<name_component>::const_iterator>
3801 mapped_index_base::find_name_components_bounds
3802 (const lookup_name_info &lookup_name_without_params, language lang) const
3803 {
3804 auto *name_cmp
3805 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3806
3807 const char *lang_name
3808 = lookup_name_without_params.language_lookup_name (lang);
3809
3810 /* Comparison function object for lower_bound that matches against a
3811 given symbol name. */
3812 auto lookup_compare_lower = [&] (const name_component &elem,
3813 const char *name)
3814 {
3815 const char *elem_qualified = this->symbol_name_at (elem.idx);
3816 const char *elem_name = elem_qualified + elem.name_offset;
3817 return name_cmp (elem_name, name) < 0;
3818 };
3819
3820 /* Comparison function object for upper_bound that matches against a
3821 given symbol name. */
3822 auto lookup_compare_upper = [&] (const char *name,
3823 const name_component &elem)
3824 {
3825 const char *elem_qualified = this->symbol_name_at (elem.idx);
3826 const char *elem_name = elem_qualified + elem.name_offset;
3827 return name_cmp (name, elem_name) < 0;
3828 };
3829
3830 auto begin = this->name_components.begin ();
3831 auto end = this->name_components.end ();
3832
3833 /* Find the lower bound. */
3834 auto lower = [&] ()
3835 {
3836 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3837 return begin;
3838 else
3839 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3840 } ();
3841
3842 /* Find the upper bound. */
3843 auto upper = [&] ()
3844 {
3845 if (lookup_name_without_params.completion_mode ())
3846 {
3847 /* In completion mode, we want UPPER to point past all
3848 symbols names that have the same prefix. I.e., with
3849 these symbols, and completing "func":
3850
3851 function << lower bound
3852 function1
3853 other_function << upper bound
3854
3855 We find the upper bound by looking for the insertion
3856 point of "func"-with-last-character-incremented,
3857 i.e. "fund". */
3858 std::string after = make_sort_after_prefix_name (lang_name);
3859 if (after.empty ())
3860 return end;
3861 return std::lower_bound (lower, end, after.c_str (),
3862 lookup_compare_lower);
3863 }
3864 else
3865 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3866 } ();
3867
3868 return {lower, upper};
3869 }
3870
3871 /* See declaration. */
3872
3873 void
3874 mapped_index_base::build_name_components ()
3875 {
3876 if (!this->name_components.empty ())
3877 return;
3878
3879 this->name_components_casing = case_sensitivity;
3880 auto *name_cmp
3881 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3882
3883 /* The code below only knows how to break apart components of C++
3884 symbol names (and other languages that use '::' as
3885 namespace/module separator) and Ada symbol names. */
3886 auto count = this->symbol_name_count ();
3887 for (offset_type idx = 0; idx < count; idx++)
3888 {
3889 if (this->symbol_name_slot_invalid (idx))
3890 continue;
3891
3892 const char *name = this->symbol_name_at (idx);
3893
3894 /* Add each name component to the name component table. */
3895 unsigned int previous_len = 0;
3896
3897 if (strstr (name, "::") != nullptr)
3898 {
3899 for (unsigned int current_len = cp_find_first_component (name);
3900 name[current_len] != '\0';
3901 current_len += cp_find_first_component (name + current_len))
3902 {
3903 gdb_assert (name[current_len] == ':');
3904 this->name_components.push_back ({previous_len, idx});
3905 /* Skip the '::'. */
3906 current_len += 2;
3907 previous_len = current_len;
3908 }
3909 }
3910 else
3911 {
3912 /* Handle the Ada encoded (aka mangled) form here. */
3913 for (const char *iter = strstr (name, "__");
3914 iter != nullptr;
3915 iter = strstr (iter, "__"))
3916 {
3917 this->name_components.push_back ({previous_len, idx});
3918 iter += 2;
3919 previous_len = iter - name;
3920 }
3921 }
3922
3923 this->name_components.push_back ({previous_len, idx});
3924 }
3925
3926 /* Sort name_components elements by name. */
3927 auto name_comp_compare = [&] (const name_component &left,
3928 const name_component &right)
3929 {
3930 const char *left_qualified = this->symbol_name_at (left.idx);
3931 const char *right_qualified = this->symbol_name_at (right.idx);
3932
3933 const char *left_name = left_qualified + left.name_offset;
3934 const char *right_name = right_qualified + right.name_offset;
3935
3936 return name_cmp (left_name, right_name) < 0;
3937 };
3938
3939 std::sort (this->name_components.begin (),
3940 this->name_components.end (),
3941 name_comp_compare);
3942 }
3943
3944 /* Helper for dw2_expand_symtabs_matching that works with a
3945 mapped_index_base instead of the containing objfile. This is split
3946 to a separate function in order to be able to unit test the
3947 name_components matching using a mock mapped_index_base. For each
3948 symbol name that matches, calls MATCH_CALLBACK, passing it the
3949 symbol's index in the mapped_index_base symbol table. */
3950
3951 static void
3952 dw2_expand_symtabs_matching_symbol
3953 (mapped_index_base &index,
3954 const lookup_name_info &lookup_name_in,
3955 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3956 enum search_domain kind,
3957 gdb::function_view<bool (offset_type)> match_callback)
3958 {
3959 lookup_name_info lookup_name_without_params
3960 = lookup_name_in.make_ignore_params ();
3961
3962 /* Build the symbol name component sorted vector, if we haven't
3963 yet. */
3964 index.build_name_components ();
3965
3966 /* The same symbol may appear more than once in the range though.
3967 E.g., if we're looking for symbols that complete "w", and we have
3968 a symbol named "w1::w2", we'll find the two name components for
3969 that same symbol in the range. To be sure we only call the
3970 callback once per symbol, we first collect the symbol name
3971 indexes that matched in a temporary vector and ignore
3972 duplicates. */
3973 std::vector<offset_type> matches;
3974
3975 struct name_and_matcher
3976 {
3977 symbol_name_matcher_ftype *matcher;
3978 const char *name;
3979
3980 bool operator== (const name_and_matcher &other) const
3981 {
3982 return matcher == other.matcher && strcmp (name, other.name) == 0;
3983 }
3984 };
3985
3986 /* A vector holding all the different symbol name matchers, for all
3987 languages. */
3988 std::vector<name_and_matcher> matchers;
3989
3990 for (int i = 0; i < nr_languages; i++)
3991 {
3992 enum language lang_e = (enum language) i;
3993
3994 const language_defn *lang = language_def (lang_e);
3995 symbol_name_matcher_ftype *name_matcher
3996 = get_symbol_name_matcher (lang, lookup_name_without_params);
3997
3998 name_and_matcher key {
3999 name_matcher,
4000 lookup_name_without_params.language_lookup_name (lang_e)
4001 };
4002
4003 /* Don't insert the same comparison routine more than once.
4004 Note that we do this linear walk. This is not a problem in
4005 practice because the number of supported languages is
4006 low. */
4007 if (std::find (matchers.begin (), matchers.end (), key)
4008 != matchers.end ())
4009 continue;
4010 matchers.push_back (std::move (key));
4011
4012 auto bounds
4013 = index.find_name_components_bounds (lookup_name_without_params,
4014 lang_e);
4015
4016 /* Now for each symbol name in range, check to see if we have a name
4017 match, and if so, call the MATCH_CALLBACK callback. */
4018
4019 for (; bounds.first != bounds.second; ++bounds.first)
4020 {
4021 const char *qualified = index.symbol_name_at (bounds.first->idx);
4022
4023 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4024 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4025 continue;
4026
4027 matches.push_back (bounds.first->idx);
4028 }
4029 }
4030
4031 std::sort (matches.begin (), matches.end ());
4032
4033 /* Finally call the callback, once per match. */
4034 ULONGEST prev = -1;
4035 for (offset_type idx : matches)
4036 {
4037 if (prev != idx)
4038 {
4039 if (!match_callback (idx))
4040 break;
4041 prev = idx;
4042 }
4043 }
4044
4045 /* Above we use a type wider than idx's for 'prev', since 0 and
4046 (offset_type)-1 are both possible values. */
4047 static_assert (sizeof (prev) > sizeof (offset_type), "");
4048 }
4049
4050 #if GDB_SELF_TEST
4051
4052 namespace selftests { namespace dw2_expand_symtabs_matching {
4053
4054 /* A mock .gdb_index/.debug_names-like name index table, enough to
4055 exercise dw2_expand_symtabs_matching_symbol, which works with the
4056 mapped_index_base interface. Builds an index from the symbol list
4057 passed as parameter to the constructor. */
4058 class mock_mapped_index : public mapped_index_base
4059 {
4060 public:
4061 mock_mapped_index (gdb::array_view<const char *> symbols)
4062 : m_symbol_table (symbols)
4063 {}
4064
4065 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4066
4067 /* Return the number of names in the symbol table. */
4068 size_t symbol_name_count () const override
4069 {
4070 return m_symbol_table.size ();
4071 }
4072
4073 /* Get the name of the symbol at IDX in the symbol table. */
4074 const char *symbol_name_at (offset_type idx) const override
4075 {
4076 return m_symbol_table[idx];
4077 }
4078
4079 private:
4080 gdb::array_view<const char *> m_symbol_table;
4081 };
4082
4083 /* Convenience function that converts a NULL pointer to a "<null>"
4084 string, to pass to print routines. */
4085
4086 static const char *
4087 string_or_null (const char *str)
4088 {
4089 return str != NULL ? str : "<null>";
4090 }
4091
4092 /* Check if a lookup_name_info built from
4093 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4094 index. EXPECTED_LIST is the list of expected matches, in expected
4095 matching order. If no match expected, then an empty list is
4096 specified. Returns true on success. On failure prints a warning
4097 indicating the file:line that failed, and returns false. */
4098
4099 static bool
4100 check_match (const char *file, int line,
4101 mock_mapped_index &mock_index,
4102 const char *name, symbol_name_match_type match_type,
4103 bool completion_mode,
4104 std::initializer_list<const char *> expected_list)
4105 {
4106 lookup_name_info lookup_name (name, match_type, completion_mode);
4107
4108 bool matched = true;
4109
4110 auto mismatch = [&] (const char *expected_str,
4111 const char *got)
4112 {
4113 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4114 "expected=\"%s\", got=\"%s\"\n"),
4115 file, line,
4116 (match_type == symbol_name_match_type::FULL
4117 ? "FULL" : "WILD"),
4118 name, string_or_null (expected_str), string_or_null (got));
4119 matched = false;
4120 };
4121
4122 auto expected_it = expected_list.begin ();
4123 auto expected_end = expected_list.end ();
4124
4125 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4126 NULL, ALL_DOMAIN,
4127 [&] (offset_type idx)
4128 {
4129 const char *matched_name = mock_index.symbol_name_at (idx);
4130 const char *expected_str
4131 = expected_it == expected_end ? NULL : *expected_it++;
4132
4133 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4134 mismatch (expected_str, matched_name);
4135 return true;
4136 });
4137
4138 const char *expected_str
4139 = expected_it == expected_end ? NULL : *expected_it++;
4140 if (expected_str != NULL)
4141 mismatch (expected_str, NULL);
4142
4143 return matched;
4144 }
4145
4146 /* The symbols added to the mock mapped_index for testing (in
4147 canonical form). */
4148 static const char *test_symbols[] = {
4149 "function",
4150 "std::bar",
4151 "std::zfunction",
4152 "std::zfunction2",
4153 "w1::w2",
4154 "ns::foo<char*>",
4155 "ns::foo<int>",
4156 "ns::foo<long>",
4157 "ns2::tmpl<int>::foo2",
4158 "(anonymous namespace)::A::B::C",
4159
4160 /* These are used to check that the increment-last-char in the
4161 matching algorithm for completion doesn't match "t1_fund" when
4162 completing "t1_func". */
4163 "t1_func",
4164 "t1_func1",
4165 "t1_fund",
4166 "t1_fund1",
4167
4168 /* A UTF-8 name with multi-byte sequences to make sure that
4169 cp-name-parser understands this as a single identifier ("função"
4170 is "function" in PT). */
4171 u8"u8função",
4172
4173 /* \377 (0xff) is Latin1 'ÿ'. */
4174 "yfunc\377",
4175
4176 /* \377 (0xff) is Latin1 'ÿ'. */
4177 "\377",
4178 "\377\377123",
4179
4180 /* A name with all sorts of complications. Starts with "z" to make
4181 it easier for the completion tests below. */
4182 #define Z_SYM_NAME \
4183 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4184 "::tuple<(anonymous namespace)::ui*, " \
4185 "std::default_delete<(anonymous namespace)::ui>, void>"
4186
4187 Z_SYM_NAME
4188 };
4189
4190 /* Returns true if the mapped_index_base::find_name_component_bounds
4191 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4192 in completion mode. */
4193
4194 static bool
4195 check_find_bounds_finds (mapped_index_base &index,
4196 const char *search_name,
4197 gdb::array_view<const char *> expected_syms)
4198 {
4199 lookup_name_info lookup_name (search_name,
4200 symbol_name_match_type::FULL, true);
4201
4202 auto bounds = index.find_name_components_bounds (lookup_name,
4203 language_cplus);
4204
4205 size_t distance = std::distance (bounds.first, bounds.second);
4206 if (distance != expected_syms.size ())
4207 return false;
4208
4209 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4210 {
4211 auto nc_elem = bounds.first + exp_elem;
4212 const char *qualified = index.symbol_name_at (nc_elem->idx);
4213 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4214 return false;
4215 }
4216
4217 return true;
4218 }
4219
4220 /* Test the lower-level mapped_index::find_name_component_bounds
4221 method. */
4222
4223 static void
4224 test_mapped_index_find_name_component_bounds ()
4225 {
4226 mock_mapped_index mock_index (test_symbols);
4227
4228 mock_index.build_name_components ();
4229
4230 /* Test the lower-level mapped_index::find_name_component_bounds
4231 method in completion mode. */
4232 {
4233 static const char *expected_syms[] = {
4234 "t1_func",
4235 "t1_func1",
4236 };
4237
4238 SELF_CHECK (check_find_bounds_finds (mock_index,
4239 "t1_func", expected_syms));
4240 }
4241
4242 /* Check that the increment-last-char in the name matching algorithm
4243 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4244 {
4245 static const char *expected_syms1[] = {
4246 "\377",
4247 "\377\377123",
4248 };
4249 SELF_CHECK (check_find_bounds_finds (mock_index,
4250 "\377", expected_syms1));
4251
4252 static const char *expected_syms2[] = {
4253 "\377\377123",
4254 };
4255 SELF_CHECK (check_find_bounds_finds (mock_index,
4256 "\377\377", expected_syms2));
4257 }
4258 }
4259
4260 /* Test dw2_expand_symtabs_matching_symbol. */
4261
4262 static void
4263 test_dw2_expand_symtabs_matching_symbol ()
4264 {
4265 mock_mapped_index mock_index (test_symbols);
4266
4267 /* We let all tests run until the end even if some fails, for debug
4268 convenience. */
4269 bool any_mismatch = false;
4270
4271 /* Create the expected symbols list (an initializer_list). Needed
4272 because lists have commas, and we need to pass them to CHECK,
4273 which is a macro. */
4274 #define EXPECT(...) { __VA_ARGS__ }
4275
4276 /* Wrapper for check_match that passes down the current
4277 __FILE__/__LINE__. */
4278 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4279 any_mismatch |= !check_match (__FILE__, __LINE__, \
4280 mock_index, \
4281 NAME, MATCH_TYPE, COMPLETION_MODE, \
4282 EXPECTED_LIST)
4283
4284 /* Identity checks. */
4285 for (const char *sym : test_symbols)
4286 {
4287 /* Should be able to match all existing symbols. */
4288 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4289 EXPECT (sym));
4290
4291 /* Should be able to match all existing symbols with
4292 parameters. */
4293 std::string with_params = std::string (sym) + "(int)";
4294 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4295 EXPECT (sym));
4296
4297 /* Should be able to match all existing symbols with
4298 parameters and qualifiers. */
4299 with_params = std::string (sym) + " ( int ) const";
4300 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4301 EXPECT (sym));
4302
4303 /* This should really find sym, but cp-name-parser.y doesn't
4304 know about lvalue/rvalue qualifiers yet. */
4305 with_params = std::string (sym) + " ( int ) &&";
4306 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4307 {});
4308 }
4309
4310 /* Check that the name matching algorithm for completion doesn't get
4311 confused with Latin1 'ÿ' / 0xff. */
4312 {
4313 static const char str[] = "\377";
4314 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4315 EXPECT ("\377", "\377\377123"));
4316 }
4317
4318 /* Check that the increment-last-char in the matching algorithm for
4319 completion doesn't match "t1_fund" when completing "t1_func". */
4320 {
4321 static const char str[] = "t1_func";
4322 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4323 EXPECT ("t1_func", "t1_func1"));
4324 }
4325
4326 /* Check that completion mode works at each prefix of the expected
4327 symbol name. */
4328 {
4329 static const char str[] = "function(int)";
4330 size_t len = strlen (str);
4331 std::string lookup;
4332
4333 for (size_t i = 1; i < len; i++)
4334 {
4335 lookup.assign (str, i);
4336 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4337 EXPECT ("function"));
4338 }
4339 }
4340
4341 /* While "w" is a prefix of both components, the match function
4342 should still only be called once. */
4343 {
4344 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4345 EXPECT ("w1::w2"));
4346 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4347 EXPECT ("w1::w2"));
4348 }
4349
4350 /* Same, with a "complicated" symbol. */
4351 {
4352 static const char str[] = Z_SYM_NAME;
4353 size_t len = strlen (str);
4354 std::string lookup;
4355
4356 for (size_t i = 1; i < len; i++)
4357 {
4358 lookup.assign (str, i);
4359 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4360 EXPECT (Z_SYM_NAME));
4361 }
4362 }
4363
4364 /* In FULL mode, an incomplete symbol doesn't match. */
4365 {
4366 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4367 {});
4368 }
4369
4370 /* A complete symbol with parameters matches any overload, since the
4371 index has no overload info. */
4372 {
4373 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4374 EXPECT ("std::zfunction", "std::zfunction2"));
4375 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4376 EXPECT ("std::zfunction", "std::zfunction2"));
4377 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4378 EXPECT ("std::zfunction", "std::zfunction2"));
4379 }
4380
4381 /* Check that whitespace is ignored appropriately. A symbol with a
4382 template argument list. */
4383 {
4384 static const char expected[] = "ns::foo<int>";
4385 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4386 EXPECT (expected));
4387 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4388 EXPECT (expected));
4389 }
4390
4391 /* Check that whitespace is ignored appropriately. A symbol with a
4392 template argument list that includes a pointer. */
4393 {
4394 static const char expected[] = "ns::foo<char*>";
4395 /* Try both completion and non-completion modes. */
4396 static const bool completion_mode[2] = {false, true};
4397 for (size_t i = 0; i < 2; i++)
4398 {
4399 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4400 completion_mode[i], EXPECT (expected));
4401 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4402 completion_mode[i], EXPECT (expected));
4403
4404 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4405 completion_mode[i], EXPECT (expected));
4406 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4407 completion_mode[i], EXPECT (expected));
4408 }
4409 }
4410
4411 {
4412 /* Check method qualifiers are ignored. */
4413 static const char expected[] = "ns::foo<char*>";
4414 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4415 symbol_name_match_type::FULL, true, EXPECT (expected));
4416 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4417 symbol_name_match_type::FULL, true, EXPECT (expected));
4418 CHECK_MATCH ("foo < char * > ( int ) const",
4419 symbol_name_match_type::WILD, true, EXPECT (expected));
4420 CHECK_MATCH ("foo < char * > ( int ) &&",
4421 symbol_name_match_type::WILD, true, EXPECT (expected));
4422 }
4423
4424 /* Test lookup names that don't match anything. */
4425 {
4426 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4427 {});
4428
4429 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4430 {});
4431 }
4432
4433 /* Some wild matching tests, exercising "(anonymous namespace)",
4434 which should not be confused with a parameter list. */
4435 {
4436 static const char *syms[] = {
4437 "A::B::C",
4438 "B::C",
4439 "C",
4440 "A :: B :: C ( int )",
4441 "B :: C ( int )",
4442 "C ( int )",
4443 };
4444
4445 for (const char *s : syms)
4446 {
4447 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4448 EXPECT ("(anonymous namespace)::A::B::C"));
4449 }
4450 }
4451
4452 {
4453 static const char expected[] = "ns2::tmpl<int>::foo2";
4454 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4455 EXPECT (expected));
4456 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4457 EXPECT (expected));
4458 }
4459
4460 SELF_CHECK (!any_mismatch);
4461
4462 #undef EXPECT
4463 #undef CHECK_MATCH
4464 }
4465
4466 static void
4467 run_test ()
4468 {
4469 test_mapped_index_find_name_component_bounds ();
4470 test_dw2_expand_symtabs_matching_symbol ();
4471 }
4472
4473 }} // namespace selftests::dw2_expand_symtabs_matching
4474
4475 #endif /* GDB_SELF_TEST */
4476
4477 /* If FILE_MATCHER is NULL or if PER_CU has
4478 dwarf2_per_cu_quick_data::MARK set (see
4479 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4480 EXPANSION_NOTIFY on it. */
4481
4482 static void
4483 dw2_expand_symtabs_matching_one
4484 (struct dwarf2_per_cu_data *per_cu,
4485 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4486 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4487 {
4488 if (file_matcher == NULL || per_cu->v.quick->mark)
4489 {
4490 bool symtab_was_null
4491 = (per_cu->v.quick->compunit_symtab == NULL);
4492
4493 dw2_instantiate_symtab (per_cu, false);
4494
4495 if (expansion_notify != NULL
4496 && symtab_was_null
4497 && per_cu->v.quick->compunit_symtab != NULL)
4498 expansion_notify (per_cu->v.quick->compunit_symtab);
4499 }
4500 }
4501
4502 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4503 matched, to expand corresponding CUs that were marked. IDX is the
4504 index of the symbol name that matched. */
4505
4506 static void
4507 dw2_expand_marked_cus
4508 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4509 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4510 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4511 search_domain kind)
4512 {
4513 offset_type *vec, vec_len, vec_idx;
4514 bool global_seen = false;
4515 mapped_index &index = *dwarf2_per_objfile->index_table;
4516
4517 vec = (offset_type *) (index.constant_pool
4518 + MAYBE_SWAP (index.symbol_table[idx].vec));
4519 vec_len = MAYBE_SWAP (vec[0]);
4520 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4521 {
4522 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4523 /* This value is only valid for index versions >= 7. */
4524 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4525 gdb_index_symbol_kind symbol_kind =
4526 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4527 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4528 /* Only check the symbol attributes if they're present.
4529 Indices prior to version 7 don't record them,
4530 and indices >= 7 may elide them for certain symbols
4531 (gold does this). */
4532 int attrs_valid =
4533 (index.version >= 7
4534 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4535
4536 /* Work around gold/15646. */
4537 if (attrs_valid)
4538 {
4539 if (!is_static && global_seen)
4540 continue;
4541 if (!is_static)
4542 global_seen = true;
4543 }
4544
4545 /* Only check the symbol's kind if it has one. */
4546 if (attrs_valid)
4547 {
4548 switch (kind)
4549 {
4550 case VARIABLES_DOMAIN:
4551 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4552 continue;
4553 break;
4554 case FUNCTIONS_DOMAIN:
4555 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4556 continue;
4557 break;
4558 case TYPES_DOMAIN:
4559 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4560 continue;
4561 break;
4562 case MODULES_DOMAIN:
4563 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4564 continue;
4565 break;
4566 default:
4567 break;
4568 }
4569 }
4570
4571 /* Don't crash on bad data. */
4572 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4573 + dwarf2_per_objfile->all_type_units.size ()))
4574 {
4575 complaint (_(".gdb_index entry has bad CU index"
4576 " [in module %s]"),
4577 objfile_name (dwarf2_per_objfile->objfile));
4578 continue;
4579 }
4580
4581 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4582 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4583 expansion_notify);
4584 }
4585 }
4586
4587 /* If FILE_MATCHER is non-NULL, set all the
4588 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4589 that match FILE_MATCHER. */
4590
4591 static void
4592 dw_expand_symtabs_matching_file_matcher
4593 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4594 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4595 {
4596 if (file_matcher == NULL)
4597 return;
4598
4599 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4600 htab_eq_pointer,
4601 NULL, xcalloc, xfree));
4602 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4603 htab_eq_pointer,
4604 NULL, xcalloc, xfree));
4605
4606 /* The rule is CUs specify all the files, including those used by
4607 any TU, so there's no need to scan TUs here. */
4608
4609 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4610 {
4611 QUIT;
4612
4613 per_cu->v.quick->mark = 0;
4614
4615 /* We only need to look at symtabs not already expanded. */
4616 if (per_cu->v.quick->compunit_symtab)
4617 continue;
4618
4619 quick_file_names *file_data = dw2_get_file_names (per_cu);
4620 if (file_data == NULL)
4621 continue;
4622
4623 if (htab_find (visited_not_found.get (), file_data) != NULL)
4624 continue;
4625 else if (htab_find (visited_found.get (), file_data) != NULL)
4626 {
4627 per_cu->v.quick->mark = 1;
4628 continue;
4629 }
4630
4631 for (int j = 0; j < file_data->num_file_names; ++j)
4632 {
4633 const char *this_real_name;
4634
4635 if (file_matcher (file_data->file_names[j], false))
4636 {
4637 per_cu->v.quick->mark = 1;
4638 break;
4639 }
4640
4641 /* Before we invoke realpath, which can get expensive when many
4642 files are involved, do a quick comparison of the basenames. */
4643 if (!basenames_may_differ
4644 && !file_matcher (lbasename (file_data->file_names[j]),
4645 true))
4646 continue;
4647
4648 this_real_name = dw2_get_real_path (dwarf2_per_objfile,
4649 file_data, j);
4650 if (file_matcher (this_real_name, false))
4651 {
4652 per_cu->v.quick->mark = 1;
4653 break;
4654 }
4655 }
4656
4657 void **slot = htab_find_slot (per_cu->v.quick->mark
4658 ? visited_found.get ()
4659 : visited_not_found.get (),
4660 file_data, INSERT);
4661 *slot = file_data;
4662 }
4663 }
4664
4665 static void
4666 dw2_expand_symtabs_matching
4667 (struct objfile *objfile,
4668 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4669 const lookup_name_info *lookup_name,
4670 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4671 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4672 enum search_domain kind)
4673 {
4674 struct dwarf2_per_objfile *dwarf2_per_objfile
4675 = get_dwarf2_per_objfile (objfile);
4676
4677 /* index_table is NULL if OBJF_READNOW. */
4678 if (!dwarf2_per_objfile->index_table)
4679 return;
4680
4681 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4682
4683 if (symbol_matcher == NULL && lookup_name == NULL)
4684 {
4685 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4686 {
4687 QUIT;
4688
4689 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4690 expansion_notify);
4691 }
4692 return;
4693 }
4694
4695 mapped_index &index = *dwarf2_per_objfile->index_table;
4696
4697 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4698 symbol_matcher,
4699 kind, [&] (offset_type idx)
4700 {
4701 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4702 expansion_notify, kind);
4703 return true;
4704 });
4705 }
4706
4707 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4708 symtab. */
4709
4710 static struct compunit_symtab *
4711 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4712 CORE_ADDR pc)
4713 {
4714 int i;
4715
4716 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4717 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4718 return cust;
4719
4720 if (cust->includes == NULL)
4721 return NULL;
4722
4723 for (i = 0; cust->includes[i]; ++i)
4724 {
4725 struct compunit_symtab *s = cust->includes[i];
4726
4727 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4728 if (s != NULL)
4729 return s;
4730 }
4731
4732 return NULL;
4733 }
4734
4735 static struct compunit_symtab *
4736 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4737 struct bound_minimal_symbol msymbol,
4738 CORE_ADDR pc,
4739 struct obj_section *section,
4740 int warn_if_readin)
4741 {
4742 struct dwarf2_per_cu_data *data;
4743 struct compunit_symtab *result;
4744
4745 if (!objfile->partial_symtabs->psymtabs_addrmap)
4746 return NULL;
4747
4748 CORE_ADDR baseaddr = objfile->text_section_offset ();
4749 data = (struct dwarf2_per_cu_data *) addrmap_find
4750 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4751 if (!data)
4752 return NULL;
4753
4754 if (warn_if_readin && data->v.quick->compunit_symtab)
4755 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4756 paddress (objfile->arch (), pc));
4757
4758 result
4759 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4760 false),
4761 pc);
4762 gdb_assert (result != NULL);
4763 return result;
4764 }
4765
4766 static void
4767 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4768 void *data, int need_fullname)
4769 {
4770 struct dwarf2_per_objfile *dwarf2_per_objfile
4771 = get_dwarf2_per_objfile (objfile);
4772
4773 if (!dwarf2_per_objfile->filenames_cache)
4774 {
4775 dwarf2_per_objfile->filenames_cache.emplace ();
4776
4777 htab_up visited (htab_create_alloc (10,
4778 htab_hash_pointer, htab_eq_pointer,
4779 NULL, xcalloc, xfree));
4780
4781 /* The rule is CUs specify all the files, including those used
4782 by any TU, so there's no need to scan TUs here. We can
4783 ignore file names coming from already-expanded CUs. */
4784
4785 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4786 {
4787 if (per_cu->v.quick->compunit_symtab)
4788 {
4789 void **slot = htab_find_slot (visited.get (),
4790 per_cu->v.quick->file_names,
4791 INSERT);
4792
4793 *slot = per_cu->v.quick->file_names;
4794 }
4795 }
4796
4797 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4798 {
4799 /* We only need to look at symtabs not already expanded. */
4800 if (per_cu->v.quick->compunit_symtab)
4801 continue;
4802
4803 quick_file_names *file_data = dw2_get_file_names (per_cu);
4804 if (file_data == NULL)
4805 continue;
4806
4807 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4808 if (*slot)
4809 {
4810 /* Already visited. */
4811 continue;
4812 }
4813 *slot = file_data;
4814
4815 for (int j = 0; j < file_data->num_file_names; ++j)
4816 {
4817 const char *filename = file_data->file_names[j];
4818 dwarf2_per_objfile->filenames_cache->seen (filename);
4819 }
4820 }
4821 }
4822
4823 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4824 {
4825 gdb::unique_xmalloc_ptr<char> this_real_name;
4826
4827 if (need_fullname)
4828 this_real_name = gdb_realpath (filename);
4829 (*fun) (filename, this_real_name.get (), data);
4830 });
4831 }
4832
4833 static int
4834 dw2_has_symbols (struct objfile *objfile)
4835 {
4836 return 1;
4837 }
4838
4839 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4840 {
4841 dw2_has_symbols,
4842 dw2_find_last_source_symtab,
4843 dw2_forget_cached_source_info,
4844 dw2_map_symtabs_matching_filename,
4845 dw2_lookup_symbol,
4846 NULL,
4847 dw2_print_stats,
4848 dw2_dump,
4849 dw2_expand_symtabs_for_function,
4850 dw2_expand_all_symtabs,
4851 dw2_expand_symtabs_with_fullname,
4852 dw2_map_matching_symbols,
4853 dw2_expand_symtabs_matching,
4854 dw2_find_pc_sect_compunit_symtab,
4855 NULL,
4856 dw2_map_symbol_filenames
4857 };
4858
4859 /* DWARF-5 debug_names reader. */
4860
4861 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4862 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4863
4864 /* A helper function that reads the .debug_names section in SECTION
4865 and fills in MAP. FILENAME is the name of the file containing the
4866 section; it is used for error reporting.
4867
4868 Returns true if all went well, false otherwise. */
4869
4870 static bool
4871 read_debug_names_from_section (struct objfile *objfile,
4872 const char *filename,
4873 struct dwarf2_section_info *section,
4874 mapped_debug_names &map)
4875 {
4876 if (section->empty ())
4877 return false;
4878
4879 /* Older elfutils strip versions could keep the section in the main
4880 executable while splitting it for the separate debug info file. */
4881 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4882 return false;
4883
4884 section->read (objfile);
4885
4886 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4887
4888 const gdb_byte *addr = section->buffer;
4889
4890 bfd *const abfd = section->get_bfd_owner ();
4891
4892 unsigned int bytes_read;
4893 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4894 addr += bytes_read;
4895
4896 map.dwarf5_is_dwarf64 = bytes_read != 4;
4897 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4898 if (bytes_read + length != section->size)
4899 {
4900 /* There may be multiple per-CU indices. */
4901 warning (_("Section .debug_names in %s length %s does not match "
4902 "section length %s, ignoring .debug_names."),
4903 filename, plongest (bytes_read + length),
4904 pulongest (section->size));
4905 return false;
4906 }
4907
4908 /* The version number. */
4909 uint16_t version = read_2_bytes (abfd, addr);
4910 addr += 2;
4911 if (version != 5)
4912 {
4913 warning (_("Section .debug_names in %s has unsupported version %d, "
4914 "ignoring .debug_names."),
4915 filename, version);
4916 return false;
4917 }
4918
4919 /* Padding. */
4920 uint16_t padding = read_2_bytes (abfd, addr);
4921 addr += 2;
4922 if (padding != 0)
4923 {
4924 warning (_("Section .debug_names in %s has unsupported padding %d, "
4925 "ignoring .debug_names."),
4926 filename, padding);
4927 return false;
4928 }
4929
4930 /* comp_unit_count - The number of CUs in the CU list. */
4931 map.cu_count = read_4_bytes (abfd, addr);
4932 addr += 4;
4933
4934 /* local_type_unit_count - The number of TUs in the local TU
4935 list. */
4936 map.tu_count = read_4_bytes (abfd, addr);
4937 addr += 4;
4938
4939 /* foreign_type_unit_count - The number of TUs in the foreign TU
4940 list. */
4941 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4942 addr += 4;
4943 if (foreign_tu_count != 0)
4944 {
4945 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4946 "ignoring .debug_names."),
4947 filename, static_cast<unsigned long> (foreign_tu_count));
4948 return false;
4949 }
4950
4951 /* bucket_count - The number of hash buckets in the hash lookup
4952 table. */
4953 map.bucket_count = read_4_bytes (abfd, addr);
4954 addr += 4;
4955
4956 /* name_count - The number of unique names in the index. */
4957 map.name_count = read_4_bytes (abfd, addr);
4958 addr += 4;
4959
4960 /* abbrev_table_size - The size in bytes of the abbreviations
4961 table. */
4962 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4963 addr += 4;
4964
4965 /* augmentation_string_size - The size in bytes of the augmentation
4966 string. This value is rounded up to a multiple of 4. */
4967 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4968 addr += 4;
4969 map.augmentation_is_gdb = ((augmentation_string_size
4970 == sizeof (dwarf5_augmentation))
4971 && memcmp (addr, dwarf5_augmentation,
4972 sizeof (dwarf5_augmentation)) == 0);
4973 augmentation_string_size += (-augmentation_string_size) & 3;
4974 addr += augmentation_string_size;
4975
4976 /* List of CUs */
4977 map.cu_table_reordered = addr;
4978 addr += map.cu_count * map.offset_size;
4979
4980 /* List of Local TUs */
4981 map.tu_table_reordered = addr;
4982 addr += map.tu_count * map.offset_size;
4983
4984 /* Hash Lookup Table */
4985 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4986 addr += map.bucket_count * 4;
4987 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4988 addr += map.name_count * 4;
4989
4990 /* Name Table */
4991 map.name_table_string_offs_reordered = addr;
4992 addr += map.name_count * map.offset_size;
4993 map.name_table_entry_offs_reordered = addr;
4994 addr += map.name_count * map.offset_size;
4995
4996 const gdb_byte *abbrev_table_start = addr;
4997 for (;;)
4998 {
4999 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5000 addr += bytes_read;
5001 if (index_num == 0)
5002 break;
5003
5004 const auto insertpair
5005 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5006 if (!insertpair.second)
5007 {
5008 warning (_("Section .debug_names in %s has duplicate index %s, "
5009 "ignoring .debug_names."),
5010 filename, pulongest (index_num));
5011 return false;
5012 }
5013 mapped_debug_names::index_val &indexval = insertpair.first->second;
5014 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5015 addr += bytes_read;
5016
5017 for (;;)
5018 {
5019 mapped_debug_names::index_val::attr attr;
5020 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5021 addr += bytes_read;
5022 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5023 addr += bytes_read;
5024 if (attr.form == DW_FORM_implicit_const)
5025 {
5026 attr.implicit_const = read_signed_leb128 (abfd, addr,
5027 &bytes_read);
5028 addr += bytes_read;
5029 }
5030 if (attr.dw_idx == 0 && attr.form == 0)
5031 break;
5032 indexval.attr_vec.push_back (std::move (attr));
5033 }
5034 }
5035 if (addr != abbrev_table_start + abbrev_table_size)
5036 {
5037 warning (_("Section .debug_names in %s has abbreviation_table "
5038 "of size %s vs. written as %u, ignoring .debug_names."),
5039 filename, plongest (addr - abbrev_table_start),
5040 abbrev_table_size);
5041 return false;
5042 }
5043 map.entry_pool = addr;
5044
5045 return true;
5046 }
5047
5048 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5049 list. */
5050
5051 static void
5052 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5053 const mapped_debug_names &map,
5054 dwarf2_section_info &section,
5055 bool is_dwz)
5056 {
5057 if (!map.augmentation_is_gdb)
5058 {
5059 for (uint32_t i = 0; i < map.cu_count; ++i)
5060 {
5061 sect_offset sect_off
5062 = (sect_offset) (extract_unsigned_integer
5063 (map.cu_table_reordered + i * map.offset_size,
5064 map.offset_size,
5065 map.dwarf5_byte_order));
5066 /* We don't know the length of the CU, because the CU list in a
5067 .debug_names index can be incomplete, so we can't use the start of
5068 the next CU as end of this CU. We create the CUs here with length 0,
5069 and in cutu_reader::cutu_reader we'll fill in the actual length. */
5070 dwarf2_per_cu_data *per_cu
5071 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5072 sect_off, 0);
5073 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5074 }
5075 }
5076
5077 sect_offset sect_off_prev;
5078 for (uint32_t i = 0; i <= map.cu_count; ++i)
5079 {
5080 sect_offset sect_off_next;
5081 if (i < map.cu_count)
5082 {
5083 sect_off_next
5084 = (sect_offset) (extract_unsigned_integer
5085 (map.cu_table_reordered + i * map.offset_size,
5086 map.offset_size,
5087 map.dwarf5_byte_order));
5088 }
5089 else
5090 sect_off_next = (sect_offset) section.size;
5091 if (i >= 1)
5092 {
5093 const ULONGEST length = sect_off_next - sect_off_prev;
5094 dwarf2_per_cu_data *per_cu
5095 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5096 sect_off_prev, length);
5097 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5098 }
5099 sect_off_prev = sect_off_next;
5100 }
5101 }
5102
5103 /* Read the CU list from the mapped index, and use it to create all
5104 the CU objects for this dwarf2_per_objfile. */
5105
5106 static void
5107 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5108 const mapped_debug_names &map,
5109 const mapped_debug_names &dwz_map)
5110 {
5111 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5112 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5113
5114 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5115 dwarf2_per_objfile->info,
5116 false /* is_dwz */);
5117
5118 if (dwz_map.cu_count == 0)
5119 return;
5120
5121 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5122 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5123 true /* is_dwz */);
5124 }
5125
5126 /* Read .debug_names. If everything went ok, initialize the "quick"
5127 elements of all the CUs and return true. Otherwise, return false. */
5128
5129 static bool
5130 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5131 {
5132 std::unique_ptr<mapped_debug_names> map
5133 (new mapped_debug_names (dwarf2_per_objfile));
5134 mapped_debug_names dwz_map (dwarf2_per_objfile);
5135 struct objfile *objfile = dwarf2_per_objfile->objfile;
5136
5137 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5138 &dwarf2_per_objfile->debug_names,
5139 *map))
5140 return false;
5141
5142 /* Don't use the index if it's empty. */
5143 if (map->name_count == 0)
5144 return false;
5145
5146 /* If there is a .dwz file, read it so we can get its CU list as
5147 well. */
5148 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5149 if (dwz != NULL)
5150 {
5151 if (!read_debug_names_from_section (objfile,
5152 bfd_get_filename (dwz->dwz_bfd.get ()),
5153 &dwz->debug_names, dwz_map))
5154 {
5155 warning (_("could not read '.debug_names' section from %s; skipping"),
5156 bfd_get_filename (dwz->dwz_bfd.get ()));
5157 return false;
5158 }
5159 }
5160
5161 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5162
5163 if (map->tu_count != 0)
5164 {
5165 /* We can only handle a single .debug_types when we have an
5166 index. */
5167 if (dwarf2_per_objfile->types.size () != 1)
5168 return false;
5169
5170 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5171
5172 create_signatured_type_table_from_debug_names
5173 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5174 }
5175
5176 create_addrmap_from_aranges (dwarf2_per_objfile,
5177 &dwarf2_per_objfile->debug_aranges);
5178
5179 dwarf2_per_objfile->debug_names_table = std::move (map);
5180 dwarf2_per_objfile->using_index = 1;
5181 dwarf2_per_objfile->quick_file_names_table =
5182 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5183
5184 return true;
5185 }
5186
5187 /* Type used to manage iterating over all CUs looking for a symbol for
5188 .debug_names. */
5189
5190 class dw2_debug_names_iterator
5191 {
5192 public:
5193 dw2_debug_names_iterator (const mapped_debug_names &map,
5194 gdb::optional<block_enum> block_index,
5195 domain_enum domain,
5196 const char *name)
5197 : m_map (map), m_block_index (block_index), m_domain (domain),
5198 m_addr (find_vec_in_debug_names (map, name))
5199 {}
5200
5201 dw2_debug_names_iterator (const mapped_debug_names &map,
5202 search_domain search, uint32_t namei)
5203 : m_map (map),
5204 m_search (search),
5205 m_addr (find_vec_in_debug_names (map, namei))
5206 {}
5207
5208 dw2_debug_names_iterator (const mapped_debug_names &map,
5209 block_enum block_index, domain_enum domain,
5210 uint32_t namei)
5211 : m_map (map), m_block_index (block_index), m_domain (domain),
5212 m_addr (find_vec_in_debug_names (map, namei))
5213 {}
5214
5215 /* Return the next matching CU or NULL if there are no more. */
5216 dwarf2_per_cu_data *next ();
5217
5218 private:
5219 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5220 const char *name);
5221 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5222 uint32_t namei);
5223
5224 /* The internalized form of .debug_names. */
5225 const mapped_debug_names &m_map;
5226
5227 /* If set, only look for symbols that match that block. Valid values are
5228 GLOBAL_BLOCK and STATIC_BLOCK. */
5229 const gdb::optional<block_enum> m_block_index;
5230
5231 /* The kind of symbol we're looking for. */
5232 const domain_enum m_domain = UNDEF_DOMAIN;
5233 const search_domain m_search = ALL_DOMAIN;
5234
5235 /* The list of CUs from the index entry of the symbol, or NULL if
5236 not found. */
5237 const gdb_byte *m_addr;
5238 };
5239
5240 const char *
5241 mapped_debug_names::namei_to_name (uint32_t namei) const
5242 {
5243 const ULONGEST namei_string_offs
5244 = extract_unsigned_integer ((name_table_string_offs_reordered
5245 + namei * offset_size),
5246 offset_size,
5247 dwarf5_byte_order);
5248 return read_indirect_string_at_offset (dwarf2_per_objfile,
5249 namei_string_offs);
5250 }
5251
5252 /* Find a slot in .debug_names for the object named NAME. If NAME is
5253 found, return pointer to its pool data. If NAME cannot be found,
5254 return NULL. */
5255
5256 const gdb_byte *
5257 dw2_debug_names_iterator::find_vec_in_debug_names
5258 (const mapped_debug_names &map, const char *name)
5259 {
5260 int (*cmp) (const char *, const char *);
5261
5262 gdb::unique_xmalloc_ptr<char> without_params;
5263 if (current_language->la_language == language_cplus
5264 || current_language->la_language == language_fortran
5265 || current_language->la_language == language_d)
5266 {
5267 /* NAME is already canonical. Drop any qualifiers as
5268 .debug_names does not contain any. */
5269
5270 if (strchr (name, '(') != NULL)
5271 {
5272 without_params = cp_remove_params (name);
5273 if (without_params != NULL)
5274 name = without_params.get ();
5275 }
5276 }
5277
5278 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5279
5280 const uint32_t full_hash = dwarf5_djb_hash (name);
5281 uint32_t namei
5282 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5283 (map.bucket_table_reordered
5284 + (full_hash % map.bucket_count)), 4,
5285 map.dwarf5_byte_order);
5286 if (namei == 0)
5287 return NULL;
5288 --namei;
5289 if (namei >= map.name_count)
5290 {
5291 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5292 "[in module %s]"),
5293 namei, map.name_count,
5294 objfile_name (map.dwarf2_per_objfile->objfile));
5295 return NULL;
5296 }
5297
5298 for (;;)
5299 {
5300 const uint32_t namei_full_hash
5301 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5302 (map.hash_table_reordered + namei), 4,
5303 map.dwarf5_byte_order);
5304 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5305 return NULL;
5306
5307 if (full_hash == namei_full_hash)
5308 {
5309 const char *const namei_string = map.namei_to_name (namei);
5310
5311 #if 0 /* An expensive sanity check. */
5312 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5313 {
5314 complaint (_("Wrong .debug_names hash for string at index %u "
5315 "[in module %s]"),
5316 namei, objfile_name (dwarf2_per_objfile->objfile));
5317 return NULL;
5318 }
5319 #endif
5320
5321 if (cmp (namei_string, name) == 0)
5322 {
5323 const ULONGEST namei_entry_offs
5324 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5325 + namei * map.offset_size),
5326 map.offset_size, map.dwarf5_byte_order);
5327 return map.entry_pool + namei_entry_offs;
5328 }
5329 }
5330
5331 ++namei;
5332 if (namei >= map.name_count)
5333 return NULL;
5334 }
5335 }
5336
5337 const gdb_byte *
5338 dw2_debug_names_iterator::find_vec_in_debug_names
5339 (const mapped_debug_names &map, uint32_t namei)
5340 {
5341 if (namei >= map.name_count)
5342 {
5343 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5344 "[in module %s]"),
5345 namei, map.name_count,
5346 objfile_name (map.dwarf2_per_objfile->objfile));
5347 return NULL;
5348 }
5349
5350 const ULONGEST namei_entry_offs
5351 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5352 + namei * map.offset_size),
5353 map.offset_size, map.dwarf5_byte_order);
5354 return map.entry_pool + namei_entry_offs;
5355 }
5356
5357 /* See dw2_debug_names_iterator. */
5358
5359 dwarf2_per_cu_data *
5360 dw2_debug_names_iterator::next ()
5361 {
5362 if (m_addr == NULL)
5363 return NULL;
5364
5365 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5366 struct objfile *objfile = dwarf2_per_objfile->objfile;
5367 bfd *const abfd = objfile->obfd;
5368
5369 again:
5370
5371 unsigned int bytes_read;
5372 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5373 m_addr += bytes_read;
5374 if (abbrev == 0)
5375 return NULL;
5376
5377 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5378 if (indexval_it == m_map.abbrev_map.cend ())
5379 {
5380 complaint (_("Wrong .debug_names undefined abbrev code %s "
5381 "[in module %s]"),
5382 pulongest (abbrev), objfile_name (objfile));
5383 return NULL;
5384 }
5385 const mapped_debug_names::index_val &indexval = indexval_it->second;
5386 enum class symbol_linkage {
5387 unknown,
5388 static_,
5389 extern_,
5390 } symbol_linkage_ = symbol_linkage::unknown;
5391 dwarf2_per_cu_data *per_cu = NULL;
5392 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5393 {
5394 ULONGEST ull;
5395 switch (attr.form)
5396 {
5397 case DW_FORM_implicit_const:
5398 ull = attr.implicit_const;
5399 break;
5400 case DW_FORM_flag_present:
5401 ull = 1;
5402 break;
5403 case DW_FORM_udata:
5404 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5405 m_addr += bytes_read;
5406 break;
5407 case DW_FORM_ref4:
5408 ull = read_4_bytes (abfd, m_addr);
5409 m_addr += 4;
5410 break;
5411 case DW_FORM_ref8:
5412 ull = read_8_bytes (abfd, m_addr);
5413 m_addr += 8;
5414 break;
5415 case DW_FORM_ref_sig8:
5416 ull = read_8_bytes (abfd, m_addr);
5417 m_addr += 8;
5418 break;
5419 default:
5420 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5421 dwarf_form_name (attr.form),
5422 objfile_name (objfile));
5423 return NULL;
5424 }
5425 switch (attr.dw_idx)
5426 {
5427 case DW_IDX_compile_unit:
5428 /* Don't crash on bad data. */
5429 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5430 {
5431 complaint (_(".debug_names entry has bad CU index %s"
5432 " [in module %s]"),
5433 pulongest (ull),
5434 objfile_name (dwarf2_per_objfile->objfile));
5435 continue;
5436 }
5437 per_cu = dwarf2_per_objfile->get_cutu (ull);
5438 break;
5439 case DW_IDX_type_unit:
5440 /* Don't crash on bad data. */
5441 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5442 {
5443 complaint (_(".debug_names entry has bad TU index %s"
5444 " [in module %s]"),
5445 pulongest (ull),
5446 objfile_name (dwarf2_per_objfile->objfile));
5447 continue;
5448 }
5449 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5450 break;
5451 case DW_IDX_die_offset:
5452 /* In a per-CU index (as opposed to a per-module index), index
5453 entries without CU attribute implicitly refer to the single CU. */
5454 if (per_cu == NULL)
5455 per_cu = dwarf2_per_objfile->get_cu (0);
5456 break;
5457 case DW_IDX_GNU_internal:
5458 if (!m_map.augmentation_is_gdb)
5459 break;
5460 symbol_linkage_ = symbol_linkage::static_;
5461 break;
5462 case DW_IDX_GNU_external:
5463 if (!m_map.augmentation_is_gdb)
5464 break;
5465 symbol_linkage_ = symbol_linkage::extern_;
5466 break;
5467 }
5468 }
5469
5470 /* Skip if already read in. */
5471 if (per_cu->v.quick->compunit_symtab)
5472 goto again;
5473
5474 /* Check static vs global. */
5475 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5476 {
5477 const bool want_static = *m_block_index == STATIC_BLOCK;
5478 const bool symbol_is_static =
5479 symbol_linkage_ == symbol_linkage::static_;
5480 if (want_static != symbol_is_static)
5481 goto again;
5482 }
5483
5484 /* Match dw2_symtab_iter_next, symbol_kind
5485 and debug_names::psymbol_tag. */
5486 switch (m_domain)
5487 {
5488 case VAR_DOMAIN:
5489 switch (indexval.dwarf_tag)
5490 {
5491 case DW_TAG_variable:
5492 case DW_TAG_subprogram:
5493 /* Some types are also in VAR_DOMAIN. */
5494 case DW_TAG_typedef:
5495 case DW_TAG_structure_type:
5496 break;
5497 default:
5498 goto again;
5499 }
5500 break;
5501 case STRUCT_DOMAIN:
5502 switch (indexval.dwarf_tag)
5503 {
5504 case DW_TAG_typedef:
5505 case DW_TAG_structure_type:
5506 break;
5507 default:
5508 goto again;
5509 }
5510 break;
5511 case LABEL_DOMAIN:
5512 switch (indexval.dwarf_tag)
5513 {
5514 case 0:
5515 case DW_TAG_variable:
5516 break;
5517 default:
5518 goto again;
5519 }
5520 break;
5521 case MODULE_DOMAIN:
5522 switch (indexval.dwarf_tag)
5523 {
5524 case DW_TAG_module:
5525 break;
5526 default:
5527 goto again;
5528 }
5529 break;
5530 default:
5531 break;
5532 }
5533
5534 /* Match dw2_expand_symtabs_matching, symbol_kind and
5535 debug_names::psymbol_tag. */
5536 switch (m_search)
5537 {
5538 case VARIABLES_DOMAIN:
5539 switch (indexval.dwarf_tag)
5540 {
5541 case DW_TAG_variable:
5542 break;
5543 default:
5544 goto again;
5545 }
5546 break;
5547 case FUNCTIONS_DOMAIN:
5548 switch (indexval.dwarf_tag)
5549 {
5550 case DW_TAG_subprogram:
5551 break;
5552 default:
5553 goto again;
5554 }
5555 break;
5556 case TYPES_DOMAIN:
5557 switch (indexval.dwarf_tag)
5558 {
5559 case DW_TAG_typedef:
5560 case DW_TAG_structure_type:
5561 break;
5562 default:
5563 goto again;
5564 }
5565 break;
5566 case MODULES_DOMAIN:
5567 switch (indexval.dwarf_tag)
5568 {
5569 case DW_TAG_module:
5570 break;
5571 default:
5572 goto again;
5573 }
5574 default:
5575 break;
5576 }
5577
5578 return per_cu;
5579 }
5580
5581 static struct compunit_symtab *
5582 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5583 const char *name, domain_enum domain)
5584 {
5585 struct dwarf2_per_objfile *dwarf2_per_objfile
5586 = get_dwarf2_per_objfile (objfile);
5587
5588 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5589 if (!mapp)
5590 {
5591 /* index is NULL if OBJF_READNOW. */
5592 return NULL;
5593 }
5594 const auto &map = *mapp;
5595
5596 dw2_debug_names_iterator iter (map, block_index, domain, name);
5597
5598 struct compunit_symtab *stab_best = NULL;
5599 struct dwarf2_per_cu_data *per_cu;
5600 while ((per_cu = iter.next ()) != NULL)
5601 {
5602 struct symbol *sym, *with_opaque = NULL;
5603 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5604 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5605 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5606
5607 sym = block_find_symbol (block, name, domain,
5608 block_find_non_opaque_type_preferred,
5609 &with_opaque);
5610
5611 /* Some caution must be observed with overloaded functions and
5612 methods, since the index will not contain any overload
5613 information (but NAME might contain it). */
5614
5615 if (sym != NULL
5616 && strcmp_iw (sym->search_name (), name) == 0)
5617 return stab;
5618 if (with_opaque != NULL
5619 && strcmp_iw (with_opaque->search_name (), name) == 0)
5620 stab_best = stab;
5621
5622 /* Keep looking through other CUs. */
5623 }
5624
5625 return stab_best;
5626 }
5627
5628 /* This dumps minimal information about .debug_names. It is called
5629 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5630 uses this to verify that .debug_names has been loaded. */
5631
5632 static void
5633 dw2_debug_names_dump (struct objfile *objfile)
5634 {
5635 struct dwarf2_per_objfile *dwarf2_per_objfile
5636 = get_dwarf2_per_objfile (objfile);
5637
5638 gdb_assert (dwarf2_per_objfile->using_index);
5639 printf_filtered (".debug_names:");
5640 if (dwarf2_per_objfile->debug_names_table)
5641 printf_filtered (" exists\n");
5642 else
5643 printf_filtered (" faked for \"readnow\"\n");
5644 printf_filtered ("\n");
5645 }
5646
5647 static void
5648 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5649 const char *func_name)
5650 {
5651 struct dwarf2_per_objfile *dwarf2_per_objfile
5652 = get_dwarf2_per_objfile (objfile);
5653
5654 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5655 if (dwarf2_per_objfile->debug_names_table)
5656 {
5657 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5658
5659 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5660
5661 struct dwarf2_per_cu_data *per_cu;
5662 while ((per_cu = iter.next ()) != NULL)
5663 dw2_instantiate_symtab (per_cu, false);
5664 }
5665 }
5666
5667 static void
5668 dw2_debug_names_map_matching_symbols
5669 (struct objfile *objfile,
5670 const lookup_name_info &name, domain_enum domain,
5671 int global,
5672 gdb::function_view<symbol_found_callback_ftype> callback,
5673 symbol_compare_ftype *ordered_compare)
5674 {
5675 struct dwarf2_per_objfile *dwarf2_per_objfile
5676 = get_dwarf2_per_objfile (objfile);
5677
5678 /* debug_names_table is NULL if OBJF_READNOW. */
5679 if (!dwarf2_per_objfile->debug_names_table)
5680 return;
5681
5682 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5683 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5684
5685 const char *match_name = name.ada ().lookup_name ().c_str ();
5686 auto matcher = [&] (const char *symname)
5687 {
5688 if (ordered_compare == nullptr)
5689 return true;
5690 return ordered_compare (symname, match_name) == 0;
5691 };
5692
5693 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5694 [&] (offset_type namei)
5695 {
5696 /* The name was matched, now expand corresponding CUs that were
5697 marked. */
5698 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5699
5700 struct dwarf2_per_cu_data *per_cu;
5701 while ((per_cu = iter.next ()) != NULL)
5702 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5703 return true;
5704 });
5705
5706 /* It's a shame we couldn't do this inside the
5707 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5708 that have already been expanded. Instead, this loop matches what
5709 the psymtab code does. */
5710 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5711 {
5712 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5713 if (cust != nullptr)
5714 {
5715 const struct block *block
5716 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5717 if (!iterate_over_symbols_terminated (block, name,
5718 domain, callback))
5719 break;
5720 }
5721 }
5722 }
5723
5724 static void
5725 dw2_debug_names_expand_symtabs_matching
5726 (struct objfile *objfile,
5727 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5728 const lookup_name_info *lookup_name,
5729 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5730 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5731 enum search_domain kind)
5732 {
5733 struct dwarf2_per_objfile *dwarf2_per_objfile
5734 = get_dwarf2_per_objfile (objfile);
5735
5736 /* debug_names_table is NULL if OBJF_READNOW. */
5737 if (!dwarf2_per_objfile->debug_names_table)
5738 return;
5739
5740 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5741
5742 if (symbol_matcher == NULL && lookup_name == NULL)
5743 {
5744 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5745 {
5746 QUIT;
5747
5748 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5749 expansion_notify);
5750 }
5751 return;
5752 }
5753
5754 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5755
5756 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5757 symbol_matcher,
5758 kind, [&] (offset_type namei)
5759 {
5760 /* The name was matched, now expand corresponding CUs that were
5761 marked. */
5762 dw2_debug_names_iterator iter (map, kind, namei);
5763
5764 struct dwarf2_per_cu_data *per_cu;
5765 while ((per_cu = iter.next ()) != NULL)
5766 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5767 expansion_notify);
5768 return true;
5769 });
5770 }
5771
5772 const struct quick_symbol_functions dwarf2_debug_names_functions =
5773 {
5774 dw2_has_symbols,
5775 dw2_find_last_source_symtab,
5776 dw2_forget_cached_source_info,
5777 dw2_map_symtabs_matching_filename,
5778 dw2_debug_names_lookup_symbol,
5779 NULL,
5780 dw2_print_stats,
5781 dw2_debug_names_dump,
5782 dw2_debug_names_expand_symtabs_for_function,
5783 dw2_expand_all_symtabs,
5784 dw2_expand_symtabs_with_fullname,
5785 dw2_debug_names_map_matching_symbols,
5786 dw2_debug_names_expand_symtabs_matching,
5787 dw2_find_pc_sect_compunit_symtab,
5788 NULL,
5789 dw2_map_symbol_filenames
5790 };
5791
5792 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5793 to either a dwarf2_per_objfile or dwz_file object. */
5794
5795 template <typename T>
5796 static gdb::array_view<const gdb_byte>
5797 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5798 {
5799 dwarf2_section_info *section = &section_owner->gdb_index;
5800
5801 if (section->empty ())
5802 return {};
5803
5804 /* Older elfutils strip versions could keep the section in the main
5805 executable while splitting it for the separate debug info file. */
5806 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5807 return {};
5808
5809 section->read (obj);
5810
5811 /* dwarf2_section_info::size is a bfd_size_type, while
5812 gdb::array_view works with size_t. On 32-bit hosts, with
5813 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5814 is 32-bit. So we need an explicit narrowing conversion here.
5815 This is fine, because it's impossible to allocate or mmap an
5816 array/buffer larger than what size_t can represent. */
5817 return gdb::make_array_view (section->buffer, section->size);
5818 }
5819
5820 /* Lookup the index cache for the contents of the index associated to
5821 DWARF2_OBJ. */
5822
5823 static gdb::array_view<const gdb_byte>
5824 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5825 {
5826 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5827 if (build_id == nullptr)
5828 return {};
5829
5830 return global_index_cache.lookup_gdb_index (build_id,
5831 &dwarf2_obj->index_cache_res);
5832 }
5833
5834 /* Same as the above, but for DWZ. */
5835
5836 static gdb::array_view<const gdb_byte>
5837 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5838 {
5839 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5840 if (build_id == nullptr)
5841 return {};
5842
5843 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5844 }
5845
5846 /* See symfile.h. */
5847
5848 bool
5849 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5850 {
5851 struct dwarf2_per_objfile *dwarf2_per_objfile
5852 = get_dwarf2_per_objfile (objfile);
5853
5854 /* If we're about to read full symbols, don't bother with the
5855 indices. In this case we also don't care if some other debug
5856 format is making psymtabs, because they are all about to be
5857 expanded anyway. */
5858 if ((objfile->flags & OBJF_READNOW))
5859 {
5860 dwarf2_per_objfile->using_index = 1;
5861 create_all_comp_units (dwarf2_per_objfile);
5862 create_all_type_units (dwarf2_per_objfile);
5863 dwarf2_per_objfile->quick_file_names_table
5864 = create_quick_file_names_table
5865 (dwarf2_per_objfile->all_comp_units.size ());
5866
5867 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5868 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5869 {
5870 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5871
5872 per_cu->v.quick = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
5873 struct dwarf2_per_cu_quick_data);
5874 }
5875
5876 /* Return 1 so that gdb sees the "quick" functions. However,
5877 these functions will be no-ops because we will have expanded
5878 all symtabs. */
5879 *index_kind = dw_index_kind::GDB_INDEX;
5880 return true;
5881 }
5882
5883 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5884 {
5885 *index_kind = dw_index_kind::DEBUG_NAMES;
5886 return true;
5887 }
5888
5889 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5890 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5891 get_gdb_index_contents_from_section<dwz_file>))
5892 {
5893 *index_kind = dw_index_kind::GDB_INDEX;
5894 return true;
5895 }
5896
5897 /* ... otherwise, try to find the index in the index cache. */
5898 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5899 get_gdb_index_contents_from_cache,
5900 get_gdb_index_contents_from_cache_dwz))
5901 {
5902 global_index_cache.hit ();
5903 *index_kind = dw_index_kind::GDB_INDEX;
5904 return true;
5905 }
5906
5907 global_index_cache.miss ();
5908 return false;
5909 }
5910
5911 \f
5912
5913 /* Build a partial symbol table. */
5914
5915 void
5916 dwarf2_build_psymtabs (struct objfile *objfile)
5917 {
5918 struct dwarf2_per_objfile *dwarf2_per_objfile
5919 = get_dwarf2_per_objfile (objfile);
5920
5921 init_psymbol_list (objfile, 1024);
5922
5923 try
5924 {
5925 /* This isn't really ideal: all the data we allocate on the
5926 objfile's obstack is still uselessly kept around. However,
5927 freeing it seems unsafe. */
5928 psymtab_discarder psymtabs (objfile);
5929 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5930 psymtabs.keep ();
5931
5932 /* (maybe) store an index in the cache. */
5933 global_index_cache.store (dwarf2_per_objfile);
5934 }
5935 catch (const gdb_exception_error &except)
5936 {
5937 exception_print (gdb_stderr, except);
5938 }
5939 }
5940
5941 /* Find the base address of the compilation unit for range lists and
5942 location lists. It will normally be specified by DW_AT_low_pc.
5943 In DWARF-3 draft 4, the base address could be overridden by
5944 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5945 compilation units with discontinuous ranges. */
5946
5947 static void
5948 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5949 {
5950 struct attribute *attr;
5951
5952 cu->base_address.reset ();
5953
5954 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5955 if (attr != nullptr)
5956 cu->base_address = attr->value_as_address ();
5957 else
5958 {
5959 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5960 if (attr != nullptr)
5961 cu->base_address = attr->value_as_address ();
5962 }
5963 }
5964
5965 /* Helper function that returns the proper abbrev section for
5966 THIS_CU. */
5967
5968 static struct dwarf2_section_info *
5969 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5970 {
5971 struct dwarf2_section_info *abbrev;
5972 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5973
5974 if (this_cu->is_dwz)
5975 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5976 else
5977 abbrev = &dwarf2_per_objfile->abbrev;
5978
5979 return abbrev;
5980 }
5981
5982 /* Fetch the abbreviation table offset from a comp or type unit header. */
5983
5984 static sect_offset
5985 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5986 struct dwarf2_section_info *section,
5987 sect_offset sect_off)
5988 {
5989 bfd *abfd = section->get_bfd_owner ();
5990 const gdb_byte *info_ptr;
5991 unsigned int initial_length_size, offset_size;
5992 uint16_t version;
5993
5994 section->read (dwarf2_per_objfile->objfile);
5995 info_ptr = section->buffer + to_underlying (sect_off);
5996 read_initial_length (abfd, info_ptr, &initial_length_size);
5997 offset_size = initial_length_size == 4 ? 4 : 8;
5998 info_ptr += initial_length_size;
5999
6000 version = read_2_bytes (abfd, info_ptr);
6001 info_ptr += 2;
6002 if (version >= 5)
6003 {
6004 /* Skip unit type and address size. */
6005 info_ptr += 2;
6006 }
6007
6008 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
6009 }
6010
6011 /* A partial symtab that is used only for include files. */
6012 struct dwarf2_include_psymtab : public partial_symtab
6013 {
6014 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
6015 : partial_symtab (filename, objfile)
6016 {
6017 }
6018
6019 void read_symtab (struct objfile *objfile) override
6020 {
6021 /* It's an include file, no symbols to read for it.
6022 Everything is in the includer symtab. */
6023
6024 /* The expansion of a dwarf2_include_psymtab is just a trigger for
6025 expansion of the includer psymtab. We use the dependencies[0] field to
6026 model the includer. But if we go the regular route of calling
6027 expand_psymtab here, and having expand_psymtab call expand_dependencies
6028 to expand the includer, we'll only use expand_psymtab on the includer
6029 (making it a non-toplevel psymtab), while if we expand the includer via
6030 another path, we'll use read_symtab (making it a toplevel psymtab).
6031 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
6032 psymtab, and trigger read_symtab on the includer here directly. */
6033 includer ()->read_symtab (objfile);
6034 }
6035
6036 void expand_psymtab (struct objfile *objfile) override
6037 {
6038 /* This is not called by read_symtab, and should not be called by any
6039 expand_dependencies. */
6040 gdb_assert (false);
6041 }
6042
6043 bool readin_p () const override
6044 {
6045 return includer ()->readin_p ();
6046 }
6047
6048 struct compunit_symtab *get_compunit_symtab () const override
6049 {
6050 return nullptr;
6051 }
6052
6053 private:
6054 partial_symtab *includer () const
6055 {
6056 /* An include psymtab has exactly one dependency: the psymtab that
6057 includes it. */
6058 gdb_assert (this->number_of_dependencies == 1);
6059 return this->dependencies[0];
6060 }
6061 };
6062
6063 /* Allocate a new partial symtab for file named NAME and mark this new
6064 partial symtab as being an include of PST. */
6065
6066 static void
6067 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6068 struct objfile *objfile)
6069 {
6070 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6071
6072 if (!IS_ABSOLUTE_PATH (subpst->filename))
6073 subpst->dirname = pst->dirname;
6074
6075 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6076 subpst->dependencies[0] = pst;
6077 subpst->number_of_dependencies = 1;
6078 }
6079
6080 /* Read the Line Number Program data and extract the list of files
6081 included by the source file represented by PST. Build an include
6082 partial symtab for each of these included files. */
6083
6084 static void
6085 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6086 struct die_info *die,
6087 dwarf2_psymtab *pst)
6088 {
6089 line_header_up lh;
6090 struct attribute *attr;
6091
6092 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6093 if (attr != nullptr)
6094 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6095 if (lh == NULL)
6096 return; /* No linetable, so no includes. */
6097
6098 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6099 that we pass in the raw text_low here; that is ok because we're
6100 only decoding the line table to make include partial symtabs, and
6101 so the addresses aren't really used. */
6102 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6103 pst->raw_text_low (), 1);
6104 }
6105
6106 static hashval_t
6107 hash_signatured_type (const void *item)
6108 {
6109 const struct signatured_type *sig_type
6110 = (const struct signatured_type *) item;
6111
6112 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6113 return sig_type->signature;
6114 }
6115
6116 static int
6117 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6118 {
6119 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6120 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6121
6122 return lhs->signature == rhs->signature;
6123 }
6124
6125 /* Allocate a hash table for signatured types. */
6126
6127 static htab_up
6128 allocate_signatured_type_table ()
6129 {
6130 return htab_up (htab_create_alloc (41,
6131 hash_signatured_type,
6132 eq_signatured_type,
6133 NULL, xcalloc, xfree));
6134 }
6135
6136 /* A helper function to add a signatured type CU to a table. */
6137
6138 static int
6139 add_signatured_type_cu_to_table (void **slot, void *datum)
6140 {
6141 struct signatured_type *sigt = (struct signatured_type *) *slot;
6142 std::vector<signatured_type *> *all_type_units
6143 = (std::vector<signatured_type *> *) datum;
6144
6145 all_type_units->push_back (sigt);
6146
6147 return 1;
6148 }
6149
6150 /* A helper for create_debug_types_hash_table. Read types from SECTION
6151 and fill them into TYPES_HTAB. It will process only type units,
6152 therefore DW_UT_type. */
6153
6154 static void
6155 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6156 struct dwo_file *dwo_file,
6157 dwarf2_section_info *section, htab_up &types_htab,
6158 rcuh_kind section_kind)
6159 {
6160 struct objfile *objfile = dwarf2_per_objfile->objfile;
6161 struct dwarf2_section_info *abbrev_section;
6162 bfd *abfd;
6163 const gdb_byte *info_ptr, *end_ptr;
6164
6165 abbrev_section = (dwo_file != NULL
6166 ? &dwo_file->sections.abbrev
6167 : &dwarf2_per_objfile->abbrev);
6168
6169 if (dwarf_read_debug)
6170 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6171 section->get_name (),
6172 abbrev_section->get_file_name ());
6173
6174 section->read (objfile);
6175 info_ptr = section->buffer;
6176
6177 if (info_ptr == NULL)
6178 return;
6179
6180 /* We can't set abfd until now because the section may be empty or
6181 not present, in which case the bfd is unknown. */
6182 abfd = section->get_bfd_owner ();
6183
6184 /* We don't use cutu_reader here because we don't need to read
6185 any dies: the signature is in the header. */
6186
6187 end_ptr = info_ptr + section->size;
6188 while (info_ptr < end_ptr)
6189 {
6190 struct signatured_type *sig_type;
6191 struct dwo_unit *dwo_tu;
6192 void **slot;
6193 const gdb_byte *ptr = info_ptr;
6194 struct comp_unit_head header;
6195 unsigned int length;
6196
6197 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6198
6199 /* Initialize it due to a false compiler warning. */
6200 header.signature = -1;
6201 header.type_cu_offset_in_tu = (cu_offset) -1;
6202
6203 /* We need to read the type's signature in order to build the hash
6204 table, but we don't need anything else just yet. */
6205
6206 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6207 abbrev_section, ptr, section_kind);
6208
6209 length = header.get_length ();
6210
6211 /* Skip dummy type units. */
6212 if (ptr >= info_ptr + length
6213 || peek_abbrev_code (abfd, ptr) == 0
6214 || header.unit_type != DW_UT_type)
6215 {
6216 info_ptr += length;
6217 continue;
6218 }
6219
6220 if (types_htab == NULL)
6221 {
6222 if (dwo_file)
6223 types_htab = allocate_dwo_unit_table ();
6224 else
6225 types_htab = allocate_signatured_type_table ();
6226 }
6227
6228 if (dwo_file)
6229 {
6230 sig_type = NULL;
6231 dwo_tu = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
6232 struct dwo_unit);
6233 dwo_tu->dwo_file = dwo_file;
6234 dwo_tu->signature = header.signature;
6235 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6236 dwo_tu->section = section;
6237 dwo_tu->sect_off = sect_off;
6238 dwo_tu->length = length;
6239 }
6240 else
6241 {
6242 /* N.B.: type_offset is not usable if this type uses a DWO file.
6243 The real type_offset is in the DWO file. */
6244 dwo_tu = NULL;
6245 sig_type = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
6246 struct signatured_type);
6247 sig_type->signature = header.signature;
6248 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6249 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6250 sig_type->per_cu.is_debug_types = 1;
6251 sig_type->per_cu.section = section;
6252 sig_type->per_cu.sect_off = sect_off;
6253 sig_type->per_cu.length = length;
6254 }
6255
6256 slot = htab_find_slot (types_htab.get (),
6257 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6258 INSERT);
6259 gdb_assert (slot != NULL);
6260 if (*slot != NULL)
6261 {
6262 sect_offset dup_sect_off;
6263
6264 if (dwo_file)
6265 {
6266 const struct dwo_unit *dup_tu
6267 = (const struct dwo_unit *) *slot;
6268
6269 dup_sect_off = dup_tu->sect_off;
6270 }
6271 else
6272 {
6273 const struct signatured_type *dup_tu
6274 = (const struct signatured_type *) *slot;
6275
6276 dup_sect_off = dup_tu->per_cu.sect_off;
6277 }
6278
6279 complaint (_("debug type entry at offset %s is duplicate to"
6280 " the entry at offset %s, signature %s"),
6281 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6282 hex_string (header.signature));
6283 }
6284 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6285
6286 if (dwarf_read_debug > 1)
6287 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6288 sect_offset_str (sect_off),
6289 hex_string (header.signature));
6290
6291 info_ptr += length;
6292 }
6293 }
6294
6295 /* Create the hash table of all entries in the .debug_types
6296 (or .debug_types.dwo) section(s).
6297 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6298 otherwise it is NULL.
6299
6300 The result is a pointer to the hash table or NULL if there are no types.
6301
6302 Note: This function processes DWO files only, not DWP files. */
6303
6304 static void
6305 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6306 struct dwo_file *dwo_file,
6307 gdb::array_view<dwarf2_section_info> type_sections,
6308 htab_up &types_htab)
6309 {
6310 for (dwarf2_section_info &section : type_sections)
6311 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6312 types_htab, rcuh_kind::TYPE);
6313 }
6314
6315 /* Create the hash table of all entries in the .debug_types section,
6316 and initialize all_type_units.
6317 The result is zero if there is an error (e.g. missing .debug_types section),
6318 otherwise non-zero. */
6319
6320 static int
6321 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6322 {
6323 htab_up types_htab;
6324
6325 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6326 &dwarf2_per_objfile->info, types_htab,
6327 rcuh_kind::COMPILE);
6328 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6329 dwarf2_per_objfile->types, types_htab);
6330 if (types_htab == NULL)
6331 {
6332 dwarf2_per_objfile->signatured_types = NULL;
6333 return 0;
6334 }
6335
6336 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6337
6338 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6339 dwarf2_per_objfile->all_type_units.reserve
6340 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6341
6342 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6343 add_signatured_type_cu_to_table,
6344 &dwarf2_per_objfile->all_type_units);
6345
6346 return 1;
6347 }
6348
6349 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6350 If SLOT is non-NULL, it is the entry to use in the hash table.
6351 Otherwise we find one. */
6352
6353 static struct signatured_type *
6354 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6355 void **slot)
6356 {
6357 if (dwarf2_per_objfile->all_type_units.size ()
6358 == dwarf2_per_objfile->all_type_units.capacity ())
6359 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6360
6361 signatured_type *sig_type = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
6362 struct signatured_type);
6363
6364 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6365 sig_type->signature = sig;
6366 sig_type->per_cu.is_debug_types = 1;
6367 if (dwarf2_per_objfile->using_index)
6368 {
6369 sig_type->per_cu.v.quick =
6370 OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
6371 struct dwarf2_per_cu_quick_data);
6372 }
6373
6374 if (slot == NULL)
6375 {
6376 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6377 sig_type, INSERT);
6378 }
6379 gdb_assert (*slot == NULL);
6380 *slot = sig_type;
6381 /* The rest of sig_type must be filled in by the caller. */
6382 return sig_type;
6383 }
6384
6385 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6386 Fill in SIG_ENTRY with DWO_ENTRY. */
6387
6388 static void
6389 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6390 struct signatured_type *sig_entry,
6391 struct dwo_unit *dwo_entry)
6392 {
6393 /* Make sure we're not clobbering something we don't expect to. */
6394 gdb_assert (! sig_entry->per_cu.queued);
6395 gdb_assert (sig_entry->per_cu.cu == NULL);
6396 if (dwarf2_per_objfile->using_index)
6397 {
6398 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6399 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6400 }
6401 else
6402 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6403 gdb_assert (sig_entry->signature == dwo_entry->signature);
6404 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6405 gdb_assert (sig_entry->type_unit_group == NULL);
6406 gdb_assert (sig_entry->dwo_unit == NULL);
6407
6408 sig_entry->per_cu.section = dwo_entry->section;
6409 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6410 sig_entry->per_cu.length = dwo_entry->length;
6411 sig_entry->per_cu.reading_dwo_directly = 1;
6412 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6413 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6414 sig_entry->dwo_unit = dwo_entry;
6415 }
6416
6417 /* Subroutine of lookup_signatured_type.
