ce21112ba7620ee6a025d00b1dad7cadc0856a05
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "gdb_assert.h"
37 #include <string.h>
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41 #include "ax.h"
42 #include "dwarf2loc.h"
43 #include "exceptions.h"
44 #include "dwarf2-frame-tailcall.h"
45
46 struct comp_unit;
47
48 /* Call Frame Information (CFI). */
49
50 /* Common Information Entry (CIE). */
51
52 struct dwarf2_cie
53 {
54 /* Computation Unit for this CIE. */
55 struct comp_unit *unit;
56
57 /* Offset into the .debug_frame section where this CIE was found.
58 Used to identify this CIE. */
59 ULONGEST cie_pointer;
60
61 /* Constant that is factored out of all advance location
62 instructions. */
63 ULONGEST code_alignment_factor;
64
65 /* Constants that is factored out of all offset instructions. */
66 LONGEST data_alignment_factor;
67
68 /* Return address column. */
69 ULONGEST return_address_register;
70
71 /* Instruction sequence to initialize a register set. */
72 const gdb_byte *initial_instructions;
73 const gdb_byte *end;
74
75 /* Saved augmentation, in case it's needed later. */
76 char *augmentation;
77
78 /* Encoding of addresses. */
79 gdb_byte encoding;
80
81 /* Target address size in bytes. */
82 int addr_size;
83
84 /* Target pointer size in bytes. */
85 int ptr_size;
86
87 /* True if a 'z' augmentation existed. */
88 unsigned char saw_z_augmentation;
89
90 /* True if an 'S' augmentation existed. */
91 unsigned char signal_frame;
92
93 /* The version recorded in the CIE. */
94 unsigned char version;
95
96 /* The segment size. */
97 unsigned char segment_size;
98 };
99
100 struct dwarf2_cie_table
101 {
102 int num_entries;
103 struct dwarf2_cie **entries;
104 };
105
106 /* Frame Description Entry (FDE). */
107
108 struct dwarf2_fde
109 {
110 /* CIE for this FDE. */
111 struct dwarf2_cie *cie;
112
113 /* First location associated with this FDE. */
114 CORE_ADDR initial_location;
115
116 /* Number of bytes of program instructions described by this FDE. */
117 CORE_ADDR address_range;
118
119 /* Instruction sequence. */
120 const gdb_byte *instructions;
121 const gdb_byte *end;
122
123 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
124 section. */
125 unsigned char eh_frame_p;
126 };
127
128 struct dwarf2_fde_table
129 {
130 int num_entries;
131 struct dwarf2_fde **entries;
132 };
133
134 /* A minimal decoding of DWARF2 compilation units. We only decode
135 what's needed to get to the call frame information. */
136
137 struct comp_unit
138 {
139 /* Keep the bfd convenient. */
140 bfd *abfd;
141
142 struct objfile *objfile;
143
144 /* Pointer to the .debug_frame section loaded into memory. */
145 const gdb_byte *dwarf_frame_buffer;
146
147 /* Length of the loaded .debug_frame section. */
148 bfd_size_type dwarf_frame_size;
149
150 /* Pointer to the .debug_frame section. */
151 asection *dwarf_frame_section;
152
153 /* Base for DW_EH_PE_datarel encodings. */
154 bfd_vma dbase;
155
156 /* Base for DW_EH_PE_textrel encodings. */
157 bfd_vma tbase;
158 };
159
160 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
161 CORE_ADDR *out_offset);
162
163 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
164 int eh_frame_p);
165
166 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
167 int ptr_len, const gdb_byte *buf,
168 unsigned int *bytes_read_ptr,
169 CORE_ADDR func_base);
170 \f
171
172 /* Structure describing a frame state. */
173
174 struct dwarf2_frame_state
175 {
176 /* Each register save state can be described in terms of a CFA slot,
177 another register, or a location expression. */
178 struct dwarf2_frame_state_reg_info
179 {
180 struct dwarf2_frame_state_reg *reg;
181 int num_regs;
182
183 LONGEST cfa_offset;
184 ULONGEST cfa_reg;
185 enum {
186 CFA_UNSET,
187 CFA_REG_OFFSET,
188 CFA_EXP
189 } cfa_how;
190 const gdb_byte *cfa_exp;
191
192 /* Used to implement DW_CFA_remember_state. */
193 struct dwarf2_frame_state_reg_info *prev;
194 } regs;
195
196 /* The PC described by the current frame state. */
197 CORE_ADDR pc;
198
199 /* Initial register set from the CIE.
200 Used to implement DW_CFA_restore. */
201 struct dwarf2_frame_state_reg_info initial;
202
203 /* The information we care about from the CIE. */
204 LONGEST data_align;
205 ULONGEST code_align;
206 ULONGEST retaddr_column;
207
208 /* Flags for known producer quirks. */
209
210 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
211 and DW_CFA_def_cfa_offset takes a factored offset. */
212 int armcc_cfa_offsets_sf;
213
214 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
215 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
216 int armcc_cfa_offsets_reversed;
217 };
218
219 /* Store the length the expression for the CFA in the `cfa_reg' field,
220 which is unused in that case. */
221 #define cfa_exp_len cfa_reg
222
223 /* Assert that the register set RS is large enough to store gdbarch_num_regs
224 columns. If necessary, enlarge the register set. */
225
226 static void
227 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
228 int num_regs)
229 {
230 size_t size = sizeof (struct dwarf2_frame_state_reg);
231
232 if (num_regs <= rs->num_regs)
233 return;
234
235 rs->reg = (struct dwarf2_frame_state_reg *)
236 xrealloc (rs->reg, num_regs * size);
237
238 /* Initialize newly allocated registers. */
239 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
240 rs->num_regs = num_regs;
241 }
242
243 /* Copy the register columns in register set RS into newly allocated
244 memory and return a pointer to this newly created copy. */
245
246 static struct dwarf2_frame_state_reg *
247 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
248 {
249 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
250 struct dwarf2_frame_state_reg *reg;
251
252 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
253 memcpy (reg, rs->reg, size);
254
255 return reg;
256 }
257
258 /* Release the memory allocated to register set RS. */
259
260 static void
261 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
262 {
263 if (rs)
264 {
265 dwarf2_frame_state_free_regs (rs->prev);
266
267 xfree (rs->reg);
268 xfree (rs);
269 }
270 }
271
272 /* Release the memory allocated to the frame state FS. */
273
274 static void
275 dwarf2_frame_state_free (void *p)
276 {
277 struct dwarf2_frame_state *fs = p;
278
279 dwarf2_frame_state_free_regs (fs->initial.prev);
280 dwarf2_frame_state_free_regs (fs->regs.prev);
281 xfree (fs->initial.reg);
282 xfree (fs->regs.reg);
283 xfree (fs);
284 }
285 \f
286
287 /* Helper functions for execute_stack_op. */
288
289 static CORE_ADDR
290 read_addr_from_reg (void *baton, int reg)
291 {
292 struct frame_info *this_frame = (struct frame_info *) baton;
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
294 int regnum;
295 gdb_byte *buf;
296
297 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
298
299 buf = alloca (register_size (gdbarch, regnum));
300 get_frame_register (this_frame, regnum, buf);
301
302 return unpack_pointer (register_type (gdbarch, regnum), buf);
303 }
304
305 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
306
307 static struct value *
308 get_reg_value (void *baton, struct type *type, int reg)
309 {
310 struct frame_info *this_frame = (struct frame_info *) baton;
311 struct gdbarch *gdbarch = get_frame_arch (this_frame);
312 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
313
314 return value_from_register (type, regnum, this_frame);
315 }
316
317 static void
318 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
319 {
320 read_memory (addr, buf, len);
321 }
322
323 /* Execute the required actions for both the DW_CFA_restore and
324 DW_CFA_restore_extended instructions. */
325 static void
326 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
327 struct dwarf2_frame_state *fs, int eh_frame_p)
328 {
329 ULONGEST reg;
330
331 gdb_assert (fs->initial.reg);
332 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
333 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
334
335 /* Check if this register was explicitly initialized in the
336 CIE initial instructions. If not, default the rule to
337 UNSPECIFIED. */
338 if (reg < fs->initial.num_regs)
339 fs->regs.reg[reg] = fs->initial.reg[reg];
340 else
341 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
342
343 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
344 complaint (&symfile_complaints, _("\
345 incomplete CFI data; DW_CFA_restore unspecified\n\
346 register %s (#%d) at %s"),
347 gdbarch_register_name
348 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
349 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
350 paddress (gdbarch, fs->pc));
351 }
352
353 /* Virtual method table for execute_stack_op below. */
354
355 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
356 {
357 read_addr_from_reg,
358 get_reg_value,
359 read_mem,
360 ctx_no_get_frame_base,
361 ctx_no_get_frame_cfa,
362 ctx_no_get_frame_pc,
363 ctx_no_get_tls_address,
364 ctx_no_dwarf_call,
365 ctx_no_get_base_type,
366 ctx_no_push_dwarf_reg_entry_value,
367 ctx_no_get_addr_index
368 };
369
370 static CORE_ADDR
371 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
372 CORE_ADDR offset, struct frame_info *this_frame,
373 CORE_ADDR initial, int initial_in_stack_memory)
374 {
375 struct dwarf_expr_context *ctx;
376 CORE_ADDR result;
377 struct cleanup *old_chain;
378
379 ctx = new_dwarf_expr_context ();
380 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
381 make_cleanup_value_free_to_mark (value_mark ());
382
383 ctx->gdbarch = get_frame_arch (this_frame);
384 ctx->addr_size = addr_size;
385 ctx->ref_addr_size = -1;
386 ctx->offset = offset;
387 ctx->baton = this_frame;
388 ctx->funcs = &dwarf2_frame_ctx_funcs;
389
390 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
391 dwarf_expr_eval (ctx, exp, len);
392
393 if (ctx->location == DWARF_VALUE_MEMORY)
394 result = dwarf_expr_fetch_address (ctx, 0);
395 else if (ctx->location == DWARF_VALUE_REGISTER)
396 result = read_addr_from_reg (this_frame,
397 value_as_long (dwarf_expr_fetch (ctx, 0)));
398 else
399 {
400 /* This is actually invalid DWARF, but if we ever do run across
401 it somehow, we might as well support it. So, instead, report
402 it as unimplemented. */
403 error (_("\
404 Not implemented: computing unwound register using explicit value operator"));
405 }
406
407 do_cleanups (old_chain);
408
409 return result;
410 }
411 \f
412
