Switch the license of all .c files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "elf/dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40
41 /* Call Frame Information (CFI). */
42
43 /* Common Information Entry (CIE). */
44
45 struct dwarf2_cie
46 {
47 /* Offset into the .debug_frame section where this CIE was found.
48 Used to identify this CIE. */
49 ULONGEST cie_pointer;
50
51 /* Constant that is factored out of all advance location
52 instructions. */
53 ULONGEST code_alignment_factor;
54
55 /* Constants that is factored out of all offset instructions. */
56 LONGEST data_alignment_factor;
57
58 /* Return address column. */
59 ULONGEST return_address_register;
60
61 /* Instruction sequence to initialize a register set. */
62 gdb_byte *initial_instructions;
63 gdb_byte *end;
64
65 /* Saved augmentation, in case it's needed later. */
66 char *augmentation;
67
68 /* Encoding of addresses. */
69 gdb_byte encoding;
70
71 /* True if a 'z' augmentation existed. */
72 unsigned char saw_z_augmentation;
73
74 /* True if an 'S' augmentation existed. */
75 unsigned char signal_frame;
76
77 /* The version recorded in the CIE. */
78 unsigned char version;
79
80 struct dwarf2_cie *next;
81 };
82
83 /* Frame Description Entry (FDE). */
84
85 struct dwarf2_fde
86 {
87 /* CIE for this FDE. */
88 struct dwarf2_cie *cie;
89
90 /* First location associated with this FDE. */
91 CORE_ADDR initial_location;
92
93 /* Number of bytes of program instructions described by this FDE. */
94 CORE_ADDR address_range;
95
96 /* Instruction sequence. */
97 gdb_byte *instructions;
98 gdb_byte *end;
99
100 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
101 section. */
102 unsigned char eh_frame_p;
103
104 struct dwarf2_fde *next;
105 };
106
107 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
108
109 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
110 int eh_frame_p);
111 \f
112
113 /* Structure describing a frame state. */
114
115 struct dwarf2_frame_state
116 {
117 /* Each register save state can be described in terms of a CFA slot,
118 another register, or a location expression. */
119 struct dwarf2_frame_state_reg_info
120 {
121 struct dwarf2_frame_state_reg *reg;
122 int num_regs;
123
124 /* Used to implement DW_CFA_remember_state. */
125 struct dwarf2_frame_state_reg_info *prev;
126 } regs;
127
128 LONGEST cfa_offset;
129 ULONGEST cfa_reg;
130 gdb_byte *cfa_exp;
131 enum {
132 CFA_UNSET,
133 CFA_REG_OFFSET,
134 CFA_EXP
135 } cfa_how;
136
137 /* The PC described by the current frame state. */
138 CORE_ADDR pc;
139
140 /* Initial register set from the CIE.
141 Used to implement DW_CFA_restore. */
142 struct dwarf2_frame_state_reg_info initial;
143
144 /* The information we care about from the CIE. */
145 LONGEST data_align;
146 ULONGEST code_align;
147 ULONGEST retaddr_column;
148
149 /* Flags for known producer quirks. */
150
151 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
152 and DW_CFA_def_cfa_offset takes a factored offset. */
153 int armcc_cfa_offsets_sf;
154
155 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
156 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
157 int armcc_cfa_offsets_reversed;
158 };
159
160 /* Store the length the expression for the CFA in the `cfa_reg' field,
161 which is unused in that case. */
162 #define cfa_exp_len cfa_reg
163
164 /* Assert that the register set RS is large enough to store gdbarch_num_regs
165 columns. If necessary, enlarge the register set. */
166
167 static void
168 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
169 int num_regs)
170 {
171 size_t size = sizeof (struct dwarf2_frame_state_reg);
172
173 if (num_regs <= rs->num_regs)
174 return;
175
176 rs->reg = (struct dwarf2_frame_state_reg *)
177 xrealloc (rs->reg, num_regs * size);
178
179 /* Initialize newly allocated registers. */
180 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
181 rs->num_regs = num_regs;
182 }
183
184 /* Copy the register columns in register set RS into newly allocated
185 memory and return a pointer to this newly created copy. */
186
187 static struct dwarf2_frame_state_reg *
188 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
189 {
190 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
191 struct dwarf2_frame_state_reg *reg;
192
193 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
194 memcpy (reg, rs->reg, size);
195
196 return reg;
197 }
198
199 /* Release the memory allocated to register set RS. */
200
201 static void
202 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
203 {
204 if (rs)
205 {
206 dwarf2_frame_state_free_regs (rs->prev);
207
208 xfree (rs->reg);
209 xfree (rs);
210 }
211 }
212
213 /* Release the memory allocated to the frame state FS. */
214
215 static void
216 dwarf2_frame_state_free (void *p)
217 {
218 struct dwarf2_frame_state *fs = p;
219
220 dwarf2_frame_state_free_regs (fs->initial.prev);
221 dwarf2_frame_state_free_regs (fs->regs.prev);
222 xfree (fs->initial.reg);
223 xfree (fs->regs.reg);
224 xfree (fs);
225 }
226 \f
227
228 /* Helper functions for execute_stack_op. */
229
230 static CORE_ADDR
231 read_reg (void *baton, int reg)
232 {
233 struct frame_info *next_frame = (struct frame_info *) baton;
234 struct gdbarch *gdbarch = get_frame_arch (next_frame);
235 int regnum;
236 gdb_byte *buf;
237
238 regnum = gdbarch_dwarf2_reg_to_regnum (current_gdbarch, reg);
239
240 buf = alloca (register_size (gdbarch, regnum));
241 frame_unwind_register (next_frame, regnum, buf);
242
243 /* Convert the register to an integer. This returns a LONGEST
244 rather than a CORE_ADDR, but unpack_pointer does the same thing
245 under the covers, and this makes more sense for non-pointer
246 registers. Maybe read_reg and the associated interfaces should
247 deal with "struct value" instead of CORE_ADDR. */
248 return unpack_long (register_type (gdbarch, regnum), buf);
249 }
250
251 static void
252 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
253 {
254 read_memory (addr, buf, len);
255 }
256
257 static void
258 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
259 {
260 internal_error (__FILE__, __LINE__,
261 _("Support for DW_OP_fbreg is unimplemented"));
262 }
263
264 static CORE_ADDR
265 no_get_tls_address (void *baton, CORE_ADDR offset)
266 {
267 internal_error (__FILE__, __LINE__,
268 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
269 }
270
271 static CORE_ADDR
272 execute_stack_op (gdb_byte *exp, ULONGEST len,
273 struct frame_info *next_frame, CORE_ADDR initial)
274 {
275 struct dwarf_expr_context *ctx;
276 CORE_ADDR result;
277
278 ctx = new_dwarf_expr_context ();
279 ctx->baton = next_frame;
280 ctx->read_reg = read_reg;
281 ctx->read_mem = read_mem;
282 ctx->get_frame_base = no_get_frame_base;
283 ctx->get_tls_address = no_get_tls_address;
284
285 dwarf_expr_push (ctx, initial);
286 dwarf_expr_eval (ctx, exp, len);
287 result = dwarf_expr_fetch (ctx, 0);
288
289 if (ctx->in_reg)
290 result = read_reg (next_frame, result);
291
292 free_dwarf_expr_context (ctx);
293
294 return result;
295 }
296 \f
297
298 static void
299 execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
300 struct frame_info *next_frame,
301 struct dwarf2_frame_state *fs, int eh_frame_p)
302 {
303 CORE_ADDR pc = frame_pc_unwind (next_frame);
304 int bytes_read;
305 struct gdbarch *gdbarch = get_frame_arch (next_frame);
306
307 while (insn_ptr < insn_end && fs->pc <= pc)
308 {
309 gdb_byte insn = *insn_ptr++;
310 ULONGEST utmp, reg;
311 LONGEST offset;
