Revert "Eliminate dwarf2_frame_cache recursion, don't unwind from the dwarf2 sniffer...
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include <string.h>
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 const gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_addr_from_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 return unpack_pointer (register_type (gdbarch, regnum), buf);
302 }
303
304 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
305
306 static struct value *
307 get_reg_value (void *baton, struct type *type, int reg)
308 {
309 struct frame_info *this_frame = (struct frame_info *) baton;
310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
311 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
312
313 return value_from_register (type, regnum, this_frame);
314 }
315
316 static void
317 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
318 {
319 read_memory (addr, buf, len);
320 }
321
322 /* Execute the required actions for both the DW_CFA_restore and
323 DW_CFA_restore_extended instructions. */
324 static void
325 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
326 struct dwarf2_frame_state *fs, int eh_frame_p)
327 {
328 ULONGEST reg;
329
330 gdb_assert (fs->initial.reg);
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333
334 /* Check if this register was explicitly initialized in the
335 CIE initial instructions. If not, default the rule to
336 UNSPECIFIED. */
337 if (reg < fs->initial.num_regs)
338 fs->regs.reg[reg] = fs->initial.reg[reg];
339 else
340 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
341
342 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
343 complaint (&symfile_complaints, _("\
344 incomplete CFI data; DW_CFA_restore unspecified\n\
345 register %s (#%d) at %s"),
346 gdbarch_register_name
347 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
348 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
349 paddress (gdbarch, fs->pc));
350 }
351
352 /* Virtual method table for execute_stack_op below. */
353
354 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
355 {
356 read_addr_from_reg,
357 get_reg_value,
358 read_mem,
359 ctx_no_get_frame_base,
360 ctx_no_get_frame_cfa,
361 ctx_no_get_frame_pc,
362 ctx_no_get_tls_address,
363 ctx_no_dwarf_call,
364 ctx_no_get_base_type,
365 ctx_no_push_dwarf_reg_entry_value,
366 ctx_no_get_addr_index
367 };
368
369 static CORE_ADDR
370 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
371 CORE_ADDR offset, struct frame_info *this_frame,
372 CORE_ADDR initial, int initial_in_stack_memory)
373 {
374 struct dwarf_expr_context *ctx;
375 CORE_ADDR result;
376 struct cleanup *old_chain;
377
378 ctx = new_dwarf_expr_context ();
379 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
380 make_cleanup_value_free_to_mark (value_mark ());
381
382 ctx->gdbarch = get_frame_arch (this_frame);
383 ctx->addr_size = addr_size;
384 ctx->ref_addr_size = -1;
385 ctx->offset = offset;
386 ctx->baton = this_frame;
387 ctx->funcs = &dwarf2_frame_ctx_funcs;
388
389 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
390 dwarf_expr_eval (ctx, exp, len);
391
392 if (ctx->location == DWARF_VALUE_MEMORY)
393 result = dwarf_expr_fetch_address (ctx, 0);
394 else if (ctx->location == DWARF_VALUE_REGISTER)
395 result = read_addr_from_reg (this_frame,
396 value_as_long (dwarf_expr_fetch (ctx, 0)));
397 else
398 {
399 /* This is actually invalid DWARF, but if we ever do run across
400 it somehow, we might as well support it. So, instead, report
401 it as unimplemented. */
402 error (_("\
403 Not implemented: computing unwound register using explicit value operator"));
404 }
405
406 do_cleanups (old_chain);
407
408 return result;
409 }
410 \f
411
412 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
413 PC. Modify FS state accordingly. Return current INSN_PTR where the
414 execution has stopped, one can resume it on the next call. */
415
416 static const gdb_byte *
417 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
418 const gdb_byte *insn_end, struct gdbarch *gdbarch,
419 CORE_ADDR pc, struct dwarf2_frame_state *fs)
420 {
421 int eh_frame_p = fde->eh_frame_p;
422 unsigned int bytes_read;
423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
424
425 while (insn_ptr < insn_end && fs->pc <= pc)
426 {
427 gdb_byte insn = *insn_ptr++;
428 uint64_t utmp, reg;
429 int64_t offset;
430
431 if ((insn & 0xc0) == DW_CFA_advance_loc)
432 fs->pc += (insn & 0x3f) * fs->code_align;
433 else if ((insn & 0xc0) == DW_CFA_offset)
434 {
435 reg = insn & 0x3f;
436 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
438 offset = utmp * fs->data_align;
439 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
440 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
441 fs->regs.reg[reg].loc.offset = offset;
442 }
443 else if ((insn & 0xc0) == DW_CFA_restore)
444 {
445 reg = insn & 0x3f;
446 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
447 }
448 else
449 {
450 switch (insn)
451 {
452 case DW_CFA_set_loc:
453 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
454 fde->cie->ptr_size, insn_ptr,
455 &bytes_read, fde->initial_location);
456 /* Apply the objfile offset for relocatable objects. */
457 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
458 SECT_OFF_TEXT (fde->cie->unit->objfile));
459 insn_ptr += bytes_read;
460 break;
461
462 case DW_CFA_advance_loc1:
463 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
464 fs->pc += utmp * fs->code_align;
465 insn_ptr++;
466 break;
467 case DW_CFA_advance_loc2:
468 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
469 fs->pc += utmp * fs->code_align;
470 insn_ptr += 2;
471 break;
472 case DW_CFA_advance_loc4:
473 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 4;
476 break;
477
478 case DW_CFA_offset_extended:
479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
482 offset = utmp * fs->data_align;
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
484 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
485 fs->regs.reg[reg].loc.offset = offset;
486 break;
487
488 case DW_CFA_restore_extended:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
490 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
491 break;
492
493 case DW_CFA_undefined:
494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
495 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
498 break;
499
500 case DW_CFA_same_value:
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
502 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
505 break;
506
507 case DW_CFA_register:
508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
509 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
511 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
514 fs->regs.reg[reg].loc.reg = utmp;
515 break;
516
517 case DW_CFA_remember_state:
518 {
519 struct dwarf2_frame_state_reg_info *new_rs;
520
521 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
522 *new_rs = fs->regs;
523 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
524 fs->regs.prev = new_rs;
525 }
526 break;
527
528 case DW_CFA_restore_state:
529 {
530 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
531
532 if (old_rs == NULL)
533 {
534 complaint (&symfile_complaints, _("\
535 bad CFI data; mismatched DW_CFA_restore_state at %s"),
536 paddress (gdbarch, fs->pc));
537 }
538 else
539 {
540 xfree (fs->regs.reg);
541 fs->regs = *old_rs;
542 xfree (old_rs);
543 }
544 }
545 break;
546
547 case DW_CFA_def_cfa:
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
549 fs->regs.cfa_reg = reg;
550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
551
552 if (fs->armcc_cfa_offsets_sf)
553 utmp *= fs->data_align;
554
555 fs->regs.cfa_offset = utmp;
556 fs->regs.cfa_how = CFA_REG_OFFSET;
557 break;
558
559 case DW_CFA_def_cfa_register:
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
562 eh_frame_p);
563 fs->regs.cfa_how = CFA_REG_OFFSET;
564 break;
565
566 case DW_CFA_def_cfa_offset:
567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
568
569 if (fs->armcc_cfa_offsets_sf)
570 utmp *= fs->data_align;
571
572 fs->regs.cfa_offset = utmp;
573 /* cfa_how deliberately not set. */
574 break;
575
576 case DW_CFA_nop:
577 break;
578
579 case DW_CFA_def_cfa_expression:
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
581 fs->regs.cfa_exp_len = utmp;
582 fs->regs.cfa_exp = insn_ptr;
583 fs->regs.cfa_how = CFA_EXP;
584 insn_ptr += fs->regs.cfa_exp_len;
585 break;
586
587 case DW_CFA_expression:
588 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
589 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
590 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
592 fs->regs.reg[reg].loc.exp = insn_ptr;
593 fs->regs.reg[reg].exp_len = utmp;
594 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
595 insn_ptr += utmp;
596 break;
597
598 case DW_CFA_offset_extended_sf:
599 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
600 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
601 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
602 offset *= fs->data_align;
603 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
612 offset = utmp * fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_offset_sf:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
621 offset *= fs->data_align;
622 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
623 fs->regs.reg[reg].loc.offset = offset;
624 break;
625
626 case DW_CFA_val_expression:
627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
628 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
629 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
630 fs->regs.reg[reg].loc.exp = insn_ptr;
631 fs->regs.reg[reg].exp_len = utmp;
632 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
633 insn_ptr += utmp;
634 break;
635
636 case DW_CFA_def_cfa_sf:
637 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
638 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
639 eh_frame_p);
640 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
641 fs->regs.cfa_offset = offset * fs->data_align;
642 fs->regs.cfa_how = CFA_REG_OFFSET;
643 break;
644
645 case DW_CFA_def_cfa_offset_sf:
646 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
647 fs->regs.cfa_offset = offset * fs->data_align;
648 /* cfa_how deliberately not set. */
649 break;
650
651 case DW_CFA_GNU_window_save:
652 /* This is SPARC-specific code, and contains hard-coded
653 constants for the register numbering scheme used by
654 GCC. Rather than having a architecture-specific
655 operation that's only ever used by a single
656 architecture, we provide the implementation here.
