Fix handling of DWARF register pieces on big-endian targets
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1756 bits whose first bit is located at bit offset START. */
1757
1758 static size_t
1759 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1760 {
1761 return (start % 8 + n_bits + 7) / 8;
1762 }
1763
1764 static void
1765 read_pieced_value (struct value *v)
1766 {
1767 int i;
1768 LONGEST offset = 0, max_offset;
1769 ULONGEST bits_to_skip;
1770 gdb_byte *contents;
1771 struct piece_closure *c
1772 = (struct piece_closure *) value_computed_closure (v);
1773 std::vector<gdb_byte> buffer;
1774 int bits_big_endian
1775 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1776
1777 if (value_type (v) != value_enclosing_type (v))
1778 internal_error (__FILE__, __LINE__,
1779 _("Should not be able to create a lazy value with "
1780 "an enclosing type"));
1781
1782 contents = value_contents_raw (v);
1783 bits_to_skip = 8 * value_offset (v);
1784 if (value_bitsize (v))
1785 {
1786 bits_to_skip += (8 * value_offset (value_parent (v))
1787 + value_bitpos (v));
1788 max_offset = value_bitsize (v);
1789 }
1790 else
1791 max_offset = 8 * TYPE_LENGTH (value_type (v));
1792
1793 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1794 {
1795 struct dwarf_expr_piece *p = &c->pieces[i];
1796 size_t this_size, this_size_bits;
1797 long dest_offset_bits, source_offset_bits, source_offset;
1798 const gdb_byte *intermediate_buffer;
1799
1800 /* Compute size, source, and destination offsets for copying, in
1801 bits. */
1802 this_size_bits = p->size;
1803 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1804 {
1805 bits_to_skip -= this_size_bits;
1806 continue;
1807 }
1808 source_offset_bits = bits_to_skip;
1809 this_size_bits -= bits_to_skip;
1810 bits_to_skip = 0;
1811 dest_offset_bits = offset;
1812
1813 if (this_size_bits > max_offset - offset)
1814 this_size_bits = max_offset - offset;
1815
1816 this_size = bits_to_bytes (source_offset_bits, this_size_bits);
1817 buffer.reserve (this_size);
1818 source_offset = source_offset_bits / 8;
1819 intermediate_buffer = buffer.data ();
1820
1821 /* Copy from the source to DEST_BUFFER. */
1822 switch (p->location)
1823 {
1824 case DWARF_VALUE_REGISTER:
1825 {
1826 struct frame_info *frame = frame_find_by_id (c->frame_id);
1827 struct gdbarch *arch = get_frame_arch (frame);
1828 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1829 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1830 int optim, unavail;
1831
1832 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1833 && p->size < reg_bits)
1834 {
1835 /* Big-endian, and we want less than full size. */
1836 source_offset_bits += reg_bits - p->size;
1837 }
1838 this_size = bits_to_bytes (source_offset_bits, this_size_bits);
1839 buffer.reserve (this_size);
1840
1841 if (!get_frame_register_bytes (frame, gdb_regnum,
1842 source_offset_bits / 8,
1843 this_size, buffer.data (),
1844 &optim, &unavail))
1845 {
1846 /* Just so garbage doesn't ever shine through. */
1847 memset (buffer.data (), 0, this_size);
1848
1849 if (optim)
1850 mark_value_bits_optimized_out (v, offset, this_size_bits);
1851 if (unavail)
1852 mark_value_bits_unavailable (v, offset, this_size_bits);
1853 }
1854
1855 copy_bitwise (contents, dest_offset_bits,
1856 buffer.data (), source_offset_bits % 8,
1857 this_size_bits, bits_big_endian);
1858 }
1859 break;
1860
1861 case DWARF_VALUE_MEMORY:
1862 read_value_memory (v, offset,
1863 p->v.mem.in_stack_memory,
1864 p->v.mem.addr + source_offset,
1865 buffer.data (), this_size);
1866 copy_bitwise (contents, dest_offset_bits,
1867 intermediate_buffer, source_offset_bits % 8,
1868 this_size_bits, bits_big_endian);
1869 break;
1870
1871 case DWARF_VALUE_STACK:
1872 {
1873 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1874 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1875 ULONGEST stack_value_size_bits
1876 = 8 * TYPE_LENGTH (value_type (p->v.value));
1877
1878 /* Use zeroes if piece reaches beyond stack value. */
1879 if (p->size > stack_value_size_bits)
1880 break;
1881
1882 /* Piece is anchored at least significant bit end. */
1883 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1884 source_offset_bits += stack_value_size_bits - p->size;
1885
1886 copy_bitwise (contents, dest_offset_bits,
1887 value_contents_all (p->v.value),
1888 source_offset_bits,
1889 this_size_bits, bits_big_endian);
1890 }
1891 break;
1892
1893 case DWARF_VALUE_LITERAL:
1894 {
1895 size_t n = this_size;
1896
1897 if (n > p->v.literal.length - source_offset)
1898 n = (p->v.literal.length >= source_offset
1899 ? p->v.literal.length - source_offset
1900 : 0);
1901 if (n != 0)
1902 intermediate_buffer = p->v.literal.data + source_offset;
1903
1904 copy_bitwise (contents, dest_offset_bits,
1905 intermediate_buffer, source_offset_bits % 8,
1906 this_size_bits, bits_big_endian);
1907 }
1908 break;
1909
1910 /* These bits show up as zeros -- but do not cause the value
1911 to be considered optimized-out. */
1912 case DWARF_VALUE_IMPLICIT_POINTER:
1913 break;
1914
1915 case DWARF_VALUE_OPTIMIZED_OUT:
1916 mark_value_bits_optimized_out (v, offset, this_size_bits);
1917 break;
1918
1919 default:
1920 internal_error (__FILE__, __LINE__, _("invalid location type"));
1921 }
1922
1923 offset += this_size_bits;
1924 }
1925 }
1926
1927 static void
1928 write_pieced_value (struct value *to, struct value *from)
1929 {
1930 int i;
1931 ULONGEST bits_to_skip;
1932 LONGEST offset = 0, max_offset;
1933 const gdb_byte *contents;
1934 struct piece_closure *c
1935 = (struct piece_closure *) value_computed_closure (to);
1936 std::vector<gdb_byte> buffer;
1937 int bits_big_endian
1938 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1939
1940 contents = value_contents (from);
1941 bits_to_skip = 8 * value_offset (to);
1942 if (value_bitsize (to))
1943 {
1944 bits_to_skip += (8 * value_offset (value_parent (to))
1945 + value_bitpos (to));
1946 /* Use the least significant bits of FROM. */
1947 if (gdbarch_byte_order (get_type_arch (value_type (from)))
1948 == BFD_ENDIAN_BIG)
1949 {
1950 max_offset = 8 * TYPE_LENGTH (value_type (from));
1951 offset = max_offset - value_bitsize (to);
1952 }
1953 else
1954 max_offset = value_bitsize (to);
1955 }
1956 else
1957 max_offset = 8 * TYPE_LENGTH (value_type (to));
1958
1959 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1960 {
1961 struct dwarf_expr_piece *p = &c->pieces[i];
1962 size_t this_size_bits, this_size;
1963 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1964 int need_bitwise;
1965 const gdb_byte *source_buffer;
1966
1967 this_size_bits = p->size;
1968 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1969 {
1970 bits_to_skip -= this_size_bits;
1971 continue;
1972 }
1973 dest_offset_bits = bits_to_skip;
1974 this_size_bits -= bits_to_skip;
1975 bits_to_skip = 0;
1976 source_offset_bits = offset;
1977
1978 if (this_size_bits > max_offset - offset)
1979 this_size_bits = max_offset - offset;
1980
1981 this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
1982 source_offset = source_offset_bits / 8;
1983 dest_offset = dest_offset_bits / 8;
1984
1985 /* Check whether the data can be transferred byte-wise. */
1986 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0
1987 && this_size_bits % 8 == 0)
1988 {
1989 source_buffer = contents + source_offset;
1990 need_bitwise = 0;
1991 }
1992 else
1993 {
1994 buffer.reserve (this_size);
1995 source_buffer = buffer.data ();
1996 need_bitwise = 1;
1997 }
1998
1999 switch (p->location)
2000 {
2001 case DWARF_VALUE_REGISTER:
2002 {
2003 struct frame_info *frame = frame_find_by_id (c->frame_id);
2004 struct gdbarch *arch = get_frame_arch (frame);
2005 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
2006 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
2007
2008 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2009 && p->size <= reg_bits)
2010 {
2011 /* Big-endian, and we want less than full size. */
2012 dest_offset_bits += reg_bits - p->size;
2013 }
2014 this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
2015 buffer.reserve (this_size);
2016
2017 if (dest_offset_bits % 8 != 0 || this_size_bits % 8 != 0)
2018 {
2019 /* Data is copied non-byte-aligned into the register.