413 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
414 PC. Modify FS state accordingly. Return current INSN_PTR where the
415 execution has stopped, one can resume it on the next call. */
416
417 static const gdb_byte *
418 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
419 const gdb_byte *insn_end, struct gdbarch *gdbarch,
420 CORE_ADDR pc, struct dwarf2_frame_state *fs)
421 {
422 int eh_frame_p = fde->eh_frame_p;
423 unsigned int bytes_read;
424 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
425
426 while (insn_ptr < insn_end && fs->pc <= pc)
427 {
428 gdb_byte insn = *insn_ptr++;
429 uint64_t utmp, reg;
430 int64_t offset;
431
432 if ((insn & 0xc0) == DW_CFA_advance_loc)
433 fs->pc += (insn & 0x3f) * fs->code_align;
434 else if ((insn & 0xc0) == DW_CFA_offset)
435 {
436 reg = insn & 0x3f;
437 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
439 offset = utmp * fs->data_align;
440 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
441 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
442 fs->regs.reg[reg].loc.offset = offset;
443 }
444 else if ((insn & 0xc0) == DW_CFA_restore)
445 {
446 reg = insn & 0x3f;
447 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
448 }
449 else
450 {
451 switch (insn)
452 {
453 case DW_CFA_set_loc:
454 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
455 fde->cie->ptr_size, insn_ptr,
456 &bytes_read, fde->initial_location);
457 /* Apply the objfile offset for relocatable objects. */
458 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
459 SECT_OFF_TEXT (fde->cie->unit->objfile));
460 insn_ptr += bytes_read;
461 break;
462
463 case DW_CFA_advance_loc1:
464 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr++;
467 break;
468 case DW_CFA_advance_loc2:
469 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 2;
472 break;
473 case DW_CFA_advance_loc4:
474 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
475 fs->pc += utmp * fs->code_align;
476 insn_ptr += 4;
477 break;
478
479 case DW_CFA_offset_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
482 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
483 offset = utmp * fs->data_align;
484 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
485 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
486 fs->regs.reg[reg].loc.offset = offset;
487 break;
488
489 case DW_CFA_restore_extended:
490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
491 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
492 break;
493
494 case DW_CFA_undefined:
495 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
496 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
497 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
498 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
499 break;
500
501 case DW_CFA_same_value:
502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
503 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
504 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
505 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
506 break;
507
508 case DW_CFA_register:
509 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
510 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
511 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
512 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
513 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
514 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
515 fs->regs.reg[reg].loc.reg = utmp;
516 break;
517
518 case DW_CFA_remember_state:
519 {
520 struct dwarf2_frame_state_reg_info *new_rs;
521
522 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
523 *new_rs = fs->regs;
524 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
525 fs->regs.prev = new_rs;
526 }
527 break;
528
529 case DW_CFA_restore_state:
530 {
531 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
532
533 if (old_rs == NULL)
534 {
535 complaint (&symfile_complaints, _("\
536 bad CFI data; mismatched DW_CFA_restore_state at %s"),
537 paddress (gdbarch, fs->pc));
538 }
539 else
540 {
541 xfree (fs->regs.reg);
542 fs->regs = *old_rs;
543 xfree (old_rs);
544 }
545 }
546 break;
547
548 case DW_CFA_def_cfa:
549 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
550 fs->regs.cfa_reg = reg;
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
552
553 if (fs->armcc_cfa_offsets_sf)
554 utmp *= fs->data_align;
555
556 fs->regs.cfa_offset = utmp;
557 fs->regs.cfa_how = CFA_REG_OFFSET;
558 break;
559
560 case DW_CFA_def_cfa_register:
561 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
562 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
563 eh_frame_p);
564 fs->regs.cfa_how = CFA_REG_OFFSET;
565 break;
566
567 case DW_CFA_def_cfa_offset:
568 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
569
570 if (fs->armcc_cfa_offsets_sf)
571 utmp *= fs->data_align;
572
573 fs->regs.cfa_offset = utmp;
574 /* cfa_how deliberately not set. */
575 break;
576
577 case DW_CFA_nop:
578 break;
579
580 case DW_CFA_def_cfa_expression:
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
582 fs->regs.cfa_exp_len = utmp;
583 fs->regs.cfa_exp = insn_ptr;
584 fs->regs.cfa_how = CFA_EXP;
585 insn_ptr += fs->regs.cfa_exp_len;
586 break;
587
588 case DW_CFA_expression:
589 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
590 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
591 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
592 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
593 fs->regs.reg[reg].loc.exp = insn_ptr;
594 fs->regs.reg[reg].exp_len = utmp;
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
596 insn_ptr += utmp;
597 break;
598
599 case DW_CFA_offset_extended_sf:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
602 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
603 offset *= fs->data_align;
604 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
605 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
606 fs->regs.reg[reg].loc.offset = offset;
607 break;
608
609 case DW_CFA_val_offset:
610 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
611 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
612 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
613 offset = utmp * fs->data_align;
614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
615 fs->regs.reg[reg].loc.offset = offset;
616 break;
617
618 case DW_CFA_val_offset_sf:
619 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
620 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
621 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
622 offset *= fs->data_align;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
624 fs->regs.reg[reg].loc.offset = offset;
625 break;
626
627 case DW_CFA_val_expression:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
630 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
631 fs->regs.reg[reg].loc.exp = insn_ptr;
632 fs->regs.reg[reg].exp_len = utmp;
633 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
634 insn_ptr += utmp;
635 break;
636
637 case DW_CFA_def_cfa_sf:
638 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
639 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
640 eh_frame_p);
641 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
642 fs->regs.cfa_offset = offset * fs->data_align;
643 fs->regs.cfa_how = CFA_REG_OFFSET;
644 break;
645
646 case DW_CFA_def_cfa_offset_sf:
647 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
648 fs->regs.cfa_offset = offset * fs->data_align;
649 /* cfa_how deliberately not set. */
650 break;
651
652 case DW_CFA_GNU_window_save:
653 /* This is SPARC-specific code, and contains hard-coded
654 constants for the register numbering scheme used by
655 GCC. Rather than having a architecture-specific
656 operation that's only ever used by a single
657 architecture, we provide the implementation here.
658 Incidentally that's what GCC does too in its
659 unwinder. */
660 {
661 int size = register_size (gdbarch, 0);
662
663 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
664 for (reg = 8; reg < 16; reg++)
665 {
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
667 fs->regs.reg[reg].loc.reg = reg + 16;
668 }
669 for (reg = 16; reg < 32; reg++)
670 {
671 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
672 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
673 }
674 }
675 break;
676
677 case DW_CFA_GNU_args_size:
678 /* Ignored. */
679 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
680 break;
681
682 case DW_CFA_GNU_negative_offset_extended:
683 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
684 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
685 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
686 offset = utmp * fs->data_align;
687 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
688 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
689 fs->regs.reg[reg].loc.offset = -offset;
690 break;
691
692 default:
693 internal_error (__FILE__, __LINE__,
694 _("Unknown CFI encountered."));
695 }
696 }
697 }
698
699 if (fs->initial.reg == NULL)
700 {
701 /* Don't allow remember/restore between CIE and FDE programs. */
702 dwarf2_frame_state_free_regs (fs->regs.prev);
703 fs->regs.prev = NULL;
704 }
705
706 return insn_ptr;
707 }
708 \f
709
710 /* Architecture-specific operations. */
711
712 /* Per-architecture data key. */
713 static struct gdbarch_data *dwarf2_frame_data;
714
715 struct dwarf2_frame_ops
716 {
717 /* Pre-initialize the register state REG for register REGNUM. */
718 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
719 struct frame_info *);
720
721 /* Check whether the THIS_FRAME is a signal trampoline. */
722 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
723
724 /* Convert .eh_frame register number to DWARF register number, or
725 adjust .debug_frame register number. */
726 int (*adjust_regnum) (struct gdbarch *, int, int);
727 };
728
729 /* Default architecture-specific register state initialization
730 function. */
731
732 static void
733 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
734 struct dwarf2_frame_state_reg *reg,
735 struct frame_info *this_frame)
736 {
737 /* If we have a register that acts as a program counter, mark it as
738 a destination for the return address. If we have a register that
739 serves as the stack pointer, arrange for it to be filled with the
740 call frame address (CFA). The other registers are marked as
741 unspecified.