312
313 if ((insn & 0xc0) == DW_CFA_advance_loc)
314 fs->pc += (insn & 0x3f) * fs->code_align;
315 else if ((insn & 0xc0) == DW_CFA_offset)
316 {
317 reg = insn & 0x3f;
318 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
319 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
320 offset = utmp * fs->data_align;
321 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
322 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
323 fs->regs.reg[reg].loc.offset = offset;
324 }
325 else if ((insn & 0xc0) == DW_CFA_restore)
326 {
327 gdb_assert (fs->initial.reg);
328 reg = insn & 0x3f;
329 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
330 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
331 if (reg < fs->initial.num_regs)
332 fs->regs.reg[reg] = fs->initial.reg[reg];
333 else
334 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335
336 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
337 complaint (&symfile_complaints, _("\
338 incomplete CFI data; DW_CFA_restore unspecified\n\
339 register %s (#%d) at 0x%s"),
340 gdbarch_register_name
341 (current_gdbarch, gdbarch_dwarf2_reg_to_regnum
342 (current_gdbarch, reg)),
343 gdbarch_dwarf2_reg_to_regnum (current_gdbarch, reg),
344 paddr (fs->pc));
345 }
346 else
347 {
348 switch (insn)
349 {
350 case DW_CFA_set_loc:
351 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
352 insn_ptr += bytes_read;
353 break;
354
355 case DW_CFA_advance_loc1:
356 utmp = extract_unsigned_integer (insn_ptr, 1);
357 fs->pc += utmp * fs->code_align;
358 insn_ptr++;
359 break;
360 case DW_CFA_advance_loc2:
361 utmp = extract_unsigned_integer (insn_ptr, 2);
362 fs->pc += utmp * fs->code_align;
363 insn_ptr += 2;
364 break;
365 case DW_CFA_advance_loc4:
366 utmp = extract_unsigned_integer (insn_ptr, 4);
367 fs->pc += utmp * fs->code_align;
368 insn_ptr += 4;
369 break;
370
371 case DW_CFA_offset_extended:
372 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
373 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
374 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
375 offset = utmp * fs->data_align;
376 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
377 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
378 fs->regs.reg[reg].loc.offset = offset;
379 break;
380
381 case DW_CFA_restore_extended:
382 gdb_assert (fs->initial.reg);
383 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
384 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
385 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
386 fs->regs.reg[reg] = fs->initial.reg[reg];
387 break;
388
389 case DW_CFA_undefined:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
391 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
392 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
393 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
394 break;
395
396 case DW_CFA_same_value:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
398 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
399 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
400 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
401 break;
402
403 case DW_CFA_register:
404 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
405 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
406 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
407 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
408 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
409 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
410 fs->regs.reg[reg].loc.reg = utmp;
411 break;
412
413 case DW_CFA_remember_state:
414 {
415 struct dwarf2_frame_state_reg_info *new_rs;
416
417 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
418 *new_rs = fs->regs;
419 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
420 fs->regs.prev = new_rs;
421 }
422 break;
423
424 case DW_CFA_restore_state:
425 {
426 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
427
428 if (old_rs == NULL)
429 {
430 complaint (&symfile_complaints, _("\
431 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
432 }
433 else
434 {
435 xfree (fs->regs.reg);
436 fs->regs = *old_rs;
437 xfree (old_rs);
438 }
439 }
440 break;
441
442 case DW_CFA_def_cfa:
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
444 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
445
446 if (fs->armcc_cfa_offsets_sf)
447 utmp *= fs->data_align;
448
449 fs->cfa_offset = utmp;
450 fs->cfa_how = CFA_REG_OFFSET;
451 break;
452
453 case DW_CFA_def_cfa_register:
454 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
455 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
456 eh_frame_p);
457 fs->cfa_how = CFA_REG_OFFSET;
458 break;
459
460 case DW_CFA_def_cfa_offset:
461 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
462
463 if (fs->armcc_cfa_offsets_sf)
464 utmp *= fs->data_align;
465
466 fs->cfa_offset = utmp;
467 /* cfa_how deliberately not set. */
468 break;
469
470 case DW_CFA_nop:
471 break;
472
473 case DW_CFA_def_cfa_expression:
474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
475 fs->cfa_exp = insn_ptr;
476 fs->cfa_how = CFA_EXP;
477 insn_ptr += fs->cfa_exp_len;
478 break;
479
480 case DW_CFA_expression:
481 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
482 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
484 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
485 fs->regs.reg[reg].loc.exp = insn_ptr;
486 fs->regs.reg[reg].exp_len = utmp;
487 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
488 insn_ptr += utmp;
489 break;
490
491 case DW_CFA_offset_extended_sf:
492 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
495 offset *= fs->data_align;
496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
498 fs->regs.reg[reg].loc.offset = offset;
499 break;
500
501 case DW_CFA_val_offset:
502 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
505 offset = utmp * fs->data_align;
506 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
507 fs->regs.reg[reg].loc.offset = offset;
508 break;
509
510 case DW_CFA_val_offset_sf:
511 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
513 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
514 offset *= fs->data_align;
515 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
516 fs->regs.reg[reg].loc.offset = offset;
517 break;
518
519 case DW_CFA_val_expression:
520 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
521 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
522 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
523 fs->regs.reg[reg].loc.exp = insn_ptr;
524 fs->regs.reg[reg].exp_len = utmp;
525 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
526 insn_ptr += utmp;
527 break;
528
529 case DW_CFA_def_cfa_sf:
530 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
531 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
532 eh_frame_p);
533 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
534 fs->cfa_offset = offset * fs->data_align;
535 fs->cfa_how = CFA_REG_OFFSET;
536 break;
537
538 case DW_CFA_def_cfa_offset_sf:
539 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
540 fs->cfa_offset = offset * fs->data_align;
541 /* cfa_how deliberately not set. */
542 break;
543
544 case DW_CFA_GNU_window_save:
545 /* This is SPARC-specific code, and contains hard-coded
546 constants for the register numbering scheme used by
547 GCC. Rather than having a architecture-specific
548 operation that's only ever used by a single
549 architecture, we provide the implementation here.