2020 Need some bits from original register value. */
2021 int optim, unavail;
2022
2023 if (!get_frame_register_bytes (frame, gdb_regnum,
2024 dest_offset_bits / 8,
2025 this_size, buffer.data (),
2026 &optim, &unavail))
2027 {
2028 if (optim)
2029 throw_error (OPTIMIZED_OUT_ERROR,
2030 _("Can't do read-modify-write to "
2031 "update bitfield; containing word "
2032 "has been optimized out"));
2033 if (unavail)
2034 throw_error (NOT_AVAILABLE_ERROR,
2035 _("Can't do read-modify-write to update "
2036 "bitfield; containing word "
2037 "is unavailable"));
2038 }
2039 }
2040
2041 copy_bitwise (buffer.data (), dest_offset_bits % 8,
2042 contents, source_offset_bits,
2043 this_size_bits, bits_big_endian);
2044 put_frame_register_bytes (frame, gdb_regnum,
2045 dest_offset_bits / 8,
2046 this_size, buffer.data ());
2047 }
2048 break;
2049 case DWARF_VALUE_MEMORY:
2050 if (need_bitwise)
2051 {
2052 /* Only the first and last bytes can possibly have any
2053 bits reused. */
2054 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2055 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2056 &buffer[this_size - 1], 1);
2057 copy_bitwise (buffer.data (), dest_offset_bits % 8,
2058 contents, source_offset_bits,
2059 this_size_bits,
2060 bits_big_endian);
2061 }
2062
2063 write_memory (p->v.mem.addr + dest_offset,
2064 source_buffer, this_size);
2065 break;
2066 default:
2067 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2068 break;
2069 }
2070 offset += this_size_bits;
2071 }
2072 }
2073
2074 /* An implementation of an lval_funcs method to see whether a value is
2075 a synthetic pointer. */
2076
2077 static int
2078 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2079 int bit_length)
2080 {
2081 struct piece_closure *c
2082 = (struct piece_closure *) value_computed_closure (value);
2083 int i;
2084
2085 bit_offset += 8 * value_offset (value);
2086 if (value_bitsize (value))
2087 bit_offset += value_bitpos (value);
2088
2089 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2090 {
2091 struct dwarf_expr_piece *p = &c->pieces[i];
2092 size_t this_size_bits = p->size;
2093
2094 if (bit_offset > 0)
2095 {
2096 if (bit_offset >= this_size_bits)
2097 {
2098 bit_offset -= this_size_bits;
2099 continue;
2100 }
2101
2102 bit_length -= this_size_bits - bit_offset;
2103 bit_offset = 0;
2104 }
2105 else
2106 bit_length -= this_size_bits;
2107
2108 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2109 return 0;
2110 }
2111
2112 return 1;
2113 }
2114
2115 /* A wrapper function for get_frame_address_in_block. */
2116
2117 static CORE_ADDR
2118 get_frame_address_in_block_wrapper (void *baton)
2119 {
2120 return get_frame_address_in_block ((struct frame_info *) baton);
2121 }
2122
2123 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2124
2125 static struct value *
2126 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2127 struct dwarf2_per_cu_data *per_cu,
2128 struct type *type)
2129 {
2130 struct value *result = NULL;
2131 struct obstack temp_obstack;
2132 struct cleanup *cleanup;
2133 const gdb_byte *bytes;
2134 LONGEST len;
2135
2136 obstack_init (&temp_obstack);
2137 cleanup = make_cleanup_obstack_free (&temp_obstack);
2138 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2139
2140 if (bytes != NULL)
2141 {
2142 if (byte_offset >= 0
2143 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2144 {
2145 bytes += byte_offset;
2146 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2147 }
2148 else
2149 invalid_synthetic_pointer ();
2150 }
2151 else
2152 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2153
2154 do_cleanups (cleanup);
2155
2156 return result;
2157 }
2158
2159 /* Fetch the value pointed to by a synthetic pointer. */
2160
2161 static struct value *
2162 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2163 struct dwarf2_per_cu_data *per_cu,
2164 struct frame_info *frame, struct type *type)
2165 {
2166 /* Fetch the location expression of the DIE we're pointing to. */
2167 struct dwarf2_locexpr_baton baton
2168 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2169 get_frame_address_in_block_wrapper, frame);
2170
2171 /* Get type of pointed-to DIE. */
2172 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2173 if (orig_type == NULL)
2174 invalid_synthetic_pointer ();
2175
2176 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2177 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2178 or it may've been optimized out. */
2179 if (baton.data != NULL)
2180 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2181 baton.size, baton.per_cu,
2182 TYPE_TARGET_TYPE (type),
2183 byte_offset);
2184 else
2185 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2186 type);
2187 }
2188
2189 /* An implementation of an lval_funcs method to indirect through a
2190 pointer. This handles the synthetic pointer case when needed. */
2191
2192 static struct value *
2193 indirect_pieced_value (struct value *value)
2194 {
2195 struct piece_closure *c
2196 = (struct piece_closure *) value_computed_closure (value);
2197 struct type *type;
2198 struct frame_info *frame;
2199 struct dwarf2_locexpr_baton baton;
2200 int i, bit_length;
2201 LONGEST bit_offset;
2202 struct dwarf_expr_piece *piece = NULL;
2203 LONGEST byte_offset;
2204 enum bfd_endian byte_order;
2205
2206 type = check_typedef (value_type (value));
2207 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2208 return NULL;
2209
2210 bit_length = 8 * TYPE_LENGTH (type);
2211 bit_offset = 8 * value_offset (value);
2212 if (value_bitsize (value))
2213 bit_offset += value_bitpos (value);
2214
2215 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2216 {
2217 struct dwarf_expr_piece *p = &c->pieces[i];
2218 size_t this_size_bits = p->size;
2219
2220 if (bit_offset > 0)
2221 {
2222 if (bit_offset >= this_size_bits)
2223 {
2224 bit_offset -= this_size_bits;
2225 continue;
2226 }
2227
2228 bit_length -= this_size_bits - bit_offset;
2229 bit_offset = 0;
2230 }
2231 else
2232 bit_length -= this_size_bits;
2233
2234 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2235 return NULL;
2236
2237 if (bit_length != 0)
2238 error (_("Invalid use of DW_OP_implicit_pointer"));
2239
2240 piece = p;
2241 break;
2242 }
2243
2244 gdb_assert (piece != NULL);
2245 frame = get_selected_frame (_("No frame selected."));
2246
2247 /* This is an offset requested by GDB, such as value subscripts.
2248 However, due to how synthetic pointers are implemented, this is
2249 always presented to us as a pointer type. This means we have to
2250 sign-extend it manually as appropriate. Use raw
2251 extract_signed_integer directly rather than value_as_address and
2252 sign extend afterwards on architectures that would need it
2253 (mostly everywhere except MIPS, which has signed addresses) as
2254 the later would go through gdbarch_pointer_to_address and thus
2255 return a CORE_ADDR with high bits set on architectures that
2256 encode address spaces and other things in CORE_ADDR. */
2257 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2258 byte_offset = extract_signed_integer (value_contents (value),
2259 TYPE_LENGTH (type), byte_order);
2260 byte_offset += piece->v.ptr.offset;
2261
2262 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2263 byte_offset, c->per_cu,
2264 frame, type);
2265 }
2266
2267 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2268 references. */
2269
2270 static struct value *
2271 coerce_pieced_ref (const struct value *value)
2272 {
2273 struct type *type = check_typedef (value_type (value));
2274
2275 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2276 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2277 {
2278 const struct piece_closure *closure
2279 = (struct piece_closure *) value_computed_closure (value);
2280 struct frame_info *frame
2281 = get_selected_frame (_("No frame selected."));
2282
2283 /* gdb represents synthetic pointers as pieced values with a single
2284 piece. */
2285 gdb_assert (closure != NULL);
2286 gdb_assert (closure->n_pieces == 1);
2287
2288 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2289 closure->pieces->v.ptr.offset,
2290 closure->per_cu, frame, type);
2291 }
2292 else
2293 {
2294 /* Else: not a synthetic reference; do nothing. */
2295 return NULL;
2296 }
2297 }
2298
2299 static void *
2300 copy_pieced_value_closure (const struct value *v)
2301 {
2302 struct piece_closure *c
2303 = (struct piece_closure *) value_computed_closure (v);
2304
2305 ++c->refc;
2306 return c;
2307 }
2308
2309 static void
2310 free_pieced_value_closure (struct value *v)
2311 {
2312 struct piece_closure *c
2313 = (struct piece_closure *) value_computed_closure (v);
2314
2315 --c->refc;
2316 if (c->refc == 0)
2317 {
2318 int i;
2319
2320 for (i = 0; i < c->n_pieces; ++i)
2321 if (c->pieces[i].location == DWARF_VALUE_STACK)
2322 value_free (c->pieces[i].v.value);
2323
2324 xfree (c->pieces);
2325 xfree (c);
2326 }
2327 }
2328
2329 /* Functions for accessing a variable described by DW_OP_piece. */
2330 static const struct lval_funcs pieced_value_funcs = {
2331 read_pieced_value,
2332 write_pieced_value,
2333 indirect_pieced_value,
2334 coerce_pieced_ref,
2335 check_pieced_synthetic_pointer,
2336 copy_pieced_value_closure,
2337 free_pieced_value_closure
2338 };
2339
2340 /* Evaluate a location description, starting at DATA and with length
2341 SIZE, to find the current location of variable of TYPE in the
2342 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2343 location of the subobject of type SUBOBJ_TYPE at byte offset
2344 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2345
2346 static struct value *
2347 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2348 const gdb_byte *data, size_t size,
2349 struct dwarf2_per_cu_data *per_cu,
2350 struct type *subobj_type,
2351 LONGEST subobj_byte_offset)
2352 {
2353 struct value *retval;
2354 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2355
2356 if (subobj_type == NULL)
2357 {
2358 subobj_type = type;
2359 subobj_byte_offset = 0;
2360 }
2361 else if (subobj_byte_offset < 0)
2362 invalid_synthetic_pointer ();
2363
2364 if (size == 0)
2365 return allocate_optimized_out_value (subobj_type);
2366
2367 dwarf_evaluate_loc_desc ctx;
2368 ctx.frame = frame;
2369 ctx.per_cu = per_cu;
2370 ctx.obj_address = 0;
2371
2372 scoped_value_mark free_values;
2373
2374 ctx.gdbarch = get_objfile_arch (objfile);
2375 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2376 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2377 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2378
2379 TRY
2380 {
2381 ctx.eval (data, size);
2382 }
2383 CATCH (ex, RETURN_MASK_ERROR)
2384 {
2385 if (ex.error == NOT_AVAILABLE_ERROR)
2386 {
2387 free_values.free_to_mark ();
2388 retval = allocate_value (subobj_type);
2389 mark_value_bytes_unavailable (retval, 0,
2390 TYPE_LENGTH (subobj_type));
2391 return retval;
2392 }
2393 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2394 {
2395 if (entry_values_debug)
2396 exception_print (gdb_stdout, ex);
2397 free_values.free_to_mark ();
2398 return allocate_optimized_out_value (subobj_type);
2399 }
2400 else
2401 throw_exception (ex);
2402 }
2403 END_CATCH
2404
2405 if (ctx.num_pieces > 0)
2406 {
2407 struct piece_closure *c;
2408 ULONGEST bit_size = 0;
2409 int i;
2410
2411 for (i = 0; i < ctx.num_pieces; ++i)
2412 bit_size += ctx.pieces[i].size;
2413 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2414 invalid_synthetic_pointer ();
2415
2416 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2417 frame);
2418 /* We must clean up the value chain after creating the piece
2419 closure but before allocating the result. */
2420 free_values.free_to_mark ();
2421 retval = allocate_computed_value (subobj_type,
2422 &pieced_value_funcs, c);
2423 set_value_offset (retval, subobj_byte_offset);
2424 }
2425 else
2426 {
2427 switch (ctx.location)
2428 {
2429 case DWARF_VALUE_REGISTER:
2430 {
2431 struct gdbarch *arch = get_frame_arch (frame);
2432 int dwarf_regnum
2433 = longest_to_int (value_as_long (ctx.fetch (0)));
2434 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2435
2436 if (subobj_byte_offset != 0)
2437 error (_("cannot use offset on synthetic pointer to register"));
2438 free_values.free_to_mark ();
2439 retval = value_from_register (subobj_type, gdb_regnum, frame);
2440 if (value_optimized_out (retval))
2441 {
2442 struct value *tmp;
2443
2444 /* This means the register has undefined value / was
2445 not saved. As we're computing the location of some
2446 variable etc. in the program, not a value for
2447 inspecting a register ($pc, $sp, etc.), return a
2448 generic optimized out value instead, so that we show
2449 <optimized out> instead of <not saved>. */
2450 tmp = allocate_value (subobj_type);
2451 value_contents_copy (tmp, 0, retval, 0,
2452 TYPE_LENGTH (subobj_type));
2453 retval = tmp;
2454 }
2455 }
2456 break;
2457
2458 case DWARF_VALUE_MEMORY:
2459 {
2460 struct type *ptr_type;
2461 CORE_ADDR address = ctx.fetch_address (0);
2462 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2463
2464 /* DW_OP_deref_size (and possibly other operations too) may
2465 create a pointer instead of an address. Ideally, the
2466 pointer to address conversion would be performed as part
2467 of those operations, but the type of the object to
2468 which the address refers is not known at the time of
2469 the operation. Therefore, we do the conversion here
2470 since the type is readily available. */
2471
2472 switch (TYPE_CODE (subobj_type))
2473 {
2474 case TYPE_CODE_FUNC:
2475 case TYPE_CODE_METHOD:
2476 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2477 break;
2478 default:
2479 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2480 break;
2481 }
2482 address = value_as_address (value_from_pointer (ptr_type, address));
2483
2484 free_values.free_to_mark ();
2485 retval = value_at_lazy (subobj_type,
2486 address + subobj_byte_offset);
2487 if (in_stack_memory)
2488 set_value_stack (retval, 1);
2489 }
2490 break;
2491
2492 case DWARF_VALUE_STACK:
2493 {
2494 struct value *value = ctx.fetch (0);
2495 size_t n = TYPE_LENGTH (value_type (value));
2496 size_t len = TYPE_LENGTH (subobj_type);
2497 size_t max = TYPE_LENGTH (type);
2498 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2499 struct cleanup *cleanup;
2500
2501 if (subobj_byte_offset + len > max)
2502 invalid_synthetic_pointer ();
2503
2504 /* Preserve VALUE because we are going to free values back
2505 to the mark, but we still need the value contents
2506 below. */
2507 value_incref (value);
2508 free_values.free_to_mark ();
2509 cleanup = make_cleanup_value_free (value);
2510
2511 retval = allocate_value (subobj_type);
2512
2513 /* The given offset is relative to the actual object. */
2514 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2515 subobj_byte_offset += n - max;
2516
2517 memcpy (value_contents_raw (retval),
2518 value_contents_all (value) + subobj_byte_offset, len);
2519
2520 do_cleanups (cleanup);
2521 }
2522 break;
2523
2524 case DWARF_VALUE_LITERAL:
2525 {
2526 bfd_byte *contents;
2527 size_t n = TYPE_LENGTH (subobj_type);
2528
2529 if (subobj_byte_offset + n > ctx.len)
2530 invalid_synthetic_pointer ();
2531
2532 free_values.free_to_mark ();
2533 retval = allocate_value (subobj_type);
2534 contents = value_contents_raw (retval);
2535 memcpy (contents, ctx.data + subobj_byte_offset, n);
2536 }
2537 break;
2538
2539 case DWARF_VALUE_OPTIMIZED_OUT:
2540 free_values.free_to_mark ();
2541 retval = allocate_optimized_out_value (subobj_type);
2542 break;
2543
2544 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2545 operation by execute_stack_op. */
2546 case DWARF_VALUE_IMPLICIT_POINTER:
2547 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2548 it can only be encountered when making a piece. */
2549 default:
2550 internal_error (__FILE__, __LINE__, _("invalid location type"));
2551 }
2552 }
2553
2554 set_value_initialized (retval, ctx.initialized);
2555
2556 return retval;
2557 }
2558
2559 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2560 passes 0 as the byte_offset. */
2561
2562 struct value *
2563 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2564 const gdb_byte *data, size_t size,
2565 struct dwarf2_per_cu_data *per_cu)
2566 {
2567 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2568 NULL, 0);
2569 }
2570
2571 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2572 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2573 frame in which the expression is evaluated. ADDR is a context (location of
2574 a variable) and might be needed to evaluate the location expression.
