* dwarf2-frame.c (struct dwarf2_cie): Make initial_instructions, end
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 static void
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
311 {
312 read_memory (addr, buf, len);
313 }
314
315 /* Execute the required actions for both the DW_CFA_restore and
316 DW_CFA_restore_extended instructions. */
317 static void
318 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320 {
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337 incomplete CFI data; DW_CFA_restore unspecified\n\
338 register %s (#%d) at %s"),
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
342 paddress (gdbarch, fs->pc));
343 }
344
345 /* Virtual method table for execute_stack_op below. */
346
347 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348 {
349 read_reg,
350 read_mem,
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
359 };
360
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
365 {
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
369
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
373
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
380
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
383
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 unsigned long long utmp, reg;
420 long long offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
548 break;
549
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
630 eh_frame_p);
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
640 break;
641
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
651 int size = register_size (gdbarch, 0);
652
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
670 break;
671
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
682 default:
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
685 }
686 }
687 }
688
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
697 }
698 \f
699
700 /* Architecture-specific operations. */
701
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
704
705 struct dwarf2_frame_ops
706 {
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
710
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
713
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
717 };
718
719 /* Default architecture-specific register state initialization
720 function. */
721
722 static void
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
726 {
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
752
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
757 }
758
759 /* Return a default for the architecture-specific operations. */
760
761 static void *
762 dwarf2_frame_init (struct obstack *obstack)
763 {
764 struct dwarf2_frame_ops *ops;
765
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769 }
770
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774 void
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
779 {
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781
782 ops->init_reg = init_reg;
783 }
784
785 /* Pre-initialize the register state REG for register REGNUM. */
786
787 static void
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
791 {
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
793
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
795 }
796
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800 void
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808 }
809
810 /* Query the architecture-specific signal frame recognizer for
811 THIS_FRAME. */
812
813 static int
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
816 {
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
821 return ops->signal_frame_p (gdbarch, this_frame);
822 }
823
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
826
827 void
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
831 {
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
834 ops->adjust_regnum = adjust_regnum;
835 }
836
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
839
840 static int
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
843 {
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
846 if (ops->adjust_regnum == NULL)
847 return regnum;
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
849 }
850
851 static void
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854 {
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
858 if (s == NULL)
859 return;
860
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
882 }
883 \f
884
885 void
886 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890 {
891 const int num_regs = gdbarch_num_regs (gdbarch)
892 + gdbarch_num_pseudo_regs (gdbarch);
893 struct dwarf2_fde *fde;
894 CORE_ADDR text_offset;
895 struct dwarf2_frame_state fs;
896 int addr_size;
897
898 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
899
900 fs.pc = pc;
901
902 /* Find the correct FDE. */
903 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
904 if (fde == NULL)
905 error (_("Could not compute CFA; needed to translate this expression"));
906
907 /* Extract any interesting information from the CIE. */
908 fs.data_align = fde->cie->data_alignment_factor;
909 fs.code_align = fde->cie->code_alignment_factor;
910 fs.retaddr_column = fde->cie->return_address_register;
911 addr_size = fde->cie->addr_size;
912
913 /* Check for "quirks" - known bugs in producers. */
914 dwarf2_frame_find_quirks (&fs, fde);
915
916 /* First decode all the insns in the CIE. */
917 execute_cfa_program (fde, fde->cie->initial_instructions,
918 fde->cie->end, gdbarch, pc, &fs);
919
920 /* Save the initialized register set. */
921 fs.initial = fs.regs;
922 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
923
924 /* Then decode the insns in the FDE up to our target PC. */
925 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
926
927 /* Calculate the CFA. */
928 switch (fs.regs.cfa_how)
929 {
930 case CFA_REG_OFFSET:
931 {
932 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
933
934 if (regnum == -1)
935 error (_("Unable to access DWARF register number %d"),
936 (int) fs.regs.cfa_reg); /* FIXME */
937 ax_reg (expr, regnum);
938
939 if (fs.regs.cfa_offset != 0)
940 {
941 if (fs.armcc_cfa_offsets_reversed)
942 ax_const_l (expr, -fs.regs.cfa_offset);
943 else
944 ax_const_l (expr, fs.regs.cfa_offset);
945 ax_simple (expr, aop_add);
946 }
947 }
948 break;
949
950 case CFA_EXP:
951 ax_const_l (expr, text_offset);
952 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
953 fs.regs.cfa_exp,
954 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
955 data);
956 break;
957
958 default:
959 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
960 }
961 }
962
963 \f
964 struct dwarf2_frame_cache
965 {
966 /* DWARF Call Frame Address. */
967 CORE_ADDR cfa;
968
969 /* Set if the return address column was marked as unavailable
970 (required non-collected memory or registers to compute). */
971 int unavailable_retaddr;
972
973 /* Set if the return address column was marked as undefined. */
974 int undefined_retaddr;
975
976 /* Saved registers, indexed by GDB register number, not by DWARF
977 register number. */
978 struct dwarf2_frame_state_reg *reg;
979
980 /* Return address register. */
981 struct dwarf2_frame_state_reg retaddr_reg;
982
983 /* Target address size in bytes. */
984 int addr_size;
985
986 /* The .text offset. */
987 CORE_ADDR text_offset;
988
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
995 };
996
997 static struct dwarf2_frame_cache *
998 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
999 {
1000 struct cleanup *old_chain;
1001 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1002 const int num_regs = gdbarch_num_regs (gdbarch)
1003 + gdbarch_num_pseudo_regs (gdbarch);
1004 struct dwarf2_frame_cache *cache;
1005 struct dwarf2_frame_state *fs;
1006 struct dwarf2_fde *fde;
1007 volatile struct gdb_exception ex;
1008 CORE_ADDR entry_pc;
1009 LONGEST entry_cfa_sp_offset;
1010 int entry_cfa_sp_offset_p = 0;
1011 const gdb_byte *instr;
1012
1013 if (*this_cache)
1014 return *this_cache;
1015
1016 /* Allocate a new cache. */
1017 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1018 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1019 *this_cache = cache;
1020
1021 /* Allocate and initialize the frame state. */
1022 fs = XZALLOC (struct dwarf2_frame_state);
1023 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1024
1025 /* Unwind the PC.
