741a10333e36915d1d5f31bff31b5f32c7e13ed7
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 static void
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
311 {
312 read_memory (addr, buf, len);
313 }
314
315 /* Execute the required actions for both the DW_CFA_restore and
316 DW_CFA_restore_extended instructions. */
317 static void
318 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320 {
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337 incomplete CFI data; DW_CFA_restore unspecified\n\
338 register %s (#%d) at %s"),
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
342 paddress (gdbarch, fs->pc));
343 }
344
345 /* Virtual method table for execute_stack_op below. */
346
347 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348 {
349 read_reg,
350 read_mem,
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
359 };
360
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
365 {
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
369
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
373
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
380
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
383
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 uint64_t utmp, reg;
420 int64_t offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
548 break;
549
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
630 eh_frame_p);
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
640 break;
641
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
651 int size = register_size (gdbarch, 0);
652
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
670 break;
671
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
682 default:
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
685 }
686 }
687 }
688
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
697 }
698 \f
699
700 /* Architecture-specific operations. */
701
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
704
705 struct dwarf2_frame_ops
706 {
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
710
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
713
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
717 };
718
719 /* Default architecture-specific register state initialization
720 function. */
721
722 static void
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
726 {
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
752
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
757 }
758
759 /* Return a default for the architecture-specific operations. */
760
761 static void *
762 dwarf2_frame_init (struct obstack *obstack)
763 {
764 struct dwarf2_frame_ops *ops;
765
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769 }
770
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774 void
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
779 {
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781
782 ops->init_reg = init_reg;
783 }
784
785 /* Pre-initialize the register state REG for register REGNUM. */
786
787 static void
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
791 {
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
793
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
795 }
796
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800 void
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808 }
809
810 /* Query the architecture-specific signal frame recognizer for
811 THIS_FRAME. */
812
813 static int
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
816 {
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
821 return ops->signal_frame_p (gdbarch, this_frame);
822 }
823
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
826
827 void
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
831 {
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
834 ops->adjust_regnum = adjust_regnum;
835 }
836
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
839
840 static int
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
843 {
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
846 if (ops->adjust_regnum == NULL)
847 return regnum;
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
849 }
850
851 static void
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854 {
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
858 if (s == NULL)
859 return;
860
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
882 }
883 \f
884
885 void
886 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890 {
891 const int num_regs = gdbarch_num_regs (gdbarch)
892 + gdbarch_num_pseudo_regs (gdbarch);
893 struct dwarf2_fde *fde;
894 CORE_ADDR text_offset;
895 struct dwarf2_frame_state fs;
896 int addr_size;
897
898 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
899
900 fs.pc = pc;
901
902 /* Find the correct FDE. */
903 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
904 if (fde == NULL)
905 error (_("Could not compute CFA; needed to translate this expression"));
906
907 /* Extract any interesting information from the CIE. */
908 fs.data_align = fde->cie->data_alignment_factor;
909 fs.code_align = fde->cie->code_alignment_factor;
910 fs.retaddr_column = fde->cie->return_address_register;
911 addr_size = fde->cie->addr_size;
912
913 /* Check for "quirks" - known bugs in producers. */
914 dwarf2_frame_find_quirks (&fs, fde);
915
916 /* First decode all the insns in the CIE. */
917 execute_cfa_program (fde, fde->cie->initial_instructions,
918 fde->cie->end, gdbarch, pc, &fs);
919
920 /* Save the initialized register set. */
921 fs.initial = fs.regs;
922 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
923
924 /* Then decode the insns in the FDE up to our target PC. */
925 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
926
927 /* Calculate the CFA. */
928 switch (fs.regs.cfa_how)
929 {
930 case CFA_REG_OFFSET:
931 {
932 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
933
934 if (regnum == -1)
935 error (_("Unable to access DWARF register number %d"),
936 (int) fs.regs.cfa_reg); /* FIXME */
937 ax_reg (expr, regnum);
938
939 if (fs.regs.cfa_offset != 0)
940 {
941 if (fs.armcc_cfa_offsets_reversed)
942 ax_const_l (expr, -fs.regs.cfa_offset);
943 else
944 ax_const_l (expr, fs.regs.cfa_offset);
945 ax_simple (expr, aop_add);
946 }
947 }
948 break;
949
950 case CFA_EXP:
951 ax_const_l (expr, text_offset);
952 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
953 fs.regs.cfa_exp,
954 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
955 data);
956 break;
957
958 default:
959 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
960 }
961 }
962
963 \f
964 struct dwarf2_frame_cache
965 {
966 /* DWARF Call Frame Address. */
967 CORE_ADDR cfa;
968
969 /* Set if the return address column was marked as unavailable
970 (required non-collected memory or registers to compute). */
971 int unavailable_retaddr;
972
973 /* Set if the return address column was marked as undefined. */
974 int undefined_retaddr;
975
976 /* Saved registers, indexed by GDB register number, not by DWARF
977 register number. */
978 struct dwarf2_frame_state_reg *reg;
979
980 /* Return address register. */
981 struct dwarf2_frame_state_reg retaddr_reg;
982
983 /* Target address size in bytes. */
984 int addr_size;
985
986 /* The .text offset. */
987 CORE_ADDR text_offset;
988
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
995 };
996
997 static struct dwarf2_frame_cache *
998 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
999 {
1000 struct cleanup *old_chain;
1001 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1002 const int num_regs = gdbarch_num_regs (gdbarch)
1003 + gdbarch_num_pseudo_regs (gdbarch);
1004 struct dwarf2_frame_cache *cache;
1005 struct dwarf2_frame_state *fs;
1006 struct dwarf2_fde *fde;
1007 volatile struct gdb_exception ex;
1008 CORE_ADDR entry_pc;
1009 LONGEST entry_cfa_sp_offset;
1010 int entry_cfa_sp_offset_p = 0;
1011 const gdb_byte *instr;
1012
1013 if (*this_cache)
1014 return *this_cache;
1015
1016 /* Allocate a new cache. */
1017 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1018 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1019 *this_cache = cache;
1020
1021 /* Allocate and initialize the frame state. */
1022 fs = XZALLOC (struct dwarf2_frame_state);
1023 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1024
1025 /* Unwind the PC.