657 Incidentally that's what GCC does too in its
658 unwinder. */
659 {
660 int size = register_size (gdbarch, 0);
661
662 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
663 for (reg = 8; reg < 16; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
666 fs->regs.reg[reg].loc.reg = reg + 16;
667 }
668 for (reg = 16; reg < 32; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
672 }
673 }
674 break;
675
676 case DW_CFA_GNU_args_size:
677 /* Ignored. */
678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
679 break;
680
681 case DW_CFA_GNU_negative_offset_extended:
682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
683 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
684 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
685 offset = utmp * fs->data_align;
686 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = -offset;
689 break;
690
691 default:
692 internal_error (__FILE__, __LINE__,
693 _("Unknown CFI encountered."));
694 }
695 }
696 }
697
698 if (fs->initial.reg == NULL)
699 {
700 /* Don't allow remember/restore between CIE and FDE programs. */
701 dwarf2_frame_state_free_regs (fs->regs.prev);
702 fs->regs.prev = NULL;
703 }
704
705 return insn_ptr;
706 }
707 \f
708
709 /* Architecture-specific operations. */
710
711 /* Per-architecture data key. */
712 static struct gdbarch_data *dwarf2_frame_data;
713
714 struct dwarf2_frame_ops
715 {
716 /* Pre-initialize the register state REG for register REGNUM. */
717 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
718 struct frame_info *);
719
720 /* Check whether the THIS_FRAME is a signal trampoline. */
721 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
722
723 /* Convert .eh_frame register number to DWARF register number, or
724 adjust .debug_frame register number. */
725 int (*adjust_regnum) (struct gdbarch *, int, int);
726 };
727
728 /* Default architecture-specific register state initialization
729 function. */
730
731 static void
732 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
733 struct dwarf2_frame_state_reg *reg,
734 struct frame_info *this_frame)
735 {
736 /* If we have a register that acts as a program counter, mark it as
737 a destination for the return address. If we have a register that
738 serves as the stack pointer, arrange for it to be filled with the
739 call frame address (CFA). The other registers are marked as
740 unspecified.
741
742 We copy the return address to the program counter, since many
743 parts in GDB assume that it is possible to get the return address
744 by unwinding the program counter register. However, on ISA's
745 with a dedicated return address register, the CFI usually only
746 contains information to unwind that return address register.
747
748 The reason we're treating the stack pointer special here is
749 because in many cases GCC doesn't emit CFI for the stack pointer
750 and implicitly assumes that it is equal to the CFA. This makes
751 some sense since the DWARF specification (version 3, draft 8,
752 p. 102) says that:
753
754 "Typically, the CFA is defined to be the value of the stack
755 pointer at the call site in the previous frame (which may be
756 different from its value on entry to the current frame)."
757
758 However, this isn't true for all platforms supported by GCC
759 (e.g. IBM S/390 and zSeries). Those architectures should provide
760 their own architecture-specific initialization function. */
761
762 if (regnum == gdbarch_pc_regnum (gdbarch))
763 reg->how = DWARF2_FRAME_REG_RA;
764 else if (regnum == gdbarch_sp_regnum (gdbarch))
765 reg->how = DWARF2_FRAME_REG_CFA;
766 }
767
768 /* Return a default for the architecture-specific operations. */
769
770 static void *
771 dwarf2_frame_init (struct obstack *obstack)
772 {
773 struct dwarf2_frame_ops *ops;
774
775 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
776 ops->init_reg = dwarf2_frame_default_init_reg;
777 return ops;
778 }
779
780 /* Set the architecture-specific register state initialization
781 function for GDBARCH to INIT_REG. */
782
783 void
784 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
785 void (*init_reg) (struct gdbarch *, int,
786 struct dwarf2_frame_state_reg *,
787 struct frame_info *))
788 {
789 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
790
791 ops->init_reg = init_reg;
792 }
793
794 /* Pre-initialize the register state REG for register REGNUM. */
795
796 static void
797 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
798 struct dwarf2_frame_state_reg *reg,
799 struct frame_info *this_frame)
800 {
801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
802
803 ops->init_reg (gdbarch, regnum, reg, this_frame);
804 }
805
806 /* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809 void
810 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813 {
814 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->signal_frame_p = signal_frame_p;
817 }
818
819 /* Query the architecture-specific signal frame recognizer for
820 THIS_FRAME. */
821
822 static int
823 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
824 struct frame_info *this_frame)
825 {
826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
830 return ops->signal_frame_p (gdbarch, this_frame);
831 }
832
833 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
835
836 void
837 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
840 {
841 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
842
843 ops->adjust_regnum = adjust_regnum;
844 }
845
846 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
847 register. */
848
849 static int
850 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
851 int regnum, int eh_frame_p)
852 {
853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
854
855 if (ops->adjust_regnum == NULL)
856 return regnum;
857 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
858 }
859
860 static void
861 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
862 struct dwarf2_fde *fde)
863 {
864 struct symtab *s;
865
866 s = find_pc_symtab (fs->pc);
867 if (s == NULL)
868 return;
869
870 if (producer_is_realview (s->producer))
871 {
872 if (fde->cie->version == 1)
873 fs->armcc_cfa_offsets_sf = 1;
874
875 if (fde->cie->version == 1)
876 fs->armcc_cfa_offsets_reversed = 1;
877
878 /* The reversed offset problem is present in some compilers
879 using DWARF3, but it was eventually fixed. Check the ARM
880 defined augmentations, which are in the format "armcc" followed
881 by a list of one-character options. The "+" option means
882 this problem is fixed (no quirk needed). If the armcc
883 augmentation is missing, the quirk is needed. */
884 if (fde->cie->version == 3
885 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
886 || strchr (fde->cie->augmentation + 5, '+') == NULL))
887 fs->armcc_cfa_offsets_reversed = 1;
888
889 return;
890 }
891 }
892 \f
893
894 void
895 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
896 struct gdbarch *gdbarch,
897 CORE_ADDR pc,
898 struct dwarf2_per_cu_data *data)
899 {
900 struct dwarf2_fde *fde;
901 CORE_ADDR text_offset;
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
944 ax_reg (expr, regnum);
945
946 if (fs.regs.cfa_offset != 0)
947 {
948 if (fs.armcc_cfa_offsets_reversed)
949 ax_const_l (expr, -fs.regs.cfa_offset);
950 else
951 ax_const_l (expr, fs.regs.cfa_offset);
952 ax_simple (expr, aop_add);
953 }
954 }
955 break;
956
957 case CFA_EXP:
958 ax_const_l (expr, text_offset);
959 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
960 fs.regs.cfa_exp,
961 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
962 data);
963 break;
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968 }
969
970 \f
971 struct dwarf2_frame_cache
972 {
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
989
990 /* Target address size in bytes. */
991 int addr_size;
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
995
996 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
997 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
998 involved. Non-bottom frames of a virtual tail call frames chain use
999 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1000 them. */
1001 void *tailcall_cache;
1002 };
1003
1004 /* A cleanup that sets a pointer to NULL. */
1005
1006 static void
1007 clear_pointer_cleanup (void *arg)
1008 {
1009 void **ptr = arg;
1010
1011 *ptr = NULL;
1012 }
1013
1014 static struct dwarf2_frame_cache *
1015 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1016 {
1017 struct cleanup *reset_cache_cleanup, *old_chain;
1018 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1019 const int num_regs = gdbarch_num_regs (gdbarch)
1020 + gdbarch_num_pseudo_regs (gdbarch);
1021 struct dwarf2_frame_cache *cache;
1022 struct dwarf2_frame_state *fs;
1023 struct dwarf2_fde *fde;
1024 volatile struct gdb_exception ex;
1025 CORE_ADDR entry_pc;
1026 LONGEST entry_cfa_sp_offset;
1027 int entry_cfa_sp_offset_p = 0;
1028 const gdb_byte *instr;
1029
1030 if (*this_cache)
1031 return *this_cache;
1032
1033 /* Allocate a new cache. */
1034 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1035 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1036 *this_cache = cache;
1037 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1038
1039 /* Allocate and initialize the frame state. */
1040 fs = XZALLOC (struct dwarf2_frame_state);
1041 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1042
1043 /* Unwind the PC.