742
743 We copy the return address to the program counter, since many
744 parts in GDB assume that it is possible to get the return address
745 by unwinding the program counter register. However, on ISA's
746 with a dedicated return address register, the CFI usually only
747 contains information to unwind that return address register.
748
749 The reason we're treating the stack pointer special here is
750 because in many cases GCC doesn't emit CFI for the stack pointer
751 and implicitly assumes that it is equal to the CFA. This makes
752 some sense since the DWARF specification (version 3, draft 8,
753 p. 102) says that:
754
755 "Typically, the CFA is defined to be the value of the stack
756 pointer at the call site in the previous frame (which may be
757 different from its value on entry to the current frame)."
758
759 However, this isn't true for all platforms supported by GCC
760 (e.g. IBM S/390 and zSeries). Those architectures should provide
761 their own architecture-specific initialization function. */
762
763 if (regnum == gdbarch_pc_regnum (gdbarch))
764 reg->how = DWARF2_FRAME_REG_RA;
765 else if (regnum == gdbarch_sp_regnum (gdbarch))
766 reg->how = DWARF2_FRAME_REG_CFA;
767 }
768
769 /* Return a default for the architecture-specific operations. */
770
771 static void *
772 dwarf2_frame_init (struct obstack *obstack)
773 {
774 struct dwarf2_frame_ops *ops;
775
776 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
777 ops->init_reg = dwarf2_frame_default_init_reg;
778 return ops;
779 }
780
781 /* Set the architecture-specific register state initialization
782 function for GDBARCH to INIT_REG. */
783
784 void
785 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
786 void (*init_reg) (struct gdbarch *, int,
787 struct dwarf2_frame_state_reg *,
788 struct frame_info *))
789 {
790 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
791
792 ops->init_reg = init_reg;
793 }
794
795 /* Pre-initialize the register state REG for register REGNUM. */
796
797 static void
798 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
799 struct dwarf2_frame_state_reg *reg,
800 struct frame_info *this_frame)
801 {
802 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
803
804 ops->init_reg (gdbarch, regnum, reg, this_frame);
805 }
806
807 /* Set the architecture-specific signal trampoline recognition
808 function for GDBARCH to SIGNAL_FRAME_P. */
809
810 void
811 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
812 int (*signal_frame_p) (struct gdbarch *,
813 struct frame_info *))
814 {
815 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
816
817 ops->signal_frame_p = signal_frame_p;
818 }
819
820 /* Query the architecture-specific signal frame recognizer for
821 THIS_FRAME. */
822
823 static int
824 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
825 struct frame_info *this_frame)
826 {
827 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
828
829 if (ops->signal_frame_p == NULL)
830 return 0;
831 return ops->signal_frame_p (gdbarch, this_frame);
832 }
833
834 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
835 register numbers. */
836
837 void
838 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
839 int (*adjust_regnum) (struct gdbarch *,
840 int, int))
841 {
842 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
843
844 ops->adjust_regnum = adjust_regnum;
845 }
846
847 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
848 register. */
849
850 static int
851 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
852 int regnum, int eh_frame_p)
853 {
854 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
855
856 if (ops->adjust_regnum == NULL)
857 return regnum;
858 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
859 }
860
861 static void
862 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
863 struct dwarf2_fde *fde)
864 {
865 struct symtab *s;
866
867 s = find_pc_symtab (fs->pc);
868 if (s == NULL)
869 return;
870
871 if (producer_is_realview (s->producer))
872 {
873 if (fde->cie->version == 1)
874 fs->armcc_cfa_offsets_sf = 1;
875
876 if (fde->cie->version == 1)
877 fs->armcc_cfa_offsets_reversed = 1;
878
879 /* The reversed offset problem is present in some compilers
880 using DWARF3, but it was eventually fixed. Check the ARM
881 defined augmentations, which are in the format "armcc" followed
882 by a list of one-character options. The "+" option means
883 this problem is fixed (no quirk needed). If the armcc
884 augmentation is missing, the quirk is needed. */
885 if (fde->cie->version == 3
886 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
887 || strchr (fde->cie->augmentation + 5, '+') == NULL))
888 fs->armcc_cfa_offsets_reversed = 1;
889
890 return;
891 }
892 }
893 \f
894
895 void
896 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
897 struct gdbarch *gdbarch,
898 CORE_ADDR pc,
899 struct dwarf2_per_cu_data *data)
900 {
901 struct dwarf2_fde *fde;
902 CORE_ADDR text_offset;
903 struct dwarf2_frame_state fs;
904 int addr_size;
905
906 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
907
908 fs.pc = pc;
909
910 /* Find the correct FDE. */
911 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
912 if (fde == NULL)
913 error (_("Could not compute CFA; needed to translate this expression"));
914
915 /* Extract any interesting information from the CIE. */
916 fs.data_align = fde->cie->data_alignment_factor;
917 fs.code_align = fde->cie->code_alignment_factor;
918 fs.retaddr_column = fde->cie->return_address_register;
919 addr_size = fde->cie->addr_size;
920
921 /* Check for "quirks" - known bugs in producers. */
922 dwarf2_frame_find_quirks (&fs, fde);
923
924 /* First decode all the insns in the CIE. */
925 execute_cfa_program (fde, fde->cie->initial_instructions,
926 fde->cie->end, gdbarch, pc, &fs);
927
928 /* Save the initialized register set. */
929 fs.initial = fs.regs;
930 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
931
932 /* Then decode the insns in the FDE up to our target PC. */
933 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
934
935 /* Calculate the CFA. */
936 switch (fs.regs.cfa_how)
937 {
938 case CFA_REG_OFFSET:
939 {
940 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
941
942 if (regnum == -1)
943 error (_("Unable to access DWARF register number %d"),
944 (int) fs.regs.cfa_reg); /* FIXME */
945 ax_reg (expr, regnum);
946
947 if (fs.regs.cfa_offset != 0)
948 {
949 if (fs.armcc_cfa_offsets_reversed)
950 ax_const_l (expr, -fs.regs.cfa_offset);
951 else
952 ax_const_l (expr, fs.regs.cfa_offset);
953 ax_simple (expr, aop_add);
954 }
955 }
956 break;
957
958 case CFA_EXP:
959 ax_const_l (expr, text_offset);
960 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
961 fs.regs.cfa_exp,
962 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
963 data);
964 break;
965
966 default:
967 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
968 }
969 }
970
971 \f
972 struct dwarf2_frame_cache
973 {
974 /* DWARF Call Frame Address. */
975 CORE_ADDR cfa;
976
977 /* Set if the return address column was marked as unavailable
978 (required non-collected memory or registers to compute). */
979 int unavailable_retaddr;
980
981 /* Set if the return address column was marked as undefined. */
982 int undefined_retaddr;
983
984 /* Saved registers, indexed by GDB register number, not by DWARF
985 register number. */
986 struct dwarf2_frame_state_reg *reg;
987
988 /* Return address register. */
989 struct dwarf2_frame_state_reg retaddr_reg;
990
991 /* Target address size in bytes. */
992 int addr_size;
993
994 /* The .text offset. */
995 CORE_ADDR text_offset;
996
997 /* True if we already checked whether this frame is the bottom frame
998 of a virtual tail call frame chain. */
999 int checked_tailcall_bottom;
1000
1001 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1002 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1003 involved. Non-bottom frames of a virtual tail call frames chain use
1004 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1005 them. */
1006 void *tailcall_cache;
1007
1008 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1009 base to get the SP, to simulate the return address pushed on the
1010 stack. */
1011 LONGEST entry_cfa_sp_offset;
1012 int entry_cfa_sp_offset_p;
1013 };
1014
1015 /* A cleanup that sets a pointer to NULL. */
1016
1017 static void
1018 clear_pointer_cleanup (void *arg)
1019 {
1020 void **ptr = arg;
1021
1022 *ptr = NULL;
1023 }
1024
1025 static struct dwarf2_frame_cache *
1026 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1027 {
1028 struct cleanup *reset_cache_cleanup, *old_chain;
1029 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1030 const int num_regs = gdbarch_num_regs (gdbarch)
1031 + gdbarch_num_pseudo_regs (gdbarch);
1032 struct dwarf2_frame_cache *cache;
1033 struct dwarf2_frame_state *fs;
1034 struct dwarf2_fde *fde;
1035 volatile struct gdb_exception ex;
1036 CORE_ADDR entry_pc;
1037 const gdb_byte *instr;
1038
1039 if (*this_cache)
1040 return *this_cache;
1041
1042 /* Allocate a new cache. */
1043 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1044 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1045 *this_cache = cache;
1046 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1047
1048 /* Allocate and initialize the frame state. */
1049 fs = XCNEW (struct dwarf2_frame_state);
1050 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1051
1052 /* Unwind the PC.
