read/write_pieced_value: Improve logic for buffer allocation
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1756 bits whose first bit is located at bit offset START. */
1757
1758 static size_t
1759 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1760 {
1761 return (start % 8 + n_bits + 7) / 8;
1762 }
1763
1764 static void
1765 read_pieced_value (struct value *v)
1766 {
1767 int i;
1768 LONGEST offset = 0, max_offset;
1769 ULONGEST bits_to_skip;
1770 gdb_byte *contents;
1771 struct piece_closure *c
1772 = (struct piece_closure *) value_computed_closure (v);
1773 std::vector<gdb_byte> buffer;
1774 int bits_big_endian
1775 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1776
1777 if (value_type (v) != value_enclosing_type (v))
1778 internal_error (__FILE__, __LINE__,
1779 _("Should not be able to create a lazy value with "
1780 "an enclosing type"));
1781
1782 contents = value_contents_raw (v);
1783 bits_to_skip = 8 * value_offset (v);
1784 if (value_bitsize (v))
1785 {
1786 bits_to_skip += (8 * value_offset (value_parent (v))
1787 + value_bitpos (v));
1788 max_offset = value_bitsize (v);
1789 }
1790 else
1791 max_offset = 8 * TYPE_LENGTH (value_type (v));
1792
1793 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1794 {
1795 struct dwarf_expr_piece *p = &c->pieces[i];
1796 size_t this_size, this_size_bits;
1797 long dest_offset_bits, source_offset_bits;
1798
1799 /* Compute size, source, and destination offsets for copying, in
1800 bits. */
1801 this_size_bits = p->size;
1802 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1803 {
1804 bits_to_skip -= this_size_bits;
1805 continue;
1806 }
1807 source_offset_bits = bits_to_skip;
1808 this_size_bits -= bits_to_skip;
1809 bits_to_skip = 0;
1810 dest_offset_bits = offset;
1811
1812 if (this_size_bits > max_offset - offset)
1813 this_size_bits = max_offset - offset;
1814
1815 /* Copy from the source to DEST_BUFFER. */
1816 switch (p->location)
1817 {
1818 case DWARF_VALUE_REGISTER:
1819 {
1820 struct frame_info *frame = frame_find_by_id (c->frame_id);
1821 struct gdbarch *arch = get_frame_arch (frame);
1822 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1823 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1824 int optim, unavail;
1825
1826 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1827 && p->size < reg_bits)
1828 {
1829 /* Big-endian, and we want less than full size. */
1830 source_offset_bits += reg_bits - p->size;
1831 }
1832 this_size = bits_to_bytes (source_offset_bits, this_size_bits);
1833 buffer.reserve (this_size);
1834
1835 if (!get_frame_register_bytes (frame, gdb_regnum,
1836 source_offset_bits / 8,
1837 this_size, buffer.data (),
1838 &optim, &unavail))
1839 {
1840 if (optim)
1841 mark_value_bits_optimized_out (v, offset, this_size_bits);
1842 if (unavail)
1843 mark_value_bits_unavailable (v, offset, this_size_bits);
1844 break;
1845 }
1846
1847 copy_bitwise (contents, dest_offset_bits,
1848 buffer.data (), source_offset_bits % 8,
1849 this_size_bits, bits_big_endian);
1850 }
1851 break;
1852
1853 case DWARF_VALUE_MEMORY:
1854 this_size = bits_to_bytes (source_offset_bits, this_size_bits);
1855 buffer.reserve (this_size);
1856
1857 read_value_memory (v, offset,
1858 p->v.mem.in_stack_memory,
1859 p->v.mem.addr + source_offset_bits / 8,
1860 buffer.data (), this_size);
1861 copy_bitwise (contents, dest_offset_bits,
1862 buffer.data (), source_offset_bits % 8,
1863 this_size_bits, bits_big_endian);
1864 break;
1865
1866 case DWARF_VALUE_STACK:
1867 {
1868 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1869 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1870 ULONGEST stack_value_size_bits
1871 = 8 * TYPE_LENGTH (value_type (p->v.value));
1872
1873 /* Use zeroes if piece reaches beyond stack value. */
1874 if (p->size > stack_value_size_bits)
1875 break;
1876
1877 /* Piece is anchored at least significant bit end. */
1878 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1879 source_offset_bits += stack_value_size_bits - p->size;
1880
1881 copy_bitwise (contents, dest_offset_bits,
1882 value_contents_all (p->v.value),
1883 source_offset_bits,
1884 this_size_bits, bits_big_endian);
1885 }
1886 break;
1887
1888 case DWARF_VALUE_LITERAL:
1889 {
1890 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1891 size_t n = this_size_bits;
1892
1893 /* Cut off at the end of the implicit value. */
1894 if (source_offset_bits >= literal_size_bits)
1895 break;
1896 if (n > literal_size_bits - source_offset_bits)
1897 n = literal_size_bits - source_offset_bits;
1898
1899 copy_bitwise (contents, dest_offset_bits,
1900 p->v.literal.data, source_offset_bits,
1901 n, bits_big_endian);
1902 }
1903 break;
1904
1905 /* These bits show up as zeros -- but do not cause the value
1906 to be considered optimized-out. */
1907 case DWARF_VALUE_IMPLICIT_POINTER:
1908 break;
1909
1910 case DWARF_VALUE_OPTIMIZED_OUT:
1911 mark_value_bits_optimized_out (v, offset, this_size_bits);
1912 break;
1913
1914 default:
1915 internal_error (__FILE__, __LINE__, _("invalid location type"));
1916 }
1917
1918 offset += this_size_bits;
1919 }
1920 }
1921
1922 static void
1923 write_pieced_value (struct value *to, struct value *from)
1924 {
1925 int i;
1926 ULONGEST bits_to_skip;
1927 LONGEST offset = 0, max_offset;
1928 const gdb_byte *contents;
1929 struct piece_closure *c
1930 = (struct piece_closure *) value_computed_closure (to);
1931 std::vector<gdb_byte> buffer;
1932 int bits_big_endian
1933 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1934
1935 contents = value_contents (from);
1936 bits_to_skip = 8 * value_offset (to);
1937 if (value_bitsize (to))
1938 {
1939 bits_to_skip += (8 * value_offset (value_parent (to))
1940 + value_bitpos (to));
1941 /* Use the least significant bits of FROM. */
1942 if (gdbarch_byte_order (get_type_arch (value_type (from)))
1943 == BFD_ENDIAN_BIG)
1944 {
1945 max_offset = 8 * TYPE_LENGTH (value_type (from));
1946 offset = max_offset - value_bitsize (to);
1947 }
1948 else
1949 max_offset = value_bitsize (to);
1950 }
1951 else
1952 max_offset = 8 * TYPE_LENGTH (value_type (to));
1953
1954 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1955 {
1956 struct dwarf_expr_piece *p = &c->pieces[i];
1957 size_t this_size_bits, this_size;
1958 long dest_offset_bits, source_offset_bits;
1959
1960 this_size_bits = p->size;
1961 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1962 {
1963 bits_to_skip -= this_size_bits;
1964 continue;
1965 }
1966 dest_offset_bits = bits_to_skip;
1967 this_size_bits -= bits_to_skip;
1968 bits_to_skip = 0;
1969 source_offset_bits = offset;
1970
1971 if (this_size_bits > max_offset - offset)
1972 this_size_bits = max_offset - offset;
1973
1974 switch (p->location)
1975 {
1976 case DWARF_VALUE_REGISTER:
1977 {
1978 struct frame_info *frame = frame_find_by_id (c->frame_id);
1979 struct gdbarch *arch = get_frame_arch (frame);
1980 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1981 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1982
1983 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1984 && p->size <= reg_bits)
1985 {
1986 /* Big-endian, and we want less than full size. */
1987 dest_offset_bits += reg_bits - p->size;
1988 }
1989 this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
1990 buffer.reserve (this_size);
1991
1992 if (dest_offset_bits % 8 != 0 || this_size_bits % 8 != 0)
1993 {
1994 /* Data is copied non-byte-aligned into the register.
