Add casts for legitimate integer to enum conversions
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41
42 extern int dwarf_always_disassemble;
43
44 extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
45
46 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
51 LONGEST byte_offset);
52
53 /* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58 enum debug_loc_kind
59 {
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83 };
84
85 /* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88 static void
89 invalid_synthetic_pointer (void)
90 {
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93 }
94
95 /* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100 static enum debug_loc_kind
101 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107 {
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
135 return DEBUG_LOC_START_END;
136 }
137
138 /* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143 static enum debug_loc_kind
144 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
150 {
151 uint64_t low_index, high_index;
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
169 case DEBUG_LOC_START_END:
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194 }
195
196 /* A function for dealing with location lists. Given a
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
204 const gdb_byte *
205 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
207 {
208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
213 /* Adjust base_address for relocatable objects. */
214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
215 CORE_ADDR base_address = baton->base_address + base_offset;
216 const gdb_byte *loc_ptr, *buf_end;
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
231 &low, &high, byte_order);
232 else
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
239 {
240 case DEBUG_LOC_END_OF_LIST:
241 *locexpr_length = 0;
242 return NULL;
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
255 }
256
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is
259 from .debug_addr which has absolute addresses. */
260 if (! baton->from_dwo)
261 {
262 low += base_address;
263 high += base_address;
264 }
265
266 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
267 loc_ptr += 2;
268
269 if (low == high && pc == low)
270 {
271 /* This is entry PC record present only at entry point
272 of a function. Verify it is really the function entry point. */
273
274 const struct block *pc_block = block_for_pc (pc);
275 struct symbol *pc_func = NULL;
276
277 if (pc_block)
278 pc_func = block_linkage_function (pc_block);
279
280 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285 }
286
287 if (pc >= low && pc < high)
288 {
289 *locexpr_length = length;
290 return loc_ptr;
291 }
292
293 loc_ptr += length;
294 }
295 }
296
297 /* This is the baton used when performing dwarf2 expression
298 evaluation. */
299 struct dwarf_expr_baton
300 {
301 struct frame_info *frame;
302 struct dwarf2_per_cu_data *per_cu;
303 CORE_ADDR obj_address;
304 };
305
306 /* Helper functions for dwarf2_evaluate_loc_desc. */
307
308 /* Using the frame specified in BATON, return the value of register
309 REGNUM, treated as a pointer. */
310 static CORE_ADDR
311 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
312 {
313 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
314 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
315 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
316
317 return address_from_register (regnum, debaton->frame);
318 }
319
320 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
321
322 static struct value *
323 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
324 {
325 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
326 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
327 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
328
329 return value_from_register (type, regnum, debaton->frame);
330 }
331
332 /* Read memory at ADDR (length LEN) into BUF. */
333
334 static void
335 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
336 {
337 read_memory (addr, buf, len);
338 }
339
340 /* Using the frame specified in BATON, find the location expression
341 describing the frame base. Return a pointer to it in START and
342 its length in LENGTH. */
343 static void
344 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
345 {
346 /* FIXME: cagney/2003-03-26: This code should be using
347 get_frame_base_address(), and then implement a dwarf2 specific
348 this_base method. */
349 struct symbol *framefunc;
350 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
351 const struct block *bl = get_frame_block (debaton->frame, NULL);
352
353 if (bl == NULL)
354 error (_("frame address is not available."));
355
356 /* Use block_linkage_function, which returns a real (not inlined)
357 function, instead of get_frame_function, which may return an
358 inlined function. */
359 framefunc = block_linkage_function (bl);
360
361 /* If we found a frame-relative symbol then it was certainly within
362 some function associated with a frame. If we can't find the frame,
363 something has gone wrong. */
364 gdb_assert (framefunc != NULL);
365
366 func_get_frame_base_dwarf_block (framefunc,
367 get_frame_address_in_block (debaton->frame),
368 start, length);
369 }
370
371 /* Implement find_frame_base_location method for LOC_BLOCK functions using
372 DWARF expression for its DW_AT_frame_base. */
373
374 static void
375 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
376 const gdb_byte **start, size_t *length)
377 {
378 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
379
380 *length = symbaton->size;
381 *start = symbaton->data;
382 }
383
384 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
385 function uses DWARF expression for its DW_AT_frame_base. */
386
387 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
388 {
389 locexpr_find_frame_base_location
390 };
391
392 /* Implement find_frame_base_location method for LOC_BLOCK functions using
393 DWARF location list for its DW_AT_frame_base. */
394
395 static void
396 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
397 const gdb_byte **start, size_t *length)
398 {
399 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
400
401 *start = dwarf2_find_location_expression (symbaton, length, pc);
402 }
403
404 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
405 function uses DWARF location list for its DW_AT_frame_base. */
406
407 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
408 {
409 loclist_find_frame_base_location
410 };
411
412 /* See dwarf2loc.h. */
413
414 void
415 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
417 {
418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
419 {
420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
421
422 ops_block->find_frame_base_location (framefunc, pc, start, length);
423 }
424 else
425 *length = 0;
426
427 if (*length == 0)
428 error (_("Could not find the frame base for \"%s\"."),
429 SYMBOL_NATURAL_NAME (framefunc));
430 }
431
432 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435 static CORE_ADDR
436 dwarf_expr_frame_cfa (void *baton)
437 {
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
439
440 return dwarf2_frame_cfa (debaton->frame);
441 }
442
443 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446 static CORE_ADDR
447 dwarf_expr_frame_pc (void *baton)
448 {
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452 }
453
454 /* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456 static CORE_ADDR
457 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458 {
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
461
462 return target_translate_tls_address (objfile, offset);
463 }
464
465 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
468
469 static void
470 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
474 {
475 struct dwarf2_locexpr_baton block;
476
477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483 }
484
485 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487 static void
488 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
489 {
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
493 ctx->funcs->get_frame_pc, ctx->baton);
494 }
495
496 /* Callback function for dwarf2_evaluate_loc_desc. */
497
498 static struct type *
499 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
501 {
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505 }
506
507 /* See dwarf2loc.h. */
508
509 unsigned int entry_values_debug = 0;
510
511 /* Helper to set entry_values_debug. */
512
513 static void
514 show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516 {
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520 }
521
522 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526 static CORE_ADDR
527 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530 {
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
543 struct bound_minimal_symbol msym;
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
550 (msym.minsym == NULL ? "???"
551 : MSYMBOL_PRINT_NAME (msym.minsym)));
552
553 }
554 if (caller_frame == NULL)
555 {
556 struct bound_minimal_symbol msym;
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
564 (msym.minsym == NULL ? "???"
565 : MSYMBOL_PRINT_NAME (msym.minsym)));
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
584 struct bound_minimal_symbol msym;
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
590 if (msym.minsym == NULL)
591 {
592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
599
600 }
601 return BMSYMBOL_VALUE_ADDRESS (msym);
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610 }
611
612 /* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616 static struct symbol *
617 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618 {
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633 }
634
635 /* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644 static void
645 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646 {
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)),
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712 }
713
714 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717 static void
718 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719 {
720 CORE_ADDR addr = call_site->pc;
721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
724 (msym.minsym == NULL ? "???"
725 : MSYMBOL_PRINT_NAME (msym.minsym)));
726
727 }
728
729 /* vec.h needs single word type name, typedef it. */
730 typedef struct call_site *call_sitep;
731
732 /* Define VEC (call_sitep) functions. */
733 DEF_VEC_P (call_sitep);
734
735 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742 static void
743 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745 {
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
829 gdb_assert (result->callers + result->callees <= result->length);
830 }
831
832 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
833 assumed frames between them use GDBARCH. Use depth first search so we can
834 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
835 would have needless GDB stack overhead. Caller is responsible for xfree of
836 the returned result. Any unreliability results in thrown
837 NO_ENTRY_VALUE_ERROR. */
838
839 static struct call_site_chain *
840 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
841 CORE_ADDR callee_pc)
842 {
843 CORE_ADDR save_callee_pc = callee_pc;
844 struct obstack addr_obstack;
845 struct cleanup *back_to_retval, *back_to_workdata;
846 struct call_site_chain *retval = NULL;
847 struct call_site *call_site;
848
849 /* Mark CALL_SITEs so we do not visit the same ones twice. */
850 htab_t addr_hash;
851
852 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
853 call_site nor any possible call_site at CALLEE_PC's function is there.
854 Any CALL_SITE in CHAIN will be iterated to its siblings - via
855 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
856 VEC (call_sitep) *chain = NULL;
857
858 /* We are not interested in the specific PC inside the callee function. */
859 callee_pc = get_pc_function_start (callee_pc);
860 if (callee_pc == 0)
861 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
862 paddress (gdbarch, save_callee_pc));
863
864 back_to_retval = make_cleanup (free_current_contents, &retval);
865
866 obstack_init (&addr_obstack);
867 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
868 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
869 &addr_obstack, hashtab_obstack_allocate,
870 NULL);
871 make_cleanup_htab_delete (addr_hash);
872
873 make_cleanup (VEC_cleanup (call_sitep), &chain);
874
875 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
876 at the target's function. All the possible tail call sites in the
877 target's function will get iterated as already pushed into CHAIN via their
878 TAIL_CALL_NEXT. */
879 call_site = call_site_for_pc (gdbarch, caller_pc);
880
881 while (call_site)
882 {
883 CORE_ADDR target_func_addr;
884 struct call_site *target_call_site;
885
886 /* CALLER_FRAME with registers is not available for tail-call jumped
887 frames. */
888 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
889
890 if (target_func_addr == callee_pc)
891 {
892 chain_candidate (gdbarch, &retval, chain);
893 if (retval == NULL)
894 break;
895
896 /* There is no way to reach CALLEE_PC again as we would prevent
897 entering it twice as being already marked in ADDR_HASH. */
898 target_call_site = NULL;
899 }
900 else
901 {
902 struct symbol *target_func;
903
904 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
905 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
906 }
907
908 do
909 {
910 /* Attempt to visit TARGET_CALL_SITE. */
911
912 if (target_call_site)
913 {
914 void **slot;
915
916 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
917 if (*slot == NULL)
918 {
919 /* Successfully entered TARGET_CALL_SITE. */
920
921 *slot = &target_call_site->pc;
922 VEC_safe_push (call_sitep, chain, target_call_site);
923 break;
924 }
925 }
926
927 /* Backtrack (without revisiting the originating call_site). Try the
928 callers's sibling; if there isn't any try the callers's callers's
929 sibling etc. */
930
931 target_call_site = NULL;
932 while (!VEC_empty (call_sitep, chain))
933 {
934 call_site = VEC_pop (call_sitep, chain);
935
936 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
937 NO_INSERT) != NULL);
938 htab_remove_elt (addr_hash, &call_site->pc);
939
940 target_call_site = call_site->tail_call_next;
941 if (target_call_site)
942 break;
943 }
944 }
945 while (target_call_site);
946
947 if (VEC_empty (call_sitep, chain))
948 call_site = NULL;
949 else
950 call_site = VEC_last (call_sitep, chain);
951 }
952
953 if (retval == NULL)
954 {
955 struct bound_minimal_symbol msym_caller, msym_callee;
956
957 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
958 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
959 throw_error (NO_ENTRY_VALUE_ERROR,
960 _("There are no unambiguously determinable intermediate "
961 "callers or callees between caller function \"%s\" at %s "
962 "and callee function \"%s\" at %s"),
963 (msym_caller.minsym == NULL
964 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
965 paddress (gdbarch, caller_pc),
966 (msym_callee.minsym == NULL
967 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
968 paddress (gdbarch, callee_pc));
969 }
970
971 do_cleanups (back_to_workdata);
972 discard_cleanups (back_to_retval);
973 return retval;
974 }
975
976 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
977 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
978 constructed return NULL. Caller is responsible for xfree of the returned
979 result. */
980
981 struct call_site_chain *
982 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
983 CORE_ADDR callee_pc)
984 {
985 struct call_site_chain *retval = NULL;
986
987 TRY
988 {
989 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
990 }
991 CATCH (e, RETURN_MASK_ERROR)
992 {
993 if (e.error == NO_ENTRY_VALUE_ERROR)
994 {
995 if (entry_values_debug)
996 exception_print (gdb_stdout, e);
997
998 return NULL;
999 }
1000 else
1001 throw_exception (e);
1002 }
1003 END_CATCH
1004
1005 return retval;
1006 }
1007
1008 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010 static int
1011 call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014 {
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1024 }
1025 return 0;
1026 }
1027
1028 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034 static struct call_site_parameter *
1035 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
1038 struct dwarf2_per_cu_data **per_cu_return)
1039 {
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
1043 struct call_site *call_site;
1044 int iparams;
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
1047 CORE_ADDR target_addr;
1048
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
1069 (msym.minsym == NULL ? "???"
1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
1082 (msym.minsym == NULL ? "???"
1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
1099 : MSYMBOL_PRINT_NAME (target_msym)),
1100 paddress (gdbarch, target_addr),
1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1102 paddress (gdbarch, func_addr));
1103 }
1104
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
1112 if (call_site_parameter_matches (parameter, kind, kind_u))
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130 }
1131
1132 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142 static struct value *
1143 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1144 CORE_ADDR deref_size, struct type *type,
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147 {
1148 const gdb_byte *data_src;
1149 gdb_byte *data;
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
1166
1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1168 }
1169
1170 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177 static void
1178 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
1181 int deref_size)
1182 {
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1198 &caller_per_cu);
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
1209 baton_local.obj_address = 0;
1210
1211 saved_ctx.gdbarch = ctx->gdbarch;
1212 saved_ctx.addr_size = ctx->addr_size;
1213 saved_ctx.offset = ctx->offset;
1214 saved_ctx.baton = ctx->baton;
1215 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1216 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1217 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1218 ctx->baton = &baton_local;
1219
1220 dwarf_expr_eval (ctx, data_src, size);
1221
1222 ctx->gdbarch = saved_ctx.gdbarch;
1223 ctx->addr_size = saved_ctx.addr_size;
1224 ctx->offset = saved_ctx.offset;
1225 ctx->baton = saved_ctx.baton;
1226 }
1227
1228 /* Callback function for dwarf2_evaluate_loc_desc.