1026
1027 Note that if the next frame is never supposed to return (i.e. a call
1028 to abort), the compiler might optimize away the instruction at
1029 its return address. As a result the return address will
1030 point at some random instruction, and the CFI for that
1031 instruction is probably worthless to us. GCC's unwinder solves
1032 this problem by substracting 1 from the return address to get an
1033 address in the middle of a presumed call instruction (or the
1034 instruction in the associated delay slot). This should only be
1035 done for "normal" frames and not for resume-type frames (signal
1036 handlers, sentinel frames, dummy frames). The function
1037 get_frame_address_in_block does just this. It's not clear how
1038 reliable the method is though; there is the potential for the
1039 register state pre-call being different to that on return. */
1040 fs->pc = get_frame_address_in_block (this_frame);
1041
1042 /* Find the correct FDE. */
1043 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1044 gdb_assert (fde != NULL);
1045
1046 /* Extract any interesting information from the CIE. */
1047 fs->data_align = fde->cie->data_alignment_factor;
1048 fs->code_align = fde->cie->code_alignment_factor;
1049 fs->retaddr_column = fde->cie->return_address_register;
1050 cache->addr_size = fde->cie->addr_size;
1051
1052 /* Check for "quirks" - known bugs in producers. */
1053 dwarf2_frame_find_quirks (fs, fde);
1054
1055 /* First decode all the insns in the CIE. */
1056 execute_cfa_program (fde, fde->cie->initial_instructions,
1057 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
1058
1059 /* Save the initialized register set. */
1060 fs->initial = fs->regs;
1061 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1062
1063 if (get_frame_func_if_available (this_frame, &entry_pc))
1064 {
1065 /* Decode the insns in the FDE up to the entry PC. */
1066 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1067 entry_pc, fs);
1068
1069 if (fs->regs.cfa_how == CFA_REG_OFFSET
1070 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1071 == gdbarch_sp_regnum (gdbarch)))
1072 {
1073 entry_cfa_sp_offset = fs->regs.cfa_offset;
1074 entry_cfa_sp_offset_p = 1;
1075 }
1076 }
1077 else
1078 instr = fde->instructions;
1079
1080 /* Then decode the insns in the FDE up to our target PC. */
1081 execute_cfa_program (fde, instr, fde->end, gdbarch,
1082 get_frame_pc (this_frame), fs);
1083
1084 TRY_CATCH (ex, RETURN_MASK_ERROR)
1085 {
1086 /* Calculate the CFA. */
1087 switch (fs->regs.cfa_how)
1088 {
1089 case CFA_REG_OFFSET:
1090 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1091 if (fs->armcc_cfa_offsets_reversed)
1092 cache->cfa -= fs->regs.cfa_offset;
1093 else
1094 cache->cfa += fs->regs.cfa_offset;
1095 break;
1096
1097 case CFA_EXP:
1098 cache->cfa =
1099 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1100 cache->addr_size, cache->text_offset,
1101 this_frame, 0, 0);
1102 break;
1103
1104 default:
1105 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1106 }
1107 }
1108 if (ex.reason < 0)
1109 {
1110 if (ex.error == NOT_AVAILABLE_ERROR)
1111 {
1112 cache->unavailable_retaddr = 1;
1113 do_cleanups (old_chain);
1114 return cache;
1115 }
1116
1117 throw_exception (ex);
1118 }
1119
1120 /* Initialize the register state. */
1121 {
1122 int regnum;
1123
1124 for (regnum = 0; regnum < num_regs; regnum++)
1125 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1126 }
1127
1128 /* Go through the DWARF2 CFI generated table and save its register
1129 location information in the cache. Note that we don't skip the
1130 return address column; it's perfectly all right for it to
1131 correspond to a real register. If it doesn't correspond to a
1132 real register, or if we shouldn't treat it as such,
1133 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1134 the range [0, gdbarch_num_regs). */
1135 {
1136 int column; /* CFI speak for "register number". */
1137
1138 for (column = 0; column < fs->regs.num_regs; column++)
1139 {
1140 /* Use the GDB register number as the destination index. */
1141 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1142
1143 /* If there's no corresponding GDB register, ignore it. */
1144 if (regnum < 0 || regnum >= num_regs)
1145 continue;
1146
1147 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1148 of all debug info registers. If it doesn't, complain (but
1149 not too loudly). It turns out that GCC assumes that an
1150 unspecified register implies "same value" when CFI (draft
1151 7) specifies nothing at all. Such a register could equally
1152 be interpreted as "undefined". Also note that this check
1153 isn't sufficient; it only checks that all registers in the
1154 range [0 .. max column] are specified, and won't detect
1155 problems when a debug info register falls outside of the
1156 table. We need a way of iterating through all the valid
1157 DWARF2 register numbers. */
1158 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1159 {
1160 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1161 complaint (&symfile_complaints, _("\
1162 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1163 gdbarch_register_name (gdbarch, regnum),
1164 paddress (gdbarch, fs->pc));
1165 }
1166 else
1167 cache->reg[regnum] = fs->regs.reg[column];
1168 }
1169 }
1170
1171 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1172 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1173 {
1174 int regnum;
1175
1176 for (regnum = 0; regnum < num_regs; regnum++)
1177 {
1178 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1179 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1180 {
1181 struct dwarf2_frame_state_reg *retaddr_reg =
1182 &fs->regs.reg[fs->retaddr_column];
1183
1184 /* It seems rather bizarre to specify an "empty" column as
1185 the return adress column. However, this is exactly
1186 what GCC does on some targets. It turns out that GCC
1187 assumes that the return address can be found in the
1188 register corresponding to the return address column.