1995 Need some bits from original register value. */
1996 int optim, unavail;
1997
1998 if (!get_frame_register_bytes (frame, gdb_regnum,
1999 dest_offset_bits / 8,
2000 this_size, buffer.data (),
2001 &optim, &unavail))
2002 {
2003 if (optim)
2004 throw_error (OPTIMIZED_OUT_ERROR,
2005 _("Can't do read-modify-write to "
2006 "update bitfield; containing word "
2007 "has been optimized out"));
2008 if (unavail)
2009 throw_error (NOT_AVAILABLE_ERROR,
2010 _("Can't do read-modify-write to update "
2011 "bitfield; containing word "
2012 "is unavailable"));
2013 }
2014 }
2015
2016 copy_bitwise (buffer.data (), dest_offset_bits % 8,
2017 contents, source_offset_bits,
2018 this_size_bits, bits_big_endian);
2019 put_frame_register_bytes (frame, gdb_regnum,
2020 dest_offset_bits / 8,
2021 this_size, buffer.data ());
2022 }
2023 break;
2024 case DWARF_VALUE_MEMORY:
2025 {
2026 CORE_ADDR start_addr = p->v.mem.addr + dest_offset_bits / 8;
2027
2028 if (dest_offset_bits % 8 == 0 && this_size_bits % 8 == 0
2029 && source_offset_bits % 8 == 0)
2030 {
2031 /* Everything is byte-aligned; no buffer needed. */
2032 write_memory (start_addr,
2033 contents + source_offset_bits / 8,
2034 this_size_bits / 8);
2035 break;
2036 }
2037
2038 this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
2039 buffer.reserve (this_size);
2040
2041 if (dest_offset_bits % 8 != 0 || this_size_bits % 8 != 0)
2042 {
2043 if (this_size <= 8)
2044 {
2045 /* Perform a single read for small sizes. */
2046 read_memory (start_addr, buffer.data (), this_size);
2047 }
2048 else
2049 {
2050 /* Only the first and last bytes can possibly have any
2051 bits reused. */
2052 read_memory (start_addr, buffer.data (), 1);
2053 read_memory (start_addr + this_size - 1,
2054 &buffer[this_size - 1], 1);
2055 }
2056 }
2057
2058 copy_bitwise (buffer.data (), dest_offset_bits % 8,
2059 contents, source_offset_bits,
2060 this_size_bits, bits_big_endian);
2061 write_memory (start_addr, buffer.data (), this_size);
2062 }
2063 break;
2064 default:
2065 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2066 break;
2067 }
2068 offset += this_size_bits;
2069 }
2070 }
2071
2072 /* An implementation of an lval_funcs method to see whether a value is
2073 a synthetic pointer. */
2074
2075 static int
2076 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2077 int bit_length)
2078 {
2079 struct piece_closure *c
2080 = (struct piece_closure *) value_computed_closure (value);
2081 int i;
2082
2083 bit_offset += 8 * value_offset (value);
2084 if (value_bitsize (value))
2085 bit_offset += value_bitpos (value);
2086
2087 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2088 {
2089 struct dwarf_expr_piece *p = &c->pieces[i];
2090 size_t this_size_bits = p->size;
2091
2092 if (bit_offset > 0)
2093 {
2094 if (bit_offset >= this_size_bits)
2095 {
2096 bit_offset -= this_size_bits;
2097 continue;
2098 }
2099
2100 bit_length -= this_size_bits - bit_offset;
2101 bit_offset = 0;
2102 }
2103 else
2104 bit_length -= this_size_bits;
2105
2106 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2107 return 0;
2108 }
2109
2110 return 1;
2111 }
2112
2113 /* A wrapper function for get_frame_address_in_block. */
2114
2115 static CORE_ADDR
2116 get_frame_address_in_block_wrapper (void *baton)
2117 {
2118 return get_frame_address_in_block ((struct frame_info *) baton);
2119 }
2120
2121 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2122
2123 static struct value *
2124 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2125 struct dwarf2_per_cu_data *per_cu,
2126 struct type *type)
2127 {
2128 struct value *result = NULL;
2129 struct obstack temp_obstack;
2130 struct cleanup *cleanup;
2131 const gdb_byte *bytes;
2132 LONGEST len;
2133
2134 obstack_init (&temp_obstack);
2135 cleanup = make_cleanup_obstack_free (&temp_obstack);
2136 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2137
2138 if (bytes != NULL)
2139 {
2140 if (byte_offset >= 0
2141 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2142 {
2143 bytes += byte_offset;
2144 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2145 }
2146 else
2147 invalid_synthetic_pointer ();
2148 }
2149 else
2150 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2151
2152 do_cleanups (cleanup);
2153
2154 return result;
2155 }
2156
2157 /* Fetch the value pointed to by a synthetic pointer. */
2158
2159 static struct value *
2160 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2161 struct dwarf2_per_cu_data *per_cu,
2162 struct frame_info *frame, struct type *type)
2163 {
2164 /* Fetch the location expression of the DIE we're pointing to. */
2165 struct dwarf2_locexpr_baton baton
2166 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2167 get_frame_address_in_block_wrapper, frame);
2168
2169 /* Get type of pointed-to DIE. */
2170 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2171 if (orig_type == NULL)
2172 invalid_synthetic_pointer ();
2173
2174 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2175 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2176 or it may've been optimized out. */
2177 if (baton.data != NULL)
2178 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2179 baton.size, baton.per_cu,
2180 TYPE_TARGET_TYPE (type),
2181 byte_offset);
2182 else
2183 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2184 type);
2185 }
2186
2187 /* An implementation of an lval_funcs method to indirect through a
2188 pointer. This handles the synthetic pointer case when needed. */
2189
2190 static struct value *
2191 indirect_pieced_value (struct value *value)
2192 {
2193 struct piece_closure *c
2194 = (struct piece_closure *) value_computed_closure (value);
2195 struct type *type;
2196 struct frame_info *frame;
2197 struct dwarf2_locexpr_baton baton;
2198 int i, bit_length;
2199 LONGEST bit_offset;
2200 struct dwarf_expr_piece *piece = NULL;
2201 LONGEST byte_offset;
2202 enum bfd_endian byte_order;
2203
2204 type = check_typedef (value_type (value));
2205 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2206 return NULL;
2207
2208 bit_length = 8 * TYPE_LENGTH (type);
2209 bit_offset = 8 * value_offset (value);
2210 if (value_bitsize (value))
2211 bit_offset += value_bitpos (value);
2212
2213 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2214 {
2215 struct dwarf_expr_piece *p = &c->pieces[i];
2216 size_t this_size_bits = p->size;
2217
2218 if (bit_offset > 0)
2219 {
2220 if (bit_offset >= this_size_bits)
2221 {
2222 bit_offset -= this_size_bits;
2223 continue;
2224 }
2225
2226 bit_length -= this_size_bits - bit_offset;
2227 bit_offset = 0;
2228 }
2229 else
2230 bit_length -= this_size_bits;
2231
2232 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2233 return NULL;
2234
2235 if (bit_length != 0)
2236 error (_("Invalid use of DW_OP_implicit_pointer"));
2237
2238 piece = p;
2239 break;
2240 }
2241
2242 gdb_assert (piece != NULL);
2243 frame = get_selected_frame (_("No frame selected."));
2244
2245 /* This is an offset requested by GDB, such as value subscripts.
2246 However, due to how synthetic pointers are implemented, this is
2247 always presented to us as a pointer type. This means we have to
2248 sign-extend it manually as appropriate. Use raw
2249 extract_signed_integer directly rather than value_as_address and
2250 sign extend afterwards on architectures that would need it
2251 (mostly everywhere except MIPS, which has signed addresses) as
2252 the later would go through gdbarch_pointer_to_address and thus
2253 return a CORE_ADDR with high bits set on architectures that
2254 encode address spaces and other things in CORE_ADDR. */
2255 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2256 byte_offset = extract_signed_integer (value_contents (value),
2257 TYPE_LENGTH (type), byte_order);
2258 byte_offset += piece->v.ptr.offset;
2259
2260 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2261 byte_offset, c->per_cu,
2262 frame, type);
2263 }
2264
2265 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2266 references. */
2267
2268 static struct value *
2269 coerce_pieced_ref (const struct value *value)
2270 {
2271 struct type *type = check_typedef (value_type (value));
2272
2273 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2274 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2275 {
2276 const struct piece_closure *closure
2277 = (struct piece_closure *) value_computed_closure (value);
2278 struct frame_info *frame
2279 = get_selected_frame (_("No frame selected."));
2280
2281 /* gdb represents synthetic pointers as pieced values with a single
2282 piece. */
2283 gdb_assert (closure != NULL);
2284 gdb_assert (closure->n_pieces == 1);
2285
2286 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2287 closure->pieces->v.ptr.offset,
2288 closure->per_cu, frame, type);
2289 }
2290 else
2291 {
2292 /* Else: not a synthetic reference; do nothing. */
2293 return NULL;
2294 }
2295 }
2296
2297 static void *
2298 copy_pieced_value_closure (const struct value *v)
2299 {
2300 struct piece_closure *c
2301 = (struct piece_closure *) value_computed_closure (v);
2302
2303 ++c->refc;
2304 return c;
2305 }
2306
2307 static void
2308 free_pieced_value_closure (struct value *v)
2309 {
2310 struct piece_closure *c
2311 = (struct piece_closure *) value_computed_closure (v);
2312
2313 --c->refc;
2314 if (c->refc == 0)
2315 {
2316 int i;
2317
2318 for (i = 0; i < c->n_pieces; ++i)
2319 if (c->pieces[i].location == DWARF_VALUE_STACK)
2320 value_free (c->pieces[i].v.value);
2321
2322 xfree (c->pieces);
2323 xfree (c);
2324 }
2325 }
2326
2327 /* Functions for accessing a variable described by DW_OP_piece. */
2328 static const struct lval_funcs pieced_value_funcs = {
2329 read_pieced_value,
2330 write_pieced_value,
2331 indirect_pieced_value,
2332 coerce_pieced_ref,
2333 check_pieced_synthetic_pointer,
2334 copy_pieced_value_closure,
2335 free_pieced_value_closure
2336 };
2337
2338 /* Evaluate a location description, starting at DATA and with length
2339 SIZE, to find the current location of variable of TYPE in the
2340 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2341 location of the subobject of type SUBOBJ_TYPE at byte offset
2342 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2343
2344 static struct value *
2345 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2346 const gdb_byte *data, size_t size,
2347 struct dwarf2_per_cu_data *per_cu,
2348 struct type *subobj_type,
2349 LONGEST subobj_byte_offset)
2350 {
2351 struct value *retval;
2352 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2353
2354 if (subobj_type == NULL)
2355 {
2356 subobj_type = type;
2357 subobj_byte_offset = 0;
2358 }
2359 else if (subobj_byte_offset < 0)
2360 invalid_synthetic_pointer ();
2361
2362 if (size == 0)
2363 return allocate_optimized_out_value (subobj_type);
2364
2365 dwarf_evaluate_loc_desc ctx;
2366 ctx.frame = frame;
2367 ctx.per_cu = per_cu;
2368 ctx.obj_address = 0;
2369
2370 scoped_value_mark free_values;
2371
2372 ctx.gdbarch = get_objfile_arch (objfile);
2373 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2374 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2375 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2376
2377 TRY
2378 {
2379 ctx.eval (data, size);
2380 }
2381 CATCH (ex, RETURN_MASK_ERROR)
2382 {
2383 if (ex.error == NOT_AVAILABLE_ERROR)
2384 {
2385 free_values.free_to_mark ();
2386 retval = allocate_value (subobj_type);
2387 mark_value_bytes_unavailable (retval, 0,
2388 TYPE_LENGTH (subobj_type));
2389 return retval;
2390 }
2391 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2392 {
2393 if (entry_values_debug)
2394 exception_print (gdb_stdout, ex);
2395 free_values.free_to_mark ();
2396 return allocate_optimized_out_value (subobj_type);
2397 }
2398 else
2399 throw_exception (ex);
2400 }
2401 END_CATCH
2402
2403 if (ctx.num_pieces > 0)
2404 {
2405 struct piece_closure *c;
2406 ULONGEST bit_size = 0;
2407 int i;
2408
2409 for (i = 0; i < ctx.num_pieces; ++i)
2410 bit_size += ctx.pieces[i].size;
2411 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2412 invalid_synthetic_pointer ();
2413
2414 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2415 frame);
2416 /* We must clean up the value chain after creating the piece
2417 closure but before allocating the result. */
2418 free_values.free_to_mark ();
2419 retval = allocate_computed_value (subobj_type,
2420 &pieced_value_funcs, c);
2421 set_value_offset (retval, subobj_byte_offset);
2422 }
2423 else
2424 {
2425 switch (ctx.location)
2426 {
2427 case DWARF_VALUE_REGISTER:
2428 {
2429 struct gdbarch *arch = get_frame_arch (frame);
2430 int dwarf_regnum
2431 = longest_to_int (value_as_long (ctx.fetch (0)));
2432 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2433
2434 if (subobj_byte_offset != 0)
2435 error (_("cannot use offset on synthetic pointer to register"));
2436 free_values.free_to_mark ();
2437 retval = value_from_register (subobj_type, gdb_regnum, frame);
2438 if (value_optimized_out (retval))
2439 {
2440 struct value *tmp;
2441
2442 /* This means the register has undefined value / was
2443 not saved. As we're computing the location of some
2444 variable etc. in the program, not a value for
2445 inspecting a register ($pc, $sp, etc.), return a
2446 generic optimized out value instead, so that we show
2447 <optimized out> instead of <not saved>. */
2448 tmp = allocate_value (subobj_type);
2449 value_contents_copy (tmp, 0, retval, 0,
2450 TYPE_LENGTH (subobj_type));
2451 retval = tmp;
2452 }
2453 }
2454 break;
2455
2456 case DWARF_VALUE_MEMORY:
2457 {
2458 struct type *ptr_type;
2459 CORE_ADDR address = ctx.fetch_address (0);
2460 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2461
2462 /* DW_OP_deref_size (and possibly other operations too) may
2463 create a pointer instead of an address. Ideally, the
2464 pointer to address conversion would be performed as part
2465 of those operations, but the type of the object to
2466 which the address refers is not known at the time of
2467 the operation. Therefore, we do the conversion here
2468 since the type is readily available. */
2469
2470 switch (TYPE_CODE (subobj_type))
2471 {
2472 case TYPE_CODE_FUNC:
2473 case TYPE_CODE_METHOD:
2474 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2475 break;
2476 default:
2477 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2478 break;
2479 }
2480 address = value_as_address (value_from_pointer (ptr_type, address));
2481
2482 free_values.free_to_mark ();
2483 retval = value_at_lazy (subobj_type,
2484 address + subobj_byte_offset);
2485 if (in_stack_memory)
2486 set_value_stack (retval, 1);
2487 }
2488 break;
2489
2490 case DWARF_VALUE_STACK:
2491 {
2492 struct value *value = ctx.fetch (0);
2493 size_t n = TYPE_LENGTH (value_type (value));
2494 size_t len = TYPE_LENGTH (subobj_type);
2495 size_t max = TYPE_LENGTH (type);
2496 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2497 struct cleanup *cleanup;
2498
2499 if (subobj_byte_offset + len > max)
2500 invalid_synthetic_pointer ();
2501
2502 /* Preserve VALUE because we are going to free values back
2503 to the mark, but we still need the value contents
2504 below. */
2505 value_incref (value);
2506 free_values.free_to_mark ();
2507 cleanup = make_cleanup_value_free (value);
2508
2509 retval = allocate_value (subobj_type);
2510
2511 /* The given offset is relative to the actual object. */
2512 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2513 subobj_byte_offset += n - max;
2514
2515 memcpy (value_contents_raw (retval),
2516 value_contents_all (value) + subobj_byte_offset, len);
2517
2518 do_cleanups (cleanup);
2519 }
2520 break;
2521
2522 case DWARF_VALUE_LITERAL:
2523 {
2524 bfd_byte *contents;
2525 size_t n = TYPE_LENGTH (subobj_type);
2526
2527 if (subobj_byte_offset + n > ctx.len)
2528 invalid_synthetic_pointer ();
2529
2530 free_values.free_to_mark ();
2531 retval = allocate_value (subobj_type);
2532 contents = value_contents_raw (retval);
2533 memcpy (contents, ctx.data + subobj_byte_offset, n);
2534 }
2535 break;
2536
2537 case DWARF_VALUE_OPTIMIZED_OUT:
2538 free_values.free_to_mark ();
2539 retval = allocate_optimized_out_value (subobj_type);
2540 break;
2541
2542 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2543 operation by execute_stack_op. */
2544 case DWARF_VALUE_IMPLICIT_POINTER:
2545 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2546 it can only be encountered when making a piece. */
2547 default:
2548 internal_error (__FILE__, __LINE__, _("invalid location type"));
2549 }
2550 }
2551
2552 set_value_initialized (retval, ctx.initialized);
2553
2554 return retval;
2555 }
2556
2557 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2558 passes 0 as the byte_offset. */
2559
2560 struct value *
2561 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2562 const gdb_byte *data, size_t size,
2563 struct dwarf2_per_cu_data *per_cu)
2564 {
2565 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2566 NULL, 0);
2567 }
2568
2569 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2570 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2571 frame in which the expression is evaluated. ADDR is a context (location of
2572 a variable) and might be needed to evaluate the location expression.
