Use BLOCK_ENTRY_PC in place of most uses of BLOCK_START
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
47
48 extern int dwarf_always_disassemble;
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
57
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
64 static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
68 struct type *type);
69
70 /* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75 enum debug_loc_kind
76 {
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
94
95 /* An internal value indicating there is insufficient data. */
96 DEBUG_LOC_BUFFER_OVERFLOW = -1,
97
98 /* An internal value indicating an invalid kind of entry was found. */
99 DEBUG_LOC_INVALID_ENTRY = -2
100 };
101
102 /* Helper function which throws an error if a synthetic pointer is
103 invalid. */
104
105 static void
106 invalid_synthetic_pointer (void)
107 {
108 error (_("access outside bounds of object "
109 "referenced via synthetic pointer"));
110 }
111
112 /* Decode the addresses in a non-dwo .debug_loc entry.
113 A pointer to the next byte to examine is returned in *NEW_PTR.
114 The encoded low,high addresses are return in *LOW,*HIGH.
115 The result indicates the kind of entry found. */
116
117 static enum debug_loc_kind
118 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
119 const gdb_byte **new_ptr,
120 CORE_ADDR *low, CORE_ADDR *high,
121 enum bfd_endian byte_order,
122 unsigned int addr_size,
123 int signed_addr_p)
124 {
125 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
126
127 if (buf_end - loc_ptr < 2 * addr_size)
128 return DEBUG_LOC_BUFFER_OVERFLOW;
129
130 if (signed_addr_p)
131 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 if (signed_addr_p)
137 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
138 else
139 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
140 loc_ptr += addr_size;
141
142 *new_ptr = loc_ptr;
143
144 /* A base-address-selection entry. */
145 if ((*low & base_mask) == base_mask)
146 return DEBUG_LOC_BASE_ADDRESS;
147
148 /* An end-of-list entry. */
149 if (*low == 0 && *high == 0)
150 return DEBUG_LOC_END_OF_LIST;
151
152 return DEBUG_LOC_START_END;
153 }
154
155 /* Decode the addresses in .debug_loclists entry.
156 A pointer to the next byte to examine is returned in *NEW_PTR.
157 The encoded low,high addresses are return in *LOW,*HIGH.
158 The result indicates the kind of entry found. */
159
160 static enum debug_loc_kind
161 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
162 const gdb_byte *loc_ptr,
163 const gdb_byte *buf_end,
164 const gdb_byte **new_ptr,
165 CORE_ADDR *low, CORE_ADDR *high,
166 enum bfd_endian byte_order,
167 unsigned int addr_size,
168 int signed_addr_p)
169 {
170 uint64_t u64;
171
172 if (loc_ptr == buf_end)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174
175 switch (*loc_ptr++)
176 {
177 case DW_LLE_end_of_list:
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_END_OF_LIST;
180 case DW_LLE_base_address:
181 if (loc_ptr + addr_size > buf_end)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 if (signed_addr_p)
184 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
185 else
186 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
187 loc_ptr += addr_size;
188 *new_ptr = loc_ptr;
189 return DEBUG_LOC_BASE_ADDRESS;
190 case DW_LLE_offset_pair:
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
192 if (loc_ptr == NULL)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *low = u64;
195 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
196 if (loc_ptr == NULL)
197 return DEBUG_LOC_BUFFER_OVERFLOW;
198 *high = u64;
199 *new_ptr = loc_ptr;
200 return DEBUG_LOC_START_END;
201 default:
202 return DEBUG_LOC_INVALID_ENTRY;
203 }
204 }
205
206 /* Decode the addresses in .debug_loc.dwo entry.
207 A pointer to the next byte to examine is returned in *NEW_PTR.
208 The encoded low,high addresses are return in *LOW,*HIGH.
209 The result indicates the kind of entry found. */
210
211 static enum debug_loc_kind
212 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
213 const gdb_byte *loc_ptr,
214 const gdb_byte *buf_end,
215 const gdb_byte **new_ptr,
216 CORE_ADDR *low, CORE_ADDR *high,
217 enum bfd_endian byte_order)
218 {
219 uint64_t low_index, high_index;
220
221 if (loc_ptr == buf_end)
222 return DEBUG_LOC_BUFFER_OVERFLOW;
223
224 switch (*loc_ptr++)
225 {
226 case DW_LLE_GNU_end_of_list_entry:
227 *new_ptr = loc_ptr;
228 return DEBUG_LOC_END_OF_LIST;
229 case DW_LLE_GNU_base_address_selection_entry:
230 *low = 0;
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *high = dwarf2_read_addr_index (per_cu, high_index);
235 *new_ptr = loc_ptr;
236 return DEBUG_LOC_BASE_ADDRESS;
237 case DW_LLE_GNU_start_end_entry:
238 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
239 if (loc_ptr == NULL)
240 return DEBUG_LOC_BUFFER_OVERFLOW;
241 *low = dwarf2_read_addr_index (per_cu, low_index);
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *high = dwarf2_read_addr_index (per_cu, high_index);
246 *new_ptr = loc_ptr;
247 return DEBUG_LOC_START_END;
248 case DW_LLE_GNU_start_length_entry:
249 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
250 if (loc_ptr == NULL)
251 return DEBUG_LOC_BUFFER_OVERFLOW;
252 *low = dwarf2_read_addr_index (per_cu, low_index);
253 if (loc_ptr + 4 > buf_end)
254 return DEBUG_LOC_BUFFER_OVERFLOW;
255 *high = *low;
256 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
257 *new_ptr = loc_ptr + 4;
258 return DEBUG_LOC_START_LENGTH;
259 default:
260 return DEBUG_LOC_INVALID_ENTRY;
261 }
262 }
263
264 /* A function for dealing with location lists. Given a
265 symbol baton (BATON) and a pc value (PC), find the appropriate
266 location expression, set *LOCEXPR_LENGTH, and return a pointer
267 to the beginning of the expression. Returns NULL on failure.
268
269 For now, only return the first matching location expression; there
270 can be more than one in the list. */
271
272 const gdb_byte *
273 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
274 size_t *locexpr_length, CORE_ADDR pc)
275 {
276 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
280 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
281 /* Adjust base_address for relocatable objects. */
282 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
283 CORE_ADDR base_address = baton->base_address + base_offset;
284 const gdb_byte *loc_ptr, *buf_end;
285
286 loc_ptr = baton->data;
287 buf_end = baton->data + baton->size;
288
289 while (1)
290 {
291 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
292 int length;
293 enum debug_loc_kind kind;
294 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
295
296 if (baton->from_dwo)
297 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
298 loc_ptr, buf_end, &new_ptr,
299 &low, &high, byte_order);
300 else if (dwarf2_version (baton->per_cu) < 5)
301 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
302 &low, &high,
303 byte_order, addr_size,
304 signed_addr_p);
305 else
306 kind = decode_debug_loclists_addresses (baton->per_cu,
307 loc_ptr, buf_end, &new_ptr,
308 &low, &high, byte_order,
309 addr_size, signed_addr_p);
310
311 loc_ptr = new_ptr;
312 switch (kind)
313 {
314 case DEBUG_LOC_END_OF_LIST:
315 *locexpr_length = 0;
316 return NULL;
317 case DEBUG_LOC_BASE_ADDRESS:
318 base_address = high + base_offset;
319 continue;
320 case DEBUG_LOC_START_END:
321 case DEBUG_LOC_START_LENGTH:
322 break;
323 case DEBUG_LOC_BUFFER_OVERFLOW:
324 case DEBUG_LOC_INVALID_ENTRY:
325 error (_("dwarf2_find_location_expression: "
326 "Corrupted DWARF expression."));
327 default:
328 gdb_assert_not_reached ("bad debug_loc_kind");
329 }
330
331 /* Otherwise, a location expression entry.
332 If the entry is from a DWO, don't add base address: the entry is from
333 .debug_addr which already has the DWARF "base address". We still add
334 base_offset in case we're debugging a PIE executable. */
335 if (baton->from_dwo)
336 {
337 low += base_offset;
338 high += base_offset;
339 }
340 else
341 {
342 low += base_address;
343 high += base_address;
344 }
345
346 if (dwarf2_version (baton->per_cu) < 5)
347 {
348 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
349 loc_ptr += 2;
350 }
351 else
352 {
353 unsigned int bytes_read;
354
355 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
356 loc_ptr += bytes_read;
357 }
358
359 if (low == high && pc == low)
360 {
361 /* This is entry PC record present only at entry point
362 of a function. Verify it is really the function entry point. */
363
364 const struct block *pc_block = block_for_pc (pc);
365 struct symbol *pc_func = NULL;
366
367 if (pc_block)
368 pc_func = block_linkage_function (pc_block);
369
370 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375 }
376
377 if (pc >= low && pc < high)
378 {
379 *locexpr_length = length;
380 return loc_ptr;
381 }
382
383 loc_ptr += length;
384 }
385 }
386
387 /* This is the baton used when performing dwarf2 expression
388 evaluation. */
389 struct dwarf_expr_baton
390 {
391 struct frame_info *frame;
392 struct dwarf2_per_cu_data *per_cu;
393 CORE_ADDR obj_address;
394 };
395
396 /* Implement find_frame_base_location method for LOC_BLOCK functions using
397 DWARF expression for its DW_AT_frame_base. */
398
399 static void
400 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
401 const gdb_byte **start, size_t *length)
402 {
403 struct dwarf2_locexpr_baton *symbaton
404 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
405
406 *length = symbaton->size;
407 *start = symbaton->data;
408 }
409
410 /* Implement the struct symbol_block_ops::get_frame_base method for
411 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
412
413 static CORE_ADDR
414 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
415 {
416 struct gdbarch *gdbarch;
417 struct type *type;
418 struct dwarf2_locexpr_baton *dlbaton;
419 const gdb_byte *start;
420 size_t length;
421 struct value *result;
422
423 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
424 Thus, it's supposed to provide the find_frame_base_location method as
425 well. */
426 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
427
428 gdbarch = get_frame_arch (frame);
429 type = builtin_type (gdbarch)->builtin_data_ptr;
430 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
431
432 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
433 (framefunc, get_frame_pc (frame), &start, &length);
434 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
435 dlbaton->per_cu);
436
437 /* The DW_AT_frame_base attribute contains a location description which
438 computes the base address itself. However, the call to
439 dwarf2_evaluate_loc_desc returns a value representing a variable at
440 that address. The frame base address is thus this variable's
441 address. */
442 return value_address (result);
443 }
444
445 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
446 function uses DWARF expression for its DW_AT_frame_base. */
447
448 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
449 {
450 locexpr_find_frame_base_location,
451 locexpr_get_frame_base
452 };
453
454 /* Implement find_frame_base_location method for LOC_BLOCK functions using
455 DWARF location list for its DW_AT_frame_base. */
456
457 static void
458 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
459 const gdb_byte **start, size_t *length)
460 {
461 struct dwarf2_loclist_baton *symbaton
462 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
463
464 *start = dwarf2_find_location_expression (symbaton, length, pc);
465 }
466
467 /* Implement the struct symbol_block_ops::get_frame_base method for
468 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
469
470 static CORE_ADDR
471 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
472 {
473 struct gdbarch *gdbarch;
474 struct type *type;
475 struct dwarf2_loclist_baton *dlbaton;
476 const gdb_byte *start;
477 size_t length;
478 struct value *result;
479
480 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
481 Thus, it's supposed to provide the find_frame_base_location method as
482 well. */
483 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
484
485 gdbarch = get_frame_arch (frame);
486 type = builtin_type (gdbarch)->builtin_data_ptr;
487 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
488
489 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
490 (framefunc, get_frame_pc (frame), &start, &length);
491 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
492 dlbaton->per_cu);
493
494 /* The DW_AT_frame_base attribute contains a location description which
495 computes the base address itself. However, the call to
496 dwarf2_evaluate_loc_desc returns a value representing a variable at
497 that address. The frame base address is thus this variable's
498 address. */
499 return value_address (result);
500 }
501
502 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
503 function uses DWARF location list for its DW_AT_frame_base. */
504
505 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
506 {
507 loclist_find_frame_base_location,
508 loclist_get_frame_base
509 };
510
511 /* See dwarf2loc.h. */
512
513 void
514 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
515 const gdb_byte **start, size_t *length)
516 {
517 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
518 {
519 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
520
521 ops_block->find_frame_base_location (framefunc, pc, start, length);
522 }
523 else
524 *length = 0;
525
526 if (*length == 0)
527 error (_("Could not find the frame base for \"%s\"."),
528 SYMBOL_NATURAL_NAME (framefunc));
529 }
530
531 static CORE_ADDR
532 get_frame_pc_for_per_cu_dwarf_call (void *baton)
533 {
534 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
535
536 return ctx->get_frame_pc ();
537 }
538
539 static void
540 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
541 struct dwarf2_per_cu_data *per_cu)
542 {
543 struct dwarf2_locexpr_baton block;
544
545 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
546 get_frame_pc_for_per_cu_dwarf_call,
547 ctx);
548
549 /* DW_OP_call_ref is currently not supported. */
550 gdb_assert (block.per_cu == per_cu);
551
552 ctx->eval (block.data, block.size);
553 }
554
555 /* Given context CTX, section offset SECT_OFF, and compilation unit
556 data PER_CU, execute the "variable value" operation on the DIE
557 found at SECT_OFF. */
558
559 static struct value *
560 sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
561 struct dwarf2_per_cu_data *per_cu)
562 {
563 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
564
565 if (die_type == NULL)
566 error (_("Bad DW_OP_GNU_variable_value DIE."));
567
568 /* Note: Things still work when the following test is removed. This
569 test and error is here to conform to the proposed specification. */
570 if (TYPE_CODE (die_type) != TYPE_CODE_INT
571 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
572 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
573
574 struct type *type = lookup_pointer_type (die_type);
575 struct frame_info *frame = get_selected_frame (_("No frame selected."));
576 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type);
577 }
578
579 class dwarf_evaluate_loc_desc : public dwarf_expr_context
580 {
581 public:
582
583 struct frame_info *frame;
584 struct dwarf2_per_cu_data *per_cu;
585 CORE_ADDR obj_address;
586
587 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
588 the frame in BATON. */
589
590 CORE_ADDR get_frame_cfa () override
591 {
592 return dwarf2_frame_cfa (frame);
593 }
594
595 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
596 the frame in BATON. */
597
598 CORE_ADDR get_frame_pc () override
599 {
600 return get_frame_address_in_block (frame);
601 }
602
603 /* Using the objfile specified in BATON, find the address for the
604 current thread's thread-local storage with offset OFFSET. */
605 CORE_ADDR get_tls_address (CORE_ADDR offset) override
606 {
607 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
608
609 return target_translate_tls_address (objfile, offset);
610 }
611
612 /* Helper interface of per_cu_dwarf_call for
613 dwarf2_evaluate_loc_desc. */
614
615 void dwarf_call (cu_offset die_offset) override
616 {
617 per_cu_dwarf_call (this, die_offset, per_cu);
618 }
619
620 /* Helper interface of sect_variable_value for
621 dwarf2_evaluate_loc_desc. */
622
623 struct value *dwarf_variable_value (sect_offset sect_off) override
624 {
625 return sect_variable_value (this, sect_off, per_cu);
626 }
627
628 struct type *get_base_type (cu_offset die_offset, int size) override
629 {
630 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
631 if (result == NULL)
632 error (_("Could not find type for DW_OP_const_type"));
633 if (size != 0 && TYPE_LENGTH (result) != size)
634 error (_("DW_OP_const_type has different sizes for type and data"));
635 return result;
636 }
637
638 /* Callback function for dwarf2_evaluate_loc_desc.
639 Fetch the address indexed by DW_OP_GNU_addr_index. */
640
641 CORE_ADDR get_addr_index (unsigned int index) override
642 {
643 return dwarf2_read_addr_index (per_cu, index);
644 }
645
646 /* Callback function for get_object_address. Return the address of the VLA
647 object. */
648
649 CORE_ADDR get_object_address () override
650 {
651 if (obj_address == 0)
652 error (_("Location address is not set."));
653 return obj_address;
654 }
655
656 /* Execute DWARF block of call_site_parameter which matches KIND and
657 KIND_U. Choose DEREF_SIZE value of that parameter. Search
658 caller of this objects's frame.
