windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41
42 extern int dwarf2_always_disassemble;
43
44 extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
45
46 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
51 LONGEST byte_offset);
52
53 /* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58 enum debug_loc_kind
59 {
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83 };
84
85 /* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88 static void
89 invalid_synthetic_pointer (void)
90 {
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93 }
94
95 /* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100 static enum debug_loc_kind
101 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107 {
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
135 return DEBUG_LOC_START_END;
136 }
137
138 /* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143 static enum debug_loc_kind
144 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
150 {
151 uint64_t low_index, high_index;
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
169 case DEBUG_LOC_START_END:
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194 }
195
196 /* A function for dealing with location lists. Given a
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
204 const gdb_byte *
205 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
207 {
208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
213 /* Adjust base_address for relocatable objects. */
214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
215 CORE_ADDR base_address = baton->base_address + base_offset;
216 const gdb_byte *loc_ptr, *buf_end;
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
231 &low, &high, byte_order);
232 else
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
239 {
240 case DEBUG_LOC_END_OF_LIST:
241 *locexpr_length = 0;
242 return NULL;
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
255 }
256
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is
259 from .debug_addr which has absolute addresses. */
260 if (! baton->from_dwo)
261 {
262 low += base_address;
263 high += base_address;
264 }
265
266 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
267 loc_ptr += 2;
268
269 if (low == high && pc == low)
270 {
271 /* This is entry PC record present only at entry point
272 of a function. Verify it is really the function entry point. */
273
274 const struct block *pc_block = block_for_pc (pc);
275 struct symbol *pc_func = NULL;
276
277 if (pc_block)
278 pc_func = block_linkage_function (pc_block);
279
280 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285 }
286
287 if (pc >= low && pc < high)
288 {
289 *locexpr_length = length;
290 return loc_ptr;
291 }
292
293 loc_ptr += length;
294 }
295 }
296
297 /* This is the baton used when performing dwarf2 expression
298 evaluation. */
299 struct dwarf_expr_baton
300 {
301 struct frame_info *frame;
302 struct dwarf2_per_cu_data *per_cu;
303 CORE_ADDR obj_address;
304 };
305
306 /* Helper functions for dwarf2_evaluate_loc_desc. */
307
308 /* Using the frame specified in BATON, return the value of register
309 REGNUM, treated as a pointer. */
310 static CORE_ADDR
311 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
312 {
313 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
314 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
315 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
316
317 return address_from_register (regnum, debaton->frame);
318 }
319
320 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
321
322 static struct value *
323 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
324 {
325 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
326 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
327 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
328
329 return value_from_register (type, regnum, debaton->frame);
330 }
331
332 /* Read memory at ADDR (length LEN) into BUF. */
333
334 static void
335 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
336 {
337 read_memory (addr, buf, len);
338 }
339
340 /* Using the frame specified in BATON, find the location expression
341 describing the frame base. Return a pointer to it in START and
342 its length in LENGTH. */
343 static void
344 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
345 {
346 /* FIXME: cagney/2003-03-26: This code should be using
347 get_frame_base_address(), and then implement a dwarf2 specific
348 this_base method. */
349 struct symbol *framefunc;
350 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
351 const struct block *bl = get_frame_block (debaton->frame, NULL);
352
353 if (bl == NULL)
354 error (_("frame address is not available."));
355
356 /* Use block_linkage_function, which returns a real (not inlined)
357 function, instead of get_frame_function, which may return an
358 inlined function. */
359 framefunc = block_linkage_function (bl);
360
361 /* If we found a frame-relative symbol then it was certainly within
362 some function associated with a frame. If we can't find the frame,
363 something has gone wrong. */
364 gdb_assert (framefunc != NULL);
365
366 func_get_frame_base_dwarf_block (framefunc,
367 get_frame_address_in_block (debaton->frame),
368 start, length);
369 }
370
371 /* Implement find_frame_base_location method for LOC_BLOCK functions using
372 DWARF expression for its DW_AT_frame_base. */
373
374 static void
375 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
376 const gdb_byte **start, size_t *length)
377 {
378 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
379
380 *length = symbaton->size;
381 *start = symbaton->data;
382 }
383
384 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
385 function uses DWARF expression for its DW_AT_frame_base. */
386
387 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
388 {
389 locexpr_find_frame_base_location
390 };
391
392 /* Implement find_frame_base_location method for LOC_BLOCK functions using
393 DWARF location list for its DW_AT_frame_base. */
394
395 static void
396 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
397 const gdb_byte **start, size_t *length)
398 {
399 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
400
401 *start = dwarf2_find_location_expression (symbaton, length, pc);
402 }
403
404 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
405 function uses DWARF location list for its DW_AT_frame_base. */
406
407 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
408 {
409 loclist_find_frame_base_location
410 };
411
412 /* See dwarf2loc.h. */
413
414 void
415 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
417 {
418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
419 {
420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
421
422 ops_block->find_frame_base_location (framefunc, pc, start, length);
423 }
424 else
425 *length = 0;
426
427 if (*length == 0)
428 error (_("Could not find the frame base for \"%s\"."),
429 SYMBOL_NATURAL_NAME (framefunc));
430 }
431
432 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435 static CORE_ADDR
436 dwarf_expr_frame_cfa (void *baton)
437 {
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
439
440 return dwarf2_frame_cfa (debaton->frame);
441 }
442
443 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446 static CORE_ADDR
447 dwarf_expr_frame_pc (void *baton)
448 {
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452 }
453
454 /* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456 static CORE_ADDR
457 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458 {
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
461
462 return target_translate_tls_address (objfile, offset);
463 }
464
465 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
468
469 static void
470 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
474 {
475 struct dwarf2_locexpr_baton block;
476
477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483 }
484
485 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487 static void
488 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
489 {
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
493 ctx->funcs->get_frame_pc, ctx->baton);
494 }
495
496 /* Callback function for dwarf2_evaluate_loc_desc. */
497
498 static struct type *
499 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
501 {
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505 }
506
507 /* See dwarf2loc.h. */
508
509 unsigned int entry_values_debug = 0;
510
511 /* Helper to set entry_values_debug. */
512
513 static void
514 show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516 {
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520 }
521
522 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526 static CORE_ADDR
527 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530 {
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
543 struct bound_minimal_symbol msym;
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
550 (msym.minsym == NULL ? "???"
551 : MSYMBOL_PRINT_NAME (msym.minsym)));
552
553 }
554 if (caller_frame == NULL)
555 {
556 struct bound_minimal_symbol msym;
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
564 (msym.minsym == NULL ? "???"
565 : MSYMBOL_PRINT_NAME (msym.minsym)));
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
584 struct bound_minimal_symbol msym;
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
590 if (msym.minsym == NULL)
591 {
592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
599
600 }
601 return BMSYMBOL_VALUE_ADDRESS (msym);
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610 }
611
612 /* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616 static struct symbol *
617 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618 {
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633 }
634
635 /* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644 static void
645 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646 {
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)),
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712 }
713
714 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717 static void
718 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719 {
720 CORE_ADDR addr = call_site->pc;
721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
724 (msym.minsym == NULL ? "???"
725 : MSYMBOL_PRINT_NAME (msym.minsym)));
726
727 }
728
729 /* vec.h needs single word type name, typedef it. */
730 typedef struct call_site *call_sitep;
731
732 /* Define VEC (call_sitep) functions. */
733 DEF_VEC_P (call_sitep);
734
735 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742 static void
743 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745 {
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it, therefore some of the former determined intermediate PCs must differ
829 and the unambiguous chain gets shortened. */
830 gdb_assert (result->callers + result->callees < result->length);
831 }
832
833 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
834 assumed frames between them use GDBARCH. Use depth first search so we can
835 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
836 would have needless GDB stack overhead. Caller is responsible for xfree of
837 the returned result. Any unreliability results in thrown
838 NO_ENTRY_VALUE_ERROR. */
839
840 static struct call_site_chain *
841 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
842 CORE_ADDR callee_pc)
843 {
844 CORE_ADDR save_callee_pc = callee_pc;
845 struct obstack addr_obstack;
846 struct cleanup *back_to_retval, *back_to_workdata;
847 struct call_site_chain *retval = NULL;
848 struct call_site *call_site;
849
850 /* Mark CALL_SITEs so we do not visit the same ones twice. */
851 htab_t addr_hash;
852
853 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
854 call_site nor any possible call_site at CALLEE_PC's function is there.
855 Any CALL_SITE in CHAIN will be iterated to its siblings - via
856 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
857 VEC (call_sitep) *chain = NULL;
858
859 /* We are not interested in the specific PC inside the callee function. */
860 callee_pc = get_pc_function_start (callee_pc);
861 if (callee_pc == 0)
862 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
863 paddress (gdbarch, save_callee_pc));
864
865 back_to_retval = make_cleanup (free_current_contents, &retval);
866
867 obstack_init (&addr_obstack);
868 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
869 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
870 &addr_obstack, hashtab_obstack_allocate,
871 NULL);
872 make_cleanup_htab_delete (addr_hash);
873
874 make_cleanup (VEC_cleanup (call_sitep), &chain);
875
876 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
877 at the target's function. All the possible tail call sites in the
878 target's function will get iterated as already pushed into CHAIN via their
879 TAIL_CALL_NEXT. */
880 call_site = call_site_for_pc (gdbarch, caller_pc);
881
882 while (call_site)
883 {
884 CORE_ADDR target_func_addr;
885 struct call_site *target_call_site;
886
887 /* CALLER_FRAME with registers is not available for tail-call jumped
888 frames. */
889 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
890
891 if (target_func_addr == callee_pc)
892 {
893 chain_candidate (gdbarch, &retval, chain);
894 if (retval == NULL)
895 break;
896
897 /* There is no way to reach CALLEE_PC again as we would prevent
898 entering it twice as being already marked in ADDR_HASH. */
899 target_call_site = NULL;
900 }
901 else
902 {
903 struct symbol *target_func;
904
905 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
906 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
907 }
908
909 do
910 {
911 /* Attempt to visit TARGET_CALL_SITE. */
912
913 if (target_call_site)
914 {
915 void **slot;
916
917 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
918 if (*slot == NULL)
919 {
920 /* Successfully entered TARGET_CALL_SITE. */
921
922 *slot = &target_call_site->pc;
923 VEC_safe_push (call_sitep, chain, target_call_site);
924 break;
925 }
926 }
927
928 /* Backtrack (without revisiting the originating call_site). Try the
929 callers's sibling; if there isn't any try the callers's callers's
930 sibling etc. */
931
932 target_call_site = NULL;
933 while (!VEC_empty (call_sitep, chain))
934 {
935 call_site = VEC_pop (call_sitep, chain);
936
937 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
938 NO_INSERT) != NULL);
939 htab_remove_elt (addr_hash, &call_site->pc);
940
941 target_call_site = call_site->tail_call_next;
942 if (target_call_site)
943 break;
944 }
945 }
946 while (target_call_site);
947
948 if (VEC_empty (call_sitep, chain))
949 call_site = NULL;
950 else
951 call_site = VEC_last (call_sitep, chain);
952 }
953
954 if (retval == NULL)
955 {
956 struct bound_minimal_symbol msym_caller, msym_callee;
957
958 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
959 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
960 throw_error (NO_ENTRY_VALUE_ERROR,
961 _("There are no unambiguously determinable intermediate "
962 "callers or callees between caller function \"%s\" at %s "
963 "and callee function \"%s\" at %s"),
964 (msym_caller.minsym == NULL
965 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
966 paddress (gdbarch, caller_pc),
967 (msym_callee.minsym == NULL
968 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
969 paddress (gdbarch, callee_pc));
970 }
971
972 do_cleanups (back_to_workdata);
973 discard_cleanups (back_to_retval);
974 return retval;
975 }
976
977 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
979 constructed return NULL. Caller is responsible for xfree of the returned
980 result. */
981
982 struct call_site_chain *
983 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
984 CORE_ADDR callee_pc)
985 {
986 struct call_site_chain *retval = NULL;
987
988 TRY
989 {
990 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
991 }
992 CATCH (e, RETURN_MASK_ERROR)
993 {
994 if (e.error == NO_ENTRY_VALUE_ERROR)
995 {
996 if (entry_values_debug)
997 exception_print (gdb_stdout, e);
998
999 return NULL;
1000 }
1001 else
1002 throw_exception (e);
1003 }
1004 END_CATCH
1005
1006 return retval;
1007 }
1008
1009 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1010
1011 static int
1012 call_site_parameter_matches (struct call_site_parameter *parameter,
1013 enum call_site_parameter_kind kind,
1014 union call_site_parameter_u kind_u)
1015 {
1016 if (kind == parameter->kind)
1017 switch (kind)
1018 {
1019 case CALL_SITE_PARAMETER_DWARF_REG:
1020 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1021 case CALL_SITE_PARAMETER_FB_OFFSET:
1022 return kind_u.fb_offset == parameter->u.fb_offset;
1023 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1024 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1025 }
1026 return 0;
1027 }
1028
1029 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1030 FRAME is for callee.
1031
1032 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1033 otherwise. */
1034
1035 static struct call_site_parameter *
1036 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1037 enum call_site_parameter_kind kind,
1038 union call_site_parameter_u kind_u,
1039 struct dwarf2_per_cu_data **per_cu_return)
1040 {
1041 CORE_ADDR func_addr, caller_pc;
1042 struct gdbarch *gdbarch;
1043 struct frame_info *caller_frame;
1044 struct call_site *call_site;
1045 int iparams;
1046 /* Initialize it just to avoid a GCC false warning. */
1047 struct call_site_parameter *parameter = NULL;
1048 CORE_ADDR target_addr;
1049
1050 while (get_frame_type (frame) == INLINE_FRAME)
1051 {
1052 frame = get_prev_frame (frame);
1053 gdb_assert (frame != NULL);
1054 }
1055
1056 func_addr = get_frame_func (frame);
1057 gdbarch = get_frame_arch (frame);
1058 caller_frame = get_prev_frame (frame);
1059 if (gdbarch != frame_unwind_arch (frame))
1060 {
1061 struct bound_minimal_symbol msym
1062 = lookup_minimal_symbol_by_pc (func_addr);
1063 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1064
1065 throw_error (NO_ENTRY_VALUE_ERROR,
1066 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1067 "(of %s (%s)) does not match caller gdbarch %s"),
1068 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1069 paddress (gdbarch, func_addr),
1070 (msym.minsym == NULL ? "???"