2573 Returns 1 on success, 0 otherwise. */
2574
2575 static int
2576 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2577 struct frame_info *frame,
2578 CORE_ADDR addr,
2579 CORE_ADDR *valp)
2580 {
2581 struct objfile *objfile;
2582
2583 if (dlbaton == NULL || dlbaton->size == 0)
2584 return 0;
2585
2586 dwarf_evaluate_loc_desc ctx;
2587
2588 ctx.frame = frame;
2589 ctx.per_cu = dlbaton->per_cu;
2590 ctx.obj_address = addr;
2591
2592 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2593
2594 ctx.gdbarch = get_objfile_arch (objfile);
2595 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2596 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2597 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2598
2599 ctx.eval (dlbaton->data, dlbaton->size);
2600
2601 switch (ctx.location)
2602 {
2603 case DWARF_VALUE_REGISTER:
2604 case DWARF_VALUE_MEMORY:
2605 case DWARF_VALUE_STACK:
2606 *valp = ctx.fetch_address (0);
2607 if (ctx.location == DWARF_VALUE_REGISTER)
2608 *valp = ctx.read_addr_from_reg (*valp);
2609 return 1;
2610 case DWARF_VALUE_LITERAL:
2611 *valp = extract_signed_integer (ctx.data, ctx.len,
2612 gdbarch_byte_order (ctx.gdbarch));
2613 return 1;
2614 /* Unsupported dwarf values. */
2615 case DWARF_VALUE_OPTIMIZED_OUT:
2616 case DWARF_VALUE_IMPLICIT_POINTER:
2617 break;
2618 }
2619
2620 return 0;
2621 }
2622
2623 /* See dwarf2loc.h. */
2624
2625 int
2626 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2627 struct frame_info *frame,
2628 struct property_addr_info *addr_stack,
2629 CORE_ADDR *value)
2630 {
2631 if (prop == NULL)
2632 return 0;
2633
2634 if (frame == NULL && has_stack_frames ())
2635 frame = get_selected_frame (NULL);
2636
2637 switch (prop->kind)
2638 {
2639 case PROP_LOCEXPR:
2640 {
2641 const struct dwarf2_property_baton *baton
2642 = (const struct dwarf2_property_baton *) prop->data.baton;
2643
2644 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2645 addr_stack ? addr_stack->addr : 0,
2646 value))
2647 {
2648 if (baton->referenced_type)
2649 {
2650 struct value *val = value_at (baton->referenced_type, *value);
2651
2652 *value = value_as_address (val);
2653 }
2654 return 1;
2655 }
2656 }
2657 break;
2658
2659 case PROP_LOCLIST:
2660 {
2661 struct dwarf2_property_baton *baton
2662 = (struct dwarf2_property_baton *) prop->data.baton;
2663 CORE_ADDR pc = get_frame_address_in_block (frame);
2664 const gdb_byte *data;
2665 struct value *val;
2666 size_t size;
2667
2668 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2669 if (data != NULL)
2670 {
2671 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2672 size, baton->loclist.per_cu);
2673 if (!value_optimized_out (val))
2674 {
2675 *value = value_as_address (val);
2676 return 1;
2677 }
2678 }
2679 }
2680 break;
2681
2682 case PROP_CONST:
2683 *value = prop->data.const_val;
2684 return 1;
2685
2686 case PROP_ADDR_OFFSET:
2687 {
2688 struct dwarf2_property_baton *baton
2689 = (struct dwarf2_property_baton *) prop->data.baton;
2690 struct property_addr_info *pinfo;
2691 struct value *val;
2692
2693 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2694 if (pinfo->type == baton->referenced_type)
2695 break;
2696 if (pinfo == NULL)
2697 error (_("cannot find reference address for offset property"));
2698 if (pinfo->valaddr != NULL)
2699 val = value_from_contents
2700 (baton->offset_info.type,
2701 pinfo->valaddr + baton->offset_info.offset);
2702 else
2703 val = value_at (baton->offset_info.type,
2704 pinfo->addr + baton->offset_info.offset);
2705 *value = value_as_address (val);
2706 return 1;
2707 }
2708 }
2709
2710 return 0;
2711 }
2712
2713 /* See dwarf2loc.h. */
2714
2715 void
2716 dwarf2_compile_property_to_c (string_file &stream,
2717 const char *result_name,
2718 struct gdbarch *gdbarch,
2719 unsigned char *registers_used,
2720 const struct dynamic_prop *prop,
2721 CORE_ADDR pc,
2722 struct symbol *sym)
2723 {
2724 struct dwarf2_property_baton *baton
2725 = (struct dwarf2_property_baton *) prop->data.baton;
2726 const gdb_byte *data;
2727 size_t size;
2728 struct dwarf2_per_cu_data *per_cu;
2729
2730 if (prop->kind == PROP_LOCEXPR)
2731 {
2732 data = baton->locexpr.data;
2733 size = baton->locexpr.size;
2734 per_cu = baton->locexpr.per_cu;
2735 }
2736 else
2737 {
2738 gdb_assert (prop->kind == PROP_LOCLIST);
2739
2740 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2741 per_cu = baton->loclist.per_cu;
2742 }
2743
2744 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2745 gdbarch, registers_used,
2746 dwarf2_per_cu_addr_size (per_cu),
2747 data, data + size, per_cu);
2748 }
2749
2750 \f
2751 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2752
2753 class symbol_needs_eval_context : public dwarf_expr_context
2754 {
2755 public:
2756
2757 enum symbol_needs_kind needs;
2758 struct dwarf2_per_cu_data *per_cu;
2759
2760 /* Reads from registers do require a frame. */
2761 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2762 {
2763 needs = SYMBOL_NEEDS_FRAME;
2764 return 1;
2765 }
2766
2767 /* "get_reg_value" callback: Reads from registers do require a
2768 frame. */
2769
2770 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2771 {
2772 needs = SYMBOL_NEEDS_FRAME;
2773 return value_zero (type, not_lval);
2774 }
2775
2776 /* Reads from memory do not require a frame. */
2777 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2778 {
2779 memset (buf, 0, len);
2780 }
2781
2782 /* Frame-relative accesses do require a frame. */
2783 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2784 {
2785 static gdb_byte lit0 = DW_OP_lit0;
2786
2787 *start = &lit0;
2788 *length = 1;
2789
2790 needs = SYMBOL_NEEDS_FRAME;
2791 }
2792
2793 /* CFA accesses require a frame. */
2794 CORE_ADDR get_frame_cfa () OVERRIDE
2795 {
2796 needs = SYMBOL_NEEDS_FRAME;
2797 return 1;
2798 }
2799
2800 CORE_ADDR get_frame_pc () OVERRIDE
2801 {
2802 needs = SYMBOL_NEEDS_FRAME;
2803 return 1;
2804 }
2805
2806 /* Thread-local accesses require registers, but not a frame. */
2807 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2808 {
2809 if (needs <= SYMBOL_NEEDS_REGISTERS)
2810 needs = SYMBOL_NEEDS_REGISTERS;
2811 return 1;
2812 }
2813
2814 /* Helper interface of per_cu_dwarf_call for
2815 dwarf2_loc_desc_get_symbol_read_needs. */
2816
2817 void dwarf_call (cu_offset die_offset) OVERRIDE
2818 {
2819 per_cu_dwarf_call (this, die_offset, per_cu);
2820 }
2821
2822 /* DW_OP_entry_value accesses require a caller, therefore a
2823 frame. */
2824
2825 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2826 union call_site_parameter_u kind_u,
2827 int deref_size) OVERRIDE
2828 {
2829 needs = SYMBOL_NEEDS_FRAME;
2830
2831 /* The expression may require some stub values on DWARF stack. */
2832 push_address (0, 0);
2833 }
2834
2835 /* DW_OP_GNU_addr_index doesn't require a frame. */
2836
2837 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2838 {
2839 /* Nothing to do. */
2840 return 1;
2841 }
2842
2843 /* DW_OP_push_object_address has a frame already passed through. */
2844
2845 CORE_ADDR get_object_address () OVERRIDE
2846 {
2847 /* Nothing to do. */
2848 return 1;
2849 }
2850 };
2851
2852 /* Compute the correct symbol_needs_kind value for the location
2853 expression at DATA (length SIZE). */
2854
2855 static enum symbol_needs_kind
2856 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2857 struct dwarf2_per_cu_data *per_cu)
2858 {
2859 int in_reg;
2860 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2861
2862 scoped_value_mark free_values;
2863
2864 symbol_needs_eval_context ctx;
2865
2866 ctx.needs = SYMBOL_NEEDS_NONE;
2867 ctx.per_cu = per_cu;
2868 ctx.gdbarch = get_objfile_arch (objfile);
2869 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2870 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2871 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2872
2873 ctx.eval (data, size);
2874
2875 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2876
2877 if (ctx.num_pieces > 0)
2878 {
2879 int i;
2880
2881 /* If the location has several pieces, and any of them are in
2882 registers, then we will need a frame to fetch them from. */
2883 for (i = 0; i < ctx.num_pieces; i++)
2884 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2885 in_reg = 1;
2886 }
2887
2888 if (in_reg)
2889 ctx.needs = SYMBOL_NEEDS_FRAME;
2890 return ctx.needs;
2891 }
2892
2893 /* A helper function that throws an unimplemented error mentioning a
2894 given DWARF operator. */
2895
2896 static void
2897 unimplemented (unsigned int op)
2898 {
2899 const char *name = get_DW_OP_name (op);
2900
2901 if (name)
2902 error (_("DWARF operator %s cannot be translated to an agent expression"),
2903 name);
2904 else
2905 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2906 "to an agent expression"),
2907 op);
2908 }
2909
2910 /* See dwarf2loc.h.
