read/write_pieced_value: Merge into one function
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1756 bits whose first bit is located at bit offset START. */
1757
1758 static size_t
1759 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1760 {
1761 return (start % 8 + n_bits + 7) / 8;
1762 }
1763
1764 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1765 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1766 operate in "read mode": fetch the contents of the (lazy) value V by
1767 composing it from its pieces. */
1768
1769 static void
1770 rw_pieced_value (struct value *v, struct value *from)
1771 {
1772 int i;
1773 LONGEST offset = 0, max_offset;
1774 ULONGEST bits_to_skip;
1775 gdb_byte *v_contents;
1776 const gdb_byte *from_contents;
1777 struct piece_closure *c
1778 = (struct piece_closure *) value_computed_closure (v);
1779 std::vector<gdb_byte> buffer;
1780 int bits_big_endian
1781 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1782
1783 if (from != NULL)
1784 {
1785 from_contents = value_contents (from);
1786 v_contents = NULL;
1787 }
1788 else
1789 {
1790 if (value_type (v) != value_enclosing_type (v))
1791 internal_error (__FILE__, __LINE__,
1792 _("Should not be able to create a lazy value with "
1793 "an enclosing type"));
1794 v_contents = value_contents_raw (v);
1795 from_contents = NULL;
1796 }
1797
1798 bits_to_skip = 8 * value_offset (v);
1799 if (value_bitsize (v))
1800 {
1801 bits_to_skip += (8 * value_offset (value_parent (v))
1802 + value_bitpos (v));
1803 if (from != NULL
1804 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1805 == BFD_ENDIAN_BIG))
1806 {
1807 /* Use the least significant bits of FROM. */
1808 max_offset = 8 * TYPE_LENGTH (value_type (from));
1809 offset = max_offset - value_bitsize (v);
1810 }
1811 else
1812 max_offset = value_bitsize (v);
1813 }
1814 else
1815 max_offset = 8 * TYPE_LENGTH (value_type (v));
1816
1817 /* Advance to the first non-skipped piece. */
1818 for (i = 0; i < c->n_pieces && bits_to_skip >= c->pieces[i].size; i++)
1819 bits_to_skip -= c->pieces[i].size;
1820
1821 for (; i < c->n_pieces && offset < max_offset; i++)
1822 {
1823 struct dwarf_expr_piece *p = &c->pieces[i];
1824 size_t this_size_bits, this_size;
1825
1826 this_size_bits = p->size - bits_to_skip;
1827 if (this_size_bits > max_offset - offset)
1828 this_size_bits = max_offset - offset;
1829
1830 switch (p->location)
1831 {
1832 case DWARF_VALUE_REGISTER:
1833 {
1834 struct frame_info *frame = frame_find_by_id (c->frame_id);
1835 struct gdbarch *arch = get_frame_arch (frame);
1836 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1837 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1838 int optim, unavail;
1839
1840 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1841 && p->offset + p->size < reg_bits)
1842 {
1843 /* Big-endian, and we want less than full size. */
1844 bits_to_skip += reg_bits - (p->offset + p->size);
1845 }
1846 else
1847 bits_to_skip += p->offset;
1848
1849 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1850 buffer.reserve (this_size);
1851
1852 if (from == NULL)
1853 {
1854 /* Read mode. */
1855 if (!get_frame_register_bytes (frame, gdb_regnum,
1856 bits_to_skip / 8,
1857 this_size, buffer.data (),
1858 &optim, &unavail))
1859 {
1860 if (optim)
1861 mark_value_bits_optimized_out (v, offset,
1862 this_size_bits);
1863 if (unavail)
1864 mark_value_bits_unavailable (v, offset,
1865 this_size_bits);
1866 break;
1867 }
1868
1869 copy_bitwise (v_contents, offset,
1870 buffer.data (), bits_to_skip % 8,
1871 this_size_bits, bits_big_endian);
1872 }
1873 else
1874 {
1875 /* Write mode. */
1876 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1877 {
1878 /* Data is copied non-byte-aligned into the register.
1879 Need some bits from original register value. */
1880 get_frame_register_bytes (frame, gdb_regnum,
1881 bits_to_skip / 8,
1882 this_size, buffer.data (),
1883 &optim, &unavail);
1884 if (optim)
1885 throw_error (OPTIMIZED_OUT_ERROR,
1886 _("Can't do read-modify-write to "
1887 "update bitfield; containing word "
1888 "has been optimized out"));
1889 if (unavail)
1890 throw_error (NOT_AVAILABLE_ERROR,
1891 _("Can't do read-modify-write to "
1892 "update bitfield; containing word "
1893 "is unavailable"));
1894 }
1895
1896 copy_bitwise (buffer.data (), bits_to_skip % 8,
1897 from_contents, offset,
1898 this_size_bits, bits_big_endian);
1899 put_frame_register_bytes (frame, gdb_regnum,
1900 bits_to_skip / 8,
1901 this_size, buffer.data ());
1902 }
1903 }
1904 break;
1905
1906 case DWARF_VALUE_MEMORY:
1907 {
1908 bits_to_skip += p->offset;
1909
1910 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1911
1912 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1913 && offset % 8 == 0)
1914 {
1915 /* Everything is byte-aligned; no buffer needed. */
1916 if (from != NULL)
1917 write_memory_with_notification (start_addr,
1918 (from_contents
1919 + offset / 8),
1920 this_size_bits / 8);
1921 else
1922 read_value_memory (v, offset,
1923 p->v.mem.in_stack_memory,
1924 p->v.mem.addr + bits_to_skip / 8,
1925 v_contents + offset / 8,
1926 this_size_bits / 8);
1927 break;
1928 }
1929
1930 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1931 buffer.reserve (this_size);
1932
1933 if (from == NULL)
1934 {
1935 /* Read mode. */
1936 read_value_memory (v, offset,
1937 p->v.mem.in_stack_memory,
1938 p->v.mem.addr + bits_to_skip / 8,
1939 buffer.data (), this_size);
1940 copy_bitwise (v_contents, offset,
1941 buffer.data (), bits_to_skip % 8,
1942 this_size_bits, bits_big_endian);
1943 }
1944 else
1945 {
1946 /* Write mode. */
1947 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1948 {
1949 if (this_size <= 8)
1950 {
1951 /* Perform a single read for small sizes. */
1952 read_memory (start_addr, buffer.data (),
1953 this_size);
1954 }
1955 else
1956 {
1957 /* Only the first and last bytes can possibly have
1958 any bits reused. */
1959 read_memory (start_addr, buffer.data (), 1);
1960 read_memory (start_addr + this_size - 1,
1961 &buffer[this_size - 1], 1);
1962 }
1963 }
1964
1965 copy_bitwise (buffer.data (), bits_to_skip % 8,
1966 from_contents, offset,
1967 this_size_bits, bits_big_endian);
1968 write_memory_with_notification (start_addr,
1969 buffer.data (),
1970 this_size);
1971 }
1972 }
1973 break;
1974
1975 case DWARF_VALUE_STACK:
1976 {
1977 if (from != NULL)
1978 {
1979 mark_value_bits_optimized_out (v, offset, this_size_bits);
1980 break;
1981 }
1982
1983 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1984 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1985 ULONGEST stack_value_size_bits
1986 = 8 * TYPE_LENGTH (value_type (p->v.value));
1987
1988 /* Use zeroes if piece reaches beyond stack value. */
1989 if (p->offset + p->size > stack_value_size_bits)
1990 break;
1991
1992 /* Piece is anchored at least significant bit end. */
1993 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1994 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1995 else
1996 bits_to_skip += p->offset;
1997
1998 copy_bitwise (v_contents, offset,
1999 value_contents_all (p->v.value),
2000 bits_to_skip,
2001 this_size_bits, bits_big_endian);
2002 }
2003 break;
2004
2005 case DWARF_VALUE_LITERAL:
2006 {
2007 if (from != NULL)
2008 {
2009 mark_value_bits_optimized_out (v, offset, this_size_bits);
2010 break;
2011 }
2012
2013 ULONGEST literal_size_bits = 8 * p->v.literal.length;
2014 size_t n = this_size_bits;
2015
2016 /* Cut off at the end of the implicit value. */
2017 bits_to_skip += p->offset;
2018 if (bits_to_skip >= literal_size_bits)
2019 break;
2020 if (n > literal_size_bits - bits_to_skip)
2021 n = literal_size_bits - bits_to_skip;
2022
2023 copy_bitwise (v_contents, offset,
2024 p->v.literal.data, bits_to_skip,
2025 n, bits_big_endian);
2026 }
2027 break;
2028
2029 case DWARF_VALUE_IMPLICIT_POINTER:
2030 if (from != NULL)
2031 {
2032 mark_value_bits_optimized_out (v, offset, this_size_bits);
2033 break;
2034 }
2035
2036 /* These bits show up as zeros -- but do not cause the value to
2037 be considered optimized-out. */
2038 break;
2039
2040 case DWARF_VALUE_OPTIMIZED_OUT:
2041 mark_value_bits_optimized_out (v, offset, this_size_bits);
2042 break;
2043
2044 default:
2045 internal_error (__FILE__, __LINE__, _("invalid location type"));
2046 }
2047
2048 offset += this_size_bits;
2049 bits_to_skip = 0;
2050 }
2051 }
2052
2053
2054 static void
2055 read_pieced_value (struct value *v)
2056 {
2057 rw_pieced_value (v, NULL);
2058 }
2059
2060 static void
2061 write_pieced_value (struct value *to, struct value *from)
2062 {
2063 rw_pieced_value (to, from);
2064 }
2065
2066 /* An implementation of an lval_funcs method to see whether a value is
2067 a synthetic pointer. */
2068
2069 static int
2070 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2071 int bit_length)
2072 {
2073 struct piece_closure *c
2074 = (struct piece_closure *) value_computed_closure (value);
2075 int i;
2076
2077 bit_offset += 8 * value_offset (value);
2078 if (value_bitsize (value))
2079 bit_offset += value_bitpos (value);
2080
2081 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2082 {
2083 struct dwarf_expr_piece *p = &c->pieces[i];
2084 size_t this_size_bits = p->size;
2085
2086 if (bit_offset > 0)
2087 {
2088 if (bit_offset >= this_size_bits)
2089 {
2090 bit_offset -= this_size_bits;
2091 continue;
2092 }
2093
2094 bit_length -= this_size_bits - bit_offset;
2095 bit_offset = 0;
2096 }
2097 else
2098 bit_length -= this_size_bits;
2099
2100 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2101 return 0;
2102 }
2103
2104 return 1;
2105 }
2106
2107 /* A wrapper function for get_frame_address_in_block. */
2108
2109 static CORE_ADDR
2110 get_frame_address_in_block_wrapper (void *baton)
2111 {
2112 return get_frame_address_in_block ((struct frame_info *) baton);
2113 }
2114
2115 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2116
2117 static struct value *
2118 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2119 struct dwarf2_per_cu_data *per_cu,
2120 struct type *type)
2121 {
2122 struct value *result = NULL;
2123 struct obstack temp_obstack;
2124 struct cleanup *cleanup;
2125 const gdb_byte *bytes;
2126 LONGEST len;
2127
2128 obstack_init (&temp_obstack);
2129 cleanup = make_cleanup_obstack_free (&temp_obstack);
2130 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2131
2132 if (bytes != NULL)
2133 {
2134 if (byte_offset >= 0
2135 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2136 {
2137 bytes += byte_offset;
2138 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2139 }
2140 else
2141 invalid_synthetic_pointer ();
2142 }
2143 else
2144 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2145
2146 do_cleanups (cleanup);
2147
2148 return result;
2149 }
2150
2151 /* Fetch the value pointed to by a synthetic pointer. */
2152
2153 static struct value *
2154 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2155 struct dwarf2_per_cu_data *per_cu,
2156 struct frame_info *frame, struct type *type)
2157 {
2158 /* Fetch the location expression of the DIE we're pointing to. */
2159 struct dwarf2_locexpr_baton baton
2160 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2161 get_frame_address_in_block_wrapper, frame);
2162
2163 /* Get type of pointed-to DIE. */
2164 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2165 if (orig_type == NULL)
2166 invalid_synthetic_pointer ();
2167
2168 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2169 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2170 or it may've been optimized out. */
2171 if (baton.data != NULL)
2172 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2173 baton.size, baton.per_cu,
2174 TYPE_TARGET_TYPE (type),
2175 byte_offset);
2176 else
2177 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2178 type);
2179 }
2180
2181 /* An implementation of an lval_funcs method to indirect through a
2182 pointer. This handles the synthetic pointer case when needed. */
2183
2184 static struct value *
2185 indirect_pieced_value (struct value *value)
2186 {
2187 struct piece_closure *c
2188 = (struct piece_closure *) value_computed_closure (value);
2189 struct type *type;
2190 struct frame_info *frame;
2191 struct dwarf2_locexpr_baton baton;
2192 int i, bit_length;
2193 LONGEST bit_offset;
2194 struct dwarf_expr_piece *piece = NULL;
2195 LONGEST byte_offset;
2196 enum bfd_endian byte_order;
2197
2198 type = check_typedef (value_type (value));
2199 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2200 return NULL;
2201
2202 bit_length = 8 * TYPE_LENGTH (type);
2203 bit_offset = 8 * value_offset (value);
2204 if (value_bitsize (value))
2205 bit_offset += value_bitpos (value);
2206
2207 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2208 {
2209 struct dwarf_expr_piece *p = &c->pieces[i];
2210 size_t this_size_bits = p->size;
2211
2212 if (bit_offset > 0)
2213 {
2214 if (bit_offset >= this_size_bits)
2215 {
2216 bit_offset -= this_size_bits;
2217 continue;
2218 }
2219
2220 bit_length -= this_size_bits - bit_offset;
2221 bit_offset = 0;
2222 }
2223 else
2224 bit_length -= this_size_bits;
2225
2226 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2227 return NULL;
2228
2229 if (bit_length != 0)
2230 error (_("Invalid use of DW_OP_implicit_pointer"));
2231
2232 piece = p;
2233 break;
2234 }
2235
2236 gdb_assert (piece != NULL);
2237 frame = get_selected_frame (_("No frame selected."));
2238
2239 /* This is an offset requested by GDB, such as value subscripts.