550 Incidentally that's what GCC does too in its
551 unwinder. */
552 {
553 struct gdbarch *gdbarch = get_frame_arch (next_frame);
554 int size = register_size(gdbarch, 0);
555 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
556 for (reg = 8; reg < 16; reg++)
557 {
558 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
559 fs->regs.reg[reg].loc.reg = reg + 16;
560 }
561 for (reg = 16; reg < 32; reg++)
562 {
563 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
564 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
565 }
566 }
567 break;
568
569 case DW_CFA_GNU_args_size:
570 /* Ignored. */
571 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
572 break;
573
574 case DW_CFA_GNU_negative_offset_extended:
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
576 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
577 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
578 offset *= fs->data_align;
579 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
580 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
581 fs->regs.reg[reg].loc.offset = -offset;
582 break;
583
584 default:
585 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
586 }
587 }
588 }
589
590 /* Don't allow remember/restore between CIE and FDE programs. */
591 dwarf2_frame_state_free_regs (fs->regs.prev);
592 fs->regs.prev = NULL;
593 }
594 \f
595
596 /* Architecture-specific operations. */
597
598 /* Per-architecture data key. */
599 static struct gdbarch_data *dwarf2_frame_data;
600
601 struct dwarf2_frame_ops
602 {
603 /* Pre-initialize the register state REG for register REGNUM. */
604 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
605 struct frame_info *);
606
607 /* Check whether the frame preceding NEXT_FRAME will be a signal
608 trampoline. */
609 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
610
611 /* Convert .eh_frame register number to DWARF register number, or
612 adjust .debug_frame register number. */
613 int (*adjust_regnum) (struct gdbarch *, int, int);
614 };
615
616 /* Default architecture-specific register state initialization
617 function. */
618
619 static void
620 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
621 struct dwarf2_frame_state_reg *reg,
622 struct frame_info *next_frame)
623 {
624 /* If we have a register that acts as a program counter, mark it as
625 a destination for the return address. If we have a register that
626 serves as the stack pointer, arrange for it to be filled with the
627 call frame address (CFA). The other registers are marked as
628 unspecified.
629
630 We copy the return address to the program counter, since many
631 parts in GDB assume that it is possible to get the return address
632 by unwinding the program counter register. However, on ISA's
633 with a dedicated return address register, the CFI usually only
634 contains information to unwind that return address register.
635
636 The reason we're treating the stack pointer special here is
637 because in many cases GCC doesn't emit CFI for the stack pointer
638 and implicitly assumes that it is equal to the CFA. This makes
639 some sense since the DWARF specification (version 3, draft 8,
640 p. 102) says that:
641
642 "Typically, the CFA is defined to be the value of the stack
643 pointer at the call site in the previous frame (which may be
644 different from its value on entry to the current frame)."
645
646 However, this isn't true for all platforms supported by GCC
647 (e.g. IBM S/390 and zSeries). Those architectures should provide
648 their own architecture-specific initialization function. */
649
650 if (regnum == gdbarch_pc_regnum (current_gdbarch))
651 reg->how = DWARF2_FRAME_REG_RA;
652 else if (regnum == gdbarch_sp_regnum (current_gdbarch))
653 reg->how = DWARF2_FRAME_REG_CFA;
654 }
655
656 /* Return a default for the architecture-specific operations. */
657
658 static void *
659 dwarf2_frame_init (struct obstack *obstack)
660 {
661 struct dwarf2_frame_ops *ops;
662
663 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
664 ops->init_reg = dwarf2_frame_default_init_reg;
665 return ops;
666 }
667
668 /* Set the architecture-specific register state initialization
669 function for GDBARCH to INIT_REG. */
670
671 void
672 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
673 void (*init_reg) (struct gdbarch *, int,
674 struct dwarf2_frame_state_reg *,
675 struct frame_info *))
676 {
677 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
678
679 ops->init_reg = init_reg;
680 }
681
682 /* Pre-initialize the register state REG for register REGNUM. */
683
684 static void
685 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
686 struct dwarf2_frame_state_reg *reg,
687 struct frame_info *next_frame)
688 {
689 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
690
691 ops->init_reg (gdbarch, regnum, reg, next_frame);
692 }
693
694 /* Set the architecture-specific signal trampoline recognition
695 function for GDBARCH to SIGNAL_FRAME_P. */
696
697 void
698 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
699 int (*signal_frame_p) (struct gdbarch *,
700 struct frame_info *))
701 {
702 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
703
704 ops->signal_frame_p = signal_frame_p;
705 }
706
707 /* Query the architecture-specific signal frame recognizer for
708 NEXT_FRAME. */
709
710 static int
711 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
712 struct frame_info *next_frame)
713 {
714 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
715
716 if (ops->signal_frame_p == NULL)
717 return 0;
718 return ops->signal_frame_p (gdbarch, next_frame);
719 }
720
721 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
722 register numbers. */
723
724 void
725 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
726 int (*adjust_regnum) (struct gdbarch *,
727 int, int))
728 {
729 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
730
731 ops->adjust_regnum = adjust_regnum;
732 }
733
734 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
735 register. */
736
737 static int
738 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
739 {
740 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
741
742 if (ops->adjust_regnum == NULL)
743 return regnum;
744 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
745 }
746
747 static void
748 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
749 struct dwarf2_fde *fde)
750 {
751 static const char *arm_idents[] = {
752 "ARM C Compiler, ADS",
753 "Thumb C Compiler, ADS",
754 "ARM C++ Compiler, ADS",
755 "Thumb C++ Compiler, ADS",
756 "ARM/Thumb C/C++ Compiler, RVCT"
757 };
758 int i;
759
760 struct symtab *s;
761
762 s = find_pc_symtab (fs->pc);
763 if (s == NULL || s->producer == NULL)
764 return;
765
766 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
767 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
768 {
769 if (fde->cie->version == 1)
770 fs->armcc_cfa_offsets_sf = 1;
771
772 if (fde->cie->version == 1)
773 fs->armcc_cfa_offsets_reversed = 1;
774
775 /* The reversed offset problem is present in some compilers
776 using DWARF3, but it was eventually fixed. Check the ARM
777 defined augmentations, which are in the format "armcc" followed
778 by a list of one-character options. The "+" option means
779 this problem is fixed (no quirk needed). If the armcc
780 augmentation is missing, the quirk is needed. */
781 if (fde->cie->version == 3
782 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
783 || strchr (fde->cie->augmentation + 5, '+') == NULL))
784 fs->armcc_cfa_offsets_reversed = 1;
785
786 return;
787 }
788 }
789 \f
790
791 struct dwarf2_frame_cache
792 {
793 /* DWARF Call Frame Address. */
794 CORE_ADDR cfa;
795
796 /* Set if the return address column was marked as undefined. */
797 int undefined_retaddr;
798
799 /* Saved registers, indexed by GDB register number, not by DWARF
800 register number. */
801 struct dwarf2_frame_state_reg *reg;
802
803 /* Return address register. */
804 struct dwarf2_frame_state_reg retaddr_reg;
805 };
806
807 static struct dwarf2_frame_cache *
808 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
809 {
810 struct cleanup *old_chain;
811 struct gdbarch *gdbarch = get_frame_arch (next_frame);
812 const int num_regs = gdbarch_num_regs (current_gdbarch)
813 + gdbarch_num_pseudo_regs (current_gdbarch);
814 struct dwarf2_frame_cache *cache;
815 struct dwarf2_frame_state *fs;
816 struct dwarf2_fde *fde;
817
818 if (*this_cache)
819 return *this_cache;
820
821 /* Allocate a new cache. */
822 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
823 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
824
825 /* Allocate and initialize the frame state. */
826 fs = XMALLOC (struct dwarf2_frame_state);
827 memset (fs, 0, sizeof (struct dwarf2_frame_state));
828 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
829
830 /* Unwind the PC.
