2005-02-11 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 /* Call Frame Information (CFI). */
43
44 /* Common Information Entry (CIE). */
45
46 struct dwarf2_cie
47 {
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
72 struct dwarf2_cie *next;
73 };
74
75 /* Frame Description Entry (FDE). */
76
77 struct dwarf2_fde
78 {
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93 };
94
95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96 \f
97
98 /* Structure describing a frame state. */
99
100 struct dwarf2_frame_state
101 {
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
106 struct dwarf2_frame_state_reg *reg;
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133 };
134
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
138
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142 static void
143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145 {
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156 rs->num_regs = num_regs;
157 }
158
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162 static struct dwarf2_frame_state_reg *
163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164 {
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172 }
173
174 /* Release the memory allocated to register set RS. */
175
176 static void
177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178 {
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186 }
187
188 /* Release the memory allocated to the frame state FS. */
189
190 static void
191 dwarf2_frame_state_free (void *p)
192 {
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200 }
201 \f
202
203 /* Helper functions for execute_stack_op. */
204
205 static CORE_ADDR
206 read_reg (void *baton, int reg)
207 {
208 struct frame_info *next_frame = (struct frame_info *) baton;
209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
215 buf = (char *) alloca (register_size (gdbarch, regnum));
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218 }
219
220 static void
221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222 {
223 read_memory (addr, buf, len);
224 }
225
226 static void
227 no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228 {
229 internal_error (__FILE__, __LINE__,
230 _("Support for DW_OP_fbreg is unimplemented"));
231 }
232
233 static CORE_ADDR
234 no_get_tls_address (void *baton, CORE_ADDR offset)
235 {
236 internal_error (__FILE__, __LINE__,
237 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
238 }
239
240 static CORE_ADDR
241 execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243 {
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264 }
265 \f
266
267 static void
268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271 {
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375 if (old_rs == NULL)
376 {
377 complaint (&symfile_complaints, _("\
378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
406 case DW_CFA_nop:
407 break;
408
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
423 insn_ptr += utmp;
424 break;
425
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
429 offset *= fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
446 break;
447
448 case DW_CFA_GNU_args_size:
449 /* Ignored. */
450 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
451 break;
452
453 default:
454 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
455 }
456 }
457 }
458
459 /* Don't allow remember/restore between CIE and FDE programs. */
460 dwarf2_frame_state_free_regs (fs->regs.prev);
461 fs->regs.prev = NULL;
462 }
463 \f
464
465 /* Architecture-specific operations. */
466
467 /* Per-architecture data key. */
468 static struct gdbarch_data *dwarf2_frame_data;
469
470 struct dwarf2_frame_ops
471 {
472 /* Pre-initialize the register state REG for register REGNUM. */
473 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
474
475 /* Check whether the frame preceding NEXT_FRAME will be a signal
476 trampoline. */
477 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
478 };
479
480 /* Default architecture-specific register state initialization
481 function. */
482
483 static void
484 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
485 struct dwarf2_frame_state_reg *reg)
486 {
487 /* If we have a register that acts as a program counter, mark it as
488 a destination for the return address. If we have a register that
489 serves as the stack pointer, arrange for it to be filled with the
490 call frame address (CFA). The other registers are marked as
491 unspecified.
492
493 We copy the return address to the program counter, since many
494 parts in GDB assume that it is possible to get the return address
495 by unwinding the program counter register. However, on ISA's
496 with a dedicated return address register, the CFI usually only
497 contains information to unwind that return address register.
498
499 The reason we're treating the stack pointer special here is
500 because in many cases GCC doesn't emit CFI for the stack pointer
501 and implicitly assumes that it is equal to the CFA. This makes
502 some sense since the DWARF specification (version 3, draft 8,
503 p. 102) says that:
504
505 "Typically, the CFA is defined to be the value of the stack
506 pointer at the call site in the previous frame (which may be
507 different from its value on entry to the current frame)."