1071 : MSYMBOL_PRINT_NAME (msym.minsym)),
1072 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1073 }
1074
1075 if (caller_frame == NULL)
1076 {
1077 struct bound_minimal_symbol msym
1078 = lookup_minimal_symbol_by_pc (func_addr);
1079
1080 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1081 "requires caller of %s (%s)"),
1082 paddress (gdbarch, func_addr),
1083 (msym.minsym == NULL ? "???"
1084 : MSYMBOL_PRINT_NAME (msym.minsym)));
1085 }
1086 caller_pc = get_frame_pc (caller_frame);
1087 call_site = call_site_for_pc (gdbarch, caller_pc);
1088
1089 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1090 if (target_addr != func_addr)
1091 {
1092 struct minimal_symbol *target_msym, *func_msym;
1093
1094 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1095 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1096 throw_error (NO_ENTRY_VALUE_ERROR,
1097 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1098 "but the called frame is for %s at %s"),
1099 (target_msym == NULL ? "???"
1100 : MSYMBOL_PRINT_NAME (target_msym)),
1101 paddress (gdbarch, target_addr),
1102 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1103 paddress (gdbarch, func_addr));
1104 }
1105
1106 /* No entry value based parameters would be reliable if this function can
1107 call itself via tail calls. */
1108 func_verify_no_selftailcall (gdbarch, func_addr);
1109
1110 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1111 {
1112 parameter = &call_site->parameter[iparams];
1113 if (call_site_parameter_matches (parameter, kind, kind_u))
1114 break;
1115 }
1116 if (iparams == call_site->parameter_count)
1117 {
1118 struct minimal_symbol *msym
1119 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1120
1121 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1122 determine its value. */
1123 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1124 "at DW_TAG_GNU_call_site %s at %s"),
1125 paddress (gdbarch, caller_pc),
1126 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1127 }
1128
1129 *per_cu_return = call_site->per_cu;
1130 return parameter;
1131 }
1132
1133 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1134 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1135 DW_AT_GNU_call_site_data_value (dereferenced) block.
1136
1137 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1138 struct value.
1139
1140 Function always returns non-NULL, non-optimized out value. It throws
1141 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1142
1143 static struct value *
1144 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1145 CORE_ADDR deref_size, struct type *type,
1146 struct frame_info *caller_frame,
1147 struct dwarf2_per_cu_data *per_cu)
1148 {
1149 const gdb_byte *data_src;
1150 gdb_byte *data;
1151 size_t size;
1152
1153 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1154 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1155
1156 /* DEREF_SIZE size is not verified here. */
1157 if (data_src == NULL)
1158 throw_error (NO_ENTRY_VALUE_ERROR,
1159 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1160
1161 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1162 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1163 DWARF block. */
1164 data = alloca (size + 1);
1165 memcpy (data, data_src, size);
1166 data[size] = DW_OP_stack_value;
1167
1168 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1169 }
1170
1171 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1172 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1173 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1174
1175 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1176 can be more simple as it does not support cross-CU DWARF executions. */
1177
1178 static void
1179 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1180 enum call_site_parameter_kind kind,
1181 union call_site_parameter_u kind_u,
1182 int deref_size)
1183 {
1184 struct dwarf_expr_baton *debaton;
1185 struct frame_info *frame, *caller_frame;
1186 struct dwarf2_per_cu_data *caller_per_cu;
1187 struct dwarf_expr_baton baton_local;
1188 struct dwarf_expr_context saved_ctx;
1189 struct call_site_parameter *parameter;
1190 const gdb_byte *data_src;
1191 size_t size;
1192
1193 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1194 debaton = ctx->baton;
1195 frame = debaton->frame;
1196 caller_frame = get_prev_frame (frame);
1197
1198 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1199 &caller_per_cu);
1200 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1201 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1202
1203 /* DEREF_SIZE size is not verified here. */
1204 if (data_src == NULL)
1205 throw_error (NO_ENTRY_VALUE_ERROR,
1206 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1207
1208 baton_local.frame = caller_frame;
1209 baton_local.per_cu = caller_per_cu;
1210 baton_local.obj_address = 0;
1211
1212 saved_ctx.gdbarch = ctx->gdbarch;
1213 saved_ctx.addr_size = ctx->addr_size;
1214 saved_ctx.offset = ctx->offset;
1215 saved_ctx.baton = ctx->baton;
1216 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1217 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1218 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1219 ctx->baton = &baton_local;
1220
1221 dwarf_expr_eval (ctx, data_src, size);
1222
1223 ctx->gdbarch = saved_ctx.gdbarch;
1224 ctx->addr_size = saved_ctx.addr_size;
1225 ctx->offset = saved_ctx.offset;
1226 ctx->baton = saved_ctx.baton;
1227 }
1228
1229 /* Callback function for dwarf2_evaluate_loc_desc.
1230 Fetch the address indexed by DW_OP_GNU_addr_index. */
1231
1232 static CORE_ADDR
1233 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1234 {
1235 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1236
1237 return dwarf2_read_addr_index (debaton->per_cu, index);
1238 }
1239
1240 /* Callback function for get_object_address. Return the address of the VLA
1241 object. */
1242
1243 static CORE_ADDR
1244 dwarf_expr_get_obj_addr (void *baton)
1245 {
1246 struct dwarf_expr_baton *debaton = baton;
1247
1248 gdb_assert (debaton != NULL);
1249
1250 if (debaton->obj_address == 0)
1251 error (_("Location address is not set."));
1252
1253 return debaton->obj_address;
1254 }
1255
1256 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1257 the indirect method on it, that is use its stored target value, the sole
1258 purpose of entry_data_value_funcs.. */
1259
1260 static struct value *
1261 entry_data_value_coerce_ref (const struct value *value)
1262 {
1263 struct type *checked_type = check_typedef (value_type (value));
1264 struct value *target_val;
1265
1266 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1267 return NULL;
1268
1269 target_val = value_computed_closure (value);
1270 value_incref (target_val);
1271 return target_val;
1272 }
1273
1274 /* Implement copy_closure. */
1275
1276 static void *
1277 entry_data_value_copy_closure (const struct value *v)
1278 {
1279 struct value *target_val = value_computed_closure (v);
1280
1281 value_incref (target_val);
1282 return target_val;
1283 }
1284
1285 /* Implement free_closure. */
1286
1287 static void
1288 entry_data_value_free_closure (struct value *v)
1289 {
1290 struct value *target_val = value_computed_closure (v);
1291
1292 value_free (target_val);
1293 }
1294
1295 /* Vector for methods for an entry value reference where the referenced value
1296 is stored in the caller. On the first dereference use
1297 DW_AT_GNU_call_site_data_value in the caller. */
1298
1299 static const struct lval_funcs entry_data_value_funcs =
1300 {
1301 NULL, /* read */
1302 NULL, /* write */
1303 NULL, /* indirect */
1304 entry_data_value_coerce_ref,
1305 NULL, /* check_synthetic_pointer */
1306 entry_data_value_copy_closure,
1307 entry_data_value_free_closure
1308 };
1309
1310 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1311 are used to match DW_AT_location at the caller's
1312 DW_TAG_GNU_call_site_parameter.
1313
1314 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1315 cannot resolve the parameter for any reason. */
1316
1317 static struct value *
1318 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1319 enum call_site_parameter_kind kind,
1320 union call_site_parameter_u kind_u)
1321 {
1322 struct type *checked_type = check_typedef (type);
1323 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1324 struct frame_info *caller_frame = get_prev_frame (frame);
1325 struct value *outer_val, *target_val, *val;
1326 struct call_site_parameter *parameter;
1327 struct dwarf2_per_cu_data *caller_per_cu;
1328
1329 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1330 &caller_per_cu);
1331
1332 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1333 type, caller_frame,
1334 caller_per_cu);
1335
1336 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1337 used and it is not available do not fall back to OUTER_VAL - dereferencing
1338 TYPE_CODE_REF with non-entry data value would give current value - not the
1339 entry value. */
1340
1341 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1342 || TYPE_TARGET_TYPE (checked_type) == NULL)
1343 return outer_val;
1344
1345 target_val = dwarf_entry_parameter_to_value (parameter,
1346 TYPE_LENGTH (target_type),
1347 target_type, caller_frame,
1348 caller_per_cu);
1349
1350 release_value (target_val);
1351 val = allocate_computed_value (type, &entry_data_value_funcs,
1352 target_val /* closure */);
1353
1354 /* Copy the referencing pointer to the new computed value. */
1355 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1356 TYPE_LENGTH (checked_type));
1357 set_value_lazy (val, 0);
1358
1359 return val;
1360 }
1361
1362 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1363 SIZE are DWARF block used to match DW_AT_location at the caller's
1364 DW_TAG_GNU_call_site_parameter.
1365
1366 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1367 cannot resolve the parameter for any reason. */
1368
1369 static struct value *
1370 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1371 const gdb_byte *block, size_t block_len)
1372 {
1373 union call_site_parameter_u kind_u;
1374
1375 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1376 if (kind_u.dwarf_reg != -1)
1377 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1378 kind_u);
1379
1380 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1381 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1382 kind_u);
1383
1384 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1385 suppressed during normal operation. The expression can be arbitrary if
1386 there is no caller-callee entry value binding expected. */
1387 throw_error (NO_ENTRY_VALUE_ERROR,
1388 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1389 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1390 }
1391
1392 struct piece_closure
1393 {
1394 /* Reference count. */
1395 int refc;
1396
1397 /* The CU from which this closure's expression came. */
1398 struct dwarf2_per_cu_data *per_cu;
1399
1400 /* The number of pieces used to describe this variable. */
1401 int n_pieces;
1402
1403 /* The target address size, used only for DWARF_VALUE_STACK. */
1404 int addr_size;
1405
1406 /* The pieces themselves. */
1407 struct dwarf_expr_piece *pieces;
1408 };
1409
1410 /* Allocate a closure for a value formed from separately-described
1411 PIECES. */
1412
1413 static struct piece_closure *
1414 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1415 int n_pieces, struct dwarf_expr_piece *pieces,
1416 int addr_size)
1417 {
1418 struct piece_closure *c = XCNEW (struct piece_closure);
1419 int i;
1420
1421 c->refc = 1;
1422 c->per_cu = per_cu;
1423 c->n_pieces = n_pieces;
1424 c->addr_size = addr_size;
1425 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1426
1427 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1428 for (i = 0; i < n_pieces; ++i)
1429 if (c->pieces[i].location == DWARF_VALUE_STACK)
1430 value_incref (c->pieces[i].v.value);
1431
1432 return c;
1433 }
1434
1435 /* The lowest-level function to extract bits from a byte buffer.
1436 SOURCE is the buffer. It is updated if we read to the end of a
1437 byte.
1438 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1439 updated to reflect the number of bits actually read.
1440 NBITS is the number of bits we want to read. It is updated to
1441 reflect the number of bits actually read. This function may read
1442 fewer bits.
1443 BITS_BIG_ENDIAN is taken directly from gdbarch.
1444 This function returns the extracted bits. */
1445
1446 static unsigned int
1447 extract_bits_primitive (const gdb_byte **source,
1448 unsigned int *source_offset_bits,
1449 int *nbits, int bits_big_endian)
1450 {
1451 unsigned int avail, mask, datum;
1452
1453 gdb_assert (*source_offset_bits < 8);
1454
1455 avail = 8 - *source_offset_bits;
1456 if (avail > *nbits)
1457 avail = *nbits;
1458
1459 mask = (1 << avail) - 1;
1460 datum = **source;
1461 if (bits_big_endian)
1462 datum >>= 8 - (*source_offset_bits + *nbits);
1463 else
1464 datum >>= *source_offset_bits;
1465 datum &= mask;
1466
1467 *nbits -= avail;
1468 *source_offset_bits += avail;
1469 if (*source_offset_bits >= 8)
1470 {
1471 *source_offset_bits -= 8;
1472 ++*source;
1473 }
1474
1475 return datum;
1476 }
1477
1478 /* Extract some bits from a source buffer and move forward in the
1479 buffer.
1480
1481 SOURCE is the source buffer. It is updated as bytes are read.
1482 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1483 bits are read.
1484 NBITS is the number of bits to read.
1485 BITS_BIG_ENDIAN is taken directly from gdbarch.
1486
1487 This function returns the bits that were read. */
1488
1489 static unsigned int
1490 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1491 int nbits, int bits_big_endian)
1492 {
1493 unsigned int datum;
1494
1495 gdb_assert (nbits > 0 && nbits <= 8);
1496
1497 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1498 bits_big_endian);
1499 if (nbits > 0)
1500 {
1501 unsigned int more;
1502
1503 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1504 bits_big_endian);
1505 if (bits_big_endian)
1506 datum <<= nbits;
1507 else
1508 more <<= nbits;
1509 datum |= more;
1510 }
1511
1512 return datum;
1513 }
1514
1515 /* Write some bits into a buffer and move forward in the buffer.
1516
1517 DATUM is the bits to write. The low-order bits of DATUM are used.
1518 DEST is the destination buffer. It is updated as bytes are
1519 written.
1520 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1521 done.
1522 NBITS is the number of valid bits in DATUM.
1523 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1524
1525 static void
1526 insert_bits (unsigned int datum,
1527 gdb_byte *dest, unsigned int dest_offset_bits,
1528 int nbits, int bits_big_endian)
1529 {
1530 unsigned int mask;
1531
1532 gdb_assert (dest_offset_bits + nbits <= 8);
1533
1534 mask = (1 << nbits) - 1;
1535 if (bits_big_endian)
1536 {
1537 datum <<= 8 - (dest_offset_bits + nbits);
1538 mask <<= 8 - (dest_offset_bits + nbits);
1539 }
1540 else
1541 {
1542 datum <<= dest_offset_bits;
1543 mask <<= dest_offset_bits;
1544 }
1545
1546 gdb_assert ((datum & ~mask) == 0);
1547
1548 *dest = (*dest & ~mask) | datum;
1549 }
1550
1551 /* Copy bits from a source to a destination.
1552
1553 DEST is where the bits should be written.
1554 DEST_OFFSET_BITS is the bit offset into DEST.
1555 SOURCE is the source of bits.
1556 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1557 BIT_COUNT is the number of bits to copy.