1229 Fetch the address indexed by DW_OP_GNU_addr_index. */
1230
1231 static CORE_ADDR
1232 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1233 {
1234 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1235
1236 return dwarf2_read_addr_index (debaton->per_cu, index);
1237 }
1238
1239 /* Callback function for get_object_address. Return the address of the VLA
1240 object. */
1241
1242 static CORE_ADDR
1243 dwarf_expr_get_obj_addr (void *baton)
1244 {
1245 struct dwarf_expr_baton *debaton = baton;
1246
1247 gdb_assert (debaton != NULL);
1248
1249 if (debaton->obj_address == 0)
1250 error (_("Location address is not set."));
1251
1252 return debaton->obj_address;
1253 }
1254
1255 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1256 the indirect method on it, that is use its stored target value, the sole
1257 purpose of entry_data_value_funcs.. */
1258
1259 static struct value *
1260 entry_data_value_coerce_ref (const struct value *value)
1261 {
1262 struct type *checked_type = check_typedef (value_type (value));
1263 struct value *target_val;
1264
1265 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1266 return NULL;
1267
1268 target_val = value_computed_closure (value);
1269 value_incref (target_val);
1270 return target_val;
1271 }
1272
1273 /* Implement copy_closure. */
1274
1275 static void *
1276 entry_data_value_copy_closure (const struct value *v)
1277 {
1278 struct value *target_val = value_computed_closure (v);
1279
1280 value_incref (target_val);
1281 return target_val;
1282 }
1283
1284 /* Implement free_closure. */
1285
1286 static void
1287 entry_data_value_free_closure (struct value *v)
1288 {
1289 struct value *target_val = value_computed_closure (v);
1290
1291 value_free (target_val);
1292 }
1293
1294 /* Vector for methods for an entry value reference where the referenced value
1295 is stored in the caller. On the first dereference use
1296 DW_AT_GNU_call_site_data_value in the caller. */
1297
1298 static const struct lval_funcs entry_data_value_funcs =
1299 {
1300 NULL, /* read */
1301 NULL, /* write */
1302 NULL, /* indirect */
1303 entry_data_value_coerce_ref,
1304 NULL, /* check_synthetic_pointer */
1305 entry_data_value_copy_closure,
1306 entry_data_value_free_closure
1307 };
1308
1309 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1310 are used to match DW_AT_location at the caller's
1311 DW_TAG_GNU_call_site_parameter.
1312
1313 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1314 cannot resolve the parameter for any reason. */
1315
1316 static struct value *
1317 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1318 enum call_site_parameter_kind kind,
1319 union call_site_parameter_u kind_u)
1320 {
1321 struct type *checked_type = check_typedef (type);
1322 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1323 struct frame_info *caller_frame = get_prev_frame (frame);
1324 struct value *outer_val, *target_val, *val;
1325 struct call_site_parameter *parameter;
1326 struct dwarf2_per_cu_data *caller_per_cu;
1327
1328 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1329 &caller_per_cu);
1330
1331 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1332 type, caller_frame,
1333 caller_per_cu);
1334
1335 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1336 used and it is not available do not fall back to OUTER_VAL - dereferencing
1337 TYPE_CODE_REF with non-entry data value would give current value - not the
1338 entry value. */
1339
1340 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1341 || TYPE_TARGET_TYPE (checked_type) == NULL)
1342 return outer_val;
1343
1344 target_val = dwarf_entry_parameter_to_value (parameter,
1345 TYPE_LENGTH (target_type),
1346 target_type, caller_frame,
1347 caller_per_cu);
1348
1349 release_value (target_val);
1350 val = allocate_computed_value (type, &entry_data_value_funcs,
1351 target_val /* closure */);
1352
1353 /* Copy the referencing pointer to the new computed value. */
1354 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1355 TYPE_LENGTH (checked_type));
1356 set_value_lazy (val, 0);
1357
1358 return val;
1359 }
1360
1361 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1362 SIZE are DWARF block used to match DW_AT_location at the caller's
1363 DW_TAG_GNU_call_site_parameter.
1364
1365 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1366 cannot resolve the parameter for any reason. */
1367
1368 static struct value *
1369 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1370 const gdb_byte *block, size_t block_len)
1371 {
1372 union call_site_parameter_u kind_u;
1373
1374 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1375 if (kind_u.dwarf_reg != -1)
1376 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1377 kind_u);
1378
1379 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1380 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1381 kind_u);
1382
1383 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1384 suppressed during normal operation. The expression can be arbitrary if
1385 there is no caller-callee entry value binding expected. */
1386 throw_error (NO_ENTRY_VALUE_ERROR,
1387 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1388 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1389 }
1390
1391 struct piece_closure
1392 {
1393 /* Reference count. */
1394 int refc;
1395
1396 /* The CU from which this closure's expression came. */
1397 struct dwarf2_per_cu_data *per_cu;
1398
1399 /* The number of pieces used to describe this variable. */
1400 int n_pieces;
1401
1402 /* The target address size, used only for DWARF_VALUE_STACK. */
1403 int addr_size;
1404
1405 /* The pieces themselves. */
1406 struct dwarf_expr_piece *pieces;
1407 };
1408
1409 /* Allocate a closure for a value formed from separately-described
1410 PIECES. */
1411
1412 static struct piece_closure *
1413 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1414 int n_pieces, struct dwarf_expr_piece *pieces,
1415 int addr_size)
1416 {
1417 struct piece_closure *c = XCNEW (struct piece_closure);
1418 int i;
1419
1420 c->refc = 1;
1421 c->per_cu = per_cu;
1422 c->n_pieces = n_pieces;
1423 c->addr_size = addr_size;
1424 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1425
1426 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1427 for (i = 0; i < n_pieces; ++i)
1428 if (c->pieces[i].location == DWARF_VALUE_STACK)
1429 value_incref (c->pieces[i].v.value);
1430
1431 return c;
1432 }
1433
1434 /* The lowest-level function to extract bits from a byte buffer.
1435 SOURCE is the buffer. It is updated if we read to the end of a
1436 byte.
1437 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1438 updated to reflect the number of bits actually read.
1439 NBITS is the number of bits we want to read. It is updated to
1440 reflect the number of bits actually read. This function may read
1441 fewer bits.
1442 BITS_BIG_ENDIAN is taken directly from gdbarch.
1443 This function returns the extracted bits. */
1444
1445 static unsigned int
1446 extract_bits_primitive (const gdb_byte **source,
1447 unsigned int *source_offset_bits,
1448 int *nbits, int bits_big_endian)
1449 {
1450 unsigned int avail, mask, datum;
1451
1452 gdb_assert (*source_offset_bits < 8);
1453
1454 avail = 8 - *source_offset_bits;
1455 if (avail > *nbits)
1456 avail = *nbits;
1457
1458 mask = (1 << avail) - 1;
1459 datum = **source;
1460 if (bits_big_endian)
1461 datum >>= 8 - (*source_offset_bits + *nbits);
1462 else
1463 datum >>= *source_offset_bits;
1464 datum &= mask;
1465
1466 *nbits -= avail;
1467 *source_offset_bits += avail;
1468 if (*source_offset_bits >= 8)
1469 {
1470 *source_offset_bits -= 8;
1471 ++*source;
1472 }
1473
1474 return datum;
1475 }
1476
1477 /* Extract some bits from a source buffer and move forward in the
1478 buffer.
1479
1480 SOURCE is the source buffer. It is updated as bytes are read.
1481 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1482 bits are read.
1483 NBITS is the number of bits to read.
1484 BITS_BIG_ENDIAN is taken directly from gdbarch.
1485
1486 This function returns the bits that were read. */
1487
1488 static unsigned int
1489 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1490 int nbits, int bits_big_endian)
1491 {
1492 unsigned int datum;
1493
1494 gdb_assert (nbits > 0 && nbits <= 8);
1495
1496 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1497 bits_big_endian);
1498 if (nbits > 0)
1499 {
1500 unsigned int more;
1501
1502 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1503 bits_big_endian);
1504 if (bits_big_endian)
1505 datum <<= nbits;
1506 else
1507 more <<= nbits;
1508 datum |= more;
1509 }
1510
1511 return datum;
1512 }
1513
1514 /* Write some bits into a buffer and move forward in the buffer.
1515
1516 DATUM is the bits to write. The low-order bits of DATUM are used.
1517 DEST is the destination buffer. It is updated as bytes are
1518 written.
1519 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1520 done.
1521 NBITS is the number of valid bits in DATUM.
1522 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1523
1524 static void
1525 insert_bits (unsigned int datum,
1526 gdb_byte *dest, unsigned int dest_offset_bits,
1527 int nbits, int bits_big_endian)
1528 {
1529 unsigned int mask;
1530
1531 gdb_assert (dest_offset_bits + nbits <= 8);
1532
1533 mask = (1 << nbits) - 1;
1534 if (bits_big_endian)
1535 {
1536 datum <<= 8 - (dest_offset_bits + nbits);
1537 mask <<= 8 - (dest_offset_bits + nbits);
1538 }
1539 else
1540 {
1541 datum <<= dest_offset_bits;
1542 mask <<= dest_offset_bits;
1543 }
1544
1545 gdb_assert ((datum & ~mask) == 0);
1546
1547 *dest = (*dest & ~mask) | datum;
1548 }
1549
1550 /* Copy bits from a source to a destination.
1551
1552 DEST is where the bits should be written.
1553 DEST_OFFSET_BITS is the bit offset into DEST.
1554 SOURCE is the source of bits.
1555 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1556 BIT_COUNT is the number of bits to copy.