831
832 Note that if NEXT_FRAME is never supposed to return (i.e. a call
833 to abort), the compiler might optimize away the instruction at
834 NEXT_FRAME's return address. As a result the return address will
835 point at some random instruction, and the CFI for that
836 instruction is probably worthless to us. GCC's unwinder solves
837 this problem by substracting 1 from the return address to get an
838 address in the middle of a presumed call instruction (or the
839 instruction in the associated delay slot). This should only be
840 done for "normal" frames and not for resume-type frames (signal
841 handlers, sentinel frames, dummy frames). The function
842 frame_unwind_address_in_block does just this. It's not clear how
843 reliable the method is though; there is the potential for the
844 register state pre-call being different to that on return. */
845 fs->pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
846
847 /* Find the correct FDE. */
848 fde = dwarf2_frame_find_fde (&fs->pc);
849 gdb_assert (fde != NULL);
850
851 /* Extract any interesting information from the CIE. */
852 fs->data_align = fde->cie->data_alignment_factor;
853 fs->code_align = fde->cie->code_alignment_factor;
854 fs->retaddr_column = fde->cie->return_address_register;
855
856 /* Check for "quirks" - known bugs in producers. */
857 dwarf2_frame_find_quirks (fs, fde);
858
859 /* First decode all the insns in the CIE. */
860 execute_cfa_program (fde->cie->initial_instructions,
861 fde->cie->end, next_frame, fs, fde->eh_frame_p);
862
863 /* Save the initialized register set. */
864 fs->initial = fs->regs;
865 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
866
867 /* Then decode the insns in the FDE up to our target PC. */
868 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
869 fde->eh_frame_p);
870
871 /* Caclulate the CFA. */
872 switch (fs->cfa_how)
873 {
874 case CFA_REG_OFFSET:
875 cache->cfa = read_reg (next_frame, fs->cfa_reg);
876 if (fs->armcc_cfa_offsets_reversed)
877 cache->cfa -= fs->cfa_offset;
878 else
879 cache->cfa += fs->cfa_offset;
880 break;
881
882 case CFA_EXP:
883 cache->cfa =
884 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
885 break;
886
887 default:
888 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
889 }
890
891 /* Initialize the register state. */
892 {
893 int regnum;
894
895 for (regnum = 0; regnum < num_regs; regnum++)
896 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
897 }
898
899 /* Go through the DWARF2 CFI generated table and save its register
900 location information in the cache. Note that we don't skip the
901 return address column; it's perfectly all right for it to
902 correspond to a real register. If it doesn't correspond to a
903 real register, or if we shouldn't treat it as such,
904 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
905 the range [0, gdbarch_num_regs). */
906 {
907 int column; /* CFI speak for "register number". */
908
909 for (column = 0; column < fs->regs.num_regs; column++)
910 {
911 /* Use the GDB register number as the destination index. */
912 int regnum = gdbarch_dwarf2_reg_to_regnum (current_gdbarch, column);
913
914 /* If there's no corresponding GDB register, ignore it. */
915 if (regnum < 0 || regnum >= num_regs)
916 continue;
917
918 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
919 of all debug info registers. If it doesn't, complain (but
920 not too loudly). It turns out that GCC assumes that an
921 unspecified register implies "same value" when CFI (draft
922 7) specifies nothing at all. Such a register could equally
923 be interpreted as "undefined". Also note that this check
924 isn't sufficient; it only checks that all registers in the
925 range [0 .. max column] are specified, and won't detect
926 problems when a debug info register falls outside of the
927 table. We need a way of iterating through all the valid
928 DWARF2 register numbers. */
929 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
930 {
931 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
932 complaint (&symfile_complaints, _("\
933 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
934 gdbarch_register_name (gdbarch, regnum),
935 paddr_nz (fs->pc));
936 }
937 else
938 cache->reg[regnum] = fs->regs.reg[column];
939 }
940 }
941
942 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
943 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
944 {
945 int regnum;
946
947 for (regnum = 0; regnum < num_regs; regnum++)
948 {
949 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
950 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
951 {
952 struct dwarf2_frame_state_reg *retaddr_reg =
953 &fs->regs.reg[fs->retaddr_column];
954
955 /* It seems rather bizarre to specify an "empty" column as
956 the return adress column. However, this is exactly
957 what GCC does on some targets. It turns out that GCC
958 assumes that the return address can be found in the
959 register corresponding to the return address column.
960 Incidentally, that's how we should treat a return
961 address column specifying "same value" too. */
962 if (fs->retaddr_column < fs->regs.num_regs
963 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
964 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
965 {
966 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
967 cache->reg[regnum] = *retaddr_reg;
968 else
969 cache->retaddr_reg = *retaddr_reg;
970 }
971 else
972 {
973 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
974 {
975 cache->reg[regnum].loc.reg = fs->retaddr_column;
976 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
977 }
978 else
979 {
980 cache->retaddr_reg.loc.reg = fs->retaddr_column;
981 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
982 }
983 }
984 }
985 }
986 }
987
988 if (fs->retaddr_column < fs->regs.num_regs
989 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
990 cache->undefined_retaddr = 1;
991
992 do_cleanups (old_chain);
993
994 *this_cache = cache;
995 return cache;
996 }
997
998 static void
999 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
1000 struct frame_id *this_id)
1001 {
1002 struct dwarf2_frame_cache *cache =
1003 dwarf2_frame_cache (next_frame, this_cache);
1004
1005 if (cache->undefined_retaddr)
1006 return;
1007
1008 (*this_id) = frame_id_build (cache->cfa,
1009 frame_func_unwind (next_frame, NORMAL_FRAME));
1010 }
1011