1558 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1559
1560 static void
1561 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1562 const gdb_byte *source, unsigned int source_offset_bits,
1563 unsigned int bit_count,
1564 int bits_big_endian)
1565 {
1566 unsigned int dest_avail;
1567 int datum;
1568
1569 /* Reduce everything to byte-size pieces. */
1570 dest += dest_offset_bits / 8;
1571 dest_offset_bits %= 8;
1572 source += source_offset_bits / 8;
1573 source_offset_bits %= 8;
1574
1575 dest_avail = 8 - dest_offset_bits % 8;
1576
1577 /* See if we can fill the first destination byte. */
1578 if (dest_avail < bit_count)
1579 {
1580 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1581 bits_big_endian);
1582 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1583 ++dest;
1584 dest_offset_bits = 0;
1585 bit_count -= dest_avail;
1586 }
1587
1588 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1589 than 8 bits remaining. */
1590 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1591 for (; bit_count >= 8; bit_count -= 8)
1592 {
1593 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1594 *dest++ = (gdb_byte) datum;
1595 }
1596
1597 /* Finally, we may have a few leftover bits. */
1598 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1599 if (bit_count > 0)
1600 {
1601 datum = extract_bits (&source, &source_offset_bits, bit_count,
1602 bits_big_endian);
1603 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1604 }
1605 }
1606
1607 static void
1608 read_pieced_value (struct value *v)
1609 {
1610 int i;
1611 long offset = 0;
1612 ULONGEST bits_to_skip;
1613 gdb_byte *contents;
1614 struct piece_closure *c
1615 = (struct piece_closure *) value_computed_closure (v);
1616 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1617 size_t type_len;
1618 size_t buffer_size = 0;
1619 gdb_byte *buffer = NULL;
1620 struct cleanup *cleanup;
1621 int bits_big_endian
1622 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1623
1624 if (value_type (v) != value_enclosing_type (v))
1625 internal_error (__FILE__, __LINE__,
1626 _("Should not be able to create a lazy value with "
1627 "an enclosing type"));
1628
1629 cleanup = make_cleanup (free_current_contents, &buffer);
1630
1631 contents = value_contents_raw (v);
1632 bits_to_skip = 8 * value_offset (v);
1633 if (value_bitsize (v))
1634 {
1635 bits_to_skip += value_bitpos (v);
1636 type_len = value_bitsize (v);
1637 }
1638 else
1639 type_len = 8 * TYPE_LENGTH (value_type (v));
1640
1641 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1642 {
1643 struct dwarf_expr_piece *p = &c->pieces[i];
1644 size_t this_size, this_size_bits;
1645 long dest_offset_bits, source_offset_bits, source_offset;
1646 const gdb_byte *intermediate_buffer;
1647
1648 /* Compute size, source, and destination offsets for copying, in
1649 bits. */
1650 this_size_bits = p->size;
1651 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1652 {
1653 bits_to_skip -= this_size_bits;
1654 continue;
1655 }
1656 if (bits_to_skip > 0)
1657 {
1658 dest_offset_bits = 0;
1659 source_offset_bits = bits_to_skip;
1660 this_size_bits -= bits_to_skip;
1661 bits_to_skip = 0;
1662 }
1663 else
1664 {
1665 dest_offset_bits = offset;
1666 source_offset_bits = 0;
1667 }
1668 if (this_size_bits > type_len - offset)
1669 this_size_bits = type_len - offset;
1670
1671 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1672 source_offset = source_offset_bits / 8;
1673 if (buffer_size < this_size)
1674 {
1675 buffer_size = this_size;
1676 buffer = xrealloc (buffer, buffer_size);
1677 }
1678 intermediate_buffer = buffer;
1679
1680 /* Copy from the source to DEST_BUFFER. */
1681 switch (p->location)
1682 {
1683 case DWARF_VALUE_REGISTER:
1684 {
1685 struct gdbarch *arch = get_frame_arch (frame);
1686 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1687
1688 if (gdb_regnum != -1)
1689 {
1690 int optim, unavail;
1691 int reg_offset = source_offset;
1692
1693 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1694 && this_size < register_size (arch, gdb_regnum))
1695 {
1696 /* Big-endian, and we want less than full size. */
1697 reg_offset = register_size (arch, gdb_regnum) - this_size;
1698 /* We want the lower-order THIS_SIZE_BITS of the bytes
1699 we extract from the register. */
1700 source_offset_bits += 8 * this_size - this_size_bits;
1701 }
1702
1703 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1704 this_size, buffer,
1705 &optim, &unavail))
1706 {
1707 /* Just so garbage doesn't ever shine through. */
1708 memset (buffer, 0, this_size);
1709
1710 if (optim)
1711 mark_value_bits_optimized_out (v, offset, this_size_bits);
1712 if (unavail)
1713 mark_value_bits_unavailable (v, offset, this_size_bits);
1714 }
1715 }
1716 else
1717 {
1718 error (_("Unable to access DWARF register number %s"),
1719 paddress (arch, p->v.regno));
1720 }
1721 }
1722 break;
1723
1724 case DWARF_VALUE_MEMORY:
1725 read_value_memory (v, offset,
1726 p->v.mem.in_stack_memory,
1727 p->v.mem.addr + source_offset,
1728 buffer, this_size);
1729 break;
1730
1731 case DWARF_VALUE_STACK:
1732 {
1733 size_t n = this_size;
1734
1735 if (n > c->addr_size - source_offset)
1736 n = (c->addr_size >= source_offset
1737 ? c->addr_size - source_offset
1738 : 0);
1739 if (n == 0)
1740 {
1741 /* Nothing. */
1742 }
1743 else
1744 {
1745 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1746
1747 intermediate_buffer = val_bytes + source_offset;
1748 }
1749 }
1750 break;
1751
1752 case DWARF_VALUE_LITERAL:
1753 {
1754 size_t n = this_size;
1755
1756 if (n > p->v.literal.length - source_offset)
1757 n = (p->v.literal.length >= source_offset
1758 ? p->v.literal.length - source_offset
1759 : 0);
1760 if (n != 0)
1761 intermediate_buffer = p->v.literal.data + source_offset;
1762 }
1763 break;
1764
1765 /* These bits show up as zeros -- but do not cause the value
1766 to be considered optimized-out. */
1767 case DWARF_VALUE_IMPLICIT_POINTER:
1768 break;
1769
1770 case DWARF_VALUE_OPTIMIZED_OUT:
1771 mark_value_bits_optimized_out (v, offset, this_size_bits);
1772 break;
1773
1774 default:
1775 internal_error (__FILE__, __LINE__, _("invalid location type"));
1776 }
1777
1778 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1779 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1780 copy_bitwise (contents, dest_offset_bits,
1781 intermediate_buffer, source_offset_bits % 8,
1782 this_size_bits, bits_big_endian);
1783
1784 offset += this_size_bits;
1785 }
1786
1787 do_cleanups (cleanup);
1788 }
1789
1790 static void
1791 write_pieced_value (struct value *to, struct value *from)
1792 {
1793 int i;
1794 long offset = 0;
1795 ULONGEST bits_to_skip;
1796 const gdb_byte *contents;
1797 struct piece_closure *c
1798 = (struct piece_closure *) value_computed_closure (to);
1799 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1800 size_t type_len;
1801 size_t buffer_size = 0;
1802 gdb_byte *buffer = NULL;
1803 struct cleanup *cleanup;
1804 int bits_big_endian
1805 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1806
1807 if (frame == NULL)
1808 {
1809 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1810 return;
1811 }
1812
1813 cleanup = make_cleanup (free_current_contents, &buffer);
1814
1815 contents = value_contents (from);
1816 bits_to_skip = 8 * value_offset (to);
1817 if (value_bitsize (to))
1818 {
1819 bits_to_skip += value_bitpos (to);
1820 type_len = value_bitsize (to);
1821 }
1822 else
1823 type_len = 8 * TYPE_LENGTH (value_type (to));
1824
1825 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1826 {
1827 struct dwarf_expr_piece *p = &c->pieces[i];
1828 size_t this_size_bits, this_size;
1829 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1830 int need_bitwise;
1831 const gdb_byte *source_buffer;
1832
1833 this_size_bits = p->size;
1834 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1835 {
1836 bits_to_skip -= this_size_bits;
1837 continue;
1838 }
1839 if (this_size_bits > type_len - offset)
1840 this_size_bits = type_len - offset;
1841 if (bits_to_skip > 0)
1842 {
1843 dest_offset_bits = bits_to_skip;
1844 source_offset_bits = 0;
1845 this_size_bits -= bits_to_skip;
1846 bits_to_skip = 0;
1847 }
1848 else
1849 {
1850 dest_offset_bits = 0;
1851 source_offset_bits = offset;
1852 }
1853
1854 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1855 source_offset = source_offset_bits / 8;
1856 dest_offset = dest_offset_bits / 8;
1857 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1858 {
1859 source_buffer = contents + source_offset;
1860 need_bitwise = 0;
1861 }
1862 else
1863 {
1864 if (buffer_size < this_size)
1865 {
1866 buffer_size = this_size;
1867 buffer = xrealloc (buffer, buffer_size);
1868 }
1869 source_buffer = buffer;
1870 need_bitwise = 1;
1871 }
1872
1873 switch (p->location)
1874 {
1875 case DWARF_VALUE_REGISTER:
1876 {
1877 struct gdbarch *arch = get_frame_arch (frame);
1878 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1879
1880 if (gdb_regnum != -1)
1881 {
1882 int reg_offset = dest_offset;
1883
1884 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1885 && this_size <= register_size (arch, gdb_regnum))
1886 {
1887 /* Big-endian, and we want less than full size. */
1888 reg_offset = register_size (arch, gdb_regnum) - this_size;
1889 }
1890
1891 if (need_bitwise)
1892 {
1893 int optim, unavail;
1894
1895 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1896 this_size, buffer,
1897 &optim, &unavail))
1898 {
1899 if (optim)
1900 throw_error (OPTIMIZED_OUT_ERROR,
1901 _("Can't do read-modify-write to "
1902 "update bitfield; containing word "
1903 "has been optimized out"));
1904 if (unavail)
1905 throw_error (NOT_AVAILABLE_ERROR,
1906 _("Can't do read-modify-write to update "
1907 "bitfield; containing word "
1908 "is unavailable"));
1909 }
1910 copy_bitwise (buffer, dest_offset_bits,
1911 contents, source_offset_bits,
1912 this_size_bits,
1913 bits_big_endian);
1914 }
1915
1916 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1917 this_size, source_buffer);
1918 }
1919 else
1920 {
1921 error (_("Unable to write to DWARF register number %s"),
1922 paddress (arch, p->v.regno));
1923 }
1924 }
1925 break;
1926 case DWARF_VALUE_MEMORY:
1927 if (need_bitwise)
1928 {
1929 /* Only the first and last bytes can possibly have any
1930 bits reused. */
1931 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1932 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1933 buffer + this_size - 1, 1);
1934 copy_bitwise (buffer, dest_offset_bits,
1935 contents, source_offset_bits,
1936 this_size_bits,
1937 bits_big_endian);
1938 }
1939
1940 write_memory (p->v.mem.addr + dest_offset,
1941 source_buffer, this_size);
1942 break;
1943 default:
1944 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1945 break;
1946 }
1947 offset += this_size_bits;
1948 }
1949
1950 do_cleanups (cleanup);
1951 }
1952
1953 /* An implementation of an lval_funcs method to see whether a value is
1954 a synthetic pointer. */
1955
1956 static int
1957 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1958 int bit_length)
1959 {
1960 struct piece_closure *c
1961 = (struct piece_closure *) value_computed_closure (value);
1962 int i;
1963
1964 bit_offset += 8 * value_offset (value);
1965 if (value_bitsize (value))
1966 bit_offset += value_bitpos (value);
1967
1968 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1969 {
1970 struct dwarf_expr_piece *p = &c->pieces[i];
1971 size_t this_size_bits = p->size;
1972
1973 if (bit_offset > 0)
1974 {
1975 if (bit_offset >= this_size_bits)
1976 {
1977 bit_offset -= this_size_bits;
1978 continue;
1979 }
1980
1981 bit_length -= this_size_bits - bit_offset;
1982 bit_offset = 0;
1983 }
1984 else
1985 bit_length -= this_size_bits;
1986
1987 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1988 return 0;
1989 }
1990
1991 return 1;
1992 }
1993
1994 /* A wrapper function for get_frame_address_in_block. */
1995
1996 static CORE_ADDR
1997 get_frame_address_in_block_wrapper (void *baton)
1998 {
1999 return get_frame_address_in_block (baton);
2000 }
2001
2002 /* An implementation of an lval_funcs method to indirect through a
2003 pointer. This handles the synthetic pointer case when needed. */
2004
2005 static struct value *
2006 indirect_pieced_value (struct value *value)
2007 {
2008 struct piece_closure *c
2009 = (struct piece_closure *) value_computed_closure (value);
2010 struct type *type;
2011 struct frame_info *frame;
2012 struct dwarf2_locexpr_baton baton;
2013 int i, bit_offset, bit_length;
2014 struct dwarf_expr_piece *piece = NULL;
2015 LONGEST byte_offset;
2016 enum bfd_endian byte_order;
2017
2018 type = check_typedef (value_type (value));
2019 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2020 return NULL;
2021
2022 bit_length = 8 * TYPE_LENGTH (type);
2023 bit_offset = 8 * value_offset (value);
2024 if (value_bitsize (value))
2025 bit_offset += value_bitpos (value);
2026
2027 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2028 {
2029 struct dwarf_expr_piece *p = &c->pieces[i];
2030 size_t this_size_bits = p->size;
2031
2032 if (bit_offset > 0)
2033 {
2034 if (bit_offset >= this_size_bits)
2035 {
2036 bit_offset -= this_size_bits;
2037 continue;
2038 }
2039
2040 bit_length -= this_size_bits - bit_offset;
2041 bit_offset = 0;
2042 }
2043 else
2044 bit_length -= this_size_bits;
2045
2046 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2047 return NULL;
2048
2049 if (bit_length != 0)
2050 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2051
2052 piece = p;
2053 break;
2054 }
2055
2056 frame = get_selected_frame (_("No frame selected."));
2057
2058 /* This is an offset requested by GDB, such as value subscripts.