1026
1027 Note that if the next frame is never supposed to return (i.e. a call
1028 to abort), the compiler might optimize away the instruction at
1029 its return address. As a result the return address will
1030 point at some random instruction, and the CFI for that
1031 instruction is probably worthless to us. GCC's unwinder solves
1032 this problem by substracting 1 from the return address to get an
1033 address in the middle of a presumed call instruction (or the
1034 instruction in the associated delay slot). This should only be
1035 done for "normal" frames and not for resume-type frames (signal
1036 handlers, sentinel frames, dummy frames). The function
1037 get_frame_address_in_block does just this. It's not clear how
1038 reliable the method is though; there is the potential for the
1039 register state pre-call being different to that on return. */
1040 fs->pc = get_frame_address_in_block (this_frame);
1041
1042 /* Find the correct FDE. */
1043 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1044 gdb_assert (fde != NULL);
1045
1046 /* Extract any interesting information from the CIE. */
1047 fs->data_align = fde->cie->data_alignment_factor;
1048 fs->code_align = fde->cie->code_alignment_factor;
1049 fs->retaddr_column = fde->cie->return_address_register;
1050 cache->addr_size = fde->cie->addr_size;
1051
1052 /* Check for "quirks" - known bugs in producers. */
1053 dwarf2_frame_find_quirks (fs, fde);
1054
1055 /* First decode all the insns in the CIE. */
1056 execute_cfa_program (fde, fde->cie->initial_instructions,
1057 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
1058
1059 /* Save the initialized register set. */
1060 fs->initial = fs->regs;
1061 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1062
1063 if (get_frame_func_if_available (this_frame, &entry_pc))
1064 {
1065 /* Decode the insns in the FDE up to the entry PC. */
1066 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1067 entry_pc, fs);
1068
1069 if (fs->regs.cfa_how == CFA_REG_OFFSET
1070 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1071 == gdbarch_sp_regnum (gdbarch)))
1072 {
1073 entry_cfa_sp_offset = fs->regs.cfa_offset;
1074 entry_cfa_sp_offset_p = 1;
1075 }
1076 }
1077 else
1078 instr = fde->instructions;
1079
1080 /* Then decode the insns in the FDE up to our target PC. */
1081 execute_cfa_program (fde, instr, fde->end, gdbarch,
1082 get_frame_pc (this_frame), fs);
1083
1084 TRY_CATCH (ex, RETURN_MASK_ERROR)
1085 {
1086 /* Calculate the CFA. */
1087 switch (fs->regs.cfa_how)
1088 {
1089 case CFA_REG_OFFSET:
1090 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1091 if (fs->armcc_cfa_offsets_reversed)
1092 cache->cfa -= fs->regs.cfa_offset;
1093 else
1094 cache->cfa += fs->regs.cfa_offset;
1095 break;
1096
1097 case CFA_EXP:
1098 cache->cfa =
1099 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1100 cache->addr_size, cache->text_offset,
1101 this_frame, 0, 0);
1102 break;
1103
1104 default:
1105 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1106 }
1107 }
1108 if (ex.reason < 0)
1109 {
1110 if (ex.error == NOT_AVAILABLE_ERROR)
1111 {
1112 cache->unavailable_retaddr = 1;
1113 return cache;
1114 }
1115
1116 throw_exception (ex);
1117 }
1118
1119 /* Initialize the register state. */
1120 {
1121 int regnum;
1122
1123 for (regnum = 0; regnum < num_regs; regnum++)
1124 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1125 }
1126
1127 /* Go through the DWARF2 CFI generated table and save its register
1128 location information in the cache. Note that we don't skip the
1129 return address column; it's perfectly all right for it to
1130 correspond to a real register. If it doesn't correspond to a
1131 real register, or if we shouldn't treat it as such,
1132 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1133 the range [0, gdbarch_num_regs). */
1134 {
1135 int column; /* CFI speak for "register number". */
1136
1137 for (column = 0; column < fs->regs.num_regs; column++)
1138 {
1139 /* Use the GDB register number as the destination index. */
1140 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1141
1142 /* If there's no corresponding GDB register, ignore it. */
1143 if (regnum < 0 || regnum >= num_regs)
1144 continue;
1145
1146 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1147 of all debug info registers. If it doesn't, complain (but
1148 not too loudly). It turns out that GCC assumes that an
1149 unspecified register implies "same value" when CFI (draft
1150 7) specifies nothing at all. Such a register could equally
1151 be interpreted as "undefined". Also note that this check
1152 isn't sufficient; it only checks that all registers in the
1153 range [0 .. max column] are specified, and won't detect
1154 problems when a debug info register falls outside of the
1155 table. We need a way of iterating through all the valid
1156 DWARF2 register numbers. */
1157 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1158 {
1159 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1160 complaint (&symfile_complaints, _("\
1161 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1162 gdbarch_register_name (gdbarch, regnum),
1163 paddress (gdbarch, fs->pc));
1164 }
1165 else
1166 cache->reg[regnum] = fs->regs.reg[column];
1167 }
1168 }
1169
1170 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1171 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1172 {
1173 int regnum;
1174
1175 for (regnum = 0; regnum < num_regs; regnum++)
1176 {
1177 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1178 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1179 {
1180 struct dwarf2_frame_state_reg *retaddr_reg =
1181 &fs->regs.reg[fs->retaddr_column];
1182
1183 /* It seems rather bizarre to specify an "empty" column as
1184 the return adress column. However, this is exactly
1185 what GCC does on some targets. It turns out that GCC
1186 assumes that the return address can be found in the
1187 register corresponding to the return address column.