1012 static void
1013 dwarf2_signal_frame_this_id (struct frame_info *next_frame, void **this_cache,
1014 struct frame_id *this_id)
1015 {
1016 struct dwarf2_frame_cache *cache =
1017 dwarf2_frame_cache (next_frame, this_cache);
1018
1019 if (cache->undefined_retaddr)
1020 return;
1021
1022 (*this_id) = frame_id_build (cache->cfa,
1023 frame_func_unwind (next_frame, SIGTRAMP_FRAME));
1024 }
1025
1026 static void
1027 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1028 int regnum, int *optimizedp,
1029 enum lval_type *lvalp, CORE_ADDR *addrp,
1030 int *realnump, gdb_byte *valuep)
1031 {
1032 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1033 struct dwarf2_frame_cache *cache =
1034 dwarf2_frame_cache (next_frame, this_cache);
1035
1036 switch (cache->reg[regnum].how)
1037 {
1038 case DWARF2_FRAME_REG_UNDEFINED:
1039 /* If CFI explicitly specified that the value isn't defined,
1040 mark it as optimized away; the value isn't available. */
1041 *optimizedp = 1;
1042 *lvalp = not_lval;
1043 *addrp = 0;
1044 *realnump = -1;
1045 if (valuep)
1046 {
1047 /* In some cases, for example %eflags on the i386, we have
1048 to provide a sane value, even though this register wasn't
1049 saved. Assume we can get it from NEXT_FRAME. */
1050 frame_unwind_register (next_frame, regnum, valuep);
1051 }
1052 break;
1053
1054 case DWARF2_FRAME_REG_SAVED_OFFSET:
1055 *optimizedp = 0;
1056 *lvalp = lval_memory;
1057 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
1058 *realnump = -1;
1059 if (valuep)
1060 {
1061 /* Read the value in from memory. */
1062 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1063 }
1064 break;
1065
1066 case DWARF2_FRAME_REG_SAVED_REG:
1067 *optimizedp = 0;
1068 *lvalp = lval_register;
1069 *addrp = 0;
1070 *realnump = gdbarch_dwarf2_reg_to_regnum
1071 (current_gdbarch, cache->reg[regnum].loc.reg);
1072 if (valuep)
1073 frame_unwind_register (next_frame, (*realnump), valuep);
1074 break;
1075
1076 case DWARF2_FRAME_REG_SAVED_EXP:
1077 *optimizedp = 0;
1078 *lvalp = lval_memory;
1079 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
1080 cache->reg[regnum].exp_len,
1081 next_frame, cache->cfa);
1082 *realnump = -1;
1083 if (valuep)
1084 {
1085 /* Read the value in from memory. */
1086 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1087 }
1088 break;
1089
1090 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1091 *optimizedp = 0;
1092 *lvalp = not_lval;
1093 *addrp = 0;
1094 *realnump = -1;
1095 if (valuep)
1096 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1097 cache->cfa + cache->reg[regnum].loc.offset);
1098 break;
1099
1100 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1101 *optimizedp = 0;
1102 *lvalp = not_lval;
1103 *addrp = 0;
1104 *realnump = -1;
1105 if (valuep)
1106 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1107 execute_stack_op (cache->reg[regnum].loc.exp,
1108 cache->reg[regnum].exp_len,
1109 next_frame, cache->cfa));
1110 break;
1111
1112 case DWARF2_FRAME_REG_UNSPECIFIED:
1113 /* GCC, in its infinite wisdom decided to not provide unwind
1114 information for registers that are "same value". Since
1115 DWARF2 (3 draft 7) doesn't define such behavior, said
1116 registers are actually undefined (which is different to CFI
1117 "undefined"). Code above issues a complaint about this.
1118 Here just fudge the books, assume GCC, and that the value is
1119 more inner on the stack. */
1120 *optimizedp = 0;
1121 *lvalp = lval_register;
1122 *addrp = 0;
1123 *realnump = regnum;
1124 if (valuep)
1125 frame_unwind_register (next_frame, (*realnump), valuep);
1126 break;
1127
1128 case DWARF2_FRAME_REG_SAME_VALUE:
1129 *optimizedp = 0;
1130 *lvalp = lval_register;
1131 *addrp = 0;
1132 *realnump = regnum;
1133 if (valuep)
1134 frame_unwind_register (next_frame, (*realnump), valuep);
1135 break;
1136
1137 case DWARF2_FRAME_REG_CFA:
1138 *optimizedp = 0;
1139 *lvalp = not_lval;
1140 *addrp = 0;
1141 *realnump = -1;
1142 if (valuep)
1143 pack_long (valuep, register_type (gdbarch, regnum), cache->cfa);
1144 break;
1145
1146 case DWARF2_FRAME_REG_CFA_OFFSET:
1147 *optimizedp = 0;
1148 *lvalp = not_lval;
1149 *addrp = 0;
1150 *realnump = -1;
1151 if (valuep)
1152 pack_long (valuep, register_type (gdbarch, regnum),
1153 cache->cfa + cache->reg[regnum].loc.offset);
1154 break;
1155
1156 case DWARF2_FRAME_REG_RA_OFFSET:
1157 *optimizedp = 0;
1158 *lvalp = not_lval;
1159 *addrp = 0;
1160 *realnump = -1;
1161 if (valuep)
1162 {
1163 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1164
1165 regnum = gdbarch_dwarf2_reg_to_regnum
1166 (current_gdbarch, cache->retaddr_reg.loc.reg);
1167 pc += frame_unwind_register_unsigned (next_frame, regnum);
1168 pack_long (valuep, register_type (gdbarch, regnum), pc);
1169 }
1170 break;
1171
1172 default:
1173 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1174 }
1175 }
1176
1177 static const struct frame_unwind dwarf2_frame_unwind =
1178 {
1179 NORMAL_FRAME,
1180 dwarf2_frame_this_id,
1181 dwarf2_frame_prev_register
1182 };
1183
1184 static const struct frame_unwind dwarf2_signal_frame_unwind =
1185 {
1186 SIGTRAMP_FRAME,
1187 dwarf2_signal_frame_this_id,
1188 dwarf2_frame_prev_register
1189 };
1190
1191 const struct frame_unwind *
1192 dwarf2_frame_sniffer (struct frame_info *next_frame)
1193 {
1194 /* Grab an address that is guarenteed to reside somewhere within the
1195 function. frame_pc_unwind(), for a no-return next function, can
1196 end up returning something past the end of this function's body.
1197 If the frame we're sniffing for is a signal frame whose start
1198 address is placed on the stack by the OS, its FDE must
1199 extend one byte before its start address or we will miss it. */
1200 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1201 NORMAL_FRAME);
1202 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1203 if (!fde)
1204 return NULL;
1205
1206 /* On some targets, signal trampolines may have unwind information.
1207 We need to recognize them so that we set the frame type
1208 correctly. */
1209
1210 if (fde->cie->signal_frame
1211 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1212 next_frame))
1213 return &dwarf2_signal_frame_unwind;
1214
1215 return &dwarf2_frame_unwind;
1216 }
1217 \f
1218
1219 /* There is no explicitly defined relationship between the CFA and the
1220 location of frame's local variables and arguments/parameters.
