Rename "read_reg" into "read_addr_from_reg" in struct dwarf_expr_context_funcs
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 const gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_addr_from_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_addr_from_reg and the associated interfaces
305 should deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
310
311 static struct value *
312 get_reg_value (void *baton, struct type *type, int reg)
313 {
314 struct frame_info *this_frame = (struct frame_info *) baton;
315 struct gdbarch *gdbarch = get_frame_arch (this_frame);
316 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
317
318 return value_from_register (type, regnum, this_frame);
319 }
320
321 static void
322 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
323 {
324 read_memory (addr, buf, len);
325 }
326
327 /* Execute the required actions for both the DW_CFA_restore and
328 DW_CFA_restore_extended instructions. */
329 static void
330 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
331 struct dwarf2_frame_state *fs, int eh_frame_p)
332 {
333 ULONGEST reg;
334
335 gdb_assert (fs->initial.reg);
336 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
337 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
338
339 /* Check if this register was explicitly initialized in the
340 CIE initial instructions. If not, default the rule to
341 UNSPECIFIED. */
342 if (reg < fs->initial.num_regs)
343 fs->regs.reg[reg] = fs->initial.reg[reg];
344 else
345 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
346
347 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
348 complaint (&symfile_complaints, _("\
349 incomplete CFI data; DW_CFA_restore unspecified\n\
350 register %s (#%d) at %s"),
351 gdbarch_register_name
352 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
353 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
354 paddress (gdbarch, fs->pc));
355 }
356
357 /* Virtual method table for execute_stack_op below. */
358
359 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
360 {
361 read_addr_from_reg,
362 get_reg_value,
363 read_mem,
364 ctx_no_get_frame_base,
365 ctx_no_get_frame_cfa,
366 ctx_no_get_frame_pc,
367 ctx_no_get_tls_address,
368 ctx_no_dwarf_call,
369 ctx_no_get_base_type,
370 ctx_no_push_dwarf_reg_entry_value,
371 ctx_no_get_addr_index
372 };
373
374 static CORE_ADDR
375 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
376 CORE_ADDR offset, struct frame_info *this_frame,
377 CORE_ADDR initial, int initial_in_stack_memory)
378 {
379 struct dwarf_expr_context *ctx;
380 CORE_ADDR result;
381 struct cleanup *old_chain;
382
383 ctx = new_dwarf_expr_context ();
384 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
385 make_cleanup_value_free_to_mark (value_mark ());
386
387 ctx->gdbarch = get_frame_arch (this_frame);
388 ctx->addr_size = addr_size;
389 ctx->ref_addr_size = -1;
390 ctx->offset = offset;
391 ctx->baton = this_frame;
392 ctx->funcs = &dwarf2_frame_ctx_funcs;
393
394 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
395 dwarf_expr_eval (ctx, exp, len);
396
397 if (ctx->location == DWARF_VALUE_MEMORY)
398 result = dwarf_expr_fetch_address (ctx, 0);
399 else if (ctx->location == DWARF_VALUE_REGISTER)
400 result = read_addr_from_reg (this_frame,
401 value_as_long (dwarf_expr_fetch (ctx, 0)));
402 else
403 {
404 /* This is actually invalid DWARF, but if we ever do run across
405 it somehow, we might as well support it. So, instead, report
406 it as unimplemented. */
407 error (_("\
408 Not implemented: computing unwound register using explicit value operator"));
409 }
410
411 do_cleanups (old_chain);
412
413 return result;
414 }
415 \f
416
417 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
418 PC. Modify FS state accordingly. Return current INSN_PTR where the
419 execution has stopped, one can resume it on the next call. */
420
421 static const gdb_byte *
422 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
423 const gdb_byte *insn_end, struct gdbarch *gdbarch,
424 CORE_ADDR pc, struct dwarf2_frame_state *fs)
425 {
426 int eh_frame_p = fde->eh_frame_p;
427 unsigned int bytes_read;
428 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
429
430 while (insn_ptr < insn_end && fs->pc <= pc)
431 {
432 gdb_byte insn = *insn_ptr++;
433 uint64_t utmp, reg;
434 int64_t offset;
435
436 if ((insn & 0xc0) == DW_CFA_advance_loc)
437 fs->pc += (insn & 0x3f) * fs->code_align;
438 else if ((insn & 0xc0) == DW_CFA_offset)
439 {
440 reg = insn & 0x3f;
441 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
442 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
443 offset = utmp * fs->data_align;
444 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
445 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
446 fs->regs.reg[reg].loc.offset = offset;
447 }
448 else if ((insn & 0xc0) == DW_CFA_restore)
449 {
450 reg = insn & 0x3f;
451 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
452 }
453 else
454 {
455 switch (insn)
456 {
457 case DW_CFA_set_loc:
458 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
459 fde->cie->ptr_size, insn_ptr,
460 &bytes_read, fde->initial_location);
461 /* Apply the objfile offset for relocatable objects. */
462 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
463 SECT_OFF_TEXT (fde->cie->unit->objfile));
464 insn_ptr += bytes_read;
465 break;
466
467 case DW_CFA_advance_loc1:
468 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
469 fs->pc += utmp * fs->code_align;
470 insn_ptr++;
471 break;
472 case DW_CFA_advance_loc2:
473 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 2;
476 break;
477 case DW_CFA_advance_loc4:
478 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
479 fs->pc += utmp * fs->code_align;
480 insn_ptr += 4;
481 break;
482
483 case DW_CFA_offset_extended:
484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
485 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
486 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
487 offset = utmp * fs->data_align;
488 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
489 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
490 fs->regs.reg[reg].loc.offset = offset;
491 break;
492
493 case DW_CFA_restore_extended:
494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
495 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
496 break;
497
498 case DW_CFA_undefined:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
502 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
503 break;
504
505 case DW_CFA_same_value:
506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
507 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
510 break;
511
512 case DW_CFA_register:
513 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
514 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
515 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
516 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
517 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
518 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
519 fs->regs.reg[reg].loc.reg = utmp;
520 break;
521
522 case DW_CFA_remember_state:
523 {
524 struct dwarf2_frame_state_reg_info *new_rs;
525
526 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
527 *new_rs = fs->regs;
528 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
529 fs->regs.prev = new_rs;
530 }
531 break;
532
533 case DW_CFA_restore_state:
534 {
535 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
536
537 if (old_rs == NULL)
538 {
539 complaint (&symfile_complaints, _("\
540 bad CFI data; mismatched DW_CFA_restore_state at %s"),
541 paddress (gdbarch, fs->pc));
542 }
543 else
544 {
545 xfree (fs->regs.reg);
546 fs->regs = *old_rs;
547 xfree (old_rs);
548 }
549 }
550 break;
551
552 case DW_CFA_def_cfa:
553 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
554 fs->regs.cfa_reg = reg;
555 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
556
557 if (fs->armcc_cfa_offsets_sf)
558 utmp *= fs->data_align;
559
560 fs->regs.cfa_offset = utmp;
561 fs->regs.cfa_how = CFA_REG_OFFSET;
562 break;
563
564 case DW_CFA_def_cfa_register:
565 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
566 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
567 eh_frame_p);
568 fs->regs.cfa_how = CFA_REG_OFFSET;
569 break;
570
571 case DW_CFA_def_cfa_offset:
572 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
573
574 if (fs->armcc_cfa_offsets_sf)
575 utmp *= fs->data_align;
576
577 fs->regs.cfa_offset = utmp;
578 /* cfa_how deliberately not set. */
579 break;
580
581 case DW_CFA_nop:
582 break;
583
584 case DW_CFA_def_cfa_expression:
585 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
586 fs->regs.cfa_exp_len = utmp;
587 fs->regs.cfa_exp = insn_ptr;
588 fs->regs.cfa_how = CFA_EXP;
589 insn_ptr += fs->regs.cfa_exp_len;
590 break;
591
592 case DW_CFA_expression:
593 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
594 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
595 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
596 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
597 fs->regs.reg[reg].loc.exp = insn_ptr;
598 fs->regs.reg[reg].exp_len = utmp;
599 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
600 insn_ptr += utmp;
601 break;
602
603 case DW_CFA_offset_extended_sf:
604 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
605 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
606 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
607 offset *= fs->data_align;
608 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
612
613 case DW_CFA_val_offset:
614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
616 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
617 offset = utmp * fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
621
622 case DW_CFA_val_offset_sf:
623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
625 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
626 offset *= fs->data_align;
627 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
628 fs->regs.reg[reg].loc.offset = offset;
629 break;
630
631 case DW_CFA_val_expression:
632 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
633 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
634 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
635 fs->regs.reg[reg].loc.exp = insn_ptr;
636 fs->regs.reg[reg].exp_len = utmp;
637 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
638 insn_ptr += utmp;
639 break;
640
641 case DW_CFA_def_cfa_sf:
642 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
643 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
644 eh_frame_p);
645 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
646 fs->regs.cfa_offset = offset * fs->data_align;
647 fs->regs.cfa_how = CFA_REG_OFFSET;
648 break;
649
650 case DW_CFA_def_cfa_offset_sf:
651 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
652 fs->regs.cfa_offset = offset * fs->data_align;
653 /* cfa_how deliberately not set. */
654 break;
655
656 case DW_CFA_GNU_window_save:
657 /* This is SPARC-specific code, and contains hard-coded
658 constants for the register numbering scheme used by
659 GCC. Rather than having a architecture-specific
660 operation that's only ever used by a single
661 architecture, we provide the implementation here.