1189 Incidentally, that's how we should treat a return
1190 address column specifying "same value" too. */
1191 if (fs->retaddr_column < fs->regs.num_regs
1192 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1193 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1194 {
1195 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1196 cache->reg[regnum] = *retaddr_reg;
1197 else
1198 cache->retaddr_reg = *retaddr_reg;
1199 }
1200 else
1201 {
1202 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1203 {
1204 cache->reg[regnum].loc.reg = fs->retaddr_column;
1205 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1206 }
1207 else
1208 {
1209 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1210 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1211 }
1212 }
1213 }
1214 }
1215 }
1216
1217 if (fs->retaddr_column < fs->regs.num_regs
1218 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1219 cache->undefined_retaddr = 1;
1220
1221 do_cleanups (old_chain);
1222
1223 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1224 starting at THIS_FRAME. */
1225 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1226 (entry_cfa_sp_offset_p
1227 ? &entry_cfa_sp_offset : NULL));
1228
1229 return cache;
1230 }
1231
1232 static enum unwind_stop_reason
1233 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1234 void **this_cache)
1235 {
1236 struct dwarf2_frame_cache *cache
1237 = dwarf2_frame_cache (this_frame, this_cache);
1238
1239 if (cache->unavailable_retaddr)
1240 return UNWIND_UNAVAILABLE;
1241
1242 if (cache->undefined_retaddr)
1243 return UNWIND_OUTERMOST;
1244
1245 return UNWIND_NO_REASON;
1246 }
1247
1248 static void
1249 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1250 struct frame_id *this_id)
1251 {
1252 struct dwarf2_frame_cache *cache =
1253 dwarf2_frame_cache (this_frame, this_cache);
1254
1255 if (cache->unavailable_retaddr)
1256 return;
1257
1258 if (cache->undefined_retaddr)
1259 return;
1260
1261 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1262 }
1263
1264 static struct value *
1265 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1266 int regnum)
1267 {
1268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1269 struct dwarf2_frame_cache *cache =
1270 dwarf2_frame_cache (this_frame, this_cache);
1271 CORE_ADDR addr;
1272 int realnum;
1273
1274 /* Non-bottom frames of a virtual tail call frames chain use
1275 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1276 them. If dwarf2_tailcall_prev_register_first does not have specific value
1277 unwind the register, tail call frames are assumed to have the register set
1278 of the top caller. */
1279 if (cache->tailcall_cache)
1280 {
1281 struct value *val;
1282
1283 val = dwarf2_tailcall_prev_register_first (this_frame,
1284 &cache->tailcall_cache,
1285 regnum);
1286 if (val)
1287 return val;
1288 }
1289
1290 switch (cache->reg[regnum].how)
1291 {
1292 case DWARF2_FRAME_REG_UNDEFINED:
1293 /* If CFI explicitly specified that the value isn't defined,
1294 mark it as optimized away; the value isn't available. */
1295 return frame_unwind_got_optimized (this_frame, regnum);
1296
1297 case DWARF2_FRAME_REG_SAVED_OFFSET:
1298 addr = cache->cfa + cache->reg[regnum].loc.offset;
1299 return frame_unwind_got_memory (this_frame, regnum, addr);
1300
1301 case DWARF2_FRAME_REG_SAVED_REG:
1302 realnum
1303 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1304 return frame_unwind_got_register (this_frame, regnum, realnum);
1305
1306 case DWARF2_FRAME_REG_SAVED_EXP:
1307 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1308 cache->reg[regnum].exp_len,
1309 cache->addr_size, cache->text_offset,
1310 this_frame, cache->cfa, 1);
1311 return frame_unwind_got_memory (this_frame, regnum, addr);
1312
1313 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1314 addr = cache->cfa + cache->reg[regnum].loc.offset;
1315 return frame_unwind_got_constant (this_frame, regnum, addr);
1316
1317 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1318 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1319 cache->reg[regnum].exp_len,
1320 cache->addr_size, cache->text_offset,
1321 this_frame, cache->cfa, 1);
1322 return frame_unwind_got_constant (this_frame, regnum, addr);
1323
1324 case DWARF2_FRAME_REG_UNSPECIFIED:
1325 /* GCC, in its infinite wisdom decided to not provide unwind
1326 information for registers that are "same value". Since
1327 DWARF2 (3 draft 7) doesn't define such behavior, said
1328 registers are actually undefined (which is different to CFI
1329 "undefined"). Code above issues a complaint about this.
1330 Here just fudge the books, assume GCC, and that the value is
1331 more inner on the stack. */
1332 return frame_unwind_got_register (this_frame, regnum, regnum);
1333
1334 case DWARF2_FRAME_REG_SAME_VALUE:
1335 return frame_unwind_got_register (this_frame, regnum, regnum);
1336
1337 case DWARF2_FRAME_REG_CFA:
1338 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1339
1340 case DWARF2_FRAME_REG_CFA_OFFSET:
1341 addr = cache->cfa + cache->reg[regnum].loc.offset;
1342 return frame_unwind_got_address (this_frame, regnum, addr);
1343
1344 case DWARF2_FRAME_REG_RA_OFFSET:
1345 addr = cache->reg[regnum].loc.offset;
1346 regnum = gdbarch_dwarf2_reg_to_regnum
1347 (gdbarch, cache->retaddr_reg.loc.reg);
1348 addr += get_frame_register_unsigned (this_frame, regnum);
1349 return frame_unwind_got_address (this_frame, regnum, addr);
1350
1351 case DWARF2_FRAME_REG_FN:
1352 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1353
1354 default:
1355 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1356 }
1357 }
1358
1359 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1360 call frames chain. */
1361
1362 static void
1363 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1364 {
1365 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1366
1367 if (cache->tailcall_cache)
1368 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1369 }
1370
1371 static int
1372 dwarf2_frame_sniffer (const struct frame_unwind *self,
1373 struct frame_info *this_frame, void **this_cache)
1374 {
1375 /* Grab an address that is guarenteed to reside somewhere within the
1376 function. get_frame_pc(), with a no-return next function, can
1377 end up returning something past the end of this function's body.
1378 If the frame we're sniffing for is a signal frame whose start
1379 address is placed on the stack by the OS, its FDE must
1380 extend one byte before its start address or we could potentially
1381 select the FDE of the previous function. */
1382 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1383 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1384
1385 if (!fde)
1386 return 0;
1387
1388 /* On some targets, signal trampolines may have unwind information.