1221 Therefore, frame base methods on this page should probably only be
1222 used as a last resort, just to avoid printing total garbage as a
1223 response to the "info frame" command. */
1224
1225 static CORE_ADDR
1226 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1227 {
1228 struct dwarf2_frame_cache *cache =
1229 dwarf2_frame_cache (next_frame, this_cache);
1230
1231 return cache->cfa;
1232 }
1233
1234 static const struct frame_base dwarf2_frame_base =
1235 {
1236 &dwarf2_frame_unwind,
1237 dwarf2_frame_base_address,
1238 dwarf2_frame_base_address,
1239 dwarf2_frame_base_address
1240 };
1241
1242 const struct frame_base *
1243 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
1244 {
1245 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1246 NORMAL_FRAME);
1247 if (dwarf2_frame_find_fde (&block_addr))
1248 return &dwarf2_frame_base;
1249
1250 return NULL;
1251 }
1252 \f
1253 /* A minimal decoding of DWARF2 compilation units. We only decode
1254 what's needed to get to the call frame information. */
1255
1256 struct comp_unit
1257 {
1258 /* Keep the bfd convenient. */
1259 bfd *abfd;
1260
1261 struct objfile *objfile;
1262
1263 /* Linked list of CIEs for this object. */
1264 struct dwarf2_cie *cie;
1265
1266 /* Pointer to the .debug_frame section loaded into memory. */
1267 gdb_byte *dwarf_frame_buffer;
1268
1269 /* Length of the loaded .debug_frame section. */
1270 unsigned long dwarf_frame_size;
1271
1272 /* Pointer to the .debug_frame section. */
1273 asection *dwarf_frame_section;
1274
1275 /* Base for DW_EH_PE_datarel encodings. */
1276 bfd_vma dbase;
1277
1278 /* Base for DW_EH_PE_textrel encodings. */
1279 bfd_vma tbase;
1280 };
1281
1282 const struct objfile_data *dwarf2_frame_objfile_data;
1283
1284 static unsigned int
1285 read_1_byte (bfd *abfd, gdb_byte *buf)
1286 {
1287 return bfd_get_8 (abfd, buf);
1288 }
1289
1290 static unsigned int
1291 read_4_bytes (bfd *abfd, gdb_byte *buf)
1292 {
1293 return bfd_get_32 (abfd, buf);
1294 }
1295
1296 static ULONGEST
1297 read_8_bytes (bfd *abfd, gdb_byte *buf)
1298 {
1299 return bfd_get_64 (abfd, buf);
1300 }
1301
1302 static ULONGEST
1303 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1304 {
1305 ULONGEST result;
1306 unsigned int num_read;
1307 int shift;
1308 gdb_byte byte;
1309
1310 result = 0;
1311 shift = 0;
1312 num_read = 0;
1313
1314 do
1315 {
1316 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1317 buf++;
1318 num_read++;
1319 result |= ((byte & 0x7f) << shift);
1320 shift += 7;
1321 }
1322 while (byte & 0x80);
1323
1324 *bytes_read_ptr = num_read;
1325
1326 return result;
1327 }
1328
1329 static LONGEST
1330 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1331 {
1332 LONGEST result;
1333 int shift;
1334 unsigned int num_read;
1335 gdb_byte byte;
1336
1337 result = 0;
1338 shift = 0;
1339 num_read = 0;
1340
1341 do
1342 {
1343 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1344 buf++;
1345 num_read++;
1346 result |= ((byte & 0x7f) << shift);
1347 shift += 7;
1348 }
1349 while (byte & 0x80);
1350
1351 if (shift < 8 * sizeof (result) && (byte & 0x40))
1352 result |= -(((LONGEST)1) << shift);
1353
1354 *bytes_read_ptr = num_read;
1355
1356 return result;
1357 }
1358
1359 static ULONGEST
1360 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1361 {
1362 LONGEST result;
1363
1364 result = bfd_get_32 (abfd, buf);
1365 if (result == 0xffffffff)
1366 {
1367 result = bfd_get_64 (abfd, buf + 4);
1368 *bytes_read_ptr = 12;
1369 }
1370 else
1371 *bytes_read_ptr = 4;
1372
1373 return result;
1374 }
1375 \f
1376
1377 /* Pointer encoding helper functions. */
1378
1379 /* GCC supports exception handling based on DWARF2 CFI. However, for
1380 technical reasons, it encodes addresses in its FDE's in a different
1381 way. Several "pointer encodings" are supported. The encoding
1382 that's used for a particular FDE is determined by the 'R'
1383 augmentation in the associated CIE. The argument of this
1384 augmentation is a single byte.
1385
1386 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1387 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1388 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1389 address should be interpreted (absolute, relative to the current
1390 position in the FDE, ...). Bit 7, indicates that the address
1391 should be dereferenced. */
1392
1393 static gdb_byte
1394 encoding_for_size (unsigned int size)
1395 {
1396 switch (size)
1397 {
1398 case 2:
1399 return DW_EH_PE_udata2;
1400 case 4:
1401 return DW_EH_PE_udata4;
1402 case 8:
1403 return DW_EH_PE_udata8;
1404 default:
1405 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1406 }
1407 }
1408
1409 static unsigned int
1410 size_of_encoded_value (gdb_byte encoding)
1411 {
1412 if (encoding == DW_EH_PE_omit)
1413 return 0;
1414
1415 switch (encoding & 0x07)
1416 {
1417 case DW_EH_PE_absptr:
1418 return TYPE_LENGTH (builtin_type_void_data_ptr);
1419 case DW_EH_PE_udata2:
1420 return 2;
1421 case DW_EH_PE_udata4:
1422 return 4;
1423 case DW_EH_PE_udata8:
1424 return 8;
1425 default:
1426 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1427 }
1428 }
1429
1430 static CORE_ADDR
1431 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1432 gdb_byte *buf, unsigned int *bytes_read_ptr)
1433 {
1434 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1435 ptrdiff_t offset;
1436 CORE_ADDR base;
1437
1438 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1439 FDE's. */
1440 if (encoding & DW_EH_PE_indirect)
1441 internal_error (__FILE__, __LINE__,
1442 _("Unsupported encoding: DW_EH_PE_indirect"));
1443
1444 *bytes_read_ptr = 0;
1445
1446 switch (encoding & 0x70)
1447 {
1448 case DW_EH_PE_absptr:
1449 base = 0;
1450 break;
1451 case DW_EH_PE_pcrel:
1452 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1453 base += (buf - unit->dwarf_frame_buffer);
1454 break;
1455 case DW_EH_PE_datarel:
1456 base = unit->dbase;
1457 break;
1458 case DW_EH_PE_textrel:
1459 base = unit->tbase;
1460 break;
1461 case DW_EH_PE_funcrel:
1462 /* FIXME: kettenis/20040501: For now just pretend
1463 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1464 reading the initial location of an FDE it should be treated
1465 as such, and currently that's the only place where this code
1466 is used. */
1467 base = 0;
1468 break;
1469 case DW_EH_PE_aligned:
1470 base = 0;
1471 offset = buf - unit->dwarf_frame_buffer;
1472 if ((offset % ptr_len) != 0)
1473 {
1474 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1475 buf += *bytes_read_ptr;
1476 }
1477 break;
1478 default:
1479 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1480 }
1481
1482 if ((encoding & 0x07) == 0x00)
1483 {
1484 encoding |= encoding_for_size (ptr_len);
1485 if (bfd_get_sign_extend_vma (unit->abfd))
1486 encoding |= DW_EH_PE_signed;
1487 }
1488
1489 switch (encoding & 0x0f)
1490 {
1491 case DW_EH_PE_uleb128:
1492 {
1493 ULONGEST value;
1494 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1495 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1496 return base + value;
1497 }
1498 case DW_EH_PE_udata2:
1499 *bytes_read_ptr += 2;
1500 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1501 case DW_EH_PE_udata4:
1502 *bytes_read_ptr += 4;
1503 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1504 case DW_EH_PE_udata8:
1505 *bytes_read_ptr += 8;
1506 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1507 case DW_EH_PE_sleb128:
1508 {
1509 LONGEST value;
1510 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1511 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1512 return base + value;