1044
1045 Note that if the next frame is never supposed to return (i.e. a call
1046 to abort), the compiler might optimize away the instruction at
1047 its return address. As a result the return address will
1048 point at some random instruction, and the CFI for that
1049 instruction is probably worthless to us. GCC's unwinder solves
1050 this problem by substracting 1 from the return address to get an
1051 address in the middle of a presumed call instruction (or the
1052 instruction in the associated delay slot). This should only be
1053 done for "normal" frames and not for resume-type frames (signal
1054 handlers, sentinel frames, dummy frames). The function
1055 get_frame_address_in_block does just this. It's not clear how
1056 reliable the method is though; there is the potential for the
1057 register state pre-call being different to that on return. */
1058 fs->pc = get_frame_address_in_block (this_frame);
1059
1060 /* Find the correct FDE. */
1061 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1062 gdb_assert (fde != NULL);
1063
1064 /* Extract any interesting information from the CIE. */
1065 fs->data_align = fde->cie->data_alignment_factor;
1066 fs->code_align = fde->cie->code_alignment_factor;
1067 fs->retaddr_column = fde->cie->return_address_register;
1068 cache->addr_size = fde->cie->addr_size;
1069
1070 /* Check for "quirks" - known bugs in producers. */
1071 dwarf2_frame_find_quirks (fs, fde);
1072
1073 /* First decode all the insns in the CIE. */
1074 execute_cfa_program (fde, fde->cie->initial_instructions,
1075 fde->cie->end, gdbarch,
1076 get_frame_address_in_block (this_frame), fs);
1077
1078 /* Save the initialized register set. */
1079 fs->initial = fs->regs;
1080 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1081
1082 if (get_frame_func_if_available (this_frame, &entry_pc))
1083 {
1084 /* Decode the insns in the FDE up to the entry PC. */
1085 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1086 entry_pc, fs);
1087
1088 if (fs->regs.cfa_how == CFA_REG_OFFSET
1089 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1090 == gdbarch_sp_regnum (gdbarch)))
1091 {
1092 entry_cfa_sp_offset = fs->regs.cfa_offset;
1093 entry_cfa_sp_offset_p = 1;
1094 }
1095 }
1096 else
1097 instr = fde->instructions;
1098
1099 /* Then decode the insns in the FDE up to our target PC. */
1100 execute_cfa_program (fde, instr, fde->end, gdbarch,
1101 get_frame_address_in_block (this_frame), fs);
1102
1103 TRY_CATCH (ex, RETURN_MASK_ERROR)
1104 {
1105 /* Calculate the CFA. */
1106 switch (fs->regs.cfa_how)
1107 {
1108 case CFA_REG_OFFSET:
1109 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1110 if (fs->armcc_cfa_offsets_reversed)
1111 cache->cfa -= fs->regs.cfa_offset;
1112 else
1113 cache->cfa += fs->regs.cfa_offset;
1114 break;
1115
1116 case CFA_EXP:
1117 cache->cfa =
1118 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1119 cache->addr_size, cache->text_offset,
1120 this_frame, 0, 0);
1121 break;
1122
1123 default:
1124 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1125 }
1126 }
1127 if (ex.reason < 0)
1128 {
1129 if (ex.error == NOT_AVAILABLE_ERROR)
1130 {
1131 cache->unavailable_retaddr = 1;
1132 do_cleanups (old_chain);
1133 discard_cleanups (reset_cache_cleanup);
1134 return cache;
1135 }
1136
1137 throw_exception (ex);
1138 }
1139
1140 /* Initialize the register state. */
1141 {
1142 int regnum;
1143
1144 for (regnum = 0; regnum < num_regs; regnum++)
1145 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1146 }
1147
1148 /* Go through the DWARF2 CFI generated table and save its register
1149 location information in the cache. Note that we don't skip the
1150 return address column; it's perfectly all right for it to
1151 correspond to a real register. If it doesn't correspond to a
1152 real register, or if we shouldn't treat it as such,
1153 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1154 the range [0, gdbarch_num_regs). */
1155 {
1156 int column; /* CFI speak for "register number". */
1157
1158 for (column = 0; column < fs->regs.num_regs; column++)
1159 {
1160 /* Use the GDB register number as the destination index. */
1161 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1162
1163 /* If there's no corresponding GDB register, ignore it. */
1164 if (regnum < 0 || regnum >= num_regs)
1165 continue;
1166
1167 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1168 of all debug info registers. If it doesn't, complain (but
1169 not too loudly). It turns out that GCC assumes that an
1170 unspecified register implies "same value" when CFI (draft
1171 7) specifies nothing at all. Such a register could equally
1172 be interpreted as "undefined". Also note that this check
1173 isn't sufficient; it only checks that all registers in the
1174 range [0 .. max column] are specified, and won't detect
1175 problems when a debug info register falls outside of the
1176 table. We need a way of iterating through all the valid
1177 DWARF2 register numbers. */
1178 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1179 {
1180 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1181 complaint (&symfile_complaints, _("\
1182 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1183 gdbarch_register_name (gdbarch, regnum),
1184 paddress (gdbarch, fs->pc));
1185 }
1186 else
1187 cache->reg[regnum] = fs->regs.reg[column];
1188 }
1189 }
1190
1191 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1192 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1193 {
1194 int regnum;
1195
1196 for (regnum = 0; regnum < num_regs; regnum++)
1197 {
1198 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1199 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1200 {
1201 struct dwarf2_frame_state_reg *retaddr_reg =
1202 &fs->regs.reg[fs->retaddr_column];
1203
1204 /* It seems rather bizarre to specify an "empty" column as
1205 the return adress column. However, this is exactly
1206 what GCC does on some targets. It turns out that GCC
1207 assumes that the return address can be found in the
1208 register corresponding to the return address column.