1557 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1558
1559 static void
1560 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1561 const gdb_byte *source, unsigned int source_offset_bits,
1562 unsigned int bit_count,
1563 int bits_big_endian)
1564 {
1565 unsigned int dest_avail;
1566 int datum;
1567
1568 /* Reduce everything to byte-size pieces. */
1569 dest += dest_offset_bits / 8;
1570 dest_offset_bits %= 8;
1571 source += source_offset_bits / 8;
1572 source_offset_bits %= 8;
1573
1574 dest_avail = 8 - dest_offset_bits % 8;
1575
1576 /* See if we can fill the first destination byte. */
1577 if (dest_avail < bit_count)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1580 bits_big_endian);
1581 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1582 ++dest;
1583 dest_offset_bits = 0;
1584 bit_count -= dest_avail;
1585 }
1586
1587 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1588 than 8 bits remaining. */
1589 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1590 for (; bit_count >= 8; bit_count -= 8)
1591 {
1592 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1593 *dest++ = (gdb_byte) datum;
1594 }
1595
1596 /* Finally, we may have a few leftover bits. */
1597 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1598 if (bit_count > 0)
1599 {
1600 datum = extract_bits (&source, &source_offset_bits, bit_count,
1601 bits_big_endian);
1602 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1603 }
1604 }
1605
1606 static void
1607 read_pieced_value (struct value *v)
1608 {
1609 int i;
1610 long offset = 0;
1611 ULONGEST bits_to_skip;
1612 gdb_byte *contents;
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
1615 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1616 size_t type_len;
1617 size_t buffer_size = 0;
1618 gdb_byte *buffer = NULL;
1619 struct cleanup *cleanup;
1620 int bits_big_endian
1621 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1622
1623 if (value_type (v) != value_enclosing_type (v))
1624 internal_error (__FILE__, __LINE__,
1625 _("Should not be able to create a lazy value with "
1626 "an enclosing type"));
1627
1628 cleanup = make_cleanup (free_current_contents, &buffer);
1629
1630 contents = value_contents_raw (v);
1631 bits_to_skip = 8 * value_offset (v);
1632 if (value_bitsize (v))
1633 {
1634 bits_to_skip += value_bitpos (v);
1635 type_len = value_bitsize (v);
1636 }
1637 else
1638 type_len = 8 * TYPE_LENGTH (value_type (v));
1639
1640 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1641 {
1642 struct dwarf_expr_piece *p = &c->pieces[i];
1643 size_t this_size, this_size_bits;
1644 long dest_offset_bits, source_offset_bits, source_offset;
1645 const gdb_byte *intermediate_buffer;
1646
1647 /* Compute size, source, and destination offsets for copying, in
1648 bits. */
1649 this_size_bits = p->size;
1650 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1651 {
1652 bits_to_skip -= this_size_bits;
1653 continue;
1654 }
1655 if (bits_to_skip > 0)
1656 {
1657 dest_offset_bits = 0;
1658 source_offset_bits = bits_to_skip;
1659 this_size_bits -= bits_to_skip;
1660 bits_to_skip = 0;
1661 }
1662 else
1663 {
1664 dest_offset_bits = offset;
1665 source_offset_bits = 0;
1666 }
1667 if (this_size_bits > type_len - offset)
1668 this_size_bits = type_len - offset;
1669
1670 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1671 source_offset = source_offset_bits / 8;
1672 if (buffer_size < this_size)
1673 {
1674 buffer_size = this_size;
1675 buffer = xrealloc (buffer, buffer_size);
1676 }
1677 intermediate_buffer = buffer;
1678
1679 /* Copy from the source to DEST_BUFFER. */
1680 switch (p->location)
1681 {
1682 case DWARF_VALUE_REGISTER:
1683 {
1684 struct gdbarch *arch = get_frame_arch (frame);
1685 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1686
1687 if (gdb_regnum != -1)
1688 {
1689 int optim, unavail;
1690 int reg_offset = source_offset;
1691
1692 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1693 && this_size < register_size (arch, gdb_regnum))
1694 {
1695 /* Big-endian, and we want less than full size. */
1696 reg_offset = register_size (arch, gdb_regnum) - this_size;
1697 /* We want the lower-order THIS_SIZE_BITS of the bytes
1698 we extract from the register. */
1699 source_offset_bits += 8 * this_size - this_size_bits;
1700 }
1701
1702 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 this_size, buffer,
1704 &optim, &unavail))
1705 {
1706 /* Just so garbage doesn't ever shine through. */
1707 memset (buffer, 0, this_size);
1708
1709 if (optim)
1710 mark_value_bits_optimized_out (v, offset, this_size_bits);
1711 if (unavail)
1712 mark_value_bits_unavailable (v, offset, this_size_bits);
1713 }
1714 }
1715 else
1716 {
1717 error (_("Unable to access DWARF register number %s"),
1718 paddress (arch, p->v.regno));
1719 }
1720 }
1721 break;
1722
1723 case DWARF_VALUE_MEMORY:
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + source_offset,
1727 buffer, this_size);
1728 break;
1729
1730 case DWARF_VALUE_STACK:
1731 {
1732 size_t n = this_size;
1733
1734 if (n > c->addr_size - source_offset)
1735 n = (c->addr_size >= source_offset
1736 ? c->addr_size - source_offset
1737 : 0);
1738 if (n == 0)
1739 {
1740 /* Nothing. */
1741 }
1742 else
1743 {
1744 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1745
1746 intermediate_buffer = val_bytes + source_offset;
1747 }
1748 }
1749 break;
1750
1751 case DWARF_VALUE_LITERAL:
1752 {
1753 size_t n = this_size;
1754
1755 if (n > p->v.literal.length - source_offset)
1756 n = (p->v.literal.length >= source_offset
1757 ? p->v.literal.length - source_offset
1758 : 0);
1759 if (n != 0)
1760 intermediate_buffer = p->v.literal.data + source_offset;
1761 }
1762 break;
1763
1764 /* These bits show up as zeros -- but do not cause the value
1765 to be considered optimized-out. */
1766 case DWARF_VALUE_IMPLICIT_POINTER:
1767 break;
1768
1769 case DWARF_VALUE_OPTIMIZED_OUT:
1770 mark_value_bits_optimized_out (v, offset, this_size_bits);
1771 break;
1772
1773 default:
1774 internal_error (__FILE__, __LINE__, _("invalid location type"));
1775 }
1776
1777 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1778 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1779 copy_bitwise (contents, dest_offset_bits,
1780 intermediate_buffer, source_offset_bits % 8,
1781 this_size_bits, bits_big_endian);
1782
1783 offset += this_size_bits;
1784 }
1785
1786 do_cleanups (cleanup);
1787 }
1788
1789 static void
1790 write_pieced_value (struct value *to, struct value *from)
1791 {
1792 int i;
1793 long offset = 0;
1794 ULONGEST bits_to_skip;
1795 const gdb_byte *contents;
1796 struct piece_closure *c
1797 = (struct piece_closure *) value_computed_closure (to);
1798 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1799 size_t type_len;
1800 size_t buffer_size = 0;
1801 gdb_byte *buffer = NULL;
1802 struct cleanup *cleanup;
1803 int bits_big_endian
1804 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1805
1806 if (frame == NULL)
1807 {
1808 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1809 return;
1810 }
1811
1812 cleanup = make_cleanup (free_current_contents, &buffer);
1813
1814 contents = value_contents (from);
1815 bits_to_skip = 8 * value_offset (to);
1816 if (value_bitsize (to))
1817 {
1818 bits_to_skip += value_bitpos (to);
1819 type_len = value_bitsize (to);
1820 }
1821 else
1822 type_len = 8 * TYPE_LENGTH (value_type (to));
1823
1824 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1825 {
1826 struct dwarf_expr_piece *p = &c->pieces[i];
1827 size_t this_size_bits, this_size;
1828 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1829 int need_bitwise;
1830 const gdb_byte *source_buffer;
1831
1832 this_size_bits = p->size;
1833 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1834 {
1835 bits_to_skip -= this_size_bits;
1836 continue;
1837 }
1838 if (this_size_bits > type_len - offset)
1839 this_size_bits = type_len - offset;
1840 if (bits_to_skip > 0)
1841 {
1842 dest_offset_bits = bits_to_skip;
1843 source_offset_bits = 0;
1844 this_size_bits -= bits_to_skip;
1845 bits_to_skip = 0;
1846 }
1847 else
1848 {
1849 dest_offset_bits = 0;
1850 source_offset_bits = offset;
1851 }
1852
1853 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1854 source_offset = source_offset_bits / 8;
1855 dest_offset = dest_offset_bits / 8;
1856 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1857 {
1858 source_buffer = contents + source_offset;
1859 need_bitwise = 0;
1860 }
1861 else
1862 {
1863 if (buffer_size < this_size)
1864 {
1865 buffer_size = this_size;
1866 buffer = xrealloc (buffer, buffer_size);
1867 }
1868 source_buffer = buffer;
1869 need_bitwise = 1;
1870 }
1871
1872 switch (p->location)
1873 {
1874 case DWARF_VALUE_REGISTER:
1875 {
1876 struct gdbarch *arch = get_frame_arch (frame);
1877 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1878
1879 if (gdb_regnum != -1)
1880 {
1881 int reg_offset = dest_offset;
1882
1883 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1884 && this_size <= register_size (arch, gdb_regnum))
1885 {
1886 /* Big-endian, and we want less than full size. */
1887 reg_offset = register_size (arch, gdb_regnum) - this_size;
1888 }
1889
1890 if (need_bitwise)
1891 {
1892 int optim, unavail;
1893
1894 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1895 this_size, buffer,
1896 &optim, &unavail))
1897 {
1898 if (optim)
1899 throw_error (OPTIMIZED_OUT_ERROR,
1900 _("Can't do read-modify-write to "
1901 "update bitfield; containing word "
1902 "has been optimized out"));
1903 if (unavail)
1904 throw_error (NOT_AVAILABLE_ERROR,
1905 _("Can't do read-modify-write to update "
1906 "bitfield; containing word "
1907 "is unavailable"));
1908 }
1909 copy_bitwise (buffer, dest_offset_bits,
1910 contents, source_offset_bits,
1911 this_size_bits,
1912 bits_big_endian);
1913 }
1914
1915 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1916 this_size, source_buffer);
1917 }
1918 else
1919 {
1920 error (_("Unable to write to DWARF register number %s"),
1921 paddress (arch, p->v.regno));
1922 }
1923 }
1924 break;
1925 case DWARF_VALUE_MEMORY:
1926 if (need_bitwise)
1927 {
1928 /* Only the first and last bytes can possibly have any
1929 bits reused. */
1930 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1931 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1932 buffer + this_size - 1, 1);
1933 copy_bitwise (buffer, dest_offset_bits,
1934 contents, source_offset_bits,
1935 this_size_bits,
1936 bits_big_endian);
1937 }
1938
1939 write_memory (p->v.mem.addr + dest_offset,
1940 source_buffer, this_size);
1941 break;
1942 default:
1943 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1944 break;
1945 }
1946 offset += this_size_bits;
1947 }
1948
1949 do_cleanups (cleanup);
1950 }
1951
1952 /* An implementation of an lval_funcs method to see whether a value is
1953 a synthetic pointer. */
1954
1955 static int
1956 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1957 int bit_length)
1958 {
1959 struct piece_closure *c
1960 = (struct piece_closure *) value_computed_closure (value);
1961 int i;
1962
1963 bit_offset += 8 * value_offset (value);
1964 if (value_bitsize (value))
1965 bit_offset += value_bitpos (value);
1966
1967 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1968 {
1969 struct dwarf_expr_piece *p = &c->pieces[i];
1970 size_t this_size_bits = p->size;
1971
1972 if (bit_offset > 0)
1973 {
1974 if (bit_offset >= this_size_bits)
1975 {
1976 bit_offset -= this_size_bits;
1977 continue;
1978 }
1979
1980 bit_length -= this_size_bits - bit_offset;
1981 bit_offset = 0;
1982 }
1983 else
1984 bit_length -= this_size_bits;
1985
1986 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1987 return 0;
1988 }
1989
1990 return 1;
1991 }
1992
1993 /* A wrapper function for get_frame_address_in_block. */
1994
1995 static CORE_ADDR
1996 get_frame_address_in_block_wrapper (void *baton)
1997 {
1998 return get_frame_address_in_block (baton);
1999 }
2000
2001 /* An implementation of an lval_funcs method to indirect through a
2002 pointer. This handles the synthetic pointer case when needed. */
2003
2004 static struct value *
2005 indirect_pieced_value (struct value *value)
2006 {
2007 struct piece_closure *c
2008 = (struct piece_closure *) value_computed_closure (value);
2009 struct type *type;
2010 struct frame_info *frame;
2011 struct dwarf2_locexpr_baton baton;
2012 int i, bit_offset, bit_length;
2013 struct dwarf_expr_piece *piece = NULL;
2014 LONGEST byte_offset;
2015 enum bfd_endian byte_order;
2016
2017 type = check_typedef (value_type (value));
2018 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2019 return NULL;
2020
2021 bit_length = 8 * TYPE_LENGTH (type);
2022 bit_offset = 8 * value_offset (value);
2023 if (value_bitsize (value))
2024 bit_offset += value_bitpos (value);
2025
2026 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2027 {
2028 struct dwarf_expr_piece *p = &c->pieces[i];
2029 size_t this_size_bits = p->size;
2030
2031 if (bit_offset > 0)
2032 {
2033 if (bit_offset >= this_size_bits)
2034 {
2035 bit_offset -= this_size_bits;
2036 continue;
2037 }
2038
2039 bit_length -= this_size_bits - bit_offset;
2040 bit_offset = 0;
2041 }
2042 else
2043 bit_length -= this_size_bits;
2044
2045 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2046 return NULL;
2047
2048 if (bit_length != 0)
2049 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2050
2051 piece = p;
2052 break;
2053 }
2054
2055 frame = get_selected_frame (_("No frame selected."));
2056
2057 /* This is an offset requested by GDB, such as value subscripts.
