Respect piece offset for DW_OP_bit_piece
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1756 bits whose first bit is located at bit offset START. */
1757
1758 static size_t
1759 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1760 {
1761 return (start % 8 + n_bits + 7) / 8;
1762 }
1763
1764 static void
1765 read_pieced_value (struct value *v)
1766 {
1767 int i;
1768 LONGEST offset = 0, max_offset;
1769 ULONGEST bits_to_skip;
1770 gdb_byte *contents;
1771 struct piece_closure *c
1772 = (struct piece_closure *) value_computed_closure (v);
1773 std::vector<gdb_byte> buffer;
1774 int bits_big_endian
1775 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1776
1777 if (value_type (v) != value_enclosing_type (v))
1778 internal_error (__FILE__, __LINE__,
1779 _("Should not be able to create a lazy value with "
1780 "an enclosing type"));
1781
1782 contents = value_contents_raw (v);
1783 bits_to_skip = 8 * value_offset (v);
1784 if (value_bitsize (v))
1785 {
1786 bits_to_skip += (8 * value_offset (value_parent (v))
1787 + value_bitpos (v));
1788 max_offset = value_bitsize (v);
1789 }
1790 else
1791 max_offset = 8 * TYPE_LENGTH (value_type (v));
1792
1793 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1794 {
1795 struct dwarf_expr_piece *p = &c->pieces[i];
1796 size_t this_size, this_size_bits;
1797 long dest_offset_bits, source_offset_bits;
1798
1799 /* Compute size, source, and destination offsets for copying, in
1800 bits. */
1801 this_size_bits = p->size;
1802 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1803 {
1804 bits_to_skip -= this_size_bits;
1805 continue;
1806 }
1807 source_offset_bits = bits_to_skip;
1808 this_size_bits -= bits_to_skip;
1809 bits_to_skip = 0;
1810 dest_offset_bits = offset;
1811
1812 if (this_size_bits > max_offset - offset)
1813 this_size_bits = max_offset - offset;
1814
1815 /* Copy from the source to DEST_BUFFER. */
1816 switch (p->location)
1817 {
1818 case DWARF_VALUE_REGISTER:
1819 {
1820 struct frame_info *frame = frame_find_by_id (c->frame_id);
1821 struct gdbarch *arch = get_frame_arch (frame);
1822 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1823 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1824 int optim, unavail;
1825
1826 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1827 && p->offset + p->size < reg_bits)
1828 {
1829 /* Big-endian, and we want less than full size. */
1830 source_offset_bits += reg_bits - (p->offset + p->size);
1831 }
1832 else
1833 source_offset_bits += p->offset;
1834
1835 this_size = bits_to_bytes (source_offset_bits, this_size_bits);
1836 buffer.reserve (this_size);
1837
1838 if (!get_frame_register_bytes (frame, gdb_regnum,
1839 source_offset_bits / 8,
1840 this_size, buffer.data (),
1841 &optim, &unavail))
1842 {
1843 if (optim)
1844 mark_value_bits_optimized_out (v, offset, this_size_bits);
1845 if (unavail)
1846 mark_value_bits_unavailable (v, offset, this_size_bits);
1847 break;
1848 }
1849
1850 copy_bitwise (contents, dest_offset_bits,
1851 buffer.data (), source_offset_bits % 8,
1852 this_size_bits, bits_big_endian);
1853 }
1854 break;
1855
1856 case DWARF_VALUE_MEMORY:
1857 source_offset_bits += p->offset;
1858 this_size = bits_to_bytes (source_offset_bits, this_size_bits);
1859 buffer.reserve (this_size);
1860
1861 read_value_memory (v, offset,
1862 p->v.mem.in_stack_memory,
1863 p->v.mem.addr + source_offset_bits / 8,
1864 buffer.data (), this_size);
1865 copy_bitwise (contents, dest_offset_bits,
1866 buffer.data (), source_offset_bits % 8,
1867 this_size_bits, bits_big_endian);
1868 break;
1869
1870 case DWARF_VALUE_STACK:
1871 {
1872 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1873 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1874 ULONGEST stack_value_size_bits
1875 = 8 * TYPE_LENGTH (value_type (p->v.value));
1876
1877 /* Use zeroes if piece reaches beyond stack value. */
1878 if (p->offset + p->size > stack_value_size_bits)
1879 break;
1880
1881 /* Piece is anchored at least significant bit end. */
1882 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1883 source_offset_bits += (stack_value_size_bits
1884 - p->offset - p->size);
1885 else
1886 source_offset_bits += p->offset;
1887
1888 copy_bitwise (contents, dest_offset_bits,
1889 value_contents_all (p->v.value),
1890 source_offset_bits,
1891 this_size_bits, bits_big_endian);
1892 }
1893 break;
1894
1895 case DWARF_VALUE_LITERAL:
1896 {
1897 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1898 size_t n = this_size_bits;
1899
1900 /* Cut off at the end of the implicit value. */
1901 source_offset_bits += p->offset;
1902 if (source_offset_bits >= literal_size_bits)
1903 break;
1904 if (n > literal_size_bits - source_offset_bits)
1905 n = literal_size_bits - source_offset_bits;
1906
1907 copy_bitwise (contents, dest_offset_bits,
1908 p->v.literal.data, source_offset_bits,
1909 n, bits_big_endian);
1910 }
1911 break;
1912
1913 /* These bits show up as zeros -- but do not cause the value
1914 to be considered optimized-out. */
1915 case DWARF_VALUE_IMPLICIT_POINTER:
1916 break;
1917
1918 case DWARF_VALUE_OPTIMIZED_OUT:
1919 mark_value_bits_optimized_out (v, offset, this_size_bits);
1920 break;
1921
1922 default:
1923 internal_error (__FILE__, __LINE__, _("invalid location type"));
1924 }
1925
1926 offset += this_size_bits;
1927 }
1928 }
1929
1930 static void
1931 write_pieced_value (struct value *to, struct value *from)
1932 {
1933 int i;
1934 ULONGEST bits_to_skip;
1935 LONGEST offset = 0, max_offset;
1936 const gdb_byte *contents;
1937 struct piece_closure *c
1938 = (struct piece_closure *) value_computed_closure (to);
1939 std::vector<gdb_byte> buffer;
1940 int bits_big_endian
1941 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1942
1943 contents = value_contents (from);
1944 bits_to_skip = 8 * value_offset (to);
1945 if (value_bitsize (to))
1946 {
1947 bits_to_skip += (8 * value_offset (value_parent (to))
1948 + value_bitpos (to));
1949 /* Use the least significant bits of FROM. */
1950 if (gdbarch_byte_order (get_type_arch (value_type (from)))
1951 == BFD_ENDIAN_BIG)
1952 {
1953 max_offset = 8 * TYPE_LENGTH (value_type (from));
1954 offset = max_offset - value_bitsize (to);
1955 }
1956 else
1957 max_offset = value_bitsize (to);
1958 }
1959 else
1960 max_offset = 8 * TYPE_LENGTH (value_type (to));
1961
1962 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1963 {
1964 struct dwarf_expr_piece *p = &c->pieces[i];
1965 size_t this_size_bits, this_size;
1966 long dest_offset_bits, source_offset_bits;
1967
1968 this_size_bits = p->size;
1969 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1970 {
1971 bits_to_skip -= this_size_bits;
1972 continue;
1973 }
1974 dest_offset_bits = bits_to_skip;
1975 this_size_bits -= bits_to_skip;
1976 bits_to_skip = 0;
1977 source_offset_bits = offset;
1978
1979 if (this_size_bits > max_offset - offset)
1980 this_size_bits = max_offset - offset;
1981
1982 switch (p->location)
1983 {
1984 case DWARF_VALUE_REGISTER:
1985 {
1986 struct frame_info *frame = frame_find_by_id (c->frame_id);
1987 struct gdbarch *arch = get_frame_arch (frame);
1988 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1989 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1990
1991 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1992 && p->offset + p->size < reg_bits)
1993 {
1994 /* Big-endian, and we want less than full size. */
1995 dest_offset_bits += reg_bits - (p->offset + p->size);
1996 }
1997 else
1998 dest_offset_bits += p->offset;
1999
2000 this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
2001 buffer.reserve (this_size);
2002
2003 if (dest_offset_bits % 8 != 0 || this_size_bits % 8 != 0)
2004 {
2005 /* Data is copied non-byte-aligned into the register.