508
509 However, this isn't true for all platforms supported by GCC
510 (e.g. IBM S/390 and zSeries). Those architectures should provide
511 their own architecture-specific initialization function. */
512
513 if (regnum == PC_REGNUM)
514 reg->how = DWARF2_FRAME_REG_RA;
515 else if (regnum == SP_REGNUM)
516 reg->how = DWARF2_FRAME_REG_CFA;
517 }
518
519 /* Return a default for the architecture-specific operations. */
520
521 static void *
522 dwarf2_frame_init (struct obstack *obstack)
523 {
524 struct dwarf2_frame_ops *ops;
525
526 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
527 ops->init_reg = dwarf2_frame_default_init_reg;
528 return ops;
529 }
530
531 /* Set the architecture-specific register state initialization
532 function for GDBARCH to INIT_REG. */
533
534 void
535 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
536 void (*init_reg) (struct gdbarch *, int,
537 struct dwarf2_frame_state_reg *))
538 {
539 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
540
541 ops->init_reg = init_reg;
542 }
543
544 /* Pre-initialize the register state REG for register REGNUM. */
545
546 static void
547 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
548 struct dwarf2_frame_state_reg *reg)
549 {
550 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
551
552 ops->init_reg (gdbarch, regnum, reg);
553 }
554
555 /* Set the architecture-specific signal trampoline recognition
556 function for GDBARCH to SIGNAL_FRAME_P. */
557
558 void
559 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
560 int (*signal_frame_p) (struct gdbarch *,
561 struct frame_info *))
562 {
563 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
564
565 ops->signal_frame_p = signal_frame_p;
566 }
567
568 /* Query the architecture-specific signal frame recognizer for
569 NEXT_FRAME. */
570
571 static int
572 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
573 struct frame_info *next_frame)
574 {
575 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
576
577 if (ops->signal_frame_p == NULL)
578 return 0;
579 return ops->signal_frame_p (gdbarch, next_frame);
580 }
581 \f
582
583 struct dwarf2_frame_cache
584 {
585 /* DWARF Call Frame Address. */
586 CORE_ADDR cfa;
587
588 /* Saved registers, indexed by GDB register number, not by DWARF
589 register number. */
590 struct dwarf2_frame_state_reg *reg;
591 };
592
593 static struct dwarf2_frame_cache *
594 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
595 {
596 struct cleanup *old_chain;
597 struct gdbarch *gdbarch = get_frame_arch (next_frame);
598 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
599 struct dwarf2_frame_cache *cache;
600 struct dwarf2_frame_state *fs;
601 struct dwarf2_fde *fde;
602
603 if (*this_cache)
604 return *this_cache;
605
606 /* Allocate a new cache. */
607 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
608 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
609
610 /* Allocate and initialize the frame state. */
611 fs = XMALLOC (struct dwarf2_frame_state);
612 memset (fs, 0, sizeof (struct dwarf2_frame_state));
613 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
614
615 /* Unwind the PC.
616
617 Note that if NEXT_FRAME is never supposed to return (i.e. a call
618 to abort), the compiler might optimize away the instruction at
619 NEXT_FRAME's return address. As a result the return address will
620 point at some random instruction, and the CFI for that
621 instruction is probably worthless to us. GCC's unwinder solves
622 this problem by substracting 1 from the return address to get an
623 address in the middle of a presumed call instruction (or the
624 instruction in the associated delay slot). This should only be
625 done for "normal" frames and not for resume-type frames (signal
626 handlers, sentinel frames, dummy frames). The function
627 frame_unwind_address_in_block does just this. It's not clear how
628 reliable the method is though; there is the potential for the
629 register state pre-call being different to that on return. */
630 fs->pc = frame_unwind_address_in_block (next_frame);
631
632 /* Find the correct FDE. */
633 fde = dwarf2_frame_find_fde (&fs->pc);
634 gdb_assert (fde != NULL);
635
636 /* Extract any interesting information from the CIE. */
637 fs->data_align = fde->cie->data_alignment_factor;
638 fs->code_align = fde->cie->code_alignment_factor;
639 fs->retaddr_column = fde->cie->return_address_register;
640
641 /* First decode all the insns in the CIE. */
642 execute_cfa_program (fde->cie->initial_instructions,
643 fde->cie->end, next_frame, fs);
644
645 /* Save the initialized register set. */
646 fs->initial = fs->regs;
647 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
648
649 /* Then decode the insns in the FDE up to our target PC. */
650 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
651
652 /* Caclulate the CFA. */
653 switch (fs->cfa_how)
654 {
655 case CFA_REG_OFFSET:
656 cache->cfa = read_reg (next_frame, fs->cfa_reg);
657 cache->cfa += fs->cfa_offset;
658 break;
659
660 case CFA_EXP:
661 cache->cfa =
662 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
663 break;
664
665 default:
666 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
667 }
668
669 /* Initialize the register state. */
670 {
671 int regnum;
672
673 for (regnum = 0; regnum < num_regs; regnum++)
674 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
675 }