2575 Returns 1 on success, 0 otherwise. */
2576
2577 static int
2578 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2579 struct frame_info *frame,
2580 CORE_ADDR addr,
2581 CORE_ADDR *valp)
2582 {
2583 struct objfile *objfile;
2584
2585 if (dlbaton == NULL || dlbaton->size == 0)
2586 return 0;
2587
2588 dwarf_evaluate_loc_desc ctx;
2589
2590 ctx.frame = frame;
2591 ctx.per_cu = dlbaton->per_cu;
2592 ctx.obj_address = addr;
2593
2594 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2595
2596 ctx.gdbarch = get_objfile_arch (objfile);
2597 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2598 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2599 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2600
2601 ctx.eval (dlbaton->data, dlbaton->size);
2602
2603 switch (ctx.location)
2604 {
2605 case DWARF_VALUE_REGISTER:
2606 case DWARF_VALUE_MEMORY:
2607 case DWARF_VALUE_STACK:
2608 *valp = ctx.fetch_address (0);
2609 if (ctx.location == DWARF_VALUE_REGISTER)
2610 *valp = ctx.read_addr_from_reg (*valp);
2611 return 1;
2612 case DWARF_VALUE_LITERAL:
2613 *valp = extract_signed_integer (ctx.data, ctx.len,
2614 gdbarch_byte_order (ctx.gdbarch));
2615 return 1;
2616 /* Unsupported dwarf values. */
2617 case DWARF_VALUE_OPTIMIZED_OUT:
2618 case DWARF_VALUE_IMPLICIT_POINTER:
2619 break;
2620 }
2621
2622 return 0;
2623 }
2624
2625 /* See dwarf2loc.h. */
2626
2627 int
2628 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2629 struct frame_info *frame,
2630 struct property_addr_info *addr_stack,
2631 CORE_ADDR *value)
2632 {
2633 if (prop == NULL)
2634 return 0;
2635
2636 if (frame == NULL && has_stack_frames ())
2637 frame = get_selected_frame (NULL);
2638
2639 switch (prop->kind)
2640 {
2641 case PROP_LOCEXPR:
2642 {
2643 const struct dwarf2_property_baton *baton
2644 = (const struct dwarf2_property_baton *) prop->data.baton;
2645
2646 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2647 addr_stack ? addr_stack->addr : 0,
2648 value))
2649 {
2650 if (baton->referenced_type)
2651 {
2652 struct value *val = value_at (baton->referenced_type, *value);
2653
2654 *value = value_as_address (val);
2655 }
2656 return 1;
2657 }
2658 }
2659 break;
2660
2661 case PROP_LOCLIST:
2662 {
2663 struct dwarf2_property_baton *baton
2664 = (struct dwarf2_property_baton *) prop->data.baton;
2665 CORE_ADDR pc = get_frame_address_in_block (frame);
2666 const gdb_byte *data;
2667 struct value *val;
2668 size_t size;
2669
2670 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2671 if (data != NULL)
2672 {
2673 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2674 size, baton->loclist.per_cu);
2675 if (!value_optimized_out (val))
2676 {
2677 *value = value_as_address (val);
2678 return 1;
2679 }
2680 }
2681 }
2682 break;
2683
2684 case PROP_CONST:
2685 *value = prop->data.const_val;
2686 return 1;
2687
2688 case PROP_ADDR_OFFSET:
2689 {
2690 struct dwarf2_property_baton *baton
2691 = (struct dwarf2_property_baton *) prop->data.baton;
2692 struct property_addr_info *pinfo;
2693 struct value *val;
2694
2695 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2696 if (pinfo->type == baton->referenced_type)
2697 break;
2698 if (pinfo == NULL)
2699 error (_("cannot find reference address for offset property"));
2700 if (pinfo->valaddr != NULL)
2701 val = value_from_contents
2702 (baton->offset_info.type,
2703 pinfo->valaddr + baton->offset_info.offset);
2704 else
2705 val = value_at (baton->offset_info.type,
2706 pinfo->addr + baton->offset_info.offset);
2707 *value = value_as_address (val);
2708 return 1;
2709 }
2710 }
2711
2712 return 0;
2713 }
2714
2715 /* See dwarf2loc.h. */
2716
2717 void
2718 dwarf2_compile_property_to_c (string_file &stream,
2719 const char *result_name,
2720 struct gdbarch *gdbarch,
2721 unsigned char *registers_used,
2722 const struct dynamic_prop *prop,
2723 CORE_ADDR pc,
2724 struct symbol *sym)
2725 {
2726 struct dwarf2_property_baton *baton
2727 = (struct dwarf2_property_baton *) prop->data.baton;
2728 const gdb_byte *data;
2729 size_t size;
2730 struct dwarf2_per_cu_data *per_cu;
2731
2732 if (prop->kind == PROP_LOCEXPR)
2733 {
2734 data = baton->locexpr.data;
2735 size = baton->locexpr.size;
2736 per_cu = baton->locexpr.per_cu;
2737 }
2738 else
2739 {
2740 gdb_assert (prop->kind == PROP_LOCLIST);
2741
2742 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2743 per_cu = baton->loclist.per_cu;
2744 }
2745
2746 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2747 gdbarch, registers_used,
2748 dwarf2_per_cu_addr_size (per_cu),
2749 data, data + size, per_cu);
2750 }
2751
2752 \f
2753 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2754
2755 class symbol_needs_eval_context : public dwarf_expr_context
2756 {
2757 public:
2758
2759 enum symbol_needs_kind needs;
2760 struct dwarf2_per_cu_data *per_cu;
2761
2762 /* Reads from registers do require a frame. */
2763 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2764 {
2765 needs = SYMBOL_NEEDS_FRAME;
2766 return 1;
2767 }
2768
2769 /* "get_reg_value" callback: Reads from registers do require a
2770 frame. */
2771
2772 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2773 {
2774 needs = SYMBOL_NEEDS_FRAME;
2775 return value_zero (type, not_lval);
2776 }
2777
2778 /* Reads from memory do not require a frame. */
2779 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2780 {
2781 memset (buf, 0, len);
2782 }
2783
2784 /* Frame-relative accesses do require a frame. */
2785 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2786 {
2787 static gdb_byte lit0 = DW_OP_lit0;
2788
2789 *start = &lit0;
2790 *length = 1;
2791
2792 needs = SYMBOL_NEEDS_FRAME;
2793 }
2794
2795 /* CFA accesses require a frame. */
2796 CORE_ADDR get_frame_cfa () OVERRIDE
2797 {
2798 needs = SYMBOL_NEEDS_FRAME;
2799 return 1;
2800 }
2801
2802 CORE_ADDR get_frame_pc () OVERRIDE
2803 {
2804 needs = SYMBOL_NEEDS_FRAME;
2805 return 1;
2806 }
2807
2808 /* Thread-local accesses require registers, but not a frame. */
2809 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2810 {
2811 if (needs <= SYMBOL_NEEDS_REGISTERS)
2812 needs = SYMBOL_NEEDS_REGISTERS;
2813 return 1;
2814 }
2815
2816 /* Helper interface of per_cu_dwarf_call for
2817 dwarf2_loc_desc_get_symbol_read_needs. */
2818
2819 void dwarf_call (cu_offset die_offset) OVERRIDE
2820 {
2821 per_cu_dwarf_call (this, die_offset, per_cu);
2822 }
2823
2824 /* DW_OP_entry_value accesses require a caller, therefore a
2825 frame. */
2826
2827 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2828 union call_site_parameter_u kind_u,
2829 int deref_size) OVERRIDE
2830 {
2831 needs = SYMBOL_NEEDS_FRAME;
2832
2833 /* The expression may require some stub values on DWARF stack. */
2834 push_address (0, 0);
2835 }
2836
2837 /* DW_OP_GNU_addr_index doesn't require a frame. */
2838
2839 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2840 {
2841 /* Nothing to do. */
2842 return 1;
2843 }
2844
2845 /* DW_OP_push_object_address has a frame already passed through. */
2846
2847 CORE_ADDR get_object_address () OVERRIDE
2848 {
2849 /* Nothing to do. */
2850 return 1;
2851 }
2852 };
2853
2854 /* Compute the correct symbol_needs_kind value for the location
2855 expression at DATA (length SIZE). */
2856
2857 static enum symbol_needs_kind
2858 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2859 struct dwarf2_per_cu_data *per_cu)
2860 {
2861 int in_reg;
2862 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2863
2864 scoped_value_mark free_values;
2865
2866 symbol_needs_eval_context ctx;
2867
2868 ctx.needs = SYMBOL_NEEDS_NONE;
2869 ctx.per_cu = per_cu;
2870 ctx.gdbarch = get_objfile_arch (objfile);
2871 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2872 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2873 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2874
2875 ctx.eval (data, size);
2876
2877 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2878
2879 if (ctx.num_pieces > 0)
2880 {
2881 int i;
2882
2883 /* If the location has several pieces, and any of them are in
2884 registers, then we will need a frame to fetch them from. */
2885 for (i = 0; i < ctx.num_pieces; i++)
2886 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2887 in_reg = 1;
2888 }
2889
2890 if (in_reg)
2891 ctx.needs = SYMBOL_NEEDS_FRAME;
2892 return ctx.needs;
2893 }
2894
2895 /* A helper function that throws an unimplemented error mentioning a
2896 given DWARF operator. */
2897
2898 static void
2899 unimplemented (unsigned int op)
2900 {
2901 const char *name = get_DW_OP_name (op);
2902
2903 if (name)
2904 error (_("DWARF operator %s cannot be translated to an agent expression"),
2905 name);
2906 else
2907 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2908 "to an agent expression"),
2909 op);
2910 }
2911
2912 /* See dwarf2loc.h.