2058 However, due to how synthetic pointers are implemented, this is
2059 always presented to us as a pointer type. This means we have to
2060 sign-extend it manually as appropriate. Use raw
2061 extract_signed_integer directly rather than value_as_address and
2062 sign extend afterwards on architectures that would need it
2063 (mostly everywhere except MIPS, which has signed addresses) as
2064 the later would go through gdbarch_pointer_to_address and thus
2065 return a CORE_ADDR with high bits set on architectures that
2066 encode address spaces and other things in CORE_ADDR. */
2067 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2068 byte_offset = extract_signed_integer (value_contents (value),
2069 TYPE_LENGTH (type), byte_order);
2070 byte_offset += piece->v.ptr.offset;
2071
2072 gdb_assert (piece);
2073 baton
2074 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2075 get_frame_address_in_block_wrapper,
2076 frame);
2077
2078 if (baton.data != NULL)
2079 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2080 baton.data, baton.size, baton.per_cu,
2081 byte_offset);
2082
2083 {
2084 struct obstack temp_obstack;
2085 struct cleanup *cleanup;
2086 const gdb_byte *bytes;
2087 LONGEST len;
2088 struct value *result;
2089
2090 obstack_init (&temp_obstack);
2091 cleanup = make_cleanup_obstack_free (&temp_obstack);
2092
2093 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2094 &temp_obstack, &len);
2095 if (bytes == NULL)
2096 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2097 else
2098 {
2099 if (byte_offset < 0
2100 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2101 invalid_synthetic_pointer ();
2102 bytes += byte_offset;
2103 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2104 }
2105
2106 do_cleanups (cleanup);
2107 return result;
2108 }
2109 }
2110
2111 static void *
2112 copy_pieced_value_closure (const struct value *v)
2113 {
2114 struct piece_closure *c
2115 = (struct piece_closure *) value_computed_closure (v);
2116
2117 ++c->refc;
2118 return c;
2119 }
2120
2121 static void
2122 free_pieced_value_closure (struct value *v)
2123 {
2124 struct piece_closure *c
2125 = (struct piece_closure *) value_computed_closure (v);
2126
2127 --c->refc;
2128 if (c->refc == 0)
2129 {
2130 int i;
2131
2132 for (i = 0; i < c->n_pieces; ++i)
2133 if (c->pieces[i].location == DWARF_VALUE_STACK)
2134 value_free (c->pieces[i].v.value);
2135
2136 xfree (c->pieces);
2137 xfree (c);
2138 }
2139 }
2140
2141 /* Functions for accessing a variable described by DW_OP_piece. */
2142 static const struct lval_funcs pieced_value_funcs = {
2143 read_pieced_value,
2144 write_pieced_value,
2145 indirect_pieced_value,
2146 NULL, /* coerce_ref */
2147 check_pieced_synthetic_pointer,
2148 copy_pieced_value_closure,
2149 free_pieced_value_closure
2150 };
2151
2152 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2153
2154 const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2155 {
2156 dwarf_expr_read_addr_from_reg,
2157 dwarf_expr_get_reg_value,
2158 dwarf_expr_read_mem,
2159 dwarf_expr_frame_base,
2160 dwarf_expr_frame_cfa,
2161 dwarf_expr_frame_pc,
2162 dwarf_expr_tls_address,
2163 dwarf_expr_dwarf_call,
2164 dwarf_expr_get_base_type,
2165 dwarf_expr_push_dwarf_reg_entry_value,
2166 dwarf_expr_get_addr_index,
2167 dwarf_expr_get_obj_addr
2168 };
2169
2170 /* Evaluate a location description, starting at DATA and with length
2171 SIZE, to find the current location of variable of TYPE in the
2172 context of FRAME. BYTE_OFFSET is applied after the contents are
2173 computed. */
2174
2175 static struct value *
2176 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2177 const gdb_byte *data, size_t size,
2178 struct dwarf2_per_cu_data *per_cu,
2179 LONGEST byte_offset)
2180 {
2181 struct value *retval;
2182 struct dwarf_expr_baton baton;
2183 struct dwarf_expr_context *ctx;
2184 struct cleanup *old_chain, *value_chain;
2185 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2186
2187 if (byte_offset < 0)
2188 invalid_synthetic_pointer ();
2189
2190 if (size == 0)
2191 return allocate_optimized_out_value (type);
2192
2193 baton.frame = frame;
2194 baton.per_cu = per_cu;
2195 baton.obj_address = 0;
2196
2197 ctx = new_dwarf_expr_context ();
2198 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2199 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2200
2201 ctx->gdbarch = get_objfile_arch (objfile);
2202 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2203 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2204 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2205 ctx->baton = &baton;
2206 ctx->funcs = &dwarf_expr_ctx_funcs;
2207
2208 TRY
2209 {
2210 dwarf_expr_eval (ctx, data, size);
2211 }
2212 CATCH (ex, RETURN_MASK_ERROR)
2213 {
2214 if (ex.error == NOT_AVAILABLE_ERROR)
2215 {
2216 do_cleanups (old_chain);
2217 retval = allocate_value (type);
2218 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2219 return retval;
2220 }
2221 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2222 {
2223 if (entry_values_debug)
2224 exception_print (gdb_stdout, ex);
2225 do_cleanups (old_chain);
2226 return allocate_optimized_out_value (type);
2227 }
2228 else
2229 throw_exception (ex);
2230 }
2231 END_CATCH
2232
2233 if (ctx->num_pieces > 0)
2234 {
2235 struct piece_closure *c;
2236 struct frame_id frame_id = get_frame_id (frame);
2237 ULONGEST bit_size = 0;
2238 int i;
2239
2240 for (i = 0; i < ctx->num_pieces; ++i)
2241 bit_size += ctx->pieces[i].size;
2242 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2243 invalid_synthetic_pointer ();
2244
2245 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2246 ctx->addr_size);
2247 /* We must clean up the value chain after creating the piece
2248 closure but before allocating the result. */
2249 do_cleanups (value_chain);
2250 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2251 VALUE_FRAME_ID (retval) = frame_id;
2252 set_value_offset (retval, byte_offset);
2253 }
2254 else
2255 {
2256 switch (ctx->location)
2257 {
2258 case DWARF_VALUE_REGISTER:
2259 {
2260 struct gdbarch *arch = get_frame_arch (frame);
2261 int dwarf_regnum
2262 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2263 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2264
2265 if (byte_offset != 0)
2266 error (_("cannot use offset on synthetic pointer to register"));
2267 do_cleanups (value_chain);
2268 if (gdb_regnum == -1)
2269 error (_("Unable to access DWARF register number %d"),
2270 dwarf_regnum);
2271 retval = value_from_register (type, gdb_regnum, frame);
2272 if (value_optimized_out (retval))
2273 {
2274 struct value *tmp;
2275
2276 /* This means the register has undefined value / was
2277 not saved. As we're computing the location of some
2278 variable etc. in the program, not a value for
2279 inspecting a register ($pc, $sp, etc.), return a
2280 generic optimized out value instead, so that we show
2281 <optimized out> instead of <not saved>. */
2282 do_cleanups (value_chain);
2283 tmp = allocate_value (type);
2284 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2285 retval = tmp;
2286 }
2287 }
2288 break;
2289
2290 case DWARF_VALUE_MEMORY:
2291 {
2292 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2293 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2294
2295 do_cleanups (value_chain);
2296 retval = value_at_lazy (type, address + byte_offset);
2297 if (in_stack_memory)
2298 set_value_stack (retval, 1);
2299 }
2300 break;
2301
2302 case DWARF_VALUE_STACK:
2303 {
2304 struct value *value = dwarf_expr_fetch (ctx, 0);
2305 gdb_byte *contents;
2306 const gdb_byte *val_bytes;
2307 size_t n = TYPE_LENGTH (value_type (value));
2308
2309 if (byte_offset + TYPE_LENGTH (type) > n)
2310 invalid_synthetic_pointer ();
2311
2312 val_bytes = value_contents_all (value);
2313 val_bytes += byte_offset;
2314 n -= byte_offset;
2315
2316 /* Preserve VALUE because we are going to free values back
2317 to the mark, but we still need the value contents
2318 below. */
2319 value_incref (value);
2320 do_cleanups (value_chain);
2321 make_cleanup_value_free (value);
2322
2323 retval = allocate_value (type);
2324 contents = value_contents_raw (retval);
2325 if (n > TYPE_LENGTH (type))
2326 {
2327 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2328
2329 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2330 val_bytes += n - TYPE_LENGTH (type);
2331 n = TYPE_LENGTH (type);
2332 }
2333 memcpy (contents, val_bytes, n);
2334 }
2335 break;
2336
2337 case DWARF_VALUE_LITERAL:
2338 {
2339 bfd_byte *contents;
2340 const bfd_byte *ldata;
2341 size_t n = ctx->len;
2342
2343 if (byte_offset + TYPE_LENGTH (type) > n)
2344 invalid_synthetic_pointer ();
2345
2346 do_cleanups (value_chain);
2347 retval = allocate_value (type);
2348 contents = value_contents_raw (retval);
2349
2350 ldata = ctx->data + byte_offset;
2351 n -= byte_offset;
2352
2353 if (n > TYPE_LENGTH (type))
2354 {
2355 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2356
2357 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2358 ldata += n - TYPE_LENGTH (type);
2359 n = TYPE_LENGTH (type);
2360 }
2361 memcpy (contents, ldata, n);
2362 }
2363 break;
2364
2365 case DWARF_VALUE_OPTIMIZED_OUT:
2366 do_cleanups (value_chain);
2367 retval = allocate_optimized_out_value (type);
2368 break;
2369
2370 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2371 operation by execute_stack_op. */
2372 case DWARF_VALUE_IMPLICIT_POINTER:
2373 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2374 it can only be encountered when making a piece. */
2375 default:
2376 internal_error (__FILE__, __LINE__, _("invalid location type"));
2377 }
2378 }
2379
2380 set_value_initialized (retval, ctx->initialized);
2381
2382 do_cleanups (old_chain);
2383
2384 return retval;
2385 }
2386
2387 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2388 passes 0 as the byte_offset. */
2389
2390 struct value *
2391 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2392 const gdb_byte *data, size_t size,
2393 struct dwarf2_per_cu_data *per_cu)
2394 {
2395 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2396 }
2397
2398 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2399 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2400 context (location of a variable) and might be needed to evaluate the
2401 location expression.
2402 Returns 1 on success, 0 otherwise. */
2403
2404 static int
2405 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2406 CORE_ADDR addr,
2407 CORE_ADDR *valp)
2408 {
2409 struct dwarf_expr_context *ctx;
2410 struct dwarf_expr_baton baton;
2411 struct objfile *objfile;
2412 struct cleanup *cleanup;
2413
2414 if (dlbaton == NULL || dlbaton->size == 0)
2415 return 0;
2416
2417 ctx = new_dwarf_expr_context ();
2418 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2419
2420 baton.frame = get_selected_frame (NULL);
2421 baton.per_cu = dlbaton->per_cu;
2422 baton.obj_address = addr;
2423
2424 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2425
2426 ctx->gdbarch = get_objfile_arch (objfile);
2427 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2428 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2429 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2430 ctx->funcs = &dwarf_expr_ctx_funcs;
2431 ctx->baton = &baton;
2432
2433 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2434
2435 switch (ctx->location)
2436 {
2437 case DWARF_VALUE_REGISTER:
2438 case DWARF_VALUE_MEMORY:
2439 case DWARF_VALUE_STACK:
2440 *valp = dwarf_expr_fetch_address (ctx, 0);
2441 if (ctx->location == DWARF_VALUE_REGISTER)
2442 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2443 do_cleanups (cleanup);
2444 return 1;
2445 case DWARF_VALUE_LITERAL:
2446 *valp = extract_signed_integer (ctx->data, ctx->len,
2447 gdbarch_byte_order (ctx->gdbarch));
2448 do_cleanups (cleanup);
2449 return 1;
2450 /* Unsupported dwarf values. */
2451 case DWARF_VALUE_OPTIMIZED_OUT:
2452 case DWARF_VALUE_IMPLICIT_POINTER:
2453 break;
2454 }
2455
2456 do_cleanups (cleanup);
2457 return 0;
2458 }
2459
2460 /* See dwarf2loc.h. */
2461
2462 int
2463 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2464 struct property_addr_info *addr_stack,
2465 CORE_ADDR *value)
2466 {
2467 if (prop == NULL)
2468 return 0;
2469
2470 switch (prop->kind)
2471 {
2472 case PROP_LOCEXPR:
2473 {
2474 const struct dwarf2_property_baton *baton = prop->data.baton;
2475
2476 if (dwarf2_locexpr_baton_eval (&baton->locexpr, addr_stack->addr,
2477 value))
2478 {
2479 if (baton->referenced_type)
2480 {
2481 struct value *val = value_at (baton->referenced_type, *value);
2482
2483 *value = value_as_address (val);
2484 }
2485 return 1;
2486 }
2487 }
2488 break;
2489
2490 case PROP_LOCLIST:
2491 {
2492 struct dwarf2_property_baton *baton = prop->data.baton;
2493 struct frame_info *frame = get_selected_frame (NULL);
2494 CORE_ADDR pc = get_frame_address_in_block (frame);
2495 const gdb_byte *data;
2496 struct value *val;
2497 size_t size;
2498
2499 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2500 if (data != NULL)
2501 {
2502 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2503 size, baton->loclist.per_cu);
2504 if (!value_optimized_out (val))
2505 {
2506 *value = value_as_address (val);
2507 return 1;
2508 }
2509 }
2510 }
2511 break;
2512
2513 case PROP_CONST:
2514 *value = prop->data.const_val;
2515 return 1;
2516
2517 case PROP_ADDR_OFFSET:
2518 {
2519 struct dwarf2_property_baton *baton = prop->data.baton;
2520 struct property_addr_info *pinfo;
2521 struct value *val;
2522
2523 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2524 if (pinfo->type == baton->referenced_type)
2525 break;
2526 if (pinfo == NULL)
2527 error (_("cannot find reference address for offset property"));
2528 if (pinfo->valaddr != NULL)
2529 val = value_from_contents
2530 (baton->offset_info.type,
2531 pinfo->valaddr + baton->offset_info.offset);
2532 else
2533 val = value_at (baton->offset_info.type,
2534 pinfo->addr + baton->offset_info.offset);
2535 *value = value_as_address (val);
2536 return 1;
2537 }
2538 }
2539
2540 return 0;
2541 }
2542
2543 /* See dwarf2loc.h. */
2544
2545 void
2546 dwarf2_compile_property_to_c (struct ui_file *stream,
2547 const char *result_name,
2548 struct gdbarch *gdbarch,
2549 unsigned char *registers_used,
2550 const struct dynamic_prop *prop,
2551 CORE_ADDR pc,
2552 struct symbol *sym)
2553 {
2554 struct dwarf2_property_baton *baton = prop->data.baton;
2555 const gdb_byte *data;
2556 size_t size;
2557 struct dwarf2_per_cu_data *per_cu;
2558
2559 if (prop->kind == PROP_LOCEXPR)
2560 {
2561 data = baton->locexpr.data;
2562 size = baton->locexpr.size;
2563 per_cu = baton->locexpr.per_cu;
2564 }
2565 else
2566 {
2567 gdb_assert (prop->kind == PROP_LOCLIST);
2568
2569 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2570 per_cu = baton->loclist.per_cu;
2571 }
2572
2573 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2574 gdbarch, registers_used,
2575 dwarf2_per_cu_addr_size (per_cu),
2576 data, data + size, per_cu);
2577 }
2578
2579 \f
2580 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2581
2582 struct needs_frame_baton
2583 {
2584 int needs_frame;
2585 struct dwarf2_per_cu_data *per_cu;
2586 };
2587
2588 /* Reads from registers do require a frame. */
2589 static CORE_ADDR
2590 needs_frame_read_addr_from_reg (void *baton, int regnum)
2591 {
2592 struct needs_frame_baton *nf_baton = baton;
2593
2594 nf_baton->needs_frame = 1;
2595 return 1;
2596 }
2597
2598 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2599 Reads from registers do require a frame. */
2600
2601 static struct value *
2602 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2603 {
2604 struct needs_frame_baton *nf_baton = baton;
2605
2606 nf_baton->needs_frame = 1;
2607 return value_zero (type, not_lval);
2608 }
2609
2610 /* Reads from memory do not require a frame. */
2611 static void
2612 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2613 {
2614 memset (buf, 0, len);
2615 }
2616
2617 /* Frame-relative accesses do require a frame. */
2618 static void
2619 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2620 {
2621 static gdb_byte lit0 = DW_OP_lit0;
2622 struct needs_frame_baton *nf_baton = baton;
2623
2624 *start = &lit0;
2625 *length = 1;
2626
2627 nf_baton->needs_frame = 1;
2628 }
2629
2630 /* CFA accesses require a frame. */
2631
2632 static CORE_ADDR
2633 needs_frame_frame_cfa (void *baton)
2634 {
2635 struct needs_frame_baton *nf_baton = baton;
2636
2637 nf_baton->needs_frame = 1;
2638 return 1;
2639 }
2640
2641 /* Thread-local accesses do require a frame. */
2642 static CORE_ADDR
2643 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2644 {
2645 struct needs_frame_baton *nf_baton = baton;
2646
2647 nf_baton->needs_frame = 1;
2648 return 1;
2649 }
2650
2651 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2652
2653 static void
2654 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2655 {
2656 struct needs_frame_baton *nf_baton = ctx->baton;
2657
2658 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2659 ctx->funcs->get_frame_pc, ctx->baton);
2660 }
2661
2662 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2663
2664 static void
2665 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2666 enum call_site_parameter_kind kind,
2667 union call_site_parameter_u kind_u, int deref_size)
2668 {
2669 struct needs_frame_baton *nf_baton = ctx->baton;
2670
2671 nf_baton->needs_frame = 1;
2672
2673 /* The expression may require some stub values on DWARF stack. */
2674 dwarf_expr_push_address (ctx, 0, 0);
2675 }
2676
2677 /* DW_OP_GNU_addr_index doesn't require a frame. */
2678
2679 static CORE_ADDR
2680 needs_get_addr_index (void *baton, unsigned int index)
2681 {
2682 /* Nothing to do. */
2683 return 1;
2684 }
2685
2686 /* DW_OP_push_object_address has a frame already passed through. */
2687
2688 static CORE_ADDR
2689 needs_get_obj_addr (void *baton)
2690 {
2691 /* Nothing to do. */
2692 return 1;
2693 }
2694
2695 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2696
2697 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2698 {
2699 needs_frame_read_addr_from_reg,
2700 needs_frame_get_reg_value,
2701 needs_frame_read_mem,
2702 needs_frame_frame_base,
2703 needs_frame_frame_cfa,
2704 needs_frame_frame_cfa, /* get_frame_pc */
2705 needs_frame_tls_address,
2706 needs_frame_dwarf_call,
2707 NULL, /* get_base_type */
2708 needs_dwarf_reg_entry_value,
2709 needs_get_addr_index,
2710 needs_get_obj_addr
2711 };
2712
2713 /* Return non-zero iff the location expression at DATA (length SIZE)
2714 requires a frame to evaluate. */
2715
2716 static int
2717 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2718 struct dwarf2_per_cu_data *per_cu)
2719 {
2720 struct needs_frame_baton baton;
2721 struct dwarf_expr_context *ctx;
2722 int in_reg;
2723 struct cleanup *old_chain;
2724 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2725
2726 baton.needs_frame = 0;
2727 baton.per_cu = per_cu;
2728
2729 ctx = new_dwarf_expr_context ();
2730 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2731 make_cleanup_value_free_to_mark (value_mark ());
2732
2733 ctx->gdbarch = get_objfile_arch (objfile);
2734 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2735 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2736 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2737 ctx->baton = &baton;
2738 ctx->funcs = &needs_frame_ctx_funcs;
2739
2740 dwarf_expr_eval (ctx, data, size);
2741
2742 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2743
2744 if (ctx->num_pieces > 0)
2745 {
2746 int i;
2747
2748 /* If the location has several pieces, and any of them are in
2749 registers, then we will need a frame to fetch them from. */
2750 for (i = 0; i < ctx->num_pieces; i++)
2751 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2752 in_reg = 1;
2753 }
2754
2755 do_cleanups (old_chain);
2756
2757 return baton.needs_frame || in_reg;
2758 }
2759
2760 /* A helper function that throws an unimplemented error mentioning a
2761 given DWARF operator. */
2762
2763 static void
2764 unimplemented (unsigned int op)
2765 {
2766 const char *name = get_DW_OP_name (op);
2767
2768 if (name)
2769 error (_("DWARF operator %s cannot be translated to an agent expression"),
2770 name);
2771 else
2772 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2773 "to an agent expression"),
2774 op);
2775 }
2776
2777 /* See dwarf2loc.h. */
2778
2779 int
2780 dwarf2_reg_to_regnum_or_error (struct gdbarch *arch, int dwarf_reg)
2781 {
2782 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2783 if (reg == -1)
2784 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2785 return reg;
2786 }
2787
2788 /* A helper function that emits an access to memory. ARCH is the
2789 target architecture. EXPR is the expression which we are building.