659
660 The caller can be from a different CU - per_cu_dwarf_call
661 implementation can be more simple as it does not support cross-CU
662 DWARF executions. */
663
664 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
665 union call_site_parameter_u kind_u,
666 int deref_size) override
667 {
668 struct frame_info *caller_frame;
669 struct dwarf2_per_cu_data *caller_per_cu;
670 struct call_site_parameter *parameter;
671 const gdb_byte *data_src;
672 size_t size;
673
674 caller_frame = get_prev_frame (frame);
675
676 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
677 &caller_per_cu);
678 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
679 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
680
681 /* DEREF_SIZE size is not verified here. */
682 if (data_src == NULL)
683 throw_error (NO_ENTRY_VALUE_ERROR,
684 _("Cannot resolve DW_AT_call_data_value"));
685
686 scoped_restore save_frame = make_scoped_restore (&this->frame,
687 caller_frame);
688 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
689 caller_per_cu);
690 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
691 (CORE_ADDR) 0);
692
693 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
694 this->gdbarch
695 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
696 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
697 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
698 scoped_restore save_offset = make_scoped_restore (&this->offset);
699 this->offset = dwarf2_per_cu_text_offset (per_cu);
700
701 this->eval (data_src, size);
702 }
703
704 /* Using the frame specified in BATON, find the location expression
705 describing the frame base. Return a pointer to it in START and
706 its length in LENGTH. */
707 void get_frame_base (const gdb_byte **start, size_t * length) override
708 {
709 /* FIXME: cagney/2003-03-26: This code should be using
710 get_frame_base_address(), and then implement a dwarf2 specific
711 this_base method. */
712 struct symbol *framefunc;
713 const struct block *bl = get_frame_block (frame, NULL);
714
715 if (bl == NULL)
716 error (_("frame address is not available."));
717
718 /* Use block_linkage_function, which returns a real (not inlined)
719 function, instead of get_frame_function, which may return an
720 inlined function. */
721 framefunc = block_linkage_function (bl);
722
723 /* If we found a frame-relative symbol then it was certainly within
724 some function associated with a frame. If we can't find the frame,
725 something has gone wrong. */
726 gdb_assert (framefunc != NULL);
727
728 func_get_frame_base_dwarf_block (framefunc,
729 get_frame_address_in_block (frame),
730 start, length);
731 }
732
733 /* Read memory at ADDR (length LEN) into BUF. */
734
735 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
736 {
737 read_memory (addr, buf, len);
738 }
739
740 /* Using the frame specified in BATON, return the value of register
741 REGNUM, treated as a pointer. */
742 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
743 {
744 struct gdbarch *gdbarch = get_frame_arch (frame);
745 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
746
747 return address_from_register (regnum, frame);
748 }
749
750 /* Implement "get_reg_value" callback. */
751
752 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
753 {
754 struct gdbarch *gdbarch = get_frame_arch (frame);
755 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
756
757 return value_from_register (type, regnum, frame);
758 }
759 };
760
761 /* See dwarf2loc.h. */
762
763 unsigned int entry_values_debug = 0;
764
765 /* Helper to set entry_values_debug. */
766
767 static void
768 show_entry_values_debug (struct ui_file *file, int from_tty,
769 struct cmd_list_element *c, const char *value)
770 {
771 fprintf_filtered (file,
772 _("Entry values and tail call frames debugging is %s.\n"),
773 value);
774 }
775
776 /* Find DW_TAG_call_site's DW_AT_call_target address.
777 CALLER_FRAME (for registers) can be NULL if it is not known. This function
778 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
779
780 static CORE_ADDR
781 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
782 struct call_site *call_site,
783 struct frame_info *caller_frame)
784 {
785 switch (FIELD_LOC_KIND (call_site->target))
786 {
787 case FIELD_LOC_KIND_DWARF_BLOCK:
788 {
789 struct dwarf2_locexpr_baton *dwarf_block;
790 struct value *val;
791 struct type *caller_core_addr_type;
792 struct gdbarch *caller_arch;
793
794 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
795 if (dwarf_block == NULL)
796 {
797 struct bound_minimal_symbol msym;
798
799 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
800 throw_error (NO_ENTRY_VALUE_ERROR,
801 _("DW_AT_call_target is not specified at %s in %s"),
802 paddress (call_site_gdbarch, call_site->pc),
803 (msym.minsym == NULL ? "???"
804 : MSYMBOL_PRINT_NAME (msym.minsym)));
805
806 }
807 if (caller_frame == NULL)
808 {
809 struct bound_minimal_symbol msym;
810
811 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
812 throw_error (NO_ENTRY_VALUE_ERROR,
813 _("DW_AT_call_target DWARF block resolving "
814 "requires known frame which is currently not "
815 "available at %s in %s"),
816 paddress (call_site_gdbarch, call_site->pc),
817 (msym.minsym == NULL ? "???"
818 : MSYMBOL_PRINT_NAME (msym.minsym)));
819
820 }
821 caller_arch = get_frame_arch (caller_frame);
822 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
823 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
824 dwarf_block->data, dwarf_block->size,
825 dwarf_block->per_cu);
826 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
827 if (VALUE_LVAL (val) == lval_memory)
828 return value_address (val);
829 else
830 return value_as_address (val);
831 }
832
833 case FIELD_LOC_KIND_PHYSNAME:
834 {
835 const char *physname;
836 struct bound_minimal_symbol msym;
837
838 physname = FIELD_STATIC_PHYSNAME (call_site->target);
839
840 /* Handle both the mangled and demangled PHYSNAME. */
841 msym = lookup_minimal_symbol (physname, NULL, NULL);
842 if (msym.minsym == NULL)
843 {
844 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
845 throw_error (NO_ENTRY_VALUE_ERROR,
846 _("Cannot find function \"%s\" for a call site target "
847 "at %s in %s"),
848 physname, paddress (call_site_gdbarch, call_site->pc),
849 (msym.minsym == NULL ? "???"
850 : MSYMBOL_PRINT_NAME (msym.minsym)));
851
852 }
853 return BMSYMBOL_VALUE_ADDRESS (msym);
854 }
855
856 case FIELD_LOC_KIND_PHYSADDR:
857 return FIELD_STATIC_PHYSADDR (call_site->target);
858
859 default:
860 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
861 }
862 }
863
864 /* Convert function entry point exact address ADDR to the function which is
865 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
866 NO_ENTRY_VALUE_ERROR otherwise. */
867
868 static struct symbol *
869 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
870 {
871 struct symbol *sym = find_pc_function (addr);
872 struct type *type;
873
874 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
875 throw_error (NO_ENTRY_VALUE_ERROR,
876 _("DW_TAG_call_site resolving failed to find function "
877 "name for address %s"),
878 paddress (gdbarch, addr));
879
880 type = SYMBOL_TYPE (sym);
881 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
882 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
883
884 return sym;
885 }
886
887 /* Verify function with entry point exact address ADDR can never call itself
888 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
889 can call itself via tail calls.
890
891 If a funtion can tail call itself its entry value based parameters are
892 unreliable. There is no verification whether the value of some/all
893 parameters is unchanged through the self tail call, we expect if there is
894 a self tail call all the parameters can be modified. */
895
896 static void
897 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
898 {
899 CORE_ADDR addr;
900
901 /* The verification is completely unordered. Track here function addresses
902 which still need to be iterated. */
903 std::vector<CORE_ADDR> todo;
904
905 /* Track here CORE_ADDRs which were already visited. */
906 std::unordered_set<CORE_ADDR> addr_hash;
907
908 todo.push_back (verify_addr);
909 while (!todo.empty ())
910 {
911 struct symbol *func_sym;
912 struct call_site *call_site;
913
914 addr = todo.back ();
915 todo.pop_back ();
916
917 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
918
919 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
920 call_site; call_site = call_site->tail_call_next)
921 {
922 CORE_ADDR target_addr;
923
924 /* CALLER_FRAME with registers is not available for tail-call jumped
925 frames. */
926 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
927
928 if (target_addr == verify_addr)
929 {
930 struct bound_minimal_symbol msym;
931
932 msym = lookup_minimal_symbol_by_pc (verify_addr);
933 throw_error (NO_ENTRY_VALUE_ERROR,
934 _("DW_OP_entry_value resolving has found "
935 "function \"%s\" at %s can call itself via tail "
936 "calls"),
937 (msym.minsym == NULL ? "???"
938 : MSYMBOL_PRINT_NAME (msym.minsym)),
939 paddress (gdbarch, verify_addr));
940 }
941
942 if (addr_hash.insert (target_addr).second)
943 todo.push_back (target_addr);
944 }
945 }
946 }
947
948 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
949 ENTRY_VALUES_DEBUG. */
950
951 static void
952 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
953 {
954 CORE_ADDR addr = call_site->pc;
955 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
956
957 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
958 (msym.minsym == NULL ? "???"
959 : MSYMBOL_PRINT_NAME (msym.minsym)));
960
961 }
962
963 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
964 only top callers and bottom callees which are present in both. GDBARCH is
965 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
966 no remaining possibilities to provide unambiguous non-trivial result.
967 RESULTP should point to NULL on the first (initialization) call. Caller is
968 responsible for xfree of any RESULTP data. */
969
970 static void
971 chain_candidate (struct gdbarch *gdbarch,
972 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
973 std::vector<struct call_site *> *chain)
974 {
975 long length = chain->size ();
976 int callers, callees, idx;
977
978 if (*resultp == NULL)
979 {
980 /* Create the initial chain containing all the passed PCs. */
981
982 struct call_site_chain *result
983 = ((struct call_site_chain *)
984 xmalloc (sizeof (*result)
985 + sizeof (*result->call_site) * (length - 1)));
986 result->length = length;
987 result->callers = result->callees = length;
988 if (!chain->empty ())
989 memcpy (result->call_site, chain->data (),
990 sizeof (*result->call_site) * length);
991 resultp->reset (result);
992
993 if (entry_values_debug)
994 {
995 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
996 for (idx = 0; idx < length; idx++)
997 tailcall_dump (gdbarch, result->call_site[idx]);
998 fputc_unfiltered ('\n', gdb_stdlog);
999 }
1000
1001 return;
1002 }
1003
1004 if (entry_values_debug)
1005 {
1006 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1007 for (idx = 0; idx < length; idx++)
1008 tailcall_dump (gdbarch, chain->at (idx));
1009 fputc_unfiltered ('\n', gdb_stdlog);
1010 }
1011
1012 /* Intersect callers. */
1013
1014 callers = std::min ((long) (*resultp)->callers, length);
1015 for (idx = 0; idx < callers; idx++)
1016 if ((*resultp)->call_site[idx] != chain->at (idx))
1017 {
1018 (*resultp)->callers = idx;
1019 break;
1020 }
1021
1022 /* Intersect callees. */
1023
1024 callees = std::min ((long) (*resultp)->callees, length);
1025 for (idx = 0; idx < callees; idx++)
1026 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1027 != chain->at (length - 1 - idx))
1028 {
1029 (*resultp)->callees = idx;
1030 break;
1031 }
1032
1033 if (entry_values_debug)
1034 {
1035 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
1036 for (idx = 0; idx < (*resultp)->callers; idx++)
1037 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1038 fputs_unfiltered (" |", gdb_stdlog);
1039 for (idx = 0; idx < (*resultp)->callees; idx++)
1040 tailcall_dump (gdbarch,
1041 (*resultp)->call_site[(*resultp)->length
1042 - (*resultp)->callees + idx]);
1043 fputc_unfiltered ('\n', gdb_stdlog);
1044 }
1045
1046 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1047 {
1048 /* There are no common callers or callees. It could be also a direct
1049 call (which has length 0) with ambiguous possibility of an indirect
1050 call - CALLERS == CALLEES == 0 is valid during the first allocation
1051 but any subsequence processing of such entry means ambiguity. */
1052 resultp->reset (NULL);
1053 return;
1054 }
1055
1056 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1057 PC again. In such case there must be two different code paths to reach
1058 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1059 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1060 }
1061
1062 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1063 assumed frames between them use GDBARCH. Use depth first search so we can
1064 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1065 would have needless GDB stack overhead. Caller is responsible for xfree of
1066 the returned result. Any unreliability results in thrown
1067 NO_ENTRY_VALUE_ERROR. */
1068
1069 static struct call_site_chain *
1070 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1071 CORE_ADDR callee_pc)
1072 {
1073 CORE_ADDR save_callee_pc = callee_pc;
1074 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1075 struct call_site *call_site;
1076
1077 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1078 call_site nor any possible call_site at CALLEE_PC's function is there.
1079 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1080 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1081 std::vector<struct call_site *> chain;
1082
1083 /* We are not interested in the specific PC inside the callee function. */
1084 callee_pc = get_pc_function_start (callee_pc);
1085 if (callee_pc == 0)
1086 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1087 paddress (gdbarch, save_callee_pc));
1088
1089 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1090 std::unordered_set<CORE_ADDR> addr_hash;
1091
1092 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1093 at the target's function. All the possible tail call sites in the
1094 target's function will get iterated as already pushed into CHAIN via their
1095 TAIL_CALL_NEXT. */
1096 call_site = call_site_for_pc (gdbarch, caller_pc);
1097
1098 while (call_site)
1099 {
1100 CORE_ADDR target_func_addr;
1101 struct call_site *target_call_site;
1102
1103 /* CALLER_FRAME with registers is not available for tail-call jumped
1104 frames. */
1105 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1106
1107 if (target_func_addr == callee_pc)
1108 {
1109 chain_candidate (gdbarch, &retval, &chain);
1110 if (retval == NULL)
1111 break;
1112
1113 /* There is no way to reach CALLEE_PC again as we would prevent
1114 entering it twice as being already marked in ADDR_HASH. */
1115 target_call_site = NULL;
1116 }
1117 else
1118 {
1119 struct symbol *target_func;
1120
1121 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1122 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1123 }
1124
1125 do
1126 {
1127 /* Attempt to visit TARGET_CALL_SITE. */
1128
1129 if (target_call_site)
1130 {
1131 if (addr_hash.insert (target_call_site->pc).second)
1132 {
1133 /* Successfully entered TARGET_CALL_SITE. */
1134
1135 chain.push_back (target_call_site);
1136 break;
1137 }
1138 }
1139
1140 /* Backtrack (without revisiting the originating call_site). Try the
1141 callers's sibling; if there isn't any try the callers's callers's
1142 sibling etc. */
1143
1144 target_call_site = NULL;
1145 while (!chain.empty ())
1146 {
1147 call_site = chain.back ();
1148 chain.pop_back ();
1149
1150 size_t removed = addr_hash.erase (call_site->pc);
1151 gdb_assert (removed == 1);
1152
1153 target_call_site = call_site->tail_call_next;
1154 if (target_call_site)
1155 break;
1156 }
1157 }
1158 while (target_call_site);
1159
1160 if (chain.empty ())
1161 call_site = NULL;
1162 else
1163 call_site = chain.back ();
1164 }
1165
1166 if (retval == NULL)
1167 {
1168 struct bound_minimal_symbol msym_caller, msym_callee;
1169
1170 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1171 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1172 throw_error (NO_ENTRY_VALUE_ERROR,
1173 _("There are no unambiguously determinable intermediate "
1174 "callers or callees between caller function \"%s\" at %s "
1175 "and callee function \"%s\" at %s"),
1176 (msym_caller.minsym == NULL
1177 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1178 paddress (gdbarch, caller_pc),
1179 (msym_callee.minsym == NULL
1180 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1181 paddress (gdbarch, callee_pc));
1182 }
1183
1184 return retval.release ();
1185 }
1186
1187 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1188 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1189 constructed return NULL. Caller is responsible for xfree of the returned
1190 result. */
1191
1192 struct call_site_chain *
1193 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1194 CORE_ADDR callee_pc)
1195 {
1196 struct call_site_chain *retval = NULL;
1197
1198 TRY
1199 {
1200 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1201 }
1202 CATCH (e, RETURN_MASK_ERROR)
1203 {
1204 if (e.error == NO_ENTRY_VALUE_ERROR)
1205 {
1206 if (entry_values_debug)
1207 exception_print (gdb_stdout, e);
1208
1209 return NULL;
1210 }
1211 else
1212 throw_exception (e);
1213 }
1214 END_CATCH
1215
1216 return retval;
1217 }
1218
1219 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1220
1221 static int
1222 call_site_parameter_matches (struct call_site_parameter *parameter,
1223 enum call_site_parameter_kind kind,
1224 union call_site_parameter_u kind_u)
1225 {
1226 if (kind == parameter->kind)
1227 switch (kind)
1228 {
1229 case CALL_SITE_PARAMETER_DWARF_REG:
1230 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1231 case CALL_SITE_PARAMETER_FB_OFFSET:
1232 return kind_u.fb_offset == parameter->u.fb_offset;
1233 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1234 return kind_u.param_cu_off == parameter->u.param_cu_off;
1235 }
1236 return 0;
1237 }
1238
1239 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1240 FRAME is for callee.
1241
1242 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1243 otherwise. */
1244
1245 static struct call_site_parameter *
1246 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1247 enum call_site_parameter_kind kind,
1248 union call_site_parameter_u kind_u,
1249 struct dwarf2_per_cu_data **per_cu_return)
1250 {
1251 CORE_ADDR func_addr, caller_pc;
1252 struct gdbarch *gdbarch;
1253 struct frame_info *caller_frame;
1254 struct call_site *call_site;
1255 int iparams;
1256 /* Initialize it just to avoid a GCC false warning. */
1257 struct call_site_parameter *parameter = NULL;
1258 CORE_ADDR target_addr;
1259
1260 while (get_frame_type (frame) == INLINE_FRAME)
1261 {
1262 frame = get_prev_frame (frame);
1263 gdb_assert (frame != NULL);
1264 }
1265
1266 func_addr = get_frame_func (frame);
1267 gdbarch = get_frame_arch (frame);
1268 caller_frame = get_prev_frame (frame);
1269 if (gdbarch != frame_unwind_arch (frame))
1270 {
1271 struct bound_minimal_symbol msym
1272 = lookup_minimal_symbol_by_pc (func_addr);
1273 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1274
1275 throw_error (NO_ENTRY_VALUE_ERROR,
1276 _("DW_OP_entry_value resolving callee gdbarch %s "
1277 "(of %s (%s)) does not match caller gdbarch %s"),
1278 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1279 paddress (gdbarch, func_addr),
1280 (msym.minsym == NULL ? "???"