1053
1054 Note that if the next frame is never supposed to return (i.e. a call
1055 to abort), the compiler might optimize away the instruction at
1056 its return address. As a result the return address will
1057 point at some random instruction, and the CFI for that
1058 instruction is probably worthless to us. GCC's unwinder solves
1059 this problem by substracting 1 from the return address to get an
1060 address in the middle of a presumed call instruction (or the
1061 instruction in the associated delay slot). This should only be
1062 done for "normal" frames and not for resume-type frames (signal
1063 handlers, sentinel frames, dummy frames). The function
1064 get_frame_address_in_block does just this. It's not clear how
1065 reliable the method is though; there is the potential for the
1066 register state pre-call being different to that on return. */
1067 fs->pc = get_frame_address_in_block (this_frame);
1068
1069 /* Find the correct FDE. */
1070 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1071 gdb_assert (fde != NULL);
1072
1073 /* Extract any interesting information from the CIE. */
1074 fs->data_align = fde->cie->data_alignment_factor;
1075 fs->code_align = fde->cie->code_alignment_factor;
1076 fs->retaddr_column = fde->cie->return_address_register;
1077 cache->addr_size = fde->cie->addr_size;
1078
1079 /* Check for "quirks" - known bugs in producers. */
1080 dwarf2_frame_find_quirks (fs, fde);
1081
1082 /* First decode all the insns in the CIE. */
1083 execute_cfa_program (fde, fde->cie->initial_instructions,
1084 fde->cie->end, gdbarch,
1085 get_frame_address_in_block (this_frame), fs);
1086
1087 /* Save the initialized register set. */
1088 fs->initial = fs->regs;
1089 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1090
1091 if (get_frame_func_if_available (this_frame, &entry_pc))
1092 {
1093 /* Decode the insns in the FDE up to the entry PC. */
1094 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1095 entry_pc, fs);
1096
1097 if (fs->regs.cfa_how == CFA_REG_OFFSET
1098 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1099 == gdbarch_sp_regnum (gdbarch)))
1100 {
1101 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1102 cache->entry_cfa_sp_offset_p = 1;
1103 }
1104 }
1105 else
1106 instr = fde->instructions;
1107
1108 /* Then decode the insns in the FDE up to our target PC. */
1109 execute_cfa_program (fde, instr, fde->end, gdbarch,
1110 get_frame_address_in_block (this_frame), fs);
1111
1112 TRY_CATCH (ex, RETURN_MASK_ERROR)
1113 {
1114 /* Calculate the CFA. */
1115 switch (fs->regs.cfa_how)
1116 {
1117 case CFA_REG_OFFSET:
1118 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1119 if (fs->armcc_cfa_offsets_reversed)
1120 cache->cfa -= fs->regs.cfa_offset;
1121 else
1122 cache->cfa += fs->regs.cfa_offset;
1123 break;
1124
1125 case CFA_EXP:
1126 cache->cfa =
1127 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1128 cache->addr_size, cache->text_offset,
1129 this_frame, 0, 0);
1130 break;
1131
1132 default:
1133 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1134 }
1135 }
1136 if (ex.reason < 0)
1137 {
1138 if (ex.error == NOT_AVAILABLE_ERROR)
1139 {
1140 cache->unavailable_retaddr = 1;
1141 do_cleanups (old_chain);
1142 discard_cleanups (reset_cache_cleanup);
1143 return cache;
1144 }
1145
1146 throw_exception (ex);
1147 }
1148
1149 /* Initialize the register state. */
1150 {
1151 int regnum;
1152
1153 for (regnum = 0; regnum < num_regs; regnum++)
1154 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1155 }
1156
1157 /* Go through the DWARF2 CFI generated table and save its register
1158 location information in the cache. Note that we don't skip the
1159 return address column; it's perfectly all right for it to
1160 correspond to a real register. If it doesn't correspond to a
1161 real register, or if we shouldn't treat it as such,
1162 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1163 the range [0, gdbarch_num_regs). */
1164 {
1165 int column; /* CFI speak for "register number". */
1166
1167 for (column = 0; column < fs->regs.num_regs; column++)
1168 {
1169 /* Use the GDB register number as the destination index. */
1170 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1171
1172 /* If there's no corresponding GDB register, ignore it. */
1173 if (regnum < 0 || regnum >= num_regs)
1174 continue;
1175
1176 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1177 of all debug info registers. If it doesn't, complain (but
1178 not too loudly). It turns out that GCC assumes that an
1179 unspecified register implies "same value" when CFI (draft
1180 7) specifies nothing at all. Such a register could equally
1181 be interpreted as "undefined". Also note that this check
1182 isn't sufficient; it only checks that all registers in the
1183 range [0 .. max column] are specified, and won't detect
1184 problems when a debug info register falls outside of the
1185 table. We need a way of iterating through all the valid
1186 DWARF2 register numbers. */
1187 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1188 {
1189 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1190 complaint (&symfile_complaints, _("\
1191 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1192 gdbarch_register_name (gdbarch, regnum),
1193 paddress (gdbarch, fs->pc));
1194 }
1195 else
1196 cache->reg[regnum] = fs->regs.reg[column];
1197 }
1198 }
1199
1200 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1201 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1202 {
1203 int regnum;
1204
1205 for (regnum = 0; regnum < num_regs; regnum++)
1206 {
1207 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1208 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1209 {
1210 struct dwarf2_frame_state_reg *retaddr_reg =
1211 &fs->regs.reg[fs->retaddr_column];
1212
1213 /* It seems rather bizarre to specify an "empty" column as
1214 the return adress column. However, this is exactly
1215 what GCC does on some targets. It turns out that GCC
1216 assumes that the return address can be found in the
1217 register corresponding to the return address column.
1218 Incidentally, that's how we should treat a return
1219 address column specifying "same value" too. */
1220 if (fs->retaddr_column < fs->regs.num_regs
1221 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1222 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1223 {
1224 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1225 cache->reg[regnum] = *retaddr_reg;
1226 else
1227 cache->retaddr_reg = *retaddr_reg;
1228 }
1229 else
1230 {
1231 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1232 {
1233 cache->reg[regnum].loc.reg = fs->retaddr_column;
1234 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1235 }
1236 else
1237 {
1238 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1239 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1240 }
1241 }
1242 }
1243 }
1244 }
1245
1246 if (fs->retaddr_column < fs->regs.num_regs
1247 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1248 cache->undefined_retaddr = 1;
1249
1250 do_cleanups (old_chain);
1251 discard_cleanups (reset_cache_cleanup);
1252 return cache;
1253 }
1254
1255 static enum unwind_stop_reason
1256 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1257 void **this_cache)
1258 {
1259 struct dwarf2_frame_cache *cache
1260 = dwarf2_frame_cache (this_frame, this_cache);
1261
1262 if (cache->unavailable_retaddr)
1263 return UNWIND_UNAVAILABLE;
1264
1265 if (cache->undefined_retaddr)
1266 return UNWIND_OUTERMOST;
1267
1268 return UNWIND_NO_REASON;
1269 }
1270
1271 static void
1272 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1273 struct frame_id *this_id)
1274 {
1275 struct dwarf2_frame_cache *cache =
1276 dwarf2_frame_cache (this_frame, this_cache);
1277
1278 if (cache->unavailable_retaddr)
1279 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1280 else if (cache->undefined_retaddr)
1281 return;
1282 else
1283 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1284 }
1285
1286 static struct value *
1287 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1288 int regnum)
1289 {
1290 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1291 struct dwarf2_frame_cache *cache =
1292 dwarf2_frame_cache (this_frame, this_cache);
1293 CORE_ADDR addr;
1294 int realnum;
1295
1296 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1297 call frame chain. */
1298 if (!cache->checked_tailcall_bottom)
1299 {
1300 cache->checked_tailcall_bottom = 1;
1301 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1302 (cache->entry_cfa_sp_offset_p
1303 ? &cache->entry_cfa_sp_offset : NULL));
1304 }
1305
1306 /* Non-bottom frames of a virtual tail call frames chain use
1307 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1308 them. If dwarf2_tailcall_prev_register_first does not have specific value
1309 unwind the register, tail call frames are assumed to have the register set
1310 of the top caller. */
1311 if (cache->tailcall_cache)
1312 {
1313 struct value *val;
1314
1315 val = dwarf2_tailcall_prev_register_first (this_frame,
1316 &cache->tailcall_cache,
1317 regnum);
1318 if (val)
1319 return val;
1320 }
1321
1322 switch (cache->reg[regnum].how)
1323 {
1324 case DWARF2_FRAME_REG_UNDEFINED:
1325 /* If CFI explicitly specified that the value isn't defined,
1326 mark it as optimized away; the value isn't available. */
1327 return frame_unwind_got_optimized (this_frame, regnum);
1328
1329 case DWARF2_FRAME_REG_SAVED_OFFSET:
1330 addr = cache->cfa + cache->reg[regnum].loc.offset;
1331 return frame_unwind_got_memory (this_frame, regnum, addr);
1332
1333 case DWARF2_FRAME_REG_SAVED_REG:
1334 realnum
1335 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1336 return frame_unwind_got_register (this_frame, regnum, realnum);
1337
1338 case DWARF2_FRAME_REG_SAVED_EXP:
1339 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1340 cache->reg[regnum].exp_len,
1341 cache->addr_size, cache->text_offset,
1342 this_frame, cache->cfa, 1);
1343 return frame_unwind_got_memory (this_frame, regnum, addr);
1344
1345 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1346 addr = cache->cfa + cache->reg[regnum].loc.offset;
1347 return frame_unwind_got_constant (this_frame, regnum, addr);
1348
1349 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1350 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1351 cache->reg[regnum].exp_len,
1352 cache->addr_size, cache->text_offset,
1353 this_frame, cache->cfa, 1);
1354 return frame_unwind_got_constant (this_frame, regnum, addr);
1355
1356 case DWARF2_FRAME_REG_UNSPECIFIED:
1357 /* GCC, in its infinite wisdom decided to not provide unwind
1358 information for registers that are "same value". Since
1359 DWARF2 (3 draft 7) doesn't define such behavior, said
1360 registers are actually undefined (which is different to CFI
1361 "undefined"). Code above issues a complaint about this.