2913
2914 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2915 can issue a complaint, which is better than having every target's
2916 implementation of dwarf2_reg_to_regnum do it. */
2917
2918 int
2919 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2920 {
2921 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2922
2923 if (reg == -1)
2924 {
2925 complaint (&symfile_complaints,
2926 _("bad DWARF register number %d"), dwarf_reg);
2927 }
2928 return reg;
2929 }
2930
2931 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2932 Throw an error because DWARF_REG is bad. */
2933
2934 static void
2935 throw_bad_regnum_error (ULONGEST dwarf_reg)
2936 {
2937 /* Still want to print -1 as "-1".
2938 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2939 but that's overkill for now. */
2940 if ((int) dwarf_reg == dwarf_reg)
2941 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2942 error (_("Unable to access DWARF register number %s"),
2943 pulongest (dwarf_reg));
2944 }
2945
2946 /* See dwarf2loc.h. */
2947
2948 int
2949 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2950 {
2951 int reg;
2952
2953 if (dwarf_reg > INT_MAX)
2954 throw_bad_regnum_error (dwarf_reg);
2955 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2956 bad, but that's ok. */
2957 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2958 if (reg == -1)
2959 throw_bad_regnum_error (dwarf_reg);
2960 return reg;
2961 }
2962
2963 /* A helper function that emits an access to memory. ARCH is the
2964 target architecture. EXPR is the expression which we are building.
2965 NBITS is the number of bits we want to read. This emits the
2966 opcodes needed to read the memory and then extract the desired
2967 bits. */
2968
2969 static void
2970 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2971 {
2972 ULONGEST nbytes = (nbits + 7) / 8;
2973
2974 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2975
2976 if (expr->tracing)
2977 ax_trace_quick (expr, nbytes);
2978
2979 if (nbits <= 8)
2980 ax_simple (expr, aop_ref8);
2981 else if (nbits <= 16)
2982 ax_simple (expr, aop_ref16);
2983 else if (nbits <= 32)
2984 ax_simple (expr, aop_ref32);
2985 else
2986 ax_simple (expr, aop_ref64);
2987
2988 /* If we read exactly the number of bytes we wanted, we're done. */
2989 if (8 * nbytes == nbits)
2990 return;
2991
2992 if (gdbarch_bits_big_endian (arch))
2993 {
2994 /* On a bits-big-endian machine, we want the high-order
2995 NBITS. */
2996 ax_const_l (expr, 8 * nbytes - nbits);
2997 ax_simple (expr, aop_rsh_unsigned);
2998 }
2999 else
3000 {
3001 /* On a bits-little-endian box, we want the low-order NBITS. */
3002 ax_zero_ext (expr, nbits);
3003 }
3004 }
3005
3006 /* A helper function to return the frame's PC. */
3007
3008 static CORE_ADDR
3009 get_ax_pc (void *baton)
3010 {
3011 struct agent_expr *expr = (struct agent_expr *) baton;
3012
3013 return expr->scope;
3014 }
3015
3016 /* Compile a DWARF location expression to an agent expression.
3017
3018 EXPR is the agent expression we are building.
3019 LOC is the agent value we modify.
3020 ARCH is the architecture.
3021 ADDR_SIZE is the size of addresses, in bytes.
3022 OP_PTR is the start of the location expression.
3023 OP_END is one past the last byte of the location expression.
3024
3025 This will throw an exception for various kinds of errors -- for
3026 example, if the expression cannot be compiled, or if the expression
3027 is invalid. */
3028
3029 void
3030 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3031 struct gdbarch *arch, unsigned int addr_size,
3032 const gdb_byte *op_ptr, const gdb_byte *op_end,
3033 struct dwarf2_per_cu_data *per_cu)
3034 {
3035 int i;
3036 std::vector<int> dw_labels, patches;
3037 const gdb_byte * const base = op_ptr;
3038 const gdb_byte *previous_piece = op_ptr;
3039 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3040 ULONGEST bits_collected = 0;
3041 unsigned int addr_size_bits = 8 * addr_size;
3042 int bits_big_endian = gdbarch_bits_big_endian (arch);
3043
3044 std::vector<int> offsets (op_end - op_ptr, -1);
3045
3046 /* By default we are making an address. */
3047 loc->kind = axs_lvalue_memory;
3048
3049 while (op_ptr < op_end)
3050 {
3051 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3052 uint64_t uoffset, reg;
3053 int64_t offset;
3054 int i;
3055
3056 offsets[op_ptr - base] = expr->len;
3057 ++op_ptr;
3058
3059 /* Our basic approach to code generation is to map DWARF
3060 operations directly to AX operations. However, there are
3061 some differences.
3062
3063 First, DWARF works on address-sized units, but AX always uses
3064 LONGEST. For most operations we simply ignore this
3065 difference; instead we generate sign extensions as needed
3066 before division and comparison operations. It would be nice
3067 to omit the sign extensions, but there is no way to determine
3068 the size of the target's LONGEST. (This code uses the size
3069 of the host LONGEST in some cases -- that is a bug but it is
3070 difficult to fix.)
3071
3072 Second, some DWARF operations cannot be translated to AX.
3073 For these we simply fail. See
3074 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3075 switch (op)
3076 {
3077 case DW_OP_lit0:
3078 case DW_OP_lit1:
3079 case DW_OP_lit2:
3080 case DW_OP_lit3:
3081 case DW_OP_lit4:
3082 case DW_OP_lit5:
3083 case DW_OP_lit6:
3084 case DW_OP_lit7:
3085 case DW_OP_lit8:
3086 case DW_OP_lit9:
3087 case DW_OP_lit10:
3088 case DW_OP_lit11:
3089 case DW_OP_lit12:
3090 case DW_OP_lit13:
3091 case DW_OP_lit14:
3092 case DW_OP_lit15:
3093 case DW_OP_lit16:
3094 case DW_OP_lit17:
3095 case DW_OP_lit18:
3096 case DW_OP_lit19:
3097 case DW_OP_lit20:
3098 case DW_OP_lit21:
3099 case DW_OP_lit22:
3100 case DW_OP_lit23:
3101 case DW_OP_lit24:
3102 case DW_OP_lit25:
3103 case DW_OP_lit26:
3104 case DW_OP_lit27:
3105 case DW_OP_lit28:
3106 case DW_OP_lit29:
3107 case DW_OP_lit30:
3108 case DW_OP_lit31:
3109 ax_const_l (expr, op - DW_OP_lit0);
3110 break;
3111
3112 case DW_OP_addr:
3113 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3114 op_ptr += addr_size;
3115 /* Some versions of GCC emit DW_OP_addr before
3116 DW_OP_GNU_push_tls_address. In this case the value is an
3117 index, not an address. We don't support things like
3118 branching between the address and the TLS op. */
3119 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3120 uoffset += dwarf2_per_cu_text_offset (per_cu);
3121 ax_const_l (expr, uoffset);
3122 break;
3123
3124 case DW_OP_const1u:
3125 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3126 op_ptr += 1;
3127 break;
3128 case DW_OP_const1s:
3129 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3130 op_ptr += 1;
3131 break;
3132 case DW_OP_const2u:
3133 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3134 op_ptr += 2;
3135 break;
3136 case DW_OP_const2s:
3137 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3138 op_ptr += 2;
3139 break;
3140 case DW_OP_const4u:
3141 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3142 op_ptr += 4;
3143 break;
3144 case DW_OP_const4s:
3145 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3146 op_ptr += 4;
3147 break;
3148 case DW_OP_const8u:
3149 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3150 op_ptr += 8;
3151 break;
3152 case DW_OP_const8s:
3153 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3154 op_ptr += 8;
3155 break;
3156 case DW_OP_constu:
3157 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3158 ax_const_l (expr, uoffset);
3159 break;
3160 case DW_OP_consts:
3161 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3162 ax_const_l (expr, offset);
3163 break;
3164
3165 case DW_OP_reg0:
3166 case DW_OP_reg1:
3167 case DW_OP_reg2:
3168 case DW_OP_reg3:
3169 case DW_OP_reg4:
3170 case DW_OP_reg5:
3171 case DW_OP_reg6:
3172 case DW_OP_reg7:
3173 case DW_OP_reg8:
3174 case DW_OP_reg9:
3175 case DW_OP_reg10:
3176 case DW_OP_reg11:
3177 case DW_OP_reg12:
3178 case DW_OP_reg13:
3179 case DW_OP_reg14:
3180 case DW_OP_reg15:
3181 case DW_OP_reg16:
3182 case DW_OP_reg17:
3183 case DW_OP_reg18:
3184 case DW_OP_reg19:
3185 case DW_OP_reg20:
3186 case DW_OP_reg21:
3187 case DW_OP_reg22:
3188 case DW_OP_reg23:
3189 case DW_OP_reg24:
3190 case DW_OP_reg25:
3191 case DW_OP_reg26:
3192 case DW_OP_reg27:
3193 case DW_OP_reg28:
3194 case DW_OP_reg29:
3195 case DW_OP_reg30:
3196 case DW_OP_reg31:
3197 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3198 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3199 loc->kind = axs_lvalue_register;
3200 break;
3201
3202 case DW_OP_regx:
3203 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3204 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3205 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3206 loc->kind = axs_lvalue_register;
3207 break;
3208
3209 case DW_OP_implicit_value:
3210 {
3211 uint64_t len;
3212
3213 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3214 if (op_ptr + len > op_end)
3215 error (_("DW_OP_implicit_value: too few bytes available."));
3216 if (len > sizeof (ULONGEST))
3217 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3218 (int) len);
3219
3220 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3221 byte_order));
3222 op_ptr += len;
3223 dwarf_expr_require_composition (op_ptr, op_end,
3224 "DW_OP_implicit_value");
3225
3226 loc->kind = axs_rvalue;
3227 }
3228 break;
3229
3230 case DW_OP_stack_value:
3231 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3232 loc->kind = axs_rvalue;
3233 break;
3234
3235 case DW_OP_breg0:
3236 case DW_OP_breg1:
3237 case DW_OP_breg2:
3238 case DW_OP_breg3:
3239 case DW_OP_breg4:
3240 case DW_OP_breg5:
3241 case DW_OP_breg6:
3242 case DW_OP_breg7:
3243 case DW_OP_breg8:
3244 case DW_OP_breg9:
3245 case DW_OP_breg10:
3246 case DW_OP_breg11:
3247 case DW_OP_breg12:
3248 case DW_OP_breg13:
3249 case DW_OP_breg14:
3250 case DW_OP_breg15:
3251 case DW_OP_breg16:
3252 case DW_OP_breg17:
3253 case DW_OP_breg18:
3254 case DW_OP_breg19:
3255 case DW_OP_breg20:
3256 case DW_OP_breg21:
3257 case DW_OP_breg22:
3258 case DW_OP_breg23:
3259 case DW_OP_breg24:
3260 case DW_OP_breg25:
3261 case DW_OP_breg26:
3262 case DW_OP_breg27:
3263 case DW_OP_breg28:
3264 case DW_OP_breg29:
3265 case DW_OP_breg30:
3266 case DW_OP_breg31:
3267 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3268 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3269 ax_reg (expr, i);
3270 if (offset != 0)
3271 {
3272 ax_const_l (expr, offset);
3273 ax_simple (expr, aop_add);
3274 }
3275 break;
3276 case DW_OP_bregx:
3277 {
3278 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3279 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3280 i = dwarf_reg_to_regnum_or_error (arch, reg);
3281 ax_reg (expr, i);
3282 if (offset != 0)
3283 {
3284 ax_const_l (expr, offset);
3285 ax_simple (expr, aop_add);
3286 }
3287 }
3288 break;
3289 case DW_OP_fbreg:
3290 {
3291 const gdb_byte *datastart;
3292 size_t datalen;
3293 const struct block *b;
3294 struct symbol *framefunc;
3295
3296 b = block_for_pc (expr->scope);
3297
3298 if (!b)
3299 error (_("No block found for address"));
3300
3301 framefunc = block_linkage_function (b);
3302
3303 if (!framefunc)
3304 error (_("No function found for block"));
3305
3306 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3307 &datastart, &datalen);
3308
3309 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3310 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3311 datastart + datalen, per_cu);
3312 if (loc->kind == axs_lvalue_register)
3313 require_rvalue (expr, loc);
3314
3315 if (offset != 0)
3316 {
3317 ax_const_l (expr, offset);
3318 ax_simple (expr, aop_add);
3319 }
3320
3321 loc->kind = axs_lvalue_memory;
3322 }
3323 break;
3324
3325 case DW_OP_dup:
3326 ax_simple (expr, aop_dup);
3327 break;
3328
3329 case DW_OP_drop:
3330 ax_simple (expr, aop_pop);
3331 break;
3332
3333 case DW_OP_pick:
3334 offset = *op_ptr++;
3335 ax_pick (expr, offset);
3336 break;
3337
3338 case DW_OP_swap:
3339 ax_simple (expr, aop_swap);
3340 break;
3341
3342 case DW_OP_over:
3343 ax_pick (expr, 1);
3344 break;
3345
3346 case DW_OP_rot:
3347 ax_simple (expr, aop_rot);
3348 break;
3349
3350 case DW_OP_deref:
3351 case DW_OP_deref_size:
3352 {
3353 int size;
3354
3355 if (op == DW_OP_deref_size)
3356 size = *op_ptr++;
3357 else
3358 size = addr_size;
3359
3360 if (size != 1 && size != 2 && size != 4 && size != 8)
3361 error (_("Unsupported size %d in %s"),
3362 size, get_DW_OP_name (op));
3363 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3364 }
3365 break;
3366
3367 case DW_OP_abs:
3368 /* Sign extend the operand. */
3369 ax_ext (expr, addr_size_bits);
3370 ax_simple (expr, aop_dup);
3371 ax_const_l (expr, 0);
3372 ax_simple (expr, aop_less_signed);
3373 ax_simple (expr, aop_log_not);
3374 i = ax_goto (expr, aop_if_goto);
3375 /* We have to emit 0 - X. */
3376 ax_const_l (expr, 0);
3377 ax_simple (expr, aop_swap);
3378 ax_simple (expr, aop_sub);
3379 ax_label (expr, i, expr->len);
3380 break;
3381
3382 case DW_OP_neg:
3383 /* No need to sign extend here. */
3384 ax_const_l (expr, 0);
3385 ax_simple (expr, aop_swap);
3386 ax_simple (expr, aop_sub);
3387 break;
3388
3389 case DW_OP_not:
3390 /* Sign extend the operand. */
3391 ax_ext (expr, addr_size_bits);
3392 ax_simple (expr, aop_bit_not);
3393 break;
3394
3395 case DW_OP_plus_uconst:
3396 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3397 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3398 but we micro-optimize anyhow. */
3399 if (reg != 0)
3400 {
3401 ax_const_l (expr, reg);
3402 ax_simple (expr, aop_add);
3403 }
3404 break;
3405
3406 case DW_OP_and:
3407 ax_simple (expr, aop_bit_and);
3408 break;
3409
3410 case DW_OP_div:
3411 /* Sign extend the operands. */
3412 ax_ext (expr, addr_size_bits);
3413 ax_simple (expr, aop_swap);
3414 ax_ext (expr, addr_size_bits);
3415 ax_simple (expr, aop_swap);
3416 ax_simple (expr, aop_div_signed);
3417 break;
3418
3419 case DW_OP_minus:
3420 ax_simple (expr, aop_sub);
3421 break;
3422
3423 case DW_OP_mod:
3424 ax_simple (expr, aop_rem_unsigned);
3425 break;
3426
3427 case DW_OP_mul:
3428 ax_simple (expr, aop_mul);
3429 break;
3430
3431 case DW_OP_or:
3432 ax_simple (expr, aop_bit_or);
3433 break;
3434
3435 case DW_OP_plus:
3436 ax_simple (expr, aop_add);
3437 break;
3438
3439 case DW_OP_shl:
3440 ax_simple (expr, aop_lsh);
3441 break;
3442
3443 case DW_OP_shr:
3444 ax_simple (expr, aop_rsh_unsigned);
3445 break;
3446
3447 case DW_OP_shra:
3448 ax_simple (expr, aop_rsh_signed);
3449 break;
3450
3451 case DW_OP_xor:
3452 ax_simple (expr, aop_bit_xor);
3453 break;
3454
3455 case DW_OP_le:
3456 /* Sign extend the operands. */
3457 ax_ext (expr, addr_size_bits);
3458 ax_simple (expr, aop_swap);
3459 ax_ext (expr, addr_size_bits);
3460 /* Note no swap here: A <= B is !(B < A). */
3461 ax_simple (expr, aop_less_signed);
3462 ax_simple (expr, aop_log_not);
3463 break;
3464
3465 case DW_OP_ge:
3466 /* Sign extend the operands. */
3467 ax_ext (expr, addr_size_bits);
3468 ax_simple (expr, aop_swap);
3469 ax_ext (expr, addr_size_bits);
3470 ax_simple (expr, aop_swap);
3471 /* A >= B is !(A < B). */
3472 ax_simple (expr, aop_less_signed);
3473 ax_simple (expr, aop_log_not);
3474 break;
3475
3476 case DW_OP_eq:
3477 /* Sign extend the operands. */
3478 ax_ext (expr, addr_size_bits);
3479 ax_simple (expr, aop_swap);
3480 ax_ext (expr, addr_size_bits);
3481 /* No need for a second swap here. */
3482 ax_simple (expr, aop_equal);
3483 break;
3484
3485 case DW_OP_lt:
3486 /* Sign extend the operands. */
3487 ax_ext (expr, addr_size_bits);
3488 ax_simple (expr, aop_swap);
3489 ax_ext (expr, addr_size_bits);
3490 ax_simple (expr, aop_swap);
3491 ax_simple (expr, aop_less_signed);
3492 break;
3493
3494 case DW_OP_gt:
3495 /* Sign extend the operands. */
3496 ax_ext (expr, addr_size_bits);
3497 ax_simple (expr, aop_swap);
3498 ax_ext (expr, addr_size_bits);
3499 /* Note no swap here: A > B is B < A. */
3500 ax_simple (expr, aop_less_signed);
3501 break;
3502
3503 case DW_OP_ne:
3504 /* Sign extend the operands. */
3505 ax_ext (expr, addr_size_bits);
3506 ax_simple (expr, aop_swap);
3507 ax_ext (expr, addr_size_bits);
3508 /* No need for a swap here. */
3509 ax_simple (expr, aop_equal);
3510 ax_simple (expr, aop_log_not);
3511 break;
3512
3513 case DW_OP_call_frame_cfa:
3514 {
3515 int regnum;
3516 CORE_ADDR text_offset;
3517 LONGEST off;
3518 const gdb_byte *cfa_start, *cfa_end;
3519
3520 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3521 &regnum, &off,
3522 &text_offset, &cfa_start, &cfa_end))
3523 {
3524 /* Register. */
3525 ax_reg (expr, regnum);
3526 if (off != 0)
3527 {
3528 ax_const_l (expr, off);
3529 ax_simple (expr, aop_add);
3530 }
3531 }
3532 else
3533 {
3534 /* Another expression. */
3535 ax_const_l (expr, text_offset);
3536 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3537 cfa_start, cfa_end, per_cu);
3538 }
3539
3540 loc->kind = axs_lvalue_memory;
3541 }
3542 break;
3543
3544 case DW_OP_GNU_push_tls_address:
3545 case DW_OP_form_tls_address:
3546 unimplemented (op);
3547 break;
3548
3549 case DW_OP_push_object_address:
3550 unimplemented (op);
3551 break;
3552
3553 case DW_OP_skip:
3554 offset = extract_signed_integer (op_ptr, 2, byte_order);
3555 op_ptr += 2;
3556 i = ax_goto (expr, aop_goto);
3557 dw_labels.push_back (op_ptr + offset - base);
3558 patches.push_back (i);
3559 break;
3560
3561 case DW_OP_bra:
3562 offset = extract_signed_integer (op_ptr, 2, byte_order);
3563 op_ptr += 2;
3564 /* Zero extend the operand. */
3565 ax_zero_ext (expr, addr_size_bits);
3566 i = ax_goto (expr, aop_if_goto);
3567 dw_labels.push_back (op_ptr + offset - base);
3568 patches.push_back (i);
3569 break;
3570
3571 case DW_OP_nop:
3572 break;
3573
3574 case DW_OP_piece:
3575 case DW_OP_bit_piece:
3576 {
3577 uint64_t size, offset;
3578
3579 if (op_ptr - 1 == previous_piece)
3580 error (_("Cannot translate empty pieces to agent expressions"));
3581 previous_piece = op_ptr - 1;
3582
3583 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3584 if (op == DW_OP_piece)
3585 {
3586 size *= 8;
3587 offset = 0;
3588 }
3589 else
3590 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3591
3592 if (bits_collected + size > 8 * sizeof (LONGEST))
3593 error (_("Expression pieces exceed word size"));
3594
3595 /* Access the bits. */
3596 switch (loc->kind)
3597 {
3598 case axs_lvalue_register:
3599 ax_reg (expr, loc->u.reg);
3600 break;
3601
3602 case axs_lvalue_memory:
3603 /* Offset the pointer, if needed. */
3604 if (offset > 8)
3605 {
3606 ax_const_l (expr, offset / 8);
3607 ax_simple (expr, aop_add);
3608 offset %= 8;
3609 }
3610 access_memory (arch, expr, size);
3611 break;
3612 }
3613
3614 /* For a bits-big-endian target, shift up what we already
3615 have. For a bits-little-endian target, shift up the
3616 new data. Note that there is a potential bug here if
3617 the DWARF expression leaves multiple values on the
3618 stack. */
3619 if (bits_collected > 0)
3620 {
3621 if (bits_big_endian)
3622 {
3623 ax_simple (expr, aop_swap);
3624 ax_const_l (expr, size);
3625 ax_simple (expr, aop_lsh);
3626 /* We don't need a second swap here, because
3627 aop_bit_or is symmetric. */