6418 If we haven't read the TU yet, create the signatured_type data structure
6419 for a TU to be read in directly from a DWO file, bypassing the stub.
6420 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6421 using .gdb_index, then when reading a CU we want to stay in the DWO file
6422 containing that CU. Otherwise we could end up reading several other DWO
6423 files (due to comdat folding) to process the transitive closure of all the
6424 mentioned TUs, and that can be slow. The current DWO file will have every
6425 type signature that it needs.
6426 We only do this for .gdb_index because in the psymtab case we already have
6427 to read all the DWOs to build the type unit groups. */
6428
6429 static struct signatured_type *
6430 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6431 {
6432 struct dwarf2_per_objfile *dwarf2_per_objfile
6433 = cu->per_cu->dwarf2_per_objfile;
6434 struct dwo_file *dwo_file;
6435 struct dwo_unit find_dwo_entry, *dwo_entry;
6436 struct signatured_type find_sig_entry, *sig_entry;
6437 void **slot;
6438
6439 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6440
6441 /* If TU skeletons have been removed then we may not have read in any
6442 TUs yet. */
6443 if (dwarf2_per_objfile->signatured_types == NULL)
6444 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6445
6446 /* We only ever need to read in one copy of a signatured type.
6447 Use the global signatured_types array to do our own comdat-folding
6448 of types. If this is the first time we're reading this TU, and
6449 the TU has an entry in .gdb_index, replace the recorded data from
6450 .gdb_index with this TU. */
6451
6452 find_sig_entry.signature = sig;
6453 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6454 &find_sig_entry, INSERT);
6455 sig_entry = (struct signatured_type *) *slot;
6456
6457 /* We can get here with the TU already read, *or* in the process of being
6458 read. Don't reassign the global entry to point to this DWO if that's
6459 the case. Also note that if the TU is already being read, it may not
6460 have come from a DWO, the program may be a mix of Fission-compiled
6461 code and non-Fission-compiled code. */
6462
6463 /* Have we already tried to read this TU?
6464 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6465 needn't exist in the global table yet). */
6466 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6467 return sig_entry;
6468
6469 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6470 dwo_unit of the TU itself. */
6471 dwo_file = cu->dwo_unit->dwo_file;
6472
6473 /* Ok, this is the first time we're reading this TU. */
6474 if (dwo_file->tus == NULL)
6475 return NULL;
6476 find_dwo_entry.signature = sig;
6477 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6478 &find_dwo_entry);
6479 if (dwo_entry == NULL)
6480 return NULL;
6481
6482 /* If the global table doesn't have an entry for this TU, add one. */
6483 if (sig_entry == NULL)
6484 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6485
6486 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6487 sig_entry->per_cu.tu_read = 1;
6488 return sig_entry;
6489 }
6490
6491 /* Subroutine of lookup_signatured_type.
6492 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6493 then try the DWP file. If the TU stub (skeleton) has been removed then
6494 it won't be in .gdb_index. */
6495
6496 static struct signatured_type *
6497 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6498 {
6499 struct dwarf2_per_objfile *dwarf2_per_objfile
6500 = cu->per_cu->dwarf2_per_objfile;
6501 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6502 struct dwo_unit *dwo_entry;
6503 struct signatured_type find_sig_entry, *sig_entry;
6504 void **slot;
6505
6506 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6507 gdb_assert (dwp_file != NULL);
6508
6509 /* If TU skeletons have been removed then we may not have read in any
6510 TUs yet. */
6511 if (dwarf2_per_objfile->signatured_types == NULL)
6512 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6513
6514 find_sig_entry.signature = sig;
6515 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6516 &find_sig_entry, INSERT);
6517 sig_entry = (struct signatured_type *) *slot;
6518
6519 /* Have we already tried to read this TU?
6520 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6521 needn't exist in the global table yet). */
6522 if (sig_entry != NULL)
6523 return sig_entry;
6524
6525 if (dwp_file->tus == NULL)
6526 return NULL;
6527 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6528 sig, 1 /* is_debug_types */);
6529 if (dwo_entry == NULL)
6530 return NULL;
6531
6532 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6533 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6534
6535 return sig_entry;
6536 }
6537
6538 /* Lookup a signature based type for DW_FORM_ref_sig8.
6539 Returns NULL if signature SIG is not present in the table.
6540 It is up to the caller to complain about this. */
6541
6542 static struct signatured_type *
6543 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6544 {
6545 struct dwarf2_per_objfile *dwarf2_per_objfile
6546 = cu->per_cu->dwarf2_per_objfile;
6547
6548 if (cu->dwo_unit
6549 && dwarf2_per_objfile->using_index)
6550 {
6551 /* We're in a DWO/DWP file, and we're using .gdb_index.
6552 These cases require special processing. */
6553 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6554 return lookup_dwo_signatured_type (cu, sig);
6555 else
6556 return lookup_dwp_signatured_type (cu, sig);
6557 }
6558 else
6559 {
6560 struct signatured_type find_entry, *entry;
6561
6562 if (dwarf2_per_objfile->signatured_types == NULL)
6563 return NULL;
6564 find_entry.signature = sig;
6565 entry = ((struct signatured_type *)
6566 htab_find (dwarf2_per_objfile->signatured_types.get (),
6567 &find_entry));
6568 return entry;
6569 }
6570 }
6571
6572 /* Low level DIE reading support. */
6573
6574 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6575
6576 static void
6577 init_cu_die_reader (struct die_reader_specs *reader,
6578 struct dwarf2_cu *cu,
6579 struct dwarf2_section_info *section,
6580 struct dwo_file *dwo_file,
6581 struct abbrev_table *abbrev_table)
6582 {
6583 gdb_assert (section->readin && section->buffer != NULL);
6584 reader->abfd = section->get_bfd_owner ();
6585 reader->cu = cu;
6586 reader->dwo_file = dwo_file;
6587 reader->die_section = section;
6588 reader->buffer = section->buffer;
6589 reader->buffer_end = section->buffer + section->size;
6590 reader->abbrev_table = abbrev_table;
6591 }
6592
6593 /* Subroutine of cutu_reader to simplify it.
6594 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6595 There's just a lot of work to do, and cutu_reader is big enough
6596 already.
6597
6598 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6599 from it to the DIE in the DWO. If NULL we are skipping the stub.
6600 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6601 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6602 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6603 STUB_COMP_DIR may be non-NULL.
6604 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6605 are filled in with the info of the DIE from the DWO file.
6606 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6607 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6608 kept around for at least as long as *RESULT_READER.
6609
6610 The result is non-zero if a valid (non-dummy) DIE was found. */
6611
6612 static int
6613 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6614 struct dwo_unit *dwo_unit,
6615 struct die_info *stub_comp_unit_die,
6616 const char *stub_comp_dir,
6617 struct die_reader_specs *result_reader,
6618 const gdb_byte **result_info_ptr,
6619 struct die_info **result_comp_unit_die,
6620 abbrev_table_up *result_dwo_abbrev_table)
6621 {
6622 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6623 struct objfile *objfile = dwarf2_per_objfile->objfile;
6624 struct dwarf2_cu *cu = this_cu->cu;
6625 bfd *abfd;
6626 const gdb_byte *begin_info_ptr, *info_ptr;
6627 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6628 int i,num_extra_attrs;
6629 struct dwarf2_section_info *dwo_abbrev_section;
6630 struct die_info *comp_unit_die;
6631
6632 /* At most one of these may be provided. */
6633 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6634
6635 /* These attributes aren't processed until later:
6636 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6637 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6638 referenced later. However, these attributes are found in the stub
6639 which we won't have later. In order to not impose this complication
6640 on the rest of the code, we read them here and copy them to the
6641 DWO CU/TU die. */
6642
6643 stmt_list = NULL;
6644 low_pc = NULL;
6645 high_pc = NULL;
6646 ranges = NULL;
6647 comp_dir = NULL;
6648
6649 if (stub_comp_unit_die != NULL)
6650 {
6651 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6652 DWO file. */
6653 if (! this_cu->is_debug_types)
6654 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6655 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6656 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6657 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6658 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6659
6660 cu->addr_base = stub_comp_unit_die->addr_base ();
6661
6662 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6663 here (if needed). We need the value before we can process
6664 DW_AT_ranges. */
6665 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6666 }
6667 else if (stub_comp_dir != NULL)
6668 {
6669 /* Reconstruct the comp_dir attribute to simplify the code below. */
6670 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6671 comp_dir->name = DW_AT_comp_dir;
6672 comp_dir->form = DW_FORM_string;
6673 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6674 DW_STRING (comp_dir) = stub_comp_dir;
6675 }
6676
6677 /* Set up for reading the DWO CU/TU. */
6678 cu->dwo_unit = dwo_unit;
6679 dwarf2_section_info *section = dwo_unit->section;
6680 section->read (objfile);
6681 abfd = section->get_bfd_owner ();
6682 begin_info_ptr = info_ptr = (section->buffer
6683 + to_underlying (dwo_unit->sect_off));
6684 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6685
6686 if (this_cu->is_debug_types)
6687 {
6688 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6689
6690 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6691 &cu->header, section,
6692 dwo_abbrev_section,
6693 info_ptr, rcuh_kind::TYPE);
6694 /* This is not an assert because it can be caused by bad debug info. */
6695 if (sig_type->signature != cu->header.signature)
6696 {
6697 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6698 " TU at offset %s [in module %s]"),
6699 hex_string (sig_type->signature),
6700 hex_string (cu->header.signature),
6701 sect_offset_str (dwo_unit->sect_off),
6702 bfd_get_filename (abfd));
6703 }
6704 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6705 /* For DWOs coming from DWP files, we don't know the CU length
6706 nor the type's offset in the TU until now. */
6707 dwo_unit->length = cu->header.get_length ();
6708 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6709
6710 /* Establish the type offset that can be used to lookup the type.
6711 For DWO files, we don't know it until now. */
6712 sig_type->type_offset_in_section
6713 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6714 }
6715 else
6716 {
6717 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6718 &cu->header, section,
6719 dwo_abbrev_section,
6720 info_ptr, rcuh_kind::COMPILE);
6721 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6722 /* For DWOs coming from DWP files, we don't know the CU length
6723 until now. */
6724 dwo_unit->length = cu->header.get_length ();
6725 }
6726
6727 *result_dwo_abbrev_table
6728 = abbrev_table::read (objfile, dwo_abbrev_section,
6729 cu->header.abbrev_sect_off);
6730 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6731 result_dwo_abbrev_table->get ());
6732
6733 /* Read in the die, but leave space to copy over the attributes
6734 from the stub. This has the benefit of simplifying the rest of
6735 the code - all the work to maintain the illusion of a single
6736 DW_TAG_{compile,type}_unit DIE is done here. */
6737 num_extra_attrs = ((stmt_list != NULL)
6738 + (low_pc != NULL)
6739 + (high_pc != NULL)
6740 + (ranges != NULL)
6741 + (comp_dir != NULL));
6742 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6743 num_extra_attrs);
6744
6745 /* Copy over the attributes from the stub to the DIE we just read in. */
6746 comp_unit_die = *result_comp_unit_die;
6747 i = comp_unit_die->num_attrs;
6748 if (stmt_list != NULL)
6749 comp_unit_die->attrs[i++] = *stmt_list;
6750 if (low_pc != NULL)
6751 comp_unit_die->attrs[i++] = *low_pc;
6752 if (high_pc != NULL)
6753 comp_unit_die->attrs[i++] = *high_pc;
6754 if (ranges != NULL)
6755 comp_unit_die->attrs[i++] = *ranges;
6756 if (comp_dir != NULL)
6757 comp_unit_die->attrs[i++] = *comp_dir;
6758 comp_unit_die->num_attrs += num_extra_attrs;
6759
6760 if (dwarf_die_debug)
6761 {
6762 fprintf_unfiltered (gdb_stdlog,
6763 "Read die from %s@0x%x of %s:\n",
6764 section->get_name (),
6765 (unsigned) (begin_info_ptr - section->buffer),
6766 bfd_get_filename (abfd));
6767 dump_die (comp_unit_die, dwarf_die_debug);
6768 }
6769
6770 /* Skip dummy compilation units. */
6771 if (info_ptr >= begin_info_ptr + dwo_unit->length
6772 || peek_abbrev_code (abfd, info_ptr) == 0)
6773 return 0;
6774
6775 *result_info_ptr = info_ptr;
6776 return 1;
6777 }
6778
6779 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6780 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6781 signature is part of the header. */
6782 static gdb::optional<ULONGEST>
6783 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6784 {
6785 if (cu->header.version >= 5)
6786 return cu->header.signature;
6787 struct attribute *attr;
6788 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6789 if (attr == nullptr)
6790 return gdb::optional<ULONGEST> ();
6791 return DW_UNSND (attr);
6792 }
6793
6794 /* Subroutine of cutu_reader to simplify it.
6795 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6796 Returns NULL if the specified DWO unit cannot be found. */
6797
6798 static struct dwo_unit *
6799 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6800 struct die_info *comp_unit_die,
6801 const char *dwo_name)
6802 {
6803 struct dwarf2_cu *cu = this_cu->cu;
6804 struct dwo_unit *dwo_unit;
6805 const char *comp_dir;
6806
6807 gdb_assert (cu != NULL);
6808
6809 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6810 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6811 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6812
6813 if (this_cu->is_debug_types)
6814 {
6815 struct signatured_type *sig_type;
6816
6817 /* Since this_cu is the first member of struct signatured_type,
6818 we can go from a pointer to one to a pointer to the other. */
6819 sig_type = (struct signatured_type *) this_cu;
6820 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6821 }
6822 else
6823 {
6824 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6825 if (!signature.has_value ())
6826 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6827 " [in module %s]"),
6828 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6829 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6830 *signature);
6831 }
6832
6833 return dwo_unit;
6834 }
6835
6836 /* Subroutine of cutu_reader to simplify it.
6837 See it for a description of the parameters.
6838 Read a TU directly from a DWO file, bypassing the stub. */
6839
6840 void
6841 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6842 int use_existing_cu)
6843 {
6844 struct signatured_type *sig_type;
6845
6846 /* Verify we can do the following downcast, and that we have the
6847 data we need. */
6848 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6849 sig_type = (struct signatured_type *) this_cu;
6850 gdb_assert (sig_type->dwo_unit != NULL);
6851
6852 if (use_existing_cu && this_cu->cu != NULL)
6853 {
6854 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6855 /* There's no need to do the rereading_dwo_cu handling that
6856 cutu_reader does since we don't read the stub. */
6857 }
6858 else
6859 {
6860 /* If !use_existing_cu, this_cu->cu must be NULL. */
6861 gdb_assert (this_cu->cu == NULL);
6862 m_new_cu.reset (new dwarf2_cu (this_cu));
6863 }
6864
6865 /* A future optimization, if needed, would be to use an existing
6866 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6867 could share abbrev tables. */
6868
6869 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6870 NULL /* stub_comp_unit_die */,
6871 sig_type->dwo_unit->dwo_file->comp_dir,
6872 this, &info_ptr,
6873 &comp_unit_die,
6874 &m_dwo_abbrev_table) == 0)
6875 {
6876 /* Dummy die. */
6877 dummy_p = true;
6878 }
6879 }
6880
6881 /* Initialize a CU (or TU) and read its DIEs.
6882 If the CU defers to a DWO file, read the DWO file as well.
6883
6884 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6885 Otherwise the table specified in the comp unit header is read in and used.
6886 This is an optimization for when we already have the abbrev table.
6887
6888 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6889 Otherwise, a new CU is allocated with xmalloc. */
6890
6891 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6892 struct abbrev_table *abbrev_table,
6893 int use_existing_cu,
6894 bool skip_partial)
6895 : die_reader_specs {},
6896 m_this_cu (this_cu)
6897 {
6898 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6899 struct objfile *objfile = dwarf2_per_objfile->objfile;
6900 struct dwarf2_section_info *section = this_cu->section;
6901 bfd *abfd = section->get_bfd_owner ();
6902 struct dwarf2_cu *cu;
6903 const gdb_byte *begin_info_ptr;
6904 struct signatured_type *sig_type = NULL;
6905 struct dwarf2_section_info *abbrev_section;
6906 /* Non-zero if CU currently points to a DWO file and we need to
6907 reread it. When this happens we need to reread the skeleton die
6908 before we can reread the DWO file (this only applies to CUs, not TUs). */
6909 int rereading_dwo_cu = 0;
6910
6911 if (dwarf_die_debug)
6912 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6913 this_cu->is_debug_types ? "type" : "comp",
6914 sect_offset_str (this_cu->sect_off));
6915
6916 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6917 file (instead of going through the stub), short-circuit all of this. */
6918 if (this_cu->reading_dwo_directly)
6919 {
6920 /* Narrow down the scope of possibilities to have to understand. */
6921 gdb_assert (this_cu->is_debug_types);
6922 gdb_assert (abbrev_table == NULL);
6923 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6924 return;
6925 }
6926
6927 /* This is cheap if the section is already read in. */
6928 section->read (objfile);
6929
6930 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6931
6932 abbrev_section = get_abbrev_section_for_cu (this_cu);
6933
6934 if (use_existing_cu && this_cu->cu != NULL)
6935 {
6936 cu = this_cu->cu;
6937 /* If this CU is from a DWO file we need to start over, we need to
6938 refetch the attributes from the skeleton CU.
6939 This could be optimized by retrieving those attributes from when we
6940 were here the first time: the previous comp_unit_die was stored in
6941 comp_unit_obstack. But there's no data yet that we need this
6942 optimization. */
6943 if (cu->dwo_unit != NULL)
6944 rereading_dwo_cu = 1;
6945 }
6946 else
6947 {
6948 /* If !use_existing_cu, this_cu->cu must be NULL. */
6949 gdb_assert (this_cu->cu == NULL);
6950 m_new_cu.reset (new dwarf2_cu (this_cu));
6951 cu = m_new_cu.get ();
6952 }
6953
6954 /* Get the header. */
6955 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6956 {
6957 /* We already have the header, there's no need to read it in again. */
6958 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6959 }
6960 else
6961 {
6962 if (this_cu->is_debug_types)
6963 {
6964 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6965 &cu->header, section,
6966 abbrev_section, info_ptr,
6967 rcuh_kind::TYPE);
6968
6969 /* Since per_cu is the first member of struct signatured_type,
6970 we can go from a pointer to one to a pointer to the other. */
6971 sig_type = (struct signatured_type *) this_cu;
6972 gdb_assert (sig_type->signature == cu->header.signature);
6973 gdb_assert (sig_type->type_offset_in_tu
6974 == cu->header.type_cu_offset_in_tu);
6975 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6976
6977 /* LENGTH has not been set yet for type units if we're
6978 using .gdb_index. */
6979 this_cu->length = cu->header.get_length ();
6980
6981 /* Establish the type offset that can be used to lookup the type. */
6982 sig_type->type_offset_in_section =
6983 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6984
6985 this_cu->dwarf_version = cu->header.version;
6986 }
6987 else
6988 {
6989 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6990 &cu->header, section,
6991 abbrev_section,
6992 info_ptr,
6993 rcuh_kind::COMPILE);
6994
6995 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6996 if (this_cu->length == 0)
6997 this_cu->length = cu->header.get_length ();
6998 else
6999 gdb_assert (this_cu->length == cu->header.get_length ());
7000 this_cu->dwarf_version = cu->header.version;
7001 }
7002 }
7003
7004 /* Skip dummy compilation units. */
7005 if (info_ptr >= begin_info_ptr + this_cu->length
7006 || peek_abbrev_code (abfd, info_ptr) == 0)
7007 {
7008 dummy_p = true;
7009 return;
7010 }
7011
7012 /* If we don't have them yet, read the abbrevs for this compilation unit.
7013 And if we need to read them now, make sure they're freed when we're
7014 done. */
7015 if (abbrev_table != NULL)
7016 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7017 else
7018 {
7019 m_abbrev_table_holder
7020 = abbrev_table::read (objfile, abbrev_section,
7021 cu->header.abbrev_sect_off);
7022 abbrev_table = m_abbrev_table_holder.get ();
7023 }
7024
7025 /* Read the top level CU/TU die. */
7026 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7027 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7028
7029 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7030 {
7031 dummy_p = true;
7032 return;
7033 }
7034
7035 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7036 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7037 table from the DWO file and pass the ownership over to us. It will be
7038 referenced from READER, so we must make sure to free it after we're done
7039 with READER.
7040
7041 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7042 DWO CU, that this test will fail (the attribute will not be present). */
7043 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7044 if (dwo_name != nullptr)
7045 {
7046 struct dwo_unit *dwo_unit;
7047 struct die_info *dwo_comp_unit_die;
7048
7049 if (comp_unit_die->has_children)
7050 {
7051 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7052 " has children (offset %s) [in module %s]"),
7053 sect_offset_str (this_cu->sect_off),
7054 bfd_get_filename (abfd));
7055 }
7056 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
7057 if (dwo_unit != NULL)
7058 {
7059 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7060 comp_unit_die, NULL,
7061 this, &info_ptr,
7062 &dwo_comp_unit_die,
7063 &m_dwo_abbrev_table) == 0)
7064 {
7065 /* Dummy die. */
7066 dummy_p = true;
7067 return;
7068 }
7069 comp_unit_die = dwo_comp_unit_die;
7070 }
7071 else
7072 {
7073 /* Yikes, we couldn't find the rest of the DIE, we only have
7074 the stub. A complaint has already been logged. There's
7075 not much more we can do except pass on the stub DIE to
7076 die_reader_func. We don't want to throw an error on bad
7077 debug info. */
7078 }
7079 }
7080 }
7081
7082 void
7083 cutu_reader::keep ()
7084 {
7085 /* Done, clean up. */
7086 gdb_assert (!dummy_p);
7087 if (m_new_cu != NULL)
7088 {
7089 struct dwarf2_per_objfile *dwarf2_per_objfile
7090 = m_this_cu->dwarf2_per_objfile;
7091 /* Link this CU into read_in_chain. */
7092 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7093 dwarf2_per_objfile->read_in_chain = m_this_cu;
7094 /* The chain owns it now. */
7095 m_new_cu.release ();
7096 }
7097 }
7098
7099 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7100 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7101 assumed to have already done the lookup to find the DWO file).
7102
7103 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7104 THIS_CU->is_debug_types, but nothing else.
7105
7106 We fill in THIS_CU->length.
7107
7108 THIS_CU->cu is always freed when done.
7109 This is done in order to not leave THIS_CU->cu in a state where we have
7110 to care whether it refers to the "main" CU or the DWO CU.
7111
7112 When parent_cu is passed, it is used to provide a default value for
7113 str_offsets_base and addr_base from the parent. */
7114
7115 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7116 struct dwarf2_cu *parent_cu,
7117 struct dwo_file *dwo_file)
7118 : die_reader_specs {},
7119 m_this_cu (this_cu)
7120 {
7121 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7122 struct objfile *objfile = dwarf2_per_objfile->objfile;
7123 struct dwarf2_section_info *section = this_cu->section;
7124 bfd *abfd = section->get_bfd_owner ();
7125 struct dwarf2_section_info *abbrev_section;
7126 const gdb_byte *begin_info_ptr, *info_ptr;
7127
7128 if (dwarf_die_debug)
7129 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7130 this_cu->is_debug_types ? "type" : "comp",
7131 sect_offset_str (this_cu->sect_off));
7132
7133 gdb_assert (this_cu->cu == NULL);
7134
7135 abbrev_section = (dwo_file != NULL
7136 ? &dwo_file->sections.abbrev
7137 : get_abbrev_section_for_cu (this_cu));
7138
7139 /* This is cheap if the section is already read in. */
7140 section->read (objfile);
7141
7142 m_new_cu.reset (new dwarf2_cu (this_cu));
7143
7144 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7145 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7146 &m_new_cu->header, section,
7147 abbrev_section, info_ptr,
7148 (this_cu->is_debug_types
7149 ? rcuh_kind::TYPE
7150 : rcuh_kind::COMPILE));
7151
7152 if (parent_cu != nullptr)
7153 {
7154 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7155 m_new_cu->addr_base = parent_cu->addr_base;
7156 }
7157 this_cu->length = m_new_cu->header.get_length ();
7158
7159 /* Skip dummy compilation units. */
7160 if (info_ptr >= begin_info_ptr + this_cu->length
7161 || peek_abbrev_code (abfd, info_ptr) == 0)
7162 {
7163 dummy_p = true;
7164 return;
7165 }
7166
7167 m_abbrev_table_holder
7168 = abbrev_table::read (objfile, abbrev_section,
7169 m_new_cu->header.abbrev_sect_off);
7170
7171 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7172 m_abbrev_table_holder.get ());
7173 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7174 }
7175
7176 \f
7177 /* Type Unit Groups.
7178
7179 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7180 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7181 so that all types coming from the same compilation (.o file) are grouped
7182 together. A future step could be to put the types in the same symtab as
7183 the CU the types ultimately came from. */
7184
7185 static hashval_t
7186 hash_type_unit_group (const void *item)
7187 {
7188 const struct type_unit_group *tu_group
7189 = (const struct type_unit_group *) item;
7190
7191 return hash_stmt_list_entry (&tu_group->hash);
7192 }
7193
7194 static int
7195 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7196 {
7197 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7198 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7199
7200 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7201 }
7202
7203 /* Allocate a hash table for type unit groups. */
7204
7205 static htab_up
7206 allocate_type_unit_groups_table ()
7207 {
7208 return htab_up (htab_create_alloc (3,
7209 hash_type_unit_group,
7210 eq_type_unit_group,
7211 NULL, xcalloc, xfree));
7212 }
7213
7214 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7215 partial symtabs. We combine several TUs per psymtab to not let the size
7216 of any one psymtab grow too big. */
7217 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7218 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7219
7220 /* Helper routine for get_type_unit_group.
7221 Create the type_unit_group object used to hold one or more TUs. */
7222
7223 static struct type_unit_group *
7224 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7225 {
7226 struct dwarf2_per_objfile *dwarf2_per_objfile
7227 = cu->per_cu->dwarf2_per_objfile;
7228 struct dwarf2_per_cu_data *per_cu;
7229 struct type_unit_group *tu_group;
7230
7231 tu_group = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
7232 struct type_unit_group);
7233 per_cu = &tu_group->per_cu;
7234 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7235
7236 if (dwarf2_per_objfile->using_index)
7237 {
7238 per_cu->v.quick = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
7239 struct dwarf2_per_cu_quick_data);
7240 }
7241 else
7242 {
7243 unsigned int line_offset = to_underlying (line_offset_struct);
7244 dwarf2_psymtab *pst;
7245 std::string name;
7246
7247 /* Give the symtab a useful name for debug purposes. */
7248 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7249 name = string_printf ("<type_units_%d>",
7250 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7251 else
7252 name = string_printf ("<type_units_at_0x%x>", line_offset);
7253
7254 pst = create_partial_symtab (per_cu, name.c_str ());
7255 pst->anonymous = true;
7256 }
7257
7258 tu_group->hash.dwo_unit = cu->dwo_unit;
7259 tu_group->hash.line_sect_off = line_offset_struct;
7260
7261 return tu_group;
7262 }
7263
7264 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7265 STMT_LIST is a DW_AT_stmt_list attribute. */
7266
7267 static struct type_unit_group *
7268 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7269 {
7270 struct dwarf2_per_objfile *dwarf2_per_objfile
7271 = cu->per_cu->dwarf2_per_objfile;
7272 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7273 struct type_unit_group *tu_group;
7274 void **slot;
7275 unsigned int line_offset;
7276 struct type_unit_group type_unit_group_for_lookup;
7277
7278 if (dwarf2_per_objfile->type_unit_groups == NULL)
7279 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7280
7281 /* Do we need to create a new group, or can we use an existing one? */
7282
7283 if (stmt_list)
7284 {
7285 line_offset = DW_UNSND (stmt_list);
7286 ++tu_stats->nr_symtab_sharers;
7287 }
7288 else
7289 {
7290 /* Ugh, no stmt_list. Rare, but we have to handle it.
7291 We can do various things here like create one group per TU or
7292 spread them over multiple groups to split up the expansion work.
7293 To avoid worst case scenarios (too many groups or too large groups)
7294 we, umm, group them in bunches. */
7295 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7296 | (tu_stats->nr_stmt_less_type_units
7297 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7298 ++tu_stats->nr_stmt_less_type_units;
7299 }
7300
7301 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7302 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7303 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7304 &type_unit_group_for_lookup, INSERT);
7305 if (*slot != NULL)
7306 {
7307 tu_group = (struct type_unit_group *) *slot;
7308 gdb_assert (tu_group != NULL);
7309 }
7310 else
7311 {
7312 sect_offset line_offset_struct = (sect_offset) line_offset;
7313 tu_group = create_type_unit_group (cu, line_offset_struct);
7314 *slot = tu_group;
7315 ++tu_stats->nr_symtabs;
7316 }
7317
7318 return tu_group;
7319 }
7320 \f
7321 /* Partial symbol tables. */
7322
7323 /* Create a psymtab named NAME and assign it to PER_CU.
7324
7325 The caller must fill in the following details:
7326 dirname, textlow, texthigh. */
7327
7328 static dwarf2_psymtab *
7329 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7330 {
7331 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7332 dwarf2_psymtab *pst;
7333
7334 pst = new dwarf2_psymtab (name, objfile, per_cu);
7335
7336 pst->psymtabs_addrmap_supported = true;
7337
7338 /* This is the glue that links PST into GDB's symbol API. */
7339 per_cu->v.psymtab = pst;
7340
7341 return pst;
7342 }
7343
7344 /* DIE reader function for process_psymtab_comp_unit. */
7345
7346 static void
7347 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7348 const gdb_byte *info_ptr,
7349 struct die_info *comp_unit_die,
7350 enum language pretend_language)
7351 {
7352 struct dwarf2_cu *cu = reader->cu;
7353 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7354 struct gdbarch *gdbarch = objfile->arch ();
7355 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7356 CORE_ADDR baseaddr;
7357 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7358 dwarf2_psymtab *pst;
7359 enum pc_bounds_kind cu_bounds_kind;
7360 const char *filename;
7361
7362 gdb_assert (! per_cu->is_debug_types);
7363
7364 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7365
7366 /* Allocate a new partial symbol table structure. */
7367 gdb::unique_xmalloc_ptr<char> debug_filename;
7368 static const char artificial[] = "<artificial>";
7369 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7370 if (filename == NULL)
7371 filename = "";
7372 else if (strcmp (filename, artificial) == 0)
7373 {
7374 debug_filename.reset (concat (artificial, "@",
7375 sect_offset_str (per_cu->sect_off),
7376 (char *) NULL));
7377 filename = debug_filename.get ();
7378 }
7379
7380 pst = create_partial_symtab (per_cu, filename);
7381
7382 /* This must be done before calling dwarf2_build_include_psymtabs. */
7383 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7384
7385 baseaddr = objfile->text_section_offset ();
7386
7387 dwarf2_find_base_address (comp_unit_die, cu);
7388
7389 /* Possibly set the default values of LOWPC and HIGHPC from
7390 `DW_AT_ranges'. */
7391 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7392 &best_highpc, cu, pst);
7393 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7394 {
7395 CORE_ADDR low
7396 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7397 - baseaddr);
7398 CORE_ADDR high
7399 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7400 - baseaddr - 1);
7401 /* Store the contiguous range if it is not empty; it can be
7402 empty for CUs with no code. */
7403 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7404 low, high, pst);
7405 }
7406
7407 /* Check if comp unit has_children.
7408 If so, read the rest of the partial symbols from this comp unit.
7409 If not, there's no more debug_info for this comp unit. */
7410 if (comp_unit_die->has_children)
7411 {
7412 struct partial_die_info *first_die;
7413 CORE_ADDR lowpc, highpc;
7414
7415 lowpc = ((CORE_ADDR) -1);
7416 highpc = ((CORE_ADDR) 0);
7417
7418 first_die = load_partial_dies (reader, info_ptr, 1);
7419
7420 scan_partial_symbols (first_die, &lowpc, &highpc,
7421 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7422
7423 /* If we didn't find a lowpc, set it to highpc to avoid
7424 complaints from `maint check'. */
7425 if (lowpc == ((CORE_ADDR) -1))
7426 lowpc = highpc;
7427
7428 /* If the compilation unit didn't have an explicit address range,
7429 then use the information extracted from its child dies. */
7430 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7431 {
7432 best_lowpc = lowpc;
7433 best_highpc = highpc;
7434 }
7435 }
7436 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7437 best_lowpc + baseaddr)
7438 - baseaddr);
7439 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7440 best_highpc + baseaddr)
7441 - baseaddr);
7442
7443 end_psymtab_common (objfile, pst);
7444
7445 if (!cu->per_cu->imported_symtabs_empty ())
7446 {
7447 int i;
7448 int len = cu->per_cu->imported_symtabs_size ();
7449
7450 /* Fill in 'dependencies' here; we fill in 'users' in a
7451 post-pass. */
7452 pst->number_of_dependencies = len;
7453 pst->dependencies
7454 = objfile->partial_symtabs->allocate_dependencies (len);
7455 for (i = 0; i < len; ++i)
7456 {
7457 pst->dependencies[i]
7458 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7459 }
7460
7461 cu->per_cu->imported_symtabs_free ();
7462 }
7463
7464 /* Get the list of files included in the current compilation unit,
7465 and build a psymtab for each of them. */
7466 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7467
7468 if (dwarf_read_debug)
7469 fprintf_unfiltered (gdb_stdlog,
7470 "Psymtab for %s unit @%s: %s - %s"
7471 ", %d global, %d static syms\n",
7472 per_cu->is_debug_types ? "type" : "comp",
7473 sect_offset_str (per_cu->sect_off),
7474 paddress (gdbarch, pst->text_low (objfile)),
7475 paddress (gdbarch, pst->text_high (objfile)),
7476 pst->n_global_syms, pst->n_static_syms);
7477 }
7478
7479 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7480 Process compilation unit THIS_CU for a psymtab. */
7481
7482 static void
7483 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7484 bool want_partial_unit,
7485 enum language pretend_language)
7486 {
7487 /* If this compilation unit was already read in, free the
7488 cached copy in order to read it in again. This is
7489 necessary because we skipped some symbols when we first
7490 read in the compilation unit (see load_partial_dies).
7491 This problem could be avoided, but the benefit is unclear. */
7492 if (this_cu->cu != NULL)
7493 free_one_cached_comp_unit (this_cu);
7494
7495 cutu_reader reader (this_cu, NULL, 0, false);
7496
7497 switch (reader.comp_unit_die->tag)
7498 {
7499 case DW_TAG_compile_unit:
7500 this_cu->unit_type = DW_UT_compile;
7501 break;
7502 case DW_TAG_partial_unit:
7503 this_cu->unit_type = DW_UT_partial;
7504 break;
7505 default:
7506 abort ();
7507 }
7508
7509 if (reader.dummy_p)
7510 {
7511 /* Nothing. */
7512 }
7513 else if (this_cu->is_debug_types)
7514 build_type_psymtabs_reader (&reader, reader.info_ptr,
7515 reader.comp_unit_die);
7516 else if (want_partial_unit
7517 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7518 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7519 reader.comp_unit_die,
7520 pretend_language);
7521
7522 this_cu->lang = this_cu->cu->language;
7523
7524 /* Age out any secondary CUs. */
7525 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7526 }
7527
7528 /* Reader function for build_type_psymtabs. */
7529
7530 static void
7531 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7532 const gdb_byte *info_ptr,
7533 struct die_info *type_unit_die)
7534 {
7535 struct dwarf2_per_objfile *dwarf2_per_objfile
7536 = reader->cu->per_cu->dwarf2_per_objfile;
7537 struct objfile *objfile = dwarf2_per_objfile->objfile;
7538 struct dwarf2_cu *cu = reader->cu;
7539 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7540 struct signatured_type *sig_type;
7541 struct type_unit_group *tu_group;
7542 struct attribute *attr;
7543 struct partial_die_info *first_die;
7544 CORE_ADDR lowpc, highpc;
7545 dwarf2_psymtab *pst;
7546
7547 gdb_assert (per_cu->is_debug_types);
7548 sig_type = (struct signatured_type *) per_cu;
7549
7550 if (! type_unit_die->has_children)
7551 return;
7552
7553 attr = type_unit_die->attr (DW_AT_stmt_list);
7554 tu_group = get_type_unit_group (cu, attr);
7555
7556 if (tu_group->tus == nullptr)
7557 tu_group->tus = new std::vector<signatured_type *>;
7558 tu_group->tus->push_back (sig_type);
7559
7560 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7561 pst = create_partial_symtab (per_cu, "");
7562 pst->anonymous = true;
7563
7564 first_die = load_partial_dies (reader, info_ptr, 1);
7565
7566 lowpc = (CORE_ADDR) -1;
7567 highpc = (CORE_ADDR) 0;
7568 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7569
7570 end_psymtab_common (objfile, pst);
7571 }
7572
7573 /* Struct used to sort TUs by their abbreviation table offset. */
7574
7575 struct tu_abbrev_offset
7576 {
7577 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7578 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7579 {}
7580
7581 signatured_type *sig_type;
7582 sect_offset abbrev_offset;
7583 };
7584
7585 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7586
7587 static bool
7588 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7589 const struct tu_abbrev_offset &b)
7590 {
7591 return a.abbrev_offset < b.abbrev_offset;
7592 }
7593
7594 /* Efficiently read all the type units.
7595 This does the bulk of the work for build_type_psymtabs.
7596
7597 The efficiency is because we sort TUs by the abbrev table they use and
7598 only read each abbrev table once. In one program there are 200K TUs
7599 sharing 8K abbrev tables.
7600
7601 The main purpose of this function is to support building the
7602 dwarf2_per_objfile->type_unit_groups table.
7603 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7604 can collapse the search space by grouping them by stmt_list.
7605 The savings can be significant, in the same program from above the 200K TUs
7606 share 8K stmt_list tables.
7607
7608 FUNC is expected to call get_type_unit_group, which will create the
7609 struct type_unit_group if necessary and add it to
7610 dwarf2_per_objfile->type_unit_groups. */
7611
7612 static void
7613 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7614 {
7615 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7616 abbrev_table_up abbrev_table;
7617 sect_offset abbrev_offset;
7618
7619 /* It's up to the caller to not call us multiple times. */
7620 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7621
7622 if (dwarf2_per_objfile->all_type_units.empty ())
7623 return;
7624
7625 /* TUs typically share abbrev tables, and there can be way more TUs than
7626 abbrev tables. Sort by abbrev table to reduce the number of times we
7627 read each abbrev table in.
7628 Alternatives are to punt or to maintain a cache of abbrev tables.
7629 This is simpler and efficient enough for now.
7630
7631 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7632 symtab to use). Typically TUs with the same abbrev offset have the same
7633 stmt_list value too so in practice this should work well.
7634
7635 The basic algorithm here is:
7636
7637 sort TUs by abbrev table
7638 for each TU with same abbrev table:
7639 read abbrev table if first user
7640 read TU top level DIE
7641 [IWBN if DWO skeletons had DW_AT_stmt_list]
7642 call FUNC */
7643
7644 if (dwarf_read_debug)
7645 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7646
7647 /* Sort in a separate table to maintain the order of all_type_units
7648 for .gdb_index: TU indices directly index all_type_units. */
7649 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7650 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7651
7652 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7653 sorted_by_abbrev.emplace_back
7654 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7655 sig_type->per_cu.section,
7656 sig_type->per_cu.sect_off));
7657
7658 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7659 sort_tu_by_abbrev_offset);
7660
7661 abbrev_offset = (sect_offset) ~(unsigned) 0;
7662
7663 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7664 {
7665 /* Switch to the next abbrev table if necessary. */
7666 if (abbrev_table == NULL
7667 || tu.abbrev_offset != abbrev_offset)
7668 {
7669 abbrev_offset = tu.abbrev_offset;
7670 abbrev_table =
7671 abbrev_table::read (dwarf2_per_objfile->objfile,
7672 &dwarf2_per_objfile->abbrev,
7673 abbrev_offset);
7674 ++tu_stats->nr_uniq_abbrev_tables;
7675 }
7676
7677 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7678 0, false);
7679 if (!reader.dummy_p)
7680 build_type_psymtabs_reader (&reader, reader.info_ptr,
7681 reader.comp_unit_die);
7682 }
7683 }
7684
7685 /* Print collected type unit statistics. */
7686
7687 static void
7688 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7689 {
7690 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7691
7692 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7693 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7694 dwarf2_per_objfile->all_type_units.size ());
7695 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7696 tu_stats->nr_uniq_abbrev_tables);
7697 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7698 tu_stats->nr_symtabs);
7699 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7700 tu_stats->nr_symtab_sharers);
7701 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7702 tu_stats->nr_stmt_less_type_units);
7703 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7704 tu_stats->nr_all_type_units_reallocs);
7705 }
7706
7707 /* Traversal function for build_type_psymtabs. */
7708
7709 static int
7710 build_type_psymtab_dependencies (void **slot, void *info)
7711 {
7712 struct dwarf2_per_objfile *dwarf2_per_objfile
7713 = (struct dwarf2_per_objfile *) info;
7714 struct objfile *objfile = dwarf2_per_objfile->objfile;
7715 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7716 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7717 dwarf2_psymtab *pst = per_cu->v.psymtab;
7718 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7719 int i;
7720
7721 gdb_assert (len > 0);
7722 gdb_assert (per_cu->type_unit_group_p ());
7723
7724 pst->number_of_dependencies = len;
7725 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7726 for (i = 0; i < len; ++i)
7727 {
7728 struct signatured_type *iter = tu_group->tus->at (i);
7729 gdb_assert (iter->per_cu.is_debug_types);
7730 pst->dependencies[i] = iter->per_cu.v.psymtab;
7731 iter->type_unit_group = tu_group;
7732 }
7733
7734 delete tu_group->tus;
7735 tu_group->tus = nullptr;
7736
7737 return 1;
7738 }
7739
7740 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7741 Build partial symbol tables for the .debug_types comp-units. */
7742
7743 static void
7744 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7745 {
7746 if (! create_all_type_units (dwarf2_per_objfile))
7747 return;
7748
7749 build_type_psymtabs_1 (dwarf2_per_objfile);
7750 }
7751
7752 /* Traversal function for process_skeletonless_type_unit.
7753 Read a TU in a DWO file and build partial symbols for it. */
7754
7755 static int
7756 process_skeletonless_type_unit (void **slot, void *info)
7757 {
7758 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7759 struct dwarf2_per_objfile *dwarf2_per_objfile
7760 = (struct dwarf2_per_objfile *) info;
7761 struct signatured_type find_entry, *entry;
7762
7763 /* If this TU doesn't exist in the global table, add it and read it in. */
7764
7765 if (dwarf2_per_objfile->signatured_types == NULL)
7766 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7767
7768 find_entry.signature = dwo_unit->signature;
7769 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7770 &find_entry, INSERT);
7771 /* If we've already seen this type there's nothing to do. What's happening
7772 is we're doing our own version of comdat-folding here. */
7773 if (*slot != NULL)
7774 return 1;
7775
7776 /* This does the job that create_all_type_units would have done for
7777 this TU. */
7778 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7779 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7780 *slot = entry;
7781
7782 /* This does the job that build_type_psymtabs_1 would have done. */
7783 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7784 if (!reader.dummy_p)
7785 build_type_psymtabs_reader (&reader, reader.info_ptr,
7786 reader.comp_unit_die);
7787
7788 return 1;
7789 }
7790
7791 /* Traversal function for process_skeletonless_type_units. */
7792
7793 static int
7794 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7795 {
7796 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7797
7798 if (dwo_file->tus != NULL)
7799 htab_traverse_noresize (dwo_file->tus.get (),
7800 process_skeletonless_type_unit, info);
7801
7802 return 1;
7803 }
7804
7805 /* Scan all TUs of DWO files, verifying we've processed them.
7806 This is needed in case a TU was emitted without its skeleton.
7807 Note: This can't be done until we know what all the DWO files are. */
7808
7809 static void
7810 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7811 {
7812 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7813 if (get_dwp_file (dwarf2_per_objfile) == NULL
7814 && dwarf2_per_objfile->dwo_files != NULL)
7815 {
7816 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7817 process_dwo_file_for_skeletonless_type_units,
7818 dwarf2_per_objfile);
7819 }
7820 }
7821
7822 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7823
7824 static void
7825 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7826 {
7827 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7828 {
7829 dwarf2_psymtab *pst = per_cu->v.psymtab;
7830
7831 if (pst == NULL)
7832 continue;
7833
7834 for (int j = 0; j < pst->number_of_dependencies; ++j)
7835 {
7836 /* Set the 'user' field only if it is not already set. */
7837 if (pst->dependencies[j]->user == NULL)
7838 pst->dependencies[j]->user = pst;
7839 }
7840 }
7841 }
7842
7843 /* Build the partial symbol table by doing a quick pass through the
7844 .debug_info and .debug_abbrev sections. */
7845
7846 static void
7847 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7848 {
7849 struct objfile *objfile = dwarf2_per_objfile->objfile;
7850
7851 if (dwarf_read_debug)
7852 {
7853 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7854 objfile_name (objfile));
7855 }
7856
7857 scoped_restore restore_reading_psyms
7858 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7859 true);
7860
7861 dwarf2_per_objfile->info.read (objfile);
7862
7863 /* Any cached compilation units will be linked by the per-objfile
7864 read_in_chain. Make sure to free them when we're done. */
7865 free_cached_comp_units freer (dwarf2_per_objfile);
7866
7867 build_type_psymtabs (dwarf2_per_objfile);
7868
7869 create_all_comp_units (dwarf2_per_objfile);
7870
7871 /* Create a temporary address map on a temporary obstack. We later
7872 copy this to the final obstack. */
7873 auto_obstack temp_obstack;
7874
7875 scoped_restore save_psymtabs_addrmap
7876 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7877 addrmap_create_mutable (&temp_obstack));
7878
7879 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7880 {
7881 if (per_cu->v.psymtab != NULL)
7882 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7883 continue;
7884 process_psymtab_comp_unit (per_cu, false, language_minimal);
7885 }
7886
7887 /* This has to wait until we read the CUs, we need the list of DWOs. */
7888 process_skeletonless_type_units (dwarf2_per_objfile);
7889
7890 /* Now that all TUs have been processed we can fill in the dependencies. */
7891 if (dwarf2_per_objfile->type_unit_groups != NULL)
7892 {
7893 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7894 build_type_psymtab_dependencies, dwarf2_per_objfile);
7895 }
7896
7897 if (dwarf_read_debug)
7898 print_tu_stats (dwarf2_per_objfile);
7899
7900 set_partial_user (dwarf2_per_objfile);
7901
7902 objfile->partial_symtabs->psymtabs_addrmap
7903 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7904 objfile->partial_symtabs->obstack ());
7905 /* At this point we want to keep the address map. */
7906 save_psymtabs_addrmap.release ();
7907
7908 if (dwarf_read_debug)
7909 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7910 objfile_name (objfile));
7911 }
7912
7913 /* Load the partial DIEs for a secondary CU into memory.
7914 This is also used when rereading a primary CU with load_all_dies. */
7915
7916 static void
7917 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7918 {
7919 cutu_reader reader (this_cu, NULL, 1, false);
7920
7921 if (!reader.dummy_p)
7922 {
7923 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7924 language_minimal);
7925
7926 /* Check if comp unit has_children.
7927 If so, read the rest of the partial symbols from this comp unit.
7928 If not, there's no more debug_info for this comp unit. */
7929 if (reader.comp_unit_die->has_children)
7930 load_partial_dies (&reader, reader.info_ptr, 0);
7931
7932 reader.keep ();
7933 }
7934 }
7935
7936 static void
7937 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7938 struct dwarf2_section_info *section,
7939 struct dwarf2_section_info *abbrev_section,
7940 unsigned int is_dwz)
7941 {
7942 const gdb_byte *info_ptr;
7943 struct objfile *objfile = dwarf2_per_objfile->objfile;
7944
7945 if (dwarf_read_debug)
7946 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7947 section->get_name (),
7948 section->get_file_name ());
7949
7950 section->read (objfile);
7951
7952 info_ptr = section->buffer;
7953
7954 while (info_ptr < section->buffer + section->size)
7955 {
7956 struct dwarf2_per_cu_data *this_cu;
7957
7958 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7959
7960 comp_unit_head cu_header;
7961 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7962 abbrev_section, info_ptr,
7963 rcuh_kind::COMPILE);
7964
7965 /* Save the compilation unit for later lookup. */
7966 if (cu_header.unit_type != DW_UT_type)
7967 {
7968 this_cu = XOBNEW (&dwarf2_per_objfile->obstack,
7969 struct dwarf2_per_cu_data);
7970 memset (this_cu, 0, sizeof (*this_cu));
7971 }
7972 else
7973 {
7974 auto sig_type = XOBNEW (&dwarf2_per_objfile->obstack,
7975 struct signatured_type);
7976 memset (sig_type, 0, sizeof (*sig_type));
7977 sig_type->signature = cu_header.signature;
7978 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7979 this_cu = &sig_type->per_cu;
7980 }
7981 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7982 this_cu->sect_off = sect_off;
7983 this_cu->length = cu_header.length + cu_header.initial_length_size;
7984 this_cu->is_dwz = is_dwz;
7985 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7986 this_cu->section = section;
7987
7988 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7989
7990 info_ptr = info_ptr + this_cu->length;
7991 }
7992 }
7993
7994 /* Create a list of all compilation units in OBJFILE.
7995 This is only done for -readnow and building partial symtabs. */
7996
7997 static void
7998 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7999 {
8000 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8001 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8002 &dwarf2_per_objfile->abbrev, 0);
8003
8004 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8005 if (dwz != NULL)
8006 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8007 1);
8008 }
8009
8010 /* Process all loaded DIEs for compilation unit CU, starting at
8011 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8012 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8013 DW_AT_ranges). See the comments of add_partial_subprogram on how
8014 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8015
8016 static void
8017 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8018 CORE_ADDR *highpc, int set_addrmap,
8019 struct dwarf2_cu *cu)
8020 {
8021 struct partial_die_info *pdi;
8022
8023 /* Now, march along the PDI's, descending into ones which have
8024 interesting children but skipping the children of the other ones,
8025 until we reach the end of the compilation unit. */
8026
8027 pdi = first_die;
8028
8029 while (pdi != NULL)
8030 {
8031 pdi->fixup (cu);
8032
8033 /* Anonymous namespaces or modules have no name but have interesting
8034 children, so we need to look at them. Ditto for anonymous
8035 enums. */
8036
8037 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8038 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8039 || pdi->tag == DW_TAG_imported_unit
8040 || pdi->tag == DW_TAG_inlined_subroutine)
8041 {
8042 switch (pdi->tag)
8043 {
8044 case DW_TAG_subprogram:
8045 case DW_TAG_inlined_subroutine:
8046 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8047 break;
8048 case DW_TAG_constant:
8049 case DW_TAG_variable:
8050 case DW_TAG_typedef:
8051 case DW_TAG_union_type:
8052 if (!pdi->is_declaration
8053 || (pdi->tag == DW_TAG_variable && pdi->is_external))
8054 {
8055 add_partial_symbol (pdi, cu);
8056 }
8057 break;
8058 case DW_TAG_class_type:
8059 case DW_TAG_interface_type:
8060 case DW_TAG_structure_type:
8061 if (!pdi->is_declaration)
8062 {
8063 add_partial_symbol (pdi, cu);
8064 }
8065 if ((cu->language == language_rust
8066 || cu->language == language_cplus) && pdi->has_children)
8067 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8068 set_addrmap, cu);
8069 break;
8070 case DW_TAG_enumeration_type:
8071 if (!pdi->is_declaration)
8072 add_partial_enumeration (pdi, cu);
8073 break;
8074 case DW_TAG_base_type:
8075 case DW_TAG_subrange_type:
8076 /* File scope base type definitions are added to the partial
8077 symbol table. */
8078 add_partial_symbol (pdi, cu);
8079 break;
8080 case DW_TAG_namespace:
8081 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8082 break;
8083 case DW_TAG_module:
8084 if (!pdi->is_declaration)
8085 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8086 break;
8087 case DW_TAG_imported_unit:
8088 {
8089 struct dwarf2_per_cu_data *per_cu;
8090
8091 /* For now we don't handle imported units in type units. */
8092 if (cu->per_cu->is_debug_types)
8093 {
8094 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8095 " supported in type units [in module %s]"),
8096 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8097 }
8098
8099 per_cu = dwarf2_find_containing_comp_unit
8100 (pdi->d.sect_off, pdi->is_dwz,
8101 cu->per_cu->dwarf2_per_objfile);
8102
8103 /* Go read the partial unit, if needed. */
8104 if (per_cu->v.psymtab == NULL)
8105 process_psymtab_comp_unit (per_cu, true, cu->language);
8106
8107 cu->per_cu->imported_symtabs_push (per_cu);
8108 }
8109 break;
8110 case DW_TAG_imported_declaration:
8111 add_partial_symbol (pdi, cu);
8112 break;
8113 default:
8114 break;
8115 }
8116 }
8117
8118 /* If the die has a sibling, skip to the sibling. */
8119
8120 pdi = pdi->die_sibling;
8121 }
8122 }
8123
8124 /* Functions used to compute the fully scoped name of a partial DIE.
8125
8126 Normally, this is simple. For C++, the parent DIE's fully scoped
8127 name is concatenated with "::" and the partial DIE's name.
8128 Enumerators are an exception; they use the scope of their parent
8129 enumeration type, i.e. the name of the enumeration type is not
8130 prepended to the enumerator.
8131
8132 There are two complexities. One is DW_AT_specification; in this
8133 case "parent" means the parent of the target of the specification,
8134 instead of the direct parent of the DIE. The other is compilers
8135 which do not emit DW_TAG_namespace; in this case we try to guess
8136 the fully qualified name of structure types from their members'
8137 linkage names. This must be done using the DIE's children rather
8138 than the children of any DW_AT_specification target. We only need
8139 to do this for structures at the top level, i.e. if the target of
8140 any DW_AT_specification (if any; otherwise the DIE itself) does not
8141 have a parent. */
8142
8143 /* Compute the scope prefix associated with PDI's parent, in
8144 compilation unit CU. The result will be allocated on CU's
8145 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8146 field. NULL is returned if no prefix is necessary. */
8147 static const char *
8148 partial_die_parent_scope (struct partial_die_info *pdi,
8149 struct dwarf2_cu *cu)
8150 {
8151 const char *grandparent_scope;
8152 struct partial_die_info *parent, *real_pdi;
8153
8154 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8155 then this means the parent of the specification DIE. */
8156
8157 real_pdi = pdi;
8158 while (real_pdi->has_specification)
8159 {
8160 auto res = find_partial_die (real_pdi->spec_offset,
8161 real_pdi->spec_is_dwz, cu);
8162 real_pdi = res.pdi;
8163 cu = res.cu;
8164 }
8165
8166 parent = real_pdi->die_parent;
8167 if (parent == NULL)
8168 return NULL;
8169
8170 if (parent->scope_set)
8171 return parent->scope;
8172
8173 parent->fixup (cu);
8174
8175 grandparent_scope = partial_die_parent_scope (parent, cu);
8176
8177 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8178 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8179 Work around this problem here. */
8180 if (cu->language == language_cplus
8181 && parent->tag == DW_TAG_namespace
8182 && strcmp (parent->name, "::") == 0
8183 && grandparent_scope == NULL)
8184 {
8185 parent->scope = NULL;
8186 parent->scope_set = 1;
8187 return NULL;
8188 }
8189
8190 /* Nested subroutines in Fortran get a prefix. */
8191 if (pdi->tag == DW_TAG_enumerator)
8192 /* Enumerators should not get the name of the enumeration as a prefix. */
8193 parent->scope = grandparent_scope;
8194 else if (parent->tag == DW_TAG_namespace
8195 || parent->tag == DW_TAG_module
8196 || parent->tag == DW_TAG_structure_type
8197 || parent->tag == DW_TAG_class_type
8198 || parent->tag == DW_TAG_interface_type
8199 || parent->tag == DW_TAG_union_type
8200 || parent->tag == DW_TAG_enumeration_type
8201 || (cu->language == language_fortran
8202 && parent->tag == DW_TAG_subprogram
8203 && pdi->tag == DW_TAG_subprogram))
8204 {
8205 if (grandparent_scope == NULL)
8206 parent->scope = parent->name;
8207 else
8208 parent->scope = typename_concat (&cu->comp_unit_obstack,
8209 grandparent_scope,
8210 parent->name, 0, cu);
8211 }
8212 else
8213 {
8214 /* FIXME drow/2004-04-01: What should we be doing with
8215 function-local names? For partial symbols, we should probably be
8216 ignoring them. */
8217 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8218 dwarf_tag_name (parent->tag),
8219 sect_offset_str (pdi->sect_off));
8220 parent->scope = grandparent_scope;
8221 }
8222
8223 parent->scope_set = 1;
8224 return parent->scope;
8225 }
8226
8227 /* Return the fully scoped name associated with PDI, from compilation unit
8228 CU. The result will be allocated with malloc. */
8229
8230 static gdb::unique_xmalloc_ptr<char>
8231 partial_die_full_name (struct partial_die_info *pdi,
8232 struct dwarf2_cu *cu)
8233 {
8234 const char *parent_scope;
8235
8236 /* If this is a template instantiation, we can not work out the
8237 template arguments from partial DIEs. So, unfortunately, we have
8238 to go through the full DIEs. At least any work we do building
8239 types here will be reused if full symbols are loaded later. */
8240 if (pdi->has_template_arguments)
8241 {
8242 pdi->fixup (cu);
8243
8244 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8245 {
8246 struct die_info *die;
8247 struct attribute attr;
8248 struct dwarf2_cu *ref_cu = cu;
8249
8250 /* DW_FORM_ref_addr is using section offset. */
8251 attr.name = (enum dwarf_attribute) 0;
8252 attr.form = DW_FORM_ref_addr;
8253 attr.u.unsnd = to_underlying (pdi->sect_off);
8254 die = follow_die_ref (NULL, &attr, &ref_cu);
8255
8256 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8257 }
8258 }
8259
8260 parent_scope = partial_die_parent_scope (pdi, cu);
8261 if (parent_scope == NULL)
8262 return NULL;
8263 else
8264 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8265 pdi->name, 0, cu));
8266 }
8267
8268 static void
8269 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8270 {
8271 struct dwarf2_per_objfile *dwarf2_per_objfile
8272 = cu->per_cu->dwarf2_per_objfile;
8273 struct objfile *objfile = dwarf2_per_objfile->objfile;
8274 struct gdbarch *gdbarch = objfile->arch ();
8275 CORE_ADDR addr = 0;
8276 const char *actual_name = NULL;
8277 CORE_ADDR baseaddr;
8278
8279 baseaddr = objfile->text_section_offset ();
8280
8281 gdb::unique_xmalloc_ptr<char> built_actual_name
8282 = partial_die_full_name (pdi, cu);
8283 if (built_actual_name != NULL)
8284 actual_name = built_actual_name.get ();
8285
8286 if (actual_name == NULL)
8287 actual_name = pdi->name;
8288
8289 partial_symbol psymbol;
8290 memset (&psymbol, 0, sizeof (psymbol));
8291 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8292 psymbol.ginfo.section = -1;
8293
8294 /* The code below indicates that the psymbol should be installed by
8295 setting this. */
8296 gdb::optional<psymbol_placement> where;
8297
8298 switch (pdi->tag)
8299 {
8300 case DW_TAG_inlined_subroutine:
8301 case DW_TAG_subprogram:
8302 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8303 - baseaddr);
8304 if (pdi->is_external
8305 || cu->language == language_ada
8306 || (cu->language == language_fortran
8307 && pdi->die_parent != NULL
8308 && pdi->die_parent->tag == DW_TAG_subprogram))
8309 {
8310 /* Normally, only "external" DIEs are part of the global scope.
8311 But in Ada and Fortran, we want to be able to access nested
8312 procedures globally. So all Ada and Fortran subprograms are
8313 stored in the global scope. */
8314 where = psymbol_placement::GLOBAL;
8315 }
8316 else
8317 where = psymbol_placement::STATIC;
8318
8319 psymbol.domain = VAR_DOMAIN;
8320 psymbol.aclass = LOC_BLOCK;
8321 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8322 psymbol.ginfo.value.address = addr;
8323
8324 if (pdi->main_subprogram && actual_name != NULL)
8325 set_objfile_main_name (objfile, actual_name, cu->language);
8326 break;
8327 case DW_TAG_constant:
8328 psymbol.domain = VAR_DOMAIN;
8329 psymbol.aclass = LOC_STATIC;
8330 where = (pdi->is_external
8331 ? psymbol_placement::GLOBAL
8332 : psymbol_placement::STATIC);
8333 break;
8334 case DW_TAG_variable:
8335 if (pdi->d.locdesc)
8336 addr = decode_locdesc (pdi->d.locdesc, cu);
8337
8338 if (pdi->d.locdesc
8339 && addr == 0
8340 && !dwarf2_per_objfile->has_section_at_zero)
8341 {
8342 /* A global or static variable may also have been stripped
8343 out by the linker if unused, in which case its address
8344 will be nullified; do not add such variables into partial
8345 symbol table then. */
8346 }
8347 else if (pdi->is_external)
8348 {
8349 /* Global Variable.
8350 Don't enter into the minimal symbol tables as there is
8351 a minimal symbol table entry from the ELF symbols already.
8352 Enter into partial symbol table if it has a location
8353 descriptor or a type.
8354 If the location descriptor is missing, new_symbol will create
8355 a LOC_UNRESOLVED symbol, the address of the variable will then
8356 be determined from the minimal symbol table whenever the variable
8357 is referenced.
8358 The address for the partial symbol table entry is not
8359 used by GDB, but it comes in handy for debugging partial symbol
8360 table building. */
8361
8362 if (pdi->d.locdesc || pdi->has_type)
8363 {
8364 psymbol.domain = VAR_DOMAIN;
8365 psymbol.aclass = LOC_STATIC;
8366 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8367 psymbol.ginfo.value.address = addr;
8368 where = psymbol_placement::GLOBAL;
8369 }
8370 }
8371 else
8372 {
8373 int has_loc = pdi->d.locdesc != NULL;
8374
8375 /* Static Variable. Skip symbols whose value we cannot know (those
8376 without location descriptors or constant values). */
8377 if (!has_loc && !pdi->has_const_value)
8378 return;
8379
8380 psymbol.domain = VAR_DOMAIN;
8381 psymbol.aclass = LOC_STATIC;
8382 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8383 if (has_loc)
8384 psymbol.ginfo.value.address = addr;
8385 where = psymbol_placement::STATIC;
8386 }
8387 break;
8388 case DW_TAG_typedef:
8389 case DW_TAG_base_type:
8390 case DW_TAG_subrange_type:
8391 psymbol.domain = VAR_DOMAIN;
8392 psymbol.aclass = LOC_TYPEDEF;
8393 where = psymbol_placement::STATIC;
8394 break;
8395 case DW_TAG_imported_declaration:
8396 case DW_TAG_namespace:
8397 psymbol.domain = VAR_DOMAIN;
8398 psymbol.aclass = LOC_TYPEDEF;
8399 where = psymbol_placement::GLOBAL;
8400 break;
8401 case DW_TAG_module:
8402 /* With Fortran 77 there might be a "BLOCK DATA" module
8403 available without any name. If so, we skip the module as it
8404 doesn't bring any value. */
8405 if (actual_name != nullptr)
8406 {
8407 psymbol.domain = MODULE_DOMAIN;
8408 psymbol.aclass = LOC_TYPEDEF;
8409 where = psymbol_placement::GLOBAL;
8410 }
8411 break;
8412 case DW_TAG_class_type:
8413 case DW_TAG_interface_type:
8414 case DW_TAG_structure_type:
8415 case DW_TAG_union_type:
8416 case DW_TAG_enumeration_type:
8417 /* Skip external references. The DWARF standard says in the section
8418 about "Structure, Union, and Class Type Entries": "An incomplete
8419 structure, union or class type is represented by a structure,
8420 union or class entry that does not have a byte size attribute
8421 and that has a DW_AT_declaration attribute." */
8422 if (!pdi->has_byte_size && pdi->is_declaration)
8423 return;
8424
8425 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8426 static vs. global. */
8427 psymbol.domain = STRUCT_DOMAIN;
8428 psymbol.aclass = LOC_TYPEDEF;
8429 where = (cu->language == language_cplus
8430 ? psymbol_placement::GLOBAL
8431 : psymbol_placement::STATIC);
8432 break;
8433 case DW_TAG_enumerator:
8434 psymbol.domain = VAR_DOMAIN;
8435 psymbol.aclass = LOC_CONST;
8436 where = (cu->language == language_cplus
8437 ? psymbol_placement::GLOBAL
8438 : psymbol_placement::STATIC);
8439 break;
8440 default:
8441 break;
8442 }
8443
8444 if (where.has_value ())
8445 {
8446 if (built_actual_name != nullptr)
8447 actual_name = objfile->intern (actual_name);
8448 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8449 psymbol.ginfo.set_linkage_name (actual_name);
8450 else
8451 {
8452 psymbol.ginfo.set_demangled_name (actual_name,
8453 &objfile->objfile_obstack);
8454 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8455 }
8456 add_psymbol_to_list (psymbol, *where, objfile);
8457 }
8458 }
8459
8460 /* Read a partial die corresponding to a namespace; also, add a symbol
8461 corresponding to that namespace to the symbol table. NAMESPACE is
8462 the name of the enclosing namespace. */
8463
8464 static void
8465 add_partial_namespace (struct partial_die_info *pdi,
8466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8467 int set_addrmap, struct dwarf2_cu *cu)
8468 {
8469 /* Add a symbol for the namespace. */
8470
8471 add_partial_symbol (pdi, cu);
8472
8473 /* Now scan partial symbols in that namespace. */
8474
8475 if (pdi->has_children)
8476 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8477 }
8478
8479 /* Read a partial die corresponding to a Fortran module. */
8480
8481 static void
8482 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8483 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8484 {
8485 /* Add a symbol for the namespace. */
8486
8487 add_partial_symbol (pdi, cu);
8488
8489 /* Now scan partial symbols in that module. */
8490
8491 if (pdi->has_children)
8492 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8493 }
8494
8495 /* Read a partial die corresponding to a subprogram or an inlined
8496 subprogram and create a partial symbol for that subprogram.
8497 When the CU language allows it, this routine also defines a partial
8498 symbol for each nested subprogram that this subprogram contains.
8499 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8500 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8501
8502 PDI may also be a lexical block, in which case we simply search
8503 recursively for subprograms defined inside that lexical block.
8504 Again, this is only performed when the CU language allows this
8505 type of definitions. */
8506
8507 static void
8508 add_partial_subprogram (struct partial_die_info *pdi,
8509 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8510 int set_addrmap, struct dwarf2_cu *cu)
8511 {
8512 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8513 {
8514 if (pdi->has_pc_info)
8515 {
8516 if (pdi->lowpc < *lowpc)
8517 *lowpc = pdi->lowpc;
8518 if (pdi->highpc > *highpc)
8519 *highpc = pdi->highpc;
8520 if (set_addrmap)
8521 {
8522 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8523 struct gdbarch *gdbarch = objfile->arch ();
8524 CORE_ADDR baseaddr;
8525 CORE_ADDR this_highpc;
8526 CORE_ADDR this_lowpc;
8527
8528 baseaddr = objfile->text_section_offset ();
8529 this_lowpc
8530 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8531 pdi->lowpc + baseaddr)
8532 - baseaddr);
8533 this_highpc
8534 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8535 pdi->highpc + baseaddr)
8536 - baseaddr);
8537 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8538 this_lowpc, this_highpc - 1,
8539 cu->per_cu->v.psymtab);
8540 }
8541 }
8542
8543 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8544 {
8545 if (!pdi->is_declaration)
8546 /* Ignore subprogram DIEs that do not have a name, they are
8547 illegal. Do not emit a complaint at this point, we will
8548 do so when we convert this psymtab into a symtab. */
8549 if (pdi->name)
8550 add_partial_symbol (pdi, cu);
8551 }
8552 }
8553
8554 if (! pdi->has_children)
8555 return;
8556
8557 if (cu->language == language_ada || cu->language == language_fortran)
8558 {
8559 pdi = pdi->die_child;
8560 while (pdi != NULL)
8561 {
8562 pdi->fixup (cu);
8563 if (pdi->tag == DW_TAG_subprogram
8564 || pdi->tag == DW_TAG_inlined_subroutine
8565 || pdi->tag == DW_TAG_lexical_block)
8566 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8567 pdi = pdi->die_sibling;
8568 }
8569 }
8570 }
8571
8572 /* Read a partial die corresponding to an enumeration type. */
8573
8574 static void
8575 add_partial_enumeration (struct partial_die_info *enum_pdi,
8576 struct dwarf2_cu *cu)
8577 {
8578 struct partial_die_info *pdi;
8579
8580 if (enum_pdi->name != NULL)
8581 add_partial_symbol (enum_pdi, cu);
8582
8583 pdi = enum_pdi->die_child;
8584 while (pdi)
8585 {
8586 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8587 complaint (_("malformed enumerator DIE ignored"));
8588 else
8589 add_partial_symbol (pdi, cu);
8590 pdi = pdi->die_sibling;
8591 }
8592 }
8593
8594 /* Return the initial uleb128 in the die at INFO_PTR. */
8595
8596 static unsigned int
8597 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8598 {
8599 unsigned int bytes_read;
8600
8601 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8602 }
8603
8604 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8605 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8606
8607 Return the corresponding abbrev, or NULL if the number is zero (indicating
8608 an empty DIE). In either case *BYTES_READ will be set to the length of
8609 the initial number. */
8610
8611 static struct abbrev_info *
8612 peek_die_abbrev (const die_reader_specs &reader,
8613 const gdb_byte *info_ptr, unsigned int *bytes_read)
8614 {
8615 dwarf2_cu *cu = reader.cu;
8616 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8617 unsigned int abbrev_number
8618 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8619
8620 if (abbrev_number == 0)
8621 return NULL;
8622
8623 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8624 if (!abbrev)
8625 {
8626 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8627 " at offset %s [in module %s]"),
8628 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8629 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8630 }
8631
8632 return abbrev;
8633 }
8634
8635 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8636 Returns a pointer to the end of a series of DIEs, terminated by an empty
8637 DIE. Any children of the skipped DIEs will also be skipped. */
8638
8639 static const gdb_byte *
8640 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8641 {
8642 while (1)
8643 {
8644 unsigned int bytes_read;
8645 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8646
8647 if (abbrev == NULL)
8648 return info_ptr + bytes_read;
8649 else
8650 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8651 }
8652 }
8653
8654 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8655 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8656 abbrev corresponding to that skipped uleb128 should be passed in
8657 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8658 children. */
8659
8660 static const gdb_byte *
8661 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8662 struct abbrev_info *abbrev)
8663 {
8664 unsigned int bytes_read;
8665 struct attribute attr;
8666 bfd *abfd = reader->abfd;
8667 struct dwarf2_cu *cu = reader->cu;
8668 const gdb_byte *buffer = reader->buffer;
8669 const gdb_byte *buffer_end = reader->buffer_end;
8670 unsigned int form, i;
8671
8672 for (i = 0; i < abbrev->num_attrs; i++)
8673 {
8674 /* The only abbrev we care about is DW_AT_sibling. */
8675 if (abbrev->attrs[i].name == DW_AT_sibling)
8676 {
8677 bool ignored;
8678 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8679 &ignored);
8680 if (attr.form == DW_FORM_ref_addr)
8681 complaint (_("ignoring absolute DW_AT_sibling"));
8682 else
8683 {
8684 sect_offset off = attr.get_ref_die_offset ();
8685 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8686
8687 if (sibling_ptr < info_ptr)
8688 complaint (_("DW_AT_sibling points backwards"));
8689 else if (sibling_ptr > reader->buffer_end)
8690 reader->die_section->overflow_complaint ();
8691 else
8692 return sibling_ptr;
8693 }
8694 }
8695
8696 /* If it isn't DW_AT_sibling, skip this attribute. */
8697 form = abbrev->attrs[i].form;
8698 skip_attribute:
8699 switch (form)
8700 {
8701 case DW_FORM_ref_addr:
8702 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8703 and later it is offset sized. */
8704 if (cu->header.version == 2)
8705 info_ptr += cu->header.addr_size;
8706 else
8707 info_ptr += cu->header.offset_size;
8708 break;
8709 case DW_FORM_GNU_ref_alt:
8710 info_ptr += cu->header.offset_size;
8711 break;
8712 case DW_FORM_addr:
8713 info_ptr += cu->header.addr_size;
8714 break;
8715 case DW_FORM_data1:
8716 case DW_FORM_ref1:
8717 case DW_FORM_flag:
8718 case DW_FORM_strx1:
8719 info_ptr += 1;
8720 break;
8721 case DW_FORM_flag_present:
8722 case DW_FORM_implicit_const:
8723 break;
8724 case DW_FORM_data2:
8725 case DW_FORM_ref2:
8726 case DW_FORM_strx2:
8727 info_ptr += 2;
8728 break;
8729 case DW_FORM_strx3:
8730 info_ptr += 3;
8731 break;
8732 case DW_FORM_data4:
8733 case DW_FORM_ref4:
8734 case DW_FORM_strx4:
8735 info_ptr += 4;
8736 break;
8737 case DW_FORM_data8:
8738 case DW_FORM_ref8:
8739 case DW_FORM_ref_sig8:
8740 info_ptr += 8;
8741 break;
8742 case DW_FORM_data16:
8743 info_ptr += 16;
8744 break;
8745 case DW_FORM_string:
8746 read_direct_string (abfd, info_ptr, &bytes_read);
8747 info_ptr += bytes_read;
8748 break;
8749 case DW_FORM_sec_offset:
8750 case DW_FORM_strp:
8751 case DW_FORM_GNU_strp_alt:
8752 info_ptr += cu->header.offset_size;
8753 break;
8754 case DW_FORM_exprloc:
8755 case DW_FORM_block:
8756 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8757 info_ptr += bytes_read;
8758 break;
8759 case DW_FORM_block1:
8760 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8761 break;
8762 case DW_FORM_block2:
8763 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8764 break;
8765 case DW_FORM_block4:
8766 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8767 break;
8768 case DW_FORM_addrx:
8769 case DW_FORM_strx:
8770 case DW_FORM_sdata:
8771 case DW_FORM_udata:
8772 case DW_FORM_ref_udata:
8773 case DW_FORM_GNU_addr_index:
8774 case DW_FORM_GNU_str_index:
8775 case DW_FORM_rnglistx:
8776 case DW_FORM_loclistx:
8777 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8778 break;
8779 case DW_FORM_indirect:
8780 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8781 info_ptr += bytes_read;
8782 /* We need to continue parsing from here, so just go back to
8783 the top. */
8784 goto skip_attribute;
8785
8786 default:
8787 error (_("Dwarf Error: Cannot handle %s "
8788 "in DWARF reader [in module %s]"),
8789 dwarf_form_name (form),
8790 bfd_get_filename (abfd));
8791 }
8792 }
8793
8794 if (abbrev->has_children)
8795 return skip_children (reader, info_ptr);
8796 else
8797 return info_ptr;
8798 }
8799
8800 /* Locate ORIG_PDI's sibling.