1362 Here just fudge the books, assume GCC, and that the value is
1363 more inner on the stack. */
1364 return frame_unwind_got_register (this_frame, regnum, regnum);
1365
1366 case DWARF2_FRAME_REG_SAME_VALUE:
1367 return frame_unwind_got_register (this_frame, regnum, regnum);
1368
1369 case DWARF2_FRAME_REG_CFA:
1370 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1371
1372 case DWARF2_FRAME_REG_CFA_OFFSET:
1373 addr = cache->cfa + cache->reg[regnum].loc.offset;
1374 return frame_unwind_got_address (this_frame, regnum, addr);
1375
1376 case DWARF2_FRAME_REG_RA_OFFSET:
1377 addr = cache->reg[regnum].loc.offset;
1378 regnum = gdbarch_dwarf2_reg_to_regnum
1379 (gdbarch, cache->retaddr_reg.loc.reg);
1380 addr += get_frame_register_unsigned (this_frame, regnum);
1381 return frame_unwind_got_address (this_frame, regnum, addr);
1382
1383 case DWARF2_FRAME_REG_FN:
1384 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1385
1386 default:
1387 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1388 }
1389 }
1390
1391 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1392 call frames chain. */
1393
1394 static void
1395 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1396 {
1397 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1398
1399 if (cache->tailcall_cache)
1400 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1401 }
1402
1403 static int
1404 dwarf2_frame_sniffer (const struct frame_unwind *self,
1405 struct frame_info *this_frame, void **this_cache)
1406 {
1407 /* Grab an address that is guarenteed to reside somewhere within the
1408 function. get_frame_pc(), with a no-return next function, can
1409 end up returning something past the end of this function's body.
1410 If the frame we're sniffing for is a signal frame whose start
1411 address is placed on the stack by the OS, its FDE must
1412 extend one byte before its start address or we could potentially
1413 select the FDE of the previous function. */
1414 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1415 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1416
1417 if (!fde)
1418 return 0;
1419
1420 /* On some targets, signal trampolines may have unwind information.
1421 We need to recognize them so that we set the frame type
1422 correctly. */
1423
1424 if (fde->cie->signal_frame
1425 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1426 this_frame))
1427 return self->type == SIGTRAMP_FRAME;
1428
1429 if (self->type != NORMAL_FRAME)
1430 return 0;
1431
1432 return 1;
1433 }
1434
1435 static const struct frame_unwind dwarf2_frame_unwind =
1436 {
1437 NORMAL_FRAME,
1438 dwarf2_frame_unwind_stop_reason,
1439 dwarf2_frame_this_id,
1440 dwarf2_frame_prev_register,
1441 NULL,
1442 dwarf2_frame_sniffer,
1443 dwarf2_frame_dealloc_cache
1444 };
1445
1446 static const struct frame_unwind dwarf2_signal_frame_unwind =
1447 {
1448 SIGTRAMP_FRAME,
1449 dwarf2_frame_unwind_stop_reason,
1450 dwarf2_frame_this_id,
1451 dwarf2_frame_prev_register,
1452 NULL,
1453 dwarf2_frame_sniffer,
1454
1455 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1456 NULL
1457 };
1458
1459 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1460
1461 void
1462 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1463 {
1464 /* TAILCALL_FRAME must be first to find the record by
1465 dwarf2_tailcall_sniffer_first. */
1466 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1467
1468 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1469 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1470 }
1471 \f
1472
1473 /* There is no explicitly defined relationship between the CFA and the
1474 location of frame's local variables and arguments/parameters.
1475 Therefore, frame base methods on this page should probably only be
1476 used as a last resort, just to avoid printing total garbage as a
1477 response to the "info frame" command. */
1478
1479 static CORE_ADDR
1480 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1481 {
1482 struct dwarf2_frame_cache *cache =
1483 dwarf2_frame_cache (this_frame, this_cache);
1484
1485 return cache->cfa;
1486 }
1487
1488 static const struct frame_base dwarf2_frame_base =
1489 {
1490 &dwarf2_frame_unwind,
1491 dwarf2_frame_base_address,
1492 dwarf2_frame_base_address,
1493 dwarf2_frame_base_address
1494 };
1495
1496 const struct frame_base *
1497 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1498 {
1499 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1500
1501 if (dwarf2_frame_find_fde (&block_addr, NULL))
1502 return &dwarf2_frame_base;
1503
1504 return NULL;
1505 }
1506
1507 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1508 the DWARF unwinder. This is used to implement
1509 DW_OP_call_frame_cfa. */
1510
1511 CORE_ADDR
1512 dwarf2_frame_cfa (struct frame_info *this_frame)
1513 {
1514 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1515 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("cfa not available for record btrace target"));
1518
1519 while (get_frame_type (this_frame) == INLINE_FRAME)
1520 this_frame = get_prev_frame (this_frame);
1521 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1522 throw_error (NOT_AVAILABLE_ERROR,
1523 _("can't compute CFA for this frame: "
1524 "required registers or memory are unavailable"));
1525 /* This restriction could be lifted if other unwinders are known to
1526 compute the frame base in a way compatible with the DWARF
1527 unwinder. */
1528 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1529 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1530 error (_("can't compute CFA for this frame"));
1531 return get_frame_base (this_frame);
1532 }
1533 \f
1534 const struct objfile_data *dwarf2_frame_objfile_data;
1535
1536 static unsigned int
1537 read_1_byte (bfd *abfd, const gdb_byte *buf)
1538 {
1539 return bfd_get_8 (abfd, buf);
1540 }
1541
1542 static unsigned int
1543 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1544 {
1545 return bfd_get_32 (abfd, buf);
1546 }
1547
1548 static ULONGEST
1549 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1550 {
1551 return bfd_get_64 (abfd, buf);
1552 }
1553
1554 static ULONGEST
1555 read_initial_length (bfd *abfd, const gdb_byte *buf,
1556 unsigned int *bytes_read_ptr)
1557 {
1558 LONGEST result;
1559
1560 result = bfd_get_32 (abfd, buf);
1561 if (result == 0xffffffff)
1562 {
1563 result = bfd_get_64 (abfd, buf + 4);
1564 *bytes_read_ptr = 12;
1565 }
1566 else
1567 *bytes_read_ptr = 4;
1568
1569 return result;
1570 }
1571 \f
1572
1573 /* Pointer encoding helper functions. */
1574
1575 /* GCC supports exception handling based on DWARF2 CFI. However, for
1576 technical reasons, it encodes addresses in its FDE's in a different
1577 way. Several "pointer encodings" are supported. The encoding
1578 that's used for a particular FDE is determined by the 'R'
1579 augmentation in the associated CIE. The argument of this
1580 augmentation is a single byte.