2240 However, due to how synthetic pointers are implemented, this is
2241 always presented to us as a pointer type. This means we have to
2242 sign-extend it manually as appropriate. Use raw
2243 extract_signed_integer directly rather than value_as_address and
2244 sign extend afterwards on architectures that would need it
2245 (mostly everywhere except MIPS, which has signed addresses) as
2246 the later would go through gdbarch_pointer_to_address and thus
2247 return a CORE_ADDR with high bits set on architectures that
2248 encode address spaces and other things in CORE_ADDR. */
2249 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2250 byte_offset = extract_signed_integer (value_contents (value),
2251 TYPE_LENGTH (type), byte_order);
2252 byte_offset += piece->v.ptr.offset;
2253
2254 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2255 byte_offset, c->per_cu,
2256 frame, type);
2257 }
2258
2259 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2260 references. */
2261
2262 static struct value *
2263 coerce_pieced_ref (const struct value *value)
2264 {
2265 struct type *type = check_typedef (value_type (value));
2266
2267 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2268 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2269 {
2270 const struct piece_closure *closure
2271 = (struct piece_closure *) value_computed_closure (value);
2272 struct frame_info *frame
2273 = get_selected_frame (_("No frame selected."));
2274
2275 /* gdb represents synthetic pointers as pieced values with a single
2276 piece. */
2277 gdb_assert (closure != NULL);
2278 gdb_assert (closure->n_pieces == 1);
2279
2280 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2281 closure->pieces->v.ptr.offset,
2282 closure->per_cu, frame, type);
2283 }
2284 else
2285 {
2286 /* Else: not a synthetic reference; do nothing. */
2287 return NULL;
2288 }
2289 }
2290
2291 static void *
2292 copy_pieced_value_closure (const struct value *v)
2293 {
2294 struct piece_closure *c
2295 = (struct piece_closure *) value_computed_closure (v);
2296
2297 ++c->refc;
2298 return c;
2299 }
2300
2301 static void
2302 free_pieced_value_closure (struct value *v)
2303 {
2304 struct piece_closure *c
2305 = (struct piece_closure *) value_computed_closure (v);
2306
2307 --c->refc;
2308 if (c->refc == 0)
2309 {
2310 int i;
2311
2312 for (i = 0; i < c->n_pieces; ++i)
2313 if (c->pieces[i].location == DWARF_VALUE_STACK)
2314 value_free (c->pieces[i].v.value);
2315
2316 xfree (c->pieces);
2317 xfree (c);
2318 }
2319 }
2320
2321 /* Functions for accessing a variable described by DW_OP_piece. */
2322 static const struct lval_funcs pieced_value_funcs = {
2323 read_pieced_value,
2324 write_pieced_value,
2325 indirect_pieced_value,
2326 coerce_pieced_ref,
2327 check_pieced_synthetic_pointer,
2328 copy_pieced_value_closure,
2329 free_pieced_value_closure
2330 };
2331
2332 /* Evaluate a location description, starting at DATA and with length
2333 SIZE, to find the current location of variable of TYPE in the
2334 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2335 location of the subobject of type SUBOBJ_TYPE at byte offset
2336 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2337
2338 static struct value *
2339 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2340 const gdb_byte *data, size_t size,
2341 struct dwarf2_per_cu_data *per_cu,
2342 struct type *subobj_type,
2343 LONGEST subobj_byte_offset)
2344 {
2345 struct value *retval;
2346 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2347
2348 if (subobj_type == NULL)
2349 {
2350 subobj_type = type;
2351 subobj_byte_offset = 0;
2352 }
2353 else if (subobj_byte_offset < 0)
2354 invalid_synthetic_pointer ();
2355
2356 if (size == 0)
2357 return allocate_optimized_out_value (subobj_type);
2358
2359 dwarf_evaluate_loc_desc ctx;
2360 ctx.frame = frame;
2361 ctx.per_cu = per_cu;
2362 ctx.obj_address = 0;
2363
2364 scoped_value_mark free_values;
2365
2366 ctx.gdbarch = get_objfile_arch (objfile);
2367 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2368 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2369 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2370
2371 TRY
2372 {
2373 ctx.eval (data, size);
2374 }
2375 CATCH (ex, RETURN_MASK_ERROR)
2376 {
2377 if (ex.error == NOT_AVAILABLE_ERROR)
2378 {
2379 free_values.free_to_mark ();
2380 retval = allocate_value (subobj_type);
2381 mark_value_bytes_unavailable (retval, 0,
2382 TYPE_LENGTH (subobj_type));
2383 return retval;
2384 }
2385 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2386 {
2387 if (entry_values_debug)
2388 exception_print (gdb_stdout, ex);
2389 free_values.free_to_mark ();
2390 return allocate_optimized_out_value (subobj_type);
2391 }
2392 else
2393 throw_exception (ex);
2394 }
2395 END_CATCH
2396
2397 if (ctx.num_pieces > 0)
2398 {
2399 struct piece_closure *c;
2400 ULONGEST bit_size = 0;
2401 int i;
2402
2403 for (i = 0; i < ctx.num_pieces; ++i)
2404 bit_size += ctx.pieces[i].size;
2405 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2406 invalid_synthetic_pointer ();
2407
2408 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2409 frame);
2410 /* We must clean up the value chain after creating the piece
2411 closure but before allocating the result. */
2412 free_values.free_to_mark ();
2413 retval = allocate_computed_value (subobj_type,
2414 &pieced_value_funcs, c);
2415 set_value_offset (retval, subobj_byte_offset);
2416 }
2417 else
2418 {
2419 switch (ctx.location)
2420 {
2421 case DWARF_VALUE_REGISTER:
2422 {
2423 struct gdbarch *arch = get_frame_arch (frame);
2424 int dwarf_regnum
2425 = longest_to_int (value_as_long (ctx.fetch (0)));
2426 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2427
2428 if (subobj_byte_offset != 0)
2429 error (_("cannot use offset on synthetic pointer to register"));
2430 free_values.free_to_mark ();
2431 retval = value_from_register (subobj_type, gdb_regnum, frame);
2432 if (value_optimized_out (retval))
2433 {
2434 struct value *tmp;
2435
2436 /* This means the register has undefined value / was
2437 not saved. As we're computing the location of some
2438 variable etc. in the program, not a value for
2439 inspecting a register ($pc, $sp, etc.), return a
2440 generic optimized out value instead, so that we show
2441 <optimized out> instead of <not saved>. */
2442 tmp = allocate_value (subobj_type);
2443 value_contents_copy (tmp, 0, retval, 0,
2444 TYPE_LENGTH (subobj_type));
2445 retval = tmp;
2446 }
2447 }
2448 break;
2449
2450 case DWARF_VALUE_MEMORY:
2451 {
2452 struct type *ptr_type;
2453 CORE_ADDR address = ctx.fetch_address (0);
2454 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2455
2456 /* DW_OP_deref_size (and possibly other operations too) may
2457 create a pointer instead of an address. Ideally, the
2458 pointer to address conversion would be performed as part
2459 of those operations, but the type of the object to
2460 which the address refers is not known at the time of
2461 the operation. Therefore, we do the conversion here
2462 since the type is readily available. */
2463
2464 switch (TYPE_CODE (subobj_type))
2465 {
2466 case TYPE_CODE_FUNC:
2467 case TYPE_CODE_METHOD:
2468 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2469 break;
2470 default:
2471 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2472 break;
2473 }
2474 address = value_as_address (value_from_pointer (ptr_type, address));
2475
2476 free_values.free_to_mark ();
2477 retval = value_at_lazy (subobj_type,
2478 address + subobj_byte_offset);
2479 if (in_stack_memory)
2480 set_value_stack (retval, 1);
2481 }
2482 break;
2483
2484 case DWARF_VALUE_STACK:
2485 {
2486 struct value *value = ctx.fetch (0);
2487 size_t n = TYPE_LENGTH (value_type (value));
2488 size_t len = TYPE_LENGTH (subobj_type);
2489 size_t max = TYPE_LENGTH (type);
2490 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2491 struct cleanup *cleanup;
2492
2493 if (subobj_byte_offset + len > max)
2494 invalid_synthetic_pointer ();
2495
2496 /* Preserve VALUE because we are going to free values back
2497 to the mark, but we still need the value contents
2498 below. */
2499 value_incref (value);
2500 free_values.free_to_mark ();
2501 cleanup = make_cleanup_value_free (value);
2502
2503 retval = allocate_value (subobj_type);
2504
2505 /* The given offset is relative to the actual object. */
2506 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2507 subobj_byte_offset += n - max;
2508
2509 memcpy (value_contents_raw (retval),
2510 value_contents_all (value) + subobj_byte_offset, len);
2511
2512 do_cleanups (cleanup);
2513 }
2514 break;
2515
2516 case DWARF_VALUE_LITERAL:
2517 {
2518 bfd_byte *contents;
2519 size_t n = TYPE_LENGTH (subobj_type);
2520
2521 if (subobj_byte_offset + n > ctx.len)
2522 invalid_synthetic_pointer ();
2523
2524 free_values.free_to_mark ();
2525 retval = allocate_value (subobj_type);
2526 contents = value_contents_raw (retval);
2527 memcpy (contents, ctx.data + subobj_byte_offset, n);
2528 }
2529 break;
2530
2531 case DWARF_VALUE_OPTIMIZED_OUT:
2532 free_values.free_to_mark ();
2533 retval = allocate_optimized_out_value (subobj_type);
2534 break;
2535
2536 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2537 operation by execute_stack_op. */
2538 case DWARF_VALUE_IMPLICIT_POINTER:
2539 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2540 it can only be encountered when making a piece. */
2541 default:
2542 internal_error (__FILE__, __LINE__, _("invalid location type"));
2543 }
2544 }
2545
2546 set_value_initialized (retval, ctx.initialized);
2547
2548 return retval;
2549 }
2550
2551 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2552 passes 0 as the byte_offset. */
2553
2554 struct value *
2555 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2556 const gdb_byte *data, size_t size,
2557 struct dwarf2_per_cu_data *per_cu)
2558 {
2559 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2560 NULL, 0);
2561 }
2562
2563 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2564 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2565 frame in which the expression is evaluated. ADDR is a context (location of
2566 a variable) and might be needed to evaluate the location expression.