1281 : MSYMBOL_PRINT_NAME (msym.minsym)),
1282 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1283 }
1284
1285 if (caller_frame == NULL)
1286 {
1287 struct bound_minimal_symbol msym
1288 = lookup_minimal_symbol_by_pc (func_addr);
1289
1290 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1291 "requires caller of %s (%s)"),
1292 paddress (gdbarch, func_addr),
1293 (msym.minsym == NULL ? "???"
1294 : MSYMBOL_PRINT_NAME (msym.minsym)));
1295 }
1296 caller_pc = get_frame_pc (caller_frame);
1297 call_site = call_site_for_pc (gdbarch, caller_pc);
1298
1299 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1300 if (target_addr != func_addr)
1301 {
1302 struct minimal_symbol *target_msym, *func_msym;
1303
1304 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1305 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1306 throw_error (NO_ENTRY_VALUE_ERROR,
1307 _("DW_OP_entry_value resolving expects callee %s at %s "
1308 "but the called frame is for %s at %s"),
1309 (target_msym == NULL ? "???"
1310 : MSYMBOL_PRINT_NAME (target_msym)),
1311 paddress (gdbarch, target_addr),
1312 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1313 paddress (gdbarch, func_addr));
1314 }
1315
1316 /* No entry value based parameters would be reliable if this function can
1317 call itself via tail calls. */
1318 func_verify_no_selftailcall (gdbarch, func_addr);
1319
1320 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1321 {
1322 parameter = &call_site->parameter[iparams];
1323 if (call_site_parameter_matches (parameter, kind, kind_u))
1324 break;
1325 }
1326 if (iparams == call_site->parameter_count)
1327 {
1328 struct minimal_symbol *msym
1329 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1330
1331 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1332 determine its value. */
1333 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1334 "at DW_TAG_call_site %s at %s"),
1335 paddress (gdbarch, caller_pc),
1336 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1337 }
1338
1339 *per_cu_return = call_site->per_cu;
1340 return parameter;
1341 }
1342
1343 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1344 the normal DW_AT_call_value block. Otherwise return the
1345 DW_AT_call_data_value (dereferenced) block.
1346
1347 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1348 struct value.
1349
1350 Function always returns non-NULL, non-optimized out value. It throws
1351 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1352
1353 static struct value *
1354 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1355 CORE_ADDR deref_size, struct type *type,
1356 struct frame_info *caller_frame,
1357 struct dwarf2_per_cu_data *per_cu)
1358 {
1359 const gdb_byte *data_src;
1360 gdb_byte *data;
1361 size_t size;
1362
1363 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1364 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1365
1366 /* DEREF_SIZE size is not verified here. */
1367 if (data_src == NULL)
1368 throw_error (NO_ENTRY_VALUE_ERROR,
1369 _("Cannot resolve DW_AT_call_data_value"));
1370
1371 /* DW_AT_call_value is a DWARF expression, not a DWARF
1372 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1373 DWARF block. */
1374 data = (gdb_byte *) alloca (size + 1);
1375 memcpy (data, data_src, size);
1376 data[size] = DW_OP_stack_value;
1377
1378 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1379 }
1380
1381 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1382 the indirect method on it, that is use its stored target value, the sole
1383 purpose of entry_data_value_funcs.. */
1384
1385 static struct value *
1386 entry_data_value_coerce_ref (const struct value *value)
1387 {
1388 struct type *checked_type = check_typedef (value_type (value));
1389 struct value *target_val;
1390
1391 if (!TYPE_IS_REFERENCE (checked_type))
1392 return NULL;
1393
1394 target_val = (struct value *) value_computed_closure (value);
1395 value_incref (target_val);
1396 return target_val;
1397 }
1398
1399 /* Implement copy_closure. */
1400
1401 static void *
1402 entry_data_value_copy_closure (const struct value *v)
1403 {
1404 struct value *target_val = (struct value *) value_computed_closure (v);
1405
1406 value_incref (target_val);
1407 return target_val;
1408 }
1409
1410 /* Implement free_closure. */
1411
1412 static void
1413 entry_data_value_free_closure (struct value *v)
1414 {
1415 struct value *target_val = (struct value *) value_computed_closure (v);
1416
1417 value_decref (target_val);
1418 }
1419
1420 /* Vector for methods for an entry value reference where the referenced value
1421 is stored in the caller. On the first dereference use
1422 DW_AT_call_data_value in the caller. */
1423
1424 static const struct lval_funcs entry_data_value_funcs =
1425 {
1426 NULL, /* read */
1427 NULL, /* write */
1428 NULL, /* indirect */
1429 entry_data_value_coerce_ref,
1430 NULL, /* check_synthetic_pointer */
1431 entry_data_value_copy_closure,
1432 entry_data_value_free_closure
1433 };
1434
1435 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1436 are used to match DW_AT_location at the caller's
1437 DW_TAG_call_site_parameter.
1438
1439 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1440 cannot resolve the parameter for any reason. */
1441
1442 static struct value *
1443 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1444 enum call_site_parameter_kind kind,
1445 union call_site_parameter_u kind_u)
1446 {
1447 struct type *checked_type = check_typedef (type);
1448 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1449 struct frame_info *caller_frame = get_prev_frame (frame);
1450 struct value *outer_val, *target_val, *val;
1451 struct call_site_parameter *parameter;
1452 struct dwarf2_per_cu_data *caller_per_cu;
1453
1454 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1455 &caller_per_cu);
1456
1457 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1458 type, caller_frame,
1459 caller_per_cu);
1460
1461 /* Check if DW_AT_call_data_value cannot be used. If it should be
1462 used and it is not available do not fall back to OUTER_VAL - dereferencing
1463 TYPE_CODE_REF with non-entry data value would give current value - not the
1464 entry value. */
1465
1466 if (!TYPE_IS_REFERENCE (checked_type)
1467 || TYPE_TARGET_TYPE (checked_type) == NULL)
1468 return outer_val;
1469
1470 target_val = dwarf_entry_parameter_to_value (parameter,
1471 TYPE_LENGTH (target_type),
1472 target_type, caller_frame,
1473 caller_per_cu);
1474
1475 release_value (target_val).release ();
1476 val = allocate_computed_value (type, &entry_data_value_funcs,
1477 target_val /* closure */);
1478
1479 /* Copy the referencing pointer to the new computed value. */
1480 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1481 TYPE_LENGTH (checked_type));
1482 set_value_lazy (val, 0);
1483
1484 return val;
1485 }
1486
1487 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1488 SIZE are DWARF block used to match DW_AT_location at the caller's
1489 DW_TAG_call_site_parameter.
1490
1491 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1492 cannot resolve the parameter for any reason. */
1493
1494 static struct value *
1495 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1496 const gdb_byte *block, size_t block_len)
1497 {
1498 union call_site_parameter_u kind_u;
1499
1500 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1501 if (kind_u.dwarf_reg != -1)
1502 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1503 kind_u);
1504
1505 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1506 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1507 kind_u);
1508
1509 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1510 suppressed during normal operation. The expression can be arbitrary if
1511 there is no caller-callee entry value binding expected. */
1512 throw_error (NO_ENTRY_VALUE_ERROR,
1513 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1514 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1515 }
1516
1517 struct piece_closure
1518 {
1519 /* Reference count. */
1520 int refc = 0;
1521
1522 /* The CU from which this closure's expression came. */
1523 struct dwarf2_per_cu_data *per_cu = NULL;
1524
1525 /* The pieces describing this variable. */
1526 std::vector<dwarf_expr_piece> pieces;
1527
1528 /* Frame ID of frame to which a register value is relative, used
1529 only by DWARF_VALUE_REGISTER. */
1530 struct frame_id frame_id;
1531 };
1532
1533 /* Allocate a closure for a value formed from separately-described
1534 PIECES. */
1535
1536 static struct piece_closure *
1537 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1538 std::vector<dwarf_expr_piece> &&pieces,
1539 struct frame_info *frame)
1540 {
1541 struct piece_closure *c = new piece_closure;
1542
1543 c->refc = 1;
1544 c->per_cu = per_cu;
1545 c->pieces = std::move (pieces);
1546 if (frame == NULL)
1547 c->frame_id = null_frame_id;
1548 else
1549 c->frame_id = get_frame_id (frame);
1550
1551 for (dwarf_expr_piece &piece : c->pieces)
1552 if (piece.location == DWARF_VALUE_STACK)
1553 value_incref (piece.v.value);
1554
1555 return c;
1556 }
1557
1558 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1559 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1560 Source and destination buffers must not overlap. */
1561
1562 static void
1563 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1564 const gdb_byte *source, ULONGEST source_offset,
1565 ULONGEST nbits, int bits_big_endian)
1566 {
1567 unsigned int buf, avail;
1568
1569 if (nbits == 0)
1570 return;
1571
1572 if (bits_big_endian)
1573 {
1574 /* Start from the end, then work backwards. */
1575 dest_offset += nbits - 1;
1576 dest += dest_offset / 8;
1577 dest_offset = 7 - dest_offset % 8;
1578 source_offset += nbits - 1;
1579 source += source_offset / 8;
1580 source_offset = 7 - source_offset % 8;
1581 }
1582 else
1583 {
1584 dest += dest_offset / 8;
1585 dest_offset %= 8;
1586 source += source_offset / 8;
1587 source_offset %= 8;
1588 }
1589
1590 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1591 SOURCE_OFFSET bits from the source. */
1592 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1593 buf <<= dest_offset;
1594 buf |= *dest & ((1 << dest_offset) - 1);
1595
1596 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1597 nbits += dest_offset;
1598 avail = dest_offset + 8 - source_offset;
1599
1600 /* Flush 8 bits from BUF, if appropriate. */
1601 if (nbits >= 8 && avail >= 8)
1602 {
1603 *(bits_big_endian ? dest-- : dest++) = buf;
1604 buf >>= 8;
1605 avail -= 8;
1606 nbits -= 8;
1607 }
1608
1609 /* Copy the middle part. */
1610 if (nbits >= 8)
1611 {
1612 size_t len = nbits / 8;
1613
1614 /* Use a faster method for byte-aligned copies. */
1615 if (avail == 0)
1616 {
1617 if (bits_big_endian)
1618 {
1619 dest -= len;
1620 source -= len;
1621 memcpy (dest + 1, source + 1, len);
1622 }
1623 else
1624 {
1625 memcpy (dest, source, len);
1626 dest += len;
1627 source += len;
1628 }
1629 }
1630 else
1631 {
1632 while (len--)
1633 {
1634 buf |= *(bits_big_endian ? source-- : source++) << avail;
1635 *(bits_big_endian ? dest-- : dest++) = buf;
1636 buf >>= 8;
1637 }
1638 }
1639 nbits %= 8;
1640 }
1641
1642 /* Write the last byte. */
1643 if (nbits)
1644 {
1645 if (avail < nbits)
1646 buf |= *source << avail;
1647
1648 buf &= (1 << nbits) - 1;
1649 *dest = (*dest & (~0 << nbits)) | buf;
1650 }
1651 }
1652
1653 #if GDB_SELF_TEST
1654
1655 namespace selftests {
1656
1657 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1658 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1659 specifies whether to assume big endian bit numbering. Store the
1660 resulting (not null-terminated) string at STR. */
1661
1662 static void
1663 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1664 ULONGEST nbits, int msb0)
1665 {
1666 unsigned int j;
1667 size_t i;
1668
1669 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1670 {
1671 unsigned int ch = bits[i];
1672 for (; j < 8 && nbits; j++, nbits--)
1673 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1674 }
1675 }
1676
1677 /* Check one invocation of copy_bitwise with the given parameters. */
1678
1679 static void
1680 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1681 const gdb_byte *source, unsigned int source_offset,
1682 unsigned int nbits, int msb0)
1683 {
1684 size_t len = align_up (dest_offset + nbits, 8);
1685 char *expected = (char *) alloca (len + 1);
1686 char *actual = (char *) alloca (len + 1);
1687 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1688
1689 /* Compose a '0'/'1'-string that represents the expected result of
1690 copy_bitwise below:
1691 Bits from [0, DEST_OFFSET) are filled from DEST.
1692 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1693 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1694
1695 E.g., with:
1696 dest_offset: 4
1697 nbits: 2
1698 len: 8
1699 dest: 00000000
1700 source: 11111111
1701
1702 We should end up with:
1703 buf: 00001100
1704 DDDDSSDD (D=dest, S=source)
1705 */
1706 bits_to_str (expected, dest, 0, len, msb0);
1707 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1708
1709 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1710 result to a '0'/'1'-string. */
1711 memcpy (buf, dest, len / 8);
1712 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1713 bits_to_str (actual, buf, 0, len, msb0);
1714
1715 /* Compare the resulting strings. */
1716 expected[len] = actual[len] = '\0';
1717 if (strcmp (expected, actual) != 0)
1718 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1719 expected, actual, source_offset, nbits, dest_offset);
1720 }
1721
1722 /* Unit test for copy_bitwise. */
1723
1724 static void
1725 copy_bitwise_tests (void)
1726 {
1727 /* Data to be used as both source and destination buffers. The two
1728 arrays below represent the lsb0- and msb0- encoded versions of the
1729 following bit string, respectively:
1730 00000000 00011111 11111111 01001000 10100101 11110010
1731 This pattern is chosen such that it contains:
1732 - constant 0- and 1- chunks of more than a full byte;
1733 - 0/1- and 1/0 transitions on all bit positions within a byte;
1734 - several sufficiently asymmetric bytes.
1735 */
1736 static const gdb_byte data_lsb0[] = {
1737 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1738 };
1739 static const gdb_byte data_msb0[] = {
1740 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1741 };
1742
1743 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1744 constexpr unsigned max_nbits = 24;
1745
1746 /* Try all combinations of:
1747 lsb0/msb0 bit order (using the respective data array)
1748 X [0, MAX_NBITS] copy bit width
1749 X feasible source offsets for the given copy bit width
1750 X feasible destination offsets
1751 */
1752 for (int msb0 = 0; msb0 < 2; msb0++)
1753 {
1754 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1755
1756 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1757 {
1758 const unsigned int max_offset = data_nbits - nbits;
1759
1760 for (unsigned source_offset = 0;
1761 source_offset <= max_offset;
1762 source_offset++)
1763 {
1764 for (unsigned dest_offset = 0;
1765 dest_offset <= max_offset;
1766 dest_offset++)
1767 {
1768 check_copy_bitwise (data + dest_offset / 8,
1769 dest_offset % 8,
1770 data + source_offset / 8,
1771 source_offset % 8,
1772 nbits, msb0);
1773 }
1774 }
1775 }
1776
1777 /* Special cases: copy all, copy nothing. */
1778 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1779 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1780 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1781 }
1782 }
1783
1784 } /* namespace selftests */
1785
1786 #endif /* GDB_SELF_TEST */
1787
1788 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1789 bits whose first bit is located at bit offset START. */
1790
1791 static size_t
1792 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1793 {
1794 return (start % 8 + n_bits + 7) / 8;
1795 }
1796
1797 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1798 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1799 operate in "read mode": fetch the contents of the (lazy) value V by
1800 composing it from its pieces. */
1801
1802 static void
1803 rw_pieced_value (struct value *v, struct value *from)
1804 {
1805 int i;
1806 LONGEST offset = 0, max_offset;
1807 ULONGEST bits_to_skip;
1808 gdb_byte *v_contents;
1809 const gdb_byte *from_contents;
1810 struct piece_closure *c
1811 = (struct piece_closure *) value_computed_closure (v);
1812 gdb::byte_vector buffer;
1813 int bits_big_endian
1814 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1815
1816 if (from != NULL)
1817 {
1818 from_contents = value_contents (from);
1819 v_contents = NULL;
1820 }
1821 else
1822 {
1823 if (value_type (v) != value_enclosing_type (v))
1824 internal_error (__FILE__, __LINE__,
1825 _("Should not be able to create a lazy value with "
1826 "an enclosing type"));
1827 v_contents = value_contents_raw (v);
1828 from_contents = NULL;
1829 }
1830
1831 bits_to_skip = 8 * value_offset (v);
1832 if (value_bitsize (v))
1833 {
1834 bits_to_skip += (8 * value_offset (value_parent (v))
1835 + value_bitpos (v));
1836 if (from != NULL
1837 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1838 == BFD_ENDIAN_BIG))
1839 {
1840 /* Use the least significant bits of FROM. */
1841 max_offset = 8 * TYPE_LENGTH (value_type (from));
1842 offset = max_offset - value_bitsize (v);
1843 }
1844 else
1845 max_offset = value_bitsize (v);
1846 }
1847 else
1848 max_offset = 8 * TYPE_LENGTH (value_type (v));
1849
1850 /* Advance to the first non-skipped piece. */
1851 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1852 bits_to_skip -= c->pieces[i].size;
1853
1854 for (; i < c->pieces.size () && offset < max_offset; i++)
1855 {
1856 struct dwarf_expr_piece *p = &c->pieces[i];
1857 size_t this_size_bits, this_size;
1858
1859 this_size_bits = p->size - bits_to_skip;
1860 if (this_size_bits > max_offset - offset)
1861 this_size_bits = max_offset - offset;
1862
1863 switch (p->location)
1864 {
1865 case DWARF_VALUE_REGISTER:
1866 {
1867 struct frame_info *frame = frame_find_by_id (c->frame_id);
1868 struct gdbarch *arch = get_frame_arch (frame);
1869 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1870 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1871 int optim, unavail;
1872
1873 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1874 && p->offset + p->size < reg_bits)
1875 {
1876 /* Big-endian, and we want less than full size. */
1877 bits_to_skip += reg_bits - (p->offset + p->size);
1878 }
1879 else
1880 bits_to_skip += p->offset;
1881
1882 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1883 buffer.resize (this_size);
1884
1885 if (from == NULL)
1886 {
1887 /* Read mode. */
1888 if (!get_frame_register_bytes (frame, gdb_regnum,
1889 bits_to_skip / 8,
1890 this_size, buffer.data (),
1891 &optim, &unavail))
1892 {
1893 if (optim)
1894 mark_value_bits_optimized_out (v, offset,
1895 this_size_bits);
1896 if (unavail)
1897 mark_value_bits_unavailable (v, offset,
1898 this_size_bits);
1899 break;
1900 }
1901
1902 copy_bitwise (v_contents, offset,
1903 buffer.data (), bits_to_skip % 8,
1904 this_size_bits, bits_big_endian);
1905 }
1906 else
1907 {
1908 /* Write mode. */
1909 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1910 {
1911 /* Data is copied non-byte-aligned into the register.