2059 However, due to how synthetic pointers are implemented, this is
2060 always presented to us as a pointer type. This means we have to
2061 sign-extend it manually as appropriate. Use raw
2062 extract_signed_integer directly rather than value_as_address and
2063 sign extend afterwards on architectures that would need it
2064 (mostly everywhere except MIPS, which has signed addresses) as
2065 the later would go through gdbarch_pointer_to_address and thus
2066 return a CORE_ADDR with high bits set on architectures that
2067 encode address spaces and other things in CORE_ADDR. */
2068 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2069 byte_offset = extract_signed_integer (value_contents (value),
2070 TYPE_LENGTH (type), byte_order);
2071 byte_offset += piece->v.ptr.offset;
2072
2073 gdb_assert (piece);
2074 baton
2075 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2076 get_frame_address_in_block_wrapper,
2077 frame);
2078
2079 if (baton.data != NULL)
2080 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2081 baton.data, baton.size, baton.per_cu,
2082 byte_offset);
2083
2084 {
2085 struct obstack temp_obstack;
2086 struct cleanup *cleanup;
2087 const gdb_byte *bytes;
2088 LONGEST len;
2089 struct value *result;
2090
2091 obstack_init (&temp_obstack);
2092 cleanup = make_cleanup_obstack_free (&temp_obstack);
2093
2094 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2095 &temp_obstack, &len);
2096 if (bytes == NULL)
2097 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2098 else
2099 {
2100 if (byte_offset < 0
2101 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2102 invalid_synthetic_pointer ();
2103 bytes += byte_offset;
2104 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2105 }
2106
2107 do_cleanups (cleanup);
2108 return result;
2109 }
2110 }
2111
2112 static void *
2113 copy_pieced_value_closure (const struct value *v)
2114 {
2115 struct piece_closure *c
2116 = (struct piece_closure *) value_computed_closure (v);
2117
2118 ++c->refc;
2119 return c;
2120 }
2121
2122 static void
2123 free_pieced_value_closure (struct value *v)
2124 {
2125 struct piece_closure *c
2126 = (struct piece_closure *) value_computed_closure (v);
2127
2128 --c->refc;
2129 if (c->refc == 0)
2130 {
2131 int i;
2132
2133 for (i = 0; i < c->n_pieces; ++i)
2134 if (c->pieces[i].location == DWARF_VALUE_STACK)
2135 value_free (c->pieces[i].v.value);
2136
2137 xfree (c->pieces);
2138 xfree (c);
2139 }
2140 }
2141
2142 /* Functions for accessing a variable described by DW_OP_piece. */
2143 static const struct lval_funcs pieced_value_funcs = {
2144 read_pieced_value,
2145 write_pieced_value,
2146 indirect_pieced_value,
2147 NULL, /* coerce_ref */
2148 check_pieced_synthetic_pointer,
2149 copy_pieced_value_closure,
2150 free_pieced_value_closure
2151 };
2152
2153 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2154
2155 const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2156 {
2157 dwarf_expr_read_addr_from_reg,
2158 dwarf_expr_get_reg_value,
2159 dwarf_expr_read_mem,
2160 dwarf_expr_frame_base,
2161 dwarf_expr_frame_cfa,
2162 dwarf_expr_frame_pc,
2163 dwarf_expr_tls_address,
2164 dwarf_expr_dwarf_call,
2165 dwarf_expr_get_base_type,
2166 dwarf_expr_push_dwarf_reg_entry_value,
2167 dwarf_expr_get_addr_index,
2168 dwarf_expr_get_obj_addr
2169 };
2170
2171 /* Evaluate a location description, starting at DATA and with length
2172 SIZE, to find the current location of variable of TYPE in the
2173 context of FRAME. BYTE_OFFSET is applied after the contents are
2174 computed. */
2175
2176 static struct value *
2177 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2178 const gdb_byte *data, size_t size,
2179 struct dwarf2_per_cu_data *per_cu,
2180 LONGEST byte_offset)
2181 {
2182 struct value *retval;
2183 struct dwarf_expr_baton baton;
2184 struct dwarf_expr_context *ctx;
2185 struct cleanup *old_chain, *value_chain;
2186 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2187
2188 if (byte_offset < 0)
2189 invalid_synthetic_pointer ();
2190
2191 if (size == 0)
2192 return allocate_optimized_out_value (type);
2193
2194 baton.frame = frame;
2195 baton.per_cu = per_cu;
2196 baton.obj_address = 0;
2197
2198 ctx = new_dwarf_expr_context ();
2199 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2200 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2201
2202 ctx->gdbarch = get_objfile_arch (objfile);
2203 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2204 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2205 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2206 ctx->baton = &baton;
2207 ctx->funcs = &dwarf_expr_ctx_funcs;
2208
2209 TRY
2210 {
2211 dwarf_expr_eval (ctx, data, size);
2212 }
2213 CATCH (ex, RETURN_MASK_ERROR)
2214 {
2215 if (ex.error == NOT_AVAILABLE_ERROR)
2216 {
2217 do_cleanups (old_chain);
2218 retval = allocate_value (type);
2219 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2220 return retval;
2221 }
2222 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2223 {
2224 if (entry_values_debug)
2225 exception_print (gdb_stdout, ex);
2226 do_cleanups (old_chain);
2227 return allocate_optimized_out_value (type);
2228 }
2229 else
2230 throw_exception (ex);
2231 }
2232 END_CATCH
2233
2234 if (ctx->num_pieces > 0)
2235 {
2236 struct piece_closure *c;
2237 struct frame_id frame_id = get_frame_id (frame);
2238 ULONGEST bit_size = 0;
2239 int i;
2240
2241 for (i = 0; i < ctx->num_pieces; ++i)
2242 bit_size += ctx->pieces[i].size;
2243 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2244 invalid_synthetic_pointer ();
2245
2246 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2247 ctx->addr_size);
2248 /* We must clean up the value chain after creating the piece
2249 closure but before allocating the result. */
2250 do_cleanups (value_chain);
2251 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2252 VALUE_FRAME_ID (retval) = frame_id;
2253 set_value_offset (retval, byte_offset);
2254 }
2255 else
2256 {
2257 switch (ctx->location)
2258 {
2259 case DWARF_VALUE_REGISTER:
2260 {
2261 struct gdbarch *arch = get_frame_arch (frame);
2262 int dwarf_regnum
2263 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2264 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2265
2266 if (byte_offset != 0)
2267 error (_("cannot use offset on synthetic pointer to register"));
2268 do_cleanups (value_chain);
2269 if (gdb_regnum == -1)
2270 error (_("Unable to access DWARF register number %d"),
2271 dwarf_regnum);
2272 retval = value_from_register (type, gdb_regnum, frame);
2273 if (value_optimized_out (retval))
2274 {
2275 struct value *tmp;
2276
2277 /* This means the register has undefined value / was
2278 not saved. As we're computing the location of some
2279 variable etc. in the program, not a value for
2280 inspecting a register ($pc, $sp, etc.), return a
2281 generic optimized out value instead, so that we show
2282 <optimized out> instead of <not saved>. */
2283 do_cleanups (value_chain);
2284 tmp = allocate_value (type);
2285 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2286 retval = tmp;
2287 }
2288 }
2289 break;
2290
2291 case DWARF_VALUE_MEMORY:
2292 {
2293 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2294 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2295
2296 do_cleanups (value_chain);
2297 retval = value_at_lazy (type, address + byte_offset);
2298 if (in_stack_memory)
2299 set_value_stack (retval, 1);
2300 }
2301 break;
2302
2303 case DWARF_VALUE_STACK:
2304 {
2305 struct value *value = dwarf_expr_fetch (ctx, 0);
2306 gdb_byte *contents;
2307 const gdb_byte *val_bytes;
2308 size_t n = TYPE_LENGTH (value_type (value));
2309
2310 if (byte_offset + TYPE_LENGTH (type) > n)
2311 invalid_synthetic_pointer ();
2312
2313 val_bytes = value_contents_all (value);
2314 val_bytes += byte_offset;
2315 n -= byte_offset;
2316
2317 /* Preserve VALUE because we are going to free values back
2318 to the mark, but we still need the value contents
2319 below. */
2320 value_incref (value);
2321 do_cleanups (value_chain);
2322 make_cleanup_value_free (value);
2323
2324 retval = allocate_value (type);
2325 contents = value_contents_raw (retval);
2326 if (n > TYPE_LENGTH (type))
2327 {
2328 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2329
2330 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2331 val_bytes += n - TYPE_LENGTH (type);
2332 n = TYPE_LENGTH (type);
2333 }
2334 memcpy (contents, val_bytes, n);
2335 }
2336 break;
2337
2338 case DWARF_VALUE_LITERAL:
2339 {
2340 bfd_byte *contents;
2341 const bfd_byte *ldata;
2342 size_t n = ctx->len;
2343
2344 if (byte_offset + TYPE_LENGTH (type) > n)
2345 invalid_synthetic_pointer ();
2346
2347 do_cleanups (value_chain);
2348 retval = allocate_value (type);
2349 contents = value_contents_raw (retval);
2350
2351 ldata = ctx->data + byte_offset;
2352 n -= byte_offset;
2353
2354 if (n > TYPE_LENGTH (type))
2355 {
2356 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2357
2358 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2359 ldata += n - TYPE_LENGTH (type);
2360 n = TYPE_LENGTH (type);
2361 }
2362 memcpy (contents, ldata, n);
2363 }
2364 break;
2365
2366 case DWARF_VALUE_OPTIMIZED_OUT:
2367 do_cleanups (value_chain);
2368 retval = allocate_optimized_out_value (type);
2369 break;
2370
2371 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2372 operation by execute_stack_op. */
2373 case DWARF_VALUE_IMPLICIT_POINTER:
2374 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2375 it can only be encountered when making a piece. */
2376 default:
2377 internal_error (__FILE__, __LINE__, _("invalid location type"));
2378 }
2379 }
2380
2381 set_value_initialized (retval, ctx->initialized);
2382
2383 do_cleanups (old_chain);
2384
2385 return retval;
2386 }
2387
2388 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2389 passes 0 as the byte_offset. */
2390
2391 struct value *
2392 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2393 const gdb_byte *data, size_t size,
2394 struct dwarf2_per_cu_data *per_cu)
2395 {
2396 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2397 }
2398
2399 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2400 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2401 context (location of a variable) and might be needed to evaluate the
2402 location expression.
2403 Returns 1 on success, 0 otherwise. */
2404
2405 static int
2406 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2407 CORE_ADDR addr,
2408 CORE_ADDR *valp)
2409 {
2410 struct dwarf_expr_context *ctx;
2411 struct dwarf_expr_baton baton;
2412 struct objfile *objfile;
2413 struct cleanup *cleanup;
2414
2415 if (dlbaton == NULL || dlbaton->size == 0)
2416 return 0;
2417
2418 ctx = new_dwarf_expr_context ();
2419 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2420
2421 baton.frame = get_selected_frame (NULL);
2422 baton.per_cu = dlbaton->per_cu;
2423 baton.obj_address = addr;
2424
2425 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2426
2427 ctx->gdbarch = get_objfile_arch (objfile);
2428 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2429 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2430 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2431 ctx->funcs = &dwarf_expr_ctx_funcs;
2432 ctx->baton = &baton;
2433
2434 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2435
2436 switch (ctx->location)
2437 {
2438 case DWARF_VALUE_REGISTER:
2439 case DWARF_VALUE_MEMORY:
2440 case DWARF_VALUE_STACK:
2441 *valp = dwarf_expr_fetch_address (ctx, 0);
2442 if (ctx->location == DWARF_VALUE_REGISTER)
2443 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2444 do_cleanups (cleanup);
2445 return 1;
2446 case DWARF_VALUE_LITERAL:
2447 *valp = extract_signed_integer (ctx->data, ctx->len,
2448 gdbarch_byte_order (ctx->gdbarch));
2449 do_cleanups (cleanup);
2450 return 1;
2451 /* Unsupported dwarf values. */
2452 case DWARF_VALUE_OPTIMIZED_OUT:
2453 case DWARF_VALUE_IMPLICIT_POINTER:
2454 break;
2455 }
2456
2457 do_cleanups (cleanup);
2458 return 0;
2459 }
2460
2461 /* See dwarf2loc.h. */
2462
2463 int
2464 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2465 struct property_addr_info *addr_stack,
