GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41
42 extern int dwarf_always_disassemble;
43
44 extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
45
46 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
51 LONGEST byte_offset);
52
53 /* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58 enum debug_loc_kind
59 {
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83 };
84
85 /* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88 static void
89 invalid_synthetic_pointer (void)
90 {
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93 }
94
95 /* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100 static enum debug_loc_kind
101 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107 {
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
135 return DEBUG_LOC_START_END;
136 }
137
138 /* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143 static enum debug_loc_kind
144 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
150 {
151 uint64_t low_index, high_index;
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
169 case DEBUG_LOC_START_END:
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194 }
195
196 /* A function for dealing with location lists. Given a
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
204 const gdb_byte *
205 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
207 {
208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
213 /* Adjust base_address for relocatable objects. */
214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
215 CORE_ADDR base_address = baton->base_address + base_offset;
216 const gdb_byte *loc_ptr, *buf_end;
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
231 &low, &high, byte_order);
232 else
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
239 {
240 case DEBUG_LOC_END_OF_LIST:
241 *locexpr_length = 0;
242 return NULL;
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
255 }
256
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is
259 from .debug_addr which has absolute addresses. */
260 if (! baton->from_dwo)
261 {
262 low += base_address;
263 high += base_address;
264 }
265
266 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
267 loc_ptr += 2;
268
269 if (low == high && pc == low)
270 {
271 /* This is entry PC record present only at entry point
272 of a function. Verify it is really the function entry point. */
273
274 const struct block *pc_block = block_for_pc (pc);
275 struct symbol *pc_func = NULL;
276
277 if (pc_block)
278 pc_func = block_linkage_function (pc_block);
279
280 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285 }
286
287 if (pc >= low && pc < high)
288 {
289 *locexpr_length = length;
290 return loc_ptr;
291 }
292
293 loc_ptr += length;
294 }
295 }
296
297 /* This is the baton used when performing dwarf2 expression
298 evaluation. */
299 struct dwarf_expr_baton
300 {
301 struct frame_info *frame;
302 struct dwarf2_per_cu_data *per_cu;
303 CORE_ADDR obj_address;
304 };
305
306 /* Helper functions for dwarf2_evaluate_loc_desc. */
307
308 /* Using the frame specified in BATON, return the value of register
309 REGNUM, treated as a pointer. */
310 static CORE_ADDR
311 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
312 {
313 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
314 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
315 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
316
317 return address_from_register (regnum, debaton->frame);
318 }
319
320 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
321
322 static struct value *
323 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
324 {
325 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
326 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
327 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
328
329 return value_from_register (type, regnum, debaton->frame);
330 }
331
332 /* Read memory at ADDR (length LEN) into BUF. */
333
334 static void
335 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
336 {
337 read_memory (addr, buf, len);
338 }
339
340 /* Using the frame specified in BATON, find the location expression
341 describing the frame base. Return a pointer to it in START and
342 its length in LENGTH. */
343 static void
344 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
345 {
346 /* FIXME: cagney/2003-03-26: This code should be using
347 get_frame_base_address(), and then implement a dwarf2 specific
348 this_base method. */
349 struct symbol *framefunc;
350 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
351 const struct block *bl = get_frame_block (debaton->frame, NULL);
352
353 if (bl == NULL)
354 error (_("frame address is not available."));
355
356 /* Use block_linkage_function, which returns a real (not inlined)
357 function, instead of get_frame_function, which may return an
358 inlined function. */
359 framefunc = block_linkage_function (bl);
360
361 /* If we found a frame-relative symbol then it was certainly within
362 some function associated with a frame. If we can't find the frame,
363 something has gone wrong. */
364 gdb_assert (framefunc != NULL);
365
366 func_get_frame_base_dwarf_block (framefunc,
367 get_frame_address_in_block (debaton->frame),
368 start, length);
369 }
370
371 /* Implement find_frame_base_location method for LOC_BLOCK functions using
372 DWARF expression for its DW_AT_frame_base. */
373
374 static void
375 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
376 const gdb_byte **start, size_t *length)
377 {
378 struct dwarf2_locexpr_baton *symbaton
379 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
380
381 *length = symbaton->size;
382 *start = symbaton->data;
383 }
384
385 /* Implement the struct symbol_block_ops::get_frame_base method for
386 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
387
388 static CORE_ADDR
389 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
390 {
391 struct gdbarch *gdbarch;
392 struct type *type;
393 struct dwarf2_locexpr_baton *dlbaton;
394 const gdb_byte *start;
395 size_t length;
396 struct value *result;
397
398 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
399 Thus, it's supposed to provide the find_frame_base_location method as
400 well. */
401 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
402
403 gdbarch = get_frame_arch (frame);
404 type = builtin_type (gdbarch)->builtin_data_ptr;
405 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
406
407 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
408 (framefunc, get_frame_pc (frame), &start, &length);
409 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
410 dlbaton->per_cu);
411
412 /* The DW_AT_frame_base attribute contains a location description which
413 computes the base address itself. However, the call to
414 dwarf2_evaluate_loc_desc returns a value representing a variable at
415 that address. The frame base address is thus this variable's
416 address. */
417 return value_address (result);
418 }
419
420 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
421 function uses DWARF expression for its DW_AT_frame_base. */
422
423 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
424 {
425 locexpr_find_frame_base_location,
426 locexpr_get_frame_base
427 };
428
429 /* Implement find_frame_base_location method for LOC_BLOCK functions using
430 DWARF location list for its DW_AT_frame_base. */
431
432 static void
433 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
434 const gdb_byte **start, size_t *length)
435 {
436 struct dwarf2_loclist_baton *symbaton
437 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
438
439 *start = dwarf2_find_location_expression (symbaton, length, pc);
440 }
441
442 /* Implement the struct symbol_block_ops::get_frame_base method for
443 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
444
445 static CORE_ADDR
446 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
447 {
448 struct gdbarch *gdbarch;
449 struct type *type;
450 struct dwarf2_loclist_baton *dlbaton;
451 const gdb_byte *start;
452 size_t length;
453 struct value *result;
454
455 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
456 Thus, it's supposed to provide the find_frame_base_location method as
457 well. */
458 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
459
460 gdbarch = get_frame_arch (frame);
461 type = builtin_type (gdbarch)->builtin_data_ptr;
462 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
463
464 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
465 (framefunc, get_frame_pc (frame), &start, &length);
466 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
467 dlbaton->per_cu);
468
469 /* The DW_AT_frame_base attribute contains a location description which
470 computes the base address itself. However, the call to
471 dwarf2_evaluate_loc_desc returns a value representing a variable at
472 that address. The frame base address is thus this variable's
473 address. */
474 return value_address (result);
475 }
476
477 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
478 function uses DWARF location list for its DW_AT_frame_base. */
479
480 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
481 {
482 loclist_find_frame_base_location,
483 loclist_get_frame_base
484 };
485
486 /* See dwarf2loc.h. */
487
488 void
489 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
490 const gdb_byte **start, size_t *length)
491 {
492 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
493 {
494 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
495
496 ops_block->find_frame_base_location (framefunc, pc, start, length);
497 }
498 else
499 *length = 0;
500
501 if (*length == 0)
502 error (_("Could not find the frame base for \"%s\"."),
503 SYMBOL_NATURAL_NAME (framefunc));
504 }
505
506 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
507 the frame in BATON. */
508
509 static CORE_ADDR
510 dwarf_expr_frame_cfa (void *baton)
511 {
512 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
513
514 return dwarf2_frame_cfa (debaton->frame);
515 }
516
517 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
518 the frame in BATON. */
519
520 static CORE_ADDR
521 dwarf_expr_frame_pc (void *baton)
522 {
523 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
524
525 return get_frame_address_in_block (debaton->frame);
526 }
527
528 /* Using the objfile specified in BATON, find the address for the
529 current thread's thread-local storage with offset OFFSET. */
530 static CORE_ADDR
531 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
532 {
533 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
534 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
535
536 return target_translate_tls_address (objfile, offset);
537 }
538
539 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
540 current CU (as is PER_CU). State of the CTX is not affected by the
541 call and return. */
542
543 static void
544 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
545 struct dwarf2_per_cu_data *per_cu,
546 CORE_ADDR (*get_frame_pc) (void *baton),
547 void *baton)
548 {
549 struct dwarf2_locexpr_baton block;
550
551 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
552
553 /* DW_OP_call_ref is currently not supported. */
554 gdb_assert (block.per_cu == per_cu);
555
556 dwarf_expr_eval (ctx, block.data, block.size);
557 }
558
559 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
560
561 static void
562 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
563 {
564 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
565
566 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
567 ctx->funcs->get_frame_pc, ctx->baton);
568 }
569
570 /* Callback function for dwarf2_evaluate_loc_desc. */
571
572 static struct type *
573 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
574 cu_offset die_offset)
575 {
576 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
577
578 return dwarf2_get_die_type (die_offset, debaton->per_cu);
579 }
580
581 /* See dwarf2loc.h. */
582
583 unsigned int entry_values_debug = 0;
584
585 /* Helper to set entry_values_debug. */
586
587 static void
588 show_entry_values_debug (struct ui_file *file, int from_tty,
589 struct cmd_list_element *c, const char *value)
590 {
591 fprintf_filtered (file,
592 _("Entry values and tail call frames debugging is %s.\n"),
593 value);
594 }
595
596 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
597 CALLER_FRAME (for registers) can be NULL if it is not known. This function
598 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
599
600 static CORE_ADDR
601 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
602 struct call_site *call_site,
603 struct frame_info *caller_frame)
604 {
605 switch (FIELD_LOC_KIND (call_site->target))
606 {
607 case FIELD_LOC_KIND_DWARF_BLOCK:
608 {
609 struct dwarf2_locexpr_baton *dwarf_block;
610 struct value *val;
611 struct type *caller_core_addr_type;
612 struct gdbarch *caller_arch;
613
614 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
615 if (dwarf_block == NULL)
616 {
617 struct bound_minimal_symbol msym;
618
619 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
620 throw_error (NO_ENTRY_VALUE_ERROR,
621 _("DW_AT_GNU_call_site_target is not specified "
622 "at %s in %s"),
623 paddress (call_site_gdbarch, call_site->pc),
624 (msym.minsym == NULL ? "???"
625 : MSYMBOL_PRINT_NAME (msym.minsym)));
626
627 }
628 if (caller_frame == NULL)
629 {
630 struct bound_minimal_symbol msym;
631
632 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
633 throw_error (NO_ENTRY_VALUE_ERROR,
634 _("DW_AT_GNU_call_site_target DWARF block resolving "
635 "requires known frame which is currently not "
636 "available at %s in %s"),
637 paddress (call_site_gdbarch, call_site->pc),
638 (msym.minsym == NULL ? "???"
639 : MSYMBOL_PRINT_NAME (msym.minsym)));
640
641 }
642 caller_arch = get_frame_arch (caller_frame);
643 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
644 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
645 dwarf_block->data, dwarf_block->size,
646 dwarf_block->per_cu);
647 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
648 location. */
649 if (VALUE_LVAL (val) == lval_memory)
650 return value_address (val);
651 else
652 return value_as_address (val);
653 }
654
655 case FIELD_LOC_KIND_PHYSNAME:
656 {
657 const char *physname;
658 struct bound_minimal_symbol msym;
659
660 physname = FIELD_STATIC_PHYSNAME (call_site->target);
661
662 /* Handle both the mangled and demangled PHYSNAME. */
663 msym = lookup_minimal_symbol (physname, NULL, NULL);
664 if (msym.minsym == NULL)
665 {
666 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
667 throw_error (NO_ENTRY_VALUE_ERROR,
668 _("Cannot find function \"%s\" for a call site target "
669 "at %s in %s"),
670 physname, paddress (call_site_gdbarch, call_site->pc),
671 (msym.minsym == NULL ? "???"
672 : MSYMBOL_PRINT_NAME (msym.minsym)));
673
674 }
675 return BMSYMBOL_VALUE_ADDRESS (msym);
676 }
677
678 case FIELD_LOC_KIND_PHYSADDR:
679 return FIELD_STATIC_PHYSADDR (call_site->target);
680
681 default:
682 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
683 }
684 }
685
686 /* Convert function entry point exact address ADDR to the function which is
687 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
688 NO_ENTRY_VALUE_ERROR otherwise. */
689
690 static struct symbol *
691 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
692 {
693 struct symbol *sym = find_pc_function (addr);
694 struct type *type;
695
696 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
697 throw_error (NO_ENTRY_VALUE_ERROR,
698 _("DW_TAG_GNU_call_site resolving failed to find function "
699 "name for address %s"),
700 paddress (gdbarch, addr));
701
702 type = SYMBOL_TYPE (sym);
703 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
704 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
705
706 return sym;
707 }
708
709 /* Verify function with entry point exact address ADDR can never call itself
710 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
711 can call itself via tail calls.
712
713 If a funtion can tail call itself its entry value based parameters are
714 unreliable. There is no verification whether the value of some/all
715 parameters is unchanged through the self tail call, we expect if there is
716 a self tail call all the parameters can be modified. */
717
718 static void
719 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
720 {
721 struct obstack addr_obstack;
722 struct cleanup *old_chain;
723 CORE_ADDR addr;
724
725 /* Track here CORE_ADDRs which were already visited. */
726 htab_t addr_hash;
727
728 /* The verification is completely unordered. Track here function addresses
729 which still need to be iterated. */
730 VEC (CORE_ADDR) *todo = NULL;
731
732 obstack_init (&addr_obstack);
733 old_chain = make_cleanup_obstack_free (&addr_obstack);
734 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
735 &addr_obstack, hashtab_obstack_allocate,
736 NULL);
737 make_cleanup_htab_delete (addr_hash);
738
739 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
740
741 VEC_safe_push (CORE_ADDR, todo, verify_addr);
742 while (!VEC_empty (CORE_ADDR, todo))
743 {
744 struct symbol *func_sym;
745 struct call_site *call_site;
746
747 addr = VEC_pop (CORE_ADDR, todo);
748
749 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
750
751 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
752 call_site; call_site = call_site->tail_call_next)
753 {
754 CORE_ADDR target_addr;
755 void **slot;
756
757 /* CALLER_FRAME with registers is not available for tail-call jumped
758 frames. */
759 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
760
761 if (target_addr == verify_addr)
762 {
763 struct bound_minimal_symbol msym;
764
765 msym = lookup_minimal_symbol_by_pc (verify_addr);
766 throw_error (NO_ENTRY_VALUE_ERROR,
767 _("DW_OP_GNU_entry_value resolving has found "
768 "function \"%s\" at %s can call itself via tail "
769 "calls"),
770 (msym.minsym == NULL ? "???"
771 : MSYMBOL_PRINT_NAME (msym.minsym)),
772 paddress (gdbarch, verify_addr));
773 }
774
775 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
776 if (*slot == NULL)
777 {
778 *slot = obstack_copy (&addr_obstack, &target_addr,
779 sizeof (target_addr));
780 VEC_safe_push (CORE_ADDR, todo, target_addr);
781 }
782 }
783 }
784
785 do_cleanups (old_chain);
786 }
787
788 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
789 ENTRY_VALUES_DEBUG. */
790
791 static void
792 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
793 {
794 CORE_ADDR addr = call_site->pc;
795 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
796
797 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
798 (msym.minsym == NULL ? "???"
799 : MSYMBOL_PRINT_NAME (msym.minsym)));
800
801 }
802
803 /* vec.h needs single word type name, typedef it. */
804 typedef struct call_site *call_sitep;
805
806 /* Define VEC (call_sitep) functions. */
807 DEF_VEC_P (call_sitep);
808
809 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
810 only top callers and bottom callees which are present in both. GDBARCH is
811 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
812 no remaining possibilities to provide unambiguous non-trivial result.