1188 Incidentally, that's how we should treat a return
1189 address column specifying "same value" too. */
1190 if (fs->retaddr_column < fs->regs.num_regs
1191 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1192 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1193 {
1194 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1195 cache->reg[regnum] = *retaddr_reg;
1196 else
1197 cache->retaddr_reg = *retaddr_reg;
1198 }
1199 else
1200 {
1201 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1202 {
1203 cache->reg[regnum].loc.reg = fs->retaddr_column;
1204 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1205 }
1206 else
1207 {
1208 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1209 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1210 }
1211 }
1212 }
1213 }
1214 }
1215
1216 if (fs->retaddr_column < fs->regs.num_regs
1217 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1218 cache->undefined_retaddr = 1;
1219
1220 do_cleanups (old_chain);
1221
1222 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1223 starting at THIS_FRAME. */
1224 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1225 (entry_cfa_sp_offset_p
1226 ? &entry_cfa_sp_offset : NULL));
1227
1228 return cache;
1229 }
1230
1231 static enum unwind_stop_reason
1232 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1233 void **this_cache)
1234 {
1235 struct dwarf2_frame_cache *cache
1236 = dwarf2_frame_cache (this_frame, this_cache);
1237
1238 if (cache->unavailable_retaddr)
1239 return UNWIND_UNAVAILABLE;
1240
1241 if (cache->undefined_retaddr)
1242 return UNWIND_OUTERMOST;
1243
1244 return UNWIND_NO_REASON;
1245 }
1246
1247 static void
1248 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1249 struct frame_id *this_id)
1250 {
1251 struct dwarf2_frame_cache *cache =
1252 dwarf2_frame_cache (this_frame, this_cache);
1253
1254 if (cache->unavailable_retaddr)
1255 return;
1256
1257 if (cache->undefined_retaddr)
1258 return;
1259
1260 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1261 }
1262
1263 static struct value *
1264 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1265 int regnum)
1266 {
1267 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1268 struct dwarf2_frame_cache *cache =
1269 dwarf2_frame_cache (this_frame, this_cache);
1270 CORE_ADDR addr;
1271 int realnum;
1272
1273 /* Non-bottom frames of a virtual tail call frames chain use
1274 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1275 them. If dwarf2_tailcall_prev_register_first does not have specific value
1276 unwind the register, tail call frames are assumed to have the register set
1277 of the top caller. */
1278 if (cache->tailcall_cache)
1279 {
1280 struct value *val;
1281
1282 val = dwarf2_tailcall_prev_register_first (this_frame,
1283 &cache->tailcall_cache,
1284 regnum);
1285 if (val)
1286 return val;
1287 }
1288
1289 switch (cache->reg[regnum].how)
1290 {
1291 case DWARF2_FRAME_REG_UNDEFINED:
1292 /* If CFI explicitly specified that the value isn't defined,
1293 mark it as optimized away; the value isn't available. */
1294 return frame_unwind_got_optimized (this_frame, regnum);
1295
1296 case DWARF2_FRAME_REG_SAVED_OFFSET:
1297 addr = cache->cfa + cache->reg[regnum].loc.offset;
1298 return frame_unwind_got_memory (this_frame, regnum, addr);
1299
1300 case DWARF2_FRAME_REG_SAVED_REG:
1301 realnum
1302 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1303 return frame_unwind_got_register (this_frame, regnum, realnum);
1304
1305 case DWARF2_FRAME_REG_SAVED_EXP:
1306 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1307 cache->reg[regnum].exp_len,
1308 cache->addr_size, cache->text_offset,
1309 this_frame, cache->cfa, 1);
1310 return frame_unwind_got_memory (this_frame, regnum, addr);
1311
1312 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1313 addr = cache->cfa + cache->reg[regnum].loc.offset;
1314 return frame_unwind_got_constant (this_frame, regnum, addr);
1315
1316 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1317 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1318 cache->reg[regnum].exp_len,
1319 cache->addr_size, cache->text_offset,
1320 this_frame, cache->cfa, 1);
1321 return frame_unwind_got_constant (this_frame, regnum, addr);
1322
1323 case DWARF2_FRAME_REG_UNSPECIFIED:
1324 /* GCC, in its infinite wisdom decided to not provide unwind
1325 information for registers that are "same value". Since
1326 DWARF2 (3 draft 7) doesn't define such behavior, said
1327 registers are actually undefined (which is different to CFI
1328 "undefined"). Code above issues a complaint about this.
1329 Here just fudge the books, assume GCC, and that the value is
1330 more inner on the stack. */
1331 return frame_unwind_got_register (this_frame, regnum, regnum);
1332
1333 case DWARF2_FRAME_REG_SAME_VALUE:
1334 return frame_unwind_got_register (this_frame, regnum, regnum);
1335
1336 case DWARF2_FRAME_REG_CFA:
1337 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1338
1339 case DWARF2_FRAME_REG_CFA_OFFSET:
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_address (this_frame, regnum, addr);
1342
1343 case DWARF2_FRAME_REG_RA_OFFSET:
1344 addr = cache->reg[regnum].loc.offset;
1345 regnum = gdbarch_dwarf2_reg_to_regnum
1346 (gdbarch, cache->retaddr_reg.loc.reg);
1347 addr += get_frame_register_unsigned (this_frame, regnum);
1348 return frame_unwind_got_address (this_frame, regnum, addr);
1349
1350 case DWARF2_FRAME_REG_FN:
1351 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1352
1353 default:
1354 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1355 }
1356 }
1357
1358 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1359 call frames chain. */
1360
1361 static void
1362 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1363 {
1364 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1365
1366 if (cache->tailcall_cache)
1367 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1368 }
1369
1370 static int
1371 dwarf2_frame_sniffer (const struct frame_unwind *self,
1372 struct frame_info *this_frame, void **this_cache)
1373 {
1374 /* Grab an address that is guarenteed to reside somewhere within the
1375 function. get_frame_pc(), with a no-return next function, can
1376 end up returning something past the end of this function's body.
1377 If the frame we're sniffing for is a signal frame whose start
1378 address is placed on the stack by the OS, its FDE must
1379 extend one byte before its start address or we could potentially
1380 select the FDE of the previous function. */
1381 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1382 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1383
1384 if (!fde)
1385 return 0;
1386
1387 /* On some targets, signal trampolines may have unwind information.
1388 We need to recognize them so that we set the frame type
1389 correctly. */
1390
1391 if (fde->cie->signal_frame
1392 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1393 this_frame))
1394 return self->type == SIGTRAMP_FRAME;
1395
1396 if (self->type != NORMAL_FRAME)
1397 return 0;
1398
1399 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1400 dwarf2_tailcall_sniffer_first. */
1401 dwarf2_frame_cache (this_frame, this_cache);
1402
1403 return 1;
1404 }
1405
1406 static const struct frame_unwind dwarf2_frame_unwind =
1407 {
1408 NORMAL_FRAME,
1409 dwarf2_frame_unwind_stop_reason,
1410 dwarf2_frame_this_id,
1411 dwarf2_frame_prev_register,
1412 NULL,
1413 dwarf2_frame_sniffer,
1414 dwarf2_frame_dealloc_cache
1415 };
1416
1417 static const struct frame_unwind dwarf2_signal_frame_unwind =
1418 {
1419 SIGTRAMP_FRAME,
1420 dwarf2_frame_unwind_stop_reason,
1421 dwarf2_frame_this_id,
1422 dwarf2_frame_prev_register,
1423 NULL,
1424 dwarf2_frame_sniffer,
1425
1426 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1427 NULL
1428 };
1429
1430 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1431
1432 void
1433 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1434 {
1435 /* TAILCALL_FRAME must be first to find the record by
1436 dwarf2_tailcall_sniffer_first. */
1437 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1438
1439 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1440 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1441 }
1442 \f
1443
1444 /* There is no explicitly defined relationship between the CFA and the
1445 location of frame's local variables and arguments/parameters.