1513 }
1514 case DW_EH_PE_sdata2:
1515 *bytes_read_ptr += 2;
1516 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1517 case DW_EH_PE_sdata4:
1518 *bytes_read_ptr += 4;
1519 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1520 case DW_EH_PE_sdata8:
1521 *bytes_read_ptr += 8;
1522 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1523 default:
1524 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1525 }
1526 }
1527 \f
1528
1529 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1530 That's why we use a simple linked list here. */
1531
1532 static struct dwarf2_cie *
1533 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1534 {
1535 struct dwarf2_cie *cie = unit->cie;
1536
1537 while (cie)
1538 {
1539 if (cie->cie_pointer == cie_pointer)
1540 return cie;
1541
1542 cie = cie->next;
1543 }
1544
1545 return NULL;
1546 }
1547
1548 static void
1549 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1550 {
1551 cie->next = unit->cie;
1552 unit->cie = cie;
1553 }
1554
1555 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1556 inital location associated with it into *PC. */
1557
1558 static struct dwarf2_fde *
1559 dwarf2_frame_find_fde (CORE_ADDR *pc)
1560 {
1561 struct objfile *objfile;
1562
1563 ALL_OBJFILES (objfile)
1564 {
1565 struct dwarf2_fde *fde;
1566 CORE_ADDR offset;
1567
1568 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1569 if (fde == NULL)
1570 continue;
1571
1572 gdb_assert (objfile->section_offsets);
1573 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1574
1575 while (fde)
1576 {
1577 if (*pc >= fde->initial_location + offset
1578 && *pc < fde->initial_location + offset + fde->address_range)
1579 {
1580 *pc = fde->initial_location + offset;
1581 return fde;
1582 }
1583
1584 fde = fde->next;
1585 }
1586 }
1587
1588 return NULL;
1589 }
1590
1591 static void
1592 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1593 {
1594 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1595 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1596 }
1597
1598 #ifdef CC_HAS_LONG_LONG
1599 #define DW64_CIE_ID 0xffffffffffffffffULL
1600 #else
1601 #define DW64_CIE_ID ~0
1602 #endif
1603
1604 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1605 int eh_frame_p);
1606
1607 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1608 the next byte to be processed. */
1609 static gdb_byte *
1610 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1611 {
1612 gdb_byte *buf, *end;
1613 LONGEST length;
1614 unsigned int bytes_read;
1615 int dwarf64_p;
1616 ULONGEST cie_id;
1617 ULONGEST cie_pointer;
1618
1619 buf = start;
1620 length = read_initial_length (unit->abfd, buf, &bytes_read);
1621 buf += bytes_read;
1622 end = buf + length;
1623
1624 /* Are we still within the section? */
1625 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1626 return NULL;
1627
1628 if (length == 0)
1629 return end;
1630
1631 /* Distinguish between 32 and 64-bit encoded frame info. */
1632 dwarf64_p = (bytes_read == 12);
1633
1634 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1635 if (eh_frame_p)
1636 cie_id = 0;
1637 else if (dwarf64_p)
1638 cie_id = DW64_CIE_ID;
1639 else
1640 cie_id = DW_CIE_ID;
1641
1642 if (dwarf64_p)
1643 {
1644 cie_pointer = read_8_bytes (unit->abfd, buf);
1645 buf += 8;
1646 }
1647 else
1648 {
1649 cie_pointer = read_4_bytes (unit->abfd, buf);
1650 buf += 4;
1651 }
1652
1653 if (cie_pointer == cie_id)
1654 {
1655 /* This is a CIE. */
1656 struct dwarf2_cie *cie;
1657 char *augmentation;
1658 unsigned int cie_version;
1659
1660 /* Record the offset into the .debug_frame section of this CIE. */
1661 cie_pointer = start - unit->dwarf_frame_buffer;
1662
1663 /* Check whether we've already read it. */
1664 if (find_cie (unit, cie_pointer))
1665 return end;
1666
1667 cie = (struct dwarf2_cie *)
1668 obstack_alloc (&unit->objfile->objfile_obstack,
1669 sizeof (struct dwarf2_cie));
1670 cie->initial_instructions = NULL;
1671 cie->cie_pointer = cie_pointer;
1672
1673 /* The encoding for FDE's in a normal .debug_frame section
1674 depends on the target address size. */
1675 cie->encoding = DW_EH_PE_absptr;
1676
1677 /* We'll determine the final value later, but we need to
1678 initialize it conservatively. */
1679 cie->signal_frame = 0;
1680
1681 /* Check version number. */
1682 cie_version = read_1_byte (unit->abfd, buf);
1683 if (cie_version != 1 && cie_version != 3)
1684 return NULL;
1685 cie->version = cie_version;
1686 buf += 1;
1687
1688 /* Interpret the interesting bits of the augmentation. */
1689 cie->augmentation = augmentation = (char *) buf;
1690 buf += (strlen (augmentation) + 1);
1691
1692 /* Ignore armcc augmentations. We only use them for quirks,
1693 and that doesn't happen until later. */
1694 if (strncmp (augmentation, "armcc", 5) == 0)
1695 augmentation += strlen (augmentation);
1696
1697 /* The GCC 2.x "eh" augmentation has a pointer immediately
1698 following the augmentation string, so it must be handled
1699 first. */
1700 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1701 {
1702 /* Skip. */
1703 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1704 augmentation += 2;
1705 }
1706
1707 cie->code_alignment_factor =
1708 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1709 buf += bytes_read;
1710
1711 cie->data_alignment_factor =
1712 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1713 buf += bytes_read;
1714
1715 if (cie_version == 1)
1716 {
1717 cie->return_address_register = read_1_byte (unit->abfd, buf);
1718 bytes_read = 1;
1719 }
1720 else
1721 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1722 &bytes_read);
1723 cie->return_address_register
1724 = dwarf2_frame_adjust_regnum (current_gdbarch,
1725 cie->return_address_register,
1726 eh_frame_p);
1727
1728 buf += bytes_read;
1729
1730 cie->saw_z_augmentation = (*augmentation == 'z');
1731 if (cie->saw_z_augmentation)
1732 {
1733 ULONGEST length;
1734
1735 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1736 buf += bytes_read;
1737 if (buf > end)
1738 return NULL;
1739 cie->initial_instructions = buf + length;
1740 augmentation++;
1741 }
1742
1743 while (*augmentation)
1744 {
1745 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1746 if (*augmentation == 'L')
1747 {
1748 /* Skip. */
1749 buf++;
1750 augmentation++;
1751 }
1752
1753 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1754 else if (*augmentation == 'R')
1755 {
1756 cie->encoding = *buf++;
1757 augmentation++;
1758 }
1759
1760 /* "P" indicates a personality routine in the CIE augmentation. */
1761 else if (*augmentation == 'P')
1762 {
1763 /* Skip. Avoid indirection since we throw away the result. */
1764 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1765 read_encoded_value (unit, encoding, buf, &bytes_read);
1766 buf += bytes_read;
1767 augmentation++;
1768 }
1769
1770 /* "S" indicates a signal frame, such that the return
1771 address must not be decremented to locate the call frame
1772 info for the previous frame; it might even be the first
1773 instruction of a function, so decrementing it would take
1774 us to a different function. */
1775 else if (*augmentation == 'S')
1776 {
1777 cie->signal_frame = 1;
1778 augmentation++;
1779 }
1780
1781 /* Otherwise we have an unknown augmentation. Assume that either
1782 there is no augmentation data, or we saw a 'z' prefix. */
1783 else
1784 {
1785 if (cie->initial_instructions)
1786 buf = cie->initial_instructions;
1787 break;