813 RESULTP should point to NULL on the first (initialization) call. Caller is
814 responsible for xfree of any RESULTP data. */
815
816 static void
817 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
818 VEC (call_sitep) *chain)
819 {
820 struct call_site_chain *result = *resultp;
821 long length = VEC_length (call_sitep, chain);
822 int callers, callees, idx;
823
824 if (result == NULL)
825 {
826 /* Create the initial chain containing all the passed PCs. */
827
828 result = ((struct call_site_chain *)
829 xmalloc (sizeof (*result)
830 + sizeof (*result->call_site) * (length - 1)));
831 result->length = length;
832 result->callers = result->callees = length;
833 if (!VEC_empty (call_sitep, chain))
834 memcpy (result->call_site, VEC_address (call_sitep, chain),
835 sizeof (*result->call_site) * length);
836 *resultp = result;
837
838 if (entry_values_debug)
839 {
840 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
841 for (idx = 0; idx < length; idx++)
842 tailcall_dump (gdbarch, result->call_site[idx]);
843 fputc_unfiltered ('\n', gdb_stdlog);
844 }
845
846 return;
847 }
848
849 if (entry_values_debug)
850 {
851 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
852 for (idx = 0; idx < length; idx++)
853 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
854 fputc_unfiltered ('\n', gdb_stdlog);
855 }
856
857 /* Intersect callers. */
858
859 callers = min (result->callers, length);
860 for (idx = 0; idx < callers; idx++)
861 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
862 {
863 result->callers = idx;
864 break;
865 }
866
867 /* Intersect callees. */
868
869 callees = min (result->callees, length);
870 for (idx = 0; idx < callees; idx++)
871 if (result->call_site[result->length - 1 - idx]
872 != VEC_index (call_sitep, chain, length - 1 - idx))
873 {
874 result->callees = idx;
875 break;
876 }
877
878 if (entry_values_debug)
879 {
880 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
881 for (idx = 0; idx < result->callers; idx++)
882 tailcall_dump (gdbarch, result->call_site[idx]);
883 fputs_unfiltered (" |", gdb_stdlog);
884 for (idx = 0; idx < result->callees; idx++)
885 tailcall_dump (gdbarch, result->call_site[result->length
886 - result->callees + idx]);
887 fputc_unfiltered ('\n', gdb_stdlog);
888 }
889
890 if (result->callers == 0 && result->callees == 0)
891 {
892 /* There are no common callers or callees. It could be also a direct
893 call (which has length 0) with ambiguous possibility of an indirect
894 call - CALLERS == CALLEES == 0 is valid during the first allocation
895 but any subsequence processing of such entry means ambiguity. */
896 xfree (result);
897 *resultp = NULL;
898 return;
899 }
900
901 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
902 PC again. In such case there must be two different code paths to reach
903 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
904 gdb_assert (result->callers + result->callees <= result->length);
905 }
906
907 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
908 assumed frames between them use GDBARCH. Use depth first search so we can
909 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
910 would have needless GDB stack overhead. Caller is responsible for xfree of
911 the returned result. Any unreliability results in thrown
912 NO_ENTRY_VALUE_ERROR. */
913
914 static struct call_site_chain *
915 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
916 CORE_ADDR callee_pc)
917 {
918 CORE_ADDR save_callee_pc = callee_pc;
919 struct obstack addr_obstack;
920 struct cleanup *back_to_retval, *back_to_workdata;
921 struct call_site_chain *retval = NULL;
922 struct call_site *call_site;
923
924 /* Mark CALL_SITEs so we do not visit the same ones twice. */
925 htab_t addr_hash;
926
927 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
928 call_site nor any possible call_site at CALLEE_PC's function is there.
929 Any CALL_SITE in CHAIN will be iterated to its siblings - via
930 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
931 VEC (call_sitep) *chain = NULL;
932
933 /* We are not interested in the specific PC inside the callee function. */
934 callee_pc = get_pc_function_start (callee_pc);
935 if (callee_pc == 0)
936 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
937 paddress (gdbarch, save_callee_pc));
938
939 back_to_retval = make_cleanup (free_current_contents, &retval);
940
941 obstack_init (&addr_obstack);
942 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
943 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
944 &addr_obstack, hashtab_obstack_allocate,
945 NULL);
946 make_cleanup_htab_delete (addr_hash);
947
948 make_cleanup (VEC_cleanup (call_sitep), &chain);
949
950 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
951 at the target's function. All the possible tail call sites in the
952 target's function will get iterated as already pushed into CHAIN via their
953 TAIL_CALL_NEXT. */
954 call_site = call_site_for_pc (gdbarch, caller_pc);
955
956 while (call_site)
957 {
958 CORE_ADDR target_func_addr;
959 struct call_site *target_call_site;
960
961 /* CALLER_FRAME with registers is not available for tail-call jumped
962 frames. */
963 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
964
965 if (target_func_addr == callee_pc)
966 {
967 chain_candidate (gdbarch, &retval, chain);
968 if (retval == NULL)
969 break;
970
971 /* There is no way to reach CALLEE_PC again as we would prevent
972 entering it twice as being already marked in ADDR_HASH. */
973 target_call_site = NULL;
974 }
975 else
976 {
977 struct symbol *target_func;
978
979 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
980 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
981 }
982
983 do
984 {
985 /* Attempt to visit TARGET_CALL_SITE. */
986
987 if (target_call_site)
988 {
989 void **slot;
990
991 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
992 if (*slot == NULL)
993 {
994 /* Successfully entered TARGET_CALL_SITE. */
995
996 *slot = &target_call_site->pc;
997 VEC_safe_push (call_sitep, chain, target_call_site);
998 break;
999 }
1000 }
1001
1002 /* Backtrack (without revisiting the originating call_site). Try the
1003 callers's sibling; if there isn't any try the callers's callers's
1004 sibling etc. */
1005
1006 target_call_site = NULL;
1007 while (!VEC_empty (call_sitep, chain))
1008 {
1009 call_site = VEC_pop (call_sitep, chain);
1010
1011 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
1012 NO_INSERT) != NULL);
1013 htab_remove_elt (addr_hash, &call_site->pc);
1014
1015 target_call_site = call_site->tail_call_next;
1016 if (target_call_site)
1017 break;
1018 }
1019 }
1020 while (target_call_site);
1021
1022 if (VEC_empty (call_sitep, chain))
1023 call_site = NULL;
1024 else
1025 call_site = VEC_last (call_sitep, chain);
1026 }
1027
1028 if (retval == NULL)
1029 {
1030 struct bound_minimal_symbol msym_caller, msym_callee;
1031
1032 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1033 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1034 throw_error (NO_ENTRY_VALUE_ERROR,
1035 _("There are no unambiguously determinable intermediate "
1036 "callers or callees between caller function \"%s\" at %s "
1037 "and callee function \"%s\" at %s"),
1038 (msym_caller.minsym == NULL
1039 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1040 paddress (gdbarch, caller_pc),
1041 (msym_callee.minsym == NULL
1042 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1043 paddress (gdbarch, callee_pc));
1044 }
1045
1046 do_cleanups (back_to_workdata);
1047 discard_cleanups (back_to_retval);
1048 return retval;
1049 }
1050
1051 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1052 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1053 constructed return NULL. Caller is responsible for xfree of the returned
1054 result. */
1055
1056 struct call_site_chain *
1057 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1058 CORE_ADDR callee_pc)
1059 {
1060 struct call_site_chain *retval = NULL;
1061
1062 TRY
1063 {
1064 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1065 }
1066 CATCH (e, RETURN_MASK_ERROR)
1067 {
1068 if (e.error == NO_ENTRY_VALUE_ERROR)
1069 {
1070 if (entry_values_debug)
1071 exception_print (gdb_stdout, e);
1072
1073 return NULL;
1074 }
1075 else
1076 throw_exception (e);
1077 }
1078 END_CATCH
1079
1080 return retval;
1081 }
1082
1083 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1084
1085 static int
1086 call_site_parameter_matches (struct call_site_parameter *parameter,
1087 enum call_site_parameter_kind kind,
1088 union call_site_parameter_u kind_u)
1089 {
1090 if (kind == parameter->kind)
1091 switch (kind)
1092 {
1093 case CALL_SITE_PARAMETER_DWARF_REG:
1094 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1095 case CALL_SITE_PARAMETER_FB_OFFSET:
1096 return kind_u.fb_offset == parameter->u.fb_offset;
1097 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1098 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1099 }
1100 return 0;
1101 }
1102
1103 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1104 FRAME is for callee.
1105
1106 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1107 otherwise. */
1108
1109 static struct call_site_parameter *
1110 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1111 enum call_site_parameter_kind kind,
1112 union call_site_parameter_u kind_u,
1113 struct dwarf2_per_cu_data **per_cu_return)
1114 {
1115 CORE_ADDR func_addr, caller_pc;
1116 struct gdbarch *gdbarch;
1117 struct frame_info *caller_frame;
1118 struct call_site *call_site;
1119 int iparams;
1120 /* Initialize it just to avoid a GCC false warning. */
1121 struct call_site_parameter *parameter = NULL;
1122 CORE_ADDR target_addr;
1123
1124 while (get_frame_type (frame) == INLINE_FRAME)
1125 {
1126 frame = get_prev_frame (frame);
1127 gdb_assert (frame != NULL);
1128 }
1129
1130 func_addr = get_frame_func (frame);
1131 gdbarch = get_frame_arch (frame);
1132 caller_frame = get_prev_frame (frame);
1133 if (gdbarch != frame_unwind_arch (frame))
1134 {
1135 struct bound_minimal_symbol msym
1136 = lookup_minimal_symbol_by_pc (func_addr);
1137 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1138
1139 throw_error (NO_ENTRY_VALUE_ERROR,
1140 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1141 "(of %s (%s)) does not match caller gdbarch %s"),
1142 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1143 paddress (gdbarch, func_addr),
1144 (msym.minsym == NULL ? "???"
1145 : MSYMBOL_PRINT_NAME (msym.minsym)),
1146 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1147 }
1148
1149 if (caller_frame == NULL)
1150 {
1151 struct bound_minimal_symbol msym
1152 = lookup_minimal_symbol_by_pc (func_addr);
1153
1154 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1155 "requires caller of %s (%s)"),
1156 paddress (gdbarch, func_addr),
1157 (msym.minsym == NULL ? "???"
1158 : MSYMBOL_PRINT_NAME (msym.minsym)));
1159 }
1160 caller_pc = get_frame_pc (caller_frame);
1161 call_site = call_site_for_pc (gdbarch, caller_pc);
1162
1163 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1164 if (target_addr != func_addr)
1165 {
1166 struct minimal_symbol *target_msym, *func_msym;
1167
1168 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1169 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1170 throw_error (NO_ENTRY_VALUE_ERROR,
1171 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1172 "but the called frame is for %s at %s"),
1173 (target_msym == NULL ? "???"
1174 : MSYMBOL_PRINT_NAME (target_msym)),
1175 paddress (gdbarch, target_addr),
1176 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1177 paddress (gdbarch, func_addr));
1178 }
1179
1180 /* No entry value based parameters would be reliable if this function can
1181 call itself via tail calls. */
1182 func_verify_no_selftailcall (gdbarch, func_addr);
1183
1184 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1185 {
1186 parameter = &call_site->parameter[iparams];
1187 if (call_site_parameter_matches (parameter, kind, kind_u))
1188 break;
1189 }
1190 if (iparams == call_site->parameter_count)
1191 {
1192 struct minimal_symbol *msym
1193 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1194
1195 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1196 determine its value. */
1197 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1198 "at DW_TAG_GNU_call_site %s at %s"),
1199 paddress (gdbarch, caller_pc),
1200 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1201 }
1202
1203 *per_cu_return = call_site->per_cu;
1204 return parameter;
1205 }
1206
1207 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1208 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1209 DW_AT_GNU_call_site_data_value (dereferenced) block.
1210
1211 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1212 struct value.
1213
1214 Function always returns non-NULL, non-optimized out value. It throws
1215 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1216
1217 static struct value *
1218 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1219 CORE_ADDR deref_size, struct type *type,
1220 struct frame_info *caller_frame,
1221 struct dwarf2_per_cu_data *per_cu)
1222 {
1223 const gdb_byte *data_src;
1224 gdb_byte *data;
1225 size_t size;
1226
1227 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1228 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1229
1230 /* DEREF_SIZE size is not verified here. */
1231 if (data_src == NULL)
1232 throw_error (NO_ENTRY_VALUE_ERROR,
1233 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1234
1235 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1236 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1237 DWARF block. */
1238 data = (gdb_byte *) alloca (size + 1);
1239 memcpy (data, data_src, size);
1240 data[size] = DW_OP_stack_value;
1241
1242 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1243 }
1244
1245 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1246 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1247 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1248
1249 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1250 can be more simple as it does not support cross-CU DWARF executions. */
1251
1252 static void
1253 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1254 enum call_site_parameter_kind kind,
1255 union call_site_parameter_u kind_u,
1256 int deref_size)
1257 {
1258 struct dwarf_expr_baton *debaton;
1259 struct frame_info *frame, *caller_frame;
1260 struct dwarf2_per_cu_data *caller_per_cu;
1261 struct dwarf_expr_baton baton_local;
1262 struct dwarf_expr_context saved_ctx;
1263 struct call_site_parameter *parameter;
1264 const gdb_byte *data_src;
1265 size_t size;
1266
1267 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1268 debaton = (struct dwarf_expr_baton *) ctx->baton;
1269 frame = debaton->frame;
1270 caller_frame = get_prev_frame (frame);
1271
1272 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1273 &caller_per_cu);
1274 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1275 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1276
1277 /* DEREF_SIZE size is not verified here. */
1278 if (data_src == NULL)
1279 throw_error (NO_ENTRY_VALUE_ERROR,
1280 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1281
1282 baton_local.frame = caller_frame;
1283 baton_local.per_cu = caller_per_cu;
1284 baton_local.obj_address = 0;
1285
1286 saved_ctx.gdbarch = ctx->gdbarch;
1287 saved_ctx.addr_size = ctx->addr_size;
1288 saved_ctx.offset = ctx->offset;
1289 saved_ctx.baton = ctx->baton;
1290 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1291 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1292 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1293 ctx->baton = &baton_local;
1294
1295 dwarf_expr_eval (ctx, data_src, size);
1296
1297 ctx->gdbarch = saved_ctx.gdbarch;
1298 ctx->addr_size = saved_ctx.addr_size;
1299 ctx->offset = saved_ctx.offset;
1300 ctx->baton = saved_ctx.baton;
1301 }
1302
1303 /* Callback function for dwarf2_evaluate_loc_desc.