1912 Need some bits from original register value. */
1913 get_frame_register_bytes (frame, gdb_regnum,
1914 bits_to_skip / 8,
1915 this_size, buffer.data (),
1916 &optim, &unavail);
1917 if (optim)
1918 throw_error (OPTIMIZED_OUT_ERROR,
1919 _("Can't do read-modify-write to "
1920 "update bitfield; containing word "
1921 "has been optimized out"));
1922 if (unavail)
1923 throw_error (NOT_AVAILABLE_ERROR,
1924 _("Can't do read-modify-write to "
1925 "update bitfield; containing word "
1926 "is unavailable"));
1927 }
1928
1929 copy_bitwise (buffer.data (), bits_to_skip % 8,
1930 from_contents, offset,
1931 this_size_bits, bits_big_endian);
1932 put_frame_register_bytes (frame, gdb_regnum,
1933 bits_to_skip / 8,
1934 this_size, buffer.data ());
1935 }
1936 }
1937 break;
1938
1939 case DWARF_VALUE_MEMORY:
1940 {
1941 bits_to_skip += p->offset;
1942
1943 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1944
1945 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1946 && offset % 8 == 0)
1947 {
1948 /* Everything is byte-aligned; no buffer needed. */
1949 if (from != NULL)
1950 write_memory_with_notification (start_addr,
1951 (from_contents
1952 + offset / 8),
1953 this_size_bits / 8);
1954 else
1955 read_value_memory (v, offset,
1956 p->v.mem.in_stack_memory,
1957 p->v.mem.addr + bits_to_skip / 8,
1958 v_contents + offset / 8,
1959 this_size_bits / 8);
1960 break;
1961 }
1962
1963 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1964 buffer.resize (this_size);
1965
1966 if (from == NULL)
1967 {
1968 /* Read mode. */
1969 read_value_memory (v, offset,
1970 p->v.mem.in_stack_memory,
1971 p->v.mem.addr + bits_to_skip / 8,
1972 buffer.data (), this_size);
1973 copy_bitwise (v_contents, offset,
1974 buffer.data (), bits_to_skip % 8,
1975 this_size_bits, bits_big_endian);
1976 }
1977 else
1978 {
1979 /* Write mode. */
1980 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1981 {
1982 if (this_size <= 8)
1983 {
1984 /* Perform a single read for small sizes. */
1985 read_memory (start_addr, buffer.data (),
1986 this_size);
1987 }
1988 else
1989 {
1990 /* Only the first and last bytes can possibly have
1991 any bits reused. */
1992 read_memory (start_addr, buffer.data (), 1);
1993 read_memory (start_addr + this_size - 1,
1994 &buffer[this_size - 1], 1);
1995 }
1996 }
1997
1998 copy_bitwise (buffer.data (), bits_to_skip % 8,
1999 from_contents, offset,
2000 this_size_bits, bits_big_endian);
2001 write_memory_with_notification (start_addr,
2002 buffer.data (),
2003 this_size);
2004 }
2005 }
2006 break;
2007
2008 case DWARF_VALUE_STACK:
2009 {
2010 if (from != NULL)
2011 {
2012 mark_value_bits_optimized_out (v, offset, this_size_bits);
2013 break;
2014 }
2015
2016 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
2017 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2018 ULONGEST stack_value_size_bits
2019 = 8 * TYPE_LENGTH (value_type (p->v.value));
2020
2021 /* Use zeroes if piece reaches beyond stack value. */
2022 if (p->offset + p->size > stack_value_size_bits)
2023 break;
2024
2025 /* Piece is anchored at least significant bit end. */
2026 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2027 bits_to_skip += stack_value_size_bits - p->offset - p->size;
2028 else
2029 bits_to_skip += p->offset;
2030
2031 copy_bitwise (v_contents, offset,
2032 value_contents_all (p->v.value),
2033 bits_to_skip,
2034 this_size_bits, bits_big_endian);
2035 }
2036 break;
2037
2038 case DWARF_VALUE_LITERAL:
2039 {
2040 if (from != NULL)
2041 {
2042 mark_value_bits_optimized_out (v, offset, this_size_bits);
2043 break;
2044 }
2045
2046 ULONGEST literal_size_bits = 8 * p->v.literal.length;
2047 size_t n = this_size_bits;
2048
2049 /* Cut off at the end of the implicit value. */
2050 bits_to_skip += p->offset;
2051 if (bits_to_skip >= literal_size_bits)
2052 break;
2053 if (n > literal_size_bits - bits_to_skip)
2054 n = literal_size_bits - bits_to_skip;
2055
2056 copy_bitwise (v_contents, offset,
2057 p->v.literal.data, bits_to_skip,
2058 n, bits_big_endian);
2059 }
2060 break;
2061
2062 case DWARF_VALUE_IMPLICIT_POINTER:
2063 if (from != NULL)
2064 {
2065 mark_value_bits_optimized_out (v, offset, this_size_bits);
2066 break;
2067 }
2068
2069 /* These bits show up as zeros -- but do not cause the value to
2070 be considered optimized-out. */
2071 break;
2072
2073 case DWARF_VALUE_OPTIMIZED_OUT:
2074 mark_value_bits_optimized_out (v, offset, this_size_bits);
2075 break;
2076
2077 default:
2078 internal_error (__FILE__, __LINE__, _("invalid location type"));
2079 }
2080
2081 offset += this_size_bits;
2082 bits_to_skip = 0;
2083 }
2084 }
2085
2086
2087 static void
2088 read_pieced_value (struct value *v)
2089 {
2090 rw_pieced_value (v, NULL);
2091 }
2092
2093 static void
2094 write_pieced_value (struct value *to, struct value *from)
2095 {
2096 rw_pieced_value (to, from);
2097 }
2098
2099 /* An implementation of an lval_funcs method to see whether a value is
2100 a synthetic pointer. */
2101
2102 static int
2103 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2104 int bit_length)
2105 {
2106 struct piece_closure *c
2107 = (struct piece_closure *) value_computed_closure (value);
2108 int i;
2109
2110 bit_offset += 8 * value_offset (value);
2111 if (value_bitsize (value))
2112 bit_offset += value_bitpos (value);
2113
2114 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2115 {
2116 struct dwarf_expr_piece *p = &c->pieces[i];
2117 size_t this_size_bits = p->size;
2118
2119 if (bit_offset > 0)
2120 {
2121 if (bit_offset >= this_size_bits)
2122 {
2123 bit_offset -= this_size_bits;
2124 continue;
2125 }
2126
2127 bit_length -= this_size_bits - bit_offset;
2128 bit_offset = 0;
2129 }
2130 else
2131 bit_length -= this_size_bits;
2132
2133 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2134 return 0;
2135 }
2136
2137 return 1;
2138 }
2139
2140 /* A wrapper function for get_frame_address_in_block. */
2141
2142 static CORE_ADDR
2143 get_frame_address_in_block_wrapper (void *baton)
2144 {
2145 return get_frame_address_in_block ((struct frame_info *) baton);
2146 }
2147
2148 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2149
2150 static struct value *
2151 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2152 struct dwarf2_per_cu_data *per_cu,
2153 struct type *type)
2154 {
2155 struct value *result = NULL;
2156 const gdb_byte *bytes;
2157 LONGEST len;
2158
2159 auto_obstack temp_obstack;
2160 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2161
2162 if (bytes != NULL)
2163 {
2164 if (byte_offset >= 0
2165 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2166 {
2167 bytes += byte_offset;
2168 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2169 }
2170 else
2171 invalid_synthetic_pointer ();
2172 }
2173 else
2174 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2175
2176 return result;
2177 }
2178
2179 /* Fetch the value pointed to by a synthetic pointer. */
2180
2181 static struct value *
2182 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2183 struct dwarf2_per_cu_data *per_cu,
2184 struct frame_info *frame, struct type *type)
2185 {
2186 /* Fetch the location expression of the DIE we're pointing to. */
2187 struct dwarf2_locexpr_baton baton
2188 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2189 get_frame_address_in_block_wrapper, frame);
2190
2191 /* Get type of pointed-to DIE. */
2192 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2193 if (orig_type == NULL)
2194 invalid_synthetic_pointer ();
2195
2196 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2197 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2198 or it may've been optimized out. */
2199 if (baton.data != NULL)
2200 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2201 baton.size, baton.per_cu,
2202 TYPE_TARGET_TYPE (type),
2203 byte_offset);
2204 else
2205 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2206 type);
2207 }
2208
2209 /* An implementation of an lval_funcs method to indirect through a
2210 pointer. This handles the synthetic pointer case when needed. */
2211
2212 static struct value *
2213 indirect_pieced_value (struct value *value)
2214 {
2215 struct piece_closure *c
2216 = (struct piece_closure *) value_computed_closure (value);
2217 struct type *type;
2218 struct frame_info *frame;
2219 int i, bit_length;
2220 LONGEST bit_offset;
2221 struct dwarf_expr_piece *piece = NULL;
2222 LONGEST byte_offset;
2223 enum bfd_endian byte_order;
2224
2225 type = check_typedef (value_type (value));
2226 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2227 return NULL;
2228
2229 bit_length = 8 * TYPE_LENGTH (type);
2230 bit_offset = 8 * value_offset (value);
2231 if (value_bitsize (value))
2232 bit_offset += value_bitpos (value);
2233
2234 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2235 {
2236 struct dwarf_expr_piece *p = &c->pieces[i];
2237 size_t this_size_bits = p->size;
2238
2239 if (bit_offset > 0)
2240 {
2241 if (bit_offset >= this_size_bits)
2242 {
2243 bit_offset -= this_size_bits;
2244 continue;
2245 }
2246
2247 bit_length -= this_size_bits - bit_offset;
2248 bit_offset = 0;
2249 }
2250 else
2251 bit_length -= this_size_bits;
2252
2253 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2254 return NULL;
2255
2256 if (bit_length != 0)
2257 error (_("Invalid use of DW_OP_implicit_pointer"));
2258
2259 piece = p;
2260 break;
2261 }
2262
2263 gdb_assert (piece != NULL);
2264 frame = get_selected_frame (_("No frame selected."));
2265
2266 /* This is an offset requested by GDB, such as value subscripts.
2267 However, due to how synthetic pointers are implemented, this is
2268 always presented to us as a pointer type. This means we have to
2269 sign-extend it manually as appropriate. Use raw
2270 extract_signed_integer directly rather than value_as_address and
2271 sign extend afterwards on architectures that would need it
2272 (mostly everywhere except MIPS, which has signed addresses) as
2273 the later would go through gdbarch_pointer_to_address and thus
2274 return a CORE_ADDR with high bits set on architectures that
2275 encode address spaces and other things in CORE_ADDR. */
2276 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2277 byte_offset = extract_signed_integer (value_contents (value),
2278 TYPE_LENGTH (type), byte_order);
2279 byte_offset += piece->v.ptr.offset;
2280
2281 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2282 byte_offset, c->per_cu,
2283 frame, type);
2284 }
2285
2286 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2287 references. */
2288
2289 static struct value *
2290 coerce_pieced_ref (const struct value *value)
2291 {
2292 struct type *type = check_typedef (value_type (value));
2293
2294 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2295 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2296 {
2297 const struct piece_closure *closure
2298 = (struct piece_closure *) value_computed_closure (value);
2299 struct frame_info *frame
2300 = get_selected_frame (_("No frame selected."));
2301
2302 /* gdb represents synthetic pointers as pieced values with a single
2303 piece. */
2304 gdb_assert (closure != NULL);
2305 gdb_assert (closure->pieces.size () == 1);
2306
2307 return indirect_synthetic_pointer
2308 (closure->pieces[0].v.ptr.die_sect_off,
2309 closure->pieces[0].v.ptr.offset,
2310 closure->per_cu, frame, type);
2311 }
2312 else
2313 {
2314 /* Else: not a synthetic reference; do nothing. */
2315 return NULL;
2316 }
2317 }
2318
2319 static void *
2320 copy_pieced_value_closure (const struct value *v)
2321 {
2322 struct piece_closure *c
2323 = (struct piece_closure *) value_computed_closure (v);
2324
2325 ++c->refc;
2326 return c;
2327 }
2328
2329 static void
2330 free_pieced_value_closure (struct value *v)
2331 {
2332 struct piece_closure *c
2333 = (struct piece_closure *) value_computed_closure (v);
2334
2335 --c->refc;
2336 if (c->refc == 0)
2337 {
2338 for (dwarf_expr_piece &p : c->pieces)
2339 if (p.location == DWARF_VALUE_STACK)
2340 value_decref (p.v.value);
2341
2342 delete c;
2343 }
2344 }
2345
2346 /* Functions for accessing a variable described by DW_OP_piece. */
2347 static const struct lval_funcs pieced_value_funcs = {
2348 read_pieced_value,
2349 write_pieced_value,
2350 indirect_pieced_value,
2351 coerce_pieced_ref,
2352 check_pieced_synthetic_pointer,
2353 copy_pieced_value_closure,
2354 free_pieced_value_closure
2355 };
2356
2357 /* Evaluate a location description, starting at DATA and with length
2358 SIZE, to find the current location of variable of TYPE in the
2359 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2360 location of the subobject of type SUBOBJ_TYPE at byte offset
2361 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2362
2363 static struct value *
2364 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2365 const gdb_byte *data, size_t size,
2366 struct dwarf2_per_cu_data *per_cu,
2367 struct type *subobj_type,
2368 LONGEST subobj_byte_offset)
2369 {
2370 struct value *retval;
2371 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2372
2373 if (subobj_type == NULL)
2374 {
2375 subobj_type = type;
2376 subobj_byte_offset = 0;
2377 }
2378 else if (subobj_byte_offset < 0)
2379 invalid_synthetic_pointer ();
2380
2381 if (size == 0)
2382 return allocate_optimized_out_value (subobj_type);
2383
2384 dwarf_evaluate_loc_desc ctx;
2385 ctx.frame = frame;
2386 ctx.per_cu = per_cu;
2387 ctx.obj_address = 0;
2388
2389 scoped_value_mark free_values;
2390
2391 ctx.gdbarch = get_objfile_arch (objfile);
2392 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2393 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2394 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2395
2396 TRY
2397 {
2398 ctx.eval (data, size);
2399 }
2400 CATCH (ex, RETURN_MASK_ERROR)
2401 {
2402 if (ex.error == NOT_AVAILABLE_ERROR)
2403 {
2404 free_values.free_to_mark ();
2405 retval = allocate_value (subobj_type);
2406 mark_value_bytes_unavailable (retval, 0,
2407 TYPE_LENGTH (subobj_type));
2408 return retval;
2409 }
2410 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2411 {
2412 if (entry_values_debug)
2413 exception_print (gdb_stdout, ex);
2414 free_values.free_to_mark ();
2415 return allocate_optimized_out_value (subobj_type);
2416 }
2417 else
2418 throw_exception (ex);
2419 }
2420 END_CATCH
2421
2422 if (ctx.pieces.size () > 0)
2423 {
2424 struct piece_closure *c;
2425 ULONGEST bit_size = 0;
2426
2427 for (dwarf_expr_piece &piece : ctx.pieces)
2428 bit_size += piece.size;
2429 /* Complain if the expression is larger than the size of the
2430 outer type. */
2431 if (bit_size > 8 * TYPE_LENGTH (type))
2432 invalid_synthetic_pointer ();
2433
2434 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2435 /* We must clean up the value chain after creating the piece
2436 closure but before allocating the result. */
2437 free_values.free_to_mark ();
2438 retval = allocate_computed_value (subobj_type,
2439 &pieced_value_funcs, c);
2440 set_value_offset (retval, subobj_byte_offset);
2441 }
2442 else
2443 {
2444 switch (ctx.location)
2445 {
2446 case DWARF_VALUE_REGISTER:
2447 {
2448 struct gdbarch *arch = get_frame_arch (frame);
2449 int dwarf_regnum
2450 = longest_to_int (value_as_long (ctx.fetch (0)));
2451 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2452
2453 if (subobj_byte_offset != 0)
2454 error (_("cannot use offset on synthetic pointer to register"));
2455 free_values.free_to_mark ();
2456 retval = value_from_register (subobj_type, gdb_regnum, frame);
2457 if (value_optimized_out (retval))
2458 {
2459 struct value *tmp;
2460
2461 /* This means the register has undefined value / was
2462 not saved. As we're computing the location of some
2463 variable etc. in the program, not a value for
2464 inspecting a register ($pc, $sp, etc.), return a
2465 generic optimized out value instead, so that we show
2466 <optimized out> instead of <not saved>. */
2467 tmp = allocate_value (subobj_type);
2468 value_contents_copy (tmp, 0, retval, 0,
2469 TYPE_LENGTH (subobj_type));
2470 retval = tmp;
2471 }
2472 }
2473 break;
2474
2475 case DWARF_VALUE_MEMORY:
2476 {
2477 struct type *ptr_type;
2478 CORE_ADDR address = ctx.fetch_address (0);
2479 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2480
2481 /* DW_OP_deref_size (and possibly other operations too) may
2482 create a pointer instead of an address. Ideally, the
2483 pointer to address conversion would be performed as part
2484 of those operations, but the type of the object to
2485 which the address refers is not known at the time of
2486 the operation. Therefore, we do the conversion here
2487 since the type is readily available. */
2488
2489 switch (TYPE_CODE (subobj_type))
2490 {
2491 case TYPE_CODE_FUNC:
2492 case TYPE_CODE_METHOD:
2493 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2494 break;
2495 default:
2496 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2497 break;
2498 }
2499 address = value_as_address (value_from_pointer (ptr_type, address));
2500
2501 free_values.free_to_mark ();
2502 retval = value_at_lazy (subobj_type,
2503 address + subobj_byte_offset);
2504 if (in_stack_memory)
2505 set_value_stack (retval, 1);
2506 }
2507 break;
2508
2509 case DWARF_VALUE_STACK:
2510 {
2511 struct value *value = ctx.fetch (0);
2512 size_t n = TYPE_LENGTH (value_type (value));
2513 size_t len = TYPE_LENGTH (subobj_type);
2514 size_t max = TYPE_LENGTH (type);
2515 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2516
2517 if (subobj_byte_offset + len > max)
2518 invalid_synthetic_pointer ();
2519
2520 /* Preserve VALUE because we are going to free values back
2521 to the mark, but we still need the value contents
2522 below. */
2523 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
2524 free_values.free_to_mark ();
2525
2526 retval = allocate_value (subobj_type);
2527
2528 /* The given offset is relative to the actual object. */
2529 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2530 subobj_byte_offset += n - max;
2531
2532 memcpy (value_contents_raw (retval),
2533 value_contents_all (value) + subobj_byte_offset, len);
2534 }
2535 break;
2536
2537 case DWARF_VALUE_LITERAL:
2538 {
2539 bfd_byte *contents;
2540 size_t n = TYPE_LENGTH (subobj_type);
2541
2542 if (subobj_byte_offset + n > ctx.len)
2543 invalid_synthetic_pointer ();
2544
2545 free_values.free_to_mark ();
2546 retval = allocate_value (subobj_type);
2547 contents = value_contents_raw (retval);
2548 memcpy (contents, ctx.data + subobj_byte_offset, n);
2549 }
2550 break;
2551
2552 case DWARF_VALUE_OPTIMIZED_OUT:
2553 free_values.free_to_mark ();
2554 retval = allocate_optimized_out_value (subobj_type);
2555 break;
2556
2557 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2558 operation by execute_stack_op. */
2559 case DWARF_VALUE_IMPLICIT_POINTER:
2560 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2561 it can only be encountered when making a piece. */
2562 default:
2563 internal_error (__FILE__, __LINE__, _("invalid location type"));
2564 }
2565 }
2566
2567 set_value_initialized (retval, ctx.initialized);
2568
2569 return retval;
2570 }
2571
2572 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2573 passes 0 as the byte_offset. */
2574
2575 struct value *
2576 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2577 const gdb_byte *data, size_t size,
2578 struct dwarf2_per_cu_data *per_cu)
2579 {
2580 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2581 NULL, 0);
2582 }
2583
2584 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2585 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2586 frame in which the expression is evaluated. ADDR is a context (location of
2587 a variable) and might be needed to evaluate the location expression.