1209 Incidentally, that's how we should treat a return
1210 address column specifying "same value" too. */
1211 if (fs->retaddr_column < fs->regs.num_regs
1212 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1213 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1214 {
1215 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1216 cache->reg[regnum] = *retaddr_reg;
1217 else
1218 cache->retaddr_reg = *retaddr_reg;
1219 }
1220 else
1221 {
1222 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1223 {
1224 cache->reg[regnum].loc.reg = fs->retaddr_column;
1225 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1226 }
1227 else
1228 {
1229 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1230 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1231 }
1232 }
1233 }
1234 }
1235 }
1236
1237 if (fs->retaddr_column < fs->regs.num_regs
1238 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1239 cache->undefined_retaddr = 1;
1240
1241 do_cleanups (old_chain);
1242
1243 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1244 starting at THIS_FRAME. */
1245 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1246 (entry_cfa_sp_offset_p
1247 ? &entry_cfa_sp_offset : NULL));
1248
1249 discard_cleanups (reset_cache_cleanup);
1250 return cache;
1251 }
1252
1253 static enum unwind_stop_reason
1254 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1255 void **this_cache)
1256 {
1257 struct dwarf2_frame_cache *cache
1258 = dwarf2_frame_cache (this_frame, this_cache);
1259
1260 if (cache->unavailable_retaddr)
1261 return UNWIND_UNAVAILABLE;
1262
1263 if (cache->undefined_retaddr)
1264 return UNWIND_OUTERMOST;
1265
1266 return UNWIND_NO_REASON;
1267 }
1268
1269 static void
1270 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1271 struct frame_id *this_id)
1272 {
1273 struct dwarf2_frame_cache *cache =
1274 dwarf2_frame_cache (this_frame, this_cache);
1275
1276 if (cache->unavailable_retaddr)
1277 return;
1278
1279 if (cache->undefined_retaddr)
1280 return;
1281
1282 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1283 }
1284
1285 static struct value *
1286 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1287 int regnum)
1288 {
1289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1290 struct dwarf2_frame_cache *cache =
1291 dwarf2_frame_cache (this_frame, this_cache);
1292 CORE_ADDR addr;
1293 int realnum;
1294
1295 /* Non-bottom frames of a virtual tail call frames chain use
1296 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1297 them. If dwarf2_tailcall_prev_register_first does not have specific value
1298 unwind the register, tail call frames are assumed to have the register set
1299 of the top caller. */
1300 if (cache->tailcall_cache)
1301 {
1302 struct value *val;
1303
1304 val = dwarf2_tailcall_prev_register_first (this_frame,
1305 &cache->tailcall_cache,
1306 regnum);
1307 if (val)
1308 return val;
1309 }
1310
1311 switch (cache->reg[regnum].how)
1312 {
1313 case DWARF2_FRAME_REG_UNDEFINED:
1314 /* If CFI explicitly specified that the value isn't defined,
1315 mark it as optimized away; the value isn't available. */
1316 return frame_unwind_got_optimized (this_frame, regnum);
1317
1318 case DWARF2_FRAME_REG_SAVED_OFFSET:
1319 addr = cache->cfa + cache->reg[regnum].loc.offset;
1320 return frame_unwind_got_memory (this_frame, regnum, addr);
1321
1322 case DWARF2_FRAME_REG_SAVED_REG:
1323 realnum
1324 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1325 return frame_unwind_got_register (this_frame, regnum, realnum);
1326
1327 case DWARF2_FRAME_REG_SAVED_EXP:
1328 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1329 cache->reg[regnum].exp_len,
1330 cache->addr_size, cache->text_offset,
1331 this_frame, cache->cfa, 1);
1332 return frame_unwind_got_memory (this_frame, regnum, addr);
1333
1334 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1335 addr = cache->cfa + cache->reg[regnum].loc.offset;
1336 return frame_unwind_got_constant (this_frame, regnum, addr);
1337
1338 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1339 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1340 cache->reg[regnum].exp_len,
1341 cache->addr_size, cache->text_offset,
1342 this_frame, cache->cfa, 1);
1343 return frame_unwind_got_constant (this_frame, regnum, addr);
1344
1345 case DWARF2_FRAME_REG_UNSPECIFIED:
1346 /* GCC, in its infinite wisdom decided to not provide unwind
1347 information for registers that are "same value". Since
1348 DWARF2 (3 draft 7) doesn't define such behavior, said
1349 registers are actually undefined (which is different to CFI
1350 "undefined"). Code above issues a complaint about this.
1351 Here just fudge the books, assume GCC, and that the value is
1352 more inner on the stack. */
1353 return frame_unwind_got_register (this_frame, regnum, regnum);
1354
1355 case DWARF2_FRAME_REG_SAME_VALUE:
1356 return frame_unwind_got_register (this_frame, regnum, regnum);
1357
1358 case DWARF2_FRAME_REG_CFA:
1359 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1360
1361 case DWARF2_FRAME_REG_CFA_OFFSET:
1362 addr = cache->cfa + cache->reg[regnum].loc.offset;
1363 return frame_unwind_got_address (this_frame, regnum, addr);
1364
1365 case DWARF2_FRAME_REG_RA_OFFSET:
1366 addr = cache->reg[regnum].loc.offset;
1367 regnum = gdbarch_dwarf2_reg_to_regnum
1368 (gdbarch, cache->retaddr_reg.loc.reg);
1369 addr += get_frame_register_unsigned (this_frame, regnum);
1370 return frame_unwind_got_address (this_frame, regnum, addr);
1371
1372 case DWARF2_FRAME_REG_FN:
1373 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1374
1375 default:
1376 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1377 }
1378 }
1379
1380 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1381 call frames chain. */
1382
1383 static void
1384 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1385 {
1386 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1387
1388 if (cache->tailcall_cache)
1389 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1390 }
1391
1392 static int
1393 dwarf2_frame_sniffer (const struct frame_unwind *self,
1394 struct frame_info *this_frame, void **this_cache)
1395 {
1396 /* Grab an address that is guarenteed to reside somewhere within the
1397 function. get_frame_pc(), with a no-return next function, can
1398 end up returning something past the end of this function's body.
1399 If the frame we're sniffing for is a signal frame whose start
1400 address is placed on the stack by the OS, its FDE must
1401 extend one byte before its start address or we could potentially
1402 select the FDE of the previous function. */
1403 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1404 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1405
1406 if (!fde)
1407 return 0;
1408
1409 /* On some targets, signal trampolines may have unwind information.
1410 We need to recognize them so that we set the frame type
1411 correctly. */
1412
1413 if (fde->cie->signal_frame
1414 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1415 this_frame))
1416 return self->type == SIGTRAMP_FRAME;
1417
1418 if (self->type != NORMAL_FRAME)
1419 return 0;
1420
1421 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1422 dwarf2_tailcall_sniffer_first. */
1423 dwarf2_frame_cache (this_frame, this_cache);
1424
1425 return 1;
1426 }
1427
1428 static const struct frame_unwind dwarf2_frame_unwind =
1429 {
1430 NORMAL_FRAME,
1431 dwarf2_frame_unwind_stop_reason,
1432 dwarf2_frame_this_id,
1433 dwarf2_frame_prev_register,
1434 NULL,
1435 dwarf2_frame_sniffer,
1436 dwarf2_frame_dealloc_cache
1437 };
1438
1439 static const struct frame_unwind dwarf2_signal_frame_unwind =
1440 {
1441 SIGTRAMP_FRAME,
1442 dwarf2_frame_unwind_stop_reason,
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
1446 dwarf2_frame_sniffer,
1447
1448 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1449 NULL
1450 };
1451
1452 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1453
1454 void
1455 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1456 {
1457 /* TAILCALL_FRAME must be first to find the record by
1458 dwarf2_tailcall_sniffer_first. */
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1460
1461 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1463 }
1464 \f
1465
1466 /* There is no explicitly defined relationship between the CFA and the
1467 location of frame's local variables and arguments/parameters.