662 Incidentally that's what GCC does too in its
663 unwinder. */
664 {
665 int size = register_size (gdbarch, 0);
666
667 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
668 for (reg = 8; reg < 16; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
671 fs->regs.reg[reg].loc.reg = reg + 16;
672 }
673 for (reg = 16; reg < 32; reg++)
674 {
675 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
676 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
677 }
678 }
679 break;
680
681 case DW_CFA_GNU_args_size:
682 /* Ignored. */
683 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
684 break;
685
686 case DW_CFA_GNU_negative_offset_extended:
687 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
688 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
689 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
690 offset = utmp * fs->data_align;
691 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
692 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
693 fs->regs.reg[reg].loc.offset = -offset;
694 break;
695
696 default:
697 internal_error (__FILE__, __LINE__,
698 _("Unknown CFI encountered."));
699 }
700 }
701 }
702
703 if (fs->initial.reg == NULL)
704 {
705 /* Don't allow remember/restore between CIE and FDE programs. */
706 dwarf2_frame_state_free_regs (fs->regs.prev);
707 fs->regs.prev = NULL;
708 }
709
710 return insn_ptr;
711 }
712 \f
713
714 /* Architecture-specific operations. */
715
716 /* Per-architecture data key. */
717 static struct gdbarch_data *dwarf2_frame_data;
718
719 struct dwarf2_frame_ops
720 {
721 /* Pre-initialize the register state REG for register REGNUM. */
722 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
723 struct frame_info *);
724
725 /* Check whether the THIS_FRAME is a signal trampoline. */
726 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
727
728 /* Convert .eh_frame register number to DWARF register number, or
729 adjust .debug_frame register number. */
730 int (*adjust_regnum) (struct gdbarch *, int, int);
731 };
732
733 /* Default architecture-specific register state initialization
734 function. */
735
736 static void
737 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
738 struct dwarf2_frame_state_reg *reg,
739 struct frame_info *this_frame)
740 {
741 /* If we have a register that acts as a program counter, mark it as
742 a destination for the return address. If we have a register that
743 serves as the stack pointer, arrange for it to be filled with the
744 call frame address (CFA). The other registers are marked as
745 unspecified.
746
747 We copy the return address to the program counter, since many
748 parts in GDB assume that it is possible to get the return address
749 by unwinding the program counter register. However, on ISA's
750 with a dedicated return address register, the CFI usually only
751 contains information to unwind that return address register.
752
753 The reason we're treating the stack pointer special here is
754 because in many cases GCC doesn't emit CFI for the stack pointer
755 and implicitly assumes that it is equal to the CFA. This makes
756 some sense since the DWARF specification (version 3, draft 8,
757 p. 102) says that:
758
759 "Typically, the CFA is defined to be the value of the stack
760 pointer at the call site in the previous frame (which may be
761 different from its value on entry to the current frame)."
762
763 However, this isn't true for all platforms supported by GCC
764 (e.g. IBM S/390 and zSeries). Those architectures should provide
765 their own architecture-specific initialization function. */
766
767 if (regnum == gdbarch_pc_regnum (gdbarch))
768 reg->how = DWARF2_FRAME_REG_RA;
769 else if (regnum == gdbarch_sp_regnum (gdbarch))
770 reg->how = DWARF2_FRAME_REG_CFA;
771 }
772
773 /* Return a default for the architecture-specific operations. */
774
775 static void *
776 dwarf2_frame_init (struct obstack *obstack)
777 {
778 struct dwarf2_frame_ops *ops;
779
780 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
781 ops->init_reg = dwarf2_frame_default_init_reg;
782 return ops;
783 }
784
785 /* Set the architecture-specific register state initialization
786 function for GDBARCH to INIT_REG. */
787
788 void
789 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
790 void (*init_reg) (struct gdbarch *, int,
791 struct dwarf2_frame_state_reg *,
792 struct frame_info *))
793 {
794 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
795
796 ops->init_reg = init_reg;
797 }
798
799 /* Pre-initialize the register state REG for register REGNUM. */
800
801 static void
802 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
803 struct dwarf2_frame_state_reg *reg,
804 struct frame_info *this_frame)
805 {
806 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807
808 ops->init_reg (gdbarch, regnum, reg, this_frame);
809 }
810
811 /* Set the architecture-specific signal trampoline recognition
812 function for GDBARCH to SIGNAL_FRAME_P. */
813
814 void
815 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
816 int (*signal_frame_p) (struct gdbarch *,
817 struct frame_info *))
818 {
819 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
820
821 ops->signal_frame_p = signal_frame_p;
822 }
823
824 /* Query the architecture-specific signal frame recognizer for
825 THIS_FRAME. */
826
827 static int
828 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
829 struct frame_info *this_frame)
830 {
831 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
832
833 if (ops->signal_frame_p == NULL)
834 return 0;
835 return ops->signal_frame_p (gdbarch, this_frame);
836 }
837
838 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
839 register numbers. */
840
841 void
842 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
843 int (*adjust_regnum) (struct gdbarch *,
844 int, int))
845 {
846 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
847
848 ops->adjust_regnum = adjust_regnum;
849 }
850
851 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
852 register. */
853
854 static int
855 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
856 int regnum, int eh_frame_p)
857 {
858 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
859
860 if (ops->adjust_regnum == NULL)
861 return regnum;
862 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
863 }
864
865 static void
866 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
867 struct dwarf2_fde *fde)
868 {
869 struct symtab *s;
870
871 s = find_pc_symtab (fs->pc);
872 if (s == NULL)
873 return;
874
875 if (producer_is_realview (s->producer))
876 {
877 if (fde->cie->version == 1)
878 fs->armcc_cfa_offsets_sf = 1;
879
880 if (fde->cie->version == 1)
881 fs->armcc_cfa_offsets_reversed = 1;
882
883 /* The reversed offset problem is present in some compilers
884 using DWARF3, but it was eventually fixed. Check the ARM
885 defined augmentations, which are in the format "armcc" followed
886 by a list of one-character options. The "+" option means
887 this problem is fixed (no quirk needed). If the armcc
888 augmentation is missing, the quirk is needed. */
889 if (fde->cie->version == 3
890 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
891 || strchr (fde->cie->augmentation + 5, '+') == NULL))
892 fs->armcc_cfa_offsets_reversed = 1;
893
894 return;
895 }
896 }
897 \f
898
899 void
900 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
901 struct gdbarch *gdbarch,
902 CORE_ADDR pc,
903 struct dwarf2_per_cu_data *data)
904 {
905 struct dwarf2_fde *fde;
906 CORE_ADDR text_offset;
907 struct dwarf2_frame_state fs;
908 int addr_size;
909
910 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
911
912 fs.pc = pc;
913
914 /* Find the correct FDE. */
915 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
916 if (fde == NULL)
917 error (_("Could not compute CFA; needed to translate this expression"));
918
919 /* Extract any interesting information from the CIE. */
920 fs.data_align = fde->cie->data_alignment_factor;
921 fs.code_align = fde->cie->code_alignment_factor;
922 fs.retaddr_column = fde->cie->return_address_register;
923 addr_size = fde->cie->addr_size;
924
925 /* Check for "quirks" - known bugs in producers. */
926 dwarf2_frame_find_quirks (&fs, fde);
927
928 /* First decode all the insns in the CIE. */
929 execute_cfa_program (fde, fde->cie->initial_instructions,
930 fde->cie->end, gdbarch, pc, &fs);
931
932 /* Save the initialized register set. */
933 fs.initial = fs.regs;
934 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
935
936 /* Then decode the insns in the FDE up to our target PC. */
937 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
938
939 /* Calculate the CFA. */
940 switch (fs.regs.cfa_how)
941 {
942 case CFA_REG_OFFSET:
943 {
944 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
945
946 if (regnum == -1)
947 error (_("Unable to access DWARF register number %d"),
948 (int) fs.regs.cfa_reg); /* FIXME */