3628 }
3629 else
3630 {
3631 ax_const_l (expr, size);
3632 ax_simple (expr, aop_lsh);
3633 }
3634 ax_simple (expr, aop_bit_or);
3635 }
3636
3637 bits_collected += size;
3638 loc->kind = axs_rvalue;
3639 }
3640 break;
3641
3642 case DW_OP_GNU_uninit:
3643 unimplemented (op);
3644
3645 case DW_OP_call2:
3646 case DW_OP_call4:
3647 {
3648 struct dwarf2_locexpr_baton block;
3649 int size = (op == DW_OP_call2 ? 2 : 4);
3650
3651 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3652 op_ptr += size;
3653
3654 cu_offset offset = (cu_offset) uoffset;
3655 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3656 get_ax_pc, expr);
3657
3658 /* DW_OP_call_ref is currently not supported. */
3659 gdb_assert (block.per_cu == per_cu);
3660
3661 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3662 block.data, block.data + block.size,
3663 per_cu);
3664 }
3665 break;
3666
3667 case DW_OP_call_ref:
3668 unimplemented (op);
3669
3670 default:
3671 unimplemented (op);
3672 }
3673 }
3674
3675 /* Patch all the branches we emitted. */
3676 for (i = 0; i < patches.size (); ++i)
3677 {
3678 int targ = offsets[dw_labels[i]];
3679 if (targ == -1)
3680 internal_error (__FILE__, __LINE__, _("invalid label"));
3681 ax_label (expr, patches[i], targ);
3682 }
3683 }
3684
3685 \f
3686 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3687 evaluator to calculate the location. */
3688 static struct value *
3689 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3690 {
3691 struct dwarf2_locexpr_baton *dlbaton
3692 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3693 struct value *val;
3694
3695 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3696 dlbaton->size, dlbaton->per_cu);
3697
3698 return val;
3699 }
3700
3701 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3702 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3703 will be thrown. */
3704
3705 static struct value *
3706 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3707 {
3708 struct dwarf2_locexpr_baton *dlbaton
3709 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3710
3711 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3712 dlbaton->size);
3713 }
3714
3715 /* Implementation of get_symbol_read_needs from
3716 symbol_computed_ops. */
3717
3718 static enum symbol_needs_kind
3719 locexpr_get_symbol_read_needs (struct symbol *symbol)
3720 {
3721 struct dwarf2_locexpr_baton *dlbaton
3722 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3723
3724 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3725 dlbaton->per_cu);
3726 }
3727
3728 /* Return true if DATA points to the end of a piece. END is one past
3729 the last byte in the expression. */
3730
3731 static int
3732 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3733 {
3734 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3735 }
3736
3737 /* Helper for locexpr_describe_location_piece that finds the name of a
3738 DWARF register. */
3739
3740 static const char *
3741 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3742 {
3743 int regnum;
3744
3745 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3746 We'd rather print *something* here than throw an error. */
3747 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3748 /* gdbarch_register_name may just return "", return something more
3749 descriptive for bad register numbers. */
3750 if (regnum == -1)
3751 {
3752 /* The text is output as "$bad_register_number".
3753 That is why we use the underscores. */
3754 return _("bad_register_number");
3755 }
3756 return gdbarch_register_name (gdbarch, regnum);
3757 }
3758
3759 /* Nicely describe a single piece of a location, returning an updated
3760 position in the bytecode sequence. This function cannot recognize
3761 all locations; if a location is not recognized, it simply returns
3762 DATA. If there is an error during reading, e.g. we run off the end
3763 of the buffer, an error is thrown. */
3764
3765 static const gdb_byte *
3766 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3767 CORE_ADDR addr, struct objfile *objfile,
3768 struct dwarf2_per_cu_data *per_cu,
3769 const gdb_byte *data, const gdb_byte *end,
3770 unsigned int addr_size)
3771 {
3772 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3773 size_t leb128_size;
3774
3775 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3776 {
3777 fprintf_filtered (stream, _("a variable in $%s"),
3778 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3779 data += 1;
3780 }
3781 else if (data[0] == DW_OP_regx)
3782 {
3783 uint64_t reg;
3784
3785 data = safe_read_uleb128 (data + 1, end, &reg);
3786 fprintf_filtered (stream, _("a variable in $%s"),
3787 locexpr_regname (gdbarch, reg));
3788 }
3789 else if (data[0] == DW_OP_fbreg)
3790 {
3791 const struct block *b;
3792 struct symbol *framefunc;
3793 int frame_reg = 0;
3794 int64_t frame_offset;
3795 const gdb_byte *base_data, *new_data, *save_data = data;
3796 size_t base_size;
3797 int64_t base_offset = 0;
3798
3799 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3800 if (!piece_end_p (new_data, end))
3801 return data;
3802 data = new_data;
3803
3804 b = block_for_pc (addr);
3805
3806 if (!b)
3807 error (_("No block found for address for symbol \"%s\"."),
3808 SYMBOL_PRINT_NAME (symbol));
3809
3810 framefunc = block_linkage_function (b);
3811
3812 if (!framefunc)
3813 error (_("No function found for block for symbol \"%s\"."),
3814 SYMBOL_PRINT_NAME (symbol));
3815
3816 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3817
3818 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3819 {
3820 const gdb_byte *buf_end;
3821
3822 frame_reg = base_data[0] - DW_OP_breg0;
3823 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3824 &base_offset);
3825 if (buf_end != base_data + base_size)
3826 error (_("Unexpected opcode after "
3827 "DW_OP_breg%u for symbol \"%s\"."),
3828 frame_reg, SYMBOL_PRINT_NAME (symbol));
3829 }
3830 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3831 {
3832 /* The frame base is just the register, with no offset. */
3833 frame_reg = base_data[0] - DW_OP_reg0;
3834 base_offset = 0;
3835 }
3836 else
3837 {
3838 /* We don't know what to do with the frame base expression,
3839 so we can't trace this variable; give up. */
3840 return save_data;
3841 }
3842
3843 fprintf_filtered (stream,
3844 _("a variable at frame base reg $%s offset %s+%s"),
3845 locexpr_regname (gdbarch, frame_reg),
3846 plongest (base_offset), plongest (frame_offset));
3847 }
3848 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3849 && piece_end_p (data, end))
3850 {
3851 int64_t offset;
3852
3853 data = safe_read_sleb128 (data + 1, end, &offset);
3854
3855 fprintf_filtered (stream,
3856 _("a variable at offset %s from base reg $%s"),
3857 plongest (offset),
3858 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3859 }
3860
3861 /* The location expression for a TLS variable looks like this (on a
3862 64-bit LE machine):
3863
3864 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3865 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3866
3867 0x3 is the encoding for DW_OP_addr, which has an operand as long
3868 as the size of an address on the target machine (here is 8
3869 bytes). Note that more recent version of GCC emit DW_OP_const4u
3870 or DW_OP_const8u, depending on address size, rather than
3871 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3872 The operand represents the offset at which the variable is within
3873 the thread local storage. */
3874
3875 else if (data + 1 + addr_size < end
3876 && (data[0] == DW_OP_addr
3877 || (addr_size == 4 && data[0] == DW_OP_const4u)
3878 || (addr_size == 8 && data[0] == DW_OP_const8u))
3879 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3880 || data[1 + addr_size] == DW_OP_form_tls_address)
3881 && piece_end_p (data + 2 + addr_size, end))
3882 {
3883 ULONGEST offset;
3884 offset = extract_unsigned_integer (data + 1, addr_size,
3885 gdbarch_byte_order (gdbarch));
3886
3887 fprintf_filtered (stream,
3888 _("a thread-local variable at offset 0x%s "
3889 "in the thread-local storage for `%s'"),
3890 phex_nz (offset, addr_size), objfile_name (objfile));
3891
3892 data += 1 + addr_size + 1;
3893 }
3894
3895 /* With -gsplit-dwarf a TLS variable can also look like this:
3896 DW_AT_location : 3 byte block: fc 4 e0
3897 (DW_OP_GNU_const_index: 4;
3898 DW_OP_GNU_push_tls_address) */
3899 else if (data + 3 <= end
3900 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3901 && data[0] == DW_OP_GNU_const_index
3902 && leb128_size > 0
3903 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3904 || data[1 + leb128_size] == DW_OP_form_tls_address)
3905 && piece_end_p (data + 2 + leb128_size, end))
3906 {
3907 uint64_t offset;
3908
3909 data = safe_read_uleb128 (data + 1, end, &offset);
3910 offset = dwarf2_read_addr_index (per_cu, offset);
3911 fprintf_filtered (stream,
3912 _("a thread-local variable at offset 0x%s "
3913 "in the thread-local storage for `%s'"),
3914 phex_nz (offset, addr_size), objfile_name (objfile));
3915 ++data;
3916 }
3917
3918 else if (data[0] >= DW_OP_lit0
3919 && data[0] <= DW_OP_lit31
3920 && data + 1 < end
3921 && data[1] == DW_OP_stack_value)
3922 {
3923 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3924 data += 2;
3925 }
3926
3927 return data;
3928 }
3929
3930 /* Disassemble an expression, stopping at the end of a piece or at the
3931 end of the expression. Returns a pointer to the next unread byte
3932 in the input expression. If ALL is nonzero, then this function
3933 will keep going until it reaches the end of the expression.