1468 Therefore, frame base methods on this page should probably only be
1469 used as a last resort, just to avoid printing total garbage as a
1470 response to the "info frame" command. */
1471
1472 static CORE_ADDR
1473 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1474 {
1475 struct dwarf2_frame_cache *cache =
1476 dwarf2_frame_cache (this_frame, this_cache);
1477
1478 return cache->cfa;
1479 }
1480
1481 static const struct frame_base dwarf2_frame_base =
1482 {
1483 &dwarf2_frame_unwind,
1484 dwarf2_frame_base_address,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address
1487 };
1488
1489 const struct frame_base *
1490 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1491 {
1492 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1493
1494 if (dwarf2_frame_find_fde (&block_addr, NULL))
1495 return &dwarf2_frame_base;
1496
1497 return NULL;
1498 }
1499
1500 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1501 the DWARF unwinder. This is used to implement
1502 DW_OP_call_frame_cfa. */
1503
1504 CORE_ADDR
1505 dwarf2_frame_cfa (struct frame_info *this_frame)
1506 {
1507 while (get_frame_type (this_frame) == INLINE_FRAME)
1508 this_frame = get_prev_frame (this_frame);
1509 /* This restriction could be lifted if other unwinders are known to
1510 compute the frame base in a way compatible with the DWARF
1511 unwinder. */
1512 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1513 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1514 error (_("can't compute CFA for this frame"));
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
1519 return get_frame_base (this_frame);
1520 }
1521 \f
1522 const struct objfile_data *dwarf2_frame_objfile_data;
1523
1524 static unsigned int
1525 read_1_byte (bfd *abfd, const gdb_byte *buf)
1526 {
1527 return bfd_get_8 (abfd, buf);
1528 }
1529
1530 static unsigned int
1531 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1532 {
1533 return bfd_get_32 (abfd, buf);
1534 }
1535
1536 static ULONGEST
1537 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1538 {
1539 return bfd_get_64 (abfd, buf);
1540 }
1541
1542 static ULONGEST
1543 read_initial_length (bfd *abfd, const gdb_byte *buf,
1544 unsigned int *bytes_read_ptr)
1545 {
1546 LONGEST result;
1547
1548 result = bfd_get_32 (abfd, buf);
1549 if (result == 0xffffffff)
1550 {
1551 result = bfd_get_64 (abfd, buf + 4);
1552 *bytes_read_ptr = 12;
1553 }
1554 else
1555 *bytes_read_ptr = 4;
1556
1557 return result;
1558 }
1559 \f
1560
1561 /* Pointer encoding helper functions. */
1562
1563 /* GCC supports exception handling based on DWARF2 CFI. However, for
1564 technical reasons, it encodes addresses in its FDE's in a different
1565 way. Several "pointer encodings" are supported. The encoding
1566 that's used for a particular FDE is determined by the 'R'
1567 augmentation in the associated CIE. The argument of this
1568 augmentation is a single byte.
1569
1570 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1571 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1572 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1573 address should be interpreted (absolute, relative to the current
1574 position in the FDE, ...). Bit 7, indicates that the address
1575 should be dereferenced. */
1576
1577 static gdb_byte
1578 encoding_for_size (unsigned int size)
1579 {
1580 switch (size)
1581 {
1582 case 2:
1583 return DW_EH_PE_udata2;
1584 case 4:
1585 return DW_EH_PE_udata4;
1586 case 8:
1587 return DW_EH_PE_udata8;
1588 default:
1589 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1590 }
1591 }
1592
1593 static CORE_ADDR
1594 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1595 int ptr_len, const gdb_byte *buf,
1596 unsigned int *bytes_read_ptr,
1597 CORE_ADDR func_base)
1598 {
1599 ptrdiff_t offset;
1600 CORE_ADDR base;
1601
1602 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1603 FDE's. */
1604 if (encoding & DW_EH_PE_indirect)
1605 internal_error (__FILE__, __LINE__,
1606 _("Unsupported encoding: DW_EH_PE_indirect"));
1607
1608 *bytes_read_ptr = 0;
1609
1610 switch (encoding & 0x70)
1611 {
1612 case DW_EH_PE_absptr:
1613 base = 0;
1614 break;
1615 case DW_EH_PE_pcrel:
1616 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1617 base += (buf - unit->dwarf_frame_buffer);
1618 break;
1619 case DW_EH_PE_datarel:
1620 base = unit->dbase;
1621 break;
1622 case DW_EH_PE_textrel:
1623 base = unit->tbase;
1624 break;
1625 case DW_EH_PE_funcrel:
1626 base = func_base;
1627 break;
1628 case DW_EH_PE_aligned:
1629 base = 0;
1630 offset = buf - unit->dwarf_frame_buffer;
1631 if ((offset % ptr_len) != 0)
1632 {
1633 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1634 buf += *bytes_read_ptr;
1635 }
1636 break;
1637 default:
1638 internal_error (__FILE__, __LINE__,
1639 _("Invalid or unsupported encoding"));
1640 }
1641
1642 if ((encoding & 0x07) == 0x00)
1643 {
1644 encoding |= encoding_for_size (ptr_len);
1645 if (bfd_get_sign_extend_vma (unit->abfd))
1646 encoding |= DW_EH_PE_signed;
1647 }
1648
1649 switch (encoding & 0x0f)
1650 {
1651 case DW_EH_PE_uleb128:
1652 {
1653 uint64_t value;
1654 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1655
1656 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1657 return base + value;
1658 }
1659 case DW_EH_PE_udata2:
1660 *bytes_read_ptr += 2;
1661 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1662 case DW_EH_PE_udata4:
1663 *bytes_read_ptr += 4;
1664 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1665 case DW_EH_PE_udata8:
1666 *bytes_read_ptr += 8;
1667 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_sleb128:
1669 {
1670 int64_t value;
1671 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1672
1673 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1674 return base + value;
1675 }
1676 case DW_EH_PE_sdata2:
1677 *bytes_read_ptr += 2;
1678 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1679 case DW_EH_PE_sdata4:
1680 *bytes_read_ptr += 4;
1681 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1682 case DW_EH_PE_sdata8:
1683 *bytes_read_ptr += 8;
1684 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1685 default:
1686 internal_error (__FILE__, __LINE__,
1687 _("Invalid or unsupported encoding"));
1688 }
1689 }
1690 \f
1691
1692 static int
1693 bsearch_cie_cmp (const void *key, const void *element)
1694 {
1695 ULONGEST cie_pointer = *(ULONGEST *) key;
1696 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1697
1698 if (cie_pointer == cie->cie_pointer)
1699 return 0;
1700
1701 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1702 }
1703
1704 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1705 static struct dwarf2_cie *
1706 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1707 {
1708 struct dwarf2_cie **p_cie;
1709
1710 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1711 bsearch be non-NULL. */
1712 if (cie_table->entries == NULL)
1713 {
1714 gdb_assert (cie_table->num_entries == 0);
1715 return NULL;
1716 }
1717
1718 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1719 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1720 if (p_cie != NULL)
1721 return *p_cie;
1722 return NULL;
1723 }
1724
1725 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1726 static void
1727 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1728 {
1729 const int n = cie_table->num_entries;
1730
1731 gdb_assert (n < 1
1732 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1733
1734 cie_table->entries =
1735 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1736 cie_table->entries[n] = cie;