949 ax_reg (expr, regnum);
950
951 if (fs.regs.cfa_offset != 0)
952 {
953 if (fs.armcc_cfa_offsets_reversed)
954 ax_const_l (expr, -fs.regs.cfa_offset);
955 else
956 ax_const_l (expr, fs.regs.cfa_offset);
957 ax_simple (expr, aop_add);
958 }
959 }
960 break;
961
962 case CFA_EXP:
963 ax_const_l (expr, text_offset);
964 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
965 fs.regs.cfa_exp,
966 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
967 data);
968 break;
969
970 default:
971 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
972 }
973 }
974
975 \f
976 struct dwarf2_frame_cache
977 {
978 /* DWARF Call Frame Address. */
979 CORE_ADDR cfa;
980
981 /* Set if the return address column was marked as unavailable
982 (required non-collected memory or registers to compute). */
983 int unavailable_retaddr;
984
985 /* Set if the return address column was marked as undefined. */
986 int undefined_retaddr;
987
988 /* Saved registers, indexed by GDB register number, not by DWARF
989 register number. */
990 struct dwarf2_frame_state_reg *reg;
991
992 /* Return address register. */
993 struct dwarf2_frame_state_reg retaddr_reg;
994
995 /* Target address size in bytes. */
996 int addr_size;
997
998 /* The .text offset. */
999 CORE_ADDR text_offset;
1000
1001 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1002 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1003 involved. Non-bottom frames of a virtual tail call frames chain use
1004 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1005 them. */
1006 void *tailcall_cache;
1007 };
1008
1009 /* A cleanup that sets a pointer to NULL. */
1010
1011 static void
1012 clear_pointer_cleanup (void *arg)
1013 {
1014 void **ptr = arg;
1015
1016 *ptr = NULL;
1017 }
1018
1019 static struct dwarf2_frame_cache *
1020 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1021 {
1022 struct cleanup *reset_cache_cleanup, *old_chain;
1023 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1024 const int num_regs = gdbarch_num_regs (gdbarch)
1025 + gdbarch_num_pseudo_regs (gdbarch);
1026 struct dwarf2_frame_cache *cache;
1027 struct dwarf2_frame_state *fs;
1028 struct dwarf2_fde *fde;
1029 volatile struct gdb_exception ex;
1030 CORE_ADDR entry_pc;
1031 LONGEST entry_cfa_sp_offset;
1032 int entry_cfa_sp_offset_p = 0;
1033 const gdb_byte *instr;
1034
1035 if (*this_cache)
1036 return *this_cache;
1037
1038 /* Allocate a new cache. */
1039 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1040 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1041 *this_cache = cache;
1042 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1043
1044 /* Allocate and initialize the frame state. */
1045 fs = XZALLOC (struct dwarf2_frame_state);
1046 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1047
1048 /* Unwind the PC.
1049
1050 Note that if the next frame is never supposed to return (i.e. a call
1051 to abort), the compiler might optimize away the instruction at
1052 its return address. As a result the return address will
1053 point at some random instruction, and the CFI for that
1054 instruction is probably worthless to us. GCC's unwinder solves
1055 this problem by substracting 1 from the return address to get an
1056 address in the middle of a presumed call instruction (or the
1057 instruction in the associated delay slot). This should only be
1058 done for "normal" frames and not for resume-type frames (signal
1059 handlers, sentinel frames, dummy frames). The function
1060 get_frame_address_in_block does just this. It's not clear how
1061 reliable the method is though; there is the potential for the
1062 register state pre-call being different to that on return. */
1063 fs->pc = get_frame_address_in_block (this_frame);
1064
1065 /* Find the correct FDE. */
1066 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1067 gdb_assert (fde != NULL);
1068
1069 /* Extract any interesting information from the CIE. */
1070 fs->data_align = fde->cie->data_alignment_factor;
1071 fs->code_align = fde->cie->code_alignment_factor;
1072 fs->retaddr_column = fde->cie->return_address_register;
1073 cache->addr_size = fde->cie->addr_size;
1074
1075 /* Check for "quirks" - known bugs in producers. */
1076 dwarf2_frame_find_quirks (fs, fde);
1077
1078 /* First decode all the insns in the CIE. */
1079 execute_cfa_program (fde, fde->cie->initial_instructions,
1080 fde->cie->end, gdbarch,
1081 get_frame_address_in_block (this_frame), fs);
1082
1083 /* Save the initialized register set. */
1084 fs->initial = fs->regs;
1085 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1086
1087 if (get_frame_func_if_available (this_frame, &entry_pc))
1088 {
1089 /* Decode the insns in the FDE up to the entry PC. */
1090 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1091 entry_pc, fs);
1092
1093 if (fs->regs.cfa_how == CFA_REG_OFFSET
1094 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1095 == gdbarch_sp_regnum (gdbarch)))
1096 {
1097 entry_cfa_sp_offset = fs->regs.cfa_offset;
1098 entry_cfa_sp_offset_p = 1;
1099 }
1100 }
1101 else
1102 instr = fde->instructions;
1103
1104 /* Then decode the insns in the FDE up to our target PC. */
1105 execute_cfa_program (fde, instr, fde->end, gdbarch,
1106 get_frame_address_in_block (this_frame), fs);
1107
1108 TRY_CATCH (ex, RETURN_MASK_ERROR)
1109 {
1110 /* Calculate the CFA. */
1111 switch (fs->regs.cfa_how)
1112 {
1113 case CFA_REG_OFFSET:
1114 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1115 if (fs->armcc_cfa_offsets_reversed)
1116 cache->cfa -= fs->regs.cfa_offset;
1117 else
1118 cache->cfa += fs->regs.cfa_offset;
1119 break;
1120
1121 case CFA_EXP:
1122 cache->cfa =
1123 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1124 cache->addr_size, cache->text_offset,
1125 this_frame, 0, 0);
1126 break;
1127
1128 default:
1129 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1130 }
1131 }
1132 if (ex.reason < 0)
1133 {
1134 if (ex.error == NOT_AVAILABLE_ERROR)
1135 {
1136 cache->unavailable_retaddr = 1;
1137 do_cleanups (old_chain);
1138 discard_cleanups (reset_cache_cleanup);
1139 return cache;
1140 }
1141
1142 throw_exception (ex);
1143 }
1144
1145 /* Initialize the register state. */
1146 {
1147 int regnum;
1148
1149 for (regnum = 0; regnum < num_regs; regnum++)
1150 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1151 }
1152
1153 /* Go through the DWARF2 CFI generated table and save its register
1154 location information in the cache. Note that we don't skip the
1155 return address column; it's perfectly all right for it to
1156 correspond to a real register. If it doesn't correspond to a
1157 real register, or if we shouldn't treat it as such,
1158 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1159 the range [0, gdbarch_num_regs). */
1160 {
1161 int column; /* CFI speak for "register number". */
1162
1163 for (column = 0; column < fs->regs.num_regs; column++)
1164 {
1165 /* Use the GDB register number as the destination index. */
1166 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1167
1168 /* If there's no corresponding GDB register, ignore it. */
1169 if (regnum < 0 || regnum >= num_regs)
1170 continue;
1171
1172 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1173 of all debug info registers. If it doesn't, complain (but
1174 not too loudly). It turns out that GCC assumes that an
1175 unspecified register implies "same value" when CFI (draft
1176 7) specifies nothing at all. Such a register could equally
1177 be interpreted as "undefined". Also note that this check
1178 isn't sufficient; it only checks that all registers in the
1179 range [0 .. max column] are specified, and won't detect
1180 problems when a debug info register falls outside of the
1181 table. We need a way of iterating through all the valid
1182 DWARF2 register numbers. */
1183 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1184 {
1185 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1186 complaint (&symfile_complaints, _("\
1187 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1188 gdbarch_register_name (gdbarch, regnum),
1189 paddress (gdbarch, fs->pc));
1190 }
1191 else
1192 cache->reg[regnum] = fs->regs.reg[column];
1193 }
1194 }
1195
1196 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1197 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1198 {
1199 int regnum;
1200
1201 for (regnum = 0; regnum < num_regs; regnum++)
1202 {
1203 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1204 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1205 {
1206 struct dwarf2_frame_state_reg *retaddr_reg =
1207 &fs->regs.reg[fs->retaddr_column];
1208
1209 /* It seems rather bizarre to specify an "empty" column as
1210 the return adress column. However, this is exactly
1211 what GCC does on some targets. It turns out that GCC
1212 assumes that the return address can be found in the
1213 register corresponding to the return address column.