1446 Therefore, frame base methods on this page should probably only be
1447 used as a last resort, just to avoid printing total garbage as a
1448 response to the "info frame" command. */
1449
1450 static CORE_ADDR
1451 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1452 {
1453 struct dwarf2_frame_cache *cache =
1454 dwarf2_frame_cache (this_frame, this_cache);
1455
1456 return cache->cfa;
1457 }
1458
1459 static const struct frame_base dwarf2_frame_base =
1460 {
1461 &dwarf2_frame_unwind,
1462 dwarf2_frame_base_address,
1463 dwarf2_frame_base_address,
1464 dwarf2_frame_base_address
1465 };
1466
1467 const struct frame_base *
1468 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1469 {
1470 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1471
1472 if (dwarf2_frame_find_fde (&block_addr, NULL))
1473 return &dwarf2_frame_base;
1474
1475 return NULL;
1476 }
1477
1478 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1479 the DWARF unwinder. This is used to implement
1480 DW_OP_call_frame_cfa. */
1481
1482 CORE_ADDR
1483 dwarf2_frame_cfa (struct frame_info *this_frame)
1484 {
1485 while (get_frame_type (this_frame) == INLINE_FRAME)
1486 this_frame = get_prev_frame (this_frame);
1487 /* This restriction could be lifted if other unwinders are known to
1488 compute the frame base in a way compatible with the DWARF
1489 unwinder. */
1490 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1491 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1492 error (_("can't compute CFA for this frame"));
1493 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1494 throw_error (NOT_AVAILABLE_ERROR,
1495 _("can't compute CFA for this frame: "
1496 "required registers or memory are unavailable"));
1497 return get_frame_base (this_frame);
1498 }
1499 \f
1500 const struct objfile_data *dwarf2_frame_objfile_data;
1501
1502 static unsigned int
1503 read_1_byte (bfd *abfd, const gdb_byte *buf)
1504 {
1505 return bfd_get_8 (abfd, buf);
1506 }
1507
1508 static unsigned int
1509 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1510 {
1511 return bfd_get_32 (abfd, buf);
1512 }
1513
1514 static ULONGEST
1515 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1516 {
1517 return bfd_get_64 (abfd, buf);
1518 }
1519
1520 static ULONGEST
1521 read_initial_length (bfd *abfd, const gdb_byte *buf,
1522 unsigned int *bytes_read_ptr)
1523 {
1524 LONGEST result;
1525
1526 result = bfd_get_32 (abfd, buf);
1527 if (result == 0xffffffff)
1528 {
1529 result = bfd_get_64 (abfd, buf + 4);
1530 *bytes_read_ptr = 12;
1531 }
1532 else
1533 *bytes_read_ptr = 4;
1534
1535 return result;
1536 }
1537 \f
1538
1539 /* Pointer encoding helper functions. */
1540
1541 /* GCC supports exception handling based on DWARF2 CFI. However, for
1542 technical reasons, it encodes addresses in its FDE's in a different
1543 way. Several "pointer encodings" are supported. The encoding
1544 that's used for a particular FDE is determined by the 'R'
1545 augmentation in the associated CIE. The argument of this
1546 augmentation is a single byte.
1547
1548 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1549 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1550 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1551 address should be interpreted (absolute, relative to the current
1552 position in the FDE, ...). Bit 7, indicates that the address
1553 should be dereferenced. */
1554
1555 static gdb_byte
1556 encoding_for_size (unsigned int size)
1557 {
1558 switch (size)
1559 {
1560 case 2:
1561 return DW_EH_PE_udata2;
1562 case 4:
1563 return DW_EH_PE_udata4;
1564 case 8:
1565 return DW_EH_PE_udata8;
1566 default:
1567 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1568 }
1569 }
1570
1571 static CORE_ADDR
1572 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1573 int ptr_len, const gdb_byte *buf,
1574 unsigned int *bytes_read_ptr,
1575 CORE_ADDR func_base)
1576 {
1577 ptrdiff_t offset;
1578 CORE_ADDR base;
1579
1580 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1581 FDE's. */
1582 if (encoding & DW_EH_PE_indirect)
1583 internal_error (__FILE__, __LINE__,
1584 _("Unsupported encoding: DW_EH_PE_indirect"));
1585
1586 *bytes_read_ptr = 0;
1587
1588 switch (encoding & 0x70)
1589 {
1590 case DW_EH_PE_absptr:
1591 base = 0;
1592 break;
1593 case DW_EH_PE_pcrel:
1594 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1595 base += (buf - unit->dwarf_frame_buffer);
1596 break;
1597 case DW_EH_PE_datarel:
1598 base = unit->dbase;
1599 break;
1600 case DW_EH_PE_textrel:
1601 base = unit->tbase;
1602 break;
1603 case DW_EH_PE_funcrel:
1604 base = func_base;
1605 break;
1606 case DW_EH_PE_aligned:
1607 base = 0;
1608 offset = buf - unit->dwarf_frame_buffer;
1609 if ((offset % ptr_len) != 0)
1610 {
1611 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1612 buf += *bytes_read_ptr;
1613 }
1614 break;
1615 default:
1616 internal_error (__FILE__, __LINE__,
1617 _("Invalid or unsupported encoding"));
1618 }
1619
1620 if ((encoding & 0x07) == 0x00)
1621 {
1622 encoding |= encoding_for_size (ptr_len);
1623 if (bfd_get_sign_extend_vma (unit->abfd))
1624 encoding |= DW_EH_PE_signed;
1625 }
1626
1627 switch (encoding & 0x0f)
1628 {
1629 case DW_EH_PE_uleb128:
1630 {
1631 unsigned long long value;
1632 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1633
1634 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1635 return base + value;
1636 }
1637 case DW_EH_PE_udata2:
1638 *bytes_read_ptr += 2;
1639 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1640 case DW_EH_PE_udata4:
1641 *bytes_read_ptr += 4;
1642 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1643 case DW_EH_PE_udata8:
1644 *bytes_read_ptr += 8;