676
677 /* Go through the DWARF2 CFI generated table and save its register
678 location information in the cache. Note that we don't skip the
679 return address column; it's perfectly all right for it to
680 correspond to a real register. If it doesn't correspond to a
681 real register, or if we shouldn't treat it as such,
682 DWARF2_REG_TO_REGNUM should be defined to return a number outside
683 the range [0, NUM_REGS). */
684 {
685 int column; /* CFI speak for "register number". */
686
687 for (column = 0; column < fs->regs.num_regs; column++)
688 {
689 /* Use the GDB register number as the destination index. */
690 int regnum = DWARF2_REG_TO_REGNUM (column);
691
692 /* If there's no corresponding GDB register, ignore it. */
693 if (regnum < 0 || regnum >= num_regs)
694 continue;
695
696 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
697 of all debug info registers. If it doesn't, complain (but
698 not too loudly). It turns out that GCC assumes that an
699 unspecified register implies "same value" when CFI (draft
700 7) specifies nothing at all. Such a register could equally
701 be interpreted as "undefined". Also note that this check
702 isn't sufficient; it only checks that all registers in the
703 range [0 .. max column] are specified, and won't detect
704 problems when a debug info register falls outside of the
705 table. We need a way of iterating through all the valid
706 DWARF2 register numbers. */
707 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
708 {
709 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
710 complaint (&symfile_complaints, _("\
711 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
712 gdbarch_register_name (gdbarch, regnum),
713 paddr_nz (fs->pc));
714 }
715 else
716 cache->reg[regnum] = fs->regs.reg[column];
717 }
718 }
719
720 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
721 {
722 int regnum;
723
724 for (regnum = 0; regnum < num_regs; regnum++)
725 {
726 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
727 {
728 struct dwarf2_frame_state_reg *retaddr_reg =
729 &fs->regs.reg[fs->retaddr_column];
730
731 /* It seems rather bizarre to specify an "empty" column as
732 the return adress column. However, this is exactly
733 what GCC does on some targets. It turns out that GCC
734 assumes that the return address can be found in the
735 register corresponding to the return address column.
736 Incidentally, that's how should treat a return address
737 column specifying "same value" too. */
738 if (fs->retaddr_column < fs->regs.num_regs
739 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
740 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
741 cache->reg[regnum] = *retaddr_reg;
742 else
743 {
744 cache->reg[regnum].loc.reg = fs->retaddr_column;
745 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
746 }
747 }
748 }
749 }
750
751 do_cleanups (old_chain);
752
753 *this_cache = cache;
754 return cache;
755 }
756
757 static void
758 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
759 struct frame_id *this_id)
760 {
761 struct dwarf2_frame_cache *cache =
762 dwarf2_frame_cache (next_frame, this_cache);
763
764 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
765 }
766
767 static void
768 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
769 int regnum, int *optimizedp,
770 enum lval_type *lvalp, CORE_ADDR *addrp,
771 int *realnump, void *valuep)
772 {
773 struct gdbarch *gdbarch = get_frame_arch (next_frame);
774 struct dwarf2_frame_cache *cache =
775 dwarf2_frame_cache (next_frame, this_cache);
776
777 switch (cache->reg[regnum].how)
778 {
779 case DWARF2_FRAME_REG_UNDEFINED:
780 /* If CFI explicitly specified that the value isn't defined,
781 mark it as optimized away; the value isn't available. */
782 *optimizedp = 1;
783 *lvalp = not_lval;
784 *addrp = 0;
785 *realnump = -1;
786 if (valuep)
787 {
788 /* In some cases, for example %eflags on the i386, we have
789 to provide a sane value, even though this register wasn't
790 saved. Assume we can get it from NEXT_FRAME. */
791 frame_unwind_register (next_frame, regnum, valuep);
792 }
793 break;
794
795 case DWARF2_FRAME_REG_SAVED_OFFSET:
796 *optimizedp = 0;
797 *lvalp = lval_memory;
798 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
799 *realnump = -1;
800 if (valuep)
801 {
802 /* Read the value in from memory. */
803 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
804 }
805 break;
806
807 case DWARF2_FRAME_REG_SAVED_REG:
808 *optimizedp = 0;
809 *lvalp = lval_register;
810 *addrp = 0;
811 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
812 if (valuep)
813 frame_unwind_register (next_frame, (*realnump), valuep);
814 break;
815
816 case DWARF2_FRAME_REG_SAVED_EXP:
817 *optimizedp = 0;
818 *lvalp = lval_memory;
819 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
820 cache->reg[regnum].exp_len,
821 next_frame, cache->cfa);
822 *realnump = -1;
823 if (valuep)
824 {
825 /* Read the value in from memory. */
826 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
827 }
828 break;
829
830 case DWARF2_FRAME_REG_UNSPECIFIED:
831 /* GCC, in its infinite wisdom decided to not provide unwind
832 information for registers that are "same value". Since
833 DWARF2 (3 draft 7) doesn't define such behavior, said
834 registers are actually undefined (which is different to CFI
835 "undefined"). Code above issues a complaint about this.