1304 Fetch the address indexed by DW_OP_GNU_addr_index. */
1305
1306 static CORE_ADDR
1307 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1308 {
1309 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1310
1311 return dwarf2_read_addr_index (debaton->per_cu, index);
1312 }
1313
1314 /* Callback function for get_object_address. Return the address of the VLA
1315 object. */
1316
1317 static CORE_ADDR
1318 dwarf_expr_get_obj_addr (void *baton)
1319 {
1320 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1321
1322 gdb_assert (debaton != NULL);
1323
1324 if (debaton->obj_address == 0)
1325 error (_("Location address is not set."));
1326
1327 return debaton->obj_address;
1328 }
1329
1330 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1331 the indirect method on it, that is use its stored target value, the sole
1332 purpose of entry_data_value_funcs.. */
1333
1334 static struct value *
1335 entry_data_value_coerce_ref (const struct value *value)
1336 {
1337 struct type *checked_type = check_typedef (value_type (value));
1338 struct value *target_val;
1339
1340 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1341 return NULL;
1342
1343 target_val = (struct value *) value_computed_closure (value);
1344 value_incref (target_val);
1345 return target_val;
1346 }
1347
1348 /* Implement copy_closure. */
1349
1350 static void *
1351 entry_data_value_copy_closure (const struct value *v)
1352 {
1353 struct value *target_val = (struct value *) value_computed_closure (v);
1354
1355 value_incref (target_val);
1356 return target_val;
1357 }
1358
1359 /* Implement free_closure. */
1360
1361 static void
1362 entry_data_value_free_closure (struct value *v)
1363 {
1364 struct value *target_val = (struct value *) value_computed_closure (v);
1365
1366 value_free (target_val);
1367 }
1368
1369 /* Vector for methods for an entry value reference where the referenced value
1370 is stored in the caller. On the first dereference use
1371 DW_AT_GNU_call_site_data_value in the caller. */
1372
1373 static const struct lval_funcs entry_data_value_funcs =
1374 {
1375 NULL, /* read */
1376 NULL, /* write */
1377 NULL, /* indirect */
1378 entry_data_value_coerce_ref,
1379 NULL, /* check_synthetic_pointer */
1380 entry_data_value_copy_closure,
1381 entry_data_value_free_closure
1382 };
1383
1384 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1385 are used to match DW_AT_location at the caller's
1386 DW_TAG_GNU_call_site_parameter.
1387
1388 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1389 cannot resolve the parameter for any reason. */
1390
1391 static struct value *
1392 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1393 enum call_site_parameter_kind kind,
1394 union call_site_parameter_u kind_u)
1395 {
1396 struct type *checked_type = check_typedef (type);
1397 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1398 struct frame_info *caller_frame = get_prev_frame (frame);
1399 struct value *outer_val, *target_val, *val;
1400 struct call_site_parameter *parameter;
1401 struct dwarf2_per_cu_data *caller_per_cu;
1402
1403 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1404 &caller_per_cu);
1405
1406 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1407 type, caller_frame,
1408 caller_per_cu);
1409
1410 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1411 used and it is not available do not fall back to OUTER_VAL - dereferencing
1412 TYPE_CODE_REF with non-entry data value would give current value - not the
1413 entry value. */
1414
1415 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1416 || TYPE_TARGET_TYPE (checked_type) == NULL)
1417 return outer_val;
1418
1419 target_val = dwarf_entry_parameter_to_value (parameter,
1420 TYPE_LENGTH (target_type),
1421 target_type, caller_frame,
1422 caller_per_cu);
1423
1424 release_value (target_val);
1425 val = allocate_computed_value (type, &entry_data_value_funcs,
1426 target_val /* closure */);
1427
1428 /* Copy the referencing pointer to the new computed value. */
1429 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1430 TYPE_LENGTH (checked_type));
1431 set_value_lazy (val, 0);
1432
1433 return val;
1434 }
1435
1436 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1437 SIZE are DWARF block used to match DW_AT_location at the caller's
1438 DW_TAG_GNU_call_site_parameter.
1439
1440 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1441 cannot resolve the parameter for any reason. */
1442
1443 static struct value *
1444 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1445 const gdb_byte *block, size_t block_len)
1446 {
1447 union call_site_parameter_u kind_u;
1448
1449 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1450 if (kind_u.dwarf_reg != -1)
1451 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1452 kind_u);
1453
1454 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1455 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1456 kind_u);
1457
1458 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1459 suppressed during normal operation. The expression can be arbitrary if
1460 there is no caller-callee entry value binding expected. */
1461 throw_error (NO_ENTRY_VALUE_ERROR,
1462 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1463 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1464 }
1465
1466 struct piece_closure
1467 {
1468 /* Reference count. */
1469 int refc;
1470
1471 /* The CU from which this closure's expression came. */
1472 struct dwarf2_per_cu_data *per_cu;
1473
1474 /* The number of pieces used to describe this variable. */
1475 int n_pieces;
1476
1477 /* The target address size, used only for DWARF_VALUE_STACK. */
1478 int addr_size;
1479
1480 /* The pieces themselves. */
1481 struct dwarf_expr_piece *pieces;
1482 };
1483
1484 /* Allocate a closure for a value formed from separately-described
1485 PIECES. */
1486
1487 static struct piece_closure *
1488 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1489 int n_pieces, struct dwarf_expr_piece *pieces,
1490 int addr_size)
1491 {
1492 struct piece_closure *c = XCNEW (struct piece_closure);
1493 int i;
1494
1495 c->refc = 1;
1496 c->per_cu = per_cu;
1497 c->n_pieces = n_pieces;
1498 c->addr_size = addr_size;
1499 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1500
1501 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1502 for (i = 0; i < n_pieces; ++i)
1503 if (c->pieces[i].location == DWARF_VALUE_STACK)
1504 value_incref (c->pieces[i].v.value);
1505
1506 return c;
1507 }
1508
1509 /* The lowest-level function to extract bits from a byte buffer.
1510 SOURCE is the buffer. It is updated if we read to the end of a
1511 byte.
1512 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1513 updated to reflect the number of bits actually read.
1514 NBITS is the number of bits we want to read. It is updated to
1515 reflect the number of bits actually read. This function may read
1516 fewer bits.
1517 BITS_BIG_ENDIAN is taken directly from gdbarch.
1518 This function returns the extracted bits. */
1519
1520 static unsigned int
1521 extract_bits_primitive (const gdb_byte **source,
1522 unsigned int *source_offset_bits,
1523 int *nbits, int bits_big_endian)
1524 {
1525 unsigned int avail, mask, datum;
1526
1527 gdb_assert (*source_offset_bits < 8);
1528
1529 avail = 8 - *source_offset_bits;
1530 if (avail > *nbits)
1531 avail = *nbits;
1532
1533 mask = (1 << avail) - 1;
1534 datum = **source;
1535 if (bits_big_endian)
1536 datum >>= 8 - (*source_offset_bits + *nbits);
1537 else
1538 datum >>= *source_offset_bits;
1539 datum &= mask;
1540
1541 *nbits -= avail;
1542 *source_offset_bits += avail;
1543 if (*source_offset_bits >= 8)
1544 {
1545 *source_offset_bits -= 8;
1546 ++*source;
1547 }
1548
1549 return datum;
1550 }
1551
1552 /* Extract some bits from a source buffer and move forward in the
1553 buffer.
1554
1555 SOURCE is the source buffer. It is updated as bytes are read.
1556 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1557 bits are read.
1558 NBITS is the number of bits to read.
1559 BITS_BIG_ENDIAN is taken directly from gdbarch.
1560
1561 This function returns the bits that were read. */
1562
1563 static unsigned int
1564 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1565 int nbits, int bits_big_endian)
1566 {
1567 unsigned int datum;
1568
1569 gdb_assert (nbits > 0 && nbits <= 8);
1570
1571 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1572 bits_big_endian);
1573 if (nbits > 0)
1574 {
1575 unsigned int more;
1576
1577 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1578 bits_big_endian);
1579 if (bits_big_endian)
1580 datum <<= nbits;
1581 else
1582 more <<= nbits;
1583 datum |= more;
1584 }
1585
1586 return datum;
1587 }
1588
1589 /* Write some bits into a buffer and move forward in the buffer.
1590
1591 DATUM is the bits to write. The low-order bits of DATUM are used.
1592 DEST is the destination buffer. It is updated as bytes are
1593 written.
1594 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1595 done.
1596 NBITS is the number of valid bits in DATUM.
1597 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1598
1599 static void
1600 insert_bits (unsigned int datum,
1601 gdb_byte *dest, unsigned int dest_offset_bits,
1602 int nbits, int bits_big_endian)
1603 {
1604 unsigned int mask;
1605
1606 gdb_assert (dest_offset_bits + nbits <= 8);
1607
1608 mask = (1 << nbits) - 1;
1609 if (bits_big_endian)
1610 {
1611 datum <<= 8 - (dest_offset_bits + nbits);
1612 mask <<= 8 - (dest_offset_bits + nbits);
1613 }
1614 else
1615 {
1616 datum <<= dest_offset_bits;
1617 mask <<= dest_offset_bits;
1618 }
1619
1620 gdb_assert ((datum & ~mask) == 0);
1621
1622 *dest = (*dest & ~mask) | datum;
1623 }
1624
1625 /* Copy bits from a source to a destination.
1626
1627 DEST is where the bits should be written.
1628 DEST_OFFSET_BITS is the bit offset into DEST.
1629 SOURCE is the source of bits.
1630 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1631 BIT_COUNT is the number of bits to copy.
1632 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1633
1634 static void
1635 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1636 const gdb_byte *source, unsigned int source_offset_bits,
1637 unsigned int bit_count,
1638 int bits_big_endian)
1639 {
1640 unsigned int dest_avail;
1641 int datum;
1642
1643 /* Reduce everything to byte-size pieces. */
1644 dest += dest_offset_bits / 8;
1645 dest_offset_bits %= 8;
1646 source += source_offset_bits / 8;
1647 source_offset_bits %= 8;
1648
1649 dest_avail = 8 - dest_offset_bits % 8;
1650
1651 /* See if we can fill the first destination byte. */
1652 if (dest_avail < bit_count)
1653 {
1654 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1655 bits_big_endian);
1656 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1657 ++dest;
1658 dest_offset_bits = 0;
1659 bit_count -= dest_avail;
1660 }
1661
1662 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1663 than 8 bits remaining. */
1664 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1665 for (; bit_count >= 8; bit_count -= 8)
1666 {
1667 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1668 *dest++ = (gdb_byte) datum;
1669 }
1670
1671 /* Finally, we may have a few leftover bits. */
1672 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1673 if (bit_count > 0)
1674 {
1675 datum = extract_bits (&source, &source_offset_bits, bit_count,
1676 bits_big_endian);
1677 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1678 }
1679 }
1680
1681 static void
1682 read_pieced_value (struct value *v)
1683 {
1684 int i;
1685 long offset = 0;
1686 ULONGEST bits_to_skip;
1687 gdb_byte *contents;
1688 struct piece_closure *c
1689 = (struct piece_closure *) value_computed_closure (v);
1690 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1691 size_t type_len;
1692 size_t buffer_size = 0;
1693 gdb_byte *buffer = NULL;
1694 struct cleanup *cleanup;
1695 int bits_big_endian
1696 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1697
1698 if (value_type (v) != value_enclosing_type (v))
1699 internal_error (__FILE__, __LINE__,
1700 _("Should not be able to create a lazy value with "
1701 "an enclosing type"));
1702
1703 cleanup = make_cleanup (free_current_contents, &buffer);
1704
1705 contents = value_contents_raw (v);
1706 bits_to_skip = 8 * value_offset (v);
1707 if (value_bitsize (v))
1708 {
1709 bits_to_skip += value_bitpos (v);
1710 type_len = value_bitsize (v);
1711 }
1712 else
1713 type_len = 8 * TYPE_LENGTH (value_type (v));
1714
1715 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1716 {
1717 struct dwarf_expr_piece *p = &c->pieces[i];
1718 size_t this_size, this_size_bits;
1719 long dest_offset_bits, source_offset_bits, source_offset;
1720 const gdb_byte *intermediate_buffer;
1721
1722 /* Compute size, source, and destination offsets for copying, in
1723 bits. */
1724 this_size_bits = p->size;
1725 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1726 {
1727 bits_to_skip -= this_size_bits;
1728 continue;
1729 }
1730 if (bits_to_skip > 0)
1731 {
1732 dest_offset_bits = 0;
1733 source_offset_bits = bits_to_skip;
1734 this_size_bits -= bits_to_skip;
1735 bits_to_skip = 0;
1736 }
1737 else
1738 {
1739 dest_offset_bits = offset;
1740 source_offset_bits = 0;
1741 }
1742 if (this_size_bits > type_len - offset)
1743 this_size_bits = type_len - offset;
1744
1745 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1746 source_offset = source_offset_bits / 8;
1747 if (buffer_size < this_size)
1748 {
1749 buffer_size = this_size;
1750 buffer = (gdb_byte *) xrealloc (buffer, buffer_size);
1751 }
1752 intermediate_buffer = buffer;
1753
1754 /* Copy from the source to DEST_BUFFER. */
1755 switch (p->location)
1756 {
1757 case DWARF_VALUE_REGISTER:
1758 {
1759 struct gdbarch *arch = get_frame_arch (frame);
1760 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1761 int optim, unavail;
1762 int reg_offset = source_offset;
1763
1764 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1765 && this_size < register_size (arch, gdb_regnum))
1766 {
1767 /* Big-endian, and we want less than full size. */
1768 reg_offset = register_size (arch, gdb_regnum) - this_size;
1769 /* We want the lower-order THIS_SIZE_BITS of the bytes
1770 we extract from the register. */
1771 source_offset_bits += 8 * this_size - this_size_bits;
1772 }
1773
1774 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1775 this_size, buffer,
1776 &optim, &unavail))
1777 {
1778 /* Just so garbage doesn't ever shine through. */
1779 memset (buffer, 0, this_size);
1780
1781 if (optim)
1782 mark_value_bits_optimized_out (v, offset, this_size_bits);
1783 if (unavail)
1784 mark_value_bits_unavailable (v, offset, this_size_bits);
1785 }
1786 }
1787 break;
1788
1789 case DWARF_VALUE_MEMORY:
1790 read_value_memory (v, offset,
1791 p->v.mem.in_stack_memory,
1792 p->v.mem.addr + source_offset,
1793 buffer, this_size);
1794 break;
1795
1796 case DWARF_VALUE_STACK:
1797 {
1798 size_t n = this_size;
1799
1800 if (n > c->addr_size - source_offset)
1801 n = (c->addr_size >= source_offset
1802 ? c->addr_size - source_offset
1803 : 0);
1804 if (n == 0)
1805 {
1806 /* Nothing. */
1807 }
1808 else
1809 {
1810 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1811
1812 intermediate_buffer = val_bytes + source_offset;
1813 }
1814 }
1815 break;
1816
1817 case DWARF_VALUE_LITERAL:
1818 {
1819 size_t n = this_size;
1820
1821 if (n > p->v.literal.length - source_offset)
1822 n = (p->v.literal.length >= source_offset
1823 ? p->v.literal.length - source_offset
1824 : 0);
1825 if (n != 0)
1826 intermediate_buffer = p->v.literal.data + source_offset;
1827 }
1828 break;
1829
1830 /* These bits show up as zeros -- but do not cause the value
1831 to be considered optimized-out. */
1832 case DWARF_VALUE_IMPLICIT_POINTER:
1833 break;
1834
1835 case DWARF_VALUE_OPTIMIZED_OUT:
1836 mark_value_bits_optimized_out (v, offset, this_size_bits);
1837 break;
1838
1839 default:
1840 internal_error (__FILE__, __LINE__, _("invalid location type"));
1841 }
1842
1843 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1844 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1845 copy_bitwise (contents, dest_offset_bits,
1846 intermediate_buffer, source_offset_bits % 8,
1847 this_size_bits, bits_big_endian);
1848
1849 offset += this_size_bits;
1850 }
1851
1852 do_cleanups (cleanup);
1853 }
1854
1855 static void
1856 write_pieced_value (struct value *to, struct value *from)
1857 {
1858 int i;
1859 long offset = 0;
1860 ULONGEST bits_to_skip;
1861 const gdb_byte *contents;
1862 struct piece_closure *c
1863 = (struct piece_closure *) value_computed_closure (to);
1864 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1865 size_t type_len;
1866 size_t buffer_size = 0;
1867 gdb_byte *buffer = NULL;
1868 struct cleanup *cleanup;
1869 int bits_big_endian
1870 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1871
1872 if (frame == NULL)
1873 {
1874 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1875 return;
1876 }
1877
1878 cleanup = make_cleanup (free_current_contents, &buffer);
1879
1880 contents = value_contents (from);
1881 bits_to_skip = 8 * value_offset (to);
1882 if (value_bitsize (to))
1883 {
1884 bits_to_skip += value_bitpos (to);