2911
2912 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2913 can issue a complaint, which is better than having every target's
2914 implementation of dwarf2_reg_to_regnum do it. */
2915
2916 int
2917 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2918 {
2919 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2920
2921 if (reg == -1)
2922 {
2923 complaint (&symfile_complaints,
2924 _("bad DWARF register number %d"), dwarf_reg);
2925 }
2926 return reg;
2927 }
2928
2929 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2930 Throw an error because DWARF_REG is bad. */
2931
2932 static void
2933 throw_bad_regnum_error (ULONGEST dwarf_reg)
2934 {
2935 /* Still want to print -1 as "-1".
2936 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2937 but that's overkill for now. */
2938 if ((int) dwarf_reg == dwarf_reg)
2939 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2940 error (_("Unable to access DWARF register number %s"),
2941 pulongest (dwarf_reg));
2942 }
2943
2944 /* See dwarf2loc.h. */
2945
2946 int
2947 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2948 {
2949 int reg;
2950
2951 if (dwarf_reg > INT_MAX)
2952 throw_bad_regnum_error (dwarf_reg);
2953 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2954 bad, but that's ok. */
2955 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2956 if (reg == -1)
2957 throw_bad_regnum_error (dwarf_reg);
2958 return reg;
2959 }
2960
2961 /* A helper function that emits an access to memory. ARCH is the
2962 target architecture. EXPR is the expression which we are building.
2963 NBITS is the number of bits we want to read. This emits the
2964 opcodes needed to read the memory and then extract the desired
2965 bits. */
2966
2967 static void
2968 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2969 {
2970 ULONGEST nbytes = (nbits + 7) / 8;
2971
2972 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2973
2974 if (expr->tracing)
2975 ax_trace_quick (expr, nbytes);
2976
2977 if (nbits <= 8)
2978 ax_simple (expr, aop_ref8);
2979 else if (nbits <= 16)
2980 ax_simple (expr, aop_ref16);
2981 else if (nbits <= 32)
2982 ax_simple (expr, aop_ref32);
2983 else
2984 ax_simple (expr, aop_ref64);
2985
2986 /* If we read exactly the number of bytes we wanted, we're done. */
2987 if (8 * nbytes == nbits)
2988 return;
2989
2990 if (gdbarch_bits_big_endian (arch))
2991 {
2992 /* On a bits-big-endian machine, we want the high-order
2993 NBITS. */
2994 ax_const_l (expr, 8 * nbytes - nbits);
2995 ax_simple (expr, aop_rsh_unsigned);
2996 }
2997 else
2998 {
2999 /* On a bits-little-endian box, we want the low-order NBITS. */
3000 ax_zero_ext (expr, nbits);
3001 }
3002 }
3003
3004 /* A helper function to return the frame's PC. */
3005
3006 static CORE_ADDR
3007 get_ax_pc (void *baton)
3008 {
3009 struct agent_expr *expr = (struct agent_expr *) baton;
3010
3011 return expr->scope;
3012 }
3013
3014 /* Compile a DWARF location expression to an agent expression.
3015
3016 EXPR is the agent expression we are building.
3017 LOC is the agent value we modify.
3018 ARCH is the architecture.
3019 ADDR_SIZE is the size of addresses, in bytes.
3020 OP_PTR is the start of the location expression.
3021 OP_END is one past the last byte of the location expression.
3022
3023 This will throw an exception for various kinds of errors -- for
3024 example, if the expression cannot be compiled, or if the expression
3025 is invalid. */
3026
3027 void
3028 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3029 struct gdbarch *arch, unsigned int addr_size,
3030 const gdb_byte *op_ptr, const gdb_byte *op_end,
3031 struct dwarf2_per_cu_data *per_cu)
3032 {
3033 int i;
3034 std::vector<int> dw_labels, patches;
3035 const gdb_byte * const base = op_ptr;
3036 const gdb_byte *previous_piece = op_ptr;
3037 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3038 ULONGEST bits_collected = 0;
3039 unsigned int addr_size_bits = 8 * addr_size;
3040 int bits_big_endian = gdbarch_bits_big_endian (arch);
3041
3042 std::vector<int> offsets (op_end - op_ptr, -1);
3043
3044 /* By default we are making an address. */
3045 loc->kind = axs_lvalue_memory;
3046
3047 while (op_ptr < op_end)
3048 {
3049 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3050 uint64_t uoffset, reg;
3051 int64_t offset;
3052 int i;
3053
3054 offsets[op_ptr - base] = expr->len;
3055 ++op_ptr;
3056
3057 /* Our basic approach to code generation is to map DWARF
3058 operations directly to AX operations. However, there are
3059 some differences.
3060
3061 First, DWARF works on address-sized units, but AX always uses
3062 LONGEST. For most operations we simply ignore this
3063 difference; instead we generate sign extensions as needed
3064 before division and comparison operations. It would be nice
3065 to omit the sign extensions, but there is no way to determine
3066 the size of the target's LONGEST. (This code uses the size
3067 of the host LONGEST in some cases -- that is a bug but it is
3068 difficult to fix.)
3069
3070 Second, some DWARF operations cannot be translated to AX.
3071 For these we simply fail. See
3072 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3073 switch (op)
3074 {
3075 case DW_OP_lit0:
3076 case DW_OP_lit1:
3077 case DW_OP_lit2:
3078 case DW_OP_lit3:
3079 case DW_OP_lit4:
3080 case DW_OP_lit5:
3081 case DW_OP_lit6:
3082 case DW_OP_lit7:
3083 case DW_OP_lit8:
3084 case DW_OP_lit9:
3085 case DW_OP_lit10:
3086 case DW_OP_lit11:
3087 case DW_OP_lit12:
3088 case DW_OP_lit13:
3089 case DW_OP_lit14:
3090 case DW_OP_lit15:
3091 case DW_OP_lit16:
3092 case DW_OP_lit17:
3093 case DW_OP_lit18:
3094 case DW_OP_lit19:
3095 case DW_OP_lit20:
3096 case DW_OP_lit21:
3097 case DW_OP_lit22:
3098 case DW_OP_lit23:
3099 case DW_OP_lit24:
3100 case DW_OP_lit25:
3101 case DW_OP_lit26:
3102 case DW_OP_lit27:
3103 case DW_OP_lit28:
3104 case DW_OP_lit29:
3105 case DW_OP_lit30:
3106 case DW_OP_lit31:
3107 ax_const_l (expr, op - DW_OP_lit0);
3108 break;
3109
3110 case DW_OP_addr:
3111 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3112 op_ptr += addr_size;
3113 /* Some versions of GCC emit DW_OP_addr before
3114 DW_OP_GNU_push_tls_address. In this case the value is an
3115 index, not an address. We don't support things like
3116 branching between the address and the TLS op. */
3117 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3118 uoffset += dwarf2_per_cu_text_offset (per_cu);
3119 ax_const_l (expr, uoffset);
3120 break;
3121
3122 case DW_OP_const1u:
3123 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3124 op_ptr += 1;
3125 break;
3126 case DW_OP_const1s:
3127 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3128 op_ptr += 1;
3129 break;
3130 case DW_OP_const2u:
3131 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3132 op_ptr += 2;
3133 break;
3134 case DW_OP_const2s:
3135 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3136 op_ptr += 2;
3137 break;
3138 case DW_OP_const4u:
3139 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3140 op_ptr += 4;
3141 break;
3142 case DW_OP_const4s:
3143 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3144 op_ptr += 4;
3145 break;
3146 case DW_OP_const8u:
3147 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3148 op_ptr += 8;
3149 break;
3150 case DW_OP_const8s:
3151 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3152 op_ptr += 8;
3153 break;
3154 case DW_OP_constu:
3155 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3156 ax_const_l (expr, uoffset);
3157 break;
3158 case DW_OP_consts:
3159 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3160 ax_const_l (expr, offset);
3161 break;
3162
3163 case DW_OP_reg0:
3164 case DW_OP_reg1:
3165 case DW_OP_reg2:
3166 case DW_OP_reg3:
3167 case DW_OP_reg4:
3168 case DW_OP_reg5:
3169 case DW_OP_reg6:
3170 case DW_OP_reg7:
3171 case DW_OP_reg8:
3172 case DW_OP_reg9:
3173 case DW_OP_reg10:
3174 case DW_OP_reg11:
3175 case DW_OP_reg12:
3176 case DW_OP_reg13:
3177 case DW_OP_reg14:
3178 case DW_OP_reg15:
3179 case DW_OP_reg16:
3180 case DW_OP_reg17:
3181 case DW_OP_reg18:
3182 case DW_OP_reg19:
3183 case DW_OP_reg20:
3184 case DW_OP_reg21:
3185 case DW_OP_reg22:
3186 case DW_OP_reg23:
3187 case DW_OP_reg24:
3188 case DW_OP_reg25:
3189 case DW_OP_reg26:
3190 case DW_OP_reg27:
3191 case DW_OP_reg28:
3192 case DW_OP_reg29:
3193 case DW_OP_reg30:
3194 case DW_OP_reg31:
3195 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3196 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3197 loc->kind = axs_lvalue_register;
3198 break;
3199
3200 case DW_OP_regx:
3201 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3202 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3203 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3204 loc->kind = axs_lvalue_register;
3205 break;
3206
3207 case DW_OP_implicit_value:
3208 {
3209 uint64_t len;
3210
3211 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3212 if (op_ptr + len > op_end)
3213 error (_("DW_OP_implicit_value: too few bytes available."));
3214 if (len > sizeof (ULONGEST))
3215 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3216 (int) len);
3217
3218 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3219 byte_order));
3220 op_ptr += len;
3221 dwarf_expr_require_composition (op_ptr, op_end,
3222 "DW_OP_implicit_value");
3223
3224 loc->kind = axs_rvalue;
3225 }
3226 break;
3227
3228 case DW_OP_stack_value:
3229 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3230 loc->kind = axs_rvalue;
3231 break;
3232
3233 case DW_OP_breg0:
3234 case DW_OP_breg1:
3235 case DW_OP_breg2:
3236 case DW_OP_breg3:
3237 case DW_OP_breg4:
3238 case DW_OP_breg5:
3239 case DW_OP_breg6:
3240 case DW_OP_breg7:
3241 case DW_OP_breg8:
3242 case DW_OP_breg9:
3243 case DW_OP_breg10:
3244 case DW_OP_breg11:
3245 case DW_OP_breg12:
3246 case DW_OP_breg13:
3247 case DW_OP_breg14:
3248 case DW_OP_breg15:
3249 case DW_OP_breg16:
3250 case DW_OP_breg17:
3251 case DW_OP_breg18:
3252 case DW_OP_breg19:
3253 case DW_OP_breg20:
3254 case DW_OP_breg21:
3255 case DW_OP_breg22:
3256 case DW_OP_breg23:
3257 case DW_OP_breg24:
3258 case DW_OP_breg25:
3259 case DW_OP_breg26:
3260 case DW_OP_breg27:
3261 case DW_OP_breg28:
3262 case DW_OP_breg29:
3263 case DW_OP_breg30:
3264 case DW_OP_breg31:
3265 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3266 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3267 ax_reg (expr, i);
3268 if (offset != 0)
3269 {
3270 ax_const_l (expr, offset);
3271 ax_simple (expr, aop_add);
3272 }
3273 break;
3274 case DW_OP_bregx:
3275 {
3276 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3277 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3278 i = dwarf_reg_to_regnum_or_error (arch, reg);
3279 ax_reg (expr, i);
3280 if (offset != 0)
3281 {
3282 ax_const_l (expr, offset);
3283 ax_simple (expr, aop_add);
3284 }
3285 }
3286 break;
3287 case DW_OP_fbreg:
3288 {
3289 const gdb_byte *datastart;
3290 size_t datalen;
3291 const struct block *b;
3292 struct symbol *framefunc;
3293
3294 b = block_for_pc (expr->scope);
3295
3296 if (!b)
3297 error (_("No block found for address"));
3298
3299 framefunc = block_linkage_function (b);
3300
3301 if (!framefunc)
3302 error (_("No function found for block"));
3303
3304 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3305 &datastart, &datalen);
3306
3307 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3308 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3309 datastart + datalen, per_cu);
3310 if (loc->kind == axs_lvalue_register)
3311 require_rvalue (expr, loc);
3312
3313 if (offset != 0)
3314 {
3315 ax_const_l (expr, offset);
3316 ax_simple (expr, aop_add);
3317 }
3318
3319 loc->kind = axs_lvalue_memory;
3320 }
3321 break;
3322
3323 case DW_OP_dup:
3324 ax_simple (expr, aop_dup);
3325 break;
3326
3327 case DW_OP_drop:
3328 ax_simple (expr, aop_pop);
3329 break;
3330
3331 case DW_OP_pick:
3332 offset = *op_ptr++;
3333 ax_pick (expr, offset);
3334 break;
3335
3336 case DW_OP_swap:
3337 ax_simple (expr, aop_swap);
3338 break;
3339
3340 case DW_OP_over:
3341 ax_pick (expr, 1);
3342 break;
3343
3344 case DW_OP_rot:
3345 ax_simple (expr, aop_rot);
3346 break;
3347
3348 case DW_OP_deref:
3349 case DW_OP_deref_size:
3350 {
3351 int size;
3352
3353 if (op == DW_OP_deref_size)
3354 size = *op_ptr++;
3355 else
3356 size = addr_size;
3357
3358 if (size != 1 && size != 2 && size != 4 && size != 8)
3359 error (_("Unsupported size %d in %s"),
3360 size, get_DW_OP_name (op));
3361 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3362 }
3363 break;
3364
3365 case DW_OP_abs:
3366 /* Sign extend the operand. */
3367 ax_ext (expr, addr_size_bits);
3368 ax_simple (expr, aop_dup);
3369 ax_const_l (expr, 0);
3370 ax_simple (expr, aop_less_signed);
3371 ax_simple (expr, aop_log_not);
3372 i = ax_goto (expr, aop_if_goto);
3373 /* We have to emit 0 - X. */
3374 ax_const_l (expr, 0);
3375 ax_simple (expr, aop_swap);
3376 ax_simple (expr, aop_sub);
3377 ax_label (expr, i, expr->len);
3378 break;
3379
3380 case DW_OP_neg:
3381 /* No need to sign extend here. */
3382 ax_const_l (expr, 0);
3383 ax_simple (expr, aop_swap);
3384 ax_simple (expr, aop_sub);
3385 break;
3386
3387 case DW_OP_not:
3388 /* Sign extend the operand. */
3389 ax_ext (expr, addr_size_bits);
3390 ax_simple (expr, aop_bit_not);
3391 break;
3392
3393 case DW_OP_plus_uconst:
3394 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3395 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3396 but we micro-optimize anyhow. */
3397 if (reg != 0)
3398 {
3399 ax_const_l (expr, reg);
3400 ax_simple (expr, aop_add);
3401 }
3402 break;
3403
3404 case DW_OP_and:
3405 ax_simple (expr, aop_bit_and);
3406 break;
3407
3408 case DW_OP_div:
3409 /* Sign extend the operands. */
3410 ax_ext (expr, addr_size_bits);
3411 ax_simple (expr, aop_swap);
3412 ax_ext (expr, addr_size_bits);
3413 ax_simple (expr, aop_swap);
3414 ax_simple (expr, aop_div_signed);
3415 break;
3416
3417 case DW_OP_minus:
3418 ax_simple (expr, aop_sub);
3419 break;
3420
3421 case DW_OP_mod:
3422 ax_simple (expr, aop_rem_unsigned);
3423 break;
3424
3425 case DW_OP_mul:
3426 ax_simple (expr, aop_mul);
3427 break;
3428
3429 case DW_OP_or:
3430 ax_simple (expr, aop_bit_or);
3431 break;
3432
3433 case DW_OP_plus:
3434 ax_simple (expr, aop_add);
3435 break;
3436
3437 case DW_OP_shl:
3438 ax_simple (expr, aop_lsh);
3439 break;
3440
3441 case DW_OP_shr:
3442 ax_simple (expr, aop_rsh_unsigned);
3443 break;
3444
3445 case DW_OP_shra:
3446 ax_simple (expr, aop_rsh_signed);
3447 break;
3448
3449 case DW_OP_xor:
3450 ax_simple (expr, aop_bit_xor);
3451 break;
3452
3453 case DW_OP_le:
3454 /* Sign extend the operands. */
3455 ax_ext (expr, addr_size_bits);
3456 ax_simple (expr, aop_swap);
3457 ax_ext (expr, addr_size_bits);
3458 /* Note no swap here: A <= B is !(B < A). */
3459 ax_simple (expr, aop_less_signed);
3460 ax_simple (expr, aop_log_not);
3461 break;
3462
3463 case DW_OP_ge:
3464 /* Sign extend the operands. */
3465 ax_ext (expr, addr_size_bits);
3466 ax_simple (expr, aop_swap);
3467 ax_ext (expr, addr_size_bits);
3468 ax_simple (expr, aop_swap);
3469 /* A >= B is !(A < B). */
3470 ax_simple (expr, aop_less_signed);
3471 ax_simple (expr, aop_log_not);
3472 break;
3473
3474 case DW_OP_eq:
3475 /* Sign extend the operands. */
3476 ax_ext (expr, addr_size_bits);
3477 ax_simple (expr, aop_swap);
3478 ax_ext (expr, addr_size_bits);
3479 /* No need for a second swap here. */
3480 ax_simple (expr, aop_equal);
3481 break;
3482
3483 case DW_OP_lt:
3484 /* Sign extend the operands. */
3485 ax_ext (expr, addr_size_bits);
3486 ax_simple (expr, aop_swap);
3487 ax_ext (expr, addr_size_bits);
3488 ax_simple (expr, aop_swap);
3489 ax_simple (expr, aop_less_signed);
3490 break;
3491
3492 case DW_OP_gt:
3493 /* Sign extend the operands. */
3494 ax_ext (expr, addr_size_bits);
3495 ax_simple (expr, aop_swap);
3496 ax_ext (expr, addr_size_bits);
3497 /* Note no swap here: A > B is B < A. */
3498 ax_simple (expr, aop_less_signed);
3499 break;
3500
3501 case DW_OP_ne:
3502 /* Sign extend the operands. */
3503 ax_ext (expr, addr_size_bits);
3504 ax_simple (expr, aop_swap);
3505 ax_ext (expr, addr_size_bits);
3506 /* No need for a swap here. */
3507 ax_simple (expr, aop_equal);
3508 ax_simple (expr, aop_log_not);
3509 break;
3510
3511 case DW_OP_call_frame_cfa:
3512 {
3513 int regnum;
3514 CORE_ADDR text_offset;
3515 LONGEST off;
3516 const gdb_byte *cfa_start, *cfa_end;
3517
3518 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3519 &regnum, &off,
3520 &text_offset, &cfa_start, &cfa_end))
3521 {
3522 /* Register. */
3523 ax_reg (expr, regnum);
3524 if (off != 0)
3525 {
3526 ax_const_l (expr, off);
3527 ax_simple (expr, aop_add);
3528 }
3529 }
3530 else
3531 {
3532 /* Another expression. */
3533 ax_const_l (expr, text_offset);
3534 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3535 cfa_start, cfa_end, per_cu);
3536 }
3537
3538 loc->kind = axs_lvalue_memory;
3539 }
3540 break;
3541
3542 case DW_OP_GNU_push_tls_address:
3543 case DW_OP_form_tls_address:
3544 unimplemented (op);
3545 break;
3546
3547 case DW_OP_push_object_address:
3548 unimplemented (op);
3549 break;
3550
3551 case DW_OP_skip:
3552 offset = extract_signed_integer (op_ptr, 2, byte_order);
3553 op_ptr += 2;
3554 i = ax_goto (expr, aop_goto);
3555 dw_labels.push_back (op_ptr + offset - base);
3556 patches.push_back (i);
3557 break;
3558
3559 case DW_OP_bra:
3560 offset = extract_signed_integer (op_ptr, 2, byte_order);
3561 op_ptr += 2;
3562 /* Zero extend the operand. */
3563 ax_zero_ext (expr, addr_size_bits);
3564 i = ax_goto (expr, aop_if_goto);
3565 dw_labels.push_back (op_ptr + offset - base);
3566 patches.push_back (i);
3567 break;
3568
3569 case DW_OP_nop:
3570 break;
3571
3572 case DW_OP_piece:
3573 case DW_OP_bit_piece:
3574 {
3575 uint64_t size, offset;
3576
3577 if (op_ptr - 1 == previous_piece)
3578 error (_("Cannot translate empty pieces to agent expressions"));
3579 previous_piece = op_ptr - 1;
3580
3581 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3582 if (op == DW_OP_piece)
3583 {
3584 size *= 8;
3585 offset = 0;
3586 }
3587 else
3588 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3589
3590 if (bits_collected + size > 8 * sizeof (LONGEST))
3591 error (_("Expression pieces exceed word size"));
3592
3593 /* Access the bits. */
3594 switch (loc->kind)
3595 {
3596 case axs_lvalue_register:
3597 ax_reg (expr, loc->u.reg);
3598 break;
3599
3600 case axs_lvalue_memory:
3601 /* Offset the pointer, if needed. */
3602 if (offset > 8)
3603 {
3604 ax_const_l (expr, offset / 8);
3605 ax_simple (expr, aop_add);
3606 offset %= 8;
3607 }
3608 access_memory (arch, expr, size);
3609 break;
3610 }
3611
3612 /* For a bits-big-endian target, shift up what we already
3613 have. For a bits-little-endian target, shift up the
3614 new data. Note that there is a potential bug here if
3615 the DWARF expression leaves multiple values on the
3616 stack. */
3617 if (bits_collected > 0)
3618 {
3619 if (bits_big_endian)
3620 {
3621 ax_simple (expr, aop_swap);
3622 ax_const_l (expr, size);
3623 ax_simple (expr, aop_lsh);
3624 /* We don't need a second swap here, because
3625 aop_bit_or is symmetric. */