2790 NBITS is the number of bits we want to read. This emits the
2791 opcodes needed to read the memory and then extract the desired
2792 bits. */
2793
2794 static void
2795 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2796 {
2797 ULONGEST nbytes = (nbits + 7) / 8;
2798
2799 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2800
2801 if (expr->tracing)
2802 ax_trace_quick (expr, nbytes);
2803
2804 if (nbits <= 8)
2805 ax_simple (expr, aop_ref8);
2806 else if (nbits <= 16)
2807 ax_simple (expr, aop_ref16);
2808 else if (nbits <= 32)
2809 ax_simple (expr, aop_ref32);
2810 else
2811 ax_simple (expr, aop_ref64);
2812
2813 /* If we read exactly the number of bytes we wanted, we're done. */
2814 if (8 * nbytes == nbits)
2815 return;
2816
2817 if (gdbarch_bits_big_endian (arch))
2818 {
2819 /* On a bits-big-endian machine, we want the high-order
2820 NBITS. */
2821 ax_const_l (expr, 8 * nbytes - nbits);
2822 ax_simple (expr, aop_rsh_unsigned);
2823 }
2824 else
2825 {
2826 /* On a bits-little-endian box, we want the low-order NBITS. */
2827 ax_zero_ext (expr, nbits);
2828 }
2829 }
2830
2831 /* A helper function to return the frame's PC. */
2832
2833 static CORE_ADDR
2834 get_ax_pc (void *baton)
2835 {
2836 struct agent_expr *expr = baton;
2837
2838 return expr->scope;
2839 }
2840
2841 /* Compile a DWARF location expression to an agent expression.
2842
2843 EXPR is the agent expression we are building.
2844 LOC is the agent value we modify.
2845 ARCH is the architecture.
2846 ADDR_SIZE is the size of addresses, in bytes.
2847 OP_PTR is the start of the location expression.
2848 OP_END is one past the last byte of the location expression.
2849
2850 This will throw an exception for various kinds of errors -- for
2851 example, if the expression cannot be compiled, or if the expression
2852 is invalid. */
2853
2854 void
2855 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2856 struct gdbarch *arch, unsigned int addr_size,
2857 const gdb_byte *op_ptr, const gdb_byte *op_end,
2858 struct dwarf2_per_cu_data *per_cu)
2859 {
2860 struct cleanup *cleanups;
2861 int i, *offsets;
2862 VEC(int) *dw_labels = NULL, *patches = NULL;
2863 const gdb_byte * const base = op_ptr;
2864 const gdb_byte *previous_piece = op_ptr;
2865 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2866 ULONGEST bits_collected = 0;
2867 unsigned int addr_size_bits = 8 * addr_size;
2868 int bits_big_endian = gdbarch_bits_big_endian (arch);
2869
2870 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2871 cleanups = make_cleanup (xfree, offsets);
2872
2873 for (i = 0; i < op_end - op_ptr; ++i)
2874 offsets[i] = -1;
2875
2876 make_cleanup (VEC_cleanup (int), &dw_labels);
2877 make_cleanup (VEC_cleanup (int), &patches);
2878
2879 /* By default we are making an address. */
2880 loc->kind = axs_lvalue_memory;
2881
2882 while (op_ptr < op_end)
2883 {
2884 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2885 uint64_t uoffset, reg;
2886 int64_t offset;
2887 int i;
2888
2889 offsets[op_ptr - base] = expr->len;
2890 ++op_ptr;
2891
2892 /* Our basic approach to code generation is to map DWARF
2893 operations directly to AX operations. However, there are
2894 some differences.
2895
2896 First, DWARF works on address-sized units, but AX always uses
2897 LONGEST. For most operations we simply ignore this
2898 difference; instead we generate sign extensions as needed
2899 before division and comparison operations. It would be nice
2900 to omit the sign extensions, but there is no way to determine
2901 the size of the target's LONGEST. (This code uses the size
2902 of the host LONGEST in some cases -- that is a bug but it is
2903 difficult to fix.)
2904
2905 Second, some DWARF operations cannot be translated to AX.
2906 For these we simply fail. See
2907 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2908 switch (op)
2909 {
2910 case DW_OP_lit0:
2911 case DW_OP_lit1:
2912 case DW_OP_lit2:
2913 case DW_OP_lit3:
2914 case DW_OP_lit4:
2915 case DW_OP_lit5:
2916 case DW_OP_lit6:
2917 case DW_OP_lit7:
2918 case DW_OP_lit8:
2919 case DW_OP_lit9:
2920 case DW_OP_lit10:
2921 case DW_OP_lit11:
2922 case DW_OP_lit12:
2923 case DW_OP_lit13:
2924 case DW_OP_lit14:
2925 case DW_OP_lit15:
2926 case DW_OP_lit16:
2927 case DW_OP_lit17:
2928 case DW_OP_lit18:
2929 case DW_OP_lit19:
2930 case DW_OP_lit20:
2931 case DW_OP_lit21:
2932 case DW_OP_lit22:
2933 case DW_OP_lit23:
2934 case DW_OP_lit24:
2935 case DW_OP_lit25:
2936 case DW_OP_lit26:
2937 case DW_OP_lit27:
2938 case DW_OP_lit28:
2939 case DW_OP_lit29:
2940 case DW_OP_lit30:
2941 case DW_OP_lit31:
2942 ax_const_l (expr, op - DW_OP_lit0);
2943 break;
2944
2945 case DW_OP_addr:
2946 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2947 op_ptr += addr_size;
2948 /* Some versions of GCC emit DW_OP_addr before
2949 DW_OP_GNU_push_tls_address. In this case the value is an
2950 index, not an address. We don't support things like
2951 branching between the address and the TLS op. */
2952 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2953 uoffset += dwarf2_per_cu_text_offset (per_cu);
2954 ax_const_l (expr, uoffset);
2955 break;
2956
2957 case DW_OP_const1u:
2958 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2959 op_ptr += 1;
2960 break;
2961 case DW_OP_const1s:
2962 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2963 op_ptr += 1;
2964 break;
2965 case DW_OP_const2u:
2966 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2967 op_ptr += 2;
2968 break;
2969 case DW_OP_const2s:
2970 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2971 op_ptr += 2;
2972 break;
2973 case DW_OP_const4u:
2974 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2975 op_ptr += 4;
2976 break;
2977 case DW_OP_const4s:
2978 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2979 op_ptr += 4;
2980 break;
2981 case DW_OP_const8u:
2982 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2983 op_ptr += 8;
2984 break;
2985 case DW_OP_const8s:
2986 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2987 op_ptr += 8;
2988 break;
2989 case DW_OP_constu:
2990 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2991 ax_const_l (expr, uoffset);
2992 break;
2993 case DW_OP_consts:
2994 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2995 ax_const_l (expr, offset);
2996 break;
2997
2998 case DW_OP_reg0:
2999 case DW_OP_reg1:
3000 case DW_OP_reg2:
3001 case DW_OP_reg3:
3002 case DW_OP_reg4:
3003 case DW_OP_reg5:
3004 case DW_OP_reg6:
3005 case DW_OP_reg7:
3006 case DW_OP_reg8:
3007 case DW_OP_reg9:
3008 case DW_OP_reg10:
3009 case DW_OP_reg11:
3010 case DW_OP_reg12:
3011 case DW_OP_reg13:
3012 case DW_OP_reg14:
3013 case DW_OP_reg15:
3014 case DW_OP_reg16:
3015 case DW_OP_reg17:
3016 case DW_OP_reg18:
3017 case DW_OP_reg19:
3018 case DW_OP_reg20:
3019 case DW_OP_reg21:
3020 case DW_OP_reg22:
3021 case DW_OP_reg23:
3022 case DW_OP_reg24:
3023 case DW_OP_reg25:
3024 case DW_OP_reg26:
3025 case DW_OP_reg27:
3026 case DW_OP_reg28:
3027 case DW_OP_reg29:
3028 case DW_OP_reg30:
3029 case DW_OP_reg31:
3030 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3031 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3032 loc->kind = axs_lvalue_register;
3033 break;
3034
3035 case DW_OP_regx:
3036 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3037 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3038 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, reg);
3039 loc->kind = axs_lvalue_register;
3040 break;
3041
3042 case DW_OP_implicit_value:
3043 {
3044 uint64_t len;
3045
3046 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3047 if (op_ptr + len > op_end)
3048 error (_("DW_OP_implicit_value: too few bytes available."));
3049 if (len > sizeof (ULONGEST))
3050 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3051 (int) len);
3052
3053 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3054 byte_order));
3055 op_ptr += len;
3056 dwarf_expr_require_composition (op_ptr, op_end,
3057 "DW_OP_implicit_value");
3058
3059 loc->kind = axs_rvalue;
3060 }
3061 break;
3062
3063 case DW_OP_stack_value:
3064 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3065 loc->kind = axs_rvalue;
3066 break;
3067
3068 case DW_OP_breg0:
3069 case DW_OP_breg1:
3070 case DW_OP_breg2:
3071 case DW_OP_breg3:
3072 case DW_OP_breg4:
3073 case DW_OP_breg5:
3074 case DW_OP_breg6:
3075 case DW_OP_breg7:
3076 case DW_OP_breg8:
3077 case DW_OP_breg9:
3078 case DW_OP_breg10:
3079 case DW_OP_breg11:
3080 case DW_OP_breg12:
3081 case DW_OP_breg13:
3082 case DW_OP_breg14:
3083 case DW_OP_breg15:
3084 case DW_OP_breg16:
3085 case DW_OP_breg17:
3086 case DW_OP_breg18:
3087 case DW_OP_breg19:
3088 case DW_OP_breg20:
3089 case DW_OP_breg21:
3090 case DW_OP_breg22:
3091 case DW_OP_breg23:
3092 case DW_OP_breg24:
3093 case DW_OP_breg25:
3094 case DW_OP_breg26:
3095 case DW_OP_breg27:
3096 case DW_OP_breg28:
3097 case DW_OP_breg29:
3098 case DW_OP_breg30:
3099 case DW_OP_breg31:
3100 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3101 i = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3102 ax_reg (expr, i);
3103 if (offset != 0)
3104 {
3105 ax_const_l (expr, offset);
3106 ax_simple (expr, aop_add);
3107 }
3108 break;
3109 case DW_OP_bregx:
3110 {
3111 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3112 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3113 i = dwarf2_reg_to_regnum_or_error (arch, reg);
3114 ax_reg (expr, i);
3115 if (offset != 0)
3116 {
3117 ax_const_l (expr, offset);
3118 ax_simple (expr, aop_add);
3119 }
3120 }
3121 break;
3122 case DW_OP_fbreg:
3123 {
3124 const gdb_byte *datastart;
3125 size_t datalen;
3126 const struct block *b;
3127 struct symbol *framefunc;
3128
3129 b = block_for_pc (expr->scope);
3130
3131 if (!b)
3132 error (_("No block found for address"));
3133
3134 framefunc = block_linkage_function (b);
3135
3136 if (!framefunc)
3137 error (_("No function found for block"));
3138
3139 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3140 &datastart, &datalen);
3141
3142 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3143 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3144 datastart + datalen, per_cu);
3145 if (loc->kind == axs_lvalue_register)
3146 require_rvalue (expr, loc);
3147
3148 if (offset != 0)
3149 {
3150 ax_const_l (expr, offset);
3151 ax_simple (expr, aop_add);
3152 }
3153
3154 loc->kind = axs_lvalue_memory;
3155 }
3156 break;
3157
3158 case DW_OP_dup:
3159 ax_simple (expr, aop_dup);
3160 break;
3161
3162 case DW_OP_drop:
3163 ax_simple (expr, aop_pop);
3164 break;
3165
3166 case DW_OP_pick:
3167 offset = *op_ptr++;
3168 ax_pick (expr, offset);
3169 break;
3170
3171 case DW_OP_swap:
3172 ax_simple (expr, aop_swap);
3173 break;
3174
3175 case DW_OP_over:
3176 ax_pick (expr, 1);
3177 break;
3178
3179 case DW_OP_rot:
3180 ax_simple (expr, aop_rot);
3181 break;
3182
3183 case DW_OP_deref:
3184 case DW_OP_deref_size:
3185 {
3186 int size;
3187
3188 if (op == DW_OP_deref_size)
3189 size = *op_ptr++;
3190 else
3191 size = addr_size;
3192
3193 if (size != 1 && size != 2 && size != 4 && size != 8)
3194 error (_("Unsupported size %d in %s"),
3195 size, get_DW_OP_name (op));
3196 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3197 }
3198 break;
3199
3200 case DW_OP_abs:
3201 /* Sign extend the operand. */
3202 ax_ext (expr, addr_size_bits);
3203 ax_simple (expr, aop_dup);
3204 ax_const_l (expr, 0);
3205 ax_simple (expr, aop_less_signed);
3206 ax_simple (expr, aop_log_not);
3207 i = ax_goto (expr, aop_if_goto);
3208 /* We have to emit 0 - X. */
3209 ax_const_l (expr, 0);
3210 ax_simple (expr, aop_swap);
3211 ax_simple (expr, aop_sub);
3212 ax_label (expr, i, expr->len);
3213 break;
3214
3215 case DW_OP_neg:
3216 /* No need to sign extend here. */
3217 ax_const_l (expr, 0);
3218 ax_simple (expr, aop_swap);
3219 ax_simple (expr, aop_sub);
3220 break;
3221
3222 case DW_OP_not:
3223 /* Sign extend the operand. */
3224 ax_ext (expr, addr_size_bits);
3225 ax_simple (expr, aop_bit_not);
3226 break;
3227
3228 case DW_OP_plus_uconst:
3229 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3230 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3231 but we micro-optimize anyhow. */
3232 if (reg != 0)
3233 {
3234 ax_const_l (expr, reg);
3235 ax_simple (expr, aop_add);