2567 Returns 1 on success, 0 otherwise. */
2568
2569 static int
2570 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2571 struct frame_info *frame,
2572 CORE_ADDR addr,
2573 CORE_ADDR *valp)
2574 {
2575 struct objfile *objfile;
2576
2577 if (dlbaton == NULL || dlbaton->size == 0)
2578 return 0;
2579
2580 dwarf_evaluate_loc_desc ctx;
2581
2582 ctx.frame = frame;
2583 ctx.per_cu = dlbaton->per_cu;
2584 ctx.obj_address = addr;
2585
2586 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2587
2588 ctx.gdbarch = get_objfile_arch (objfile);
2589 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2590 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2591 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2592
2593 ctx.eval (dlbaton->data, dlbaton->size);
2594
2595 switch (ctx.location)
2596 {
2597 case DWARF_VALUE_REGISTER:
2598 case DWARF_VALUE_MEMORY:
2599 case DWARF_VALUE_STACK:
2600 *valp = ctx.fetch_address (0);
2601 if (ctx.location == DWARF_VALUE_REGISTER)
2602 *valp = ctx.read_addr_from_reg (*valp);
2603 return 1;
2604 case DWARF_VALUE_LITERAL:
2605 *valp = extract_signed_integer (ctx.data, ctx.len,
2606 gdbarch_byte_order (ctx.gdbarch));
2607 return 1;
2608 /* Unsupported dwarf values. */
2609 case DWARF_VALUE_OPTIMIZED_OUT:
2610 case DWARF_VALUE_IMPLICIT_POINTER:
2611 break;
2612 }
2613
2614 return 0;
2615 }
2616
2617 /* See dwarf2loc.h. */
2618
2619 int
2620 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2621 struct frame_info *frame,
2622 struct property_addr_info *addr_stack,
2623 CORE_ADDR *value)
2624 {
2625 if (prop == NULL)
2626 return 0;
2627
2628 if (frame == NULL && has_stack_frames ())
2629 frame = get_selected_frame (NULL);
2630
2631 switch (prop->kind)
2632 {
2633 case PROP_LOCEXPR:
2634 {
2635 const struct dwarf2_property_baton *baton
2636 = (const struct dwarf2_property_baton *) prop->data.baton;
2637
2638 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2639 addr_stack ? addr_stack->addr : 0,
2640 value))
2641 {
2642 if (baton->referenced_type)
2643 {
2644 struct value *val = value_at (baton->referenced_type, *value);
2645
2646 *value = value_as_address (val);
2647 }
2648 return 1;
2649 }
2650 }
2651 break;
2652
2653 case PROP_LOCLIST:
2654 {
2655 struct dwarf2_property_baton *baton
2656 = (struct dwarf2_property_baton *) prop->data.baton;
2657 CORE_ADDR pc = get_frame_address_in_block (frame);
2658 const gdb_byte *data;
2659 struct value *val;
2660 size_t size;
2661
2662 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2663 if (data != NULL)
2664 {
2665 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2666 size, baton->loclist.per_cu);
2667 if (!value_optimized_out (val))
2668 {
2669 *value = value_as_address (val);
2670 return 1;
2671 }
2672 }
2673 }
2674 break;
2675
2676 case PROP_CONST:
2677 *value = prop->data.const_val;
2678 return 1;
2679
2680 case PROP_ADDR_OFFSET:
2681 {
2682 struct dwarf2_property_baton *baton
2683 = (struct dwarf2_property_baton *) prop->data.baton;
2684 struct property_addr_info *pinfo;
2685 struct value *val;
2686
2687 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2688 if (pinfo->type == baton->referenced_type)
2689 break;
2690 if (pinfo == NULL)
2691 error (_("cannot find reference address for offset property"));
2692 if (pinfo->valaddr != NULL)
2693 val = value_from_contents
2694 (baton->offset_info.type,
2695 pinfo->valaddr + baton->offset_info.offset);
2696 else
2697 val = value_at (baton->offset_info.type,
2698 pinfo->addr + baton->offset_info.offset);
2699 *value = value_as_address (val);
2700 return 1;
2701 }
2702 }
2703
2704 return 0;
2705 }
2706
2707 /* See dwarf2loc.h. */
2708
2709 void
2710 dwarf2_compile_property_to_c (string_file &stream,
2711 const char *result_name,
2712 struct gdbarch *gdbarch,
2713 unsigned char *registers_used,
2714 const struct dynamic_prop *prop,
2715 CORE_ADDR pc,
2716 struct symbol *sym)
2717 {
2718 struct dwarf2_property_baton *baton
2719 = (struct dwarf2_property_baton *) prop->data.baton;
2720 const gdb_byte *data;
2721 size_t size;
2722 struct dwarf2_per_cu_data *per_cu;
2723
2724 if (prop->kind == PROP_LOCEXPR)
2725 {
2726 data = baton->locexpr.data;
2727 size = baton->locexpr.size;
2728 per_cu = baton->locexpr.per_cu;
2729 }
2730 else
2731 {
2732 gdb_assert (prop->kind == PROP_LOCLIST);
2733
2734 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2735 per_cu = baton->loclist.per_cu;
2736 }
2737
2738 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2739 gdbarch, registers_used,
2740 dwarf2_per_cu_addr_size (per_cu),
2741 data, data + size, per_cu);
2742 }
2743
2744 \f
2745 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2746
2747 class symbol_needs_eval_context : public dwarf_expr_context
2748 {
2749 public:
2750
2751 enum symbol_needs_kind needs;
2752 struct dwarf2_per_cu_data *per_cu;
2753
2754 /* Reads from registers do require a frame. */
2755 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2756 {
2757 needs = SYMBOL_NEEDS_FRAME;
2758 return 1;
2759 }
2760
2761 /* "get_reg_value" callback: Reads from registers do require a
2762 frame. */
2763
2764 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2765 {
2766 needs = SYMBOL_NEEDS_FRAME;
2767 return value_zero (type, not_lval);
2768 }
2769
2770 /* Reads from memory do not require a frame. */
2771 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2772 {
2773 memset (buf, 0, len);
2774 }
2775
2776 /* Frame-relative accesses do require a frame. */
2777 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2778 {
2779 static gdb_byte lit0 = DW_OP_lit0;
2780
2781 *start = &lit0;
2782 *length = 1;
2783
2784 needs = SYMBOL_NEEDS_FRAME;
2785 }
2786
2787 /* CFA accesses require a frame. */
2788 CORE_ADDR get_frame_cfa () OVERRIDE
2789 {
2790 needs = SYMBOL_NEEDS_FRAME;
2791 return 1;
2792 }
2793
2794 CORE_ADDR get_frame_pc () OVERRIDE
2795 {
2796 needs = SYMBOL_NEEDS_FRAME;
2797 return 1;
2798 }
2799
2800 /* Thread-local accesses require registers, but not a frame. */
2801 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2802 {
2803 if (needs <= SYMBOL_NEEDS_REGISTERS)
2804 needs = SYMBOL_NEEDS_REGISTERS;
2805 return 1;
2806 }
2807
2808 /* Helper interface of per_cu_dwarf_call for
2809 dwarf2_loc_desc_get_symbol_read_needs. */
2810
2811 void dwarf_call (cu_offset die_offset) OVERRIDE
2812 {
2813 per_cu_dwarf_call (this, die_offset, per_cu);
2814 }
2815
2816 /* DW_OP_entry_value accesses require a caller, therefore a
2817 frame. */
2818
2819 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2820 union call_site_parameter_u kind_u,
2821 int deref_size) OVERRIDE
2822 {
2823 needs = SYMBOL_NEEDS_FRAME;
2824
2825 /* The expression may require some stub values on DWARF stack. */
2826 push_address (0, 0);
2827 }
2828
2829 /* DW_OP_GNU_addr_index doesn't require a frame. */
2830
2831 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2832 {
2833 /* Nothing to do. */
2834 return 1;
2835 }
2836
2837 /* DW_OP_push_object_address has a frame already passed through. */
2838
2839 CORE_ADDR get_object_address () OVERRIDE
2840 {
2841 /* Nothing to do. */
2842 return 1;
2843 }
2844 };
2845
2846 /* Compute the correct symbol_needs_kind value for the location
2847 expression at DATA (length SIZE). */
2848
2849 static enum symbol_needs_kind
2850 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2851 struct dwarf2_per_cu_data *per_cu)
2852 {
2853 int in_reg;
2854 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2855
2856 scoped_value_mark free_values;
2857
2858 symbol_needs_eval_context ctx;
2859
2860 ctx.needs = SYMBOL_NEEDS_NONE;
2861 ctx.per_cu = per_cu;
2862 ctx.gdbarch = get_objfile_arch (objfile);
2863 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2864 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2865 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2866
2867 ctx.eval (data, size);
2868
2869 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2870
2871 if (ctx.num_pieces > 0)
2872 {
2873 int i;
2874
2875 /* If the location has several pieces, and any of them are in
2876 registers, then we will need a frame to fetch them from. */
2877 for (i = 0; i < ctx.num_pieces; i++)
2878 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2879 in_reg = 1;
2880 }
2881
2882 if (in_reg)
2883 ctx.needs = SYMBOL_NEEDS_FRAME;
2884 return ctx.needs;
2885 }
2886
2887 /* A helper function that throws an unimplemented error mentioning a
2888 given DWARF operator. */
2889
2890 static void
2891 unimplemented (unsigned int op)
2892 {
2893 const char *name = get_DW_OP_name (op);
2894
2895 if (name)
2896 error (_("DWARF operator %s cannot be translated to an agent expression"),
2897 name);
2898 else
2899 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2900 "to an agent expression"),
2901 op);
2902 }
2903
2904 /* See dwarf2loc.h.