3626 }
3627 else
3628 {
3629 ax_const_l (expr, size);
3630 ax_simple (expr, aop_lsh);
3631 }
3632 ax_simple (expr, aop_bit_or);
3633 }
3634
3635 bits_collected += size;
3636 loc->kind = axs_rvalue;
3637 }
3638 break;
3639
3640 case DW_OP_GNU_uninit:
3641 unimplemented (op);
3642
3643 case DW_OP_call2:
3644 case DW_OP_call4:
3645 {
3646 struct dwarf2_locexpr_baton block;
3647 int size = (op == DW_OP_call2 ? 2 : 4);
3648
3649 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3650 op_ptr += size;
3651
3652 cu_offset offset = (cu_offset) uoffset;
3653 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3654 get_ax_pc, expr);
3655
3656 /* DW_OP_call_ref is currently not supported. */
3657 gdb_assert (block.per_cu == per_cu);
3658
3659 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3660 block.data, block.data + block.size,
3661 per_cu);
3662 }
3663 break;
3664
3665 case DW_OP_call_ref:
3666 unimplemented (op);
3667
3668 default:
3669 unimplemented (op);
3670 }
3671 }
3672
3673 /* Patch all the branches we emitted. */
3674 for (i = 0; i < patches.size (); ++i)
3675 {
3676 int targ = offsets[dw_labels[i]];
3677 if (targ == -1)
3678 internal_error (__FILE__, __LINE__, _("invalid label"));
3679 ax_label (expr, patches[i], targ);
3680 }
3681 }
3682
3683 \f
3684 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3685 evaluator to calculate the location. */
3686 static struct value *
3687 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3688 {
3689 struct dwarf2_locexpr_baton *dlbaton
3690 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3691 struct value *val;
3692
3693 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3694 dlbaton->size, dlbaton->per_cu);
3695
3696 return val;
3697 }
3698
3699 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3700 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3701 will be thrown. */
3702
3703 static struct value *
3704 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3705 {
3706 struct dwarf2_locexpr_baton *dlbaton
3707 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3708
3709 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3710 dlbaton->size);
3711 }
3712
3713 /* Implementation of get_symbol_read_needs from
3714 symbol_computed_ops. */
3715
3716 static enum symbol_needs_kind
3717 locexpr_get_symbol_read_needs (struct symbol *symbol)
3718 {
3719 struct dwarf2_locexpr_baton *dlbaton
3720 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3721
3722 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3723 dlbaton->per_cu);
3724 }
3725
3726 /* Return true if DATA points to the end of a piece. END is one past
3727 the last byte in the expression. */
3728
3729 static int
3730 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3731 {
3732 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3733 }
3734
3735 /* Helper for locexpr_describe_location_piece that finds the name of a
3736 DWARF register. */
3737
3738 static const char *
3739 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3740 {
3741 int regnum;
3742
3743 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3744 We'd rather print *something* here than throw an error. */
3745 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3746 /* gdbarch_register_name may just return "", return something more
3747 descriptive for bad register numbers. */
3748 if (regnum == -1)
3749 {
3750 /* The text is output as "$bad_register_number".
3751 That is why we use the underscores. */
3752 return _("bad_register_number");
3753 }
3754 return gdbarch_register_name (gdbarch, regnum);
3755 }
3756
3757 /* Nicely describe a single piece of a location, returning an updated
3758 position in the bytecode sequence. This function cannot recognize
3759 all locations; if a location is not recognized, it simply returns
3760 DATA. If there is an error during reading, e.g. we run off the end
3761 of the buffer, an error is thrown. */
3762
3763 static const gdb_byte *
3764 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3765 CORE_ADDR addr, struct objfile *objfile,
3766 struct dwarf2_per_cu_data *per_cu,
3767 const gdb_byte *data, const gdb_byte *end,
3768 unsigned int addr_size)
3769 {
3770 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3771 size_t leb128_size;
3772
3773 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3774 {
3775 fprintf_filtered (stream, _("a variable in $%s"),
3776 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3777 data += 1;
3778 }
3779 else if (data[0] == DW_OP_regx)
3780 {
3781 uint64_t reg;
3782
3783 data = safe_read_uleb128 (data + 1, end, &reg);
3784 fprintf_filtered (stream, _("a variable in $%s"),
3785 locexpr_regname (gdbarch, reg));
3786 }
3787 else if (data[0] == DW_OP_fbreg)
3788 {
3789 const struct block *b;
3790 struct symbol *framefunc;
3791 int frame_reg = 0;
3792 int64_t frame_offset;
3793 const gdb_byte *base_data, *new_data, *save_data = data;
3794 size_t base_size;
3795 int64_t base_offset = 0;
3796
3797 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3798 if (!piece_end_p (new_data, end))
3799 return data;
3800 data = new_data;
3801
3802 b = block_for_pc (addr);
3803
3804 if (!b)
3805 error (_("No block found for address for symbol \"%s\"."),
3806 SYMBOL_PRINT_NAME (symbol));
3807
3808 framefunc = block_linkage_function (b);
3809
3810 if (!framefunc)
3811 error (_("No function found for block for symbol \"%s\"."),
3812 SYMBOL_PRINT_NAME (symbol));
3813
3814 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3815
3816 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3817 {
3818 const gdb_byte *buf_end;
3819
3820 frame_reg = base_data[0] - DW_OP_breg0;
3821 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3822 &base_offset);
3823 if (buf_end != base_data + base_size)
3824 error (_("Unexpected opcode after "
3825 "DW_OP_breg%u for symbol \"%s\"."),
3826 frame_reg, SYMBOL_PRINT_NAME (symbol));
3827 }
3828 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3829 {
3830 /* The frame base is just the register, with no offset. */
3831 frame_reg = base_data[0] - DW_OP_reg0;
3832 base_offset = 0;
3833 }
3834 else
3835 {
3836 /* We don't know what to do with the frame base expression,
3837 so we can't trace this variable; give up. */
3838 return save_data;
3839 }
3840
3841 fprintf_filtered (stream,
3842 _("a variable at frame base reg $%s offset %s+%s"),
3843 locexpr_regname (gdbarch, frame_reg),
3844 plongest (base_offset), plongest (frame_offset));
3845 }
3846 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3847 && piece_end_p (data, end))
3848 {
3849 int64_t offset;
3850
3851 data = safe_read_sleb128 (data + 1, end, &offset);
3852
3853 fprintf_filtered (stream,
3854 _("a variable at offset %s from base reg $%s"),
3855 plongest (offset),
3856 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3857 }
3858
3859 /* The location expression for a TLS variable looks like this (on a
3860 64-bit LE machine):
3861
3862 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3863 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3864
3865 0x3 is the encoding for DW_OP_addr, which has an operand as long
3866 as the size of an address on the target machine (here is 8
3867 bytes). Note that more recent version of GCC emit DW_OP_const4u
3868 or DW_OP_const8u, depending on address size, rather than
3869 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3870 The operand represents the offset at which the variable is within
3871 the thread local storage. */
3872
3873 else if (data + 1 + addr_size < end
3874 && (data[0] == DW_OP_addr
3875 || (addr_size == 4 && data[0] == DW_OP_const4u)
3876 || (addr_size == 8 && data[0] == DW_OP_const8u))
3877 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3878 || data[1 + addr_size] == DW_OP_form_tls_address)
3879 && piece_end_p (data + 2 + addr_size, end))
3880 {
3881 ULONGEST offset;
3882 offset = extract_unsigned_integer (data + 1, addr_size,
3883 gdbarch_byte_order (gdbarch));
3884
3885 fprintf_filtered (stream,
3886 _("a thread-local variable at offset 0x%s "
3887 "in the thread-local storage for `%s'"),
3888 phex_nz (offset, addr_size), objfile_name (objfile));
3889
3890 data += 1 + addr_size + 1;
3891 }
3892
3893 /* With -gsplit-dwarf a TLS variable can also look like this:
3894 DW_AT_location : 3 byte block: fc 4 e0
3895 (DW_OP_GNU_const_index: 4;
3896 DW_OP_GNU_push_tls_address) */
3897 else if (data + 3 <= end
3898 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3899 && data[0] == DW_OP_GNU_const_index
3900 && leb128_size > 0
3901 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3902 || data[1 + leb128_size] == DW_OP_form_tls_address)
3903 && piece_end_p (data + 2 + leb128_size, end))
3904 {
3905 uint64_t offset;
3906
3907 data = safe_read_uleb128 (data + 1, end, &offset);
3908 offset = dwarf2_read_addr_index (per_cu, offset);
3909 fprintf_filtered (stream,
3910 _("a thread-local variable at offset 0x%s "
3911 "in the thread-local storage for `%s'"),
3912 phex_nz (offset, addr_size), objfile_name (objfile));
3913 ++data;
3914 }
3915
3916 else if (data[0] >= DW_OP_lit0
3917 && data[0] <= DW_OP_lit31
3918 && data + 1 < end
3919 && data[1] == DW_OP_stack_value)
3920 {
3921 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3922 data += 2;
3923 }
3924
3925 return data;
3926 }
3927
3928 /* Disassemble an expression, stopping at the end of a piece or at the
3929 end of the expression. Returns a pointer to the next unread byte
3930 in the input expression. If ALL is nonzero, then this function
3931 will keep going until it reaches the end of the expression.