2588 Returns 1 on success, 0 otherwise. */
2589
2590 static int
2591 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2592 struct frame_info *frame,
2593 CORE_ADDR addr,
2594 CORE_ADDR *valp)
2595 {
2596 struct objfile *objfile;
2597
2598 if (dlbaton == NULL || dlbaton->size == 0)
2599 return 0;
2600
2601 dwarf_evaluate_loc_desc ctx;
2602
2603 ctx.frame = frame;
2604 ctx.per_cu = dlbaton->per_cu;
2605 ctx.obj_address = addr;
2606
2607 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2608
2609 ctx.gdbarch = get_objfile_arch (objfile);
2610 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2611 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2612 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2613
2614 TRY
2615 {
2616 ctx.eval (dlbaton->data, dlbaton->size);
2617 }
2618 CATCH (ex, RETURN_MASK_ERROR)
2619 {
2620 if (ex.error == NOT_AVAILABLE_ERROR)
2621 {
2622 return 0;
2623 }
2624 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2625 {
2626 if (entry_values_debug)
2627 exception_print (gdb_stdout, ex);
2628 return 0;
2629 }
2630 else
2631 throw_exception (ex);
2632 }
2633 END_CATCH
2634
2635 switch (ctx.location)
2636 {
2637 case DWARF_VALUE_REGISTER:
2638 case DWARF_VALUE_MEMORY:
2639 case DWARF_VALUE_STACK:
2640 *valp = ctx.fetch_address (0);
2641 if (ctx.location == DWARF_VALUE_REGISTER)
2642 *valp = ctx.read_addr_from_reg (*valp);
2643 return 1;
2644 case DWARF_VALUE_LITERAL:
2645 *valp = extract_signed_integer (ctx.data, ctx.len,
2646 gdbarch_byte_order (ctx.gdbarch));
2647 return 1;
2648 /* Unsupported dwarf values. */
2649 case DWARF_VALUE_OPTIMIZED_OUT:
2650 case DWARF_VALUE_IMPLICIT_POINTER:
2651 break;
2652 }
2653
2654 return 0;
2655 }
2656
2657 /* See dwarf2loc.h. */
2658
2659 int
2660 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2661 struct frame_info *frame,
2662 struct property_addr_info *addr_stack,
2663 CORE_ADDR *value)
2664 {
2665 if (prop == NULL)
2666 return 0;
2667
2668 if (frame == NULL && has_stack_frames ())
2669 frame = get_selected_frame (NULL);
2670
2671 switch (prop->kind)
2672 {
2673 case PROP_LOCEXPR:
2674 {
2675 const struct dwarf2_property_baton *baton
2676 = (const struct dwarf2_property_baton *) prop->data.baton;
2677
2678 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2679 addr_stack ? addr_stack->addr : 0,
2680 value))
2681 {
2682 if (baton->referenced_type)
2683 {
2684 struct value *val = value_at (baton->referenced_type, *value);
2685
2686 *value = value_as_address (val);
2687 }
2688 return 1;
2689 }
2690 }
2691 break;
2692
2693 case PROP_LOCLIST:
2694 {
2695 struct dwarf2_property_baton *baton
2696 = (struct dwarf2_property_baton *) prop->data.baton;
2697 CORE_ADDR pc = get_frame_address_in_block (frame);
2698 const gdb_byte *data;
2699 struct value *val;
2700 size_t size;
2701
2702 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2703 if (data != NULL)
2704 {
2705 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2706 size, baton->loclist.per_cu);
2707 if (!value_optimized_out (val))
2708 {
2709 *value = value_as_address (val);
2710 return 1;
2711 }
2712 }
2713 }
2714 break;
2715
2716 case PROP_CONST:
2717 *value = prop->data.const_val;
2718 return 1;
2719
2720 case PROP_ADDR_OFFSET:
2721 {
2722 struct dwarf2_property_baton *baton
2723 = (struct dwarf2_property_baton *) prop->data.baton;
2724 struct property_addr_info *pinfo;
2725 struct value *val;
2726
2727 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2728 if (pinfo->type == baton->referenced_type)
2729 break;
2730 if (pinfo == NULL)
2731 error (_("cannot find reference address for offset property"));
2732 if (pinfo->valaddr != NULL)
2733 val = value_from_contents
2734 (baton->offset_info.type,
2735 pinfo->valaddr + baton->offset_info.offset);
2736 else
2737 val = value_at (baton->offset_info.type,
2738 pinfo->addr + baton->offset_info.offset);
2739 *value = value_as_address (val);
2740 return 1;
2741 }
2742 }
2743
2744 return 0;
2745 }
2746
2747 /* See dwarf2loc.h. */
2748
2749 void
2750 dwarf2_compile_property_to_c (string_file &stream,
2751 const char *result_name,
2752 struct gdbarch *gdbarch,
2753 unsigned char *registers_used,
2754 const struct dynamic_prop *prop,
2755 CORE_ADDR pc,
2756 struct symbol *sym)
2757 {
2758 struct dwarf2_property_baton *baton
2759 = (struct dwarf2_property_baton *) prop->data.baton;
2760 const gdb_byte *data;
2761 size_t size;
2762 struct dwarf2_per_cu_data *per_cu;
2763
2764 if (prop->kind == PROP_LOCEXPR)
2765 {
2766 data = baton->locexpr.data;
2767 size = baton->locexpr.size;
2768 per_cu = baton->locexpr.per_cu;
2769 }
2770 else
2771 {
2772 gdb_assert (prop->kind == PROP_LOCLIST);
2773
2774 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2775 per_cu = baton->loclist.per_cu;
2776 }
2777
2778 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2779 gdbarch, registers_used,
2780 dwarf2_per_cu_addr_size (per_cu),
2781 data, data + size, per_cu);
2782 }
2783
2784 \f
2785 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2786
2787 class symbol_needs_eval_context : public dwarf_expr_context
2788 {
2789 public:
2790
2791 enum symbol_needs_kind needs;
2792 struct dwarf2_per_cu_data *per_cu;
2793
2794 /* Reads from registers do require a frame. */
2795 CORE_ADDR read_addr_from_reg (int regnum) override
2796 {
2797 needs = SYMBOL_NEEDS_FRAME;
2798 return 1;
2799 }
2800
2801 /* "get_reg_value" callback: Reads from registers do require a
2802 frame. */
2803
2804 struct value *get_reg_value (struct type *type, int regnum) override
2805 {
2806 needs = SYMBOL_NEEDS_FRAME;
2807 return value_zero (type, not_lval);
2808 }
2809
2810 /* Reads from memory do not require a frame. */
2811 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2812 {
2813 memset (buf, 0, len);
2814 }
2815
2816 /* Frame-relative accesses do require a frame. */
2817 void get_frame_base (const gdb_byte **start, size_t *length) override
2818 {
2819 static gdb_byte lit0 = DW_OP_lit0;
2820
2821 *start = &lit0;
2822 *length = 1;
2823
2824 needs = SYMBOL_NEEDS_FRAME;
2825 }
2826
2827 /* CFA accesses require a frame. */
2828 CORE_ADDR get_frame_cfa () override
2829 {
2830 needs = SYMBOL_NEEDS_FRAME;
2831 return 1;
2832 }
2833
2834 CORE_ADDR get_frame_pc () override
2835 {
2836 needs = SYMBOL_NEEDS_FRAME;
2837 return 1;
2838 }
2839
2840 /* Thread-local accesses require registers, but not a frame. */
2841 CORE_ADDR get_tls_address (CORE_ADDR offset) override
2842 {
2843 if (needs <= SYMBOL_NEEDS_REGISTERS)
2844 needs = SYMBOL_NEEDS_REGISTERS;
2845 return 1;
2846 }
2847
2848 /* Helper interface of per_cu_dwarf_call for
2849 dwarf2_loc_desc_get_symbol_read_needs. */
2850
2851 void dwarf_call (cu_offset die_offset) override
2852 {
2853 per_cu_dwarf_call (this, die_offset, per_cu);
2854 }
2855
2856 /* Helper interface of sect_variable_value for
2857 dwarf2_loc_desc_get_symbol_read_needs. */
2858
2859 struct value *dwarf_variable_value (sect_offset sect_off) override
2860 {
2861 return sect_variable_value (this, sect_off, per_cu);
2862 }
2863
2864 /* DW_OP_entry_value accesses require a caller, therefore a
2865 frame. */
2866
2867 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2868 union call_site_parameter_u kind_u,
2869 int deref_size) override
2870 {
2871 needs = SYMBOL_NEEDS_FRAME;
2872
2873 /* The expression may require some stub values on DWARF stack. */
2874 push_address (0, 0);
2875 }
2876
2877 /* DW_OP_GNU_addr_index doesn't require a frame. */
2878
2879 CORE_ADDR get_addr_index (unsigned int index) override
2880 {
2881 /* Nothing to do. */
2882 return 1;
2883 }
2884
2885 /* DW_OP_push_object_address has a frame already passed through. */
2886
2887 CORE_ADDR get_object_address () override
2888 {
2889 /* Nothing to do. */
2890 return 1;
2891 }
2892 };
2893
2894 /* Compute the correct symbol_needs_kind value for the location
2895 expression at DATA (length SIZE). */
2896
2897 static enum symbol_needs_kind
2898 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2899 struct dwarf2_per_cu_data *per_cu)
2900 {
2901 int in_reg;
2902 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2903
2904 scoped_value_mark free_values;
2905
2906 symbol_needs_eval_context ctx;
2907
2908 ctx.needs = SYMBOL_NEEDS_NONE;
2909 ctx.per_cu = per_cu;
2910 ctx.gdbarch = get_objfile_arch (objfile);
2911 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2912 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2913 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2914
2915 ctx.eval (data, size);
2916
2917 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2918
2919 /* If the location has several pieces, and any of them are in
2920 registers, then we will need a frame to fetch them from. */
2921 for (dwarf_expr_piece &p : ctx.pieces)
2922 if (p.location == DWARF_VALUE_REGISTER)
2923 in_reg = 1;
2924
2925 if (in_reg)
2926 ctx.needs = SYMBOL_NEEDS_FRAME;
2927 return ctx.needs;
2928 }
2929
2930 /* A helper function that throws an unimplemented error mentioning a
2931 given DWARF operator. */
2932
2933 static void ATTRIBUTE_NORETURN
2934 unimplemented (unsigned int op)
2935 {
2936 const char *name = get_DW_OP_name (op);
2937
2938 if (name)
2939 error (_("DWARF operator %s cannot be translated to an agent expression"),
2940 name);
2941 else
2942 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2943 "to an agent expression"),
2944 op);
2945 }
2946
2947 /* See dwarf2loc.h.
2948
2949 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2950 can issue a complaint, which is better than having every target's
2951 implementation of dwarf2_reg_to_regnum do it. */
2952
2953 int
2954 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2955 {
2956 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2957
2958 if (reg == -1)
2959 {
2960 complaint (_("bad DWARF register number %d"), dwarf_reg);
2961 }
2962 return reg;
2963 }
2964
2965 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2966 Throw an error because DWARF_REG is bad. */
2967
2968 static void
2969 throw_bad_regnum_error (ULONGEST dwarf_reg)
2970 {
2971 /* Still want to print -1 as "-1".
2972 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2973 but that's overkill for now. */
2974 if ((int) dwarf_reg == dwarf_reg)
2975 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2976 error (_("Unable to access DWARF register number %s"),
2977 pulongest (dwarf_reg));
2978 }
2979
2980 /* See dwarf2loc.h. */
2981
2982 int
2983 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2984 {
2985 int reg;
2986
2987 if (dwarf_reg > INT_MAX)
2988 throw_bad_regnum_error (dwarf_reg);
2989 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2990 bad, but that's ok. */
2991 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2992 if (reg == -1)
2993 throw_bad_regnum_error (dwarf_reg);
2994 return reg;
2995 }
2996
2997 /* A helper function that emits an access to memory. ARCH is the
2998 target architecture. EXPR is the expression which we are building.
2999 NBITS is the number of bits we want to read. This emits the
3000 opcodes needed to read the memory and then extract the desired
3001 bits. */
3002
3003 static void
3004 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
3005 {
3006 ULONGEST nbytes = (nbits + 7) / 8;
3007
3008 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3009
3010 if (expr->tracing)
3011 ax_trace_quick (expr, nbytes);
3012
3013 if (nbits <= 8)
3014 ax_simple (expr, aop_ref8);
3015 else if (nbits <= 16)
3016 ax_simple (expr, aop_ref16);
3017 else if (nbits <= 32)
3018 ax_simple (expr, aop_ref32);
3019 else
3020 ax_simple (expr, aop_ref64);
3021
3022 /* If we read exactly the number of bytes we wanted, we're done. */
3023 if (8 * nbytes == nbits)
3024 return;
3025
3026 if (gdbarch_bits_big_endian (arch))
3027 {
3028 /* On a bits-big-endian machine, we want the high-order
3029 NBITS. */
3030 ax_const_l (expr, 8 * nbytes - nbits);
3031 ax_simple (expr, aop_rsh_unsigned);
3032 }
3033 else
3034 {
3035 /* On a bits-little-endian box, we want the low-order NBITS. */
3036 ax_zero_ext (expr, nbits);
3037 }
3038 }
3039
3040 /* A helper function to return the frame's PC. */
3041
3042 static CORE_ADDR
3043 get_ax_pc (void *baton)
3044 {
3045 struct agent_expr *expr = (struct agent_expr *) baton;
3046
3047 return expr->scope;
3048 }
3049
3050 /* Compile a DWARF location expression to an agent expression.