2905
2906 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2907 can issue a complaint, which is better than having every target's
2908 implementation of dwarf2_reg_to_regnum do it. */
2909
2910 int
2911 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2912 {
2913 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2914
2915 if (reg == -1)
2916 {
2917 complaint (&symfile_complaints,
2918 _("bad DWARF register number %d"), dwarf_reg);
2919 }
2920 return reg;
2921 }
2922
2923 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2924 Throw an error because DWARF_REG is bad. */
2925
2926 static void
2927 throw_bad_regnum_error (ULONGEST dwarf_reg)
2928 {
2929 /* Still want to print -1 as "-1".
2930 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2931 but that's overkill for now. */
2932 if ((int) dwarf_reg == dwarf_reg)
2933 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2934 error (_("Unable to access DWARF register number %s"),
2935 pulongest (dwarf_reg));
2936 }
2937
2938 /* See dwarf2loc.h. */
2939
2940 int
2941 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2942 {
2943 int reg;
2944
2945 if (dwarf_reg > INT_MAX)
2946 throw_bad_regnum_error (dwarf_reg);
2947 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2948 bad, but that's ok. */
2949 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2950 if (reg == -1)
2951 throw_bad_regnum_error (dwarf_reg);
2952 return reg;
2953 }
2954
2955 /* A helper function that emits an access to memory. ARCH is the
2956 target architecture. EXPR is the expression which we are building.
2957 NBITS is the number of bits we want to read. This emits the
2958 opcodes needed to read the memory and then extract the desired
2959 bits. */
2960
2961 static void
2962 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2963 {
2964 ULONGEST nbytes = (nbits + 7) / 8;
2965
2966 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2967
2968 if (expr->tracing)
2969 ax_trace_quick (expr, nbytes);
2970
2971 if (nbits <= 8)
2972 ax_simple (expr, aop_ref8);
2973 else if (nbits <= 16)
2974 ax_simple (expr, aop_ref16);
2975 else if (nbits <= 32)
2976 ax_simple (expr, aop_ref32);
2977 else
2978 ax_simple (expr, aop_ref64);
2979
2980 /* If we read exactly the number of bytes we wanted, we're done. */
2981 if (8 * nbytes == nbits)
2982 return;
2983
2984 if (gdbarch_bits_big_endian (arch))
2985 {
2986 /* On a bits-big-endian machine, we want the high-order
2987 NBITS. */
2988 ax_const_l (expr, 8 * nbytes - nbits);
2989 ax_simple (expr, aop_rsh_unsigned);
2990 }
2991 else
2992 {
2993 /* On a bits-little-endian box, we want the low-order NBITS. */
2994 ax_zero_ext (expr, nbits);
2995 }
2996 }
2997
2998 /* A helper function to return the frame's PC. */
2999
3000 static CORE_ADDR
3001 get_ax_pc (void *baton)
3002 {
3003 struct agent_expr *expr = (struct agent_expr *) baton;
3004
3005 return expr->scope;
3006 }
3007
3008 /* Compile a DWARF location expression to an agent expression.
3009
3010 EXPR is the agent expression we are building.
3011 LOC is the agent value we modify.
3012 ARCH is the architecture.
3013 ADDR_SIZE is the size of addresses, in bytes.
3014 OP_PTR is the start of the location expression.
3015 OP_END is one past the last byte of the location expression.
3016
3017 This will throw an exception for various kinds of errors -- for
3018 example, if the expression cannot be compiled, or if the expression
3019 is invalid. */
3020
3021 void
3022 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3023 struct gdbarch *arch, unsigned int addr_size,
3024 const gdb_byte *op_ptr, const gdb_byte *op_end,
3025 struct dwarf2_per_cu_data *per_cu)
3026 {
3027 int i;
3028 std::vector<int> dw_labels, patches;
3029 const gdb_byte * const base = op_ptr;
3030 const gdb_byte *previous_piece = op_ptr;
3031 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3032 ULONGEST bits_collected = 0;
3033 unsigned int addr_size_bits = 8 * addr_size;
3034 int bits_big_endian = gdbarch_bits_big_endian (arch);
3035
3036 std::vector<int> offsets (op_end - op_ptr, -1);
3037
3038 /* By default we are making an address. */
3039 loc->kind = axs_lvalue_memory;
3040
3041 while (op_ptr < op_end)
3042 {
3043 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3044 uint64_t uoffset, reg;
3045 int64_t offset;
3046 int i;
3047
3048 offsets[op_ptr - base] = expr->len;
3049 ++op_ptr;
3050
3051 /* Our basic approach to code generation is to map DWARF
3052 operations directly to AX operations. However, there are
3053 some differences.
3054
3055 First, DWARF works on address-sized units, but AX always uses
3056 LONGEST. For most operations we simply ignore this
3057 difference; instead we generate sign extensions as needed
3058 before division and comparison operations. It would be nice
3059 to omit the sign extensions, but there is no way to determine
3060 the size of the target's LONGEST. (This code uses the size
3061 of the host LONGEST in some cases -- that is a bug but it is
3062 difficult to fix.)
3063
3064 Second, some DWARF operations cannot be translated to AX.
3065 For these we simply fail. See
3066 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3067 switch (op)
3068 {
3069 case DW_OP_lit0:
3070 case DW_OP_lit1:
3071 case DW_OP_lit2:
3072 case DW_OP_lit3:
3073 case DW_OP_lit4:
3074 case DW_OP_lit5:
3075 case DW_OP_lit6:
3076 case DW_OP_lit7:
3077 case DW_OP_lit8:
3078 case DW_OP_lit9:
3079 case DW_OP_lit10:
3080 case DW_OP_lit11:
3081 case DW_OP_lit12:
3082 case DW_OP_lit13:
3083 case DW_OP_lit14:
3084 case DW_OP_lit15:
3085 case DW_OP_lit16:
3086 case DW_OP_lit17:
3087 case DW_OP_lit18:
3088 case DW_OP_lit19:
3089 case DW_OP_lit20:
3090 case DW_OP_lit21:
3091 case DW_OP_lit22:
3092 case DW_OP_lit23:
3093 case DW_OP_lit24:
3094 case DW_OP_lit25:
3095 case DW_OP_lit26:
3096 case DW_OP_lit27:
3097 case DW_OP_lit28:
3098 case DW_OP_lit29:
3099 case DW_OP_lit30:
3100 case DW_OP_lit31:
3101 ax_const_l (expr, op - DW_OP_lit0);
3102 break;
3103
3104 case DW_OP_addr:
3105 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3106 op_ptr += addr_size;
3107 /* Some versions of GCC emit DW_OP_addr before
3108 DW_OP_GNU_push_tls_address. In this case the value is an
3109 index, not an address. We don't support things like
3110 branching between the address and the TLS op. */
3111 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3112 uoffset += dwarf2_per_cu_text_offset (per_cu);
3113 ax_const_l (expr, uoffset);
3114 break;
3115
3116 case DW_OP_const1u:
3117 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3118 op_ptr += 1;
3119 break;
3120 case DW_OP_const1s:
3121 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3122 op_ptr += 1;
3123 break;
3124 case DW_OP_const2u:
3125 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3126 op_ptr += 2;
3127 break;
3128 case DW_OP_const2s:
3129 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3130 op_ptr += 2;
3131 break;
3132 case DW_OP_const4u:
3133 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3134 op_ptr += 4;
3135 break;
3136 case DW_OP_const4s:
3137 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3138 op_ptr += 4;
3139 break;
3140 case DW_OP_const8u:
3141 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3142 op_ptr += 8;
3143 break;
3144 case DW_OP_const8s:
3145 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3146 op_ptr += 8;
3147 break;
3148 case DW_OP_constu:
3149 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3150 ax_const_l (expr, uoffset);
3151 break;
3152 case DW_OP_consts:
3153 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3154 ax_const_l (expr, offset);
3155 break;
3156
3157 case DW_OP_reg0:
3158 case DW_OP_reg1:
3159 case DW_OP_reg2:
3160 case DW_OP_reg3:
3161 case DW_OP_reg4:
3162 case DW_OP_reg5:
3163 case DW_OP_reg6:
3164 case DW_OP_reg7:
3165 case DW_OP_reg8:
3166 case DW_OP_reg9:
3167 case DW_OP_reg10:
3168 case DW_OP_reg11:
3169 case DW_OP_reg12:
3170 case DW_OP_reg13:
3171 case DW_OP_reg14:
3172 case DW_OP_reg15:
3173 case DW_OP_reg16:
3174 case DW_OP_reg17:
3175 case DW_OP_reg18:
3176 case DW_OP_reg19:
3177 case DW_OP_reg20:
3178 case DW_OP_reg21:
3179 case DW_OP_reg22:
3180 case DW_OP_reg23:
3181 case DW_OP_reg24:
3182 case DW_OP_reg25:
3183 case DW_OP_reg26:
3184 case DW_OP_reg27:
3185 case DW_OP_reg28:
3186 case DW_OP_reg29:
3187 case DW_OP_reg30:
3188 case DW_OP_reg31:
3189 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3190 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3191 loc->kind = axs_lvalue_register;
3192 break;
3193
3194 case DW_OP_regx:
3195 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3196 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3197 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3198 loc->kind = axs_lvalue_register;
3199 break;
3200
3201 case DW_OP_implicit_value:
3202 {
3203 uint64_t len;
3204
3205 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3206 if (op_ptr + len > op_end)
3207 error (_("DW_OP_implicit_value: too few bytes available."));
3208 if (len > sizeof (ULONGEST))
3209 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3210 (int) len);
3211
3212 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3213 byte_order));
3214 op_ptr += len;
3215 dwarf_expr_require_composition (op_ptr, op_end,
3216 "DW_OP_implicit_value");
3217
3218 loc->kind = axs_rvalue;
3219 }
3220 break;
3221
3222 case DW_OP_stack_value:
3223 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3224 loc->kind = axs_rvalue;
3225 break;
3226
3227 case DW_OP_breg0:
3228 case DW_OP_breg1:
3229 case DW_OP_breg2:
3230 case DW_OP_breg3:
3231 case DW_OP_breg4:
3232 case DW_OP_breg5:
3233 case DW_OP_breg6:
3234 case DW_OP_breg7:
3235 case DW_OP_breg8:
3236 case DW_OP_breg9:
3237 case DW_OP_breg10:
3238 case DW_OP_breg11:
3239 case DW_OP_breg12:
3240 case DW_OP_breg13:
3241 case DW_OP_breg14:
3242 case DW_OP_breg15:
3243 case DW_OP_breg16:
3244 case DW_OP_breg17:
3245 case DW_OP_breg18:
3246 case DW_OP_breg19:
3247 case DW_OP_breg20:
3248 case DW_OP_breg21:
3249 case DW_OP_breg22:
3250 case DW_OP_breg23:
3251 case DW_OP_breg24:
3252 case DW_OP_breg25:
3253 case DW_OP_breg26:
3254 case DW_OP_breg27:
3255 case DW_OP_breg28:
3256 case DW_OP_breg29:
3257 case DW_OP_breg30:
3258 case DW_OP_breg31:
3259 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3260 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3261 ax_reg (expr, i);
3262 if (offset != 0)
3263 {
3264 ax_const_l (expr, offset);
3265 ax_simple (expr, aop_add);
3266 }
3267 break;
3268 case DW_OP_bregx:
3269 {
3270 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3271 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3272 i = dwarf_reg_to_regnum_or_error (arch, reg);
3273 ax_reg (expr, i);
3274 if (offset != 0)
3275 {
3276 ax_const_l (expr, offset);
3277 ax_simple (expr, aop_add);
3278 }
3279 }
3280 break;
3281 case DW_OP_fbreg:
3282 {
3283 const gdb_byte *datastart;
3284 size_t datalen;
3285 const struct block *b;
3286 struct symbol *framefunc;
3287
3288 b = block_for_pc (expr->scope);
3289
3290 if (!b)
3291 error (_("No block found for address"));
3292
3293 framefunc = block_linkage_function (b);
3294
3295 if (!framefunc)
3296 error (_("No function found for block"));
3297
3298 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3299 &datastart, &datalen);
3300
3301 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3302 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3303 datastart + datalen, per_cu);
3304 if (loc->kind == axs_lvalue_register)
3305 require_rvalue (expr, loc);
3306
3307 if (offset != 0)
3308 {
3309 ax_const_l (expr, offset);
3310 ax_simple (expr, aop_add);
3311 }
3312
3313 loc->kind = axs_lvalue_memory;
3314 }
3315 break;
3316
3317 case DW_OP_dup:
3318 ax_simple (expr, aop_dup);
3319 break;
3320
3321 case DW_OP_drop:
3322 ax_simple (expr, aop_pop);
3323 break;
3324
3325 case DW_OP_pick:
3326 offset = *op_ptr++;
3327 ax_pick (expr, offset);
3328 break;
3329
3330 case DW_OP_swap:
3331 ax_simple (expr, aop_swap);
3332 break;
3333
3334 case DW_OP_over:
3335 ax_pick (expr, 1);
3336 break;
3337
3338 case DW_OP_rot:
3339 ax_simple (expr, aop_rot);
3340 break;
3341
3342 case DW_OP_deref:
3343 case DW_OP_deref_size:
3344 {
3345 int size;
3346
3347 if (op == DW_OP_deref_size)
3348 size = *op_ptr++;
3349 else
3350 size = addr_size;
3351
3352 if (size != 1 && size != 2 && size != 4 && size != 8)
3353 error (_("Unsupported size %d in %s"),
3354 size, get_DW_OP_name (op));
3355 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3356 }
3357 break;
3358
3359 case DW_OP_abs:
3360 /* Sign extend the operand. */
3361 ax_ext (expr, addr_size_bits);
3362 ax_simple (expr, aop_dup);
3363 ax_const_l (expr, 0);
3364 ax_simple (expr, aop_less_signed);
3365 ax_simple (expr, aop_log_not);
3366 i = ax_goto (expr, aop_if_goto);
3367 /* We have to emit 0 - X. */
3368 ax_const_l (expr, 0);
3369 ax_simple (expr, aop_swap);
3370 ax_simple (expr, aop_sub);
3371 ax_label (expr, i, expr->len);
3372 break;
3373
3374 case DW_OP_neg:
3375 /* No need to sign extend here. */
3376 ax_const_l (expr, 0);
3377 ax_simple (expr, aop_swap);
3378 ax_simple (expr, aop_sub);
3379 break;
3380
3381 case DW_OP_not:
3382 /* Sign extend the operand. */
3383 ax_ext (expr, addr_size_bits);
3384 ax_simple (expr, aop_bit_not);
3385 break;
3386
3387 case DW_OP_plus_uconst:
3388 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3389 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3390 but we micro-optimize anyhow. */
3391 if (reg != 0)
3392 {
3393 ax_const_l (expr, reg);
3394 ax_simple (expr, aop_add);
3395 }
3396 break;
3397
3398 case DW_OP_and:
3399 ax_simple (expr, aop_bit_and);
3400 break;
3401
3402 case DW_OP_div:
3403 /* Sign extend the operands. */
3404 ax_ext (expr, addr_size_bits);
3405 ax_simple (expr, aop_swap);
3406 ax_ext (expr, addr_size_bits);
3407 ax_simple (expr, aop_swap);
3408 ax_simple (expr, aop_div_signed);
3409 break;
3410
3411 case DW_OP_minus:
3412 ax_simple (expr, aop_sub);
3413 break;
3414
3415 case DW_OP_mod:
3416 ax_simple (expr, aop_rem_unsigned);
3417 break;
3418
3419 case DW_OP_mul:
3420 ax_simple (expr, aop_mul);
3421 break;
3422
3423 case DW_OP_or:
3424 ax_simple (expr, aop_bit_or);
3425 break;
3426
3427 case DW_OP_plus:
3428 ax_simple (expr, aop_add);
3429 break;
3430
3431 case DW_OP_shl:
3432 ax_simple (expr, aop_lsh);
3433 break;
3434
3435 case DW_OP_shr:
3436 ax_simple (expr, aop_rsh_unsigned);
3437 break;
3438
3439 case DW_OP_shra:
3440 ax_simple (expr, aop_rsh_signed);
3441 break;
3442
3443 case DW_OP_xor:
3444 ax_simple (expr, aop_bit_xor);
3445 break;
3446
3447 case DW_OP_le:
3448 /* Sign extend the operands. */
3449 ax_ext (expr, addr_size_bits);
3450 ax_simple (expr, aop_swap);
3451 ax_ext (expr, addr_size_bits);
3452 /* Note no swap here: A <= B is !(B < A). */
3453 ax_simple (expr, aop_less_signed);
3454 ax_simple (expr, aop_log_not);
3455 break;
3456
3457 case DW_OP_ge:
3458 /* Sign extend the operands. */
3459 ax_ext (expr, addr_size_bits);
3460 ax_simple (expr, aop_swap);
3461 ax_ext (expr, addr_size_bits);
3462 ax_simple (expr, aop_swap);
3463 /* A >= B is !(A < B). */
3464 ax_simple (expr, aop_less_signed);
3465 ax_simple (expr, aop_log_not);
3466 break;
3467
3468 case DW_OP_eq:
3469 /* Sign extend the operands. */
3470 ax_ext (expr, addr_size_bits);
3471 ax_simple (expr, aop_swap);
3472 ax_ext (expr, addr_size_bits);
3473 /* No need for a second swap here. */
3474 ax_simple (expr, aop_equal);
3475 break;
3476
3477 case DW_OP_lt:
3478 /* Sign extend the operands. */
3479 ax_ext (expr, addr_size_bits);
3480 ax_simple (expr, aop_swap);
3481 ax_ext (expr, addr_size_bits);
3482 ax_simple (expr, aop_swap);
3483 ax_simple (expr, aop_less_signed);
3484 break;
3485
3486 case DW_OP_gt:
3487 /* Sign extend the operands. */
3488 ax_ext (expr, addr_size_bits);
3489 ax_simple (expr, aop_swap);
3490 ax_ext (expr, addr_size_bits);
3491 /* Note no swap here: A > B is B < A. */
3492 ax_simple (expr, aop_less_signed);
3493 break;
3494
3495 case DW_OP_ne:
3496 /* Sign extend the operands. */
3497 ax_ext (expr, addr_size_bits);
3498 ax_simple (expr, aop_swap);
3499 ax_ext (expr, addr_size_bits);
3500 /* No need for a swap here. */
3501 ax_simple (expr, aop_equal);
3502 ax_simple (expr, aop_log_not);
3503 break;
3504
3505 case DW_OP_call_frame_cfa:
3506 {
3507 int regnum;
3508 CORE_ADDR text_offset;
3509 LONGEST off;
3510 const gdb_byte *cfa_start, *cfa_end;
3511
3512 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3513 &regnum, &off,
3514 &text_offset, &cfa_start, &cfa_end))
3515 {
3516 /* Register. */
3517 ax_reg (expr, regnum);
3518 if (off != 0)
3519 {
3520 ax_const_l (expr, off);
3521 ax_simple (expr, aop_add);
3522 }
3523 }
3524 else
3525 {
3526 /* Another expression. */
3527 ax_const_l (expr, text_offset);
3528 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3529 cfa_start, cfa_end, per_cu);
3530 }
3531
3532 loc->kind = axs_lvalue_memory;
3533 }
3534 break;
3535
3536 case DW_OP_GNU_push_tls_address:
3537 case DW_OP_form_tls_address:
3538 unimplemented (op);
3539 break;
3540
3541 case DW_OP_push_object_address:
3542 unimplemented (op);
3543 break;
3544
3545 case DW_OP_skip:
3546 offset = extract_signed_integer (op_ptr, 2, byte_order);
3547 op_ptr += 2;
3548 i = ax_goto (expr, aop_goto);
3549 dw_labels.push_back (op_ptr + offset - base);
3550 patches.push_back (i);
3551 break;
3552
3553 case DW_OP_bra:
3554 offset = extract_signed_integer (op_ptr, 2, byte_order);
3555 op_ptr += 2;
3556 /* Zero extend the operand. */
3557 ax_zero_ext (expr, addr_size_bits);
3558 i = ax_goto (expr, aop_if_goto);
3559 dw_labels.push_back (op_ptr + offset - base);
3560 patches.push_back (i);
3561 break;
3562
3563 case DW_OP_nop:
3564 break;
3565
3566 case DW_OP_piece:
3567 case DW_OP_bit_piece:
3568 {
3569 uint64_t size, offset;
3570
3571 if (op_ptr - 1 == previous_piece)
3572 error (_("Cannot translate empty pieces to agent expressions"));
3573 previous_piece = op_ptr - 1;
3574
3575 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3576 if (op == DW_OP_piece)
3577 {
3578 size *= 8;
3579 offset = 0;
3580 }
3581 else
3582 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3583
3584 if (bits_collected + size > 8 * sizeof (LONGEST))
3585 error (_("Expression pieces exceed word size"));
3586
3587 /* Access the bits. */
3588 switch (loc->kind)
3589 {
3590 case axs_lvalue_register:
3591 ax_reg (expr, loc->u.reg);
3592 break;
3593
3594 case axs_lvalue_memory:
3595 /* Offset the pointer, if needed. */
3596 if (offset > 8)
3597 {
3598 ax_const_l (expr, offset / 8);
3599 ax_simple (expr, aop_add);
3600 offset %= 8;
3601 }
3602 access_memory (arch, expr, size);
3603 break;
3604 }
3605
3606 /* For a bits-big-endian target, shift up what we already
3607 have. For a bits-little-endian target, shift up the
3608 new data. Note that there is a potential bug here if
3609 the DWARF expression leaves multiple values on the
3610 stack. */
3611 if (bits_collected > 0)
3612 {
3613 if (bits_big_endian)
3614 {
3615 ax_simple (expr, aop_swap);
3616 ax_const_l (expr, size);
3617 ax_simple (expr, aop_lsh);
3618 /* We don't need a second swap here, because
3619 aop_bit_or is symmetric. */