1214 Incidentally, that's how we should treat a return
1215 address column specifying "same value" too. */
1216 if (fs->retaddr_column < fs->regs.num_regs
1217 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1218 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1219 {
1220 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1221 cache->reg[regnum] = *retaddr_reg;
1222 else
1223 cache->retaddr_reg = *retaddr_reg;
1224 }
1225 else
1226 {
1227 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1228 {
1229 cache->reg[regnum].loc.reg = fs->retaddr_column;
1230 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1231 }
1232 else
1233 {
1234 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1235 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1236 }
1237 }
1238 }
1239 }
1240 }
1241
1242 if (fs->retaddr_column < fs->regs.num_regs
1243 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1244 cache->undefined_retaddr = 1;
1245
1246 do_cleanups (old_chain);
1247
1248 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1249 starting at THIS_FRAME. */
1250 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1251 (entry_cfa_sp_offset_p
1252 ? &entry_cfa_sp_offset : NULL));
1253
1254 discard_cleanups (reset_cache_cleanup);
1255 return cache;
1256 }
1257
1258 static enum unwind_stop_reason
1259 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1260 void **this_cache)
1261 {
1262 struct dwarf2_frame_cache *cache
1263 = dwarf2_frame_cache (this_frame, this_cache);
1264
1265 if (cache->unavailable_retaddr)
1266 return UNWIND_UNAVAILABLE;
1267
1268 if (cache->undefined_retaddr)
1269 return UNWIND_OUTERMOST;
1270
1271 return UNWIND_NO_REASON;
1272 }
1273
1274 static void
1275 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1276 struct frame_id *this_id)
1277 {
1278 struct dwarf2_frame_cache *cache =
1279 dwarf2_frame_cache (this_frame, this_cache);
1280
1281 if (cache->unavailable_retaddr)
1282 return;
1283
1284 if (cache->undefined_retaddr)
1285 return;
1286
1287 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1288 }
1289
1290 static struct value *
1291 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1292 int regnum)
1293 {
1294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1295 struct dwarf2_frame_cache *cache =
1296 dwarf2_frame_cache (this_frame, this_cache);
1297 CORE_ADDR addr;
1298 int realnum;
1299
1300 /* Non-bottom frames of a virtual tail call frames chain use
1301 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1302 them. If dwarf2_tailcall_prev_register_first does not have specific value
1303 unwind the register, tail call frames are assumed to have the register set
1304 of the top caller. */
1305 if (cache->tailcall_cache)
1306 {
1307 struct value *val;
1308
1309 val = dwarf2_tailcall_prev_register_first (this_frame,
1310 &cache->tailcall_cache,
1311 regnum);
1312 if (val)
1313 return val;
1314 }
1315
1316 switch (cache->reg[regnum].how)
1317 {
1318 case DWARF2_FRAME_REG_UNDEFINED:
1319 /* If CFI explicitly specified that the value isn't defined,
1320 mark it as optimized away; the value isn't available. */
1321 return frame_unwind_got_optimized (this_frame, regnum);
1322
1323 case DWARF2_FRAME_REG_SAVED_OFFSET:
1324 addr = cache->cfa + cache->reg[regnum].loc.offset;
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
1326
1327 case DWARF2_FRAME_REG_SAVED_REG:
1328 realnum
1329 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1330 return frame_unwind_got_register (this_frame, regnum, realnum);
1331
1332 case DWARF2_FRAME_REG_SAVED_EXP:
1333 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1334 cache->reg[regnum].exp_len,
1335 cache->addr_size, cache->text_offset,
1336 this_frame, cache->cfa, 1);
1337 return frame_unwind_got_memory (this_frame, regnum, addr);
1338
1339 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_constant (this_frame, regnum, addr);
1342
1343 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1344 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1345 cache->reg[regnum].exp_len,
1346 cache->addr_size, cache->text_offset,
1347 this_frame, cache->cfa, 1);
1348 return frame_unwind_got_constant (this_frame, regnum, addr);
1349
1350 case DWARF2_FRAME_REG_UNSPECIFIED:
1351 /* GCC, in its infinite wisdom decided to not provide unwind
1352 information for registers that are "same value". Since
1353 DWARF2 (3 draft 7) doesn't define such behavior, said
1354 registers are actually undefined (which is different to CFI
1355 "undefined"). Code above issues a complaint about this.
1356 Here just fudge the books, assume GCC, and that the value is
1357 more inner on the stack. */
1358 return frame_unwind_got_register (this_frame, regnum, regnum);
1359
1360 case DWARF2_FRAME_REG_SAME_VALUE:
1361 return frame_unwind_got_register (this_frame, regnum, regnum);
1362
1363 case DWARF2_FRAME_REG_CFA:
1364 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1365
1366 case DWARF2_FRAME_REG_CFA_OFFSET:
1367 addr = cache->cfa + cache->reg[regnum].loc.offset;
1368 return frame_unwind_got_address (this_frame, regnum, addr);
1369
1370 case DWARF2_FRAME_REG_RA_OFFSET:
1371 addr = cache->reg[regnum].loc.offset;
1372 regnum = gdbarch_dwarf2_reg_to_regnum
1373 (gdbarch, cache->retaddr_reg.loc.reg);
1374 addr += get_frame_register_unsigned (this_frame, regnum);
1375 return frame_unwind_got_address (this_frame, regnum, addr);
1376
1377 case DWARF2_FRAME_REG_FN:
1378 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1379
1380 default:
1381 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1382 }
1383 }
1384
1385 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1386 call frames chain. */
1387
1388 static void
1389 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1390 {
1391 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1392
1393 if (cache->tailcall_cache)
1394 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1395 }
1396
1397 static int
1398 dwarf2_frame_sniffer (const struct frame_unwind *self,
1399 struct frame_info *this_frame, void **this_cache)
1400 {
1401 /* Grab an address that is guarenteed to reside somewhere within the
1402 function. get_frame_pc(), with a no-return next function, can
1403 end up returning something past the end of this function's body.