8801 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8802
8803 static const gdb_byte *
8804 locate_pdi_sibling (const struct die_reader_specs *reader,
8805 struct partial_die_info *orig_pdi,
8806 const gdb_byte *info_ptr)
8807 {
8808 /* Do we know the sibling already? */
8809
8810 if (orig_pdi->sibling)
8811 return orig_pdi->sibling;
8812
8813 /* Are there any children to deal with? */
8814
8815 if (!orig_pdi->has_children)
8816 return info_ptr;
8817
8818 /* Skip the children the long way. */
8819
8820 return skip_children (reader, info_ptr);
8821 }
8822
8823 /* Expand this partial symbol table into a full symbol table. SELF is
8824 not NULL. */
8825
8826 void
8827 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8828 {
8829 struct dwarf2_per_objfile *dwarf2_per_objfile
8830 = get_dwarf2_per_objfile (objfile);
8831
8832 gdb_assert (!readin);
8833 /* If this psymtab is constructed from a debug-only objfile, the
8834 has_section_at_zero flag will not necessarily be correct. We
8835 can get the correct value for this flag by looking at the data
8836 associated with the (presumably stripped) associated objfile. */
8837 if (objfile->separate_debug_objfile_backlink)
8838 {
8839 struct dwarf2_per_objfile *dpo_backlink
8840 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8841
8842 dwarf2_per_objfile->has_section_at_zero
8843 = dpo_backlink->has_section_at_zero;
8844 }
8845
8846 expand_psymtab (objfile);
8847
8848 process_cu_includes (dwarf2_per_objfile);
8849 }
8850 \f
8851 /* Reading in full CUs. */
8852
8853 /* Add PER_CU to the queue. */
8854
8855 static void
8856 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8857 enum language pretend_language)
8858 {
8859 per_cu->queued = 1;
8860 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8861 }
8862
8863 /* If PER_CU is not yet queued, add it to the queue.
8864 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8865 dependency.
8866 The result is non-zero if PER_CU was queued, otherwise the result is zero
8867 meaning either PER_CU is already queued or it is already loaded.
8868
8869 N.B. There is an invariant here that if a CU is queued then it is loaded.
8870 The caller is required to load PER_CU if we return non-zero. */
8871
8872 static int
8873 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8874 struct dwarf2_per_cu_data *per_cu,
8875 enum language pretend_language)
8876 {
8877 /* We may arrive here during partial symbol reading, if we need full
8878 DIEs to process an unusual case (e.g. template arguments). Do
8879 not queue PER_CU, just tell our caller to load its DIEs. */
8880 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8881 {
8882 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8883 return 1;
8884 return 0;
8885 }
8886
8887 /* Mark the dependence relation so that we don't flush PER_CU
8888 too early. */
8889 if (dependent_cu != NULL)
8890 dwarf2_add_dependence (dependent_cu, per_cu);
8891
8892 /* If it's already on the queue, we have nothing to do. */
8893 if (per_cu->queued)
8894 return 0;
8895
8896 /* If the compilation unit is already loaded, just mark it as
8897 used. */
8898 if (per_cu->cu != NULL)
8899 {
8900 per_cu->cu->last_used = 0;
8901 return 0;
8902 }
8903
8904 /* Add it to the queue. */
8905 queue_comp_unit (per_cu, pretend_language);
8906
8907 return 1;
8908 }
8909
8910 /* Process the queue. */
8911
8912 static void
8913 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8914 {
8915 if (dwarf_read_debug)
8916 {
8917 fprintf_unfiltered (gdb_stdlog,
8918 "Expanding one or more symtabs of objfile %s ...\n",
8919 objfile_name (dwarf2_per_objfile->objfile));
8920 }
8921
8922 /* The queue starts out with one item, but following a DIE reference
8923 may load a new CU, adding it to the end of the queue. */
8924 while (!dwarf2_per_objfile->queue.empty ())
8925 {
8926 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8927
8928 if ((dwarf2_per_objfile->using_index
8929 ? !item.per_cu->v.quick->compunit_symtab
8930 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8931 /* Skip dummy CUs. */
8932 && item.per_cu->cu != NULL)
8933 {
8934 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8935 unsigned int debug_print_threshold;
8936 char buf[100];
8937
8938 if (per_cu->is_debug_types)
8939 {
8940 struct signatured_type *sig_type =
8941 (struct signatured_type *) per_cu;
8942
8943 sprintf (buf, "TU %s at offset %s",
8944 hex_string (sig_type->signature),
8945 sect_offset_str (per_cu->sect_off));
8946 /* There can be 100s of TUs.
8947 Only print them in verbose mode. */
8948 debug_print_threshold = 2;
8949 }
8950 else
8951 {
8952 sprintf (buf, "CU at offset %s",
8953 sect_offset_str (per_cu->sect_off));
8954 debug_print_threshold = 1;
8955 }
8956
8957 if (dwarf_read_debug >= debug_print_threshold)
8958 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8959
8960 if (per_cu->is_debug_types)
8961 process_full_type_unit (per_cu, item.pretend_language);
8962 else
8963 process_full_comp_unit (per_cu, item.pretend_language);
8964
8965 if (dwarf_read_debug >= debug_print_threshold)
8966 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8967 }
8968
8969 item.per_cu->queued = 0;
8970 dwarf2_per_objfile->queue.pop ();
8971 }
8972
8973 if (dwarf_read_debug)
8974 {
8975 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8976 objfile_name (dwarf2_per_objfile->objfile));
8977 }
8978 }
8979
8980 /* Read in full symbols for PST, and anything it depends on. */
8981
8982 void
8983 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8984 {
8985 gdb_assert (!readin);
8986
8987 expand_dependencies (objfile);
8988
8989 dw2_do_instantiate_symtab (per_cu_data, false);
8990 gdb_assert (get_compunit_symtab () != nullptr);
8991 }
8992
8993 /* Trivial hash function for die_info: the hash value of a DIE
8994 is its offset in .debug_info for this objfile. */
8995
8996 static hashval_t
8997 die_hash (const void *item)
8998 {
8999 const struct die_info *die = (const struct die_info *) item;
9000
9001 return to_underlying (die->sect_off);
9002 }
9003
9004 /* Trivial comparison function for die_info structures: two DIEs
9005 are equal if they have the same offset. */
9006
9007 static int
9008 die_eq (const void *item_lhs, const void *item_rhs)
9009 {
9010 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9011 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9012
9013 return die_lhs->sect_off == die_rhs->sect_off;
9014 }
9015
9016 /* Load the DIEs associated with PER_CU into memory. */
9017
9018 static void
9019 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9020 bool skip_partial,
9021 enum language pretend_language)
9022 {
9023 gdb_assert (! this_cu->is_debug_types);
9024
9025 cutu_reader reader (this_cu, NULL, 1, skip_partial);
9026 if (reader.dummy_p)
9027 return;
9028
9029 struct dwarf2_cu *cu = reader.cu;
9030 const gdb_byte *info_ptr = reader.info_ptr;
9031
9032 gdb_assert (cu->die_hash == NULL);
9033 cu->die_hash =
9034 htab_create_alloc_ex (cu->header.length / 12,
9035 die_hash,
9036 die_eq,
9037 NULL,
9038 &cu->comp_unit_obstack,
9039 hashtab_obstack_allocate,
9040 dummy_obstack_deallocate);
9041
9042 if (reader.comp_unit_die->has_children)
9043 reader.comp_unit_die->child
9044 = read_die_and_siblings (&reader, reader.info_ptr,
9045 &info_ptr, reader.comp_unit_die);
9046 cu->dies = reader.comp_unit_die;
9047 /* comp_unit_die is not stored in die_hash, no need. */
9048
9049 /* We try not to read any attributes in this function, because not
9050 all CUs needed for references have been loaded yet, and symbol
9051 table processing isn't initialized. But we have to set the CU language,
9052 or we won't be able to build types correctly.
9053 Similarly, if we do not read the producer, we can not apply
9054 producer-specific interpretation. */
9055 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9056
9057 reader.keep ();
9058 }
9059
9060 /* Add a DIE to the delayed physname list. */
9061
9062 static void
9063 add_to_method_list (struct type *type, int fnfield_index, int index,
9064 const char *name, struct die_info *die,
9065 struct dwarf2_cu *cu)
9066 {
9067 struct delayed_method_info mi;
9068 mi.type = type;
9069 mi.fnfield_index = fnfield_index;
9070 mi.index = index;
9071 mi.name = name;
9072 mi.die = die;
9073 cu->method_list.push_back (mi);
9074 }
9075
9076 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9077 "const" / "volatile". If so, decrements LEN by the length of the
9078 modifier and return true. Otherwise return false. */
9079
9080 template<size_t N>
9081 static bool
9082 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9083 {
9084 size_t mod_len = sizeof (mod) - 1;
9085 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9086 {
9087 len -= mod_len;
9088 return true;
9089 }
9090 return false;
9091 }
9092
9093 /* Compute the physnames of any methods on the CU's method list.
9094
9095 The computation of method physnames is delayed in order to avoid the
9096 (bad) condition that one of the method's formal parameters is of an as yet
9097 incomplete type. */
9098
9099 static void
9100 compute_delayed_physnames (struct dwarf2_cu *cu)
9101 {
9102 /* Only C++ delays computing physnames. */
9103 if (cu->method_list.empty ())
9104 return;
9105 gdb_assert (cu->language == language_cplus);
9106
9107 for (const delayed_method_info &mi : cu->method_list)
9108 {
9109 const char *physname;
9110 struct fn_fieldlist *fn_flp
9111 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9112 physname = dwarf2_physname (mi.name, mi.die, cu);
9113 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9114 = physname ? physname : "";
9115
9116 /* Since there's no tag to indicate whether a method is a
9117 const/volatile overload, extract that information out of the
9118 demangled name. */
9119 if (physname != NULL)
9120 {
9121 size_t len = strlen (physname);
9122
9123 while (1)
9124 {
9125 if (physname[len] == ')') /* shortcut */
9126 break;
9127 else if (check_modifier (physname, len, " const"))
9128 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9129 else if (check_modifier (physname, len, " volatile"))
9130 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9131 else
9132 break;
9133 }
9134 }
9135 }
9136
9137 /* The list is no longer needed. */
9138 cu->method_list.clear ();
9139 }
9140
9141 /* Go objects should be embedded in a DW_TAG_module DIE,
9142 and it's not clear if/how imported objects will appear.
9143 To keep Go support simple until that's worked out,
9144 go back through what we've read and create something usable.
9145 We could do this while processing each DIE, and feels kinda cleaner,
9146 but that way is more invasive.
9147 This is to, for example, allow the user to type "p var" or "b main"
9148 without having to specify the package name, and allow lookups
9149 of module.object to work in contexts that use the expression
9150 parser. */
9151
9152 static void
9153 fixup_go_packaging (struct dwarf2_cu *cu)
9154 {
9155 gdb::unique_xmalloc_ptr<char> package_name;
9156 struct pending *list;
9157 int i;
9158
9159 for (list = *cu->get_builder ()->get_global_symbols ();
9160 list != NULL;
9161 list = list->next)
9162 {
9163 for (i = 0; i < list->nsyms; ++i)
9164 {
9165 struct symbol *sym = list->symbol[i];
9166
9167 if (sym->language () == language_go
9168 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9169 {
9170 gdb::unique_xmalloc_ptr<char> this_package_name
9171 (go_symbol_package_name (sym));
9172
9173 if (this_package_name == NULL)
9174 continue;
9175 if (package_name == NULL)
9176 package_name = std::move (this_package_name);
9177 else
9178 {
9179 struct objfile *objfile
9180 = cu->per_cu->dwarf2_per_objfile->objfile;
9181 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9182 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9183 (symbol_symtab (sym) != NULL
9184 ? symtab_to_filename_for_display
9185 (symbol_symtab (sym))
9186 : objfile_name (objfile)),
9187 this_package_name.get (), package_name.get ());
9188 }
9189 }
9190 }
9191 }
9192
9193 if (package_name != NULL)
9194 {
9195 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9196 const char *saved_package_name = objfile->intern (package_name.get ());
9197 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9198 saved_package_name);
9199 struct symbol *sym;
9200
9201 sym = new (&objfile->objfile_obstack) symbol;
9202 sym->set_language (language_go, &objfile->objfile_obstack);
9203 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9204 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9205 e.g., "main" finds the "main" module and not C's main(). */
9206 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9207 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9208 SYMBOL_TYPE (sym) = type;
9209
9210 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9211 }
9212 }
9213
9214 /* Allocate a fully-qualified name consisting of the two parts on the
9215 obstack. */
9216
9217 static const char *
9218 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9219 {
9220 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9221 }
9222
9223 /* A helper that allocates a variant part to attach to a Rust enum
9224 type. OBSTACK is where the results should be allocated. TYPE is
9225 the type we're processing. DISCRIMINANT_INDEX is the index of the
9226 discriminant. It must be the index of one of the fields of TYPE.
9227 DEFAULT_INDEX is the index of the default field; or -1 if there is
9228 no default. RANGES is indexed by "effective" field number (the
9229 field index, but omitting the discriminant and default fields) and
9230 must hold the discriminant values used by the variants. Note that
9231 RANGES must have a lifetime at least as long as OBSTACK -- either
9232 already allocated on it, or static. */
9233
9234 static void
9235 alloc_rust_variant (struct obstack *obstack, struct type *type,
9236 int discriminant_index, int default_index,
9237 gdb::array_view<discriminant_range> ranges)
9238 {
9239 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9240 must be handled by the caller. */
9241 gdb_assert (discriminant_index >= 0
9242 && discriminant_index < type->num_fields ());
9243 gdb_assert (default_index == -1
9244 || (default_index >= 0 && default_index < type->num_fields ()));
9245
9246 /* We have one variant for each non-discriminant field. */
9247 int n_variants = type->num_fields () - 1;
9248
9249 variant *variants = new (obstack) variant[n_variants];
9250 int var_idx = 0;
9251 int range_idx = 0;
9252 for (int i = 0; i < type->num_fields (); ++i)
9253 {
9254 if (i == discriminant_index)
9255 continue;
9256
9257 variants[var_idx].first_field = i;
9258 variants[var_idx].last_field = i + 1;
9259
9260 /* The default field does not need a range, but other fields do.
9261 We skipped the discriminant above. */
9262 if (i != default_index)
9263 {
9264 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9265 ++range_idx;
9266 }
9267
9268 ++var_idx;
9269 }
9270
9271 gdb_assert (range_idx == ranges.size ());
9272 gdb_assert (var_idx == n_variants);
9273
9274 variant_part *part = new (obstack) variant_part;
9275 part->discriminant_index = discriminant_index;
9276 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9277 discriminant_index));
9278 part->variants = gdb::array_view<variant> (variants, n_variants);
9279
9280 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9281 gdb::array_view<variant_part> *prop_value
9282 = new (storage) gdb::array_view<variant_part> (part, 1);
9283
9284 struct dynamic_prop prop;
9285 prop.kind = PROP_VARIANT_PARTS;
9286 prop.data.variant_parts = prop_value;
9287
9288 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9289 }
9290
9291 /* Some versions of rustc emitted enums in an unusual way.
9292
9293 Ordinary enums were emitted as unions. The first element of each
9294 structure in the union was named "RUST$ENUM$DISR". This element
9295 held the discriminant.
9296
9297 These versions of Rust also implemented the "non-zero"
9298 optimization. When the enum had two values, and one is empty and
9299 the other holds a pointer that cannot be zero, the pointer is used
9300 as the discriminant, with a zero value meaning the empty variant.
9301 Here, the union's first member is of the form
9302 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9303 where the fieldnos are the indices of the fields that should be
9304 traversed in order to find the field (which may be several fields deep)
9305 and the variantname is the name of the variant of the case when the
9306 field is zero.
9307
9308 This function recognizes whether TYPE is of one of these forms,
9309 and, if so, smashes it to be a variant type. */
9310
9311 static void
9312 quirk_rust_enum (struct type *type, struct objfile *objfile)
9313 {
9314 gdb_assert (type->code () == TYPE_CODE_UNION);
9315
9316 /* We don't need to deal with empty enums. */
9317 if (type->num_fields () == 0)
9318 return;
9319
9320 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9321 if (type->num_fields () == 1
9322 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9323 {
9324 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9325
9326 /* Decode the field name to find the offset of the
9327 discriminant. */
9328 ULONGEST bit_offset = 0;
9329 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9330 while (name[0] >= '0' && name[0] <= '9')
9331 {
9332 char *tail;
9333 unsigned long index = strtoul (name, &tail, 10);
9334 name = tail;
9335 if (*name != '$'
9336 || index >= field_type->num_fields ()
9337 || (TYPE_FIELD_LOC_KIND (field_type, index)
9338 != FIELD_LOC_KIND_BITPOS))
9339 {
9340 complaint (_("Could not parse Rust enum encoding string \"%s\""
9341 "[in module %s]"),
9342 TYPE_FIELD_NAME (type, 0),
9343 objfile_name (objfile));
9344 return;
9345 }
9346 ++name;
9347
9348 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9349 field_type = TYPE_FIELD_TYPE (field_type, index);
9350 }
9351
9352 /* Smash this type to be a structure type. We have to do this
9353 because the type has already been recorded. */
9354 type->set_code (TYPE_CODE_STRUCT);
9355 type->set_num_fields (3);
9356 /* Save the field we care about. */
9357 struct field saved_field = type->field (0);
9358 type->set_fields
9359 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9360
9361 /* Put the discriminant at index 0. */
9362 TYPE_FIELD_TYPE (type, 0) = field_type;
9363 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9364 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9365 SET_FIELD_BITPOS (type->field (0), bit_offset);
9366
9367 /* The order of fields doesn't really matter, so put the real
9368 field at index 1 and the data-less field at index 2. */
9369 type->field (1) = saved_field;
9370 TYPE_FIELD_NAME (type, 1)
9371 = rust_last_path_segment (TYPE_FIELD_TYPE (type, 1)->name ());
9372 TYPE_FIELD_TYPE (type, 1)->set_name
9373 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9374 TYPE_FIELD_NAME (type, 1)));
9375
9376 const char *dataless_name
9377 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9378 name);
9379 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9380 dataless_name);
9381 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9382 /* NAME points into the original discriminant name, which
9383 already has the correct lifetime. */
9384 TYPE_FIELD_NAME (type, 2) = name;
9385 SET_FIELD_BITPOS (type->field (2), 0);
9386
9387 /* Indicate that this is a variant type. */
9388 static discriminant_range ranges[1] = { { 0, 0 } };
9389 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9390 }
9391 /* A union with a single anonymous field is probably an old-style
9392 univariant enum. */
9393 else if (type->num_fields () == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9394 {
9395 /* Smash this type to be a structure type. We have to do this
9396 because the type has already been recorded. */
9397 type->set_code (TYPE_CODE_STRUCT);
9398
9399 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9400 const char *variant_name
9401 = rust_last_path_segment (field_type->name ());
9402 TYPE_FIELD_NAME (type, 0) = variant_name;
9403 field_type->set_name
9404 (rust_fully_qualify (&objfile->objfile_obstack,
9405 type->name (), variant_name));
9406 }
9407 else
9408 {
9409 struct type *disr_type = nullptr;
9410 for (int i = 0; i < type->num_fields (); ++i)
9411 {
9412 disr_type = TYPE_FIELD_TYPE (type, i);
9413
9414 if (disr_type->code () != TYPE_CODE_STRUCT)
9415 {
9416 /* All fields of a true enum will be structs. */
9417 return;
9418 }
9419 else if (disr_type->num_fields () == 0)
9420 {
9421 /* Could be data-less variant, so keep going. */
9422 disr_type = nullptr;
9423 }
9424 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9425 "RUST$ENUM$DISR") != 0)
9426 {
9427 /* Not a Rust enum. */
9428 return;
9429 }
9430 else
9431 {
9432 /* Found one. */
9433 break;
9434 }
9435 }
9436
9437 /* If we got here without a discriminant, then it's probably
9438 just a union. */
9439 if (disr_type == nullptr)
9440 return;
9441
9442 /* Smash this type to be a structure type. We have to do this
9443 because the type has already been recorded. */
9444 type->set_code (TYPE_CODE_STRUCT);
9445
9446 /* Make space for the discriminant field. */
9447 struct field *disr_field = &disr_type->field (0);
9448 field *new_fields
9449 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9450 * sizeof (struct field)));
9451 memcpy (new_fields + 1, type->fields (),
9452 type->num_fields () * sizeof (struct field));
9453 type->set_fields (new_fields);
9454 type->set_num_fields (type->num_fields () + 1);
9455
9456 /* Install the discriminant at index 0 in the union. */
9457 type->field (0) = *disr_field;
9458 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9459 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9460
9461 /* We need a way to find the correct discriminant given a
9462 variant name. For convenience we build a map here. */
9463 struct type *enum_type = FIELD_TYPE (*disr_field);
9464 std::unordered_map<std::string, ULONGEST> discriminant_map;
9465 for (int i = 0; i < enum_type->num_fields (); ++i)
9466 {
9467 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9468 {
9469 const char *name
9470 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9471 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9472 }
9473 }
9474
9475 int n_fields = type->num_fields ();
9476 /* We don't need a range entry for the discriminant, but we do
9477 need one for every other field, as there is no default
9478 variant. */
9479 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9480 discriminant_range,
9481 n_fields - 1);
9482 /* Skip the discriminant here. */
9483 for (int i = 1; i < n_fields; ++i)
9484 {
9485 /* Find the final word in the name of this variant's type.
9486 That name can be used to look up the correct
9487 discriminant. */
9488 const char *variant_name
9489 = rust_last_path_segment (TYPE_FIELD_TYPE (type, i)->name ());
9490
9491 auto iter = discriminant_map.find (variant_name);
9492 if (iter != discriminant_map.end ())
9493 {
9494 ranges[i].low = iter->second;
9495 ranges[i].high = iter->second;
9496 }
9497
9498 /* Remove the discriminant field, if it exists. */
9499 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9500 if (sub_type->num_fields () > 0)
9501 {
9502 sub_type->set_num_fields (sub_type->num_fields () - 1);
9503 sub_type->set_fields (sub_type->fields () + 1);
9504 }
9505 TYPE_FIELD_NAME (type, i) = variant_name;
9506 sub_type->set_name
9507 (rust_fully_qualify (&objfile->objfile_obstack,
9508 type->name (), variant_name));
9509 }
9510
9511 /* Indicate that this is a variant type. */
9512 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9513 gdb::array_view<discriminant_range> (ranges,
9514 n_fields - 1));
9515 }
9516 }
9517
9518 /* Rewrite some Rust unions to be structures with variants parts. */
9519
9520 static void
9521 rust_union_quirks (struct dwarf2_cu *cu)
9522 {
9523 gdb_assert (cu->language == language_rust);
9524 for (type *type_ : cu->rust_unions)
9525 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9526 /* We don't need this any more. */
9527 cu->rust_unions.clear ();
9528 }
9529
9530 /* Return the symtab for PER_CU. This works properly regardless of
9531 whether we're using the index or psymtabs. */
9532
9533 static struct compunit_symtab *
9534 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9535 {
9536 return (per_cu->dwarf2_per_objfile->using_index
9537 ? per_cu->v.quick->compunit_symtab
9538 : per_cu->v.psymtab->compunit_symtab);
9539 }
9540
9541 /* A helper function for computing the list of all symbol tables
9542 included by PER_CU. */
9543
9544 static void
9545 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9546 htab_t all_children, htab_t all_type_symtabs,
9547 struct dwarf2_per_cu_data *per_cu,
9548 struct compunit_symtab *immediate_parent)
9549 {
9550 void **slot;
9551 struct compunit_symtab *cust;
9552
9553 slot = htab_find_slot (all_children, per_cu, INSERT);
9554 if (*slot != NULL)
9555 {
9556 /* This inclusion and its children have been processed. */
9557 return;
9558 }
9559
9560 *slot = per_cu;
9561 /* Only add a CU if it has a symbol table. */
9562 cust = get_compunit_symtab (per_cu);
9563 if (cust != NULL)
9564 {
9565 /* If this is a type unit only add its symbol table if we haven't
9566 seen it yet (type unit per_cu's can share symtabs). */
9567 if (per_cu->is_debug_types)
9568 {
9569 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9570 if (*slot == NULL)
9571 {
9572 *slot = cust;
9573 result->push_back (cust);
9574 if (cust->user == NULL)
9575 cust->user = immediate_parent;
9576 }
9577 }
9578 else
9579 {
9580 result->push_back (cust);
9581 if (cust->user == NULL)
9582 cust->user = immediate_parent;
9583 }
9584 }
9585
9586 if (!per_cu->imported_symtabs_empty ())
9587 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9588 {
9589 recursively_compute_inclusions (result, all_children,
9590 all_type_symtabs, ptr, cust);
9591 }
9592 }
9593
9594 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9595 PER_CU. */
9596
9597 static void
9598 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9599 {
9600 gdb_assert (! per_cu->is_debug_types);
9601
9602 if (!per_cu->imported_symtabs_empty ())
9603 {
9604 int len;
9605 std::vector<compunit_symtab *> result_symtabs;
9606 htab_t all_children, all_type_symtabs;
9607 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9608
9609 /* If we don't have a symtab, we can just skip this case. */
9610 if (cust == NULL)
9611 return;
9612
9613 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9614 NULL, xcalloc, xfree);
9615 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9616 NULL, xcalloc, xfree);
9617
9618 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9619 {
9620 recursively_compute_inclusions (&result_symtabs, all_children,
9621 all_type_symtabs, ptr, cust);
9622 }
9623
9624 /* Now we have a transitive closure of all the included symtabs. */
9625 len = result_symtabs.size ();
9626 cust->includes
9627 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9628 struct compunit_symtab *, len + 1);
9629 memcpy (cust->includes, result_symtabs.data (),
9630 len * sizeof (compunit_symtab *));
9631 cust->includes[len] = NULL;
9632
9633 htab_delete (all_children);
9634 htab_delete (all_type_symtabs);
9635 }
9636 }
9637
9638 /* Compute the 'includes' field for the symtabs of all the CUs we just
9639 read. */
9640
9641 static void
9642 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9643 {
9644 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9645 {
9646 if (! iter->is_debug_types)
9647 compute_compunit_symtab_includes (iter);
9648 }
9649
9650 dwarf2_per_objfile->just_read_cus.clear ();
9651 }
9652
9653 /* Generate full symbol information for PER_CU, whose DIEs have
9654 already been loaded into memory. */
9655
9656 static void
9657 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9658 enum language pretend_language)
9659 {
9660 struct dwarf2_cu *cu = per_cu->cu;
9661 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9662 struct objfile *objfile = dwarf2_per_objfile->objfile;
9663 struct gdbarch *gdbarch = objfile->arch ();
9664 CORE_ADDR lowpc, highpc;
9665 struct compunit_symtab *cust;
9666 CORE_ADDR baseaddr;
9667 struct block *static_block;
9668 CORE_ADDR addr;
9669
9670 baseaddr = objfile->text_section_offset ();
9671
9672 /* Clear the list here in case something was left over. */
9673 cu->method_list.clear ();
9674
9675 cu->language = pretend_language;
9676 cu->language_defn = language_def (cu->language);
9677
9678 /* Do line number decoding in read_file_scope () */
9679 process_die (cu->dies, cu);
9680
9681 /* For now fudge the Go package. */
9682 if (cu->language == language_go)
9683 fixup_go_packaging (cu);
9684
9685 /* Now that we have processed all the DIEs in the CU, all the types
9686 should be complete, and it should now be safe to compute all of the
9687 physnames. */
9688 compute_delayed_physnames (cu);
9689
9690 if (cu->language == language_rust)
9691 rust_union_quirks (cu);
9692
9693 /* Some compilers don't define a DW_AT_high_pc attribute for the
9694 compilation unit. If the DW_AT_high_pc is missing, synthesize
9695 it, by scanning the DIE's below the compilation unit. */
9696 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9697
9698 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9699 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9700
9701 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9702 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9703 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9704 addrmap to help ensure it has an accurate map of pc values belonging to
9705 this comp unit. */
9706 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9707
9708 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9709 SECT_OFF_TEXT (objfile),
9710 0);
9711
9712 if (cust != NULL)
9713 {
9714 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9715
9716 /* Set symtab language to language from DW_AT_language. If the
9717 compilation is from a C file generated by language preprocessors, do
9718 not set the language if it was already deduced by start_subfile. */
9719 if (!(cu->language == language_c
9720 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9721 COMPUNIT_FILETABS (cust)->language = cu->language;
9722
9723 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9724 produce DW_AT_location with location lists but it can be possibly
9725 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9726 there were bugs in prologue debug info, fixed later in GCC-4.5
9727 by "unwind info for epilogues" patch (which is not directly related).
9728
9729 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9730 needed, it would be wrong due to missing DW_AT_producer there.
9731
9732 Still one can confuse GDB by using non-standard GCC compilation
9733 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9734 */
9735 if (cu->has_loclist && gcc_4_minor >= 5)
9736 cust->locations_valid = 1;
9737
9738 if (gcc_4_minor >= 5)
9739 cust->epilogue_unwind_valid = 1;
9740
9741 cust->call_site_htab = cu->call_site_htab;
9742 }
9743
9744 if (dwarf2_per_objfile->using_index)
9745 per_cu->v.quick->compunit_symtab = cust;
9746 else
9747 {
9748 dwarf2_psymtab *pst = per_cu->v.psymtab;
9749 pst->compunit_symtab = cust;
9750 pst->readin = true;
9751 }
9752
9753 /* Push it for inclusion processing later. */
9754 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9755
9756 /* Not needed any more. */
9757 cu->reset_builder ();
9758 }
9759
9760 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9761 already been loaded into memory. */
9762
9763 static void
9764 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9765 enum language pretend_language)
9766 {
9767 struct dwarf2_cu *cu = per_cu->cu;
9768 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9769 struct objfile *objfile = dwarf2_per_objfile->objfile;
9770 struct compunit_symtab *cust;
9771 struct signatured_type *sig_type;
9772
9773 gdb_assert (per_cu->is_debug_types);
9774 sig_type = (struct signatured_type *) per_cu;
9775
9776 /* Clear the list here in case something was left over. */
9777 cu->method_list.clear ();
9778
9779 cu->language = pretend_language;
9780 cu->language_defn = language_def (cu->language);
9781
9782 /* The symbol tables are set up in read_type_unit_scope. */
9783 process_die (cu->dies, cu);
9784
9785 /* For now fudge the Go package. */
9786 if (cu->language == language_go)
9787 fixup_go_packaging (cu);
9788
9789 /* Now that we have processed all the DIEs in the CU, all the types
9790 should be complete, and it should now be safe to compute all of the
9791 physnames. */
9792 compute_delayed_physnames (cu);
9793
9794 if (cu->language == language_rust)
9795 rust_union_quirks (cu);
9796
9797 /* TUs share symbol tables.
9798 If this is the first TU to use this symtab, complete the construction
9799 of it with end_expandable_symtab. Otherwise, complete the addition of
9800 this TU's symbols to the existing symtab. */
9801 if (sig_type->type_unit_group->compunit_symtab == NULL)
9802 {
9803 buildsym_compunit *builder = cu->get_builder ();
9804 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9805 sig_type->type_unit_group->compunit_symtab = cust;
9806
9807 if (cust != NULL)
9808 {
9809 /* Set symtab language to language from DW_AT_language. If the
9810 compilation is from a C file generated by language preprocessors,
9811 do not set the language if it was already deduced by
9812 start_subfile. */
9813 if (!(cu->language == language_c
9814 && COMPUNIT_FILETABS (cust)->language != language_c))
9815 COMPUNIT_FILETABS (cust)->language = cu->language;
9816 }
9817 }
9818 else
9819 {
9820 cu->get_builder ()->augment_type_symtab ();
9821 cust = sig_type->type_unit_group->compunit_symtab;
9822 }
9823
9824 if (dwarf2_per_objfile->using_index)
9825 per_cu->v.quick->compunit_symtab = cust;
9826 else
9827 {
9828 dwarf2_psymtab *pst = per_cu->v.psymtab;
9829 pst->compunit_symtab = cust;
9830 pst->readin = true;
9831 }
9832
9833 /* Not needed any more. */
9834 cu->reset_builder ();
9835 }
9836
9837 /* Process an imported unit DIE. */
9838
9839 static void
9840 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9841 {
9842 struct attribute *attr;
9843
9844 /* For now we don't handle imported units in type units. */
9845 if (cu->per_cu->is_debug_types)
9846 {
9847 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9848 " supported in type units [in module %s]"),
9849 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9850 }
9851
9852 attr = dwarf2_attr (die, DW_AT_import, cu);
9853 if (attr != NULL)
9854 {
9855 sect_offset sect_off = attr->get_ref_die_offset ();
9856 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9857 dwarf2_per_cu_data *per_cu
9858 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9859 cu->per_cu->dwarf2_per_objfile);
9860
9861 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9862 into another compilation unit, at root level. Regard this as a hint,
9863 and ignore it. */
9864 if (die->parent && die->parent->parent == NULL
9865 && per_cu->unit_type == DW_UT_compile
9866 && per_cu->lang == language_cplus)
9867 return;
9868
9869 /* If necessary, add it to the queue and load its DIEs. */
9870 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9871 load_full_comp_unit (per_cu, false, cu->language);
9872
9873 cu->per_cu->imported_symtabs_push (per_cu);
9874 }
9875 }
9876
9877 /* RAII object that represents a process_die scope: i.e.,
9878 starts/finishes processing a DIE. */
9879 class process_die_scope
9880 {
9881 public:
9882 process_die_scope (die_info *die, dwarf2_cu *cu)
9883 : m_die (die), m_cu (cu)
9884 {
9885 /* We should only be processing DIEs not already in process. */
9886 gdb_assert (!m_die->in_process);
9887 m_die->in_process = true;
9888 }
9889
9890 ~process_die_scope ()
9891 {
9892 m_die->in_process = false;
9893
9894 /* If we're done processing the DIE for the CU that owns the line
9895 header, we don't need the line header anymore. */
9896 if (m_cu->line_header_die_owner == m_die)
9897 {
9898 delete m_cu->line_header;
9899 m_cu->line_header = NULL;
9900 m_cu->line_header_die_owner = NULL;
9901 }
9902 }
9903
9904 private:
9905 die_info *m_die;
9906 dwarf2_cu *m_cu;
9907 };
9908
9909 /* Process a die and its children. */
9910
9911 static void
9912 process_die (struct die_info *die, struct dwarf2_cu *cu)
9913 {
9914 process_die_scope scope (die, cu);
9915
9916 switch (die->tag)
9917 {
9918 case DW_TAG_padding:
9919 break;
9920 case DW_TAG_compile_unit:
9921 case DW_TAG_partial_unit:
9922 read_file_scope (die, cu);
9923 break;
9924 case DW_TAG_type_unit:
9925 read_type_unit_scope (die, cu);
9926 break;
9927 case DW_TAG_subprogram:
9928 /* Nested subprograms in Fortran get a prefix. */
9929 if (cu->language == language_fortran
9930 && die->parent != NULL
9931 && die->parent->tag == DW_TAG_subprogram)
9932 cu->processing_has_namespace_info = true;
9933 /* Fall through. */
9934 case DW_TAG_inlined_subroutine:
9935 read_func_scope (die, cu);
9936 break;
9937 case DW_TAG_lexical_block:
9938 case DW_TAG_try_block:
9939 case DW_TAG_catch_block:
9940 read_lexical_block_scope (die, cu);
9941 break;
9942 case DW_TAG_call_site:
9943 case DW_TAG_GNU_call_site:
9944 read_call_site_scope (die, cu);
9945 break;
9946 case DW_TAG_class_type:
9947 case DW_TAG_interface_type:
9948 case DW_TAG_structure_type:
9949 case DW_TAG_union_type:
9950 process_structure_scope (die, cu);
9951 break;
9952 case DW_TAG_enumeration_type:
9953 process_enumeration_scope (die, cu);
9954 break;
9955
9956 /* These dies have a type, but processing them does not create
9957 a symbol or recurse to process the children. Therefore we can
9958 read them on-demand through read_type_die. */
9959 case DW_TAG_subroutine_type:
9960 case DW_TAG_set_type:
9961 case DW_TAG_array_type:
9962 case DW_TAG_pointer_type:
9963 case DW_TAG_ptr_to_member_type:
9964 case DW_TAG_reference_type:
9965 case DW_TAG_rvalue_reference_type:
9966 case DW_TAG_string_type:
9967 break;
9968
9969 case DW_TAG_base_type:
9970 case DW_TAG_subrange_type:
9971 case DW_TAG_typedef:
9972 /* Add a typedef symbol for the type definition, if it has a
9973 DW_AT_name. */
9974 new_symbol (die, read_type_die (die, cu), cu);
9975 break;
9976 case DW_TAG_common_block:
9977 read_common_block (die, cu);
9978 break;
9979 case DW_TAG_common_inclusion:
9980 break;
9981 case DW_TAG_namespace:
9982 cu->processing_has_namespace_info = true;
9983 read_namespace (die, cu);
9984 break;
9985 case DW_TAG_module:
9986 cu->processing_has_namespace_info = true;
9987 read_module (die, cu);
9988 break;
9989 case DW_TAG_imported_declaration:
9990 cu->processing_has_namespace_info = true;
9991 if (read_namespace_alias (die, cu))
9992 break;
9993 /* The declaration is not a global namespace alias. */
9994 /* Fall through. */
9995 case DW_TAG_imported_module:
9996 cu->processing_has_namespace_info = true;
9997 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9998 || cu->language != language_fortran))
9999 complaint (_("Tag '%s' has unexpected children"),
10000 dwarf_tag_name (die->tag));
10001 read_import_statement (die, cu);
10002 break;
10003
10004 case DW_TAG_imported_unit:
10005 process_imported_unit_die (die, cu);
10006 break;
10007
10008 case DW_TAG_variable:
10009 read_variable (die, cu);
10010 break;
10011
10012 default:
10013 new_symbol (die, NULL, cu);
10014 break;
10015 }
10016 }
10017 \f
10018 /* DWARF name computation. */
10019
10020 /* A helper function for dwarf2_compute_name which determines whether DIE
10021 needs to have the name of the scope prepended to the name listed in the
10022 die. */
10023
10024 static int
10025 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10026 {
10027 struct attribute *attr;
10028
10029 switch (die->tag)
10030 {
10031 case DW_TAG_namespace:
10032 case DW_TAG_typedef:
10033 case DW_TAG_class_type:
10034 case DW_TAG_interface_type:
10035 case DW_TAG_structure_type:
10036 case DW_TAG_union_type:
10037 case DW_TAG_enumeration_type:
10038 case DW_TAG_enumerator:
10039 case DW_TAG_subprogram:
10040 case DW_TAG_inlined_subroutine:
10041 case DW_TAG_member:
10042 case DW_TAG_imported_declaration:
10043 return 1;
10044
10045 case DW_TAG_variable:
10046 case DW_TAG_constant:
10047 /* We only need to prefix "globally" visible variables. These include
10048 any variable marked with DW_AT_external or any variable that
10049 lives in a namespace. [Variables in anonymous namespaces
10050 require prefixing, but they are not DW_AT_external.] */
10051
10052 if (dwarf2_attr (die, DW_AT_specification, cu))
10053 {
10054 struct dwarf2_cu *spec_cu = cu;
10055
10056 return die_needs_namespace (die_specification (die, &spec_cu),
10057 spec_cu);
10058 }
10059
10060 attr = dwarf2_attr (die, DW_AT_external, cu);
10061 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10062 && die->parent->tag != DW_TAG_module)
10063 return 0;
10064 /* A variable in a lexical block of some kind does not need a
10065 namespace, even though in C++ such variables may be external
10066 and have a mangled name. */
10067 if (die->parent->tag == DW_TAG_lexical_block
10068 || die->parent->tag == DW_TAG_try_block
10069 || die->parent->tag == DW_TAG_catch_block
10070 || die->parent->tag == DW_TAG_subprogram)
10071 return 0;
10072 return 1;
10073
10074 default:
10075 return 0;
10076 }
10077 }
10078
10079 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10080 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10081 defined for the given DIE. */
10082
10083 static struct attribute *
10084 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10085 {
10086 struct attribute *attr;
10087
10088 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10089 if (attr == NULL)
10090 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10091
10092 return attr;
10093 }
10094
10095 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10096 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10097 defined for the given DIE. */
10098
10099 static const char *
10100 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10101 {
10102 const char *linkage_name;
10103
10104 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10105 if (linkage_name == NULL)
10106 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10107
10108 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10109 See https://github.com/rust-lang/rust/issues/32925. */
10110 if (cu->language == language_rust && linkage_name != NULL
10111 && strchr (linkage_name, '{') != NULL)
10112 linkage_name = NULL;
10113
10114 return linkage_name;
10115 }
10116
10117 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10118 compute the physname for the object, which include a method's:
10119 - formal parameters (C++),
10120 - receiver type (Go),
10121
10122 The term "physname" is a bit confusing.
10123 For C++, for example, it is the demangled name.
10124 For Go, for example, it's the mangled name.
10125
10126 For Ada, return the DIE's linkage name rather than the fully qualified
10127 name. PHYSNAME is ignored..
10128
10129 The result is allocated on the dwarf2_per_objfile obstack and
10130 canonicalized. */
10131
10132 static const char *
10133 dwarf2_compute_name (const char *name,
10134 struct die_info *die, struct dwarf2_cu *cu,
10135 int physname)
10136 {
10137 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10138
10139 if (name == NULL)
10140 name = dwarf2_name (die, cu);
10141
10142 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10143 but otherwise compute it by typename_concat inside GDB.
10144 FIXME: Actually this is not really true, or at least not always true.
10145 It's all very confusing. compute_and_set_names doesn't try to demangle
10146 Fortran names because there is no mangling standard. So new_symbol
10147 will set the demangled name to the result of dwarf2_full_name, and it is
10148 the demangled name that GDB uses if it exists. */
10149 if (cu->language == language_ada
10150 || (cu->language == language_fortran && physname))
10151 {
10152 /* For Ada unit, we prefer the linkage name over the name, as
10153 the former contains the exported name, which the user expects
10154 to be able to reference. Ideally, we want the user to be able
10155 to reference this entity using either natural or linkage name,
10156 but we haven't started looking at this enhancement yet. */
10157 const char *linkage_name = dw2_linkage_name (die, cu);
10158
10159 if (linkage_name != NULL)
10160 return linkage_name;
10161 }
10162
10163 /* These are the only languages we know how to qualify names in. */
10164 if (name != NULL
10165 && (cu->language == language_cplus
10166 || cu->language == language_fortran || cu->language == language_d
10167 || cu->language == language_rust))
10168 {
10169 if (die_needs_namespace (die, cu))
10170 {
10171 const char *prefix;
10172 const char *canonical_name = NULL;
10173
10174 string_file buf;
10175
10176 prefix = determine_prefix (die, cu);
10177 if (*prefix != '\0')
10178 {
10179 gdb::unique_xmalloc_ptr<char> prefixed_name
10180 (typename_concat (NULL, prefix, name, physname, cu));
10181
10182 buf.puts (prefixed_name.get ());
10183 }
10184 else
10185 buf.puts (name);
10186
10187 /* Template parameters may be specified in the DIE's DW_AT_name, or
10188 as children with DW_TAG_template_type_param or
10189 DW_TAG_value_type_param. If the latter, add them to the name
10190 here. If the name already has template parameters, then
10191 skip this step; some versions of GCC emit both, and
10192 it is more efficient to use the pre-computed name.
10193
10194 Something to keep in mind about this process: it is very
10195 unlikely, or in some cases downright impossible, to produce
10196 something that will match the mangled name of a function.
10197 If the definition of the function has the same debug info,
10198 we should be able to match up with it anyway. But fallbacks
10199 using the minimal symbol, for instance to find a method
10200 implemented in a stripped copy of libstdc++, will not work.
10201 If we do not have debug info for the definition, we will have to
10202 match them up some other way.
10203
10204 When we do name matching there is a related problem with function
10205 templates; two instantiated function templates are allowed to
10206 differ only by their return types, which we do not add here. */
10207
10208 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10209 {
10210 struct attribute *attr;
10211 struct die_info *child;
10212 int first = 1;
10213
10214 die->building_fullname = 1;
10215
10216 for (child = die->child; child != NULL; child = child->sibling)
10217 {
10218 struct type *type;
10219 LONGEST value;
10220 const gdb_byte *bytes;
10221 struct dwarf2_locexpr_baton *baton;
10222 struct value *v;
10223
10224 if (child->tag != DW_TAG_template_type_param
10225 && child->tag != DW_TAG_template_value_param)
10226 continue;
10227
10228 if (first)
10229 {
10230 buf.puts ("<");
10231 first = 0;
10232 }
10233 else
10234 buf.puts (", ");
10235
10236 attr = dwarf2_attr (child, DW_AT_type, cu);
10237 if (attr == NULL)
10238 {
10239 complaint (_("template parameter missing DW_AT_type"));
10240 buf.puts ("UNKNOWN_TYPE");
10241 continue;
10242 }
10243 type = die_type (child, cu);
10244
10245 if (child->tag == DW_TAG_template_type_param)
10246 {
10247 c_print_type (type, "", &buf, -1, 0, cu->language,
10248 &type_print_raw_options);
10249 continue;
10250 }
10251
10252 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10253 if (attr == NULL)
10254 {
10255 complaint (_("template parameter missing "
10256 "DW_AT_const_value"));
10257 buf.puts ("UNKNOWN_VALUE");
10258 continue;
10259 }
10260
10261 dwarf2_const_value_attr (attr, type, name,
10262 &cu->comp_unit_obstack, cu,
10263 &value, &bytes, &baton);
10264
10265 if (TYPE_NOSIGN (type))
10266 /* GDB prints characters as NUMBER 'CHAR'. If that's
10267 changed, this can use value_print instead. */
10268 c_printchar (value, type, &buf);
10269 else
10270 {
10271 struct value_print_options opts;
10272
10273 if (baton != NULL)
10274 v = dwarf2_evaluate_loc_desc (type, NULL,
10275 baton->data,
10276 baton->size,
10277 baton->per_cu);
10278 else if (bytes != NULL)
10279 {
10280 v = allocate_value (type);
10281 memcpy (value_contents_writeable (v), bytes,
10282 TYPE_LENGTH (type));
10283 }
10284 else
10285 v = value_from_longest (type, value);
10286
10287 /* Specify decimal so that we do not depend on
10288 the radix. */
10289 get_formatted_print_options (&opts, 'd');
10290 opts.raw = 1;
10291 value_print (v, &buf, &opts);
10292 release_value (v);
10293 }
10294 }
10295
10296 die->building_fullname = 0;
10297
10298 if (!first)
10299 {
10300 /* Close the argument list, with a space if necessary
10301 (nested templates). */
10302 if (!buf.empty () && buf.string ().back () == '>')
10303 buf.puts (" >");
10304 else
10305 buf.puts (">");
10306 }
10307 }
10308
10309 /* For C++ methods, append formal parameter type
10310 information, if PHYSNAME. */
10311
10312 if (physname && die->tag == DW_TAG_subprogram
10313 && cu->language == language_cplus)
10314 {
10315 struct type *type = read_type_die (die, cu);
10316
10317 c_type_print_args (type, &buf, 1, cu->language,
10318 &type_print_raw_options);
10319
10320 if (cu->language == language_cplus)
10321 {
10322 /* Assume that an artificial first parameter is
10323 "this", but do not crash if it is not. RealView
10324 marks unnamed (and thus unused) parameters as
10325 artificial; there is no way to differentiate
10326 the two cases. */
10327 if (type->num_fields () > 0
10328 && TYPE_FIELD_ARTIFICIAL (type, 0)
10329 && TYPE_FIELD_TYPE (type, 0)->code () == TYPE_CODE_PTR
10330 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10331 0))))
10332 buf.puts (" const");
10333 }
10334 }
10335
10336 const std::string &intermediate_name = buf.string ();
10337
10338 if (cu->language == language_cplus)
10339 canonical_name
10340 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10341 objfile);
10342
10343 /* If we only computed INTERMEDIATE_NAME, or if
10344 INTERMEDIATE_NAME is already canonical, then we need to
10345 intern it. */
10346 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10347 name = objfile->intern (intermediate_name);
10348 else
10349 name = canonical_name;
10350 }
10351 }
10352
10353 return name;
10354 }
10355
10356 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10357 If scope qualifiers are appropriate they will be added. The result
10358 will be allocated on the storage_obstack, or NULL if the DIE does
10359 not have a name. NAME may either be from a previous call to
10360 dwarf2_name or NULL.
10361
10362 The output string will be canonicalized (if C++). */
10363
10364 static const char *
10365 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10366 {
10367 return dwarf2_compute_name (name, die, cu, 0);
10368 }
10369
10370 /* Construct a physname for the given DIE in CU. NAME may either be
10371 from a previous call to dwarf2_name or NULL. The result will be
10372 allocated on the objfile_objstack or NULL if the DIE does not have a
10373 name.
10374
10375 The output string will be canonicalized (if C++). */
10376
10377 static const char *
10378 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10379 {
10380 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10381 const char *retval, *mangled = NULL, *canon = NULL;
10382 int need_copy = 1;
10383
10384 /* In this case dwarf2_compute_name is just a shortcut not building anything
10385 on its own. */
10386 if (!die_needs_namespace (die, cu))
10387 return dwarf2_compute_name (name, die, cu, 1);
10388
10389 if (cu->language != language_rust)
10390 mangled = dw2_linkage_name (die, cu);
10391
10392 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10393 has computed. */
10394 gdb::unique_xmalloc_ptr<char> demangled;
10395 if (mangled != NULL)
10396 {
10397
10398 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10399 {
10400 /* Do nothing (do not demangle the symbol name). */
10401 }
10402 else if (cu->language == language_go)
10403 {
10404 /* This is a lie, but we already lie to the caller new_symbol.
10405 new_symbol assumes we return the mangled name.
10406 This just undoes that lie until things are cleaned up. */
10407 }
10408 else
10409 {
10410 /* Use DMGL_RET_DROP for C++ template functions to suppress
10411 their return type. It is easier for GDB users to search
10412 for such functions as `name(params)' than `long name(params)'.
10413 In such case the minimal symbol names do not match the full
10414 symbol names but for template functions there is never a need
10415 to look up their definition from their declaration so
10416 the only disadvantage remains the minimal symbol variant
10417 `long name(params)' does not have the proper inferior type. */
10418 demangled.reset (gdb_demangle (mangled,
10419 (DMGL_PARAMS | DMGL_ANSI
10420 | DMGL_RET_DROP)));
10421 }
10422 if (demangled)
10423 canon = demangled.get ();
10424 else
10425 {
10426 canon = mangled;
10427 need_copy = 0;
10428 }
10429 }
10430
10431 if (canon == NULL || check_physname)
10432 {
10433 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10434
10435 if (canon != NULL && strcmp (physname, canon) != 0)
10436 {
10437 /* It may not mean a bug in GDB. The compiler could also
10438 compute DW_AT_linkage_name incorrectly. But in such case
10439 GDB would need to be bug-to-bug compatible. */
10440
10441 complaint (_("Computed physname <%s> does not match demangled <%s> "
10442 "(from linkage <%s>) - DIE at %s [in module %s]"),
10443 physname, canon, mangled, sect_offset_str (die->sect_off),
10444 objfile_name (objfile));
10445
10446 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10447 is available here - over computed PHYSNAME. It is safer
10448 against both buggy GDB and buggy compilers. */
10449
10450 retval = canon;
10451 }
10452 else
10453 {
10454 retval = physname;
10455 need_copy = 0;
10456 }
10457 }
10458 else
10459 retval = canon;
10460
10461 if (need_copy)
10462 retval = objfile->intern (retval);
10463
10464 return retval;
10465 }
10466
10467 /* Inspect DIE in CU for a namespace alias. If one exists, record
10468 a new symbol for it.
10469
10470 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10471
10472 static int
10473 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10474 {
10475 struct attribute *attr;
10476
10477 /* If the die does not have a name, this is not a namespace
10478 alias. */
10479 attr = dwarf2_attr (die, DW_AT_name, cu);
10480 if (attr != NULL)
10481 {
10482 int num;
10483 struct die_info *d = die;
10484 struct dwarf2_cu *imported_cu = cu;
10485
10486 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10487 keep inspecting DIEs until we hit the underlying import. */
10488 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10489 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10490 {
10491 attr = dwarf2_attr (d, DW_AT_import, cu);
10492 if (attr == NULL)
10493 break;
10494
10495 d = follow_die_ref (d, attr, &imported_cu);
10496 if (d->tag != DW_TAG_imported_declaration)
10497 break;
10498 }
10499
10500 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10501 {
10502 complaint (_("DIE at %s has too many recursively imported "
10503 "declarations"), sect_offset_str (d->sect_off));
10504 return 0;
10505 }
10506
10507 if (attr != NULL)
10508 {
10509 struct type *type;
10510 sect_offset sect_off = attr->get_ref_die_offset ();
10511
10512 type = get_die_type_at_offset (sect_off, cu->per_cu);
10513 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10514 {
10515 /* This declaration is a global namespace alias. Add
10516 a symbol for it whose type is the aliased namespace. */
10517 new_symbol (die, type, cu);
10518 return 1;
10519 }
10520 }
10521 }
10522
10523 return 0;
10524 }
10525
10526 /* Return the using directives repository (global or local?) to use in the
10527 current context for CU.
10528
10529 For Ada, imported declarations can materialize renamings, which *may* be
10530 global. However it is impossible (for now?) in DWARF to distinguish
10531 "external" imported declarations and "static" ones. As all imported
10532 declarations seem to be static in all other languages, make them all CU-wide
10533 global only in Ada. */
10534
10535 static struct using_direct **
10536 using_directives (struct dwarf2_cu *cu)
10537 {
10538 if (cu->language == language_ada
10539 && cu->get_builder ()->outermost_context_p ())
10540 return cu->get_builder ()->get_global_using_directives ();
10541 else
10542 return cu->get_builder ()->get_local_using_directives ();
10543 }
10544
10545 /* Read the import statement specified by the given die and record it. */
10546
10547 static void
10548 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10549 {
10550 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10551 struct attribute *import_attr;
10552 struct die_info *imported_die, *child_die;
10553 struct dwarf2_cu *imported_cu;
10554 const char *imported_name;
10555 const char *imported_name_prefix;
10556 const char *canonical_name;
10557 const char *import_alias;
10558 const char *imported_declaration = NULL;
10559 const char *import_prefix;
10560 std::vector<const char *> excludes;
10561
10562 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10563 if (import_attr == NULL)
10564 {
10565 complaint (_("Tag '%s' has no DW_AT_import"),
10566 dwarf_tag_name (die->tag));
10567 return;
10568 }
10569
10570 imported_cu = cu;
10571 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10572 imported_name = dwarf2_name (imported_die, imported_cu);
10573 if (imported_name == NULL)
10574 {
10575 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10576
10577 The import in the following code:
10578 namespace A
10579 {
10580 typedef int B;
10581 }
10582
10583 int main ()
10584 {
10585 using A::B;
10586 B b;
10587 return b;
10588 }
10589
10590 ...
10591 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10592 <52> DW_AT_decl_file : 1
10593 <53> DW_AT_decl_line : 6
10594 <54> DW_AT_import : <0x75>
10595 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10596 <59> DW_AT_name : B
10597 <5b> DW_AT_decl_file : 1
10598 <5c> DW_AT_decl_line : 2
10599 <5d> DW_AT_type : <0x6e>
10600 ...
10601 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10602 <76> DW_AT_byte_size : 4
10603 <77> DW_AT_encoding : 5 (signed)
10604
10605 imports the wrong die ( 0x75 instead of 0x58 ).
10606 This case will be ignored until the gcc bug is fixed. */
10607 return;
10608 }
10609
10610 /* Figure out the local name after import. */
10611 import_alias = dwarf2_name (die, cu);
10612
10613 /* Figure out where the statement is being imported to. */
10614 import_prefix = determine_prefix (die, cu);
10615
10616 /* Figure out what the scope of the imported die is and prepend it
10617 to the name of the imported die. */
10618 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10619
10620 if (imported_die->tag != DW_TAG_namespace
10621 && imported_die->tag != DW_TAG_module)
10622 {
10623 imported_declaration = imported_name;
10624 canonical_name = imported_name_prefix;
10625 }
10626 else if (strlen (imported_name_prefix) > 0)
10627 canonical_name = obconcat (&objfile->objfile_obstack,
10628 imported_name_prefix,
10629 (cu->language == language_d ? "." : "::"),
10630 imported_name, (char *) NULL);
10631 else
10632 canonical_name = imported_name;
10633
10634 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10635 for (child_die = die->child; child_die && child_die->tag;
10636 child_die = child_die->sibling)
10637 {
10638 /* DWARF-4: A Fortran use statement with a “rename list” may be
10639 represented by an imported module entry with an import attribute
10640 referring to the module and owned entries corresponding to those
10641 entities that are renamed as part of being imported. */
10642
10643 if (child_die->tag != DW_TAG_imported_declaration)
10644 {
10645 complaint (_("child DW_TAG_imported_declaration expected "
10646 "- DIE at %s [in module %s]"),
10647 sect_offset_str (child_die->sect_off),
10648 objfile_name (objfile));
10649 continue;
10650 }
10651
10652 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10653 if (import_attr == NULL)
10654 {
10655 complaint (_("Tag '%s' has no DW_AT_import"),
10656 dwarf_tag_name (child_die->tag));
10657 continue;
10658 }
10659
10660 imported_cu = cu;
10661 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10662 &imported_cu);
10663 imported_name = dwarf2_name (imported_die, imported_cu);
10664 if (imported_name == NULL)
10665 {
10666 complaint (_("child DW_TAG_imported_declaration has unknown "
10667 "imported name - DIE at %s [in module %s]"),
10668 sect_offset_str (child_die->sect_off),
10669 objfile_name (objfile));
10670 continue;
10671 }
10672
10673 excludes.push_back (imported_name);
10674
10675 process_die (child_die, cu);
10676 }
10677
10678 add_using_directive (using_directives (cu),
10679 import_prefix,
10680 canonical_name,
10681 import_alias,
10682 imported_declaration,
10683 excludes,
10684 0,
10685 &objfile->objfile_obstack);
10686 }
10687
10688 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10689 types, but gives them a size of zero. Starting with version 14,
10690 ICC is compatible with GCC. */
10691
10692 static bool
10693 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10694 {
10695 if (!cu->checked_producer)
10696 check_producer (cu);
10697
10698 return cu->producer_is_icc_lt_14;
10699 }
10700
10701 /* ICC generates a DW_AT_type for C void functions. This was observed on
10702 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10703 which says that void functions should not have a DW_AT_type. */
10704
10705 static bool
10706 producer_is_icc (struct dwarf2_cu *cu)
10707 {
10708 if (!cu->checked_producer)
10709 check_producer (cu);
10710
10711 return cu->producer_is_icc;
10712 }
10713
10714 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10715 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10716 this, it was first present in GCC release 4.3.0. */
10717
10718 static bool
10719 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10720 {
10721 if (!cu->checked_producer)
10722 check_producer (cu);
10723
10724 return cu->producer_is_gcc_lt_4_3;
10725 }
10726
10727 static file_and_directory
10728 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10729 {
10730 file_and_directory res;
10731
10732 /* Find the filename. Do not use dwarf2_name here, since the filename
10733 is not a source language identifier. */
10734 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10735 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10736
10737 if (res.comp_dir == NULL
10738 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10739 && IS_ABSOLUTE_PATH (res.name))
10740 {
10741 res.comp_dir_storage = ldirname (res.name);
10742 if (!res.comp_dir_storage.empty ())
10743 res.comp_dir = res.comp_dir_storage.c_str ();
10744 }
10745 if (res.comp_dir != NULL)
10746 {
10747 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10748 directory, get rid of it. */
10749 const char *cp = strchr (res.comp_dir, ':');
10750
10751 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10752 res.comp_dir = cp + 1;
10753 }
10754
10755 if (res.name == NULL)
10756 res.name = "<unknown>";
10757
10758 return res;
10759 }
10760
10761 /* Handle DW_AT_stmt_list for a compilation unit.
10762 DIE is the DW_TAG_compile_unit die for CU.
10763 COMP_DIR is the compilation directory. LOWPC is passed to
10764 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10765
10766 static void
10767 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10768 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10769 {
10770 struct dwarf2_per_objfile *dwarf2_per_objfile
10771 = cu->per_cu->dwarf2_per_objfile;
10772 struct attribute *attr;
10773 struct line_header line_header_local;
10774 hashval_t line_header_local_hash;
10775 void **slot;
10776 int decode_mapping;
10777
10778 gdb_assert (! cu->per_cu->is_debug_types);
10779
10780 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10781 if (attr == NULL)
10782 return;
10783
10784 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10785
10786 /* The line header hash table is only created if needed (it exists to
10787 prevent redundant reading of the line table for partial_units).
10788 If we're given a partial_unit, we'll need it. If we're given a
10789 compile_unit, then use the line header hash table if it's already
10790 created, but don't create one just yet. */
10791
10792 if (dwarf2_per_objfile->line_header_hash == NULL
10793 && die->tag == DW_TAG_partial_unit)
10794 {
10795 dwarf2_per_objfile->line_header_hash
10796 .reset (htab_create_alloc (127, line_header_hash_voidp,
10797 line_header_eq_voidp,
10798 free_line_header_voidp,
10799 xcalloc, xfree));
10800 }
10801
10802 line_header_local.sect_off = line_offset;
10803 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10804 line_header_local_hash = line_header_hash (&line_header_local);
10805 if (dwarf2_per_objfile->line_header_hash != NULL)
10806 {
10807 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10808 &line_header_local,
10809 line_header_local_hash, NO_INSERT);
10810
10811 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10812 is not present in *SLOT (since if there is something in *SLOT then
10813 it will be for a partial_unit). */
10814 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10815 {
10816 gdb_assert (*slot != NULL);
10817 cu->line_header = (struct line_header *) *slot;
10818 return;
10819 }
10820 }
10821
10822 /* dwarf_decode_line_header does not yet provide sufficient information.
10823 We always have to call also dwarf_decode_lines for it. */
10824 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10825 if (lh == NULL)
10826 return;
10827
10828 cu->line_header = lh.release ();
10829 cu->line_header_die_owner = die;
10830
10831 if (dwarf2_per_objfile->line_header_hash == NULL)
10832 slot = NULL;
10833 else
10834 {
10835 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10836 &line_header_local,
10837 line_header_local_hash, INSERT);
10838 gdb_assert (slot != NULL);
10839 }
10840 if (slot != NULL && *slot == NULL)
10841 {
10842 /* This newly decoded line number information unit will be owned
10843 by line_header_hash hash table. */
10844 *slot = cu->line_header;
10845 cu->line_header_die_owner = NULL;
10846 }
10847 else
10848 {
10849 /* We cannot free any current entry in (*slot) as that struct line_header
10850 may be already used by multiple CUs. Create only temporary decoded
10851 line_header for this CU - it may happen at most once for each line
10852 number information unit. And if we're not using line_header_hash
10853 then this is what we want as well. */
10854 gdb_assert (die->tag != DW_TAG_partial_unit);
10855 }
10856 decode_mapping = (die->tag != DW_TAG_partial_unit);
10857 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10858 decode_mapping);
10859
10860 }
10861
10862 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10863
10864 static void
10865 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10866 {
10867 struct dwarf2_per_objfile *dwarf2_per_objfile
10868 = cu->per_cu->dwarf2_per_objfile;
10869 struct objfile *objfile = dwarf2_per_objfile->objfile;
10870 struct gdbarch *gdbarch = objfile->arch ();
10871 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10872 CORE_ADDR highpc = ((CORE_ADDR) 0);
10873 struct attribute *attr;
10874 struct die_info *child_die;
10875 CORE_ADDR baseaddr;
10876
10877 prepare_one_comp_unit (cu, die, cu->language);
10878 baseaddr = objfile->text_section_offset ();
10879
10880 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10881
10882 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10883 from finish_block. */
10884 if (lowpc == ((CORE_ADDR) -1))
10885 lowpc = highpc;
10886 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10887
10888 file_and_directory fnd = find_file_and_directory (die, cu);
10889
10890 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10891 standardised yet. As a workaround for the language detection we fall
10892 back to the DW_AT_producer string. */
10893 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10894 cu->language = language_opencl;
10895
10896 /* Similar hack for Go. */
10897 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10898 set_cu_language (DW_LANG_Go, cu);
10899
10900 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10901
10902 /* Decode line number information if present. We do this before
10903 processing child DIEs, so that the line header table is available
10904 for DW_AT_decl_file. */
10905 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10906
10907 /* Process all dies in compilation unit. */
10908 if (die->child != NULL)
10909 {
10910 child_die = die->child;
10911 while (child_die && child_die->tag)
10912 {
10913 process_die (child_die, cu);
10914 child_die = child_die->sibling;
10915 }
10916 }
10917
10918 /* Decode macro information, if present. Dwarf 2 macro information
10919 refers to information in the line number info statement program
10920 header, so we can only read it if we've read the header
10921 successfully. */
10922 attr = dwarf2_attr (die, DW_AT_macros, cu);
10923 if (attr == NULL)
10924 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10925 if (attr && cu->line_header)
10926 {
10927 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10928 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10929
10930 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10931 }
10932 else
10933 {
10934 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10935 if (attr && cu->line_header)
10936 {
10937 unsigned int macro_offset = DW_UNSND (attr);
10938
10939 dwarf_decode_macros (cu, macro_offset, 0);
10940 }
10941 }
10942 }
10943
10944 void
10945 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10946 {
10947 struct type_unit_group *tu_group;
10948 int first_time;
10949 struct attribute *attr;
10950 unsigned int i;
10951 struct signatured_type *sig_type;
10952
10953 gdb_assert (per_cu->is_debug_types);
10954 sig_type = (struct signatured_type *) per_cu;
10955
10956 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10957
10958 /* If we're using .gdb_index (includes -readnow) then
10959 per_cu->type_unit_group may not have been set up yet. */
10960 if (sig_type->type_unit_group == NULL)
10961 sig_type->type_unit_group = get_type_unit_group (this, attr);
10962 tu_group = sig_type->type_unit_group;
10963
10964 /* If we've already processed this stmt_list there's no real need to
10965 do it again, we could fake it and just recreate the part we need
10966 (file name,index -> symtab mapping). If data shows this optimization
10967 is useful we can do it then. */
10968 first_time = tu_group->compunit_symtab == NULL;
10969
10970 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10971 debug info. */
10972 line_header_up lh;
10973 if (attr != NULL)
10974 {
10975 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10976 lh = dwarf_decode_line_header (line_offset, this);
10977 }
10978 if (lh == NULL)
10979 {
10980 if (first_time)
10981 start_symtab ("", NULL, 0);
10982 else
10983 {
10984 gdb_assert (tu_group->symtabs == NULL);
10985 gdb_assert (m_builder == nullptr);
10986 struct compunit_symtab *cust = tu_group->compunit_symtab;
10987 m_builder.reset (new struct buildsym_compunit
10988 (COMPUNIT_OBJFILE (cust), "",
10989 COMPUNIT_DIRNAME (cust),
10990 compunit_language (cust),
10991 0, cust));
10992 list_in_scope = get_builder ()->get_file_symbols ();
10993 }
10994 return;
10995 }
10996
10997 line_header = lh.release ();
10998 line_header_die_owner = die;
10999
11000 if (first_time)
11001 {
11002 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11003
11004 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11005 still initializing it, and our caller (a few levels up)
11006 process_full_type_unit still needs to know if this is the first
11007 time. */
11008
11009 tu_group->symtabs
11010 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
11011 struct symtab *, line_header->file_names_size ());
11012
11013 auto &file_names = line_header->file_names ();
11014 for (i = 0; i < file_names.size (); ++i)
11015 {
11016 file_entry &fe = file_names[i];
11017 dwarf2_start_subfile (this, fe.name,
11018 fe.include_dir (line_header));
11019 buildsym_compunit *b = get_builder ();
11020 if (b->get_current_subfile ()->symtab == NULL)
11021 {
11022 /* NOTE: start_subfile will recognize when it's been
11023 passed a file it has already seen. So we can't
11024 assume there's a simple mapping from
11025 cu->line_header->file_names to subfiles, plus
11026 cu->line_header->file_names may contain dups. */
11027 b->get_current_subfile ()->symtab
11028 = allocate_symtab (cust, b->get_current_subfile ()->name);
11029 }
11030
11031 fe.symtab = b->get_current_subfile ()->symtab;
11032 tu_group->symtabs[i] = fe.symtab;
11033 }
11034 }
11035 else
11036 {
11037 gdb_assert (m_builder == nullptr);
11038 struct compunit_symtab *cust = tu_group->compunit_symtab;
11039 m_builder.reset (new struct buildsym_compunit
11040 (COMPUNIT_OBJFILE (cust), "",
11041 COMPUNIT_DIRNAME (cust),
11042 compunit_language (cust),
11043 0, cust));
11044 list_in_scope = get_builder ()->get_file_symbols ();
11045
11046 auto &file_names = line_header->file_names ();
11047 for (i = 0; i < file_names.size (); ++i)
11048 {
11049 file_entry &fe = file_names[i];
11050 fe.symtab = tu_group->symtabs[i];
11051 }
11052 }
11053
11054 /* The main symtab is allocated last. Type units don't have DW_AT_name
11055 so they don't have a "real" (so to speak) symtab anyway.
11056 There is later code that will assign the main symtab to all symbols
11057 that don't have one. We need to handle the case of a symbol with a
11058 missing symtab (DW_AT_decl_file) anyway. */
11059 }
11060
11061 /* Process DW_TAG_type_unit.
11062 For TUs we want to skip the first top level sibling if it's not the
11063 actual type being defined by this TU. In this case the first top
11064 level sibling is there to provide context only. */
11065
11066 static void
11067 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11068 {
11069 struct die_info *child_die;
11070
11071 prepare_one_comp_unit (cu, die, language_minimal);
11072
11073 /* Initialize (or reinitialize) the machinery for building symtabs.
11074 We do this before processing child DIEs, so that the line header table
11075 is available for DW_AT_decl_file. */
11076 cu->setup_type_unit_groups (die);
11077
11078 if (die->child != NULL)
11079 {
11080 child_die = die->child;
11081 while (child_die && child_die->tag)
11082 {
11083 process_die (child_die, cu);
11084 child_die = child_die->sibling;
11085 }
11086 }
11087 }
11088 \f
11089 /* DWO/DWP files.
11090
11091 http://gcc.gnu.org/wiki/DebugFission
11092 http://gcc.gnu.org/wiki/DebugFissionDWP
11093
11094 To simplify handling of both DWO files ("object" files with the DWARF info)
11095 and DWP files (a file with the DWOs packaged up into one file), we treat
11096 DWP files as having a collection of virtual DWO files. */
11097
11098 static hashval_t
11099 hash_dwo_file (const void *item)
11100 {
11101 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11102 hashval_t hash;
11103
11104 hash = htab_hash_string (dwo_file->dwo_name);
11105 if (dwo_file->comp_dir != NULL)
11106 hash += htab_hash_string (dwo_file->comp_dir);
11107 return hash;
11108 }
11109
11110 static int
11111 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11112 {
11113 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11114 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11115
11116 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11117 return 0;
11118 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11119 return lhs->comp_dir == rhs->comp_dir;
11120 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11121 }
11122
11123 /* Allocate a hash table for DWO files. */
11124
11125 static htab_up
11126 allocate_dwo_file_hash_table ()
11127 {
11128 auto delete_dwo_file = [] (void *item)
11129 {
11130 struct dwo_file *dwo_file = (struct dwo_file *) item;
11131
11132 delete dwo_file;
11133 };
11134
11135 return htab_up (htab_create_alloc (41,
11136 hash_dwo_file,
11137 eq_dwo_file,
11138 delete_dwo_file,
11139 xcalloc, xfree));
11140 }
11141
11142 /* Lookup DWO file DWO_NAME. */
11143
11144 static void **
11145 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11146 const char *dwo_name,
11147 const char *comp_dir)
11148 {
11149 struct dwo_file find_entry;
11150 void **slot;
11151
11152 if (dwarf2_per_objfile->dwo_files == NULL)
11153 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11154
11155 find_entry.dwo_name = dwo_name;
11156 find_entry.comp_dir = comp_dir;
11157 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11158 INSERT);
11159
11160 return slot;
11161 }
11162
11163 static hashval_t
11164 hash_dwo_unit (const void *item)
11165 {
11166 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11167
11168 /* This drops the top 32 bits of the id, but is ok for a hash. */
11169 return dwo_unit->signature;
11170 }
11171
11172 static int
11173 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11174 {
11175 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11176 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11177
11178 /* The signature is assumed to be unique within the DWO file.
11179 So while object file CU dwo_id's always have the value zero,
11180 that's OK, assuming each object file DWO file has only one CU,
11181 and that's the rule for now. */
11182 return lhs->signature == rhs->signature;
11183 }
11184
11185 /* Allocate a hash table for DWO CUs,TUs.
11186 There is one of these tables for each of CUs,TUs for each DWO file. */
11187
11188 static htab_up
11189 allocate_dwo_unit_table ()
11190 {
11191 /* Start out with a pretty small number.
11192 Generally DWO files contain only one CU and maybe some TUs. */
11193 return htab_up (htab_create_alloc (3,
11194 hash_dwo_unit,
11195 eq_dwo_unit,
11196 NULL, xcalloc, xfree));
11197 }
11198
11199 /* die_reader_func for create_dwo_cu. */
11200
11201 static void
11202 create_dwo_cu_reader (const struct die_reader_specs *reader,
11203 const gdb_byte *info_ptr,
11204 struct die_info *comp_unit_die,
11205 struct dwo_file *dwo_file,
11206 struct dwo_unit *dwo_unit)
11207 {
11208 struct dwarf2_cu *cu = reader->cu;
11209 sect_offset sect_off = cu->per_cu->sect_off;
11210 struct dwarf2_section_info *section = cu->per_cu->section;
11211
11212 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11213 if (!signature.has_value ())
11214 {
11215 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11216 " its dwo_id [in module %s]"),
11217 sect_offset_str (sect_off), dwo_file->dwo_name);
11218 return;
11219 }
11220
11221 dwo_unit->dwo_file = dwo_file;
11222 dwo_unit->signature = *signature;
11223 dwo_unit->section = section;
11224 dwo_unit->sect_off = sect_off;
11225 dwo_unit->length = cu->per_cu->length;
11226
11227 if (dwarf_read_debug)
11228 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11229 sect_offset_str (sect_off),
11230 hex_string (dwo_unit->signature));
11231 }
11232
11233 /* Create the dwo_units for the CUs in a DWO_FILE.
11234 Note: This function processes DWO files only, not DWP files. */
11235
11236 static void
11237 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11238 dwarf2_cu *cu, struct dwo_file &dwo_file,
11239 dwarf2_section_info &section, htab_up &cus_htab)
11240 {
11241 struct objfile *objfile = dwarf2_per_objfile->objfile;
11242 const gdb_byte *info_ptr, *end_ptr;
11243
11244 section.read (objfile);
11245 info_ptr = section.buffer;
11246
11247 if (info_ptr == NULL)
11248 return;
11249
11250 if (dwarf_read_debug)
11251 {
11252 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11253 section.get_name (),
11254 section.get_file_name ());
11255 }
11256
11257 end_ptr = info_ptr + section.size;
11258 while (info_ptr < end_ptr)
11259 {
11260 struct dwarf2_per_cu_data per_cu;
11261 struct dwo_unit read_unit {};
11262 struct dwo_unit *dwo_unit;
11263 void **slot;
11264 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11265
11266 memset (&per_cu, 0, sizeof (per_cu));
11267 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11268 per_cu.is_debug_types = 0;
11269 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11270 per_cu.section = &section;
11271
11272 cutu_reader reader (&per_cu, cu, &dwo_file);
11273 if (!reader.dummy_p)
11274 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11275 &dwo_file, &read_unit);
11276 info_ptr += per_cu.length;
11277
11278 // If the unit could not be parsed, skip it.
11279 if (read_unit.dwo_file == NULL)
11280 continue;
11281
11282 if (cus_htab == NULL)
11283 cus_htab = allocate_dwo_unit_table ();
11284
11285 dwo_unit = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack,
11286 struct dwo_unit);
11287 *dwo_unit = read_unit;
11288 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11289 gdb_assert (slot != NULL);
11290 if (*slot != NULL)
11291 {
11292 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11293 sect_offset dup_sect_off = dup_cu->sect_off;
11294
11295 complaint (_("debug cu entry at offset %s is duplicate to"
11296 " the entry at offset %s, signature %s"),
11297 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11298 hex_string (dwo_unit->signature));
11299 }
11300 *slot = (void *)dwo_unit;
11301 }
11302 }
11303
11304 /* DWP file .debug_{cu,tu}_index section format:
11305 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11306
11307 DWP Version 1:
11308
11309 Both index sections have the same format, and serve to map a 64-bit
11310 signature to a set of section numbers. Each section begins with a header,
11311 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11312 indexes, and a pool of 32-bit section numbers. The index sections will be
11313 aligned at 8-byte boundaries in the file.
11314
11315 The index section header consists of:
11316
11317 V, 32 bit version number
11318 -, 32 bits unused
11319 N, 32 bit number of compilation units or type units in the index
11320 M, 32 bit number of slots in the hash table
11321
11322 Numbers are recorded using the byte order of the application binary.
11323
11324 The hash table begins at offset 16 in the section, and consists of an array
11325 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11326 order of the application binary). Unused slots in the hash table are 0.