2466 CORE_ADDR *value)
2467 {
2468 if (prop == NULL)
2469 return 0;
2470
2471 switch (prop->kind)
2472 {
2473 case PROP_LOCEXPR:
2474 {
2475 const struct dwarf2_property_baton *baton = prop->data.baton;
2476
2477 if (dwarf2_locexpr_baton_eval (&baton->locexpr, addr_stack->addr,
2478 value))
2479 {
2480 if (baton->referenced_type)
2481 {
2482 struct value *val = value_at (baton->referenced_type, *value);
2483
2484 *value = value_as_address (val);
2485 }
2486 return 1;
2487 }
2488 }
2489 break;
2490
2491 case PROP_LOCLIST:
2492 {
2493 struct dwarf2_property_baton *baton = prop->data.baton;
2494 struct frame_info *frame = get_selected_frame (NULL);
2495 CORE_ADDR pc = get_frame_address_in_block (frame);
2496 const gdb_byte *data;
2497 struct value *val;
2498 size_t size;
2499
2500 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2501 if (data != NULL)
2502 {
2503 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2504 size, baton->loclist.per_cu);
2505 if (!value_optimized_out (val))
2506 {
2507 *value = value_as_address (val);
2508 return 1;
2509 }
2510 }
2511 }
2512 break;
2513
2514 case PROP_CONST:
2515 *value = prop->data.const_val;
2516 return 1;
2517
2518 case PROP_ADDR_OFFSET:
2519 {
2520 struct dwarf2_property_baton *baton = prop->data.baton;
2521 struct property_addr_info *pinfo;
2522 struct value *val;
2523
2524 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2525 if (pinfo->type == baton->referenced_type)
2526 break;
2527 if (pinfo == NULL)
2528 error (_("cannot find reference address for offset property"));
2529 val = value_at (baton->offset_info.type,
2530 pinfo->addr + baton->offset_info.offset);
2531 *value = value_as_address (val);
2532 return 1;
2533 }
2534 }
2535
2536 return 0;
2537 }
2538
2539 /* See dwarf2loc.h. */
2540
2541 void
2542 dwarf2_compile_property_to_c (struct ui_file *stream,
2543 const char *result_name,
2544 struct gdbarch *gdbarch,
2545 unsigned char *registers_used,
2546 const struct dynamic_prop *prop,
2547 CORE_ADDR pc,
2548 struct symbol *sym)
2549 {
2550 struct dwarf2_property_baton *baton = prop->data.baton;
2551 const gdb_byte *data;
2552 size_t size;
2553 struct dwarf2_per_cu_data *per_cu;
2554
2555 if (prop->kind == PROP_LOCEXPR)
2556 {
2557 data = baton->locexpr.data;
2558 size = baton->locexpr.size;
2559 per_cu = baton->locexpr.per_cu;
2560 }
2561 else
2562 {
2563 gdb_assert (prop->kind == PROP_LOCLIST);
2564
2565 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2566 per_cu = baton->loclist.per_cu;
2567 }
2568
2569 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2570 gdbarch, registers_used,
2571 dwarf2_per_cu_addr_size (per_cu),
2572 data, data + size, per_cu);
2573 }
2574
2575 \f
2576 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2577
2578 struct needs_frame_baton
2579 {
2580 int needs_frame;
2581 struct dwarf2_per_cu_data *per_cu;
2582 };
2583
2584 /* Reads from registers do require a frame. */
2585 static CORE_ADDR
2586 needs_frame_read_addr_from_reg (void *baton, int regnum)
2587 {
2588 struct needs_frame_baton *nf_baton = baton;
2589
2590 nf_baton->needs_frame = 1;
2591 return 1;
2592 }
2593
2594 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2595 Reads from registers do require a frame. */
2596
2597 static struct value *
2598 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2599 {
2600 struct needs_frame_baton *nf_baton = baton;
2601
2602 nf_baton->needs_frame = 1;
2603 return value_zero (type, not_lval);
2604 }
2605
2606 /* Reads from memory do not require a frame. */
2607 static void
2608 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2609 {
2610 memset (buf, 0, len);
2611 }
2612
2613 /* Frame-relative accesses do require a frame. */
2614 static void
2615 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2616 {
2617 static gdb_byte lit0 = DW_OP_lit0;
2618 struct needs_frame_baton *nf_baton = baton;
2619
2620 *start = &lit0;
2621 *length = 1;
2622
2623 nf_baton->needs_frame = 1;
2624 }
2625
2626 /* CFA accesses require a frame. */
2627
2628 static CORE_ADDR
2629 needs_frame_frame_cfa (void *baton)
2630 {
2631 struct needs_frame_baton *nf_baton = baton;
2632
2633 nf_baton->needs_frame = 1;
2634 return 1;
2635 }
2636
2637 /* Thread-local accesses do require a frame. */
2638 static CORE_ADDR
2639 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2640 {
2641 struct needs_frame_baton *nf_baton = baton;
2642
2643 nf_baton->needs_frame = 1;
2644 return 1;
2645 }
2646
2647 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2648
2649 static void
2650 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2651 {
2652 struct needs_frame_baton *nf_baton = ctx->baton;
2653
2654 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2655 ctx->funcs->get_frame_pc, ctx->baton);
2656 }
2657
2658 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2659
2660 static void
2661 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2662 enum call_site_parameter_kind kind,
2663 union call_site_parameter_u kind_u, int deref_size)
2664 {
2665 struct needs_frame_baton *nf_baton = ctx->baton;
2666
2667 nf_baton->needs_frame = 1;
2668
2669 /* The expression may require some stub values on DWARF stack. */
2670 dwarf_expr_push_address (ctx, 0, 0);
2671 }
2672
2673 /* DW_OP_GNU_addr_index doesn't require a frame. */
2674
2675 static CORE_ADDR
2676 needs_get_addr_index (void *baton, unsigned int index)
2677 {
2678 /* Nothing to do. */
2679 return 1;
2680 }
2681
2682 /* DW_OP_push_object_address has a frame already passed through. */
2683
2684 static CORE_ADDR
2685 needs_get_obj_addr (void *baton)
2686 {
2687 /* Nothing to do. */
2688 return 1;
2689 }
2690
2691 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2692
2693 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2694 {
2695 needs_frame_read_addr_from_reg,
2696 needs_frame_get_reg_value,
2697 needs_frame_read_mem,
2698 needs_frame_frame_base,
2699 needs_frame_frame_cfa,
2700 needs_frame_frame_cfa, /* get_frame_pc */
2701 needs_frame_tls_address,
2702 needs_frame_dwarf_call,
2703 NULL, /* get_base_type */
2704 needs_dwarf_reg_entry_value,
2705 needs_get_addr_index,
2706 needs_get_obj_addr
2707 };
2708
2709 /* Return non-zero iff the location expression at DATA (length SIZE)
2710 requires a frame to evaluate. */
2711
2712 static int
2713 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2714 struct dwarf2_per_cu_data *per_cu)
2715 {
2716 struct needs_frame_baton baton;
2717 struct dwarf_expr_context *ctx;
2718 int in_reg;
2719 struct cleanup *old_chain;
2720 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2721
2722 baton.needs_frame = 0;
2723 baton.per_cu = per_cu;
2724
2725 ctx = new_dwarf_expr_context ();
2726 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2727 make_cleanup_value_free_to_mark (value_mark ());
2728
2729 ctx->gdbarch = get_objfile_arch (objfile);
2730 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2731 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2732 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2733 ctx->baton = &baton;
2734 ctx->funcs = &needs_frame_ctx_funcs;
2735
2736 dwarf_expr_eval (ctx, data, size);
2737
2738 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2739
2740 if (ctx->num_pieces > 0)
2741 {
2742 int i;
2743
2744 /* If the location has several pieces, and any of them are in
2745 registers, then we will need a frame to fetch them from. */
2746 for (i = 0; i < ctx->num_pieces; i++)
2747 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2748 in_reg = 1;
2749 }
2750
2751 do_cleanups (old_chain);
2752
2753 return baton.needs_frame || in_reg;
2754 }
2755
2756 /* A helper function that throws an unimplemented error mentioning a
2757 given DWARF operator. */
2758
2759 static void
2760 unimplemented (unsigned int op)
2761 {
2762 const char *name = get_DW_OP_name (op);
2763
2764 if (name)
2765 error (_("DWARF operator %s cannot be translated to an agent expression"),
2766 name);
2767 else
2768 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2769 "to an agent expression"),
2770 op);
2771 }
2772
2773 /* See dwarf2loc.h. */
2774
2775 int
2776 dwarf2_reg_to_regnum_or_error (struct gdbarch *arch, int dwarf_reg)
2777 {
2778 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2779 if (reg == -1)
2780 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2781 return reg;
2782 }
2783
2784 /* A helper function that emits an access to memory. ARCH is the
2785 target architecture. EXPR is the expression which we are building.
2786 NBITS is the number of bits we want to read. This emits the
2787 opcodes needed to read the memory and then extract the desired
2788 bits. */
2789
2790 static void
2791 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2792 {
2793 ULONGEST nbytes = (nbits + 7) / 8;
2794
2795 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2796
2797 if (expr->tracing)
2798 ax_trace_quick (expr, nbytes);
2799
2800 if (nbits <= 8)
2801 ax_simple (expr, aop_ref8);
2802 else if (nbits <= 16)
2803 ax_simple (expr, aop_ref16);
2804 else if (nbits <= 32)
2805 ax_simple (expr, aop_ref32);
2806 else
2807 ax_simple (expr, aop_ref64);
2808
2809 /* If we read exactly the number of bytes we wanted, we're done. */
2810 if (8 * nbytes == nbits)
2811 return;
2812
2813 if (gdbarch_bits_big_endian (arch))
2814 {
2815 /* On a bits-big-endian machine, we want the high-order
2816 NBITS. */
2817 ax_const_l (expr, 8 * nbytes - nbits);
2818 ax_simple (expr, aop_rsh_unsigned);
2819 }
2820 else
2821 {
2822 /* On a bits-little-endian box, we want the low-order NBITS. */
2823 ax_zero_ext (expr, nbits);
2824 }
2825 }
2826
2827 /* A helper function to return the frame's PC. */
2828
2829 static CORE_ADDR
2830 get_ax_pc (void *baton)
2831 {
2832 struct agent_expr *expr = baton;
2833
2834 return expr->scope;
2835 }
2836
2837 /* Compile a DWARF location expression to an agent expression.
2838
2839 EXPR is the agent expression we are building.
2840 LOC is the agent value we modify.
2841 ARCH is the architecture.
2842 ADDR_SIZE is the size of addresses, in bytes.
2843 OP_PTR is the start of the location expression.
2844 OP_END is one past the last byte of the location expression.
2845
2846 This will throw an exception for various kinds of errors -- for
2847 example, if the expression cannot be compiled, or if the expression
2848 is invalid. */
2849
2850 void
2851 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2852 struct gdbarch *arch, unsigned int addr_size,
2853 const gdb_byte *op_ptr, const gdb_byte *op_end,
2854 struct dwarf2_per_cu_data *per_cu)
2855 {
2856 struct cleanup *cleanups;
2857 int i, *offsets;
2858 VEC(int) *dw_labels = NULL, *patches = NULL;
2859 const gdb_byte * const base = op_ptr;
2860 const gdb_byte *previous_piece = op_ptr;
2861 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2862 ULONGEST bits_collected = 0;
2863 unsigned int addr_size_bits = 8 * addr_size;
2864 int bits_big_endian = gdbarch_bits_big_endian (arch);
2865
2866 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2867 cleanups = make_cleanup (xfree, offsets);
2868
2869 for (i = 0; i < op_end - op_ptr; ++i)
2870 offsets[i] = -1;
2871
2872 make_cleanup (VEC_cleanup (int), &dw_labels);
2873 make_cleanup (VEC_cleanup (int), &patches);
2874
2875 /* By default we are making an address. */
2876 loc->kind = axs_lvalue_memory;
2877
2878 while (op_ptr < op_end)
2879 {
2880 enum dwarf_location_atom op = *op_ptr;
2881 uint64_t uoffset, reg;
2882 int64_t offset;
2883 int i;
2884
2885 offsets[op_ptr - base] = expr->len;
2886 ++op_ptr;
2887
2888 /* Our basic approach to code generation is to map DWARF
2889 operations directly to AX operations. However, there are
2890 some differences.
2891
2892 First, DWARF works on address-sized units, but AX always uses
2893 LONGEST. For most operations we simply ignore this
2894 difference; instead we generate sign extensions as needed
2895 before division and comparison operations. It would be nice
2896 to omit the sign extensions, but there is no way to determine
2897 the size of the target's LONGEST. (This code uses the size
2898 of the host LONGEST in some cases -- that is a bug but it is
2899 difficult to fix.)