3051
3052 EXPR is the agent expression we are building.
3053 LOC is the agent value we modify.
3054 ARCH is the architecture.
3055 ADDR_SIZE is the size of addresses, in bytes.
3056 OP_PTR is the start of the location expression.
3057 OP_END is one past the last byte of the location expression.
3058
3059 This will throw an exception for various kinds of errors -- for
3060 example, if the expression cannot be compiled, or if the expression
3061 is invalid. */
3062
3063 void
3064 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3065 unsigned int addr_size, const gdb_byte *op_ptr,
3066 const gdb_byte *op_end,
3067 struct dwarf2_per_cu_data *per_cu)
3068 {
3069 gdbarch *arch = expr->gdbarch;
3070 int i;
3071 std::vector<int> dw_labels, patches;
3072 const gdb_byte * const base = op_ptr;
3073 const gdb_byte *previous_piece = op_ptr;
3074 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3075 ULONGEST bits_collected = 0;
3076 unsigned int addr_size_bits = 8 * addr_size;
3077 int bits_big_endian = gdbarch_bits_big_endian (arch);
3078
3079 std::vector<int> offsets (op_end - op_ptr, -1);
3080
3081 /* By default we are making an address. */
3082 loc->kind = axs_lvalue_memory;
3083
3084 while (op_ptr < op_end)
3085 {
3086 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3087 uint64_t uoffset, reg;
3088 int64_t offset;
3089 int i;
3090
3091 offsets[op_ptr - base] = expr->len;
3092 ++op_ptr;
3093
3094 /* Our basic approach to code generation is to map DWARF
3095 operations directly to AX operations. However, there are
3096 some differences.
3097
3098 First, DWARF works on address-sized units, but AX always uses
3099 LONGEST. For most operations we simply ignore this
3100 difference; instead we generate sign extensions as needed
3101 before division and comparison operations. It would be nice
3102 to omit the sign extensions, but there is no way to determine
3103 the size of the target's LONGEST. (This code uses the size
3104 of the host LONGEST in some cases -- that is a bug but it is
3105 difficult to fix.)
3106
3107 Second, some DWARF operations cannot be translated to AX.
3108 For these we simply fail. See
3109 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3110 switch (op)
3111 {
3112 case DW_OP_lit0:
3113 case DW_OP_lit1:
3114 case DW_OP_lit2:
3115 case DW_OP_lit3:
3116 case DW_OP_lit4:
3117 case DW_OP_lit5:
3118 case DW_OP_lit6:
3119 case DW_OP_lit7:
3120 case DW_OP_lit8:
3121 case DW_OP_lit9:
3122 case DW_OP_lit10:
3123 case DW_OP_lit11:
3124 case DW_OP_lit12:
3125 case DW_OP_lit13:
3126 case DW_OP_lit14:
3127 case DW_OP_lit15:
3128 case DW_OP_lit16:
3129 case DW_OP_lit17:
3130 case DW_OP_lit18:
3131 case DW_OP_lit19:
3132 case DW_OP_lit20:
3133 case DW_OP_lit21:
3134 case DW_OP_lit22:
3135 case DW_OP_lit23:
3136 case DW_OP_lit24:
3137 case DW_OP_lit25:
3138 case DW_OP_lit26:
3139 case DW_OP_lit27:
3140 case DW_OP_lit28:
3141 case DW_OP_lit29:
3142 case DW_OP_lit30:
3143 case DW_OP_lit31:
3144 ax_const_l (expr, op - DW_OP_lit0);
3145 break;
3146
3147 case DW_OP_addr:
3148 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3149 op_ptr += addr_size;
3150 /* Some versions of GCC emit DW_OP_addr before
3151 DW_OP_GNU_push_tls_address. In this case the value is an
3152 index, not an address. We don't support things like
3153 branching between the address and the TLS op. */
3154 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3155 uoffset += dwarf2_per_cu_text_offset (per_cu);
3156 ax_const_l (expr, uoffset);
3157 break;
3158
3159 case DW_OP_const1u:
3160 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3161 op_ptr += 1;
3162 break;
3163 case DW_OP_const1s:
3164 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3165 op_ptr += 1;
3166 break;
3167 case DW_OP_const2u:
3168 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3169 op_ptr += 2;
3170 break;
3171 case DW_OP_const2s:
3172 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3173 op_ptr += 2;
3174 break;
3175 case DW_OP_const4u:
3176 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3177 op_ptr += 4;
3178 break;
3179 case DW_OP_const4s:
3180 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3181 op_ptr += 4;
3182 break;
3183 case DW_OP_const8u:
3184 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3185 op_ptr += 8;
3186 break;
3187 case DW_OP_const8s:
3188 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3189 op_ptr += 8;
3190 break;
3191 case DW_OP_constu:
3192 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3193 ax_const_l (expr, uoffset);
3194 break;
3195 case DW_OP_consts:
3196 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3197 ax_const_l (expr, offset);
3198 break;
3199
3200 case DW_OP_reg0:
3201 case DW_OP_reg1:
3202 case DW_OP_reg2:
3203 case DW_OP_reg3:
3204 case DW_OP_reg4:
3205 case DW_OP_reg5:
3206 case DW_OP_reg6:
3207 case DW_OP_reg7:
3208 case DW_OP_reg8:
3209 case DW_OP_reg9:
3210 case DW_OP_reg10:
3211 case DW_OP_reg11:
3212 case DW_OP_reg12:
3213 case DW_OP_reg13:
3214 case DW_OP_reg14:
3215 case DW_OP_reg15:
3216 case DW_OP_reg16:
3217 case DW_OP_reg17:
3218 case DW_OP_reg18:
3219 case DW_OP_reg19:
3220 case DW_OP_reg20:
3221 case DW_OP_reg21:
3222 case DW_OP_reg22:
3223 case DW_OP_reg23:
3224 case DW_OP_reg24:
3225 case DW_OP_reg25:
3226 case DW_OP_reg26:
3227 case DW_OP_reg27:
3228 case DW_OP_reg28:
3229 case DW_OP_reg29:
3230 case DW_OP_reg30:
3231 case DW_OP_reg31:
3232 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3233 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3234 loc->kind = axs_lvalue_register;
3235 break;
3236
3237 case DW_OP_regx:
3238 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3239 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3240 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3241 loc->kind = axs_lvalue_register;
3242 break;
3243
3244 case DW_OP_implicit_value:
3245 {
3246 uint64_t len;
3247
3248 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3249 if (op_ptr + len > op_end)
3250 error (_("DW_OP_implicit_value: too few bytes available."));
3251 if (len > sizeof (ULONGEST))
3252 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3253 (int) len);
3254
3255 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3256 byte_order));
3257 op_ptr += len;
3258 dwarf_expr_require_composition (op_ptr, op_end,
3259 "DW_OP_implicit_value");
3260
3261 loc->kind = axs_rvalue;
3262 }
3263 break;
3264
3265 case DW_OP_stack_value:
3266 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3267 loc->kind = axs_rvalue;
3268 break;
3269
3270 case DW_OP_breg0:
3271 case DW_OP_breg1:
3272 case DW_OP_breg2:
3273 case DW_OP_breg3:
3274 case DW_OP_breg4:
3275 case DW_OP_breg5:
3276 case DW_OP_breg6:
3277 case DW_OP_breg7:
3278 case DW_OP_breg8:
3279 case DW_OP_breg9:
3280 case DW_OP_breg10:
3281 case DW_OP_breg11:
3282 case DW_OP_breg12:
3283 case DW_OP_breg13:
3284 case DW_OP_breg14:
3285 case DW_OP_breg15:
3286 case DW_OP_breg16:
3287 case DW_OP_breg17:
3288 case DW_OP_breg18:
3289 case DW_OP_breg19:
3290 case DW_OP_breg20:
3291 case DW_OP_breg21:
3292 case DW_OP_breg22:
3293 case DW_OP_breg23:
3294 case DW_OP_breg24:
3295 case DW_OP_breg25:
3296 case DW_OP_breg26:
3297 case DW_OP_breg27:
3298 case DW_OP_breg28:
3299 case DW_OP_breg29:
3300 case DW_OP_breg30:
3301 case DW_OP_breg31:
3302 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3303 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3304 ax_reg (expr, i);
3305 if (offset != 0)
3306 {
3307 ax_const_l (expr, offset);
3308 ax_simple (expr, aop_add);
3309 }
3310 break;
3311 case DW_OP_bregx:
3312 {
3313 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3314 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3315 i = dwarf_reg_to_regnum_or_error (arch, reg);
3316 ax_reg (expr, i);
3317 if (offset != 0)
3318 {
3319 ax_const_l (expr, offset);
3320 ax_simple (expr, aop_add);
3321 }
3322 }
3323 break;
3324 case DW_OP_fbreg:
3325 {
3326 const gdb_byte *datastart;
3327 size_t datalen;
3328 const struct block *b;
3329 struct symbol *framefunc;
3330
3331 b = block_for_pc (expr->scope);
3332
3333 if (!b)
3334 error (_("No block found for address"));
3335
3336 framefunc = block_linkage_function (b);
3337
3338 if (!framefunc)
3339 error (_("No function found for block"));
3340
3341 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3342 &datastart, &datalen);
3343
3344 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3345 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3346 datastart + datalen, per_cu);
3347 if (loc->kind == axs_lvalue_register)
3348 require_rvalue (expr, loc);
3349
3350 if (offset != 0)
3351 {
3352 ax_const_l (expr, offset);
3353 ax_simple (expr, aop_add);
3354 }
3355
3356 loc->kind = axs_lvalue_memory;
3357 }
3358 break;
3359
3360 case DW_OP_dup:
3361 ax_simple (expr, aop_dup);
3362 break;
3363
3364 case DW_OP_drop:
3365 ax_simple (expr, aop_pop);
3366 break;
3367
3368 case DW_OP_pick:
3369 offset = *op_ptr++;
3370 ax_pick (expr, offset);
3371 break;
3372
3373 case DW_OP_swap:
3374 ax_simple (expr, aop_swap);
3375 break;
3376
3377 case DW_OP_over:
3378 ax_pick (expr, 1);
3379 break;
3380
3381 case DW_OP_rot:
3382 ax_simple (expr, aop_rot);
3383 break;
3384
3385 case DW_OP_deref:
3386 case DW_OP_deref_size:
3387 {
3388 int size;
3389
3390 if (op == DW_OP_deref_size)
3391 size = *op_ptr++;
3392 else
3393 size = addr_size;
3394
3395 if (size != 1 && size != 2 && size != 4 && size != 8)
3396 error (_("Unsupported size %d in %s"),
3397 size, get_DW_OP_name (op));
3398 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3399 }
3400 break;
3401
3402 case DW_OP_abs:
3403 /* Sign extend the operand. */
3404 ax_ext (expr, addr_size_bits);
3405 ax_simple (expr, aop_dup);
3406 ax_const_l (expr, 0);
3407 ax_simple (expr, aop_less_signed);
3408 ax_simple (expr, aop_log_not);
3409 i = ax_goto (expr, aop_if_goto);
3410 /* We have to emit 0 - X. */
3411 ax_const_l (expr, 0);
3412 ax_simple (expr, aop_swap);
3413 ax_simple (expr, aop_sub);
3414 ax_label (expr, i, expr->len);
3415 break;
3416
3417 case DW_OP_neg:
3418 /* No need to sign extend here. */
3419 ax_const_l (expr, 0);
3420 ax_simple (expr, aop_swap);
3421 ax_simple (expr, aop_sub);
3422 break;
3423
3424 case DW_OP_not:
3425 /* Sign extend the operand. */
3426 ax_ext (expr, addr_size_bits);
3427 ax_simple (expr, aop_bit_not);
3428 break;
3429
3430 case DW_OP_plus_uconst:
3431 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3432 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3433 but we micro-optimize anyhow. */
3434 if (reg != 0)
3435 {
3436 ax_const_l (expr, reg);
3437 ax_simple (expr, aop_add);
3438 }
3439 break;
3440
3441 case DW_OP_and:
3442 ax_simple (expr, aop_bit_and);
3443 break;
3444
3445 case DW_OP_div:
3446 /* Sign extend the operands. */
3447 ax_ext (expr, addr_size_bits);
3448 ax_simple (expr, aop_swap);
3449 ax_ext (expr, addr_size_bits);
3450 ax_simple (expr, aop_swap);
3451 ax_simple (expr, aop_div_signed);
3452 break;
3453
3454 case DW_OP_minus:
3455 ax_simple (expr, aop_sub);
3456 break;
3457
3458 case DW_OP_mod:
3459 ax_simple (expr, aop_rem_unsigned);
3460 break;
3461
3462 case DW_OP_mul:
3463 ax_simple (expr, aop_mul);
3464 break;
3465
3466 case DW_OP_or:
3467 ax_simple (expr, aop_bit_or);
3468 break;
3469
3470 case DW_OP_plus:
3471 ax_simple (expr, aop_add);
3472 break;
3473
3474 case DW_OP_shl:
3475 ax_simple (expr, aop_lsh);
3476 break;
3477
3478 case DW_OP_shr:
3479 ax_simple (expr, aop_rsh_unsigned);
3480 break;
3481
3482 case DW_OP_shra:
3483 ax_simple (expr, aop_rsh_signed);
3484 break;
3485
3486 case DW_OP_xor:
3487 ax_simple (expr, aop_bit_xor);
3488 break;
3489
3490 case DW_OP_le:
3491 /* Sign extend the operands. */
3492 ax_ext (expr, addr_size_bits);
3493 ax_simple (expr, aop_swap);
3494 ax_ext (expr, addr_size_bits);
3495 /* Note no swap here: A <= B is !(B < A). */
3496 ax_simple (expr, aop_less_signed);
3497 ax_simple (expr, aop_log_not);
3498 break;
3499
3500 case DW_OP_ge:
3501 /* Sign extend the operands. */
3502 ax_ext (expr, addr_size_bits);
3503 ax_simple (expr, aop_swap);
3504 ax_ext (expr, addr_size_bits);
3505 ax_simple (expr, aop_swap);
3506 /* A >= B is !(A < B). */
3507 ax_simple (expr, aop_less_signed);
3508 ax_simple (expr, aop_log_not);
3509 break;
3510
3511 case DW_OP_eq:
3512 /* Sign extend the operands. */
3513 ax_ext (expr, addr_size_bits);
3514 ax_simple (expr, aop_swap);
3515 ax_ext (expr, addr_size_bits);
3516 /* No need for a second swap here. */
3517 ax_simple (expr, aop_equal);
3518 break;
3519
3520 case DW_OP_lt:
3521 /* Sign extend the operands. */
3522 ax_ext (expr, addr_size_bits);
3523 ax_simple (expr, aop_swap);
3524 ax_ext (expr, addr_size_bits);
3525 ax_simple (expr, aop_swap);
3526 ax_simple (expr, aop_less_signed);
3527 break;
3528
3529 case DW_OP_gt:
3530 /* Sign extend the operands. */
3531 ax_ext (expr, addr_size_bits);
3532 ax_simple (expr, aop_swap);
3533 ax_ext (expr, addr_size_bits);
3534 /* Note no swap here: A > B is B < A. */
3535 ax_simple (expr, aop_less_signed);
3536 break;
3537
3538 case DW_OP_ne:
3539 /* Sign extend the operands. */
3540 ax_ext (expr, addr_size_bits);
3541 ax_simple (expr, aop_swap);
3542 ax_ext (expr, addr_size_bits);
3543 /* No need for a swap here. */
3544 ax_simple (expr, aop_equal);
3545 ax_simple (expr, aop_log_not);
3546 break;
3547
3548 case DW_OP_call_frame_cfa:
3549 {
3550 int regnum;
3551 CORE_ADDR text_offset;
3552 LONGEST off;
3553 const gdb_byte *cfa_start, *cfa_end;
3554
3555 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3556 &regnum, &off,
3557 &text_offset, &cfa_start, &cfa_end))
3558 {
3559 /* Register. */
3560 ax_reg (expr, regnum);
3561 if (off != 0)
3562 {
3563 ax_const_l (expr, off);
3564 ax_simple (expr, aop_add);
3565 }
3566 }
3567 else
3568 {
3569 /* Another expression. */
3570 ax_const_l (expr, text_offset);
3571 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3572 cfa_end, per_cu);
3573 }
3574
3575 loc->kind = axs_lvalue_memory;
3576 }
3577 break;
3578
3579 case DW_OP_GNU_push_tls_address:
3580 case DW_OP_form_tls_address:
3581 unimplemented (op);
3582 break;
3583
3584 case DW_OP_push_object_address:
3585 unimplemented (op);
3586 break;
3587
3588 case DW_OP_skip:
3589 offset = extract_signed_integer (op_ptr, 2, byte_order);
3590 op_ptr += 2;
3591 i = ax_goto (expr, aop_goto);
3592 dw_labels.push_back (op_ptr + offset - base);
3593 patches.push_back (i);
3594 break;
3595
3596 case DW_OP_bra:
3597 offset = extract_signed_integer (op_ptr, 2, byte_order);
3598 op_ptr += 2;
3599 /* Zero extend the operand. */
3600 ax_zero_ext (expr, addr_size_bits);
3601 i = ax_goto (expr, aop_if_goto);
3602 dw_labels.push_back (op_ptr + offset - base);
3603 patches.push_back (i);
3604 break;
3605
3606 case DW_OP_nop:
3607 break;
3608
3609 case DW_OP_piece:
3610 case DW_OP_bit_piece:
3611 {
3612 uint64_t size, offset;
3613
3614 if (op_ptr - 1 == previous_piece)
3615 error (_("Cannot translate empty pieces to agent expressions"));
3616 previous_piece = op_ptr - 1;
3617
3618 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3619 if (op == DW_OP_piece)
3620 {
3621 size *= 8;
3622 offset = 0;
3623 }
3624 else
3625 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3626
3627 if (bits_collected + size > 8 * sizeof (LONGEST))
3628 error (_("Expression pieces exceed word size"));
3629
3630 /* Access the bits. */
3631 switch (loc->kind)
3632 {
3633 case axs_lvalue_register:
3634 ax_reg (expr, loc->u.reg);
3635 break;
3636
3637 case axs_lvalue_memory:
3638 /* Offset the pointer, if needed. */
3639 if (offset > 8)
3640 {
3641 ax_const_l (expr, offset / 8);
3642 ax_simple (expr, aop_add);
3643 offset %= 8;
3644 }
3645 access_memory (arch, expr, size);
3646 break;
3647 }
3648
3649 /* For a bits-big-endian target, shift up what we already
3650 have. For a bits-little-endian target, shift up the
3651 new data. Note that there is a potential bug here if
3652 the DWARF expression leaves multiple values on the
3653 stack. */
3654 if (bits_collected > 0)
3655 {
3656 if (bits_big_endian)
3657 {
3658 ax_simple (expr, aop_swap);
3659 ax_const_l (expr, size);
3660 ax_simple (expr, aop_lsh);
3661 /* We don't need a second swap here, because
3662 aop_bit_or is symmetric. */
3663 }
3664 else
3665 {
3666 ax_const_l (expr, size);
3667 ax_simple (expr, aop_lsh);
3668 }
3669 ax_simple (expr, aop_bit_or);
3670 }
3671
3672 bits_collected += size;
3673 loc->kind = axs_rvalue;
3674 }
3675 break;
3676
3677 case DW_OP_GNU_uninit:
3678 unimplemented (op);
3679
3680 case DW_OP_call2:
3681 case DW_OP_call4:
3682 {
3683 struct dwarf2_locexpr_baton block;
3684 int size = (op == DW_OP_call2 ? 2 : 4);
3685
3686 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3687 op_ptr += size;
3688
3689 cu_offset offset = (cu_offset) uoffset;
3690 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3691 get_ax_pc, expr);
3692
3693 /* DW_OP_call_ref is currently not supported. */
3694 gdb_assert (block.per_cu == per_cu);
3695
3696 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3697 block.data + block.size, per_cu);
3698 }
3699 break;
3700
3701 case DW_OP_call_ref:
3702 unimplemented (op);
3703
3704 case DW_OP_GNU_variable_value:
3705 unimplemented (op);
3706
3707 default:
3708 unimplemented (op);
3709 }
3710 }
3711
3712 /* Patch all the branches we emitted. */
3713 for (i = 0; i < patches.size (); ++i)
3714 {
3715 int targ = offsets[dw_labels[i]];
3716 if (targ == -1)
3717 internal_error (__FILE__, __LINE__, _("invalid label"));
3718 ax_label (expr, patches[i], targ);
3719 }
3720 }
3721
3722 \f
3723 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3724 evaluator to calculate the location. */
3725 static struct value *
3726 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3727 {
3728 struct dwarf2_locexpr_baton *dlbaton
3729 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3730 struct value *val;
3731
3732 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3733 dlbaton->size, dlbaton->per_cu);
3734
3735 return val;
3736 }
3737
3738 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3739 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3740 will be thrown. */
3741
3742 static struct value *
3743 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3744 {
3745 struct dwarf2_locexpr_baton *dlbaton
3746 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3747
3748 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3749 dlbaton->size);
3750 }
3751
3752 /* Implementation of get_symbol_read_needs from
3753 symbol_computed_ops. */
3754
3755 static enum symbol_needs_kind
3756 locexpr_get_symbol_read_needs (struct symbol *symbol)
3757 {
3758 struct dwarf2_locexpr_baton *dlbaton
3759 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3760
3761 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3762 dlbaton->per_cu);
3763 }
3764
3765 /* Return true if DATA points to the end of a piece. END is one past
3766 the last byte in the expression. */
3767
3768 static int
3769 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3770 {
3771 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3772 }
3773
3774 /* Helper for locexpr_describe_location_piece that finds the name of a
3775 DWARF register. */
3776
3777 static const char *
3778 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3779 {
3780 int regnum;
3781
3782 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3783 We'd rather print *something* here than throw an error. */
3784 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3785 /* gdbarch_register_name may just return "", return something more
3786 descriptive for bad register numbers. */
3787 if (regnum == -1)
3788 {
3789 /* The text is output as "$bad_register_number".