1788 }
1789 }
1790
1791 cie->initial_instructions = buf;
1792 cie->end = end;
1793
1794 add_cie (unit, cie);
1795 }
1796 else
1797 {
1798 /* This is a FDE. */
1799 struct dwarf2_fde *fde;
1800
1801 /* In an .eh_frame section, the CIE pointer is the delta between the
1802 address within the FDE where the CIE pointer is stored and the
1803 address of the CIE. Convert it to an offset into the .eh_frame
1804 section. */
1805 if (eh_frame_p)
1806 {
1807 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1808 cie_pointer -= (dwarf64_p ? 8 : 4);
1809 }
1810
1811 /* In either case, validate the result is still within the section. */
1812 if (cie_pointer >= unit->dwarf_frame_size)
1813 return NULL;
1814
1815 fde = (struct dwarf2_fde *)
1816 obstack_alloc (&unit->objfile->objfile_obstack,
1817 sizeof (struct dwarf2_fde));
1818 fde->cie = find_cie (unit, cie_pointer);
1819 if (fde->cie == NULL)
1820 {
1821 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1822 eh_frame_p);
1823 fde->cie = find_cie (unit, cie_pointer);
1824 }
1825
1826 gdb_assert (fde->cie != NULL);
1827
1828 fde->initial_location =
1829 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1830 buf += bytes_read;
1831
1832 fde->address_range =
1833 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1834 buf += bytes_read;
1835
1836 /* A 'z' augmentation in the CIE implies the presence of an
1837 augmentation field in the FDE as well. The only thing known
1838 to be in here at present is the LSDA entry for EH. So we
1839 can skip the whole thing. */
1840 if (fde->cie->saw_z_augmentation)
1841 {
1842 ULONGEST length;
1843
1844 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1845 buf += bytes_read + length;
1846 if (buf > end)
1847 return NULL;
1848 }
1849
1850 fde->instructions = buf;
1851 fde->end = end;
1852
1853 fde->eh_frame_p = eh_frame_p;
1854
1855 add_fde (unit, fde);
1856 }
1857
1858 return end;
1859 }
1860
1861 /* Read a CIE or FDE in BUF and decode it. */
1862 static gdb_byte *
1863 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1864 {
1865 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1866 gdb_byte *ret;
1867 const char *msg;
1868 ptrdiff_t start_offset;
1869
1870 while (1)
1871 {
1872 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1873 if (ret != NULL)
1874 break;
1875
1876 /* We have corrupt input data of some form. */
1877
1878 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1879 and mismatches wrt padding and alignment of debug sections. */
1880 /* Note that there is no requirement in the standard for any
1881 alignment at all in the frame unwind sections. Testing for
1882 alignment before trying to interpret data would be incorrect.
1883
1884 However, GCC traditionally arranged for frame sections to be
1885 sized such that the FDE length and CIE fields happen to be
1886 aligned (in theory, for performance). This, unfortunately,
1887 was done with .align directives, which had the side effect of
1888 forcing the section to be aligned by the linker.
1889
1890 This becomes a problem when you have some other producer that
1891 creates frame sections that are not as strictly aligned. That
1892 produces a hole in the frame info that gets filled by the
1893 linker with zeros.
1894
1895 The GCC behaviour is arguably a bug, but it's effectively now
1896 part of the ABI, so we're now stuck with it, at least at the
1897 object file level. A smart linker may decide, in the process
1898 of compressing duplicate CIE information, that it can rewrite
1899 the entire output section without this extra padding. */
1900
1901 start_offset = start - unit->dwarf_frame_buffer;
1902 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1903 {
1904 start += 4 - (start_offset & 3);
1905 workaround = ALIGN4;
1906 continue;
1907 }
1908 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1909 {
1910 start += 8 - (start_offset & 7);
1911 workaround = ALIGN8;
1912 continue;
1913 }
1914
1915 /* Nothing left to try. Arrange to return as if we've consumed
1916 the entire input section. Hopefully we'll get valid info from
1917 the other of .debug_frame/.eh_frame. */
1918 workaround = FAIL;
1919 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1920 break;
1921 }
1922
1923 switch (workaround)
1924 {
1925 case NONE:
1926 break;
1927
1928 case ALIGN4:
1929 complaint (&symfile_complaints,
1930 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1931 unit->dwarf_frame_section->owner->filename,
1932 unit->dwarf_frame_section->name);
1933 break;
1934
1935 case ALIGN8:
1936 complaint (&symfile_complaints,
1937 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1938 unit->dwarf_frame_section->owner->filename,
1939 unit->dwarf_frame_section->name);
1940 break;
1941
1942 default:
1943 complaint (&symfile_complaints,
1944 _("Corrupt data in %s:%s"),
1945 unit->dwarf_frame_section->owner->filename,
1946 unit->dwarf_frame_section->name);
1947 break;
1948 }
1949
1950 return ret;
1951 }
1952 \f
1953
1954 /* FIXME: kettenis/20030504: This still needs to be integrated with
1955 dwarf2read.c in a better way. */
1956
1957 /* Imported from dwarf2read.c. */
1958 extern asection *dwarf_frame_section;
1959 extern asection *dwarf_eh_frame_section;
1960
1961 /* Imported from dwarf2read.c. */
1962 extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1963
1964 void
1965 dwarf2_build_frame_info (struct objfile *objfile)
1966 {
1967 struct comp_unit unit;
1968 gdb_byte *frame_ptr;
1969
1970 /* Build a minimal decoding of the DWARF2 compilation unit. */
1971 unit.abfd = objfile->obfd;
1972 unit.objfile = objfile;
1973 unit.dbase = 0;
1974 unit.tbase = 0;
1975
1976 /* First add the information from the .eh_frame section. That way,
1977 the FDEs from that section are searched last. */
1978 if (dwarf_eh_frame_section)
1979 {
1980 asection *got, *txt;
1981
1982 unit.cie = NULL;
1983 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1984 dwarf_eh_frame_section);
1985
1986 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1987 unit.dwarf_frame_section = dwarf_eh_frame_section;
1988
1989 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1990 that is used for the i386/amd64 target, which currently is
1991 the only target in GCC that supports/uses the
1992 DW_EH_PE_datarel encoding. */
1993 got = bfd_get_section_by_name (unit.abfd, ".got");
1994 if (got)
1995 unit.dbase = got->vma;
1996
1997 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1998 so far. */
1999 txt = bfd_get_section_by_name (unit.abfd, ".text");
2000 if (txt)
2001 unit.tbase = txt->vma;
2002
2003 frame_ptr = unit.dwarf_frame_buffer;
2004 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2005 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
2006 }
2007
2008 if (dwarf_frame_section)
2009 {
2010 unit.cie = NULL;
2011 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
2012 dwarf_frame_section);
2013 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
2014 unit.dwarf_frame_section = dwarf_frame_section;
2015
2016 frame_ptr = unit.dwarf_frame_buffer;
2017 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2018 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
2019 }
2020 }
2021
2022 /* Provide a prototype to silence -Wmissing-prototypes. */
2023 void _initialize_dwarf2_frame (void);
2024
2025 void
2026 _initialize_dwarf2_frame (void)
2027 {
2028 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2029 dwarf2_frame_objfile_data = register_objfile_data ();
2030 }
This page took 0.098379 seconds and 4 git commands to generate.