3236 }
3237 break;
3238
3239 case DW_OP_and:
3240 ax_simple (expr, aop_bit_and);
3241 break;
3242
3243 case DW_OP_div:
3244 /* Sign extend the operands. */
3245 ax_ext (expr, addr_size_bits);
3246 ax_simple (expr, aop_swap);
3247 ax_ext (expr, addr_size_bits);
3248 ax_simple (expr, aop_swap);
3249 ax_simple (expr, aop_div_signed);
3250 break;
3251
3252 case DW_OP_minus:
3253 ax_simple (expr, aop_sub);
3254 break;
3255
3256 case DW_OP_mod:
3257 ax_simple (expr, aop_rem_unsigned);
3258 break;
3259
3260 case DW_OP_mul:
3261 ax_simple (expr, aop_mul);
3262 break;
3263
3264 case DW_OP_or:
3265 ax_simple (expr, aop_bit_or);
3266 break;
3267
3268 case DW_OP_plus:
3269 ax_simple (expr, aop_add);
3270 break;
3271
3272 case DW_OP_shl:
3273 ax_simple (expr, aop_lsh);
3274 break;
3275
3276 case DW_OP_shr:
3277 ax_simple (expr, aop_rsh_unsigned);
3278 break;
3279
3280 case DW_OP_shra:
3281 ax_simple (expr, aop_rsh_signed);
3282 break;
3283
3284 case DW_OP_xor:
3285 ax_simple (expr, aop_bit_xor);
3286 break;
3287
3288 case DW_OP_le:
3289 /* Sign extend the operands. */
3290 ax_ext (expr, addr_size_bits);
3291 ax_simple (expr, aop_swap);
3292 ax_ext (expr, addr_size_bits);
3293 /* Note no swap here: A <= B is !(B < A). */
3294 ax_simple (expr, aop_less_signed);
3295 ax_simple (expr, aop_log_not);
3296 break;
3297
3298 case DW_OP_ge:
3299 /* Sign extend the operands. */
3300 ax_ext (expr, addr_size_bits);
3301 ax_simple (expr, aop_swap);
3302 ax_ext (expr, addr_size_bits);
3303 ax_simple (expr, aop_swap);
3304 /* A >= B is !(A < B). */
3305 ax_simple (expr, aop_less_signed);
3306 ax_simple (expr, aop_log_not);
3307 break;
3308
3309 case DW_OP_eq:
3310 /* Sign extend the operands. */
3311 ax_ext (expr, addr_size_bits);
3312 ax_simple (expr, aop_swap);
3313 ax_ext (expr, addr_size_bits);
3314 /* No need for a second swap here. */
3315 ax_simple (expr, aop_equal);
3316 break;
3317
3318 case DW_OP_lt:
3319 /* Sign extend the operands. */
3320 ax_ext (expr, addr_size_bits);
3321 ax_simple (expr, aop_swap);
3322 ax_ext (expr, addr_size_bits);
3323 ax_simple (expr, aop_swap);
3324 ax_simple (expr, aop_less_signed);
3325 break;
3326
3327 case DW_OP_gt:
3328 /* Sign extend the operands. */
3329 ax_ext (expr, addr_size_bits);
3330 ax_simple (expr, aop_swap);
3331 ax_ext (expr, addr_size_bits);
3332 /* Note no swap here: A > B is B < A. */
3333 ax_simple (expr, aop_less_signed);
3334 break;
3335
3336 case DW_OP_ne:
3337 /* Sign extend the operands. */
3338 ax_ext (expr, addr_size_bits);
3339 ax_simple (expr, aop_swap);
3340 ax_ext (expr, addr_size_bits);
3341 /* No need for a swap here. */
3342 ax_simple (expr, aop_equal);
3343 ax_simple (expr, aop_log_not);
3344 break;
3345
3346 case DW_OP_call_frame_cfa:
3347 {
3348 int regnum;
3349 CORE_ADDR text_offset;
3350 LONGEST off;
3351 const gdb_byte *cfa_start, *cfa_end;
3352
3353 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3354 &regnum, &off,
3355 &text_offset, &cfa_start, &cfa_end))
3356 {
3357 /* Register. */
3358 ax_reg (expr, regnum);
3359 if (off != 0)
3360 {
3361 ax_const_l (expr, off);
3362 ax_simple (expr, aop_add);
3363 }
3364 }
3365 else
3366 {
3367 /* Another expression. */
3368 ax_const_l (expr, text_offset);
3369 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3370 cfa_start, cfa_end, per_cu);
3371 }
3372
3373 loc->kind = axs_lvalue_memory;
3374 }
3375 break;
3376
3377 case DW_OP_GNU_push_tls_address:
3378 unimplemented (op);
3379 break;
3380
3381 case DW_OP_push_object_address:
3382 unimplemented (op);
3383 break;
3384
3385 case DW_OP_skip:
3386 offset = extract_signed_integer (op_ptr, 2, byte_order);
3387 op_ptr += 2;
3388 i = ax_goto (expr, aop_goto);
3389 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3390 VEC_safe_push (int, patches, i);
3391 break;
3392
3393 case DW_OP_bra:
3394 offset = extract_signed_integer (op_ptr, 2, byte_order);
3395 op_ptr += 2;
3396 /* Zero extend the operand. */
3397 ax_zero_ext (expr, addr_size_bits);
3398 i = ax_goto (expr, aop_if_goto);
3399 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3400 VEC_safe_push (int, patches, i);
3401 break;
3402
3403 case DW_OP_nop:
3404 break;
3405
3406 case DW_OP_piece:
3407 case DW_OP_bit_piece:
3408 {
3409 uint64_t size, offset;
3410
3411 if (op_ptr - 1 == previous_piece)
3412 error (_("Cannot translate empty pieces to agent expressions"));
3413 previous_piece = op_ptr - 1;
3414
3415 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3416 if (op == DW_OP_piece)
3417 {
3418 size *= 8;
3419 offset = 0;
3420 }
3421 else
3422 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3423
3424 if (bits_collected + size > 8 * sizeof (LONGEST))
3425 error (_("Expression pieces exceed word size"));
3426
3427 /* Access the bits. */
3428 switch (loc->kind)
3429 {
3430 case axs_lvalue_register:
3431 ax_reg (expr, loc->u.reg);
3432 break;
3433
3434 case axs_lvalue_memory:
3435 /* Offset the pointer, if needed. */
3436 if (offset > 8)
3437 {
3438 ax_const_l (expr, offset / 8);
3439 ax_simple (expr, aop_add);
3440 offset %= 8;
3441 }
3442 access_memory (arch, expr, size);
3443 break;
3444 }
3445
3446 /* For a bits-big-endian target, shift up what we already
3447 have. For a bits-little-endian target, shift up the
3448 new data. Note that there is a potential bug here if
3449 the DWARF expression leaves multiple values on the
3450 stack. */
3451 if (bits_collected > 0)
3452 {
3453 if (bits_big_endian)
3454 {
3455 ax_simple (expr, aop_swap);
3456 ax_const_l (expr, size);
3457 ax_simple (expr, aop_lsh);
3458 /* We don't need a second swap here, because
3459 aop_bit_or is symmetric. */
3460 }
3461 else
3462 {
3463 ax_const_l (expr, size);
3464 ax_simple (expr, aop_lsh);
3465 }
3466 ax_simple (expr, aop_bit_or);
3467 }
3468
3469 bits_collected += size;
3470 loc->kind = axs_rvalue;
3471 }
3472 break;
3473
3474 case DW_OP_GNU_uninit:
3475 unimplemented (op);
3476
3477 case DW_OP_call2:
3478 case DW_OP_call4:
3479 {
3480 struct dwarf2_locexpr_baton block;
3481 int size = (op == DW_OP_call2 ? 2 : 4);
3482 cu_offset offset;
3483
3484 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3485 op_ptr += size;
3486
3487 offset.cu_off = uoffset;
3488 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3489 get_ax_pc, expr);
3490
3491 /* DW_OP_call_ref is currently not supported. */
3492 gdb_assert (block.per_cu == per_cu);
3493
3494 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3495 block.data, block.data + block.size,
3496 per_cu);
3497 }
3498 break;
3499
3500 case DW_OP_call_ref:
3501 unimplemented (op);
3502
3503 default:
3504 unimplemented (op);
3505 }
3506 }
3507
3508 /* Patch all the branches we emitted. */
3509 for (i = 0; i < VEC_length (int, patches); ++i)
3510 {
3511 int targ = offsets[VEC_index (int, dw_labels, i)];
3512 if (targ == -1)
3513 internal_error (__FILE__, __LINE__, _("invalid label"));
3514 ax_label (expr, VEC_index (int, patches, i), targ);
3515 }
3516
3517 do_cleanups (cleanups);
3518 }
3519
3520 \f
3521 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3522 evaluator to calculate the location. */
3523 static struct value *
3524 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3525 {
3526 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3527 struct value *val;
3528
3529 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3530 dlbaton->size, dlbaton->per_cu);
3531
3532 return val;
3533 }
3534
3535 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3536 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3537 will be thrown. */
3538
3539 static struct value *
3540 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3541 {
3542 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3543
3544 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3545 dlbaton->size);
3546 }
3547
3548 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3549 static int
3550 locexpr_read_needs_frame (struct symbol *symbol)
3551 {
3552 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3553
3554 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3555 dlbaton->per_cu);
3556 }
3557
3558 /* Return true if DATA points to the end of a piece. END is one past
3559 the last byte in the expression. */
3560
3561 static int
3562 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3563 {
3564 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3565 }
3566
3567 /* Helper for locexpr_describe_location_piece that finds the name of a
3568 DWARF register. */
3569
3570 static const char *
3571 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3572 {
3573 int regnum;
3574
3575 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3576 return gdbarch_register_name (gdbarch, regnum);
3577 }
3578
3579 /* Nicely describe a single piece of a location, returning an updated
3580 position in the bytecode sequence. This function cannot recognize
3581 all locations; if a location is not recognized, it simply returns
3582 DATA. If there is an error during reading, e.g. we run off the end
3583 of the buffer, an error is thrown. */
3584
3585 static const gdb_byte *
3586 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3587 CORE_ADDR addr, struct objfile *objfile,
3588 struct dwarf2_per_cu_data *per_cu,
3589 const gdb_byte *data, const gdb_byte *end,
3590 unsigned int addr_size)
3591 {
3592 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3593 size_t leb128_size;
3594
3595 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3596 {
3597 fprintf_filtered (stream, _("a variable in $%s"),
3598 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3599 data += 1;
3600 }
3601 else if (data[0] == DW_OP_regx)
3602 {
3603 uint64_t reg;
3604
3605 data = safe_read_uleb128 (data + 1, end, &reg);
3606 fprintf_filtered (stream, _("a variable in $%s"),
3607 locexpr_regname (gdbarch, reg));
3608 }
3609 else if (data[0] == DW_OP_fbreg)
3610 {
3611 const struct block *b;
3612 struct symbol *framefunc;
3613 int frame_reg = 0;
3614 int64_t frame_offset;
3615 const gdb_byte *base_data, *new_data, *save_data = data;
3616 size_t base_size;
3617 int64_t base_offset = 0;
3618
3619 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3620 if (!piece_end_p (new_data, end))
3621 return data;
3622 data = new_data;
3623
3624 b = block_for_pc (addr);
3625
3626 if (!b)
3627 error (_("No block found for address for symbol \"%s\"."),
3628 SYMBOL_PRINT_NAME (symbol));
3629
3630 framefunc = block_linkage_function (b);
3631
3632 if (!framefunc)
3633 error (_("No function found for block for symbol \"%s\"."),
3634 SYMBOL_PRINT_NAME (symbol));
3635
3636 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3637
3638 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3639 {
3640 const gdb_byte *buf_end;
3641
3642 frame_reg = base_data[0] - DW_OP_breg0;
3643 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3644 &base_offset);
3645 if (buf_end != base_data + base_size)
3646 error (_("Unexpected opcode after "
3647 "DW_OP_breg%u for symbol \"%s\"."),
3648 frame_reg, SYMBOL_PRINT_NAME (symbol));
3649 }
3650 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3651 {
3652 /* The frame base is just the register, with no offset. */
3653 frame_reg = base_data[0] - DW_OP_reg0;
3654 base_offset = 0;
3655 }
3656 else
3657 {
3658 /* We don't know what to do with the frame base expression,
3659 so we can't trace this variable; give up. */
3660 return save_data;
3661 }
3662
3663 fprintf_filtered (stream,
3664 _("a variable at frame base reg $%s offset %s+%s"),
3665 locexpr_regname (gdbarch, frame_reg),
3666 plongest (base_offset), plongest (frame_offset));
3667 }
3668 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3669 && piece_end_p (data, end))
3670 {
3671 int64_t offset;
3672
3673 data = safe_read_sleb128 (data + 1, end, &offset);
3674
3675 fprintf_filtered (stream,
3676 _("a variable at offset %s from base reg $%s"),
3677 plongest (offset),
3678 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3679 }
3680
3681 /* The location expression for a TLS variable looks like this (on a
3682 64-bit LE machine):
3683
3684 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3685 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3686
3687 0x3 is the encoding for DW_OP_addr, which has an operand as long
3688 as the size of an address on the target machine (here is 8