3790 That is why we use the underscores. */
3791 return _("bad_register_number");
3792 }
3793 return gdbarch_register_name (gdbarch, regnum);
3794 }
3795
3796 /* Nicely describe a single piece of a location, returning an updated
3797 position in the bytecode sequence. This function cannot recognize
3798 all locations; if a location is not recognized, it simply returns
3799 DATA. If there is an error during reading, e.g. we run off the end
3800 of the buffer, an error is thrown. */
3801
3802 static const gdb_byte *
3803 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3804 CORE_ADDR addr, struct objfile *objfile,
3805 struct dwarf2_per_cu_data *per_cu,
3806 const gdb_byte *data, const gdb_byte *end,
3807 unsigned int addr_size)
3808 {
3809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3810 size_t leb128_size;
3811
3812 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3813 {
3814 fprintf_filtered (stream, _("a variable in $%s"),
3815 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3816 data += 1;
3817 }
3818 else if (data[0] == DW_OP_regx)
3819 {
3820 uint64_t reg;
3821
3822 data = safe_read_uleb128 (data + 1, end, &reg);
3823 fprintf_filtered (stream, _("a variable in $%s"),
3824 locexpr_regname (gdbarch, reg));
3825 }
3826 else if (data[0] == DW_OP_fbreg)
3827 {
3828 const struct block *b;
3829 struct symbol *framefunc;
3830 int frame_reg = 0;
3831 int64_t frame_offset;
3832 const gdb_byte *base_data, *new_data, *save_data = data;
3833 size_t base_size;
3834 int64_t base_offset = 0;
3835
3836 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3837 if (!piece_end_p (new_data, end))
3838 return data;
3839 data = new_data;
3840
3841 b = block_for_pc (addr);
3842
3843 if (!b)
3844 error (_("No block found for address for symbol \"%s\"."),
3845 SYMBOL_PRINT_NAME (symbol));
3846
3847 framefunc = block_linkage_function (b);
3848
3849 if (!framefunc)
3850 error (_("No function found for block for symbol \"%s\"."),
3851 SYMBOL_PRINT_NAME (symbol));
3852
3853 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3854
3855 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3856 {
3857 const gdb_byte *buf_end;
3858
3859 frame_reg = base_data[0] - DW_OP_breg0;
3860 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3861 &base_offset);
3862 if (buf_end != base_data + base_size)
3863 error (_("Unexpected opcode after "
3864 "DW_OP_breg%u for symbol \"%s\"."),
3865 frame_reg, SYMBOL_PRINT_NAME (symbol));
3866 }
3867 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3868 {
3869 /* The frame base is just the register, with no offset. */
3870 frame_reg = base_data[0] - DW_OP_reg0;
3871 base_offset = 0;
3872 }
3873 else
3874 {
3875 /* We don't know what to do with the frame base expression,
3876 so we can't trace this variable; give up. */
3877 return save_data;
3878 }
3879
3880 fprintf_filtered (stream,
3881 _("a variable at frame base reg $%s offset %s+%s"),
3882 locexpr_regname (gdbarch, frame_reg),
3883 plongest (base_offset), plongest (frame_offset));
3884 }
3885 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3886 && piece_end_p (data, end))
3887 {
3888 int64_t offset;
3889
3890 data = safe_read_sleb128 (data + 1, end, &offset);
3891
3892 fprintf_filtered (stream,
3893 _("a variable at offset %s from base reg $%s"),
3894 plongest (offset),
3895 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3896 }
3897
3898 /* The location expression for a TLS variable looks like this (on a
3899 64-bit LE machine):
3900
3901 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3902 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3903
3904 0x3 is the encoding for DW_OP_addr, which has an operand as long
3905 as the size of an address on the target machine (here is 8
3906 bytes). Note that more recent version of GCC emit DW_OP_const4u
3907 or DW_OP_const8u, depending on address size, rather than
3908 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3909 The operand represents the offset at which the variable is within
3910 the thread local storage. */
3911
3912 else if (data + 1 + addr_size < end
3913 && (data[0] == DW_OP_addr
3914 || (addr_size == 4 && data[0] == DW_OP_const4u)
3915 || (addr_size == 8 && data[0] == DW_OP_const8u))
3916 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3917 || data[1 + addr_size] == DW_OP_form_tls_address)
3918 && piece_end_p (data + 2 + addr_size, end))
3919 {
3920 ULONGEST offset;
3921 offset = extract_unsigned_integer (data + 1, addr_size,
3922 gdbarch_byte_order (gdbarch));
3923
3924 fprintf_filtered (stream,
3925 _("a thread-local variable at offset 0x%s "
3926 "in the thread-local storage for `%s'"),
3927 phex_nz (offset, addr_size), objfile_name (objfile));
3928
3929 data += 1 + addr_size + 1;
3930 }
3931
3932 /* With -gsplit-dwarf a TLS variable can also look like this:
3933 DW_AT_location : 3 byte block: fc 4 e0
3934 (DW_OP_GNU_const_index: 4;
3935 DW_OP_GNU_push_tls_address) */
3936 else if (data + 3 <= end
3937 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3938 && data[0] == DW_OP_GNU_const_index
3939 && leb128_size > 0
3940 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3941 || data[1 + leb128_size] == DW_OP_form_tls_address)
3942 && piece_end_p (data + 2 + leb128_size, end))
3943 {
3944 uint64_t offset;
3945
3946 data = safe_read_uleb128 (data + 1, end, &offset);
3947 offset = dwarf2_read_addr_index (per_cu, offset);
3948 fprintf_filtered (stream,
3949 _("a thread-local variable at offset 0x%s "
3950 "in the thread-local storage for `%s'"),
3951 phex_nz (offset, addr_size), objfile_name (objfile));
3952 ++data;
3953 }
3954
3955 else if (data[0] >= DW_OP_lit0
3956 && data[0] <= DW_OP_lit31
3957 && data + 1 < end
3958 && data[1] == DW_OP_stack_value)
3959 {
3960 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3961 data += 2;
3962 }
3963
3964 return data;
3965 }
3966
3967 /* Disassemble an expression, stopping at the end of a piece or at the
3968 end of the expression. Returns a pointer to the next unread byte
3969 in the input expression. If ALL is nonzero, then this function
3970 will keep going until it reaches the end of the expression.
3971 If there is an error during reading, e.g. we run off the end
3972 of the buffer, an error is thrown. */
3973
3974 static const gdb_byte *
3975 disassemble_dwarf_expression (struct ui_file *stream,
3976 struct gdbarch *arch, unsigned int addr_size,
3977 int offset_size, const gdb_byte *start,
3978 const gdb_byte *data, const gdb_byte *end,
3979 int indent, int all,
3980 struct dwarf2_per_cu_data *per_cu)
3981 {
3982 while (data < end
3983 && (all
3984 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3985 {
3986 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3987 uint64_t ul;
3988 int64_t l;
3989 const char *name;
3990
3991 name = get_DW_OP_name (op);
3992
3993 if (!name)
3994 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3995 op, (long) (data - 1 - start));
3996 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3997 (long) (data - 1 - start), name);
3998
3999 switch (op)
4000 {
4001 case DW_OP_addr:
4002 ul = extract_unsigned_integer (data, addr_size,
4003 gdbarch_byte_order (arch));
4004 data += addr_size;
4005 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4006 break;
4007
4008 case DW_OP_const1u:
4009 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
4010 data += 1;
4011 fprintf_filtered (stream, " %s", pulongest (ul));
4012 break;
4013 case DW_OP_const1s:
4014 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
4015 data += 1;
4016 fprintf_filtered (stream, " %s", plongest (l));
4017 break;
4018 case DW_OP_const2u:
4019 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4020 data += 2;
4021 fprintf_filtered (stream, " %s", pulongest (ul));
4022 break;
4023 case DW_OP_const2s:
4024 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4025 data += 2;
4026 fprintf_filtered (stream, " %s", plongest (l));
4027 break;
4028 case DW_OP_const4u:
4029 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4030 data += 4;
4031 fprintf_filtered (stream, " %s", pulongest (ul));
4032 break;
4033 case DW_OP_const4s:
4034 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
4035 data += 4;
4036 fprintf_filtered (stream, " %s", plongest (l));
4037 break;
4038 case DW_OP_const8u:
4039 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4040 data += 8;
4041 fprintf_filtered (stream, " %s", pulongest (ul));
4042 break;
4043 case DW_OP_const8s:
4044 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4045 data += 8;
4046 fprintf_filtered (stream, " %s", plongest (l));
4047 break;
4048 case DW_OP_constu:
4049 data = safe_read_uleb128 (data, end, &ul);
4050 fprintf_filtered (stream, " %s", pulongest (ul));
4051 break;
4052 case DW_OP_consts:
4053 data = safe_read_sleb128 (data, end, &l);
4054 fprintf_filtered (stream, " %s", plongest (l));
4055 break;
4056
4057 case DW_OP_reg0:
4058 case DW_OP_reg1:
4059 case DW_OP_reg2:
4060 case DW_OP_reg3:
4061 case DW_OP_reg4:
4062 case DW_OP_reg5:
4063 case DW_OP_reg6:
4064 case DW_OP_reg7:
4065 case DW_OP_reg8:
4066 case DW_OP_reg9:
4067 case DW_OP_reg10:
4068 case DW_OP_reg11:
4069 case DW_OP_reg12:
4070 case DW_OP_reg13:
4071 case DW_OP_reg14:
4072 case DW_OP_reg15:
4073 case DW_OP_reg16:
4074 case DW_OP_reg17:
4075 case DW_OP_reg18:
4076 case DW_OP_reg19:
4077 case DW_OP_reg20:
4078 case DW_OP_reg21:
4079 case DW_OP_reg22:
4080 case DW_OP_reg23:
4081 case DW_OP_reg24:
4082 case DW_OP_reg25:
4083 case DW_OP_reg26:
4084 case DW_OP_reg27:
4085 case DW_OP_reg28:
4086 case DW_OP_reg29:
4087 case DW_OP_reg30:
4088 case DW_OP_reg31:
4089 fprintf_filtered (stream, " [$%s]",
4090 locexpr_regname (arch, op - DW_OP_reg0));
4091 break;
4092
4093 case DW_OP_regx:
4094 data = safe_read_uleb128 (data, end, &ul);
4095 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4096 locexpr_regname (arch, (int) ul));
4097 break;
4098
4099 case DW_OP_implicit_value:
4100 data = safe_read_uleb128 (data, end, &ul);
4101 data += ul;
4102 fprintf_filtered (stream, " %s", pulongest (ul));
4103 break;
4104
4105 case DW_OP_breg0:
4106 case DW_OP_breg1:
4107 case DW_OP_breg2:
4108 case DW_OP_breg3:
4109 case DW_OP_breg4:
4110 case DW_OP_breg5:
4111 case DW_OP_breg6:
4112 case DW_OP_breg7:
4113 case DW_OP_breg8:
4114 case DW_OP_breg9:
4115 case DW_OP_breg10:
4116 case DW_OP_breg11:
4117 case DW_OP_breg12:
4118 case DW_OP_breg13:
4119 case DW_OP_breg14:
4120 case DW_OP_breg15:
4121 case DW_OP_breg16:
4122 case DW_OP_breg17:
4123 case DW_OP_breg18:
4124 case DW_OP_breg19:
4125 case DW_OP_breg20:
4126 case DW_OP_breg21:
4127 case DW_OP_breg22:
4128 case DW_OP_breg23:
4129 case DW_OP_breg24:
4130 case DW_OP_breg25:
4131 case DW_OP_breg26:
4132 case DW_OP_breg27:
4133 case DW_OP_breg28:
4134 case DW_OP_breg29:
4135 case DW_OP_breg30:
4136 case DW_OP_breg31:
4137 data = safe_read_sleb128 (data, end, &l);
4138 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4139 locexpr_regname (arch, op - DW_OP_breg0));
4140 break;
4141
4142 case DW_OP_bregx:
4143 data = safe_read_uleb128 (data, end, &ul);
4144 data = safe_read_sleb128 (data, end, &l);
4145 fprintf_filtered (stream, " register %s [$%s] offset %s",
4146 pulongest (ul),
4147 locexpr_regname (arch, (int) ul),
4148 plongest (l));
4149 break;
4150
4151 case DW_OP_fbreg:
4152 data = safe_read_sleb128 (data, end, &l);
4153 fprintf_filtered (stream, " %s", plongest (l));
4154 break;
4155
4156 case DW_OP_xderef_size:
4157 case DW_OP_deref_size:
4158 case DW_OP_pick:
4159 fprintf_filtered (stream, " %d", *data);
4160 ++data;
4161 break;
4162
4163 case DW_OP_plus_uconst:
4164 data = safe_read_uleb128 (data, end, &ul);
4165 fprintf_filtered (stream, " %s", pulongest (ul));
4166 break;
4167
4168 case DW_OP_skip:
4169 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4170 data += 2;
4171 fprintf_filtered (stream, " to %ld",
4172 (long) (data + l - start));
4173 break;
4174
4175 case DW_OP_bra:
4176 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4177 data += 2;
4178 fprintf_filtered (stream, " %ld",
4179 (long) (data + l - start));
4180 break;
4181
4182 case DW_OP_call2:
4183 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4184 data += 2;
4185 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4186 break;
4187
4188 case DW_OP_call4:
4189 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4190 data += 4;
4191 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4192 break;
4193
4194 case DW_OP_call_ref:
4195 ul = extract_unsigned_integer (data, offset_size,
4196 gdbarch_byte_order (arch));
4197 data += offset_size;
4198 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4199 break;
4200
4201 case DW_OP_piece:
4202 data = safe_read_uleb128 (data, end, &ul);
4203 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4204 break;
4205
4206 case DW_OP_bit_piece:
4207 {
4208 uint64_t offset;
4209
4210 data = safe_read_uleb128 (data, end, &ul);
4211 data = safe_read_uleb128 (data, end, &offset);
4212 fprintf_filtered (stream, " size %s offset %s (bits)",
4213 pulongest (ul), pulongest (offset));
4214 }
4215 break;
4216
4217 case DW_OP_implicit_pointer:
4218 case DW_OP_GNU_implicit_pointer:
4219 {
4220 ul = extract_unsigned_integer (data, offset_size,
4221 gdbarch_byte_order (arch));
4222 data += offset_size;
4223
4224 data = safe_read_sleb128 (data, end, &l);
4225
4226 fprintf_filtered (stream, " DIE %s offset %s",
4227 phex_nz (ul, offset_size),
4228 plongest (l));
4229 }
4230 break;
4231
4232 case DW_OP_deref_type:
4233 case DW_OP_GNU_deref_type:
4234 {
4235 int addr_size = *data++;
4236 struct type *type;
4237
4238 data = safe_read_uleb128 (data, end, &ul);
4239 cu_offset offset = (cu_offset) ul;
4240 type = dwarf2_get_die_type (offset, per_cu);
4241 fprintf_filtered (stream, "<");
4242 type_print (type, "", stream, -1);
4243 fprintf_filtered (stream, " [0x%s]> %d",
4244 phex_nz (to_underlying (offset), 0),
4245 addr_size);
4246 }
4247 break;
4248
4249 case DW_OP_const_type:
4250 case DW_OP_GNU_const_type:
4251 {
4252 struct type *type;
4253
4254 data = safe_read_uleb128 (data, end, &ul);
4255 cu_offset type_die = (cu_offset) ul;
4256 type = dwarf2_get_die_type (type_die, per_cu);
4257 fprintf_filtered (stream, "<");
4258 type_print (type, "", stream, -1);
4259 fprintf_filtered (stream, " [0x%s]>",
4260 phex_nz (to_underlying (type_die), 0));
4261 }
4262 break;
4263
4264 case DW_OP_regval_type:
4265 case DW_OP_GNU_regval_type:
4266 {
4267 uint64_t reg;
4268 struct type *type;
4269
4270 data = safe_read_uleb128 (data, end, &reg);
4271 data = safe_read_uleb128 (data, end, &ul);