3620 }
3621 else
3622 {
3623 ax_const_l (expr, size);
3624 ax_simple (expr, aop_lsh);
3625 }
3626 ax_simple (expr, aop_bit_or);
3627 }
3628
3629 bits_collected += size;
3630 loc->kind = axs_rvalue;
3631 }
3632 break;
3633
3634 case DW_OP_GNU_uninit:
3635 unimplemented (op);
3636
3637 case DW_OP_call2:
3638 case DW_OP_call4:
3639 {
3640 struct dwarf2_locexpr_baton block;
3641 int size = (op == DW_OP_call2 ? 2 : 4);
3642
3643 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3644 op_ptr += size;
3645
3646 cu_offset offset = (cu_offset) uoffset;
3647 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3648 get_ax_pc, expr);
3649
3650 /* DW_OP_call_ref is currently not supported. */
3651 gdb_assert (block.per_cu == per_cu);
3652
3653 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3654 block.data, block.data + block.size,
3655 per_cu);
3656 }
3657 break;
3658
3659 case DW_OP_call_ref:
3660 unimplemented (op);
3661
3662 default:
3663 unimplemented (op);
3664 }
3665 }
3666
3667 /* Patch all the branches we emitted. */
3668 for (i = 0; i < patches.size (); ++i)
3669 {
3670 int targ = offsets[dw_labels[i]];
3671 if (targ == -1)
3672 internal_error (__FILE__, __LINE__, _("invalid label"));
3673 ax_label (expr, patches[i], targ);
3674 }
3675 }
3676
3677 \f
3678 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3679 evaluator to calculate the location. */
3680 static struct value *
3681 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3682 {
3683 struct dwarf2_locexpr_baton *dlbaton
3684 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3685 struct value *val;
3686
3687 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3688 dlbaton->size, dlbaton->per_cu);
3689
3690 return val;
3691 }
3692
3693 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3694 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3695 will be thrown. */
3696
3697 static struct value *
3698 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3699 {
3700 struct dwarf2_locexpr_baton *dlbaton
3701 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3702
3703 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3704 dlbaton->size);
3705 }
3706
3707 /* Implementation of get_symbol_read_needs from
3708 symbol_computed_ops. */
3709
3710 static enum symbol_needs_kind
3711 locexpr_get_symbol_read_needs (struct symbol *symbol)
3712 {
3713 struct dwarf2_locexpr_baton *dlbaton
3714 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3715
3716 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3717 dlbaton->per_cu);
3718 }
3719
3720 /* Return true if DATA points to the end of a piece. END is one past
3721 the last byte in the expression. */
3722
3723 static int
3724 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3725 {
3726 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3727 }
3728
3729 /* Helper for locexpr_describe_location_piece that finds the name of a
3730 DWARF register. */
3731
3732 static const char *
3733 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3734 {
3735 int regnum;
3736
3737 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3738 We'd rather print *something* here than throw an error. */
3739 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3740 /* gdbarch_register_name may just return "", return something more
3741 descriptive for bad register numbers. */
3742 if (regnum == -1)
3743 {
3744 /* The text is output as "$bad_register_number".
3745 That is why we use the underscores. */
3746 return _("bad_register_number");
3747 }
3748 return gdbarch_register_name (gdbarch, regnum);
3749 }
3750
3751 /* Nicely describe a single piece of a location, returning an updated
3752 position in the bytecode sequence. This function cannot recognize
3753 all locations; if a location is not recognized, it simply returns
3754 DATA. If there is an error during reading, e.g. we run off the end
3755 of the buffer, an error is thrown. */
3756
3757 static const gdb_byte *
3758 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3759 CORE_ADDR addr, struct objfile *objfile,
3760 struct dwarf2_per_cu_data *per_cu,
3761 const gdb_byte *data, const gdb_byte *end,
3762 unsigned int addr_size)
3763 {
3764 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3765 size_t leb128_size;
3766
3767 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3768 {
3769 fprintf_filtered (stream, _("a variable in $%s"),
3770 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3771 data += 1;
3772 }
3773 else if (data[0] == DW_OP_regx)
3774 {
3775 uint64_t reg;
3776
3777 data = safe_read_uleb128 (data + 1, end, &reg);
3778 fprintf_filtered (stream, _("a variable in $%s"),
3779 locexpr_regname (gdbarch, reg));
3780 }
3781 else if (data[0] == DW_OP_fbreg)
3782 {
3783 const struct block *b;
3784 struct symbol *framefunc;
3785 int frame_reg = 0;
3786 int64_t frame_offset;
3787 const gdb_byte *base_data, *new_data, *save_data = data;
3788 size_t base_size;
3789 int64_t base_offset = 0;
3790
3791 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3792 if (!piece_end_p (new_data, end))
3793 return data;
3794 data = new_data;
3795
3796 b = block_for_pc (addr);
3797
3798 if (!b)
3799 error (_("No block found for address for symbol \"%s\"."),
3800 SYMBOL_PRINT_NAME (symbol));
3801
3802 framefunc = block_linkage_function (b);
3803
3804 if (!framefunc)
3805 error (_("No function found for block for symbol \"%s\"."),
3806 SYMBOL_PRINT_NAME (symbol));
3807
3808 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3809
3810 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3811 {
3812 const gdb_byte *buf_end;
3813
3814 frame_reg = base_data[0] - DW_OP_breg0;
3815 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3816 &base_offset);
3817 if (buf_end != base_data + base_size)
3818 error (_("Unexpected opcode after "
3819 "DW_OP_breg%u for symbol \"%s\"."),
3820 frame_reg, SYMBOL_PRINT_NAME (symbol));
3821 }
3822 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3823 {
3824 /* The frame base is just the register, with no offset. */
3825 frame_reg = base_data[0] - DW_OP_reg0;
3826 base_offset = 0;
3827 }
3828 else
3829 {
3830 /* We don't know what to do with the frame base expression,
3831 so we can't trace this variable; give up. */
3832 return save_data;
3833 }
3834
3835 fprintf_filtered (stream,
3836 _("a variable at frame base reg $%s offset %s+%s"),
3837 locexpr_regname (gdbarch, frame_reg),
3838 plongest (base_offset), plongest (frame_offset));
3839 }
3840 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3841 && piece_end_p (data, end))
3842 {
3843 int64_t offset;
3844
3845 data = safe_read_sleb128 (data + 1, end, &offset);
3846
3847 fprintf_filtered (stream,
3848 _("a variable at offset %s from base reg $%s"),
3849 plongest (offset),
3850 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3851 }
3852
3853 /* The location expression for a TLS variable looks like this (on a
3854 64-bit LE machine):
3855
3856 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3857 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3858
3859 0x3 is the encoding for DW_OP_addr, which has an operand as long
3860 as the size of an address on the target machine (here is 8
3861 bytes). Note that more recent version of GCC emit DW_OP_const4u
3862 or DW_OP_const8u, depending on address size, rather than
3863 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3864 The operand represents the offset at which the variable is within
3865 the thread local storage. */
3866
3867 else if (data + 1 + addr_size < end
3868 && (data[0] == DW_OP_addr
3869 || (addr_size == 4 && data[0] == DW_OP_const4u)
3870 || (addr_size == 8 && data[0] == DW_OP_const8u))
3871 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3872 || data[1 + addr_size] == DW_OP_form_tls_address)
3873 && piece_end_p (data + 2 + addr_size, end))
3874 {
3875 ULONGEST offset;
3876 offset = extract_unsigned_integer (data + 1, addr_size,
3877 gdbarch_byte_order (gdbarch));
3878
3879 fprintf_filtered (stream,
3880 _("a thread-local variable at offset 0x%s "
3881 "in the thread-local storage for `%s'"),
3882 phex_nz (offset, addr_size), objfile_name (objfile));
3883
3884 data += 1 + addr_size + 1;
3885 }
3886
3887 /* With -gsplit-dwarf a TLS variable can also look like this:
3888 DW_AT_location : 3 byte block: fc 4 e0
3889 (DW_OP_GNU_const_index: 4;
3890 DW_OP_GNU_push_tls_address) */
3891 else if (data + 3 <= end
3892 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3893 && data[0] == DW_OP_GNU_const_index
3894 && leb128_size > 0
3895 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3896 || data[1 + leb128_size] == DW_OP_form_tls_address)
3897 && piece_end_p (data + 2 + leb128_size, end))
3898 {
3899 uint64_t offset;
3900
3901 data = safe_read_uleb128 (data + 1, end, &offset);
3902 offset = dwarf2_read_addr_index (per_cu, offset);
3903 fprintf_filtered (stream,
3904 _("a thread-local variable at offset 0x%s "
3905 "in the thread-local storage for `%s'"),
3906 phex_nz (offset, addr_size), objfile_name (objfile));
3907 ++data;
3908 }
3909
3910 else if (data[0] >= DW_OP_lit0
3911 && data[0] <= DW_OP_lit31
3912 && data + 1 < end
3913 && data[1] == DW_OP_stack_value)
3914 {
3915 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3916 data += 2;
3917 }
3918
3919 return data;
3920 }
3921
3922 /* Disassemble an expression, stopping at the end of a piece or at the
3923 end of the expression. Returns a pointer to the next unread byte
3924 in the input expression. If ALL is nonzero, then this function
3925 will keep going until it reaches the end of the expression.