3689 bytes). Note that more recent version of GCC emit DW_OP_const4u
3690 or DW_OP_const8u, depending on address size, rather than
3691 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3692 The operand represents the offset at which the variable is within
3693 the thread local storage. */
3694
3695 else if (data + 1 + addr_size < end
3696 && (data[0] == DW_OP_addr
3697 || (addr_size == 4 && data[0] == DW_OP_const4u)
3698 || (addr_size == 8 && data[0] == DW_OP_const8u))
3699 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3700 && piece_end_p (data + 2 + addr_size, end))
3701 {
3702 ULONGEST offset;
3703 offset = extract_unsigned_integer (data + 1, addr_size,
3704 gdbarch_byte_order (gdbarch));
3705
3706 fprintf_filtered (stream,
3707 _("a thread-local variable at offset 0x%s "
3708 "in the thread-local storage for `%s'"),
3709 phex_nz (offset, addr_size), objfile_name (objfile));
3710
3711 data += 1 + addr_size + 1;
3712 }
3713
3714 /* With -gsplit-dwarf a TLS variable can also look like this:
3715 DW_AT_location : 3 byte block: fc 4 e0
3716 (DW_OP_GNU_const_index: 4;
3717 DW_OP_GNU_push_tls_address) */
3718 else if (data + 3 <= end
3719 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3720 && data[0] == DW_OP_GNU_const_index
3721 && leb128_size > 0
3722 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3723 && piece_end_p (data + 2 + leb128_size, end))
3724 {
3725 uint64_t offset;
3726
3727 data = safe_read_uleb128 (data + 1, end, &offset);
3728 offset = dwarf2_read_addr_index (per_cu, offset);
3729 fprintf_filtered (stream,
3730 _("a thread-local variable at offset 0x%s "
3731 "in the thread-local storage for `%s'"),
3732 phex_nz (offset, addr_size), objfile_name (objfile));
3733 ++data;
3734 }
3735
3736 else if (data[0] >= DW_OP_lit0
3737 && data[0] <= DW_OP_lit31
3738 && data + 1 < end
3739 && data[1] == DW_OP_stack_value)
3740 {
3741 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3742 data += 2;
3743 }
3744
3745 return data;
3746 }
3747
3748 /* Disassemble an expression, stopping at the end of a piece or at the
3749 end of the expression. Returns a pointer to the next unread byte
3750 in the input expression. If ALL is nonzero, then this function
3751 will keep going until it reaches the end of the expression.
3752 If there is an error during reading, e.g. we run off the end
3753 of the buffer, an error is thrown. */
3754
3755 static const gdb_byte *
3756 disassemble_dwarf_expression (struct ui_file *stream,
3757 struct gdbarch *arch, unsigned int addr_size,
3758 int offset_size, const gdb_byte *start,
3759 const gdb_byte *data, const gdb_byte *end,
3760 int indent, int all,
3761 struct dwarf2_per_cu_data *per_cu)
3762 {
3763 while (data < end
3764 && (all
3765 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3766 {
3767 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3768 uint64_t ul;
3769 int64_t l;
3770 const char *name;
3771
3772 name = get_DW_OP_name (op);
3773
3774 if (!name)
3775 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3776 op, (long) (data - 1 - start));
3777 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3778 (long) (data - 1 - start), name);
3779
3780 switch (op)
3781 {
3782 case DW_OP_addr:
3783 ul = extract_unsigned_integer (data, addr_size,
3784 gdbarch_byte_order (arch));
3785 data += addr_size;
3786 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3787 break;
3788
3789 case DW_OP_const1u:
3790 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3791 data += 1;
3792 fprintf_filtered (stream, " %s", pulongest (ul));
3793 break;
3794 case DW_OP_const1s:
3795 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3796 data += 1;
3797 fprintf_filtered (stream, " %s", plongest (l));
3798 break;
3799 case DW_OP_const2u:
3800 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3801 data += 2;
3802 fprintf_filtered (stream, " %s", pulongest (ul));
3803 break;
3804 case DW_OP_const2s:
3805 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3806 data += 2;
3807 fprintf_filtered (stream, " %s", plongest (l));
3808 break;
3809 case DW_OP_const4u:
3810 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3811 data += 4;
3812 fprintf_filtered (stream, " %s", pulongest (ul));
3813 break;
3814 case DW_OP_const4s:
3815 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3816 data += 4;
3817 fprintf_filtered (stream, " %s", plongest (l));
3818 break;
3819 case DW_OP_const8u:
3820 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3821 data += 8;
3822 fprintf_filtered (stream, " %s", pulongest (ul));
3823 break;
3824 case DW_OP_const8s:
3825 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3826 data += 8;
3827 fprintf_filtered (stream, " %s", plongest (l));
3828 break;
3829 case DW_OP_constu:
3830 data = safe_read_uleb128 (data, end, &ul);
3831 fprintf_filtered (stream, " %s", pulongest (ul));
3832 break;
3833 case DW_OP_consts:
3834 data = safe_read_sleb128 (data, end, &l);
3835 fprintf_filtered (stream, " %s", plongest (l));
3836 break;
3837
3838 case DW_OP_reg0:
3839 case DW_OP_reg1:
3840 case DW_OP_reg2:
3841 case DW_OP_reg3:
3842 case DW_OP_reg4:
3843 case DW_OP_reg5:
3844 case DW_OP_reg6:
3845 case DW_OP_reg7:
3846 case DW_OP_reg8:
3847 case DW_OP_reg9:
3848 case DW_OP_reg10:
3849 case DW_OP_reg11:
3850 case DW_OP_reg12:
3851 case DW_OP_reg13:
3852 case DW_OP_reg14:
3853 case DW_OP_reg15:
3854 case DW_OP_reg16:
3855 case DW_OP_reg17:
3856 case DW_OP_reg18:
3857 case DW_OP_reg19:
3858 case DW_OP_reg20:
3859 case DW_OP_reg21:
3860 case DW_OP_reg22:
3861 case DW_OP_reg23:
3862 case DW_OP_reg24:
3863 case DW_OP_reg25:
3864 case DW_OP_reg26:
3865 case DW_OP_reg27:
3866 case DW_OP_reg28:
3867 case DW_OP_reg29:
3868 case DW_OP_reg30:
3869 case DW_OP_reg31:
3870 fprintf_filtered (stream, " [$%s]",
3871 locexpr_regname (arch, op - DW_OP_reg0));
3872 break;
3873
3874 case DW_OP_regx:
3875 data = safe_read_uleb128 (data, end, &ul);
3876 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3877 locexpr_regname (arch, (int) ul));
3878 break;
3879
3880 case DW_OP_implicit_value:
3881 data = safe_read_uleb128 (data, end, &ul);
3882 data += ul;
3883 fprintf_filtered (stream, " %s", pulongest (ul));
3884 break;
3885
3886 case DW_OP_breg0:
3887 case DW_OP_breg1:
3888 case DW_OP_breg2:
3889 case DW_OP_breg3:
3890 case DW_OP_breg4:
3891 case DW_OP_breg5:
3892 case DW_OP_breg6:
3893 case DW_OP_breg7:
3894 case DW_OP_breg8:
3895 case DW_OP_breg9:
3896 case DW_OP_breg10:
3897 case DW_OP_breg11:
3898 case DW_OP_breg12:
3899 case DW_OP_breg13:
3900 case DW_OP_breg14:
3901 case DW_OP_breg15:
3902 case DW_OP_breg16:
3903 case DW_OP_breg17:
3904 case DW_OP_breg18:
3905 case DW_OP_breg19:
3906 case DW_OP_breg20:
3907 case DW_OP_breg21:
3908 case DW_OP_breg22:
3909 case DW_OP_breg23:
3910 case DW_OP_breg24:
3911 case DW_OP_breg25:
3912 case DW_OP_breg26:
3913 case DW_OP_breg27:
3914 case DW_OP_breg28:
3915 case DW_OP_breg29:
3916 case DW_OP_breg30:
3917 case DW_OP_breg31:
3918 data = safe_read_sleb128 (data, end, &l);
3919 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3920 locexpr_regname (arch, op - DW_OP_breg0));
3921 break;
3922
3923 case DW_OP_bregx:
3924 data = safe_read_uleb128 (data, end, &ul);
3925 data = safe_read_sleb128 (data, end, &l);
3926 fprintf_filtered (stream, " register %s [$%s] offset %s",
3927 pulongest (ul),
3928 locexpr_regname (arch, (int) ul),
3929 plongest (l));
3930 break;
3931
3932 case DW_OP_fbreg:
3933 data = safe_read_sleb128 (data, end, &l);
3934 fprintf_filtered (stream, " %s", plongest (l));
3935 break;
3936
3937 case DW_OP_xderef_size:
3938 case DW_OP_deref_size:
3939 case DW_OP_pick:
3940 fprintf_filtered (stream, " %d", *data);
3941 ++data;
3942 break;
3943
3944 case DW_OP_plus_uconst:
3945 data = safe_read_uleb128 (data, end, &ul);
3946 fprintf_filtered (stream, " %s", pulongest (ul));
3947 break;
3948
3949 case DW_OP_skip:
3950 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3951 data += 2;
3952 fprintf_filtered (stream, " to %ld",
3953 (long) (data + l - start));
3954 break;
3955
3956 case DW_OP_bra:
3957 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3958 data += 2;
3959 fprintf_filtered (stream, " %ld",
3960 (long) (data + l - start));
3961 break;
3962
3963 case DW_OP_call2:
3964 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3965 data += 2;
3966 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3967 break;
3968
3969 case DW_OP_call4:
3970 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3971 data += 4;
3972 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3973 break;
3974
3975 case DW_OP_call_ref:
3976 ul = extract_unsigned_integer (data, offset_size,
3977 gdbarch_byte_order (arch));
3978 data += offset_size;
3979 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3980 break;
3981
3982 case DW_OP_piece:
3983 data = safe_read_uleb128 (data, end, &ul);
3984 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3985 break;
3986
3987 case DW_OP_bit_piece:
3988 {
3989 uint64_t offset;
3990
3991 data = safe_read_uleb128 (data, end, &ul);
3992 data = safe_read_uleb128 (data, end, &offset);
3993 fprintf_filtered (stream, " size %s offset %s (bits)",
3994 pulongest (ul), pulongest (offset));
3995 }
3996 break;
3997
3998 case DW_OP_GNU_implicit_pointer:
3999 {
4000 ul = extract_unsigned_integer (data, offset_size,
4001 gdbarch_byte_order (arch));
4002 data += offset_size;
4003
4004 data = safe_read_sleb128 (data, end, &l);
4005
4006 fprintf_filtered (stream, " DIE %s offset %s",
4007 phex_nz (ul, offset_size),
4008 plongest (l));
4009 }
4010 break;
4011
4012 case DW_OP_GNU_deref_type:
4013 {
4014 int addr_size = *data++;
4015 cu_offset offset;
4016 struct type *type;
4017
4018 data = safe_read_uleb128 (data, end, &ul);
4019 offset.cu_off = ul;
4020 type = dwarf2_get_die_type (offset, per_cu);
4021 fprintf_filtered (stream, "<");
4022 type_print (type, "", stream, -1);
4023 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4024 addr_size);
4025 }
4026 break;
4027
4028 case DW_OP_GNU_const_type:
4029 {
4030 cu_offset type_die;
4031 struct type *type;
4032
4033 data = safe_read_uleb128 (data, end, &ul);
4034 type_die.cu_off = ul;
4035 type = dwarf2_get_die_type (type_die, per_cu);
4036 fprintf_filtered (stream, "<");
4037 type_print (type, "", stream, -1);
4038 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4039 }
4040 break;
4041
4042 case DW_OP_GNU_regval_type:
4043 {
4044 uint64_t reg;
4045 cu_offset type_die;
4046 struct type *type;
4047
4048 data = safe_read_uleb128 (data, end, &reg);
4049 data = safe_read_uleb128 (data, end, &ul);
4050 type_die.cu_off = ul;
4051
4052 type = dwarf2_get_die_type (type_die, per_cu);
4053 fprintf_filtered (stream, "<");
4054 type_print (type, "", stream, -1);
4055 fprintf_filtered (stream, " [0x%s]> [$%s]",
4056 phex_nz (type_die.cu_off, 0),
4057 locexpr_regname (arch, reg));
4058 }
4059 break;
4060
4061 case DW_OP_GNU_convert:
4062 case DW_OP_GNU_reinterpret:
4063 {
4064 cu_offset type_die;
4065
4066 data = safe_read_uleb128 (data, end, &ul);
4067 type_die.cu_off = ul;
4068
4069 if (type_die.cu_off == 0)
4070 fprintf_filtered (stream, "<0>");
4071 else
4072 {
4073 struct type *type;
4074
4075 type = dwarf2_get_die_type (type_die, per_cu);
4076 fprintf_filtered (stream, "<");
4077 type_print (type, "", stream, -1);
4078 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4079 }
4080 }
4081 break;
4082
4083 case DW_OP_GNU_entry_value:
4084 data = safe_read_uleb128 (data, end, &ul);
4085 fputc_filtered ('\n', stream);
4086 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4087 start, data, data + ul, indent + 2,
4088 all, per_cu);
4089 data += ul;
4090 continue;
4091
4092 case DW_OP_GNU_parameter_ref:
4093 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4094 data += 4;
4095 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4096 break;
4097
4098 case DW_OP_GNU_addr_index:
4099 data = safe_read_uleb128 (data, end, &ul);
4100 ul = dwarf2_read_addr_index (per_cu, ul);
4101 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4102 break;
4103 case DW_OP_GNU_const_index:
4104 data = safe_read_uleb128 (data, end, &ul);
4105 ul = dwarf2_read_addr_index (per_cu, ul);
4106 fprintf_filtered (stream, " %s", pulongest (ul));