4272 cu_offset type_die = (cu_offset) ul;
4273
4274 type = dwarf2_get_die_type (type_die, per_cu);
4275 fprintf_filtered (stream, "<");
4276 type_print (type, "", stream, -1);
4277 fprintf_filtered (stream, " [0x%s]> [$%s]",
4278 phex_nz (to_underlying (type_die), 0),
4279 locexpr_regname (arch, reg));
4280 }
4281 break;
4282
4283 case DW_OP_convert:
4284 case DW_OP_GNU_convert:
4285 case DW_OP_reinterpret:
4286 case DW_OP_GNU_reinterpret:
4287 {
4288 data = safe_read_uleb128 (data, end, &ul);
4289 cu_offset type_die = (cu_offset) ul;
4290
4291 if (to_underlying (type_die) == 0)
4292 fprintf_filtered (stream, "<0>");
4293 else
4294 {
4295 struct type *type;
4296
4297 type = dwarf2_get_die_type (type_die, per_cu);
4298 fprintf_filtered (stream, "<");
4299 type_print (type, "", stream, -1);
4300 fprintf_filtered (stream, " [0x%s]>",
4301 phex_nz (to_underlying (type_die), 0));
4302 }
4303 }
4304 break;
4305
4306 case DW_OP_entry_value:
4307 case DW_OP_GNU_entry_value:
4308 data = safe_read_uleb128 (data, end, &ul);
4309 fputc_filtered ('\n', stream);
4310 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4311 start, data, data + ul, indent + 2,
4312 all, per_cu);
4313 data += ul;
4314 continue;
4315
4316 case DW_OP_GNU_parameter_ref:
4317 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4318 data += 4;
4319 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4320 break;
4321
4322 case DW_OP_GNU_addr_index:
4323 data = safe_read_uleb128 (data, end, &ul);
4324 ul = dwarf2_read_addr_index (per_cu, ul);
4325 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4326 break;
4327 case DW_OP_GNU_const_index:
4328 data = safe_read_uleb128 (data, end, &ul);
4329 ul = dwarf2_read_addr_index (per_cu, ul);
4330 fprintf_filtered (stream, " %s", pulongest (ul));
4331 break;
4332
4333 case DW_OP_GNU_variable_value:
4334 ul = extract_unsigned_integer (data, offset_size,
4335 gdbarch_byte_order (arch));
4336 data += offset_size;
4337 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4338 break;
4339 }
4340
4341 fprintf_filtered (stream, "\n");
4342 }
4343
4344 return data;
4345 }
4346
4347 /* Describe a single location, which may in turn consist of multiple
4348 pieces. */
4349
4350 static void
4351 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4352 struct ui_file *stream,
4353 const gdb_byte *data, size_t size,
4354 struct objfile *objfile, unsigned int addr_size,
4355 int offset_size, struct dwarf2_per_cu_data *per_cu)
4356 {
4357 const gdb_byte *end = data + size;
4358 int first_piece = 1, bad = 0;
4359
4360 while (data < end)
4361 {
4362 const gdb_byte *here = data;
4363 int disassemble = 1;
4364
4365 if (first_piece)
4366 first_piece = 0;
4367 else
4368 fprintf_filtered (stream, _(", and "));
4369
4370 if (!dwarf_always_disassemble)
4371 {
4372 data = locexpr_describe_location_piece (symbol, stream,
4373 addr, objfile, per_cu,
4374 data, end, addr_size);
4375 /* If we printed anything, or if we have an empty piece,
4376 then don't disassemble. */
4377 if (data != here
4378 || data[0] == DW_OP_piece
4379 || data[0] == DW_OP_bit_piece)
4380 disassemble = 0;
4381 }
4382 if (disassemble)
4383 {
4384 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4385 data = disassemble_dwarf_expression (stream,
4386 get_objfile_arch (objfile),
4387 addr_size, offset_size, data,
4388 data, end, 0,
4389 dwarf_always_disassemble,
4390 per_cu);
4391 }
4392
4393 if (data < end)
4394 {
4395 int empty = data == here;
4396
4397 if (disassemble)
4398 fprintf_filtered (stream, " ");
4399 if (data[0] == DW_OP_piece)
4400 {
4401 uint64_t bytes;
4402
4403 data = safe_read_uleb128 (data + 1, end, &bytes);
4404
4405 if (empty)
4406 fprintf_filtered (stream, _("an empty %s-byte piece"),
4407 pulongest (bytes));
4408 else
4409 fprintf_filtered (stream, _(" [%s-byte piece]"),
4410 pulongest (bytes));
4411 }
4412 else if (data[0] == DW_OP_bit_piece)
4413 {
4414 uint64_t bits, offset;
4415
4416 data = safe_read_uleb128 (data + 1, end, &bits);
4417 data = safe_read_uleb128 (data, end, &offset);
4418
4419 if (empty)
4420 fprintf_filtered (stream,
4421 _("an empty %s-bit piece"),
4422 pulongest (bits));
4423 else
4424 fprintf_filtered (stream,
4425 _(" [%s-bit piece, offset %s bits]"),
4426 pulongest (bits), pulongest (offset));
4427 }
4428 else
4429 {
4430 bad = 1;
4431 break;
4432 }
4433 }
4434 }
4435
4436 if (bad || data > end)
4437 error (_("Corrupted DWARF2 expression for \"%s\"."),
4438 SYMBOL_PRINT_NAME (symbol));
4439 }
4440
4441 /* Print a natural-language description of SYMBOL to STREAM. This
4442 version is for a symbol with a single location. */
4443
4444 static void
4445 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4446 struct ui_file *stream)
4447 {
4448 struct dwarf2_locexpr_baton *dlbaton
4449 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4450 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4451 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4452 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4453
4454 locexpr_describe_location_1 (symbol, addr, stream,
4455 dlbaton->data, dlbaton->size,
4456 objfile, addr_size, offset_size,
4457 dlbaton->per_cu);
4458 }
4459
4460 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4461 any necessary bytecode in AX. */
4462
4463 static void
4464 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4465 struct axs_value *value)
4466 {
4467 struct dwarf2_locexpr_baton *dlbaton
4468 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4469 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4470
4471 if (dlbaton->size == 0)
4472 value->optimized_out = 1;
4473 else
4474 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4475 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4476 }
4477
4478 /* symbol_computed_ops 'generate_c_location' method. */
4479
4480 static void
4481 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4482 struct gdbarch *gdbarch,
4483 unsigned char *registers_used,
4484 CORE_ADDR pc, const char *result_name)
4485 {
4486 struct dwarf2_locexpr_baton *dlbaton
4487 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4488 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4489
4490 if (dlbaton->size == 0)
4491 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4492
4493 compile_dwarf_expr_to_c (stream, result_name,
4494 sym, pc, gdbarch, registers_used, addr_size,
4495 dlbaton->data, dlbaton->data + dlbaton->size,
4496 dlbaton->per_cu);
4497 }
4498
4499 /* The set of location functions used with the DWARF-2 expression
4500 evaluator. */
4501 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4502 locexpr_read_variable,
4503 locexpr_read_variable_at_entry,
4504 locexpr_get_symbol_read_needs,
4505 locexpr_describe_location,
4506 0, /* location_has_loclist */
4507 locexpr_tracepoint_var_ref,
4508 locexpr_generate_c_location
4509 };
4510
4511
4512 /* Wrapper functions for location lists. These generally find
4513 the appropriate location expression and call something above. */
4514
4515 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4516 evaluator to calculate the location. */
4517 static struct value *
4518 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4519 {
4520 struct dwarf2_loclist_baton *dlbaton
4521 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4522 struct value *val;
4523 const gdb_byte *data;
4524 size_t size;
4525 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4526
4527 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4528 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4529 dlbaton->per_cu);
4530
4531 return val;
4532 }
4533
4534 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4535 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4536 will be thrown.
4537
4538 Function always returns non-NULL value, it may be marked optimized out if
4539 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4540 if it cannot resolve the parameter for any reason. */
4541
4542 static struct value *
4543 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4544 {
4545 struct dwarf2_loclist_baton *dlbaton
4546 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4547 const gdb_byte *data;
4548 size_t size;
4549 CORE_ADDR pc;
4550
4551 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4552 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4553
4554 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4555 if (data == NULL)
4556 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4557
4558 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4559 }
4560
4561 /* Implementation of get_symbol_read_needs from
4562 symbol_computed_ops. */
4563
4564 static enum symbol_needs_kind
4565 loclist_symbol_needs (struct symbol *symbol)
4566 {
4567 /* If there's a location list, then assume we need to have a frame
4568 to choose the appropriate location expression. With tracking of
4569 global variables this is not necessarily true, but such tracking
4570 is disabled in GCC at the moment until we figure out how to
4571 represent it. */
4572
4573 return SYMBOL_NEEDS_FRAME;
4574 }
4575
4576 /* Print a natural-language description of SYMBOL to STREAM. This
4577 version applies when there is a list of different locations, each
4578 with a specified address range. */
4579
4580 static void
4581 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4582 struct ui_file *stream)
4583 {
4584 struct dwarf2_loclist_baton *dlbaton
4585 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4586 const gdb_byte *loc_ptr, *buf_end;
4587 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4588 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4590 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4591 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4592 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4593 /* Adjust base_address for relocatable objects. */
4594 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4595 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4596 int done = 0;
4597
4598 loc_ptr = dlbaton->data;
4599 buf_end = dlbaton->data + dlbaton->size;
4600
4601 fprintf_filtered (stream, _("multi-location:\n"));
4602
4603 /* Iterate through locations until we run out. */
4604 while (!done)
4605 {
4606 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4607 int length;
4608 enum debug_loc_kind kind;
4609 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4610
4611 if (dlbaton->from_dwo)
4612 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4613 loc_ptr, buf_end, &new_ptr,
4614 &low, &high, byte_order);
4615 else
4616 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4617 &low, &high,
4618 byte_order, addr_size,
4619 signed_addr_p);
4620 loc_ptr = new_ptr;
4621 switch (kind)
4622 {
4623 case DEBUG_LOC_END_OF_LIST:
4624 done = 1;
4625 continue;
4626 case DEBUG_LOC_BASE_ADDRESS:
4627 base_address = high + base_offset;
4628 fprintf_filtered (stream, _(" Base address %s"),
4629 paddress (gdbarch, base_address));
4630 continue;
4631 case DEBUG_LOC_START_END:
4632 case DEBUG_LOC_START_LENGTH:
4633 break;
4634 case DEBUG_LOC_BUFFER_OVERFLOW:
4635 case DEBUG_LOC_INVALID_ENTRY:
4636 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4637 SYMBOL_PRINT_NAME (symbol));
4638 default:
4639 gdb_assert_not_reached ("bad debug_loc_kind");
4640 }
4641
4642 /* Otherwise, a location expression entry. */
4643 low += base_address;
4644 high += base_address;
4645
4646 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4647 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4648
4649 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4650 loc_ptr += 2;
4651
4652 /* (It would improve readability to print only the minimum
4653 necessary digits of the second number of the range.) */
4654 fprintf_filtered (stream, _(" Range %s-%s: "),
4655 paddress (gdbarch, low), paddress (gdbarch, high));
4656
4657 /* Now describe this particular location. */
4658 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4659 objfile, addr_size, offset_size,
4660 dlbaton->per_cu);
4661
4662 fprintf_filtered (stream, "\n");
4663
4664 loc_ptr += length;
4665 }
4666 }
4667
4668 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4669 any necessary bytecode in AX. */
4670 static void
4671 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4672 struct axs_value *value)
4673 {
4674 struct dwarf2_loclist_baton *dlbaton
4675 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4676 const gdb_byte *data;
4677 size_t size;
4678 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4679
4680 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4681 if (size == 0)
4682 value->optimized_out = 1;
4683 else
4684 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4685 dlbaton->per_cu);
4686 }
4687
4688 /* symbol_computed_ops 'generate_c_location' method. */
4689
4690 static void
4691 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4692 struct gdbarch *gdbarch,
4693 unsigned char *registers_used,
4694 CORE_ADDR pc, const char *result_name)
4695 {
4696 struct dwarf2_loclist_baton *dlbaton
4697 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4698 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4699 const gdb_byte *data;
4700 size_t size;
4701
4702 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4703 if (size == 0)
4704 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4705
4706 compile_dwarf_expr_to_c (stream, result_name,
4707 sym, pc, gdbarch, registers_used, addr_size,
4708 data, data + size,
4709 dlbaton->per_cu);
4710 }
4711
4712 /* The set of location functions used with the DWARF-2 expression
4713 evaluator and location lists. */
4714 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4715 loclist_read_variable,
4716 loclist_read_variable_at_entry,
4717 loclist_symbol_needs,
4718 loclist_describe_location,
4719 1, /* location_has_loclist */
4720 loclist_tracepoint_var_ref,
4721 loclist_generate_c_location
4722 };
4723
4724 void
4725 _initialize_dwarf2loc (void)
4726 {
4727 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4728 &entry_values_debug,
4729 _("Set entry values and tail call frames "
4730 "debugging."),
4731 _("Show entry values and tail call frames "
4732 "debugging."),
4733 _("When non-zero, the process of determining "
4734 "parameter values from function entry point "
4735 "and tail call frames will be printed."),
4736 NULL,
4737 show_entry_values_debug,
4738 &setdebuglist, &showdebuglist);
4739
4740 #if GDB_SELF_TEST
4741 selftests::register_test ("copy_bitwise", selftests::copy_bitwise_tests);
4742 #endif
4743 }
This page took 0.126318 seconds and 5 git commands to generate.