2006 Need some bits from original register value. */
2007 int optim, unavail;
2008
2009 if (!get_frame_register_bytes (frame, gdb_regnum,
2010 dest_offset_bits / 8,
2011 this_size, buffer.data (),
2012 &optim, &unavail))
2013 {
2014 if (optim)
2015 throw_error (OPTIMIZED_OUT_ERROR,
2016 _("Can't do read-modify-write to "
2017 "update bitfield; containing word "
2018 "has been optimized out"));
2019 if (unavail)
2020 throw_error (NOT_AVAILABLE_ERROR,
2021 _("Can't do read-modify-write to update "
2022 "bitfield; containing word "
2023 "is unavailable"));
2024 }
2025 }
2026
2027 copy_bitwise (buffer.data (), dest_offset_bits % 8,
2028 contents, source_offset_bits,
2029 this_size_bits, bits_big_endian);
2030 put_frame_register_bytes (frame, gdb_regnum,
2031 dest_offset_bits / 8,
2032 this_size, buffer.data ());
2033 }
2034 break;
2035 case DWARF_VALUE_MEMORY:
2036 {
2037 dest_offset_bits += p->offset;
2038
2039 CORE_ADDR start_addr = p->v.mem.addr + dest_offset_bits / 8;
2040
2041 if (dest_offset_bits % 8 == 0 && this_size_bits % 8 == 0
2042 && source_offset_bits % 8 == 0)
2043 {
2044 /* Everything is byte-aligned; no buffer needed. */
2045 write_memory (start_addr,
2046 contents + source_offset_bits / 8,
2047 this_size_bits / 8);
2048 break;
2049 }
2050
2051 this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
2052 buffer.reserve (this_size);
2053
2054 if (dest_offset_bits % 8 != 0 || this_size_bits % 8 != 0)
2055 {
2056 if (this_size <= 8)
2057 {
2058 /* Perform a single read for small sizes. */
2059 read_memory (start_addr, buffer.data (), this_size);
2060 }
2061 else
2062 {
2063 /* Only the first and last bytes can possibly have any
2064 bits reused. */
2065 read_memory (start_addr, buffer.data (), 1);
2066 read_memory (start_addr + this_size - 1,
2067 &buffer[this_size - 1], 1);
2068 }
2069 }
2070
2071 copy_bitwise (buffer.data (), dest_offset_bits % 8,
2072 contents, source_offset_bits,
2073 this_size_bits, bits_big_endian);
2074 write_memory (start_addr, buffer.data (), this_size);
2075 }
2076 break;
2077 default:
2078 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2079 break;
2080 }
2081 offset += this_size_bits;
2082 }
2083 }
2084
2085 /* An implementation of an lval_funcs method to see whether a value is
2086 a synthetic pointer. */
2087
2088 static int
2089 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2090 int bit_length)
2091 {
2092 struct piece_closure *c
2093 = (struct piece_closure *) value_computed_closure (value);
2094 int i;
2095
2096 bit_offset += 8 * value_offset (value);
2097 if (value_bitsize (value))
2098 bit_offset += value_bitpos (value);
2099
2100 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2101 {
2102 struct dwarf_expr_piece *p = &c->pieces[i];
2103 size_t this_size_bits = p->size;
2104
2105 if (bit_offset > 0)
2106 {
2107 if (bit_offset >= this_size_bits)
2108 {
2109 bit_offset -= this_size_bits;
2110 continue;
2111 }
2112
2113 bit_length -= this_size_bits - bit_offset;
2114 bit_offset = 0;
2115 }
2116 else
2117 bit_length -= this_size_bits;
2118
2119 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2120 return 0;
2121 }
2122
2123 return 1;
2124 }
2125
2126 /* A wrapper function for get_frame_address_in_block. */
2127
2128 static CORE_ADDR
2129 get_frame_address_in_block_wrapper (void *baton)
2130 {
2131 return get_frame_address_in_block ((struct frame_info *) baton);
2132 }
2133
2134 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2135
2136 static struct value *
2137 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2138 struct dwarf2_per_cu_data *per_cu,
2139 struct type *type)
2140 {
2141 struct value *result = NULL;
2142 struct obstack temp_obstack;
2143 struct cleanup *cleanup;
2144 const gdb_byte *bytes;
2145 LONGEST len;
2146
2147 obstack_init (&temp_obstack);
2148 cleanup = make_cleanup_obstack_free (&temp_obstack);
2149 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2150
2151 if (bytes != NULL)
2152 {
2153 if (byte_offset >= 0
2154 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2155 {
2156 bytes += byte_offset;
2157 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2158 }
2159 else
2160 invalid_synthetic_pointer ();
2161 }
2162 else
2163 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2164
2165 do_cleanups (cleanup);
2166
2167 return result;
2168 }
2169
2170 /* Fetch the value pointed to by a synthetic pointer. */
2171
2172 static struct value *
2173 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2174 struct dwarf2_per_cu_data *per_cu,
2175 struct frame_info *frame, struct type *type)
2176 {
2177 /* Fetch the location expression of the DIE we're pointing to. */
2178 struct dwarf2_locexpr_baton baton
2179 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2180 get_frame_address_in_block_wrapper, frame);
2181
2182 /* Get type of pointed-to DIE. */
2183 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2184 if (orig_type == NULL)
2185 invalid_synthetic_pointer ();
2186
2187 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2188 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2189 or it may've been optimized out. */
2190 if (baton.data != NULL)
2191 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2192 baton.size, baton.per_cu,
2193 TYPE_TARGET_TYPE (type),
2194 byte_offset);
2195 else
2196 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2197 type);
2198 }
2199
2200 /* An implementation of an lval_funcs method to indirect through a
2201 pointer. This handles the synthetic pointer case when needed. */
2202
2203 static struct value *
2204 indirect_pieced_value (struct value *value)
2205 {
2206 struct piece_closure *c
2207 = (struct piece_closure *) value_computed_closure (value);
2208 struct type *type;
2209 struct frame_info *frame;
2210 struct dwarf2_locexpr_baton baton;
2211 int i, bit_length;
2212 LONGEST bit_offset;
2213 struct dwarf_expr_piece *piece = NULL;
2214 LONGEST byte_offset;
2215 enum bfd_endian byte_order;
2216
2217 type = check_typedef (value_type (value));
2218 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2219 return NULL;
2220
2221 bit_length = 8 * TYPE_LENGTH (type);
2222 bit_offset = 8 * value_offset (value);
2223 if (value_bitsize (value))
2224 bit_offset += value_bitpos (value);
2225
2226 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2227 {
2228 struct dwarf_expr_piece *p = &c->pieces[i];
2229 size_t this_size_bits = p->size;
2230
2231 if (bit_offset > 0)
2232 {
2233 if (bit_offset >= this_size_bits)
2234 {
2235 bit_offset -= this_size_bits;
2236 continue;
2237 }
2238
2239 bit_length -= this_size_bits - bit_offset;
2240 bit_offset = 0;
2241 }
2242 else
2243 bit_length -= this_size_bits;
2244
2245 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2246 return NULL;
2247
2248 if (bit_length != 0)
2249 error (_("Invalid use of DW_OP_implicit_pointer"));
2250
2251 piece = p;
2252 break;
2253 }
2254
2255 gdb_assert (piece != NULL);
2256 frame = get_selected_frame (_("No frame selected."));
2257
2258 /* This is an offset requested by GDB, such as value subscripts.
2259 However, due to how synthetic pointers are implemented, this is
2260 always presented to us as a pointer type. This means we have to
2261 sign-extend it manually as appropriate. Use raw
2262 extract_signed_integer directly rather than value_as_address and
2263 sign extend afterwards on architectures that would need it
2264 (mostly everywhere except MIPS, which has signed addresses) as
2265 the later would go through gdbarch_pointer_to_address and thus
2266 return a CORE_ADDR with high bits set on architectures that
2267 encode address spaces and other things in CORE_ADDR. */
2268 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2269 byte_offset = extract_signed_integer (value_contents (value),
2270 TYPE_LENGTH (type), byte_order);
2271 byte_offset += piece->v.ptr.offset;
2272
2273 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2274 byte_offset, c->per_cu,
2275 frame, type);
2276 }
2277
2278 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2279 references. */
2280
2281 static struct value *
2282 coerce_pieced_ref (const struct value *value)
2283 {
2284 struct type *type = check_typedef (value_type (value));
2285
2286 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2287 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2288 {
2289 const struct piece_closure *closure
2290 = (struct piece_closure *) value_computed_closure (value);
2291 struct frame_info *frame
2292 = get_selected_frame (_("No frame selected."));
2293
2294 /* gdb represents synthetic pointers as pieced values with a single
2295 piece. */
2296 gdb_assert (closure != NULL);
2297 gdb_assert (closure->n_pieces == 1);
2298
2299 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2300 closure->pieces->v.ptr.offset,
2301 closure->per_cu, frame, type);
2302 }
2303 else
2304 {
2305 /* Else: not a synthetic reference; do nothing. */
2306 return NULL;
2307 }
2308 }
2309
2310 static void *
2311 copy_pieced_value_closure (const struct value *v)
2312 {
2313 struct piece_closure *c
2314 = (struct piece_closure *) value_computed_closure (v);
2315
2316 ++c->refc;
2317 return c;
2318 }
2319
2320 static void
2321 free_pieced_value_closure (struct value *v)
2322 {
2323 struct piece_closure *c
2324 = (struct piece_closure *) value_computed_closure (v);
2325
2326 --c->refc;
2327 if (c->refc == 0)
2328 {
2329 int i;
2330
2331 for (i = 0; i < c->n_pieces; ++i)
2332 if (c->pieces[i].location == DWARF_VALUE_STACK)
2333 value_free (c->pieces[i].v.value);
2334
2335 xfree (c->pieces);
2336 xfree (c);
2337 }
2338 }
2339
2340 /* Functions for accessing a variable described by DW_OP_piece. */
2341 static const struct lval_funcs pieced_value_funcs = {
2342 read_pieced_value,
2343 write_pieced_value,
2344 indirect_pieced_value,
2345 coerce_pieced_ref,
2346 check_pieced_synthetic_pointer,
2347 copy_pieced_value_closure,
2348 free_pieced_value_closure
2349 };
2350
2351 /* Evaluate a location description, starting at DATA and with length
2352 SIZE, to find the current location of variable of TYPE in the
2353 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2354 location of the subobject of type SUBOBJ_TYPE at byte offset
2355 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2356
2357 static struct value *
2358 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2359 const gdb_byte *data, size_t size,
2360 struct dwarf2_per_cu_data *per_cu,
2361 struct type *subobj_type,
2362 LONGEST subobj_byte_offset)
2363 {
2364 struct value *retval;
2365 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2366
2367 if (subobj_type == NULL)
2368 {
2369 subobj_type = type;
2370 subobj_byte_offset = 0;
2371 }
2372 else if (subobj_byte_offset < 0)
2373 invalid_synthetic_pointer ();
2374
2375 if (size == 0)
2376 return allocate_optimized_out_value (subobj_type);
2377
2378 dwarf_evaluate_loc_desc ctx;
2379 ctx.frame = frame;
2380 ctx.per_cu = per_cu;
2381 ctx.obj_address = 0;
2382
2383 scoped_value_mark free_values;
2384
2385 ctx.gdbarch = get_objfile_arch (objfile);
2386 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2387 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2388 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2389
2390 TRY
2391 {
2392 ctx.eval (data, size);
2393 }
2394 CATCH (ex, RETURN_MASK_ERROR)
2395 {
2396 if (ex.error == NOT_AVAILABLE_ERROR)
2397 {
2398 free_values.free_to_mark ();
2399 retval = allocate_value (subobj_type);
2400 mark_value_bytes_unavailable (retval, 0,
2401 TYPE_LENGTH (subobj_type));
2402 return retval;
2403 }
2404 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2405 {
2406 if (entry_values_debug)
2407 exception_print (gdb_stdout, ex);
2408 free_values.free_to_mark ();
2409 return allocate_optimized_out_value (subobj_type);
2410 }
2411 else
2412 throw_exception (ex);
2413 }
2414 END_CATCH
2415
2416 if (ctx.num_pieces > 0)
2417 {
2418 struct piece_closure *c;
2419 ULONGEST bit_size = 0;
2420 int i;
2421
2422 for (i = 0; i < ctx.num_pieces; ++i)
2423 bit_size += ctx.pieces[i].size;
2424 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2425 invalid_synthetic_pointer ();
2426
2427 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2428 frame);
2429 /* We must clean up the value chain after creating the piece
2430 closure but before allocating the result. */
2431 free_values.free_to_mark ();
2432 retval = allocate_computed_value (subobj_type,
2433 &pieced_value_funcs, c);
2434 set_value_offset (retval, subobj_byte_offset);
2435 }
2436 else
2437 {
2438 switch (ctx.location)
2439 {
2440 case DWARF_VALUE_REGISTER:
2441 {
2442 struct gdbarch *arch = get_frame_arch (frame);
2443 int dwarf_regnum
2444 = longest_to_int (value_as_long (ctx.fetch (0)));
2445 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2446
2447 if (subobj_byte_offset != 0)
2448 error (_("cannot use offset on synthetic pointer to register"));
2449 free_values.free_to_mark ();
2450 retval = value_from_register (subobj_type, gdb_regnum, frame);
2451 if (value_optimized_out (retval))
2452 {
2453 struct value *tmp;
2454
2455 /* This means the register has undefined value / was
2456 not saved. As we're computing the location of some
2457 variable etc. in the program, not a value for
2458 inspecting a register ($pc, $sp, etc.), return a
2459 generic optimized out value instead, so that we show
2460 <optimized out> instead of <not saved>. */
2461 tmp = allocate_value (subobj_type);
2462 value_contents_copy (tmp, 0, retval, 0,
2463 TYPE_LENGTH (subobj_type));
2464 retval = tmp;
2465 }
2466 }
2467 break;
2468
2469 case DWARF_VALUE_MEMORY:
2470 {
2471 struct type *ptr_type;
2472 CORE_ADDR address = ctx.fetch_address (0);
2473 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2474
2475 /* DW_OP_deref_size (and possibly other operations too) may
2476 create a pointer instead of an address. Ideally, the
2477 pointer to address conversion would be performed as part
2478 of those operations, but the type of the object to
2479 which the address refers is not known at the time of
2480 the operation. Therefore, we do the conversion here
2481 since the type is readily available. */
2482
2483 switch (TYPE_CODE (subobj_type))
2484 {
2485 case TYPE_CODE_FUNC:
2486 case TYPE_CODE_METHOD:
2487 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2488 break;
2489 default:
2490 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2491 break;
2492 }
2493 address = value_as_address (value_from_pointer (ptr_type, address));
2494
2495 free_values.free_to_mark ();
2496 retval = value_at_lazy (subobj_type,
2497 address + subobj_byte_offset);
2498 if (in_stack_memory)
2499 set_value_stack (retval, 1);
2500 }
2501 break;
2502
2503 case DWARF_VALUE_STACK:
2504 {
2505 struct value *value = ctx.fetch (0);
2506 size_t n = TYPE_LENGTH (value_type (value));
2507 size_t len = TYPE_LENGTH (subobj_type);
2508 size_t max = TYPE_LENGTH (type);
2509 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2510 struct cleanup *cleanup;
2511
2512 if (subobj_byte_offset + len > max)
2513 invalid_synthetic_pointer ();
2514
2515 /* Preserve VALUE because we are going to free values back
2516 to the mark, but we still need the value contents
2517 below. */
2518 value_incref (value);
2519 free_values.free_to_mark ();
2520 cleanup = make_cleanup_value_free (value);
2521
2522 retval = allocate_value (subobj_type);
2523
2524 /* The given offset is relative to the actual object. */
2525 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2526 subobj_byte_offset += n - max;
2527
2528 memcpy (value_contents_raw (retval),
2529 value_contents_all (value) + subobj_byte_offset, len);
2530
2531 do_cleanups (cleanup);
2532 }
2533 break;
2534
2535 case DWARF_VALUE_LITERAL:
2536 {
2537 bfd_byte *contents;
2538 size_t n = TYPE_LENGTH (subobj_type);
2539
2540 if (subobj_byte_offset + n > ctx.len)
2541 invalid_synthetic_pointer ();
2542
2543 free_values.free_to_mark ();
2544 retval = allocate_value (subobj_type);
2545 contents = value_contents_raw (retval);
2546 memcpy (contents, ctx.data + subobj_byte_offset, n);
2547 }
2548 break;
2549
2550 case DWARF_VALUE_OPTIMIZED_OUT:
2551 free_values.free_to_mark ();
2552 retval = allocate_optimized_out_value (subobj_type);
2553 break;
2554
2555 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2556 operation by execute_stack_op. */
2557 case DWARF_VALUE_IMPLICIT_POINTER:
2558 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2559 it can only be encountered when making a piece. */
2560 default:
2561 internal_error (__FILE__, __LINE__, _("invalid location type"));
2562 }
2563 }
2564
2565 set_value_initialized (retval, ctx.initialized);
2566
2567 return retval;
2568 }
2569
2570 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2571 passes 0 as the byte_offset. */
2572
2573 struct value *
2574 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2575 const gdb_byte *data, size_t size,
2576 struct dwarf2_per_cu_data *per_cu)
2577 {
2578 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2579 NULL, 0);
2580 }
2581
2582 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2583 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2584 frame in which the expression is evaluated. ADDR is a context (location of
2585 a variable) and might be needed to evaluate the location expression.