11327 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11328
11329 The parallel table begins immediately after the hash table
11330 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11331 array of 32-bit indexes (using the byte order of the application binary),
11332 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11333 table contains a 32-bit index into the pool of section numbers. For unused
11334 hash table slots, the corresponding entry in the parallel table will be 0.
11335
11336 The pool of section numbers begins immediately following the hash table
11337 (at offset 16 + 12 * M from the beginning of the section). The pool of
11338 section numbers consists of an array of 32-bit words (using the byte order
11339 of the application binary). Each item in the array is indexed starting
11340 from 0. The hash table entry provides the index of the first section
11341 number in the set. Additional section numbers in the set follow, and the
11342 set is terminated by a 0 entry (section number 0 is not used in ELF).
11343
11344 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11345 section must be the first entry in the set, and the .debug_abbrev.dwo must
11346 be the second entry. Other members of the set may follow in any order.
11347
11348 ---
11349
11350 DWP Version 2:
11351
11352 DWP Version 2 combines all the .debug_info, etc. sections into one,
11353 and the entries in the index tables are now offsets into these sections.
11354 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11355 section.
11356
11357 Index Section Contents:
11358 Header
11359 Hash Table of Signatures dwp_hash_table.hash_table
11360 Parallel Table of Indices dwp_hash_table.unit_table
11361 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11362 Table of Section Sizes dwp_hash_table.v2.sizes
11363
11364 The index section header consists of:
11365
11366 V, 32 bit version number
11367 L, 32 bit number of columns in the table of section offsets
11368 N, 32 bit number of compilation units or type units in the index
11369 M, 32 bit number of slots in the hash table
11370
11371 Numbers are recorded using the byte order of the application binary.
11372
11373 The hash table has the same format as version 1.
11374 The parallel table of indices has the same format as version 1,
11375 except that the entries are origin-1 indices into the table of sections
11376 offsets and the table of section sizes.
11377
11378 The table of offsets begins immediately following the parallel table
11379 (at offset 16 + 12 * M from the beginning of the section). The table is
11380 a two-dimensional array of 32-bit words (using the byte order of the
11381 application binary), with L columns and N+1 rows, in row-major order.
11382 Each row in the array is indexed starting from 0. The first row provides
11383 a key to the remaining rows: each column in this row provides an identifier
11384 for a debug section, and the offsets in the same column of subsequent rows
11385 refer to that section. The section identifiers are:
11386
11387 DW_SECT_INFO 1 .debug_info.dwo
11388 DW_SECT_TYPES 2 .debug_types.dwo
11389 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11390 DW_SECT_LINE 4 .debug_line.dwo
11391 DW_SECT_LOC 5 .debug_loc.dwo
11392 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11393 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11394 DW_SECT_MACRO 8 .debug_macro.dwo
11395
11396 The offsets provided by the CU and TU index sections are the base offsets
11397 for the contributions made by each CU or TU to the corresponding section
11398 in the package file. Each CU and TU header contains an abbrev_offset
11399 field, used to find the abbreviations table for that CU or TU within the
11400 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11401 be interpreted as relative to the base offset given in the index section.
11402 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11403 should be interpreted as relative to the base offset for .debug_line.dwo,
11404 and offsets into other debug sections obtained from DWARF attributes should
11405 also be interpreted as relative to the corresponding base offset.
11406
11407 The table of sizes begins immediately following the table of offsets.
11408 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11409 with L columns and N rows, in row-major order. Each row in the array is
11410 indexed starting from 1 (row 0 is shared by the two tables).
11411
11412 ---
11413
11414 Hash table lookup is handled the same in version 1 and 2:
11415
11416 We assume that N and M will not exceed 2^32 - 1.
11417 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11418
11419 Given a 64-bit compilation unit signature or a type signature S, an entry
11420 in the hash table is located as follows:
11421
11422 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11423 the low-order k bits all set to 1.
11424
11425 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11426
11427 3) If the hash table entry at index H matches the signature, use that
11428 entry. If the hash table entry at index H is unused (all zeroes),
11429 terminate the search: the signature is not present in the table.
11430
11431 4) Let H = (H + H') modulo M. Repeat at Step 3.
11432
11433 Because M > N and H' and M are relatively prime, the search is guaranteed
11434 to stop at an unused slot or find the match. */
11435
11436 /* Create a hash table to map DWO IDs to their CU/TU entry in
11437 .debug_{info,types}.dwo in DWP_FILE.
11438 Returns NULL if there isn't one.
11439 Note: This function processes DWP files only, not DWO files. */
11440
11441 static struct dwp_hash_table *
11442 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11443 struct dwp_file *dwp_file, int is_debug_types)
11444 {
11445 struct objfile *objfile = dwarf2_per_objfile->objfile;
11446 bfd *dbfd = dwp_file->dbfd.get ();
11447 const gdb_byte *index_ptr, *index_end;
11448 struct dwarf2_section_info *index;
11449 uint32_t version, nr_columns, nr_units, nr_slots;
11450 struct dwp_hash_table *htab;
11451
11452 if (is_debug_types)
11453 index = &dwp_file->sections.tu_index;
11454 else
11455 index = &dwp_file->sections.cu_index;
11456
11457 if (index->empty ())
11458 return NULL;
11459 index->read (objfile);
11460
11461 index_ptr = index->buffer;
11462 index_end = index_ptr + index->size;
11463
11464 version = read_4_bytes (dbfd, index_ptr);
11465 index_ptr += 4;
11466 if (version == 2)
11467 nr_columns = read_4_bytes (dbfd, index_ptr);
11468 else
11469 nr_columns = 0;
11470 index_ptr += 4;
11471 nr_units = read_4_bytes (dbfd, index_ptr);
11472 index_ptr += 4;
11473 nr_slots = read_4_bytes (dbfd, index_ptr);
11474 index_ptr += 4;
11475
11476 if (version != 1 && version != 2)
11477 {
11478 error (_("Dwarf Error: unsupported DWP file version (%s)"
11479 " [in module %s]"),
11480 pulongest (version), dwp_file->name);
11481 }
11482 if (nr_slots != (nr_slots & -nr_slots))
11483 {
11484 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11485 " is not power of 2 [in module %s]"),
11486 pulongest (nr_slots), dwp_file->name);
11487 }
11488
11489 htab = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack, struct dwp_hash_table);
11490 htab->version = version;
11491 htab->nr_columns = nr_columns;
11492 htab->nr_units = nr_units;
11493 htab->nr_slots = nr_slots;
11494 htab->hash_table = index_ptr;
11495 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11496
11497 /* Exit early if the table is empty. */
11498 if (nr_slots == 0 || nr_units == 0
11499 || (version == 2 && nr_columns == 0))
11500 {
11501 /* All must be zero. */
11502 if (nr_slots != 0 || nr_units != 0
11503 || (version == 2 && nr_columns != 0))
11504 {
11505 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11506 " all zero [in modules %s]"),
11507 dwp_file->name);
11508 }
11509 return htab;
11510 }
11511
11512 if (version == 1)
11513 {
11514 htab->section_pool.v1.indices =
11515 htab->unit_table + sizeof (uint32_t) * nr_slots;
11516 /* It's harder to decide whether the section is too small in v1.
11517 V1 is deprecated anyway so we punt. */
11518 }
11519 else
11520 {
11521 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11522 int *ids = htab->section_pool.v2.section_ids;
11523 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11524 /* Reverse map for error checking. */
11525 int ids_seen[DW_SECT_MAX + 1];
11526 int i;
11527
11528 if (nr_columns < 2)
11529 {
11530 error (_("Dwarf Error: bad DWP hash table, too few columns"
11531 " in section table [in module %s]"),
11532 dwp_file->name);
11533 }
11534 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11535 {
11536 error (_("Dwarf Error: bad DWP hash table, too many columns"
11537 " in section table [in module %s]"),
11538 dwp_file->name);
11539 }
11540 memset (ids, 255, sizeof_ids);
11541 memset (ids_seen, 255, sizeof (ids_seen));
11542 for (i = 0; i < nr_columns; ++i)
11543 {
11544 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11545
11546 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11547 {
11548 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11549 " in section table [in module %s]"),
11550 id, dwp_file->name);
11551 }
11552 if (ids_seen[id] != -1)
11553 {
11554 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11555 " id %d in section table [in module %s]"),
11556 id, dwp_file->name);
11557 }
11558 ids_seen[id] = i;
11559 ids[i] = id;
11560 }
11561 /* Must have exactly one info or types section. */
11562 if (((ids_seen[DW_SECT_INFO] != -1)
11563 + (ids_seen[DW_SECT_TYPES] != -1))
11564 != 1)
11565 {
11566 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11567 " DWO info/types section [in module %s]"),
11568 dwp_file->name);
11569 }
11570 /* Must have an abbrev section. */
11571 if (ids_seen[DW_SECT_ABBREV] == -1)
11572 {
11573 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11574 " section [in module %s]"),
11575 dwp_file->name);
11576 }
11577 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11578 htab->section_pool.v2.sizes =
11579 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11580 * nr_units * nr_columns);
11581 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11582 * nr_units * nr_columns))
11583 > index_end)
11584 {
11585 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11586 " [in module %s]"),
11587 dwp_file->name);
11588 }
11589 }
11590
11591 return htab;
11592 }
11593
11594 /* Update SECTIONS with the data from SECTP.
11595
11596 This function is like the other "locate" section routines that are
11597 passed to bfd_map_over_sections, but in this context the sections to
11598 read comes from the DWP V1 hash table, not the full ELF section table.
11599
11600 The result is non-zero for success, or zero if an error was found. */
11601
11602 static int
11603 locate_v1_virtual_dwo_sections (asection *sectp,
11604 struct virtual_v1_dwo_sections *sections)
11605 {
11606 const struct dwop_section_names *names = &dwop_section_names;
11607
11608 if (section_is_p (sectp->name, &names->abbrev_dwo))
11609 {
11610 /* There can be only one. */
11611 if (sections->abbrev.s.section != NULL)
11612 return 0;
11613 sections->abbrev.s.section = sectp;
11614 sections->abbrev.size = bfd_section_size (sectp);
11615 }
11616 else if (section_is_p (sectp->name, &names->info_dwo)
11617 || section_is_p (sectp->name, &names->types_dwo))
11618 {
11619 /* There can be only one. */
11620 if (sections->info_or_types.s.section != NULL)
11621 return 0;
11622 sections->info_or_types.s.section = sectp;
11623 sections->info_or_types.size = bfd_section_size (sectp);
11624 }
11625 else if (section_is_p (sectp->name, &names->line_dwo))
11626 {
11627 /* There can be only one. */
11628 if (sections->line.s.section != NULL)
11629 return 0;
11630 sections->line.s.section = sectp;
11631 sections->line.size = bfd_section_size (sectp);
11632 }
11633 else if (section_is_p (sectp->name, &names->loc_dwo))
11634 {
11635 /* There can be only one. */
11636 if (sections->loc.s.section != NULL)
11637 return 0;
11638 sections->loc.s.section = sectp;
11639 sections->loc.size = bfd_section_size (sectp);
11640 }
11641 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11642 {
11643 /* There can be only one. */
11644 if (sections->macinfo.s.section != NULL)
11645 return 0;
11646 sections->macinfo.s.section = sectp;
11647 sections->macinfo.size = bfd_section_size (sectp);
11648 }
11649 else if (section_is_p (sectp->name, &names->macro_dwo))
11650 {
11651 /* There can be only one. */
11652 if (sections->macro.s.section != NULL)
11653 return 0;
11654 sections->macro.s.section = sectp;
11655 sections->macro.size = bfd_section_size (sectp);
11656 }
11657 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11658 {
11659 /* There can be only one. */
11660 if (sections->str_offsets.s.section != NULL)
11661 return 0;
11662 sections->str_offsets.s.section = sectp;
11663 sections->str_offsets.size = bfd_section_size (sectp);
11664 }
11665 else
11666 {
11667 /* No other kind of section is valid. */
11668 return 0;
11669 }
11670
11671 return 1;
11672 }
11673
11674 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11675 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11676 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11677 This is for DWP version 1 files. */
11678
11679 static struct dwo_unit *
11680 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11681 struct dwp_file *dwp_file,
11682 uint32_t unit_index,
11683 const char *comp_dir,
11684 ULONGEST signature, int is_debug_types)
11685 {
11686 const struct dwp_hash_table *dwp_htab =
11687 is_debug_types ? dwp_file->tus : dwp_file->cus;
11688 bfd *dbfd = dwp_file->dbfd.get ();
11689 const char *kind = is_debug_types ? "TU" : "CU";
11690 struct dwo_file *dwo_file;
11691 struct dwo_unit *dwo_unit;
11692 struct virtual_v1_dwo_sections sections;
11693 void **dwo_file_slot;
11694 int i;
11695
11696 gdb_assert (dwp_file->version == 1);
11697
11698 if (dwarf_read_debug)
11699 {
11700 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11701 kind,
11702 pulongest (unit_index), hex_string (signature),
11703 dwp_file->name);
11704 }
11705
11706 /* Fetch the sections of this DWO unit.
11707 Put a limit on the number of sections we look for so that bad data
11708 doesn't cause us to loop forever. */
11709
11710 #define MAX_NR_V1_DWO_SECTIONS \
11711 (1 /* .debug_info or .debug_types */ \
11712 + 1 /* .debug_abbrev */ \
11713 + 1 /* .debug_line */ \
11714 + 1 /* .debug_loc */ \
11715 + 1 /* .debug_str_offsets */ \
11716 + 1 /* .debug_macro or .debug_macinfo */ \
11717 + 1 /* trailing zero */)
11718
11719 memset (&sections, 0, sizeof (sections));
11720
11721 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11722 {
11723 asection *sectp;
11724 uint32_t section_nr =
11725 read_4_bytes (dbfd,
11726 dwp_htab->section_pool.v1.indices
11727 + (unit_index + i) * sizeof (uint32_t));
11728
11729 if (section_nr == 0)
11730 break;
11731 if (section_nr >= dwp_file->num_sections)
11732 {
11733 error (_("Dwarf Error: bad DWP hash table, section number too large"
11734 " [in module %s]"),
11735 dwp_file->name);
11736 }
11737
11738 sectp = dwp_file->elf_sections[section_nr];
11739 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11740 {
11741 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11742 " [in module %s]"),
11743 dwp_file->name);
11744 }
11745 }
11746
11747 if (i < 2
11748 || sections.info_or_types.empty ()
11749 || sections.abbrev.empty ())
11750 {
11751 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11752 " [in module %s]"),
11753 dwp_file->name);
11754 }
11755 if (i == MAX_NR_V1_DWO_SECTIONS)
11756 {
11757 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11758 " [in module %s]"),
11759 dwp_file->name);
11760 }
11761
11762 /* It's easier for the rest of the code if we fake a struct dwo_file and
11763 have dwo_unit "live" in that. At least for now.
11764
11765 The DWP file can be made up of a random collection of CUs and TUs.
11766 However, for each CU + set of TUs that came from the same original DWO
11767 file, we can combine them back into a virtual DWO file to save space
11768 (fewer struct dwo_file objects to allocate). Remember that for really
11769 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11770
11771 std::string virtual_dwo_name =
11772 string_printf ("virtual-dwo/%d-%d-%d-%d",
11773 sections.abbrev.get_id (),
11774 sections.line.get_id (),
11775 sections.loc.get_id (),
11776 sections.str_offsets.get_id ());
11777 /* Can we use an existing virtual DWO file? */
11778 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11779 virtual_dwo_name.c_str (),
11780 comp_dir);
11781 /* Create one if necessary. */
11782 if (*dwo_file_slot == NULL)
11783 {
11784 if (dwarf_read_debug)
11785 {
11786 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11787 virtual_dwo_name.c_str ());
11788 }
11789 dwo_file = new struct dwo_file;
11790 dwo_file->dwo_name = dwarf2_per_objfile->objfile->intern (virtual_dwo_name);
11791 dwo_file->comp_dir = comp_dir;
11792 dwo_file->sections.abbrev = sections.abbrev;
11793 dwo_file->sections.line = sections.line;
11794 dwo_file->sections.loc = sections.loc;
11795 dwo_file->sections.macinfo = sections.macinfo;
11796 dwo_file->sections.macro = sections.macro;
11797 dwo_file->sections.str_offsets = sections.str_offsets;
11798 /* The "str" section is global to the entire DWP file. */
11799 dwo_file->sections.str = dwp_file->sections.str;
11800 /* The info or types section is assigned below to dwo_unit,
11801 there's no need to record it in dwo_file.
11802 Also, we can't simply record type sections in dwo_file because
11803 we record a pointer into the vector in dwo_unit. As we collect more
11804 types we'll grow the vector and eventually have to reallocate space
11805 for it, invalidating all copies of pointers into the previous
11806 contents. */
11807 *dwo_file_slot = dwo_file;
11808 }
11809 else
11810 {
11811 if (dwarf_read_debug)
11812 {
11813 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11814 virtual_dwo_name.c_str ());
11815 }
11816 dwo_file = (struct dwo_file *) *dwo_file_slot;
11817 }
11818
11819 dwo_unit = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack, struct dwo_unit);
11820 dwo_unit->dwo_file = dwo_file;
11821 dwo_unit->signature = signature;
11822 dwo_unit->section =
11823 XOBNEW (&dwarf2_per_objfile->obstack, struct dwarf2_section_info);
11824 *dwo_unit->section = sections.info_or_types;
11825 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11826
11827 return dwo_unit;
11828 }
11829
11830 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11831 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11832 piece within that section used by a TU/CU, return a virtual section
11833 of just that piece. */
11834
11835 static struct dwarf2_section_info
11836 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11837 struct dwarf2_section_info *section,
11838 bfd_size_type offset, bfd_size_type size)
11839 {
11840 struct dwarf2_section_info result;
11841 asection *sectp;
11842
11843 gdb_assert (section != NULL);
11844 gdb_assert (!section->is_virtual);
11845
11846 memset (&result, 0, sizeof (result));
11847 result.s.containing_section = section;
11848 result.is_virtual = true;
11849
11850 if (size == 0)
11851 return result;
11852
11853 sectp = section->get_bfd_section ();
11854
11855 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11856 bounds of the real section. This is a pretty-rare event, so just
11857 flag an error (easier) instead of a warning and trying to cope. */
11858 if (sectp == NULL
11859 || offset + size > bfd_section_size (sectp))
11860 {
11861 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11862 " in section %s [in module %s]"),
11863 sectp ? bfd_section_name (sectp) : "<unknown>",
11864 objfile_name (dwarf2_per_objfile->objfile));
11865 }
11866
11867 result.virtual_offset = offset;
11868 result.size = size;
11869 return result;
11870 }
11871
11872 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11873 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11874 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11875 This is for DWP version 2 files. */
11876
11877 static struct dwo_unit *
11878 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11879 struct dwp_file *dwp_file,
11880 uint32_t unit_index,
11881 const char *comp_dir,
11882 ULONGEST signature, int is_debug_types)
11883 {
11884 const struct dwp_hash_table *dwp_htab =
11885 is_debug_types ? dwp_file->tus : dwp_file->cus;
11886 bfd *dbfd = dwp_file->dbfd.get ();
11887 const char *kind = is_debug_types ? "TU" : "CU";
11888 struct dwo_file *dwo_file;
11889 struct dwo_unit *dwo_unit;
11890 struct virtual_v2_dwo_sections sections;
11891 void **dwo_file_slot;
11892 int i;
11893
11894 gdb_assert (dwp_file->version == 2);
11895
11896 if (dwarf_read_debug)
11897 {
11898 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11899 kind,
11900 pulongest (unit_index), hex_string (signature),
11901 dwp_file->name);
11902 }
11903
11904 /* Fetch the section offsets of this DWO unit. */
11905
11906 memset (&sections, 0, sizeof (sections));
11907
11908 for (i = 0; i < dwp_htab->nr_columns; ++i)
11909 {
11910 uint32_t offset = read_4_bytes (dbfd,
11911 dwp_htab->section_pool.v2.offsets
11912 + (((unit_index - 1) * dwp_htab->nr_columns
11913 + i)
11914 * sizeof (uint32_t)));
11915 uint32_t size = read_4_bytes (dbfd,
11916 dwp_htab->section_pool.v2.sizes
11917 + (((unit_index - 1) * dwp_htab->nr_columns
11918 + i)
11919 * sizeof (uint32_t)));
11920
11921 switch (dwp_htab->section_pool.v2.section_ids[i])
11922 {
11923 case DW_SECT_INFO:
11924 case DW_SECT_TYPES:
11925 sections.info_or_types_offset = offset;
11926 sections.info_or_types_size = size;
11927 break;
11928 case DW_SECT_ABBREV:
11929 sections.abbrev_offset = offset;
11930 sections.abbrev_size = size;
11931 break;
11932 case DW_SECT_LINE:
11933 sections.line_offset = offset;
11934 sections.line_size = size;
11935 break;
11936 case DW_SECT_LOC:
11937 sections.loc_offset = offset;
11938 sections.loc_size = size;
11939 break;
11940 case DW_SECT_STR_OFFSETS:
11941 sections.str_offsets_offset = offset;
11942 sections.str_offsets_size = size;
11943 break;
11944 case DW_SECT_MACINFO:
11945 sections.macinfo_offset = offset;
11946 sections.macinfo_size = size;
11947 break;
11948 case DW_SECT_MACRO:
11949 sections.macro_offset = offset;
11950 sections.macro_size = size;
11951 break;
11952 }
11953 }
11954
11955 /* It's easier for the rest of the code if we fake a struct dwo_file and
11956 have dwo_unit "live" in that. At least for now.
11957
11958 The DWP file can be made up of a random collection of CUs and TUs.
11959 However, for each CU + set of TUs that came from the same original DWO
11960 file, we can combine them back into a virtual DWO file to save space
11961 (fewer struct dwo_file objects to allocate). Remember that for really
11962 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11963
11964 std::string virtual_dwo_name =
11965 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11966 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11967 (long) (sections.line_size ? sections.line_offset : 0),
11968 (long) (sections.loc_size ? sections.loc_offset : 0),
11969 (long) (sections.str_offsets_size
11970 ? sections.str_offsets_offset : 0));
11971 /* Can we use an existing virtual DWO file? */
11972 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11973 virtual_dwo_name.c_str (),
11974 comp_dir);
11975 /* Create one if necessary. */
11976 if (*dwo_file_slot == NULL)
11977 {
11978 if (dwarf_read_debug)
11979 {
11980 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11981 virtual_dwo_name.c_str ());
11982 }
11983 dwo_file = new struct dwo_file;
11984 dwo_file->dwo_name = dwarf2_per_objfile->objfile->intern (virtual_dwo_name);
11985 dwo_file->comp_dir = comp_dir;
11986 dwo_file->sections.abbrev =
11987 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11988 sections.abbrev_offset, sections.abbrev_size);
11989 dwo_file->sections.line =
11990 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11991 sections.line_offset, sections.line_size);
11992 dwo_file->sections.loc =
11993 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11994 sections.loc_offset, sections.loc_size);
11995 dwo_file->sections.macinfo =
11996 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11997 sections.macinfo_offset, sections.macinfo_size);
11998 dwo_file->sections.macro =
11999 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12000 sections.macro_offset, sections.macro_size);
12001 dwo_file->sections.str_offsets =
12002 create_dwp_v2_section (dwarf2_per_objfile,
12003 &dwp_file->sections.str_offsets,
12004 sections.str_offsets_offset,
12005 sections.str_offsets_size);
12006 /* The "str" section is global to the entire DWP file. */
12007 dwo_file->sections.str = dwp_file->sections.str;
12008 /* The info or types section is assigned below to dwo_unit,
12009 there's no need to record it in dwo_file.
12010 Also, we can't simply record type sections in dwo_file because
12011 we record a pointer into the vector in dwo_unit. As we collect more
12012 types we'll grow the vector and eventually have to reallocate space
12013 for it, invalidating all copies of pointers into the previous
12014 contents. */
12015 *dwo_file_slot = dwo_file;
12016 }
12017 else
12018 {
12019 if (dwarf_read_debug)
12020 {
12021 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12022 virtual_dwo_name.c_str ());
12023 }
12024 dwo_file = (struct dwo_file *) *dwo_file_slot;
12025 }
12026
12027 dwo_unit = OBSTACK_ZALLOC (&dwarf2_per_objfile->obstack, struct dwo_unit);
12028 dwo_unit->dwo_file = dwo_file;
12029 dwo_unit->signature = signature;
12030 dwo_unit->section =
12031 XOBNEW (&dwarf2_per_objfile->obstack, struct dwarf2_section_info);
12032 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12033 is_debug_types
12034 ? &dwp_file->sections.types
12035 : &dwp_file->sections.info,
12036 sections.info_or_types_offset,
12037 sections.info_or_types_size);
12038 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12039
12040 return dwo_unit;
12041 }
12042
12043 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12044 Returns NULL if the signature isn't found. */
12045
12046 static struct dwo_unit *
12047 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12048 struct dwp_file *dwp_file, const char *comp_dir,
12049 ULONGEST signature, int is_debug_types)
12050 {
12051 const struct dwp_hash_table *dwp_htab =
12052 is_debug_types ? dwp_file->tus : dwp_file->cus;
12053 bfd *dbfd = dwp_file->dbfd.get ();
12054 uint32_t mask = dwp_htab->nr_slots - 1;
12055 uint32_t hash = signature & mask;
12056 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12057 unsigned int i;
12058 void **slot;
12059 struct dwo_unit find_dwo_cu;
12060
12061 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12062 find_dwo_cu.signature = signature;
12063 slot = htab_find_slot (is_debug_types
12064 ? dwp_file->loaded_tus.get ()
12065 : dwp_file->loaded_cus.get (),
12066 &find_dwo_cu, INSERT);
12067
12068 if (*slot != NULL)
12069 return (struct dwo_unit *) *slot;
12070
12071 /* Use a for loop so that we don't loop forever on bad debug info. */
12072 for (i = 0; i < dwp_htab->nr_slots; ++i)
12073 {
12074 ULONGEST signature_in_table;
12075
12076 signature_in_table =
12077 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12078 if (signature_in_table == signature)
12079 {
12080 uint32_t unit_index =
12081 read_4_bytes (dbfd,
12082 dwp_htab->unit_table + hash * sizeof (uint32_t));
12083
12084 if (dwp_file->version == 1)
12085 {
12086 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12087 dwp_file, unit_index,
12088 comp_dir, signature,
12089 is_debug_types);
12090 }
12091 else
12092 {
12093 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12094 dwp_file, unit_index,
12095 comp_dir, signature,
12096 is_debug_types);
12097 }
12098 return (struct dwo_unit *) *slot;
12099 }
12100 if (signature_in_table == 0)
12101 return NULL;
12102 hash = (hash + hash2) & mask;
12103 }
12104
12105 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12106 " [in module %s]"),
12107 dwp_file->name);
12108 }
12109
12110 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12111 Open the file specified by FILE_NAME and hand it off to BFD for
12112 preliminary analysis. Return a newly initialized bfd *, which
12113 includes a canonicalized copy of FILE_NAME.
12114 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12115 SEARCH_CWD is true if the current directory is to be searched.
12116 It will be searched before debug-file-directory.
12117 If successful, the file is added to the bfd include table of the
12118 objfile's bfd (see gdb_bfd_record_inclusion).
12119 If unable to find/open the file, return NULL.
12120 NOTE: This function is derived from symfile_bfd_open. */
12121
12122 static gdb_bfd_ref_ptr
12123 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12124 const char *file_name, int is_dwp, int search_cwd)
12125 {
12126 int desc;
12127 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12128 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12129 to debug_file_directory. */
12130 const char *search_path;
12131 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12132
12133 gdb::unique_xmalloc_ptr<char> search_path_holder;
12134 if (search_cwd)
12135 {
12136 if (*debug_file_directory != '\0')
12137 {
12138 search_path_holder.reset (concat (".", dirname_separator_string,
12139 debug_file_directory,
12140 (char *) NULL));
12141 search_path = search_path_holder.get ();
12142 }
12143 else
12144 search_path = ".";
12145 }
12146 else
12147 search_path = debug_file_directory;
12148
12149 openp_flags flags = OPF_RETURN_REALPATH;
12150 if (is_dwp)
12151 flags |= OPF_SEARCH_IN_PATH;
12152
12153 gdb::unique_xmalloc_ptr<char> absolute_name;
12154 desc = openp (search_path, flags, file_name,
12155 O_RDONLY | O_BINARY, &absolute_name);
12156 if (desc < 0)
12157 return NULL;
12158
12159 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12160 gnutarget, desc));
12161 if (sym_bfd == NULL)
12162 return NULL;
12163 bfd_set_cacheable (sym_bfd.get (), 1);
12164
12165 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12166 return NULL;
12167
12168 /* Success. Record the bfd as having been included by the objfile's bfd.
12169 This is important because things like demangled_names_hash lives in the
12170 objfile's per_bfd space and may have references to things like symbol
12171 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12172 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12173
12174 return sym_bfd;
12175 }
12176
12177 /* Try to open DWO file FILE_NAME.
12178 COMP_DIR is the DW_AT_comp_dir attribute.
12179 The result is the bfd handle of the file.
12180 If there is a problem finding or opening the file, return NULL.
12181 Upon success, the canonicalized path of the file is stored in the bfd,
12182 same as symfile_bfd_open. */
12183
12184 static gdb_bfd_ref_ptr
12185 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12186 const char *file_name, const char *comp_dir)
12187 {
12188 if (IS_ABSOLUTE_PATH (file_name))
12189 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12190 0 /*is_dwp*/, 0 /*search_cwd*/);
12191
12192 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12193
12194 if (comp_dir != NULL)
12195 {
12196 gdb::unique_xmalloc_ptr<char> path_to_try
12197 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12198
12199 /* NOTE: If comp_dir is a relative path, this will also try the
12200 search path, which seems useful. */
12201 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12202 path_to_try.get (),
12203 0 /*is_dwp*/,
12204 1 /*search_cwd*/));
12205 if (abfd != NULL)
12206 return abfd;
12207 }
12208
12209 /* That didn't work, try debug-file-directory, which, despite its name,
12210 is a list of paths. */
12211
12212 if (*debug_file_directory == '\0')
12213 return NULL;
12214
12215 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12216 0 /*is_dwp*/, 1 /*search_cwd*/);
12217 }
12218
12219 /* This function is mapped across the sections and remembers the offset and
12220 size of each of the DWO debugging sections we are interested in. */
12221
12222 static void
12223 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12224 {
12225 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12226 const struct dwop_section_names *names = &dwop_section_names;
12227
12228 if (section_is_p (sectp->name, &names->abbrev_dwo))
12229 {
12230 dwo_sections->abbrev.s.section = sectp;
12231 dwo_sections->abbrev.size = bfd_section_size (sectp);
12232 }
12233 else if (section_is_p (sectp->name, &names->info_dwo))
12234 {
12235 dwo_sections->info.s.section = sectp;
12236 dwo_sections->info.size = bfd_section_size (sectp);
12237 }
12238 else if (section_is_p (sectp->name, &names->line_dwo))
12239 {
12240 dwo_sections->line.s.section = sectp;
12241 dwo_sections->line.size = bfd_section_size (sectp);
12242 }
12243 else if (section_is_p (sectp->name, &names->loc_dwo))
12244 {
12245 dwo_sections->loc.s.section = sectp;
12246 dwo_sections->loc.size = bfd_section_size (sectp);
12247 }
12248 else if (section_is_p (sectp->name, &names->loclists_dwo))
12249 {
12250 dwo_sections->loclists.s.section = sectp;
12251 dwo_sections->loclists.size = bfd_section_size (sectp);
12252 }
12253 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12254 {
12255 dwo_sections->macinfo.s.section = sectp;
12256 dwo_sections->macinfo.size = bfd_section_size (sectp);
12257 }
12258 else if (section_is_p (sectp->name, &names->macro_dwo))
12259 {
12260 dwo_sections->macro.s.section = sectp;
12261 dwo_sections->macro.size = bfd_section_size (sectp);
12262 }
12263 else if (section_is_p (sectp->name, &names->str_dwo))
12264 {
12265 dwo_sections->str.s.section = sectp;
12266 dwo_sections->str.size = bfd_section_size (sectp);
12267 }
12268 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12269 {
12270 dwo_sections->str_offsets.s.section = sectp;
12271 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12272 }
12273 else if (section_is_p (sectp->name, &names->types_dwo))
12274 {
12275 struct dwarf2_section_info type_section;
12276
12277 memset (&type_section, 0, sizeof (type_section));
12278 type_section.s.section = sectp;
12279 type_section.size = bfd_section_size (sectp);
12280 dwo_sections->types.push_back (type_section);
12281 }
12282 }
12283
12284 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12285 by PER_CU. This is for the non-DWP case.
12286 The result is NULL if DWO_NAME can't be found. */
12287
12288 static struct dwo_file *
12289 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12290 const char *dwo_name, const char *comp_dir)
12291 {
12292 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12293
12294 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12295 if (dbfd == NULL)
12296 {
12297 if (dwarf_read_debug)
12298 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12299 return NULL;
12300 }
12301
12302 dwo_file_up dwo_file (new struct dwo_file);
12303 dwo_file->dwo_name = dwo_name;
12304 dwo_file->comp_dir = comp_dir;
12305 dwo_file->dbfd = std::move (dbfd);
12306
12307 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12308 &dwo_file->sections);
12309
12310 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12311 dwo_file->sections.info, dwo_file->cus);
12312
12313 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12314 dwo_file->sections.types, dwo_file->tus);
12315
12316 if (dwarf_read_debug)
12317 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12318
12319 return dwo_file.release ();
12320 }
12321
12322 /* This function is mapped across the sections and remembers the offset and
12323 size of each of the DWP debugging sections common to version 1 and 2 that
12324 we are interested in. */
12325
12326 static void
12327 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12328 void *dwp_file_ptr)
12329 {
12330 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12331 const struct dwop_section_names *names = &dwop_section_names;
12332 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12333
12334 /* Record the ELF section number for later lookup: this is what the
12335 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12336 gdb_assert (elf_section_nr < dwp_file->num_sections);
12337 dwp_file->elf_sections[elf_section_nr] = sectp;
12338
12339 /* Look for specific sections that we need. */
12340 if (section_is_p (sectp->name, &names->str_dwo))
12341 {
12342 dwp_file->sections.str.s.section = sectp;
12343 dwp_file->sections.str.size = bfd_section_size (sectp);
12344 }
12345 else if (section_is_p (sectp->name, &names->cu_index))
12346 {
12347 dwp_file->sections.cu_index.s.section = sectp;
12348 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12349 }
12350 else if (section_is_p (sectp->name, &names->tu_index))
12351 {
12352 dwp_file->sections.tu_index.s.section = sectp;
12353 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12354 }
12355 }
12356
12357 /* This function is mapped across the sections and remembers the offset and
12358 size of each of the DWP version 2 debugging sections that we are interested
12359 in. This is split into a separate function because we don't know if we
12360 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12361
12362 static void
12363 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12364 {
12365 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12366 const struct dwop_section_names *names = &dwop_section_names;
12367 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12368
12369 /* Record the ELF section number for later lookup: this is what the
12370 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12371 gdb_assert (elf_section_nr < dwp_file->num_sections);
12372 dwp_file->elf_sections[elf_section_nr] = sectp;
12373
12374 /* Look for specific sections that we need. */
12375 if (section_is_p (sectp->name, &names->abbrev_dwo))
12376 {
12377 dwp_file->sections.abbrev.s.section = sectp;
12378 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12379 }
12380 else if (section_is_p (sectp->name, &names->info_dwo))
12381 {
12382 dwp_file->sections.info.s.section = sectp;
12383 dwp_file->sections.info.size = bfd_section_size (sectp);
12384 }
12385 else if (section_is_p (sectp->name, &names->line_dwo))
12386 {
12387 dwp_file->sections.line.s.section = sectp;
12388 dwp_file->sections.line.size = bfd_section_size (sectp);
12389 }
12390 else if (section_is_p (sectp->name, &names->loc_dwo))
12391 {
12392 dwp_file->sections.loc.s.section = sectp;
12393 dwp_file->sections.loc.size = bfd_section_size (sectp);
12394 }
12395 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12396 {
12397 dwp_file->sections.macinfo.s.section = sectp;
12398 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12399 }
12400 else if (section_is_p (sectp->name, &names->macro_dwo))
12401 {
12402 dwp_file->sections.macro.s.section = sectp;
12403 dwp_file->sections.macro.size = bfd_section_size (sectp);
12404 }
12405 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12406 {
12407 dwp_file->sections.str_offsets.s.section = sectp;
12408 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12409 }
12410 else if (section_is_p (sectp->name, &names->types_dwo))
12411 {
12412 dwp_file->sections.types.s.section = sectp;
12413 dwp_file->sections.types.size = bfd_section_size (sectp);
12414 }
12415 }
12416
12417 /* Hash function for dwp_file loaded CUs/TUs. */
12418
12419 static hashval_t
12420 hash_dwp_loaded_cutus (const void *item)
12421 {
12422 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12423
12424 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12425 return dwo_unit->signature;
12426 }
12427
12428 /* Equality function for dwp_file loaded CUs/TUs. */
12429
12430 static int
12431 eq_dwp_loaded_cutus (const void *a, const void *b)
12432 {
12433 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12434 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12435
12436 return dua->signature == dub->signature;
12437 }
12438
12439 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12440
12441 static htab_up
12442 allocate_dwp_loaded_cutus_table ()
12443 {
12444 return htab_up (htab_create_alloc (3,
12445 hash_dwp_loaded_cutus,
12446 eq_dwp_loaded_cutus,
12447 NULL, xcalloc, xfree));
12448 }
12449
12450 /* Try to open DWP file FILE_NAME.
12451 The result is the bfd handle of the file.
12452 If there is a problem finding or opening the file, return NULL.
12453 Upon success, the canonicalized path of the file is stored in the bfd,
12454 same as symfile_bfd_open. */
12455
12456 static gdb_bfd_ref_ptr
12457 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12458 const char *file_name)
12459 {
12460 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12461 1 /*is_dwp*/,
12462 1 /*search_cwd*/));
12463 if (abfd != NULL)
12464 return abfd;
12465
12466 /* Work around upstream bug 15652.
12467 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12468 [Whether that's a "bug" is debatable, but it is getting in our way.]
12469 We have no real idea where the dwp file is, because gdb's realpath-ing
12470 of the executable's path may have discarded the needed info.
12471 [IWBN if the dwp file name was recorded in the executable, akin to
12472 .gnu_debuglink, but that doesn't exist yet.]
12473 Strip the directory from FILE_NAME and search again. */
12474 if (*debug_file_directory != '\0')
12475 {
12476 /* Don't implicitly search the current directory here.
12477 If the user wants to search "." to handle this case,
12478 it must be added to debug-file-directory. */
12479 return try_open_dwop_file (dwarf2_per_objfile,
12480 lbasename (file_name), 1 /*is_dwp*/,
12481 0 /*search_cwd*/);
12482 }
12483
12484 return NULL;
12485 }
12486
12487 /* Initialize the use of the DWP file for the current objfile.
12488 By convention the name of the DWP file is ${objfile}.dwp.
12489 The result is NULL if it can't be found. */
12490
12491 static std::unique_ptr<struct dwp_file>
12492 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12493 {
12494 struct objfile *objfile = dwarf2_per_objfile->objfile;
12495
12496 /* Try to find first .dwp for the binary file before any symbolic links
12497 resolving. */
12498
12499 /* If the objfile is a debug file, find the name of the real binary
12500 file and get the name of dwp file from there. */
12501 std::string dwp_name;
12502 if (objfile->separate_debug_objfile_backlink != NULL)
12503 {
12504 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12505 const char *backlink_basename = lbasename (backlink->original_name);
12506
12507 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12508 }
12509 else
12510 dwp_name = objfile->original_name;
12511
12512 dwp_name += ".dwp";
12513
12514 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12515 if (dbfd == NULL
12516 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12517 {
12518 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12519 dwp_name = objfile_name (objfile);
12520 dwp_name += ".dwp";
12521 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12522 }
12523
12524 if (dbfd == NULL)
12525 {
12526 if (dwarf_read_debug)
12527 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12528 return std::unique_ptr<dwp_file> ();
12529 }
12530
12531 const char *name = bfd_get_filename (dbfd.get ());
12532 std::unique_ptr<struct dwp_file> dwp_file
12533 (new struct dwp_file (name, std::move (dbfd)));
12534
12535 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12536 dwp_file->elf_sections =
12537 OBSTACK_CALLOC (&dwarf2_per_objfile->obstack,
12538 dwp_file->num_sections, asection *);
12539
12540 bfd_map_over_sections (dwp_file->dbfd.get (),
12541 dwarf2_locate_common_dwp_sections,
12542 dwp_file.get ());
12543
12544 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12545 0);
12546
12547 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12548 1);
12549
12550 /* The DWP file version is stored in the hash table. Oh well. */
12551 if (dwp_file->cus && dwp_file->tus
12552 && dwp_file->cus->version != dwp_file->tus->version)
12553 {
12554 /* Technically speaking, we should try to limp along, but this is
12555 pretty bizarre. We use pulongest here because that's the established
12556 portability solution (e.g, we cannot use %u for uint32_t). */
12557 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12558 " TU version %s [in DWP file %s]"),
12559 pulongest (dwp_file->cus->version),
12560 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12561 }
12562
12563 if (dwp_file->cus)
12564 dwp_file->version = dwp_file->cus->version;
12565 else if (dwp_file->tus)
12566 dwp_file->version = dwp_file->tus->version;
12567 else
12568 dwp_file->version = 2;
12569
12570 if (dwp_file->version == 2)
12571 bfd_map_over_sections (dwp_file->dbfd.get (),
12572 dwarf2_locate_v2_dwp_sections,
12573 dwp_file.get ());
12574
12575 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12576 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12577
12578 if (dwarf_read_debug)
12579 {
12580 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12581 fprintf_unfiltered (gdb_stdlog,
12582 " %s CUs, %s TUs\n",
12583 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12584 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12585 }
12586
12587 return dwp_file;
12588 }
12589
12590 /* Wrapper around open_and_init_dwp_file, only open it once. */
12591
12592 static struct dwp_file *
12593 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12594 {
12595 if (! dwarf2_per_objfile->dwp_checked)
12596 {
12597 dwarf2_per_objfile->dwp_file
12598 = open_and_init_dwp_file (dwarf2_per_objfile);
12599 dwarf2_per_objfile->dwp_checked = 1;
12600 }
12601 return dwarf2_per_objfile->dwp_file.get ();
12602 }
12603
12604 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12605 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12606 or in the DWP file for the objfile, referenced by THIS_UNIT.
12607 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12608 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12609
12610 This is called, for example, when wanting to read a variable with a
12611 complex location. Therefore we don't want to do file i/o for every call.
12612 Therefore we don't want to look for a DWO file on every call.
12613 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12614 then we check if we've already seen DWO_NAME, and only THEN do we check
12615 for a DWO file.
12616
12617 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12618 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12619
12620 static struct dwo_unit *
12621 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12622 const char *dwo_name, const char *comp_dir,
12623 ULONGEST signature, int is_debug_types)
12624 {
12625 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12626 struct objfile *objfile = dwarf2_per_objfile->objfile;
12627 const char *kind = is_debug_types ? "TU" : "CU";
12628 void **dwo_file_slot;
12629 struct dwo_file *dwo_file;
12630 struct dwp_file *dwp_file;
12631
12632 /* First see if there's a DWP file.
12633 If we have a DWP file but didn't find the DWO inside it, don't
12634 look for the original DWO file. It makes gdb behave differently
12635 depending on whether one is debugging in the build tree. */
12636
12637 dwp_file = get_dwp_file (dwarf2_per_objfile);
12638 if (dwp_file != NULL)
12639 {
12640 const struct dwp_hash_table *dwp_htab =
12641 is_debug_types ? dwp_file->tus : dwp_file->cus;
12642
12643 if (dwp_htab != NULL)
12644 {
12645 struct dwo_unit *dwo_cutu =
12646 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12647 signature, is_debug_types);
12648
12649 if (dwo_cutu != NULL)
12650 {
12651 if (dwarf_read_debug)
12652 {
12653 fprintf_unfiltered (gdb_stdlog,
12654 "Virtual DWO %s %s found: @%s\n",
12655 kind, hex_string (signature),
12656 host_address_to_string (dwo_cutu));
12657 }
12658 return dwo_cutu;
12659 }
12660 }
12661 }
12662 else
12663 {
12664 /* No DWP file, look for the DWO file. */
12665
12666 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12667 dwo_name, comp_dir);
12668 if (*dwo_file_slot == NULL)
12669 {
12670 /* Read in the file and build a table of the CUs/TUs it contains. */
12671 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12672 }
12673 /* NOTE: This will be NULL if unable to open the file. */
12674 dwo_file = (struct dwo_file *) *dwo_file_slot;
12675
12676 if (dwo_file != NULL)
12677 {
12678 struct dwo_unit *dwo_cutu = NULL;
12679
12680 if (is_debug_types && dwo_file->tus)
12681 {
12682 struct dwo_unit find_dwo_cutu;
12683
12684 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12685 find_dwo_cutu.signature = signature;
12686 dwo_cutu
12687 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12688 &find_dwo_cutu);
12689 }
12690 else if (!is_debug_types && dwo_file->cus)
12691 {
12692 struct dwo_unit find_dwo_cutu;
12693
12694 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12695 find_dwo_cutu.signature = signature;
12696 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12697 &find_dwo_cutu);
12698 }
12699
12700 if (dwo_cutu != NULL)
12701 {
12702 if (dwarf_read_debug)
12703 {
12704 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12705 kind, dwo_name, hex_string (signature),
12706 host_address_to_string (dwo_cutu));
12707 }
12708 return dwo_cutu;
12709 }
12710 }
12711 }
12712
12713 /* We didn't find it. This could mean a dwo_id mismatch, or
12714 someone deleted the DWO/DWP file, or the search path isn't set up
12715 correctly to find the file. */
12716
12717 if (dwarf_read_debug)
12718 {
12719 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12720 kind, dwo_name, hex_string (signature));
12721 }
12722
12723 /* This is a warning and not a complaint because it can be caused by
12724 pilot error (e.g., user accidentally deleting the DWO). */
12725 {
12726 /* Print the name of the DWP file if we looked there, helps the user
12727 better diagnose the problem. */
12728 std::string dwp_text;
12729
12730 if (dwp_file != NULL)
12731 dwp_text = string_printf (" [in DWP file %s]",
12732 lbasename (dwp_file->name));
12733
12734 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12735 " [in module %s]"),
12736 kind, dwo_name, hex_string (signature),
12737 dwp_text.c_str (),
12738 this_unit->is_debug_types ? "TU" : "CU",
12739 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12740 }
12741 return NULL;
12742 }
12743
12744 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12745 See lookup_dwo_cutu_unit for details. */
12746
12747 static struct dwo_unit *
12748 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12749 const char *dwo_name, const char *comp_dir,
12750 ULONGEST signature)
12751 {
12752 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12753 }
12754
12755 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12756 See lookup_dwo_cutu_unit for details. */
12757
12758 static struct dwo_unit *
12759 lookup_dwo_type_unit (struct signatured_type *this_tu,
12760 const char *dwo_name, const char *comp_dir)
12761 {
12762 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12763 }
12764
12765 /* Traversal function for queue_and_load_all_dwo_tus. */
12766
12767 static int
12768 queue_and_load_dwo_tu (void **slot, void *info)
12769 {
12770 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12771 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12772 ULONGEST signature = dwo_unit->signature;
12773 struct signatured_type *sig_type =
12774 lookup_dwo_signatured_type (per_cu->cu, signature);
12775
12776 if (sig_type != NULL)
12777 {
12778 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12779
12780 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12781 a real dependency of PER_CU on SIG_TYPE. That is detected later
12782 while processing PER_CU. */
12783 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12784 load_full_type_unit (sig_cu);
12785 per_cu->imported_symtabs_push (sig_cu);
12786 }
12787
12788 return 1;
12789 }
12790
12791 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12792 The DWO may have the only definition of the type, though it may not be
12793 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12794 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12795
12796 static void
12797 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12798 {
12799 struct dwo_unit *dwo_unit;
12800 struct dwo_file *dwo_file;
12801
12802 gdb_assert (!per_cu->is_debug_types);
12803 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12804 gdb_assert (per_cu->cu != NULL);
12805
12806 dwo_unit = per_cu->cu->dwo_unit;
12807 gdb_assert (dwo_unit != NULL);
12808
12809 dwo_file = dwo_unit->dwo_file;
12810 if (dwo_file->tus != NULL)
12811 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12812 per_cu);
12813 }
12814
12815 /* Read in various DIEs. */
12816
12817 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12818 Inherit only the children of the DW_AT_abstract_origin DIE not being
12819 already referenced by DW_AT_abstract_origin from the children of the
12820 current DIE. */
12821
12822 static void
12823 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12824 {
12825 struct die_info *child_die;
12826 sect_offset *offsetp;
12827 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12828 struct die_info *origin_die;
12829 /* Iterator of the ORIGIN_DIE children. */
12830 struct die_info *origin_child_die;
12831 struct attribute *attr;
12832 struct dwarf2_cu *origin_cu;
12833 struct pending **origin_previous_list_in_scope;
12834
12835 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12836 if (!attr)
12837 return;
12838
12839 /* Note that following die references may follow to a die in a
12840 different cu. */
12841
12842 origin_cu = cu;
12843 origin_die = follow_die_ref (die, attr, &origin_cu);
12844
12845 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12846 symbols in. */
12847 origin_previous_list_in_scope = origin_cu->list_in_scope;
12848 origin_cu->list_in_scope = cu->list_in_scope;
12849
12850 if (die->tag != origin_die->tag
12851 && !(die->tag == DW_TAG_inlined_subroutine
12852 && origin_die->tag == DW_TAG_subprogram))
12853 complaint (_("DIE %s and its abstract origin %s have different tags"),
12854 sect_offset_str (die->sect_off),
12855 sect_offset_str (origin_die->sect_off));
12856
12857 std::vector<sect_offset> offsets;
12858
12859 for (child_die = die->child;
12860 child_die && child_die->tag;
12861 child_die = child_die->sibling)
12862 {
12863 struct die_info *child_origin_die;
12864 struct dwarf2_cu *child_origin_cu;
12865
12866 /* We are trying to process concrete instance entries:
12867 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12868 it's not relevant to our analysis here. i.e. detecting DIEs that are
12869 present in the abstract instance but not referenced in the concrete
12870 one. */
12871 if (child_die->tag == DW_TAG_call_site
12872 || child_die->tag == DW_TAG_GNU_call_site)
12873 continue;
12874
12875 /* For each CHILD_DIE, find the corresponding child of
12876 ORIGIN_DIE. If there is more than one layer of
12877 DW_AT_abstract_origin, follow them all; there shouldn't be,
12878 but GCC versions at least through 4.4 generate this (GCC PR
12879 40573). */
12880 child_origin_die = child_die;
12881 child_origin_cu = cu;
12882 while (1)
12883 {
12884 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12885 child_origin_cu);
12886 if (attr == NULL)
12887 break;
12888 child_origin_die = follow_die_ref (child_origin_die, attr,
12889 &child_origin_cu);
12890 }
12891
12892 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12893 counterpart may exist. */
12894 if (child_origin_die != child_die)
12895 {
12896 if (child_die->tag != child_origin_die->tag
12897 && !(child_die->tag == DW_TAG_inlined_subroutine
12898 && child_origin_die->tag == DW_TAG_subprogram))
12899 complaint (_("Child DIE %s and its abstract origin %s have "
12900 "different tags"),
12901 sect_offset_str (child_die->sect_off),
12902 sect_offset_str (child_origin_die->sect_off));
12903 if (child_origin_die->parent != origin_die)
12904 complaint (_("Child DIE %s and its abstract origin %s have "
12905 "different parents"),
12906 sect_offset_str (child_die->sect_off),
12907 sect_offset_str (child_origin_die->sect_off));
12908 else
12909 offsets.push_back (child_origin_die->sect_off);
12910 }
12911 }
12912 std::sort (offsets.begin (), offsets.end ());
12913 sect_offset *offsets_end = offsets.data () + offsets.size ();
12914 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12915 if (offsetp[-1] == *offsetp)
12916 complaint (_("Multiple children of DIE %s refer "
12917 "to DIE %s as their abstract origin"),
12918 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12919
12920 offsetp = offsets.data ();
12921 origin_child_die = origin_die->child;
12922 while (origin_child_die && origin_child_die->tag)
12923 {
12924 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12925 while (offsetp < offsets_end
12926 && *offsetp < origin_child_die->sect_off)
12927 offsetp++;
12928 if (offsetp >= offsets_end
12929 || *offsetp > origin_child_die->sect_off)
12930 {
12931 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12932 Check whether we're already processing ORIGIN_CHILD_DIE.
12933 This can happen with mutually referenced abstract_origins.
12934 PR 16581. */
12935 if (!origin_child_die->in_process)
12936 process_die (origin_child_die, origin_cu);
12937 }
12938 origin_child_die = origin_child_die->sibling;
12939 }
12940 origin_cu->list_in_scope = origin_previous_list_in_scope;
12941
12942 if (cu != origin_cu)
12943 compute_delayed_physnames (origin_cu);
12944 }
12945
12946 static void
12947 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12948 {
12949 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12950 struct gdbarch *gdbarch = objfile->arch ();
12951 struct context_stack *newobj;
12952 CORE_ADDR lowpc;
12953 CORE_ADDR highpc;
12954 struct die_info *child_die;
12955 struct attribute *attr, *call_line, *call_file;
12956 const char *name;
12957 CORE_ADDR baseaddr;
12958 struct block *block;
12959 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12960 std::vector<struct symbol *> template_args;
12961 struct template_symbol *templ_func = NULL;
12962
12963 if (inlined_func)
12964 {
12965 /* If we do not have call site information, we can't show the
12966 caller of this inlined function. That's too confusing, so
12967 only use the scope for local variables. */
12968 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12969 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12970 if (call_line == NULL || call_file == NULL)
12971 {
12972 read_lexical_block_scope (die, cu);
12973 return;
12974 }
12975 }
12976
12977 baseaddr = objfile->text_section_offset ();
12978
12979 name = dwarf2_name (die, cu);
12980
12981 /* Ignore functions with missing or empty names. These are actually
12982 illegal according to the DWARF standard. */
12983 if (name == NULL)
12984 {
12985 complaint (_("missing name for subprogram DIE at %s"),
12986 sect_offset_str (die->sect_off));
12987 return;
12988 }
12989
12990 /* Ignore functions with missing or invalid low and high pc attributes. */
12991 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12992 <= PC_BOUNDS_INVALID)
12993 {
12994 attr = dwarf2_attr (die, DW_AT_external, cu);
12995 if (!attr || !DW_UNSND (attr))
12996 complaint (_("cannot get low and high bounds "
12997 "for subprogram DIE at %s"),
12998 sect_offset_str (die->sect_off));
12999 return;
13000 }
13001
13002 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13003 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13004
13005 /* If we have any template arguments, then we must allocate a
13006 different sort of symbol. */
13007 for (child_die = die->child; child_die; child_die = child_die->sibling)
13008 {
13009 if (child_die->tag == DW_TAG_template_type_param
13010 || child_die->tag == DW_TAG_template_value_param)
13011 {
13012 templ_func = new (&objfile->objfile_obstack) template_symbol;
13013 templ_func->subclass = SYMBOL_TEMPLATE;
13014 break;
13015 }
13016 }
13017
13018 newobj = cu->get_builder ()->push_context (0, lowpc);
13019 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13020 (struct symbol *) templ_func);
13021
13022 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13023 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13024 cu->language);
13025
13026 /* If there is a location expression for DW_AT_frame_base, record
13027 it. */
13028 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13029 if (attr != nullptr)
13030 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13031
13032 /* If there is a location for the static link, record it. */
13033 newobj->static_link = NULL;
13034 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13035 if (attr != nullptr)
13036 {
13037 newobj->static_link
13038 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13039 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13040 cu->per_cu->addr_type ());
13041 }
13042
13043 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13044
13045 if (die->child != NULL)
13046 {
13047 child_die = die->child;
13048 while (child_die && child_die->tag)
13049 {
13050 if (child_die->tag == DW_TAG_template_type_param
13051 || child_die->tag == DW_TAG_template_value_param)
13052 {
13053 struct symbol *arg = new_symbol (child_die, NULL, cu);
13054
13055 if (arg != NULL)
13056 template_args.push_back (arg);
13057 }
13058 else
13059 process_die (child_die, cu);
13060 child_die = child_die->sibling;
13061 }
13062 }
13063
13064 inherit_abstract_dies (die, cu);
13065
13066 /* If we have a DW_AT_specification, we might need to import using
13067 directives from the context of the specification DIE. See the
13068 comment in determine_prefix. */
13069 if (cu->language == language_cplus
13070 && dwarf2_attr (die, DW_AT_specification, cu))
13071 {
13072 struct dwarf2_cu *spec_cu = cu;
13073 struct die_info *spec_die = die_specification (die, &spec_cu);
13074
13075 while (spec_die)
13076 {
13077 child_die = spec_die->child;
13078 while (child_die && child_die->tag)
13079 {
13080 if (child_die->tag == DW_TAG_imported_module)
13081 process_die (child_die, spec_cu);
13082 child_die = child_die->sibling;
13083 }
13084
13085 /* In some cases, GCC generates specification DIEs that
13086 themselves contain DW_AT_specification attributes. */
13087 spec_die = die_specification (spec_die, &spec_cu);
13088 }
13089 }
13090
13091 struct context_stack cstk = cu->get_builder ()->pop_context ();
13092 /* Make a block for the local symbols within. */
13093 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13094 cstk.static_link, lowpc, highpc);
13095
13096 /* For C++, set the block's scope. */
13097 if ((cu->language == language_cplus
13098 || cu->language == language_fortran
13099 || cu->language == language_d
13100 || cu->language == language_rust)
13101 && cu->processing_has_namespace_info)
13102 block_set_scope (block, determine_prefix (die, cu),
13103 &objfile->objfile_obstack);
13104
13105 /* If we have address ranges, record them. */
13106 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13107
13108 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13109
13110 /* Attach template arguments to function. */
13111 if (!template_args.empty ())
13112 {
13113 gdb_assert (templ_func != NULL);
13114
13115 templ_func->n_template_arguments = template_args.size ();
13116 templ_func->template_arguments
13117 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13118 templ_func->n_template_arguments);
13119 memcpy (templ_func->template_arguments,
13120 template_args.data (),
13121 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13122
13123 /* Make sure that the symtab is set on the new symbols. Even
13124 though they don't appear in this symtab directly, other parts
13125 of gdb assume that symbols do, and this is reasonably
13126 true. */
13127 for (symbol *sym : template_args)
13128 symbol_set_symtab (sym, symbol_symtab (templ_func));
13129 }
13130
13131 /* In C++, we can have functions nested inside functions (e.g., when
13132 a function declares a class that has methods). This means that
13133 when we finish processing a function scope, we may need to go
13134 back to building a containing block's symbol lists. */
13135 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13136 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13137
13138 /* If we've finished processing a top-level function, subsequent
13139 symbols go in the file symbol list. */
13140 if (cu->get_builder ()->outermost_context_p ())
13141 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13142 }
13143
13144 /* Process all the DIES contained within a lexical block scope. Start
13145 a new scope, process the dies, and then close the scope. */
13146
13147 static void
13148 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13149 {
13150 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13151 struct gdbarch *gdbarch = objfile->arch ();
13152 CORE_ADDR lowpc, highpc;
13153 struct die_info *child_die;
13154 CORE_ADDR baseaddr;
13155
13156 baseaddr = objfile->text_section_offset ();
13157
13158 /* Ignore blocks with missing or invalid low and high pc attributes. */
13159 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13160 as multiple lexical blocks? Handling children in a sane way would
13161 be nasty. Might be easier to properly extend generic blocks to
13162 describe ranges. */
13163 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13164 {
13165 case PC_BOUNDS_NOT_PRESENT:
13166 /* DW_TAG_lexical_block has no attributes, process its children as if
13167 there was no wrapping by that DW_TAG_lexical_block.
13168 GCC does no longer produces such DWARF since GCC r224161. */
13169 for (child_die = die->child;
13170 child_die != NULL && child_die->tag;
13171 child_die = child_die->sibling)
13172 {
13173 /* We might already be processing this DIE. This can happen
13174 in an unusual circumstance -- where a subroutine A
13175 appears lexically in another subroutine B, but A actually
13176 inlines B. The recursion is broken here, rather than in
13177 inherit_abstract_dies, because it seems better to simply
13178 drop concrete children here. */
13179 if (!child_die->in_process)
13180 process_die (child_die, cu);
13181 }
13182 return;
13183 case PC_BOUNDS_INVALID:
13184 return;
13185 }
13186 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13187 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13188
13189 cu->get_builder ()->push_context (0, lowpc);
13190 if (die->child != NULL)
13191 {
13192 child_die = die->child;
13193 while (child_die && child_die->tag)
13194 {
13195 process_die (child_die, cu);
13196 child_die = child_die->sibling;
13197 }
13198 }
13199 inherit_abstract_dies (die, cu);
13200 struct context_stack cstk = cu->get_builder ()->pop_context ();
13201
13202 if (*cu->get_builder ()->get_local_symbols () != NULL
13203 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13204 {
13205 struct block *block
13206 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13207 cstk.start_addr, highpc);
13208
13209 /* Note that recording ranges after traversing children, as we
13210 do here, means that recording a parent's ranges entails
13211 walking across all its children's ranges as they appear in
13212 the address map, which is quadratic behavior.
13213
13214 It would be nicer to record the parent's ranges before
13215 traversing its children, simply overriding whatever you find
13216 there. But since we don't even decide whether to create a
13217 block until after we've traversed its children, that's hard
13218 to do. */
13219 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13220 }
13221 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13222 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13223 }
13224
13225 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13226
13227 static void
13228 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13229 {
13230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13231 struct gdbarch *gdbarch = objfile->arch ();
13232 CORE_ADDR pc, baseaddr;
13233 struct attribute *attr;
13234 struct call_site *call_site, call_site_local;
13235 void **slot;
13236 int nparams;
13237 struct die_info *child_die;
13238
13239 baseaddr = objfile->text_section_offset ();
13240
13241 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13242 if (attr == NULL)
13243 {
13244 /* This was a pre-DWARF-5 GNU extension alias
13245 for DW_AT_call_return_pc. */
13246 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13247 }
13248 if (!attr)
13249 {
13250 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13251 "DIE %s [in module %s]"),
13252 sect_offset_str (die->sect_off), objfile_name (objfile));
13253 return;
13254 }
13255 pc = attr->value_as_address () + baseaddr;
13256 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13257
13258 if (cu->call_site_htab == NULL)
13259 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13260 NULL, &objfile->objfile_obstack,
13261 hashtab_obstack_allocate, NULL);
13262 call_site_local.pc = pc;
13263 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13264 if (*slot != NULL)
13265 {
13266 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13267 "DIE %s [in module %s]"),
13268 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13269 objfile_name (objfile));
13270 return;
13271 }
13272
13273 /* Count parameters at the caller. */
13274
13275 nparams = 0;
13276 for (child_die = die->child; child_die && child_die->tag;
13277 child_die = child_die->sibling)
13278 {
13279 if (child_die->tag != DW_TAG_call_site_parameter
13280 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13281 {
13282 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13283 "DW_TAG_call_site child DIE %s [in module %s]"),
13284 child_die->tag, sect_offset_str (child_die->sect_off),
13285 objfile_name (objfile));
13286 continue;
13287 }
13288
13289 nparams++;
13290 }
13291
13292 call_site
13293 = ((struct call_site *)
13294 obstack_alloc (&objfile->objfile_obstack,
13295 sizeof (*call_site)
13296 + (sizeof (*call_site->parameter) * (nparams - 1))));
13297 *slot = call_site;
13298 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13299 call_site->pc = pc;
13300
13301 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13302 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13303 {
13304 struct die_info *func_die;
13305
13306 /* Skip also over DW_TAG_inlined_subroutine. */
13307 for (func_die = die->parent;
13308 func_die && func_die->tag != DW_TAG_subprogram
13309 && func_die->tag != DW_TAG_subroutine_type;
13310 func_die = func_die->parent);
13311
13312 /* DW_AT_call_all_calls is a superset
13313 of DW_AT_call_all_tail_calls. */
13314 if (func_die
13315 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13316 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13317 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13318 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13319 {
13320 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13321 not complete. But keep CALL_SITE for look ups via call_site_htab,
13322 both the initial caller containing the real return address PC and
13323 the final callee containing the current PC of a chain of tail
13324 calls do not need to have the tail call list complete. But any
13325 function candidate for a virtual tail call frame searched via
13326 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13327 determined unambiguously. */
13328 }
13329 else
13330 {
13331 struct type *func_type = NULL;
13332
13333 if (func_die)
13334 func_type = get_die_type (func_die, cu);
13335 if (func_type != NULL)
13336 {
13337 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13338
13339 /* Enlist this call site to the function. */
13340 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13341 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13342 }
13343 else
13344 complaint (_("Cannot find function owning DW_TAG_call_site "
13345 "DIE %s [in module %s]"),
13346 sect_offset_str (die->sect_off), objfile_name (objfile));
13347 }
13348 }
13349
13350 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13351 if (attr == NULL)
13352 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13353 if (attr == NULL)
13354 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13355 if (attr == NULL)
13356 {
13357 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13358 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13359 }
13360 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13361 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13362 /* Keep NULL DWARF_BLOCK. */;
13363 else if (attr->form_is_block ())
13364 {
13365 struct dwarf2_locexpr_baton *dlbaton;
13366
13367 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13368 dlbaton->data = DW_BLOCK (attr)->data;
13369 dlbaton->size = DW_BLOCK (attr)->size;
13370 dlbaton->per_cu = cu->per_cu;
13371
13372 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13373 }
13374 else if (attr->form_is_ref ())
13375 {
13376 struct dwarf2_cu *target_cu = cu;
13377 struct die_info *target_die;
13378
13379 target_die = follow_die_ref (die, attr, &target_cu);
13380 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13381 if (die_is_declaration (target_die, target_cu))
13382 {
13383 const char *target_physname;
13384
13385 /* Prefer the mangled name; otherwise compute the demangled one. */
13386 target_physname = dw2_linkage_name (target_die, target_cu);
13387 if (target_physname == NULL)
13388 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13389 if (target_physname == NULL)
13390 complaint (_("DW_AT_call_target target DIE has invalid "
13391 "physname, for referencing DIE %s [in module %s]"),
13392 sect_offset_str (die->sect_off), objfile_name (objfile));
13393 else
13394 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13395 }
13396 else
13397 {
13398 CORE_ADDR lowpc;
13399
13400 /* DW_AT_entry_pc should be preferred. */
13401 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13402 <= PC_BOUNDS_INVALID)
13403 complaint (_("DW_AT_call_target target DIE has invalid "
13404 "low pc, for referencing DIE %s [in module %s]"),
13405 sect_offset_str (die->sect_off), objfile_name (objfile));
13406 else
13407 {
13408 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13409 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13410 }
13411 }
13412 }
13413 else
13414 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13415 "block nor reference, for DIE %s [in module %s]"),
13416 sect_offset_str (die->sect_off), objfile_name (objfile));
13417
13418 call_site->per_cu = cu->per_cu;
13419
13420 for (child_die = die->child;
13421 child_die && child_die->tag;
13422 child_die = child_die->sibling)
13423 {
13424 struct call_site_parameter *parameter;
13425 struct attribute *loc, *origin;
13426
13427 if (child_die->tag != DW_TAG_call_site_parameter
13428 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13429 {
13430 /* Already printed the complaint above. */
13431 continue;
13432 }
13433
13434 gdb_assert (call_site->parameter_count < nparams);
13435 parameter = &call_site->parameter[call_site->parameter_count];
13436
13437 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13438 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13439 register is contained in DW_AT_call_value. */
13440
13441 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13442 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13443 if (origin == NULL)
13444 {
13445 /* This was a pre-DWARF-5 GNU extension alias
13446 for DW_AT_call_parameter. */
13447 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13448 }
13449 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13450 {
13451 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13452
13453 sect_offset sect_off = origin->get_ref_die_offset ();
13454 if (!cu->header.offset_in_cu_p (sect_off))
13455 {
13456 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13457 binding can be done only inside one CU. Such referenced DIE
13458 therefore cannot be even moved to DW_TAG_partial_unit. */
13459 complaint (_("DW_AT_call_parameter offset is not in CU for "
13460 "DW_TAG_call_site child DIE %s [in module %s]"),
13461 sect_offset_str (child_die->sect_off),
13462 objfile_name (objfile));
13463 continue;
13464 }
13465 parameter->u.param_cu_off
13466 = (cu_offset) (sect_off - cu->header.sect_off);
13467 }
13468 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13469 {
13470 complaint (_("No DW_FORM_block* DW_AT_location for "
13471 "DW_TAG_call_site child DIE %s [in module %s]"),
13472 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13473 continue;
13474 }
13475 else
13476 {
13477 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13478 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13479 if (parameter->u.dwarf_reg != -1)
13480 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13481 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13482 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13483 &parameter->u.fb_offset))
13484 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13485 else
13486 {
13487 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13488 "for DW_FORM_block* DW_AT_location is supported for "
13489 "DW_TAG_call_site child DIE %s "
13490 "[in module %s]"),
13491 sect_offset_str (child_die->sect_off),
13492 objfile_name (objfile));
13493 continue;
13494 }
13495 }
13496
13497 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13498 if (attr == NULL)
13499 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13500 if (attr == NULL || !attr->form_is_block ())
13501 {
13502 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13503 "DW_TAG_call_site child DIE %s [in module %s]"),
13504 sect_offset_str (child_die->sect_off),
13505 objfile_name (objfile));
13506 continue;
13507 }
13508 parameter->value = DW_BLOCK (attr)->data;
13509 parameter->value_size = DW_BLOCK (attr)->size;
13510
13511 /* Parameters are not pre-cleared by memset above. */
13512 parameter->data_value = NULL;
13513 parameter->data_value_size = 0;
13514 call_site->parameter_count++;
13515
13516 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13517 if (attr == NULL)
13518 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13519 if (attr != nullptr)
13520 {
13521 if (!attr->form_is_block ())
13522 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13523 "DW_TAG_call_site child DIE %s [in module %s]"),
13524 sect_offset_str (child_die->sect_off),
13525 objfile_name (objfile));
13526 else
13527 {
13528 parameter->data_value = DW_BLOCK (attr)->data;
13529 parameter->data_value_size = DW_BLOCK (attr)->size;
13530 }
13531 }
13532 }
13533 }
13534
13535 /* Helper function for read_variable. If DIE represents a virtual
13536 table, then return the type of the concrete object that is
13537 associated with the virtual table. Otherwise, return NULL. */
13538
13539 static struct type *
13540 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13541 {
13542 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13543 if (attr == NULL)
13544 return NULL;
13545
13546 /* Find the type DIE. */
13547 struct die_info *type_die = NULL;
13548 struct dwarf2_cu *type_cu = cu;
13549
13550 if (attr->form_is_ref ())
13551 type_die = follow_die_ref (die, attr, &type_cu);
13552 if (type_die == NULL)
13553 return NULL;
13554
13555 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13556 return NULL;
13557 return die_containing_type (type_die, type_cu);
13558 }
13559
13560 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13561
13562 static void
13563 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13564 {
13565 struct rust_vtable_symbol *storage = NULL;
13566
13567 if (cu->language == language_rust)
13568 {
13569 struct type *containing_type = rust_containing_type (die, cu);
13570
13571 if (containing_type != NULL)
13572 {
13573 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13574
13575 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
13576 storage->concrete_type = containing_type;
13577 storage->subclass = SYMBOL_RUST_VTABLE;
13578 }
13579 }
13580
13581 struct symbol *res = new_symbol (die, NULL, cu, storage);
13582 struct attribute *abstract_origin
13583 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13584 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13585 if (res == NULL && loc && abstract_origin)
13586 {
13587 /* We have a variable without a name, but with a location and an abstract
13588 origin. This may be a concrete instance of an abstract variable
13589 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13590 later. */
13591 struct dwarf2_cu *origin_cu = cu;
13592 struct die_info *origin_die
13593 = follow_die_ref (die, abstract_origin, &origin_cu);
13594 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13595 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13596 }
13597 }
13598
13599 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13600 reading .debug_rnglists.
13601 Callback's type should be:
13602 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13603 Return true if the attributes are present and valid, otherwise,
13604 return false. */
13605
13606 template <typename Callback>
13607 static bool
13608 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13609 Callback &&callback)
13610 {
13611 struct dwarf2_per_objfile *dwarf2_per_objfile
13612 = cu->per_cu->dwarf2_per_objfile;
13613 struct objfile *objfile = dwarf2_per_objfile->objfile;
13614 bfd *obfd = objfile->obfd;
13615 /* Base address selection entry. */
13616 gdb::optional<CORE_ADDR> base;
13617 const gdb_byte *buffer;
13618 CORE_ADDR baseaddr;
13619 bool overflow = false;
13620
13621 base = cu->base_address;
13622
13623 dwarf2_per_objfile->rnglists.read (objfile);
13624 if (offset >= dwarf2_per_objfile->rnglists.size)
13625 {
13626 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13627 offset);
13628 return false;
13629 }
13630 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13631
13632 baseaddr = objfile->text_section_offset ();
13633
13634 while (1)
13635 {
13636 /* Initialize it due to a false compiler warning. */
13637 CORE_ADDR range_beginning = 0, range_end = 0;
13638 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13639 + dwarf2_per_objfile->rnglists.size);
13640 unsigned int bytes_read;
13641
13642 if (buffer == buf_end)
13643 {
13644 overflow = true;
13645 break;
13646 }
13647 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13648 switch (rlet)
13649 {
13650 case DW_RLE_end_of_list:
13651 break;
13652 case DW_RLE_base_address:
13653 if (buffer + cu->header.addr_size > buf_end)
13654 {
13655 overflow = true;
13656 break;
13657 }
13658 base = cu->header.read_address (obfd, buffer, &bytes_read);
13659 buffer += bytes_read;
13660 break;
13661 case DW_RLE_start_length:
13662 if (buffer + cu->header.addr_size > buf_end)
13663 {
13664 overflow = true;
13665 break;
13666 }
13667 range_beginning = cu->header.read_address (obfd, buffer,
13668 &bytes_read);
13669 buffer += bytes_read;
13670 range_end = (range_beginning
13671 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13672 buffer += bytes_read;
13673 if (buffer > buf_end)
13674 {
13675 overflow = true;
13676 break;
13677 }
13678 break;
13679 case DW_RLE_offset_pair:
13680 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13681 buffer += bytes_read;
13682 if (buffer > buf_end)
13683 {
13684 overflow = true;
13685 break;
13686 }
13687 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13688 buffer += bytes_read;
13689 if (buffer > buf_end)
13690 {
13691 overflow = true;
13692 break;
13693 }
13694 break;
13695 case DW_RLE_start_end:
13696 if (buffer + 2 * cu->header.addr_size > buf_end)
13697 {
13698 overflow = true;
13699 break;
13700 }
13701 range_beginning = cu->header.read_address (obfd, buffer,
13702 &bytes_read);
13703 buffer += bytes_read;
13704 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13705 buffer += bytes_read;
13706 break;
13707 default:
13708 complaint (_("Invalid .debug_rnglists data (no base address)"));
13709 return false;
13710 }
13711 if (rlet == DW_RLE_end_of_list || overflow)
13712 break;
13713 if (rlet == DW_RLE_base_address)
13714 continue;
13715
13716 if (!base.has_value ())
13717 {
13718 /* We have no valid base address for the ranges
13719 data. */
13720 complaint (_("Invalid .debug_rnglists data (no base address)"));
13721 return false;
13722 }
13723
13724 if (range_beginning > range_end)
13725 {
13726 /* Inverted range entries are invalid. */
13727 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13728 return false;
13729 }
13730
13731 /* Empty range entries have no effect. */
13732 if (range_beginning == range_end)
13733 continue;
13734
13735 range_beginning += *base;
13736 range_end += *base;
13737
13738 /* A not-uncommon case of bad debug info.