1404 If the frame we're sniffing for is a signal frame whose start
1405 address is placed on the stack by the OS, its FDE must
1406 extend one byte before its start address or we could potentially
1407 select the FDE of the previous function. */
1408 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1409 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1410
1411 if (!fde)
1412 return 0;
1413
1414 /* On some targets, signal trampolines may have unwind information.
1415 We need to recognize them so that we set the frame type
1416 correctly. */
1417
1418 if (fde->cie->signal_frame
1419 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1420 this_frame))
1421 return self->type == SIGTRAMP_FRAME;
1422
1423 if (self->type != NORMAL_FRAME)
1424 return 0;
1425
1426 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1427 dwarf2_tailcall_sniffer_first. */
1428 dwarf2_frame_cache (this_frame, this_cache);
1429
1430 return 1;
1431 }
1432
1433 static const struct frame_unwind dwarf2_frame_unwind =
1434 {
1435 NORMAL_FRAME,
1436 dwarf2_frame_unwind_stop_reason,
1437 dwarf2_frame_this_id,
1438 dwarf2_frame_prev_register,
1439 NULL,
1440 dwarf2_frame_sniffer,
1441 dwarf2_frame_dealloc_cache
1442 };
1443
1444 static const struct frame_unwind dwarf2_signal_frame_unwind =
1445 {
1446 SIGTRAMP_FRAME,
1447 dwarf2_frame_unwind_stop_reason,
1448 dwarf2_frame_this_id,
1449 dwarf2_frame_prev_register,
1450 NULL,
1451 dwarf2_frame_sniffer,
1452
1453 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1454 NULL
1455 };
1456
1457 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1458
1459 void
1460 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1461 {
1462 /* TAILCALL_FRAME must be first to find the record by
1463 dwarf2_tailcall_sniffer_first. */
1464 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1465
1466 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1467 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1468 }
1469 \f
1470
1471 /* There is no explicitly defined relationship between the CFA and the
1472 location of frame's local variables and arguments/parameters.
1473 Therefore, frame base methods on this page should probably only be
1474 used as a last resort, just to avoid printing total garbage as a
1475 response to the "info frame" command. */
1476
1477 static CORE_ADDR
1478 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1479 {
1480 struct dwarf2_frame_cache *cache =
1481 dwarf2_frame_cache (this_frame, this_cache);
1482
1483 return cache->cfa;
1484 }
1485
1486 static const struct frame_base dwarf2_frame_base =
1487 {
1488 &dwarf2_frame_unwind,
1489 dwarf2_frame_base_address,
1490 dwarf2_frame_base_address,
1491 dwarf2_frame_base_address
1492 };
1493
1494 const struct frame_base *
1495 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1496 {
1497 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1498
1499 if (dwarf2_frame_find_fde (&block_addr, NULL))
1500 return &dwarf2_frame_base;
1501
1502 return NULL;
1503 }
1504
1505 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1506 the DWARF unwinder. This is used to implement
1507 DW_OP_call_frame_cfa. */
1508
1509 CORE_ADDR
1510 dwarf2_frame_cfa (struct frame_info *this_frame)
1511 {
1512 while (get_frame_type (this_frame) == INLINE_FRAME)
1513 this_frame = get_prev_frame (this_frame);
1514 /* This restriction could be lifted if other unwinders are known to
1515 compute the frame base in a way compatible with the DWARF
1516 unwinder. */
1517 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1518 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1519 error (_("can't compute CFA for this frame"));
1520 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1521 throw_error (NOT_AVAILABLE_ERROR,
1522 _("can't compute CFA for this frame: "
1523 "required registers or memory are unavailable"));
1524 return get_frame_base (this_frame);
1525 }
1526 \f
1527 const struct objfile_data *dwarf2_frame_objfile_data;
1528
1529 static unsigned int
1530 read_1_byte (bfd *abfd, const gdb_byte *buf)
1531 {
1532 return bfd_get_8 (abfd, buf);
1533 }
1534
1535 static unsigned int
1536 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1537 {
1538 return bfd_get_32 (abfd, buf);
1539 }
1540
1541 static ULONGEST
1542 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1543 {
1544 return bfd_get_64 (abfd, buf);
1545 }
1546
1547 static ULONGEST
1548 read_initial_length (bfd *abfd, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr)
1550 {
1551 LONGEST result;
1552
1553 result = bfd_get_32 (abfd, buf);
1554 if (result == 0xffffffff)
1555 {
1556 result = bfd_get_64 (abfd, buf + 4);
1557 *bytes_read_ptr = 12;
1558 }
1559 else
1560 *bytes_read_ptr = 4;
1561
1562 return result;
1563 }
1564 \f
1565
1566 /* Pointer encoding helper functions. */
1567
1568 /* GCC supports exception handling based on DWARF2 CFI. However, for
1569 technical reasons, it encodes addresses in its FDE's in a different
1570 way. Several "pointer encodings" are supported. The encoding
1571 that's used for a particular FDE is determined by the 'R'
1572 augmentation in the associated CIE. The argument of this
1573 augmentation is a single byte.
1574
1575 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1576 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1577 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1578 address should be interpreted (absolute, relative to the current
1579 position in the FDE, ...). Bit 7, indicates that the address
1580 should be dereferenced. */
1581
1582 static gdb_byte
1583 encoding_for_size (unsigned int size)
1584 {
1585 switch (size)
1586 {
1587 case 2:
1588 return DW_EH_PE_udata2;
1589 case 4:
1590 return DW_EH_PE_udata4;
1591 case 8:
1592 return DW_EH_PE_udata8;
1593 default:
1594 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1595 }
1596 }
1597
1598 static CORE_ADDR
1599 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1600 int ptr_len, const gdb_byte *buf,
1601 unsigned int *bytes_read_ptr,
1602 CORE_ADDR func_base)
1603 {
1604 ptrdiff_t offset;
1605 CORE_ADDR base;
1606
1607 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1608 FDE's. */
1609 if (encoding & DW_EH_PE_indirect)
1610 internal_error (__FILE__, __LINE__,
1611 _("Unsupported encoding: DW_EH_PE_indirect"));
1612
1613 *bytes_read_ptr = 0;
1614
1615 switch (encoding & 0x70)
1616 {
1617 case DW_EH_PE_absptr:
1618 base = 0;
1619 break;
1620 case DW_EH_PE_pcrel:
1621 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1622 base += (buf - unit->dwarf_frame_buffer);
1623 break;
1624 case DW_EH_PE_datarel:
1625 base = unit->dbase;
1626 break;
1627 case DW_EH_PE_textrel:
1628 base = unit->tbase;
1629 break;
1630 case DW_EH_PE_funcrel:
1631 base = func_base;
1632 break;
1633 case DW_EH_PE_aligned:
1634 base = 0;
1635 offset = buf - unit->dwarf_frame_buffer;
1636 if ((offset % ptr_len) != 0)
1637 {
1638 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1639 buf += *bytes_read_ptr;
1640 }
1641 break;
1642 default:
1643 internal_error (__FILE__, __LINE__,
1644 _("Invalid or unsupported encoding"));
1645 }
1646
1647 if ((encoding & 0x07) == 0x00)
1648 {
1649 encoding |= encoding_for_size (ptr_len);
1650 if (bfd_get_sign_extend_vma (unit->abfd))
1651 encoding |= DW_EH_PE_signed;
1652 }
1653
1654 switch (encoding & 0x0f)
1655 {
1656 case DW_EH_PE_uleb128:
1657 {
1658 uint64_t value;
1659 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1660
1661 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1662 return base + value;
1663 }
1664 case DW_EH_PE_udata2:
1665 *bytes_read_ptr += 2;
1666 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata4:
1668 *bytes_read_ptr += 4;
1669 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_udata8:
1671 *bytes_read_ptr += 8;
1672 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_sleb128:
1674 {
1675 int64_t value;
1676 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1677
1678 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1679 return base + value;
1680 }
1681 case DW_EH_PE_sdata2:
1682 *bytes_read_ptr += 2;
1683 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata4:
1685 *bytes_read_ptr += 4;
1686 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1687 case DW_EH_PE_sdata8:
1688 *bytes_read_ptr += 8;