2900
2901 Second, some DWARF operations cannot be translated to AX.
2902 For these we simply fail. See
2903 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2904 switch (op)
2905 {
2906 case DW_OP_lit0:
2907 case DW_OP_lit1:
2908 case DW_OP_lit2:
2909 case DW_OP_lit3:
2910 case DW_OP_lit4:
2911 case DW_OP_lit5:
2912 case DW_OP_lit6:
2913 case DW_OP_lit7:
2914 case DW_OP_lit8:
2915 case DW_OP_lit9:
2916 case DW_OP_lit10:
2917 case DW_OP_lit11:
2918 case DW_OP_lit12:
2919 case DW_OP_lit13:
2920 case DW_OP_lit14:
2921 case DW_OP_lit15:
2922 case DW_OP_lit16:
2923 case DW_OP_lit17:
2924 case DW_OP_lit18:
2925 case DW_OP_lit19:
2926 case DW_OP_lit20:
2927 case DW_OP_lit21:
2928 case DW_OP_lit22:
2929 case DW_OP_lit23:
2930 case DW_OP_lit24:
2931 case DW_OP_lit25:
2932 case DW_OP_lit26:
2933 case DW_OP_lit27:
2934 case DW_OP_lit28:
2935 case DW_OP_lit29:
2936 case DW_OP_lit30:
2937 case DW_OP_lit31:
2938 ax_const_l (expr, op - DW_OP_lit0);
2939 break;
2940
2941 case DW_OP_addr:
2942 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2943 op_ptr += addr_size;
2944 /* Some versions of GCC emit DW_OP_addr before
2945 DW_OP_GNU_push_tls_address. In this case the value is an
2946 index, not an address. We don't support things like
2947 branching between the address and the TLS op. */
2948 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2949 uoffset += dwarf2_per_cu_text_offset (per_cu);
2950 ax_const_l (expr, uoffset);
2951 break;
2952
2953 case DW_OP_const1u:
2954 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2955 op_ptr += 1;
2956 break;
2957 case DW_OP_const1s:
2958 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2959 op_ptr += 1;
2960 break;
2961 case DW_OP_const2u:
2962 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2963 op_ptr += 2;
2964 break;
2965 case DW_OP_const2s:
2966 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2967 op_ptr += 2;
2968 break;
2969 case DW_OP_const4u:
2970 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2971 op_ptr += 4;
2972 break;
2973 case DW_OP_const4s:
2974 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2975 op_ptr += 4;
2976 break;
2977 case DW_OP_const8u:
2978 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2979 op_ptr += 8;
2980 break;
2981 case DW_OP_const8s:
2982 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2983 op_ptr += 8;
2984 break;
2985 case DW_OP_constu:
2986 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2987 ax_const_l (expr, uoffset);
2988 break;
2989 case DW_OP_consts:
2990 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2991 ax_const_l (expr, offset);
2992 break;
2993
2994 case DW_OP_reg0:
2995 case DW_OP_reg1:
2996 case DW_OP_reg2:
2997 case DW_OP_reg3:
2998 case DW_OP_reg4:
2999 case DW_OP_reg5:
3000 case DW_OP_reg6:
3001 case DW_OP_reg7:
3002 case DW_OP_reg8:
3003 case DW_OP_reg9:
3004 case DW_OP_reg10:
3005 case DW_OP_reg11:
3006 case DW_OP_reg12:
3007 case DW_OP_reg13:
3008 case DW_OP_reg14:
3009 case DW_OP_reg15:
3010 case DW_OP_reg16:
3011 case DW_OP_reg17:
3012 case DW_OP_reg18:
3013 case DW_OP_reg19:
3014 case DW_OP_reg20:
3015 case DW_OP_reg21:
3016 case DW_OP_reg22:
3017 case DW_OP_reg23:
3018 case DW_OP_reg24:
3019 case DW_OP_reg25:
3020 case DW_OP_reg26:
3021 case DW_OP_reg27:
3022 case DW_OP_reg28:
3023 case DW_OP_reg29:
3024 case DW_OP_reg30:
3025 case DW_OP_reg31:
3026 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3027 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3028 loc->kind = axs_lvalue_register;
3029 break;
3030
3031 case DW_OP_regx:
3032 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3033 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3034 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, reg);
3035 loc->kind = axs_lvalue_register;
3036 break;
3037
3038 case DW_OP_implicit_value:
3039 {
3040 uint64_t len;
3041
3042 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3043 if (op_ptr + len > op_end)
3044 error (_("DW_OP_implicit_value: too few bytes available."));
3045 if (len > sizeof (ULONGEST))
3046 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3047 (int) len);
3048
3049 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3050 byte_order));
3051 op_ptr += len;
3052 dwarf_expr_require_composition (op_ptr, op_end,
3053 "DW_OP_implicit_value");
3054
3055 loc->kind = axs_rvalue;
3056 }
3057 break;
3058
3059 case DW_OP_stack_value:
3060 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3061 loc->kind = axs_rvalue;
3062 break;
3063
3064 case DW_OP_breg0:
3065 case DW_OP_breg1:
3066 case DW_OP_breg2:
3067 case DW_OP_breg3:
3068 case DW_OP_breg4:
3069 case DW_OP_breg5:
3070 case DW_OP_breg6:
3071 case DW_OP_breg7:
3072 case DW_OP_breg8:
3073 case DW_OP_breg9:
3074 case DW_OP_breg10:
3075 case DW_OP_breg11:
3076 case DW_OP_breg12:
3077 case DW_OP_breg13:
3078 case DW_OP_breg14:
3079 case DW_OP_breg15:
3080 case DW_OP_breg16:
3081 case DW_OP_breg17:
3082 case DW_OP_breg18:
3083 case DW_OP_breg19:
3084 case DW_OP_breg20:
3085 case DW_OP_breg21:
3086 case DW_OP_breg22:
3087 case DW_OP_breg23:
3088 case DW_OP_breg24:
3089 case DW_OP_breg25:
3090 case DW_OP_breg26:
3091 case DW_OP_breg27:
3092 case DW_OP_breg28:
3093 case DW_OP_breg29:
3094 case DW_OP_breg30:
3095 case DW_OP_breg31:
3096 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3097 i = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3098 ax_reg (expr, i);
3099 if (offset != 0)
3100 {
3101 ax_const_l (expr, offset);
3102 ax_simple (expr, aop_add);
3103 }
3104 break;
3105 case DW_OP_bregx:
3106 {
3107 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3108 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3109 i = dwarf2_reg_to_regnum_or_error (arch, reg);
3110 ax_reg (expr, i);
3111 if (offset != 0)
3112 {
3113 ax_const_l (expr, offset);
3114 ax_simple (expr, aop_add);
3115 }
3116 }
3117 break;
3118 case DW_OP_fbreg:
3119 {
3120 const gdb_byte *datastart;
3121 size_t datalen;
3122 const struct block *b;
3123 struct symbol *framefunc;
3124
3125 b = block_for_pc (expr->scope);
3126
3127 if (!b)
3128 error (_("No block found for address"));
3129
3130 framefunc = block_linkage_function (b);
3131
3132 if (!framefunc)
3133 error (_("No function found for block"));
3134
3135 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3136 &datastart, &datalen);
3137
3138 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3139 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3140 datastart + datalen, per_cu);
3141 if (loc->kind == axs_lvalue_register)
3142 require_rvalue (expr, loc);
3143
3144 if (offset != 0)
3145 {
3146 ax_const_l (expr, offset);
3147 ax_simple (expr, aop_add);
3148 }
3149
3150 loc->kind = axs_lvalue_memory;
3151 }
3152 break;
3153
3154 case DW_OP_dup:
3155 ax_simple (expr, aop_dup);
3156 break;
3157
3158 case DW_OP_drop:
3159 ax_simple (expr, aop_pop);
3160 break;
3161
3162 case DW_OP_pick:
3163 offset = *op_ptr++;
3164 ax_pick (expr, offset);
3165 break;
3166
3167 case DW_OP_swap:
3168 ax_simple (expr, aop_swap);
3169 break;
3170
3171 case DW_OP_over:
3172 ax_pick (expr, 1);
3173 break;
3174
3175 case DW_OP_rot:
3176 ax_simple (expr, aop_rot);
3177 break;
3178
3179 case DW_OP_deref:
3180 case DW_OP_deref_size:
3181 {
3182 int size;
3183
3184 if (op == DW_OP_deref_size)
3185 size = *op_ptr++;
3186 else
3187 size = addr_size;
3188
3189 if (size != 1 && size != 2 && size != 4 && size != 8)
3190 error (_("Unsupported size %d in %s"),
3191 size, get_DW_OP_name (op));
3192 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3193 }
3194 break;
3195
3196 case DW_OP_abs:
3197 /* Sign extend the operand. */
3198 ax_ext (expr, addr_size_bits);
3199 ax_simple (expr, aop_dup);
3200 ax_const_l (expr, 0);
3201 ax_simple (expr, aop_less_signed);
3202 ax_simple (expr, aop_log_not);
3203 i = ax_goto (expr, aop_if_goto);
3204 /* We have to emit 0 - X. */
3205 ax_const_l (expr, 0);
3206 ax_simple (expr, aop_swap);
3207 ax_simple (expr, aop_sub);
3208 ax_label (expr, i, expr->len);
3209 break;
3210
3211 case DW_OP_neg:
3212 /* No need to sign extend here. */
3213 ax_const_l (expr, 0);
3214 ax_simple (expr, aop_swap);
3215 ax_simple (expr, aop_sub);
3216 break;
3217
3218 case DW_OP_not:
3219 /* Sign extend the operand. */
3220 ax_ext (expr, addr_size_bits);
3221 ax_simple (expr, aop_bit_not);
3222 break;
3223
3224 case DW_OP_plus_uconst:
3225 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3226 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3227 but we micro-optimize anyhow. */
3228 if (reg != 0)
3229 {
3230 ax_const_l (expr, reg);
3231 ax_simple (expr, aop_add);
3232 }
3233 break;
3234
3235 case DW_OP_and:
3236 ax_simple (expr, aop_bit_and);
3237 break;
3238
3239 case DW_OP_div:
3240 /* Sign extend the operands. */
3241 ax_ext (expr, addr_size_bits);
3242 ax_simple (expr, aop_swap);
3243 ax_ext (expr, addr_size_bits);
3244 ax_simple (expr, aop_swap);
3245 ax_simple (expr, aop_div_signed);
3246 break;
3247
3248 case DW_OP_minus:
3249 ax_simple (expr, aop_sub);
3250 break;
3251
3252 case DW_OP_mod:
3253 ax_simple (expr, aop_rem_unsigned);
3254 break;
3255
3256 case DW_OP_mul:
3257 ax_simple (expr, aop_mul);
3258 break;
3259
3260 case DW_OP_or:
3261 ax_simple (expr, aop_bit_or);
3262 break;
3263
3264 case DW_OP_plus:
3265 ax_simple (expr, aop_add);
3266 break;
3267
3268 case DW_OP_shl:
3269 ax_simple (expr, aop_lsh);
3270 break;
3271
3272 case DW_OP_shr:
3273 ax_simple (expr, aop_rsh_unsigned);
3274 break;
3275
3276 case DW_OP_shra:
3277 ax_simple (expr, aop_rsh_signed);
3278 break;
3279
3280 case DW_OP_xor:
3281 ax_simple (expr, aop_bit_xor);
3282 break;
3283
3284 case DW_OP_le:
3285 /* Sign extend the operands. */
3286 ax_ext (expr, addr_size_bits);
3287 ax_simple (expr, aop_swap);
3288 ax_ext (expr, addr_size_bits);
3289 /* Note no swap here: A <= B is !(B < A). */
3290 ax_simple (expr, aop_less_signed);
3291 ax_simple (expr, aop_log_not);
3292 break;
3293
3294 case DW_OP_ge:
3295 /* Sign extend the operands. */
3296 ax_ext (expr, addr_size_bits);
3297 ax_simple (expr, aop_swap);
3298 ax_ext (expr, addr_size_bits);
3299 ax_simple (expr, aop_swap);
3300 /* A >= B is !(A < B). */
3301 ax_simple (expr, aop_less_signed);
3302 ax_simple (expr, aop_log_not);
3303 break;
3304
3305 case DW_OP_eq:
3306 /* Sign extend the operands. */
3307 ax_ext (expr, addr_size_bits);
3308 ax_simple (expr, aop_swap);
3309 ax_ext (expr, addr_size_bits);
3310 /* No need for a second swap here. */
3311 ax_simple (expr, aop_equal);
3312 break;
3313
3314 case DW_OP_lt:
3315 /* Sign extend the operands. */
3316 ax_ext (expr, addr_size_bits);
3317 ax_simple (expr, aop_swap);
3318 ax_ext (expr, addr_size_bits);
3319 ax_simple (expr, aop_swap);
3320 ax_simple (expr, aop_less_signed);
3321 break;
3322
3323 case DW_OP_gt:
3324 /* Sign extend the operands. */
3325 ax_ext (expr, addr_size_bits);
3326 ax_simple (expr, aop_swap);
3327 ax_ext (expr, addr_size_bits);
3328 /* Note no swap here: A > B is B < A. */
3329 ax_simple (expr, aop_less_signed);
3330 break;
3331
3332 case DW_OP_ne:
3333 /* Sign extend the operands. */
3334 ax_ext (expr, addr_size_bits);
3335 ax_simple (expr, aop_swap);
3336 ax_ext (expr, addr_size_bits);
3337 /* No need for a swap here. */
3338 ax_simple (expr, aop_equal);
3339 ax_simple (expr, aop_log_not);
3340 break;
3341
3342 case DW_OP_call_frame_cfa:
3343 {
3344 int regnum;
3345 CORE_ADDR text_offset;
3346 LONGEST off;
3347 const gdb_byte *cfa_start, *cfa_end;
3348
3349 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3350 &regnum, &off,
3351 &text_offset, &cfa_start, &cfa_end))
3352 {
3353 /* Register. */
3354 ax_reg (expr, regnum);
3355 if (off != 0)
3356 {
3357 ax_const_l (expr, off);
3358 ax_simple (expr, aop_add);
3359 }
3360 }
3361 else
3362 {
3363 /* Another expression. */
3364 ax_const_l (expr, text_offset);
3365 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3366 cfa_start, cfa_end, per_cu);
3367 }
3368
3369 loc->kind = axs_lvalue_memory;
3370 }
3371 break;
3372
3373 case DW_OP_GNU_push_tls_address:
3374 unimplemented (op);
3375 break;
3376
3377 case DW_OP_push_object_address:
3378 unimplemented (op);
3379 break;
3380
3381 case DW_OP_skip:
3382 offset = extract_signed_integer (op_ptr, 2, byte_order);
3383 op_ptr += 2;
3384 i = ax_goto (expr, aop_goto);
3385 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3386 VEC_safe_push (int, patches, i);
3387 break;
3388
3389 case DW_OP_bra:
3390 offset = extract_signed_integer (op_ptr, 2, byte_order);
3391 op_ptr += 2;
3392 /* Zero extend the operand. */
3393 ax_zero_ext (expr, addr_size_bits);
3394 i = ax_goto (expr, aop_if_goto);
3395 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3396 VEC_safe_push (int, patches, i);
3397 break;
3398
3399 case DW_OP_nop:
3400 break;
3401
3402 case DW_OP_piece:
3403 case DW_OP_bit_piece:
3404 {
3405 uint64_t size, offset;
3406
3407 if (op_ptr - 1 == previous_piece)
3408 error (_("Cannot translate empty pieces to agent expressions"));
3409 previous_piece = op_ptr - 1;
3410
3411 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3412 if (op == DW_OP_piece)
3413 {
3414 size *= 8;
3415 offset = 0;
3416 }
3417 else
3418 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3419
3420 if (bits_collected + size > 8 * sizeof (LONGEST))
3421 error (_("Expression pieces exceed word size"));
3422
3423 /* Access the bits. */
3424 switch (loc->kind)
3425 {
3426 case axs_lvalue_register:
3427 ax_reg (expr, loc->u.reg);
3428 break;
3429
3430 case axs_lvalue_memory:
3431 /* Offset the pointer, if needed. */
3432 if (offset > 8)
3433 {
3434 ax_const_l (expr, offset / 8);
3435 ax_simple (expr, aop_add);
3436 offset %= 8;
3437 }
3438 access_memory (arch, expr, size);
3439 break;
3440 }
3441
3442 /* For a bits-big-endian target, shift up what we already
3443 have. For a bits-little-endian target, shift up the
3444 new data. Note that there is a potential bug here if
3445 the DWARF expression leaves multiple values on the
3446 stack. */
3447 if (bits_collected > 0)
3448 {
3449 if (bits_big_endian)
3450 {
3451 ax_simple (expr, aop_swap);
3452 ax_const_l (expr, size);
3453 ax_simple (expr, aop_lsh);
3454 /* We don't need a second swap here, because
3455 aop_bit_or is symmetric. */
3456 }
3457 else
3458 {
3459 ax_const_l (expr, size);
3460 ax_simple (expr, aop_lsh);
3461 }
3462 ax_simple (expr, aop_bit_or);
3463 }
3464
3465 bits_collected += size;
3466 loc->kind = axs_rvalue;
3467 }
3468 break;
3469
3470 case DW_OP_GNU_uninit:
3471 unimplemented (op);
3472
3473 case DW_OP_call2:
3474 case DW_OP_call4:
3475 {
3476 struct dwarf2_locexpr_baton block;
3477 int size = (op == DW_OP_call2 ? 2 : 4);
3478 cu_offset offset;
3479
3480 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3481 op_ptr += size;
3482
3483 offset.cu_off = uoffset;
3484 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3485 get_ax_pc, expr);
3486
3487 /* DW_OP_call_ref is currently not supported. */
3488 gdb_assert (block.per_cu == per_cu);
3489
3490 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3491 block.data, block.data + block.size,
3492 per_cu);
3493 }
3494 break;
3495
3496 case DW_OP_call_ref:
3497 unimplemented (op);
3498
3499 default:
3500 unimplemented (op);
3501 }
3502 }
3503
3504 /* Patch all the branches we emitted. */
3505 for (i = 0; i < VEC_length (int, patches); ++i)
3506 {
3507 int targ = offsets[VEC_index (int, dw_labels, i)];
3508 if (targ == -1)
3509 internal_error (__FILE__, __LINE__, _("invalid label"));
3510 ax_label (expr, VEC_index (int, patches, i), targ);
3511 }
3512
3513 do_cleanups (cleanups);
3514 }
3515
3516 \f
3517 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3518 evaluator to calculate the location. */
3519 static struct value *
3520 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3521 {
3522 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3523 struct value *val;
3524
3525 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3526 dlbaton->size, dlbaton->per_cu);
3527
3528 return val;
3529 }
3530
3531 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3532 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3533 will be thrown. */
3534
3535 static struct value *
3536 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3537 {
3538 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3539
3540 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3541 dlbaton->size);
3542 }
3543
3544 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3545 static int
3546 locexpr_read_needs_frame (struct symbol *symbol)
3547 {
3548 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3549
3550 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3551 dlbaton->per_cu);
3552 }
3553
3554 /* Return true if DATA points to the end of a piece. END is one past
3555 the last byte in the expression. */
3556
3557 static int
3558 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3559 {
3560 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3561 }
3562
3563 /* Helper for locexpr_describe_location_piece that finds the name of a
3564 DWARF register. */
3565
3566 static const char *
3567 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3568 {
3569 int regnum;
3570
3571 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3572 return gdbarch_register_name (gdbarch, regnum);
3573 }
3574
3575 /* Nicely describe a single piece of a location, returning an updated
3576 position in the bytecode sequence. This function cannot recognize
3577 all locations; if a location is not recognized, it simply returns
3578 DATA. If there is an error during reading, e.g. we run off the end
3579 of the buffer, an error is thrown. */
3580
3581 static const gdb_byte *
3582 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3583 CORE_ADDR addr, struct objfile *objfile,
3584 struct dwarf2_per_cu_data *per_cu,
3585 const gdb_byte *data, const gdb_byte *end,
3586 unsigned int addr_size)
3587 {
3588 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3589 size_t leb128_size;
3590
3591 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3592 {
3593 fprintf_filtered (stream, _("a variable in $%s"),
3594 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3595 data += 1;
3596 }
3597 else if (data[0] == DW_OP_regx)
3598 {
3599 uint64_t reg;
3600
3601 data = safe_read_uleb128 (data + 1, end, &reg);
3602 fprintf_filtered (stream, _("a variable in $%s"),
3603 locexpr_regname (gdbarch, reg));
3604 }
3605 else if (data[0] == DW_OP_fbreg)
3606 {
3607 const struct block *b;
3608 struct symbol *framefunc;
3609 int frame_reg = 0;
3610 int64_t frame_offset;
3611 const gdb_byte *base_data, *new_data, *save_data = data;
3612 size_t base_size;
3613 int64_t base_offset = 0;
3614
3615 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3616 if (!piece_end_p (new_data, end))
3617 return data;
3618 data = new_data;
3619
3620 b = block_for_pc (addr);
3621
3622 if (!b)
3623 error (_("No block found for address for symbol \"%s\"."),
3624 SYMBOL_PRINT_NAME (symbol));
3625
3626 framefunc = block_linkage_function (b);
3627
3628 if (!framefunc)
3629 error (_("No function found for block for symbol \"%s\"."),
3630 SYMBOL_PRINT_NAME (symbol));
3631
3632 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3633
3634 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3635 {
3636 const gdb_byte *buf_end;
3637
3638 frame_reg = base_data[0] - DW_OP_breg0;
3639 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3640 &base_offset);
3641 if (buf_end != base_data + base_size)
3642 error (_("Unexpected opcode after "
3643 "DW_OP_breg%u for symbol \"%s\"."),
3644 frame_reg, SYMBOL_PRINT_NAME (symbol));
3645 }
3646 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3647 {
3648 /* The frame base is just the register, with no offset. */
3649 frame_reg = base_data[0] - DW_OP_reg0;
3650 base_offset = 0;
3651 }
3652 else
3653 {
3654 /* We don't know what to do with the frame base expression,
3655 so we can't trace this variable; give up. */
3656 return save_data;
3657 }
3658
3659 fprintf_filtered (stream,
3660 _("a variable at frame base reg $%s offset %s+%s"),
3661 locexpr_regname (gdbarch, frame_reg),
3662 plongest (base_offset), plongest (frame_offset));
3663 }
3664 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3665 && piece_end_p (data, end))
3666 {
3667 int64_t offset;
3668
3669 data = safe_read_sleb128 (data + 1, end, &offset);
3670
3671 fprintf_filtered (stream,
3672 _("a variable at offset %s from base reg $%s"),
3673 plongest (offset),
3674 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3675 }
3676
3677 /* The location expression for a TLS variable looks like this (on a
3678 64-bit LE machine):
3679
3680 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3681 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3682
3683 0x3 is the encoding for DW_OP_addr, which has an operand as long
3684 as the size of an address on the target machine (here is 8
3685 bytes). Note that more recent version of GCC emit DW_OP_const4u
3686 or DW_OP_const8u, depending on address size, rather than
3687 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3688 The operand represents the offset at which the variable is within
3689 the thread local storage. */
3690
3691 else if (data + 1 + addr_size < end
3692 && (data[0] == DW_OP_addr
3693 || (addr_size == 4 && data[0] == DW_OP_const4u)
3694 || (addr_size == 8 && data[0] == DW_OP_const8u))
3695 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3696 && piece_end_p (data + 2 + addr_size, end))
3697 {
3698 ULONGEST offset;
3699 offset = extract_unsigned_integer (data + 1, addr_size,
3700 gdbarch_byte_order (gdbarch));
3701
3702 fprintf_filtered (stream,
3703 _("a thread-local variable at offset 0x%s "
3704 "in the thread-local storage for `%s'"),
3705 phex_nz (offset, addr_size), objfile_name (objfile));
3706
3707 data += 1 + addr_size + 1;
3708 }
3709
3710 /* With -gsplit-dwarf a TLS variable can also look like this:
3711 DW_AT_location : 3 byte block: fc 4 e0
3712 (DW_OP_GNU_const_index: 4;
3713 DW_OP_GNU_push_tls_address) */
3714 else if (data + 3 <= end
3715 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3716 && data[0] == DW_OP_GNU_const_index
3717 && leb128_size > 0
3718 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3719 && piece_end_p (data + 2 + leb128_size, end))
3720 {
3721 uint64_t offset;
3722
3723 data = safe_read_uleb128 (data + 1, end, &offset);
3724 offset = dwarf2_read_addr_index (per_cu, offset);
3725 fprintf_filtered (stream,
3726 _("a thread-local variable at offset 0x%s "
3727 "in the thread-local storage for `%s'"),
3728 phex_nz (offset, addr_size), objfile_name (objfile));
3729 ++data;
3730 }
3731
3732 else if (data[0] >= DW_OP_lit0
3733 && data[0] <= DW_OP_lit31
3734 && data + 1 < end
3735 && data[1] == DW_OP_stack_value)
3736 {
3737 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3738 data += 2;
3739 }
3740
3741 return data;
3742 }
3743
3744 /* Disassemble an expression, stopping at the end of a piece or at the
3745 end of the expression. Returns a pointer to the next unread byte
3746 in the input expression. If ALL is nonzero, then this function
3747 will keep going until it reaches the end of the expression.
3748 If there is an error during reading, e.g. we run off the end
3749 of the buffer, an error is thrown. */
3750
3751 static const gdb_byte *
3752 disassemble_dwarf_expression (struct ui_file *stream,
3753 struct gdbarch *arch, unsigned int addr_size,
3754 int offset_size, const gdb_byte *start,
3755 const gdb_byte *data, const gdb_byte *end,
3756 int indent, int all,
3757 struct dwarf2_per_cu_data *per_cu)
3758 {
3759 while (data < end
3760 && (all
3761 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3762 {
3763 enum dwarf_location_atom op = *data++;
3764 uint64_t ul;
3765 int64_t l;
3766 const char *name;
3767
3768 name = get_DW_OP_name (op);
3769
3770 if (!name)
3771 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3772 op, (long) (data - 1 - start));
3773 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3774 (long) (data - 1 - start), name);
3775
3776 switch (op)
3777 {
3778 case DW_OP_addr:
3779 ul = extract_unsigned_integer (data, addr_size,
3780 gdbarch_byte_order (arch));
3781 data += addr_size;
3782 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3783 break;
3784
3785 case DW_OP_const1u:
3786 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3787 data += 1;
3788 fprintf_filtered (stream, " %s", pulongest (ul));
3789 break;
3790 case DW_OP_const1s:
3791 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3792 data += 1;
3793 fprintf_filtered (stream, " %s", plongest (l));
3794 break;
3795 case DW_OP_const2u:
3796 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3797 data += 2;
3798 fprintf_filtered (stream, " %s", pulongest (ul));
3799 break;
3800 case DW_OP_const2s:
3801 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3802 data += 2;
3803 fprintf_filtered (stream, " %s", plongest (l));
3804 break;
3805 case DW_OP_const4u:
3806 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3807 data += 4;
3808 fprintf_filtered (stream, " %s", pulongest (ul));
3809 break;
3810 case DW_OP_const4s:
3811 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3812 data += 4;
3813 fprintf_filtered (stream, " %s", plongest (l));
3814 break;
3815 case DW_OP_const8u:
3816 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3817 data += 8;
3818 fprintf_filtered (stream, " %s", pulongest (ul));
3819 break;
3820 case DW_OP_const8s:
3821 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3822 data += 8;
3823 fprintf_filtered (stream, " %s", plongest (l));
3824 break;
3825 case DW_OP_constu:
3826 data = safe_read_uleb128 (data, end, &ul);
3827 fprintf_filtered (stream, " %s", pulongest (ul));
3828 break;
3829 case DW_OP_consts:
3830 data = safe_read_sleb128 (data, end, &l);
3831 fprintf_filtered (stream, " %s", plongest (l));
3832 break;
3833
3834 case DW_OP_reg0:
3835 case DW_OP_reg1:
3836 case DW_OP_reg2:
3837 case DW_OP_reg3:
3838 case DW_OP_reg4:
3839 case DW_OP_reg5:
3840 case DW_OP_reg6:
3841 case DW_OP_reg7:
3842 case DW_OP_reg8:
3843 case DW_OP_reg9:
3844 case DW_OP_reg10:
3845 case DW_OP_reg11:
3846 case DW_OP_reg12:
3847 case DW_OP_reg13:
3848 case DW_OP_reg14:
3849 case DW_OP_reg15:
3850 case DW_OP_reg16:
3851 case DW_OP_reg17:
3852 case DW_OP_reg18:
3853 case DW_OP_reg19:
3854 case DW_OP_reg20:
3855 case DW_OP_reg21:
3856 case DW_OP_reg22:
3857 case DW_OP_reg23:
3858 case DW_OP_reg24:
3859 case DW_OP_reg25:
3860 case DW_OP_reg26:
3861 case DW_OP_reg27:
3862 case DW_OP_reg28:
3863 case DW_OP_reg29:
3864 case DW_OP_reg30:
3865 case DW_OP_reg31:
3866 fprintf_filtered (stream, " [$%s]",
3867 locexpr_regname (arch, op - DW_OP_reg0));
3868 break;
3869
3870 case DW_OP_regx:
3871 data = safe_read_uleb128 (data, end, &ul);
3872 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3873 locexpr_regname (arch, (int) ul));
3874 break;
3875
3876 case DW_OP_implicit_value:
3877 data = safe_read_uleb128 (data, end, &ul);
3878 data += ul;
3879 fprintf_filtered (stream, " %s", pulongest (ul));
3880 break;
3881
3882 case DW_OP_breg0:
3883 case DW_OP_breg1:
3884 case DW_OP_breg2:
3885 case DW_OP_breg3:
3886 case DW_OP_breg4:
3887 case DW_OP_breg5:
3888 case DW_OP_breg6:
3889 case DW_OP_breg7:
3890 case DW_OP_breg8:
3891 case DW_OP_breg9:
3892 case DW_OP_breg10:
3893 case DW_OP_breg11:
3894 case DW_OP_breg12:
3895 case DW_OP_breg13:
3896 case DW_OP_breg14:
3897 case DW_OP_breg15:
3898 case DW_OP_breg16:
3899 case DW_OP_breg17:
3900 case DW_OP_breg18:
3901 case DW_OP_breg19:
3902 case DW_OP_breg20:
3903 case DW_OP_breg21:
3904 case DW_OP_breg22:
3905 case DW_OP_breg23:
3906 case DW_OP_breg24:
3907 case DW_OP_breg25:
3908 case DW_OP_breg26:
3909 case DW_OP_breg27:
3910 case DW_OP_breg28:
3911 case DW_OP_breg29:
3912 case DW_OP_breg30:
3913 case DW_OP_breg31:
3914 data = safe_read_sleb128 (data, end, &l);
3915 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3916 locexpr_regname (arch, op - DW_OP_breg0));
3917 break;
3918
3919 case DW_OP_bregx:
3920 data = safe_read_uleb128 (data, end, &ul);
3921 data = safe_read_sleb128 (data, end, &l);
3922 fprintf_filtered (stream, " register %s [$%s] offset %s",
3923 pulongest (ul),
3924 locexpr_regname (arch, (int) ul),
3925 plongest (l));
3926 break;
3927
3928 case DW_OP_fbreg:
3929 data = safe_read_sleb128 (data, end, &l);
3930 fprintf_filtered (stream, " %s", plongest (l));
3931 break;
3932
3933 case DW_OP_xderef_size:
3934 case DW_OP_deref_size:
3935 case DW_OP_pick:
3936 fprintf_filtered (stream, " %d", *data);
3937 ++data;
3938 break;
3939
3940 case DW_OP_plus_uconst:
3941 data = safe_read_uleb128 (data, end, &ul);
3942 fprintf_filtered (stream, " %s", pulongest (ul));
3943 break;
3944
3945 case DW_OP_skip:
3946 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3947 data += 2;
3948 fprintf_filtered (stream, " to %ld",
3949 (long) (data + l - start));
3950 break;
3951
3952 case DW_OP_bra:
3953 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3954 data += 2;
3955 fprintf_filtered (stream, " %ld",
3956 (long) (data + l - start));
3957 break;
3958
3959 case DW_OP_call2:
3960 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3961 data += 2;
3962 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3963 break;
3964
3965 case DW_OP_call4:
3966 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3967 data += 4;
3968 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3969 break;
3970
3971 case DW_OP_call_ref:
3972 ul = extract_unsigned_integer (data, offset_size,
3973 gdbarch_byte_order (arch));
3974 data += offset_size;
3975 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3976 break;
3977
3978 case DW_OP_piece:
3979 data = safe_read_uleb128 (data, end, &ul);
3980 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3981 break;
3982
3983 case DW_OP_bit_piece:
3984 {
3985 uint64_t offset;
3986
3987 data = safe_read_uleb128 (data, end, &ul);
3988 data = safe_read_uleb128 (data, end, &offset);
3989 fprintf_filtered (stream, " size %s offset %s (bits)",
3990 pulongest (ul), pulongest (offset));
3991 }
3992 break;
3993
3994 case DW_OP_GNU_implicit_pointer:
3995 {
3996 ul = extract_unsigned_integer (data, offset_size,
3997 gdbarch_byte_order (arch));