2586 Returns 1 on success, 0 otherwise. */
2587
2588 static int
2589 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2590 struct frame_info *frame,
2591 CORE_ADDR addr,
2592 CORE_ADDR *valp)
2593 {
2594 struct objfile *objfile;
2595
2596 if (dlbaton == NULL || dlbaton->size == 0)
2597 return 0;
2598
2599 dwarf_evaluate_loc_desc ctx;
2600
2601 ctx.frame = frame;
2602 ctx.per_cu = dlbaton->per_cu;
2603 ctx.obj_address = addr;
2604
2605 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2606
2607 ctx.gdbarch = get_objfile_arch (objfile);
2608 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2609 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2610 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2611
2612 ctx.eval (dlbaton->data, dlbaton->size);
2613
2614 switch (ctx.location)
2615 {
2616 case DWARF_VALUE_REGISTER:
2617 case DWARF_VALUE_MEMORY:
2618 case DWARF_VALUE_STACK:
2619 *valp = ctx.fetch_address (0);
2620 if (ctx.location == DWARF_VALUE_REGISTER)
2621 *valp = ctx.read_addr_from_reg (*valp);
2622 return 1;
2623 case DWARF_VALUE_LITERAL:
2624 *valp = extract_signed_integer (ctx.data, ctx.len,
2625 gdbarch_byte_order (ctx.gdbarch));
2626 return 1;
2627 /* Unsupported dwarf values. */
2628 case DWARF_VALUE_OPTIMIZED_OUT:
2629 case DWARF_VALUE_IMPLICIT_POINTER:
2630 break;
2631 }
2632
2633 return 0;
2634 }
2635
2636 /* See dwarf2loc.h. */
2637
2638 int
2639 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2640 struct frame_info *frame,
2641 struct property_addr_info *addr_stack,
2642 CORE_ADDR *value)
2643 {
2644 if (prop == NULL)
2645 return 0;
2646
2647 if (frame == NULL && has_stack_frames ())
2648 frame = get_selected_frame (NULL);
2649
2650 switch (prop->kind)
2651 {
2652 case PROP_LOCEXPR:
2653 {
2654 const struct dwarf2_property_baton *baton
2655 = (const struct dwarf2_property_baton *) prop->data.baton;
2656
2657 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2658 addr_stack ? addr_stack->addr : 0,
2659 value))
2660 {
2661 if (baton->referenced_type)
2662 {
2663 struct value *val = value_at (baton->referenced_type, *value);
2664
2665 *value = value_as_address (val);
2666 }
2667 return 1;
2668 }
2669 }
2670 break;
2671
2672 case PROP_LOCLIST:
2673 {
2674 struct dwarf2_property_baton *baton
2675 = (struct dwarf2_property_baton *) prop->data.baton;
2676 CORE_ADDR pc = get_frame_address_in_block (frame);
2677 const gdb_byte *data;
2678 struct value *val;
2679 size_t size;
2680
2681 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2682 if (data != NULL)
2683 {
2684 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2685 size, baton->loclist.per_cu);
2686 if (!value_optimized_out (val))
2687 {
2688 *value = value_as_address (val);
2689 return 1;
2690 }
2691 }
2692 }
2693 break;
2694
2695 case PROP_CONST:
2696 *value = prop->data.const_val;
2697 return 1;
2698
2699 case PROP_ADDR_OFFSET:
2700 {
2701 struct dwarf2_property_baton *baton
2702 = (struct dwarf2_property_baton *) prop->data.baton;
2703 struct property_addr_info *pinfo;
2704 struct value *val;
2705
2706 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2707 if (pinfo->type == baton->referenced_type)
2708 break;
2709 if (pinfo == NULL)
2710 error (_("cannot find reference address for offset property"));
2711 if (pinfo->valaddr != NULL)
2712 val = value_from_contents
2713 (baton->offset_info.type,
2714 pinfo->valaddr + baton->offset_info.offset);
2715 else
2716 val = value_at (baton->offset_info.type,
2717 pinfo->addr + baton->offset_info.offset);
2718 *value = value_as_address (val);
2719 return 1;
2720 }
2721 }
2722
2723 return 0;
2724 }
2725
2726 /* See dwarf2loc.h. */
2727
2728 void
2729 dwarf2_compile_property_to_c (string_file &stream,
2730 const char *result_name,
2731 struct gdbarch *gdbarch,
2732 unsigned char *registers_used,
2733 const struct dynamic_prop *prop,
2734 CORE_ADDR pc,
2735 struct symbol *sym)
2736 {
2737 struct dwarf2_property_baton *baton
2738 = (struct dwarf2_property_baton *) prop->data.baton;
2739 const gdb_byte *data;
2740 size_t size;
2741 struct dwarf2_per_cu_data *per_cu;
2742
2743 if (prop->kind == PROP_LOCEXPR)
2744 {
2745 data = baton->locexpr.data;
2746 size = baton->locexpr.size;
2747 per_cu = baton->locexpr.per_cu;
2748 }
2749 else
2750 {
2751 gdb_assert (prop->kind == PROP_LOCLIST);
2752
2753 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2754 per_cu = baton->loclist.per_cu;
2755 }
2756
2757 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2758 gdbarch, registers_used,
2759 dwarf2_per_cu_addr_size (per_cu),
2760 data, data + size, per_cu);
2761 }
2762
2763 \f
2764 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2765
2766 class symbol_needs_eval_context : public dwarf_expr_context
2767 {
2768 public:
2769
2770 enum symbol_needs_kind needs;
2771 struct dwarf2_per_cu_data *per_cu;
2772
2773 /* Reads from registers do require a frame. */
2774 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2775 {
2776 needs = SYMBOL_NEEDS_FRAME;
2777 return 1;
2778 }
2779
2780 /* "get_reg_value" callback: Reads from registers do require a
2781 frame. */
2782
2783 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2784 {
2785 needs = SYMBOL_NEEDS_FRAME;
2786 return value_zero (type, not_lval);
2787 }
2788
2789 /* Reads from memory do not require a frame. */
2790 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2791 {
2792 memset (buf, 0, len);
2793 }
2794
2795 /* Frame-relative accesses do require a frame. */
2796 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2797 {
2798 static gdb_byte lit0 = DW_OP_lit0;
2799
2800 *start = &lit0;
2801 *length = 1;
2802
2803 needs = SYMBOL_NEEDS_FRAME;
2804 }
2805
2806 /* CFA accesses require a frame. */
2807 CORE_ADDR get_frame_cfa () OVERRIDE
2808 {
2809 needs = SYMBOL_NEEDS_FRAME;
2810 return 1;
2811 }
2812
2813 CORE_ADDR get_frame_pc () OVERRIDE
2814 {
2815 needs = SYMBOL_NEEDS_FRAME;
2816 return 1;
2817 }
2818
2819 /* Thread-local accesses require registers, but not a frame. */
2820 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2821 {
2822 if (needs <= SYMBOL_NEEDS_REGISTERS)
2823 needs = SYMBOL_NEEDS_REGISTERS;
2824 return 1;
2825 }
2826
2827 /* Helper interface of per_cu_dwarf_call for
2828 dwarf2_loc_desc_get_symbol_read_needs. */
2829
2830 void dwarf_call (cu_offset die_offset) OVERRIDE
2831 {
2832 per_cu_dwarf_call (this, die_offset, per_cu);
2833 }
2834
2835 /* DW_OP_entry_value accesses require a caller, therefore a
2836 frame. */
2837
2838 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2839 union call_site_parameter_u kind_u,
2840 int deref_size) OVERRIDE
2841 {
2842 needs = SYMBOL_NEEDS_FRAME;
2843
2844 /* The expression may require some stub values on DWARF stack. */
2845 push_address (0, 0);
2846 }
2847
2848 /* DW_OP_GNU_addr_index doesn't require a frame. */
2849
2850 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2851 {
2852 /* Nothing to do. */
2853 return 1;
2854 }
2855
2856 /* DW_OP_push_object_address has a frame already passed through. */
2857
2858 CORE_ADDR get_object_address () OVERRIDE
2859 {
2860 /* Nothing to do. */
2861 return 1;
2862 }
2863 };
2864
2865 /* Compute the correct symbol_needs_kind value for the location
2866 expression at DATA (length SIZE). */
2867
2868 static enum symbol_needs_kind
2869 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2870 struct dwarf2_per_cu_data *per_cu)
2871 {
2872 int in_reg;
2873 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2874
2875 scoped_value_mark free_values;
2876
2877 symbol_needs_eval_context ctx;
2878
2879 ctx.needs = SYMBOL_NEEDS_NONE;
2880 ctx.per_cu = per_cu;
2881 ctx.gdbarch = get_objfile_arch (objfile);
2882 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2883 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2884 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2885
2886 ctx.eval (data, size);
2887
2888 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2889
2890 if (ctx.num_pieces > 0)
2891 {
2892 int i;
2893
2894 /* If the location has several pieces, and any of them are in
2895 registers, then we will need a frame to fetch them from. */
2896 for (i = 0; i < ctx.num_pieces; i++)
2897 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2898 in_reg = 1;
2899 }
2900
2901 if (in_reg)
2902 ctx.needs = SYMBOL_NEEDS_FRAME;
2903 return ctx.needs;
2904 }
2905
2906 /* A helper function that throws an unimplemented error mentioning a
2907 given DWARF operator. */
2908
2909 static void
2910 unimplemented (unsigned int op)
2911 {
2912 const char *name = get_DW_OP_name (op);
2913
2914 if (name)
2915 error (_("DWARF operator %s cannot be translated to an agent expression"),
2916 name);
2917 else
2918 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2919 "to an agent expression"),
2920 op);
2921 }
2922
2923 /* See dwarf2loc.h.