1581
1582 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1583 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1584 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1585 address should be interpreted (absolute, relative to the current
1586 position in the FDE, ...). Bit 7, indicates that the address
1587 should be dereferenced. */
1588
1589 static gdb_byte
1590 encoding_for_size (unsigned int size)
1591 {
1592 switch (size)
1593 {
1594 case 2:
1595 return DW_EH_PE_udata2;
1596 case 4:
1597 return DW_EH_PE_udata4;
1598 case 8:
1599 return DW_EH_PE_udata8;
1600 default:
1601 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1602 }
1603 }
1604
1605 static CORE_ADDR
1606 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1607 int ptr_len, const gdb_byte *buf,
1608 unsigned int *bytes_read_ptr,
1609 CORE_ADDR func_base)
1610 {
1611 ptrdiff_t offset;
1612 CORE_ADDR base;
1613
1614 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1615 FDE's. */
1616 if (encoding & DW_EH_PE_indirect)
1617 internal_error (__FILE__, __LINE__,
1618 _("Unsupported encoding: DW_EH_PE_indirect"));
1619
1620 *bytes_read_ptr = 0;
1621
1622 switch (encoding & 0x70)
1623 {
1624 case DW_EH_PE_absptr:
1625 base = 0;
1626 break;
1627 case DW_EH_PE_pcrel:
1628 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1629 base += (buf - unit->dwarf_frame_buffer);
1630 break;
1631 case DW_EH_PE_datarel:
1632 base = unit->dbase;
1633 break;
1634 case DW_EH_PE_textrel:
1635 base = unit->tbase;
1636 break;
1637 case DW_EH_PE_funcrel:
1638 base = func_base;
1639 break;
1640 case DW_EH_PE_aligned:
1641 base = 0;
1642 offset = buf - unit->dwarf_frame_buffer;
1643 if ((offset % ptr_len) != 0)
1644 {
1645 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1646 buf += *bytes_read_ptr;
1647 }
1648 break;
1649 default:
1650 internal_error (__FILE__, __LINE__,
1651 _("Invalid or unsupported encoding"));
1652 }
1653
1654 if ((encoding & 0x07) == 0x00)
1655 {
1656 encoding |= encoding_for_size (ptr_len);
1657 if (bfd_get_sign_extend_vma (unit->abfd))
1658 encoding |= DW_EH_PE_signed;
1659 }
1660
1661 switch (encoding & 0x0f)
1662 {
1663 case DW_EH_PE_uleb128:
1664 {
1665 uint64_t value;
1666 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1667
1668 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1669 return base + value;
1670 }
1671 case DW_EH_PE_udata2:
1672 *bytes_read_ptr += 2;
1673 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_udata4:
1675 *bytes_read_ptr += 4;
1676 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1677 case DW_EH_PE_udata8:
1678 *bytes_read_ptr += 8;
1679 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1680 case DW_EH_PE_sleb128:
1681 {
1682 int64_t value;
1683 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1684
1685 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1686 return base + value;
1687 }
1688 case DW_EH_PE_sdata2:
1689 *bytes_read_ptr += 2;
1690 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1691 case DW_EH_PE_sdata4:
1692 *bytes_read_ptr += 4;
1693 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1694 case DW_EH_PE_sdata8:
1695 *bytes_read_ptr += 8;
1696 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1697 default:
1698 internal_error (__FILE__, __LINE__,
1699 _("Invalid or unsupported encoding"));
1700 }
1701 }
1702 \f
1703
1704 static int
1705 bsearch_cie_cmp (const void *key, const void *element)
1706 {
1707 ULONGEST cie_pointer = *(ULONGEST *) key;
1708 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1709
1710 if (cie_pointer == cie->cie_pointer)
1711 return 0;
1712
1713 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1714 }
1715
1716 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1717 static struct dwarf2_cie *
1718 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1719 {
1720 struct dwarf2_cie **p_cie;
1721
1722 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1723 bsearch be non-NULL. */
1724 if (cie_table->entries == NULL)
1725 {
1726 gdb_assert (cie_table->num_entries == 0);
1727 return NULL;
1728 }
1729
1730 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1731 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1732 if (p_cie != NULL)
1733 return *p_cie;
1734 return NULL;
1735 }
1736
1737 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1738 static void
1739 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1740 {
1741 const int n = cie_table->num_entries;
1742
1743 gdb_assert (n < 1
1744 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1745
1746 cie_table->entries =
1747 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1748 cie_table->entries[n] = cie;
1749 cie_table->num_entries = n + 1;
1750 }
1751
1752 static int
1753 bsearch_fde_cmp (const void *key, const void *element)
1754 {
1755 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1756 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1757
1758 if (seek_pc < fde->initial_location)
1759 return -1;
1760 if (seek_pc < fde->initial_location + fde->address_range)
1761 return 0;
1762 return 1;
1763 }
1764
1765 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1766 inital location associated with it into *PC. */
1767
1768 static struct dwarf2_fde *
1769 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1770 {
1771 struct objfile *objfile;
1772
1773 ALL_OBJFILES (objfile)
1774 {
1775 struct dwarf2_fde_table *fde_table;
1776 struct dwarf2_fde **p_fde;
1777 CORE_ADDR offset;
1778 CORE_ADDR seek_pc;
1779
1780 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1781 if (fde_table == NULL)
1782 {
1783 dwarf2_build_frame_info (objfile);
1784 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1785 }
1786 gdb_assert (fde_table != NULL);
1787
1788 if (fde_table->num_entries == 0)
1789 continue;
1790
1791 gdb_assert (objfile->section_offsets);
1792 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1793
1794 gdb_assert (fde_table->num_entries > 0);
1795 if (*pc < offset + fde_table->entries[0]->initial_location)
1796 continue;
1797
1798 seek_pc = *pc - offset;
1799 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1800 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1801 if (p_fde != NULL)
1802 {
1803 *pc = (*p_fde)->initial_location + offset;
1804 if (out_offset)
1805 *out_offset = offset;
1806 return *p_fde;
1807 }
1808 }
1809 return NULL;
1810 }
1811
1812 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1813 static void
1814 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1815 {
1816 if (fde->address_range == 0)
1817 /* Discard useless FDEs. */
1818 return;
1819
1820 fde_table->num_entries += 1;
1821 fde_table->entries =
1822 xrealloc (fde_table->entries,
1823 fde_table->num_entries * sizeof (fde_table->entries[0]));
1824 fde_table->entries[fde_table->num_entries - 1] = fde;
1825 }
1826
1827 #define DW64_CIE_ID 0xffffffffffffffffULL
1828
1829 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1830 or any of them. */
1831
1832 enum eh_frame_type
1833 {
1834 EH_CIE_TYPE_ID = 1 << 0,
1835 EH_FDE_TYPE_ID = 1 << 1,
1836 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1837 };
1838
1839 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1840 const gdb_byte *start,
1841 int eh_frame_p,
1842 struct dwarf2_cie_table *cie_table,
1843 struct dwarf2_fde_table *fde_table,
1844 enum eh_frame_type entry_type);
1845
1846 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1847 Return NULL if invalid input, otherwise the next byte to be processed. */
1848
1849 static const gdb_byte *
1850 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1851 int eh_frame_p,
1852 struct dwarf2_cie_table *cie_table,
1853 struct dwarf2_fde_table *fde_table,
1854 enum eh_frame_type entry_type)
1855 {
1856 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1857 const gdb_byte *buf, *end;
1858 LONGEST length;
1859 unsigned int bytes_read;
1860 int dwarf64_p;
1861 ULONGEST cie_id;
1862 ULONGEST cie_pointer;
1863 int64_t sleb128;
1864 uint64_t uleb128;
1865
1866 buf = start;
1867 length = read_initial_length (unit->abfd, buf, &bytes_read);
1868 buf += bytes_read;
1869 end = buf + length;
1870
1871 /* Are we still within the section? */
1872 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1873 return NULL;
1874
1875 if (length == 0)
1876 return end;
1877
1878 /* Distinguish between 32 and 64-bit encoded frame info. */
1879 dwarf64_p = (bytes_read == 12);
1880
1881 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1882 if (eh_frame_p)
1883 cie_id = 0;
1884 else if (dwarf64_p)
1885 cie_id = DW64_CIE_ID;
1886 else
1887 cie_id = DW_CIE_ID;
1888
1889 if (dwarf64_p)
1890 {
1891 cie_pointer = read_8_bytes (unit->abfd, buf);
1892 buf += 8;
1893 }
1894 else
1895 {
1896 cie_pointer = read_4_bytes (unit->abfd, buf);
1897 buf += 4;
1898 }
1899