1645 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1646 case DW_EH_PE_sleb128:
1647 {
1648 long long value;
1649 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1650
1651 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1652 return base + value;
1653 }
1654 case DW_EH_PE_sdata2:
1655 *bytes_read_ptr += 2;
1656 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1657 case DW_EH_PE_sdata4:
1658 *bytes_read_ptr += 4;
1659 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1660 case DW_EH_PE_sdata8:
1661 *bytes_read_ptr += 8;
1662 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1663 default:
1664 internal_error (__FILE__, __LINE__,
1665 _("Invalid or unsupported encoding"));
1666 }
1667 }
1668 \f
1669
1670 static int
1671 bsearch_cie_cmp (const void *key, const void *element)
1672 {
1673 ULONGEST cie_pointer = *(ULONGEST *) key;
1674 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1675
1676 if (cie_pointer == cie->cie_pointer)
1677 return 0;
1678
1679 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1680 }
1681
1682 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1683 static struct dwarf2_cie *
1684 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1685 {
1686 struct dwarf2_cie **p_cie;
1687
1688 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1689 bsearch be non-NULL. */
1690 if (cie_table->entries == NULL)
1691 {
1692 gdb_assert (cie_table->num_entries == 0);
1693 return NULL;
1694 }
1695
1696 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1697 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1698 if (p_cie != NULL)
1699 return *p_cie;
1700 return NULL;
1701 }
1702
1703 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1704 static void
1705 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1706 {
1707 const int n = cie_table->num_entries;
1708
1709 gdb_assert (n < 1
1710 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1711
1712 cie_table->entries =
1713 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1714 cie_table->entries[n] = cie;
1715 cie_table->num_entries = n + 1;
1716 }
1717
1718 static int
1719 bsearch_fde_cmp (const void *key, const void *element)
1720 {
1721 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1722 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1723
1724 if (seek_pc < fde->initial_location)
1725 return -1;
1726 if (seek_pc < fde->initial_location + fde->address_range)
1727 return 0;
1728 return 1;
1729 }
1730
1731 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1732 inital location associated with it into *PC. */
1733
1734 static struct dwarf2_fde *
1735 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1736 {
1737 struct objfile *objfile;
1738
1739 ALL_OBJFILES (objfile)
1740 {
1741 struct dwarf2_fde_table *fde_table;
1742 struct dwarf2_fde **p_fde;
1743 CORE_ADDR offset;
1744 CORE_ADDR seek_pc;
1745
1746 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1747 if (fde_table == NULL)
1748 {
1749 dwarf2_build_frame_info (objfile);
1750 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1751 }
1752 gdb_assert (fde_table != NULL);
1753
1754 if (fde_table->num_entries == 0)
1755 continue;
1756
1757 gdb_assert (objfile->section_offsets);
1758 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1759
1760 gdb_assert (fde_table->num_entries > 0);
1761 if (*pc < offset + fde_table->entries[0]->initial_location)
1762 continue;
1763
1764 seek_pc = *pc - offset;
1765 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1766 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1767 if (p_fde != NULL)
1768 {
1769 *pc = (*p_fde)->initial_location + offset;
1770 if (out_offset)
1771 *out_offset = offset;
1772 return *p_fde;
1773 }
1774 }
1775 return NULL;
1776 }
1777
1778 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1779 static void
1780 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1781 {
1782 if (fde->address_range == 0)
1783 /* Discard useless FDEs. */
1784 return;
1785
1786 fde_table->num_entries += 1;
1787 fde_table->entries =
1788 xrealloc (fde_table->entries,
1789 fde_table->num_entries * sizeof (fde_table->entries[0]));
1790 fde_table->entries[fde_table->num_entries - 1] = fde;
1791 }
1792
1793 #ifdef CC_HAS_LONG_LONG
1794 #define DW64_CIE_ID 0xffffffffffffffffULL
1795 #else
1796 #define DW64_CIE_ID ~0
1797 #endif
1798
1799 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1800 or any of them. */
1801
1802 enum eh_frame_type
1803 {
1804 EH_CIE_TYPE_ID = 1 << 0,
1805 EH_FDE_TYPE_ID = 1 << 1,
1806 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1807 };
1808
1809 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1810 const gdb_byte *start,
1811 int eh_frame_p,
1812 struct dwarf2_cie_table *cie_table,
1813 struct dwarf2_fde_table *fde_table,
1814 enum eh_frame_type entry_type);
1815
1816 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1817 Return NULL if invalid input, otherwise the next byte to be processed. */
1818
1819 static const gdb_byte *
1820 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1821 int eh_frame_p,
1822 struct dwarf2_cie_table *cie_table,
1823 struct dwarf2_fde_table *fde_table,
1824 enum eh_frame_type entry_type)
1825 {
1826 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1827 const gdb_byte *buf, *end;
1828 LONGEST length;
1829 unsigned int bytes_read;
1830 int dwarf64_p;
1831 ULONGEST cie_id;
1832 ULONGEST cie_pointer;
1833 long long sleb128;
1834 unsigned long long uleb128;
1835
1836 buf = start;
1837 length = read_initial_length (unit->abfd, buf, &bytes_read);
1838 buf += bytes_read;
1839 end = buf + length;
1840
1841 /* Are we still within the section? */
1842 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1843 return NULL;
1844
1845 if (length == 0)
1846 return end;