2924
2925 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2926 can issue a complaint, which is better than having every target's
2927 implementation of dwarf2_reg_to_regnum do it. */
2928
2929 int
2930 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2931 {
2932 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2933
2934 if (reg == -1)
2935 {
2936 complaint (&symfile_complaints,
2937 _("bad DWARF register number %d"), dwarf_reg);
2938 }
2939 return reg;
2940 }
2941
2942 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2943 Throw an error because DWARF_REG is bad. */
2944
2945 static void
2946 throw_bad_regnum_error (ULONGEST dwarf_reg)
2947 {
2948 /* Still want to print -1 as "-1".
2949 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2950 but that's overkill for now. */
2951 if ((int) dwarf_reg == dwarf_reg)
2952 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2953 error (_("Unable to access DWARF register number %s"),
2954 pulongest (dwarf_reg));
2955 }
2956
2957 /* See dwarf2loc.h. */
2958
2959 int
2960 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2961 {
2962 int reg;
2963
2964 if (dwarf_reg > INT_MAX)
2965 throw_bad_regnum_error (dwarf_reg);
2966 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2967 bad, but that's ok. */
2968 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2969 if (reg == -1)
2970 throw_bad_regnum_error (dwarf_reg);
2971 return reg;
2972 }
2973
2974 /* A helper function that emits an access to memory. ARCH is the
2975 target architecture. EXPR is the expression which we are building.
2976 NBITS is the number of bits we want to read. This emits the
2977 opcodes needed to read the memory and then extract the desired
2978 bits. */
2979
2980 static void
2981 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2982 {
2983 ULONGEST nbytes = (nbits + 7) / 8;
2984
2985 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2986
2987 if (expr->tracing)
2988 ax_trace_quick (expr, nbytes);
2989
2990 if (nbits <= 8)
2991 ax_simple (expr, aop_ref8);
2992 else if (nbits <= 16)
2993 ax_simple (expr, aop_ref16);
2994 else if (nbits <= 32)
2995 ax_simple (expr, aop_ref32);
2996 else
2997 ax_simple (expr, aop_ref64);
2998
2999 /* If we read exactly the number of bytes we wanted, we're done. */
3000 if (8 * nbytes == nbits)
3001 return;
3002
3003 if (gdbarch_bits_big_endian (arch))
3004 {
3005 /* On a bits-big-endian machine, we want the high-order
3006 NBITS. */
3007 ax_const_l (expr, 8 * nbytes - nbits);
3008 ax_simple (expr, aop_rsh_unsigned);
3009 }
3010 else
3011 {
3012 /* On a bits-little-endian box, we want the low-order NBITS. */
3013 ax_zero_ext (expr, nbits);
3014 }
3015 }
3016
3017 /* A helper function to return the frame's PC. */
3018
3019 static CORE_ADDR
3020 get_ax_pc (void *baton)
3021 {
3022 struct agent_expr *expr = (struct agent_expr *) baton;
3023
3024 return expr->scope;
3025 }
3026
3027 /* Compile a DWARF location expression to an agent expression.
3028
3029 EXPR is the agent expression we are building.
3030 LOC is the agent value we modify.
3031 ARCH is the architecture.
3032 ADDR_SIZE is the size of addresses, in bytes.
3033 OP_PTR is the start of the location expression.
3034 OP_END is one past the last byte of the location expression.
3035
3036 This will throw an exception for various kinds of errors -- for
3037 example, if the expression cannot be compiled, or if the expression
3038 is invalid. */
3039
3040 void
3041 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3042 struct gdbarch *arch, unsigned int addr_size,
3043 const gdb_byte *op_ptr, const gdb_byte *op_end,
3044 struct dwarf2_per_cu_data *per_cu)
3045 {
3046 int i;
3047 std::vector<int> dw_labels, patches;
3048 const gdb_byte * const base = op_ptr;
3049 const gdb_byte *previous_piece = op_ptr;
3050 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3051 ULONGEST bits_collected = 0;
3052 unsigned int addr_size_bits = 8 * addr_size;
3053 int bits_big_endian = gdbarch_bits_big_endian (arch);
3054
3055 std::vector<int> offsets (op_end - op_ptr, -1);
3056
3057 /* By default we are making an address. */
3058 loc->kind = axs_lvalue_memory;
3059
3060 while (op_ptr < op_end)
3061 {
3062 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3063 uint64_t uoffset, reg;
3064 int64_t offset;
3065 int i;
3066
3067 offsets[op_ptr - base] = expr->len;
3068 ++op_ptr;
3069
3070 /* Our basic approach to code generation is to map DWARF
3071 operations directly to AX operations. However, there are
3072 some differences.
3073
3074 First, DWARF works on address-sized units, but AX always uses
3075 LONGEST. For most operations we simply ignore this
3076 difference; instead we generate sign extensions as needed
3077 before division and comparison operations. It would be nice
3078 to omit the sign extensions, but there is no way to determine
3079 the size of the target's LONGEST. (This code uses the size
3080 of the host LONGEST in some cases -- that is a bug but it is
3081 difficult to fix.)
3082
3083 Second, some DWARF operations cannot be translated to AX.
3084 For these we simply fail. See
3085 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3086 switch (op)
3087 {
3088 case DW_OP_lit0:
3089 case DW_OP_lit1:
3090 case DW_OP_lit2:
3091 case DW_OP_lit3:
3092 case DW_OP_lit4:
3093 case DW_OP_lit5:
3094 case DW_OP_lit6:
3095 case DW_OP_lit7:
3096 case DW_OP_lit8:
3097 case DW_OP_lit9:
3098 case DW_OP_lit10:
3099 case DW_OP_lit11:
3100 case DW_OP_lit12:
3101 case DW_OP_lit13:
3102 case DW_OP_lit14:
3103 case DW_OP_lit15:
3104 case DW_OP_lit16:
3105 case DW_OP_lit17:
3106 case DW_OP_lit18:
3107 case DW_OP_lit19:
3108 case DW_OP_lit20:
3109 case DW_OP_lit21:
3110 case DW_OP_lit22:
3111 case DW_OP_lit23:
3112 case DW_OP_lit24:
3113 case DW_OP_lit25:
3114 case DW_OP_lit26:
3115 case DW_OP_lit27:
3116 case DW_OP_lit28:
3117 case DW_OP_lit29:
3118 case DW_OP_lit30:
3119 case DW_OP_lit31:
3120 ax_const_l (expr, op - DW_OP_lit0);
3121 break;
3122
3123 case DW_OP_addr:
3124 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3125 op_ptr += addr_size;
3126 /* Some versions of GCC emit DW_OP_addr before
3127 DW_OP_GNU_push_tls_address. In this case the value is an
3128 index, not an address. We don't support things like
3129 branching between the address and the TLS op. */
3130 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3131 uoffset += dwarf2_per_cu_text_offset (per_cu);
3132 ax_const_l (expr, uoffset);
3133 break;
3134
3135 case DW_OP_const1u:
3136 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3137 op_ptr += 1;
3138 break;
3139 case DW_OP_const1s:
3140 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3141 op_ptr += 1;
3142 break;
3143 case DW_OP_const2u:
3144 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3145 op_ptr += 2;
3146 break;
3147 case DW_OP_const2s:
3148 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3149 op_ptr += 2;
3150 break;
3151 case DW_OP_const4u:
3152 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3153 op_ptr += 4;
3154 break;
3155 case DW_OP_const4s:
3156 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3157 op_ptr += 4;
3158 break;
3159 case DW_OP_const8u:
3160 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3161 op_ptr += 8;
3162 break;
3163 case DW_OP_const8s:
3164 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3165 op_ptr += 8;
3166 break;
3167 case DW_OP_constu:
3168 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3169 ax_const_l (expr, uoffset);
3170 break;
3171 case DW_OP_consts:
3172 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3173 ax_const_l (expr, offset);
3174 break;
3175
3176 case DW_OP_reg0:
3177 case DW_OP_reg1:
3178 case DW_OP_reg2:
3179 case DW_OP_reg3:
3180 case DW_OP_reg4:
3181 case DW_OP_reg5:
3182 case DW_OP_reg6:
3183 case DW_OP_reg7:
3184 case DW_OP_reg8:
3185 case DW_OP_reg9:
3186 case DW_OP_reg10:
3187 case DW_OP_reg11:
3188 case DW_OP_reg12:
3189 case DW_OP_reg13:
3190 case DW_OP_reg14:
3191 case DW_OP_reg15:
3192 case DW_OP_reg16:
3193 case DW_OP_reg17:
3194 case DW_OP_reg18:
3195 case DW_OP_reg19:
3196 case DW_OP_reg20:
3197 case DW_OP_reg21:
3198 case DW_OP_reg22:
3199 case DW_OP_reg23:
3200 case DW_OP_reg24:
3201 case DW_OP_reg25:
3202 case DW_OP_reg26:
3203 case DW_OP_reg27:
3204 case DW_OP_reg28:
3205 case DW_OP_reg29:
3206 case DW_OP_reg30:
3207 case DW_OP_reg31:
3208 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3209 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3210 loc->kind = axs_lvalue_register;
3211 break;
3212
3213 case DW_OP_regx:
3214 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3215 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3216 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3217 loc->kind = axs_lvalue_register;
3218 break;
3219
3220 case DW_OP_implicit_value:
3221 {
3222 uint64_t len;
3223
3224 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3225 if (op_ptr + len > op_end)
3226 error (_("DW_OP_implicit_value: too few bytes available."));
3227 if (len > sizeof (ULONGEST))
3228 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3229 (int) len);
3230
3231 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3232 byte_order));
3233 op_ptr += len;
3234 dwarf_expr_require_composition (op_ptr, op_end,
3235 "DW_OP_implicit_value");
3236
3237 loc->kind = axs_rvalue;
3238 }
3239 break;
3240
3241 case DW_OP_stack_value:
3242 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3243 loc->kind = axs_rvalue;
3244 break;
3245
3246 case DW_OP_breg0:
3247 case DW_OP_breg1:
3248 case DW_OP_breg2:
3249 case DW_OP_breg3:
3250 case DW_OP_breg4:
3251 case DW_OP_breg5:
3252 case DW_OP_breg6:
3253 case DW_OP_breg7:
3254 case DW_OP_breg8:
3255 case DW_OP_breg9:
3256 case DW_OP_breg10:
3257 case DW_OP_breg11:
3258 case DW_OP_breg12:
3259 case DW_OP_breg13:
3260 case DW_OP_breg14:
3261 case DW_OP_breg15:
3262 case DW_OP_breg16:
3263 case DW_OP_breg17:
3264 case DW_OP_breg18:
3265 case DW_OP_breg19:
3266 case DW_OP_breg20:
3267 case DW_OP_breg21:
3268 case DW_OP_breg22:
3269 case DW_OP_breg23:
3270 case DW_OP_breg24:
3271 case DW_OP_breg25:
3272 case DW_OP_breg26:
3273 case DW_OP_breg27:
3274 case DW_OP_breg28:
3275 case DW_OP_breg29:
3276 case DW_OP_breg30:
3277 case DW_OP_breg31:
3278 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3279 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3280 ax_reg (expr, i);
3281 if (offset != 0)
3282 {
3283 ax_const_l (expr, offset);
3284 ax_simple (expr, aop_add);
3285 }
3286 break;
3287 case DW_OP_bregx:
3288 {
3289 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3290 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3291 i = dwarf_reg_to_regnum_or_error (arch, reg);
3292 ax_reg (expr, i);
3293 if (offset != 0)
3294 {
3295 ax_const_l (expr, offset);
3296 ax_simple (expr, aop_add);
3297 }
3298 }
3299 break;
3300 case DW_OP_fbreg:
3301 {
3302 const gdb_byte *datastart;
3303 size_t datalen;
3304 const struct block *b;
3305 struct symbol *framefunc;
3306
3307 b = block_for_pc (expr->scope);
3308
3309 if (!b)
3310 error (_("No block found for address"));
3311
3312 framefunc = block_linkage_function (b);
3313
3314 if (!framefunc)
3315 error (_("No function found for block"));
3316
3317 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3318 &datastart, &datalen);
3319
3320 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3321 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3322 datastart + datalen, per_cu);
3323 if (loc->kind == axs_lvalue_register)
3324 require_rvalue (expr, loc);
3325
3326 if (offset != 0)
3327 {
3328 ax_const_l (expr, offset);
3329 ax_simple (expr, aop_add);
3330 }
3331
3332 loc->kind = axs_lvalue_memory;
3333 }
3334 break;
3335
3336 case DW_OP_dup:
3337 ax_simple (expr, aop_dup);
3338 break;
3339
3340 case DW_OP_drop:
3341 ax_simple (expr, aop_pop);
3342 break;
3343
3344 case DW_OP_pick:
3345 offset = *op_ptr++;
3346 ax_pick (expr, offset);
3347 break;
3348
3349 case DW_OP_swap:
3350 ax_simple (expr, aop_swap);
3351 break;
3352
3353 case DW_OP_over:
3354 ax_pick (expr, 1);
3355 break;
3356
3357 case DW_OP_rot:
3358 ax_simple (expr, aop_rot);
3359 break;
3360
3361 case DW_OP_deref:
3362 case DW_OP_deref_size:
3363 {
3364 int size;
3365
3366 if (op == DW_OP_deref_size)
3367 size = *op_ptr++;
3368 else
3369 size = addr_size;
3370
3371 if (size != 1 && size != 2 && size != 4 && size != 8)
3372 error (_("Unsupported size %d in %s"),
3373 size, get_DW_OP_name (op));
3374 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3375 }
3376 break;
3377
3378 case DW_OP_abs:
3379 /* Sign extend the operand. */
3380 ax_ext (expr, addr_size_bits);
3381 ax_simple (expr, aop_dup);
3382 ax_const_l (expr, 0);
3383 ax_simple (expr, aop_less_signed);
3384 ax_simple (expr, aop_log_not);
3385 i = ax_goto (expr, aop_if_goto);
3386 /* We have to emit 0 - X. */
3387 ax_const_l (expr, 0);
3388 ax_simple (expr, aop_swap);
3389 ax_simple (expr, aop_sub);
3390 ax_label (expr, i, expr->len);
3391 break;
3392
3393 case DW_OP_neg:
3394 /* No need to sign extend here. */
3395 ax_const_l (expr, 0);
3396 ax_simple (expr, aop_swap);
3397 ax_simple (expr, aop_sub);
3398 break;
3399
3400 case DW_OP_not:
3401 /* Sign extend the operand. */
3402 ax_ext (expr, addr_size_bits);
3403 ax_simple (expr, aop_bit_not);
3404 break;
3405
3406 case DW_OP_plus_uconst:
3407 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3408 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3409 but we micro-optimize anyhow. */
3410 if (reg != 0)
3411 {
3412 ax_const_l (expr, reg);
3413 ax_simple (expr, aop_add);
3414 }
3415 break;
3416
3417 case DW_OP_and:
3418 ax_simple (expr, aop_bit_and);
3419 break;
3420
3421 case DW_OP_div:
3422 /* Sign extend the operands. */
3423 ax_ext (expr, addr_size_bits);
3424 ax_simple (expr, aop_swap);
3425 ax_ext (expr, addr_size_bits);
3426 ax_simple (expr, aop_swap);
3427 ax_simple (expr, aop_div_signed);
3428 break;
3429
3430 case DW_OP_minus:
3431 ax_simple (expr, aop_sub);
3432 break;
3433
3434 case DW_OP_mod:
3435 ax_simple (expr, aop_rem_unsigned);
3436 break;
3437
3438 case DW_OP_mul:
3439 ax_simple (expr, aop_mul);
3440 break;
3441
3442 case DW_OP_or:
3443 ax_simple (expr, aop_bit_or);
3444 break;
3445
3446 case DW_OP_plus:
3447 ax_simple (expr, aop_add);
3448 break;
3449
3450 case DW_OP_shl:
3451 ax_simple (expr, aop_lsh);
3452 break;
3453
3454 case DW_OP_shr:
3455 ax_simple (expr, aop_rsh_unsigned);
3456 break;
3457
3458 case DW_OP_shra:
3459 ax_simple (expr, aop_rsh_signed);
3460 break;
3461
3462 case DW_OP_xor:
3463 ax_simple (expr, aop_bit_xor);
3464 break;
3465
3466 case DW_OP_le:
3467 /* Sign extend the operands. */
3468 ax_ext (expr, addr_size_bits);
3469 ax_simple (expr, aop_swap);
3470 ax_ext (expr, addr_size_bits);
3471 /* Note no swap here: A <= B is !(B < A). */
3472 ax_simple (expr, aop_less_signed);
3473 ax_simple (expr, aop_log_not);
3474 break;
3475
3476 case DW_OP_ge:
3477 /* Sign extend the operands. */
3478 ax_ext (expr, addr_size_bits);
3479 ax_simple (expr, aop_swap);
3480 ax_ext (expr, addr_size_bits);
3481 ax_simple (expr, aop_swap);
3482 /* A >= B is !(A < B). */
3483 ax_simple (expr, aop_less_signed);
3484 ax_simple (expr, aop_log_not);
3485 break;
3486
3487 case DW_OP_eq:
3488 /* Sign extend the operands. */
3489 ax_ext (expr, addr_size_bits);
3490 ax_simple (expr, aop_swap);
3491 ax_ext (expr, addr_size_bits);
3492 /* No need for a second swap here. */
3493 ax_simple (expr, aop_equal);
3494 break;
3495
3496 case DW_OP_lt:
3497 /* Sign extend the operands. */
3498 ax_ext (expr, addr_size_bits);
3499 ax_simple (expr, aop_swap);
3500 ax_ext (expr, addr_size_bits);
3501 ax_simple (expr, aop_swap);
3502 ax_simple (expr, aop_less_signed);
3503 break;
3504
3505 case DW_OP_gt:
3506 /* Sign extend the operands. */
3507 ax_ext (expr, addr_size_bits);
3508 ax_simple (expr, aop_swap);
3509 ax_ext (expr, addr_size_bits);
3510 /* Note no swap here: A > B is B < A. */
3511 ax_simple (expr, aop_less_signed);
3512 break;
3513
3514 case DW_OP_ne:
3515 /* Sign extend the operands. */
3516 ax_ext (expr, addr_size_bits);
3517 ax_simple (expr, aop_swap);
3518 ax_ext (expr, addr_size_bits);
3519 /* No need for a swap here. */
3520 ax_simple (expr, aop_equal);
3521 ax_simple (expr, aop_log_not);
3522 break;
3523
3524 case DW_OP_call_frame_cfa:
3525 {
3526 int regnum;
3527 CORE_ADDR text_offset;
3528 LONGEST off;
3529 const gdb_byte *cfa_start, *cfa_end;
3530
3531 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3532 &regnum, &off,
3533 &text_offset, &cfa_start, &cfa_end))
3534 {
3535 /* Register. */
3536 ax_reg (expr, regnum);
3537 if (off != 0)
3538 {
3539 ax_const_l (expr, off);
3540 ax_simple (expr, aop_add);
3541 }
3542 }
3543 else
3544 {
3545 /* Another expression. */
3546 ax_const_l (expr, text_offset);
3547 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3548 cfa_start, cfa_end, per_cu);
3549 }
3550
3551 loc->kind = axs_lvalue_memory;
3552 }
3553 break;
3554
3555 case DW_OP_GNU_push_tls_address:
3556 case DW_OP_form_tls_address:
3557 unimplemented (op);
3558 break;
3559
3560 case DW_OP_push_object_address:
3561 unimplemented (op);
3562 break;
3563
3564 case DW_OP_skip:
3565 offset = extract_signed_integer (op_ptr, 2, byte_order);
3566 op_ptr += 2;
3567 i = ax_goto (expr, aop_goto);
3568 dw_labels.push_back (op_ptr + offset - base);
3569 patches.push_back (i);
3570 break;
3571
3572 case DW_OP_bra:
3573 offset = extract_signed_integer (op_ptr, 2, byte_order);
3574 op_ptr += 2;
3575 /* Zero extend the operand. */
3576 ax_zero_ext (expr, addr_size_bits);
3577 i = ax_goto (expr, aop_if_goto);
3578 dw_labels.push_back (op_ptr + offset - base);
3579 patches.push_back (i);
3580 break;
3581
3582 case DW_OP_nop:
3583 break;
3584
3585 case DW_OP_piece:
3586 case DW_OP_bit_piece:
3587 {
3588 uint64_t size, offset;
3589
3590 if (op_ptr - 1 == previous_piece)
3591 error (_("Cannot translate empty pieces to agent expressions"));
3592 previous_piece = op_ptr - 1;
3593
3594 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3595 if (op == DW_OP_piece)
3596 {
3597 size *= 8;
3598 offset = 0;
3599 }
3600 else
3601 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3602
3603 if (bits_collected + size > 8 * sizeof (LONGEST))
3604 error (_("Expression pieces exceed word size"));
3605
3606 /* Access the bits. */
3607 switch (loc->kind)
3608 {
3609 case axs_lvalue_register:
3610 ax_reg (expr, loc->u.reg);
3611 break;
3612
3613 case axs_lvalue_memory:
3614 /* Offset the pointer, if needed. */
3615 if (offset > 8)
3616 {
3617 ax_const_l (expr, offset / 8);
3618 ax_simple (expr, aop_add);
3619 offset %= 8;
3620 }
3621 access_memory (arch, expr, size);
3622 break;
3623 }
3624
3625 /* For a bits-big-endian target, shift up what we already
3626 have. For a bits-little-endian target, shift up the
3627 new data. Note that there is a potential bug here if
3628 the DWARF expression leaves multiple values on the
3629 stack. */
3630 if (bits_collected > 0)
3631 {
3632 if (bits_big_endian)
3633 {
3634 ax_simple (expr, aop_swap);
3635 ax_const_l (expr, size);
3636 ax_simple (expr, aop_lsh);
3637 /* We don't need a second swap here, because
3638 aop_bit_or is symmetric. */