1737 cie_table->num_entries = n + 1;
1738 }
1739
1740 static int
1741 bsearch_fde_cmp (const void *key, const void *element)
1742 {
1743 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1744 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1745
1746 if (seek_pc < fde->initial_location)
1747 return -1;
1748 if (seek_pc < fde->initial_location + fde->address_range)
1749 return 0;
1750 return 1;
1751 }
1752
1753 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1754 inital location associated with it into *PC. */
1755
1756 static struct dwarf2_fde *
1757 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1758 {
1759 struct objfile *objfile;
1760
1761 ALL_OBJFILES (objfile)
1762 {
1763 struct dwarf2_fde_table *fde_table;
1764 struct dwarf2_fde **p_fde;
1765 CORE_ADDR offset;
1766 CORE_ADDR seek_pc;
1767
1768 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1769 if (fde_table == NULL)
1770 {
1771 dwarf2_build_frame_info (objfile);
1772 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1773 }
1774 gdb_assert (fde_table != NULL);
1775
1776 if (fde_table->num_entries == 0)
1777 continue;
1778
1779 gdb_assert (objfile->section_offsets);
1780 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1781
1782 gdb_assert (fde_table->num_entries > 0);
1783 if (*pc < offset + fde_table->entries[0]->initial_location)
1784 continue;
1785
1786 seek_pc = *pc - offset;
1787 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1788 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1789 if (p_fde != NULL)
1790 {
1791 *pc = (*p_fde)->initial_location + offset;
1792 if (out_offset)
1793 *out_offset = offset;
1794 return *p_fde;
1795 }
1796 }
1797 return NULL;
1798 }
1799
1800 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1801 static void
1802 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1803 {
1804 if (fde->address_range == 0)
1805 /* Discard useless FDEs. */
1806 return;
1807
1808 fde_table->num_entries += 1;
1809 fde_table->entries =
1810 xrealloc (fde_table->entries,
1811 fde_table->num_entries * sizeof (fde_table->entries[0]));
1812 fde_table->entries[fde_table->num_entries - 1] = fde;
1813 }
1814
1815 #define DW64_CIE_ID 0xffffffffffffffffULL
1816
1817 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1818 or any of them. */
1819
1820 enum eh_frame_type
1821 {
1822 EH_CIE_TYPE_ID = 1 << 0,
1823 EH_FDE_TYPE_ID = 1 << 1,
1824 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1825 };
1826
1827 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1828 const gdb_byte *start,
1829 int eh_frame_p,
1830 struct dwarf2_cie_table *cie_table,
1831 struct dwarf2_fde_table *fde_table,
1832 enum eh_frame_type entry_type);
1833
1834 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1835 Return NULL if invalid input, otherwise the next byte to be processed. */
1836
1837 static const gdb_byte *
1838 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1839 int eh_frame_p,
1840 struct dwarf2_cie_table *cie_table,
1841 struct dwarf2_fde_table *fde_table,
1842 enum eh_frame_type entry_type)
1843 {
1844 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1845 const gdb_byte *buf, *end;
1846 LONGEST length;
1847 unsigned int bytes_read;
1848 int dwarf64_p;
1849 ULONGEST cie_id;
1850 ULONGEST cie_pointer;
1851 int64_t sleb128;
1852 uint64_t uleb128;
1853
1854 buf = start;
1855 length = read_initial_length (unit->abfd, buf, &bytes_read);
1856 buf += bytes_read;
1857 end = buf + length;
1858
1859 /* Are we still within the section? */
1860 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1861 return NULL;
1862
1863 if (length == 0)
1864 return end;
1865
1866 /* Distinguish between 32 and 64-bit encoded frame info. */
1867 dwarf64_p = (bytes_read == 12);
1868
1869 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1870 if (eh_frame_p)
1871 cie_id = 0;
1872 else if (dwarf64_p)
1873 cie_id = DW64_CIE_ID;
1874 else
1875 cie_id = DW_CIE_ID;
1876
1877 if (dwarf64_p)
1878 {
1879 cie_pointer = read_8_bytes (unit->abfd, buf);
1880 buf += 8;
1881 }
1882 else
1883 {
1884 cie_pointer = read_4_bytes (unit->abfd, buf);
1885 buf += 4;
1886 }
1887
1888 if (cie_pointer == cie_id)
1889 {
1890 /* This is a CIE. */
1891 struct dwarf2_cie *cie;
1892 char *augmentation;
1893 unsigned int cie_version;
1894
1895 /* Check that a CIE was expected. */
1896 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1897 error (_("Found a CIE when not expecting it."));
1898
1899 /* Record the offset into the .debug_frame section of this CIE. */
1900 cie_pointer = start - unit->dwarf_frame_buffer;
1901
1902 /* Check whether we've already read it. */
1903 if (find_cie (cie_table, cie_pointer))
1904 return end;
1905
1906 cie = (struct dwarf2_cie *)
1907 obstack_alloc (&unit->objfile->objfile_obstack,
1908 sizeof (struct dwarf2_cie));
1909 cie->initial_instructions = NULL;
1910 cie->cie_pointer = cie_pointer;
1911
1912 /* The encoding for FDE's in a normal .debug_frame section
1913 depends on the target address size. */
1914 cie->encoding = DW_EH_PE_absptr;
1915
1916 /* We'll determine the final value later, but we need to
1917 initialize it conservatively. */
1918 cie->signal_frame = 0;
1919
1920 /* Check version number. */
1921 cie_version = read_1_byte (unit->abfd, buf);
1922 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1923 return NULL;
1924 cie->version = cie_version;
1925 buf += 1;
1926
1927 /* Interpret the interesting bits of the augmentation. */
1928 cie->augmentation = augmentation = (char *) buf;
1929 buf += (strlen (augmentation) + 1);
1930
1931 /* Ignore armcc augmentations. We only use them for quirks,
1932 and that doesn't happen until later. */
1933 if (strncmp (augmentation, "armcc", 5) == 0)
1934 augmentation += strlen (augmentation);
1935
1936 /* The GCC 2.x "eh" augmentation has a pointer immediately
1937 following the augmentation string, so it must be handled
1938 first. */
1939 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1940 {
1941 /* Skip. */
1942 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1943 augmentation += 2;
1944 }
1945
1946 if (cie->version >= 4)
1947 {
1948 /* FIXME: check that this is the same as from the CU header. */
1949 cie->addr_size = read_1_byte (unit->abfd, buf);
1950 ++buf;
1951 cie->segment_size = read_1_byte (unit->abfd, buf);
1952 ++buf;
1953 }
1954 else
1955 {
1956 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1957 cie->segment_size = 0;
1958 }
1959 /* Address values in .eh_frame sections are defined to have the
1960 target's pointer size. Watchout: This breaks frame info for
1961 targets with pointer size < address size, unless a .debug_frame
1962 section exists as well. */
1963 if (eh_frame_p)
1964 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1965 else
1966 cie->ptr_size = cie->addr_size;
1967
1968 buf = gdb_read_uleb128 (buf, end, &uleb128);
1969 if (buf == NULL)
1970 return NULL;
1971 cie->code_alignment_factor = uleb128;
1972
1973 buf = gdb_read_sleb128 (buf, end, &sleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->data_alignment_factor = sleb128;
1977
1978 if (cie_version == 1)
1979 {
1980 cie->return_address_register = read_1_byte (unit->abfd, buf);
1981 ++buf;
1982 }
1983 else
1984 {
1985 buf = gdb_read_uleb128 (buf, end, &uleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->return_address_register = uleb128;
1989 }
1990
1991 cie->return_address_register
1992 = dwarf2_frame_adjust_regnum (gdbarch,
1993 cie->return_address_register,
1994 eh_frame_p);
1995
1996 cie->saw_z_augmentation = (*augmentation == 'z');