1885 type_len = value_bitsize (to);
1886 }
1887 else
1888 type_len = 8 * TYPE_LENGTH (value_type (to));
1889
1890 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1891 {
1892 struct dwarf_expr_piece *p = &c->pieces[i];
1893 size_t this_size_bits, this_size;
1894 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1895 int need_bitwise;
1896 const gdb_byte *source_buffer;
1897
1898 this_size_bits = p->size;
1899 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1900 {
1901 bits_to_skip -= this_size_bits;
1902 continue;
1903 }
1904 if (this_size_bits > type_len - offset)
1905 this_size_bits = type_len - offset;
1906 if (bits_to_skip > 0)
1907 {
1908 dest_offset_bits = bits_to_skip;
1909 source_offset_bits = 0;
1910 this_size_bits -= bits_to_skip;
1911 bits_to_skip = 0;
1912 }
1913 else
1914 {
1915 dest_offset_bits = 0;
1916 source_offset_bits = offset;
1917 }
1918
1919 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1920 source_offset = source_offset_bits / 8;
1921 dest_offset = dest_offset_bits / 8;
1922 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1923 {
1924 source_buffer = contents + source_offset;
1925 need_bitwise = 0;
1926 }
1927 else
1928 {
1929 if (buffer_size < this_size)
1930 {
1931 buffer_size = this_size;
1932 buffer = (gdb_byte *) xrealloc (buffer, buffer_size);
1933 }
1934 source_buffer = buffer;
1935 need_bitwise = 1;
1936 }
1937
1938 switch (p->location)
1939 {
1940 case DWARF_VALUE_REGISTER:
1941 {
1942 struct gdbarch *arch = get_frame_arch (frame);
1943 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1944 int reg_offset = dest_offset;
1945
1946 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1947 && this_size <= register_size (arch, gdb_regnum))
1948 {
1949 /* Big-endian, and we want less than full size. */
1950 reg_offset = register_size (arch, gdb_regnum) - this_size;
1951 }
1952
1953 if (need_bitwise)
1954 {
1955 int optim, unavail;
1956
1957 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1958 this_size, buffer,
1959 &optim, &unavail))
1960 {
1961 if (optim)
1962 throw_error (OPTIMIZED_OUT_ERROR,
1963 _("Can't do read-modify-write to "
1964 "update bitfield; containing word "
1965 "has been optimized out"));
1966 if (unavail)
1967 throw_error (NOT_AVAILABLE_ERROR,
1968 _("Can't do read-modify-write to update "
1969 "bitfield; containing word "
1970 "is unavailable"));
1971 }
1972 copy_bitwise (buffer, dest_offset_bits,
1973 contents, source_offset_bits,
1974 this_size_bits,
1975 bits_big_endian);
1976 }
1977
1978 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1979 this_size, source_buffer);
1980 }
1981 break;
1982 case DWARF_VALUE_MEMORY:
1983 if (need_bitwise)
1984 {
1985 /* Only the first and last bytes can possibly have any
1986 bits reused. */
1987 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1988 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1989 buffer + this_size - 1, 1);
1990 copy_bitwise (buffer, dest_offset_bits,
1991 contents, source_offset_bits,
1992 this_size_bits,
1993 bits_big_endian);
1994 }
1995
1996 write_memory (p->v.mem.addr + dest_offset,
1997 source_buffer, this_size);
1998 break;
1999 default:
2000 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2001 break;
2002 }
2003 offset += this_size_bits;
2004 }
2005
2006 do_cleanups (cleanup);
2007 }
2008
2009 /* An implementation of an lval_funcs method to see whether a value is
2010 a synthetic pointer. */
2011
2012 static int
2013 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2014 int bit_length)
2015 {
2016 struct piece_closure *c
2017 = (struct piece_closure *) value_computed_closure (value);
2018 int i;
2019
2020 bit_offset += 8 * value_offset (value);
2021 if (value_bitsize (value))
2022 bit_offset += value_bitpos (value);
2023
2024 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2025 {
2026 struct dwarf_expr_piece *p = &c->pieces[i];
2027 size_t this_size_bits = p->size;
2028
2029 if (bit_offset > 0)
2030 {
2031 if (bit_offset >= this_size_bits)
2032 {
2033 bit_offset -= this_size_bits;
2034 continue;
2035 }
2036
2037 bit_length -= this_size_bits - bit_offset;
2038 bit_offset = 0;
2039 }
2040 else
2041 bit_length -= this_size_bits;
2042
2043 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2044 return 0;
2045 }
2046
2047 return 1;
2048 }
2049
2050 /* A wrapper function for get_frame_address_in_block. */
2051
2052 static CORE_ADDR
2053 get_frame_address_in_block_wrapper (void *baton)
2054 {
2055 return get_frame_address_in_block ((struct frame_info *) baton);
2056 }
2057
2058 /* An implementation of an lval_funcs method to indirect through a
2059 pointer. This handles the synthetic pointer case when needed. */
2060
2061 static struct value *
2062 indirect_pieced_value (struct value *value)
2063 {
2064 struct piece_closure *c
2065 = (struct piece_closure *) value_computed_closure (value);
2066 struct type *type;
2067 struct frame_info *frame;
2068 struct dwarf2_locexpr_baton baton;
2069 int i, bit_offset, bit_length;
2070 struct dwarf_expr_piece *piece = NULL;
2071 LONGEST byte_offset;
2072 enum bfd_endian byte_order;
2073
2074 type = check_typedef (value_type (value));
2075 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2076 return NULL;
2077
2078 bit_length = 8 * TYPE_LENGTH (type);
2079 bit_offset = 8 * value_offset (value);
2080 if (value_bitsize (value))
2081 bit_offset += value_bitpos (value);
2082
2083 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2084 {
2085 struct dwarf_expr_piece *p = &c->pieces[i];
2086 size_t this_size_bits = p->size;
2087
2088 if (bit_offset > 0)
2089 {
2090 if (bit_offset >= this_size_bits)
2091 {
2092 bit_offset -= this_size_bits;
2093 continue;
2094 }
2095
2096 bit_length -= this_size_bits - bit_offset;
2097 bit_offset = 0;
2098 }
2099 else
2100 bit_length -= this_size_bits;
2101
2102 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2103 return NULL;
2104
2105 if (bit_length != 0)
2106 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2107
2108 piece = p;
2109 break;
2110 }
2111
2112 frame = get_selected_frame (_("No frame selected."));
2113
2114 /* This is an offset requested by GDB, such as value subscripts.
2115 However, due to how synthetic pointers are implemented, this is
2116 always presented to us as a pointer type. This means we have to
2117 sign-extend it manually as appropriate. Use raw
2118 extract_signed_integer directly rather than value_as_address and
2119 sign extend afterwards on architectures that would need it
2120 (mostly everywhere except MIPS, which has signed addresses) as
2121 the later would go through gdbarch_pointer_to_address and thus
2122 return a CORE_ADDR with high bits set on architectures that
2123 encode address spaces and other things in CORE_ADDR. */
2124 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2125 byte_offset = extract_signed_integer (value_contents (value),
2126 TYPE_LENGTH (type), byte_order);
2127 byte_offset += piece->v.ptr.offset;
2128
2129 gdb_assert (piece);
2130 baton
2131 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2132 get_frame_address_in_block_wrapper,
2133 frame);
2134
2135 if (baton.data != NULL)
2136 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2137 baton.data, baton.size, baton.per_cu,
2138 byte_offset);
2139
2140 {
2141 struct obstack temp_obstack;
2142 struct cleanup *cleanup;
2143 const gdb_byte *bytes;
2144 LONGEST len;
2145 struct value *result;
2146
2147 obstack_init (&temp_obstack);
2148 cleanup = make_cleanup_obstack_free (&temp_obstack);
2149
2150 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2151 &temp_obstack, &len);
2152 if (bytes == NULL)
2153 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2154 else
2155 {
2156 if (byte_offset < 0
2157 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2158 invalid_synthetic_pointer ();
2159 bytes += byte_offset;
2160 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2161 }
2162
2163 do_cleanups (cleanup);
2164 return result;
2165 }
2166 }
2167
2168 static void *
2169 copy_pieced_value_closure (const struct value *v)
2170 {
2171 struct piece_closure *c
2172 = (struct piece_closure *) value_computed_closure (v);
2173
2174 ++c->refc;
2175 return c;
2176 }
2177
2178 static void
2179 free_pieced_value_closure (struct value *v)
2180 {
2181 struct piece_closure *c
2182 = (struct piece_closure *) value_computed_closure (v);
2183
2184 --c->refc;
2185 if (c->refc == 0)
2186 {
2187 int i;
2188
2189 for (i = 0; i < c->n_pieces; ++i)
2190 if (c->pieces[i].location == DWARF_VALUE_STACK)
2191 value_free (c->pieces[i].v.value);
2192
2193 xfree (c->pieces);
2194 xfree (c);
2195 }
2196 }
2197
2198 /* Functions for accessing a variable described by DW_OP_piece. */
2199 static const struct lval_funcs pieced_value_funcs = {
2200 read_pieced_value,
2201 write_pieced_value,
2202 indirect_pieced_value,
2203 NULL, /* coerce_ref */
2204 check_pieced_synthetic_pointer,
2205 copy_pieced_value_closure,
2206 free_pieced_value_closure
2207 };
2208
2209 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2210
2211 const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2212 {
2213 dwarf_expr_read_addr_from_reg,
2214 dwarf_expr_get_reg_value,
2215 dwarf_expr_read_mem,
2216 dwarf_expr_frame_base,
2217 dwarf_expr_frame_cfa,
2218 dwarf_expr_frame_pc,
2219 dwarf_expr_tls_address,
2220 dwarf_expr_dwarf_call,
2221 dwarf_expr_get_base_type,
2222 dwarf_expr_push_dwarf_reg_entry_value,
2223 dwarf_expr_get_addr_index,
2224 dwarf_expr_get_obj_addr
2225 };
2226
2227 /* Evaluate a location description, starting at DATA and with length
2228 SIZE, to find the current location of variable of TYPE in the
2229 context of FRAME. BYTE_OFFSET is applied after the contents are
2230 computed. */
2231
2232 static struct value *
2233 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2234 const gdb_byte *data, size_t size,
2235 struct dwarf2_per_cu_data *per_cu,
2236 LONGEST byte_offset)
2237 {
2238 struct value *retval;
2239 struct dwarf_expr_baton baton;
2240 struct dwarf_expr_context *ctx;
2241 struct cleanup *old_chain, *value_chain;
2242 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2243
2244 if (byte_offset < 0)
2245 invalid_synthetic_pointer ();
2246
2247 if (size == 0)
2248 return allocate_optimized_out_value (type);
2249
2250 baton.frame = frame;
2251 baton.per_cu = per_cu;
2252 baton.obj_address = 0;
2253
2254 ctx = new_dwarf_expr_context ();
2255 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2256 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2257
2258 ctx->gdbarch = get_objfile_arch (objfile);
2259 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2260 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2261 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2262 ctx->baton = &baton;
2263 ctx->funcs = &dwarf_expr_ctx_funcs;
2264
2265 TRY
2266 {
2267 dwarf_expr_eval (ctx, data, size);
2268 }
2269 CATCH (ex, RETURN_MASK_ERROR)
2270 {
2271 if (ex.error == NOT_AVAILABLE_ERROR)
2272 {
2273 do_cleanups (old_chain);
2274 retval = allocate_value (type);
2275 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2276 return retval;
2277 }
2278 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2279 {
2280 if (entry_values_debug)
2281 exception_print (gdb_stdout, ex);
2282 do_cleanups (old_chain);
2283 return allocate_optimized_out_value (type);
2284 }
2285 else
2286 throw_exception (ex);
2287 }
2288 END_CATCH
2289
2290 if (ctx->num_pieces > 0)
2291 {
2292 struct piece_closure *c;
2293 struct frame_id frame_id = get_frame_id (frame);
2294 ULONGEST bit_size = 0;
2295 int i;
2296
2297 for (i = 0; i < ctx->num_pieces; ++i)
2298 bit_size += ctx->pieces[i].size;
2299 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2300 invalid_synthetic_pointer ();
2301
2302 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2303 ctx->addr_size);
2304 /* We must clean up the value chain after creating the piece
2305 closure but before allocating the result. */
2306 do_cleanups (value_chain);
2307 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2308 VALUE_FRAME_ID (retval) = frame_id;
2309 set_value_offset (retval, byte_offset);
2310 }
2311 else
2312 {
2313 switch (ctx->location)
2314 {
2315 case DWARF_VALUE_REGISTER:
2316 {
2317 struct gdbarch *arch = get_frame_arch (frame);
2318 int dwarf_regnum
2319 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2320 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2321
2322 if (byte_offset != 0)
2323 error (_("cannot use offset on synthetic pointer to register"));
2324 do_cleanups (value_chain);
2325 retval = value_from_register (type, gdb_regnum, frame);
2326 if (value_optimized_out (retval))
2327 {
2328 struct value *tmp;
2329
2330 /* This means the register has undefined value / was
2331 not saved. As we're computing the location of some
2332 variable etc. in the program, not a value for
2333 inspecting a register ($pc, $sp, etc.), return a
2334 generic optimized out value instead, so that we show
2335 <optimized out> instead of <not saved>. */
2336 do_cleanups (value_chain);
2337 tmp = allocate_value (type);
2338 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2339 retval = tmp;
2340 }
2341 }
2342 break;
2343
2344 case DWARF_VALUE_MEMORY:
2345 {
2346 struct type *ptr_type;
2347 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2348 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2349
2350 /* DW_OP_deref_size (and possibly other operations too) may
2351 create a pointer instead of an address. Ideally, the
2352 pointer to address conversion would be performed as part
2353 of those operations, but the type of the object to
2354 which the address refers is not known at the time of
2355 the operation. Therefore, we do the conversion here
2356 since the type is readily available. */
2357
2358 switch (TYPE_CODE (type))
2359 {
2360 case TYPE_CODE_FUNC:
2361 case TYPE_CODE_METHOD:
2362 ptr_type = builtin_type (ctx->gdbarch)->builtin_func_ptr;
2363 break;
2364 default:
2365 ptr_type = builtin_type (ctx->gdbarch)->builtin_data_ptr;
2366 break;
2367 }
2368 address = value_as_address (value_from_pointer (ptr_type, address));
2369
2370 do_cleanups (value_chain);
2371 retval = value_at_lazy (type, address + byte_offset);
2372 if (in_stack_memory)
2373 set_value_stack (retval, 1);
2374 }
2375 break;
2376
2377 case DWARF_VALUE_STACK:
2378 {
2379 struct value *value = dwarf_expr_fetch (ctx, 0);
2380 gdb_byte *contents;
2381 const gdb_byte *val_bytes;
2382 size_t n = TYPE_LENGTH (value_type (value));
2383
2384 if (byte_offset + TYPE_LENGTH (type) > n)
2385 invalid_synthetic_pointer ();
2386
2387 val_bytes = value_contents_all (value);
2388 val_bytes += byte_offset;
2389 n -= byte_offset;
2390
2391 /* Preserve VALUE because we are going to free values back
2392 to the mark, but we still need the value contents
2393 below. */
2394 value_incref (value);
2395 do_cleanups (value_chain);
2396 make_cleanup_value_free (value);
2397
2398 retval = allocate_value (type);
2399 contents = value_contents_raw (retval);
2400 if (n > TYPE_LENGTH (type))
2401 {
2402 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2403
2404 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2405 val_bytes += n - TYPE_LENGTH (type);
2406 n = TYPE_LENGTH (type);
2407 }
2408 memcpy (contents, val_bytes, n);
2409 }
2410 break;
2411
2412 case DWARF_VALUE_LITERAL:
2413 {
2414 bfd_byte *contents;
2415 const bfd_byte *ldata;
2416 size_t n = ctx->len;
2417
2418 if (byte_offset + TYPE_LENGTH (type) > n)
2419 invalid_synthetic_pointer ();
2420
2421 do_cleanups (value_chain);
2422 retval = allocate_value (type);
2423 contents = value_contents_raw (retval);
2424
2425 ldata = ctx->data + byte_offset;
2426 n -= byte_offset;
2427
2428 if (n > TYPE_LENGTH (type))
2429 {
2430 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2431
2432 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2433 ldata += n - TYPE_LENGTH (type);
2434 n = TYPE_LENGTH (type);
2435 }
2436 memcpy (contents, ldata, n);
2437 }
2438 break;
2439
2440 case DWARF_VALUE_OPTIMIZED_OUT:
2441 do_cleanups (value_chain);
2442 retval = allocate_optimized_out_value (type);
2443 break;
2444
2445 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2446 operation by execute_stack_op. */
2447 case DWARF_VALUE_IMPLICIT_POINTER:
2448 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2449 it can only be encountered when making a piece. */
2450 default:
2451 internal_error (__FILE__, __LINE__, _("invalid location type"));
2452 }
2453 }
2454
2455 set_value_initialized (retval, ctx->initialized);
2456
2457 do_cleanups (old_chain);
2458
2459 return retval;
2460 }
2461
2462 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2463 passes 0 as the byte_offset. */
2464
2465 struct value *
2466 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2467 const gdb_byte *data, size_t size,
2468 struct dwarf2_per_cu_data *per_cu)
2469 {
2470 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2471 }
2472
2473 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2474 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2475 frame in which the expression is evaluated. ADDR is a context (location of
2476 a variable) and might be needed to evaluate the location expression.