3932 If there is an error during reading, e.g. we run off the end
3933 of the buffer, an error is thrown. */
3934
3935 static const gdb_byte *
3936 disassemble_dwarf_expression (struct ui_file *stream,
3937 struct gdbarch *arch, unsigned int addr_size,
3938 int offset_size, const gdb_byte *start,
3939 const gdb_byte *data, const gdb_byte *end,
3940 int indent, int all,
3941 struct dwarf2_per_cu_data *per_cu)
3942 {
3943 while (data < end
3944 && (all
3945 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3946 {
3947 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3948 uint64_t ul;
3949 int64_t l;
3950 const char *name;
3951
3952 name = get_DW_OP_name (op);
3953
3954 if (!name)
3955 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3956 op, (long) (data - 1 - start));
3957 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3958 (long) (data - 1 - start), name);
3959
3960 switch (op)
3961 {
3962 case DW_OP_addr:
3963 ul = extract_unsigned_integer (data, addr_size,
3964 gdbarch_byte_order (arch));
3965 data += addr_size;
3966 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3967 break;
3968
3969 case DW_OP_const1u:
3970 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3971 data += 1;
3972 fprintf_filtered (stream, " %s", pulongest (ul));
3973 break;
3974 case DW_OP_const1s:
3975 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3976 data += 1;
3977 fprintf_filtered (stream, " %s", plongest (l));
3978 break;
3979 case DW_OP_const2u:
3980 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3981 data += 2;
3982 fprintf_filtered (stream, " %s", pulongest (ul));
3983 break;
3984 case DW_OP_const2s:
3985 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3986 data += 2;
3987 fprintf_filtered (stream, " %s", plongest (l));
3988 break;
3989 case DW_OP_const4u:
3990 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3991 data += 4;
3992 fprintf_filtered (stream, " %s", pulongest (ul));
3993 break;
3994 case DW_OP_const4s:
3995 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3996 data += 4;
3997 fprintf_filtered (stream, " %s", plongest (l));
3998 break;
3999 case DW_OP_const8u:
4000 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4001 data += 8;
4002 fprintf_filtered (stream, " %s", pulongest (ul));
4003 break;
4004 case DW_OP_const8s:
4005 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4006 data += 8;
4007 fprintf_filtered (stream, " %s", plongest (l));
4008 break;
4009 case DW_OP_constu:
4010 data = safe_read_uleb128 (data, end, &ul);
4011 fprintf_filtered (stream, " %s", pulongest (ul));
4012 break;
4013 case DW_OP_consts:
4014 data = safe_read_sleb128 (data, end, &l);
4015 fprintf_filtered (stream, " %s", plongest (l));
4016 break;
4017
4018 case DW_OP_reg0:
4019 case DW_OP_reg1:
4020 case DW_OP_reg2:
4021 case DW_OP_reg3:
4022 case DW_OP_reg4:
4023 case DW_OP_reg5:
4024 case DW_OP_reg6:
4025 case DW_OP_reg7:
4026 case DW_OP_reg8:
4027 case DW_OP_reg9:
4028 case DW_OP_reg10:
4029 case DW_OP_reg11:
4030 case DW_OP_reg12:
4031 case DW_OP_reg13:
4032 case DW_OP_reg14:
4033 case DW_OP_reg15:
4034 case DW_OP_reg16:
4035 case DW_OP_reg17:
4036 case DW_OP_reg18:
4037 case DW_OP_reg19:
4038 case DW_OP_reg20:
4039 case DW_OP_reg21:
4040 case DW_OP_reg22:
4041 case DW_OP_reg23:
4042 case DW_OP_reg24:
4043 case DW_OP_reg25:
4044 case DW_OP_reg26:
4045 case DW_OP_reg27:
4046 case DW_OP_reg28:
4047 case DW_OP_reg29:
4048 case DW_OP_reg30:
4049 case DW_OP_reg31:
4050 fprintf_filtered (stream, " [$%s]",
4051 locexpr_regname (arch, op - DW_OP_reg0));
4052 break;
4053
4054 case DW_OP_regx:
4055 data = safe_read_uleb128 (data, end, &ul);
4056 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4057 locexpr_regname (arch, (int) ul));
4058 break;
4059
4060 case DW_OP_implicit_value:
4061 data = safe_read_uleb128 (data, end, &ul);
4062 data += ul;
4063 fprintf_filtered (stream, " %s", pulongest (ul));
4064 break;
4065
4066 case DW_OP_breg0:
4067 case DW_OP_breg1:
4068 case DW_OP_breg2:
4069 case DW_OP_breg3:
4070 case DW_OP_breg4:
4071 case DW_OP_breg5:
4072 case DW_OP_breg6:
4073 case DW_OP_breg7:
4074 case DW_OP_breg8:
4075 case DW_OP_breg9:
4076 case DW_OP_breg10:
4077 case DW_OP_breg11:
4078 case DW_OP_breg12:
4079 case DW_OP_breg13:
4080 case DW_OP_breg14:
4081 case DW_OP_breg15:
4082 case DW_OP_breg16:
4083 case DW_OP_breg17:
4084 case DW_OP_breg18:
4085 case DW_OP_breg19:
4086 case DW_OP_breg20:
4087 case DW_OP_breg21:
4088 case DW_OP_breg22:
4089 case DW_OP_breg23:
4090 case DW_OP_breg24:
4091 case DW_OP_breg25:
4092 case DW_OP_breg26:
4093 case DW_OP_breg27:
4094 case DW_OP_breg28:
4095 case DW_OP_breg29:
4096 case DW_OP_breg30:
4097 case DW_OP_breg31:
4098 data = safe_read_sleb128 (data, end, &l);
4099 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4100 locexpr_regname (arch, op - DW_OP_breg0));
4101 break;
4102
4103 case DW_OP_bregx:
4104 data = safe_read_uleb128 (data, end, &ul);
4105 data = safe_read_sleb128 (data, end, &l);
4106 fprintf_filtered (stream, " register %s [$%s] offset %s",
4107 pulongest (ul),
4108 locexpr_regname (arch, (int) ul),
4109 plongest (l));
4110 break;
4111
4112 case DW_OP_fbreg:
4113 data = safe_read_sleb128 (data, end, &l);
4114 fprintf_filtered (stream, " %s", plongest (l));
4115 break;
4116
4117 case DW_OP_xderef_size:
4118 case DW_OP_deref_size:
4119 case DW_OP_pick:
4120 fprintf_filtered (stream, " %d", *data);
4121 ++data;
4122 break;
4123
4124 case DW_OP_plus_uconst:
4125 data = safe_read_uleb128 (data, end, &ul);
4126 fprintf_filtered (stream, " %s", pulongest (ul));
4127 break;
4128
4129 case DW_OP_skip:
4130 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4131 data += 2;
4132 fprintf_filtered (stream, " to %ld",
4133 (long) (data + l - start));
4134 break;
4135
4136 case DW_OP_bra:
4137 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4138 data += 2;
4139 fprintf_filtered (stream, " %ld",
4140 (long) (data + l - start));
4141 break;
4142
4143 case DW_OP_call2:
4144 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4145 data += 2;
4146 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4147 break;
4148
4149 case DW_OP_call4:
4150 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4151 data += 4;
4152 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4153 break;
4154
4155 case DW_OP_call_ref:
4156 ul = extract_unsigned_integer (data, offset_size,
4157 gdbarch_byte_order (arch));
4158 data += offset_size;
4159 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4160 break;
4161
4162 case DW_OP_piece:
4163 data = safe_read_uleb128 (data, end, &ul);
4164 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4165 break;
4166
4167 case DW_OP_bit_piece:
4168 {
4169 uint64_t offset;
4170
4171 data = safe_read_uleb128 (data, end, &ul);
4172 data = safe_read_uleb128 (data, end, &offset);
4173 fprintf_filtered (stream, " size %s offset %s (bits)",
4174 pulongest (ul), pulongest (offset));
4175 }
4176 break;
4177
4178 case DW_OP_implicit_pointer:
4179 case DW_OP_GNU_implicit_pointer:
4180 {
4181 ul = extract_unsigned_integer (data, offset_size,
4182 gdbarch_byte_order (arch));
4183 data += offset_size;
4184
4185 data = safe_read_sleb128 (data, end, &l);
4186
4187 fprintf_filtered (stream, " DIE %s offset %s",
4188 phex_nz (ul, offset_size),
4189 plongest (l));
4190 }
4191 break;
4192
4193 case DW_OP_deref_type:
4194 case DW_OP_GNU_deref_type:
4195 {
4196 int addr_size = *data++;
4197 struct type *type;
4198
4199 data = safe_read_uleb128 (data, end, &ul);
4200 cu_offset offset = (cu_offset) ul;
4201 type = dwarf2_get_die_type (offset, per_cu);
4202 fprintf_filtered (stream, "<");
4203 type_print (type, "", stream, -1);
4204 fprintf_filtered (stream, " [0x%s]> %d",
4205 phex_nz (to_underlying (offset), 0),
4206 addr_size);
4207 }
4208 break;
4209
4210 case DW_OP_const_type:
4211 case DW_OP_GNU_const_type:
4212 {
4213 struct type *type;
4214
4215 data = safe_read_uleb128 (data, end, &ul);
4216 cu_offset type_die = (cu_offset) ul;
4217 type = dwarf2_get_die_type (type_die, per_cu);
4218 fprintf_filtered (stream, "<");
4219 type_print (type, "", stream, -1);
4220 fprintf_filtered (stream, " [0x%s]>",
4221 phex_nz (to_underlying (type_die), 0));
4222 }
4223 break;
4224
4225 case DW_OP_regval_type:
4226 case DW_OP_GNU_regval_type:
4227 {
4228 uint64_t reg;
4229 struct type *type;
4230
4231 data = safe_read_uleb128 (data, end, &reg);
4232 data = safe_read_uleb128 (data, end, &ul);
4233 cu_offset type_die = (cu_offset) ul;
4234
4235 type = dwarf2_get_die_type (type_die, per_cu);
4236 fprintf_filtered (stream, "<");
4237 type_print (type, "", stream, -1);
4238 fprintf_filtered (stream, " [0x%s]> [$%s]",
4239 phex_nz (to_underlying (type_die), 0),
4240 locexpr_regname (arch, reg));
4241 }
4242 break;
4243
4244 case DW_OP_convert:
4245 case DW_OP_GNU_convert:
4246 case DW_OP_reinterpret:
4247 case DW_OP_GNU_reinterpret:
4248 {
4249 data = safe_read_uleb128 (data, end, &ul);
4250 cu_offset type_die = (cu_offset) ul;
4251
4252 if (to_underlying (type_die) == 0)
4253 fprintf_filtered (stream, "<0>");
4254 else
4255 {
4256 struct type *type;
4257
4258 type = dwarf2_get_die_type (type_die, per_cu);
4259 fprintf_filtered (stream, "<");
4260 type_print (type, "", stream, -1);
4261 fprintf_filtered (stream, " [0x%s]>",
4262 phex_nz (to_underlying (type_die), 0));
4263 }
4264 }
4265 break;
4266
4267 case DW_OP_entry_value:
4268 case DW_OP_GNU_entry_value:
4269 data = safe_read_uleb128 (data, end, &ul);
4270 fputc_filtered ('\n', stream);
4271 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4272 start, data, data + ul, indent + 2,
4273 all, per_cu);
4274 data += ul;
4275 continue;
4276
4277 case DW_OP_GNU_parameter_ref:
4278 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4279 data += 4;
4280 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4281 break;
4282
4283 case DW_OP_GNU_addr_index:
4284 data = safe_read_uleb128 (data, end, &ul);
4285 ul = dwarf2_read_addr_index (per_cu, ul);
4286 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4287 break;
4288 case DW_OP_GNU_const_index:
4289 data = safe_read_uleb128 (data, end, &ul);
4290 ul = dwarf2_read_addr_index (per_cu, ul);
4291 fprintf_filtered (stream, " %s", pulongest (ul));
4292 break;
4293 }
4294
4295 fprintf_filtered (stream, "\n");
4296 }
4297
4298 return data;
4299 }
4300
4301 /* Describe a single location, which may in turn consist of multiple
4302 pieces. */
4303
4304 static void
4305 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4306 struct ui_file *stream,
4307 const gdb_byte *data, size_t size,
4308 struct objfile *objfile, unsigned int addr_size,
4309 int offset_size, struct dwarf2_per_cu_data *per_cu)
4310 {
4311 const gdb_byte *end = data + size;
4312 int first_piece = 1, bad = 0;
4313
4314 while (data < end)
4315 {
4316 const gdb_byte *here = data;
4317 int disassemble = 1;
4318
4319 if (first_piece)
4320 first_piece = 0;
4321 else
4322 fprintf_filtered (stream, _(", and "));
4323
4324 if (!dwarf_always_disassemble)
4325 {
4326 data = locexpr_describe_location_piece (symbol, stream,
4327 addr, objfile, per_cu,
4328 data, end, addr_size);
4329 /* If we printed anything, or if we have an empty piece,
4330 then don't disassemble. */
4331 if (data != here
4332 || data[0] == DW_OP_piece
4333 || data[0] == DW_OP_bit_piece)
4334 disassemble = 0;
4335 }
4336 if (disassemble)
4337 {
4338 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4339 data = disassemble_dwarf_expression (stream,