1847
1848 /* Distinguish between 32 and 64-bit encoded frame info. */
1849 dwarf64_p = (bytes_read == 12);
1850
1851 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1852 if (eh_frame_p)
1853 cie_id = 0;
1854 else if (dwarf64_p)
1855 cie_id = DW64_CIE_ID;
1856 else
1857 cie_id = DW_CIE_ID;
1858
1859 if (dwarf64_p)
1860 {
1861 cie_pointer = read_8_bytes (unit->abfd, buf);
1862 buf += 8;
1863 }
1864 else
1865 {
1866 cie_pointer = read_4_bytes (unit->abfd, buf);
1867 buf += 4;
1868 }
1869
1870 if (cie_pointer == cie_id)
1871 {
1872 /* This is a CIE. */
1873 struct dwarf2_cie *cie;
1874 char *augmentation;
1875 unsigned int cie_version;
1876
1877 /* Check that a CIE was expected. */
1878 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1879 error (_("Found a CIE when not expecting it."));
1880
1881 /* Record the offset into the .debug_frame section of this CIE. */
1882 cie_pointer = start - unit->dwarf_frame_buffer;
1883
1884 /* Check whether we've already read it. */
1885 if (find_cie (cie_table, cie_pointer))
1886 return end;
1887
1888 cie = (struct dwarf2_cie *)
1889 obstack_alloc (&unit->objfile->objfile_obstack,
1890 sizeof (struct dwarf2_cie));
1891 cie->initial_instructions = NULL;
1892 cie->cie_pointer = cie_pointer;
1893
1894 /* The encoding for FDE's in a normal .debug_frame section
1895 depends on the target address size. */
1896 cie->encoding = DW_EH_PE_absptr;
1897
1898 /* We'll determine the final value later, but we need to
1899 initialize it conservatively. */
1900 cie->signal_frame = 0;
1901
1902 /* Check version number. */
1903 cie_version = read_1_byte (unit->abfd, buf);
1904 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1905 return NULL;
1906 cie->version = cie_version;
1907 buf += 1;
1908
1909 /* Interpret the interesting bits of the augmentation. */
1910 cie->augmentation = augmentation = (char *) buf;
1911 buf += (strlen (augmentation) + 1);
1912
1913 /* Ignore armcc augmentations. We only use them for quirks,
1914 and that doesn't happen until later. */
1915 if (strncmp (augmentation, "armcc", 5) == 0)
1916 augmentation += strlen (augmentation);
1917
1918 /* The GCC 2.x "eh" augmentation has a pointer immediately
1919 following the augmentation string, so it must be handled
1920 first. */
1921 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1922 {
1923 /* Skip. */
1924 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1925 augmentation += 2;
1926 }
1927
1928 if (cie->version >= 4)
1929 {
1930 /* FIXME: check that this is the same as from the CU header. */
1931 cie->addr_size = read_1_byte (unit->abfd, buf);
1932 ++buf;
1933 cie->segment_size = read_1_byte (unit->abfd, buf);
1934 ++buf;
1935 }
1936 else
1937 {
1938 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1939 cie->segment_size = 0;
1940 }
1941 /* Address values in .eh_frame sections are defined to have the
1942 target's pointer size. Watchout: This breaks frame info for
1943 targets with pointer size < address size, unless a .debug_frame
1944 section exists as well. */
1945 if (eh_frame_p)
1946 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1947 else
1948 cie->ptr_size = cie->addr_size;
1949
1950 buf = gdb_read_uleb128 (buf, end, &uleb128);
1951 if (buf == NULL)
1952 return NULL;
1953 cie->code_alignment_factor = uleb128;
1954
1955 buf = gdb_read_sleb128 (buf, end, &sleb128);
1956 if (buf == NULL)
1957 return NULL;
1958 cie->data_alignment_factor = sleb128;
1959
1960 if (cie_version == 1)
1961 {
1962 cie->return_address_register = read_1_byte (unit->abfd, buf);
1963 ++buf;
1964 }
1965 else
1966 {
1967 buf = gdb_read_uleb128 (buf, end, &uleb128);
1968 if (buf == NULL)
1969 return NULL;
1970 cie->return_address_register = uleb128;
1971 }
1972
1973 cie->return_address_register
1974 = dwarf2_frame_adjust_regnum (gdbarch,
1975 cie->return_address_register,
1976 eh_frame_p);
1977
1978 cie->saw_z_augmentation = (*augmentation == 'z');
1979 if (cie->saw_z_augmentation)
1980 {
1981 unsigned long long length;
1982
1983 buf = gdb_read_uleb128 (buf, end, &length);
1984 if (buf == NULL)
1985 return NULL;
1986 cie->initial_instructions = buf + length;
1987 augmentation++;
1988 }
1989
1990 while (*augmentation)
1991 {
1992 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1993 if (*augmentation == 'L')
1994 {
1995 /* Skip. */
1996 buf++;
1997 augmentation++;
1998 }
1999
2000 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2001 else if (*augmentation == 'R')
2002 {
2003 cie->encoding = *buf++;
2004 augmentation++;
2005 }
2006
2007 /* "P" indicates a personality routine in the CIE augmentation. */
2008 else if (*augmentation == 'P')
2009 {
2010 /* Skip. Avoid indirection since we throw away the result. */
2011 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2012 read_encoded_value (unit, encoding, cie->ptr_size,
2013 buf, &bytes_read, 0);
2014 buf += bytes_read;
2015 augmentation++;
2016 }
2017
2018 /* "S" indicates a signal frame, such that the return
2019 address must not be decremented to locate the call frame
2020 info for the previous frame; it might even be the first
2021 instruction of a function, so decrementing it would take
2022 us to a different function. */
2023 else if (*augmentation == 'S')
2024 {
2025 cie->signal_frame = 1;
2026 augmentation++;
2027 }
2028
2029 /* Otherwise we have an unknown augmentation. Assume that either
2030 there is no augmentation data, or we saw a 'z' prefix. */
2031 else
2032 {
2033 if (cie->initial_instructions)
2034 buf = cie->initial_instructions;
2035 break;
2036 }
2037 }
2038
2039 cie->initial_instructions = buf;
2040 cie->end = end;
2041 cie->unit = unit;
2042
2043 add_cie (cie_table, cie);
2044 }
2045 else
2046 {
2047 /* This is a FDE. */