2477 Returns 1 on success, 0 otherwise. */
2478
2479 static int
2480 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2481 struct frame_info *frame,
2482 CORE_ADDR addr,
2483 CORE_ADDR *valp)
2484 {
2485 struct dwarf_expr_context *ctx;
2486 struct dwarf_expr_baton baton;
2487 struct objfile *objfile;
2488 struct cleanup *cleanup;
2489
2490 if (dlbaton == NULL || dlbaton->size == 0)
2491 return 0;
2492
2493 ctx = new_dwarf_expr_context ();
2494 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2495
2496 baton.frame = frame;
2497 baton.per_cu = dlbaton->per_cu;
2498 baton.obj_address = addr;
2499
2500 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2501
2502 ctx->gdbarch = get_objfile_arch (objfile);
2503 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2504 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2505 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2506 ctx->funcs = &dwarf_expr_ctx_funcs;
2507 ctx->baton = &baton;
2508
2509 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2510
2511 switch (ctx->location)
2512 {
2513 case DWARF_VALUE_REGISTER:
2514 case DWARF_VALUE_MEMORY:
2515 case DWARF_VALUE_STACK:
2516 *valp = dwarf_expr_fetch_address (ctx, 0);
2517 if (ctx->location == DWARF_VALUE_REGISTER)
2518 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2519 do_cleanups (cleanup);
2520 return 1;
2521 case DWARF_VALUE_LITERAL:
2522 *valp = extract_signed_integer (ctx->data, ctx->len,
2523 gdbarch_byte_order (ctx->gdbarch));
2524 do_cleanups (cleanup);
2525 return 1;
2526 /* Unsupported dwarf values. */
2527 case DWARF_VALUE_OPTIMIZED_OUT:
2528 case DWARF_VALUE_IMPLICIT_POINTER:
2529 break;
2530 }
2531
2532 do_cleanups (cleanup);
2533 return 0;
2534 }
2535
2536 /* See dwarf2loc.h. */
2537
2538 int
2539 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2540 struct frame_info *frame,
2541 struct property_addr_info *addr_stack,
2542 CORE_ADDR *value)
2543 {
2544 if (prop == NULL)
2545 return 0;
2546
2547 if (frame == NULL && has_stack_frames ())
2548 frame = get_selected_frame (NULL);
2549
2550 switch (prop->kind)
2551 {
2552 case PROP_LOCEXPR:
2553 {
2554 const struct dwarf2_property_baton *baton
2555 = (const struct dwarf2_property_baton *) prop->data.baton;
2556
2557 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2558 addr_stack ? addr_stack->addr : 0,
2559 value))
2560 {
2561 if (baton->referenced_type)
2562 {
2563 struct value *val = value_at (baton->referenced_type, *value);
2564
2565 *value = value_as_address (val);
2566 }
2567 return 1;
2568 }
2569 }
2570 break;
2571
2572 case PROP_LOCLIST:
2573 {
2574 struct dwarf2_property_baton *baton
2575 = (struct dwarf2_property_baton *) prop->data.baton;
2576 CORE_ADDR pc = get_frame_address_in_block (frame);
2577 const gdb_byte *data;
2578 struct value *val;
2579 size_t size;
2580
2581 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2582 if (data != NULL)
2583 {
2584 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2585 size, baton->loclist.per_cu);
2586 if (!value_optimized_out (val))
2587 {
2588 *value = value_as_address (val);
2589 return 1;
2590 }
2591 }
2592 }
2593 break;
2594
2595 case PROP_CONST:
2596 *value = prop->data.const_val;
2597 return 1;
2598
2599 case PROP_ADDR_OFFSET:
2600 {
2601 struct dwarf2_property_baton *baton
2602 = (struct dwarf2_property_baton *) prop->data.baton;
2603 struct property_addr_info *pinfo;
2604 struct value *val;
2605
2606 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2607 if (pinfo->type == baton->referenced_type)
2608 break;
2609 if (pinfo == NULL)
2610 error (_("cannot find reference address for offset property"));
2611 if (pinfo->valaddr != NULL)
2612 val = value_from_contents
2613 (baton->offset_info.type,
2614 pinfo->valaddr + baton->offset_info.offset);
2615 else
2616 val = value_at (baton->offset_info.type,
2617 pinfo->addr + baton->offset_info.offset);
2618 *value = value_as_address (val);
2619 return 1;
2620 }
2621 }
2622
2623 return 0;
2624 }
2625
2626 /* See dwarf2loc.h. */
2627
2628 void
2629 dwarf2_compile_property_to_c (struct ui_file *stream,
2630 const char *result_name,
2631 struct gdbarch *gdbarch,
2632 unsigned char *registers_used,
2633 const struct dynamic_prop *prop,
2634 CORE_ADDR pc,
2635 struct symbol *sym)
2636 {
2637 struct dwarf2_property_baton *baton
2638 = (struct dwarf2_property_baton *) prop->data.baton;
2639 const gdb_byte *data;
2640 size_t size;
2641 struct dwarf2_per_cu_data *per_cu;
2642
2643 if (prop->kind == PROP_LOCEXPR)
2644 {
2645 data = baton->locexpr.data;
2646 size = baton->locexpr.size;
2647 per_cu = baton->locexpr.per_cu;
2648 }
2649 else
2650 {
2651 gdb_assert (prop->kind == PROP_LOCLIST);
2652
2653 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2654 per_cu = baton->loclist.per_cu;
2655 }
2656
2657 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2658 gdbarch, registers_used,
2659 dwarf2_per_cu_addr_size (per_cu),
2660 data, data + size, per_cu);
2661 }
2662
2663 \f
2664 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2665
2666 struct needs_frame_baton
2667 {
2668 int needs_frame;
2669 struct dwarf2_per_cu_data *per_cu;
2670 };
2671
2672 /* Reads from registers do require a frame. */
2673 static CORE_ADDR
2674 needs_frame_read_addr_from_reg (void *baton, int regnum)
2675 {
2676 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2677
2678 nf_baton->needs_frame = 1;
2679 return 1;
2680 }
2681
2682 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2683 Reads from registers do require a frame. */
2684
2685 static struct value *
2686 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2687 {
2688 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2689
2690 nf_baton->needs_frame = 1;
2691 return value_zero (type, not_lval);
2692 }
2693
2694 /* Reads from memory do not require a frame. */
2695 static void
2696 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2697 {
2698 memset (buf, 0, len);
2699 }
2700
2701 /* Frame-relative accesses do require a frame. */
2702 static void
2703 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2704 {
2705 static gdb_byte lit0 = DW_OP_lit0;
2706 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2707
2708 *start = &lit0;
2709 *length = 1;
2710
2711 nf_baton->needs_frame = 1;
2712 }
2713
2714 /* CFA accesses require a frame. */
2715
2716 static CORE_ADDR
2717 needs_frame_frame_cfa (void *baton)
2718 {
2719 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2720
2721 nf_baton->needs_frame = 1;
2722 return 1;
2723 }
2724
2725 /* Thread-local accesses do require a frame. */
2726 static CORE_ADDR
2727 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2728 {
2729 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2730
2731 nf_baton->needs_frame = 1;
2732 return 1;
2733 }
2734
2735 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2736
2737 static void
2738 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2739 {
2740 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) ctx->baton;
2741
2742 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2743 ctx->funcs->get_frame_pc, ctx->baton);
2744 }
2745
2746 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2747
2748 static void
2749 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2750 enum call_site_parameter_kind kind,
2751 union call_site_parameter_u kind_u, int deref_size)
2752 {
2753 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) ctx->baton;
2754
2755 nf_baton->needs_frame = 1;
2756
2757 /* The expression may require some stub values on DWARF stack. */
2758 dwarf_expr_push_address (ctx, 0, 0);
2759 }
2760
2761 /* DW_OP_GNU_addr_index doesn't require a frame. */
2762
2763 static CORE_ADDR
2764 needs_get_addr_index (void *baton, unsigned int index)
2765 {
2766 /* Nothing to do. */
2767 return 1;
2768 }
2769
2770 /* DW_OP_push_object_address has a frame already passed through. */
2771
2772 static CORE_ADDR
2773 needs_get_obj_addr (void *baton)
2774 {
2775 /* Nothing to do. */
2776 return 1;
2777 }
2778
2779 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2780
2781 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2782 {
2783 needs_frame_read_addr_from_reg,
2784 needs_frame_get_reg_value,
2785 needs_frame_read_mem,
2786 needs_frame_frame_base,
2787 needs_frame_frame_cfa,
2788 needs_frame_frame_cfa, /* get_frame_pc */
2789 needs_frame_tls_address,
2790 needs_frame_dwarf_call,
2791 NULL, /* get_base_type */
2792 needs_dwarf_reg_entry_value,
2793 needs_get_addr_index,
2794 needs_get_obj_addr
2795 };
2796
2797 /* Return non-zero iff the location expression at DATA (length SIZE)
2798 requires a frame to evaluate. */
2799
2800 static int
2801 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2802 struct dwarf2_per_cu_data *per_cu)
2803 {
2804 struct needs_frame_baton baton;
2805 struct dwarf_expr_context *ctx;
2806 int in_reg;
2807 struct cleanup *old_chain;
2808 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2809
2810 baton.needs_frame = 0;
2811 baton.per_cu = per_cu;
2812
2813 ctx = new_dwarf_expr_context ();
2814 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2815 make_cleanup_value_free_to_mark (value_mark ());
2816
2817 ctx->gdbarch = get_objfile_arch (objfile);
2818 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2819 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2820 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2821 ctx->baton = &baton;
2822 ctx->funcs = &needs_frame_ctx_funcs;
2823
2824 dwarf_expr_eval (ctx, data, size);
2825
2826 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2827
2828 if (ctx->num_pieces > 0)
2829 {
2830 int i;
2831
2832 /* If the location has several pieces, and any of them are in
2833 registers, then we will need a frame to fetch them from. */
2834 for (i = 0; i < ctx->num_pieces; i++)
2835 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2836 in_reg = 1;
2837 }
2838
2839 do_cleanups (old_chain);
2840
2841 return baton.needs_frame || in_reg;
2842 }
2843
2844 /* A helper function that throws an unimplemented error mentioning a
2845 given DWARF operator. */
2846
2847 static void
2848 unimplemented (unsigned int op)
2849 {
2850 const char *name = get_DW_OP_name (op);
2851
2852 if (name)
2853 error (_("DWARF operator %s cannot be translated to an agent expression"),
2854 name);
2855 else
2856 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2857 "to an agent expression"),
2858 op);
2859 }
2860
2861 /* See dwarf2loc.h.
2862
2863 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2864 can issue a complaint, which is better than having every target's
2865 implementation of dwarf2_reg_to_regnum do it. */
2866
2867 int
2868 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2869 {
2870 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2871
2872 if (reg == -1)
2873 {
2874 complaint (&symfile_complaints,
2875 _("bad DWARF register number %d"), dwarf_reg);
2876 }
2877 return reg;
2878 }
2879
2880 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2881 Throw an error because DWARF_REG is bad. */
2882
2883 static void
2884 throw_bad_regnum_error (ULONGEST dwarf_reg)
2885 {
2886 /* Still want to print -1 as "-1".
2887 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2888 but that's overkill for now. */
2889 if ((int) dwarf_reg == dwarf_reg)
2890 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2891 error (_("Unable to access DWARF register number %s"),
2892 pulongest (dwarf_reg));
2893 }
2894
2895 /* See dwarf2loc.h. */
2896
2897 int
2898 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2899 {
2900 int reg;
2901
2902 if (dwarf_reg > INT_MAX)
2903 throw_bad_regnum_error (dwarf_reg);
2904 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2905 bad, but that's ok. */
2906 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2907 if (reg == -1)
2908 throw_bad_regnum_error (dwarf_reg);
2909 return reg;
2910 }
2911
2912 /* A helper function that emits an access to memory. ARCH is the
2913 target architecture. EXPR is the expression which we are building.
2914 NBITS is the number of bits we want to read. This emits the
2915 opcodes needed to read the memory and then extract the desired
2916 bits. */
2917
2918 static void
2919 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2920 {
2921 ULONGEST nbytes = (nbits + 7) / 8;
2922
2923 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2924
2925 if (expr->tracing)
2926 ax_trace_quick (expr, nbytes);
2927
2928 if (nbits <= 8)
2929 ax_simple (expr, aop_ref8);
2930 else if (nbits <= 16)
2931 ax_simple (expr, aop_ref16);
2932 else if (nbits <= 32)
2933 ax_simple (expr, aop_ref32);
2934 else
2935 ax_simple (expr, aop_ref64);
2936
2937 /* If we read exactly the number of bytes we wanted, we're done. */
2938 if (8 * nbytes == nbits)
2939 return;
2940
2941 if (gdbarch_bits_big_endian (arch))
2942 {
2943 /* On a bits-big-endian machine, we want the high-order
2944 NBITS. */
2945 ax_const_l (expr, 8 * nbytes - nbits);
2946 ax_simple (expr, aop_rsh_unsigned);
2947 }
2948 else
2949 {
2950 /* On a bits-little-endian box, we want the low-order NBITS. */
2951 ax_zero_ext (expr, nbits);
2952 }
2953 }
2954
2955 /* A helper function to return the frame's PC. */
2956
2957 static CORE_ADDR
2958 get_ax_pc (void *baton)
2959 {
2960 struct agent_expr *expr = (struct agent_expr *) baton;
2961
2962 return expr->scope;
2963 }
2964
2965 /* Compile a DWARF location expression to an agent expression.
2966
2967 EXPR is the agent expression we are building.
2968 LOC is the agent value we modify.
2969 ARCH is the architecture.
2970 ADDR_SIZE is the size of addresses, in bytes.
2971 OP_PTR is the start of the location expression.
2972 OP_END is one past the last byte of the location expression.
2973
2974 This will throw an exception for various kinds of errors -- for
2975 example, if the expression cannot be compiled, or if the expression
2976 is invalid. */
2977
2978 void
2979 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2980 struct gdbarch *arch, unsigned int addr_size,
2981 const gdb_byte *op_ptr, const gdb_byte *op_end,
2982 struct dwarf2_per_cu_data *per_cu)
2983 {
2984 struct cleanup *cleanups;
2985 int i, *offsets;
2986 VEC(int) *dw_labels = NULL, *patches = NULL;
2987 const gdb_byte * const base = op_ptr;
2988 const gdb_byte *previous_piece = op_ptr;
2989 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2990 ULONGEST bits_collected = 0;
2991 unsigned int addr_size_bits = 8 * addr_size;
2992 int bits_big_endian = gdbarch_bits_big_endian (arch);
2993
2994 offsets = XNEWVEC (int, op_end - op_ptr);
2995 cleanups = make_cleanup (xfree, offsets);
2996
2997 for (i = 0; i < op_end - op_ptr; ++i)
2998 offsets[i] = -1;
2999
3000 make_cleanup (VEC_cleanup (int), &dw_labels);
3001 make_cleanup (VEC_cleanup (int), &patches);
3002
3003 /* By default we are making an address. */
3004 loc->kind = axs_lvalue_memory;
3005
3006 while (op_ptr < op_end)
3007 {
3008 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3009 uint64_t uoffset, reg;
3010 int64_t offset;
3011 int i;
3012
3013 offsets[op_ptr - base] = expr->len;
3014 ++op_ptr;
3015
3016 /* Our basic approach to code generation is to map DWARF
3017 operations directly to AX operations. However, there are
3018 some differences.
3019
3020 First, DWARF works on address-sized units, but AX always uses
3021 LONGEST. For most operations we simply ignore this
3022 difference; instead we generate sign extensions as needed
3023 before division and comparison operations. It would be nice
3024 to omit the sign extensions, but there is no way to determine
3025 the size of the target's LONGEST. (This code uses the size
3026 of the host LONGEST in some cases -- that is a bug but it is
3027 difficult to fix.)