1389 We need to recognize them so that we set the frame type
1390 correctly. */
1391
1392 if (fde->cie->signal_frame
1393 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1394 this_frame))
1395 return self->type == SIGTRAMP_FRAME;
1396
1397 if (self->type != NORMAL_FRAME)
1398 return 0;
1399
1400 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1401 dwarf2_tailcall_sniffer_first. */
1402 dwarf2_frame_cache (this_frame, this_cache);
1403
1404 return 1;
1405 }
1406
1407 static const struct frame_unwind dwarf2_frame_unwind =
1408 {
1409 NORMAL_FRAME,
1410 dwarf2_frame_unwind_stop_reason,
1411 dwarf2_frame_this_id,
1412 dwarf2_frame_prev_register,
1413 NULL,
1414 dwarf2_frame_sniffer,
1415 dwarf2_frame_dealloc_cache
1416 };
1417
1418 static const struct frame_unwind dwarf2_signal_frame_unwind =
1419 {
1420 SIGTRAMP_FRAME,
1421 dwarf2_frame_unwind_stop_reason,
1422 dwarf2_frame_this_id,
1423 dwarf2_frame_prev_register,
1424 NULL,
1425 dwarf2_frame_sniffer,
1426
1427 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1428 NULL
1429 };
1430
1431 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1432
1433 void
1434 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1435 {
1436 /* TAILCALL_FRAME must be first to find the record by
1437 dwarf2_tailcall_sniffer_first. */
1438 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1439
1440 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1441 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1442 }
1443 \f
1444
1445 /* There is no explicitly defined relationship between the CFA and the
1446 location of frame's local variables and arguments/parameters.
1447 Therefore, frame base methods on this page should probably only be
1448 used as a last resort, just to avoid printing total garbage as a
1449 response to the "info frame" command. */
1450
1451 static CORE_ADDR
1452 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1453 {
1454 struct dwarf2_frame_cache *cache =
1455 dwarf2_frame_cache (this_frame, this_cache);
1456
1457 return cache->cfa;
1458 }
1459
1460 static const struct frame_base dwarf2_frame_base =
1461 {
1462 &dwarf2_frame_unwind,
1463 dwarf2_frame_base_address,
1464 dwarf2_frame_base_address,
1465 dwarf2_frame_base_address
1466 };
1467
1468 const struct frame_base *
1469 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1470 {
1471 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1472
1473 if (dwarf2_frame_find_fde (&block_addr, NULL))
1474 return &dwarf2_frame_base;
1475
1476 return NULL;
1477 }
1478
1479 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1480 the DWARF unwinder. This is used to implement
1481 DW_OP_call_frame_cfa. */
1482
1483 CORE_ADDR
1484 dwarf2_frame_cfa (struct frame_info *this_frame)
1485 {
1486 while (get_frame_type (this_frame) == INLINE_FRAME)
1487 this_frame = get_prev_frame (this_frame);
1488 /* This restriction could be lifted if other unwinders are known to
1489 compute the frame base in a way compatible with the DWARF
1490 unwinder. */
1491 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1492 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1493 error (_("can't compute CFA for this frame"));
1494 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1495 throw_error (NOT_AVAILABLE_ERROR,
1496 _("can't compute CFA for this frame: "
1497 "required registers or memory are unavailable"));
1498 return get_frame_base (this_frame);
1499 }
1500 \f
1501 const struct objfile_data *dwarf2_frame_objfile_data;
1502
1503 static unsigned int
1504 read_1_byte (bfd *abfd, const gdb_byte *buf)
1505 {
1506 return bfd_get_8 (abfd, buf);
1507 }
1508
1509 static unsigned int
1510 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1511 {
1512 return bfd_get_32 (abfd, buf);
1513 }
1514
1515 static ULONGEST
1516 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1517 {
1518 return bfd_get_64 (abfd, buf);
1519 }
1520
1521 static ULONGEST
1522 read_initial_length (bfd *abfd, const gdb_byte *buf,
1523 unsigned int *bytes_read_ptr)
1524 {
1525 LONGEST result;
1526
1527 result = bfd_get_32 (abfd, buf);
1528 if (result == 0xffffffff)
1529 {
1530 result = bfd_get_64 (abfd, buf + 4);
1531 *bytes_read_ptr = 12;
1532 }
1533 else
1534 *bytes_read_ptr = 4;
1535
1536 return result;
1537 }
1538 \f
1539
1540 /* Pointer encoding helper functions. */
1541
1542 /* GCC supports exception handling based on DWARF2 CFI. However, for
1543 technical reasons, it encodes addresses in its FDE's in a different
1544 way. Several "pointer encodings" are supported. The encoding
1545 that's used for a particular FDE is determined by the 'R'
1546 augmentation in the associated CIE. The argument of this
1547 augmentation is a single byte.
1548
1549 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1550 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1551 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1552 address should be interpreted (absolute, relative to the current
1553 position in the FDE, ...). Bit 7, indicates that the address
1554 should be dereferenced. */
1555
1556 static gdb_byte
1557 encoding_for_size (unsigned int size)
1558 {
1559 switch (size)
1560 {
1561 case 2:
1562 return DW_EH_PE_udata2;
1563 case 4:
1564 return DW_EH_PE_udata4;
1565 case 8:
1566 return DW_EH_PE_udata8;
1567 default:
1568 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1569 }
1570 }
1571
1572 static CORE_ADDR
1573 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1574 int ptr_len, const gdb_byte *buf,
1575 unsigned int *bytes_read_ptr,
1576 CORE_ADDR func_base)
1577 {
1578 ptrdiff_t offset;
1579 CORE_ADDR base;
1580
1581 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1582 FDE's. */
1583 if (encoding & DW_EH_PE_indirect)
1584 internal_error (__FILE__, __LINE__,
1585 _("Unsupported encoding: DW_EH_PE_indirect"));
1586
1587 *bytes_read_ptr = 0;
1588
1589 switch (encoding & 0x70)
1590 {
1591 case DW_EH_PE_absptr:
1592 base = 0;
1593 break;
1594 case DW_EH_PE_pcrel:
1595 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1596 base += (buf - unit->dwarf_frame_buffer);
1597 break;
1598 case DW_EH_PE_datarel:
1599 base = unit->dbase;