1900 if (cie_pointer == cie_id)
1901 {
1902 /* This is a CIE. */
1903 struct dwarf2_cie *cie;
1904 char *augmentation;
1905 unsigned int cie_version;
1906
1907 /* Check that a CIE was expected. */
1908 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1909 error (_("Found a CIE when not expecting it."));
1910
1911 /* Record the offset into the .debug_frame section of this CIE. */
1912 cie_pointer = start - unit->dwarf_frame_buffer;
1913
1914 /* Check whether we've already read it. */
1915 if (find_cie (cie_table, cie_pointer))
1916 return end;
1917
1918 cie = (struct dwarf2_cie *)
1919 obstack_alloc (&unit->objfile->objfile_obstack,
1920 sizeof (struct dwarf2_cie));
1921 cie->initial_instructions = NULL;
1922 cie->cie_pointer = cie_pointer;
1923
1924 /* The encoding for FDE's in a normal .debug_frame section
1925 depends on the target address size. */
1926 cie->encoding = DW_EH_PE_absptr;
1927
1928 /* We'll determine the final value later, but we need to
1929 initialize it conservatively. */
1930 cie->signal_frame = 0;
1931
1932 /* Check version number. */
1933 cie_version = read_1_byte (unit->abfd, buf);
1934 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1935 return NULL;
1936 cie->version = cie_version;
1937 buf += 1;
1938
1939 /* Interpret the interesting bits of the augmentation. */
1940 cie->augmentation = augmentation = (char *) buf;
1941 buf += (strlen (augmentation) + 1);
1942
1943 /* Ignore armcc augmentations. We only use them for quirks,
1944 and that doesn't happen until later. */
1945 if (strncmp (augmentation, "armcc", 5) == 0)
1946 augmentation += strlen (augmentation);
1947
1948 /* The GCC 2.x "eh" augmentation has a pointer immediately
1949 following the augmentation string, so it must be handled
1950 first. */
1951 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1952 {
1953 /* Skip. */
1954 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1955 augmentation += 2;
1956 }
1957
1958 if (cie->version >= 4)
1959 {
1960 /* FIXME: check that this is the same as from the CU header. */
1961 cie->addr_size = read_1_byte (unit->abfd, buf);
1962 ++buf;
1963 cie->segment_size = read_1_byte (unit->abfd, buf);
1964 ++buf;
1965 }
1966 else
1967 {
1968 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1969 cie->segment_size = 0;
1970 }
1971 /* Address values in .eh_frame sections are defined to have the
1972 target's pointer size. Watchout: This breaks frame info for
1973 targets with pointer size < address size, unless a .debug_frame
1974 section exists as well. */
1975 if (eh_frame_p)
1976 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1977 else
1978 cie->ptr_size = cie->addr_size;
1979
1980 buf = gdb_read_uleb128 (buf, end, &uleb128);
1981 if (buf == NULL)
1982 return NULL;
1983 cie->code_alignment_factor = uleb128;
1984
1985 buf = gdb_read_sleb128 (buf, end, &sleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->data_alignment_factor = sleb128;
1989
1990 if (cie_version == 1)
1991 {
1992 cie->return_address_register = read_1_byte (unit->abfd, buf);
1993 ++buf;
1994 }
1995 else
1996 {
1997 buf = gdb_read_uleb128 (buf, end, &uleb128);
1998 if (buf == NULL)
1999 return NULL;
2000 cie->return_address_register = uleb128;
2001 }
2002
2003 cie->return_address_register
2004 = dwarf2_frame_adjust_regnum (gdbarch,
2005 cie->return_address_register,
2006 eh_frame_p);
2007
2008 cie->saw_z_augmentation = (*augmentation == 'z');
2009 if (cie->saw_z_augmentation)
2010 {
2011 uint64_t length;
2012
2013 buf = gdb_read_uleb128 (buf, end, &length);
2014 if (buf == NULL)
2015 return NULL;
2016 cie->initial_instructions = buf + length;
2017 augmentation++;
2018 }
2019
2020 while (*augmentation)
2021 {
2022 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2023 if (*augmentation == 'L')
2024 {
2025 /* Skip. */
2026 buf++;
2027 augmentation++;
2028 }
2029
2030 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2031 else if (*augmentation == 'R')
2032 {
2033 cie->encoding = *buf++;
2034 augmentation++;
2035 }
2036
2037 /* "P" indicates a personality routine in the CIE augmentation. */
2038 else if (*augmentation == 'P')
2039 {
2040 /* Skip. Avoid indirection since we throw away the result. */
2041 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2042 read_encoded_value (unit, encoding, cie->ptr_size,
2043 buf, &bytes_read, 0);
2044 buf += bytes_read;
2045 augmentation++;
2046 }
2047
2048 /* "S" indicates a signal frame, such that the return
2049 address must not be decremented to locate the call frame
2050 info for the previous frame; it might even be the first
2051 instruction of a function, so decrementing it would take
2052 us to a different function. */
2053 else if (*augmentation == 'S')
2054 {
2055 cie->signal_frame = 1;
2056 augmentation++;
2057 }
2058
2059 /* Otherwise we have an unknown augmentation. Assume that either
2060 there is no augmentation data, or we saw a 'z' prefix. */
2061 else
2062 {
2063 if (cie->initial_instructions)
2064 buf = cie->initial_instructions;
2065 break;
2066 }
2067 }
2068
2069 cie->initial_instructions = buf;
2070 cie->end = end;
2071 cie->unit = unit;
2072
2073 add_cie (cie_table, cie);
2074 }
2075 else
2076 {
2077 /* This is a FDE. */
2078 struct dwarf2_fde *fde;
2079
2080 /* Check that an FDE was expected. */
2081 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2082 error (_("Found an FDE when not expecting it."));
2083
2084 /* In an .eh_frame section, the CIE pointer is the delta between the
2085 address within the FDE where the CIE pointer is stored and the
2086 address of the CIE. Convert it to an offset into the .eh_frame
2087 section. */
2088 if (eh_frame_p)
2089 {
2090 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2091 cie_pointer -= (dwarf64_p ? 8 : 4);
2092 }
2093
2094 /* In either case, validate the result is still within the section. */
2095 if (cie_pointer >= unit->dwarf_frame_size)
2096 return NULL;
2097
2098 fde = (struct dwarf2_fde *)
2099 obstack_alloc (&unit->objfile->objfile_obstack,
2100 sizeof (struct dwarf2_fde));
2101 fde->cie = find_cie (cie_table, cie_pointer);
2102 if (fde->cie == NULL)
2103 {
2104 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2105 eh_frame_p, cie_table, fde_table,
2106 EH_CIE_TYPE_ID);
2107 fde->cie = find_cie (cie_table, cie_pointer);
2108 }
2109
2110 gdb_assert (fde->cie != NULL);
2111
2112 fde->initial_location =
2113 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2114 buf, &bytes_read, 0);
2115 buf += bytes_read;
2116
2117 fde->address_range =
2118 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2119 fde->cie->ptr_size, buf, &bytes_read, 0);
2120 buf += bytes_read;
2121
2122 /* A 'z' augmentation in the CIE implies the presence of an
2123 augmentation field in the FDE as well. The only thing known
2124 to be in here at present is the LSDA entry for EH. So we
2125 can skip the whole thing. */
2126 if (fde->cie->saw_z_augmentation)
2127 {
2128 uint64_t length;
2129
2130 buf = gdb_read_uleb128 (buf, end, &length);
2131 if (buf == NULL)
2132 return NULL;
2133 buf += length;
2134 if (buf > end)
2135 return NULL;
2136 }
2137
2138 fde->instructions = buf;
2139 fde->end = end;
2140
2141 fde->eh_frame_p = eh_frame_p;
2142
2143 add_fde (fde_table, fde);
2144 }
2145
2146 return end;
2147 }
2148
2149 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2150 expect an FDE or a CIE. */
2151
2152 static const gdb_byte *
2153 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2154 int eh_frame_p,
2155 struct dwarf2_cie_table *cie_table,
2156 struct dwarf2_fde_table *fde_table,
2157 enum eh_frame_type entry_type)
2158 {
2159 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2160 const gdb_byte *ret;
2161 ptrdiff_t start_offset;
2162
2163 while (1)
2164 {
2165 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2166 cie_table, fde_table, entry_type);
2167 if (ret != NULL)
2168 break;
2169
2170 /* We have corrupt input data of some form. */
2171
2172 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2173 and mismatches wrt padding and alignment of debug sections. */
2174 /* Note that there is no requirement in the standard for any
2175 alignment at all in the frame unwind sections. Testing for
2176 alignment before trying to interpret data would be incorrect.
2177
2178 However, GCC traditionally arranged for frame sections to be
2179 sized such that the FDE length and CIE fields happen to be
2180 aligned (in theory, for performance). This, unfortunately,
2181 was done with .align directives, which had the side effect of
2182 forcing the section to be aligned by the linker.
2183
2184 This becomes a problem when you have some other producer that
2185 creates frame sections that are not as strictly aligned. That
2186 produces a hole in the frame info that gets filled by the
2187 linker with zeros.