1689 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1690 default:
1691 internal_error (__FILE__, __LINE__,
1692 _("Invalid or unsupported encoding"));
1693 }
1694 }
1695 \f
1696
1697 static int
1698 bsearch_cie_cmp (const void *key, const void *element)
1699 {
1700 ULONGEST cie_pointer = *(ULONGEST *) key;
1701 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1702
1703 if (cie_pointer == cie->cie_pointer)
1704 return 0;
1705
1706 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1707 }
1708
1709 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1710 static struct dwarf2_cie *
1711 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1712 {
1713 struct dwarf2_cie **p_cie;
1714
1715 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1716 bsearch be non-NULL. */
1717 if (cie_table->entries == NULL)
1718 {
1719 gdb_assert (cie_table->num_entries == 0);
1720 return NULL;
1721 }
1722
1723 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1724 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1725 if (p_cie != NULL)
1726 return *p_cie;
1727 return NULL;
1728 }
1729
1730 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1731 static void
1732 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1733 {
1734 const int n = cie_table->num_entries;
1735
1736 gdb_assert (n < 1
1737 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1738
1739 cie_table->entries =
1740 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1741 cie_table->entries[n] = cie;
1742 cie_table->num_entries = n + 1;
1743 }
1744
1745 static int
1746 bsearch_fde_cmp (const void *key, const void *element)
1747 {
1748 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1749 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1750
1751 if (seek_pc < fde->initial_location)
1752 return -1;
1753 if (seek_pc < fde->initial_location + fde->address_range)
1754 return 0;
1755 return 1;
1756 }
1757
1758 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1759 inital location associated with it into *PC. */
1760
1761 static struct dwarf2_fde *
1762 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1763 {
1764 struct objfile *objfile;
1765
1766 ALL_OBJFILES (objfile)
1767 {
1768 struct dwarf2_fde_table *fde_table;
1769 struct dwarf2_fde **p_fde;
1770 CORE_ADDR offset;
1771 CORE_ADDR seek_pc;
1772
1773 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1774 if (fde_table == NULL)
1775 {
1776 dwarf2_build_frame_info (objfile);
1777 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1778 }
1779 gdb_assert (fde_table != NULL);
1780
1781 if (fde_table->num_entries == 0)
1782 continue;
1783
1784 gdb_assert (objfile->section_offsets);
1785 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1786
1787 gdb_assert (fde_table->num_entries > 0);
1788 if (*pc < offset + fde_table->entries[0]->initial_location)
1789 continue;
1790
1791 seek_pc = *pc - offset;
1792 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1793 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1794 if (p_fde != NULL)
1795 {
1796 *pc = (*p_fde)->initial_location + offset;
1797 if (out_offset)
1798 *out_offset = offset;
1799 return *p_fde;
1800 }
1801 }
1802 return NULL;
1803 }
1804
1805 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1806 static void
1807 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1808 {
1809 if (fde->address_range == 0)
1810 /* Discard useless FDEs. */
1811 return;
1812
1813 fde_table->num_entries += 1;
1814 fde_table->entries =
1815 xrealloc (fde_table->entries,
1816 fde_table->num_entries * sizeof (fde_table->entries[0]));
1817 fde_table->entries[fde_table->num_entries - 1] = fde;
1818 }
1819
1820 #define DW64_CIE_ID 0xffffffffffffffffULL
1821
1822 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1823 or any of them. */
1824
1825 enum eh_frame_type
1826 {
1827 EH_CIE_TYPE_ID = 1 << 0,
1828 EH_FDE_TYPE_ID = 1 << 1,
1829 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1830 };
1831
1832 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1833 const gdb_byte *start,
1834 int eh_frame_p,
1835 struct dwarf2_cie_table *cie_table,
1836 struct dwarf2_fde_table *fde_table,
1837 enum eh_frame_type entry_type);
1838
1839 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1840 Return NULL if invalid input, otherwise the next byte to be processed. */
1841
1842 static const gdb_byte *
1843 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1844 int eh_frame_p,
1845 struct dwarf2_cie_table *cie_table,
1846 struct dwarf2_fde_table *fde_table,
1847 enum eh_frame_type entry_type)
1848 {
1849 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1850 const gdb_byte *buf, *end;
1851 LONGEST length;
1852 unsigned int bytes_read;
1853 int dwarf64_p;
1854 ULONGEST cie_id;
1855 ULONGEST cie_pointer;
1856 int64_t sleb128;
1857 uint64_t uleb128;
1858
1859 buf = start;
1860 length = read_initial_length (unit->abfd, buf, &bytes_read);
1861 buf += bytes_read;
1862 end = buf + length;
1863
1864 /* Are we still within the section? */
1865 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1866 return NULL;
1867
1868 if (length == 0)
1869 return end;
1870
1871 /* Distinguish between 32 and 64-bit encoded frame info. */
1872 dwarf64_p = (bytes_read == 12);
1873
1874 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1875 if (eh_frame_p)
1876 cie_id = 0;
1877 else if (dwarf64_p)
1878 cie_id = DW64_CIE_ID;
1879 else
1880 cie_id = DW_CIE_ID;
1881
1882 if (dwarf64_p)
1883 {
1884 cie_pointer = read_8_bytes (unit->abfd, buf);
1885 buf += 8;
1886 }
1887 else
1888 {
1889 cie_pointer = read_4_bytes (unit->abfd, buf);
1890 buf += 4;
1891 }
1892
1893 if (cie_pointer == cie_id)
1894 {
1895 /* This is a CIE. */
1896 struct dwarf2_cie *cie;
1897 char *augmentation;
1898 unsigned int cie_version;
1899
1900 /* Check that a CIE was expected. */
1901 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1902 error (_("Found a CIE when not expecting it."));
1903
1904 /* Record the offset into the .debug_frame section of this CIE. */
1905 cie_pointer = start - unit->dwarf_frame_buffer;
1906
1907 /* Check whether we've already read it. */
1908 if (find_cie (cie_table, cie_pointer))
1909 return end;
1910
1911 cie = (struct dwarf2_cie *)
1912 obstack_alloc (&unit->objfile->objfile_obstack,
1913 sizeof (struct dwarf2_cie));
1914 cie->initial_instructions = NULL;
1915 cie->cie_pointer = cie_pointer;
1916
1917 /* The encoding for FDE's in a normal .debug_frame section
1918 depends on the target address size. */
1919 cie->encoding = DW_EH_PE_absptr;
1920
1921 /* We'll determine the final value later, but we need to
1922 initialize it conservatively. */
1923 cie->signal_frame = 0;
1924
1925 /* Check version number. */
1926 cie_version = read_1_byte (unit->abfd, buf);
1927 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1928 return NULL;
1929 cie->version = cie_version;
1930 buf += 1;
1931
1932 /* Interpret the interesting bits of the augmentation. */
1933 cie->augmentation = augmentation = (char *) buf;
1934 buf += (strlen (augmentation) + 1);
1935
1936 /* Ignore armcc augmentations. We only use them for quirks,
1937 and that doesn't happen until later. */
1938 if (strncmp (augmentation, "armcc", 5) == 0)
1939 augmentation += strlen (augmentation);
1940
1941 /* The GCC 2.x "eh" augmentation has a pointer immediately
1942 following the augmentation string, so it must be handled
1943 first. */
1944 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1945 {
1946 /* Skip. */
1947 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1948 augmentation += 2;
1949 }
1950
1951 if (cie->version >= 4)
1952 {
1953 /* FIXME: check that this is the same as from the CU header. */
1954 cie->addr_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 cie->segment_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1958 }
1959 else
1960 {
1961 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1962 cie->segment_size = 0;
1963 }
1964 /* Address values in .eh_frame sections are defined to have the
1965 target's pointer size. Watchout: This breaks frame info for
1966 targets with pointer size < address size, unless a .debug_frame
1967 section exists as well. */
1968 if (eh_frame_p)
1969 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1970 else
1971 cie->ptr_size = cie->addr_size;