1600 break;
1601 case DW_EH_PE_textrel:
1602 base = unit->tbase;
1603 break;
1604 case DW_EH_PE_funcrel:
1605 base = func_base;
1606 break;
1607 case DW_EH_PE_aligned:
1608 base = 0;
1609 offset = buf - unit->dwarf_frame_buffer;
1610 if ((offset % ptr_len) != 0)
1611 {
1612 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1613 buf += *bytes_read_ptr;
1614 }
1615 break;
1616 default:
1617 internal_error (__FILE__, __LINE__,
1618 _("Invalid or unsupported encoding"));
1619 }
1620
1621 if ((encoding & 0x07) == 0x00)
1622 {
1623 encoding |= encoding_for_size (ptr_len);
1624 if (bfd_get_sign_extend_vma (unit->abfd))
1625 encoding |= DW_EH_PE_signed;
1626 }
1627
1628 switch (encoding & 0x0f)
1629 {
1630 case DW_EH_PE_uleb128:
1631 {
1632 uint64_t value;
1633 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1634
1635 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1636 return base + value;
1637 }
1638 case DW_EH_PE_udata2:
1639 *bytes_read_ptr += 2;
1640 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1641 case DW_EH_PE_udata4:
1642 *bytes_read_ptr += 4;
1643 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1644 case DW_EH_PE_udata8:
1645 *bytes_read_ptr += 8;
1646 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1647 case DW_EH_PE_sleb128:
1648 {
1649 int64_t value;
1650 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1651
1652 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1653 return base + value;
1654 }
1655 case DW_EH_PE_sdata2:
1656 *bytes_read_ptr += 2;
1657 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1658 case DW_EH_PE_sdata4:
1659 *bytes_read_ptr += 4;
1660 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1661 case DW_EH_PE_sdata8:
1662 *bytes_read_ptr += 8;
1663 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1664 default:
1665 internal_error (__FILE__, __LINE__,
1666 _("Invalid or unsupported encoding"));
1667 }
1668 }
1669 \f
1670
1671 static int
1672 bsearch_cie_cmp (const void *key, const void *element)
1673 {
1674 ULONGEST cie_pointer = *(ULONGEST *) key;
1675 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1676
1677 if (cie_pointer == cie->cie_pointer)
1678 return 0;
1679
1680 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1681 }
1682
1683 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1684 static struct dwarf2_cie *
1685 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1686 {
1687 struct dwarf2_cie **p_cie;
1688
1689 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1690 bsearch be non-NULL. */
1691 if (cie_table->entries == NULL)
1692 {
1693 gdb_assert (cie_table->num_entries == 0);
1694 return NULL;
1695 }
1696
1697 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1698 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1699 if (p_cie != NULL)
1700 return *p_cie;
1701 return NULL;
1702 }
1703
1704 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1705 static void
1706 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1707 {
1708 const int n = cie_table->num_entries;
1709
1710 gdb_assert (n < 1
1711 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1712
1713 cie_table->entries =
1714 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1715 cie_table->entries[n] = cie;
1716 cie_table->num_entries = n + 1;
1717 }
1718
1719 static int
1720 bsearch_fde_cmp (const void *key, const void *element)
1721 {
1722 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1723 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1724
1725 if (seek_pc < fde->initial_location)
1726 return -1;
1727 if (seek_pc < fde->initial_location + fde->address_range)
1728 return 0;
1729 return 1;
1730 }
1731
1732 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1733 inital location associated with it into *PC. */
1734
1735 static struct dwarf2_fde *
1736 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1737 {
1738 struct objfile *objfile;
1739
1740 ALL_OBJFILES (objfile)
1741 {
1742 struct dwarf2_fde_table *fde_table;
1743 struct dwarf2_fde **p_fde;
1744 CORE_ADDR offset;
1745 CORE_ADDR seek_pc;
1746
1747 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1748 if (fde_table == NULL)
1749 {
1750 dwarf2_build_frame_info (objfile);
1751 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1752 }
1753 gdb_assert (fde_table != NULL);
1754
1755 if (fde_table->num_entries == 0)
1756 continue;
1757
1758 gdb_assert (objfile->section_offsets);
1759 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1760
1761 gdb_assert (fde_table->num_entries > 0);
1762 if (*pc < offset + fde_table->entries[0]->initial_location)
1763 continue;
1764
1765 seek_pc = *pc - offset;
1766 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1767 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1768 if (p_fde != NULL)
1769 {
1770 *pc = (*p_fde)->initial_location + offset;
1771 if (out_offset)
1772 *out_offset = offset;
1773 return *p_fde;
1774 }
1775 }
1776 return NULL;
1777 }
1778
1779 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1780 static void
1781 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1782 {
1783 if (fde->address_range == 0)
1784 /* Discard useless FDEs. */
1785 return;
1786
1787 fde_table->num_entries += 1;
1788 fde_table->entries =
1789 xrealloc (fde_table->entries,
1790 fde_table->num_entries * sizeof (fde_table->entries[0]));
1791 fde_table->entries[fde_table->num_entries - 1] = fde;
1792 }
1793
1794 #ifdef CC_HAS_LONG_LONG
1795 #define DW64_CIE_ID 0xffffffffffffffffULL
1796 #else
1797 #define DW64_CIE_ID ~0
1798 #endif
1799
1800 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1801 or any of them. */
1802
1803 enum eh_frame_type
1804 {
1805 EH_CIE_TYPE_ID = 1 << 0,
1806 EH_FDE_TYPE_ID = 1 << 1,
1807 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1808 };
1809
1810 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1811 const gdb_byte *start,
1812 int eh_frame_p,
1813 struct dwarf2_cie_table *cie_table,
1814 struct dwarf2_fde_table *fde_table,
1815 enum eh_frame_type entry_type);
1816
1817 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1818 Return NULL if invalid input, otherwise the next byte to be processed. */