3998 data += offset_size;
3999
4000 data = safe_read_sleb128 (data, end, &l);
4001
4002 fprintf_filtered (stream, " DIE %s offset %s",
4003 phex_nz (ul, offset_size),
4004 plongest (l));
4005 }
4006 break;
4007
4008 case DW_OP_GNU_deref_type:
4009 {
4010 int addr_size = *data++;
4011 cu_offset offset;
4012 struct type *type;
4013
4014 data = safe_read_uleb128 (data, end, &ul);
4015 offset.cu_off = ul;
4016 type = dwarf2_get_die_type (offset, per_cu);
4017 fprintf_filtered (stream, "<");
4018 type_print (type, "", stream, -1);
4019 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4020 addr_size);
4021 }
4022 break;
4023
4024 case DW_OP_GNU_const_type:
4025 {
4026 cu_offset type_die;
4027 struct type *type;
4028
4029 data = safe_read_uleb128 (data, end, &ul);
4030 type_die.cu_off = ul;
4031 type = dwarf2_get_die_type (type_die, per_cu);
4032 fprintf_filtered (stream, "<");
4033 type_print (type, "", stream, -1);
4034 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4035 }
4036 break;
4037
4038 case DW_OP_GNU_regval_type:
4039 {
4040 uint64_t reg;
4041 cu_offset type_die;
4042 struct type *type;
4043
4044 data = safe_read_uleb128 (data, end, &reg);
4045 data = safe_read_uleb128 (data, end, &ul);
4046 type_die.cu_off = ul;
4047
4048 type = dwarf2_get_die_type (type_die, per_cu);
4049 fprintf_filtered (stream, "<");
4050 type_print (type, "", stream, -1);
4051 fprintf_filtered (stream, " [0x%s]> [$%s]",
4052 phex_nz (type_die.cu_off, 0),
4053 locexpr_regname (arch, reg));
4054 }
4055 break;
4056
4057 case DW_OP_GNU_convert:
4058 case DW_OP_GNU_reinterpret:
4059 {
4060 cu_offset type_die;
4061
4062 data = safe_read_uleb128 (data, end, &ul);
4063 type_die.cu_off = ul;
4064
4065 if (type_die.cu_off == 0)
4066 fprintf_filtered (stream, "<0>");
4067 else
4068 {
4069 struct type *type;
4070
4071 type = dwarf2_get_die_type (type_die, per_cu);
4072 fprintf_filtered (stream, "<");
4073 type_print (type, "", stream, -1);
4074 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4075 }
4076 }
4077 break;
4078
4079 case DW_OP_GNU_entry_value:
4080 data = safe_read_uleb128 (data, end, &ul);
4081 fputc_filtered ('\n', stream);
4082 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4083 start, data, data + ul, indent + 2,
4084 all, per_cu);
4085 data += ul;
4086 continue;
4087
4088 case DW_OP_GNU_parameter_ref:
4089 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4090 data += 4;
4091 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4092 break;
4093
4094 case DW_OP_GNU_addr_index:
4095 data = safe_read_uleb128 (data, end, &ul);
4096 ul = dwarf2_read_addr_index (per_cu, ul);
4097 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4098 break;
4099 case DW_OP_GNU_const_index:
4100 data = safe_read_uleb128 (data, end, &ul);
4101 ul = dwarf2_read_addr_index (per_cu, ul);
4102 fprintf_filtered (stream, " %s", pulongest (ul));
4103 break;
4104 }
4105
4106 fprintf_filtered (stream, "\n");
4107 }
4108
4109 return data;
4110 }
4111
4112 /* Describe a single location, which may in turn consist of multiple
4113 pieces. */
4114
4115 static void
4116 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4117 struct ui_file *stream,
4118 const gdb_byte *data, size_t size,
4119 struct objfile *objfile, unsigned int addr_size,
4120 int offset_size, struct dwarf2_per_cu_data *per_cu)
4121 {
4122 const gdb_byte *end = data + size;
4123 int first_piece = 1, bad = 0;
4124
4125 while (data < end)
4126 {
4127 const gdb_byte *here = data;
4128 int disassemble = 1;
4129
4130 if (first_piece)
4131 first_piece = 0;
4132 else
4133 fprintf_filtered (stream, _(", and "));
4134
4135 if (!dwarf2_always_disassemble)
4136 {
4137 data = locexpr_describe_location_piece (symbol, stream,
4138 addr, objfile, per_cu,
4139 data, end, addr_size);
4140 /* If we printed anything, or if we have an empty piece,
4141 then don't disassemble. */
4142 if (data != here
4143 || data[0] == DW_OP_piece
4144 || data[0] == DW_OP_bit_piece)
4145 disassemble = 0;
4146 }
4147 if (disassemble)
4148 {
4149 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4150 data = disassemble_dwarf_expression (stream,
4151 get_objfile_arch (objfile),
4152 addr_size, offset_size, data,
4153 data, end, 0,
4154 dwarf2_always_disassemble,
4155 per_cu);
4156 }
4157
4158 if (data < end)
4159 {
4160 int empty = data == here;
4161
4162 if (disassemble)
4163 fprintf_filtered (stream, " ");
4164 if (data[0] == DW_OP_piece)
4165 {
4166 uint64_t bytes;
4167
4168 data = safe_read_uleb128 (data + 1, end, &bytes);
4169
4170 if (empty)
4171 fprintf_filtered (stream, _("an empty %s-byte piece"),
4172 pulongest (bytes));
4173 else
4174 fprintf_filtered (stream, _(" [%s-byte piece]"),
4175 pulongest (bytes));
4176 }
4177 else if (data[0] == DW_OP_bit_piece)
4178 {
4179 uint64_t bits, offset;
4180
4181 data = safe_read_uleb128 (data + 1, end, &bits);
4182 data = safe_read_uleb128 (data, end, &offset);
4183
4184 if (empty)
4185 fprintf_filtered (stream,
4186 _("an empty %s-bit piece"),
4187 pulongest (bits));
4188 else
4189 fprintf_filtered (stream,
4190 _(" [%s-bit piece, offset %s bits]"),
4191 pulongest (bits), pulongest (offset));
4192 }
4193 else
4194 {
4195 bad = 1;
4196 break;
4197 }
4198 }
4199 }
4200
4201 if (bad || data > end)
4202 error (_("Corrupted DWARF2 expression for \"%s\"."),
4203 SYMBOL_PRINT_NAME (symbol));
4204 }
4205
4206 /* Print a natural-language description of SYMBOL to STREAM. This
4207 version is for a symbol with a single location. */
4208
4209 static void
4210 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4211 struct ui_file *stream)
4212 {
4213 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4214 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4215 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4216 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4217
4218 locexpr_describe_location_1 (symbol, addr, stream,
4219 dlbaton->data, dlbaton->size,
4220 objfile, addr_size, offset_size,
4221 dlbaton->per_cu);
4222 }
4223
4224 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4225 any necessary bytecode in AX. */
4226
4227 static void
4228 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4229 struct agent_expr *ax, struct axs_value *value)
4230 {
4231 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4232 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4233
4234 if (dlbaton->size == 0)
4235 value->optimized_out = 1;
4236 else
4237 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4238 dlbaton->data, dlbaton->data + dlbaton->size,
4239 dlbaton->per_cu);
4240 }
4241
4242 /* symbol_computed_ops 'generate_c_location' method. */
4243
4244 static void
4245 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4246 struct gdbarch *gdbarch,
4247 unsigned char *registers_used,
4248 CORE_ADDR pc, const char *result_name)
4249 {
4250 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4251 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4252
4253 if (dlbaton->size == 0)
4254 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4255
4256 compile_dwarf_expr_to_c (stream, result_name,
4257 sym, pc, gdbarch, registers_used, addr_size,
4258 dlbaton->data, dlbaton->data + dlbaton->size,
4259 dlbaton->per_cu);
4260 }
4261
4262 /* The set of location functions used with the DWARF-2 expression
4263 evaluator. */
4264 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4265 locexpr_read_variable,
4266 locexpr_read_variable_at_entry,
4267 locexpr_read_needs_frame,
4268 locexpr_describe_location,
4269 0, /* location_has_loclist */
4270 locexpr_tracepoint_var_ref,
4271 locexpr_generate_c_location
4272 };
4273
4274
4275 /* Wrapper functions for location lists. These generally find
4276 the appropriate location expression and call something above. */
4277
4278 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4279 evaluator to calculate the location. */
4280 static struct value *
4281 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4282 {
4283 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4284 struct value *val;
4285 const gdb_byte *data;
4286 size_t size;
4287 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4288
4289 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4290 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4291 dlbaton->per_cu);
4292
4293 return val;
4294 }
4295
4296 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4297 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4298 will be thrown.
4299
4300 Function always returns non-NULL value, it may be marked optimized out if
4301 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4302 if it cannot resolve the parameter for any reason. */
4303
4304 static struct value *
4305 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4306 {
4307 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4308 const gdb_byte *data;
4309 size_t size;
4310 CORE_ADDR pc;
4311
4312 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4313 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4314
4315 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4316 if (data == NULL)
4317 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4318
4319 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4320 }
4321
4322 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4323 static int
4324 loclist_read_needs_frame (struct symbol *symbol)
4325 {
4326 /* If there's a location list, then assume we need to have a frame
4327 to choose the appropriate location expression. With tracking of
4328 global variables this is not necessarily true, but such tracking
4329 is disabled in GCC at the moment until we figure out how to
4330 represent it. */
4331
4332 return 1;
4333 }
4334
4335 /* Print a natural-language description of SYMBOL to STREAM. This
4336 version applies when there is a list of different locations, each
4337 with a specified address range. */
4338
4339 static void
4340 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4341 struct ui_file *stream)
4342 {
4343 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4344 const gdb_byte *loc_ptr, *buf_end;
4345 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4348 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4349 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4350 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4351 /* Adjust base_address for relocatable objects. */
4352 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4353 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4354 int done = 0;
4355
4356 loc_ptr = dlbaton->data;
4357 buf_end = dlbaton->data + dlbaton->size;
4358
4359 fprintf_filtered (stream, _("multi-location:\n"));
4360
4361 /* Iterate through locations until we run out. */
4362 while (!done)
4363 {
4364 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4365 int length;
4366 enum debug_loc_kind kind;
4367 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4368
4369 if (dlbaton->from_dwo)
4370 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4371 loc_ptr, buf_end, &new_ptr,
4372 &low, &high, byte_order);
4373 else
4374 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4375 &low, &high,
4376 byte_order, addr_size,
4377 signed_addr_p);
4378 loc_ptr = new_ptr;
4379 switch (kind)
4380 {
4381 case DEBUG_LOC_END_OF_LIST:
4382 done = 1;
4383 continue;
4384 case DEBUG_LOC_BASE_ADDRESS:
4385 base_address = high + base_offset;
4386 fprintf_filtered (stream, _(" Base address %s"),
4387 paddress (gdbarch, base_address));
4388 continue;
4389 case DEBUG_LOC_START_END:
4390 case DEBUG_LOC_START_LENGTH:
4391 break;
4392 case DEBUG_LOC_BUFFER_OVERFLOW:
4393 case DEBUG_LOC_INVALID_ENTRY:
4394 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4395 SYMBOL_PRINT_NAME (symbol));
4396 default:
4397 gdb_assert_not_reached ("bad debug_loc_kind");
4398 }
4399
4400 /* Otherwise, a location expression entry. */
4401 low += base_address;
4402 high += base_address;
4403
4404 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4405 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4406
4407 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4408 loc_ptr += 2;
4409
4410 /* (It would improve readability to print only the minimum
4411 necessary digits of the second number of the range.) */
4412 fprintf_filtered (stream, _(" Range %s-%s: "),
4413 paddress (gdbarch, low), paddress (gdbarch, high));
4414
4415 /* Now describe this particular location. */
4416 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4417 objfile, addr_size, offset_size,
4418 dlbaton->per_cu);
4419
4420 fprintf_filtered (stream, "\n");
4421
4422 loc_ptr += length;
4423 }
4424 }
4425
4426 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4427 any necessary bytecode in AX. */
4428 static void
4429 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4430 struct agent_expr *ax, struct axs_value *value)
4431 {
4432 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4433 const gdb_byte *data;
4434 size_t size;
4435 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4436
4437 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4438 if (size == 0)
4439 value->optimized_out = 1;
4440 else
4441 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4442 dlbaton->per_cu);
4443 }
4444
4445 /* symbol_computed_ops 'generate_c_location' method. */
4446
4447 static void
4448 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4449 struct gdbarch *gdbarch,
4450 unsigned char *registers_used,
4451 CORE_ADDR pc, const char *result_name)
4452 {
4453 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4454 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4455 const gdb_byte *data;
4456 size_t size;
4457
4458 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4459 if (size == 0)
4460 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4461
4462 compile_dwarf_expr_to_c (stream, result_name,
4463 sym, pc, gdbarch, registers_used, addr_size,
4464 data, data + size,
4465 dlbaton->per_cu);
4466 }
4467
4468 /* The set of location functions used with the DWARF-2 expression
4469 evaluator and location lists. */
4470 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4471 loclist_read_variable,
4472 loclist_read_variable_at_entry,
4473 loclist_read_needs_frame,
4474 loclist_describe_location,
4475 1, /* location_has_loclist */
4476 loclist_tracepoint_var_ref,
4477 loclist_generate_c_location
4478 };
4479
4480 /* Provide a prototype to silence -Wmissing-prototypes. */
4481 extern initialize_file_ftype _initialize_dwarf2loc;
4482
4483 void
4484 _initialize_dwarf2loc (void)
4485 {
4486 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4487 &entry_values_debug,
4488 _("Set entry values and tail call frames "
4489 "debugging."),
4490 _("Show entry values and tail call frames "
4491 "debugging."),
4492 _("When non-zero, the process of determining "
4493 "parameter values from function entry point "
4494 "and tail call frames will be printed."),
4495 NULL,
4496 show_entry_values_debug,
4497 &setdebuglist, &showdebuglist);
4498 }
This page took 0.144211 seconds and 4 git commands to generate.