3028
3029 Second, some DWARF operations cannot be translated to AX.
3030 For these we simply fail. See
3031 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3032 switch (op)
3033 {
3034 case DW_OP_lit0:
3035 case DW_OP_lit1:
3036 case DW_OP_lit2:
3037 case DW_OP_lit3:
3038 case DW_OP_lit4:
3039 case DW_OP_lit5:
3040 case DW_OP_lit6:
3041 case DW_OP_lit7:
3042 case DW_OP_lit8:
3043 case DW_OP_lit9:
3044 case DW_OP_lit10:
3045 case DW_OP_lit11:
3046 case DW_OP_lit12:
3047 case DW_OP_lit13:
3048 case DW_OP_lit14:
3049 case DW_OP_lit15:
3050 case DW_OP_lit16:
3051 case DW_OP_lit17:
3052 case DW_OP_lit18:
3053 case DW_OP_lit19:
3054 case DW_OP_lit20:
3055 case DW_OP_lit21:
3056 case DW_OP_lit22:
3057 case DW_OP_lit23:
3058 case DW_OP_lit24:
3059 case DW_OP_lit25:
3060 case DW_OP_lit26:
3061 case DW_OP_lit27:
3062 case DW_OP_lit28:
3063 case DW_OP_lit29:
3064 case DW_OP_lit30:
3065 case DW_OP_lit31:
3066 ax_const_l (expr, op - DW_OP_lit0);
3067 break;
3068
3069 case DW_OP_addr:
3070 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3071 op_ptr += addr_size;
3072 /* Some versions of GCC emit DW_OP_addr before
3073 DW_OP_GNU_push_tls_address. In this case the value is an
3074 index, not an address. We don't support things like
3075 branching between the address and the TLS op. */
3076 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3077 uoffset += dwarf2_per_cu_text_offset (per_cu);
3078 ax_const_l (expr, uoffset);
3079 break;
3080
3081 case DW_OP_const1u:
3082 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3083 op_ptr += 1;
3084 break;
3085 case DW_OP_const1s:
3086 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3087 op_ptr += 1;
3088 break;
3089 case DW_OP_const2u:
3090 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3091 op_ptr += 2;
3092 break;
3093 case DW_OP_const2s:
3094 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3095 op_ptr += 2;
3096 break;
3097 case DW_OP_const4u:
3098 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3099 op_ptr += 4;
3100 break;
3101 case DW_OP_const4s:
3102 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3103 op_ptr += 4;
3104 break;
3105 case DW_OP_const8u:
3106 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3107 op_ptr += 8;
3108 break;
3109 case DW_OP_const8s:
3110 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3111 op_ptr += 8;
3112 break;
3113 case DW_OP_constu:
3114 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3115 ax_const_l (expr, uoffset);
3116 break;
3117 case DW_OP_consts:
3118 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3119 ax_const_l (expr, offset);
3120 break;
3121
3122 case DW_OP_reg0:
3123 case DW_OP_reg1:
3124 case DW_OP_reg2:
3125 case DW_OP_reg3:
3126 case DW_OP_reg4:
3127 case DW_OP_reg5:
3128 case DW_OP_reg6:
3129 case DW_OP_reg7:
3130 case DW_OP_reg8:
3131 case DW_OP_reg9:
3132 case DW_OP_reg10:
3133 case DW_OP_reg11:
3134 case DW_OP_reg12:
3135 case DW_OP_reg13:
3136 case DW_OP_reg14:
3137 case DW_OP_reg15:
3138 case DW_OP_reg16:
3139 case DW_OP_reg17:
3140 case DW_OP_reg18:
3141 case DW_OP_reg19:
3142 case DW_OP_reg20:
3143 case DW_OP_reg21:
3144 case DW_OP_reg22:
3145 case DW_OP_reg23:
3146 case DW_OP_reg24:
3147 case DW_OP_reg25:
3148 case DW_OP_reg26:
3149 case DW_OP_reg27:
3150 case DW_OP_reg28:
3151 case DW_OP_reg29:
3152 case DW_OP_reg30:
3153 case DW_OP_reg31:
3154 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3155 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3156 loc->kind = axs_lvalue_register;
3157 break;
3158
3159 case DW_OP_regx:
3160 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3161 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3162 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3163 loc->kind = axs_lvalue_register;
3164 break;
3165
3166 case DW_OP_implicit_value:
3167 {
3168 uint64_t len;
3169
3170 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3171 if (op_ptr + len > op_end)
3172 error (_("DW_OP_implicit_value: too few bytes available."));
3173 if (len > sizeof (ULONGEST))
3174 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3175 (int) len);
3176
3177 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3178 byte_order));
3179 op_ptr += len;
3180 dwarf_expr_require_composition (op_ptr, op_end,
3181 "DW_OP_implicit_value");
3182
3183 loc->kind = axs_rvalue;
3184 }
3185 break;
3186
3187 case DW_OP_stack_value:
3188 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3189 loc->kind = axs_rvalue;
3190 break;
3191
3192 case DW_OP_breg0:
3193 case DW_OP_breg1:
3194 case DW_OP_breg2:
3195 case DW_OP_breg3:
3196 case DW_OP_breg4:
3197 case DW_OP_breg5:
3198 case DW_OP_breg6:
3199 case DW_OP_breg7:
3200 case DW_OP_breg8:
3201 case DW_OP_breg9:
3202 case DW_OP_breg10:
3203 case DW_OP_breg11:
3204 case DW_OP_breg12:
3205 case DW_OP_breg13:
3206 case DW_OP_breg14:
3207 case DW_OP_breg15:
3208 case DW_OP_breg16:
3209 case DW_OP_breg17:
3210 case DW_OP_breg18:
3211 case DW_OP_breg19:
3212 case DW_OP_breg20:
3213 case DW_OP_breg21:
3214 case DW_OP_breg22:
3215 case DW_OP_breg23:
3216 case DW_OP_breg24:
3217 case DW_OP_breg25:
3218 case DW_OP_breg26:
3219 case DW_OP_breg27:
3220 case DW_OP_breg28:
3221 case DW_OP_breg29:
3222 case DW_OP_breg30:
3223 case DW_OP_breg31:
3224 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3225 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3226 ax_reg (expr, i);
3227 if (offset != 0)
3228 {
3229 ax_const_l (expr, offset);
3230 ax_simple (expr, aop_add);
3231 }
3232 break;
3233 case DW_OP_bregx:
3234 {
3235 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3236 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3237 i = dwarf_reg_to_regnum_or_error (arch, reg);
3238 ax_reg (expr, i);
3239 if (offset != 0)
3240 {
3241 ax_const_l (expr, offset);
3242 ax_simple (expr, aop_add);
3243 }
3244 }
3245 break;
3246 case DW_OP_fbreg:
3247 {
3248 const gdb_byte *datastart;
3249 size_t datalen;
3250 const struct block *b;
3251 struct symbol *framefunc;
3252
3253 b = block_for_pc (expr->scope);
3254
3255 if (!b)
3256 error (_("No block found for address"));
3257
3258 framefunc = block_linkage_function (b);
3259
3260 if (!framefunc)
3261 error (_("No function found for block"));
3262
3263 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3264 &datastart, &datalen);
3265
3266 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3267 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3268 datastart + datalen, per_cu);
3269 if (loc->kind == axs_lvalue_register)
3270 require_rvalue (expr, loc);
3271
3272 if (offset != 0)
3273 {
3274 ax_const_l (expr, offset);
3275 ax_simple (expr, aop_add);
3276 }
3277
3278 loc->kind = axs_lvalue_memory;
3279 }
3280 break;
3281
3282 case DW_OP_dup:
3283 ax_simple (expr, aop_dup);
3284 break;
3285
3286 case DW_OP_drop:
3287 ax_simple (expr, aop_pop);
3288 break;
3289
3290 case DW_OP_pick:
3291 offset = *op_ptr++;
3292 ax_pick (expr, offset);
3293 break;
3294
3295 case DW_OP_swap:
3296 ax_simple (expr, aop_swap);
3297 break;
3298
3299 case DW_OP_over:
3300 ax_pick (expr, 1);
3301 break;
3302
3303 case DW_OP_rot:
3304 ax_simple (expr, aop_rot);
3305 break;
3306
3307 case DW_OP_deref:
3308 case DW_OP_deref_size:
3309 {
3310 int size;
3311
3312 if (op == DW_OP_deref_size)
3313 size = *op_ptr++;
3314 else
3315 size = addr_size;
3316
3317 if (size != 1 && size != 2 && size != 4 && size != 8)
3318 error (_("Unsupported size %d in %s"),
3319 size, get_DW_OP_name (op));
3320 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3321 }
3322 break;
3323
3324 case DW_OP_abs:
3325 /* Sign extend the operand. */
3326 ax_ext (expr, addr_size_bits);
3327 ax_simple (expr, aop_dup);
3328 ax_const_l (expr, 0);
3329 ax_simple (expr, aop_less_signed);
3330 ax_simple (expr, aop_log_not);
3331 i = ax_goto (expr, aop_if_goto);
3332 /* We have to emit 0 - X. */
3333 ax_const_l (expr, 0);
3334 ax_simple (expr, aop_swap);
3335 ax_simple (expr, aop_sub);
3336 ax_label (expr, i, expr->len);
3337 break;
3338
3339 case DW_OP_neg:
3340 /* No need to sign extend here. */
3341 ax_const_l (expr, 0);
3342 ax_simple (expr, aop_swap);
3343 ax_simple (expr, aop_sub);
3344 break;
3345
3346 case DW_OP_not:
3347 /* Sign extend the operand. */
3348 ax_ext (expr, addr_size_bits);
3349 ax_simple (expr, aop_bit_not);
3350 break;
3351
3352 case DW_OP_plus_uconst:
3353 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3354 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3355 but we micro-optimize anyhow. */
3356 if (reg != 0)
3357 {
3358 ax_const_l (expr, reg);
3359 ax_simple (expr, aop_add);
3360 }
3361 break;
3362
3363 case DW_OP_and:
3364 ax_simple (expr, aop_bit_and);
3365 break;
3366
3367 case DW_OP_div:
3368 /* Sign extend the operands. */
3369 ax_ext (expr, addr_size_bits);
3370 ax_simple (expr, aop_swap);
3371 ax_ext (expr, addr_size_bits);
3372 ax_simple (expr, aop_swap);
3373 ax_simple (expr, aop_div_signed);
3374 break;
3375
3376 case DW_OP_minus:
3377 ax_simple (expr, aop_sub);
3378 break;
3379
3380 case DW_OP_mod:
3381 ax_simple (expr, aop_rem_unsigned);
3382 break;
3383
3384 case DW_OP_mul:
3385 ax_simple (expr, aop_mul);
3386 break;
3387
3388 case DW_OP_or:
3389 ax_simple (expr, aop_bit_or);
3390 break;
3391
3392 case DW_OP_plus:
3393 ax_simple (expr, aop_add);
3394 break;
3395
3396 case DW_OP_shl:
3397 ax_simple (expr, aop_lsh);
3398 break;
3399
3400 case DW_OP_shr:
3401 ax_simple (expr, aop_rsh_unsigned);
3402 break;
3403
3404 case DW_OP_shra:
3405 ax_simple (expr, aop_rsh_signed);
3406 break;
3407
3408 case DW_OP_xor:
3409 ax_simple (expr, aop_bit_xor);
3410 break;
3411
3412 case DW_OP_le:
3413 /* Sign extend the operands. */
3414 ax_ext (expr, addr_size_bits);
3415 ax_simple (expr, aop_swap);
3416 ax_ext (expr, addr_size_bits);
3417 /* Note no swap here: A <= B is !(B < A). */
3418 ax_simple (expr, aop_less_signed);
3419 ax_simple (expr, aop_log_not);
3420 break;
3421
3422 case DW_OP_ge:
3423 /* Sign extend the operands. */
3424 ax_ext (expr, addr_size_bits);
3425 ax_simple (expr, aop_swap);
3426 ax_ext (expr, addr_size_bits);
3427 ax_simple (expr, aop_swap);
3428 /* A >= B is !(A < B). */
3429 ax_simple (expr, aop_less_signed);
3430 ax_simple (expr, aop_log_not);
3431 break;
3432
3433 case DW_OP_eq:
3434 /* Sign extend the operands. */
3435 ax_ext (expr, addr_size_bits);
3436 ax_simple (expr, aop_swap);
3437 ax_ext (expr, addr_size_bits);
3438 /* No need for a second swap here. */
3439 ax_simple (expr, aop_equal);
3440 break;
3441
3442 case DW_OP_lt:
3443 /* Sign extend the operands. */
3444 ax_ext (expr, addr_size_bits);
3445 ax_simple (expr, aop_swap);
3446 ax_ext (expr, addr_size_bits);
3447 ax_simple (expr, aop_swap);
3448 ax_simple (expr, aop_less_signed);
3449 break;
3450
3451 case DW_OP_gt:
3452 /* Sign extend the operands. */
3453 ax_ext (expr, addr_size_bits);
3454 ax_simple (expr, aop_swap);
3455 ax_ext (expr, addr_size_bits);
3456 /* Note no swap here: A > B is B < A. */
3457 ax_simple (expr, aop_less_signed);
3458 break;
3459
3460 case DW_OP_ne:
3461 /* Sign extend the operands. */
3462 ax_ext (expr, addr_size_bits);
3463 ax_simple (expr, aop_swap);
3464 ax_ext (expr, addr_size_bits);
3465 /* No need for a swap here. */
3466 ax_simple (expr, aop_equal);
3467 ax_simple (expr, aop_log_not);
3468 break;
3469
3470 case DW_OP_call_frame_cfa:
3471 {
3472 int regnum;
3473 CORE_ADDR text_offset;
3474 LONGEST off;
3475 const gdb_byte *cfa_start, *cfa_end;
3476
3477 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3478 &regnum, &off,
3479 &text_offset, &cfa_start, &cfa_end))
3480 {
3481 /* Register. */
3482 ax_reg (expr, regnum);
3483 if (off != 0)
3484 {
3485 ax_const_l (expr, off);
3486 ax_simple (expr, aop_add);
3487 }
3488 }
3489 else
3490 {
3491 /* Another expression. */
3492 ax_const_l (expr, text_offset);
3493 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3494 cfa_start, cfa_end, per_cu);
3495 }
3496
3497 loc->kind = axs_lvalue_memory;
3498 }
3499 break;
3500
3501 case DW_OP_GNU_push_tls_address:
3502 unimplemented (op);
3503 break;
3504
3505 case DW_OP_push_object_address:
3506 unimplemented (op);
3507 break;
3508
3509 case DW_OP_skip:
3510 offset = extract_signed_integer (op_ptr, 2, byte_order);
3511 op_ptr += 2;
3512 i = ax_goto (expr, aop_goto);
3513 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3514 VEC_safe_push (int, patches, i);
3515 break;
3516
3517 case DW_OP_bra:
3518 offset = extract_signed_integer (op_ptr, 2, byte_order);
3519 op_ptr += 2;
3520 /* Zero extend the operand. */
3521 ax_zero_ext (expr, addr_size_bits);
3522 i = ax_goto (expr, aop_if_goto);
3523 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3524 VEC_safe_push (int, patches, i);
3525 break;
3526
3527 case DW_OP_nop:
3528 break;
3529
3530 case DW_OP_piece:
3531 case DW_OP_bit_piece:
3532 {
3533 uint64_t size, offset;
3534
3535 if (op_ptr - 1 == previous_piece)
3536 error (_("Cannot translate empty pieces to agent expressions"));
3537 previous_piece = op_ptr - 1;
3538
3539 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3540 if (op == DW_OP_piece)
3541 {
3542 size *= 8;
3543 offset = 0;
3544 }
3545 else
3546 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3547
3548 if (bits_collected + size > 8 * sizeof (LONGEST))
3549 error (_("Expression pieces exceed word size"));
3550
3551 /* Access the bits. */
3552 switch (loc->kind)
3553 {
3554 case axs_lvalue_register:
3555 ax_reg (expr, loc->u.reg);
3556 break;
3557
3558 case axs_lvalue_memory:
3559 /* Offset the pointer, if needed. */
3560 if (offset > 8)
3561 {
3562 ax_const_l (expr, offset / 8);
3563 ax_simple (expr, aop_add);
3564 offset %= 8;
3565 }
3566 access_memory (arch, expr, size);
3567 break;
3568 }
3569
3570 /* For a bits-big-endian target, shift up what we already
3571 have. For a bits-little-endian target, shift up the
3572 new data. Note that there is a potential bug here if
3573 the DWARF expression leaves multiple values on the
3574 stack. */
3575 if (bits_collected > 0)
3576 {
3577 if (bits_big_endian)
3578 {
3579 ax_simple (expr, aop_swap);
3580 ax_const_l (expr, size);
3581 ax_simple (expr, aop_lsh);
3582 /* We don't need a second swap here, because
3583 aop_bit_or is symmetric. */
3584 }
3585 else
3586 {
3587 ax_const_l (expr, size);
3588 ax_simple (expr, aop_lsh);
3589 }
3590 ax_simple (expr, aop_bit_or);
3591 }
3592
3593 bits_collected += size;
3594 loc->kind = axs_rvalue;
3595 }
3596 break;
3597
3598 case DW_OP_GNU_uninit:
3599 unimplemented (op);
3600
3601 case DW_OP_call2:
3602 case DW_OP_call4:
3603 {
3604 struct dwarf2_locexpr_baton block;
3605 int size = (op == DW_OP_call2 ? 2 : 4);
3606 cu_offset offset;
3607
3608 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3609 op_ptr += size;
3610
3611 offset.cu_off = uoffset;
3612 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3613 get_ax_pc, expr);
3614
3615 /* DW_OP_call_ref is currently not supported. */
3616 gdb_assert (block.per_cu == per_cu);
3617
3618 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3619 block.data, block.data + block.size,
3620 per_cu);
3621 }
3622 break;
3623
3624 case DW_OP_call_ref:
3625 unimplemented (op);
3626
3627 default:
3628 unimplemented (op);
3629 }
3630 }
3631
3632 /* Patch all the branches we emitted. */
3633 for (i = 0; i < VEC_length (int, patches); ++i)
3634 {
3635 int targ = offsets[VEC_index (int, dw_labels, i)];
3636 if (targ == -1)
3637 internal_error (__FILE__, __LINE__, _("invalid label"));
3638 ax_label (expr, VEC_index (int, patches, i), targ);
3639 }
3640
3641 do_cleanups (cleanups);
3642 }
3643
3644 \f
3645 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3646 evaluator to calculate the location. */
3647 static struct value *
3648 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3649 {
3650 struct dwarf2_locexpr_baton *dlbaton
3651 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3652 struct value *val;
3653
3654 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3655 dlbaton->size, dlbaton->per_cu);
3656
3657 return val;
3658 }
3659
3660 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3661 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3662 will be thrown. */
3663
3664 static struct value *
3665 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3666 {
3667 struct dwarf2_locexpr_baton *dlbaton
3668 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3669
3670 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3671 dlbaton->size);
3672 }
3673
3674 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3675 static int
3676 locexpr_read_needs_frame (struct symbol *symbol)
3677 {
3678 struct dwarf2_locexpr_baton *dlbaton
3679 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3680
3681 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3682 dlbaton->per_cu);
3683 }
3684
3685 /* Return true if DATA points to the end of a piece. END is one past
3686 the last byte in the expression. */
3687
3688 static int
3689 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3690 {
3691 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3692 }
3693
3694 /* Helper for locexpr_describe_location_piece that finds the name of a
3695 DWARF register. */
3696
3697 static const char *
3698 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3699 {
3700 int regnum;
3701
3702 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3703 We'd rather print *something* here than throw an error. */
3704 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3705 /* gdbarch_register_name may just return "", return something more
3706 descriptive for bad register numbers. */
3707 if (regnum == -1)
3708 {
3709 /* The text is output as "$bad_register_number".