836 Here just fudge the books, assume GCC, and that the value is
837 more inner on the stack. */
838 *optimizedp = 0;
839 *lvalp = lval_register;
840 *addrp = 0;
841 *realnump = regnum;
842 if (valuep)
843 frame_unwind_register (next_frame, (*realnump), valuep);
844 break;
845
846 case DWARF2_FRAME_REG_SAME_VALUE:
847 *optimizedp = 0;
848 *lvalp = lval_register;
849 *addrp = 0;
850 *realnump = regnum;
851 if (valuep)
852 frame_unwind_register (next_frame, (*realnump), valuep);
853 break;
854
855 case DWARF2_FRAME_REG_CFA:
856 *optimizedp = 0;
857 *lvalp = not_lval;
858 *addrp = 0;
859 *realnump = -1;
860 if (valuep)
861 {
862 /* Store the value. */
863 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
864 }
865 break;
866
867 default:
868 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
869 }
870 }
871
872 static const struct frame_unwind dwarf2_frame_unwind =
873 {
874 NORMAL_FRAME,
875 dwarf2_frame_this_id,
876 dwarf2_frame_prev_register
877 };
878
879 static const struct frame_unwind dwarf2_signal_frame_unwind =
880 {
881 SIGTRAMP_FRAME,
882 dwarf2_frame_this_id,
883 dwarf2_frame_prev_register
884 };
885
886 const struct frame_unwind *
887 dwarf2_frame_sniffer (struct frame_info *next_frame)
888 {
889 /* Grab an address that is guarenteed to reside somewhere within the
890 function. frame_pc_unwind(), for a no-return next function, can
891 end up returning something past the end of this function's body. */
892 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
893 if (!dwarf2_frame_find_fde (&block_addr))
894 return NULL;
895
896 /* On some targets, signal trampolines may have unwind information.
897 We need to recognize them so that we set the frame type
898 correctly. */
899
900 if (dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
901 next_frame))
902 return &dwarf2_signal_frame_unwind;
903
904 return &dwarf2_frame_unwind;
905 }
906 \f
907
908 /* There is no explicitly defined relationship between the CFA and the
909 location of frame's local variables and arguments/parameters.
910 Therefore, frame base methods on this page should probably only be
911 used as a last resort, just to avoid printing total garbage as a
912 response to the "info frame" command. */
913
914 static CORE_ADDR
915 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
916 {
917 struct dwarf2_frame_cache *cache =
918 dwarf2_frame_cache (next_frame, this_cache);
919
920 return cache->cfa;
921 }
922
923 static const struct frame_base dwarf2_frame_base =
924 {
925 &dwarf2_frame_unwind,
926 dwarf2_frame_base_address,
927 dwarf2_frame_base_address,
928 dwarf2_frame_base_address
929 };
930
931 const struct frame_base *
932 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
933 {
934 CORE_ADDR pc = frame_pc_unwind (next_frame);
935 if (dwarf2_frame_find_fde (&pc))
936 return &dwarf2_frame_base;
937
938 return NULL;
939 }
940 \f
941 /* A minimal decoding of DWARF2 compilation units. We only decode
942 what's needed to get to the call frame information. */
943
944 struct comp_unit
945 {
946 /* Keep the bfd convenient. */
947 bfd *abfd;
948
949 struct objfile *objfile;
950
951 /* Linked list of CIEs for this object. */
952 struct dwarf2_cie *cie;
953
954 /* Pointer to the .debug_frame section loaded into memory. */
955 char *dwarf_frame_buffer;
956
957 /* Length of the loaded .debug_frame section. */
958 unsigned long dwarf_frame_size;
959
960 /* Pointer to the .debug_frame section. */
961 asection *dwarf_frame_section;
962
963 /* Base for DW_EH_PE_datarel encodings. */
964 bfd_vma dbase;
965
966 /* Base for DW_EH_PE_textrel encodings. */
967 bfd_vma tbase;
968 };
969
970 const struct objfile_data *dwarf2_frame_objfile_data;
971
972 static unsigned int
973 read_1_byte (bfd *bfd, char *buf)
974 {
975 return bfd_get_8 (abfd, (bfd_byte *) buf);
976 }
977
978 static unsigned int
979 read_4_bytes (bfd *abfd, char *buf)
980 {
981 return bfd_get_32 (abfd, (bfd_byte *) buf);
982 }
983
984 static ULONGEST
985 read_8_bytes (bfd *abfd, char *buf)
986 {
987 return bfd_get_64 (abfd, (bfd_byte *) buf);
988 }
989
990 static ULONGEST
991 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
992 {
993 ULONGEST result;
994 unsigned int num_read;
995 int shift;
996 unsigned char byte;
997
998 result = 0;
999 shift = 0;
1000 num_read = 0;
1001
1002 do
1003 {
1004 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1005 buf++;
1006 num_read++;
1007 result |= ((byte & 0x7f) << shift);
1008 shift += 7;
1009 }
1010 while (byte & 0x80);
1011
1012 *bytes_read_ptr = num_read;
1013
1014 return result;
1015 }
1016
1017 static LONGEST
1018 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1019 {
1020 LONGEST result;
1021 int shift;
1022 unsigned int num_read;
1023 unsigned char byte;
1024
1025 result = 0;
1026 shift = 0;
1027 num_read = 0;
1028
1029 do
1030 {
1031 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1032 buf++;
1033 num_read++;
1034 result |= ((byte & 0x7f) << shift);
1035 shift += 7;
1036 }
1037 while (byte & 0x80);
1038
1039 if ((shift < 32) && (byte & 0x40))
1040 result |= -(1 << shift);
1041
1042 *bytes_read_ptr = num_read;
1043
1044 return result;
1045 }
1046
1047 static ULONGEST
1048 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1049 {
1050 LONGEST result;
1051
1052 result = bfd_get_32 (abfd, (bfd_byte *) buf);
1053 if (result == 0xffffffff)
1054 {
1055 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1056 *bytes_read_ptr = 12;
1057 }
1058 else
1059 *bytes_read_ptr = 4;
1060
1061 return result;
1062 }
1063 \f
1064
1065 /* Pointer encoding helper functions. */
1066
1067 /* GCC supports exception handling based on DWARF2 CFI. However, for
1068 technical reasons, it encodes addresses in its FDE's in a different
1069 way. Several "pointer encodings" are supported. The encoding
1070 that's used for a particular FDE is determined by the 'R'
1071 augmentation in the associated CIE. The argument of this
1072 augmentation is a single byte.