1819
1820 static const gdb_byte *
1821 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1822 int eh_frame_p,
1823 struct dwarf2_cie_table *cie_table,
1824 struct dwarf2_fde_table *fde_table,
1825 enum eh_frame_type entry_type)
1826 {
1827 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1828 const gdb_byte *buf, *end;
1829 LONGEST length;
1830 unsigned int bytes_read;
1831 int dwarf64_p;
1832 ULONGEST cie_id;
1833 ULONGEST cie_pointer;
1834 int64_t sleb128;
1835 uint64_t uleb128;
1836
1837 buf = start;
1838 length = read_initial_length (unit->abfd, buf, &bytes_read);
1839 buf += bytes_read;
1840 end = buf + length;
1841
1842 /* Are we still within the section? */
1843 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1844 return NULL;
1845
1846 if (length == 0)
1847 return end;
1848
1849 /* Distinguish between 32 and 64-bit encoded frame info. */
1850 dwarf64_p = (bytes_read == 12);
1851
1852 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1853 if (eh_frame_p)
1854 cie_id = 0;
1855 else if (dwarf64_p)
1856 cie_id = DW64_CIE_ID;
1857 else
1858 cie_id = DW_CIE_ID;
1859
1860 if (dwarf64_p)
1861 {
1862 cie_pointer = read_8_bytes (unit->abfd, buf);
1863 buf += 8;
1864 }
1865 else
1866 {
1867 cie_pointer = read_4_bytes (unit->abfd, buf);
1868 buf += 4;
1869 }
1870
1871 if (cie_pointer == cie_id)
1872 {
1873 /* This is a CIE. */
1874 struct dwarf2_cie *cie;
1875 char *augmentation;
1876 unsigned int cie_version;
1877
1878 /* Check that a CIE was expected. */
1879 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1880 error (_("Found a CIE when not expecting it."));
1881
1882 /* Record the offset into the .debug_frame section of this CIE. */
1883 cie_pointer = start - unit->dwarf_frame_buffer;
1884
1885 /* Check whether we've already read it. */
1886 if (find_cie (cie_table, cie_pointer))
1887 return end;
1888
1889 cie = (struct dwarf2_cie *)
1890 obstack_alloc (&unit->objfile->objfile_obstack,
1891 sizeof (struct dwarf2_cie));
1892 cie->initial_instructions = NULL;
1893 cie->cie_pointer = cie_pointer;
1894
1895 /* The encoding for FDE's in a normal .debug_frame section
1896 depends on the target address size. */
1897 cie->encoding = DW_EH_PE_absptr;
1898
1899 /* We'll determine the final value later, but we need to
1900 initialize it conservatively. */
1901 cie->signal_frame = 0;
1902
1903 /* Check version number. */
1904 cie_version = read_1_byte (unit->abfd, buf);
1905 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1906 return NULL;
1907 cie->version = cie_version;
1908 buf += 1;
1909
1910 /* Interpret the interesting bits of the augmentation. */
1911 cie->augmentation = augmentation = (char *) buf;
1912 buf += (strlen (augmentation) + 1);
1913
1914 /* Ignore armcc augmentations. We only use them for quirks,
1915 and that doesn't happen until later. */
1916 if (strncmp (augmentation, "armcc", 5) == 0)
1917 augmentation += strlen (augmentation);
1918
1919 /* The GCC 2.x "eh" augmentation has a pointer immediately
1920 following the augmentation string, so it must be handled
1921 first. */
1922 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1923 {
1924 /* Skip. */
1925 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1926 augmentation += 2;
1927 }
1928
1929 if (cie->version >= 4)
1930 {
1931 /* FIXME: check that this is the same as from the CU header. */
1932 cie->addr_size = read_1_byte (unit->abfd, buf);
1933 ++buf;
1934 cie->segment_size = read_1_byte (unit->abfd, buf);
1935 ++buf;
1936 }
1937 else
1938 {
1939 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1940 cie->segment_size = 0;
1941 }
1942 /* Address values in .eh_frame sections are defined to have the
1943 target's pointer size. Watchout: This breaks frame info for
1944 targets with pointer size < address size, unless a .debug_frame
1945 section exists as well. */
1946 if (eh_frame_p)
1947 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1948 else
1949 cie->ptr_size = cie->addr_size;
1950
1951 buf = gdb_read_uleb128 (buf, end, &uleb128);
1952 if (buf == NULL)
1953 return NULL;
1954 cie->code_alignment_factor = uleb128;
1955
1956 buf = gdb_read_sleb128 (buf, end, &sleb128);
1957 if (buf == NULL)
1958 return NULL;
1959 cie->data_alignment_factor = sleb128;
1960
1961 if (cie_version == 1)
1962 {
1963 cie->return_address_register = read_1_byte (unit->abfd, buf);
1964 ++buf;
1965 }
1966 else
1967 {
1968 buf = gdb_read_uleb128 (buf, end, &uleb128);
1969 if (buf == NULL)
1970 return NULL;
1971 cie->return_address_register = uleb128;
1972 }
1973
1974 cie->return_address_register
1975 = dwarf2_frame_adjust_regnum (gdbarch,
1976 cie->return_address_register,
1977 eh_frame_p);
1978
1979 cie->saw_z_augmentation = (*augmentation == 'z');
1980 if (cie->saw_z_augmentation)
1981 {
1982 uint64_t length;
1983
1984 buf = gdb_read_uleb128 (buf, end, &length);
1985 if (buf == NULL)
1986 return NULL;
1987 cie->initial_instructions = buf + length;
1988 augmentation++;
1989 }
1990
1991 while (*augmentation)
1992 {
1993 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1994 if (*augmentation == 'L')
1995 {
1996 /* Skip. */
1997 buf++;
1998 augmentation++;
1999 }
2000
2001 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2002 else if (*augmentation == 'R')
2003 {
2004 cie->encoding = *buf++;
2005 augmentation++;
2006 }
2007
2008 /* "P" indicates a personality routine in the CIE augmentation. */
2009 else if (*augmentation == 'P')
2010 {
2011 /* Skip. Avoid indirection since we throw away the result. */
2012 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2013 read_encoded_value (unit, encoding, cie->ptr_size,
2014 buf, &bytes_read, 0);
2015 buf += bytes_read;
2016 augmentation++;
2017 }
2018
2019 /* "S" indicates a signal frame, such that the return
2020 address must not be decremented to locate the call frame
2021 info for the previous frame; it might even be the first
2022 instruction of a function, so decrementing it would take
2023 us to a different function. */
2024 else if (*augmentation == 'S')
2025 {
2026 cie->signal_frame = 1;
2027 augmentation++;
2028 }
2029