2048 struct dwarf2_fde *fde;
2049
2050 /* Check that an FDE was expected. */
2051 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2052 error (_("Found an FDE when not expecting it."));
2053
2054 /* In an .eh_frame section, the CIE pointer is the delta between the
2055 address within the FDE where the CIE pointer is stored and the
2056 address of the CIE. Convert it to an offset into the .eh_frame
2057 section. */
2058 if (eh_frame_p)
2059 {
2060 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2061 cie_pointer -= (dwarf64_p ? 8 : 4);
2062 }
2063
2064 /* In either case, validate the result is still within the section. */
2065 if (cie_pointer >= unit->dwarf_frame_size)
2066 return NULL;
2067
2068 fde = (struct dwarf2_fde *)
2069 obstack_alloc (&unit->objfile->objfile_obstack,
2070 sizeof (struct dwarf2_fde));
2071 fde->cie = find_cie (cie_table, cie_pointer);
2072 if (fde->cie == NULL)
2073 {
2074 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2075 eh_frame_p, cie_table, fde_table,
2076 EH_CIE_TYPE_ID);
2077 fde->cie = find_cie (cie_table, cie_pointer);
2078 }
2079
2080 gdb_assert (fde->cie != NULL);
2081
2082 fde->initial_location =
2083 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2084 buf, &bytes_read, 0);
2085 buf += bytes_read;
2086
2087 fde->address_range =
2088 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2089 fde->cie->ptr_size, buf, &bytes_read, 0);
2090 buf += bytes_read;
2091
2092 /* A 'z' augmentation in the CIE implies the presence of an
2093 augmentation field in the FDE as well. The only thing known
2094 to be in here at present is the LSDA entry for EH. So we
2095 can skip the whole thing. */
2096 if (fde->cie->saw_z_augmentation)
2097 {
2098 unsigned long long length;
2099
2100 buf = gdb_read_uleb128 (buf, end, &length);
2101 if (buf == NULL)
2102 return NULL;
2103 buf += length;
2104 if (buf > end)
2105 return NULL;
2106 }
2107
2108 fde->instructions = buf;
2109 fde->end = end;
2110
2111 fde->eh_frame_p = eh_frame_p;
2112
2113 add_fde (fde_table, fde);
2114 }
2115
2116 return end;
2117 }
2118
2119 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2120 expect an FDE or a CIE. */
2121
2122 static const gdb_byte *
2123 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2124 int eh_frame_p,
2125 struct dwarf2_cie_table *cie_table,
2126 struct dwarf2_fde_table *fde_table,
2127 enum eh_frame_type entry_type)
2128 {
2129 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2130 const gdb_byte *ret;
2131 ptrdiff_t start_offset;
2132
2133 while (1)
2134 {
2135 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2136 cie_table, fde_table, entry_type);
2137 if (ret != NULL)
2138 break;
2139
2140 /* We have corrupt input data of some form. */
2141
2142 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2143 and mismatches wrt padding and alignment of debug sections. */
2144 /* Note that there is no requirement in the standard for any
2145 alignment at all in the frame unwind sections. Testing for
2146 alignment before trying to interpret data would be incorrect.
2147
2148 However, GCC traditionally arranged for frame sections to be
2149 sized such that the FDE length and CIE fields happen to be
2150 aligned (in theory, for performance). This, unfortunately,
2151 was done with .align directives, which had the side effect of
2152 forcing the section to be aligned by the linker.
2153
2154 This becomes a problem when you have some other producer that
2155 creates frame sections that are not as strictly aligned. That
2156 produces a hole in the frame info that gets filled by the
2157 linker with zeros.
2158
2159 The GCC behaviour is arguably a bug, but it's effectively now
2160 part of the ABI, so we're now stuck with it, at least at the
2161 object file level. A smart linker may decide, in the process
2162 of compressing duplicate CIE information, that it can rewrite
2163 the entire output section without this extra padding. */
2164
2165 start_offset = start - unit->dwarf_frame_buffer;
2166 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2167 {
2168 start += 4 - (start_offset & 3);
2169 workaround = ALIGN4;
2170 continue;
2171 }
2172 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2173 {
2174 start += 8 - (start_offset & 7);
2175 workaround = ALIGN8;
2176 continue;
2177 }
2178
2179 /* Nothing left to try. Arrange to return as if we've consumed
2180 the entire input section. Hopefully we'll get valid info from
2181 the other of .debug_frame/.eh_frame. */
2182 workaround = FAIL;
2183 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2184 break;
2185 }
2186
2187 switch (workaround)
2188 {
2189 case NONE:
2190 break;
2191
2192 case ALIGN4:
2193 complaint (&symfile_complaints, _("\
2194 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2195 unit->dwarf_frame_section->owner->filename,
2196 unit->dwarf_frame_section->name);
2197 break;
2198
2199 case ALIGN8:
2200 complaint (&symfile_complaints, _("\
2201 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2202 unit->dwarf_frame_section->owner->filename,
2203 unit->dwarf_frame_section->name);
2204 break;
2205
2206 default:
2207 complaint (&symfile_complaints,
2208 _("Corrupt data in %s:%s"),
2209 unit->dwarf_frame_section->owner->filename,
2210 unit->dwarf_frame_section->name);
2211 break;
2212 }
2213
2214 return ret;
2215 }
2216 \f
2217 static int
2218 qsort_fde_cmp (const void *a, const void *b)
2219 {
2220 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2221 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2222
2223 if (aa->initial_location == bb->initial_location)
2224 {
2225 if (aa->address_range != bb->address_range
2226 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2227 /* Linker bug, e.g. gold/10400.