3934 If there is an error during reading, e.g. we run off the end
3935 of the buffer, an error is thrown. */
3936
3937 static const gdb_byte *
3938 disassemble_dwarf_expression (struct ui_file *stream,
3939 struct gdbarch *arch, unsigned int addr_size,
3940 int offset_size, const gdb_byte *start,
3941 const gdb_byte *data, const gdb_byte *end,
3942 int indent, int all,
3943 struct dwarf2_per_cu_data *per_cu)
3944 {
3945 while (data < end
3946 && (all
3947 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3948 {
3949 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3950 uint64_t ul;
3951 int64_t l;
3952 const char *name;
3953
3954 name = get_DW_OP_name (op);
3955
3956 if (!name)
3957 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3958 op, (long) (data - 1 - start));
3959 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3960 (long) (data - 1 - start), name);
3961
3962 switch (op)
3963 {
3964 case DW_OP_addr:
3965 ul = extract_unsigned_integer (data, addr_size,
3966 gdbarch_byte_order (arch));
3967 data += addr_size;
3968 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3969 break;
3970
3971 case DW_OP_const1u:
3972 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3973 data += 1;
3974 fprintf_filtered (stream, " %s", pulongest (ul));
3975 break;
3976 case DW_OP_const1s:
3977 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3978 data += 1;
3979 fprintf_filtered (stream, " %s", plongest (l));
3980 break;
3981 case DW_OP_const2u:
3982 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3983 data += 2;
3984 fprintf_filtered (stream, " %s", pulongest (ul));
3985 break;
3986 case DW_OP_const2s:
3987 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3988 data += 2;
3989 fprintf_filtered (stream, " %s", plongest (l));
3990 break;
3991 case DW_OP_const4u:
3992 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3993 data += 4;
3994 fprintf_filtered (stream, " %s", pulongest (ul));
3995 break;
3996 case DW_OP_const4s:
3997 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3998 data += 4;
3999 fprintf_filtered (stream, " %s", plongest (l));
4000 break;
4001 case DW_OP_const8u:
4002 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4003 data += 8;
4004 fprintf_filtered (stream, " %s", pulongest (ul));
4005 break;
4006 case DW_OP_const8s:
4007 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4008 data += 8;
4009 fprintf_filtered (stream, " %s", plongest (l));
4010 break;
4011 case DW_OP_constu:
4012 data = safe_read_uleb128 (data, end, &ul);
4013 fprintf_filtered (stream, " %s", pulongest (ul));
4014 break;
4015 case DW_OP_consts:
4016 data = safe_read_sleb128 (data, end, &l);
4017 fprintf_filtered (stream, " %s", plongest (l));
4018 break;
4019
4020 case DW_OP_reg0:
4021 case DW_OP_reg1:
4022 case DW_OP_reg2:
4023 case DW_OP_reg3:
4024 case DW_OP_reg4:
4025 case DW_OP_reg5:
4026 case DW_OP_reg6:
4027 case DW_OP_reg7:
4028 case DW_OP_reg8:
4029 case DW_OP_reg9:
4030 case DW_OP_reg10:
4031 case DW_OP_reg11:
4032 case DW_OP_reg12:
4033 case DW_OP_reg13:
4034 case DW_OP_reg14:
4035 case DW_OP_reg15:
4036 case DW_OP_reg16:
4037 case DW_OP_reg17:
4038 case DW_OP_reg18:
4039 case DW_OP_reg19:
4040 case DW_OP_reg20:
4041 case DW_OP_reg21:
4042 case DW_OP_reg22:
4043 case DW_OP_reg23:
4044 case DW_OP_reg24:
4045 case DW_OP_reg25:
4046 case DW_OP_reg26:
4047 case DW_OP_reg27:
4048 case DW_OP_reg28:
4049 case DW_OP_reg29:
4050 case DW_OP_reg30:
4051 case DW_OP_reg31:
4052 fprintf_filtered (stream, " [$%s]",
4053 locexpr_regname (arch, op - DW_OP_reg0));
4054 break;
4055
4056 case DW_OP_regx:
4057 data = safe_read_uleb128 (data, end, &ul);
4058 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4059 locexpr_regname (arch, (int) ul));
4060 break;
4061
4062 case DW_OP_implicit_value:
4063 data = safe_read_uleb128 (data, end, &ul);
4064 data += ul;
4065 fprintf_filtered (stream, " %s", pulongest (ul));
4066 break;
4067
4068 case DW_OP_breg0:
4069 case DW_OP_breg1:
4070 case DW_OP_breg2:
4071 case DW_OP_breg3:
4072 case DW_OP_breg4:
4073 case DW_OP_breg5:
4074 case DW_OP_breg6:
4075 case DW_OP_breg7:
4076 case DW_OP_breg8:
4077 case DW_OP_breg9:
4078 case DW_OP_breg10:
4079 case DW_OP_breg11:
4080 case DW_OP_breg12:
4081 case DW_OP_breg13:
4082 case DW_OP_breg14:
4083 case DW_OP_breg15:
4084 case DW_OP_breg16:
4085 case DW_OP_breg17:
4086 case DW_OP_breg18:
4087 case DW_OP_breg19:
4088 case DW_OP_breg20:
4089 case DW_OP_breg21:
4090 case DW_OP_breg22:
4091 case DW_OP_breg23:
4092 case DW_OP_breg24:
4093 case DW_OP_breg25:
4094 case DW_OP_breg26:
4095 case DW_OP_breg27:
4096 case DW_OP_breg28:
4097 case DW_OP_breg29:
4098 case DW_OP_breg30:
4099 case DW_OP_breg31:
4100 data = safe_read_sleb128 (data, end, &l);
4101 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4102 locexpr_regname (arch, op - DW_OP_breg0));
4103 break;
4104
4105 case DW_OP_bregx:
4106 data = safe_read_uleb128 (data, end, &ul);
4107 data = safe_read_sleb128 (data, end, &l);
4108 fprintf_filtered (stream, " register %s [$%s] offset %s",
4109 pulongest (ul),
4110 locexpr_regname (arch, (int) ul),
4111 plongest (l));
4112 break;
4113
4114 case DW_OP_fbreg:
4115 data = safe_read_sleb128 (data, end, &l);
4116 fprintf_filtered (stream, " %s", plongest (l));
4117 break;
4118
4119 case DW_OP_xderef_size:
4120 case DW_OP_deref_size:
4121 case DW_OP_pick:
4122 fprintf_filtered (stream, " %d", *data);
4123 ++data;
4124 break;
4125
4126 case DW_OP_plus_uconst:
4127 data = safe_read_uleb128 (data, end, &ul);
4128 fprintf_filtered (stream, " %s", pulongest (ul));
4129 break;
4130
4131 case DW_OP_skip:
4132 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4133 data += 2;
4134 fprintf_filtered (stream, " to %ld",
4135 (long) (data + l - start));
4136 break;
4137
4138 case DW_OP_bra:
4139 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4140 data += 2;
4141 fprintf_filtered (stream, " %ld",
4142 (long) (data + l - start));
4143 break;
4144
4145 case DW_OP_call2:
4146 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4147 data += 2;
4148 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4149 break;
4150
4151 case DW_OP_call4:
4152 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4153 data += 4;
4154 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4155 break;
4156
4157 case DW_OP_call_ref:
4158 ul = extract_unsigned_integer (data, offset_size,
4159 gdbarch_byte_order (arch));
4160 data += offset_size;
4161 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4162 break;
4163
4164 case DW_OP_piece:
4165 data = safe_read_uleb128 (data, end, &ul);
4166 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4167 break;
4168
4169 case DW_OP_bit_piece:
4170 {
4171 uint64_t offset;
4172
4173 data = safe_read_uleb128 (data, end, &ul);
4174 data = safe_read_uleb128 (data, end, &offset);
4175 fprintf_filtered (stream, " size %s offset %s (bits)",
4176 pulongest (ul), pulongest (offset));
4177 }
4178 break;
4179
4180 case DW_OP_implicit_pointer:
4181 case DW_OP_GNU_implicit_pointer:
4182 {
4183 ul = extract_unsigned_integer (data, offset_size,
4184 gdbarch_byte_order (arch));
4185 data += offset_size;
4186
4187 data = safe_read_sleb128 (data, end, &l);
4188
4189 fprintf_filtered (stream, " DIE %s offset %s",
4190 phex_nz (ul, offset_size),
4191 plongest (l));
4192 }
4193 break;
4194
4195 case DW_OP_deref_type:
4196 case DW_OP_GNU_deref_type:
4197 {
4198 int addr_size = *data++;
4199 struct type *type;
4200
4201 data = safe_read_uleb128 (data, end, &ul);
4202 cu_offset offset = (cu_offset) ul;
4203 type = dwarf2_get_die_type (offset, per_cu);
4204 fprintf_filtered (stream, "<");
4205 type_print (type, "", stream, -1);
4206 fprintf_filtered (stream, " [0x%s]> %d",
4207 phex_nz (to_underlying (offset), 0),
4208 addr_size);
4209 }
4210 break;
4211
4212 case DW_OP_const_type:
4213 case DW_OP_GNU_const_type:
4214 {
4215 struct type *type;
4216
4217 data = safe_read_uleb128 (data, end, &ul);
4218 cu_offset type_die = (cu_offset) ul;
4219 type = dwarf2_get_die_type (type_die, per_cu);
4220 fprintf_filtered (stream, "<");
4221 type_print (type, "", stream, -1);
4222 fprintf_filtered (stream, " [0x%s]>",
4223 phex_nz (to_underlying (type_die), 0));
4224 }
4225 break;
4226
4227 case DW_OP_regval_type:
4228 case DW_OP_GNU_regval_type:
4229 {
4230 uint64_t reg;
4231 struct type *type;
4232
4233 data = safe_read_uleb128 (data, end, &reg);
4234 data = safe_read_uleb128 (data, end, &ul);
4235 cu_offset type_die = (cu_offset) ul;
4236
4237 type = dwarf2_get_die_type (type_die, per_cu);
4238 fprintf_filtered (stream, "<");
4239 type_print (type, "", stream, -1);
4240 fprintf_filtered (stream, " [0x%s]> [$%s]",
4241 phex_nz (to_underlying (type_die), 0),
4242 locexpr_regname (arch, reg));
4243 }
4244 break;
4245
4246 case DW_OP_convert:
4247 case DW_OP_GNU_convert:
4248 case DW_OP_reinterpret:
4249 case DW_OP_GNU_reinterpret:
4250 {
4251 data = safe_read_uleb128 (data, end, &ul);
4252 cu_offset type_die = (cu_offset) ul;
4253
4254 if (to_underlying (type_die) == 0)
4255 fprintf_filtered (stream, "<0>");
4256 else
4257 {
4258 struct type *type;
4259
4260 type = dwarf2_get_die_type (type_die, per_cu);
4261 fprintf_filtered (stream, "<");
4262 type_print (type, "", stream, -1);
4263 fprintf_filtered (stream, " [0x%s]>",
4264 phex_nz (to_underlying (type_die), 0));
4265 }
4266 }
4267 break;
4268
4269 case DW_OP_entry_value:
4270 case DW_OP_GNU_entry_value:
4271 data = safe_read_uleb128 (data, end, &ul);
4272 fputc_filtered ('\n', stream);
4273 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4274 start, data, data + ul, indent + 2,
4275 all, per_cu);
4276 data += ul;
4277 continue;
4278
4279 case DW_OP_GNU_parameter_ref:
4280 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4281 data += 4;
4282 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4283 break;
4284
4285 case DW_OP_GNU_addr_index:
4286 data = safe_read_uleb128 (data, end, &ul);
4287 ul = dwarf2_read_addr_index (per_cu, ul);
4288 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4289 break;
4290 case DW_OP_GNU_const_index:
4291 data = safe_read_uleb128 (data, end, &ul);
4292 ul = dwarf2_read_addr_index (per_cu, ul);
4293 fprintf_filtered (stream, " %s", pulongest (ul));
4294 break;
4295 }
4296
4297 fprintf_filtered (stream, "\n");
4298 }
4299
4300 return data;
4301 }
4302
4303 /* Describe a single location, which may in turn consist of multiple
4304 pieces. */
4305
4306 static void
4307 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4308 struct ui_file *stream,
4309 const gdb_byte *data, size_t size,
4310 struct objfile *objfile, unsigned int addr_size,
4311 int offset_size, struct dwarf2_per_cu_data *per_cu)
4312 {
4313 const gdb_byte *end = data + size;
4314 int first_piece = 1, bad = 0;
4315
4316 while (data < end)
4317 {
4318 const gdb_byte *here = data;
4319 int disassemble = 1;
4320
4321 if (first_piece)
4322 first_piece = 0;
4323 else
4324 fprintf_filtered (stream, _(", and "));
4325
4326 if (!dwarf_always_disassemble)
4327 {
4328 data = locexpr_describe_location_piece (symbol, stream,
4329 addr, objfile, per_cu,
4330 data, end, addr_size);
4331 /* If we printed anything, or if we have an empty piece,
4332 then don't disassemble. */
4333 if (data != here
4334 || data[0] == DW_OP_piece
4335 || data[0] == DW_OP_bit_piece)
4336 disassemble = 0;
4337 }
4338 if (disassemble)
4339 {
4340 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4341 data = disassemble_dwarf_expression (stream,