3926 If there is an error during reading, e.g. we run off the end
3927 of the buffer, an error is thrown. */
3928
3929 static const gdb_byte *
3930 disassemble_dwarf_expression (struct ui_file *stream,
3931 struct gdbarch *arch, unsigned int addr_size,
3932 int offset_size, const gdb_byte *start,
3933 const gdb_byte *data, const gdb_byte *end,
3934 int indent, int all,
3935 struct dwarf2_per_cu_data *per_cu)
3936 {
3937 while (data < end
3938 && (all
3939 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3940 {
3941 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3942 uint64_t ul;
3943 int64_t l;
3944 const char *name;
3945
3946 name = get_DW_OP_name (op);
3947
3948 if (!name)
3949 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3950 op, (long) (data - 1 - start));
3951 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3952 (long) (data - 1 - start), name);
3953
3954 switch (op)
3955 {
3956 case DW_OP_addr:
3957 ul = extract_unsigned_integer (data, addr_size,
3958 gdbarch_byte_order (arch));
3959 data += addr_size;
3960 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3961 break;
3962
3963 case DW_OP_const1u:
3964 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3965 data += 1;
3966 fprintf_filtered (stream, " %s", pulongest (ul));
3967 break;
3968 case DW_OP_const1s:
3969 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3970 data += 1;
3971 fprintf_filtered (stream, " %s", plongest (l));
3972 break;
3973 case DW_OP_const2u:
3974 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3975 data += 2;
3976 fprintf_filtered (stream, " %s", pulongest (ul));
3977 break;
3978 case DW_OP_const2s:
3979 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3980 data += 2;
3981 fprintf_filtered (stream, " %s", plongest (l));
3982 break;
3983 case DW_OP_const4u:
3984 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3985 data += 4;
3986 fprintf_filtered (stream, " %s", pulongest (ul));
3987 break;
3988 case DW_OP_const4s:
3989 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3990 data += 4;
3991 fprintf_filtered (stream, " %s", plongest (l));
3992 break;
3993 case DW_OP_const8u:
3994 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3995 data += 8;
3996 fprintf_filtered (stream, " %s", pulongest (ul));
3997 break;
3998 case DW_OP_const8s:
3999 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4000 data += 8;
4001 fprintf_filtered (stream, " %s", plongest (l));
4002 break;
4003 case DW_OP_constu:
4004 data = safe_read_uleb128 (data, end, &ul);
4005 fprintf_filtered (stream, " %s", pulongest (ul));
4006 break;
4007 case DW_OP_consts:
4008 data = safe_read_sleb128 (data, end, &l);
4009 fprintf_filtered (stream, " %s", plongest (l));
4010 break;
4011
4012 case DW_OP_reg0:
4013 case DW_OP_reg1:
4014 case DW_OP_reg2:
4015 case DW_OP_reg3:
4016 case DW_OP_reg4:
4017 case DW_OP_reg5:
4018 case DW_OP_reg6:
4019 case DW_OP_reg7:
4020 case DW_OP_reg8:
4021 case DW_OP_reg9:
4022 case DW_OP_reg10:
4023 case DW_OP_reg11:
4024 case DW_OP_reg12:
4025 case DW_OP_reg13:
4026 case DW_OP_reg14:
4027 case DW_OP_reg15:
4028 case DW_OP_reg16:
4029 case DW_OP_reg17:
4030 case DW_OP_reg18:
4031 case DW_OP_reg19:
4032 case DW_OP_reg20:
4033 case DW_OP_reg21:
4034 case DW_OP_reg22:
4035 case DW_OP_reg23:
4036 case DW_OP_reg24:
4037 case DW_OP_reg25:
4038 case DW_OP_reg26:
4039 case DW_OP_reg27:
4040 case DW_OP_reg28:
4041 case DW_OP_reg29:
4042 case DW_OP_reg30:
4043 case DW_OP_reg31:
4044 fprintf_filtered (stream, " [$%s]",
4045 locexpr_regname (arch, op - DW_OP_reg0));
4046 break;
4047
4048 case DW_OP_regx:
4049 data = safe_read_uleb128 (data, end, &ul);
4050 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4051 locexpr_regname (arch, (int) ul));
4052 break;
4053
4054 case DW_OP_implicit_value:
4055 data = safe_read_uleb128 (data, end, &ul);
4056 data += ul;
4057 fprintf_filtered (stream, " %s", pulongest (ul));
4058 break;
4059
4060 case DW_OP_breg0:
4061 case DW_OP_breg1:
4062 case DW_OP_breg2:
4063 case DW_OP_breg3:
4064 case DW_OP_breg4:
4065 case DW_OP_breg5:
4066 case DW_OP_breg6:
4067 case DW_OP_breg7:
4068 case DW_OP_breg8:
4069 case DW_OP_breg9:
4070 case DW_OP_breg10:
4071 case DW_OP_breg11:
4072 case DW_OP_breg12:
4073 case DW_OP_breg13:
4074 case DW_OP_breg14:
4075 case DW_OP_breg15:
4076 case DW_OP_breg16:
4077 case DW_OP_breg17:
4078 case DW_OP_breg18:
4079 case DW_OP_breg19:
4080 case DW_OP_breg20:
4081 case DW_OP_breg21:
4082 case DW_OP_breg22:
4083 case DW_OP_breg23:
4084 case DW_OP_breg24:
4085 case DW_OP_breg25:
4086 case DW_OP_breg26:
4087 case DW_OP_breg27:
4088 case DW_OP_breg28:
4089 case DW_OP_breg29:
4090 case DW_OP_breg30:
4091 case DW_OP_breg31:
4092 data = safe_read_sleb128 (data, end, &l);
4093 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4094 locexpr_regname (arch, op - DW_OP_breg0));
4095 break;
4096
4097 case DW_OP_bregx:
4098 data = safe_read_uleb128 (data, end, &ul);
4099 data = safe_read_sleb128 (data, end, &l);
4100 fprintf_filtered (stream, " register %s [$%s] offset %s",
4101 pulongest (ul),
4102 locexpr_regname (arch, (int) ul),
4103 plongest (l));
4104 break;
4105
4106 case DW_OP_fbreg:
4107 data = safe_read_sleb128 (data, end, &l);
4108 fprintf_filtered (stream, " %s", plongest (l));
4109 break;
4110
4111 case DW_OP_xderef_size:
4112 case DW_OP_deref_size:
4113 case DW_OP_pick:
4114 fprintf_filtered (stream, " %d", *data);
4115 ++data;
4116 break;
4117
4118 case DW_OP_plus_uconst:
4119 data = safe_read_uleb128 (data, end, &ul);
4120 fprintf_filtered (stream, " %s", pulongest (ul));
4121 break;
4122
4123 case DW_OP_skip:
4124 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4125 data += 2;
4126 fprintf_filtered (stream, " to %ld",
4127 (long) (data + l - start));
4128 break;
4129
4130 case DW_OP_bra:
4131 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4132 data += 2;
4133 fprintf_filtered (stream, " %ld",
4134 (long) (data + l - start));
4135 break;
4136
4137 case DW_OP_call2:
4138 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4139 data += 2;
4140 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4141 break;
4142
4143 case DW_OP_call4:
4144 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4145 data += 4;
4146 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4147 break;
4148
4149 case DW_OP_call_ref:
4150 ul = extract_unsigned_integer (data, offset_size,
4151 gdbarch_byte_order (arch));
4152 data += offset_size;
4153 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4154 break;
4155
4156 case DW_OP_piece:
4157 data = safe_read_uleb128 (data, end, &ul);
4158 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4159 break;
4160
4161 case DW_OP_bit_piece:
4162 {
4163 uint64_t offset;
4164
4165 data = safe_read_uleb128 (data, end, &ul);
4166 data = safe_read_uleb128 (data, end, &offset);
4167 fprintf_filtered (stream, " size %s offset %s (bits)",
4168 pulongest (ul), pulongest (offset));
4169 }
4170 break;
4171
4172 case DW_OP_implicit_pointer:
4173 case DW_OP_GNU_implicit_pointer:
4174 {
4175 ul = extract_unsigned_integer (data, offset_size,
4176 gdbarch_byte_order (arch));
4177 data += offset_size;
4178
4179 data = safe_read_sleb128 (data, end, &l);
4180
4181 fprintf_filtered (stream, " DIE %s offset %s",
4182 phex_nz (ul, offset_size),
4183 plongest (l));
4184 }
4185 break;
4186
4187 case DW_OP_deref_type:
4188 case DW_OP_GNU_deref_type:
4189 {
4190 int addr_size = *data++;
4191 struct type *type;
4192
4193 data = safe_read_uleb128 (data, end, &ul);
4194 cu_offset offset = (cu_offset) ul;
4195 type = dwarf2_get_die_type (offset, per_cu);
4196 fprintf_filtered (stream, "<");
4197 type_print (type, "", stream, -1);
4198 fprintf_filtered (stream, " [0x%s]> %d",
4199 phex_nz (to_underlying (offset), 0),
4200 addr_size);
4201 }
4202 break;
4203
4204 case DW_OP_const_type:
4205 case DW_OP_GNU_const_type:
4206 {
4207 struct type *type;
4208
4209 data = safe_read_uleb128 (data, end, &ul);
4210 cu_offset type_die = (cu_offset) ul;
4211 type = dwarf2_get_die_type (type_die, per_cu);
4212 fprintf_filtered (stream, "<");
4213 type_print (type, "", stream, -1);
4214 fprintf_filtered (stream, " [0x%s]>",
4215 phex_nz (to_underlying (type_die), 0));
4216 }
4217 break;
4218
4219 case DW_OP_regval_type:
4220 case DW_OP_GNU_regval_type:
4221 {
4222 uint64_t reg;
4223 struct type *type;
4224
4225 data = safe_read_uleb128 (data, end, &reg);
4226 data = safe_read_uleb128 (data, end, &ul);
4227 cu_offset type_die = (cu_offset) ul;
4228
4229 type = dwarf2_get_die_type (type_die, per_cu);
4230 fprintf_filtered (stream, "<");
4231 type_print (type, "", stream, -1);
4232 fprintf_filtered (stream, " [0x%s]> [$%s]",
4233 phex_nz (to_underlying (type_die), 0),
4234 locexpr_regname (arch, reg));
4235 }
4236 break;
4237
4238 case DW_OP_convert:
4239 case DW_OP_GNU_convert:
4240 case DW_OP_reinterpret:
4241 case DW_OP_GNU_reinterpret:
4242 {
4243 data = safe_read_uleb128 (data, end, &ul);
4244 cu_offset type_die = (cu_offset) ul;
4245
4246 if (to_underlying (type_die) == 0)
4247 fprintf_filtered (stream, "<0>");
4248 else
4249 {
4250 struct type *type;
4251
4252 type = dwarf2_get_die_type (type_die, per_cu);
4253 fprintf_filtered (stream, "<");
4254 type_print (type, "", stream, -1);
4255 fprintf_filtered (stream, " [0x%s]>",
4256 phex_nz (to_underlying (type_die), 0));
4257 }
4258 }
4259 break;
4260
4261 case DW_OP_entry_value:
4262 case DW_OP_GNU_entry_value:
4263 data = safe_read_uleb128 (data, end, &ul);
4264 fputc_filtered ('\n', stream);
4265 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4266 start, data, data + ul, indent + 2,
4267 all, per_cu);
4268 data += ul;
4269 continue;
4270
4271 case DW_OP_GNU_parameter_ref:
4272 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4273 data += 4;
4274 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4275 break;
4276
4277 case DW_OP_GNU_addr_index:
4278 data = safe_read_uleb128 (data, end, &ul);
4279 ul = dwarf2_read_addr_index (per_cu, ul);
4280 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4281 break;
4282 case DW_OP_GNU_const_index:
4283 data = safe_read_uleb128 (data, end, &ul);
4284 ul = dwarf2_read_addr_index (per_cu, ul);
4285 fprintf_filtered (stream, " %s", pulongest (ul));
4286 break;
4287 }
4288
4289 fprintf_filtered (stream, "\n");
4290 }
4291
4292 return data;
4293 }
4294
4295 /* Describe a single location, which may in turn consist of multiple
4296 pieces. */
4297
4298 static void
4299 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4300 struct ui_file *stream,
4301 const gdb_byte *data, size_t size,
4302 struct objfile *objfile, unsigned int addr_size,
4303 int offset_size, struct dwarf2_per_cu_data *per_cu)
4304 {
4305 const gdb_byte *end = data + size;
4306 int first_piece = 1, bad = 0;
4307
4308 while (data < end)
4309 {
4310 const gdb_byte *here = data;
4311 int disassemble = 1;
4312
4313 if (first_piece)
4314 first_piece = 0;
4315 else
4316 fprintf_filtered (stream, _(", and "));
4317
4318 if (!dwarf_always_disassemble)
4319 {
4320 data = locexpr_describe_location_piece (symbol, stream,
4321 addr, objfile, per_cu,
4322 data, end, addr_size);
4323 /* If we printed anything, or if we have an empty piece,
4324 then don't disassemble. */
4325 if (data != here
4326 || data[0] == DW_OP_piece
4327 || data[0] == DW_OP_bit_piece)
4328 disassemble = 0;
4329 }
4330 if (disassemble)
4331 {
4332 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4333 data = disassemble_dwarf_expression (stream,