1997 if (cie->saw_z_augmentation)
1998 {
1999 uint64_t length;
2000
2001 buf = gdb_read_uleb128 (buf, end, &length);
2002 if (buf == NULL)
2003 return NULL;
2004 cie->initial_instructions = buf + length;
2005 augmentation++;
2006 }
2007
2008 while (*augmentation)
2009 {
2010 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2011 if (*augmentation == 'L')
2012 {
2013 /* Skip. */
2014 buf++;
2015 augmentation++;
2016 }
2017
2018 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2019 else if (*augmentation == 'R')
2020 {
2021 cie->encoding = *buf++;
2022 augmentation++;
2023 }
2024
2025 /* "P" indicates a personality routine in the CIE augmentation. */
2026 else if (*augmentation == 'P')
2027 {
2028 /* Skip. Avoid indirection since we throw away the result. */
2029 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2030 read_encoded_value (unit, encoding, cie->ptr_size,
2031 buf, &bytes_read, 0);
2032 buf += bytes_read;
2033 augmentation++;
2034 }
2035
2036 /* "S" indicates a signal frame, such that the return
2037 address must not be decremented to locate the call frame
2038 info for the previous frame; it might even be the first
2039 instruction of a function, so decrementing it would take
2040 us to a different function. */
2041 else if (*augmentation == 'S')
2042 {
2043 cie->signal_frame = 1;
2044 augmentation++;
2045 }
2046
2047 /* Otherwise we have an unknown augmentation. Assume that either
2048 there is no augmentation data, or we saw a 'z' prefix. */
2049 else
2050 {
2051 if (cie->initial_instructions)
2052 buf = cie->initial_instructions;
2053 break;
2054 }
2055 }
2056
2057 cie->initial_instructions = buf;
2058 cie->end = end;
2059 cie->unit = unit;
2060
2061 add_cie (cie_table, cie);
2062 }
2063 else
2064 {
2065 /* This is a FDE. */
2066 struct dwarf2_fde *fde;
2067
2068 /* Check that an FDE was expected. */
2069 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2070 error (_("Found an FDE when not expecting it."));
2071
2072 /* In an .eh_frame section, the CIE pointer is the delta between the
2073 address within the FDE where the CIE pointer is stored and the
2074 address of the CIE. Convert it to an offset into the .eh_frame
2075 section. */
2076 if (eh_frame_p)
2077 {
2078 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2079 cie_pointer -= (dwarf64_p ? 8 : 4);
2080 }
2081
2082 /* In either case, validate the result is still within the section. */
2083 if (cie_pointer >= unit->dwarf_frame_size)
2084 return NULL;
2085
2086 fde = (struct dwarf2_fde *)
2087 obstack_alloc (&unit->objfile->objfile_obstack,
2088 sizeof (struct dwarf2_fde));
2089 fde->cie = find_cie (cie_table, cie_pointer);
2090 if (fde->cie == NULL)
2091 {
2092 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2093 eh_frame_p, cie_table, fde_table,
2094 EH_CIE_TYPE_ID);
2095 fde->cie = find_cie (cie_table, cie_pointer);
2096 }
2097
2098 gdb_assert (fde->cie != NULL);
2099
2100 fde->initial_location =
2101 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2102 buf, &bytes_read, 0);
2103 buf += bytes_read;
2104
2105 fde->address_range =
2106 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2107 fde->cie->ptr_size, buf, &bytes_read, 0);
2108 buf += bytes_read;
2109
2110 /* A 'z' augmentation in the CIE implies the presence of an
2111 augmentation field in the FDE as well. The only thing known
2112 to be in here at present is the LSDA entry for EH. So we
2113 can skip the whole thing. */
2114 if (fde->cie->saw_z_augmentation)
2115 {
2116 uint64_t length;
2117
2118 buf = gdb_read_uleb128 (buf, end, &length);
2119 if (buf == NULL)
2120 return NULL;
2121 buf += length;
2122 if (buf > end)
2123 return NULL;
2124 }
2125
2126 fde->instructions = buf;
2127 fde->end = end;
2128
2129 fde->eh_frame_p = eh_frame_p;
2130
2131 add_fde (fde_table, fde);
2132 }
2133
2134 return end;
2135 }
2136
2137 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2138 expect an FDE or a CIE. */
2139
2140 static const gdb_byte *
2141 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2142 int eh_frame_p,
2143 struct dwarf2_cie_table *cie_table,
2144 struct dwarf2_fde_table *fde_table,
2145 enum eh_frame_type entry_type)
2146 {
2147 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2148 const gdb_byte *ret;
2149 ptrdiff_t start_offset;
2150
2151 while (1)
2152 {
2153 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2154 cie_table, fde_table, entry_type);
2155 if (ret != NULL)
2156 break;
2157
2158 /* We have corrupt input data of some form. */
2159
2160 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2161 and mismatches wrt padding and alignment of debug sections. */
2162 /* Note that there is no requirement in the standard for any
2163 alignment at all in the frame unwind sections. Testing for
2164 alignment before trying to interpret data would be incorrect.
2165
2166 However, GCC traditionally arranged for frame sections to be
2167 sized such that the FDE length and CIE fields happen to be
2168 aligned (in theory, for performance). This, unfortunately,
2169 was done with .align directives, which had the side effect of
2170 forcing the section to be aligned by the linker.
2171
2172 This becomes a problem when you have some other producer that
2173 creates frame sections that are not as strictly aligned. That
2174 produces a hole in the frame info that gets filled by the
2175 linker with zeros.
2176
2177 The GCC behaviour is arguably a bug, but it's effectively now
2178 part of the ABI, so we're now stuck with it, at least at the
2179 object file level. A smart linker may decide, in the process
2180 of compressing duplicate CIE information, that it can rewrite
2181 the entire output section without this extra padding. */
2182
2183 start_offset = start - unit->dwarf_frame_buffer;
2184 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2185 {
2186 start += 4 - (start_offset & 3);
2187 workaround = ALIGN4;
2188 continue;
2189 }
2190 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2191 {
2192 start += 8 - (start_offset & 7);
2193 workaround = ALIGN8;
2194 continue;
2195 }
2196
2197 /* Nothing left to try. Arrange to return as if we've consumed
2198 the entire input section. Hopefully we'll get valid info from
2199 the other of .debug_frame/.eh_frame. */
2200 workaround = FAIL;
2201 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2202 break;
2203 }
2204
2205 switch (workaround)
2206 {
2207 case NONE:
2208 break;
2209
2210 case ALIGN4:
2211 complaint (&symfile_complaints, _("\
2212 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2213 unit->dwarf_frame_section->owner->filename,
2214 unit->dwarf_frame_section->name);
2215 break;
2216
2217 case ALIGN8:
2218 complaint (&symfile_complaints, _("\
2219 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2220 unit->dwarf_frame_section->owner->filename,
2221 unit->dwarf_frame_section->name);
2222 break;
2223
2224 default:
2225 complaint (&symfile_complaints,
2226 _("Corrupt data in %s:%s"),
2227 unit->dwarf_frame_section->owner->filename,
2228 unit->dwarf_frame_section->name);
2229 break;
2230 }
2231
2232 return ret;
2233 }
2234 \f
2235 static int
2236 qsort_fde_cmp (const void *a, const void *b)
2237 {
2238 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2239 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2240
2241 if (aa->initial_location == bb->initial_location)
2242 {
2243 if (aa->address_range != bb->address_range
2244 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2245 /* Linker bug, e.g. gold/10400.