1073
1074 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1075 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1076 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1077 address should be interpreted (absolute, relative to the current
1078 position in the FDE, ...). Bit 7, indicates that the address
1079 should be dereferenced. */
1080
1081 static unsigned char
1082 encoding_for_size (unsigned int size)
1083 {
1084 switch (size)
1085 {
1086 case 2:
1087 return DW_EH_PE_udata2;
1088 case 4:
1089 return DW_EH_PE_udata4;
1090 case 8:
1091 return DW_EH_PE_udata8;
1092 default:
1093 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1094 }
1095 }
1096
1097 static unsigned int
1098 size_of_encoded_value (unsigned char encoding)
1099 {
1100 if (encoding == DW_EH_PE_omit)
1101 return 0;
1102
1103 switch (encoding & 0x07)
1104 {
1105 case DW_EH_PE_absptr:
1106 return TYPE_LENGTH (builtin_type_void_data_ptr);
1107 case DW_EH_PE_udata2:
1108 return 2;
1109 case DW_EH_PE_udata4:
1110 return 4;
1111 case DW_EH_PE_udata8:
1112 return 8;
1113 default:
1114 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1115 }
1116 }
1117
1118 static CORE_ADDR
1119 read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1120 unsigned char *buf, unsigned int *bytes_read_ptr)
1121 {
1122 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1123 ptrdiff_t offset;
1124 CORE_ADDR base;
1125
1126 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1127 FDE's. */
1128 if (encoding & DW_EH_PE_indirect)
1129 internal_error (__FILE__, __LINE__,
1130 _("Unsupported encoding: DW_EH_PE_indirect"));
1131
1132 *bytes_read_ptr = 0;
1133
1134 switch (encoding & 0x70)
1135 {
1136 case DW_EH_PE_absptr:
1137 base = 0;
1138 break;
1139 case DW_EH_PE_pcrel:
1140 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1141 base += ((char *) buf - unit->dwarf_frame_buffer);
1142 break;
1143 case DW_EH_PE_datarel:
1144 base = unit->dbase;
1145 break;
1146 case DW_EH_PE_textrel:
1147 base = unit->tbase;
1148 break;
1149 case DW_EH_PE_funcrel:
1150 /* FIXME: kettenis/20040501: For now just pretend
1151 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1152 reading the initial location of an FDE it should be treated
1153 as such, and currently that's the only place where this code
1154 is used. */
1155 base = 0;
1156 break;
1157 case DW_EH_PE_aligned:
1158 base = 0;
1159 offset = (char *) buf - unit->dwarf_frame_buffer;
1160 if ((offset % ptr_len) != 0)
1161 {
1162 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1163 buf += *bytes_read_ptr;
1164 }
1165 break;
1166 default:
1167 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1168 }
1169
1170 if ((encoding & 0x07) == 0x00)
1171 encoding |= encoding_for_size (ptr_len);
1172
1173 switch (encoding & 0x0f)
1174 {
1175 case DW_EH_PE_uleb128:
1176 {
1177 ULONGEST value;
1178 unsigned char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1179 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1180 return base + value;
1181 }
1182 case DW_EH_PE_udata2:
1183 *bytes_read_ptr += 2;
1184 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1185 case DW_EH_PE_udata4:
1186 *bytes_read_ptr += 4;
1187 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1188 case DW_EH_PE_udata8:
1189 *bytes_read_ptr += 8;
1190 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1191 case DW_EH_PE_sleb128:
1192 {
1193 LONGEST value;
1194 char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1195 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1196 return base + value;
1197 }
1198 case DW_EH_PE_sdata2:
1199 *bytes_read_ptr += 2;
1200 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1201 case DW_EH_PE_sdata4:
1202 *bytes_read_ptr += 4;
1203 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1204 case DW_EH_PE_sdata8:
1205 *bytes_read_ptr += 8;
1206 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1207 default:
1208 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1209 }
1210 }
1211 \f
1212
1213 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1214 That's why we use a simple linked list here. */
1215
1216 static struct dwarf2_cie *
1217 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1218 {
1219 struct dwarf2_cie *cie = unit->cie;
1220
1221 while (cie)