4334 get_objfile_arch (objfile),
4335 addr_size, offset_size, data,
4336 data, end, 0,
4337 dwarf_always_disassemble,
4338 per_cu);
4339 }
4340
4341 if (data < end)
4342 {
4343 int empty = data == here;
4344
4345 if (disassemble)
4346 fprintf_filtered (stream, " ");
4347 if (data[0] == DW_OP_piece)
4348 {
4349 uint64_t bytes;
4350
4351 data = safe_read_uleb128 (data + 1, end, &bytes);
4352
4353 if (empty)
4354 fprintf_filtered (stream, _("an empty %s-byte piece"),
4355 pulongest (bytes));
4356 else
4357 fprintf_filtered (stream, _(" [%s-byte piece]"),
4358 pulongest (bytes));
4359 }
4360 else if (data[0] == DW_OP_bit_piece)
4361 {
4362 uint64_t bits, offset;
4363
4364 data = safe_read_uleb128 (data + 1, end, &bits);
4365 data = safe_read_uleb128 (data, end, &offset);
4366
4367 if (empty)
4368 fprintf_filtered (stream,
4369 _("an empty %s-bit piece"),
4370 pulongest (bits));
4371 else
4372 fprintf_filtered (stream,
4373 _(" [%s-bit piece, offset %s bits]"),
4374 pulongest (bits), pulongest (offset));
4375 }
4376 else
4377 {
4378 bad = 1;
4379 break;
4380 }
4381 }
4382 }
4383
4384 if (bad || data > end)
4385 error (_("Corrupted DWARF2 expression for \"%s\"."),
4386 SYMBOL_PRINT_NAME (symbol));
4387 }
4388
4389 /* Print a natural-language description of SYMBOL to STREAM. This
4390 version is for a symbol with a single location. */
4391
4392 static void
4393 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4394 struct ui_file *stream)
4395 {
4396 struct dwarf2_locexpr_baton *dlbaton
4397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4398 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4399 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4400 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4401
4402 locexpr_describe_location_1 (symbol, addr, stream,
4403 dlbaton->data, dlbaton->size,
4404 objfile, addr_size, offset_size,
4405 dlbaton->per_cu);
4406 }
4407
4408 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4409 any necessary bytecode in AX. */
4410
4411 static void
4412 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4413 struct agent_expr *ax, struct axs_value *value)
4414 {
4415 struct dwarf2_locexpr_baton *dlbaton
4416 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4417 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4418
4419 if (dlbaton->size == 0)
4420 value->optimized_out = 1;
4421 else
4422 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4423 dlbaton->data, dlbaton->data + dlbaton->size,
4424 dlbaton->per_cu);
4425 }
4426
4427 /* symbol_computed_ops 'generate_c_location' method. */
4428
4429 static void
4430 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4431 struct gdbarch *gdbarch,
4432 unsigned char *registers_used,
4433 CORE_ADDR pc, const char *result_name)
4434 {
4435 struct dwarf2_locexpr_baton *dlbaton
4436 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4437 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4438
4439 if (dlbaton->size == 0)
4440 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4441
4442 compile_dwarf_expr_to_c (stream, result_name,
4443 sym, pc, gdbarch, registers_used, addr_size,
4444 dlbaton->data, dlbaton->data + dlbaton->size,
4445 dlbaton->per_cu);
4446 }
4447
4448 /* The set of location functions used with the DWARF-2 expression
4449 evaluator. */
4450 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4451 locexpr_read_variable,
4452 locexpr_read_variable_at_entry,
4453 locexpr_get_symbol_read_needs,
4454 locexpr_describe_location,
4455 0, /* location_has_loclist */
4456 locexpr_tracepoint_var_ref,
4457 locexpr_generate_c_location
4458 };
4459
4460
4461 /* Wrapper functions for location lists. These generally find
4462 the appropriate location expression and call something above. */
4463
4464 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4465 evaluator to calculate the location. */
4466 static struct value *
4467 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4468 {
4469 struct dwarf2_loclist_baton *dlbaton
4470 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4471 struct value *val;
4472 const gdb_byte *data;
4473 size_t size;
4474 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4475
4476 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4477 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4478 dlbaton->per_cu);
4479
4480 return val;
4481 }
4482
4483 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4484 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4485 will be thrown.
4486
4487 Function always returns non-NULL value, it may be marked optimized out if
4488 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4489 if it cannot resolve the parameter for any reason. */
4490
4491 static struct value *
4492 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4493 {
4494 struct dwarf2_loclist_baton *dlbaton
4495 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4496 const gdb_byte *data;
4497 size_t size;
4498 CORE_ADDR pc;
4499
4500 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4501 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4502
4503 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4504 if (data == NULL)
4505 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4506
4507 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4508 }
4509
4510 /* Implementation of get_symbol_read_needs from
4511 symbol_computed_ops. */
4512
4513 static enum symbol_needs_kind
4514 loclist_symbol_needs (struct symbol *symbol)
4515 {
4516 /* If there's a location list, then assume we need to have a frame
4517 to choose the appropriate location expression. With tracking of
4518 global variables this is not necessarily true, but such tracking
4519 is disabled in GCC at the moment until we figure out how to
4520 represent it. */
4521
4522 return SYMBOL_NEEDS_FRAME;
4523 }
4524
4525 /* Print a natural-language description of SYMBOL to STREAM. This
4526 version applies when there is a list of different locations, each
4527 with a specified address range. */
4528
4529 static void
4530 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4531 struct ui_file *stream)
4532 {
4533 struct dwarf2_loclist_baton *dlbaton
4534 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4535 const gdb_byte *loc_ptr, *buf_end;
4536 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4537 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4539 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4540 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4541 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4542 /* Adjust base_address for relocatable objects. */
4543 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4544 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4545 int done = 0;
4546
4547 loc_ptr = dlbaton->data;
4548 buf_end = dlbaton->data + dlbaton->size;
4549
4550 fprintf_filtered (stream, _("multi-location:\n"));
4551
4552 /* Iterate through locations until we run out. */
4553 while (!done)
4554 {
4555 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4556 int length;
4557 enum debug_loc_kind kind;
4558 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4559
4560 if (dlbaton->from_dwo)
4561 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4562 loc_ptr, buf_end, &new_ptr,
4563 &low, &high, byte_order);
4564 else
4565 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4566 &low, &high,
4567 byte_order, addr_size,
4568 signed_addr_p);
4569 loc_ptr = new_ptr;
4570 switch (kind)
4571 {
4572 case DEBUG_LOC_END_OF_LIST:
4573 done = 1;
4574 continue;
4575 case DEBUG_LOC_BASE_ADDRESS:
4576 base_address = high + base_offset;
4577 fprintf_filtered (stream, _(" Base address %s"),
4578 paddress (gdbarch, base_address));
4579 continue;
4580 case DEBUG_LOC_START_END:
4581 case DEBUG_LOC_START_LENGTH:
4582 break;
4583 case DEBUG_LOC_BUFFER_OVERFLOW:
4584 case DEBUG_LOC_INVALID_ENTRY:
4585 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4586 SYMBOL_PRINT_NAME (symbol));
4587 default:
4588 gdb_assert_not_reached ("bad debug_loc_kind");
4589 }
4590
4591 /* Otherwise, a location expression entry. */
4592 low += base_address;
4593 high += base_address;
4594
4595 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4596 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4597
4598 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4599 loc_ptr += 2;
4600
4601 /* (It would improve readability to print only the minimum
4602 necessary digits of the second number of the range.) */
4603 fprintf_filtered (stream, _(" Range %s-%s: "),
4604 paddress (gdbarch, low), paddress (gdbarch, high));
4605
4606 /* Now describe this particular location. */
4607 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4608 objfile, addr_size, offset_size,
4609 dlbaton->per_cu);
4610
4611 fprintf_filtered (stream, "\n");
4612
4613 loc_ptr += length;
4614 }
4615 }
4616
4617 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4618 any necessary bytecode in AX. */
4619 static void
4620 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4621 struct agent_expr *ax, struct axs_value *value)
4622 {
4623 struct dwarf2_loclist_baton *dlbaton
4624 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4625 const gdb_byte *data;
4626 size_t size;
4627 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4628
4629 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4630 if (size == 0)
4631 value->optimized_out = 1;
4632 else
4633 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4634 dlbaton->per_cu);
4635 }
4636
4637 /* symbol_computed_ops 'generate_c_location' method. */
4638
4639 static void
4640 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4641 struct gdbarch *gdbarch,
4642 unsigned char *registers_used,
4643 CORE_ADDR pc, const char *result_name)
4644 {
4645 struct dwarf2_loclist_baton *dlbaton
4646 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4647 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4648 const gdb_byte *data;
4649 size_t size;
4650
4651 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4652 if (size == 0)
4653 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4654
4655 compile_dwarf_expr_to_c (stream, result_name,
4656 sym, pc, gdbarch, registers_used, addr_size,
4657 data, data + size,
4658 dlbaton->per_cu);
4659 }
4660
4661 /* The set of location functions used with the DWARF-2 expression
4662 evaluator and location lists. */
4663 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4664 loclist_read_variable,
4665 loclist_read_variable_at_entry,
4666 loclist_symbol_needs,
4667 loclist_describe_location,
4668 1, /* location_has_loclist */
4669 loclist_tracepoint_var_ref,
4670 loclist_generate_c_location
4671 };
4672
4673 /* Provide a prototype to silence -Wmissing-prototypes. */
4674 extern initialize_file_ftype _initialize_dwarf2loc;
4675
4676 void
4677 _initialize_dwarf2loc (void)
4678 {
4679 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4680 &entry_values_debug,
4681 _("Set entry values and tail call frames "
4682 "debugging."),
4683 _("Show entry values and tail call frames "
4684 "debugging."),
4685 _("When non-zero, the process of determining "
4686 "parameter values from function entry point "
4687 "and tail call frames will be printed."),
4688 NULL,
4689 show_entry_values_debug,
4690 &setdebuglist, &showdebuglist);
4691
4692 #if GDB_SELF_TEST
4693 register_self_test (selftests::copy_bitwise_tests);
4694 #endif
4695 }
This page took 0.193859 seconds and 5 git commands to generate.