2246 Work around it by keeping stable sort order. */
2247 return (a < b) ? -1 : 1;
2248 else
2249 /* Put eh_frame entries after debug_frame ones. */
2250 return aa->eh_frame_p - bb->eh_frame_p;
2251 }
2252
2253 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2254 }
2255
2256 void
2257 dwarf2_build_frame_info (struct objfile *objfile)
2258 {
2259 struct comp_unit *unit;
2260 const gdb_byte *frame_ptr;
2261 struct dwarf2_cie_table cie_table;
2262 struct dwarf2_fde_table fde_table;
2263 struct dwarf2_fde_table *fde_table2;
2264 volatile struct gdb_exception e;
2265
2266 cie_table.num_entries = 0;
2267 cie_table.entries = NULL;
2268
2269 fde_table.num_entries = 0;
2270 fde_table.entries = NULL;
2271
2272 /* Build a minimal decoding of the DWARF2 compilation unit. */
2273 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2274 sizeof (struct comp_unit));
2275 unit->abfd = objfile->obfd;
2276 unit->objfile = objfile;
2277 unit->dbase = 0;
2278 unit->tbase = 0;
2279
2280 if (objfile->separate_debug_objfile_backlink == NULL)
2281 {
2282 /* Do not read .eh_frame from separate file as they must be also
2283 present in the main file. */
2284 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2285 &unit->dwarf_frame_section,
2286 &unit->dwarf_frame_buffer,
2287 &unit->dwarf_frame_size);
2288 if (unit->dwarf_frame_size)
2289 {
2290 asection *got, *txt;
2291
2292 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2293 that is used for the i386/amd64 target, which currently is
2294 the only target in GCC that supports/uses the
2295 DW_EH_PE_datarel encoding. */
2296 got = bfd_get_section_by_name (unit->abfd, ".got");
2297 if (got)
2298 unit->dbase = got->vma;
2299
2300 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2301 so far. */
2302 txt = bfd_get_section_by_name (unit->abfd, ".text");
2303 if (txt)
2304 unit->tbase = txt->vma;
2305
2306 TRY_CATCH (e, RETURN_MASK_ERROR)
2307 {
2308 frame_ptr = unit->dwarf_frame_buffer;
2309 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2310 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2311 &cie_table, &fde_table,
2312 EH_CIE_OR_FDE_TYPE_ID);
2313 }
2314
2315 if (e.reason < 0)
2316 {
2317 warning (_("skipping .eh_frame info of %s: %s"),
2318 objfile_name (objfile), e.message);
2319
2320 if (fde_table.num_entries != 0)
2321 {
2322 xfree (fde_table.entries);
2323 fde_table.entries = NULL;
2324 fde_table.num_entries = 0;
2325 }
2326 /* The cie_table is discarded by the next if. */
2327 }
2328
2329 if (cie_table.num_entries != 0)
2330 {
2331 /* Reinit cie_table: debug_frame has different CIEs. */
2332 xfree (cie_table.entries);
2333 cie_table.num_entries = 0;
2334 cie_table.entries = NULL;
2335 }
2336 }
2337 }
2338
2339 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2340 &unit->dwarf_frame_section,
2341 &unit->dwarf_frame_buffer,
2342 &unit->dwarf_frame_size);
2343 if (unit->dwarf_frame_size)
2344 {
2345 int num_old_fde_entries = fde_table.num_entries;
2346
2347 TRY_CATCH (e, RETURN_MASK_ERROR)
2348 {
2349 frame_ptr = unit->dwarf_frame_buffer;
2350 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2351 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2352 &cie_table, &fde_table,
2353 EH_CIE_OR_FDE_TYPE_ID);
2354 }
2355 if (e.reason < 0)
2356 {
2357 warning (_("skipping .debug_frame info of %s: %s"),
2358 objfile_name (objfile), e.message);
2359
2360 if (fde_table.num_entries != 0)
2361 {
2362 fde_table.num_entries = num_old_fde_entries;
2363 if (num_old_fde_entries == 0)
2364 {
2365 xfree (fde_table.entries);
2366 fde_table.entries = NULL;
2367 }
2368 else
2369 {
2370 fde_table.entries = xrealloc (fde_table.entries,
2371 fde_table.num_entries *
2372 sizeof (fde_table.entries[0]));
2373 }
2374 }
2375 fde_table.num_entries = num_old_fde_entries;
2376 /* The cie_table is discarded by the next if. */
2377 }
2378 }
2379
2380 /* Discard the cie_table, it is no longer needed. */
2381 if (cie_table.num_entries != 0)
2382 {
2383 xfree (cie_table.entries);
2384 cie_table.entries = NULL; /* Paranoia. */
2385 cie_table.num_entries = 0; /* Paranoia. */
2386 }
2387
2388 /* Copy fde_table to obstack: it is needed at runtime. */
2389 fde_table2 = (struct dwarf2_fde_table *)
2390 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2391
2392 if (fde_table.num_entries == 0)
2393 {
2394 fde_table2->entries = NULL;
2395 fde_table2->num_entries = 0;
2396 }
2397 else
2398 {
2399 struct dwarf2_fde *fde_prev = NULL;
2400 struct dwarf2_fde *first_non_zero_fde = NULL;
2401 int i;
2402
2403 /* Prepare FDE table for lookups. */
2404 qsort (fde_table.entries, fde_table.num_entries,
2405 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2406
2407 /* Check for leftovers from --gc-sections. The GNU linker sets
2408 the relevant symbols to zero, but doesn't zero the FDE *end*
2409 ranges because there's no relocation there. It's (offset,
2410 length), not (start, end). On targets where address zero is
2411 just another valid address this can be a problem, since the
2412 FDEs appear to be non-empty in the output --- we could pick
2413 out the wrong FDE. To work around this, when overlaps are
2414 detected, we prefer FDEs that do not start at zero.
2415
2416 Start by finding the first FDE with non-zero start. Below
2417 we'll discard all FDEs that start at zero and overlap this
2418 one. */
2419 for (i = 0; i < fde_table.num_entries; i++)
2420 {
2421 struct dwarf2_fde *fde = fde_table.entries[i];
2422
2423 if (fde->initial_location != 0)
2424 {
2425 first_non_zero_fde = fde;
2426 break;
2427 }
2428 }
2429
2430 /* Since we'll be doing bsearch, squeeze out identical (except
2431 for eh_frame_p) fde entries so bsearch result is predictable.
2432 Also discard leftovers from --gc-sections. */
2433 fde_table2->num_entries = 0;
2434 for (i = 0; i < fde_table.num_entries; i++)
2435 {
2436 struct dwarf2_fde *fde = fde_table.entries[i];
2437
2438 if (fde->initial_location == 0
2439 && first_non_zero_fde != NULL
2440 && (first_non_zero_fde->initial_location
2441 < fde->initial_location + fde->address_range))
2442 continue;
2443
2444 if (fde_prev != NULL
2445 && fde_prev->initial_location == fde->initial_location)
2446 continue;
2447
2448 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2449 sizeof (fde_table.entries[0]));
2450 ++fde_table2->num_entries;
2451 fde_prev = fde;
2452 }
2453 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2454
2455 /* Discard the original fde_table. */
2456 xfree (fde_table.entries);
2457 }
2458
2459 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2460 }
2461
2462 /* Provide a prototype to silence -Wmissing-prototypes. */
2463 void _initialize_dwarf2_frame (void);
2464
2465 void
2466 _initialize_dwarf2_frame (void)
2467 {
2468 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2469 dwarf2_frame_objfile_data = register_objfile_data ();
2470 }
This page took 0.077021 seconds and 5 git commands to generate.