13739 Don't pollute the addrmap with bad data. */
13740 if (range_beginning + baseaddr == 0
13741 && !dwarf2_per_objfile->has_section_at_zero)
13742 {
13743 complaint (_(".debug_rnglists entry has start address of zero"
13744 " [in module %s]"), objfile_name (objfile));
13745 continue;
13746 }
13747
13748 callback (range_beginning, range_end);
13749 }
13750
13751 if (overflow)
13752 {
13753 complaint (_("Offset %d is not terminated "
13754 "for DW_AT_ranges attribute"),
13755 offset);
13756 return false;
13757 }
13758
13759 return true;
13760 }
13761
13762 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13763 Callback's type should be:
13764 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13765 Return 1 if the attributes are present and valid, otherwise, return 0. */
13766
13767 template <typename Callback>
13768 static int
13769 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13770 Callback &&callback)
13771 {
13772 struct dwarf2_per_objfile *dwarf2_per_objfile
13773 = cu->per_cu->dwarf2_per_objfile;
13774 struct objfile *objfile = dwarf2_per_objfile->objfile;
13775 struct comp_unit_head *cu_header = &cu->header;
13776 bfd *obfd = objfile->obfd;
13777 unsigned int addr_size = cu_header->addr_size;
13778 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13779 /* Base address selection entry. */
13780 gdb::optional<CORE_ADDR> base;
13781 unsigned int dummy;
13782 const gdb_byte *buffer;
13783 CORE_ADDR baseaddr;
13784
13785 if (cu_header->version >= 5)
13786 return dwarf2_rnglists_process (offset, cu, callback);
13787
13788 base = cu->base_address;
13789
13790 dwarf2_per_objfile->ranges.read (objfile);
13791 if (offset >= dwarf2_per_objfile->ranges.size)
13792 {
13793 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13794 offset);
13795 return 0;
13796 }
13797 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13798
13799 baseaddr = objfile->text_section_offset ();
13800
13801 while (1)
13802 {
13803 CORE_ADDR range_beginning, range_end;
13804
13805 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13806 buffer += addr_size;
13807 range_end = cu->header.read_address (obfd, buffer, &dummy);
13808 buffer += addr_size;
13809 offset += 2 * addr_size;
13810
13811 /* An end of list marker is a pair of zero addresses. */
13812 if (range_beginning == 0 && range_end == 0)
13813 /* Found the end of list entry. */
13814 break;
13815
13816 /* Each base address selection entry is a pair of 2 values.
13817 The first is the largest possible address, the second is
13818 the base address. Check for a base address here. */
13819 if ((range_beginning & mask) == mask)
13820 {
13821 /* If we found the largest possible address, then we already
13822 have the base address in range_end. */
13823 base = range_end;
13824 continue;
13825 }
13826
13827 if (!base.has_value ())
13828 {
13829 /* We have no valid base address for the ranges
13830 data. */
13831 complaint (_("Invalid .debug_ranges data (no base address)"));
13832 return 0;
13833 }
13834
13835 if (range_beginning > range_end)
13836 {
13837 /* Inverted range entries are invalid. */
13838 complaint (_("Invalid .debug_ranges data (inverted range)"));
13839 return 0;
13840 }
13841
13842 /* Empty range entries have no effect. */
13843 if (range_beginning == range_end)
13844 continue;
13845
13846 range_beginning += *base;
13847 range_end += *base;
13848
13849 /* A not-uncommon case of bad debug info.
13850 Don't pollute the addrmap with bad data. */
13851 if (range_beginning + baseaddr == 0
13852 && !dwarf2_per_objfile->has_section_at_zero)
13853 {
13854 complaint (_(".debug_ranges entry has start address of zero"
13855 " [in module %s]"), objfile_name (objfile));
13856 continue;
13857 }
13858
13859 callback (range_beginning, range_end);
13860 }
13861
13862 return 1;
13863 }
13864
13865 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13866 Return 1 if the attributes are present and valid, otherwise, return 0.
13867 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13868
13869 static int
13870 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13871 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13872 dwarf2_psymtab *ranges_pst)
13873 {
13874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13875 struct gdbarch *gdbarch = objfile->arch ();
13876 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13877 int low_set = 0;
13878 CORE_ADDR low = 0;
13879 CORE_ADDR high = 0;
13880 int retval;
13881
13882 retval = dwarf2_ranges_process (offset, cu,
13883 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13884 {
13885 if (ranges_pst != NULL)
13886 {
13887 CORE_ADDR lowpc;
13888 CORE_ADDR highpc;
13889
13890 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13891 range_beginning + baseaddr)
13892 - baseaddr);
13893 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13894 range_end + baseaddr)
13895 - baseaddr);
13896 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13897 lowpc, highpc - 1, ranges_pst);
13898 }
13899
13900 /* FIXME: This is recording everything as a low-high
13901 segment of consecutive addresses. We should have a
13902 data structure for discontiguous block ranges
13903 instead. */
13904 if (! low_set)
13905 {
13906 low = range_beginning;
13907 high = range_end;
13908 low_set = 1;
13909 }
13910 else
13911 {
13912 if (range_beginning < low)
13913 low = range_beginning;
13914 if (range_end > high)
13915 high = range_end;
13916 }
13917 });
13918 if (!retval)
13919 return 0;
13920
13921 if (! low_set)
13922 /* If the first entry is an end-of-list marker, the range
13923 describes an empty scope, i.e. no instructions. */
13924 return 0;
13925
13926 if (low_return)
13927 *low_return = low;
13928 if (high_return)
13929 *high_return = high;
13930 return 1;
13931 }
13932
13933 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13934 definition for the return value. *LOWPC and *HIGHPC are set iff
13935 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13936
13937 static enum pc_bounds_kind
13938 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13939 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13940 dwarf2_psymtab *pst)
13941 {
13942 struct dwarf2_per_objfile *dwarf2_per_objfile
13943 = cu->per_cu->dwarf2_per_objfile;
13944 struct attribute *attr;
13945 struct attribute *attr_high;
13946 CORE_ADDR low = 0;
13947 CORE_ADDR high = 0;
13948 enum pc_bounds_kind ret;
13949
13950 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13951 if (attr_high)
13952 {
13953 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13954 if (attr != nullptr)
13955 {
13956 low = attr->value_as_address ();
13957 high = attr_high->value_as_address ();
13958 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13959 high += low;
13960 }
13961 else
13962 /* Found high w/o low attribute. */
13963 return PC_BOUNDS_INVALID;
13964
13965 /* Found consecutive range of addresses. */
13966 ret = PC_BOUNDS_HIGH_LOW;
13967 }
13968 else
13969 {
13970 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13971 if (attr != NULL)
13972 {
13973 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13974 We take advantage of the fact that DW_AT_ranges does not appear
13975 in DW_TAG_compile_unit of DWO files. */
13976 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13977 unsigned int ranges_offset = (DW_UNSND (attr)
13978 + (need_ranges_base
13979 ? cu->ranges_base
13980 : 0));
13981
13982 /* Value of the DW_AT_ranges attribute is the offset in the
13983 .debug_ranges section. */
13984 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13985 return PC_BOUNDS_INVALID;
13986 /* Found discontinuous range of addresses. */
13987 ret = PC_BOUNDS_RANGES;
13988 }
13989 else
13990 return PC_BOUNDS_NOT_PRESENT;
13991 }
13992
13993 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13994 if (high <= low)
13995 return PC_BOUNDS_INVALID;
13996
13997 /* When using the GNU linker, .gnu.linkonce. sections are used to
13998 eliminate duplicate copies of functions and vtables and such.
13999 The linker will arbitrarily choose one and discard the others.
14000 The AT_*_pc values for such functions refer to local labels in
14001 these sections. If the section from that file was discarded, the
14002 labels are not in the output, so the relocs get a value of 0.
14003 If this is a discarded function, mark the pc bounds as invalid,
14004 so that GDB will ignore it. */
14005 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14006 return PC_BOUNDS_INVALID;
14007
14008 *lowpc = low;
14009 if (highpc)
14010 *highpc = high;
14011 return ret;
14012 }
14013
14014 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14015 its low and high PC addresses. Do nothing if these addresses could not
14016 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14017 and HIGHPC to the high address if greater than HIGHPC. */
14018
14019 static void
14020 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14021 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14022 struct dwarf2_cu *cu)
14023 {
14024 CORE_ADDR low, high;
14025 struct die_info *child = die->child;
14026
14027 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14028 {
14029 *lowpc = std::min (*lowpc, low);
14030 *highpc = std::max (*highpc, high);
14031 }
14032
14033 /* If the language does not allow nested subprograms (either inside
14034 subprograms or lexical blocks), we're done. */
14035 if (cu->language != language_ada)
14036 return;
14037
14038 /* Check all the children of the given DIE. If it contains nested
14039 subprograms, then check their pc bounds. Likewise, we need to
14040 check lexical blocks as well, as they may also contain subprogram
14041 definitions. */
14042 while (child && child->tag)
14043 {
14044 if (child->tag == DW_TAG_subprogram
14045 || child->tag == DW_TAG_lexical_block)
14046 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14047 child = child->sibling;
14048 }
14049 }
14050
14051 /* Get the low and high pc's represented by the scope DIE, and store
14052 them in *LOWPC and *HIGHPC. If the correct values can't be
14053 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14054
14055 static void
14056 get_scope_pc_bounds (struct die_info *die,
14057 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14058 struct dwarf2_cu *cu)
14059 {
14060 CORE_ADDR best_low = (CORE_ADDR) -1;
14061 CORE_ADDR best_high = (CORE_ADDR) 0;
14062 CORE_ADDR current_low, current_high;
14063
14064 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14065 >= PC_BOUNDS_RANGES)
14066 {
14067 best_low = current_low;
14068 best_high = current_high;
14069 }
14070 else
14071 {
14072 struct die_info *child = die->child;
14073
14074 while (child && child->tag)
14075 {
14076 switch (child->tag) {
14077 case DW_TAG_subprogram:
14078 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14079 break;
14080 case DW_TAG_namespace:
14081 case DW_TAG_module:
14082 /* FIXME: carlton/2004-01-16: Should we do this for
14083 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14084 that current GCC's always emit the DIEs corresponding
14085 to definitions of methods of classes as children of a
14086 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14087 the DIEs giving the declarations, which could be
14088 anywhere). But I don't see any reason why the
14089 standards says that they have to be there. */
14090 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14091
14092 if (current_low != ((CORE_ADDR) -1))
14093 {
14094 best_low = std::min (best_low, current_low);
14095 best_high = std::max (best_high, current_high);
14096 }
14097 break;
14098 default:
14099 /* Ignore. */
14100 break;
14101 }
14102
14103 child = child->sibling;
14104 }
14105 }
14106
14107 *lowpc = best_low;
14108 *highpc = best_high;
14109 }
14110
14111 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14112 in DIE. */
14113
14114 static void
14115 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14116 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14117 {
14118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14119 struct gdbarch *gdbarch = objfile->arch ();
14120 struct attribute *attr;
14121 struct attribute *attr_high;
14122
14123 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14124 if (attr_high)
14125 {
14126 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14127 if (attr != nullptr)
14128 {
14129 CORE_ADDR low = attr->value_as_address ();
14130 CORE_ADDR high = attr_high->value_as_address ();
14131
14132 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14133 high += low;
14134
14135 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14136 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14137 cu->get_builder ()->record_block_range (block, low, high - 1);
14138 }
14139 }
14140
14141 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14142 if (attr != nullptr)
14143 {
14144 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14145 We take advantage of the fact that DW_AT_ranges does not appear
14146 in DW_TAG_compile_unit of DWO files. */
14147 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14148
14149 /* The value of the DW_AT_ranges attribute is the offset of the
14150 address range list in the .debug_ranges section. */
14151 unsigned long offset = (DW_UNSND (attr)
14152 + (need_ranges_base ? cu->ranges_base : 0));
14153
14154 std::vector<blockrange> blockvec;
14155 dwarf2_ranges_process (offset, cu,
14156 [&] (CORE_ADDR start, CORE_ADDR end)
14157 {
14158 start += baseaddr;
14159 end += baseaddr;
14160 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14161 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14162 cu->get_builder ()->record_block_range (block, start, end - 1);
14163 blockvec.emplace_back (start, end);
14164 });
14165
14166 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14167 }
14168 }
14169
14170 /* Check whether the producer field indicates either of GCC < 4.6, or the
14171 Intel C/C++ compiler, and cache the result in CU. */
14172
14173 static void
14174 check_producer (struct dwarf2_cu *cu)
14175 {
14176 int major, minor;
14177
14178 if (cu->producer == NULL)
14179 {
14180 /* For unknown compilers expect their behavior is DWARF version
14181 compliant.
14182
14183 GCC started to support .debug_types sections by -gdwarf-4 since
14184 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14185 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14186 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14187 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14188 }
14189 else if (producer_is_gcc (cu->producer, &major, &minor))
14190 {
14191 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14192 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14193 }
14194 else if (producer_is_icc (cu->producer, &major, &minor))
14195 {
14196 cu->producer_is_icc = true;
14197 cu->producer_is_icc_lt_14 = major < 14;
14198 }
14199 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14200 cu->producer_is_codewarrior = true;
14201 else
14202 {
14203 /* For other non-GCC compilers, expect their behavior is DWARF version
14204 compliant. */
14205 }
14206
14207 cu->checked_producer = true;
14208 }
14209
14210 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14211 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14212 during 4.6.0 experimental. */
14213
14214 static bool
14215 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14216 {
14217 if (!cu->checked_producer)
14218 check_producer (cu);
14219
14220 return cu->producer_is_gxx_lt_4_6;
14221 }
14222
14223
14224 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14225 with incorrect is_stmt attributes. */
14226
14227 static bool
14228 producer_is_codewarrior (struct dwarf2_cu *cu)
14229 {
14230 if (!cu->checked_producer)
14231 check_producer (cu);
14232
14233 return cu->producer_is_codewarrior;
14234 }
14235
14236 /* Return the default accessibility type if it is not overridden by
14237 DW_AT_accessibility. */
14238
14239 static enum dwarf_access_attribute
14240 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14241 {
14242 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14243 {
14244 /* The default DWARF 2 accessibility for members is public, the default
14245 accessibility for inheritance is private. */
14246
14247 if (die->tag != DW_TAG_inheritance)
14248 return DW_ACCESS_public;
14249 else
14250 return DW_ACCESS_private;
14251 }
14252 else
14253 {
14254 /* DWARF 3+ defines the default accessibility a different way. The same
14255 rules apply now for DW_TAG_inheritance as for the members and it only
14256 depends on the container kind. */
14257
14258 if (die->parent->tag == DW_TAG_class_type)
14259 return DW_ACCESS_private;
14260 else
14261 return DW_ACCESS_public;
14262 }
14263 }
14264
14265 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14266 offset. If the attribute was not found return 0, otherwise return
14267 1. If it was found but could not properly be handled, set *OFFSET
14268 to 0. */
14269
14270 static int
14271 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14272 LONGEST *offset)
14273 {
14274 struct attribute *attr;
14275
14276 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14277 if (attr != NULL)
14278 {
14279 *offset = 0;
14280
14281 /* Note that we do not check for a section offset first here.
14282 This is because DW_AT_data_member_location is new in DWARF 4,
14283 so if we see it, we can assume that a constant form is really
14284 a constant and not a section offset. */
14285 if (attr->form_is_constant ())
14286 *offset = attr->constant_value (0);
14287 else if (attr->form_is_section_offset ())
14288 dwarf2_complex_location_expr_complaint ();
14289 else if (attr->form_is_block ())
14290 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14291 else
14292 dwarf2_complex_location_expr_complaint ();
14293
14294 return 1;
14295 }
14296
14297 return 0;
14298 }
14299
14300 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14301
14302 static void
14303 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14304 struct field *field)
14305 {
14306 struct attribute *attr;
14307
14308 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14309 if (attr != NULL)
14310 {
14311 if (attr->form_is_constant ())
14312 {
14313 LONGEST offset = attr->constant_value (0);
14314 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14315 }
14316 else if (attr->form_is_section_offset ())
14317 dwarf2_complex_location_expr_complaint ();
14318 else if (attr->form_is_block ())
14319 {
14320 bool handled;
14321 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14322 if (handled)
14323 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14324 else
14325 {
14326 struct objfile *objfile
14327 = cu->per_cu->dwarf2_per_objfile->objfile;
14328 struct dwarf2_locexpr_baton *dlbaton
14329 = XOBNEW (&objfile->objfile_obstack,
14330 struct dwarf2_locexpr_baton);
14331 dlbaton->data = DW_BLOCK (attr)->data;
14332 dlbaton->size = DW_BLOCK (attr)->size;
14333 /* When using this baton, we want to compute the address
14334 of the field, not the value. This is why
14335 is_reference is set to false here. */
14336 dlbaton->is_reference = false;
14337 dlbaton->per_cu = cu->per_cu;
14338
14339 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14340 }
14341 }
14342 else
14343 dwarf2_complex_location_expr_complaint ();
14344 }
14345 }
14346
14347 /* Add an aggregate field to the field list. */
14348
14349 static void
14350 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14351 struct dwarf2_cu *cu)
14352 {
14353 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14354 struct gdbarch *gdbarch = objfile->arch ();
14355 struct nextfield *new_field;
14356 struct attribute *attr;
14357 struct field *fp;
14358 const char *fieldname = "";
14359
14360 if (die->tag == DW_TAG_inheritance)
14361 {
14362 fip->baseclasses.emplace_back ();
14363 new_field = &fip->baseclasses.back ();
14364 }
14365 else
14366 {
14367 fip->fields.emplace_back ();
14368 new_field = &fip->fields.back ();
14369 }
14370
14371 new_field->offset = die->sect_off;
14372
14373 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14374 if (attr != nullptr)
14375 new_field->accessibility = DW_UNSND (attr);
14376 else
14377 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14378 if (new_field->accessibility != DW_ACCESS_public)
14379 fip->non_public_fields = 1;
14380
14381 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14382 if (attr != nullptr)
14383 new_field->virtuality = DW_UNSND (attr);
14384 else
14385 new_field->virtuality = DW_VIRTUALITY_none;
14386
14387 fp = &new_field->field;
14388
14389 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14390 {
14391 /* Data member other than a C++ static data member. */
14392
14393 /* Get type of field. */
14394 fp->type = die_type (die, cu);
14395
14396 SET_FIELD_BITPOS (*fp, 0);
14397
14398 /* Get bit size of field (zero if none). */
14399 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14400 if (attr != nullptr)
14401 {
14402 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14403 }
14404 else
14405 {
14406 FIELD_BITSIZE (*fp) = 0;
14407 }
14408
14409 /* Get bit offset of field. */
14410 handle_data_member_location (die, cu, fp);
14411 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14412 if (attr != nullptr)
14413 {
14414 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14415 {
14416 /* For big endian bits, the DW_AT_bit_offset gives the
14417 additional bit offset from the MSB of the containing
14418 anonymous object to the MSB of the field. We don't
14419 have to do anything special since we don't need to
14420 know the size of the anonymous object. */
14421 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14422 }
14423 else
14424 {
14425 /* For little endian bits, compute the bit offset to the
14426 MSB of the anonymous object, subtract off the number of
14427 bits from the MSB of the field to the MSB of the
14428 object, and then subtract off the number of bits of
14429 the field itself. The result is the bit offset of
14430 the LSB of the field. */
14431 int anonymous_size;
14432 int bit_offset = DW_UNSND (attr);
14433
14434 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14435 if (attr != nullptr)
14436 {
14437 /* The size of the anonymous object containing
14438 the bit field is explicit, so use the
14439 indicated size (in bytes). */
14440 anonymous_size = DW_UNSND (attr);
14441 }
14442 else
14443 {
14444 /* The size of the anonymous object containing
14445 the bit field must be inferred from the type
14446 attribute of the data member containing the
14447 bit field. */
14448 anonymous_size = TYPE_LENGTH (fp->type);
14449 }
14450 SET_FIELD_BITPOS (*fp,
14451 (FIELD_BITPOS (*fp)
14452 + anonymous_size * bits_per_byte
14453 - bit_offset - FIELD_BITSIZE (*fp)));
14454 }
14455 }
14456 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14457 if (attr != NULL)
14458 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14459 + attr->constant_value (0)));
14460
14461 /* Get name of field. */
14462 fieldname = dwarf2_name (die, cu);
14463 if (fieldname == NULL)
14464 fieldname = "";
14465
14466 /* The name is already allocated along with this objfile, so we don't
14467 need to duplicate it for the type. */
14468 fp->name = fieldname;
14469
14470 /* Change accessibility for artificial fields (e.g. virtual table
14471 pointer or virtual base class pointer) to private. */
14472 if (dwarf2_attr (die, DW_AT_artificial, cu))
14473 {
14474 FIELD_ARTIFICIAL (*fp) = 1;
14475 new_field->accessibility = DW_ACCESS_private;
14476 fip->non_public_fields = 1;
14477 }
14478 }
14479 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14480 {
14481 /* C++ static member. */
14482
14483 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14484 is a declaration, but all versions of G++ as of this writing
14485 (so through at least 3.2.1) incorrectly generate
14486 DW_TAG_variable tags. */
14487
14488 const char *physname;
14489
14490 /* Get name of field. */
14491 fieldname = dwarf2_name (die, cu);
14492 if (fieldname == NULL)
14493 return;
14494
14495 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14496 if (attr
14497 /* Only create a symbol if this is an external value.
14498 new_symbol checks this and puts the value in the global symbol
14499 table, which we want. If it is not external, new_symbol
14500 will try to put the value in cu->list_in_scope which is wrong. */
14501 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14502 {
14503 /* A static const member, not much different than an enum as far as
14504 we're concerned, except that we can support more types. */
14505 new_symbol (die, NULL, cu);
14506 }
14507
14508 /* Get physical name. */
14509 physname = dwarf2_physname (fieldname, die, cu);
14510
14511 /* The name is already allocated along with this objfile, so we don't
14512 need to duplicate it for the type. */
14513 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14514 FIELD_TYPE (*fp) = die_type (die, cu);
14515 FIELD_NAME (*fp) = fieldname;
14516 }
14517 else if (die->tag == DW_TAG_inheritance)
14518 {
14519 /* C++ base class field. */
14520 handle_data_member_location (die, cu, fp);
14521 FIELD_BITSIZE (*fp) = 0;
14522 FIELD_TYPE (*fp) = die_type (die, cu);
14523 FIELD_NAME (*fp) = fp->type->name ();
14524 }
14525 else
14526 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14527 }
14528
14529 /* Can the type given by DIE define another type? */
14530
14531 static bool
14532 type_can_define_types (const struct die_info *die)
14533 {
14534 switch (die->tag)
14535 {
14536 case DW_TAG_typedef:
14537 case DW_TAG_class_type:
14538 case DW_TAG_structure_type:
14539 case DW_TAG_union_type:
14540 case DW_TAG_enumeration_type:
14541 return true;
14542
14543 default:
14544 return false;
14545 }
14546 }
14547
14548 /* Add a type definition defined in the scope of the FIP's class. */
14549
14550 static void
14551 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14552 struct dwarf2_cu *cu)
14553 {
14554 struct decl_field fp;
14555 memset (&fp, 0, sizeof (fp));
14556
14557 gdb_assert (type_can_define_types (die));
14558
14559 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14560 fp.name = dwarf2_name (die, cu);
14561 fp.type = read_type_die (die, cu);
14562
14563 /* Save accessibility. */
14564 enum dwarf_access_attribute accessibility;
14565 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14566 if (attr != NULL)
14567 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14568 else
14569 accessibility = dwarf2_default_access_attribute (die, cu);
14570 switch (accessibility)
14571 {
14572 case DW_ACCESS_public:
14573 /* The assumed value if neither private nor protected. */
14574 break;
14575 case DW_ACCESS_private:
14576 fp.is_private = 1;
14577 break;
14578 case DW_ACCESS_protected:
14579 fp.is_protected = 1;
14580 break;
14581 default:
14582 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14583 }
14584
14585 if (die->tag == DW_TAG_typedef)
14586 fip->typedef_field_list.push_back (fp);
14587 else
14588 fip->nested_types_list.push_back (fp);
14589 }
14590
14591 /* A convenience typedef that's used when finding the discriminant
14592 field for a variant part. */
14593 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14594 offset_map_type;
14595
14596 /* Compute the discriminant range for a given variant. OBSTACK is
14597 where the results will be stored. VARIANT is the variant to
14598 process. IS_UNSIGNED indicates whether the discriminant is signed
14599 or unsigned. */
14600
14601 static const gdb::array_view<discriminant_range>
14602 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14603 bool is_unsigned)
14604 {
14605 std::vector<discriminant_range> ranges;
14606
14607 if (variant.default_branch)
14608 return {};
14609
14610 if (variant.discr_list_data == nullptr)
14611 {
14612 discriminant_range r
14613 = {variant.discriminant_value, variant.discriminant_value};
14614 ranges.push_back (r);
14615 }
14616 else
14617 {
14618 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14619 variant.discr_list_data->size);
14620 while (!data.empty ())
14621 {
14622 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14623 {
14624 complaint (_("invalid discriminant marker: %d"), data[0]);
14625 break;
14626 }
14627 bool is_range = data[0] == DW_DSC_range;
14628 data = data.slice (1);
14629
14630 ULONGEST low, high;
14631 unsigned int bytes_read;
14632
14633 if (data.empty ())
14634 {
14635 complaint (_("DW_AT_discr_list missing low value"));
14636 break;
14637 }
14638 if (is_unsigned)
14639 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14640 else
14641 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14642 &bytes_read);
14643 data = data.slice (bytes_read);
14644
14645 if (is_range)
14646 {
14647 if (data.empty ())
14648 {
14649 complaint (_("DW_AT_discr_list missing high value"));
14650 break;
14651 }
14652 if (is_unsigned)
14653 high = read_unsigned_leb128 (nullptr, data.data (),
14654 &bytes_read);
14655 else
14656 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14657 &bytes_read);
14658 data = data.slice (bytes_read);
14659 }
14660 else
14661 high = low;
14662
14663 ranges.push_back ({ low, high });
14664 }
14665 }
14666
14667 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14668 ranges.size ());
14669 std::copy (ranges.begin (), ranges.end (), result);
14670 return gdb::array_view<discriminant_range> (result, ranges.size ());
14671 }
14672
14673 static const gdb::array_view<variant_part> create_variant_parts
14674 (struct obstack *obstack,
14675 const offset_map_type &offset_map,
14676 struct field_info *fi,
14677 const std::vector<variant_part_builder> &variant_parts);
14678
14679 /* Fill in a "struct variant" for a given variant field. RESULT is
14680 the variant to fill in. OBSTACK is where any needed allocations
14681 will be done. OFFSET_MAP holds the mapping from section offsets to
14682 fields for the type. FI describes the fields of the type we're
14683 processing. FIELD is the variant field we're converting. */
14684
14685 static void
14686 create_one_variant (variant &result, struct obstack *obstack,
14687 const offset_map_type &offset_map,
14688 struct field_info *fi, const variant_field &field)
14689 {
14690 result.discriminants = convert_variant_range (obstack, field, false);
14691 result.first_field = field.first_field + fi->baseclasses.size ();
14692 result.last_field = field.last_field + fi->baseclasses.size ();
14693 result.parts = create_variant_parts (obstack, offset_map, fi,
14694 field.variant_parts);
14695 }
14696
14697 /* Fill in a "struct variant_part" for a given variant part. RESULT
14698 is the variant part to fill in. OBSTACK is where any needed
14699 allocations will be done. OFFSET_MAP holds the mapping from
14700 section offsets to fields for the type. FI describes the fields of
14701 the type we're processing. BUILDER is the variant part to be
14702 converted. */
14703
14704 static void
14705 create_one_variant_part (variant_part &result,
14706 struct obstack *obstack,
14707 const offset_map_type &offset_map,
14708 struct field_info *fi,
14709 const variant_part_builder &builder)
14710 {
14711 auto iter = offset_map.find (builder.discriminant_offset);
14712 if (iter == offset_map.end ())
14713 {
14714 result.discriminant_index = -1;
14715 /* Doesn't matter. */
14716 result.is_unsigned = false;
14717 }
14718 else
14719 {
14720 result.discriminant_index = iter->second;
14721 result.is_unsigned
14722 = TYPE_UNSIGNED (FIELD_TYPE
14723 (fi->fields[result.discriminant_index].field));
14724 }
14725
14726 size_t n = builder.variants.size ();
14727 variant *output = new (obstack) variant[n];
14728 for (size_t i = 0; i < n; ++i)
14729 create_one_variant (output[i], obstack, offset_map, fi,
14730 builder.variants[i]);
14731
14732 result.variants = gdb::array_view<variant> (output, n);
14733 }
14734
14735 /* Create a vector of variant parts that can be attached to a type.
14736 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14737 holds the mapping from section offsets to fields for the type. FI
14738 describes the fields of the type we're processing. VARIANT_PARTS
14739 is the vector to convert. */
14740
14741 static const gdb::array_view<variant_part>
14742 create_variant_parts (struct obstack *obstack,
14743 const offset_map_type &offset_map,
14744 struct field_info *fi,
14745 const std::vector<variant_part_builder> &variant_parts)
14746 {
14747 if (variant_parts.empty ())
14748 return {};
14749
14750 size_t n = variant_parts.size ();
14751 variant_part *result = new (obstack) variant_part[n];
14752 for (size_t i = 0; i < n; ++i)
14753 create_one_variant_part (result[i], obstack, offset_map, fi,
14754 variant_parts[i]);
14755
14756 return gdb::array_view<variant_part> (result, n);
14757 }
14758
14759 /* Compute the variant part vector for FIP, attaching it to TYPE when
14760 done. */
14761
14762 static void
14763 add_variant_property (struct field_info *fip, struct type *type,
14764 struct dwarf2_cu *cu)
14765 {
14766 /* Map section offsets of fields to their field index. Note the
14767 field index here does not take the number of baseclasses into
14768 account. */
14769 offset_map_type offset_map;
14770 for (int i = 0; i < fip->fields.size (); ++i)
14771 offset_map[fip->fields[i].offset] = i;
14772
14773 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14774 gdb::array_view<variant_part> parts
14775 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14776 fip->variant_parts);
14777
14778 struct dynamic_prop prop;
14779 prop.kind = PROP_VARIANT_PARTS;
14780 prop.data.variant_parts
14781 = ((gdb::array_view<variant_part> *)
14782 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14783
14784 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14785 }
14786
14787 /* Create the vector of fields, and attach it to the type. */
14788
14789 static void
14790 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14791 struct dwarf2_cu *cu)
14792 {
14793 int nfields = fip->nfields ();
14794
14795 /* Record the field count, allocate space for the array of fields,
14796 and create blank accessibility bitfields if necessary. */
14797 type->set_num_fields (nfields);
14798 type->set_fields
14799 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
14800
14801 if (fip->non_public_fields && cu->language != language_ada)
14802 {
14803 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14804
14805 TYPE_FIELD_PRIVATE_BITS (type) =
14806 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14807 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14808
14809 TYPE_FIELD_PROTECTED_BITS (type) =
14810 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14811 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14812
14813 TYPE_FIELD_IGNORE_BITS (type) =
14814 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14815 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14816 }
14817
14818 /* If the type has baseclasses, allocate and clear a bit vector for
14819 TYPE_FIELD_VIRTUAL_BITS. */
14820 if (!fip->baseclasses.empty () && cu->language != language_ada)
14821 {
14822 int num_bytes = B_BYTES (fip->baseclasses.size ());
14823 unsigned char *pointer;
14824
14825 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14826 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14827 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14828 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14829 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14830 }
14831
14832 if (!fip->variant_parts.empty ())
14833 add_variant_property (fip, type, cu);
14834
14835 /* Copy the saved-up fields into the field vector. */
14836 for (int i = 0; i < nfields; ++i)
14837 {
14838 struct nextfield &field
14839 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14840 : fip->fields[i - fip->baseclasses.size ()]);
14841
14842 type->field (i) = field.field;
14843 switch (field.accessibility)
14844 {
14845 case DW_ACCESS_private:
14846 if (cu->language != language_ada)
14847 SET_TYPE_FIELD_PRIVATE (type, i);
14848 break;
14849
14850 case DW_ACCESS_protected:
14851 if (cu->language != language_ada)
14852 SET_TYPE_FIELD_PROTECTED (type, i);
14853 break;
14854
14855 case DW_ACCESS_public:
14856 break;
14857
14858 default:
14859 /* Unknown accessibility. Complain and treat it as public. */
14860 {
14861 complaint (_("unsupported accessibility %d"),
14862 field.accessibility);
14863 }
14864 break;
14865 }
14866 if (i < fip->baseclasses.size ())
14867 {
14868 switch (field.virtuality)
14869 {
14870 case DW_VIRTUALITY_virtual:
14871 case DW_VIRTUALITY_pure_virtual:
14872 if (cu->language == language_ada)
14873 error (_("unexpected virtuality in component of Ada type"));
14874 SET_TYPE_FIELD_VIRTUAL (type, i);
14875 break;
14876 }
14877 }
14878 }
14879 }
14880
14881 /* Return true if this member function is a constructor, false
14882 otherwise. */
14883
14884 static int
14885 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14886 {
14887 const char *fieldname;
14888 const char *type_name;
14889 int len;
14890
14891 if (die->parent == NULL)
14892 return 0;
14893
14894 if (die->parent->tag != DW_TAG_structure_type
14895 && die->parent->tag != DW_TAG_union_type
14896 && die->parent->tag != DW_TAG_class_type)
14897 return 0;
14898
14899 fieldname = dwarf2_name (die, cu);
14900 type_name = dwarf2_name (die->parent, cu);
14901 if (fieldname == NULL || type_name == NULL)
14902 return 0;
14903
14904 len = strlen (fieldname);
14905 return (strncmp (fieldname, type_name, len) == 0
14906 && (type_name[len] == '\0' || type_name[len] == '<'));
14907 }
14908
14909 /* Check if the given VALUE is a recognized enum
14910 dwarf_defaulted_attribute constant according to DWARF5 spec,
14911 Table 7.24. */
14912
14913 static bool
14914 is_valid_DW_AT_defaulted (ULONGEST value)
14915 {
14916 switch (value)
14917 {
14918 case DW_DEFAULTED_no:
14919 case DW_DEFAULTED_in_class:
14920 case DW_DEFAULTED_out_of_class:
14921 return true;
14922 }
14923
14924 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14925 return false;
14926 }
14927
14928 /* Add a member function to the proper fieldlist. */
14929
14930 static void
14931 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14932 struct type *type, struct dwarf2_cu *cu)
14933 {
14934 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14935 struct attribute *attr;
14936 int i;
14937 struct fnfieldlist *flp = nullptr;
14938 struct fn_field *fnp;
14939 const char *fieldname;
14940 struct type *this_type;
14941 enum dwarf_access_attribute accessibility;
14942
14943 if (cu->language == language_ada)
14944 error (_("unexpected member function in Ada type"));
14945
14946 /* Get name of member function. */
14947 fieldname = dwarf2_name (die, cu);
14948 if (fieldname == NULL)
14949 return;
14950
14951 /* Look up member function name in fieldlist. */
14952 for (i = 0; i < fip->fnfieldlists.size (); i++)
14953 {
14954 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14955 {
14956 flp = &fip->fnfieldlists[i];
14957 break;
14958 }
14959 }
14960
14961 /* Create a new fnfieldlist if necessary. */
14962 if (flp == nullptr)
14963 {
14964 fip->fnfieldlists.emplace_back ();
14965 flp = &fip->fnfieldlists.back ();
14966 flp->name = fieldname;
14967 i = fip->fnfieldlists.size () - 1;
14968 }
14969
14970 /* Create a new member function field and add it to the vector of
14971 fnfieldlists. */
14972 flp->fnfields.emplace_back ();
14973 fnp = &flp->fnfields.back ();
14974
14975 /* Delay processing of the physname until later. */
14976 if (cu->language == language_cplus)
14977 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14978 die, cu);
14979 else
14980 {
14981 const char *physname = dwarf2_physname (fieldname, die, cu);
14982 fnp->physname = physname ? physname : "";
14983 }
14984
14985 fnp->type = alloc_type (objfile);
14986 this_type = read_type_die (die, cu);
14987 if (this_type && this_type->code () == TYPE_CODE_FUNC)
14988 {
14989 int nparams = this_type->num_fields ();
14990
14991 /* TYPE is the domain of this method, and THIS_TYPE is the type
14992 of the method itself (TYPE_CODE_METHOD). */
14993 smash_to_method_type (fnp->type, type,
14994 TYPE_TARGET_TYPE (this_type),
14995 this_type->fields (),
14996 this_type->num_fields (),
14997 TYPE_VARARGS (this_type));
14998
14999 /* Handle static member functions.
15000 Dwarf2 has no clean way to discern C++ static and non-static
15001 member functions. G++ helps GDB by marking the first
15002 parameter for non-static member functions (which is the this
15003 pointer) as artificial. We obtain this information from
15004 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15005 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15006 fnp->voffset = VOFFSET_STATIC;
15007 }
15008 else
15009 complaint (_("member function type missing for '%s'"),
15010 dwarf2_full_name (fieldname, die, cu));
15011
15012 /* Get fcontext from DW_AT_containing_type if present. */
15013 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15014 fnp->fcontext = die_containing_type (die, cu);
15015
15016 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15017 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15018
15019 /* Get accessibility. */
15020 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15021 if (attr != nullptr)
15022 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15023 else
15024 accessibility = dwarf2_default_access_attribute (die, cu);
15025 switch (accessibility)
15026 {
15027 case DW_ACCESS_private:
15028 fnp->is_private = 1;
15029 break;
15030 case DW_ACCESS_protected:
15031 fnp->is_protected = 1;
15032 break;
15033 }
15034
15035 /* Check for artificial methods. */
15036 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15037 if (attr && DW_UNSND (attr) != 0)
15038 fnp->is_artificial = 1;
15039
15040 /* Check for defaulted methods. */
15041 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15042 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15043 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15044
15045 /* Check for deleted methods. */
15046 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15047 if (attr != nullptr && DW_UNSND (attr) != 0)
15048 fnp->is_deleted = 1;
15049
15050 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15051
15052 /* Get index in virtual function table if it is a virtual member
15053 function. For older versions of GCC, this is an offset in the
15054 appropriate virtual table, as specified by DW_AT_containing_type.
15055 For everyone else, it is an expression to be evaluated relative
15056 to the object address. */
15057
15058 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15059 if (attr != nullptr)
15060 {
15061 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15062 {
15063 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15064 {
15065 /* Old-style GCC. */
15066 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15067 }
15068 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15069 || (DW_BLOCK (attr)->size > 1
15070 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15071 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15072 {
15073 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15074 if ((fnp->voffset % cu->header.addr_size) != 0)
15075 dwarf2_complex_location_expr_complaint ();
15076 else
15077 fnp->voffset /= cu->header.addr_size;
15078 fnp->voffset += 2;
15079 }
15080 else
15081 dwarf2_complex_location_expr_complaint ();
15082
15083 if (!fnp->fcontext)
15084 {
15085 /* If there is no `this' field and no DW_AT_containing_type,
15086 we cannot actually find a base class context for the
15087 vtable! */
15088 if (this_type->num_fields () == 0
15089 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15090 {
15091 complaint (_("cannot determine context for virtual member "
15092 "function \"%s\" (offset %s)"),
15093 fieldname, sect_offset_str (die->sect_off));
15094 }
15095 else
15096 {
15097 fnp->fcontext
15098 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15099 }
15100 }
15101 }
15102 else if (attr->form_is_section_offset ())
15103 {
15104 dwarf2_complex_location_expr_complaint ();
15105 }
15106 else
15107 {
15108 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15109 fieldname);
15110 }
15111 }
15112 else
15113 {
15114 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15115 if (attr && DW_UNSND (attr))
15116 {
15117 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15118 complaint (_("Member function \"%s\" (offset %s) is virtual "
15119 "but the vtable offset is not specified"),
15120 fieldname, sect_offset_str (die->sect_off));
15121 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15122 TYPE_CPLUS_DYNAMIC (type) = 1;
15123 }
15124 }
15125 }
15126
15127 /* Create the vector of member function fields, and attach it to the type. */
15128
15129 static void
15130 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15131 struct dwarf2_cu *cu)
15132 {
15133 if (cu->language == language_ada)
15134 error (_("unexpected member functions in Ada type"));
15135
15136 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15137 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15138 TYPE_ALLOC (type,
15139 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15140
15141 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15142 {
15143 struct fnfieldlist &nf = fip->fnfieldlists[i];
15144 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15145
15146 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15147 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15148 fn_flp->fn_fields = (struct fn_field *)
15149 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15150
15151 for (int k = 0; k < nf.fnfields.size (); ++k)
15152 fn_flp->fn_fields[k] = nf.fnfields[k];
15153 }
15154
15155 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15156 }
15157
15158 /* Returns non-zero if NAME is the name of a vtable member in CU's
15159 language, zero otherwise. */
15160 static int
15161 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15162 {
15163 static const char vptr[] = "_vptr";
15164
15165 /* Look for the C++ form of the vtable. */
15166 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15167 return 1;
15168
15169 return 0;
15170 }
15171
15172 /* GCC outputs unnamed structures that are really pointers to member
15173 functions, with the ABI-specified layout. If TYPE describes
15174 such a structure, smash it into a member function type.
15175
15176 GCC shouldn't do this; it should just output pointer to member DIEs.
15177 This is GCC PR debug/28767. */
15178
15179 static void
15180 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15181 {
15182 struct type *pfn_type, *self_type, *new_type;
15183
15184 /* Check for a structure with no name and two children. */
15185 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15186 return;
15187
15188 /* Check for __pfn and __delta members. */
15189 if (TYPE_FIELD_NAME (type, 0) == NULL
15190 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15191 || TYPE_FIELD_NAME (type, 1) == NULL
15192 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15193 return;
15194
15195 /* Find the type of the method. */
15196 pfn_type = TYPE_FIELD_TYPE (type, 0);
15197 if (pfn_type == NULL
15198 || pfn_type->code () != TYPE_CODE_PTR
15199 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15200 return;
15201
15202 /* Look for the "this" argument. */
15203 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15204 if (pfn_type->num_fields () == 0
15205 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15206 || TYPE_FIELD_TYPE (pfn_type, 0)->code () != TYPE_CODE_PTR)
15207 return;
15208
15209 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15210 new_type = alloc_type (objfile);
15211 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15212 pfn_type->fields (), pfn_type->num_fields (),
15213 TYPE_VARARGS (pfn_type));
15214 smash_to_methodptr_type (type, new_type);
15215 }
15216
15217 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15218 appropriate error checking and issuing complaints if there is a
15219 problem. */
15220
15221 static ULONGEST
15222 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15223 {
15224 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15225
15226 if (attr == nullptr)
15227 return 0;
15228
15229 if (!attr->form_is_constant ())
15230 {
15231 complaint (_("DW_AT_alignment must have constant form"
15232 " - DIE at %s [in module %s]"),
15233 sect_offset_str (die->sect_off),
15234 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15235 return 0;
15236 }
15237
15238 ULONGEST align;
15239 if (attr->form == DW_FORM_sdata)
15240 {
15241 LONGEST val = DW_SND (attr);
15242 if (val < 0)
15243 {
15244 complaint (_("DW_AT_alignment value must not be negative"
15245 " - DIE at %s [in module %s]"),
15246 sect_offset_str (die->sect_off),
15247 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15248 return 0;
15249 }
15250 align = val;
15251 }
15252 else
15253 align = DW_UNSND (attr);
15254
15255 if (align == 0)
15256 {
15257 complaint (_("DW_AT_alignment value must not be zero"
15258 " - DIE at %s [in module %s]"),
15259 sect_offset_str (die->sect_off),
15260 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15261 return 0;
15262 }
15263 if ((align & (align - 1)) != 0)
15264 {
15265 complaint (_("DW_AT_alignment value must be a power of 2"
15266 " - DIE at %s [in module %s]"),
15267 sect_offset_str (die->sect_off),
15268 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15269 return 0;
15270 }
15271
15272 return align;
15273 }
15274
15275 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15276 the alignment for TYPE. */
15277
15278 static void
15279 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15280 struct type *type)
15281 {
15282 if (!set_type_align (type, get_alignment (cu, die)))
15283 complaint (_("DW_AT_alignment value too large"
15284 " - DIE at %s [in module %s]"),
15285 sect_offset_str (die->sect_off),
15286 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15287 }
15288
15289 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15290 constant for a type, according to DWARF5 spec, Table 5.5. */
15291
15292 static bool
15293 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15294 {
15295 switch (value)
15296 {
15297 case DW_CC_normal:
15298 case DW_CC_pass_by_reference:
15299 case DW_CC_pass_by_value:
15300 return true;
15301
15302 default:
15303 complaint (_("unrecognized DW_AT_calling_convention value "
15304 "(%s) for a type"), pulongest (value));
15305 return false;
15306 }
15307 }
15308
15309 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15310 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15311 also according to GNU-specific values (see include/dwarf2.h). */
15312
15313 static bool
15314 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15315 {
15316 switch (value)
15317 {
15318 case DW_CC_normal:
15319 case DW_CC_program:
15320 case DW_CC_nocall:
15321 return true;
15322
15323 case DW_CC_GNU_renesas_sh:
15324 case DW_CC_GNU_borland_fastcall_i386:
15325 case DW_CC_GDB_IBM_OpenCL:
15326 return true;
15327
15328 default:
15329 complaint (_("unrecognized DW_AT_calling_convention value "
15330 "(%s) for a subroutine"), pulongest (value));
15331 return false;
15332 }
15333 }
15334
15335 /* Called when we find the DIE that starts a structure or union scope
15336 (definition) to create a type for the structure or union. Fill in
15337 the type's name and general properties; the members will not be
15338 processed until process_structure_scope. A symbol table entry for
15339 the type will also not be done until process_structure_scope (assuming
15340 the type has a name).
15341
15342 NOTE: we need to call these functions regardless of whether or not the
15343 DIE has a DW_AT_name attribute, since it might be an anonymous
15344 structure or union. This gets the type entered into our set of
15345 user defined types. */
15346
15347 static struct type *
15348 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15349 {
15350 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15351 struct type *type;
15352 struct attribute *attr;
15353 const char *name;
15354
15355 /* If the definition of this type lives in .debug_types, read that type.
15356 Don't follow DW_AT_specification though, that will take us back up
15357 the chain and we want to go down. */
15358 attr = die->attr (DW_AT_signature);
15359 if (attr != nullptr)
15360 {
15361 type = get_DW_AT_signature_type (die, attr, cu);
15362
15363 /* The type's CU may not be the same as CU.
15364 Ensure TYPE is recorded with CU in die_type_hash. */
15365 return set_die_type (die, type, cu);
15366 }
15367
15368 type = alloc_type (objfile);
15369 INIT_CPLUS_SPECIFIC (type);
15370
15371 name = dwarf2_name (die, cu);
15372 if (name != NULL)
15373 {
15374 if (cu->language == language_cplus
15375 || cu->language == language_d
15376 || cu->language == language_rust)
15377 {
15378 const char *full_name = dwarf2_full_name (name, die, cu);
15379
15380 /* dwarf2_full_name might have already finished building the DIE's
15381 type. If so, there is no need to continue. */
15382 if (get_die_type (die, cu) != NULL)
15383 return get_die_type (die, cu);
15384
15385 type->set_name (full_name);
15386 }
15387 else
15388 {
15389 /* The name is already allocated along with this objfile, so
15390 we don't need to duplicate it for the type. */
15391 type->set_name (name);
15392 }
15393 }
15394
15395 if (die->tag == DW_TAG_structure_type)
15396 {
15397 type->set_code (TYPE_CODE_STRUCT);
15398 }
15399 else if (die->tag == DW_TAG_union_type)
15400 {
15401 type->set_code (TYPE_CODE_UNION);
15402 }
15403 else
15404 {
15405 type->set_code (TYPE_CODE_STRUCT);
15406 }
15407
15408 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15409 TYPE_DECLARED_CLASS (type) = 1;
15410
15411 /* Store the calling convention in the type if it's available in
15412 the die. Otherwise the calling convention remains set to
15413 the default value DW_CC_normal. */
15414 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15415 if (attr != nullptr
15416 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15417 {
15418 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15419 TYPE_CPLUS_CALLING_CONVENTION (type)
15420 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15421 }
15422
15423 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15424 if (attr != nullptr)
15425 {
15426 if (attr->form_is_constant ())
15427 TYPE_LENGTH (type) = DW_UNSND (attr);
15428 else
15429 {
15430 struct dynamic_prop prop;
15431 if (attr_to_dynamic_prop (attr, die, cu, &prop,
15432 cu->per_cu->addr_type ()))
15433 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15434 TYPE_LENGTH (type) = 0;
15435 }
15436 }
15437 else
15438 {
15439 TYPE_LENGTH (type) = 0;
15440 }
15441
15442 maybe_set_alignment (cu, die, type);
15443
15444 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15445 {
15446 /* ICC<14 does not output the required DW_AT_declaration on
15447 incomplete types, but gives them a size of zero. */
15448 TYPE_STUB (type) = 1;
15449 }
15450 else
15451 TYPE_STUB_SUPPORTED (type) = 1;
15452
15453 if (die_is_declaration (die, cu))
15454 TYPE_STUB (type) = 1;
15455 else if (attr == NULL && die->child == NULL
15456 && producer_is_realview (cu->producer))
15457 /* RealView does not output the required DW_AT_declaration
15458 on incomplete types. */
15459 TYPE_STUB (type) = 1;
15460
15461 /* We need to add the type field to the die immediately so we don't
15462 infinitely recurse when dealing with pointers to the structure
15463 type within the structure itself. */
15464 set_die_type (die, type, cu);
15465
15466 /* set_die_type should be already done. */
15467 set_descriptive_type (type, die, cu);
15468
15469 return type;
15470 }
15471
15472 static void handle_struct_member_die
15473 (struct die_info *child_die,
15474 struct type *type,
15475 struct field_info *fi,
15476 std::vector<struct symbol *> *template_args,
15477 struct dwarf2_cu *cu);
15478
15479 /* A helper for handle_struct_member_die that handles
15480 DW_TAG_variant_part. */
15481
15482 static void
15483 handle_variant_part (struct die_info *die, struct type *type,
15484 struct field_info *fi,
15485 std::vector<struct symbol *> *template_args,
15486 struct dwarf2_cu *cu)
15487 {
15488 variant_part_builder *new_part;
15489 if (fi->current_variant_part == nullptr)
15490 {
15491 fi->variant_parts.emplace_back ();
15492 new_part = &fi->variant_parts.back ();
15493 }
15494 else if (!fi->current_variant_part->processing_variant)
15495 {
15496 complaint (_("nested DW_TAG_variant_part seen "
15497 "- DIE at %s [in module %s]"),
15498 sect_offset_str (die->sect_off),
15499 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15500 return;
15501 }
15502 else
15503 {
15504 variant_field &current = fi->current_variant_part->variants.back ();
15505 current.variant_parts.emplace_back ();
15506 new_part = &current.variant_parts.back ();
15507 }
15508
15509 /* When we recurse, we want callees to add to this new variant
15510 part. */
15511 scoped_restore save_current_variant_part
15512 = make_scoped_restore (&fi->current_variant_part, new_part);
15513
15514 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15515 if (discr == NULL)
15516 {
15517 /* It's a univariant form, an extension we support. */
15518 }
15519 else if (discr->form_is_ref ())
15520 {
15521 struct dwarf2_cu *target_cu = cu;
15522 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15523
15524 new_part->discriminant_offset = target_die->sect_off;
15525 }
15526 else
15527 {
15528 complaint (_("DW_AT_discr does not have DIE reference form"
15529 " - DIE at %s [in module %s]"),
15530 sect_offset_str (die->sect_off),
15531 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15532 }
15533
15534 for (die_info *child_die = die->child;
15535 child_die != NULL;
15536 child_die = child_die->sibling)
15537 handle_struct_member_die (child_die, type, fi, template_args, cu);
15538 }
15539
15540 /* A helper for handle_struct_member_die that handles
15541 DW_TAG_variant. */
15542
15543 static void
15544 handle_variant (struct die_info *die, struct type *type,
15545 struct field_info *fi,
15546 std::vector<struct symbol *> *template_args,
15547 struct dwarf2_cu *cu)
15548 {
15549 if (fi->current_variant_part == nullptr)
15550 {
15551 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15552 "- DIE at %s [in module %s]"),
15553 sect_offset_str (die->sect_off),
15554 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15555 return;
15556 }
15557 if (fi->current_variant_part->processing_variant)
15558 {
15559 complaint (_("nested DW_TAG_variant seen "
15560 "- DIE at %s [in module %s]"),
15561 sect_offset_str (die->sect_off),
15562 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15563 return;
15564 }
15565
15566 scoped_restore save_processing_variant
15567 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15568 true);
15569
15570 fi->current_variant_part->variants.emplace_back ();
15571 variant_field &variant = fi->current_variant_part->variants.back ();
15572 variant.first_field = fi->fields.size ();
15573
15574 /* In a variant we want to get the discriminant and also add a
15575 field for our sole member child. */
15576 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15577 if (discr == nullptr)
15578 {
15579 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15580 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15581 variant.default_branch = true;
15582 else
15583 variant.discr_list_data = DW_BLOCK (discr);
15584 }
15585 else
15586 variant.discriminant_value = DW_UNSND (discr);
15587
15588 for (die_info *variant_child = die->child;
15589 variant_child != NULL;
15590 variant_child = variant_child->sibling)
15591 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15592
15593 variant.last_field = fi->fields.size ();
15594 }
15595
15596 /* A helper for process_structure_scope that handles a single member
15597 DIE. */
15598
15599 static void
15600 handle_struct_member_die (struct die_info *child_die, struct type *type,
15601 struct field_info *fi,
15602 std::vector<struct symbol *> *template_args,
15603 struct dwarf2_cu *cu)
15604 {
15605 if (child_die->tag == DW_TAG_member
15606 || child_die->tag == DW_TAG_variable)
15607 {
15608 /* NOTE: carlton/2002-11-05: A C++ static data member
15609 should be a DW_TAG_member that is a declaration, but
15610 all versions of G++ as of this writing (so through at
15611 least 3.2.1) incorrectly generate DW_TAG_variable
15612 tags for them instead. */
15613 dwarf2_add_field (fi, child_die, cu);
15614 }
15615 else if (child_die->tag == DW_TAG_subprogram)
15616 {
15617 /* Rust doesn't have member functions in the C++ sense.
15618 However, it does emit ordinary functions as children
15619 of a struct DIE. */
15620 if (cu->language == language_rust)
15621 read_func_scope (child_die, cu);
15622 else
15623 {
15624 /* C++ member function. */
15625 dwarf2_add_member_fn (fi, child_die, type, cu);
15626 }
15627 }
15628 else if (child_die->tag == DW_TAG_inheritance)
15629 {
15630 /* C++ base class field. */
15631 dwarf2_add_field (fi, child_die, cu);
15632 }
15633 else if (type_can_define_types (child_die))
15634 dwarf2_add_type_defn (fi, child_die, cu);
15635 else if (child_die->tag == DW_TAG_template_type_param
15636 || child_die->tag == DW_TAG_template_value_param)
15637 {
15638 struct symbol *arg = new_symbol (child_die, NULL, cu);
15639
15640 if (arg != NULL)
15641 template_args->push_back (arg);
15642 }
15643 else if (child_die->tag == DW_TAG_variant_part)
15644 handle_variant_part (child_die, type, fi, template_args, cu);
15645 else if (child_die->tag == DW_TAG_variant)
15646 handle_variant (child_die, type, fi, template_args, cu);
15647 }
15648
15649 /* Finish creating a structure or union type, including filling in
15650 its members and creating a symbol for it. */
15651
15652 static void
15653 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15654 {
15655 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15656 struct die_info *child_die;
15657 struct type *type;
15658
15659 type = get_die_type (die, cu);
15660 if (type == NULL)
15661 type = read_structure_type (die, cu);
15662
15663 bool has_template_parameters = false;
15664 if (die->child != NULL && ! die_is_declaration (die, cu))
15665 {
15666 struct field_info fi;
15667 std::vector<struct symbol *> template_args;
15668
15669 child_die = die->child;
15670
15671 while (child_die && child_die->tag)
15672 {
15673 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15674 child_die = child_die->sibling;
15675 }
15676
15677 /* Attach template arguments to type. */
15678 if (!template_args.empty ())
15679 {
15680 has_template_parameters = true;
15681 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15682 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15683 TYPE_TEMPLATE_ARGUMENTS (type)
15684 = XOBNEWVEC (&objfile->objfile_obstack,
15685 struct symbol *,
15686 TYPE_N_TEMPLATE_ARGUMENTS (type));
15687 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15688 template_args.data (),
15689 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15690 * sizeof (struct symbol *)));
15691 }
15692
15693 /* Attach fields and member functions to the type. */
15694 if (fi.nfields () > 0)
15695 dwarf2_attach_fields_to_type (&fi, type, cu);
15696 if (!fi.fnfieldlists.empty ())
15697 {
15698 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15699
15700 /* Get the type which refers to the base class (possibly this
15701 class itself) which contains the vtable pointer for the current
15702 class from the DW_AT_containing_type attribute. This use of
15703 DW_AT_containing_type is a GNU extension. */
15704
15705 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15706 {
15707 struct type *t = die_containing_type (die, cu);
15708
15709 set_type_vptr_basetype (type, t);
15710 if (type == t)
15711 {
15712 int i;
15713
15714 /* Our own class provides vtbl ptr. */
15715 for (i = t->num_fields () - 1;
15716 i >= TYPE_N_BASECLASSES (t);
15717 --i)
15718 {
15719 const char *fieldname = TYPE_FIELD_NAME (t, i);
15720
15721 if (is_vtable_name (fieldname, cu))
15722 {
15723 set_type_vptr_fieldno (type, i);
15724 break;
15725 }
15726 }
15727
15728 /* Complain if virtual function table field not found. */
15729 if (i < TYPE_N_BASECLASSES (t))
15730 complaint (_("virtual function table pointer "
15731 "not found when defining class '%s'"),
15732 type->name () ? type->name () : "");
15733 }
15734 else
15735 {
15736 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15737 }
15738 }
15739 else if (cu->producer
15740 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15741 {
15742 /* The IBM XLC compiler does not provide direct indication
15743 of the containing type, but the vtable pointer is
15744 always named __vfp. */
15745
15746 int i;
15747
15748 for (i = type->num_fields () - 1;
15749 i >= TYPE_N_BASECLASSES (type);
15750 --i)
15751 {
15752 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15753 {
15754 set_type_vptr_fieldno (type, i);
15755 set_type_vptr_basetype (type, type);
15756 break;
15757 }
15758 }
15759 }
15760 }
15761
15762 /* Copy fi.typedef_field_list linked list elements content into the
15763 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15764 if (!fi.typedef_field_list.empty ())
15765 {
15766 int count = fi.typedef_field_list.size ();
15767
15768 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15769 TYPE_TYPEDEF_FIELD_ARRAY (type)
15770 = ((struct decl_field *)
15771 TYPE_ALLOC (type,
15772 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15773 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15774
15775 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15776 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15777 }
15778
15779 /* Copy fi.nested_types_list linked list elements content into the
15780 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15781 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15782 {
15783 int count = fi.nested_types_list.size ();
15784
15785 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15786 TYPE_NESTED_TYPES_ARRAY (type)
15787 = ((struct decl_field *)
15788 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15789 TYPE_NESTED_TYPES_COUNT (type) = count;
15790
15791 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15792 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15793 }
15794 }
15795
15796 quirk_gcc_member_function_pointer (type, objfile);
15797 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15798 cu->rust_unions.push_back (type);
15799
15800 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15801 snapshots) has been known to create a die giving a declaration
15802 for a class that has, as a child, a die giving a definition for a
15803 nested class. So we have to process our children even if the
15804 current die is a declaration. Normally, of course, a declaration
15805 won't have any children at all. */
15806
15807 child_die = die->child;
15808
15809 while (child_die != NULL && child_die->tag)
15810 {
15811 if (child_die->tag == DW_TAG_member
15812 || child_die->tag == DW_TAG_variable
15813 || child_die->tag == DW_TAG_inheritance
15814 || child_die->tag == DW_TAG_template_value_param
15815 || child_die->tag == DW_TAG_template_type_param)
15816 {
15817 /* Do nothing. */
15818 }
15819 else
15820 process_die (child_die, cu);
15821
15822 child_die = child_die->sibling;
15823 }
15824
15825 /* Do not consider external references. According to the DWARF standard,
15826 these DIEs are identified by the fact that they have no byte_size
15827 attribute, and a declaration attribute. */
15828 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15829 || !die_is_declaration (die, cu)
15830 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15831 {
15832 struct symbol *sym = new_symbol (die, type, cu);
15833
15834 if (has_template_parameters)
15835 {
15836 struct symtab *symtab;
15837 if (sym != nullptr)
15838 symtab = symbol_symtab (sym);
15839 else if (cu->line_header != nullptr)
15840 {
15841 /* Any related symtab will do. */
15842 symtab
15843 = cu->line_header->file_names ()[0].symtab;
15844 }
15845 else
15846 {
15847 symtab = nullptr;
15848 complaint (_("could not find suitable "
15849 "symtab for template parameter"
15850 " - DIE at %s [in module %s]"),
15851 sect_offset_str (die->sect_off),
15852 objfile_name (objfile));
15853 }
15854
15855 if (symtab != nullptr)
15856 {
15857 /* Make sure that the symtab is set on the new symbols.
15858 Even though they don't appear in this symtab directly,
15859 other parts of gdb assume that symbols do, and this is
15860 reasonably true. */
15861 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15862 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15863 }
15864 }
15865 }
15866 }
15867
15868 /* Assuming DIE is an enumeration type, and TYPE is its associated
15869 type, update TYPE using some information only available in DIE's
15870 children. In particular, the fields are computed. */
15871
15872 static void
15873 update_enumeration_type_from_children (struct die_info *die,
15874 struct type *type,
15875 struct dwarf2_cu *cu)
15876 {
15877 struct die_info *child_die;
15878 int unsigned_enum = 1;
15879 int flag_enum = 1;
15880
15881 auto_obstack obstack;
15882 std::vector<struct field> fields;
15883
15884 for (child_die = die->child;
15885 child_die != NULL && child_die->tag;
15886 child_die = child_die->sibling)
15887 {
15888 struct attribute *attr;
15889 LONGEST value;
15890 const gdb_byte *bytes;
15891 struct dwarf2_locexpr_baton *baton;
15892 const char *name;
15893
15894 if (child_die->tag != DW_TAG_enumerator)
15895 continue;
15896
15897 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15898 if (attr == NULL)
15899 continue;
15900
15901 name = dwarf2_name (child_die, cu);
15902 if (name == NULL)
15903 name = "<anonymous enumerator>";
15904
15905 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15906 &value, &bytes, &baton);
15907 if (value < 0)
15908 {
15909 unsigned_enum = 0;
15910 flag_enum = 0;
15911 }
15912 else
15913 {
15914 if (count_one_bits_ll (value) >= 2)
15915 flag_enum = 0;
15916 }
15917
15918 fields.emplace_back ();
15919 struct field &field = fields.back ();
15920 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
15921 SET_FIELD_ENUMVAL (field, value);
15922 }
15923
15924 if (!fields.empty ())
15925 {
15926 type->set_num_fields (fields.size ());
15927 type->set_fields
15928 ((struct field *)
15929 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
15930 memcpy (type->fields (), fields.data (),
15931 sizeof (struct field) * fields.size ());
15932 }
15933
15934 if (unsigned_enum)
15935 TYPE_UNSIGNED (type) = 1;
15936 if (flag_enum)
15937 TYPE_FLAG_ENUM (type) = 1;
15938 }
15939
15940 /* Given a DW_AT_enumeration_type die, set its type. We do not
15941 complete the type's fields yet, or create any symbols. */
15942
15943 static struct type *
15944 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15945 {
15946 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15947 struct type *type;
15948 struct attribute *attr;
15949 const char *name;
15950
15951 /* If the definition of this type lives in .debug_types, read that type.
15952 Don't follow DW_AT_specification though, that will take us back up
15953 the chain and we want to go down. */
15954 attr = die->attr (DW_AT_signature);
15955 if (attr != nullptr)
15956 {
15957 type = get_DW_AT_signature_type (die, attr, cu);
15958
15959 /* The type's CU may not be the same as CU.
15960 Ensure TYPE is recorded with CU in die_type_hash. */
15961 return set_die_type (die, type, cu);
15962 }
15963
15964 type = alloc_type (objfile);
15965
15966 type->set_code (TYPE_CODE_ENUM);
15967 name = dwarf2_full_name (NULL, die, cu);
15968 if (name != NULL)
15969 type->set_name (name);
15970
15971 attr = dwarf2_attr (die, DW_AT_type, cu);
15972 if (attr != NULL)
15973 {
15974 struct type *underlying_type = die_type (die, cu);
15975
15976 TYPE_TARGET_TYPE (type) = underlying_type;
15977 }
15978
15979 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15980 if (attr != nullptr)
15981 {
15982 TYPE_LENGTH (type) = DW_UNSND (attr);
15983 }
15984 else
15985 {
15986 TYPE_LENGTH (type) = 0;
15987 }
15988
15989 maybe_set_alignment (cu, die, type);
15990
15991 /* The enumeration DIE can be incomplete. In Ada, any type can be
15992 declared as private in the package spec, and then defined only
15993 inside the package body. Such types are known as Taft Amendment
15994 Types. When another package uses such a type, an incomplete DIE
15995 may be generated by the compiler. */
15996 if (die_is_declaration (die, cu))
15997 TYPE_STUB (type) = 1;
15998
15999 /* If this type has an underlying type that is not a stub, then we
16000 may use its attributes. We always use the "unsigned" attribute
16001 in this situation, because ordinarily we guess whether the type
16002 is unsigned -- but the guess can be wrong and the underlying type
16003 can tell us the reality. However, we defer to a local size
16004 attribute if one exists, because this lets the compiler override
16005 the underlying type if needed. */
16006 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16007 {
16008 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16009 underlying_type = check_typedef (underlying_type);
16010 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
16011 if (TYPE_LENGTH (type) == 0)
16012 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16013 if (TYPE_RAW_ALIGN (type) == 0
16014 && TYPE_RAW_ALIGN (underlying_type) != 0)
16015 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16016 }
16017
16018 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16019
16020 set_die_type (die, type, cu);
16021
16022 /* Finish the creation of this type by using the enum's children.
16023 Note that, as usual, this must come after set_die_type to avoid
16024 infinite recursion when trying to compute the names of the
16025 enumerators. */
16026 update_enumeration_type_from_children (die, type, cu);
16027
16028 return type;
16029 }
16030
16031 /* Given a pointer to a die which begins an enumeration, process all
16032 the dies that define the members of the enumeration, and create the
16033 symbol for the enumeration type.
16034
16035 NOTE: We reverse the order of the element list. */
16036
16037 static void
16038 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16039 {
16040 struct type *this_type;
16041
16042 this_type = get_die_type (die, cu);
16043 if (this_type == NULL)
16044 this_type = read_enumeration_type (die, cu);
16045
16046 if (die->child != NULL)
16047 {
16048 struct die_info *child_die;
16049 const char *name;
16050
16051 child_die = die->child;
16052 while (child_die && child_die->tag)
16053 {
16054 if (child_die->tag != DW_TAG_enumerator)
16055 {
16056 process_die (child_die, cu);
16057 }
16058 else
16059 {
16060 name = dwarf2_name (child_die, cu);
16061 if (name)
16062 new_symbol (child_die, this_type, cu);
16063 }
16064
16065 child_die = child_die->sibling;
16066 }
16067 }
16068
16069 /* If we are reading an enum from a .debug_types unit, and the enum
16070 is a declaration, and the enum is not the signatured type in the
16071 unit, then we do not want to add a symbol for it. Adding a
16072 symbol would in some cases obscure the true definition of the
16073 enum, giving users an incomplete type when the definition is
16074 actually available. Note that we do not want to do this for all
16075 enums which are just declarations, because C++0x allows forward
16076 enum declarations. */
16077 if (cu->per_cu->is_debug_types
16078 && die_is_declaration (die, cu))
16079 {
16080 struct signatured_type *sig_type;
16081
16082 sig_type = (struct signatured_type *) cu->per_cu;
16083 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16084 if (sig_type->type_offset_in_section != die->sect_off)
16085 return;
16086 }
16087
16088 new_symbol (die, this_type, cu);
16089 }
16090
16091 /* Extract all information from a DW_TAG_array_type DIE and put it in
16092 the DIE's type field. For now, this only handles one dimensional
16093 arrays. */
16094
16095 static struct type *
16096 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16097 {
16098 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16099 struct die_info *child_die;
16100 struct type *type;
16101 struct type *element_type, *range_type, *index_type;
16102 struct attribute *attr;
16103 const char *name;
16104 struct dynamic_prop *byte_stride_prop = NULL;
16105 unsigned int bit_stride = 0;
16106
16107 element_type = die_type (die, cu);
16108
16109 /* The die_type call above may have already set the type for this DIE. */
16110 type = get_die_type (die, cu);
16111 if (type)
16112 return type;
16113
16114 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16115 if (attr != NULL)
16116 {
16117 int stride_ok;
16118 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
16119
16120 byte_stride_prop
16121 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16122 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16123 prop_type);
16124 if (!stride_ok)
16125 {
16126 complaint (_("unable to read array DW_AT_byte_stride "
16127 " - DIE at %s [in module %s]"),
16128 sect_offset_str (die->sect_off),
16129 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16130 /* Ignore this attribute. We will likely not be able to print
16131 arrays of this type correctly, but there is little we can do
16132 to help if we cannot read the attribute's value. */
16133 byte_stride_prop = NULL;
16134 }
16135 }
16136
16137 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16138 if (attr != NULL)
16139 bit_stride = DW_UNSND (attr);
16140
16141 /* Irix 6.2 native cc creates array types without children for
16142 arrays with unspecified length. */
16143 if (die->child == NULL)
16144 {
16145 index_type = objfile_type (objfile)->builtin_int;
16146 range_type = create_static_range_type (NULL, index_type, 0, -1);
16147 type = create_array_type_with_stride (NULL, element_type, range_type,
16148 byte_stride_prop, bit_stride);
16149 return set_die_type (die, type, cu);
16150 }
16151
16152 std::vector<struct type *> range_types;
16153 child_die = die->child;
16154 while (child_die && child_die->tag)
16155 {
16156 if (child_die->tag == DW_TAG_subrange_type)
16157 {
16158 struct type *child_type = read_type_die (child_die, cu);
16159
16160 if (child_type != NULL)
16161 {
16162 /* The range type was succesfully read. Save it for the
16163 array type creation. */
16164 range_types.push_back (child_type);
16165 }
16166 }
16167 child_die = child_die->sibling;
16168 }
16169
16170 /* Dwarf2 dimensions are output from left to right, create the
16171 necessary array types in backwards order. */
16172
16173 type = element_type;
16174
16175 if (read_array_order (die, cu) == DW_ORD_col_major)
16176 {
16177 int i = 0;
16178
16179 while (i < range_types.size ())
16180 type = create_array_type_with_stride (NULL, type, range_types[i++],
16181 byte_stride_prop, bit_stride);
16182 }
16183 else
16184 {
16185 size_t ndim = range_types.size ();
16186 while (ndim-- > 0)
16187 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16188 byte_stride_prop, bit_stride);
16189 }
16190
16191 /* Understand Dwarf2 support for vector types (like they occur on
16192 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16193 array type. This is not part of the Dwarf2/3 standard yet, but a
16194 custom vendor extension. The main difference between a regular
16195 array and the vector variant is that vectors are passed by value
16196 to functions. */
16197 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16198 if (attr != nullptr)
16199 make_vector_type (type);
16200
16201 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16202 implementation may choose to implement triple vectors using this
16203 attribute. */
16204 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16205 if (attr != nullptr)
16206 {
16207 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16208 TYPE_LENGTH (type) = DW_UNSND (attr);
16209 else
16210 complaint (_("DW_AT_byte_size for array type smaller "
16211 "than the total size of elements"));
16212 }
16213
16214 name = dwarf2_name (die, cu);
16215 if (name)
16216 type->set_name (name);
16217
16218 maybe_set_alignment (cu, die, type);
16219
16220 /* Install the type in the die. */
16221 set_die_type (die, type, cu);
16222
16223 /* set_die_type should be already done. */
16224 set_descriptive_type (type, die, cu);
16225
16226 return type;
16227 }
16228
16229 static enum dwarf_array_dim_ordering
16230 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16231 {
16232 struct attribute *attr;
16233
16234 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16235
16236 if (attr != nullptr)
16237 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16238
16239 /* GNU F77 is a special case, as at 08/2004 array type info is the
16240 opposite order to the dwarf2 specification, but data is still
16241 laid out as per normal fortran.
16242
16243 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16244 version checking. */
16245
16246 if (cu->language == language_fortran
16247 && cu->producer && strstr (cu->producer, "GNU F77"))
16248 {
16249 return DW_ORD_row_major;
16250 }
16251
16252 switch (cu->language_defn->la_array_ordering)
16253 {
16254 case array_column_major:
16255 return DW_ORD_col_major;
16256 case array_row_major:
16257 default:
16258 return DW_ORD_row_major;
16259 };
16260 }
16261
16262 /* Extract all information from a DW_TAG_set_type DIE and put it in
16263 the DIE's type field. */
16264
16265 static struct type *
16266 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16267 {
16268 struct type *domain_type, *set_type;
16269 struct attribute *attr;
16270
16271 domain_type = die_type (die, cu);
16272
16273 /* The die_type call above may have already set the type for this DIE. */
16274 set_type = get_die_type (die, cu);
16275 if (set_type)
16276 return set_type;
16277
16278 set_type = create_set_type (NULL, domain_type);
16279
16280 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16281 if (attr != nullptr)
16282 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16283
16284 maybe_set_alignment (cu, die, set_type);
16285
16286 return set_die_type (die, set_type, cu);
16287 }
16288
16289 /* A helper for read_common_block that creates a locexpr baton.
16290 SYM is the symbol which we are marking as computed.
16291 COMMON_DIE is the DIE for the common block.
16292 COMMON_LOC is the location expression attribute for the common
16293 block itself.
16294 MEMBER_LOC is the location expression attribute for the particular
16295 member of the common block that we are processing.