2030 /* Otherwise we have an unknown augmentation. Assume that either
2031 there is no augmentation data, or we saw a 'z' prefix. */
2032 else
2033 {
2034 if (cie->initial_instructions)
2035 buf = cie->initial_instructions;
2036 break;
2037 }
2038 }
2039
2040 cie->initial_instructions = buf;
2041 cie->end = end;
2042 cie->unit = unit;
2043
2044 add_cie (cie_table, cie);
2045 }
2046 else
2047 {
2048 /* This is a FDE. */
2049 struct dwarf2_fde *fde;
2050
2051 /* Check that an FDE was expected. */
2052 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2053 error (_("Found an FDE when not expecting it."));
2054
2055 /* In an .eh_frame section, the CIE pointer is the delta between the
2056 address within the FDE where the CIE pointer is stored and the
2057 address of the CIE. Convert it to an offset into the .eh_frame
2058 section. */
2059 if (eh_frame_p)
2060 {
2061 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2062 cie_pointer -= (dwarf64_p ? 8 : 4);
2063 }
2064
2065 /* In either case, validate the result is still within the section. */
2066 if (cie_pointer >= unit->dwarf_frame_size)
2067 return NULL;
2068
2069 fde = (struct dwarf2_fde *)
2070 obstack_alloc (&unit->objfile->objfile_obstack,
2071 sizeof (struct dwarf2_fde));
2072 fde->cie = find_cie (cie_table, cie_pointer);
2073 if (fde->cie == NULL)
2074 {
2075 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2076 eh_frame_p, cie_table, fde_table,
2077 EH_CIE_TYPE_ID);
2078 fde->cie = find_cie (cie_table, cie_pointer);
2079 }
2080
2081 gdb_assert (fde->cie != NULL);
2082
2083 fde->initial_location =
2084 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2085 buf, &bytes_read, 0);
2086 buf += bytes_read;
2087
2088 fde->address_range =
2089 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2090 fde->cie->ptr_size, buf, &bytes_read, 0);
2091 buf += bytes_read;
2092
2093 /* A 'z' augmentation in the CIE implies the presence of an
2094 augmentation field in the FDE as well. The only thing known
2095 to be in here at present is the LSDA entry for EH. So we
2096 can skip the whole thing. */
2097 if (fde->cie->saw_z_augmentation)
2098 {
2099 uint64_t length;
2100
2101 buf = gdb_read_uleb128 (buf, end, &length);
2102 if (buf == NULL)
2103 return NULL;
2104 buf += length;
2105 if (buf > end)
2106 return NULL;
2107 }
2108
2109 fde->instructions = buf;
2110 fde->end = end;
2111
2112 fde->eh_frame_p = eh_frame_p;
2113
2114 add_fde (fde_table, fde);
2115 }
2116
2117 return end;
2118 }
2119
2120 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2121 expect an FDE or a CIE. */
2122
2123 static const gdb_byte *
2124 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2125 int eh_frame_p,
2126 struct dwarf2_cie_table *cie_table,
2127 struct dwarf2_fde_table *fde_table,
2128 enum eh_frame_type entry_type)
2129 {
2130 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2131 const gdb_byte *ret;
2132 ptrdiff_t start_offset;
2133
2134 while (1)
2135 {
2136 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2137 cie_table, fde_table, entry_type);
2138 if (ret != NULL)
2139 break;
2140
2141 /* We have corrupt input data of some form. */
2142
2143 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2144 and mismatches wrt padding and alignment of debug sections. */
2145 /* Note that there is no requirement in the standard for any
2146 alignment at all in the frame unwind sections. Testing for
2147 alignment before trying to interpret data would be incorrect.
2148
2149 However, GCC traditionally arranged for frame sections to be
2150 sized such that the FDE length and CIE fields happen to be
2151 aligned (in theory, for performance). This, unfortunately,
2152 was done with .align directives, which had the side effect of
2153 forcing the section to be aligned by the linker.
2154
2155 This becomes a problem when you have some other producer that
2156 creates frame sections that are not as strictly aligned. That
2157 produces a hole in the frame info that gets filled by the
2158 linker with zeros.
2159
2160 The GCC behaviour is arguably a bug, but it's effectively now
2161 part of the ABI, so we're now stuck with it, at least at the
2162 object file level. A smart linker may decide, in the process
2163 of compressing duplicate CIE information, that it can rewrite
2164 the entire output section without this extra padding. */
2165
2166 start_offset = start - unit->dwarf_frame_buffer;
2167 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2168 {
2169 start += 4 - (start_offset & 3);
2170 workaround = ALIGN4;
2171 continue;
2172 }
2173 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2174 {
2175 start += 8 - (start_offset & 7);
2176 workaround = ALIGN8;
2177 continue;
2178 }
2179
2180 /* Nothing left to try. Arrange to return as if we've consumed
2181 the entire input section. Hopefully we'll get valid info from
2182 the other of .debug_frame/.eh_frame. */
2183 workaround = FAIL;
2184 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2185 break;
2186 }
2187
2188 switch (workaround)
2189 {
2190 case NONE:
2191 break;
2192
2193 case ALIGN4:
2194 complaint (&symfile_complaints, _("\
2195 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2196 unit->dwarf_frame_section->owner->filename,
2197 unit->dwarf_frame_section->name);
2198 break;
2199
2200 case ALIGN8:
2201 complaint (&symfile_complaints, _("\
2202 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2203 unit->dwarf_frame_section->owner->filename,
2204 unit->dwarf_frame_section->name);
2205 break;
2206
2207 default:
2208 complaint (&symfile_complaints,
2209 _("Corrupt data in %s:%s"),
2210 unit->dwarf_frame_section->owner->filename,
2211 unit->dwarf_frame_section->name);
2212 break;
2213 }
2214
2215 return ret;
2216 }
2217 \f
2218 static int
2219 qsort_fde_cmp (const void *a, const void *b)
2220 {
2221 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2222 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2223
2224 if (aa->initial_location == bb->initial_location)
2225 {
2226 if (aa->address_range != bb->address_range
2227 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2228 /* Linker bug, e.g. gold/10400.