1222 {
1223 if (cie->cie_pointer == cie_pointer)
1224 return cie;
1225
1226 cie = cie->next;
1227 }
1228
1229 return NULL;
1230 }
1231
1232 static void
1233 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1234 {
1235 cie->next = unit->cie;
1236 unit->cie = cie;
1237 }
1238
1239 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1240 inital location associated with it into *PC. */
1241
1242 static struct dwarf2_fde *
1243 dwarf2_frame_find_fde (CORE_ADDR *pc)
1244 {
1245 struct objfile *objfile;
1246
1247 ALL_OBJFILES (objfile)
1248 {
1249 struct dwarf2_fde *fde;
1250 CORE_ADDR offset;
1251
1252 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1253 if (fde == NULL)
1254 continue;
1255
1256 gdb_assert (objfile->section_offsets);
1257 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1258
1259 while (fde)
1260 {
1261 if (*pc >= fde->initial_location + offset
1262 && *pc < fde->initial_location + offset + fde->address_range)
1263 {
1264 *pc = fde->initial_location + offset;
1265 return fde;
1266 }
1267
1268 fde = fde->next;
1269 }
1270 }
1271
1272 return NULL;
1273 }
1274
1275 static void
1276 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1277 {
1278 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1279 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1280 }
1281
1282 #ifdef CC_HAS_LONG_LONG
1283 #define DW64_CIE_ID 0xffffffffffffffffULL
1284 #else
1285 #define DW64_CIE_ID ~0
1286 #endif
1287
1288 static char *decode_frame_entry (struct comp_unit *unit, char *start,
1289 int eh_frame_p);
1290
1291 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1292 the next byte to be processed. */
1293 static char *
1294 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1295 {
1296 char *buf;
1297 LONGEST length;
1298 unsigned int bytes_read;
1299 int dwarf64_p;
1300 ULONGEST cie_id;
1301 ULONGEST cie_pointer;
1302 char *end;
1303
1304 buf = start;
1305 length = read_initial_length (unit->abfd, buf, &bytes_read);
1306 buf += bytes_read;
1307 end = buf + length;
1308
1309 /* Are we still within the section? */
1310 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1311 return NULL;
1312
1313 if (length == 0)
1314 return end;
1315
1316 /* Distinguish between 32 and 64-bit encoded frame info. */
1317 dwarf64_p = (bytes_read == 12);
1318
1319 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1320 if (eh_frame_p)
1321 cie_id = 0;
1322 else if (dwarf64_p)
1323 cie_id = DW64_CIE_ID;
1324 else
1325 cie_id = DW_CIE_ID;
1326
1327 if (dwarf64_p)
1328 {
1329 cie_pointer = read_8_bytes (unit->abfd, buf);
1330 buf += 8;
1331 }
1332 else
1333 {
1334 cie_pointer = read_4_bytes (unit->abfd, buf);
1335 buf += 4;
1336 }
1337
1338 if (cie_pointer == cie_id)
1339 {
1340 /* This is a CIE. */
1341 struct dwarf2_cie *cie;
1342 char *augmentation;
1343 unsigned int cie_version;
1344
1345 /* Record the offset into the .debug_frame section of this CIE. */
1346 cie_pointer = start - unit->dwarf_frame_buffer;
1347
1348 /* Check whether we've already read it. */
1349 if (find_cie (unit, cie_pointer))
1350 return end;
1351
1352 cie = (struct dwarf2_cie *)
1353 obstack_alloc (&unit->objfile->objfile_obstack,
1354 sizeof (struct dwarf2_cie));
1355 cie->initial_instructions = NULL;
1356 cie->cie_pointer = cie_pointer;
1357
1358 /* The encoding for FDE's in a normal .debug_frame section
1359 depends on the target address size. */
1360 cie->encoding = DW_EH_PE_absptr;
1361
1362 /* Check version number. */
1363 cie_version = read_1_byte (unit->abfd, buf);
1364 if (cie_version != 1 && cie_version != 3)
1365 return NULL;
1366 buf += 1;
1367
1368 /* Interpret the interesting bits of the augmentation. */
1369 augmentation = buf;
1370 buf = augmentation + strlen (augmentation) + 1;
1371
1372 /* The GCC 2.x "eh" augmentation has a pointer immediately
1373 following the augmentation string, so it must be handled
1374 first. */
1375 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1376 {
1377 /* Skip. */
1378 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1379 augmentation += 2;
1380 }
1381
1382 cie->code_alignment_factor =
1383 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1384 buf += bytes_read;
1385
1386 cie->data_alignment_factor =