4342 get_objfile_arch (objfile),
4343 addr_size, offset_size, data,
4344 data, end, 0,
4345 dwarf_always_disassemble,
4346 per_cu);
4347 }
4348
4349 if (data < end)
4350 {
4351 int empty = data == here;
4352
4353 if (disassemble)
4354 fprintf_filtered (stream, " ");
4355 if (data[0] == DW_OP_piece)
4356 {
4357 uint64_t bytes;
4358
4359 data = safe_read_uleb128 (data + 1, end, &bytes);
4360
4361 if (empty)
4362 fprintf_filtered (stream, _("an empty %s-byte piece"),
4363 pulongest (bytes));
4364 else
4365 fprintf_filtered (stream, _(" [%s-byte piece]"),
4366 pulongest (bytes));
4367 }
4368 else if (data[0] == DW_OP_bit_piece)
4369 {
4370 uint64_t bits, offset;
4371
4372 data = safe_read_uleb128 (data + 1, end, &bits);
4373 data = safe_read_uleb128 (data, end, &offset);
4374
4375 if (empty)
4376 fprintf_filtered (stream,
4377 _("an empty %s-bit piece"),
4378 pulongest (bits));
4379 else
4380 fprintf_filtered (stream,
4381 _(" [%s-bit piece, offset %s bits]"),
4382 pulongest (bits), pulongest (offset));
4383 }
4384 else
4385 {
4386 bad = 1;
4387 break;
4388 }
4389 }
4390 }
4391
4392 if (bad || data > end)
4393 error (_("Corrupted DWARF2 expression for \"%s\"."),
4394 SYMBOL_PRINT_NAME (symbol));
4395 }
4396
4397 /* Print a natural-language description of SYMBOL to STREAM. This
4398 version is for a symbol with a single location. */
4399
4400 static void
4401 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4402 struct ui_file *stream)
4403 {
4404 struct dwarf2_locexpr_baton *dlbaton
4405 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4406 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4407 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4408 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4409
4410 locexpr_describe_location_1 (symbol, addr, stream,
4411 dlbaton->data, dlbaton->size,
4412 objfile, addr_size, offset_size,
4413 dlbaton->per_cu);
4414 }
4415
4416 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4417 any necessary bytecode in AX. */
4418
4419 static void
4420 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4421 struct agent_expr *ax, struct axs_value *value)
4422 {
4423 struct dwarf2_locexpr_baton *dlbaton
4424 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4425 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4426
4427 if (dlbaton->size == 0)
4428 value->optimized_out = 1;
4429 else
4430 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4431 dlbaton->data, dlbaton->data + dlbaton->size,
4432 dlbaton->per_cu);
4433 }
4434
4435 /* symbol_computed_ops 'generate_c_location' method. */
4436
4437 static void
4438 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4439 struct gdbarch *gdbarch,
4440 unsigned char *registers_used,
4441 CORE_ADDR pc, const char *result_name)
4442 {
4443 struct dwarf2_locexpr_baton *dlbaton
4444 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4445 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4446
4447 if (dlbaton->size == 0)
4448 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4449
4450 compile_dwarf_expr_to_c (stream, result_name,
4451 sym, pc, gdbarch, registers_used, addr_size,
4452 dlbaton->data, dlbaton->data + dlbaton->size,
4453 dlbaton->per_cu);
4454 }
4455
4456 /* The set of location functions used with the DWARF-2 expression
4457 evaluator. */
4458 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4459 locexpr_read_variable,
4460 locexpr_read_variable_at_entry,
4461 locexpr_get_symbol_read_needs,
4462 locexpr_describe_location,
4463 0, /* location_has_loclist */
4464 locexpr_tracepoint_var_ref,
4465 locexpr_generate_c_location
4466 };
4467
4468
4469 /* Wrapper functions for location lists. These generally find
4470 the appropriate location expression and call something above. */
4471
4472 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4473 evaluator to calculate the location. */
4474 static struct value *
4475 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4476 {
4477 struct dwarf2_loclist_baton *dlbaton
4478 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4479 struct value *val;
4480 const gdb_byte *data;
4481 size_t size;
4482 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4483
4484 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4485 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4486 dlbaton->per_cu);
4487
4488 return val;
4489 }
4490
4491 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4492 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4493 will be thrown.
4494
4495 Function always returns non-NULL value, it may be marked optimized out if
4496 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4497 if it cannot resolve the parameter for any reason. */
4498
4499 static struct value *
4500 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4501 {
4502 struct dwarf2_loclist_baton *dlbaton
4503 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4504 const gdb_byte *data;
4505 size_t size;
4506 CORE_ADDR pc;
4507
4508 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4509 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4510
4511 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4512 if (data == NULL)
4513 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4514
4515 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4516 }
4517
4518 /* Implementation of get_symbol_read_needs from
4519 symbol_computed_ops. */
4520
4521 static enum symbol_needs_kind
4522 loclist_symbol_needs (struct symbol *symbol)
4523 {
4524 /* If there's a location list, then assume we need to have a frame
4525 to choose the appropriate location expression. With tracking of
4526 global variables this is not necessarily true, but such tracking
4527 is disabled in GCC at the moment until we figure out how to
4528 represent it. */
4529
4530 return SYMBOL_NEEDS_FRAME;
4531 }
4532
4533 /* Print a natural-language description of SYMBOL to STREAM. This
4534 version applies when there is a list of different locations, each
4535 with a specified address range. */
4536
4537 static void
4538 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4539 struct ui_file *stream)
4540 {
4541 struct dwarf2_loclist_baton *dlbaton
4542 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4543 const gdb_byte *loc_ptr, *buf_end;
4544 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4547 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4548 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4549 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4550 /* Adjust base_address for relocatable objects. */
4551 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4552 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4553 int done = 0;
4554
4555 loc_ptr = dlbaton->data;
4556 buf_end = dlbaton->data + dlbaton->size;
4557
4558 fprintf_filtered (stream, _("multi-location:\n"));
4559
4560 /* Iterate through locations until we run out. */
4561 while (!done)
4562 {
4563 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4564 int length;
4565 enum debug_loc_kind kind;
4566 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4567
4568 if (dlbaton->from_dwo)
4569 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4570 loc_ptr, buf_end, &new_ptr,
4571 &low, &high, byte_order);
4572 else
4573 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4574 &low, &high,
4575 byte_order, addr_size,
4576 signed_addr_p);
4577 loc_ptr = new_ptr;
4578 switch (kind)
4579 {
4580 case DEBUG_LOC_END_OF_LIST:
4581 done = 1;
4582 continue;
4583 case DEBUG_LOC_BASE_ADDRESS:
4584 base_address = high + base_offset;
4585 fprintf_filtered (stream, _(" Base address %s"),
4586 paddress (gdbarch, base_address));
4587 continue;
4588 case DEBUG_LOC_START_END:
4589 case DEBUG_LOC_START_LENGTH:
4590 break;
4591 case DEBUG_LOC_BUFFER_OVERFLOW:
4592 case DEBUG_LOC_INVALID_ENTRY:
4593 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4594 SYMBOL_PRINT_NAME (symbol));
4595 default:
4596 gdb_assert_not_reached ("bad debug_loc_kind");
4597 }
4598
4599 /* Otherwise, a location expression entry. */
4600 low += base_address;
4601 high += base_address;
4602
4603 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4604 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4605
4606 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4607 loc_ptr += 2;
4608
4609 /* (It would improve readability to print only the minimum
4610 necessary digits of the second number of the range.) */
4611 fprintf_filtered (stream, _(" Range %s-%s: "),
4612 paddress (gdbarch, low), paddress (gdbarch, high));
4613
4614 /* Now describe this particular location. */
4615 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4616 objfile, addr_size, offset_size,
4617 dlbaton->per_cu);
4618
4619 fprintf_filtered (stream, "\n");
4620
4621 loc_ptr += length;
4622 }
4623 }
4624
4625 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4626 any necessary bytecode in AX. */
4627 static void
4628 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4629 struct agent_expr *ax, struct axs_value *value)
4630 {
4631 struct dwarf2_loclist_baton *dlbaton
4632 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4633 const gdb_byte *data;
4634 size_t size;
4635 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4636
4637 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4638 if (size == 0)
4639 value->optimized_out = 1;
4640 else
4641 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4642 dlbaton->per_cu);
4643 }
4644
4645 /* symbol_computed_ops 'generate_c_location' method. */
4646
4647 static void
4648 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4649 struct gdbarch *gdbarch,
4650 unsigned char *registers_used,
4651 CORE_ADDR pc, const char *result_name)
4652 {
4653 struct dwarf2_loclist_baton *dlbaton
4654 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4655 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4656 const gdb_byte *data;
4657 size_t size;
4658
4659 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4660 if (size == 0)
4661 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4662
4663 compile_dwarf_expr_to_c (stream, result_name,
4664 sym, pc, gdbarch, registers_used, addr_size,
4665 data, data + size,
4666 dlbaton->per_cu);
4667 }
4668
4669 /* The set of location functions used with the DWARF-2 expression
4670 evaluator and location lists. */
4671 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4672 loclist_read_variable,
4673 loclist_read_variable_at_entry,
4674 loclist_symbol_needs,
4675 loclist_describe_location,
4676 1, /* location_has_loclist */
4677 loclist_tracepoint_var_ref,
4678 loclist_generate_c_location
4679 };
4680
4681 /* Provide a prototype to silence -Wmissing-prototypes. */
4682 extern initialize_file_ftype _initialize_dwarf2loc;
4683
4684 void
4685 _initialize_dwarf2loc (void)
4686 {
4687 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4688 &entry_values_debug,
4689 _("Set entry values and tail call frames "
4690 "debugging."),
4691 _("Show entry values and tail call frames "
4692 "debugging."),
4693 _("When non-zero, the process of determining "
4694 "parameter values from function entry point "
4695 "and tail call frames will be printed."),
4696 NULL,
4697 show_entry_values_debug,
4698 &setdebuglist, &showdebuglist);
4699
4700 #if GDB_SELF_TEST
4701 register_self_test (selftests::copy_bitwise_tests);
4702 #endif
4703 }
This page took 0.123383 seconds and 5 git commands to generate.