3639 }
3640 else
3641 {
3642 ax_const_l (expr, size);
3643 ax_simple (expr, aop_lsh);
3644 }
3645 ax_simple (expr, aop_bit_or);
3646 }
3647
3648 bits_collected += size;
3649 loc->kind = axs_rvalue;
3650 }
3651 break;
3652
3653 case DW_OP_GNU_uninit:
3654 unimplemented (op);
3655
3656 case DW_OP_call2:
3657 case DW_OP_call4:
3658 {
3659 struct dwarf2_locexpr_baton block;
3660 int size = (op == DW_OP_call2 ? 2 : 4);
3661
3662 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3663 op_ptr += size;
3664
3665 cu_offset offset = (cu_offset) uoffset;
3666 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3667 get_ax_pc, expr);
3668
3669 /* DW_OP_call_ref is currently not supported. */
3670 gdb_assert (block.per_cu == per_cu);
3671
3672 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3673 block.data, block.data + block.size,
3674 per_cu);
3675 }
3676 break;
3677
3678 case DW_OP_call_ref:
3679 unimplemented (op);
3680
3681 default:
3682 unimplemented (op);
3683 }
3684 }
3685
3686 /* Patch all the branches we emitted. */
3687 for (i = 0; i < patches.size (); ++i)
3688 {
3689 int targ = offsets[dw_labels[i]];
3690 if (targ == -1)
3691 internal_error (__FILE__, __LINE__, _("invalid label"));
3692 ax_label (expr, patches[i], targ);
3693 }
3694 }
3695
3696 \f
3697 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3698 evaluator to calculate the location. */
3699 static struct value *
3700 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3701 {
3702 struct dwarf2_locexpr_baton *dlbaton
3703 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3704 struct value *val;
3705
3706 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3707 dlbaton->size, dlbaton->per_cu);
3708
3709 return val;
3710 }
3711
3712 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3713 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3714 will be thrown. */
3715
3716 static struct value *
3717 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3718 {
3719 struct dwarf2_locexpr_baton *dlbaton
3720 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3721
3722 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3723 dlbaton->size);
3724 }
3725
3726 /* Implementation of get_symbol_read_needs from
3727 symbol_computed_ops. */
3728
3729 static enum symbol_needs_kind
3730 locexpr_get_symbol_read_needs (struct symbol *symbol)
3731 {
3732 struct dwarf2_locexpr_baton *dlbaton
3733 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3734
3735 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3736 dlbaton->per_cu);
3737 }
3738
3739 /* Return true if DATA points to the end of a piece. END is one past
3740 the last byte in the expression. */
3741
3742 static int
3743 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3744 {
3745 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3746 }
3747
3748 /* Helper for locexpr_describe_location_piece that finds the name of a
3749 DWARF register. */
3750
3751 static const char *
3752 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3753 {
3754 int regnum;
3755
3756 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3757 We'd rather print *something* here than throw an error. */
3758 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3759 /* gdbarch_register_name may just return "", return something more
3760 descriptive for bad register numbers. */
3761 if (regnum == -1)
3762 {
3763 /* The text is output as "$bad_register_number".
3764 That is why we use the underscores. */
3765 return _("bad_register_number");
3766 }
3767 return gdbarch_register_name (gdbarch, regnum);
3768 }
3769
3770 /* Nicely describe a single piece of a location, returning an updated
3771 position in the bytecode sequence. This function cannot recognize
3772 all locations; if a location is not recognized, it simply returns
3773 DATA. If there is an error during reading, e.g. we run off the end
3774 of the buffer, an error is thrown. */
3775
3776 static const gdb_byte *
3777 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3778 CORE_ADDR addr, struct objfile *objfile,
3779 struct dwarf2_per_cu_data *per_cu,
3780 const gdb_byte *data, const gdb_byte *end,
3781 unsigned int addr_size)
3782 {
3783 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3784 size_t leb128_size;
3785
3786 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3787 {
3788 fprintf_filtered (stream, _("a variable in $%s"),
3789 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3790 data += 1;
3791 }
3792 else if (data[0] == DW_OP_regx)
3793 {
3794 uint64_t reg;
3795
3796 data = safe_read_uleb128 (data + 1, end, &reg);
3797 fprintf_filtered (stream, _("a variable in $%s"),
3798 locexpr_regname (gdbarch, reg));
3799 }
3800 else if (data[0] == DW_OP_fbreg)
3801 {
3802 const struct block *b;
3803 struct symbol *framefunc;
3804 int frame_reg = 0;
3805 int64_t frame_offset;
3806 const gdb_byte *base_data, *new_data, *save_data = data;
3807 size_t base_size;
3808 int64_t base_offset = 0;
3809
3810 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3811 if (!piece_end_p (new_data, end))
3812 return data;
3813 data = new_data;
3814
3815 b = block_for_pc (addr);
3816
3817 if (!b)
3818 error (_("No block found for address for symbol \"%s\"."),
3819 SYMBOL_PRINT_NAME (symbol));
3820
3821 framefunc = block_linkage_function (b);
3822
3823 if (!framefunc)
3824 error (_("No function found for block for symbol \"%s\"."),
3825 SYMBOL_PRINT_NAME (symbol));
3826
3827 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3828
3829 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3830 {
3831 const gdb_byte *buf_end;
3832
3833 frame_reg = base_data[0] - DW_OP_breg0;
3834 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3835 &base_offset);
3836 if (buf_end != base_data + base_size)
3837 error (_("Unexpected opcode after "
3838 "DW_OP_breg%u for symbol \"%s\"."),
3839 frame_reg, SYMBOL_PRINT_NAME (symbol));
3840 }
3841 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3842 {
3843 /* The frame base is just the register, with no offset. */
3844 frame_reg = base_data[0] - DW_OP_reg0;
3845 base_offset = 0;
3846 }
3847 else
3848 {
3849 /* We don't know what to do with the frame base expression,
3850 so we can't trace this variable; give up. */
3851 return save_data;
3852 }
3853
3854 fprintf_filtered (stream,
3855 _("a variable at frame base reg $%s offset %s+%s"),
3856 locexpr_regname (gdbarch, frame_reg),
3857 plongest (base_offset), plongest (frame_offset));
3858 }
3859 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3860 && piece_end_p (data, end))
3861 {
3862 int64_t offset;
3863
3864 data = safe_read_sleb128 (data + 1, end, &offset);
3865
3866 fprintf_filtered (stream,
3867 _("a variable at offset %s from base reg $%s"),
3868 plongest (offset),
3869 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3870 }
3871
3872 /* The location expression for a TLS variable looks like this (on a
3873 64-bit LE machine):
3874
3875 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3876 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3877
3878 0x3 is the encoding for DW_OP_addr, which has an operand as long
3879 as the size of an address on the target machine (here is 8
3880 bytes). Note that more recent version of GCC emit DW_OP_const4u
3881 or DW_OP_const8u, depending on address size, rather than
3882 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3883 The operand represents the offset at which the variable is within
3884 the thread local storage. */
3885
3886 else if (data + 1 + addr_size < end
3887 && (data[0] == DW_OP_addr
3888 || (addr_size == 4 && data[0] == DW_OP_const4u)
3889 || (addr_size == 8 && data[0] == DW_OP_const8u))
3890 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3891 || data[1 + addr_size] == DW_OP_form_tls_address)
3892 && piece_end_p (data + 2 + addr_size, end))
3893 {
3894 ULONGEST offset;
3895 offset = extract_unsigned_integer (data + 1, addr_size,
3896 gdbarch_byte_order (gdbarch));
3897
3898 fprintf_filtered (stream,
3899 _("a thread-local variable at offset 0x%s "
3900 "in the thread-local storage for `%s'"),
3901 phex_nz (offset, addr_size), objfile_name (objfile));
3902
3903 data += 1 + addr_size + 1;
3904 }
3905
3906 /* With -gsplit-dwarf a TLS variable can also look like this:
3907 DW_AT_location : 3 byte block: fc 4 e0
3908 (DW_OP_GNU_const_index: 4;
3909 DW_OP_GNU_push_tls_address) */
3910 else if (data + 3 <= end
3911 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3912 && data[0] == DW_OP_GNU_const_index
3913 && leb128_size > 0
3914 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3915 || data[1 + leb128_size] == DW_OP_form_tls_address)
3916 && piece_end_p (data + 2 + leb128_size, end))
3917 {
3918 uint64_t offset;
3919
3920 data = safe_read_uleb128 (data + 1, end, &offset);
3921 offset = dwarf2_read_addr_index (per_cu, offset);
3922 fprintf_filtered (stream,
3923 _("a thread-local variable at offset 0x%s "
3924 "in the thread-local storage for `%s'"),
3925 phex_nz (offset, addr_size), objfile_name (objfile));
3926 ++data;
3927 }
3928
3929 else if (data[0] >= DW_OP_lit0
3930 && data[0] <= DW_OP_lit31
3931 && data + 1 < end
3932 && data[1] == DW_OP_stack_value)
3933 {
3934 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3935 data += 2;
3936 }
3937
3938 return data;
3939 }
3940
3941 /* Disassemble an expression, stopping at the end of a piece or at the
3942 end of the expression. Returns a pointer to the next unread byte
3943 in the input expression. If ALL is nonzero, then this function
3944 will keep going until it reaches the end of the expression.