1387 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1388 buf += bytes_read;
1389
1390 if (cie_version == 1)
1391 {
1392 cie->return_address_register = read_1_byte (unit->abfd, buf);
1393 bytes_read = 1;
1394 }
1395 else
1396 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1397 &bytes_read);
1398 buf += bytes_read;
1399
1400 cie->saw_z_augmentation = (*augmentation == 'z');
1401 if (cie->saw_z_augmentation)
1402 {
1403 ULONGEST length;
1404
1405 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1406 buf += bytes_read;
1407 if (buf > end)
1408 return NULL;
1409 cie->initial_instructions = buf + length;
1410 augmentation++;
1411 }
1412
1413 while (*augmentation)
1414 {
1415 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1416 if (*augmentation == 'L')
1417 {
1418 /* Skip. */
1419 buf++;
1420 augmentation++;
1421 }
1422
1423 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1424 else if (*augmentation == 'R')
1425 {
1426 cie->encoding = *buf++;
1427 augmentation++;
1428 }
1429
1430 /* "P" indicates a personality routine in the CIE augmentation. */
1431 else if (*augmentation == 'P')
1432 {
1433 /* Skip. Avoid indirection since we throw away the result. */
1434 unsigned char encoding = (*buf++) & ~DW_EH_PE_indirect;
1435 read_encoded_value (unit, encoding, buf, &bytes_read);
1436 buf += bytes_read;
1437 augmentation++;
1438 }
1439
1440 /* Otherwise we have an unknown augmentation.
1441 Bail out unless we saw a 'z' prefix. */
1442 else
1443 {
1444 if (cie->initial_instructions == NULL)
1445 return end;
1446
1447 /* Skip unknown augmentations. */
1448 buf = cie->initial_instructions;
1449 break;
1450 }
1451 }
1452
1453 cie->initial_instructions = buf;
1454 cie->end = end;
1455
1456 add_cie (unit, cie);
1457 }
1458 else
1459 {
1460 /* This is a FDE. */
1461 struct dwarf2_fde *fde;
1462
1463 /* In an .eh_frame section, the CIE pointer is the delta between the
1464 address within the FDE where the CIE pointer is stored and the
1465 address of the CIE. Convert it to an offset into the .eh_frame
1466 section. */
1467 if (eh_frame_p)
1468 {
1469 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1470 cie_pointer -= (dwarf64_p ? 8 : 4);
1471 }
1472
1473 /* In either case, validate the result is still within the section. */
1474 if (cie_pointer >= unit->dwarf_frame_size)
1475 return NULL;
1476
1477 fde = (struct dwarf2_fde *)
1478 obstack_alloc (&unit->objfile->objfile_obstack,
1479 sizeof (struct dwarf2_fde));
1480 fde->cie = find_cie (unit, cie_pointer);
1481 if (fde->cie == NULL)
1482 {
1483 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1484 eh_frame_p);
1485 fde->cie = find_cie (unit, cie_pointer);
1486 }
1487
1488 gdb_assert (fde->cie != NULL);
1489
1490 fde->initial_location =
1491 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1492 buf += bytes_read;
1493
1494 fde->address_range =
1495 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1496 buf += bytes_read;
1497
1498 /* A 'z' augmentation in the CIE implies the presence of an
1499 augmentation field in the FDE as well. The only thing known
1500 to be in here at present is the LSDA entry for EH. So we
1501 can skip the whole thing. */
1502 if (fde->cie->saw_z_augmentation)
1503 {
1504 ULONGEST length;
1505
1506 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1507 buf += bytes_read + length;
1508 if (buf > end)
1509 return NULL;
1510 }
1511
1512 fde->instructions = buf;
1513 fde->end = end;
1514
1515 add_fde (unit, fde);
1516 }
1517
1518 return end;
1519 }
1520
1521 /* Read a CIE or FDE in BUF and decode it. */
1522 static char *
1523 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1524 {
1525 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1526 char *ret;
1527 const char *msg;
1528 ptrdiff_t start_offset;
1529
1530 while (1)
1531 {
1532 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1533 if (ret != NULL)
1534 break;
1535
1536 /* We have corrupt input data of some form. */
1537
1538 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1539 and mismatches wrt padding and alignment of debug sections. */
1540 /* Note that there is no requirement in the standard for any
1541 alignment at all in the frame unwind sections. Testing for
1542 alignment before trying to interpret data would be incorrect.