16296 CU is the CU from which the above come. */
16297
16298 static void
16299 mark_common_block_symbol_computed (struct symbol *sym,
16300 struct die_info *common_die,
16301 struct attribute *common_loc,
16302 struct attribute *member_loc,
16303 struct dwarf2_cu *cu)
16304 {
16305 struct dwarf2_per_objfile *dwarf2_per_objfile
16306 = cu->per_cu->dwarf2_per_objfile;
16307 struct objfile *objfile = dwarf2_per_objfile->objfile;
16308 struct dwarf2_locexpr_baton *baton;
16309 gdb_byte *ptr;
16310 unsigned int cu_off;
16311 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16312 LONGEST offset = 0;
16313
16314 gdb_assert (common_loc && member_loc);
16315 gdb_assert (common_loc->form_is_block ());
16316 gdb_assert (member_loc->form_is_block ()
16317 || member_loc->form_is_constant ());
16318
16319 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16320 baton->per_cu = cu->per_cu;
16321 gdb_assert (baton->per_cu);
16322
16323 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16324
16325 if (member_loc->form_is_constant ())
16326 {
16327 offset = member_loc->constant_value (0);
16328 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16329 }
16330 else
16331 baton->size += DW_BLOCK (member_loc)->size;
16332
16333 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16334 baton->data = ptr;
16335
16336 *ptr++ = DW_OP_call4;
16337 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16338 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16339 ptr += 4;
16340
16341 if (member_loc->form_is_constant ())
16342 {
16343 *ptr++ = DW_OP_addr;
16344 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16345 ptr += cu->header.addr_size;
16346 }
16347 else
16348 {
16349 /* We have to copy the data here, because DW_OP_call4 will only
16350 use a DW_AT_location attribute. */
16351 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16352 ptr += DW_BLOCK (member_loc)->size;
16353 }
16354
16355 *ptr++ = DW_OP_plus;
16356 gdb_assert (ptr - baton->data == baton->size);
16357
16358 SYMBOL_LOCATION_BATON (sym) = baton;
16359 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16360 }
16361
16362 /* Create appropriate locally-scoped variables for all the
16363 DW_TAG_common_block entries. Also create a struct common_block
16364 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16365 is used to separate the common blocks name namespace from regular
16366 variable names. */
16367
16368 static void
16369 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16370 {
16371 struct attribute *attr;
16372
16373 attr = dwarf2_attr (die, DW_AT_location, cu);
16374 if (attr != nullptr)
16375 {
16376 /* Support the .debug_loc offsets. */
16377 if (attr->form_is_block ())
16378 {
16379 /* Ok. */
16380 }
16381 else if (attr->form_is_section_offset ())
16382 {
16383 dwarf2_complex_location_expr_complaint ();
16384 attr = NULL;
16385 }
16386 else
16387 {
16388 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16389 "common block member");
16390 attr = NULL;
16391 }
16392 }
16393
16394 if (die->child != NULL)
16395 {
16396 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16397 struct die_info *child_die;
16398 size_t n_entries = 0, size;
16399 struct common_block *common_block;
16400 struct symbol *sym;
16401
16402 for (child_die = die->child;
16403 child_die && child_die->tag;
16404 child_die = child_die->sibling)
16405 ++n_entries;
16406
16407 size = (sizeof (struct common_block)
16408 + (n_entries - 1) * sizeof (struct symbol *));
16409 common_block
16410 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16411 size);
16412 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16413 common_block->n_entries = 0;
16414
16415 for (child_die = die->child;
16416 child_die && child_die->tag;
16417 child_die = child_die->sibling)
16418 {
16419 /* Create the symbol in the DW_TAG_common_block block in the current
16420 symbol scope. */
16421 sym = new_symbol (child_die, NULL, cu);
16422 if (sym != NULL)
16423 {
16424 struct attribute *member_loc;
16425
16426 common_block->contents[common_block->n_entries++] = sym;
16427
16428 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16429 cu);
16430 if (member_loc)
16431 {
16432 /* GDB has handled this for a long time, but it is
16433 not specified by DWARF. It seems to have been
16434 emitted by gfortran at least as recently as:
16435 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16436 complaint (_("Variable in common block has "
16437 "DW_AT_data_member_location "
16438 "- DIE at %s [in module %s]"),
16439 sect_offset_str (child_die->sect_off),
16440 objfile_name (objfile));
16441
16442 if (member_loc->form_is_section_offset ())
16443 dwarf2_complex_location_expr_complaint ();
16444 else if (member_loc->form_is_constant ()
16445 || member_loc->form_is_block ())
16446 {
16447 if (attr != nullptr)
16448 mark_common_block_symbol_computed (sym, die, attr,
16449 member_loc, cu);
16450 }
16451 else
16452 dwarf2_complex_location_expr_complaint ();
16453 }
16454 }
16455 }
16456
16457 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16458 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16459 }
16460 }
16461
16462 /* Create a type for a C++ namespace. */
16463
16464 static struct type *
16465 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16466 {
16467 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16468 const char *previous_prefix, *name;
16469 int is_anonymous;
16470 struct type *type;
16471
16472 /* For extensions, reuse the type of the original namespace. */
16473 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16474 {
16475 struct die_info *ext_die;
16476 struct dwarf2_cu *ext_cu = cu;
16477
16478 ext_die = dwarf2_extension (die, &ext_cu);
16479 type = read_type_die (ext_die, ext_cu);
16480
16481 /* EXT_CU may not be the same as CU.
16482 Ensure TYPE is recorded with CU in die_type_hash. */
16483 return set_die_type (die, type, cu);
16484 }
16485
16486 name = namespace_name (die, &is_anonymous, cu);
16487
16488 /* Now build the name of the current namespace. */
16489
16490 previous_prefix = determine_prefix (die, cu);
16491 if (previous_prefix[0] != '\0')
16492 name = typename_concat (&objfile->objfile_obstack,
16493 previous_prefix, name, 0, cu);
16494
16495 /* Create the type. */
16496 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16497
16498 return set_die_type (die, type, cu);
16499 }
16500
16501 /* Read a namespace scope. */
16502
16503 static void
16504 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16505 {
16506 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16507 int is_anonymous;
16508
16509 /* Add a symbol associated to this if we haven't seen the namespace
16510 before. Also, add a using directive if it's an anonymous
16511 namespace. */
16512
16513 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16514 {
16515 struct type *type;
16516
16517 type = read_type_die (die, cu);
16518 new_symbol (die, type, cu);
16519
16520 namespace_name (die, &is_anonymous, cu);
16521 if (is_anonymous)
16522 {
16523 const char *previous_prefix = determine_prefix (die, cu);
16524
16525 std::vector<const char *> excludes;
16526 add_using_directive (using_directives (cu),
16527 previous_prefix, type->name (), NULL,
16528 NULL, excludes, 0, &objfile->objfile_obstack);
16529 }
16530 }
16531
16532 if (die->child != NULL)
16533 {
16534 struct die_info *child_die = die->child;
16535
16536 while (child_die && child_die->tag)
16537 {
16538 process_die (child_die, cu);
16539 child_die = child_die->sibling;
16540 }
16541 }
16542 }
16543
16544 /* Read a Fortran module as type. This DIE can be only a declaration used for
16545 imported module. Still we need that type as local Fortran "use ... only"
16546 declaration imports depend on the created type in determine_prefix. */
16547
16548 static struct type *
16549 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16550 {
16551 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16552 const char *module_name;
16553 struct type *type;
16554
16555 module_name = dwarf2_name (die, cu);
16556 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16557
16558 return set_die_type (die, type, cu);
16559 }
16560
16561 /* Read a Fortran module. */
16562
16563 static void
16564 read_module (struct die_info *die, struct dwarf2_cu *cu)
16565 {
16566 struct die_info *child_die = die->child;
16567 struct type *type;
16568
16569 type = read_type_die (die, cu);
16570 new_symbol (die, type, cu);
16571
16572 while (child_die && child_die->tag)
16573 {
16574 process_die (child_die, cu);
16575 child_die = child_die->sibling;
16576 }
16577 }
16578
16579 /* Return the name of the namespace represented by DIE. Set
16580 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16581 namespace. */
16582
16583 static const char *
16584 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16585 {
16586 struct die_info *current_die;
16587 const char *name = NULL;
16588
16589 /* Loop through the extensions until we find a name. */
16590
16591 for (current_die = die;
16592 current_die != NULL;
16593 current_die = dwarf2_extension (die, &cu))
16594 {
16595 /* We don't use dwarf2_name here so that we can detect the absence
16596 of a name -> anonymous namespace. */
16597 name = dwarf2_string_attr (die, DW_AT_name, cu);
16598
16599 if (name != NULL)
16600 break;
16601 }
16602
16603 /* Is it an anonymous namespace? */
16604
16605 *is_anonymous = (name == NULL);
16606 if (*is_anonymous)
16607 name = CP_ANONYMOUS_NAMESPACE_STR;
16608
16609 return name;
16610 }
16611
16612 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16613 the user defined type vector. */
16614
16615 static struct type *
16616 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16617 {
16618 struct gdbarch *gdbarch
16619 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16620 struct comp_unit_head *cu_header = &cu->header;
16621 struct type *type;
16622 struct attribute *attr_byte_size;
16623 struct attribute *attr_address_class;
16624 int byte_size, addr_class;
16625 struct type *target_type;
16626
16627 target_type = die_type (die, cu);
16628
16629 /* The die_type call above may have already set the type for this DIE. */
16630 type = get_die_type (die, cu);
16631 if (type)
16632 return type;
16633
16634 type = lookup_pointer_type (target_type);
16635
16636 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16637 if (attr_byte_size)
16638 byte_size = DW_UNSND (attr_byte_size);
16639 else
16640 byte_size = cu_header->addr_size;
16641
16642 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16643 if (attr_address_class)
16644 addr_class = DW_UNSND (attr_address_class);
16645 else
16646 addr_class = DW_ADDR_none;
16647
16648 ULONGEST alignment = get_alignment (cu, die);
16649
16650 /* If the pointer size, alignment, or address class is different
16651 than the default, create a type variant marked as such and set
16652 the length accordingly. */
16653 if (TYPE_LENGTH (type) != byte_size
16654 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16655 && alignment != TYPE_RAW_ALIGN (type))
16656 || addr_class != DW_ADDR_none)
16657 {
16658 if (gdbarch_address_class_type_flags_p (gdbarch))
16659 {
16660 int type_flags;
16661
16662 type_flags = gdbarch_address_class_type_flags
16663 (gdbarch, byte_size, addr_class);
16664 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16665 == 0);
16666 type = make_type_with_address_space (type, type_flags);
16667 }
16668 else if (TYPE_LENGTH (type) != byte_size)
16669 {
16670 complaint (_("invalid pointer size %d"), byte_size);
16671 }
16672 else if (TYPE_RAW_ALIGN (type) != alignment)
16673 {
16674 complaint (_("Invalid DW_AT_alignment"
16675 " - DIE at %s [in module %s]"),
16676 sect_offset_str (die->sect_off),
16677 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16678 }
16679 else
16680 {
16681 /* Should we also complain about unhandled address classes? */
16682 }
16683 }
16684
16685 TYPE_LENGTH (type) = byte_size;
16686 set_type_align (type, alignment);
16687 return set_die_type (die, type, cu);
16688 }
16689
16690 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16691 the user defined type vector. */
16692
16693 static struct type *
16694 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16695 {
16696 struct type *type;
16697 struct type *to_type;
16698 struct type *domain;
16699
16700 to_type = die_type (die, cu);
16701 domain = die_containing_type (die, cu);
16702
16703 /* The calls above may have already set the type for this DIE. */
16704 type = get_die_type (die, cu);
16705 if (type)
16706 return type;
16707
16708 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
16709 type = lookup_methodptr_type (to_type);
16710 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
16711 {
16712 struct type *new_type
16713 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16714
16715 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16716 to_type->fields (), to_type->num_fields (),
16717 TYPE_VARARGS (to_type));
16718 type = lookup_methodptr_type (new_type);
16719 }
16720 else
16721 type = lookup_memberptr_type (to_type, domain);
16722
16723 return set_die_type (die, type, cu);
16724 }
16725
16726 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16727 the user defined type vector. */
16728
16729 static struct type *
16730 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16731 enum type_code refcode)
16732 {
16733 struct comp_unit_head *cu_header = &cu->header;
16734 struct type *type, *target_type;
16735 struct attribute *attr;
16736
16737 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16738
16739 target_type = die_type (die, cu);
16740
16741 /* The die_type call above may have already set the type for this DIE. */
16742 type = get_die_type (die, cu);
16743 if (type)
16744 return type;
16745
16746 type = lookup_reference_type (target_type, refcode);
16747 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16748 if (attr != nullptr)
16749 {
16750 TYPE_LENGTH (type) = DW_UNSND (attr);
16751 }
16752 else
16753 {
16754 TYPE_LENGTH (type) = cu_header->addr_size;
16755 }
16756 maybe_set_alignment (cu, die, type);
16757 return set_die_type (die, type, cu);
16758 }
16759
16760 /* Add the given cv-qualifiers to the element type of the array. GCC
16761 outputs DWARF type qualifiers that apply to an array, not the
16762 element type. But GDB relies on the array element type to carry
16763 the cv-qualifiers. This mimics section 6.7.3 of the C99
16764 specification. */
16765
16766 static struct type *
16767 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16768 struct type *base_type, int cnst, int voltl)
16769 {
16770 struct type *el_type, *inner_array;
16771
16772 base_type = copy_type (base_type);
16773 inner_array = base_type;
16774
16775 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
16776 {
16777 TYPE_TARGET_TYPE (inner_array) =
16778 copy_type (TYPE_TARGET_TYPE (inner_array));
16779 inner_array = TYPE_TARGET_TYPE (inner_array);
16780 }
16781
16782 el_type = TYPE_TARGET_TYPE (inner_array);
16783 cnst |= TYPE_CONST (el_type);
16784 voltl |= TYPE_VOLATILE (el_type);
16785 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16786
16787 return set_die_type (die, base_type, cu);
16788 }
16789
16790 static struct type *
16791 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16792 {
16793 struct type *base_type, *cv_type;
16794
16795 base_type = die_type (die, cu);
16796
16797 /* The die_type call above may have already set the type for this DIE. */
16798 cv_type = get_die_type (die, cu);
16799 if (cv_type)
16800 return cv_type;
16801
16802 /* In case the const qualifier is applied to an array type, the element type
16803 is so qualified, not the array type (section 6.7.3 of C99). */
16804 if (base_type->code () == TYPE_CODE_ARRAY)
16805 return add_array_cv_type (die, cu, base_type, 1, 0);
16806
16807 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16808 return set_die_type (die, cv_type, cu);
16809 }
16810
16811 static struct type *
16812 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16813 {
16814 struct type *base_type, *cv_type;
16815
16816 base_type = die_type (die, cu);
16817
16818 /* The die_type call above may have already set the type for this DIE. */
16819 cv_type = get_die_type (die, cu);
16820 if (cv_type)
16821 return cv_type;
16822
16823 /* In case the volatile qualifier is applied to an array type, the
16824 element type is so qualified, not the array type (section 6.7.3
16825 of C99). */
16826 if (base_type->code () == TYPE_CODE_ARRAY)
16827 return add_array_cv_type (die, cu, base_type, 0, 1);
16828
16829 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16830 return set_die_type (die, cv_type, cu);
16831 }
16832
16833 /* Handle DW_TAG_restrict_type. */
16834
16835 static struct type *
16836 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16837 {
16838 struct type *base_type, *cv_type;
16839
16840 base_type = die_type (die, cu);
16841
16842 /* The die_type call above may have already set the type for this DIE. */
16843 cv_type = get_die_type (die, cu);
16844 if (cv_type)
16845 return cv_type;
16846
16847 cv_type = make_restrict_type (base_type);
16848 return set_die_type (die, cv_type, cu);
16849 }
16850
16851 /* Handle DW_TAG_atomic_type. */
16852
16853 static struct type *
16854 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16855 {
16856 struct type *base_type, *cv_type;
16857
16858 base_type = die_type (die, cu);
16859
16860 /* The die_type call above may have already set the type for this DIE. */
16861 cv_type = get_die_type (die, cu);
16862 if (cv_type)
16863 return cv_type;
16864
16865 cv_type = make_atomic_type (base_type);
16866 return set_die_type (die, cv_type, cu);
16867 }
16868
16869 /* Extract all information from a DW_TAG_string_type DIE and add to
16870 the user defined type vector. It isn't really a user defined type,
16871 but it behaves like one, with other DIE's using an AT_user_def_type
16872 attribute to reference it. */
16873
16874 static struct type *
16875 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16876 {
16877 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16878 struct gdbarch *gdbarch = objfile->arch ();
16879 struct type *type, *range_type, *index_type, *char_type;
16880 struct attribute *attr;
16881 struct dynamic_prop prop;
16882 bool length_is_constant = true;
16883 LONGEST length;
16884
16885 /* There are a couple of places where bit sizes might be made use of
16886 when parsing a DW_TAG_string_type, however, no producer that we know
16887 of make use of these. Handling bit sizes that are a multiple of the
16888 byte size is easy enough, but what about other bit sizes? Lets deal
16889 with that problem when we have to. Warn about these attributes being
16890 unsupported, then parse the type and ignore them like we always
16891 have. */
16892 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16893 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16894 {
16895 static bool warning_printed = false;
16896 if (!warning_printed)
16897 {
16898 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16899 "currently supported on DW_TAG_string_type."));
16900 warning_printed = true;
16901 }
16902 }
16903
16904 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16905 if (attr != nullptr && !attr->form_is_constant ())
16906 {
16907 /* The string length describes the location at which the length of
16908 the string can be found. The size of the length field can be
16909 specified with one of the attributes below. */
16910 struct type *prop_type;
16911 struct attribute *len
16912 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16913 if (len == nullptr)
16914 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16915 if (len != nullptr && len->form_is_constant ())
16916 {
16917 /* Pass 0 as the default as we know this attribute is constant
16918 and the default value will not be returned. */
16919 LONGEST sz = len->constant_value (0);
16920 prop_type = cu->per_cu->int_type (sz, true);
16921 }
16922 else
16923 {
16924 /* If the size is not specified then we assume it is the size of
16925 an address on this target. */
16926 prop_type = cu->per_cu->addr_sized_int_type (true);
16927 }
16928
16929 /* Convert the attribute into a dynamic property. */
16930 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16931 length = 1;
16932 else
16933 length_is_constant = false;
16934 }
16935 else if (attr != nullptr)
16936 {
16937 /* This DW_AT_string_length just contains the length with no
16938 indirection. There's no need to create a dynamic property in this
16939 case. Pass 0 for the default value as we know it will not be
16940 returned in this case. */
16941 length = attr->constant_value (0);
16942 }
16943 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16944 {
16945 /* We don't currently support non-constant byte sizes for strings. */
16946 length = attr->constant_value (1);
16947 }
16948 else
16949 {
16950 /* Use 1 as a fallback length if we have nothing else. */
16951 length = 1;
16952 }
16953
16954 index_type = objfile_type (objfile)->builtin_int;
16955 if (length_is_constant)
16956 range_type = create_static_range_type (NULL, index_type, 1, length);
16957 else
16958 {
16959 struct dynamic_prop low_bound;
16960
16961 low_bound.kind = PROP_CONST;
16962 low_bound.data.const_val = 1;
16963 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16964 }
16965 char_type = language_string_char_type (cu->language_defn, gdbarch);
16966 type = create_string_type (NULL, char_type, range_type);
16967
16968 return set_die_type (die, type, cu);
16969 }
16970
16971 /* Assuming that DIE corresponds to a function, returns nonzero
16972 if the function is prototyped. */
16973
16974 static int
16975 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16976 {
16977 struct attribute *attr;
16978
16979 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16980 if (attr && (DW_UNSND (attr) != 0))
16981 return 1;
16982
16983 /* The DWARF standard implies that the DW_AT_prototyped attribute
16984 is only meaningful for C, but the concept also extends to other
16985 languages that allow unprototyped functions (Eg: Objective C).
16986 For all other languages, assume that functions are always
16987 prototyped. */
16988 if (cu->language != language_c
16989 && cu->language != language_objc
16990 && cu->language != language_opencl)
16991 return 1;
16992
16993 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16994 prototyped and unprototyped functions; default to prototyped,
16995 since that is more common in modern code (and RealView warns
16996 about unprototyped functions). */
16997 if (producer_is_realview (cu->producer))
16998 return 1;
16999
17000 return 0;
17001 }
17002
17003 /* Handle DIES due to C code like:
17004
17005 struct foo
17006 {
17007 int (*funcp)(int a, long l);
17008 int b;
17009 };
17010
17011 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17012
17013 static struct type *
17014 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17015 {
17016 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17017 struct type *type; /* Type that this function returns. */
17018 struct type *ftype; /* Function that returns above type. */
17019 struct attribute *attr;
17020
17021 type = die_type (die, cu);
17022
17023 /* The die_type call above may have already set the type for this DIE. */
17024 ftype = get_die_type (die, cu);
17025 if (ftype)
17026 return ftype;
17027
17028 ftype = lookup_function_type (type);
17029
17030 if (prototyped_function_p (die, cu))
17031 TYPE_PROTOTYPED (ftype) = 1;
17032
17033 /* Store the calling convention in the type if it's available in
17034 the subroutine die. Otherwise set the calling convention to
17035 the default value DW_CC_normal. */
17036 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17037 if (attr != nullptr
17038 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17039 TYPE_CALLING_CONVENTION (ftype)
17040 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17041 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17042 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17043 else
17044 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17045
17046 /* Record whether the function returns normally to its caller or not
17047 if the DWARF producer set that information. */
17048 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17049 if (attr && (DW_UNSND (attr) != 0))
17050 TYPE_NO_RETURN (ftype) = 1;
17051
17052 /* We need to add the subroutine type to the die immediately so
17053 we don't infinitely recurse when dealing with parameters
17054 declared as the same subroutine type. */
17055 set_die_type (die, ftype, cu);
17056
17057 if (die->child != NULL)
17058 {
17059 struct type *void_type = objfile_type (objfile)->builtin_void;
17060 struct die_info *child_die;
17061 int nparams, iparams;
17062
17063 /* Count the number of parameters.
17064 FIXME: GDB currently ignores vararg functions, but knows about
17065 vararg member functions. */
17066 nparams = 0;
17067 child_die = die->child;
17068 while (child_die && child_die->tag)
17069 {
17070 if (child_die->tag == DW_TAG_formal_parameter)
17071 nparams++;
17072 else if (child_die->tag == DW_TAG_unspecified_parameters)
17073 TYPE_VARARGS (ftype) = 1;
17074 child_die = child_die->sibling;
17075 }
17076
17077 /* Allocate storage for parameters and fill them in. */
17078 ftype->set_num_fields (nparams);
17079 ftype->set_fields
17080 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17081
17082 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17083 even if we error out during the parameters reading below. */
17084 for (iparams = 0; iparams < nparams; iparams++)
17085 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17086
17087 iparams = 0;
17088 child_die = die->child;
17089 while (child_die && child_die->tag)
17090 {
17091 if (child_die->tag == DW_TAG_formal_parameter)
17092 {
17093 struct type *arg_type;
17094
17095 /* DWARF version 2 has no clean way to discern C++
17096 static and non-static member functions. G++ helps
17097 GDB by marking the first parameter for non-static
17098 member functions (which is the this pointer) as
17099 artificial. We pass this information to
17100 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17101
17102 DWARF version 3 added DW_AT_object_pointer, which GCC
17103 4.5 does not yet generate. */
17104 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17105 if (attr != nullptr)
17106 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17107 else
17108 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17109 arg_type = die_type (child_die, cu);
17110
17111 /* RealView does not mark THIS as const, which the testsuite
17112 expects. GCC marks THIS as const in method definitions,
17113 but not in the class specifications (GCC PR 43053). */
17114 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17115 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17116 {
17117 int is_this = 0;
17118 struct dwarf2_cu *arg_cu = cu;
17119 const char *name = dwarf2_name (child_die, cu);
17120
17121 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17122 if (attr != nullptr)
17123 {
17124 /* If the compiler emits this, use it. */
17125 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17126 is_this = 1;
17127 }
17128 else if (name && strcmp (name, "this") == 0)
17129 /* Function definitions will have the argument names. */
17130 is_this = 1;
17131 else if (name == NULL && iparams == 0)
17132 /* Declarations may not have the names, so like
17133 elsewhere in GDB, assume an artificial first
17134 argument is "this". */
17135 is_this = 1;
17136
17137 if (is_this)
17138 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17139 arg_type, 0);
17140 }
17141
17142 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17143 iparams++;
17144 }
17145 child_die = child_die->sibling;
17146 }
17147 }
17148
17149 return ftype;
17150 }
17151
17152 static struct type *
17153 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17154 {
17155 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17156 const char *name = NULL;
17157 struct type *this_type, *target_type;
17158
17159 name = dwarf2_full_name (NULL, die, cu);
17160 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17161 TYPE_TARGET_STUB (this_type) = 1;
17162 set_die_type (die, this_type, cu);
17163 target_type = die_type (die, cu);
17164 if (target_type != this_type)
17165 TYPE_TARGET_TYPE (this_type) = target_type;
17166 else
17167 {
17168 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17169 spec and cause infinite loops in GDB. */
17170 complaint (_("Self-referential DW_TAG_typedef "
17171 "- DIE at %s [in module %s]"),
17172 sect_offset_str (die->sect_off), objfile_name (objfile));
17173 TYPE_TARGET_TYPE (this_type) = NULL;
17174 }
17175 if (name == NULL)
17176 {
17177 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17178 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17179 Handle these by just returning the target type, rather than
17180 constructing an anonymous typedef type and trying to handle this
17181 elsewhere. */
17182 set_die_type (die, target_type, cu);
17183 return target_type;
17184 }
17185 return this_type;
17186 }
17187
17188 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17189 (which may be different from NAME) to the architecture back-end to allow
17190 it to guess the correct format if necessary. */
17191
17192 static struct type *
17193 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17194 const char *name_hint, enum bfd_endian byte_order)
17195 {
17196 struct gdbarch *gdbarch = objfile->arch ();
17197 const struct floatformat **format;
17198 struct type *type;
17199
17200 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17201 if (format)
17202 type = init_float_type (objfile, bits, name, format, byte_order);
17203 else
17204 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17205
17206 return type;
17207 }
17208
17209 /* Allocate an integer type of size BITS and name NAME. */
17210
17211 static struct type *
17212 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17213 int bits, int unsigned_p, const char *name)
17214 {
17215 struct type *type;
17216
17217 /* Versions of Intel's C Compiler generate an integer type called "void"
17218 instead of using DW_TAG_unspecified_type. This has been seen on
17219 at least versions 14, 17, and 18. */
17220 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17221 && strcmp (name, "void") == 0)
17222 type = objfile_type (objfile)->builtin_void;
17223 else
17224 type = init_integer_type (objfile, bits, unsigned_p, name);
17225
17226 return type;
17227 }
17228
17229 /* Initialise and return a floating point type of size BITS suitable for
17230 use as a component of a complex number. The NAME_HINT is passed through
17231 when initialising the floating point type and is the name of the complex
17232 type.
17233
17234 As DWARF doesn't currently provide an explicit name for the components
17235 of a complex number, but it can be helpful to have these components
17236 named, we try to select a suitable name based on the size of the
17237 component. */
17238 static struct type *
17239 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17240 struct objfile *objfile,
17241 int bits, const char *name_hint,
17242 enum bfd_endian byte_order)
17243 {
17244 gdbarch *gdbarch = objfile->arch ();
17245 struct type *tt = nullptr;
17246
17247 /* Try to find a suitable floating point builtin type of size BITS.
17248 We're going to use the name of this type as the name for the complex
17249 target type that we are about to create. */
17250 switch (cu->language)
17251 {
17252 case language_fortran:
17253 switch (bits)
17254 {
17255 case 32:
17256 tt = builtin_f_type (gdbarch)->builtin_real;
17257 break;
17258 case 64:
17259 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17260 break;
17261 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17262 case 128:
17263 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17264 break;
17265 }
17266 break;
17267 default:
17268 switch (bits)
17269 {
17270 case 32:
17271 tt = builtin_type (gdbarch)->builtin_float;
17272 break;
17273 case 64:
17274 tt = builtin_type (gdbarch)->builtin_double;
17275 break;
17276 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17277 case 128:
17278 tt = builtin_type (gdbarch)->builtin_long_double;
17279 break;
17280 }
17281 break;
17282 }
17283
17284 /* If the type we found doesn't match the size we were looking for, then
17285 pretend we didn't find a type at all, the complex target type we
17286 create will then be nameless. */
17287 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17288 tt = nullptr;
17289
17290 const char *name = (tt == nullptr) ? nullptr : tt->name ();
17291 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17292 }
17293
17294 /* Find a representation of a given base type and install
17295 it in the TYPE field of the die. */
17296
17297 static struct type *
17298 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17299 {
17300 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17301 struct type *type;
17302 struct attribute *attr;
17303 int encoding = 0, bits = 0;
17304 const char *name;
17305 gdbarch *arch;
17306
17307 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17308 if (attr != nullptr)
17309 encoding = DW_UNSND (attr);
17310 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17311 if (attr != nullptr)
17312 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17313 name = dwarf2_name (die, cu);
17314 if (!name)
17315 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17316
17317 arch = objfile->arch ();
17318 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17319
17320 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17321 if (attr)
17322 {
17323 int endianity = DW_UNSND (attr);
17324
17325 switch (endianity)
17326 {
17327 case DW_END_big:
17328 byte_order = BFD_ENDIAN_BIG;
17329 break;
17330 case DW_END_little:
17331 byte_order = BFD_ENDIAN_LITTLE;
17332 break;
17333 default:
17334 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17335 break;
17336 }
17337 }
17338
17339 switch (encoding)
17340 {
17341 case DW_ATE_address:
17342 /* Turn DW_ATE_address into a void * pointer. */
17343 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17344 type = init_pointer_type (objfile, bits, name, type);
17345 break;
17346 case DW_ATE_boolean:
17347 type = init_boolean_type (objfile, bits, 1, name);
17348 break;
17349 case DW_ATE_complex_float:
17350 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17351 byte_order);
17352 if (type->code () == TYPE_CODE_ERROR)
17353 {
17354 if (name == nullptr)
17355 {
17356 struct obstack *obstack
17357 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17358 name = obconcat (obstack, "_Complex ", type->name (),
17359 nullptr);
17360 }
17361 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17362 }
17363 else
17364 type = init_complex_type (name, type);
17365 break;
17366 case DW_ATE_decimal_float:
17367 type = init_decfloat_type (objfile, bits, name);
17368 break;
17369 case DW_ATE_float:
17370 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17371 break;
17372 case DW_ATE_signed:
17373 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17374 break;
17375 case DW_ATE_unsigned:
17376 if (cu->language == language_fortran
17377 && name
17378 && startswith (name, "character("))
17379 type = init_character_type (objfile, bits, 1, name);
17380 else
17381 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17382 break;
17383 case DW_ATE_signed_char:
17384 if (cu->language == language_ada || cu->language == language_m2
17385 || cu->language == language_pascal
17386 || cu->language == language_fortran)
17387 type = init_character_type (objfile, bits, 0, name);
17388 else
17389 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17390 break;
17391 case DW_ATE_unsigned_char:
17392 if (cu->language == language_ada || cu->language == language_m2
17393 || cu->language == language_pascal
17394 || cu->language == language_fortran
17395 || cu->language == language_rust)
17396 type = init_character_type (objfile, bits, 1, name);
17397 else
17398 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17399 break;
17400 case DW_ATE_UTF:
17401 {
17402 if (bits == 16)
17403 type = builtin_type (arch)->builtin_char16;
17404 else if (bits == 32)
17405 type = builtin_type (arch)->builtin_char32;
17406 else
17407 {
17408 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17409 bits);
17410 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17411 }
17412 return set_die_type (die, type, cu);
17413 }
17414 break;
17415
17416 default:
17417 complaint (_("unsupported DW_AT_encoding: '%s'"),
17418 dwarf_type_encoding_name (encoding));
17419 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17420 break;
17421 }
17422
17423 if (name && strcmp (name, "char") == 0)
17424 TYPE_NOSIGN (type) = 1;
17425
17426 maybe_set_alignment (cu, die, type);
17427
17428 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17429
17430 return set_die_type (die, type, cu);
17431 }
17432
17433 /* Parse dwarf attribute if it's a block, reference or constant and put the
17434 resulting value of the attribute into struct bound_prop.
17435 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17436
17437 static int
17438 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17439 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17440 struct type *default_type)
17441 {
17442 struct dwarf2_property_baton *baton;
17443 struct obstack *obstack
17444 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17445
17446 gdb_assert (default_type != NULL);
17447
17448 if (attr == NULL || prop == NULL)
17449 return 0;
17450
17451 if (attr->form_is_block ())
17452 {
17453 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17454 baton->property_type = default_type;
17455 baton->locexpr.per_cu = cu->per_cu;
17456 baton->locexpr.size = DW_BLOCK (attr)->size;
17457 baton->locexpr.data = DW_BLOCK (attr)->data;
17458 switch (attr->name)
17459 {
17460 case DW_AT_string_length:
17461 baton->locexpr.is_reference = true;
17462 break;
17463 default:
17464 baton->locexpr.is_reference = false;
17465 break;
17466 }
17467 prop->data.baton = baton;
17468 prop->kind = PROP_LOCEXPR;
17469 gdb_assert (prop->data.baton != NULL);
17470 }
17471 else if (attr->form_is_ref ())
17472 {
17473 struct dwarf2_cu *target_cu = cu;
17474 struct die_info *target_die;
17475 struct attribute *target_attr;
17476
17477 target_die = follow_die_ref (die, attr, &target_cu);
17478 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17479 if (target_attr == NULL)
17480 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17481 target_cu);
17482 if (target_attr == NULL)
17483 return 0;
17484
17485 switch (target_attr->name)
17486 {
17487 case DW_AT_location:
17488 if (target_attr->form_is_section_offset ())
17489 {
17490 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17491 baton->property_type = die_type (target_die, target_cu);
17492 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17493 prop->data.baton = baton;
17494 prop->kind = PROP_LOCLIST;
17495 gdb_assert (prop->data.baton != NULL);
17496 }
17497 else if (target_attr->form_is_block ())
17498 {
17499 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17500 baton->property_type = die_type (target_die, target_cu);
17501 baton->locexpr.per_cu = cu->per_cu;
17502 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17503 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17504 baton->locexpr.is_reference = true;
17505 prop->data.baton = baton;
17506 prop->kind = PROP_LOCEXPR;
17507 gdb_assert (prop->data.baton != NULL);
17508 }
17509 else
17510 {
17511 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17512 "dynamic property");
17513 return 0;
17514 }
17515 break;
17516 case DW_AT_data_member_location:
17517 {
17518 LONGEST offset;
17519
17520 if (!handle_data_member_location (target_die, target_cu,
17521 &offset))
17522 return 0;
17523
17524 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17525 baton->property_type = read_type_die (target_die->parent,
17526 target_cu);
17527 baton->offset_info.offset = offset;
17528 baton->offset_info.type = die_type (target_die, target_cu);
17529 prop->data.baton = baton;
17530 prop->kind = PROP_ADDR_OFFSET;
17531 break;
17532 }
17533 }
17534 }
17535 else if (attr->form_is_constant ())
17536 {
17537 prop->data.const_val = attr->constant_value (0);
17538 prop->kind = PROP_CONST;
17539 }
17540 else
17541 {
17542 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17543 dwarf2_name (die, cu));
17544 return 0;
17545 }
17546
17547 return 1;
17548 }
17549
17550 /* See read.h. */
17551
17552 struct type *
17553 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17554 {
17555 struct objfile *objfile = dwarf2_per_objfile->objfile;
17556 struct type *int_type;
17557
17558 /* Helper macro to examine the various builtin types. */
17559 #define TRY_TYPE(F) \
17560 int_type = (unsigned_p \
17561 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17562 : objfile_type (objfile)->builtin_ ## F); \
17563 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17564 return int_type
17565
17566 TRY_TYPE (char);
17567 TRY_TYPE (short);
17568 TRY_TYPE (int);
17569 TRY_TYPE (long);
17570 TRY_TYPE (long_long);
17571
17572 #undef TRY_TYPE
17573
17574 gdb_assert_not_reached ("unable to find suitable integer type");
17575 }
17576
17577 /* See read.h. */
17578
17579 struct type *
17580 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17581 {
17582 int addr_size = this->addr_size ();
17583 return int_type (addr_size, unsigned_p);
17584 }
17585
17586 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17587 present (which is valid) then compute the default type based on the
17588 compilation units address size. */
17589
17590 static struct type *
17591 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17592 {
17593 struct type *index_type = die_type (die, cu);
17594
17595 /* Dwarf-2 specifications explicitly allows to create subrange types
17596 without specifying a base type.
17597 In that case, the base type must be set to the type of
17598 the lower bound, upper bound or count, in that order, if any of these
17599 three attributes references an object that has a type.
17600 If no base type is found, the Dwarf-2 specifications say that
17601 a signed integer type of size equal to the size of an address should
17602 be used.
17603 For the following C code: `extern char gdb_int [];'
17604 GCC produces an empty range DIE.
17605 FIXME: muller/2010-05-28: Possible references to object for low bound,
17606 high bound or count are not yet handled by this code. */
17607 if (index_type->code () == TYPE_CODE_VOID)
17608 index_type = cu->per_cu->addr_sized_int_type (false);
17609
17610 return index_type;
17611 }
17612
17613 /* Read the given DW_AT_subrange DIE. */
17614
17615 static struct type *
17616 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17617 {
17618 struct type *base_type, *orig_base_type;
17619 struct type *range_type;
17620 struct attribute *attr;
17621 struct dynamic_prop low, high;
17622 int low_default_is_valid;
17623 int high_bound_is_count = 0;
17624 const char *name;
17625 ULONGEST negative_mask;
17626
17627 orig_base_type = read_subrange_index_type (die, cu);
17628
17629 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17630 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17631 creating the range type, but we use the result of check_typedef
17632 when examining properties of the type. */
17633 base_type = check_typedef (orig_base_type);
17634
17635 /* The die_type call above may have already set the type for this DIE. */
17636 range_type = get_die_type (die, cu);
17637 if (range_type)
17638 return range_type;
17639
17640 low.kind = PROP_CONST;
17641 high.kind = PROP_CONST;
17642 high.data.const_val = 0;
17643
17644 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17645 omitting DW_AT_lower_bound. */
17646 switch (cu->language)
17647 {
17648 case language_c:
17649 case language_cplus:
17650 low.data.const_val = 0;
17651 low_default_is_valid = 1;
17652 break;
17653 case language_fortran:
17654 low.data.const_val = 1;
17655 low_default_is_valid = 1;
17656 break;
17657 case language_d:
17658 case language_objc:
17659 case language_rust:
17660 low.data.const_val = 0;
17661 low_default_is_valid = (cu->header.version >= 4);
17662 break;
17663 case language_ada:
17664 case language_m2:
17665 case language_pascal:
17666 low.data.const_val = 1;
17667 low_default_is_valid = (cu->header.version >= 4);
17668 break;
17669 default:
17670 low.data.const_val = 0;
17671 low_default_is_valid = 0;
17672 break;
17673 }
17674
17675 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17676 if (attr != nullptr)
17677 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17678 else if (!low_default_is_valid)
17679 complaint (_("Missing DW_AT_lower_bound "
17680 "- DIE at %s [in module %s]"),
17681 sect_offset_str (die->sect_off),
17682 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17683
17684 struct attribute *attr_ub, *attr_count;
17685 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17686 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17687 {
17688 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17689 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17690 {
17691 /* If bounds are constant do the final calculation here. */
17692 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17693 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17694 else
17695 high_bound_is_count = 1;
17696 }
17697 else
17698 {
17699 if (attr_ub != NULL)
17700 complaint (_("Unresolved DW_AT_upper_bound "
17701 "- DIE at %s [in module %s]"),
17702 sect_offset_str (die->sect_off),
17703 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17704 if (attr_count != NULL)
17705 complaint (_("Unresolved DW_AT_count "
17706 "- DIE at %s [in module %s]"),
17707 sect_offset_str (die->sect_off),
17708 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17709 }
17710 }
17711
17712 LONGEST bias = 0;
17713 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17714 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17715 bias = bias_attr->constant_value (0);
17716
17717 /* Normally, the DWARF producers are expected to use a signed
17718 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17719 But this is unfortunately not always the case, as witnessed
17720 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17721 is used instead. To work around that ambiguity, we treat
17722 the bounds as signed, and thus sign-extend their values, when
17723 the base type is signed. */
17724 negative_mask =
17725 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17726 if (low.kind == PROP_CONST
17727 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17728 low.data.const_val |= negative_mask;
17729 if (high.kind == PROP_CONST
17730 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17731 high.data.const_val |= negative_mask;
17732
17733 /* Check for bit and byte strides. */
17734 struct dynamic_prop byte_stride_prop;
17735 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17736 if (attr_byte_stride != nullptr)
17737 {
17738 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17739 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17740 prop_type);
17741 }
17742
17743 struct dynamic_prop bit_stride_prop;
17744 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17745 if (attr_bit_stride != nullptr)
17746 {
17747 /* It only makes sense to have either a bit or byte stride. */
17748 if (attr_byte_stride != nullptr)
17749 {
17750 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17751 "- DIE at %s [in module %s]"),
17752 sect_offset_str (die->sect_off),
17753 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17754 attr_bit_stride = nullptr;
17755 }
17756 else
17757 {
17758 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17759 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17760 prop_type);
17761 }
17762 }
17763
17764 if (attr_byte_stride != nullptr
17765 || attr_bit_stride != nullptr)
17766 {
17767 bool byte_stride_p = (attr_byte_stride != nullptr);
17768 struct dynamic_prop *stride
17769 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17770
17771 range_type
17772 = create_range_type_with_stride (NULL, orig_base_type, &low,
17773 &high, bias, stride, byte_stride_p);
17774 }
17775 else
17776 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17777
17778 if (high_bound_is_count)
17779 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17780
17781 /* Ada expects an empty array on no boundary attributes. */
17782 if (attr == NULL && cu->language != language_ada)
17783 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17784
17785 name = dwarf2_name (die, cu);
17786 if (name)
17787 range_type->set_name (name);
17788
17789 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17790 if (attr != nullptr)
17791 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17792
17793 maybe_set_alignment (cu, die, range_type);
17794
17795 set_die_type (die, range_type, cu);
17796
17797 /* set_die_type should be already done. */
17798 set_descriptive_type (range_type, die, cu);
17799
17800 return range_type;
17801 }
17802
17803 static struct type *
17804 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17805 {
17806 struct type *type;
17807
17808 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17809 NULL);
17810 type->set_name (dwarf2_name (die, cu));
17811
17812 /* In Ada, an unspecified type is typically used when the description
17813 of the type is deferred to a different unit. When encountering
17814 such a type, we treat it as a stub, and try to resolve it later on,
17815 when needed. */
17816 if (cu->language == language_ada)
17817 TYPE_STUB (type) = 1;
17818
17819 return set_die_type (die, type, cu);
17820 }
17821
17822 /* Read a single die and all its descendents. Set the die's sibling
17823 field to NULL; set other fields in the die correctly, and set all
17824 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17825 location of the info_ptr after reading all of those dies. PARENT
17826 is the parent of the die in question. */
17827
17828 static struct die_info *
17829 read_die_and_children (const struct die_reader_specs *reader,
17830 const gdb_byte *info_ptr,
17831 const gdb_byte **new_info_ptr,
17832 struct die_info *parent)
17833 {
17834 struct die_info *die;
17835 const gdb_byte *cur_ptr;
17836
17837 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17838 if (die == NULL)
17839 {
17840 *new_info_ptr = cur_ptr;
17841 return NULL;
17842 }
17843 store_in_ref_table (die, reader->cu);
17844
17845 if (die->has_children)
17846 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17847 else
17848 {
17849 die->child = NULL;
17850 *new_info_ptr = cur_ptr;
17851 }
17852
17853 die->sibling = NULL;
17854 die->parent = parent;
17855 return die;
17856 }
17857
17858 /* Read a die, all of its descendents, and all of its siblings; set
17859 all of the fields of all of the dies correctly. Arguments are as
17860 in read_die_and_children. */
17861
17862 static struct die_info *
17863 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17864 const gdb_byte *info_ptr,
17865 const gdb_byte **new_info_ptr,
17866 struct die_info *parent)
17867 {
17868 struct die_info *first_die, *last_sibling;
17869 const gdb_byte *cur_ptr;
17870
17871 cur_ptr = info_ptr;
17872 first_die = last_sibling = NULL;
17873
17874 while (1)
17875 {
17876 struct die_info *die
17877 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17878
17879 if (die == NULL)
17880 {
17881 *new_info_ptr = cur_ptr;
17882 return first_die;
17883 }
17884
17885 if (!first_die)
17886 first_die = die;
17887 else
17888 last_sibling->sibling = die;
17889
17890 last_sibling = die;
17891 }
17892 }
17893
17894 /* Read a die, all of its descendents, and all of its siblings; set
17895 all of the fields of all of the dies correctly. Arguments are as
17896 in read_die_and_children.
17897 This the main entry point for reading a DIE and all its children. */
17898
17899 static struct die_info *
17900 read_die_and_siblings (const struct die_reader_specs *reader,
17901 const gdb_byte *info_ptr,
17902 const gdb_byte **new_info_ptr,
17903 struct die_info *parent)
17904 {
17905 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17906 new_info_ptr, parent);
17907
17908 if (dwarf_die_debug)
17909 {
17910 fprintf_unfiltered (gdb_stdlog,
17911 "Read die from %s@0x%x of %s:\n",
17912 reader->die_section->get_name (),
17913 (unsigned) (info_ptr - reader->die_section->buffer),
17914 bfd_get_filename (reader->abfd));
17915 dump_die (die, dwarf_die_debug);
17916 }
17917
17918 return die;
17919 }
17920
17921 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17922 attributes.
17923 The caller is responsible for filling in the extra attributes
17924 and updating (*DIEP)->num_attrs.
17925 Set DIEP to point to a newly allocated die with its information,
17926 except for its child, sibling, and parent fields. */
17927
17928 static const gdb_byte *
17929 read_full_die_1 (const struct die_reader_specs *reader,
17930 struct die_info **diep, const gdb_byte *info_ptr,
17931 int num_extra_attrs)
17932 {
17933 unsigned int abbrev_number, bytes_read, i;
17934 struct abbrev_info *abbrev;
17935 struct die_info *die;
17936 struct dwarf2_cu *cu = reader->cu;
17937 bfd *abfd = reader->abfd;
17938
17939 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17940 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17941 info_ptr += bytes_read;
17942 if (!abbrev_number)
17943 {
17944 *diep = NULL;
17945 return info_ptr;
17946 }
17947
17948 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17949 if (!abbrev)
17950 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17951 abbrev_number,
17952 bfd_get_filename (abfd));
17953
17954 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17955 die->sect_off = sect_off;
17956 die->tag = abbrev->tag;
17957 die->abbrev = abbrev_number;
17958 die->has_children = abbrev->has_children;
17959
17960 /* Make the result usable.
17961 The caller needs to update num_attrs after adding the extra
17962 attributes. */
17963 die->num_attrs = abbrev->num_attrs;
17964
17965 std::vector<int> indexes_that_need_reprocess;
17966 for (i = 0; i < abbrev->num_attrs; ++i)
17967 {
17968 bool need_reprocess;
17969 info_ptr =
17970 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17971 info_ptr, &need_reprocess);
17972 if (need_reprocess)
17973 indexes_that_need_reprocess.push_back (i);
17974 }
17975
17976 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17977 if (attr != nullptr)
17978 cu->str_offsets_base = DW_UNSND (attr);
17979
17980 attr = die->attr (DW_AT_loclists_base);
17981 if (attr != nullptr)
17982 cu->loclist_base = DW_UNSND (attr);
17983
17984 auto maybe_addr_base = die->addr_base ();
17985 if (maybe_addr_base.has_value ())
17986 cu->addr_base = *maybe_addr_base;
17987 for (int index : indexes_that_need_reprocess)
17988 read_attribute_reprocess (reader, &die->attrs[index]);
17989 *diep = die;
17990 return info_ptr;
17991 }
17992
17993 /* Read a die and all its attributes.
17994 Set DIEP to point to a newly allocated die with its information,
17995 except for its child, sibling, and parent fields. */
17996
17997 static const gdb_byte *
17998 read_full_die (const struct die_reader_specs *reader,
17999 struct die_info **diep, const gdb_byte *info_ptr)
18000 {
18001 const gdb_byte *result;
18002
18003 result = read_full_die_1 (reader, diep, info_ptr, 0);
18004
18005 if (dwarf_die_debug)
18006 {
18007 fprintf_unfiltered (gdb_stdlog,
18008 "Read die from %s@0x%x of %s:\n",
18009 reader->die_section->get_name (),
18010 (unsigned) (info_ptr - reader->die_section->buffer),
18011 bfd_get_filename (reader->abfd));
18012 dump_die (*diep, dwarf_die_debug);
18013 }
18014
18015 return result;
18016 }
18017 \f
18018
18019 /* Returns nonzero if TAG represents a type that we might generate a partial
18020 symbol for. */
18021
18022 static int
18023 is_type_tag_for_partial (int tag)
18024 {
18025 switch (tag)
18026 {
18027 #if 0
18028 /* Some types that would be reasonable to generate partial symbols for,
18029 that we don't at present. */
18030 case DW_TAG_array_type:
18031 case DW_TAG_file_type:
18032 case DW_TAG_ptr_to_member_type:
18033 case DW_TAG_set_type:
18034 case DW_TAG_string_type:
18035 case DW_TAG_subroutine_type:
18036 #endif
18037 case DW_TAG_base_type:
18038 case DW_TAG_class_type:
18039 case DW_TAG_interface_type:
18040 case DW_TAG_enumeration_type:
18041 case DW_TAG_structure_type:
18042 case DW_TAG_subrange_type:
18043 case DW_TAG_typedef:
18044 case DW_TAG_union_type:
18045 return 1;
18046 default:
18047 return 0;
18048 }
18049 }
18050
18051 /* Load all DIEs that are interesting for partial symbols into memory. */
18052
18053 static struct partial_die_info *
18054 load_partial_dies (const struct die_reader_specs *reader,
18055 const gdb_byte *info_ptr, int building_psymtab)
18056 {
18057 struct dwarf2_cu *cu = reader->cu;
18058 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18059 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18060 unsigned int bytes_read;
18061 unsigned int load_all = 0;
18062 int nesting_level = 1;
18063
18064 parent_die = NULL;
18065 last_die = NULL;
18066
18067 gdb_assert (cu->per_cu != NULL);
18068 if (cu->per_cu->load_all_dies)
18069 load_all = 1;
18070
18071 cu->partial_dies
18072 = htab_create_alloc_ex (cu->header.length / 12,
18073 partial_die_hash,
18074 partial_die_eq,
18075 NULL,
18076 &cu->comp_unit_obstack,
18077 hashtab_obstack_allocate,
18078 dummy_obstack_deallocate);
18079
18080 while (1)
18081 {
18082 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18083
18084 /* A NULL abbrev means the end of a series of children. */
18085 if (abbrev == NULL)
18086 {
18087 if (--nesting_level == 0)
18088 return first_die;
18089
18090 info_ptr += bytes_read;
18091 last_die = parent_die;
18092 parent_die = parent_die->die_parent;
18093 continue;
18094 }
18095
18096 /* Check for template arguments. We never save these; if
18097 they're seen, we just mark the parent, and go on our way. */
18098 if (parent_die != NULL
18099 && cu->language == language_cplus
18100 && (abbrev->tag == DW_TAG_template_type_param
18101 || abbrev->tag == DW_TAG_template_value_param))
18102 {
18103 parent_die->has_template_arguments = 1;
18104
18105 if (!load_all)
18106 {
18107 /* We don't need a partial DIE for the template argument. */
18108 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18109 continue;
18110 }
18111 }
18112
18113 /* We only recurse into c++ subprograms looking for template arguments.
18114 Skip their other children. */
18115 if (!load_all
18116 && cu->language == language_cplus
18117 && parent_die != NULL
18118 && parent_die->tag == DW_TAG_subprogram)
18119 {
18120 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18121 continue;
18122 }
18123
18124 /* Check whether this DIE is interesting enough to save. Normally
18125 we would not be interested in members here, but there may be
18126 later variables referencing them via DW_AT_specification (for
18127 static members). */
18128 if (!load_all
18129 && !is_type_tag_for_partial (abbrev->tag)
18130 && abbrev->tag != DW_TAG_constant
18131 && abbrev->tag != DW_TAG_enumerator
18132 && abbrev->tag != DW_TAG_subprogram
18133 && abbrev->tag != DW_TAG_inlined_subroutine
18134 && abbrev->tag != DW_TAG_lexical_block
18135 && abbrev->tag != DW_TAG_variable
18136 && abbrev->tag != DW_TAG_namespace
18137 && abbrev->tag != DW_TAG_module
18138 && abbrev->tag != DW_TAG_member
18139 && abbrev->tag != DW_TAG_imported_unit
18140 && abbrev->tag != DW_TAG_imported_declaration)
18141 {
18142 /* Otherwise we skip to the next sibling, if any. */
18143 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18144 continue;
18145 }
18146
18147 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18148 abbrev);
18149
18150 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18151
18152 /* This two-pass algorithm for processing partial symbols has a
18153 high cost in cache pressure. Thus, handle some simple cases
18154 here which cover the majority of C partial symbols. DIEs
18155 which neither have specification tags in them, nor could have
18156 specification tags elsewhere pointing at them, can simply be
18157 processed and discarded.
18158
18159 This segment is also optional; scan_partial_symbols and
18160 add_partial_symbol will handle these DIEs if we chain
18161 them in normally. When compilers which do not emit large
18162 quantities of duplicate debug information are more common,
18163 this code can probably be removed. */
18164
18165 /* Any complete simple types at the top level (pretty much all
18166 of them, for a language without namespaces), can be processed
18167 directly. */
18168 if (parent_die == NULL
18169 && pdi.has_specification == 0
18170 && pdi.is_declaration == 0
18171 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18172 || pdi.tag == DW_TAG_base_type
18173 || pdi.tag == DW_TAG_subrange_type))
18174 {
18175 if (building_psymtab && pdi.name != NULL)
18176 add_psymbol_to_list (pdi.name, false,
18177 VAR_DOMAIN, LOC_TYPEDEF, -1,
18178 psymbol_placement::STATIC,
18179 0, cu->language, objfile);
18180 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18181 continue;
18182 }
18183
18184 /* The exception for DW_TAG_typedef with has_children above is
18185 a workaround of GCC PR debug/47510. In the case of this complaint
18186 type_name_or_error will error on such types later.
18187
18188 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18189 it could not find the child DIEs referenced later, this is checked
18190 above. In correct DWARF DW_TAG_typedef should have no children. */
18191
18192 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18193 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18194 "- DIE at %s [in module %s]"),
18195 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18196
18197 /* If we're at the second level, and we're an enumerator, and
18198 our parent has no specification (meaning possibly lives in a
18199 namespace elsewhere), then we can add the partial symbol now
18200 instead of queueing it. */
18201 if (pdi.tag == DW_TAG_enumerator
18202 && parent_die != NULL
18203 && parent_die->die_parent == NULL
18204 && parent_die->tag == DW_TAG_enumeration_type
18205 && parent_die->has_specification == 0)
18206 {
18207 if (pdi.name == NULL)
18208 complaint (_("malformed enumerator DIE ignored"));
18209 else if (building_psymtab)
18210 add_psymbol_to_list (pdi.name, false,
18211 VAR_DOMAIN, LOC_CONST, -1,
18212 cu->language == language_cplus
18213 ? psymbol_placement::GLOBAL
18214 : psymbol_placement::STATIC,
18215 0, cu->language, objfile);
18216
18217 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18218 continue;
18219 }
18220
18221 struct partial_die_info *part_die
18222 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18223
18224 /* We'll save this DIE so link it in. */
18225 part_die->die_parent = parent_die;
18226 part_die->die_sibling = NULL;
18227 part_die->die_child = NULL;
18228
18229 if (last_die && last_die == parent_die)
18230 last_die->die_child = part_die;
18231 else if (last_die)
18232 last_die->die_sibling = part_die;
18233
18234 last_die = part_die;
18235
18236 if (first_die == NULL)
18237 first_die = part_die;
18238
18239 /* Maybe add the DIE to the hash table. Not all DIEs that we
18240 find interesting need to be in the hash table, because we
18241 also have the parent/sibling/child chains; only those that we
18242 might refer to by offset later during partial symbol reading.
18243
18244 For now this means things that might have be the target of a
18245 DW_AT_specification, DW_AT_abstract_origin, or
18246 DW_AT_extension. DW_AT_extension will refer only to
18247 namespaces; DW_AT_abstract_origin refers to functions (and
18248 many things under the function DIE, but we do not recurse
18249 into function DIEs during partial symbol reading) and
18250 possibly variables as well; DW_AT_specification refers to
18251 declarations. Declarations ought to have the DW_AT_declaration
18252 flag. It happens that GCC forgets to put it in sometimes, but
18253 only for functions, not for types.
18254
18255 Adding more things than necessary to the hash table is harmless
18256 except for the performance cost. Adding too few will result in
18257 wasted time in find_partial_die, when we reread the compilation
18258 unit with load_all_dies set. */
18259
18260 if (load_all
18261 || abbrev->tag == DW_TAG_constant
18262 || abbrev->tag == DW_TAG_subprogram
18263 || abbrev->tag == DW_TAG_variable
18264 || abbrev->tag == DW_TAG_namespace
18265 || part_die->is_declaration)
18266 {
18267 void **slot;
18268
18269 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18270 to_underlying (part_die->sect_off),
18271 INSERT);
18272 *slot = part_die;
18273 }
18274
18275 /* For some DIEs we want to follow their children (if any). For C
18276 we have no reason to follow the children of structures; for other
18277 languages we have to, so that we can get at method physnames
18278 to infer fully qualified class names, for DW_AT_specification,
18279 and for C++ template arguments. For C++, we also look one level
18280 inside functions to find template arguments (if the name of the
18281 function does not already contain the template arguments).
18282
18283 For Ada and Fortran, we need to scan the children of subprograms
18284 and lexical blocks as well because these languages allow the
18285 definition of nested entities that could be interesting for the
18286 debugger, such as nested subprograms for instance. */
18287 if (last_die->has_children
18288 && (load_all
18289 || last_die->tag == DW_TAG_namespace
18290 || last_die->tag == DW_TAG_module
18291 || last_die->tag == DW_TAG_enumeration_type
18292 || (cu->language == language_cplus
18293 && last_die->tag == DW_TAG_subprogram
18294 && (last_die->name == NULL
18295 || strchr (last_die->name, '<') == NULL))
18296 || (cu->language != language_c
18297 && (last_die->tag == DW_TAG_class_type
18298 || last_die->tag == DW_TAG_interface_type
18299 || last_die->tag == DW_TAG_structure_type
18300 || last_die->tag == DW_TAG_union_type))
18301 || ((cu->language == language_ada
18302 || cu->language == language_fortran)
18303 && (last_die->tag == DW_TAG_subprogram
18304 || last_die->tag == DW_TAG_lexical_block))))
18305 {
18306 nesting_level++;
18307 parent_die = last_die;
18308 continue;
18309 }
18310
18311 /* Otherwise we skip to the next sibling, if any. */
18312 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18313
18314 /* Back to the top, do it again. */
18315 }
18316 }
18317
18318 partial_die_info::partial_die_info (sect_offset sect_off_,
18319 struct abbrev_info *abbrev)
18320 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18321 {
18322 }
18323
18324 /* Read a minimal amount of information into the minimal die structure.
18325 INFO_PTR should point just after the initial uleb128 of a DIE. */
18326
18327 const gdb_byte *
18328 partial_die_info::read (const struct die_reader_specs *reader,
18329 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18330 {
18331 struct dwarf2_cu *cu = reader->cu;
18332 struct dwarf2_per_objfile *dwarf2_per_objfile
18333 = cu->per_cu->dwarf2_per_objfile;
18334 unsigned int i;
18335 int has_low_pc_attr = 0;
18336 int has_high_pc_attr = 0;
18337 int high_pc_relative = 0;
18338
18339 for (i = 0; i < abbrev.num_attrs; ++i)
18340 {
18341 attribute attr;
18342 bool need_reprocess;
18343 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18344 info_ptr, &need_reprocess);
18345 /* String and address offsets that need to do the reprocessing have
18346 already been read at this point, so there is no need to wait until
18347 the loop terminates to do the reprocessing. */
18348 if (need_reprocess)
18349 read_attribute_reprocess (reader, &attr);
18350 /* Store the data if it is of an attribute we want to keep in a
18351 partial symbol table. */
18352 switch (attr.name)
18353 {
18354 case DW_AT_name:
18355 switch (tag)
18356 {
18357 case DW_TAG_compile_unit:
18358 case DW_TAG_partial_unit:
18359 case DW_TAG_type_unit:
18360 /* Compilation units have a DW_AT_name that is a filename, not
18361 a source language identifier. */
18362 case DW_TAG_enumeration_type:
18363 case DW_TAG_enumerator:
18364 /* These tags always have simple identifiers already; no need
18365 to canonicalize them. */
18366 name = DW_STRING (&attr);
18367 break;
18368 default:
18369 {
18370 struct objfile *objfile = dwarf2_per_objfile->objfile;
18371
18372 name
18373 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18374 }
18375 break;
18376 }
18377 break;
18378 case DW_AT_linkage_name:
18379 case DW_AT_MIPS_linkage_name:
18380 /* Note that both forms of linkage name might appear. We
18381 assume they will be the same, and we only store the last
18382 one we see. */
18383 linkage_name = attr.value_as_string ();
18384 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18385 See https://github.com/rust-lang/rust/issues/32925. */
18386 if (cu->language == language_rust && linkage_name != NULL
18387 && strchr (linkage_name, '{') != NULL)
18388 linkage_name = NULL;
18389 break;
18390 case DW_AT_low_pc:
18391 has_low_pc_attr = 1;
18392 lowpc = attr.value_as_address ();
18393 break;
18394 case DW_AT_high_pc:
18395 has_high_pc_attr = 1;
18396 highpc = attr.value_as_address ();
18397 if (cu->header.version >= 4 && attr.form_is_constant ())
18398 high_pc_relative = 1;
18399 break;
18400 case DW_AT_location:
18401 /* Support the .debug_loc offsets. */
18402 if (attr.form_is_block ())
18403 {
18404 d.locdesc = DW_BLOCK (&attr);
18405 }
18406 else if (attr.form_is_section_offset ())
18407 {
18408 dwarf2_complex_location_expr_complaint ();
18409 }
18410 else
18411 {
18412 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18413 "partial symbol information");
18414 }
18415 break;
18416 case DW_AT_external:
18417 is_external = DW_UNSND (&attr);
18418 break;
18419 case DW_AT_declaration:
18420 is_declaration = DW_UNSND (&attr);
18421 break;
18422 case DW_AT_type:
18423 has_type = 1;
18424 break;
18425 case DW_AT_abstract_origin:
18426 case DW_AT_specification:
18427 case DW_AT_extension:
18428 has_specification = 1;
18429 spec_offset = attr.get_ref_die_offset ();
18430 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18431 || cu->per_cu->is_dwz);
18432 break;
18433 case DW_AT_sibling:
18434 /* Ignore absolute siblings, they might point outside of
18435 the current compile unit. */
18436 if (attr.form == DW_FORM_ref_addr)
18437 complaint (_("ignoring absolute DW_AT_sibling"));
18438 else
18439 {
18440 const gdb_byte *buffer = reader->buffer;
18441 sect_offset off = attr.get_ref_die_offset ();
18442 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18443
18444 if (sibling_ptr < info_ptr)
18445 complaint (_("DW_AT_sibling points backwards"));
18446 else if (sibling_ptr > reader->buffer_end)
18447 reader->die_section->overflow_complaint ();
18448 else
18449 sibling = sibling_ptr;
18450 }
18451 break;
18452 case DW_AT_byte_size:
18453 has_byte_size = 1;
18454 break;
18455 case DW_AT_const_value:
18456 has_const_value = 1;
18457 break;
18458 case DW_AT_calling_convention:
18459 /* DWARF doesn't provide a way to identify a program's source-level
18460 entry point. DW_AT_calling_convention attributes are only meant
18461 to describe functions' calling conventions.
18462
18463 However, because it's a necessary piece of information in
18464 Fortran, and before DWARF 4 DW_CC_program was the only
18465 piece of debugging information whose definition refers to
18466 a 'main program' at all, several compilers marked Fortran
18467 main programs with DW_CC_program --- even when those
18468 functions use the standard calling conventions.
18469
18470 Although DWARF now specifies a way to provide this
18471 information, we support this practice for backward
18472 compatibility. */
18473 if (DW_UNSND (&attr) == DW_CC_program
18474 && cu->language == language_fortran)
18475 main_subprogram = 1;
18476 break;
18477 case DW_AT_inline:
18478 if (DW_UNSND (&attr) == DW_INL_inlined
18479 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18480 may_be_inlined = 1;
18481 break;
18482
18483 case DW_AT_import:
18484 if (tag == DW_TAG_imported_unit)
18485 {
18486 d.sect_off = attr.get_ref_die_offset ();
18487 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18488 || cu->per_cu->is_dwz);
18489 }
18490 break;
18491
18492 case DW_AT_main_subprogram:
18493 main_subprogram = DW_UNSND (&attr);
18494 break;
18495
18496 case DW_AT_ranges:
18497 {
18498 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18499 but that requires a full DIE, so instead we just
18500 reimplement it. */
18501 int need_ranges_base = tag != DW_TAG_compile_unit;
18502 unsigned int ranges_offset = (DW_UNSND (&attr)
18503 + (need_ranges_base
18504 ? cu->ranges_base
18505 : 0));
18506
18507 /* Value of the DW_AT_ranges attribute is the offset in the
18508 .debug_ranges section. */
18509 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18510 nullptr))
18511 has_pc_info = 1;
18512 }
18513 break;
18514
18515 default:
18516 break;
18517 }
18518 }
18519
18520 /* For Ada, if both the name and the linkage name appear, we prefer
18521 the latter. This lets "catch exception" work better, regardless
18522 of the order in which the name and linkage name were emitted.
18523 Really, though, this is just a workaround for the fact that gdb
18524 doesn't store both the name and the linkage name. */
18525 if (cu->language == language_ada && linkage_name != nullptr)
18526 name = linkage_name;
18527
18528 if (high_pc_relative)
18529 highpc += lowpc;
18530
18531 if (has_low_pc_attr && has_high_pc_attr)
18532 {
18533 /* When using the GNU linker, .gnu.linkonce. sections are used to
18534 eliminate duplicate copies of functions and vtables and such.
18535 The linker will arbitrarily choose one and discard the others.
18536 The AT_*_pc values for such functions refer to local labels in
18537 these sections. If the section from that file was discarded, the
18538 labels are not in the output, so the relocs get a value of 0.
18539 If this is a discarded function, mark the pc bounds as invalid,
18540 so that GDB will ignore it. */
18541 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18542 {
18543 struct objfile *objfile = dwarf2_per_objfile->objfile;
18544 struct gdbarch *gdbarch = objfile->arch ();
18545
18546 complaint (_("DW_AT_low_pc %s is zero "
18547 "for DIE at %s [in module %s]"),
18548 paddress (gdbarch, lowpc),
18549 sect_offset_str (sect_off),
18550 objfile_name (objfile));
18551 }
18552 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18553 else if (lowpc >= highpc)
18554 {
18555 struct objfile *objfile = dwarf2_per_objfile->objfile;
18556 struct gdbarch *gdbarch = objfile->arch ();
18557
18558 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18559 "for DIE at %s [in module %s]"),
18560 paddress (gdbarch, lowpc),
18561 paddress (gdbarch, highpc),
18562 sect_offset_str (sect_off),
18563 objfile_name (objfile));
18564 }
18565 else
18566 has_pc_info = 1;
18567 }
18568
18569 return info_ptr;
18570 }
18571
18572 /* Find a cached partial DIE at OFFSET in CU. */
18573
18574 struct partial_die_info *
18575 dwarf2_cu::find_partial_die (sect_offset sect_off)
18576 {
18577 struct partial_die_info *lookup_die = NULL;
18578 struct partial_die_info part_die (sect_off);
18579
18580 lookup_die = ((struct partial_die_info *)
18581 htab_find_with_hash (partial_dies, &part_die,
18582 to_underlying (sect_off)));
18583
18584 return lookup_die;
18585 }
18586
18587 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18588 except in the case of .debug_types DIEs which do not reference
18589 outside their CU (they do however referencing other types via
18590 DW_FORM_ref_sig8). */
18591
18592 static const struct cu_partial_die_info
18593 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18594 {
18595 struct dwarf2_per_objfile *dwarf2_per_objfile
18596 = cu->per_cu->dwarf2_per_objfile;
18597 struct objfile *objfile = dwarf2_per_objfile->objfile;
18598 struct dwarf2_per_cu_data *per_cu = NULL;
18599 struct partial_die_info *pd = NULL;
18600
18601 if (offset_in_dwz == cu->per_cu->is_dwz
18602 && cu->header.offset_in_cu_p (sect_off))
18603 {
18604 pd = cu->find_partial_die (sect_off);
18605 if (pd != NULL)
18606 return { cu, pd };
18607 /* We missed recording what we needed.
18608 Load all dies and try again. */
18609 per_cu = cu->per_cu;
18610 }
18611 else
18612 {
18613 /* TUs don't reference other CUs/TUs (except via type signatures). */
18614 if (cu->per_cu->is_debug_types)
18615 {
18616 error (_("Dwarf Error: Type Unit at offset %s contains"
18617 " external reference to offset %s [in module %s].\n"),
18618 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18619 bfd_get_filename (objfile->obfd));
18620 }
18621 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18622 dwarf2_per_objfile);
18623
18624 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18625 load_partial_comp_unit (per_cu);
18626
18627 per_cu->cu->last_used = 0;
18628 pd = per_cu->cu->find_partial_die (sect_off);
18629 }
18630
18631 /* If we didn't find it, and not all dies have been loaded,
18632 load them all and try again. */
18633
18634 if (pd == NULL && per_cu->load_all_dies == 0)
18635 {
18636 per_cu->load_all_dies = 1;
18637
18638 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18639 THIS_CU->cu may already be in use. So we can't just free it and
18640 replace its DIEs with the ones we read in. Instead, we leave those
18641 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18642 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18643 set. */
18644 load_partial_comp_unit (per_cu);
18645
18646 pd = per_cu->cu->find_partial_die (sect_off);
18647 }
18648
18649 if (pd == NULL)
18650 internal_error (__FILE__, __LINE__,
18651 _("could not find partial DIE %s "
18652 "in cache [from module %s]\n"),
18653 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18654 return { per_cu->cu, pd };
18655 }
18656
18657 /* See if we can figure out if the class lives in a namespace. We do
18658 this by looking for a member function; its demangled name will
18659 contain namespace info, if there is any. */
18660
18661 static void
18662 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18663 struct dwarf2_cu *cu)
18664 {
18665 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18666 what template types look like, because the demangler
18667 frequently doesn't give the same name as the debug info. We
18668 could fix this by only using the demangled name to get the
18669 prefix (but see comment in read_structure_type). */
18670
18671 struct partial_die_info *real_pdi;
18672 struct partial_die_info *child_pdi;
18673
18674 /* If this DIE (this DIE's specification, if any) has a parent, then
18675 we should not do this. We'll prepend the parent's fully qualified
18676 name when we create the partial symbol. */
18677
18678 real_pdi = struct_pdi;
18679 while (real_pdi->has_specification)
18680 {
18681 auto res = find_partial_die (real_pdi->spec_offset,
18682 real_pdi->spec_is_dwz, cu);
18683 real_pdi = res.pdi;
18684 cu = res.cu;
18685 }
18686
18687 if (real_pdi->die_parent != NULL)
18688 return;
18689
18690 for (child_pdi = struct_pdi->die_child;
18691 child_pdi != NULL;
18692 child_pdi = child_pdi->die_sibling)
18693 {
18694 if (child_pdi->tag == DW_TAG_subprogram
18695 && child_pdi->linkage_name != NULL)
18696 {
18697 gdb::unique_xmalloc_ptr<char> actual_class_name
18698 (language_class_name_from_physname (cu->language_defn,
18699 child_pdi->linkage_name));
18700 if (actual_class_name != NULL)
18701 {
18702 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18703 struct_pdi->name = objfile->intern (actual_class_name.get ());
18704 }
18705 break;
18706 }
18707 }
18708 }
18709
18710 /* Return true if a DIE with TAG may have the DW_AT_const_value
18711 attribute. */
18712
18713 static bool
18714 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18715 {
18716 switch (tag)
18717 {
18718 case DW_TAG_constant:
18719 case DW_TAG_enumerator:
18720 case DW_TAG_formal_parameter:
18721 case DW_TAG_template_value_param:
18722 case DW_TAG_variable:
18723 return true;
18724 }
18725
18726 return false;
18727 }
18728
18729 void
18730 partial_die_info::fixup (struct dwarf2_cu *cu)
18731 {
18732 /* Once we've fixed up a die, there's no point in doing so again.
18733 This also avoids a memory leak if we were to call
18734 guess_partial_die_structure_name multiple times. */
18735 if (fixup_called)
18736 return;
18737
18738 /* If we found a reference attribute and the DIE has no name, try
18739 to find a name in the referred to DIE. */
18740
18741 if (name == NULL && has_specification)
18742 {
18743 struct partial_die_info *spec_die;
18744
18745 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18746 spec_die = res.pdi;
18747 cu = res.cu;
18748
18749 spec_die->fixup (cu);
18750
18751 if (spec_die->name)
18752 {
18753 name = spec_die->name;
18754
18755 /* Copy DW_AT_external attribute if it is set. */
18756 if (spec_die->is_external)
18757 is_external = spec_die->is_external;
18758 }
18759 }
18760
18761 if (!has_const_value && has_specification
18762 && can_have_DW_AT_const_value_p (tag))
18763 {
18764 struct partial_die_info *spec_die;
18765
18766 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18767 spec_die = res.pdi;
18768 cu = res.cu;
18769
18770 spec_die->fixup (cu);
18771
18772 if (spec_die->has_const_value)
18773 {
18774 /* Copy DW_AT_const_value attribute if it is set. */
18775 has_const_value = spec_die->has_const_value;
18776 }
18777 }
18778
18779 /* Set default names for some unnamed DIEs. */
18780
18781 if (name == NULL && tag == DW_TAG_namespace)
18782 name = CP_ANONYMOUS_NAMESPACE_STR;
18783
18784 /* If there is no parent die to provide a namespace, and there are
18785 children, see if we can determine the namespace from their linkage
18786 name. */
18787 if (cu->language == language_cplus
18788 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18789 && die_parent == NULL
18790 && has_children
18791 && (tag == DW_TAG_class_type
18792 || tag == DW_TAG_structure_type
18793 || tag == DW_TAG_union_type))
18794 guess_partial_die_structure_name (this, cu);
18795
18796 /* GCC might emit a nameless struct or union that has a linkage
18797 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18798 if (name == NULL
18799 && (tag == DW_TAG_class_type
18800 || tag == DW_TAG_interface_type
18801 || tag == DW_TAG_structure_type
18802 || tag == DW_TAG_union_type)
18803 && linkage_name != NULL)
18804 {
18805 gdb::unique_xmalloc_ptr<char> demangled
18806 (gdb_demangle (linkage_name, DMGL_TYPES));
18807 if (demangled != nullptr)
18808 {
18809 const char *base;
18810
18811 /* Strip any leading namespaces/classes, keep only the base name.
18812 DW_AT_name for named DIEs does not contain the prefixes. */
18813 base = strrchr (demangled.get (), ':');
18814 if (base && base > demangled.get () && base[-1] == ':')
18815 base++;
18816 else
18817 base = demangled.get ();
18818
18819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18820 name = objfile->intern (base);
18821 }
18822 }
18823
18824 fixup_called = 1;
18825 }
18826
18827 /* Read the .debug_loclists header contents from the given SECTION in the
18828 HEADER. */
18829 static void
18830 read_loclist_header (struct loclist_header *header,
18831 struct dwarf2_section_info *section)
18832 {
18833 unsigned int bytes_read;
18834 bfd *abfd = section->get_bfd_owner ();
18835 const gdb_byte *info_ptr = section->buffer;
18836 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18837 info_ptr += bytes_read;
18838 header->version = read_2_bytes (abfd, info_ptr);
18839 info_ptr += 2;
18840 header->addr_size = read_1_byte (abfd, info_ptr);
18841 info_ptr += 1;
18842 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18843 info_ptr += 1;
18844 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18845 }
18846
18847 /* Return the DW_AT_loclists_base value for the CU. */
18848 static ULONGEST
18849 lookup_loclist_base (struct dwarf2_cu *cu)
18850 {
18851 /* For the .dwo unit, the loclist_base points to the first offset following
18852 the header. The header consists of the following entities-
18853 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18854 bit format)
18855 2. version (2 bytes)
18856 3. address size (1 byte)
18857 4. segment selector size (1 byte)
18858 5. offset entry count (4 bytes)
18859 These sizes are derived as per the DWARFv5 standard. */
18860 if (cu->dwo_unit != nullptr)
18861 {
18862 if (cu->header.initial_length_size == 4)
18863 return LOCLIST_HEADER_SIZE32;
18864 return LOCLIST_HEADER_SIZE64;
18865 }
18866 return cu->loclist_base;
18867 }
18868
18869 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18870 array of offsets in the .debug_loclists section. */
18871 static CORE_ADDR
18872 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18873 {
18874 struct dwarf2_per_objfile *dwarf2_per_objfile
18875 = cu->per_cu->dwarf2_per_objfile;
18876 struct objfile *objfile = dwarf2_per_objfile->objfile;
18877 bfd *abfd = objfile->obfd;
18878 ULONGEST loclist_base = lookup_loclist_base (cu);
18879 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18880
18881 section->read (objfile);
18882 if (section->buffer == NULL)
18883 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18884 "section [in module %s]"), objfile_name (objfile));
18885 struct loclist_header header;
18886 read_loclist_header (&header, section);
18887 if (loclist_index >= header.offset_entry_count)
18888 complaint (_("DW_FORM_loclistx pointing outside of "
18889 ".debug_loclists offset array [in module %s]"),
18890 objfile_name (objfile));
18891 if (loclist_base + loclist_index * cu->header.offset_size
18892 >= section->size)
18893 complaint (_("DW_FORM_loclistx pointing outside of "
18894 ".debug_loclists section [in module %s]"),
18895 objfile_name (objfile));
18896 const gdb_byte *info_ptr
18897 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18898
18899 if (cu->header.offset_size == 4)
18900 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18901 else
18902 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18903 }
18904
18905 /* Process the attributes that had to be skipped in the first round. These
18906 attributes are the ones that need str_offsets_base or addr_base attributes.