3945 If there is an error during reading, e.g. we run off the end
3946 of the buffer, an error is thrown. */
3947
3948 static const gdb_byte *
3949 disassemble_dwarf_expression (struct ui_file *stream,
3950 struct gdbarch *arch, unsigned int addr_size,
3951 int offset_size, const gdb_byte *start,
3952 const gdb_byte *data, const gdb_byte *end,
3953 int indent, int all,
3954 struct dwarf2_per_cu_data *per_cu)
3955 {
3956 while (data < end
3957 && (all
3958 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3959 {
3960 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3961 uint64_t ul;
3962 int64_t l;
3963 const char *name;
3964
3965 name = get_DW_OP_name (op);
3966
3967 if (!name)
3968 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3969 op, (long) (data - 1 - start));
3970 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3971 (long) (data - 1 - start), name);
3972
3973 switch (op)
3974 {
3975 case DW_OP_addr:
3976 ul = extract_unsigned_integer (data, addr_size,
3977 gdbarch_byte_order (arch));
3978 data += addr_size;
3979 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3980 break;
3981
3982 case DW_OP_const1u:
3983 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3984 data += 1;
3985 fprintf_filtered (stream, " %s", pulongest (ul));
3986 break;
3987 case DW_OP_const1s:
3988 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3989 data += 1;
3990 fprintf_filtered (stream, " %s", plongest (l));
3991 break;
3992 case DW_OP_const2u:
3993 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3994 data += 2;
3995 fprintf_filtered (stream, " %s", pulongest (ul));
3996 break;
3997 case DW_OP_const2s:
3998 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3999 data += 2;
4000 fprintf_filtered (stream, " %s", plongest (l));
4001 break;
4002 case DW_OP_const4u:
4003 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4004 data += 4;
4005 fprintf_filtered (stream, " %s", pulongest (ul));
4006 break;
4007 case DW_OP_const4s:
4008 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
4009 data += 4;
4010 fprintf_filtered (stream, " %s", plongest (l));
4011 break;
4012 case DW_OP_const8u:
4013 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4014 data += 8;
4015 fprintf_filtered (stream, " %s", pulongest (ul));
4016 break;
4017 case DW_OP_const8s:
4018 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4019 data += 8;
4020 fprintf_filtered (stream, " %s", plongest (l));
4021 break;
4022 case DW_OP_constu:
4023 data = safe_read_uleb128 (data, end, &ul);
4024 fprintf_filtered (stream, " %s", pulongest (ul));
4025 break;
4026 case DW_OP_consts:
4027 data = safe_read_sleb128 (data, end, &l);
4028 fprintf_filtered (stream, " %s", plongest (l));
4029 break;
4030
4031 case DW_OP_reg0:
4032 case DW_OP_reg1:
4033 case DW_OP_reg2:
4034 case DW_OP_reg3:
4035 case DW_OP_reg4:
4036 case DW_OP_reg5:
4037 case DW_OP_reg6:
4038 case DW_OP_reg7:
4039 case DW_OP_reg8:
4040 case DW_OP_reg9:
4041 case DW_OP_reg10:
4042 case DW_OP_reg11:
4043 case DW_OP_reg12:
4044 case DW_OP_reg13:
4045 case DW_OP_reg14:
4046 case DW_OP_reg15:
4047 case DW_OP_reg16:
4048 case DW_OP_reg17:
4049 case DW_OP_reg18:
4050 case DW_OP_reg19:
4051 case DW_OP_reg20:
4052 case DW_OP_reg21:
4053 case DW_OP_reg22:
4054 case DW_OP_reg23:
4055 case DW_OP_reg24:
4056 case DW_OP_reg25:
4057 case DW_OP_reg26:
4058 case DW_OP_reg27:
4059 case DW_OP_reg28:
4060 case DW_OP_reg29:
4061 case DW_OP_reg30:
4062 case DW_OP_reg31:
4063 fprintf_filtered (stream, " [$%s]",
4064 locexpr_regname (arch, op - DW_OP_reg0));
4065 break;
4066
4067 case DW_OP_regx:
4068 data = safe_read_uleb128 (data, end, &ul);
4069 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4070 locexpr_regname (arch, (int) ul));
4071 break;
4072
4073 case DW_OP_implicit_value:
4074 data = safe_read_uleb128 (data, end, &ul);
4075 data += ul;
4076 fprintf_filtered (stream, " %s", pulongest (ul));
4077 break;
4078
4079 case DW_OP_breg0:
4080 case DW_OP_breg1:
4081 case DW_OP_breg2:
4082 case DW_OP_breg3:
4083 case DW_OP_breg4:
4084 case DW_OP_breg5:
4085 case DW_OP_breg6:
4086 case DW_OP_breg7:
4087 case DW_OP_breg8:
4088 case DW_OP_breg9:
4089 case DW_OP_breg10:
4090 case DW_OP_breg11:
4091 case DW_OP_breg12:
4092 case DW_OP_breg13:
4093 case DW_OP_breg14:
4094 case DW_OP_breg15:
4095 case DW_OP_breg16:
4096 case DW_OP_breg17:
4097 case DW_OP_breg18:
4098 case DW_OP_breg19:
4099 case DW_OP_breg20:
4100 case DW_OP_breg21:
4101 case DW_OP_breg22:
4102 case DW_OP_breg23:
4103 case DW_OP_breg24:
4104 case DW_OP_breg25:
4105 case DW_OP_breg26:
4106 case DW_OP_breg27:
4107 case DW_OP_breg28:
4108 case DW_OP_breg29:
4109 case DW_OP_breg30:
4110 case DW_OP_breg31:
4111 data = safe_read_sleb128 (data, end, &l);
4112 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4113 locexpr_regname (arch, op - DW_OP_breg0));
4114 break;
4115
4116 case DW_OP_bregx:
4117 data = safe_read_uleb128 (data, end, &ul);
4118 data = safe_read_sleb128 (data, end, &l);
4119 fprintf_filtered (stream, " register %s [$%s] offset %s",
4120 pulongest (ul),
4121 locexpr_regname (arch, (int) ul),
4122 plongest (l));
4123 break;
4124
4125 case DW_OP_fbreg:
4126 data = safe_read_sleb128 (data, end, &l);
4127 fprintf_filtered (stream, " %s", plongest (l));
4128 break;
4129
4130 case DW_OP_xderef_size:
4131 case DW_OP_deref_size:
4132 case DW_OP_pick:
4133 fprintf_filtered (stream, " %d", *data);
4134 ++data;
4135 break;
4136
4137 case DW_OP_plus_uconst:
4138 data = safe_read_uleb128 (data, end, &ul);
4139 fprintf_filtered (stream, " %s", pulongest (ul));
4140 break;
4141
4142 case DW_OP_skip:
4143 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4144 data += 2;
4145 fprintf_filtered (stream, " to %ld",
4146 (long) (data + l - start));
4147 break;
4148
4149 case DW_OP_bra:
4150 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4151 data += 2;
4152 fprintf_filtered (stream, " %ld",
4153 (long) (data + l - start));
4154 break;
4155
4156 case DW_OP_call2:
4157 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4158 data += 2;
4159 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4160 break;
4161
4162 case DW_OP_call4:
4163 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4164 data += 4;
4165 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4166 break;
4167
4168 case DW_OP_call_ref:
4169 ul = extract_unsigned_integer (data, offset_size,
4170 gdbarch_byte_order (arch));
4171 data += offset_size;
4172 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4173 break;
4174
4175 case DW_OP_piece:
4176 data = safe_read_uleb128 (data, end, &ul);
4177 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4178 break;
4179
4180 case DW_OP_bit_piece:
4181 {
4182 uint64_t offset;
4183
4184 data = safe_read_uleb128 (data, end, &ul);
4185 data = safe_read_uleb128 (data, end, &offset);
4186 fprintf_filtered (stream, " size %s offset %s (bits)",
4187 pulongest (ul), pulongest (offset));
4188 }
4189 break;
4190
4191 case DW_OP_implicit_pointer:
4192 case DW_OP_GNU_implicit_pointer:
4193 {
4194 ul = extract_unsigned_integer (data, offset_size,
4195 gdbarch_byte_order (arch));
4196 data += offset_size;
4197
4198 data = safe_read_sleb128 (data, end, &l);
4199
4200 fprintf_filtered (stream, " DIE %s offset %s",
4201 phex_nz (ul, offset_size),
4202 plongest (l));
4203 }
4204 break;
4205
4206 case DW_OP_deref_type:
4207 case DW_OP_GNU_deref_type:
4208 {
4209 int addr_size = *data++;
4210 struct type *type;
4211
4212 data = safe_read_uleb128 (data, end, &ul);
4213 cu_offset offset = (cu_offset) ul;
4214 type = dwarf2_get_die_type (offset, per_cu);
4215 fprintf_filtered (stream, "<");
4216 type_print (type, "", stream, -1);
4217 fprintf_filtered (stream, " [0x%s]> %d",
4218 phex_nz (to_underlying (offset), 0),
4219 addr_size);
4220 }
4221 break;
4222
4223 case DW_OP_const_type:
4224 case DW_OP_GNU_const_type:
4225 {
4226 struct type *type;
4227
4228 data = safe_read_uleb128 (data, end, &ul);
4229 cu_offset type_die = (cu_offset) ul;
4230 type = dwarf2_get_die_type (type_die, per_cu);
4231 fprintf_filtered (stream, "<");
4232 type_print (type, "", stream, -1);
4233 fprintf_filtered (stream, " [0x%s]>",
4234 phex_nz (to_underlying (type_die), 0));
4235 }
4236 break;
4237
4238 case DW_OP_regval_type:
4239 case DW_OP_GNU_regval_type:
4240 {
4241 uint64_t reg;
4242 struct type *type;
4243
4244 data = safe_read_uleb128 (data, end, &reg);
4245 data = safe_read_uleb128 (data, end, &ul);
4246 cu_offset type_die = (cu_offset) ul;
4247
4248 type = dwarf2_get_die_type (type_die, per_cu);
4249 fprintf_filtered (stream, "<");
4250 type_print (type, "", stream, -1);
4251 fprintf_filtered (stream, " [0x%s]> [$%s]",
4252 phex_nz (to_underlying (type_die), 0),
4253 locexpr_regname (arch, reg));
4254 }
4255 break;
4256
4257 case DW_OP_convert:
4258 case DW_OP_GNU_convert:
4259 case DW_OP_reinterpret:
4260 case DW_OP_GNU_reinterpret:
4261 {
4262 data = safe_read_uleb128 (data, end, &ul);
4263 cu_offset type_die = (cu_offset) ul;
4264
4265 if (to_underlying (type_die) == 0)
4266 fprintf_filtered (stream, "<0>");
4267 else
4268 {
4269 struct type *type;
4270
4271 type = dwarf2_get_die_type (type_die, per_cu);
4272 fprintf_filtered (stream, "<");
4273 type_print (type, "", stream, -1);
4274 fprintf_filtered (stream, " [0x%s]>",
4275 phex_nz (to_underlying (type_die), 0));
4276 }
4277 }
4278 break;
4279
4280 case DW_OP_entry_value:
4281 case DW_OP_GNU_entry_value:
4282 data = safe_read_uleb128 (data, end, &ul);
4283 fputc_filtered ('\n', stream);
4284 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4285 start, data, data + ul, indent + 2,
4286 all, per_cu);
4287 data += ul;
4288 continue;
4289
4290 case DW_OP_GNU_parameter_ref:
4291 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4292 data += 4;
4293 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4294 break;
4295
4296 case DW_OP_GNU_addr_index:
4297 data = safe_read_uleb128 (data, end, &ul);
4298 ul = dwarf2_read_addr_index (per_cu, ul);
4299 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4300 break;
4301 case DW_OP_GNU_const_index:
4302 data = safe_read_uleb128 (data, end, &ul);
4303 ul = dwarf2_read_addr_index (per_cu, ul);
4304 fprintf_filtered (stream, " %s", pulongest (ul));
4305 break;
4306 }
4307
4308 fprintf_filtered (stream, "\n");
4309 }
4310
4311 return data;
4312 }
4313
4314 /* Describe a single location, which may in turn consist of multiple
4315 pieces. */
4316
4317 static void
4318 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4319 struct ui_file *stream,
4320 const gdb_byte *data, size_t size,
4321 struct objfile *objfile, unsigned int addr_size,
4322 int offset_size, struct dwarf2_per_cu_data *per_cu)
4323 {
4324 const gdb_byte *end = data + size;
4325 int first_piece = 1, bad = 0;
4326
4327 while (data < end)
4328 {
4329 const gdb_byte *here = data;
4330 int disassemble = 1;
4331
4332 if (first_piece)
4333 first_piece = 0;
4334 else
4335 fprintf_filtered (stream, _(", and "));
4336
4337 if (!dwarf_always_disassemble)
4338 {
4339 data = locexpr_describe_location_piece (symbol, stream,
4340 addr, objfile, per_cu,
4341 data, end, addr_size);
4342 /* If we printed anything, or if we have an empty piece,
4343 then don't disassemble. */
4344 if (data != here
4345 || data[0] == DW_OP_piece
4346 || data[0] == DW_OP_bit_piece)
4347 disassemble = 0;
4348 }
4349 if (disassemble)
4350 {
4351 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4352 data = disassemble_dwarf_expression (stream,