3710 That is why we use the underscores. */
3711 return _("bad_register_number");
3712 }
3713 return gdbarch_register_name (gdbarch, regnum);
3714 }
3715
3716 /* Nicely describe a single piece of a location, returning an updated
3717 position in the bytecode sequence. This function cannot recognize
3718 all locations; if a location is not recognized, it simply returns
3719 DATA. If there is an error during reading, e.g. we run off the end
3720 of the buffer, an error is thrown. */
3721
3722 static const gdb_byte *
3723 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3724 CORE_ADDR addr, struct objfile *objfile,
3725 struct dwarf2_per_cu_data *per_cu,
3726 const gdb_byte *data, const gdb_byte *end,
3727 unsigned int addr_size)
3728 {
3729 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3730 size_t leb128_size;
3731
3732 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3733 {
3734 fprintf_filtered (stream, _("a variable in $%s"),
3735 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3736 data += 1;
3737 }
3738 else if (data[0] == DW_OP_regx)
3739 {
3740 uint64_t reg;
3741
3742 data = safe_read_uleb128 (data + 1, end, &reg);
3743 fprintf_filtered (stream, _("a variable in $%s"),
3744 locexpr_regname (gdbarch, reg));
3745 }
3746 else if (data[0] == DW_OP_fbreg)
3747 {
3748 const struct block *b;
3749 struct symbol *framefunc;
3750 int frame_reg = 0;
3751 int64_t frame_offset;
3752 const gdb_byte *base_data, *new_data, *save_data = data;
3753 size_t base_size;
3754 int64_t base_offset = 0;
3755
3756 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3757 if (!piece_end_p (new_data, end))
3758 return data;
3759 data = new_data;
3760
3761 b = block_for_pc (addr);
3762
3763 if (!b)
3764 error (_("No block found for address for symbol \"%s\"."),
3765 SYMBOL_PRINT_NAME (symbol));
3766
3767 framefunc = block_linkage_function (b);
3768
3769 if (!framefunc)
3770 error (_("No function found for block for symbol \"%s\"."),
3771 SYMBOL_PRINT_NAME (symbol));
3772
3773 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3774
3775 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3776 {
3777 const gdb_byte *buf_end;
3778
3779 frame_reg = base_data[0] - DW_OP_breg0;
3780 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3781 &base_offset);
3782 if (buf_end != base_data + base_size)
3783 error (_("Unexpected opcode after "
3784 "DW_OP_breg%u for symbol \"%s\"."),
3785 frame_reg, SYMBOL_PRINT_NAME (symbol));
3786 }
3787 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3788 {
3789 /* The frame base is just the register, with no offset. */
3790 frame_reg = base_data[0] - DW_OP_reg0;
3791 base_offset = 0;
3792 }
3793 else
3794 {
3795 /* We don't know what to do with the frame base expression,
3796 so we can't trace this variable; give up. */
3797 return save_data;
3798 }
3799
3800 fprintf_filtered (stream,
3801 _("a variable at frame base reg $%s offset %s+%s"),
3802 locexpr_regname (gdbarch, frame_reg),
3803 plongest (base_offset), plongest (frame_offset));
3804 }
3805 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3806 && piece_end_p (data, end))
3807 {
3808 int64_t offset;
3809
3810 data = safe_read_sleb128 (data + 1, end, &offset);
3811
3812 fprintf_filtered (stream,
3813 _("a variable at offset %s from base reg $%s"),
3814 plongest (offset),
3815 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3816 }
3817
3818 /* The location expression for a TLS variable looks like this (on a
3819 64-bit LE machine):
3820
3821 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3822 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3823
3824 0x3 is the encoding for DW_OP_addr, which has an operand as long
3825 as the size of an address on the target machine (here is 8
3826 bytes). Note that more recent version of GCC emit DW_OP_const4u
3827 or DW_OP_const8u, depending on address size, rather than
3828 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3829 The operand represents the offset at which the variable is within
3830 the thread local storage. */
3831
3832 else if (data + 1 + addr_size < end
3833 && (data[0] == DW_OP_addr
3834 || (addr_size == 4 && data[0] == DW_OP_const4u)
3835 || (addr_size == 8 && data[0] == DW_OP_const8u))
3836 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3837 && piece_end_p (data + 2 + addr_size, end))
3838 {
3839 ULONGEST offset;
3840 offset = extract_unsigned_integer (data + 1, addr_size,
3841 gdbarch_byte_order (gdbarch));
3842
3843 fprintf_filtered (stream,
3844 _("a thread-local variable at offset 0x%s "
3845 "in the thread-local storage for `%s'"),
3846 phex_nz (offset, addr_size), objfile_name (objfile));
3847
3848 data += 1 + addr_size + 1;
3849 }
3850
3851 /* With -gsplit-dwarf a TLS variable can also look like this:
3852 DW_AT_location : 3 byte block: fc 4 e0
3853 (DW_OP_GNU_const_index: 4;
3854 DW_OP_GNU_push_tls_address) */
3855 else if (data + 3 <= end
3856 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3857 && data[0] == DW_OP_GNU_const_index
3858 && leb128_size > 0
3859 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3860 && piece_end_p (data + 2 + leb128_size, end))
3861 {
3862 uint64_t offset;
3863
3864 data = safe_read_uleb128 (data + 1, end, &offset);
3865 offset = dwarf2_read_addr_index (per_cu, offset);
3866 fprintf_filtered (stream,
3867 _("a thread-local variable at offset 0x%s "
3868 "in the thread-local storage for `%s'"),
3869 phex_nz (offset, addr_size), objfile_name (objfile));
3870 ++data;
3871 }
3872
3873 else if (data[0] >= DW_OP_lit0
3874 && data[0] <= DW_OP_lit31
3875 && data + 1 < end
3876 && data[1] == DW_OP_stack_value)
3877 {
3878 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3879 data += 2;
3880 }
3881
3882 return data;
3883 }
3884
3885 /* Disassemble an expression, stopping at the end of a piece or at the
3886 end of the expression. Returns a pointer to the next unread byte
3887 in the input expression. If ALL is nonzero, then this function
3888 will keep going until it reaches the end of the expression.
3889 If there is an error during reading, e.g. we run off the end
3890 of the buffer, an error is thrown. */
3891
3892 static const gdb_byte *
3893 disassemble_dwarf_expression (struct ui_file *stream,
3894 struct gdbarch *arch, unsigned int addr_size,
3895 int offset_size, const gdb_byte *start,
3896 const gdb_byte *data, const gdb_byte *end,
3897 int indent, int all,
3898 struct dwarf2_per_cu_data *per_cu)
3899 {
3900 while (data < end
3901 && (all
3902 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3903 {
3904 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3905 uint64_t ul;
3906 int64_t l;
3907 const char *name;
3908
3909 name = get_DW_OP_name (op);
3910
3911 if (!name)
3912 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3913 op, (long) (data - 1 - start));
3914 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3915 (long) (data - 1 - start), name);
3916
3917 switch (op)
3918 {
3919 case DW_OP_addr:
3920 ul = extract_unsigned_integer (data, addr_size,
3921 gdbarch_byte_order (arch));
3922 data += addr_size;
3923 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3924 break;
3925
3926 case DW_OP_const1u:
3927 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3928 data += 1;
3929 fprintf_filtered (stream, " %s", pulongest (ul));
3930 break;
3931 case DW_OP_const1s:
3932 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3933 data += 1;
3934 fprintf_filtered (stream, " %s", plongest (l));
3935 break;
3936 case DW_OP_const2u:
3937 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3938 data += 2;
3939 fprintf_filtered (stream, " %s", pulongest (ul));
3940 break;
3941 case DW_OP_const2s:
3942 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3943 data += 2;
3944 fprintf_filtered (stream, " %s", plongest (l));
3945 break;
3946 case DW_OP_const4u:
3947 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3948 data += 4;
3949 fprintf_filtered (stream, " %s", pulongest (ul));
3950 break;
3951 case DW_OP_const4s:
3952 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3953 data += 4;
3954 fprintf_filtered (stream, " %s", plongest (l));
3955 break;
3956 case DW_OP_const8u:
3957 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3958 data += 8;
3959 fprintf_filtered (stream, " %s", pulongest (ul));
3960 break;
3961 case DW_OP_const8s:
3962 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3963 data += 8;
3964 fprintf_filtered (stream, " %s", plongest (l));
3965 break;
3966 case DW_OP_constu:
3967 data = safe_read_uleb128 (data, end, &ul);
3968 fprintf_filtered (stream, " %s", pulongest (ul));
3969 break;
3970 case DW_OP_consts:
3971 data = safe_read_sleb128 (data, end, &l);
3972 fprintf_filtered (stream, " %s", plongest (l));
3973 break;
3974
3975 case DW_OP_reg0:
3976 case DW_OP_reg1:
3977 case DW_OP_reg2:
3978 case DW_OP_reg3:
3979 case DW_OP_reg4:
3980 case DW_OP_reg5:
3981 case DW_OP_reg6:
3982 case DW_OP_reg7:
3983 case DW_OP_reg8:
3984 case DW_OP_reg9:
3985 case DW_OP_reg10:
3986 case DW_OP_reg11:
3987 case DW_OP_reg12:
3988 case DW_OP_reg13:
3989 case DW_OP_reg14:
3990 case DW_OP_reg15:
3991 case DW_OP_reg16:
3992 case DW_OP_reg17:
3993 case DW_OP_reg18:
3994 case DW_OP_reg19:
3995 case DW_OP_reg20:
3996 case DW_OP_reg21:
3997 case DW_OP_reg22:
3998 case DW_OP_reg23:
3999 case DW_OP_reg24:
4000 case DW_OP_reg25:
4001 case DW_OP_reg26:
4002 case DW_OP_reg27:
4003 case DW_OP_reg28:
4004 case DW_OP_reg29:
4005 case DW_OP_reg30:
4006 case DW_OP_reg31:
4007 fprintf_filtered (stream, " [$%s]",
4008 locexpr_regname (arch, op - DW_OP_reg0));
4009 break;
4010
4011 case DW_OP_regx:
4012 data = safe_read_uleb128 (data, end, &ul);
4013 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4014 locexpr_regname (arch, (int) ul));
4015 break;
4016
4017 case DW_OP_implicit_value:
4018 data = safe_read_uleb128 (data, end, &ul);
4019 data += ul;
4020 fprintf_filtered (stream, " %s", pulongest (ul));
4021 break;
4022
4023 case DW_OP_breg0:
4024 case DW_OP_breg1:
4025 case DW_OP_breg2:
4026 case DW_OP_breg3:
4027 case DW_OP_breg4:
4028 case DW_OP_breg5:
4029 case DW_OP_breg6:
4030 case DW_OP_breg7:
4031 case DW_OP_breg8:
4032 case DW_OP_breg9:
4033 case DW_OP_breg10:
4034 case DW_OP_breg11:
4035 case DW_OP_breg12:
4036 case DW_OP_breg13:
4037 case DW_OP_breg14:
4038 case DW_OP_breg15:
4039 case DW_OP_breg16:
4040 case DW_OP_breg17:
4041 case DW_OP_breg18:
4042 case DW_OP_breg19:
4043 case DW_OP_breg20:
4044 case DW_OP_breg21:
4045 case DW_OP_breg22:
4046 case DW_OP_breg23:
4047 case DW_OP_breg24:
4048 case DW_OP_breg25:
4049 case DW_OP_breg26:
4050 case DW_OP_breg27:
4051 case DW_OP_breg28:
4052 case DW_OP_breg29:
4053 case DW_OP_breg30:
4054 case DW_OP_breg31:
4055 data = safe_read_sleb128 (data, end, &l);
4056 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4057 locexpr_regname (arch, op - DW_OP_breg0));
4058 break;
4059
4060 case DW_OP_bregx:
4061 data = safe_read_uleb128 (data, end, &ul);
4062 data = safe_read_sleb128 (data, end, &l);
4063 fprintf_filtered (stream, " register %s [$%s] offset %s",
4064 pulongest (ul),
4065 locexpr_regname (arch, (int) ul),
4066 plongest (l));
4067 break;
4068
4069 case DW_OP_fbreg:
4070 data = safe_read_sleb128 (data, end, &l);
4071 fprintf_filtered (stream, " %s", plongest (l));
4072 break;
4073
4074 case DW_OP_xderef_size:
4075 case DW_OP_deref_size:
4076 case DW_OP_pick:
4077 fprintf_filtered (stream, " %d", *data);
4078 ++data;
4079 break;
4080
4081 case DW_OP_plus_uconst:
4082 data = safe_read_uleb128 (data, end, &ul);
4083 fprintf_filtered (stream, " %s", pulongest (ul));
4084 break;
4085
4086 case DW_OP_skip:
4087 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4088 data += 2;
4089 fprintf_filtered (stream, " to %ld",
4090 (long) (data + l - start));
4091 break;
4092
4093 case DW_OP_bra:
4094 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4095 data += 2;
4096 fprintf_filtered (stream, " %ld",
4097 (long) (data + l - start));
4098 break;
4099
4100 case DW_OP_call2:
4101 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4102 data += 2;
4103 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4104 break;
4105
4106 case DW_OP_call4:
4107 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4108 data += 4;
4109 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4110 break;
4111
4112 case DW_OP_call_ref:
4113 ul = extract_unsigned_integer (data, offset_size,
4114 gdbarch_byte_order (arch));
4115 data += offset_size;
4116 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4117 break;
4118
4119 case DW_OP_piece:
4120 data = safe_read_uleb128 (data, end, &ul);
4121 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4122 break;
4123
4124 case DW_OP_bit_piece:
4125 {
4126 uint64_t offset;
4127
4128 data = safe_read_uleb128 (data, end, &ul);
4129 data = safe_read_uleb128 (data, end, &offset);
4130 fprintf_filtered (stream, " size %s offset %s (bits)",
4131 pulongest (ul), pulongest (offset));
4132 }
4133 break;
4134
4135 case DW_OP_GNU_implicit_pointer:
4136 {
4137 ul = extract_unsigned_integer (data, offset_size,
4138 gdbarch_byte_order (arch));
4139 data += offset_size;
4140
4141 data = safe_read_sleb128 (data, end, &l);
4142
4143 fprintf_filtered (stream, " DIE %s offset %s",
4144 phex_nz (ul, offset_size),
4145 plongest (l));
4146 }
4147 break;
4148
4149 case DW_OP_GNU_deref_type:
4150 {
4151 int addr_size = *data++;
4152 cu_offset offset;
4153 struct type *type;
4154
4155 data = safe_read_uleb128 (data, end, &ul);
4156 offset.cu_off = ul;
4157 type = dwarf2_get_die_type (offset, per_cu);
4158 fprintf_filtered (stream, "<");
4159 type_print (type, "", stream, -1);
4160 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4161 addr_size);
4162 }
4163 break;
4164
4165 case DW_OP_GNU_const_type:
4166 {
4167 cu_offset type_die;
4168 struct type *type;
4169
4170 data = safe_read_uleb128 (data, end, &ul);
4171 type_die.cu_off = ul;
4172 type = dwarf2_get_die_type (type_die, per_cu);
4173 fprintf_filtered (stream, "<");
4174 type_print (type, "", stream, -1);
4175 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4176 }
4177 break;
4178
4179 case DW_OP_GNU_regval_type:
4180 {
4181 uint64_t reg;
4182 cu_offset type_die;
4183 struct type *type;
4184
4185 data = safe_read_uleb128 (data, end, &reg);