18907 They could not have been processed in the first round, because at the time
18908 the values of str_offsets_base or addr_base may not have been known. */
18909 static void
18910 read_attribute_reprocess (const struct die_reader_specs *reader,
18911 struct attribute *attr)
18912 {
18913 struct dwarf2_cu *cu = reader->cu;
18914 switch (attr->form)
18915 {
18916 case DW_FORM_addrx:
18917 case DW_FORM_GNU_addr_index:
18918 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18919 break;
18920 case DW_FORM_loclistx:
18921 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18922 break;
18923 case DW_FORM_strx:
18924 case DW_FORM_strx1:
18925 case DW_FORM_strx2:
18926 case DW_FORM_strx3:
18927 case DW_FORM_strx4:
18928 case DW_FORM_GNU_str_index:
18929 {
18930 unsigned int str_index = DW_UNSND (attr);
18931 if (reader->dwo_file != NULL)
18932 {
18933 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18934 DW_STRING_IS_CANONICAL (attr) = 0;
18935 }
18936 else
18937 {
18938 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18939 DW_STRING_IS_CANONICAL (attr) = 0;
18940 }
18941 break;
18942 }
18943 default:
18944 gdb_assert_not_reached (_("Unexpected DWARF form."));
18945 }
18946 }
18947
18948 /* Read an attribute value described by an attribute form. */
18949
18950 static const gdb_byte *
18951 read_attribute_value (const struct die_reader_specs *reader,
18952 struct attribute *attr, unsigned form,
18953 LONGEST implicit_const, const gdb_byte *info_ptr,
18954 bool *need_reprocess)
18955 {
18956 struct dwarf2_cu *cu = reader->cu;
18957 struct dwarf2_per_objfile *dwarf2_per_objfile
18958 = cu->per_cu->dwarf2_per_objfile;
18959 struct objfile *objfile = dwarf2_per_objfile->objfile;
18960 bfd *abfd = reader->abfd;
18961 struct comp_unit_head *cu_header = &cu->header;
18962 unsigned int bytes_read;
18963 struct dwarf_block *blk;
18964 *need_reprocess = false;
18965
18966 attr->form = (enum dwarf_form) form;
18967 switch (form)
18968 {
18969 case DW_FORM_ref_addr:
18970 if (cu->header.version == 2)
18971 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18972 &bytes_read);
18973 else
18974 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18975 &bytes_read);
18976 info_ptr += bytes_read;
18977 break;
18978 case DW_FORM_GNU_ref_alt:
18979 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18980 info_ptr += bytes_read;
18981 break;
18982 case DW_FORM_addr:
18983 {
18984 struct gdbarch *gdbarch = objfile->arch ();
18985 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18986 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18987 info_ptr += bytes_read;
18988 }
18989 break;
18990 case DW_FORM_block2:
18991 blk = dwarf_alloc_block (cu);
18992 blk->size = read_2_bytes (abfd, info_ptr);
18993 info_ptr += 2;
18994 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18995 info_ptr += blk->size;
18996 DW_BLOCK (attr) = blk;
18997 break;
18998 case DW_FORM_block4:
18999 blk = dwarf_alloc_block (cu);
19000 blk->size = read_4_bytes (abfd, info_ptr);
19001 info_ptr += 4;
19002 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19003 info_ptr += blk->size;
19004 DW_BLOCK (attr) = blk;
19005 break;
19006 case DW_FORM_data2:
19007 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19008 info_ptr += 2;
19009 break;
19010 case DW_FORM_data4:
19011 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19012 info_ptr += 4;
19013 break;
19014 case DW_FORM_data8:
19015 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19016 info_ptr += 8;
19017 break;
19018 case DW_FORM_data16:
19019 blk = dwarf_alloc_block (cu);
19020 blk->size = 16;
19021 blk->data = read_n_bytes (abfd, info_ptr, 16);
19022 info_ptr += 16;
19023 DW_BLOCK (attr) = blk;
19024 break;
19025 case DW_FORM_sec_offset:
19026 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
19027 info_ptr += bytes_read;
19028 break;
19029 case DW_FORM_loclistx:
19030 {
19031 *need_reprocess = true;
19032 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19033 info_ptr += bytes_read;
19034 }
19035 break;
19036 case DW_FORM_string:
19037 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19038 DW_STRING_IS_CANONICAL (attr) = 0;
19039 info_ptr += bytes_read;
19040 break;
19041 case DW_FORM_strp:
19042 if (!cu->per_cu->is_dwz)
19043 {
19044 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19045 abfd, info_ptr, cu_header,
19046 &bytes_read);
19047 DW_STRING_IS_CANONICAL (attr) = 0;
19048 info_ptr += bytes_read;
19049 break;
19050 }
19051 /* FALLTHROUGH */
19052 case DW_FORM_line_strp:
19053 if (!cu->per_cu->is_dwz)
19054 {
19055 DW_STRING (attr)
19056 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
19057 &bytes_read);
19058 DW_STRING_IS_CANONICAL (attr) = 0;
19059 info_ptr += bytes_read;
19060 break;
19061 }
19062 /* FALLTHROUGH */
19063 case DW_FORM_GNU_strp_alt:
19064 {
19065 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19066 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19067 &bytes_read);
19068
19069 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
19070 DW_STRING_IS_CANONICAL (attr) = 0;
19071 info_ptr += bytes_read;
19072 }
19073 break;
19074 case DW_FORM_exprloc:
19075 case DW_FORM_block:
19076 blk = dwarf_alloc_block (cu);
19077 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19078 info_ptr += bytes_read;
19079 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19080 info_ptr += blk->size;
19081 DW_BLOCK (attr) = blk;
19082 break;
19083 case DW_FORM_block1:
19084 blk = dwarf_alloc_block (cu);
19085 blk->size = read_1_byte (abfd, info_ptr);
19086 info_ptr += 1;
19087 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19088 info_ptr += blk->size;
19089 DW_BLOCK (attr) = blk;
19090 break;
19091 case DW_FORM_data1:
19092 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19093 info_ptr += 1;
19094 break;
19095 case DW_FORM_flag:
19096 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19097 info_ptr += 1;
19098 break;
19099 case DW_FORM_flag_present:
19100 DW_UNSND (attr) = 1;
19101 break;
19102 case DW_FORM_sdata:
19103 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19104 info_ptr += bytes_read;
19105 break;
19106 case DW_FORM_udata:
19107 case DW_FORM_rnglistx:
19108 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19109 info_ptr += bytes_read;
19110 break;
19111 case DW_FORM_ref1:
19112 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19113 + read_1_byte (abfd, info_ptr));
19114 info_ptr += 1;
19115 break;
19116 case DW_FORM_ref2:
19117 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19118 + read_2_bytes (abfd, info_ptr));
19119 info_ptr += 2;
19120 break;
19121 case DW_FORM_ref4:
19122 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19123 + read_4_bytes (abfd, info_ptr));
19124 info_ptr += 4;
19125 break;
19126 case DW_FORM_ref8:
19127 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19128 + read_8_bytes (abfd, info_ptr));
19129 info_ptr += 8;
19130 break;
19131 case DW_FORM_ref_sig8:
19132 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19133 info_ptr += 8;
19134 break;
19135 case DW_FORM_ref_udata:
19136 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19137 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19138 info_ptr += bytes_read;
19139 break;
19140 case DW_FORM_indirect:
19141 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19142 info_ptr += bytes_read;
19143 if (form == DW_FORM_implicit_const)
19144 {
19145 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19146 info_ptr += bytes_read;
19147 }
19148 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19149 info_ptr, need_reprocess);
19150 break;
19151 case DW_FORM_implicit_const:
19152 DW_SND (attr) = implicit_const;
19153 break;
19154 case DW_FORM_addrx:
19155 case DW_FORM_GNU_addr_index:
19156 *need_reprocess = true;
19157 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19158 info_ptr += bytes_read;
19159 break;
19160 case DW_FORM_strx:
19161 case DW_FORM_strx1:
19162 case DW_FORM_strx2:
19163 case DW_FORM_strx3:
19164 case DW_FORM_strx4:
19165 case DW_FORM_GNU_str_index:
19166 {
19167 ULONGEST str_index;
19168 if (form == DW_FORM_strx1)
19169 {
19170 str_index = read_1_byte (abfd, info_ptr);
19171 info_ptr += 1;
19172 }
19173 else if (form == DW_FORM_strx2)
19174 {
19175 str_index = read_2_bytes (abfd, info_ptr);
19176 info_ptr += 2;
19177 }
19178 else if (form == DW_FORM_strx3)
19179 {
19180 str_index = read_3_bytes (abfd, info_ptr);
19181 info_ptr += 3;
19182 }
19183 else if (form == DW_FORM_strx4)
19184 {
19185 str_index = read_4_bytes (abfd, info_ptr);
19186 info_ptr += 4;
19187 }
19188 else
19189 {
19190 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19191 info_ptr += bytes_read;
19192 }
19193 *need_reprocess = true;
19194 DW_UNSND (attr) = str_index;
19195 }
19196 break;
19197 default:
19198 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19199 dwarf_form_name (form),
19200 bfd_get_filename (abfd));
19201 }
19202
19203 /* Super hack. */
19204 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19205 attr->form = DW_FORM_GNU_ref_alt;
19206
19207 /* We have seen instances where the compiler tried to emit a byte
19208 size attribute of -1 which ended up being encoded as an unsigned
19209 0xffffffff. Although 0xffffffff is technically a valid size value,
19210 an object of this size seems pretty unlikely so we can relatively
19211 safely treat these cases as if the size attribute was invalid and
19212 treat them as zero by default. */
19213 if (attr->name == DW_AT_byte_size
19214 && form == DW_FORM_data4
19215 && DW_UNSND (attr) >= 0xffffffff)
19216 {
19217 complaint
19218 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19219 hex_string (DW_UNSND (attr)));
19220 DW_UNSND (attr) = 0;
19221 }
19222
19223 return info_ptr;
19224 }
19225
19226 /* Read an attribute described by an abbreviated attribute. */
19227
19228 static const gdb_byte *
19229 read_attribute (const struct die_reader_specs *reader,
19230 struct attribute *attr, struct attr_abbrev *abbrev,
19231 const gdb_byte *info_ptr, bool *need_reprocess)
19232 {
19233 attr->name = abbrev->name;
19234 return read_attribute_value (reader, attr, abbrev->form,
19235 abbrev->implicit_const, info_ptr,
19236 need_reprocess);
19237 }
19238
19239 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19240
19241 static const char *
19242 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19243 LONGEST str_offset)
19244 {
19245 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
19246 str_offset, "DW_FORM_strp");
19247 }
19248
19249 /* Return pointer to string at .debug_str offset as read from BUF.
19250 BUF is assumed to be in a compilation unit described by CU_HEADER.
19251 Return *BYTES_READ_PTR count of bytes read from BUF. */
19252
19253 static const char *
19254 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19255 const gdb_byte *buf,
19256 const struct comp_unit_head *cu_header,
19257 unsigned int *bytes_read_ptr)
19258 {
19259 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19260
19261 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19262 }
19263
19264 /* See read.h. */
19265
19266 const char *
19267 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19268 const struct comp_unit_head *cu_header,
19269 unsigned int *bytes_read_ptr)
19270 {
19271 bfd *abfd = objfile->obfd;
19272 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19273
19274 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19275 }
19276
19277 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19278 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19279 ADDR_SIZE is the size of addresses from the CU header. */
19280
19281 static CORE_ADDR
19282 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19283 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19284 int addr_size)
19285 {
19286 struct objfile *objfile = dwarf2_per_objfile->objfile;
19287 bfd *abfd = objfile->obfd;
19288 const gdb_byte *info_ptr;
19289 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19290
19291 dwarf2_per_objfile->addr.read (objfile);
19292 if (dwarf2_per_objfile->addr.buffer == NULL)
19293 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19294 objfile_name (objfile));
19295 if (addr_base_or_zero + addr_index * addr_size
19296 >= dwarf2_per_objfile->addr.size)
19297 error (_("DW_FORM_addr_index pointing outside of "
19298 ".debug_addr section [in module %s]"),
19299 objfile_name (objfile));
19300 info_ptr = (dwarf2_per_objfile->addr.buffer
19301 + addr_base_or_zero + addr_index * addr_size);
19302 if (addr_size == 4)
19303 return bfd_get_32 (abfd, info_ptr);
19304 else
19305 return bfd_get_64 (abfd, info_ptr);
19306 }
19307
19308 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19309
19310 static CORE_ADDR
19311 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19312 {
19313 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19314 cu->addr_base, cu->header.addr_size);
19315 }
19316
19317 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19318
19319 static CORE_ADDR
19320 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19321 unsigned int *bytes_read)
19322 {
19323 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19324 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19325
19326 return read_addr_index (cu, addr_index);
19327 }
19328
19329 /* See read.h. */
19330
19331 CORE_ADDR
19332 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19333 {
19334 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19335 struct dwarf2_cu *cu = per_cu->cu;
19336 gdb::optional<ULONGEST> addr_base;
19337 int addr_size;
19338
19339 /* We need addr_base and addr_size.
19340 If we don't have PER_CU->cu, we have to get it.
19341 Nasty, but the alternative is storing the needed info in PER_CU,
19342 which at this point doesn't seem justified: it's not clear how frequently
19343 it would get used and it would increase the size of every PER_CU.
19344 Entry points like dwarf2_per_cu_addr_size do a similar thing
19345 so we're not in uncharted territory here.
19346 Alas we need to be a bit more complicated as addr_base is contained
19347 in the DIE.
19348
19349 We don't need to read the entire CU(/TU).
19350 We just need the header and top level die.
19351
19352 IWBN to use the aging mechanism to let us lazily later discard the CU.
19353 For now we skip this optimization. */
19354
19355 if (cu != NULL)
19356 {
19357 addr_base = cu->addr_base;
19358 addr_size = cu->header.addr_size;
19359 }
19360 else
19361 {
19362 cutu_reader reader (per_cu, NULL, 0, false);
19363 addr_base = reader.cu->addr_base;
19364 addr_size = reader.cu->header.addr_size;
19365 }
19366
19367 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19368 addr_size);
19369 }
19370
19371 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19372 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19373 DWO file. */
19374
19375 static const char *
19376 read_str_index (struct dwarf2_cu *cu,
19377 struct dwarf2_section_info *str_section,
19378 struct dwarf2_section_info *str_offsets_section,
19379 ULONGEST str_offsets_base, ULONGEST str_index)
19380 {
19381 struct dwarf2_per_objfile *dwarf2_per_objfile
19382 = cu->per_cu->dwarf2_per_objfile;
19383 struct objfile *objfile = dwarf2_per_objfile->objfile;
19384 const char *objf_name = objfile_name (objfile);
19385 bfd *abfd = objfile->obfd;
19386 const gdb_byte *info_ptr;
19387 ULONGEST str_offset;
19388 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19389
19390 str_section->read (objfile);
19391 str_offsets_section->read (objfile);
19392 if (str_section->buffer == NULL)
19393 error (_("%s used without %s section"
19394 " in CU at offset %s [in module %s]"),
19395 form_name, str_section->get_name (),
19396 sect_offset_str (cu->header.sect_off), objf_name);
19397 if (str_offsets_section->buffer == NULL)
19398 error (_("%s used without %s section"
19399 " in CU at offset %s [in module %s]"),
19400 form_name, str_section->get_name (),
19401 sect_offset_str (cu->header.sect_off), objf_name);
19402 info_ptr = (str_offsets_section->buffer
19403 + str_offsets_base
19404 + str_index * cu->header.offset_size);
19405 if (cu->header.offset_size == 4)
19406 str_offset = bfd_get_32 (abfd, info_ptr);
19407 else
19408 str_offset = bfd_get_64 (abfd, info_ptr);
19409 if (str_offset >= str_section->size)
19410 error (_("Offset from %s pointing outside of"
19411 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19412 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19413 return (const char *) (str_section->buffer + str_offset);
19414 }
19415
19416 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19417
19418 static const char *
19419 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19420 {
19421 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19422 ? reader->cu->header.addr_size : 0;
19423 return read_str_index (reader->cu,
19424 &reader->dwo_file->sections.str,
19425 &reader->dwo_file->sections.str_offsets,
19426 str_offsets_base, str_index);
19427 }
19428
19429 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19430
19431 static const char *
19432 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19433 {
19434 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19435 const char *objf_name = objfile_name (objfile);
19436 static const char form_name[] = "DW_FORM_GNU_str_index";
19437 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19438
19439 if (!cu->str_offsets_base.has_value ())
19440 error (_("%s used in Fission stub without %s"
19441 " in CU at offset 0x%lx [in module %s]"),
19442 form_name, str_offsets_attr_name,
19443 (long) cu->header.offset_size, objf_name);
19444
19445 return read_str_index (cu,
19446 &cu->per_cu->dwarf2_per_objfile->str,
19447 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19448 *cu->str_offsets_base, str_index);
19449 }
19450
19451 /* Return the length of an LEB128 number in BUF. */
19452
19453 static int
19454 leb128_size (const gdb_byte *buf)
19455 {
19456 const gdb_byte *begin = buf;
19457 gdb_byte byte;
19458
19459 while (1)
19460 {
19461 byte = *buf++;
19462 if ((byte & 128) == 0)
19463 return buf - begin;
19464 }
19465 }
19466
19467 static void
19468 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19469 {
19470 switch (lang)
19471 {
19472 case DW_LANG_C89:
19473 case DW_LANG_C99:
19474 case DW_LANG_C11:
19475 case DW_LANG_C:
19476 case DW_LANG_UPC:
19477 cu->language = language_c;
19478 break;
19479 case DW_LANG_Java:
19480 case DW_LANG_C_plus_plus:
19481 case DW_LANG_C_plus_plus_11:
19482 case DW_LANG_C_plus_plus_14:
19483 cu->language = language_cplus;
19484 break;
19485 case DW_LANG_D:
19486 cu->language = language_d;
19487 break;
19488 case DW_LANG_Fortran77:
19489 case DW_LANG_Fortran90:
19490 case DW_LANG_Fortran95:
19491 case DW_LANG_Fortran03:
19492 case DW_LANG_Fortran08:
19493 cu->language = language_fortran;
19494 break;
19495 case DW_LANG_Go:
19496 cu->language = language_go;
19497 break;
19498 case DW_LANG_Mips_Assembler:
19499 cu->language = language_asm;
19500 break;
19501 case DW_LANG_Ada83:
19502 case DW_LANG_Ada95:
19503 cu->language = language_ada;
19504 break;
19505 case DW_LANG_Modula2:
19506 cu->language = language_m2;
19507 break;
19508 case DW_LANG_Pascal83:
19509 cu->language = language_pascal;
19510 break;
19511 case DW_LANG_ObjC:
19512 cu->language = language_objc;
19513 break;
19514 case DW_LANG_Rust:
19515 case DW_LANG_Rust_old:
19516 cu->language = language_rust;
19517 break;
19518 case DW_LANG_Cobol74:
19519 case DW_LANG_Cobol85:
19520 default:
19521 cu->language = language_minimal;
19522 break;
19523 }
19524 cu->language_defn = language_def (cu->language);
19525 }
19526
19527 /* Return the named attribute or NULL if not there. */
19528
19529 static struct attribute *
19530 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19531 {
19532 for (;;)
19533 {
19534 unsigned int i;
19535 struct attribute *spec = NULL;
19536
19537 for (i = 0; i < die->num_attrs; ++i)
19538 {
19539 if (die->attrs[i].name == name)
19540 return &die->attrs[i];
19541 if (die->attrs[i].name == DW_AT_specification
19542 || die->attrs[i].name == DW_AT_abstract_origin)
19543 spec = &die->attrs[i];
19544 }
19545
19546 if (!spec)
19547 break;
19548
19549 die = follow_die_ref (die, spec, &cu);
19550 }
19551
19552 return NULL;
19553 }
19554
19555 /* Return the string associated with a string-typed attribute, or NULL if it
19556 is either not found or is of an incorrect type. */
19557
19558 static const char *
19559 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19560 {
19561 struct attribute *attr;
19562 const char *str = NULL;
19563
19564 attr = dwarf2_attr (die, name, cu);
19565
19566 if (attr != NULL)
19567 {
19568 str = attr->value_as_string ();
19569 if (str == nullptr)
19570 complaint (_("string type expected for attribute %s for "
19571 "DIE at %s in module %s"),
19572 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19573 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19574 }
19575
19576 return str;
19577 }
19578
19579 /* Return the dwo name or NULL if not present. If present, it is in either
19580 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19581 static const char *
19582 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19583 {
19584 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19585 if (dwo_name == nullptr)
19586 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19587 return dwo_name;
19588 }
19589
19590 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19591 and holds a non-zero value. This function should only be used for
19592 DW_FORM_flag or DW_FORM_flag_present attributes. */
19593
19594 static int
19595 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19596 {
19597 struct attribute *attr = dwarf2_attr (die, name, cu);
19598
19599 return (attr && DW_UNSND (attr));
19600 }
19601
19602 static int
19603 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19604 {
19605 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19606 which value is non-zero. However, we have to be careful with
19607 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19608 (via dwarf2_flag_true_p) follows this attribute. So we may
19609 end up accidently finding a declaration attribute that belongs
19610 to a different DIE referenced by the specification attribute,
19611 even though the given DIE does not have a declaration attribute. */
19612 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19613 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19614 }
19615
19616 /* Return the die giving the specification for DIE, if there is
19617 one. *SPEC_CU is the CU containing DIE on input, and the CU
19618 containing the return value on output. If there is no
19619 specification, but there is an abstract origin, that is
19620 returned. */
19621
19622 static struct die_info *
19623 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19624 {
19625 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19626 *spec_cu);
19627
19628 if (spec_attr == NULL)
19629 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19630
19631 if (spec_attr == NULL)
19632 return NULL;
19633 else
19634 return follow_die_ref (die, spec_attr, spec_cu);
19635 }
19636
19637 /* Stub for free_line_header to match void * callback types. */
19638
19639 static void
19640 free_line_header_voidp (void *arg)
19641 {
19642 struct line_header *lh = (struct line_header *) arg;
19643
19644 delete lh;
19645 }
19646
19647 /* A convenience function to find the proper .debug_line section for a CU. */
19648
19649 static struct dwarf2_section_info *
19650 get_debug_line_section (struct dwarf2_cu *cu)
19651 {
19652 struct dwarf2_section_info *section;
19653 struct dwarf2_per_objfile *dwarf2_per_objfile
19654 = cu->per_cu->dwarf2_per_objfile;
19655
19656 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19657 DWO file. */
19658 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19659 section = &cu->dwo_unit->dwo_file->sections.line;
19660 else if (cu->per_cu->is_dwz)
19661 {
19662 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19663
19664 section = &dwz->line;
19665 }
19666 else
19667 section = &dwarf2_per_objfile->line;
19668
19669 return section;
19670 }
19671
19672 /* Read the statement program header starting at OFFSET in
19673 .debug_line, or .debug_line.dwo. Return a pointer
19674 to a struct line_header, allocated using xmalloc.
19675 Returns NULL if there is a problem reading the header, e.g., if it
19676 has a version we don't understand.
19677
19678 NOTE: the strings in the include directory and file name tables of
19679 the returned object point into the dwarf line section buffer,
19680 and must not be freed. */
19681
19682 static line_header_up
19683 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19684 {
19685 struct dwarf2_section_info *section;
19686 struct dwarf2_per_objfile *dwarf2_per_objfile
19687 = cu->per_cu->dwarf2_per_objfile;
19688
19689 section = get_debug_line_section (cu);
19690 section->read (dwarf2_per_objfile->objfile);
19691 if (section->buffer == NULL)
19692 {
19693 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19694 complaint (_("missing .debug_line.dwo section"));
19695 else
19696 complaint (_("missing .debug_line section"));
19697 return 0;
19698 }
19699
19700 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19701 dwarf2_per_objfile, section,
19702 &cu->header);
19703 }
19704
19705 /* Subroutine of dwarf_decode_lines to simplify it.
19706 Return the file name of the psymtab for the given file_entry.
19707 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19708 If space for the result is malloc'd, *NAME_HOLDER will be set.
19709 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19710
19711 static const char *
19712 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19713 const dwarf2_psymtab *pst,
19714 const char *comp_dir,
19715 gdb::unique_xmalloc_ptr<char> *name_holder)
19716 {
19717 const char *include_name = fe.name;
19718 const char *include_name_to_compare = include_name;
19719 const char *pst_filename;
19720 int file_is_pst;
19721
19722 const char *dir_name = fe.include_dir (lh);
19723
19724 gdb::unique_xmalloc_ptr<char> hold_compare;
19725 if (!IS_ABSOLUTE_PATH (include_name)
19726 && (dir_name != NULL || comp_dir != NULL))
19727 {
19728 /* Avoid creating a duplicate psymtab for PST.
19729 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19730 Before we do the comparison, however, we need to account
19731 for DIR_NAME and COMP_DIR.
19732 First prepend dir_name (if non-NULL). If we still don't
19733 have an absolute path prepend comp_dir (if non-NULL).
19734 However, the directory we record in the include-file's
19735 psymtab does not contain COMP_DIR (to match the
19736 corresponding symtab(s)).
19737
19738 Example:
19739
19740 bash$ cd /tmp
19741 bash$ gcc -g ./hello.c
19742 include_name = "hello.c"
19743 dir_name = "."
19744 DW_AT_comp_dir = comp_dir = "/tmp"
19745 DW_AT_name = "./hello.c"
19746
19747 */
19748
19749 if (dir_name != NULL)
19750 {
19751 name_holder->reset (concat (dir_name, SLASH_STRING,
19752 include_name, (char *) NULL));
19753 include_name = name_holder->get ();
19754 include_name_to_compare = include_name;
19755 }
19756 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19757 {
19758 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19759 include_name, (char *) NULL));
19760 include_name_to_compare = hold_compare.get ();
19761 }
19762 }
19763
19764 pst_filename = pst->filename;
19765 gdb::unique_xmalloc_ptr<char> copied_name;
19766 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19767 {
19768 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19769 pst_filename, (char *) NULL));
19770 pst_filename = copied_name.get ();
19771 }
19772
19773 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19774
19775 if (file_is_pst)
19776 return NULL;
19777 return include_name;
19778 }
19779
19780 /* State machine to track the state of the line number program. */
19781
19782 class lnp_state_machine
19783 {
19784 public:
19785 /* Initialize a machine state for the start of a line number
19786 program. */
19787 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19788 bool record_lines_p);
19789
19790 file_entry *current_file ()
19791 {
19792 /* lh->file_names is 0-based, but the file name numbers in the
19793 statement program are 1-based. */
19794 return m_line_header->file_name_at (m_file);
19795 }
19796
19797 /* Record the line in the state machine. END_SEQUENCE is true if
19798 we're processing the end of a sequence. */
19799 void record_line (bool end_sequence);
19800
19801 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19802 nop-out rest of the lines in this sequence. */
19803 void check_line_address (struct dwarf2_cu *cu,
19804 const gdb_byte *line_ptr,
19805 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19806
19807 void handle_set_discriminator (unsigned int discriminator)
19808 {
19809 m_discriminator = discriminator;
19810 m_line_has_non_zero_discriminator |= discriminator != 0;
19811 }
19812
19813 /* Handle DW_LNE_set_address. */
19814 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19815 {
19816 m_op_index = 0;
19817 address += baseaddr;
19818 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19819 }
19820
19821 /* Handle DW_LNS_advance_pc. */
19822 void handle_advance_pc (CORE_ADDR adjust);
19823
19824 /* Handle a special opcode. */
19825 void handle_special_opcode (unsigned char op_code);
19826
19827 /* Handle DW_LNS_advance_line. */
19828 void handle_advance_line (int line_delta)
19829 {
19830 advance_line (line_delta);
19831 }
19832
19833 /* Handle DW_LNS_set_file. */
19834 void handle_set_file (file_name_index file);
19835
19836 /* Handle DW_LNS_negate_stmt. */
19837 void handle_negate_stmt ()
19838 {
19839 m_is_stmt = !m_is_stmt;
19840 }
19841
19842 /* Handle DW_LNS_const_add_pc. */
19843 void handle_const_add_pc ();
19844
19845 /* Handle DW_LNS_fixed_advance_pc. */
19846 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19847 {
19848 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19849 m_op_index = 0;
19850 }
19851
19852 /* Handle DW_LNS_copy. */
19853 void handle_copy ()
19854 {
19855 record_line (false);
19856 m_discriminator = 0;
19857 }
19858
19859 /* Handle DW_LNE_end_sequence. */
19860 void handle_end_sequence ()
19861 {
19862 m_currently_recording_lines = true;
19863 }
19864
19865 private:
19866 /* Advance the line by LINE_DELTA. */
19867 void advance_line (int line_delta)
19868 {
19869 m_line += line_delta;
19870
19871 if (line_delta != 0)
19872 m_line_has_non_zero_discriminator = m_discriminator != 0;
19873 }
19874
19875 struct dwarf2_cu *m_cu;
19876
19877 gdbarch *m_gdbarch;
19878
19879 /* True if we're recording lines.
19880 Otherwise we're building partial symtabs and are just interested in
19881 finding include files mentioned by the line number program. */
19882 bool m_record_lines_p;
19883
19884 /* The line number header. */
19885 line_header *m_line_header;
19886
19887 /* These are part of the standard DWARF line number state machine,
19888 and initialized according to the DWARF spec. */
19889
19890 unsigned char m_op_index = 0;
19891 /* The line table index of the current file. */
19892 file_name_index m_file = 1;
19893 unsigned int m_line = 1;
19894
19895 /* These are initialized in the constructor. */
19896
19897 CORE_ADDR m_address;
19898 bool m_is_stmt;
19899 unsigned int m_discriminator;
19900
19901 /* Additional bits of state we need to track. */
19902
19903 /* The last file that we called dwarf2_start_subfile for.
19904 This is only used for TLLs. */
19905 unsigned int m_last_file = 0;
19906 /* The last file a line number was recorded for. */
19907 struct subfile *m_last_subfile = NULL;
19908
19909 /* When true, record the lines we decode. */
19910 bool m_currently_recording_lines = false;
19911
19912 /* The last line number that was recorded, used to coalesce
19913 consecutive entries for the same line. This can happen, for
19914 example, when discriminators are present. PR 17276. */
19915 unsigned int m_last_line = 0;
19916 bool m_line_has_non_zero_discriminator = false;
19917 };
19918
19919 void
19920 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19921 {
19922 CORE_ADDR addr_adj = (((m_op_index + adjust)
19923 / m_line_header->maximum_ops_per_instruction)
19924 * m_line_header->minimum_instruction_length);
19925 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19926 m_op_index = ((m_op_index + adjust)
19927 % m_line_header->maximum_ops_per_instruction);
19928 }
19929
19930 void
19931 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19932 {
19933 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19934 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19935 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19936 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19937 / m_line_header->maximum_ops_per_instruction)
19938 * m_line_header->minimum_instruction_length);
19939 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19940 m_op_index = ((m_op_index + adj_opcode_d)
19941 % m_line_header->maximum_ops_per_instruction);
19942
19943 int line_delta = m_line_header->line_base + adj_opcode_r;
19944 advance_line (line_delta);
19945 record_line (false);
19946 m_discriminator = 0;
19947 }
19948
19949 void
19950 lnp_state_machine::handle_set_file (file_name_index file)
19951 {
19952 m_file = file;
19953
19954 const file_entry *fe = current_file ();
19955 if (fe == NULL)
19956 dwarf2_debug_line_missing_file_complaint ();
19957 else if (m_record_lines_p)
19958 {
19959 const char *dir = fe->include_dir (m_line_header);
19960
19961 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19962 m_line_has_non_zero_discriminator = m_discriminator != 0;
19963 dwarf2_start_subfile (m_cu, fe->name, dir);
19964 }
19965 }
19966
19967 void
19968 lnp_state_machine::handle_const_add_pc ()
19969 {
19970 CORE_ADDR adjust
19971 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19972
19973 CORE_ADDR addr_adj
19974 = (((m_op_index + adjust)
19975 / m_line_header->maximum_ops_per_instruction)
19976 * m_line_header->minimum_instruction_length);
19977
19978 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19979 m_op_index = ((m_op_index + adjust)
19980 % m_line_header->maximum_ops_per_instruction);
19981 }
19982
19983 /* Return non-zero if we should add LINE to the line number table.
19984 LINE is the line to add, LAST_LINE is the last line that was added,
19985 LAST_SUBFILE is the subfile for LAST_LINE.
19986 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19987 had a non-zero discriminator.
19988
19989 We have to be careful in the presence of discriminators.
19990 E.g., for this line:
19991
19992 for (i = 0; i < 100000; i++);
19993
19994 clang can emit four line number entries for that one line,
19995 each with a different discriminator.
19996 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19997
19998 However, we want gdb to coalesce all four entries into one.
19999 Otherwise the user could stepi into the middle of the line and
20000 gdb would get confused about whether the pc really was in the
20001 middle of the line.
20002
20003 Things are further complicated by the fact that two consecutive
20004 line number entries for the same line is a heuristic used by gcc
20005 to denote the end of the prologue. So we can't just discard duplicate
20006 entries, we have to be selective about it. The heuristic we use is
20007 that we only collapse consecutive entries for the same line if at least
20008 one of those entries has a non-zero discriminator. PR 17276.
20009
20010 Note: Addresses in the line number state machine can never go backwards
20011 within one sequence, thus this coalescing is ok. */
20012
20013 static int
20014 dwarf_record_line_p (struct dwarf2_cu *cu,
20015 unsigned int line, unsigned int last_line,
20016 int line_has_non_zero_discriminator,
20017 struct subfile *last_subfile)
20018 {
20019 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20020 return 1;
20021 if (line != last_line)
20022 return 1;
20023 /* Same line for the same file that we've seen already.
20024 As a last check, for pr 17276, only record the line if the line
20025 has never had a non-zero discriminator. */
20026 if (!line_has_non_zero_discriminator)
20027 return 1;
20028 return 0;
20029 }
20030
20031 /* Use the CU's builder to record line number LINE beginning at
20032 address ADDRESS in the line table of subfile SUBFILE. */
20033
20034 static void
20035 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20036 unsigned int line, CORE_ADDR address, bool is_stmt,
20037 struct dwarf2_cu *cu)
20038 {
20039 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20040
20041 if (dwarf_line_debug)
20042 {
20043 fprintf_unfiltered (gdb_stdlog,
20044 "Recording line %u, file %s, address %s\n",
20045 line, lbasename (subfile->name),
20046 paddress (gdbarch, address));
20047 }
20048
20049 if (cu != nullptr)
20050 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20051 }
20052
20053 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20054 Mark the end of a set of line number records.
20055 The arguments are the same as for dwarf_record_line_1.
20056 If SUBFILE is NULL the request is ignored. */
20057
20058 static void
20059 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20060 CORE_ADDR address, struct dwarf2_cu *cu)
20061 {
20062 if (subfile == NULL)
20063 return;
20064
20065 if (dwarf_line_debug)
20066 {
20067 fprintf_unfiltered (gdb_stdlog,
20068 "Finishing current line, file %s, address %s\n",
20069 lbasename (subfile->name),
20070 paddress (gdbarch, address));
20071 }
20072
20073 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20074 }
20075
20076 void
20077 lnp_state_machine::record_line (bool end_sequence)
20078 {
20079 if (dwarf_line_debug)
20080 {
20081 fprintf_unfiltered (gdb_stdlog,
20082 "Processing actual line %u: file %u,"
20083 " address %s, is_stmt %u, discrim %u%s\n",
20084 m_line, m_file,
20085 paddress (m_gdbarch, m_address),
20086 m_is_stmt, m_discriminator,
20087 (end_sequence ? "\t(end sequence)" : ""));
20088 }
20089
20090 file_entry *fe = current_file ();
20091
20092 if (fe == NULL)
20093 dwarf2_debug_line_missing_file_complaint ();
20094 /* For now we ignore lines not starting on an instruction boundary.
20095 But not when processing end_sequence for compatibility with the
20096 previous version of the code. */
20097 else if (m_op_index == 0 || end_sequence)
20098 {
20099 fe->included_p = 1;
20100 if (m_record_lines_p)
20101 {
20102 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20103 || end_sequence)
20104 {
20105 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20106 m_currently_recording_lines ? m_cu : nullptr);
20107 }
20108
20109 if (!end_sequence)
20110 {
20111 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20112
20113 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20114 m_line_has_non_zero_discriminator,
20115 m_last_subfile))
20116 {
20117 buildsym_compunit *builder = m_cu->get_builder ();
20118 dwarf_record_line_1 (m_gdbarch,
20119 builder->get_current_subfile (),
20120 m_line, m_address, is_stmt,
20121 m_currently_recording_lines ? m_cu : nullptr);
20122 }
20123 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20124 m_last_line = m_line;
20125 }
20126 }
20127 }
20128 }
20129
20130 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20131 line_header *lh, bool record_lines_p)
20132 {
20133 m_cu = cu;
20134 m_gdbarch = arch;
20135 m_record_lines_p = record_lines_p;
20136 m_line_header = lh;
20137
20138 m_currently_recording_lines = true;
20139
20140 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20141 was a line entry for it so that the backend has a chance to adjust it
20142 and also record it in case it needs it. This is currently used by MIPS
20143 code, cf. `mips_adjust_dwarf2_line'. */
20144 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20145 m_is_stmt = lh->default_is_stmt;
20146 m_discriminator = 0;
20147 }
20148
20149 void
20150 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20151 const gdb_byte *line_ptr,
20152 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20153 {
20154 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20155 the pc range of the CU. However, we restrict the test to only ADDRESS
20156 values of zero to preserve GDB's previous behaviour which is to handle
20157 the specific case of a function being GC'd by the linker. */
20158
20159 if (address == 0 && address < unrelocated_lowpc)
20160 {
20161 /* This line table is for a function which has been
20162 GCd by the linker. Ignore it. PR gdb/12528 */
20163
20164 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20165 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20166
20167 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20168 line_offset, objfile_name (objfile));
20169 m_currently_recording_lines = false;
20170 /* Note: m_currently_recording_lines is left as false until we see
20171 DW_LNE_end_sequence. */
20172 }
20173 }
20174
20175 /* Subroutine of dwarf_decode_lines to simplify it.
20176 Process the line number information in LH.
20177 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20178 program in order to set included_p for every referenced header. */
20179
20180 static void
20181 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20182 const int decode_for_pst_p, CORE_ADDR lowpc)
20183 {
20184 const gdb_byte *line_ptr, *extended_end;
20185 const gdb_byte *line_end;
20186 unsigned int bytes_read, extended_len;
20187 unsigned char op_code, extended_op;
20188 CORE_ADDR baseaddr;
20189 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20190 bfd *abfd = objfile->obfd;
20191 struct gdbarch *gdbarch = objfile->arch ();
20192 /* True if we're recording line info (as opposed to building partial
20193 symtabs and just interested in finding include files mentioned by
20194 the line number program). */
20195 bool record_lines_p = !decode_for_pst_p;
20196
20197 baseaddr = objfile->text_section_offset ();
20198
20199 line_ptr = lh->statement_program_start;
20200 line_end = lh->statement_program_end;
20201
20202 /* Read the statement sequences until there's nothing left. */
20203 while (line_ptr < line_end)
20204 {
20205 /* The DWARF line number program state machine. Reset the state
20206 machine at the start of each sequence. */
20207 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20208 bool end_sequence = false;
20209
20210 if (record_lines_p)
20211 {
20212 /* Start a subfile for the current file of the state
20213 machine. */
20214 const file_entry *fe = state_machine.current_file ();
20215
20216 if (fe != NULL)
20217 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20218 }
20219
20220 /* Decode the table. */
20221 while (line_ptr < line_end && !end_sequence)
20222 {
20223 op_code = read_1_byte (abfd, line_ptr);
20224 line_ptr += 1;
20225
20226 if (op_code >= lh->opcode_base)
20227 {
20228 /* Special opcode. */
20229 state_machine.handle_special_opcode (op_code);
20230 }
20231 else switch (op_code)
20232 {
20233 case DW_LNS_extended_op:
20234 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20235 &bytes_read);
20236 line_ptr += bytes_read;
20237 extended_end = line_ptr + extended_len;
20238 extended_op = read_1_byte (abfd, line_ptr);
20239 line_ptr += 1;
20240 switch (extended_op)
20241 {
20242 case DW_LNE_end_sequence:
20243 state_machine.handle_end_sequence ();
20244 end_sequence = true;
20245 break;
20246 case DW_LNE_set_address:
20247 {
20248 CORE_ADDR address
20249 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20250 line_ptr += bytes_read;
20251
20252 state_machine.check_line_address (cu, line_ptr,
20253 lowpc - baseaddr, address);
20254 state_machine.handle_set_address (baseaddr, address);
20255 }
20256 break;
20257 case DW_LNE_define_file:
20258 {
20259 const char *cur_file;
20260 unsigned int mod_time, length;
20261 dir_index dindex;
20262
20263 cur_file = read_direct_string (abfd, line_ptr,
20264 &bytes_read);
20265 line_ptr += bytes_read;
20266 dindex = (dir_index)
20267 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20268 line_ptr += bytes_read;
20269 mod_time =
20270 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20271 line_ptr += bytes_read;
20272 length =
20273 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20274 line_ptr += bytes_read;
20275 lh->add_file_name (cur_file, dindex, mod_time, length);
20276 }
20277 break;
20278 case DW_LNE_set_discriminator:
20279 {
20280 /* The discriminator is not interesting to the
20281 debugger; just ignore it. We still need to
20282 check its value though:
20283 if there are consecutive entries for the same
20284 (non-prologue) line we want to coalesce them.
20285 PR 17276. */
20286 unsigned int discr
20287 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20288 line_ptr += bytes_read;
20289
20290 state_machine.handle_set_discriminator (discr);
20291 }
20292 break;
20293 default:
20294 complaint (_("mangled .debug_line section"));
20295 return;
20296 }
20297 /* Make sure that we parsed the extended op correctly. If e.g.
20298 we expected a different address size than the producer used,
20299 we may have read the wrong number of bytes. */
20300 if (line_ptr != extended_end)
20301 {
20302 complaint (_("mangled .debug_line section"));
20303 return;
20304 }
20305 break;
20306 case DW_LNS_copy:
20307 state_machine.handle_copy ();
20308 break;
20309 case DW_LNS_advance_pc:
20310 {
20311 CORE_ADDR adjust
20312 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20313 line_ptr += bytes_read;
20314
20315 state_machine.handle_advance_pc (adjust);
20316 }
20317 break;
20318 case DW_LNS_advance_line:
20319 {
20320 int line_delta
20321 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20322 line_ptr += bytes_read;
20323
20324 state_machine.handle_advance_line (line_delta);
20325 }
20326 break;
20327 case DW_LNS_set_file:
20328 {
20329 file_name_index file
20330 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20331 &bytes_read);
20332 line_ptr += bytes_read;
20333
20334 state_machine.handle_set_file (file);
20335 }
20336 break;
20337 case DW_LNS_set_column:
20338 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20339 line_ptr += bytes_read;
20340 break;
20341 case DW_LNS_negate_stmt:
20342 state_machine.handle_negate_stmt ();
20343 break;
20344 case DW_LNS_set_basic_block:
20345 break;
20346 /* Add to the address register of the state machine the
20347 address increment value corresponding to special opcode
20348 255. I.e., this value is scaled by the minimum
20349 instruction length since special opcode 255 would have
20350 scaled the increment. */
20351 case DW_LNS_const_add_pc:
20352 state_machine.handle_const_add_pc ();
20353 break;
20354 case DW_LNS_fixed_advance_pc:
20355 {
20356 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20357 line_ptr += 2;
20358
20359 state_machine.handle_fixed_advance_pc (addr_adj);
20360 }
20361 break;
20362 default:
20363 {
20364 /* Unknown standard opcode, ignore it. */
20365 int i;
20366
20367 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20368 {
20369 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20370 line_ptr += bytes_read;
20371 }
20372 }
20373 }
20374 }
20375
20376 if (!end_sequence)
20377 dwarf2_debug_line_missing_end_sequence_complaint ();
20378
20379 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20380 in which case we still finish recording the last line). */
20381 state_machine.record_line (true);
20382 }
20383 }
20384
20385 /* Decode the Line Number Program (LNP) for the given line_header
20386 structure and CU. The actual information extracted and the type
20387 of structures created from the LNP depends on the value of PST.
20388
20389 1. If PST is NULL, then this procedure uses the data from the program
20390 to create all necessary symbol tables, and their linetables.
20391
20392 2. If PST is not NULL, this procedure reads the program to determine
20393 the list of files included by the unit represented by PST, and
20394 builds all the associated partial symbol tables.
20395
20396 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20397 It is used for relative paths in the line table.
20398 NOTE: When processing partial symtabs (pst != NULL),
20399 comp_dir == pst->dirname.
20400
20401 NOTE: It is important that psymtabs have the same file name (via strcmp)
20402 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20403 symtab we don't use it in the name of the psymtabs we create.
20404 E.g. expand_line_sal requires this when finding psymtabs to expand.
20405 A good testcase for this is mb-inline.exp.
20406
20407 LOWPC is the lowest address in CU (or 0 if not known).
20408
20409 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20410 for its PC<->lines mapping information. Otherwise only the filename
20411 table is read in. */
20412
20413 static void
20414 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20415 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20416 CORE_ADDR lowpc, int decode_mapping)
20417 {
20418 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20419 const int decode_for_pst_p = (pst != NULL);
20420
20421 if (decode_mapping)
20422 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20423
20424 if (decode_for_pst_p)
20425 {
20426 /* Now that we're done scanning the Line Header Program, we can
20427 create the psymtab of each included file. */
20428 for (auto &file_entry : lh->file_names ())
20429 if (file_entry.included_p == 1)
20430 {
20431 gdb::unique_xmalloc_ptr<char> name_holder;
20432 const char *include_name =
20433 psymtab_include_file_name (lh, file_entry, pst,
20434 comp_dir, &name_holder);
20435 if (include_name != NULL)
20436 dwarf2_create_include_psymtab (include_name, pst, objfile);
20437 }
20438 }
20439 else
20440 {
20441 /* Make sure a symtab is created for every file, even files
20442 which contain only variables (i.e. no code with associated
20443 line numbers). */
20444 buildsym_compunit *builder = cu->get_builder ();
20445 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20446
20447 for (auto &fe : lh->file_names ())
20448 {
20449 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20450 if (builder->get_current_subfile ()->symtab == NULL)
20451 {
20452 builder->get_current_subfile ()->symtab
20453 = allocate_symtab (cust,
20454 builder->get_current_subfile ()->name);
20455 }
20456 fe.symtab = builder->get_current_subfile ()->symtab;
20457 }
20458 }
20459 }
20460
20461 /* Start a subfile for DWARF. FILENAME is the name of the file and
20462 DIRNAME the name of the source directory which contains FILENAME
20463 or NULL if not known.
20464 This routine tries to keep line numbers from identical absolute and
20465 relative file names in a common subfile.
20466
20467 Using the `list' example from the GDB testsuite, which resides in
20468 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20469 of /srcdir/list0.c yields the following debugging information for list0.c:
20470
20471 DW_AT_name: /srcdir/list0.c
20472 DW_AT_comp_dir: /compdir
20473 files.files[0].name: list0.h
20474 files.files[0].dir: /srcdir
20475 files.files[1].name: list0.c
20476 files.files[1].dir: /srcdir
20477
20478 The line number information for list0.c has to end up in a single
20479 subfile, so that `break /srcdir/list0.c:1' works as expected.
20480 start_subfile will ensure that this happens provided that we pass the
20481 concatenation of files.files[1].dir and files.files[1].name as the
20482 subfile's name. */
20483
20484 static void
20485 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20486 const char *dirname)
20487 {
20488 gdb::unique_xmalloc_ptr<char> copy;
20489
20490 /* In order not to lose the line information directory,
20491 we concatenate it to the filename when it makes sense.
20492 Note that the Dwarf3 standard says (speaking of filenames in line
20493 information): ``The directory index is ignored for file names
20494 that represent full path names''. Thus ignoring dirname in the
20495 `else' branch below isn't an issue. */
20496
20497 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20498 {
20499 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20500 filename = copy.get ();
20501 }
20502
20503 cu->get_builder ()->start_subfile (filename);
20504 }
20505
20506 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20507 buildsym_compunit constructor. */
20508
20509 struct compunit_symtab *
20510 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20511 CORE_ADDR low_pc)
20512 {
20513 gdb_assert (m_builder == nullptr);
20514
20515 m_builder.reset (new struct buildsym_compunit
20516 (per_cu->dwarf2_per_objfile->objfile,
20517 name, comp_dir, language, low_pc));
20518
20519 list_in_scope = get_builder ()->get_file_symbols ();
20520
20521 get_builder ()->record_debugformat ("DWARF 2");
20522 get_builder ()->record_producer (producer);
20523
20524 processing_has_namespace_info = false;
20525
20526 return get_builder ()->get_compunit_symtab ();
20527 }
20528
20529 static void
20530 var_decode_location (struct attribute *attr, struct symbol *sym,
20531 struct dwarf2_cu *cu)
20532 {
20533 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20534 struct comp_unit_head *cu_header = &cu->header;
20535
20536 /* NOTE drow/2003-01-30: There used to be a comment and some special
20537 code here to turn a symbol with DW_AT_external and a
20538 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20539 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20540 with some versions of binutils) where shared libraries could have
20541 relocations against symbols in their debug information - the
20542 minimal symbol would have the right address, but the debug info
20543 would not. It's no longer necessary, because we will explicitly
20544 apply relocations when we read in the debug information now. */
20545
20546 /* A DW_AT_location attribute with no contents indicates that a
20547 variable has been optimized away. */
20548 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20549 {
20550 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20551 return;
20552 }
20553
20554 /* Handle one degenerate form of location expression specially, to
20555 preserve GDB's previous behavior when section offsets are
20556 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20557 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20558
20559 if (attr->form_is_block ()
20560 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20561 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20562 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20563 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20564 && (DW_BLOCK (attr)->size
20565 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20566 {
20567 unsigned int dummy;
20568
20569 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20570 SET_SYMBOL_VALUE_ADDRESS
20571 (sym, cu->header.read_address (objfile->obfd,
20572 DW_BLOCK (attr)->data + 1,
20573 &dummy));
20574 else
20575 SET_SYMBOL_VALUE_ADDRESS
20576 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20577 &dummy));
20578 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20579 fixup_symbol_section (sym, objfile);
20580 SET_SYMBOL_VALUE_ADDRESS
20581 (sym,
20582 SYMBOL_VALUE_ADDRESS (sym)
20583 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20584 return;
20585 }
20586
20587 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20588 expression evaluator, and use LOC_COMPUTED only when necessary
20589 (i.e. when the value of a register or memory location is
20590 referenced, or a thread-local block, etc.). Then again, it might
20591 not be worthwhile. I'm assuming that it isn't unless performance
20592 or memory numbers show me otherwise. */
20593
20594 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20595
20596 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20597 cu->has_loclist = true;
20598 }
20599
20600 /* Given a pointer to a DWARF information entry, figure out if we need
20601 to make a symbol table entry for it, and if so, create a new entry
20602 and return a pointer to it.
20603 If TYPE is NULL, determine symbol type from the die, otherwise
20604 used the passed type.
20605 If SPACE is not NULL, use it to hold the new symbol. If it is
20606 NULL, allocate a new symbol on the objfile's obstack. */
20607
20608 static struct symbol *
20609 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20610 struct symbol *space)
20611 {
20612 struct dwarf2_per_objfile *dwarf2_per_objfile
20613 = cu->per_cu->dwarf2_per_objfile;
20614 struct objfile *objfile = dwarf2_per_objfile->objfile;
20615 struct gdbarch *gdbarch = objfile->arch ();
20616 struct symbol *sym = NULL;
20617 const char *name;
20618 struct attribute *attr = NULL;
20619 struct attribute *attr2 = NULL;
20620 CORE_ADDR baseaddr;
20621 struct pending **list_to_add = NULL;
20622
20623 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20624
20625 baseaddr = objfile->text_section_offset ();
20626
20627 name = dwarf2_name (die, cu);
20628 if (name)
20629 {
20630 int suppress_add = 0;
20631
20632 if (space)
20633 sym = space;
20634 else
20635 sym = new (&objfile->objfile_obstack) symbol;
20636 OBJSTAT (objfile, n_syms++);
20637
20638 /* Cache this symbol's name and the name's demangled form (if any). */
20639 sym->set_language (cu->language, &objfile->objfile_obstack);
20640 /* Fortran does not have mangling standard and the mangling does differ
20641 between gfortran, iFort etc. */
20642 const char *physname
20643 = (cu->language == language_fortran
20644 ? dwarf2_full_name (name, die, cu)
20645 : dwarf2_physname (name, die, cu));
20646 const char *linkagename = dw2_linkage_name (die, cu);
20647
20648 if (linkagename == nullptr || cu->language == language_ada)
20649 sym->set_linkage_name (physname);
20650 else
20651 {
20652 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20653 sym->set_linkage_name (linkagename);
20654 }
20655
20656 /* Default assumptions.
20657 Use the passed type or decode it from the die. */
20658 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20659 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20660 if (type != NULL)
20661 SYMBOL_TYPE (sym) = type;
20662 else
20663 SYMBOL_TYPE (sym) = die_type (die, cu);
20664 attr = dwarf2_attr (die,
20665 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20666 cu);
20667 if (attr != nullptr)
20668 {
20669 SYMBOL_LINE (sym) = DW_UNSND (attr);
20670 }
20671
20672 attr = dwarf2_attr (die,
20673 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20674 cu);
20675 if (attr != nullptr)
20676 {
20677 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20678 struct file_entry *fe;
20679
20680 if (cu->line_header != NULL)
20681 fe = cu->line_header->file_name_at (file_index);
20682 else
20683 fe = NULL;
20684
20685 if (fe == NULL)
20686 complaint (_("file index out of range"));
20687 else
20688 symbol_set_symtab (sym, fe->symtab);
20689 }
20690
20691 switch (die->tag)
20692 {
20693 case DW_TAG_label:
20694 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20695 if (attr != nullptr)
20696 {
20697 CORE_ADDR addr;
20698
20699 addr = attr->value_as_address ();
20700 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20701 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20702 }
20703 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20704 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20705 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20706 add_symbol_to_list (sym, cu->list_in_scope);
20707 break;
20708 case DW_TAG_subprogram:
20709 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20710 finish_block. */
20711 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20712 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20713 if ((attr2 && (DW_UNSND (attr2) != 0))
20714 || cu->language == language_ada
20715 || cu->language == language_fortran)
20716 {
20717 /* Subprograms marked external are stored as a global symbol.
20718 Ada and Fortran subprograms, whether marked external or
20719 not, are always stored as a global symbol, because we want
20720 to be able to access them globally. For instance, we want
20721 to be able to break on a nested subprogram without having
20722 to specify the context. */
20723 list_to_add = cu->get_builder ()->get_global_symbols ();
20724 }
20725 else
20726 {
20727 list_to_add = cu->list_in_scope;
20728 }
20729 break;
20730 case DW_TAG_inlined_subroutine:
20731 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20732 finish_block. */
20733 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20734 SYMBOL_INLINED (sym) = 1;
20735 list_to_add = cu->list_in_scope;
20736 break;
20737 case DW_TAG_template_value_param:
20738 suppress_add = 1;
20739 /* Fall through. */
20740 case DW_TAG_constant:
20741 case DW_TAG_variable:
20742 case DW_TAG_member:
20743 /* Compilation with minimal debug info may result in
20744 variables with missing type entries. Change the
20745 misleading `void' type to something sensible. */
20746 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
20747 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20748
20749 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20750 /* In the case of DW_TAG_member, we should only be called for
20751 static const members. */
20752 if (die->tag == DW_TAG_member)
20753 {
20754 /* dwarf2_add_field uses die_is_declaration,
20755 so we do the same. */
20756 gdb_assert (die_is_declaration (die, cu));
20757 gdb_assert (attr);
20758 }
20759 if (attr != nullptr)
20760 {
20761 dwarf2_const_value (attr, sym, cu);
20762 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20763 if (!suppress_add)
20764 {
20765 if (attr2 && (DW_UNSND (attr2) != 0))
20766 list_to_add = cu->get_builder ()->get_global_symbols ();
20767 else
20768 list_to_add = cu->list_in_scope;
20769 }
20770 break;
20771 }
20772 attr = dwarf2_attr (die, DW_AT_location, cu);
20773 if (attr != nullptr)
20774 {
20775 var_decode_location (attr, sym, cu);
20776 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20777
20778 /* Fortran explicitly imports any global symbols to the local
20779 scope by DW_TAG_common_block. */
20780 if (cu->language == language_fortran && die->parent
20781 && die->parent->tag == DW_TAG_common_block)
20782 attr2 = NULL;
20783
20784 if (SYMBOL_CLASS (sym) == LOC_STATIC
20785 && SYMBOL_VALUE_ADDRESS (sym) == 0
20786 && !dwarf2_per_objfile->has_section_at_zero)
20787 {
20788 /* When a static variable is eliminated by the linker,
20789 the corresponding debug information is not stripped
20790 out, but the variable address is set to null;
20791 do not add such variables into symbol table. */
20792 }
20793 else if (attr2 && (DW_UNSND (attr2) != 0))
20794 {
20795 if (SYMBOL_CLASS (sym) == LOC_STATIC
20796 && (objfile->flags & OBJF_MAINLINE) == 0
20797 && dwarf2_per_objfile->can_copy)
20798 {
20799 /* A global static variable might be subject to
20800 copy relocation. We first check for a local
20801 minsym, though, because maybe the symbol was
20802 marked hidden, in which case this would not
20803 apply. */
20804 bound_minimal_symbol found
20805 = (lookup_minimal_symbol_linkage
20806 (sym->linkage_name (), objfile));
20807 if (found.minsym != nullptr)
20808 sym->maybe_copied = 1;
20809 }
20810
20811 /* A variable with DW_AT_external is never static,
20812 but it may be block-scoped. */
20813 list_to_add
20814 = ((cu->list_in_scope
20815 == cu->get_builder ()->get_file_symbols ())
20816 ? cu->get_builder ()->get_global_symbols ()
20817 : cu->list_in_scope);
20818 }
20819 else
20820 list_to_add = cu->list_in_scope;
20821 }
20822 else
20823 {
20824 /* We do not know the address of this symbol.
20825 If it is an external symbol and we have type information
20826 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20827 The address of the variable will then be determined from
20828 the minimal symbol table whenever the variable is
20829 referenced. */
20830 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20831
20832 /* Fortran explicitly imports any global symbols to the local
20833 scope by DW_TAG_common_block. */
20834 if (cu->language == language_fortran && die->parent
20835 && die->parent->tag == DW_TAG_common_block)
20836 {
20837 /* SYMBOL_CLASS doesn't matter here because
20838 read_common_block is going to reset it. */
20839 if (!suppress_add)
20840 list_to_add = cu->list_in_scope;
20841 }
20842 else if (attr2 && (DW_UNSND (attr2) != 0)
20843 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20844 {
20845 /* A variable with DW_AT_external is never static, but it
20846 may be block-scoped. */
20847 list_to_add
20848 = ((cu->list_in_scope
20849 == cu->get_builder ()->get_file_symbols ())
20850 ? cu->get_builder ()->get_global_symbols ()
20851 : cu->list_in_scope);
20852
20853 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20854 }
20855 else if (!die_is_declaration (die, cu))
20856 {
20857 /* Use the default LOC_OPTIMIZED_OUT class. */
20858 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20859 if (!suppress_add)
20860 list_to_add = cu->list_in_scope;
20861 }
20862 }
20863 break;
20864 case DW_TAG_formal_parameter:
20865 {
20866 /* If we are inside a function, mark this as an argument. If
20867 not, we might be looking at an argument to an inlined function
20868 when we do not have enough information to show inlined frames;
20869 pretend it's a local variable in that case so that the user can
20870 still see it. */
20871 struct context_stack *curr
20872 = cu->get_builder ()->get_current_context_stack ();
20873 if (curr != nullptr && curr->name != nullptr)
20874 SYMBOL_IS_ARGUMENT (sym) = 1;
20875 attr = dwarf2_attr (die, DW_AT_location, cu);
20876 if (attr != nullptr)
20877 {
20878 var_decode_location (attr, sym, cu);
20879 }
20880 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20881 if (attr != nullptr)
20882 {
20883 dwarf2_const_value (attr, sym, cu);
20884 }
20885
20886 list_to_add = cu->list_in_scope;
20887 }
20888 break;
20889 case DW_TAG_unspecified_parameters:
20890 /* From varargs functions; gdb doesn't seem to have any
20891 interest in this information, so just ignore it for now.
20892 (FIXME?) */
20893 break;
20894 case DW_TAG_template_type_param:
20895 suppress_add = 1;
20896 /* Fall through. */
20897 case DW_TAG_class_type:
20898 case DW_TAG_interface_type:
20899 case DW_TAG_structure_type:
20900 case DW_TAG_union_type:
20901 case DW_TAG_set_type:
20902 case DW_TAG_enumeration_type:
20903 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20904 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20905
20906 {
20907 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20908 really ever be static objects: otherwise, if you try
20909 to, say, break of a class's method and you're in a file
20910 which doesn't mention that class, it won't work unless
20911 the check for all static symbols in lookup_symbol_aux
20912 saves you. See the OtherFileClass tests in
20913 gdb.c++/namespace.exp. */
20914
20915 if (!suppress_add)
20916 {
20917 buildsym_compunit *builder = cu->get_builder ();
20918 list_to_add
20919 = (cu->list_in_scope == builder->get_file_symbols ()
20920 && cu->language == language_cplus
20921 ? builder->get_global_symbols ()
20922 : cu->list_in_scope);
20923
20924 /* The semantics of C++ state that "struct foo {
20925 ... }" also defines a typedef for "foo". */
20926 if (cu->language == language_cplus
20927 || cu->language == language_ada
20928 || cu->language == language_d
20929 || cu->language == language_rust)
20930 {
20931 /* The symbol's name is already allocated along
20932 with this objfile, so we don't need to
20933 duplicate it for the type. */
20934 if (SYMBOL_TYPE (sym)->name () == 0)
20935 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
20936 }
20937 }
20938 }
20939 break;
20940 case DW_TAG_typedef:
20941 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20942 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20943 list_to_add = cu->list_in_scope;
20944 break;
20945 case DW_TAG_base_type:
20946 case DW_TAG_subrange_type:
20947 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20949 list_to_add = cu->list_in_scope;
20950 break;
20951 case DW_TAG_enumerator:
20952 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20953 if (attr != nullptr)
20954 {
20955 dwarf2_const_value (attr, sym, cu);
20956 }
20957 {
20958 /* NOTE: carlton/2003-11-10: See comment above in the
20959 DW_TAG_class_type, etc. block. */
20960
20961 list_to_add
20962 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20963 && cu->language == language_cplus
20964 ? cu->get_builder ()->get_global_symbols ()
20965 : cu->list_in_scope);
20966 }
20967 break;
20968 case DW_TAG_imported_declaration:
20969 case DW_TAG_namespace:
20970 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20971 list_to_add = cu->get_builder ()->get_global_symbols ();
20972 break;
20973 case DW_TAG_module:
20974 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20975 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20976 list_to_add = cu->get_builder ()->get_global_symbols ();
20977 break;
20978 case DW_TAG_common_block:
20979 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20980 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20981 add_symbol_to_list (sym, cu->list_in_scope);
20982 break;
20983 default:
20984 /* Not a tag we recognize. Hopefully we aren't processing
20985 trash data, but since we must specifically ignore things
20986 we don't recognize, there is nothing else we should do at
20987 this point. */
20988 complaint (_("unsupported tag: '%s'"),
20989 dwarf_tag_name (die->tag));
20990 break;
20991 }
20992
20993 if (suppress_add)
20994 {
20995 sym->hash_next = objfile->template_symbols;
20996 objfile->template_symbols = sym;
20997 list_to_add = NULL;
20998 }
20999
21000 if (list_to_add != NULL)
21001 add_symbol_to_list (sym, list_to_add);
21002
21003 /* For the benefit of old versions of GCC, check for anonymous
21004 namespaces based on the demangled name. */
21005 if (!cu->processing_has_namespace_info
21006 && cu->language == language_cplus)
21007 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21008 }
21009 return (sym);
21010 }
21011
21012 /* Given an attr with a DW_FORM_dataN value in host byte order,
21013 zero-extend it as appropriate for the symbol's type. The DWARF
21014 standard (v4) is not entirely clear about the meaning of using
21015 DW_FORM_dataN for a constant with a signed type, where the type is
21016 wider than the data. The conclusion of a discussion on the DWARF
21017 list was that this is unspecified. We choose to always zero-extend
21018 because that is the interpretation long in use by GCC. */
21019
21020 static gdb_byte *
21021 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21022 struct dwarf2_cu *cu, LONGEST *value, int bits)
21023 {
21024 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21025 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21026 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21027 LONGEST l = DW_UNSND (attr);
21028
21029 if (bits < sizeof (*value) * 8)
21030 {
21031 l &= ((LONGEST) 1 << bits) - 1;
21032 *value = l;
21033 }
21034 else if (bits == sizeof (*value) * 8)
21035 *value = l;
21036 else
21037 {
21038 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21039 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21040 return bytes;
21041 }
21042
21043 return NULL;
21044 }
21045
21046 /* Read a constant value from an attribute. Either set *VALUE, or if
21047 the value does not fit in *VALUE, set *BYTES - either already
21048 allocated on the objfile obstack, or newly allocated on OBSTACK,
21049 or, set *BATON, if we translated the constant to a location
21050 expression. */
21051
21052 static void
21053 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21054 const char *name, struct obstack *obstack,
21055 struct dwarf2_cu *cu,
21056 LONGEST *value, const gdb_byte **bytes,
21057 struct dwarf2_locexpr_baton **baton)
21058 {
21059 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21060 struct comp_unit_head *cu_header = &cu->header;
21061 struct dwarf_block *blk;
21062 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21063 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21064
21065 *value = 0;
21066 *bytes = NULL;
21067 *baton = NULL;
21068
21069 switch (attr->form)
21070 {
21071 case DW_FORM_addr:
21072 case DW_FORM_addrx:
21073 case DW_FORM_GNU_addr_index:
21074 {
21075 gdb_byte *data;
21076
21077 if (TYPE_LENGTH (type) != cu_header->addr_size)
21078 dwarf2_const_value_length_mismatch_complaint (name,
21079 cu_header->addr_size,
21080 TYPE_LENGTH (type));
21081 /* Symbols of this form are reasonably rare, so we just
21082 piggyback on the existing location code rather than writing
21083 a new implementation of symbol_computed_ops. */
21084 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21085 (*baton)->per_cu = cu->per_cu;
21086 gdb_assert ((*baton)->per_cu);
21087
21088 (*baton)->size = 2 + cu_header->addr_size;
21089 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21090 (*baton)->data = data;
21091
21092 data[0] = DW_OP_addr;
21093 store_unsigned_integer (&data[1], cu_header->addr_size,
21094 byte_order, DW_ADDR (attr));
21095 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21096 }
21097 break;
21098 case DW_FORM_string:
21099 case DW_FORM_strp:
21100 case DW_FORM_strx:
21101 case DW_FORM_GNU_str_index:
21102 case DW_FORM_GNU_strp_alt:
21103 /* DW_STRING is already allocated on the objfile obstack, point
21104 directly to it. */
21105 *bytes = (const gdb_byte *) DW_STRING (attr);
21106 break;
21107 case DW_FORM_block1:
21108 case DW_FORM_block2:
21109 case DW_FORM_block4:
21110 case DW_FORM_block:
21111 case DW_FORM_exprloc:
21112 case DW_FORM_data16:
21113 blk = DW_BLOCK (attr);
21114 if (TYPE_LENGTH (type) != blk->size)
21115 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21116 TYPE_LENGTH (type));
21117 *bytes = blk->data;
21118 break;
21119
21120 /* The DW_AT_const_value attributes are supposed to carry the
21121 symbol's value "represented as it would be on the target
21122 architecture." By the time we get here, it's already been
21123 converted to host endianness, so we just need to sign- or
21124 zero-extend it as appropriate. */
21125 case DW_FORM_data1:
21126 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21127 break;
21128 case DW_FORM_data2:
21129 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21130 break;
21131 case DW_FORM_data4:
21132 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21133 break;
21134 case DW_FORM_data8:
21135 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21136 break;
21137
21138 case DW_FORM_sdata:
21139 case DW_FORM_implicit_const:
21140 *value = DW_SND (attr);
21141 break;
21142
21143 case DW_FORM_udata:
21144 *value = DW_UNSND (attr);
21145 break;
21146
21147 default:
21148 complaint (_("unsupported const value attribute form: '%s'"),
21149 dwarf_form_name (attr->form));
21150 *value = 0;
21151 break;
21152 }
21153 }
21154
21155
21156 /* Copy constant value from an attribute to a symbol. */
21157
21158 static void
21159 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21160 struct dwarf2_cu *cu)
21161 {
21162 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21163 LONGEST value;
21164 const gdb_byte *bytes;
21165 struct dwarf2_locexpr_baton *baton;
21166
21167 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21168 sym->print_name (),
21169 &objfile->objfile_obstack, cu,
21170 &value, &bytes, &baton);
21171
21172 if (baton != NULL)
21173 {
21174 SYMBOL_LOCATION_BATON (sym) = baton;
21175 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21176 }
21177 else if (bytes != NULL)
21178 {
21179 SYMBOL_VALUE_BYTES (sym) = bytes;
21180 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21181 }
21182 else
21183 {
21184 SYMBOL_VALUE (sym) = value;
21185 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21186 }
21187 }
21188
21189 /* Return the type of the die in question using its DW_AT_type attribute. */
21190
21191 static struct type *
21192 die_type (struct die_info *die, struct dwarf2_cu *cu)
21193 {
21194 struct attribute *type_attr;
21195
21196 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21197 if (!type_attr)
21198 {
21199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21200 /* A missing DW_AT_type represents a void type. */
21201 return objfile_type (objfile)->builtin_void;
21202 }
21203
21204 return lookup_die_type (die, type_attr, cu);
21205 }
21206
21207 /* True iff CU's producer generates GNAT Ada auxiliary information
21208 that allows to find parallel types through that information instead
21209 of having to do expensive parallel lookups by type name. */
21210
21211 static int
21212 need_gnat_info (struct dwarf2_cu *cu)
21213 {
21214 /* Assume that the Ada compiler was GNAT, which always produces
21215 the auxiliary information. */
21216 return (cu->language == language_ada);
21217 }
21218
21219 /* Return the auxiliary type of the die in question using its
21220 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21221 attribute is not present. */
21222
21223 static struct type *
21224 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21225 {
21226 struct attribute *type_attr;
21227
21228 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21229 if (!type_attr)
21230 return NULL;
21231
21232 return lookup_die_type (die, type_attr, cu);
21233 }
21234
21235 /* If DIE has a descriptive_type attribute, then set the TYPE's
21236 descriptive type accordingly. */
21237
21238 static void
21239 set_descriptive_type (struct type *type, struct die_info *die,
21240 struct dwarf2_cu *cu)
21241 {
21242 struct type *descriptive_type = die_descriptive_type (die, cu);
21243
21244 if (descriptive_type)
21245 {
21246 ALLOCATE_GNAT_AUX_TYPE (type);
21247 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21248 }
21249 }
21250
21251 /* Return the containing type of the die in question using its
21252 DW_AT_containing_type attribute. */
21253
21254 static struct type *
21255 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21256 {
21257 struct attribute *type_attr;
21258 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21259
21260 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21261 if (!type_attr)
21262 error (_("Dwarf Error: Problem turning containing type into gdb type "
21263 "[in module %s]"), objfile_name (objfile));
21264
21265 return lookup_die_type (die, type_attr, cu);
21266 }
21267
21268 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21269
21270 static struct type *
21271 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21272 {
21273 struct dwarf2_per_objfile *dwarf2_per_objfile
21274 = cu->per_cu->dwarf2_per_objfile;
21275 struct objfile *objfile = dwarf2_per_objfile->objfile;
21276 char *saved;
21277
21278 std::string message
21279 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21280 objfile_name (objfile),
21281 sect_offset_str (cu->header.sect_off),
21282 sect_offset_str (die->sect_off));
21283 saved = obstack_strdup (&objfile->objfile_obstack, message);
21284
21285 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21286 }
21287
21288 /* Look up the type of DIE in CU using its type attribute ATTR.
21289 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21290 DW_AT_containing_type.
21291 If there is no type substitute an error marker. */
21292
21293 static struct type *
21294 lookup_die_type (struct die_info *die, const struct attribute *attr,
21295 struct dwarf2_cu *cu)
21296 {
21297 struct dwarf2_per_objfile *dwarf2_per_objfile
21298 = cu->per_cu->dwarf2_per_objfile;
21299 struct objfile *objfile = dwarf2_per_objfile->objfile;
21300 struct type *this_type;
21301
21302 gdb_assert (attr->name == DW_AT_type
21303 || attr->name == DW_AT_GNAT_descriptive_type
21304 || attr->name == DW_AT_containing_type);
21305
21306 /* First see if we have it cached. */
21307
21308 if (attr->form == DW_FORM_GNU_ref_alt)
21309 {
21310 struct dwarf2_per_cu_data *per_cu;
21311 sect_offset sect_off = attr->get_ref_die_offset ();
21312
21313 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21314 dwarf2_per_objfile);
21315 this_type = get_die_type_at_offset (sect_off, per_cu);
21316 }
21317 else if (attr->form_is_ref ())
21318 {
21319 sect_offset sect_off = attr->get_ref_die_offset ();
21320
21321 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21322 }
21323 else if (attr->form == DW_FORM_ref_sig8)
21324 {
21325 ULONGEST signature = DW_SIGNATURE (attr);
21326
21327 return get_signatured_type (die, signature, cu);
21328 }
21329 else
21330 {
21331 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21332 " at %s [in module %s]"),
21333 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21334 objfile_name (objfile));
21335 return build_error_marker_type (cu, die);
21336 }
21337
21338 /* If not cached we need to read it in. */
21339
21340 if (this_type == NULL)
21341 {
21342 struct die_info *type_die = NULL;
21343 struct dwarf2_cu *type_cu = cu;
21344
21345 if (attr->form_is_ref ())
21346 type_die = follow_die_ref (die, attr, &type_cu);
21347 if (type_die == NULL)
21348 return build_error_marker_type (cu, die);
21349 /* If we find the type now, it's probably because the type came
21350 from an inter-CU reference and the type's CU got expanded before
21351 ours. */
21352 this_type = read_type_die (type_die, type_cu);
21353 }
21354
21355 /* If we still don't have a type use an error marker. */
21356
21357 if (this_type == NULL)
21358 return build_error_marker_type (cu, die);
21359
21360 return this_type;
21361 }
21362
21363 /* Return the type in DIE, CU.
21364 Returns NULL for invalid types.
21365
21366 This first does a lookup in die_type_hash,
21367 and only reads the die in if necessary.
21368
21369 NOTE: This can be called when reading in partial or full symbols. */
21370
21371 static struct type *
21372 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21373 {
21374 struct type *this_type;
21375
21376 this_type = get_die_type (die, cu);
21377 if (this_type)
21378 return this_type;
21379
21380 return read_type_die_1 (die, cu);
21381 }
21382
21383 /* Read the type in DIE, CU.
21384 Returns NULL for invalid types. */
21385
21386 static struct type *
21387 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21388 {
21389 struct type *this_type = NULL;
21390
21391 switch (die->tag)
21392 {
21393 case DW_TAG_class_type:
21394 case DW_TAG_interface_type:
21395 case DW_TAG_structure_type:
21396 case DW_TAG_union_type:
21397 this_type = read_structure_type (die, cu);
21398 break;
21399 case DW_TAG_enumeration_type:
21400 this_type = read_enumeration_type (die, cu);
21401 break;
21402 case DW_TAG_subprogram:
21403 case DW_TAG_subroutine_type:
21404 case DW_TAG_inlined_subroutine:
21405 this_type = read_subroutine_type (die, cu);
21406 break;
21407 case DW_TAG_array_type:
21408 this_type = read_array_type (die, cu);
21409 break;
21410 case DW_TAG_set_type:
21411 this_type = read_set_type (die, cu);
21412 break;
21413 case DW_TAG_pointer_type:
21414 this_type = read_tag_pointer_type (die, cu);
21415 break;
21416 case DW_TAG_ptr_to_member_type:
21417 this_type = read_tag_ptr_to_member_type (die, cu);
21418 break;
21419 case DW_TAG_reference_type:
21420 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21421 break;
21422 case DW_TAG_rvalue_reference_type:
21423 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21424 break;
21425 case DW_TAG_const_type:
21426 this_type = read_tag_const_type (die, cu);
21427 break;
21428 case DW_TAG_volatile_type:
21429 this_type = read_tag_volatile_type (die, cu);
21430 break;
21431 case DW_TAG_restrict_type:
21432 this_type = read_tag_restrict_type (die, cu);
21433 break;
21434 case DW_TAG_string_type:
21435 this_type = read_tag_string_type (die, cu);
21436 break;
21437 case DW_TAG_typedef:
21438 this_type = read_typedef (die, cu);
21439 break;
21440 case DW_TAG_subrange_type:
21441 this_type = read_subrange_type (die, cu);
21442 break;
21443 case DW_TAG_base_type:
21444 this_type = read_base_type (die, cu);
21445 break;
21446 case DW_TAG_unspecified_type:
21447 this_type = read_unspecified_type (die, cu);
21448 break;
21449 case DW_TAG_namespace:
21450 this_type = read_namespace_type (die, cu);
21451 break;
21452 case DW_TAG_module:
21453 this_type = read_module_type (die, cu);
21454 break;
21455 case DW_TAG_atomic_type:
21456 this_type = read_tag_atomic_type (die, cu);
21457 break;
21458 default:
21459 complaint (_("unexpected tag in read_type_die: '%s'"),
21460 dwarf_tag_name (die->tag));
21461 break;
21462 }
21463
21464 return this_type;
21465 }
21466
21467 /* See if we can figure out if the class lives in a namespace. We do
21468 this by looking for a member function; its demangled name will
21469 contain namespace info, if there is any.