4353 get_objfile_arch (objfile),
4354 addr_size, offset_size, data,
4355 data, end, 0,
4356 dwarf_always_disassemble,
4357 per_cu);
4358 }
4359
4360 if (data < end)
4361 {
4362 int empty = data == here;
4363
4364 if (disassemble)
4365 fprintf_filtered (stream, " ");
4366 if (data[0] == DW_OP_piece)
4367 {
4368 uint64_t bytes;
4369
4370 data = safe_read_uleb128 (data + 1, end, &bytes);
4371
4372 if (empty)
4373 fprintf_filtered (stream, _("an empty %s-byte piece"),
4374 pulongest (bytes));
4375 else
4376 fprintf_filtered (stream, _(" [%s-byte piece]"),
4377 pulongest (bytes));
4378 }
4379 else if (data[0] == DW_OP_bit_piece)
4380 {
4381 uint64_t bits, offset;
4382
4383 data = safe_read_uleb128 (data + 1, end, &bits);
4384 data = safe_read_uleb128 (data, end, &offset);
4385
4386 if (empty)
4387 fprintf_filtered (stream,
4388 _("an empty %s-bit piece"),
4389 pulongest (bits));
4390 else
4391 fprintf_filtered (stream,
4392 _(" [%s-bit piece, offset %s bits]"),
4393 pulongest (bits), pulongest (offset));
4394 }
4395 else
4396 {
4397 bad = 1;
4398 break;
4399 }
4400 }
4401 }
4402
4403 if (bad || data > end)
4404 error (_("Corrupted DWARF2 expression for \"%s\"."),
4405 SYMBOL_PRINT_NAME (symbol));
4406 }
4407
4408 /* Print a natural-language description of SYMBOL to STREAM. This
4409 version is for a symbol with a single location. */
4410
4411 static void
4412 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4413 struct ui_file *stream)
4414 {
4415 struct dwarf2_locexpr_baton *dlbaton
4416 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4417 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4418 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4419 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4420
4421 locexpr_describe_location_1 (symbol, addr, stream,
4422 dlbaton->data, dlbaton->size,
4423 objfile, addr_size, offset_size,
4424 dlbaton->per_cu);
4425 }
4426
4427 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4428 any necessary bytecode in AX. */
4429
4430 static void
4431 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4432 struct agent_expr *ax, struct axs_value *value)
4433 {
4434 struct dwarf2_locexpr_baton *dlbaton
4435 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4436 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4437
4438 if (dlbaton->size == 0)
4439 value->optimized_out = 1;
4440 else
4441 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4442 dlbaton->data, dlbaton->data + dlbaton->size,
4443 dlbaton->per_cu);
4444 }
4445
4446 /* symbol_computed_ops 'generate_c_location' method. */
4447
4448 static void
4449 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4450 struct gdbarch *gdbarch,
4451 unsigned char *registers_used,
4452 CORE_ADDR pc, const char *result_name)
4453 {
4454 struct dwarf2_locexpr_baton *dlbaton
4455 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4456 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4457
4458 if (dlbaton->size == 0)
4459 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4460
4461 compile_dwarf_expr_to_c (stream, result_name,
4462 sym, pc, gdbarch, registers_used, addr_size,
4463 dlbaton->data, dlbaton->data + dlbaton->size,
4464 dlbaton->per_cu);
4465 }
4466
4467 /* The set of location functions used with the DWARF-2 expression
4468 evaluator. */
4469 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4470 locexpr_read_variable,
4471 locexpr_read_variable_at_entry,
4472 locexpr_get_symbol_read_needs,
4473 locexpr_describe_location,
4474 0, /* location_has_loclist */
4475 locexpr_tracepoint_var_ref,
4476 locexpr_generate_c_location
4477 };
4478
4479
4480 /* Wrapper functions for location lists. These generally find
4481 the appropriate location expression and call something above. */
4482
4483 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4484 evaluator to calculate the location. */
4485 static struct value *
4486 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4487 {
4488 struct dwarf2_loclist_baton *dlbaton
4489 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4490 struct value *val;
4491 const gdb_byte *data;
4492 size_t size;
4493 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4494
4495 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4496 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4497 dlbaton->per_cu);
4498
4499 return val;
4500 }
4501
4502 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4503 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4504 will be thrown.
4505
4506 Function always returns non-NULL value, it may be marked optimized out if
4507 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4508 if it cannot resolve the parameter for any reason. */
4509
4510 static struct value *
4511 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4512 {
4513 struct dwarf2_loclist_baton *dlbaton
4514 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4515 const gdb_byte *data;
4516 size_t size;
4517 CORE_ADDR pc;
4518
4519 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4520 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4521
4522 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4523 if (data == NULL)
4524 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4525
4526 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4527 }
4528
4529 /* Implementation of get_symbol_read_needs from
4530 symbol_computed_ops. */
4531
4532 static enum symbol_needs_kind
4533 loclist_symbol_needs (struct symbol *symbol)
4534 {
4535 /* If there's a location list, then assume we need to have a frame
4536 to choose the appropriate location expression. With tracking of
4537 global variables this is not necessarily true, but such tracking
4538 is disabled in GCC at the moment until we figure out how to
4539 represent it. */
4540
4541 return SYMBOL_NEEDS_FRAME;
4542 }
4543
4544 /* Print a natural-language description of SYMBOL to STREAM. This
4545 version applies when there is a list of different locations, each
4546 with a specified address range. */
4547
4548 static void
4549 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4550 struct ui_file *stream)
4551 {
4552 struct dwarf2_loclist_baton *dlbaton
4553 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4554 const gdb_byte *loc_ptr, *buf_end;
4555 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4556 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4558 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4559 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4560 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4561 /* Adjust base_address for relocatable objects. */
4562 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4563 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4564 int done = 0;
4565
4566 loc_ptr = dlbaton->data;
4567 buf_end = dlbaton->data + dlbaton->size;
4568
4569 fprintf_filtered (stream, _("multi-location:\n"));
4570
4571 /* Iterate through locations until we run out. */
4572 while (!done)
4573 {
4574 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4575 int length;
4576 enum debug_loc_kind kind;
4577 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4578
4579 if (dlbaton->from_dwo)
4580 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4581 loc_ptr, buf_end, &new_ptr,
4582 &low, &high, byte_order);
4583 else
4584 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4585 &low, &high,
4586 byte_order, addr_size,
4587 signed_addr_p);
4588 loc_ptr = new_ptr;
4589 switch (kind)
4590 {
4591 case DEBUG_LOC_END_OF_LIST:
4592 done = 1;
4593 continue;
4594 case DEBUG_LOC_BASE_ADDRESS:
4595 base_address = high + base_offset;
4596 fprintf_filtered (stream, _(" Base address %s"),
4597 paddress (gdbarch, base_address));
4598 continue;
4599 case DEBUG_LOC_START_END:
4600 case DEBUG_LOC_START_LENGTH:
4601 break;
4602 case DEBUG_LOC_BUFFER_OVERFLOW:
4603 case DEBUG_LOC_INVALID_ENTRY:
4604 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4605 SYMBOL_PRINT_NAME (symbol));
4606 default:
4607 gdb_assert_not_reached ("bad debug_loc_kind");
4608 }
4609
4610 /* Otherwise, a location expression entry. */
4611 low += base_address;
4612 high += base_address;
4613
4614 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4615 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4616
4617 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4618 loc_ptr += 2;
4619
4620 /* (It would improve readability to print only the minimum
4621 necessary digits of the second number of the range.) */
4622 fprintf_filtered (stream, _(" Range %s-%s: "),
4623 paddress (gdbarch, low), paddress (gdbarch, high));
4624
4625 /* Now describe this particular location. */
4626 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4627 objfile, addr_size, offset_size,
4628 dlbaton->per_cu);
4629
4630 fprintf_filtered (stream, "\n");
4631
4632 loc_ptr += length;
4633 }
4634 }
4635
4636 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4637 any necessary bytecode in AX. */
4638 static void
4639 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4640 struct agent_expr *ax, struct axs_value *value)
4641 {
4642 struct dwarf2_loclist_baton *dlbaton
4643 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4644 const gdb_byte *data;
4645 size_t size;
4646 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4647
4648 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4649 if (size == 0)
4650 value->optimized_out = 1;
4651 else
4652 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4653 dlbaton->per_cu);
4654 }
4655
4656 /* symbol_computed_ops 'generate_c_location' method. */
4657
4658 static void
4659 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4660 struct gdbarch *gdbarch,
4661 unsigned char *registers_used,
4662 CORE_ADDR pc, const char *result_name)
4663 {
4664 struct dwarf2_loclist_baton *dlbaton
4665 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4666 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4667 const gdb_byte *data;
4668 size_t size;
4669
4670 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4671 if (size == 0)
4672 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4673
4674 compile_dwarf_expr_to_c (stream, result_name,
4675 sym, pc, gdbarch, registers_used, addr_size,
4676 data, data + size,
4677 dlbaton->per_cu);
4678 }
4679
4680 /* The set of location functions used with the DWARF-2 expression
4681 evaluator and location lists. */
4682 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4683 loclist_read_variable,
4684 loclist_read_variable_at_entry,
4685 loclist_symbol_needs,
4686 loclist_describe_location,
4687 1, /* location_has_loclist */
4688 loclist_tracepoint_var_ref,
4689 loclist_generate_c_location
4690 };
4691
4692 /* Provide a prototype to silence -Wmissing-prototypes. */
4693 extern initialize_file_ftype _initialize_dwarf2loc;
4694
4695 void
4696 _initialize_dwarf2loc (void)
4697 {
4698 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4699 &entry_values_debug,
4700 _("Set entry values and tail call frames "
4701 "debugging."),
4702 _("Show entry values and tail call frames "
4703 "debugging."),
4704 _("When non-zero, the process of determining "
4705 "parameter values from function entry point "
4706 "and tail call frames will be printed."),
4707 NULL,
4708 show_entry_values_debug,
4709 &setdebuglist, &showdebuglist);
4710
4711 #if GDB_SELF_TEST
4712 register_self_test (selftests::copy_bitwise_tests);
4713 #endif
4714 }
This page took 0.183623 seconds and 5 git commands to generate.