1972
1973 buf = gdb_read_uleb128 (buf, end, &uleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->code_alignment_factor = uleb128;
1977
1978 buf = gdb_read_sleb128 (buf, end, &sleb128);
1979 if (buf == NULL)
1980 return NULL;
1981 cie->data_alignment_factor = sleb128;
1982
1983 if (cie_version == 1)
1984 {
1985 cie->return_address_register = read_1_byte (unit->abfd, buf);
1986 ++buf;
1987 }
1988 else
1989 {
1990 buf = gdb_read_uleb128 (buf, end, &uleb128);
1991 if (buf == NULL)
1992 return NULL;
1993 cie->return_address_register = uleb128;
1994 }
1995
1996 cie->return_address_register
1997 = dwarf2_frame_adjust_regnum (gdbarch,
1998 cie->return_address_register,
1999 eh_frame_p);
2000
2001 cie->saw_z_augmentation = (*augmentation == 'z');
2002 if (cie->saw_z_augmentation)
2003 {
2004 uint64_t length;
2005
2006 buf = gdb_read_uleb128 (buf, end, &length);
2007 if (buf == NULL)
2008 return NULL;
2009 cie->initial_instructions = buf + length;
2010 augmentation++;
2011 }
2012
2013 while (*augmentation)
2014 {
2015 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2016 if (*augmentation == 'L')
2017 {
2018 /* Skip. */
2019 buf++;
2020 augmentation++;
2021 }
2022
2023 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2024 else if (*augmentation == 'R')
2025 {
2026 cie->encoding = *buf++;
2027 augmentation++;
2028 }
2029
2030 /* "P" indicates a personality routine in the CIE augmentation. */
2031 else if (*augmentation == 'P')
2032 {
2033 /* Skip. Avoid indirection since we throw away the result. */
2034 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2035 read_encoded_value (unit, encoding, cie->ptr_size,
2036 buf, &bytes_read, 0);
2037 buf += bytes_read;
2038 augmentation++;
2039 }
2040
2041 /* "S" indicates a signal frame, such that the return
2042 address must not be decremented to locate the call frame
2043 info for the previous frame; it might even be the first
2044 instruction of a function, so decrementing it would take
2045 us to a different function. */
2046 else if (*augmentation == 'S')
2047 {
2048 cie->signal_frame = 1;
2049 augmentation++;
2050 }
2051
2052 /* Otherwise we have an unknown augmentation. Assume that either
2053 there is no augmentation data, or we saw a 'z' prefix. */
2054 else
2055 {
2056 if (cie->initial_instructions)
2057 buf = cie->initial_instructions;
2058 break;
2059 }
2060 }
2061
2062 cie->initial_instructions = buf;
2063 cie->end = end;
2064 cie->unit = unit;
2065
2066 add_cie (cie_table, cie);
2067 }
2068 else
2069 {
2070 /* This is a FDE. */
2071 struct dwarf2_fde *fde;
2072
2073 /* Check that an FDE was expected. */
2074 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2075 error (_("Found an FDE when not expecting it."));
2076
2077 /* In an .eh_frame section, the CIE pointer is the delta between the
2078 address within the FDE where the CIE pointer is stored and the
2079 address of the CIE. Convert it to an offset into the .eh_frame
2080 section. */
2081 if (eh_frame_p)
2082 {
2083 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2084 cie_pointer -= (dwarf64_p ? 8 : 4);
2085 }
2086
2087 /* In either case, validate the result is still within the section. */
2088 if (cie_pointer >= unit->dwarf_frame_size)
2089 return NULL;
2090
2091 fde = (struct dwarf2_fde *)
2092 obstack_alloc (&unit->objfile->objfile_obstack,
2093 sizeof (struct dwarf2_fde));
2094 fde->cie = find_cie (cie_table, cie_pointer);
2095 if (fde->cie == NULL)
2096 {
2097 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2098 eh_frame_p, cie_table, fde_table,
2099 EH_CIE_TYPE_ID);
2100 fde->cie = find_cie (cie_table, cie_pointer);
2101 }
2102
2103 gdb_assert (fde->cie != NULL);
2104
2105 fde->initial_location =
2106 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2107 buf, &bytes_read, 0);
2108 buf += bytes_read;
2109
2110 fde->address_range =
2111 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2112 fde->cie->ptr_size, buf, &bytes_read, 0);
2113 buf += bytes_read;
2114
2115 /* A 'z' augmentation in the CIE implies the presence of an
2116 augmentation field in the FDE as well. The only thing known
2117 to be in here at present is the LSDA entry for EH. So we
2118 can skip the whole thing. */
2119 if (fde->cie->saw_z_augmentation)
2120 {
2121 uint64_t length;
2122
2123 buf = gdb_read_uleb128 (buf, end, &length);
2124 if (buf == NULL)
2125 return NULL;
2126 buf += length;
2127 if (buf > end)
2128 return NULL;
2129 }
2130
2131 fde->instructions = buf;
2132 fde->end = end;
2133
2134 fde->eh_frame_p = eh_frame_p;
2135
2136 add_fde (fde_table, fde);
2137 }
2138
2139 return end;
2140 }
2141
2142 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2143 expect an FDE or a CIE. */
2144
2145 static const gdb_byte *
2146 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2147 int eh_frame_p,
2148 struct dwarf2_cie_table *cie_table,
2149 struct dwarf2_fde_table *fde_table,
2150 enum eh_frame_type entry_type)
2151 {
2152 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2153 const gdb_byte *ret;
2154 ptrdiff_t start_offset;
2155
2156 while (1)
2157 {
2158 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2159 cie_table, fde_table, entry_type);
2160 if (ret != NULL)
2161 break;
2162
2163 /* We have corrupt input data of some form. */
2164
2165 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2166 and mismatches wrt padding and alignment of debug sections. */
2167 /* Note that there is no requirement in the standard for any
2168 alignment at all in the frame unwind sections. Testing for
2169 alignment before trying to interpret data would be incorrect.
2170
2171 However, GCC traditionally arranged for frame sections to be
2172 sized such that the FDE length and CIE fields happen to be
2173 aligned (in theory, for performance). This, unfortunately,
2174 was done with .align directives, which had the side effect of
2175 forcing the section to be aligned by the linker.
2176
2177 This becomes a problem when you have some other producer that
2178 creates frame sections that are not as strictly aligned. That
2179 produces a hole in the frame info that gets filled by the
2180 linker with zeros.
2181
2182 The GCC behaviour is arguably a bug, but it's effectively now
2183 part of the ABI, so we're now stuck with it, at least at the
2184 object file level. A smart linker may decide, in the process
2185 of compressing duplicate CIE information, that it can rewrite
2186 the entire output section without this extra padding. */
2187
2188 start_offset = start - unit->dwarf_frame_buffer;
2189 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2190 {
2191 start += 4 - (start_offset & 3);
2192 workaround = ALIGN4;
2193 continue;
2194 }
2195 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2196 {
2197 start += 8 - (start_offset & 7);
2198 workaround = ALIGN8;
2199 continue;
2200 }
2201
2202 /* Nothing left to try. Arrange to return as if we've consumed
2203 the entire input section. Hopefully we'll get valid info from
2204 the other of .debug_frame/.eh_frame. */
2205 workaround = FAIL;
2206 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2207 break;
2208 }
2209
2210 switch (workaround)
2211 {
2212 case NONE:
2213 break;
2214
2215 case ALIGN4:
2216 complaint (&symfile_complaints, _("\
2217 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2218 unit->dwarf_frame_section->owner->filename,
2219 unit->dwarf_frame_section->name);
2220 break;
2221
2222 case ALIGN8:
2223 complaint (&symfile_complaints, _("\
2224 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2225 unit->dwarf_frame_section->owner->filename,
2226 unit->dwarf_frame_section->name);
2227 break;
2228
2229 default:
2230 complaint (&symfile_complaints,
2231 _("Corrupt data in %s:%s"),
2232 unit->dwarf_frame_section->owner->filename,
2233 unit->dwarf_frame_section->name);
2234 break;
2235 }
2236
2237 return ret;
2238 }
2239 \f
2240 static int
2241 qsort_fde_cmp (const void *a, const void *b)
2242 {
2243 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2244 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2245
2246 if (aa->initial_location == bb->initial_location)
2247 {
2248 if (aa->address_range != bb->address_range
2249 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2250 /* Linker bug, e.g. gold/10400.