2188
2189 The GCC behaviour is arguably a bug, but it's effectively now
2190 part of the ABI, so we're now stuck with it, at least at the
2191 object file level. A smart linker may decide, in the process
2192 of compressing duplicate CIE information, that it can rewrite
2193 the entire output section without this extra padding. */
2194
2195 start_offset = start - unit->dwarf_frame_buffer;
2196 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2197 {
2198 start += 4 - (start_offset & 3);
2199 workaround = ALIGN4;
2200 continue;
2201 }
2202 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2203 {
2204 start += 8 - (start_offset & 7);
2205 workaround = ALIGN8;
2206 continue;
2207 }
2208
2209 /* Nothing left to try. Arrange to return as if we've consumed
2210 the entire input section. Hopefully we'll get valid info from
2211 the other of .debug_frame/.eh_frame. */
2212 workaround = FAIL;
2213 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2214 break;
2215 }
2216
2217 switch (workaround)
2218 {
2219 case NONE:
2220 break;
2221
2222 case ALIGN4:
2223 complaint (&symfile_complaints, _("\
2224 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2225 unit->dwarf_frame_section->owner->filename,
2226 unit->dwarf_frame_section->name);
2227 break;
2228
2229 case ALIGN8:
2230 complaint (&symfile_complaints, _("\
2231 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2232 unit->dwarf_frame_section->owner->filename,
2233 unit->dwarf_frame_section->name);
2234 break;
2235
2236 default:
2237 complaint (&symfile_complaints,
2238 _("Corrupt data in %s:%s"),
2239 unit->dwarf_frame_section->owner->filename,
2240 unit->dwarf_frame_section->name);
2241 break;
2242 }
2243
2244 return ret;
2245 }
2246 \f
2247 static int
2248 qsort_fde_cmp (const void *a, const void *b)
2249 {
2250 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2251 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2252
2253 if (aa->initial_location == bb->initial_location)
2254 {
2255 if (aa->address_range != bb->address_range
2256 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2257 /* Linker bug, e.g. gold/10400.
2258 Work around it by keeping stable sort order. */
2259 return (a < b) ? -1 : 1;
2260 else
2261 /* Put eh_frame entries after debug_frame ones. */
2262 return aa->eh_frame_p - bb->eh_frame_p;
2263 }
2264
2265 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2266 }
2267
2268 void
2269 dwarf2_build_frame_info (struct objfile *objfile)
2270 {
2271 struct comp_unit *unit;
2272 const gdb_byte *frame_ptr;
2273 struct dwarf2_cie_table cie_table;
2274 struct dwarf2_fde_table fde_table;
2275 struct dwarf2_fde_table *fde_table2;
2276 volatile struct gdb_exception e;
2277
2278 cie_table.num_entries = 0;
2279 cie_table.entries = NULL;
2280
2281 fde_table.num_entries = 0;
2282 fde_table.entries = NULL;
2283
2284 /* Build a minimal decoding of the DWARF2 compilation unit. */
2285 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2286 sizeof (struct comp_unit));
2287 unit->abfd = objfile->obfd;
2288 unit->objfile = objfile;
2289 unit->dbase = 0;
2290 unit->tbase = 0;
2291
2292 if (objfile->separate_debug_objfile_backlink == NULL)
2293 {
2294 /* Do not read .eh_frame from separate file as they must be also
2295 present in the main file. */
2296 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2297 &unit->dwarf_frame_section,
2298 &unit->dwarf_frame_buffer,
2299 &unit->dwarf_frame_size);
2300 if (unit->dwarf_frame_size)
2301 {
2302 asection *got, *txt;
2303
2304 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2305 that is used for the i386/amd64 target, which currently is
2306 the only target in GCC that supports/uses the
2307 DW_EH_PE_datarel encoding. */
2308 got = bfd_get_section_by_name (unit->abfd, ".got");
2309 if (got)
2310 unit->dbase = got->vma;
2311
2312 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2313 so far. */
2314 txt = bfd_get_section_by_name (unit->abfd, ".text");
2315 if (txt)
2316 unit->tbase = txt->vma;
2317
2318 TRY_CATCH (e, RETURN_MASK_ERROR)
2319 {
2320 frame_ptr = unit->dwarf_frame_buffer;
2321 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2322 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2323 &cie_table, &fde_table,
2324 EH_CIE_OR_FDE_TYPE_ID);
2325 }
2326
2327 if (e.reason < 0)
2328 {
2329 warning (_("skipping .eh_frame info of %s: %s"),
2330 objfile_name (objfile), e.message);
2331
2332 if (fde_table.num_entries != 0)
2333 {
2334 xfree (fde_table.entries);
2335 fde_table.entries = NULL;
2336 fde_table.num_entries = 0;
2337 }
2338 /* The cie_table is discarded by the next if. */
2339 }
2340
2341 if (cie_table.num_entries != 0)
2342 {
2343 /* Reinit cie_table: debug_frame has different CIEs. */
2344 xfree (cie_table.entries);
2345 cie_table.num_entries = 0;
2346 cie_table.entries = NULL;
2347 }
2348 }
2349 }
2350
2351 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2352 &unit->dwarf_frame_section,
2353 &unit->dwarf_frame_buffer,
2354 &unit->dwarf_frame_size);
2355 if (unit->dwarf_frame_size)
2356 {
2357 int num_old_fde_entries = fde_table.num_entries;
2358
2359 TRY_CATCH (e, RETURN_MASK_ERROR)
2360 {
2361 frame_ptr = unit->dwarf_frame_buffer;
2362 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2363 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2364 &cie_table, &fde_table,
2365 EH_CIE_OR_FDE_TYPE_ID);
2366 }
2367 if (e.reason < 0)
2368 {
2369 warning (_("skipping .debug_frame info of %s: %s"),
2370 objfile_name (objfile), e.message);
2371
2372 if (fde_table.num_entries != 0)
2373 {
2374 fde_table.num_entries = num_old_fde_entries;
2375 if (num_old_fde_entries == 0)
2376 {
2377 xfree (fde_table.entries);
2378 fde_table.entries = NULL;
2379 }
2380 else
2381 {
2382 fde_table.entries = xrealloc (fde_table.entries,
2383 fde_table.num_entries *
2384 sizeof (fde_table.entries[0]));
2385 }
2386 }
2387 fde_table.num_entries = num_old_fde_entries;
2388 /* The cie_table is discarded by the next if. */
2389 }
2390 }
2391
2392 /* Discard the cie_table, it is no longer needed. */
2393 if (cie_table.num_entries != 0)
2394 {
2395 xfree (cie_table.entries);
2396 cie_table.entries = NULL; /* Paranoia. */
2397 cie_table.num_entries = 0; /* Paranoia. */
2398 }
2399
2400 /* Copy fde_table to obstack: it is needed at runtime. */
2401 fde_table2 = (struct dwarf2_fde_table *)
2402 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2403
2404 if (fde_table.num_entries == 0)
2405 {
2406 fde_table2->entries = NULL;
2407 fde_table2->num_entries = 0;
2408 }
2409 else
2410 {
2411 struct dwarf2_fde *fde_prev = NULL;
2412 struct dwarf2_fde *first_non_zero_fde = NULL;
2413 int i;
2414
2415 /* Prepare FDE table for lookups. */
2416 qsort (fde_table.entries, fde_table.num_entries,
2417 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2418
2419 /* Check for leftovers from --gc-sections. The GNU linker sets
2420 the relevant symbols to zero, but doesn't zero the FDE *end*
2421 ranges because there's no relocation there. It's (offset,
2422 length), not (start, end). On targets where address zero is
2423 just another valid address this can be a problem, since the
2424 FDEs appear to be non-empty in the output --- we could pick
2425 out the wrong FDE. To work around this, when overlaps are
2426 detected, we prefer FDEs that do not start at zero.
2427
2428 Start by finding the first FDE with non-zero start. Below
2429 we'll discard all FDEs that start at zero and overlap this
2430 one. */
2431 for (i = 0; i < fde_table.num_entries; i++)
2432 {
2433 struct dwarf2_fde *fde = fde_table.entries[i];
2434
2435 if (fde->initial_location != 0)
2436 {
2437 first_non_zero_fde = fde;
2438 break;
2439 }
2440 }
2441
2442 /* Since we'll be doing bsearch, squeeze out identical (except
2443 for eh_frame_p) fde entries so bsearch result is predictable.
2444 Also discard leftovers from --gc-sections. */
2445 fde_table2->num_entries = 0;
2446 for (i = 0; i < fde_table.num_entries; i++)
2447 {
2448 struct dwarf2_fde *fde = fde_table.entries[i];
2449
2450 if (fde->initial_location == 0
2451 && first_non_zero_fde != NULL
2452 && (first_non_zero_fde->initial_location
2453 < fde->initial_location + fde->address_range))
2454 continue;
2455
2456 if (fde_prev != NULL
2457 && fde_prev->initial_location == fde->initial_location)
2458 continue;
2459
2460 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2461 sizeof (fde_table.entries[0]));
2462 ++fde_table2->num_entries;
2463 fde_prev = fde;
2464 }
2465 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2466
2467 /* Discard the original fde_table. */
2468 xfree (fde_table.entries);
2469 }
2470
2471 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2472 }
2473
2474 /* Provide a prototype to silence -Wmissing-prototypes. */
2475 void _initialize_dwarf2_frame (void);
2476
2477 void
2478 _initialize_dwarf2_frame (void)
2479 {
2480 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2481 dwarf2_frame_objfile_data = register_objfile_data ();
2482 }
This page took 0.094601 seconds and 4 git commands to generate.