2229 Work around it by keeping stable sort order. */
2230 return (a < b) ? -1 : 1;
2231 else
2232 /* Put eh_frame entries after debug_frame ones. */
2233 return aa->eh_frame_p - bb->eh_frame_p;
2234 }
2235
2236 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2237 }
2238
2239 void
2240 dwarf2_build_frame_info (struct objfile *objfile)
2241 {
2242 struct comp_unit *unit;
2243 const gdb_byte *frame_ptr;
2244 struct dwarf2_cie_table cie_table;
2245 struct dwarf2_fde_table fde_table;
2246 struct dwarf2_fde_table *fde_table2;
2247 volatile struct gdb_exception e;
2248
2249 cie_table.num_entries = 0;
2250 cie_table.entries = NULL;
2251
2252 fde_table.num_entries = 0;
2253 fde_table.entries = NULL;
2254
2255 /* Build a minimal decoding of the DWARF2 compilation unit. */
2256 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2257 sizeof (struct comp_unit));
2258 unit->abfd = objfile->obfd;
2259 unit->objfile = objfile;
2260 unit->dbase = 0;
2261 unit->tbase = 0;
2262
2263 if (objfile->separate_debug_objfile_backlink == NULL)
2264 {
2265 /* Do not read .eh_frame from separate file as they must be also
2266 present in the main file. */
2267 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2268 &unit->dwarf_frame_section,
2269 &unit->dwarf_frame_buffer,
2270 &unit->dwarf_frame_size);
2271 if (unit->dwarf_frame_size)
2272 {
2273 asection *got, *txt;
2274
2275 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2276 that is used for the i386/amd64 target, which currently is
2277 the only target in GCC that supports/uses the
2278 DW_EH_PE_datarel encoding. */
2279 got = bfd_get_section_by_name (unit->abfd, ".got");
2280 if (got)
2281 unit->dbase = got->vma;
2282
2283 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2284 so far. */
2285 txt = bfd_get_section_by_name (unit->abfd, ".text");
2286 if (txt)
2287 unit->tbase = txt->vma;
2288
2289 TRY_CATCH (e, RETURN_MASK_ERROR)
2290 {
2291 frame_ptr = unit->dwarf_frame_buffer;
2292 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2293 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2294 &cie_table, &fde_table,
2295 EH_CIE_OR_FDE_TYPE_ID);
2296 }
2297
2298 if (e.reason < 0)
2299 {
2300 warning (_("skipping .eh_frame info of %s: %s"),
2301 objfile->name, e.message);
2302
2303 if (fde_table.num_entries != 0)
2304 {
2305 xfree (fde_table.entries);
2306 fde_table.entries = NULL;
2307 fde_table.num_entries = 0;
2308 }
2309 /* The cie_table is discarded by the next if. */
2310 }
2311
2312 if (cie_table.num_entries != 0)
2313 {
2314 /* Reinit cie_table: debug_frame has different CIEs. */
2315 xfree (cie_table.entries);
2316 cie_table.num_entries = 0;
2317 cie_table.entries = NULL;
2318 }
2319 }
2320 }
2321
2322 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2323 &unit->dwarf_frame_section,
2324 &unit->dwarf_frame_buffer,
2325 &unit->dwarf_frame_size);
2326 if (unit->dwarf_frame_size)
2327 {
2328 int num_old_fde_entries = fde_table.num_entries;
2329
2330 TRY_CATCH (e, RETURN_MASK_ERROR)
2331 {
2332 frame_ptr = unit->dwarf_frame_buffer;
2333 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2334 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2335 &cie_table, &fde_table,
2336 EH_CIE_OR_FDE_TYPE_ID);
2337 }
2338 if (e.reason < 0)
2339 {
2340 warning (_("skipping .debug_frame info of %s: %s"),
2341 objfile->name, e.message);
2342
2343 if (fde_table.num_entries != 0)
2344 {
2345 fde_table.num_entries = num_old_fde_entries;
2346 if (num_old_fde_entries == 0)
2347 {
2348 xfree (fde_table.entries);
2349 fde_table.entries = NULL;
2350 }
2351 else
2352 {
2353 fde_table.entries = xrealloc (fde_table.entries,
2354 fde_table.num_entries *
2355 sizeof (fde_table.entries[0]));
2356 }
2357 }
2358 fde_table.num_entries = num_old_fde_entries;
2359 /* The cie_table is discarded by the next if. */
2360 }
2361 }
2362
2363 /* Discard the cie_table, it is no longer needed. */
2364 if (cie_table.num_entries != 0)
2365 {
2366 xfree (cie_table.entries);
2367 cie_table.entries = NULL; /* Paranoia. */
2368 cie_table.num_entries = 0; /* Paranoia. */
2369 }
2370
2371 /* Copy fde_table to obstack: it is needed at runtime. */
2372 fde_table2 = (struct dwarf2_fde_table *)
2373 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2374
2375 if (fde_table.num_entries == 0)
2376 {
2377 fde_table2->entries = NULL;
2378 fde_table2->num_entries = 0;
2379 }
2380 else
2381 {
2382 struct dwarf2_fde *fde_prev = NULL;
2383 struct dwarf2_fde *first_non_zero_fde = NULL;
2384 int i;
2385
2386 /* Prepare FDE table for lookups. */
2387 qsort (fde_table.entries, fde_table.num_entries,
2388 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2389
2390 /* Check for leftovers from --gc-sections. The GNU linker sets
2391 the relevant symbols to zero, but doesn't zero the FDE *end*
2392 ranges because there's no relocation there. It's (offset,
2393 length), not (start, end). On targets where address zero is
2394 just another valid address this can be a problem, since the
2395 FDEs appear to be non-empty in the output --- we could pick
2396 out the wrong FDE. To work around this, when overlaps are
2397 detected, we prefer FDEs that do not start at zero.
2398
2399 Start by finding the first FDE with non-zero start. Below
2400 we'll discard all FDEs that start at zero and overlap this
2401 one. */
2402 for (i = 0; i < fde_table.num_entries; i++)
2403 {
2404 struct dwarf2_fde *fde = fde_table.entries[i];
2405
2406 if (fde->initial_location != 0)
2407 {
2408 first_non_zero_fde = fde;
2409 break;
2410 }
2411 }
2412
2413 /* Since we'll be doing bsearch, squeeze out identical (except
2414 for eh_frame_p) fde entries so bsearch result is predictable.
2415 Also discard leftovers from --gc-sections. */
2416 fde_table2->num_entries = 0;
2417 for (i = 0; i < fde_table.num_entries; i++)
2418 {
2419 struct dwarf2_fde *fde = fde_table.entries[i];
2420
2421 if (fde->initial_location == 0
2422 && first_non_zero_fde != NULL
2423 && (first_non_zero_fde->initial_location
2424 < fde->initial_location + fde->address_range))
2425 continue;
2426
2427 if (fde_prev != NULL
2428 && fde_prev->initial_location == fde->initial_location)
2429 continue;
2430
2431 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2432 sizeof (fde_table.entries[0]));
2433 ++fde_table2->num_entries;
2434 fde_prev = fde;
2435 }
2436 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2437
2438 /* Discard the original fde_table. */
2439 xfree (fde_table.entries);
2440 }
2441
2442 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2443 }
2444
2445 /* Provide a prototype to silence -Wmissing-prototypes. */
2446 void _initialize_dwarf2_frame (void);
2447
2448 void
2449 _initialize_dwarf2_frame (void)
2450 {
2451 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2452 dwarf2_frame_objfile_data = register_objfile_data ();
2453 }
This page took 0.111427 seconds and 4 git commands to generate.