4186 data = safe_read_uleb128 (data, end, &ul);
4187 type_die.cu_off = ul;
4188
4189 type = dwarf2_get_die_type (type_die, per_cu);
4190 fprintf_filtered (stream, "<");
4191 type_print (type, "", stream, -1);
4192 fprintf_filtered (stream, " [0x%s]> [$%s]",
4193 phex_nz (type_die.cu_off, 0),
4194 locexpr_regname (arch, reg));
4195 }
4196 break;
4197
4198 case DW_OP_GNU_convert:
4199 case DW_OP_GNU_reinterpret:
4200 {
4201 cu_offset type_die;
4202
4203 data = safe_read_uleb128 (data, end, &ul);
4204 type_die.cu_off = ul;
4205
4206 if (type_die.cu_off == 0)
4207 fprintf_filtered (stream, "<0>");
4208 else
4209 {
4210 struct type *type;
4211
4212 type = dwarf2_get_die_type (type_die, per_cu);
4213 fprintf_filtered (stream, "<");
4214 type_print (type, "", stream, -1);
4215 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4216 }
4217 }
4218 break;
4219
4220 case DW_OP_GNU_entry_value:
4221 data = safe_read_uleb128 (data, end, &ul);
4222 fputc_filtered ('\n', stream);
4223 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4224 start, data, data + ul, indent + 2,
4225 all, per_cu);
4226 data += ul;
4227 continue;
4228
4229 case DW_OP_GNU_parameter_ref:
4230 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4231 data += 4;
4232 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4233 break;
4234
4235 case DW_OP_GNU_addr_index:
4236 data = safe_read_uleb128 (data, end, &ul);
4237 ul = dwarf2_read_addr_index (per_cu, ul);
4238 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4239 break;
4240 case DW_OP_GNU_const_index:
4241 data = safe_read_uleb128 (data, end, &ul);
4242 ul = dwarf2_read_addr_index (per_cu, ul);
4243 fprintf_filtered (stream, " %s", pulongest (ul));
4244 break;
4245 }
4246
4247 fprintf_filtered (stream, "\n");
4248 }
4249
4250 return data;
4251 }
4252
4253 /* Describe a single location, which may in turn consist of multiple
4254 pieces. */
4255
4256 static void
4257 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4258 struct ui_file *stream,
4259 const gdb_byte *data, size_t size,
4260 struct objfile *objfile, unsigned int addr_size,
4261 int offset_size, struct dwarf2_per_cu_data *per_cu)
4262 {
4263 const gdb_byte *end = data + size;
4264 int first_piece = 1, bad = 0;
4265
4266 while (data < end)
4267 {
4268 const gdb_byte *here = data;
4269 int disassemble = 1;
4270
4271 if (first_piece)
4272 first_piece = 0;
4273 else
4274 fprintf_filtered (stream, _(", and "));
4275
4276 if (!dwarf_always_disassemble)
4277 {
4278 data = locexpr_describe_location_piece (symbol, stream,
4279 addr, objfile, per_cu,
4280 data, end, addr_size);
4281 /* If we printed anything, or if we have an empty piece,
4282 then don't disassemble. */
4283 if (data != here
4284 || data[0] == DW_OP_piece
4285 || data[0] == DW_OP_bit_piece)
4286 disassemble = 0;
4287 }
4288 if (disassemble)
4289 {
4290 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4291 data = disassemble_dwarf_expression (stream,
4292 get_objfile_arch (objfile),
4293 addr_size, offset_size, data,
4294 data, end, 0,
4295 dwarf_always_disassemble,
4296 per_cu);
4297 }
4298
4299 if (data < end)
4300 {
4301 int empty = data == here;
4302
4303 if (disassemble)
4304 fprintf_filtered (stream, " ");
4305 if (data[0] == DW_OP_piece)
4306 {
4307 uint64_t bytes;
4308
4309 data = safe_read_uleb128 (data + 1, end, &bytes);
4310
4311 if (empty)
4312 fprintf_filtered (stream, _("an empty %s-byte piece"),
4313 pulongest (bytes));
4314 else
4315 fprintf_filtered (stream, _(" [%s-byte piece]"),
4316 pulongest (bytes));
4317 }
4318 else if (data[0] == DW_OP_bit_piece)
4319 {
4320 uint64_t bits, offset;
4321
4322 data = safe_read_uleb128 (data + 1, end, &bits);
4323 data = safe_read_uleb128 (data, end, &offset);
4324
4325 if (empty)
4326 fprintf_filtered (stream,
4327 _("an empty %s-bit piece"),
4328 pulongest (bits));
4329 else
4330 fprintf_filtered (stream,
4331 _(" [%s-bit piece, offset %s bits]"),
4332 pulongest (bits), pulongest (offset));
4333 }
4334 else
4335 {
4336 bad = 1;
4337 break;
4338 }
4339 }
4340 }
4341
4342 if (bad || data > end)
4343 error (_("Corrupted DWARF2 expression for \"%s\"."),
4344 SYMBOL_PRINT_NAME (symbol));
4345 }
4346
4347 /* Print a natural-language description of SYMBOL to STREAM. This
4348 version is for a symbol with a single location. */
4349
4350 static void
4351 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4352 struct ui_file *stream)
4353 {
4354 struct dwarf2_locexpr_baton *dlbaton
4355 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4356 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4357 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4358 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4359
4360 locexpr_describe_location_1 (symbol, addr, stream,
4361 dlbaton->data, dlbaton->size,
4362 objfile, addr_size, offset_size,
4363 dlbaton->per_cu);
4364 }
4365
4366 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4367 any necessary bytecode in AX. */
4368
4369 static void
4370 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4371 struct agent_expr *ax, struct axs_value *value)
4372 {
4373 struct dwarf2_locexpr_baton *dlbaton
4374 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4375 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4376
4377 if (dlbaton->size == 0)
4378 value->optimized_out = 1;
4379 else
4380 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4381 dlbaton->data, dlbaton->data + dlbaton->size,
4382 dlbaton->per_cu);
4383 }
4384
4385 /* symbol_computed_ops 'generate_c_location' method. */
4386
4387 static void
4388 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4389 struct gdbarch *gdbarch,
4390 unsigned char *registers_used,
4391 CORE_ADDR pc, const char *result_name)
4392 {
4393 struct dwarf2_locexpr_baton *dlbaton
4394 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4395 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4396
4397 if (dlbaton->size == 0)
4398 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4399
4400 compile_dwarf_expr_to_c (stream, result_name,
4401 sym, pc, gdbarch, registers_used, addr_size,
4402 dlbaton->data, dlbaton->data + dlbaton->size,
4403 dlbaton->per_cu);
4404 }
4405
4406 /* The set of location functions used with the DWARF-2 expression
4407 evaluator. */
4408 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4409 locexpr_read_variable,
4410 locexpr_read_variable_at_entry,
4411 locexpr_read_needs_frame,
4412 locexpr_describe_location,
4413 0, /* location_has_loclist */
4414 locexpr_tracepoint_var_ref,
4415 locexpr_generate_c_location
4416 };
4417
4418
4419 /* Wrapper functions for location lists. These generally find
4420 the appropriate location expression and call something above. */
4421
4422 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4423 evaluator to calculate the location. */
4424 static struct value *
4425 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4426 {
4427 struct dwarf2_loclist_baton *dlbaton
4428 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4429 struct value *val;
4430 const gdb_byte *data;
4431 size_t size;
4432 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4433
4434 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4435 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4436 dlbaton->per_cu);
4437
4438 return val;
4439 }
4440
4441 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4442 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4443 will be thrown.
4444
4445 Function always returns non-NULL value, it may be marked optimized out if
4446 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4447 if it cannot resolve the parameter for any reason. */
4448
4449 static struct value *
4450 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4451 {
4452 struct dwarf2_loclist_baton *dlbaton
4453 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4454 const gdb_byte *data;
4455 size_t size;
4456 CORE_ADDR pc;
4457
4458 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4459 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4460
4461 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4462 if (data == NULL)
4463 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4464
4465 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4466 }
4467
4468 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4469 static int
4470 loclist_read_needs_frame (struct symbol *symbol)
4471 {
4472 /* If there's a location list, then assume we need to have a frame
4473 to choose the appropriate location expression. With tracking of
4474 global variables this is not necessarily true, but such tracking
4475 is disabled in GCC at the moment until we figure out how to
4476 represent it. */
4477
4478 return 1;
4479 }
4480
4481 /* Print a natural-language description of SYMBOL to STREAM. This
4482 version applies when there is a list of different locations, each
4483 with a specified address range. */
4484
4485 static void
4486 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4487 struct ui_file *stream)
4488 {
4489 struct dwarf2_loclist_baton *dlbaton
4490 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4491 const gdb_byte *loc_ptr, *buf_end;
4492 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4495 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4496 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4497 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4498 /* Adjust base_address for relocatable objects. */
4499 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4500 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4501 int done = 0;
4502
4503 loc_ptr = dlbaton->data;
4504 buf_end = dlbaton->data + dlbaton->size;
4505
4506 fprintf_filtered (stream, _("multi-location:\n"));
4507
4508 /* Iterate through locations until we run out. */
4509 while (!done)
4510 {
4511 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4512 int length;
4513 enum debug_loc_kind kind;
4514 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4515
4516 if (dlbaton->from_dwo)
4517 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4518 loc_ptr, buf_end, &new_ptr,
4519 &low, &high, byte_order);
4520 else
4521 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4522 &low, &high,
4523 byte_order, addr_size,
4524 signed_addr_p);
4525 loc_ptr = new_ptr;
4526 switch (kind)
4527 {
4528 case DEBUG_LOC_END_OF_LIST:
4529 done = 1;
4530 continue;
4531 case DEBUG_LOC_BASE_ADDRESS:
4532 base_address = high + base_offset;
4533 fprintf_filtered (stream, _(" Base address %s"),
4534 paddress (gdbarch, base_address));
4535 continue;
4536 case DEBUG_LOC_START_END:
4537 case DEBUG_LOC_START_LENGTH:
4538 break;
4539 case DEBUG_LOC_BUFFER_OVERFLOW:
4540 case DEBUG_LOC_INVALID_ENTRY:
4541 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4542 SYMBOL_PRINT_NAME (symbol));
4543 default:
4544 gdb_assert_not_reached ("bad debug_loc_kind");
4545 }
4546
4547 /* Otherwise, a location expression entry. */
4548 low += base_address;
4549 high += base_address;
4550
4551 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4552 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4553
4554 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4555 loc_ptr += 2;
4556
4557 /* (It would improve readability to print only the minimum
4558 necessary digits of the second number of the range.) */
4559 fprintf_filtered (stream, _(" Range %s-%s: "),
4560 paddress (gdbarch, low), paddress (gdbarch, high));
4561
4562 /* Now describe this particular location. */
4563 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4564 objfile, addr_size, offset_size,
4565 dlbaton->per_cu);
4566
4567 fprintf_filtered (stream, "\n");
4568
4569 loc_ptr += length;
4570 }
4571 }
4572
4573 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4574 any necessary bytecode in AX. */
4575 static void
4576 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4577 struct agent_expr *ax, struct axs_value *value)
4578 {
4579 struct dwarf2_loclist_baton *dlbaton
4580 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4581 const gdb_byte *data;
4582 size_t size;
4583 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4584
4585 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4586 if (size == 0)
4587 value->optimized_out = 1;
4588 else
4589 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4590 dlbaton->per_cu);
4591 }
4592
4593 /* symbol_computed_ops 'generate_c_location' method. */
4594
4595 static void
4596 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4597 struct gdbarch *gdbarch,
4598 unsigned char *registers_used,
4599 CORE_ADDR pc, const char *result_name)
4600 {
4601 struct dwarf2_loclist_baton *dlbaton
4602 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4603 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4604 const gdb_byte *data;
4605 size_t size;
4606
4607 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4608 if (size == 0)
4609 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4610
4611 compile_dwarf_expr_to_c (stream, result_name,
4612 sym, pc, gdbarch, registers_used, addr_size,
4613 data, data + size,
4614 dlbaton->per_cu);
4615 }
4616
4617 /* The set of location functions used with the DWARF-2 expression
4618 evaluator and location lists. */
4619 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4620 loclist_read_variable,
4621 loclist_read_variable_at_entry,
4622 loclist_read_needs_frame,
4623 loclist_describe_location,
4624 1, /* location_has_loclist */
4625 loclist_tracepoint_var_ref,
4626 loclist_generate_c_location
4627 };
4628
4629 /* Provide a prototype to silence -Wmissing-prototypes. */
4630 extern initialize_file_ftype _initialize_dwarf2loc;
4631
4632 void
4633 _initialize_dwarf2loc (void)
4634 {
4635 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4636 &entry_values_debug,
4637 _("Set entry values and tail call frames "
4638 "debugging."),
4639 _("Show entry values and tail call frames "
4640 "debugging."),
4641 _("When non-zero, the process of determining "
4642 "parameter values from function entry point "
4643 "and tail call frames will be printed."),
4644 NULL,
4645 show_entry_values_debug,
4646 &setdebuglist, &showdebuglist);
4647 }
This page took 0.144113 seconds and 5 git commands to generate.