21470 Return the computed name or NULL.
21471 Space for the result is allocated on the objfile's obstack.
21472 This is the full-die version of guess_partial_die_structure_name.
21473 In this case we know DIE has no useful parent. */
21474
21475 static const char *
21476 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21477 {
21478 struct die_info *spec_die;
21479 struct dwarf2_cu *spec_cu;
21480 struct die_info *child;
21481 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21482
21483 spec_cu = cu;
21484 spec_die = die_specification (die, &spec_cu);
21485 if (spec_die != NULL)
21486 {
21487 die = spec_die;
21488 cu = spec_cu;
21489 }
21490
21491 for (child = die->child;
21492 child != NULL;
21493 child = child->sibling)
21494 {
21495 if (child->tag == DW_TAG_subprogram)
21496 {
21497 const char *linkage_name = dw2_linkage_name (child, cu);
21498
21499 if (linkage_name != NULL)
21500 {
21501 gdb::unique_xmalloc_ptr<char> actual_name
21502 (language_class_name_from_physname (cu->language_defn,
21503 linkage_name));
21504 const char *name = NULL;
21505
21506 if (actual_name != NULL)
21507 {
21508 const char *die_name = dwarf2_name (die, cu);
21509
21510 if (die_name != NULL
21511 && strcmp (die_name, actual_name.get ()) != 0)
21512 {
21513 /* Strip off the class name from the full name.
21514 We want the prefix. */
21515 int die_name_len = strlen (die_name);
21516 int actual_name_len = strlen (actual_name.get ());
21517 const char *ptr = actual_name.get ();
21518
21519 /* Test for '::' as a sanity check. */
21520 if (actual_name_len > die_name_len + 2
21521 && ptr[actual_name_len - die_name_len - 1] == ':')
21522 name = obstack_strndup (
21523 &objfile->per_bfd->storage_obstack,
21524 ptr, actual_name_len - die_name_len - 2);
21525 }
21526 }
21527 return name;
21528 }
21529 }
21530 }
21531
21532 return NULL;
21533 }
21534
21535 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21536 prefix part in such case. See
21537 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21538
21539 static const char *
21540 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21541 {
21542 struct attribute *attr;
21543 const char *base;
21544
21545 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21546 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21547 return NULL;
21548
21549 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21550 return NULL;
21551
21552 attr = dw2_linkage_name_attr (die, cu);
21553 if (attr == NULL || DW_STRING (attr) == NULL)
21554 return NULL;
21555
21556 /* dwarf2_name had to be already called. */
21557 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21558
21559 /* Strip the base name, keep any leading namespaces/classes. */
21560 base = strrchr (DW_STRING (attr), ':');
21561 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21562 return "";
21563
21564 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21565 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21566 DW_STRING (attr),
21567 &base[-1] - DW_STRING (attr));
21568 }
21569
21570 /* Return the name of the namespace/class that DIE is defined within,
21571 or "" if we can't tell. The caller should not xfree the result.
21572
21573 For example, if we're within the method foo() in the following
21574 code:
21575
21576 namespace N {
21577 class C {
21578 void foo () {
21579 }
21580 };
21581 }
21582
21583 then determine_prefix on foo's die will return "N::C". */
21584
21585 static const char *
21586 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21587 {
21588 struct dwarf2_per_objfile *dwarf2_per_objfile
21589 = cu->per_cu->dwarf2_per_objfile;
21590 struct die_info *parent, *spec_die;
21591 struct dwarf2_cu *spec_cu;
21592 struct type *parent_type;
21593 const char *retval;
21594
21595 if (cu->language != language_cplus
21596 && cu->language != language_fortran && cu->language != language_d
21597 && cu->language != language_rust)
21598 return "";
21599
21600 retval = anonymous_struct_prefix (die, cu);
21601 if (retval)
21602 return retval;
21603
21604 /* We have to be careful in the presence of DW_AT_specification.
21605 For example, with GCC 3.4, given the code
21606
21607 namespace N {
21608 void foo() {
21609 // Definition of N::foo.
21610 }
21611 }
21612
21613 then we'll have a tree of DIEs like this:
21614
21615 1: DW_TAG_compile_unit
21616 2: DW_TAG_namespace // N
21617 3: DW_TAG_subprogram // declaration of N::foo
21618 4: DW_TAG_subprogram // definition of N::foo
21619 DW_AT_specification // refers to die #3
21620
21621 Thus, when processing die #4, we have to pretend that we're in
21622 the context of its DW_AT_specification, namely the contex of die
21623 #3. */
21624 spec_cu = cu;
21625 spec_die = die_specification (die, &spec_cu);
21626 if (spec_die == NULL)
21627 parent = die->parent;
21628 else
21629 {
21630 parent = spec_die->parent;
21631 cu = spec_cu;
21632 }
21633
21634 if (parent == NULL)
21635 return "";
21636 else if (parent->building_fullname)
21637 {
21638 const char *name;
21639 const char *parent_name;
21640
21641 /* It has been seen on RealView 2.2 built binaries,
21642 DW_TAG_template_type_param types actually _defined_ as
21643 children of the parent class:
21644
21645 enum E {};
21646 template class <class Enum> Class{};
21647 Class<enum E> class_e;
21648
21649 1: DW_TAG_class_type (Class)
21650 2: DW_TAG_enumeration_type (E)
21651 3: DW_TAG_enumerator (enum1:0)
21652 3: DW_TAG_enumerator (enum2:1)
21653 ...
21654 2: DW_TAG_template_type_param
21655 DW_AT_type DW_FORM_ref_udata (E)
21656
21657 Besides being broken debug info, it can put GDB into an
21658 infinite loop. Consider:
21659
21660 When we're building the full name for Class<E>, we'll start
21661 at Class, and go look over its template type parameters,
21662 finding E. We'll then try to build the full name of E, and
21663 reach here. We're now trying to build the full name of E,
21664 and look over the parent DIE for containing scope. In the
21665 broken case, if we followed the parent DIE of E, we'd again
21666 find Class, and once again go look at its template type
21667 arguments, etc., etc. Simply don't consider such parent die
21668 as source-level parent of this die (it can't be, the language
21669 doesn't allow it), and break the loop here. */
21670 name = dwarf2_name (die, cu);
21671 parent_name = dwarf2_name (parent, cu);
21672 complaint (_("template param type '%s' defined within parent '%s'"),
21673 name ? name : "<unknown>",
21674 parent_name ? parent_name : "<unknown>");
21675 return "";
21676 }
21677 else
21678 switch (parent->tag)
21679 {
21680 case DW_TAG_namespace:
21681 parent_type = read_type_die (parent, cu);
21682 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21683 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21684 Work around this problem here. */
21685 if (cu->language == language_cplus
21686 && strcmp (parent_type->name (), "::") == 0)
21687 return "";
21688 /* We give a name to even anonymous namespaces. */
21689 return parent_type->name ();
21690 case DW_TAG_class_type:
21691 case DW_TAG_interface_type:
21692 case DW_TAG_structure_type:
21693 case DW_TAG_union_type:
21694 case DW_TAG_module:
21695 parent_type = read_type_die (parent, cu);
21696 if (parent_type->name () != NULL)
21697 return parent_type->name ();
21698 else
21699 /* An anonymous structure is only allowed non-static data
21700 members; no typedefs, no member functions, et cetera.
21701 So it does not need a prefix. */
21702 return "";
21703 case DW_TAG_compile_unit:
21704 case DW_TAG_partial_unit:
21705 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21706 if (cu->language == language_cplus
21707 && !dwarf2_per_objfile->types.empty ()
21708 && die->child != NULL
21709 && (die->tag == DW_TAG_class_type
21710 || die->tag == DW_TAG_structure_type
21711 || die->tag == DW_TAG_union_type))
21712 {
21713 const char *name = guess_full_die_structure_name (die, cu);
21714 if (name != NULL)
21715 return name;
21716 }
21717 return "";
21718 case DW_TAG_subprogram:
21719 /* Nested subroutines in Fortran get a prefix with the name
21720 of the parent's subroutine. */
21721 if (cu->language == language_fortran)
21722 {
21723 if ((die->tag == DW_TAG_subprogram)
21724 && (dwarf2_name (parent, cu) != NULL))
21725 return dwarf2_name (parent, cu);
21726 }
21727 return determine_prefix (parent, cu);
21728 case DW_TAG_enumeration_type:
21729 parent_type = read_type_die (parent, cu);
21730 if (TYPE_DECLARED_CLASS (parent_type))
21731 {
21732 if (parent_type->name () != NULL)
21733 return parent_type->name ();
21734 return "";
21735 }
21736 /* Fall through. */
21737 default:
21738 return determine_prefix (parent, cu);
21739 }
21740 }
21741
21742 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21743 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21744 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21745 an obconcat, otherwise allocate storage for the result. The CU argument is
21746 used to determine the language and hence, the appropriate separator. */
21747
21748 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21749
21750 static char *
21751 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21752 int physname, struct dwarf2_cu *cu)
21753 {
21754 const char *lead = "";
21755 const char *sep;
21756
21757 if (suffix == NULL || suffix[0] == '\0'
21758 || prefix == NULL || prefix[0] == '\0')
21759 sep = "";
21760 else if (cu->language == language_d)
21761 {
21762 /* For D, the 'main' function could be defined in any module, but it
21763 should never be prefixed. */
21764 if (strcmp (suffix, "D main") == 0)
21765 {
21766 prefix = "";
21767 sep = "";
21768 }
21769 else
21770 sep = ".";
21771 }
21772 else if (cu->language == language_fortran && physname)
21773 {
21774 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21775 DW_AT_MIPS_linkage_name is preferred and used instead. */
21776
21777 lead = "__";
21778 sep = "_MOD_";
21779 }
21780 else
21781 sep = "::";
21782
21783 if (prefix == NULL)
21784 prefix = "";
21785 if (suffix == NULL)
21786 suffix = "";
21787
21788 if (obs == NULL)
21789 {
21790 char *retval
21791 = ((char *)
21792 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21793
21794 strcpy (retval, lead);
21795 strcat (retval, prefix);
21796 strcat (retval, sep);
21797 strcat (retval, suffix);
21798 return retval;
21799 }
21800 else
21801 {
21802 /* We have an obstack. */
21803 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21804 }
21805 }
21806
21807 /* Get name of a die, return NULL if not found. */
21808
21809 static const char *
21810 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21811 struct objfile *objfile)
21812 {
21813 if (name && cu->language == language_cplus)
21814 {
21815 gdb::unique_xmalloc_ptr<char> canon_name
21816 = cp_canonicalize_string (name);
21817
21818 if (canon_name != nullptr)
21819 name = objfile->intern (canon_name.get ());
21820 }
21821
21822 return name;
21823 }
21824
21825 /* Get name of a die, return NULL if not found.
21826 Anonymous namespaces are converted to their magic string. */
21827
21828 static const char *
21829 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21830 {
21831 struct attribute *attr;
21832 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21833
21834 attr = dwarf2_attr (die, DW_AT_name, cu);
21835 if ((!attr || !DW_STRING (attr))
21836 && die->tag != DW_TAG_namespace
21837 && die->tag != DW_TAG_class_type
21838 && die->tag != DW_TAG_interface_type
21839 && die->tag != DW_TAG_structure_type
21840 && die->tag != DW_TAG_union_type)
21841 return NULL;
21842
21843 switch (die->tag)
21844 {
21845 case DW_TAG_compile_unit:
21846 case DW_TAG_partial_unit:
21847 /* Compilation units have a DW_AT_name that is a filename, not
21848 a source language identifier. */
21849 case DW_TAG_enumeration_type:
21850 case DW_TAG_enumerator:
21851 /* These tags always have simple identifiers already; no need
21852 to canonicalize them. */
21853 return DW_STRING (attr);
21854
21855 case DW_TAG_namespace:
21856 if (attr != NULL && DW_STRING (attr) != NULL)
21857 return DW_STRING (attr);
21858 return CP_ANONYMOUS_NAMESPACE_STR;
21859
21860 case DW_TAG_class_type:
21861 case DW_TAG_interface_type:
21862 case DW_TAG_structure_type:
21863 case DW_TAG_union_type:
21864 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21865 structures or unions. These were of the form "._%d" in GCC 4.1,
21866 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21867 and GCC 4.4. We work around this problem by ignoring these. */
21868 if (attr && DW_STRING (attr)
21869 && (startswith (DW_STRING (attr), "._")
21870 || startswith (DW_STRING (attr), "<anonymous")))
21871 return NULL;
21872
21873 /* GCC might emit a nameless typedef that has a linkage name. See
21874 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21875 if (!attr || DW_STRING (attr) == NULL)
21876 {
21877 attr = dw2_linkage_name_attr (die, cu);
21878 if (attr == NULL || DW_STRING (attr) == NULL)
21879 return NULL;
21880
21881 /* Avoid demangling DW_STRING (attr) the second time on a second
21882 call for the same DIE. */
21883 if (!DW_STRING_IS_CANONICAL (attr))
21884 {
21885 gdb::unique_xmalloc_ptr<char> demangled
21886 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21887 if (demangled == nullptr)
21888 return nullptr;
21889
21890 DW_STRING (attr) = objfile->intern (demangled.get ());
21891 DW_STRING_IS_CANONICAL (attr) = 1;
21892 }
21893
21894 /* Strip any leading namespaces/classes, keep only the base name.
21895 DW_AT_name for named DIEs does not contain the prefixes. */
21896 const char *base = strrchr (DW_STRING (attr), ':');
21897 if (base && base > DW_STRING (attr) && base[-1] == ':')
21898 return &base[1];
21899 else
21900 return DW_STRING (attr);
21901 }
21902 break;
21903
21904 default:
21905 break;
21906 }
21907
21908 if (!DW_STRING_IS_CANONICAL (attr))
21909 {
21910 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21911 objfile);
21912 DW_STRING_IS_CANONICAL (attr) = 1;
21913 }
21914 return DW_STRING (attr);
21915 }
21916
21917 /* Return the die that this die in an extension of, or NULL if there
21918 is none. *EXT_CU is the CU containing DIE on input, and the CU
21919 containing the return value on output. */
21920
21921 static struct die_info *
21922 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21923 {
21924 struct attribute *attr;
21925
21926 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21927 if (attr == NULL)
21928 return NULL;
21929
21930 return follow_die_ref (die, attr, ext_cu);
21931 }
21932
21933 static void
21934 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21935 {
21936 unsigned int i;
21937
21938 print_spaces (indent, f);
21939 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21940 dwarf_tag_name (die->tag), die->abbrev,
21941 sect_offset_str (die->sect_off));
21942
21943 if (die->parent != NULL)
21944 {
21945 print_spaces (indent, f);
21946 fprintf_unfiltered (f, " parent at offset: %s\n",
21947 sect_offset_str (die->parent->sect_off));
21948 }
21949
21950 print_spaces (indent, f);
21951 fprintf_unfiltered (f, " has children: %s\n",
21952 dwarf_bool_name (die->child != NULL));
21953
21954 print_spaces (indent, f);
21955 fprintf_unfiltered (f, " attributes:\n");
21956
21957 for (i = 0; i < die->num_attrs; ++i)
21958 {
21959 print_spaces (indent, f);
21960 fprintf_unfiltered (f, " %s (%s) ",
21961 dwarf_attr_name (die->attrs[i].name),
21962 dwarf_form_name (die->attrs[i].form));
21963
21964 switch (die->attrs[i].form)
21965 {
21966 case DW_FORM_addr:
21967 case DW_FORM_addrx:
21968 case DW_FORM_GNU_addr_index:
21969 fprintf_unfiltered (f, "address: ");
21970 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21971 break;
21972 case DW_FORM_block2:
21973 case DW_FORM_block4:
21974 case DW_FORM_block:
21975 case DW_FORM_block1:
21976 fprintf_unfiltered (f, "block: size %s",
21977 pulongest (DW_BLOCK (&die->attrs[i])->size));
21978 break;
21979 case DW_FORM_exprloc:
21980 fprintf_unfiltered (f, "expression: size %s",
21981 pulongest (DW_BLOCK (&die->attrs[i])->size));
21982 break;
21983 case DW_FORM_data16:
21984 fprintf_unfiltered (f, "constant of 16 bytes");
21985 break;
21986 case DW_FORM_ref_addr:
21987 fprintf_unfiltered (f, "ref address: ");
21988 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21989 break;
21990 case DW_FORM_GNU_ref_alt:
21991 fprintf_unfiltered (f, "alt ref address: ");
21992 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21993 break;
21994 case DW_FORM_ref1:
21995 case DW_FORM_ref2:
21996 case DW_FORM_ref4:
21997 case DW_FORM_ref8:
21998 case DW_FORM_ref_udata:
21999 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22000 (long) (DW_UNSND (&die->attrs[i])));
22001 break;
22002 case DW_FORM_data1:
22003 case DW_FORM_data2:
22004 case DW_FORM_data4:
22005 case DW_FORM_data8:
22006 case DW_FORM_udata:
22007 case DW_FORM_sdata:
22008 fprintf_unfiltered (f, "constant: %s",
22009 pulongest (DW_UNSND (&die->attrs[i])));
22010 break;
22011 case DW_FORM_sec_offset:
22012 fprintf_unfiltered (f, "section offset: %s",
22013 pulongest (DW_UNSND (&die->attrs[i])));
22014 break;
22015 case DW_FORM_ref_sig8:
22016 fprintf_unfiltered (f, "signature: %s",
22017 hex_string (DW_SIGNATURE (&die->attrs[i])));
22018 break;
22019 case DW_FORM_string:
22020 case DW_FORM_strp:
22021 case DW_FORM_line_strp:
22022 case DW_FORM_strx:
22023 case DW_FORM_GNU_str_index:
22024 case DW_FORM_GNU_strp_alt:
22025 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22026 DW_STRING (&die->attrs[i])
22027 ? DW_STRING (&die->attrs[i]) : "",
22028 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22029 break;
22030 case DW_FORM_flag:
22031 if (DW_UNSND (&die->attrs[i]))
22032 fprintf_unfiltered (f, "flag: TRUE");
22033 else
22034 fprintf_unfiltered (f, "flag: FALSE");
22035 break;
22036 case DW_FORM_flag_present:
22037 fprintf_unfiltered (f, "flag: TRUE");
22038 break;
22039 case DW_FORM_indirect:
22040 /* The reader will have reduced the indirect form to
22041 the "base form" so this form should not occur. */
22042 fprintf_unfiltered (f,
22043 "unexpected attribute form: DW_FORM_indirect");
22044 break;
22045 case DW_FORM_implicit_const:
22046 fprintf_unfiltered (f, "constant: %s",
22047 plongest (DW_SND (&die->attrs[i])));
22048 break;
22049 default:
22050 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22051 die->attrs[i].form);
22052 break;
22053 }
22054 fprintf_unfiltered (f, "\n");
22055 }
22056 }
22057
22058 static void
22059 dump_die_for_error (struct die_info *die)
22060 {
22061 dump_die_shallow (gdb_stderr, 0, die);
22062 }
22063
22064 static void
22065 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22066 {
22067 int indent = level * 4;
22068
22069 gdb_assert (die != NULL);
22070
22071 if (level >= max_level)
22072 return;
22073
22074 dump_die_shallow (f, indent, die);
22075
22076 if (die->child != NULL)
22077 {
22078 print_spaces (indent, f);
22079 fprintf_unfiltered (f, " Children:");
22080 if (level + 1 < max_level)
22081 {
22082 fprintf_unfiltered (f, "\n");
22083 dump_die_1 (f, level + 1, max_level, die->child);
22084 }
22085 else
22086 {
22087 fprintf_unfiltered (f,
22088 " [not printed, max nesting level reached]\n");
22089 }
22090 }
22091
22092 if (die->sibling != NULL && level > 0)
22093 {
22094 dump_die_1 (f, level, max_level, die->sibling);
22095 }
22096 }
22097
22098 /* This is called from the pdie macro in gdbinit.in.
22099 It's not static so gcc will keep a copy callable from gdb. */
22100
22101 void
22102 dump_die (struct die_info *die, int max_level)
22103 {
22104 dump_die_1 (gdb_stdlog, 0, max_level, die);
22105 }
22106
22107 static void
22108 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22109 {
22110 void **slot;
22111
22112 slot = htab_find_slot_with_hash (cu->die_hash, die,
22113 to_underlying (die->sect_off),
22114 INSERT);
22115
22116 *slot = die;
22117 }
22118
22119 /* Follow reference or signature attribute ATTR of SRC_DIE.
22120 On entry *REF_CU is the CU of SRC_DIE.
22121 On exit *REF_CU is the CU of the result. */
22122
22123 static struct die_info *
22124 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22125 struct dwarf2_cu **ref_cu)
22126 {
22127 struct die_info *die;
22128
22129 if (attr->form_is_ref ())
22130 die = follow_die_ref (src_die, attr, ref_cu);
22131 else if (attr->form == DW_FORM_ref_sig8)
22132 die = follow_die_sig (src_die, attr, ref_cu);
22133 else
22134 {
22135 dump_die_for_error (src_die);
22136 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22137 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22138 }
22139
22140 return die;
22141 }
22142
22143 /* Follow reference OFFSET.
22144 On entry *REF_CU is the CU of the source die referencing OFFSET.
22145 On exit *REF_CU is the CU of the result.
22146 Returns NULL if OFFSET is invalid. */
22147
22148 static struct die_info *
22149 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22150 struct dwarf2_cu **ref_cu)
22151 {
22152 struct die_info temp_die;
22153 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22154 struct dwarf2_per_objfile *dwarf2_per_objfile
22155 = cu->per_cu->dwarf2_per_objfile;
22156
22157 gdb_assert (cu->per_cu != NULL);
22158
22159 target_cu = cu;
22160
22161 if (cu->per_cu->is_debug_types)
22162 {
22163 /* .debug_types CUs cannot reference anything outside their CU.
22164 If they need to, they have to reference a signatured type via
22165 DW_FORM_ref_sig8. */
22166 if (!cu->header.offset_in_cu_p (sect_off))
22167 return NULL;
22168 }
22169 else if (offset_in_dwz != cu->per_cu->is_dwz
22170 || !cu->header.offset_in_cu_p (sect_off))
22171 {
22172 struct dwarf2_per_cu_data *per_cu;
22173
22174 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22175 dwarf2_per_objfile);
22176
22177 /* If necessary, add it to the queue and load its DIEs. */
22178 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22179 load_full_comp_unit (per_cu, false, cu->language);
22180
22181 target_cu = per_cu->cu;
22182 }
22183 else if (cu->dies == NULL)
22184 {
22185 /* We're loading full DIEs during partial symbol reading. */
22186 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22187 load_full_comp_unit (cu->per_cu, false, language_minimal);
22188 }
22189
22190 *ref_cu = target_cu;
22191 temp_die.sect_off = sect_off;
22192
22193 if (target_cu != cu)
22194 target_cu->ancestor = cu;
22195
22196 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22197 &temp_die,
22198 to_underlying (sect_off));
22199 }
22200
22201 /* Follow reference attribute ATTR of SRC_DIE.
22202 On entry *REF_CU is the CU of SRC_DIE.
22203 On exit *REF_CU is the CU of the result. */
22204
22205 static struct die_info *
22206 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22207 struct dwarf2_cu **ref_cu)
22208 {
22209 sect_offset sect_off = attr->get_ref_die_offset ();
22210 struct dwarf2_cu *cu = *ref_cu;
22211 struct die_info *die;
22212
22213 die = follow_die_offset (sect_off,
22214 (attr->form == DW_FORM_GNU_ref_alt
22215 || cu->per_cu->is_dwz),
22216 ref_cu);
22217 if (!die)
22218 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22219 "at %s [in module %s]"),
22220 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22221 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22222
22223 return die;
22224 }
22225
22226 /* See read.h. */
22227
22228 struct dwarf2_locexpr_baton
22229 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22230 dwarf2_per_cu_data *per_cu,
22231 CORE_ADDR (*get_frame_pc) (void *baton),
22232 void *baton, bool resolve_abstract_p)
22233 {
22234 struct dwarf2_cu *cu;
22235 struct die_info *die;
22236 struct attribute *attr;
22237 struct dwarf2_locexpr_baton retval;
22238 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22239 struct objfile *objfile = dwarf2_per_objfile->objfile;
22240
22241 if (per_cu->cu == NULL)
22242 load_cu (per_cu, false);
22243 cu = per_cu->cu;
22244 if (cu == NULL)
22245 {
22246 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22247 Instead just throw an error, not much else we can do. */
22248 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22249 sect_offset_str (sect_off), objfile_name (objfile));
22250 }
22251
22252 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22253 if (!die)
22254 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22255 sect_offset_str (sect_off), objfile_name (objfile));
22256
22257 attr = dwarf2_attr (die, DW_AT_location, cu);
22258 if (!attr && resolve_abstract_p
22259 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22260 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22261 {
22262 CORE_ADDR pc = (*get_frame_pc) (baton);
22263 CORE_ADDR baseaddr = objfile->text_section_offset ();
22264 struct gdbarch *gdbarch = objfile->arch ();
22265
22266 for (const auto &cand_off
22267 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22268 {
22269 struct dwarf2_cu *cand_cu = cu;
22270 struct die_info *cand
22271 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22272 if (!cand
22273 || !cand->parent
22274 || cand->parent->tag != DW_TAG_subprogram)
22275 continue;
22276
22277 CORE_ADDR pc_low, pc_high;
22278 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22279 if (pc_low == ((CORE_ADDR) -1))
22280 continue;
22281 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22282 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22283 if (!(pc_low <= pc && pc < pc_high))
22284 continue;
22285
22286 die = cand;
22287 attr = dwarf2_attr (die, DW_AT_location, cu);
22288 break;
22289 }
22290 }
22291
22292 if (!attr)
22293 {
22294 /* DWARF: "If there is no such attribute, then there is no effect.".
22295 DATA is ignored if SIZE is 0. */
22296
22297 retval.data = NULL;
22298 retval.size = 0;
22299 }
22300 else if (attr->form_is_section_offset ())
22301 {
22302 struct dwarf2_loclist_baton loclist_baton;
22303 CORE_ADDR pc = (*get_frame_pc) (baton);
22304 size_t size;
22305
22306 fill_in_loclist_baton (cu, &loclist_baton, attr);
22307
22308 retval.data = dwarf2_find_location_expression (&loclist_baton,
22309 &size, pc);
22310 retval.size = size;
22311 }
22312 else
22313 {
22314 if (!attr->form_is_block ())
22315 error (_("Dwarf Error: DIE at %s referenced in module %s "
22316 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22317 sect_offset_str (sect_off), objfile_name (objfile));
22318
22319 retval.data = DW_BLOCK (attr)->data;
22320 retval.size = DW_BLOCK (attr)->size;
22321 }
22322 retval.per_cu = cu->per_cu;
22323
22324 age_cached_comp_units (dwarf2_per_objfile);
22325
22326 return retval;
22327 }
22328
22329 /* See read.h. */
22330
22331 struct dwarf2_locexpr_baton
22332 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22333 dwarf2_per_cu_data *per_cu,
22334 CORE_ADDR (*get_frame_pc) (void *baton),
22335 void *baton)
22336 {
22337 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22338
22339 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22340 }
22341
22342 /* Write a constant of a given type as target-ordered bytes into
22343 OBSTACK. */
22344
22345 static const gdb_byte *
22346 write_constant_as_bytes (struct obstack *obstack,
22347 enum bfd_endian byte_order,
22348 struct type *type,
22349 ULONGEST value,
22350 LONGEST *len)
22351 {
22352 gdb_byte *result;
22353
22354 *len = TYPE_LENGTH (type);
22355 result = (gdb_byte *) obstack_alloc (obstack, *len);
22356 store_unsigned_integer (result, *len, byte_order, value);
22357
22358 return result;
22359 }
22360
22361 /* See read.h. */
22362
22363 const gdb_byte *
22364 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22365 dwarf2_per_cu_data *per_cu,
22366 obstack *obstack,
22367 LONGEST *len)
22368 {
22369 struct dwarf2_cu *cu;
22370 struct die_info *die;
22371 struct attribute *attr;
22372 const gdb_byte *result = NULL;
22373 struct type *type;
22374 LONGEST value;
22375 enum bfd_endian byte_order;
22376 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22377
22378 if (per_cu->cu == NULL)
22379 load_cu (per_cu, false);
22380 cu = per_cu->cu;
22381 if (cu == NULL)
22382 {
22383 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22384 Instead just throw an error, not much else we can do. */
22385 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22386 sect_offset_str (sect_off), objfile_name (objfile));
22387 }
22388
22389 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22390 if (!die)
22391 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22392 sect_offset_str (sect_off), objfile_name (objfile));
22393
22394 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22395 if (attr == NULL)
22396 return NULL;
22397
22398 byte_order = (bfd_big_endian (objfile->obfd)
22399 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22400
22401 switch (attr->form)
22402 {
22403 case DW_FORM_addr:
22404 case DW_FORM_addrx:
22405 case DW_FORM_GNU_addr_index:
22406 {
22407 gdb_byte *tem;
22408
22409 *len = cu->header.addr_size;
22410 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22411 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22412 result = tem;
22413 }
22414 break;
22415 case DW_FORM_string:
22416 case DW_FORM_strp:
22417 case DW_FORM_strx:
22418 case DW_FORM_GNU_str_index:
22419 case DW_FORM_GNU_strp_alt:
22420 /* DW_STRING is already allocated on the objfile obstack, point
22421 directly to it. */
22422 result = (const gdb_byte *) DW_STRING (attr);
22423 *len = strlen (DW_STRING (attr));
22424 break;
22425 case DW_FORM_block1:
22426 case DW_FORM_block2:
22427 case DW_FORM_block4:
22428 case DW_FORM_block:
22429 case DW_FORM_exprloc:
22430 case DW_FORM_data16:
22431 result = DW_BLOCK (attr)->data;
22432 *len = DW_BLOCK (attr)->size;
22433 break;
22434
22435 /* The DW_AT_const_value attributes are supposed to carry the
22436 symbol's value "represented as it would be on the target
22437 architecture." By the time we get here, it's already been
22438 converted to host endianness, so we just need to sign- or
22439 zero-extend it as appropriate. */
22440 case DW_FORM_data1:
22441 type = die_type (die, cu);
22442 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22443 if (result == NULL)
22444 result = write_constant_as_bytes (obstack, byte_order,
22445 type, value, len);
22446 break;
22447 case DW_FORM_data2:
22448 type = die_type (die, cu);
22449 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22450 if (result == NULL)
22451 result = write_constant_as_bytes (obstack, byte_order,
22452 type, value, len);
22453 break;
22454 case DW_FORM_data4:
22455 type = die_type (die, cu);
22456 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22457 if (result == NULL)
22458 result = write_constant_as_bytes (obstack, byte_order,
22459 type, value, len);
22460 break;
22461 case DW_FORM_data8:
22462 type = die_type (die, cu);
22463 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22464 if (result == NULL)
22465 result = write_constant_as_bytes (obstack, byte_order,
22466 type, value, len);
22467 break;
22468
22469 case DW_FORM_sdata:
22470 case DW_FORM_implicit_const:
22471 type = die_type (die, cu);
22472 result = write_constant_as_bytes (obstack, byte_order,
22473 type, DW_SND (attr), len);
22474 break;
22475
22476 case DW_FORM_udata:
22477 type = die_type (die, cu);
22478 result = write_constant_as_bytes (obstack, byte_order,
22479 type, DW_UNSND (attr), len);
22480 break;
22481
22482 default:
22483 complaint (_("unsupported const value attribute form: '%s'"),
22484 dwarf_form_name (attr->form));
22485 break;
22486 }
22487
22488 return result;
22489 }
22490
22491 /* See read.h. */
22492
22493 struct type *
22494 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22495 dwarf2_per_cu_data *per_cu)
22496 {
22497 struct dwarf2_cu *cu;
22498 struct die_info *die;
22499
22500 if (per_cu->cu == NULL)
22501 load_cu (per_cu, false);
22502 cu = per_cu->cu;
22503 if (!cu)
22504 return NULL;
22505
22506 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22507 if (!die)
22508 return NULL;
22509
22510 return die_type (die, cu);
22511 }
22512
22513 /* See read.h. */
22514
22515 struct type *
22516 dwarf2_get_die_type (cu_offset die_offset,
22517 struct dwarf2_per_cu_data *per_cu)
22518 {
22519 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22520 return get_die_type_at_offset (die_offset_sect, per_cu);
22521 }
22522
22523 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22524 On entry *REF_CU is the CU of SRC_DIE.
22525 On exit *REF_CU is the CU of the result.
22526 Returns NULL if the referenced DIE isn't found. */
22527
22528 static struct die_info *
22529 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22530 struct dwarf2_cu **ref_cu)
22531 {
22532 struct die_info temp_die;
22533 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22534 struct die_info *die;
22535
22536 /* While it might be nice to assert sig_type->type == NULL here,
22537 we can get here for DW_AT_imported_declaration where we need
22538 the DIE not the type. */
22539
22540 /* If necessary, add it to the queue and load its DIEs. */
22541
22542 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22543 read_signatured_type (sig_type);
22544
22545 sig_cu = sig_type->per_cu.cu;
22546 gdb_assert (sig_cu != NULL);
22547 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22548 temp_die.sect_off = sig_type->type_offset_in_section;
22549 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22550 to_underlying (temp_die.sect_off));
22551 if (die)
22552 {
22553 struct dwarf2_per_objfile *dwarf2_per_objfile
22554 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22555
22556 /* For .gdb_index version 7 keep track of included TUs.
22557 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22558 if (dwarf2_per_objfile->index_table != NULL
22559 && dwarf2_per_objfile->index_table->version <= 7)
22560 {
22561 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22562 }
22563
22564 *ref_cu = sig_cu;
22565 if (sig_cu != cu)
22566 sig_cu->ancestor = cu;
22567
22568 return die;
22569 }
22570
22571 return NULL;
22572 }
22573
22574 /* Follow signatured type referenced by ATTR in SRC_DIE.
22575 On entry *REF_CU is the CU of SRC_DIE.
22576 On exit *REF_CU is the CU of the result.
22577 The result is the DIE of the type.
22578 If the referenced type cannot be found an error is thrown. */
22579
22580 static struct die_info *
22581 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22582 struct dwarf2_cu **ref_cu)
22583 {
22584 ULONGEST signature = DW_SIGNATURE (attr);
22585 struct signatured_type *sig_type;
22586 struct die_info *die;
22587
22588 gdb_assert (attr->form == DW_FORM_ref_sig8);
22589
22590 sig_type = lookup_signatured_type (*ref_cu, signature);
22591 /* sig_type will be NULL if the signatured type is missing from
22592 the debug info. */
22593 if (sig_type == NULL)
22594 {
22595 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22596 " from DIE at %s [in module %s]"),
22597 hex_string (signature), sect_offset_str (src_die->sect_off),
22598 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22599 }
22600
22601 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22602 if (die == NULL)
22603 {
22604 dump_die_for_error (src_die);
22605 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22606 " from DIE at %s [in module %s]"),
22607 hex_string (signature), sect_offset_str (src_die->sect_off),
22608 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22609 }
22610
22611 return die;
22612 }
22613
22614 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22615 reading in and processing the type unit if necessary. */
22616
22617 static struct type *
22618 get_signatured_type (struct die_info *die, ULONGEST signature,
22619 struct dwarf2_cu *cu)
22620 {
22621 struct dwarf2_per_objfile *dwarf2_per_objfile
22622 = cu->per_cu->dwarf2_per_objfile;
22623 struct signatured_type *sig_type;
22624 struct dwarf2_cu *type_cu;
22625 struct die_info *type_die;
22626 struct type *type;
22627
22628 sig_type = lookup_signatured_type (cu, signature);
22629 /* sig_type will be NULL if the signatured type is missing from
22630 the debug info. */
22631 if (sig_type == NULL)
22632 {
22633 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22634 " from DIE at %s [in module %s]"),
22635 hex_string (signature), sect_offset_str (die->sect_off),
22636 objfile_name (dwarf2_per_objfile->objfile));
22637 return build_error_marker_type (cu, die);
22638 }
22639
22640 /* If we already know the type we're done. */
22641 if (sig_type->type != NULL)
22642 return sig_type->type;
22643
22644 type_cu = cu;
22645 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22646 if (type_die != NULL)
22647 {
22648 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22649 is created. This is important, for example, because for c++ classes
22650 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22651 type = read_type_die (type_die, type_cu);
22652 if (type == NULL)
22653 {
22654 complaint (_("Dwarf Error: Cannot build signatured type %s"
22655 " referenced from DIE at %s [in module %s]"),
22656 hex_string (signature), sect_offset_str (die->sect_off),
22657 objfile_name (dwarf2_per_objfile->objfile));
22658 type = build_error_marker_type (cu, die);
22659 }
22660 }
22661 else
22662 {
22663 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22664 " from DIE at %s [in module %s]"),
22665 hex_string (signature), sect_offset_str (die->sect_off),
22666 objfile_name (dwarf2_per_objfile->objfile));
22667 type = build_error_marker_type (cu, die);
22668 }
22669 sig_type->type = type;
22670
22671 return type;
22672 }
22673
22674 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22675 reading in and processing the type unit if necessary. */
22676
22677 static struct type *
22678 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22679 struct dwarf2_cu *cu) /* ARI: editCase function */
22680 {
22681 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22682 if (attr->form_is_ref ())
22683 {
22684 struct dwarf2_cu *type_cu = cu;
22685 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22686
22687 return read_type_die (type_die, type_cu);
22688 }
22689 else if (attr->form == DW_FORM_ref_sig8)
22690 {
22691 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22692 }
22693 else
22694 {
22695 struct dwarf2_per_objfile *dwarf2_per_objfile
22696 = cu->per_cu->dwarf2_per_objfile;
22697
22698 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22699 " at %s [in module %s]"),
22700 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22701 objfile_name (dwarf2_per_objfile->objfile));
22702 return build_error_marker_type (cu, die);
22703 }
22704 }
22705
22706 /* Load the DIEs associated with type unit PER_CU into memory. */
22707
22708 static void
22709 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22710 {
22711 struct signatured_type *sig_type;
22712
22713 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22714 gdb_assert (! per_cu->type_unit_group_p ());
22715
22716 /* We have the per_cu, but we need the signatured_type.
22717 Fortunately this is an easy translation. */
22718 gdb_assert (per_cu->is_debug_types);
22719 sig_type = (struct signatured_type *) per_cu;
22720
22721 gdb_assert (per_cu->cu == NULL);
22722
22723 read_signatured_type (sig_type);
22724
22725 gdb_assert (per_cu->cu != NULL);
22726 }
22727
22728 /* Read in a signatured type and build its CU and DIEs.
22729 If the type is a stub for the real type in a DWO file,
22730 read in the real type from the DWO file as well. */
22731
22732 static void
22733 read_signatured_type (struct signatured_type *sig_type)
22734 {
22735 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22736
22737 gdb_assert (per_cu->is_debug_types);
22738 gdb_assert (per_cu->cu == NULL);
22739
22740 cutu_reader reader (per_cu, NULL, 0, false);
22741
22742 if (!reader.dummy_p)
22743 {
22744 struct dwarf2_cu *cu = reader.cu;
22745 const gdb_byte *info_ptr = reader.info_ptr;
22746
22747 gdb_assert (cu->die_hash == NULL);
22748 cu->die_hash =
22749 htab_create_alloc_ex (cu->header.length / 12,
22750 die_hash,
22751 die_eq,
22752 NULL,
22753 &cu->comp_unit_obstack,
22754 hashtab_obstack_allocate,
22755 dummy_obstack_deallocate);
22756
22757 if (reader.comp_unit_die->has_children)
22758 reader.comp_unit_die->child
22759 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22760 reader.comp_unit_die);
22761 cu->dies = reader.comp_unit_die;
22762 /* comp_unit_die is not stored in die_hash, no need. */
22763
22764 /* We try not to read any attributes in this function, because
22765 not all CUs needed for references have been loaded yet, and
22766 symbol table processing isn't initialized. But we have to
22767 set the CU language, or we won't be able to build types
22768 correctly. Similarly, if we do not read the producer, we can
22769 not apply producer-specific interpretation. */
22770 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22771
22772 reader.keep ();
22773 }
22774
22775 sig_type->per_cu.tu_read = 1;
22776 }
22777
22778 /* Decode simple location descriptions.
22779 Given a pointer to a dwarf block that defines a location, compute
22780 the location and return the value. If COMPUTED is non-null, it is
22781 set to true to indicate that decoding was successful, and false
22782 otherwise. If COMPUTED is null, then this function may emit a
22783 complaint. */
22784
22785 static CORE_ADDR
22786 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22787 {
22788 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22789 size_t i;
22790 size_t size = blk->size;
22791 const gdb_byte *data = blk->data;
22792 CORE_ADDR stack[64];
22793 int stacki;
22794 unsigned int bytes_read, unsnd;
22795 gdb_byte op;
22796
22797 if (computed != nullptr)
22798 *computed = false;
22799
22800 i = 0;
22801 stacki = 0;
22802 stack[stacki] = 0;
22803 stack[++stacki] = 0;
22804
22805 while (i < size)
22806 {
22807 op = data[i++];
22808 switch (op)
22809 {
22810 case DW_OP_lit0:
22811 case DW_OP_lit1:
22812 case DW_OP_lit2:
22813 case DW_OP_lit3:
22814 case DW_OP_lit4:
22815 case DW_OP_lit5:
22816 case DW_OP_lit6:
22817 case DW_OP_lit7:
22818 case DW_OP_lit8:
22819 case DW_OP_lit9:
22820 case DW_OP_lit10:
22821 case DW_OP_lit11:
22822 case DW_OP_lit12:
22823 case DW_OP_lit13:
22824 case DW_OP_lit14:
22825 case DW_OP_lit15:
22826 case DW_OP_lit16:
22827 case DW_OP_lit17:
22828 case DW_OP_lit18:
22829 case DW_OP_lit19:
22830 case DW_OP_lit20:
22831 case DW_OP_lit21:
22832 case DW_OP_lit22:
22833 case DW_OP_lit23:
22834 case DW_OP_lit24:
22835 case DW_OP_lit25:
22836 case DW_OP_lit26:
22837 case DW_OP_lit27:
22838 case DW_OP_lit28:
22839 case DW_OP_lit29:
22840 case DW_OP_lit30:
22841 case DW_OP_lit31:
22842 stack[++stacki] = op - DW_OP_lit0;
22843 break;
22844
22845 case DW_OP_reg0:
22846 case DW_OP_reg1:
22847 case DW_OP_reg2:
22848 case DW_OP_reg3:
22849 case DW_OP_reg4:
22850 case DW_OP_reg5:
22851 case DW_OP_reg6:
22852 case DW_OP_reg7:
22853 case DW_OP_reg8:
22854 case DW_OP_reg9:
22855 case DW_OP_reg10:
22856 case DW_OP_reg11:
22857 case DW_OP_reg12:
22858 case DW_OP_reg13:
22859 case DW_OP_reg14:
22860 case DW_OP_reg15:
22861 case DW_OP_reg16:
22862 case DW_OP_reg17:
22863 case DW_OP_reg18:
22864 case DW_OP_reg19:
22865 case DW_OP_reg20:
22866 case DW_OP_reg21:
22867 case DW_OP_reg22:
22868 case DW_OP_reg23:
22869 case DW_OP_reg24:
22870 case DW_OP_reg25:
22871 case DW_OP_reg26:
22872 case DW_OP_reg27:
22873 case DW_OP_reg28:
22874 case DW_OP_reg29:
22875 case DW_OP_reg30:
22876 case DW_OP_reg31:
22877 stack[++stacki] = op - DW_OP_reg0;
22878 if (i < size)
22879 {
22880 if (computed == nullptr)
22881 dwarf2_complex_location_expr_complaint ();
22882 else
22883 return 0;
22884 }
22885 break;
22886
22887 case DW_OP_regx:
22888 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22889 i += bytes_read;
22890 stack[++stacki] = unsnd;
22891 if (i < size)
22892 {
22893 if (computed == nullptr)
22894 dwarf2_complex_location_expr_complaint ();
22895 else
22896 return 0;
22897 }
22898 break;
22899
22900 case DW_OP_addr:
22901 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22902 &bytes_read);
22903 i += bytes_read;
22904 break;
22905
22906 case DW_OP_const1u:
22907 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22908 i += 1;
22909 break;
22910
22911 case DW_OP_const1s:
22912 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22913 i += 1;
22914 break;
22915
22916 case DW_OP_const2u:
22917 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22918 i += 2;
22919 break;
22920
22921 case DW_OP_const2s:
22922 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22923 i += 2;
22924 break;
22925
22926 case DW_OP_const4u:
22927 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22928 i += 4;
22929 break;
22930
22931 case DW_OP_const4s:
22932 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22933 i += 4;
22934 break;
22935
22936 case DW_OP_const8u:
22937 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22938 i += 8;
22939 break;
22940
22941 case DW_OP_constu:
22942 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22943 &bytes_read);
22944 i += bytes_read;
22945 break;
22946
22947 case DW_OP_consts:
22948 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22949 i += bytes_read;
22950 break;
22951
22952 case DW_OP_dup:
22953 stack[stacki + 1] = stack[stacki];
22954 stacki++;
22955 break;
22956
22957 case DW_OP_plus:
22958 stack[stacki - 1] += stack[stacki];
22959 stacki--;
22960 break;
22961
22962 case DW_OP_plus_uconst:
22963 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22964 &bytes_read);
22965 i += bytes_read;
22966 break;
22967
22968 case DW_OP_minus:
22969 stack[stacki - 1] -= stack[stacki];
22970 stacki--;
22971 break;
22972
22973 case DW_OP_deref:
22974 /* If we're not the last op, then we definitely can't encode
22975 this using GDB's address_class enum. This is valid for partial
22976 global symbols, although the variable's address will be bogus
22977 in the psymtab. */
22978 if (i < size)
22979 {
22980 if (computed == nullptr)
22981 dwarf2_complex_location_expr_complaint ();
22982 else
22983 return 0;
22984 }
22985 break;
22986
22987 case DW_OP_GNU_push_tls_address:
22988 case DW_OP_form_tls_address:
22989 /* The top of the stack has the offset from the beginning
22990 of the thread control block at which the variable is located. */
22991 /* Nothing should follow this operator, so the top of stack would
22992 be returned. */
22993 /* This is valid for partial global symbols, but the variable's
22994 address will be bogus in the psymtab. Make it always at least
22995 non-zero to not look as a variable garbage collected by linker
22996 which have DW_OP_addr 0. */
22997 if (i < size)
22998 {
22999 if (computed == nullptr)
23000 dwarf2_complex_location_expr_complaint ();
23001 else
23002 return 0;
23003 }
23004 stack[stacki]++;
23005 break;
23006
23007 case DW_OP_GNU_uninit:
23008 if (computed != nullptr)
23009 return 0;
23010 break;
23011
23012 case DW_OP_addrx:
23013 case DW_OP_GNU_addr_index:
23014 case DW_OP_GNU_const_index:
23015 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23016 &bytes_read);
23017 i += bytes_read;
23018 break;
23019
23020 default:
23021 if (computed == nullptr)
23022 {
23023 const char *name = get_DW_OP_name (op);
23024
23025 if (name)
23026 complaint (_("unsupported stack op: '%s'"),
23027 name);
23028 else
23029 complaint (_("unsupported stack op: '%02x'"),
23030 op);
23031 }
23032
23033 return (stack[stacki]);
23034 }
23035
23036 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23037 outside of the allocated space. Also enforce minimum>0. */
23038 if (stacki >= ARRAY_SIZE (stack) - 1)
23039 {
23040 if (computed == nullptr)
23041 complaint (_("location description stack overflow"));
23042 return 0;
23043 }
23044
23045 if (stacki <= 0)
23046 {
23047 if (computed == nullptr)
23048 complaint (_("location description stack underflow"));
23049 return 0;
23050 }
23051 }
23052
23053 if (computed != nullptr)
23054 *computed = true;
23055 return (stack[stacki]);
23056 }
23057
23058 /* memory allocation interface */
23059
23060 static struct dwarf_block *
23061 dwarf_alloc_block (struct dwarf2_cu *cu)
23062 {
23063 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23064 }
23065
23066 static struct die_info *
23067 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23068 {
23069 struct die_info *die;
23070 size_t size = sizeof (struct die_info);
23071
23072 if (num_attrs > 1)
23073 size += (num_attrs - 1) * sizeof (struct attribute);
23074
23075 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23076 memset (die, 0, sizeof (struct die_info));
23077 return (die);
23078 }
23079
23080 \f
23081
23082 /* Macro support. */
23083
23084 /* An overload of dwarf_decode_macros that finds the correct section
23085 and ensures it is read in before calling the other overload. */
23086
23087 static void
23088 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23089 int section_is_gnu)
23090 {
23091 struct dwarf2_per_objfile *dwarf2_per_objfile
23092 = cu->per_cu->dwarf2_per_objfile;
23093 struct objfile *objfile = dwarf2_per_objfile->objfile;
23094 const struct line_header *lh = cu->line_header;
23095 unsigned int offset_size = cu->header.offset_size;
23096 struct dwarf2_section_info *section;
23097 const char *section_name;
23098
23099 if (cu->dwo_unit != nullptr)
23100 {
23101 if (section_is_gnu)
23102 {
23103 section = &cu->dwo_unit->dwo_file->sections.macro;
23104 section_name = ".debug_macro.dwo";
23105 }
23106 else
23107 {
23108 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23109 section_name = ".debug_macinfo.dwo";
23110 }
23111 }
23112 else
23113 {
23114 if (section_is_gnu)
23115 {
23116 section = &dwarf2_per_objfile->macro;
23117 section_name = ".debug_macro";
23118 }
23119 else
23120 {
23121 section = &dwarf2_per_objfile->macinfo;
23122 section_name = ".debug_macinfo";
23123 }
23124 }
23125
23126 section->read (objfile);
23127 if (section->buffer == nullptr)
23128 {
23129 complaint (_("missing %s section"), section_name);
23130 return;
23131 }
23132
23133 buildsym_compunit *builder = cu->get_builder ();
23134
23135 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23136 offset_size, offset, section_is_gnu);
23137 }
23138
23139 /* Return the .debug_loc section to use for CU.
23140 For DWO files use .debug_loc.dwo. */
23141
23142 static struct dwarf2_section_info *
23143 cu_debug_loc_section (struct dwarf2_cu *cu)
23144 {
23145 struct dwarf2_per_objfile *dwarf2_per_objfile
23146 = cu->per_cu->dwarf2_per_objfile;
23147
23148 if (cu->dwo_unit)
23149 {
23150 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23151
23152 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23153 }
23154 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23155 : &dwarf2_per_objfile->loc);
23156 }
23157
23158 /* A helper function that fills in a dwarf2_loclist_baton. */
23159
23160 static void
23161 fill_in_loclist_baton (struct dwarf2_cu *cu,
23162 struct dwarf2_loclist_baton *baton,
23163 const struct attribute *attr)
23164 {
23165 struct dwarf2_per_objfile *dwarf2_per_objfile
23166 = cu->per_cu->dwarf2_per_objfile;
23167 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23168
23169 section->read (dwarf2_per_objfile->objfile);
23170
23171 baton->per_cu = cu->per_cu;
23172 gdb_assert (baton->per_cu);
23173 /* We don't know how long the location list is, but make sure we
23174 don't run off the edge of the section. */
23175 baton->size = section->size - DW_UNSND (attr);
23176 baton->data = section->buffer + DW_UNSND (attr);
23177 if (cu->base_address.has_value ())
23178 baton->base_address = *cu->base_address;
23179 else
23180 baton->base_address = 0;
23181 baton->from_dwo = cu->dwo_unit != NULL;
23182 }
23183
23184 static void
23185 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23186 struct dwarf2_cu *cu, int is_block)
23187 {
23188 struct dwarf2_per_objfile *dwarf2_per_objfile
23189 = cu->per_cu->dwarf2_per_objfile;
23190 struct objfile *objfile = dwarf2_per_objfile->objfile;
23191 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23192
23193 if (attr->form_is_section_offset ()
23194 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23195 the section. If so, fall through to the complaint in the
23196 other branch. */
23197 && DW_UNSND (attr) < section->get_size (objfile))
23198 {
23199 struct dwarf2_loclist_baton *baton;
23200
23201 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23202
23203 fill_in_loclist_baton (cu, baton, attr);
23204
23205 if (!cu->base_address.has_value ())
23206 complaint (_("Location list used without "
23207 "specifying the CU base address."));
23208
23209 SYMBOL_ACLASS_INDEX (sym) = (is_block
23210 ? dwarf2_loclist_block_index
23211 : dwarf2_loclist_index);
23212 SYMBOL_LOCATION_BATON (sym) = baton;
23213 }
23214 else
23215 {
23216 struct dwarf2_locexpr_baton *baton;
23217
23218 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23219 baton->per_cu = cu->per_cu;
23220 gdb_assert (baton->per_cu);
23221
23222 if (attr->form_is_block ())
23223 {
23224 /* Note that we're just copying the block's data pointer
23225 here, not the actual data. We're still pointing into the
23226 info_buffer for SYM's objfile; right now we never release
23227 that buffer, but when we do clean up properly this may
23228 need to change. */
23229 baton->size = DW_BLOCK (attr)->size;
23230 baton->data = DW_BLOCK (attr)->data;
23231 }
23232 else
23233 {
23234 dwarf2_invalid_attrib_class_complaint ("location description",
23235 sym->natural_name ());
23236 baton->size = 0;
23237 }
23238
23239 SYMBOL_ACLASS_INDEX (sym) = (is_block
23240 ? dwarf2_locexpr_block_index
23241 : dwarf2_locexpr_index);
23242 SYMBOL_LOCATION_BATON (sym) = baton;
23243 }
23244 }
23245
23246 /* See read.h. */
23247
23248 struct objfile *
23249 dwarf2_per_cu_data::objfile () const
23250 {
23251 struct objfile *objfile = dwarf2_per_objfile->objfile;
23252
23253 /* Return the master objfile, so that we can report and look up the
23254 correct file containing this variable. */
23255 if (objfile->separate_debug_objfile_backlink)
23256 objfile = objfile->separate_debug_objfile_backlink;
23257
23258 return objfile;
23259 }
23260
23261 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23262 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23263 CU_HEADERP first. */
23264
23265 static const struct comp_unit_head *
23266 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23267 const struct dwarf2_per_cu_data *per_cu)
23268 {
23269 const gdb_byte *info_ptr;
23270
23271 if (per_cu->cu)
23272 return &per_cu->cu->header;
23273
23274 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23275
23276 memset (cu_headerp, 0, sizeof (*cu_headerp));
23277 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23278 rcuh_kind::COMPILE);
23279
23280 return cu_headerp;
23281 }
23282
23283 /* See read.h. */
23284
23285 int
23286 dwarf2_per_cu_data::addr_size () const
23287 {
23288 struct comp_unit_head cu_header_local;
23289 const struct comp_unit_head *cu_headerp;
23290
23291 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23292
23293 return cu_headerp->addr_size;
23294 }
23295
23296 /* See read.h. */
23297
23298 int
23299 dwarf2_per_cu_data::offset_size () const
23300 {
23301 struct comp_unit_head cu_header_local;
23302 const struct comp_unit_head *cu_headerp;
23303
23304 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23305
23306 return cu_headerp->offset_size;
23307 }
23308
23309 /* See read.h. */
23310
23311 int
23312 dwarf2_per_cu_data::ref_addr_size () const
23313 {
23314 struct comp_unit_head cu_header_local;
23315 const struct comp_unit_head *cu_headerp;
23316
23317 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23318
23319 if (cu_headerp->version == 2)
23320 return cu_headerp->addr_size;
23321 else
23322 return cu_headerp->offset_size;
23323 }
23324
23325 /* See read.h. */
23326
23327 CORE_ADDR
23328 dwarf2_per_cu_data::text_offset () const
23329 {
23330 struct objfile *objfile = dwarf2_per_objfile->objfile;
23331
23332 return objfile->text_section_offset ();
23333 }
23334
23335 /* See read.h. */
23336
23337 struct type *
23338 dwarf2_per_cu_data::addr_type () const
23339 {
23340 struct objfile *objfile = dwarf2_per_objfile->objfile;
23341 struct type *void_type = objfile_type (objfile)->builtin_void;
23342 struct type *addr_type = lookup_pointer_type (void_type);
23343 int addr_size = this->addr_size ();
23344
23345 if (TYPE_LENGTH (addr_type) == addr_size)
23346 return addr_type;
23347
23348 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23349 return addr_type;
23350 }
23351
23352 /* A helper function for dwarf2_find_containing_comp_unit that returns
23353 the index of the result, and that searches a vector. It will
23354 return a result even if the offset in question does not actually
23355 occur in any CU. This is separate so that it can be unit
23356 tested. */
23357
23358 static int
23359 dwarf2_find_containing_comp_unit
23360 (sect_offset sect_off,
23361 unsigned int offset_in_dwz,
23362 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23363 {
23364 int low, high;
23365
23366 low = 0;
23367 high = all_comp_units.size () - 1;
23368 while (high > low)
23369 {
23370 struct dwarf2_per_cu_data *mid_cu;
23371 int mid = low + (high - low) / 2;
23372
23373 mid_cu = all_comp_units[mid];
23374 if (mid_cu->is_dwz > offset_in_dwz
23375 || (mid_cu->is_dwz == offset_in_dwz
23376 && mid_cu->sect_off + mid_cu->length > sect_off))
23377 high = mid;
23378 else
23379 low = mid + 1;
23380 }
23381 gdb_assert (low == high);
23382 return low;
23383 }
23384
23385 /* Locate the .debug_info compilation unit from CU's objfile which contains
23386 the DIE at OFFSET. Raises an error on failure. */
23387
23388 static struct dwarf2_per_cu_data *
23389 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23390 unsigned int offset_in_dwz,
23391 struct dwarf2_per_objfile *dwarf2_per_objfile)
23392 {
23393 int low
23394 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23395 dwarf2_per_objfile->all_comp_units);
23396 struct dwarf2_per_cu_data *this_cu
23397 = dwarf2_per_objfile->all_comp_units[low];
23398
23399 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23400 {
23401 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23402 error (_("Dwarf Error: could not find partial DIE containing "
23403 "offset %s [in module %s]"),
23404 sect_offset_str (sect_off),
23405 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23406
23407 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23408 <= sect_off);
23409 return dwarf2_per_objfile->all_comp_units[low-1];
23410 }
23411 else
23412 {
23413 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23414 && sect_off >= this_cu->sect_off + this_cu->length)
23415 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23416 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23417 return this_cu;
23418 }
23419 }
23420
23421 #if GDB_SELF_TEST
23422
23423 namespace selftests {
23424 namespace find_containing_comp_unit {
23425
23426 static void
23427 run_test ()
23428 {
23429 struct dwarf2_per_cu_data one {};
23430 struct dwarf2_per_cu_data two {};
23431 struct dwarf2_per_cu_data three {};
23432 struct dwarf2_per_cu_data four {};
23433
23434 one.length = 5;
23435 two.sect_off = sect_offset (one.length);
23436 two.length = 7;
23437
23438 three.length = 5;
23439 three.is_dwz = 1;
23440 four.sect_off = sect_offset (three.length);
23441 four.length = 7;
23442 four.is_dwz = 1;
23443
23444 std::vector<dwarf2_per_cu_data *> units;
23445 units.push_back (&one);
23446 units.push_back (&two);
23447 units.push_back (&three);
23448 units.push_back (&four);
23449
23450 int result;
23451
23452 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23453 SELF_CHECK (units[result] == &one);
23454 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23455 SELF_CHECK (units[result] == &one);
23456 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23457 SELF_CHECK (units[result] == &two);
23458
23459 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23460 SELF_CHECK (units[result] == &three);
23461 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23462 SELF_CHECK (units[result] == &three);
23463 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23464 SELF_CHECK (units[result] == &four);
23465 }
23466
23467 }
23468 }
23469
23470 #endif /* GDB_SELF_TEST */
23471
23472 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23473
23474 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23475 : per_cu (per_cu_),
23476 mark (false),
23477 has_loclist (false),
23478 checked_producer (false),
23479 producer_is_gxx_lt_4_6 (false),
23480 producer_is_gcc_lt_4_3 (false),
23481 producer_is_icc (false),
23482 producer_is_icc_lt_14 (false),
23483 producer_is_codewarrior (false),
23484 processing_has_namespace_info (false)
23485 {
23486 per_cu->cu = this;
23487 }
23488
23489 /* Destroy a dwarf2_cu. */
23490
23491 dwarf2_cu::~dwarf2_cu ()
23492 {
23493 per_cu->cu = NULL;
23494 }
23495
23496 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23497
23498 static void
23499 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23500 enum language pretend_language)
23501 {
23502 struct attribute *attr;
23503
23504 /* Set the language we're debugging. */
23505 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23506 if (attr != nullptr)
23507 set_cu_language (DW_UNSND (attr), cu);
23508 else
23509 {
23510 cu->language = pretend_language;
23511 cu->language_defn = language_def (cu->language);
23512 }
23513
23514 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23515 }
23516
23517 /* Increase the age counter on each cached compilation unit, and free
23518 any that are too old. */
23519
23520 static void
23521 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23522 {
23523 struct dwarf2_per_cu_data *per_cu, **last_chain;
23524
23525 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23526 per_cu = dwarf2_per_objfile->read_in_chain;
23527 while (per_cu != NULL)
23528 {
23529 per_cu->cu->last_used ++;
23530 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23531 dwarf2_mark (per_cu->cu);
23532 per_cu = per_cu->cu->read_in_chain;
23533 }
23534
23535 per_cu = dwarf2_per_objfile->read_in_chain;
23536 last_chain = &dwarf2_per_objfile->read_in_chain;
23537 while (per_cu != NULL)
23538 {
23539 struct dwarf2_per_cu_data *next_cu;
23540
23541 next_cu = per_cu->cu->read_in_chain;
23542
23543 if (!per_cu->cu->mark)
23544 {
23545 delete per_cu->cu;
23546 *last_chain = next_cu;
23547 }
23548 else
23549 last_chain = &per_cu->cu->read_in_chain;
23550
23551 per_cu = next_cu;
23552 }
23553 }
23554
23555 /* Remove a single compilation unit from the cache. */
23556
23557 static void
23558 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23559 {
23560 struct dwarf2_per_cu_data *per_cu, **last_chain;
23561 struct dwarf2_per_objfile *dwarf2_per_objfile
23562 = target_per_cu->dwarf2_per_objfile;
23563
23564 per_cu = dwarf2_per_objfile->read_in_chain;
23565 last_chain = &dwarf2_per_objfile->read_in_chain;
23566 while (per_cu != NULL)
23567 {
23568 struct dwarf2_per_cu_data *next_cu;
23569
23570 next_cu = per_cu->cu->read_in_chain;
23571
23572 if (per_cu == target_per_cu)
23573 {
23574 delete per_cu->cu;
23575 per_cu->cu = NULL;
23576 *last_chain = next_cu;
23577 break;
23578 }
23579 else
23580 last_chain = &per_cu->cu->read_in_chain;
23581
23582 per_cu = next_cu;
23583 }
23584 }
23585
23586 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23587 We store these in a hash table separate from the DIEs, and preserve them
23588 when the DIEs are flushed out of cache.
23589
23590 The CU "per_cu" pointer is needed because offset alone is not enough to
23591 uniquely identify the type. A file may have multiple .debug_types sections,
23592 or the type may come from a DWO file. Furthermore, while it's more logical
23593 to use per_cu->section+offset, with Fission the section with the data is in
23594 the DWO file but we don't know that section at the point we need it.
23595 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23596 because we can enter the lookup routine, get_die_type_at_offset, from
23597 outside this file, and thus won't necessarily have PER_CU->cu.
23598 Fortunately, PER_CU is stable for the life of the objfile. */
23599
23600 struct dwarf2_per_cu_offset_and_type
23601 {
23602 const struct dwarf2_per_cu_data *per_cu;
23603 sect_offset sect_off;
23604 struct type *type;
23605 };
23606
23607 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23608
23609 static hashval_t
23610 per_cu_offset_and_type_hash (const void *item)
23611 {
23612 const struct dwarf2_per_cu_offset_and_type *ofs
23613 = (const struct dwarf2_per_cu_offset_and_type *) item;
23614
23615 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23616 }
23617
23618 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23619
23620 static int
23621 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23622 {
23623 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23624 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23625 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23626 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23627
23628 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23629 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23630 }
23631
23632 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23633 table if necessary. For convenience, return TYPE.
23634
23635 The DIEs reading must have careful ordering to:
23636 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23637 reading current DIE.
23638 * Not trying to dereference contents of still incompletely read in types
23639 while reading in other DIEs.
23640 * Enable referencing still incompletely read in types just by a pointer to
23641 the type without accessing its fields.
23642
23643 Therefore caller should follow these rules:
23644 * Try to fetch any prerequisite types we may need to build this DIE type
23645 before building the type and calling set_die_type.
23646 * After building type call set_die_type for current DIE as soon as
23647 possible before fetching more types to complete the current type.
23648 * Make the type as complete as possible before fetching more types. */
23649
23650 static struct type *
23651 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23652 {
23653 struct dwarf2_per_objfile *dwarf2_per_objfile
23654 = cu->per_cu->dwarf2_per_objfile;
23655 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23656 struct objfile *objfile = dwarf2_per_objfile->objfile;
23657 struct attribute *attr;
23658 struct dynamic_prop prop;
23659
23660 /* For Ada types, make sure that the gnat-specific data is always
23661 initialized (if not already set). There are a few types where
23662 we should not be doing so, because the type-specific area is
23663 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23664 where the type-specific area is used to store the floatformat).
23665 But this is not a problem, because the gnat-specific information
23666 is actually not needed for these types. */
23667 if (need_gnat_info (cu)
23668 && type->code () != TYPE_CODE_FUNC
23669 && type->code () != TYPE_CODE_FLT
23670 && type->code () != TYPE_CODE_METHODPTR
23671 && type->code () != TYPE_CODE_MEMBERPTR
23672 && type->code () != TYPE_CODE_METHOD
23673 && !HAVE_GNAT_AUX_INFO (type))
23674 INIT_GNAT_SPECIFIC (type);
23675
23676 /* Read DW_AT_allocated and set in type. */
23677 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23678 if (attr != NULL && attr->form_is_block ())
23679 {
23680 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23681 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23682 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
23683 }
23684 else if (attr != NULL)
23685 {
23686 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23687 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23688 sect_offset_str (die->sect_off));
23689 }
23690
23691 /* Read DW_AT_associated and set in type. */
23692 attr = dwarf2_attr (die, DW_AT_associated, cu);
23693 if (attr != NULL && attr->form_is_block ())
23694 {
23695 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23696 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23697 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
23698 }
23699 else if (attr != NULL)
23700 {
23701 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23702 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23703 sect_offset_str (die->sect_off));
23704 }
23705
23706 /* Read DW_AT_data_location and set in type. */
23707 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23708 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23709 cu->per_cu->addr_type ()))
23710 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
23711
23712 if (dwarf2_per_objfile->die_type_hash == NULL)
23713 dwarf2_per_objfile->die_type_hash
23714 = htab_up (htab_create_alloc (127,
23715 per_cu_offset_and_type_hash,
23716 per_cu_offset_and_type_eq,
23717 NULL, xcalloc, xfree));
23718
23719 ofs.per_cu = cu->per_cu;
23720 ofs.sect_off = die->sect_off;
23721 ofs.type = type;
23722 slot = (struct dwarf2_per_cu_offset_and_type **)
23723 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23724 if (*slot)
23725 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23726 sect_offset_str (die->sect_off));
23727 *slot = XOBNEW (&objfile->objfile_obstack,
23728 struct dwarf2_per_cu_offset_and_type);
23729 **slot = ofs;
23730 return type;
23731 }
23732
23733 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23734 or return NULL if the die does not have a saved type. */
23735
23736 static struct type *
23737 get_die_type_at_offset (sect_offset sect_off,
23738 struct dwarf2_per_cu_data *per_cu)
23739 {
23740 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23741 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23742
23743 if (dwarf2_per_objfile->die_type_hash == NULL)
23744 return NULL;
23745
23746 ofs.per_cu = per_cu;
23747 ofs.sect_off = sect_off;
23748 slot = ((struct dwarf2_per_cu_offset_and_type *)
23749 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23750 if (slot)
23751 return slot->type;
23752 else
23753 return NULL;
23754 }
23755
23756 /* Look up the type for DIE in CU in die_type_hash,
23757 or return NULL if DIE does not have a saved type. */
23758
23759 static struct type *
23760 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23761 {
23762 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23763 }
23764
23765 /* Add a dependence relationship from CU to REF_PER_CU. */
23766
23767 static void
23768 dwarf2_add_dependence (struct dwarf2_cu *cu,
23769 struct dwarf2_per_cu_data *ref_per_cu)
23770 {
23771 void **slot;
23772
23773 if (cu->dependencies == NULL)
23774 cu->dependencies
23775 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23776 NULL, &cu->comp_unit_obstack,
23777 hashtab_obstack_allocate,
23778 dummy_obstack_deallocate);
23779
23780 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23781 if (*slot == NULL)
23782 *slot = ref_per_cu;
23783 }
23784
23785 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23786 Set the mark field in every compilation unit in the
23787 cache that we must keep because we are keeping CU. */
23788
23789 static int
23790 dwarf2_mark_helper (void **slot, void *data)
23791 {
23792 struct dwarf2_per_cu_data *per_cu;
23793
23794 per_cu = (struct dwarf2_per_cu_data *) *slot;
23795
23796 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23797 reading of the chain. As such dependencies remain valid it is not much
23798 useful to track and undo them during QUIT cleanups. */
23799 if (per_cu->cu == NULL)
23800 return 1;
23801
23802 if (per_cu->cu->mark)
23803 return 1;
23804 per_cu->cu->mark = true;
23805
23806 if (per_cu->cu->dependencies != NULL)
23807 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23808
23809 return 1;
23810 }
23811
23812 /* Set the mark field in CU and in every other compilation unit in the
23813 cache that we must keep because we are keeping CU. */
23814
23815 static void
23816 dwarf2_mark (struct dwarf2_cu *cu)
23817 {
23818 if (cu->mark)
23819 return;
23820 cu->mark = true;
23821 if (cu->dependencies != NULL)
23822 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23823 }
23824
23825 static void
23826 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23827 {
23828 while (per_cu)
23829 {
23830 per_cu->cu->mark = false;
23831 per_cu = per_cu->cu->read_in_chain;
23832 }
23833 }
23834
23835 /* Trivial hash function for partial_die_info: the hash value of a DIE
23836 is its offset in .debug_info for this objfile. */
23837
23838 static hashval_t
23839 partial_die_hash (const void *item)
23840 {
23841 const struct partial_die_info *part_die
23842 = (const struct partial_die_info *) item;
23843
23844 return to_underlying (part_die->sect_off);
23845 }
23846
23847 /* Trivial comparison function for partial_die_info structures: two DIEs
23848 are equal if they have the same offset. */
23849
23850 static int
23851 partial_die_eq (const void *item_lhs, const void *item_rhs)
23852 {
23853 const struct partial_die_info *part_die_lhs
23854 = (const struct partial_die_info *) item_lhs;
23855 const struct partial_die_info *part_die_rhs
23856 = (const struct partial_die_info *) item_rhs;
23857
23858 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23859 }
23860
23861 struct cmd_list_element *set_dwarf_cmdlist;
23862 struct cmd_list_element *show_dwarf_cmdlist;
23863
23864 static void
23865 show_check_physname (struct ui_file *file, int from_tty,
23866 struct cmd_list_element *c, const char *value)
23867 {
23868 fprintf_filtered (file,
23869 _("Whether to check \"physname\" is %s.\n"),
23870 value);
23871 }
23872
23873 void _initialize_dwarf2_read ();
23874 void
23875 _initialize_dwarf2_read ()
23876 {
23877 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23878 Set DWARF specific variables.\n\
23879 Configure DWARF variables such as the cache size."),
23880 &set_dwarf_cmdlist, "maintenance set dwarf ",
23881 0/*allow-unknown*/, &maintenance_set_cmdlist);
23882
23883 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23884 Show DWARF specific variables.\n\
23885 Show DWARF variables such as the cache size."),
23886 &show_dwarf_cmdlist, "maintenance show dwarf ",
23887 0/*allow-unknown*/, &maintenance_show_cmdlist);
23888
23889 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23890 &dwarf_max_cache_age, _("\
23891 Set the upper bound on the age of cached DWARF compilation units."), _("\
23892 Show the upper bound on the age of cached DWARF compilation units."), _("\
23893 A higher limit means that cached compilation units will be stored\n\
23894 in memory longer, and more total memory will be used. Zero disables\n\
23895 caching, which can slow down startup."),
23896 NULL,
23897 show_dwarf_max_cache_age,
23898 &set_dwarf_cmdlist,
23899 &show_dwarf_cmdlist);
23900
23901 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23902 Set debugging of the DWARF reader."), _("\
23903 Show debugging of the DWARF reader."), _("\
23904 When enabled (non-zero), debugging messages are printed during DWARF\n\
23905 reading and symtab expansion. A value of 1 (one) provides basic\n\
23906 information. A value greater than 1 provides more verbose information."),
23907 NULL,
23908 NULL,
23909 &setdebuglist, &showdebuglist);
23910
23911 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23912 Set debugging of the DWARF DIE reader."), _("\
23913 Show debugging of the DWARF DIE reader."), _("\
23914 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23915 The value is the maximum depth to print."),
23916 NULL,
23917 NULL,
23918 &setdebuglist, &showdebuglist);
23919
23920 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23921 Set debugging of the dwarf line reader."), _("\
23922 Show debugging of the dwarf line reader."), _("\
23923 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23924 A value of 1 (one) provides basic information.\n\
23925 A value greater than 1 provides more verbose information."),
23926 NULL,
23927 NULL,
23928 &setdebuglist, &showdebuglist);
23929
23930 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23931 Set cross-checking of \"physname\" code against demangler."), _("\
23932 Show cross-checking of \"physname\" code against demangler."), _("\
23933 When enabled, GDB's internal \"physname\" code is checked against\n\
23934 the demangler."),
23935 NULL, show_check_physname,
23936 &setdebuglist, &showdebuglist);
23937
23938 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23939 no_class, &use_deprecated_index_sections, _("\
23940 Set whether to use deprecated gdb_index sections."), _("\
23941 Show whether to use deprecated gdb_index sections."), _("\
23942 When enabled, deprecated .gdb_index sections are used anyway.\n\
23943 Normally they are ignored either because of a missing feature or\n\
23944 performance issue.\n\
23945 Warning: This option must be enabled before gdb reads the file."),
23946 NULL,
23947 NULL,
23948 &setlist, &showlist);
23949
23950 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23951 &dwarf2_locexpr_funcs);
23952 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23953 &dwarf2_loclist_funcs);
23954
23955 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23956 &dwarf2_block_frame_base_locexpr_funcs);
23957 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23958 &dwarf2_block_frame_base_loclist_funcs);
23959
23960 #if GDB_SELF_TEST
23961 selftests::register_test ("dw2_expand_symtabs_matching",
23962 selftests::dw2_expand_symtabs_matching::run_test);
23963 selftests::register_test ("dwarf2_find_containing_comp_unit",
23964 selftests::find_containing_comp_unit::run_test);
23965 #endif
23966 }
This page took 0.495345 seconds and 5 git commands to generate.