4107 break;
4108 }
4109
4110 fprintf_filtered (stream, "\n");
4111 }
4112
4113 return data;
4114 }
4115
4116 /* Describe a single location, which may in turn consist of multiple
4117 pieces. */
4118
4119 static void
4120 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4121 struct ui_file *stream,
4122 const gdb_byte *data, size_t size,
4123 struct objfile *objfile, unsigned int addr_size,
4124 int offset_size, struct dwarf2_per_cu_data *per_cu)
4125 {
4126 const gdb_byte *end = data + size;
4127 int first_piece = 1, bad = 0;
4128
4129 while (data < end)
4130 {
4131 const gdb_byte *here = data;
4132 int disassemble = 1;
4133
4134 if (first_piece)
4135 first_piece = 0;
4136 else
4137 fprintf_filtered (stream, _(", and "));
4138
4139 if (!dwarf_always_disassemble)
4140 {
4141 data = locexpr_describe_location_piece (symbol, stream,
4142 addr, objfile, per_cu,
4143 data, end, addr_size);
4144 /* If we printed anything, or if we have an empty piece,
4145 then don't disassemble. */
4146 if (data != here
4147 || data[0] == DW_OP_piece
4148 || data[0] == DW_OP_bit_piece)
4149 disassemble = 0;
4150 }
4151 if (disassemble)
4152 {
4153 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4154 data = disassemble_dwarf_expression (stream,
4155 get_objfile_arch (objfile),
4156 addr_size, offset_size, data,
4157 data, end, 0,
4158 dwarf_always_disassemble,
4159 per_cu);
4160 }
4161
4162 if (data < end)
4163 {
4164 int empty = data == here;
4165
4166 if (disassemble)
4167 fprintf_filtered (stream, " ");
4168 if (data[0] == DW_OP_piece)
4169 {
4170 uint64_t bytes;
4171
4172 data = safe_read_uleb128 (data + 1, end, &bytes);
4173
4174 if (empty)
4175 fprintf_filtered (stream, _("an empty %s-byte piece"),
4176 pulongest (bytes));
4177 else
4178 fprintf_filtered (stream, _(" [%s-byte piece]"),
4179 pulongest (bytes));
4180 }
4181 else if (data[0] == DW_OP_bit_piece)
4182 {
4183 uint64_t bits, offset;
4184
4185 data = safe_read_uleb128 (data + 1, end, &bits);
4186 data = safe_read_uleb128 (data, end, &offset);
4187
4188 if (empty)
4189 fprintf_filtered (stream,
4190 _("an empty %s-bit piece"),
4191 pulongest (bits));
4192 else
4193 fprintf_filtered (stream,
4194 _(" [%s-bit piece, offset %s bits]"),
4195 pulongest (bits), pulongest (offset));
4196 }
4197 else
4198 {
4199 bad = 1;
4200 break;
4201 }
4202 }
4203 }
4204
4205 if (bad || data > end)
4206 error (_("Corrupted DWARF2 expression for \"%s\"."),
4207 SYMBOL_PRINT_NAME (symbol));
4208 }
4209
4210 /* Print a natural-language description of SYMBOL to STREAM. This
4211 version is for a symbol with a single location. */
4212
4213 static void
4214 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4215 struct ui_file *stream)
4216 {
4217 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4218 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4219 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4220 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4221
4222 locexpr_describe_location_1 (symbol, addr, stream,
4223 dlbaton->data, dlbaton->size,
4224 objfile, addr_size, offset_size,
4225 dlbaton->per_cu);
4226 }
4227
4228 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4229 any necessary bytecode in AX. */
4230
4231 static void
4232 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4233 struct agent_expr *ax, struct axs_value *value)
4234 {
4235 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4236 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4237
4238 if (dlbaton->size == 0)
4239 value->optimized_out = 1;
4240 else
4241 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4242 dlbaton->data, dlbaton->data + dlbaton->size,
4243 dlbaton->per_cu);
4244 }
4245
4246 /* symbol_computed_ops 'generate_c_location' method. */
4247
4248 static void
4249 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4250 struct gdbarch *gdbarch,
4251 unsigned char *registers_used,
4252 CORE_ADDR pc, const char *result_name)
4253 {
4254 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4255 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4256
4257 if (dlbaton->size == 0)
4258 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4259
4260 compile_dwarf_expr_to_c (stream, result_name,
4261 sym, pc, gdbarch, registers_used, addr_size,
4262 dlbaton->data, dlbaton->data + dlbaton->size,
4263 dlbaton->per_cu);
4264 }
4265
4266 /* The set of location functions used with the DWARF-2 expression
4267 evaluator. */
4268 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4269 locexpr_read_variable,
4270 locexpr_read_variable_at_entry,
4271 locexpr_read_needs_frame,
4272 locexpr_describe_location,
4273 0, /* location_has_loclist */
4274 locexpr_tracepoint_var_ref,
4275 locexpr_generate_c_location
4276 };
4277
4278
4279 /* Wrapper functions for location lists. These generally find
4280 the appropriate location expression and call something above. */
4281
4282 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4283 evaluator to calculate the location. */
4284 static struct value *
4285 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4286 {
4287 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4288 struct value *val;
4289 const gdb_byte *data;
4290 size_t size;
4291 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4292
4293 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4294 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4295 dlbaton->per_cu);
4296
4297 return val;
4298 }
4299
4300 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4301 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4302 will be thrown.
4303
4304 Function always returns non-NULL value, it may be marked optimized out if
4305 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4306 if it cannot resolve the parameter for any reason. */
4307
4308 static struct value *
4309 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4310 {
4311 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4312 const gdb_byte *data;
4313 size_t size;
4314 CORE_ADDR pc;
4315
4316 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4317 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4318
4319 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4320 if (data == NULL)
4321 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4322
4323 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4324 }
4325
4326 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4327 static int
4328 loclist_read_needs_frame (struct symbol *symbol)
4329 {
4330 /* If there's a location list, then assume we need to have a frame
4331 to choose the appropriate location expression. With tracking of
4332 global variables this is not necessarily true, but such tracking
4333 is disabled in GCC at the moment until we figure out how to
4334 represent it. */
4335
4336 return 1;
4337 }
4338
4339 /* Print a natural-language description of SYMBOL to STREAM. This
4340 version applies when there is a list of different locations, each
4341 with a specified address range. */
4342
4343 static void
4344 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4345 struct ui_file *stream)
4346 {
4347 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4348 const gdb_byte *loc_ptr, *buf_end;
4349 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4350 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4352 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4353 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4354 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4355 /* Adjust base_address for relocatable objects. */
4356 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4357 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4358 int done = 0;
4359
4360 loc_ptr = dlbaton->data;
4361 buf_end = dlbaton->data + dlbaton->size;
4362
4363 fprintf_filtered (stream, _("multi-location:\n"));
4364
4365 /* Iterate through locations until we run out. */
4366 while (!done)
4367 {
4368 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4369 int length;
4370 enum debug_loc_kind kind;
4371 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4372
4373 if (dlbaton->from_dwo)
4374 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4375 loc_ptr, buf_end, &new_ptr,
4376 &low, &high, byte_order);
4377 else
4378 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4379 &low, &high,
4380 byte_order, addr_size,
4381 signed_addr_p);
4382 loc_ptr = new_ptr;
4383 switch (kind)
4384 {
4385 case DEBUG_LOC_END_OF_LIST:
4386 done = 1;
4387 continue;
4388 case DEBUG_LOC_BASE_ADDRESS:
4389 base_address = high + base_offset;
4390 fprintf_filtered (stream, _(" Base address %s"),
4391 paddress (gdbarch, base_address));
4392 continue;
4393 case DEBUG_LOC_START_END:
4394 case DEBUG_LOC_START_LENGTH:
4395 break;
4396 case DEBUG_LOC_BUFFER_OVERFLOW:
4397 case DEBUG_LOC_INVALID_ENTRY:
4398 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4399 SYMBOL_PRINT_NAME (symbol));
4400 default:
4401 gdb_assert_not_reached ("bad debug_loc_kind");
4402 }
4403
4404 /* Otherwise, a location expression entry. */
4405 low += base_address;
4406 high += base_address;
4407
4408 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4409 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4410
4411 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4412 loc_ptr += 2;
4413
4414 /* (It would improve readability to print only the minimum
4415 necessary digits of the second number of the range.) */
4416 fprintf_filtered (stream, _(" Range %s-%s: "),
4417 paddress (gdbarch, low), paddress (gdbarch, high));
4418
4419 /* Now describe this particular location. */
4420 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4421 objfile, addr_size, offset_size,
4422 dlbaton->per_cu);
4423
4424 fprintf_filtered (stream, "\n");
4425
4426 loc_ptr += length;
4427 }
4428 }
4429
4430 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4431 any necessary bytecode in AX. */
4432 static void
4433 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4434 struct agent_expr *ax, struct axs_value *value)
4435 {
4436 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4437 const gdb_byte *data;
4438 size_t size;
4439 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4440
4441 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4442 if (size == 0)
4443 value->optimized_out = 1;
4444 else
4445 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4446 dlbaton->per_cu);
4447 }
4448
4449 /* symbol_computed_ops 'generate_c_location' method. */
4450
4451 static void
4452 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4453 struct gdbarch *gdbarch,
4454 unsigned char *registers_used,
4455 CORE_ADDR pc, const char *result_name)
4456 {
4457 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4458 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4459 const gdb_byte *data;
4460 size_t size;
4461
4462 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4463 if (size == 0)
4464 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4465
4466 compile_dwarf_expr_to_c (stream, result_name,
4467 sym, pc, gdbarch, registers_used, addr_size,
4468 data, data + size,
4469 dlbaton->per_cu);
4470 }
4471
4472 /* The set of location functions used with the DWARF-2 expression
4473 evaluator and location lists. */
4474 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4475 loclist_read_variable,
4476 loclist_read_variable_at_entry,
4477 loclist_read_needs_frame,
4478 loclist_describe_location,
4479 1, /* location_has_loclist */
4480 loclist_tracepoint_var_ref,
4481 loclist_generate_c_location
4482 };
4483
4484 /* Provide a prototype to silence -Wmissing-prototypes. */
4485 extern initialize_file_ftype _initialize_dwarf2loc;
4486
4487 void
4488 _initialize_dwarf2loc (void)
4489 {
4490 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4491 &entry_values_debug,
4492 _("Set entry values and tail call frames "
4493 "debugging."),
4494 _("Show entry values and tail call frames "
4495 "debugging."),
4496 _("When non-zero, the process of determining "
4497 "parameter values from function entry point "
4498 "and tail call frames will be printed."),
4499 NULL,
4500 show_entry_values_debug,
4501 &setdebuglist, &showdebuglist);
4502 }
This page took 0.193325 seconds and 4 git commands to generate.