2251 Work around it by keeping stable sort order. */
2252 return (a < b) ? -1 : 1;
2253 else
2254 /* Put eh_frame entries after debug_frame ones. */
2255 return aa->eh_frame_p - bb->eh_frame_p;
2256 }
2257
2258 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2259 }
2260
2261 void
2262 dwarf2_build_frame_info (struct objfile *objfile)
2263 {
2264 struct comp_unit *unit;
2265 const gdb_byte *frame_ptr;
2266 struct dwarf2_cie_table cie_table;
2267 struct dwarf2_fde_table fde_table;
2268 struct dwarf2_fde_table *fde_table2;
2269 volatile struct gdb_exception e;
2270
2271 cie_table.num_entries = 0;
2272 cie_table.entries = NULL;
2273
2274 fde_table.num_entries = 0;
2275 fde_table.entries = NULL;
2276
2277 /* Build a minimal decoding of the DWARF2 compilation unit. */
2278 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2279 sizeof (struct comp_unit));
2280 unit->abfd = objfile->obfd;
2281 unit->objfile = objfile;
2282 unit->dbase = 0;
2283 unit->tbase = 0;
2284
2285 if (objfile->separate_debug_objfile_backlink == NULL)
2286 {
2287 /* Do not read .eh_frame from separate file as they must be also
2288 present in the main file. */
2289 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2290 &unit->dwarf_frame_section,
2291 &unit->dwarf_frame_buffer,
2292 &unit->dwarf_frame_size);
2293 if (unit->dwarf_frame_size)
2294 {
2295 asection *got, *txt;
2296
2297 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2298 that is used for the i386/amd64 target, which currently is
2299 the only target in GCC that supports/uses the
2300 DW_EH_PE_datarel encoding. */
2301 got = bfd_get_section_by_name (unit->abfd, ".got");
2302 if (got)
2303 unit->dbase = got->vma;
2304
2305 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2306 so far. */
2307 txt = bfd_get_section_by_name (unit->abfd, ".text");
2308 if (txt)
2309 unit->tbase = txt->vma;
2310
2311 TRY_CATCH (e, RETURN_MASK_ERROR)
2312 {
2313 frame_ptr = unit->dwarf_frame_buffer;
2314 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2315 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2316 &cie_table, &fde_table,
2317 EH_CIE_OR_FDE_TYPE_ID);
2318 }
2319
2320 if (e.reason < 0)
2321 {
2322 warning (_("skipping .eh_frame info of %s: %s"),
2323 objfile_name (objfile), e.message);
2324
2325 if (fde_table.num_entries != 0)
2326 {
2327 xfree (fde_table.entries);
2328 fde_table.entries = NULL;
2329 fde_table.num_entries = 0;
2330 }
2331 /* The cie_table is discarded by the next if. */
2332 }
2333
2334 if (cie_table.num_entries != 0)
2335 {
2336 /* Reinit cie_table: debug_frame has different CIEs. */
2337 xfree (cie_table.entries);
2338 cie_table.num_entries = 0;
2339 cie_table.entries = NULL;
2340 }
2341 }
2342 }
2343
2344 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2345 &unit->dwarf_frame_section,
2346 &unit->dwarf_frame_buffer,
2347 &unit->dwarf_frame_size);
2348 if (unit->dwarf_frame_size)
2349 {
2350 int num_old_fde_entries = fde_table.num_entries;
2351
2352 TRY_CATCH (e, RETURN_MASK_ERROR)
2353 {
2354 frame_ptr = unit->dwarf_frame_buffer;
2355 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2356 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2357 &cie_table, &fde_table,
2358 EH_CIE_OR_FDE_TYPE_ID);
2359 }
2360 if (e.reason < 0)
2361 {
2362 warning (_("skipping .debug_frame info of %s: %s"),
2363 objfile_name (objfile), e.message);
2364
2365 if (fde_table.num_entries != 0)
2366 {
2367 fde_table.num_entries = num_old_fde_entries;
2368 if (num_old_fde_entries == 0)
2369 {
2370 xfree (fde_table.entries);
2371 fde_table.entries = NULL;
2372 }
2373 else
2374 {
2375 fde_table.entries = xrealloc (fde_table.entries,
2376 fde_table.num_entries *
2377 sizeof (fde_table.entries[0]));
2378 }
2379 }
2380 fde_table.num_entries = num_old_fde_entries;
2381 /* The cie_table is discarded by the next if. */
2382 }
2383 }
2384
2385 /* Discard the cie_table, it is no longer needed. */
2386 if (cie_table.num_entries != 0)
2387 {
2388 xfree (cie_table.entries);
2389 cie_table.entries = NULL; /* Paranoia. */
2390 cie_table.num_entries = 0; /* Paranoia. */
2391 }
2392
2393 /* Copy fde_table to obstack: it is needed at runtime. */
2394 fde_table2 = (struct dwarf2_fde_table *)
2395 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2396
2397 if (fde_table.num_entries == 0)
2398 {
2399 fde_table2->entries = NULL;
2400 fde_table2->num_entries = 0;
2401 }
2402 else
2403 {
2404 struct dwarf2_fde *fde_prev = NULL;
2405 struct dwarf2_fde *first_non_zero_fde = NULL;
2406 int i;
2407
2408 /* Prepare FDE table for lookups. */
2409 qsort (fde_table.entries, fde_table.num_entries,
2410 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2411
2412 /* Check for leftovers from --gc-sections. The GNU linker sets
2413 the relevant symbols to zero, but doesn't zero the FDE *end*
2414 ranges because there's no relocation there. It's (offset,
2415 length), not (start, end). On targets where address zero is
2416 just another valid address this can be a problem, since the
2417 FDEs appear to be non-empty in the output --- we could pick
2418 out the wrong FDE. To work around this, when overlaps are
2419 detected, we prefer FDEs that do not start at zero.
2420
2421 Start by finding the first FDE with non-zero start. Below
2422 we'll discard all FDEs that start at zero and overlap this
2423 one. */
2424 for (i = 0; i < fde_table.num_entries; i++)
2425 {
2426 struct dwarf2_fde *fde = fde_table.entries[i];
2427
2428 if (fde->initial_location != 0)
2429 {
2430 first_non_zero_fde = fde;
2431 break;
2432 }
2433 }
2434
2435 /* Since we'll be doing bsearch, squeeze out identical (except
2436 for eh_frame_p) fde entries so bsearch result is predictable.
2437 Also discard leftovers from --gc-sections. */
2438 fde_table2->num_entries = 0;
2439 for (i = 0; i < fde_table.num_entries; i++)
2440 {
2441 struct dwarf2_fde *fde = fde_table.entries[i];
2442
2443 if (fde->initial_location == 0
2444 && first_non_zero_fde != NULL
2445 && (first_non_zero_fde->initial_location
2446 < fde->initial_location + fde->address_range))
2447 continue;
2448
2449 if (fde_prev != NULL
2450 && fde_prev->initial_location == fde->initial_location)
2451 continue;
2452
2453 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2454 sizeof (fde_table.entries[0]));
2455 ++fde_table2->num_entries;
2456 fde_prev = fde;
2457 }
2458 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2459
2460 /* Discard the original fde_table. */
2461 xfree (fde_table.entries);
2462 }
2463
2464 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2465 }
2466
2467 /* Provide a prototype to silence -Wmissing-prototypes. */
2468 void _initialize_dwarf2_frame (void);
2469
2470 void
2471 _initialize_dwarf2_frame (void)
2472 {
2473 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2474 dwarf2_frame_objfile_data = register_objfile_data ();
2475 }
This page took 0.112782 seconds and 4 git commands to generate.