2228 Work around it by keeping stable sort order. */
2229 return (a < b) ? -1 : 1;
2230 else
2231 /* Put eh_frame entries after debug_frame ones. */
2232 return aa->eh_frame_p - bb->eh_frame_p;
2233 }
2234
2235 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2236 }
2237
2238 void
2239 dwarf2_build_frame_info (struct objfile *objfile)
2240 {
2241 struct comp_unit *unit;
2242 const gdb_byte *frame_ptr;
2243 struct dwarf2_cie_table cie_table;
2244 struct dwarf2_fde_table fde_table;
2245 struct dwarf2_fde_table *fde_table2;
2246 volatile struct gdb_exception e;
2247
2248 cie_table.num_entries = 0;
2249 cie_table.entries = NULL;
2250
2251 fde_table.num_entries = 0;
2252 fde_table.entries = NULL;
2253
2254 /* Build a minimal decoding of the DWARF2 compilation unit. */
2255 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2256 sizeof (struct comp_unit));
2257 unit->abfd = objfile->obfd;
2258 unit->objfile = objfile;
2259 unit->dbase = 0;
2260 unit->tbase = 0;
2261
2262 if (objfile->separate_debug_objfile_backlink == NULL)
2263 {
2264 /* Do not read .eh_frame from separate file as they must be also
2265 present in the main file. */
2266 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2267 &unit->dwarf_frame_section,
2268 &unit->dwarf_frame_buffer,
2269 &unit->dwarf_frame_size);
2270 if (unit->dwarf_frame_size)
2271 {
2272 asection *got, *txt;
2273
2274 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2275 that is used for the i386/amd64 target, which currently is
2276 the only target in GCC that supports/uses the
2277 DW_EH_PE_datarel encoding. */
2278 got = bfd_get_section_by_name (unit->abfd, ".got");
2279 if (got)
2280 unit->dbase = got->vma;
2281
2282 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2283 so far. */
2284 txt = bfd_get_section_by_name (unit->abfd, ".text");
2285 if (txt)
2286 unit->tbase = txt->vma;
2287
2288 TRY_CATCH (e, RETURN_MASK_ERROR)
2289 {
2290 frame_ptr = unit->dwarf_frame_buffer;
2291 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2292 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2293 &cie_table, &fde_table,
2294 EH_CIE_OR_FDE_TYPE_ID);
2295 }
2296
2297 if (e.reason < 0)
2298 {
2299 warning (_("skipping .eh_frame info of %s: %s"),
2300 objfile->name, e.message);
2301
2302 if (fde_table.num_entries != 0)
2303 {
2304 xfree (fde_table.entries);
2305 fde_table.entries = NULL;
2306 fde_table.num_entries = 0;
2307 }
2308 /* The cie_table is discarded by the next if. */
2309 }
2310
2311 if (cie_table.num_entries != 0)
2312 {
2313 /* Reinit cie_table: debug_frame has different CIEs. */
2314 xfree (cie_table.entries);
2315 cie_table.num_entries = 0;
2316 cie_table.entries = NULL;
2317 }
2318 }
2319 }
2320
2321 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2322 &unit->dwarf_frame_section,
2323 &unit->dwarf_frame_buffer,
2324 &unit->dwarf_frame_size);
2325 if (unit->dwarf_frame_size)
2326 {
2327 int num_old_fde_entries = fde_table.num_entries;
2328
2329 TRY_CATCH (e, RETURN_MASK_ERROR)
2330 {
2331 frame_ptr = unit->dwarf_frame_buffer;
2332 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2333 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2334 &cie_table, &fde_table,
2335 EH_CIE_OR_FDE_TYPE_ID);
2336 }
2337 if (e.reason < 0)
2338 {
2339 warning (_("skipping .debug_frame info of %s: %s"),
2340 objfile->name, e.message);
2341
2342 if (fde_table.num_entries != 0)
2343 {
2344 fde_table.num_entries = num_old_fde_entries;
2345 if (num_old_fde_entries == 0)
2346 {
2347 xfree (fde_table.entries);
2348 fde_table.entries = NULL;
2349 }
2350 else
2351 {
2352 fde_table.entries = xrealloc (fde_table.entries,
2353 fde_table.num_entries *
2354 sizeof (fde_table.entries[0]));
2355 }
2356 }
2357 fde_table.num_entries = num_old_fde_entries;
2358 /* The cie_table is discarded by the next if. */
2359 }
2360 }
2361
2362 /* Discard the cie_table, it is no longer needed. */
2363 if (cie_table.num_entries != 0)
2364 {
2365 xfree (cie_table.entries);
2366 cie_table.entries = NULL; /* Paranoia. */
2367 cie_table.num_entries = 0; /* Paranoia. */
2368 }
2369
2370 /* Copy fde_table to obstack: it is needed at runtime. */
2371 fde_table2 = (struct dwarf2_fde_table *)
2372 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2373
2374 if (fde_table.num_entries == 0)
2375 {
2376 fde_table2->entries = NULL;
2377 fde_table2->num_entries = 0;
2378 }
2379 else
2380 {
2381 struct dwarf2_fde *fde_prev = NULL;
2382 struct dwarf2_fde *first_non_zero_fde = NULL;
2383 int i;
2384
2385 /* Prepare FDE table for lookups. */
2386 qsort (fde_table.entries, fde_table.num_entries,
2387 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2388
2389 /* Check for leftovers from --gc-sections. The GNU linker sets
2390 the relevant symbols to zero, but doesn't zero the FDE *end*
2391 ranges because there's no relocation there. It's (offset,
2392 length), not (start, end). On targets where address zero is
2393 just another valid address this can be a problem, since the
2394 FDEs appear to be non-empty in the output --- we could pick
2395 out the wrong FDE. To work around this, when overlaps are
2396 detected, we prefer FDEs that do not start at zero.
2397
2398 Start by finding the first FDE with non-zero start. Below
2399 we'll discard all FDEs that start at zero and overlap this
2400 one. */
2401 for (i = 0; i < fde_table.num_entries; i++)
2402 {
2403 struct dwarf2_fde *fde = fde_table.entries[i];
2404
2405 if (fde->initial_location != 0)
2406 {
2407 first_non_zero_fde = fde;
2408 break;
2409 }
2410 }
2411
2412 /* Since we'll be doing bsearch, squeeze out identical (except
2413 for eh_frame_p) fde entries so bsearch result is predictable.
2414 Also discard leftovers from --gc-sections. */
2415 fde_table2->num_entries = 0;
2416 for (i = 0; i < fde_table.num_entries; i++)
2417 {
2418 struct dwarf2_fde *fde = fde_table.entries[i];
2419
2420 if (fde->initial_location == 0
2421 && first_non_zero_fde != NULL
2422 && (first_non_zero_fde->initial_location
2423 < fde->initial_location + fde->address_range))
2424 continue;
2425
2426 if (fde_prev != NULL
2427 && fde_prev->initial_location == fde->initial_location)
2428 continue;
2429
2430 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2431 sizeof (fde_table.entries[0]));
2432 ++fde_table2->num_entries;
2433 fde_prev = fde;
2434 }
2435 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2436
2437 /* Discard the original fde_table. */
2438 xfree (fde_table.entries);
2439 }
2440
2441 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2442 }
2443
2444 /* Provide a prototype to silence -Wmissing-prototypes. */
2445 void _initialize_dwarf2_frame (void);
2446
2447 void
2448 _initialize_dwarf2_frame (void)
2449 {
2450 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2451 dwarf2_frame_objfile_data = register_objfile_data ();
2452 }
This page took 0.140569 seconds and 5 git commands to generate.