4340 get_objfile_arch (objfile),
4341 addr_size, offset_size, data,
4342 data, end, 0,
4343 dwarf_always_disassemble,
4344 per_cu);
4345 }
4346
4347 if (data < end)
4348 {
4349 int empty = data == here;
4350
4351 if (disassemble)
4352 fprintf_filtered (stream, " ");
4353 if (data[0] == DW_OP_piece)
4354 {
4355 uint64_t bytes;
4356
4357 data = safe_read_uleb128 (data + 1, end, &bytes);
4358
4359 if (empty)
4360 fprintf_filtered (stream, _("an empty %s-byte piece"),
4361 pulongest (bytes));
4362 else
4363 fprintf_filtered (stream, _(" [%s-byte piece]"),
4364 pulongest (bytes));
4365 }
4366 else if (data[0] == DW_OP_bit_piece)
4367 {
4368 uint64_t bits, offset;
4369
4370 data = safe_read_uleb128 (data + 1, end, &bits);
4371 data = safe_read_uleb128 (data, end, &offset);
4372
4373 if (empty)
4374 fprintf_filtered (stream,
4375 _("an empty %s-bit piece"),
4376 pulongest (bits));
4377 else
4378 fprintf_filtered (stream,
4379 _(" [%s-bit piece, offset %s bits]"),
4380 pulongest (bits), pulongest (offset));
4381 }
4382 else
4383 {
4384 bad = 1;
4385 break;
4386 }
4387 }
4388 }
4389
4390 if (bad || data > end)
4391 error (_("Corrupted DWARF2 expression for \"%s\"."),
4392 SYMBOL_PRINT_NAME (symbol));
4393 }
4394
4395 /* Print a natural-language description of SYMBOL to STREAM. This
4396 version is for a symbol with a single location. */
4397
4398 static void
4399 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4400 struct ui_file *stream)
4401 {
4402 struct dwarf2_locexpr_baton *dlbaton
4403 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4404 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4405 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4406 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4407
4408 locexpr_describe_location_1 (symbol, addr, stream,
4409 dlbaton->data, dlbaton->size,
4410 objfile, addr_size, offset_size,
4411 dlbaton->per_cu);
4412 }
4413
4414 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4415 any necessary bytecode in AX. */
4416
4417 static void
4418 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4419 struct agent_expr *ax, struct axs_value *value)
4420 {
4421 struct dwarf2_locexpr_baton *dlbaton
4422 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4423 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4424
4425 if (dlbaton->size == 0)
4426 value->optimized_out = 1;
4427 else
4428 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4429 dlbaton->data, dlbaton->data + dlbaton->size,
4430 dlbaton->per_cu);
4431 }
4432
4433 /* symbol_computed_ops 'generate_c_location' method. */
4434
4435 static void
4436 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4437 struct gdbarch *gdbarch,
4438 unsigned char *registers_used,
4439 CORE_ADDR pc, const char *result_name)
4440 {
4441 struct dwarf2_locexpr_baton *dlbaton
4442 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4443 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4444
4445 if (dlbaton->size == 0)
4446 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4447
4448 compile_dwarf_expr_to_c (stream, result_name,
4449 sym, pc, gdbarch, registers_used, addr_size,
4450 dlbaton->data, dlbaton->data + dlbaton->size,
4451 dlbaton->per_cu);
4452 }
4453
4454 /* The set of location functions used with the DWARF-2 expression
4455 evaluator. */
4456 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4457 locexpr_read_variable,
4458 locexpr_read_variable_at_entry,
4459 locexpr_get_symbol_read_needs,
4460 locexpr_describe_location,
4461 0, /* location_has_loclist */
4462 locexpr_tracepoint_var_ref,
4463 locexpr_generate_c_location
4464 };
4465
4466
4467 /* Wrapper functions for location lists. These generally find
4468 the appropriate location expression and call something above. */
4469
4470 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4471 evaluator to calculate the location. */
4472 static struct value *
4473 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4474 {
4475 struct dwarf2_loclist_baton *dlbaton
4476 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4477 struct value *val;
4478 const gdb_byte *data;
4479 size_t size;
4480 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4481
4482 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4483 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4484 dlbaton->per_cu);
4485
4486 return val;
4487 }
4488
4489 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4490 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4491 will be thrown.
4492
4493 Function always returns non-NULL value, it may be marked optimized out if
4494 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4495 if it cannot resolve the parameter for any reason. */
4496
4497 static struct value *
4498 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4499 {
4500 struct dwarf2_loclist_baton *dlbaton
4501 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4502 const gdb_byte *data;
4503 size_t size;
4504 CORE_ADDR pc;
4505
4506 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4507 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4508
4509 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4510 if (data == NULL)
4511 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4512
4513 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4514 }
4515
4516 /* Implementation of get_symbol_read_needs from
4517 symbol_computed_ops. */
4518
4519 static enum symbol_needs_kind
4520 loclist_symbol_needs (struct symbol *symbol)
4521 {
4522 /* If there's a location list, then assume we need to have a frame
4523 to choose the appropriate location expression. With tracking of
4524 global variables this is not necessarily true, but such tracking
4525 is disabled in GCC at the moment until we figure out how to
4526 represent it. */
4527
4528 return SYMBOL_NEEDS_FRAME;
4529 }
4530
4531 /* Print a natural-language description of SYMBOL to STREAM. This
4532 version applies when there is a list of different locations, each
4533 with a specified address range. */
4534
4535 static void
4536 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4537 struct ui_file *stream)
4538 {
4539 struct dwarf2_loclist_baton *dlbaton
4540 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4541 const gdb_byte *loc_ptr, *buf_end;
4542 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4545 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4546 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4547 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4548 /* Adjust base_address for relocatable objects. */
4549 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4550 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4551 int done = 0;
4552
4553 loc_ptr = dlbaton->data;
4554 buf_end = dlbaton->data + dlbaton->size;
4555
4556 fprintf_filtered (stream, _("multi-location:\n"));
4557
4558 /* Iterate through locations until we run out. */
4559 while (!done)
4560 {
4561 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4562 int length;
4563 enum debug_loc_kind kind;
4564 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4565
4566 if (dlbaton->from_dwo)
4567 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4568 loc_ptr, buf_end, &new_ptr,
4569 &low, &high, byte_order);
4570 else
4571 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4572 &low, &high,
4573 byte_order, addr_size,
4574 signed_addr_p);
4575 loc_ptr = new_ptr;
4576 switch (kind)
4577 {
4578 case DEBUG_LOC_END_OF_LIST:
4579 done = 1;
4580 continue;
4581 case DEBUG_LOC_BASE_ADDRESS:
4582 base_address = high + base_offset;
4583 fprintf_filtered (stream, _(" Base address %s"),
4584 paddress (gdbarch, base_address));
4585 continue;
4586 case DEBUG_LOC_START_END:
4587 case DEBUG_LOC_START_LENGTH:
4588 break;
4589 case DEBUG_LOC_BUFFER_OVERFLOW:
4590 case DEBUG_LOC_INVALID_ENTRY:
4591 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4592 SYMBOL_PRINT_NAME (symbol));
4593 default:
4594 gdb_assert_not_reached ("bad debug_loc_kind");
4595 }
4596
4597 /* Otherwise, a location expression entry. */
4598 low += base_address;
4599 high += base_address;
4600
4601 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4602 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4603
4604 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4605 loc_ptr += 2;
4606
4607 /* (It would improve readability to print only the minimum
4608 necessary digits of the second number of the range.) */
4609 fprintf_filtered (stream, _(" Range %s-%s: "),
4610 paddress (gdbarch, low), paddress (gdbarch, high));
4611
4612 /* Now describe this particular location. */
4613 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4614 objfile, addr_size, offset_size,
4615 dlbaton->per_cu);
4616
4617 fprintf_filtered (stream, "\n");
4618
4619 loc_ptr += length;
4620 }
4621 }
4622
4623 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4624 any necessary bytecode in AX. */
4625 static void
4626 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4627 struct agent_expr *ax, struct axs_value *value)
4628 {
4629 struct dwarf2_loclist_baton *dlbaton
4630 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4631 const gdb_byte *data;
4632 size_t size;
4633 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4634
4635 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4636 if (size == 0)
4637 value->optimized_out = 1;
4638 else
4639 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4640 dlbaton->per_cu);
4641 }
4642
4643 /* symbol_computed_ops 'generate_c_location' method. */
4644
4645 static void
4646 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4647 struct gdbarch *gdbarch,
4648 unsigned char *registers_used,
4649 CORE_ADDR pc, const char *result_name)
4650 {
4651 struct dwarf2_loclist_baton *dlbaton
4652 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4653 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4654 const gdb_byte *data;
4655 size_t size;
4656
4657 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4658 if (size == 0)
4659 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4660
4661 compile_dwarf_expr_to_c (stream, result_name,
4662 sym, pc, gdbarch, registers_used, addr_size,
4663 data, data + size,
4664 dlbaton->per_cu);
4665 }
4666
4667 /* The set of location functions used with the DWARF-2 expression
4668 evaluator and location lists. */
4669 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4670 loclist_read_variable,
4671 loclist_read_variable_at_entry,
4672 loclist_symbol_needs,
4673 loclist_describe_location,
4674 1, /* location_has_loclist */
4675 loclist_tracepoint_var_ref,
4676 loclist_generate_c_location
4677 };
4678
4679 /* Provide a prototype to silence -Wmissing-prototypes. */
4680 extern initialize_file_ftype _initialize_dwarf2loc;
4681
4682 void
4683 _initialize_dwarf2loc (void)
4684 {
4685 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4686 &entry_values_debug,
4687 _("Set entry values and tail call frames "
4688 "debugging."),
4689 _("Show entry values and tail call frames "
4690 "debugging."),
4691 _("When non-zero, the process of determining "
4692 "parameter values from function entry point "
4693 "and tail call frames will be printed."),
4694 NULL,
4695 show_entry_values_debug,
4696 &setdebuglist, &showdebuglist);
4697
4698 #if GDB_SELF_TEST
4699 register_self_test (selftests::copy_bitwise_tests);
4700 #endif
4701 }
This page took 0.256721 seconds and 5 git commands to generate.