1543
1544 However, GCC traditionally arranged for frame sections to be
1545 sized such that the FDE length and CIE fields happen to be
1546 aligned (in theory, for performance). This, unfortunately,
1547 was done with .align directives, which had the side effect of
1548 forcing the section to be aligned by the linker.
1549
1550 This becomes a problem when you have some other producer that
1551 creates frame sections that are not as strictly aligned. That
1552 produces a hole in the frame info that gets filled by the
1553 linker with zeros.
1554
1555 The GCC behaviour is arguably a bug, but it's effectively now
1556 part of the ABI, so we're now stuck with it, at least at the
1557 object file level. A smart linker may decide, in the process
1558 of compressing duplicate CIE information, that it can rewrite
1559 the entire output section without this extra padding. */
1560
1561 start_offset = start - unit->dwarf_frame_buffer;
1562 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1563 {
1564 start += 4 - (start_offset & 3);
1565 workaround = ALIGN4;
1566 continue;
1567 }
1568 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1569 {
1570 start += 8 - (start_offset & 7);
1571 workaround = ALIGN8;
1572 continue;
1573 }
1574
1575 /* Nothing left to try. Arrange to return as if we've consumed
1576 the entire input section. Hopefully we'll get valid info from
1577 the other of .debug_frame/.eh_frame. */
1578 workaround = FAIL;
1579 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1580 break;
1581 }
1582
1583 switch (workaround)
1584 {
1585 case NONE:
1586 break;
1587
1588 case ALIGN4:
1589 complaint (&symfile_complaints,
1590 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1591 unit->dwarf_frame_section->owner->filename,
1592 unit->dwarf_frame_section->name);
1593 break;
1594
1595 case ALIGN8:
1596 complaint (&symfile_complaints,
1597 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1598 unit->dwarf_frame_section->owner->filename,
1599 unit->dwarf_frame_section->name);
1600 break;
1601
1602 default:
1603 complaint (&symfile_complaints,
1604 _("Corrupt data in %s:%s"),
1605 unit->dwarf_frame_section->owner->filename,
1606 unit->dwarf_frame_section->name);
1607 break;
1608 }
1609
1610 return ret;
1611 }
1612 \f
1613
1614 /* FIXME: kettenis/20030504: This still needs to be integrated with
1615 dwarf2read.c in a better way. */
1616
1617 /* Imported from dwarf2read.c. */
1618 extern asection *dwarf_frame_section;
1619 extern asection *dwarf_eh_frame_section;
1620
1621 /* Imported from dwarf2read.c. */
1622 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1623
1624 void
1625 dwarf2_build_frame_info (struct objfile *objfile)
1626 {
1627 struct comp_unit unit;
1628 char *frame_ptr;
1629
1630 /* Build a minimal decoding of the DWARF2 compilation unit. */
1631 unit.abfd = objfile->obfd;
1632 unit.objfile = objfile;
1633 unit.dbase = 0;
1634 unit.tbase = 0;
1635
1636 /* First add the information from the .eh_frame section. That way,
1637 the FDEs from that section are searched last. */
1638 if (dwarf_eh_frame_section)
1639 {
1640 asection *got, *txt;
1641
1642 unit.cie = NULL;
1643 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1644 dwarf_eh_frame_section);
1645
1646 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1647 unit.dwarf_frame_section = dwarf_eh_frame_section;
1648
1649 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1650 that is used for the i386/amd64 target, which currently is
1651 the only target in GCC that supports/uses the
1652 DW_EH_PE_datarel encoding. */
1653 got = bfd_get_section_by_name (unit.abfd, ".got");
1654 if (got)
1655 unit.dbase = got->vma;
1656
1657 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1658 so far. */
1659 txt = bfd_get_section_by_name (unit.abfd, ".text");
1660 if (txt)
1661 unit.tbase = txt->vma;
1662
1663 frame_ptr = unit.dwarf_frame_buffer;
1664 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1665 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1666 }
1667
1668 if (dwarf_frame_section)
1669 {
1670 unit.cie = NULL;
1671 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1672 dwarf_frame_section);
1673 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
1674 unit.dwarf_frame_section = dwarf_frame_section;
1675
1676 frame_ptr = unit.dwarf_frame_buffer;
1677 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1678 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1679 }
1680 }
1681
1682 /* Provide a prototype to silence -Wmissing-prototypes. */
1683 void _initialize_dwarf2_frame (void);
1684
1685 void
1686 _initialize_dwarf2_frame (void)
1687 {
1688 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1689 dwarf2_frame_objfile_data = register_objfile_data ();
1690 }
This page took 0.071234 seconds and 4 git commands to generate.