Make dwarf_stack_value::in_stack_memory a bool
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
47
48 extern int dwarf_always_disassemble;
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
57
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
64 /* Until these have formal names, we define these here.
65 ref: http://gcc.gnu.org/wiki/DebugFission
66 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
67 and is then followed by data specific to that entry. */
68
69 enum debug_loc_kind
70 {
71 /* Indicates the end of the list of entries. */
72 DEBUG_LOC_END_OF_LIST = 0,
73
74 /* This is followed by an unsigned LEB128 number that is an index into
75 .debug_addr and specifies the base address for all following entries. */
76 DEBUG_LOC_BASE_ADDRESS = 1,
77
78 /* This is followed by two unsigned LEB128 numbers that are indices into
79 .debug_addr and specify the beginning and ending addresses, and then
80 a normal location expression as in .debug_loc. */
81 DEBUG_LOC_START_END = 2,
82
83 /* This is followed by an unsigned LEB128 number that is an index into
84 .debug_addr and specifies the beginning address, and a 4 byte unsigned
85 number that specifies the length, and then a normal location expression
86 as in .debug_loc. */
87 DEBUG_LOC_START_LENGTH = 3,
88
89 /* An internal value indicating there is insufficient data. */
90 DEBUG_LOC_BUFFER_OVERFLOW = -1,
91
92 /* An internal value indicating an invalid kind of entry was found. */
93 DEBUG_LOC_INVALID_ENTRY = -2
94 };
95
96 /* Helper function which throws an error if a synthetic pointer is
97 invalid. */
98
99 static void
100 invalid_synthetic_pointer (void)
101 {
102 error (_("access outside bounds of object "
103 "referenced via synthetic pointer"));
104 }
105
106 /* Decode the addresses in a non-dwo .debug_loc entry.
107 A pointer to the next byte to examine is returned in *NEW_PTR.
108 The encoded low,high addresses are return in *LOW,*HIGH.
109 The result indicates the kind of entry found. */
110
111 static enum debug_loc_kind
112 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
113 const gdb_byte **new_ptr,
114 CORE_ADDR *low, CORE_ADDR *high,
115 enum bfd_endian byte_order,
116 unsigned int addr_size,
117 int signed_addr_p)
118 {
119 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
120
121 if (buf_end - loc_ptr < 2 * addr_size)
122 return DEBUG_LOC_BUFFER_OVERFLOW;
123
124 if (signed_addr_p)
125 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
126 else
127 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
128 loc_ptr += addr_size;
129
130 if (signed_addr_p)
131 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 *new_ptr = loc_ptr;
137
138 /* A base-address-selection entry. */
139 if ((*low & base_mask) == base_mask)
140 return DEBUG_LOC_BASE_ADDRESS;
141
142 /* An end-of-list entry. */
143 if (*low == 0 && *high == 0)
144 return DEBUG_LOC_END_OF_LIST;
145
146 return DEBUG_LOC_START_END;
147 }
148
149 /* Decode the addresses in .debug_loclists entry.
150 A pointer to the next byte to examine is returned in *NEW_PTR.
151 The encoded low,high addresses are return in *LOW,*HIGH.
152 The result indicates the kind of entry found. */
153
154 static enum debug_loc_kind
155 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
156 const gdb_byte *loc_ptr,
157 const gdb_byte *buf_end,
158 const gdb_byte **new_ptr,
159 CORE_ADDR *low, CORE_ADDR *high,
160 enum bfd_endian byte_order,
161 unsigned int addr_size,
162 int signed_addr_p)
163 {
164 uint64_t u64;
165
166 if (loc_ptr == buf_end)
167 return DEBUG_LOC_BUFFER_OVERFLOW;
168
169 switch (*loc_ptr++)
170 {
171 case DW_LLE_end_of_list:
172 *new_ptr = loc_ptr;
173 return DEBUG_LOC_END_OF_LIST;
174 case DW_LLE_base_address:
175 if (loc_ptr + addr_size > buf_end)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 if (signed_addr_p)
178 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
179 else
180 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
181 loc_ptr += addr_size;
182 *new_ptr = loc_ptr;
183 return DEBUG_LOC_BASE_ADDRESS;
184 case DW_LLE_offset_pair:
185 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
186 if (loc_ptr == NULL)
187 return DEBUG_LOC_BUFFER_OVERFLOW;
188 *low = u64;
189 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
190 if (loc_ptr == NULL)
191 return DEBUG_LOC_BUFFER_OVERFLOW;
192 *high = u64;
193 *new_ptr = loc_ptr;
194 return DEBUG_LOC_START_END;
195 default:
196 return DEBUG_LOC_INVALID_ENTRY;
197 }
198 }
199
200 /* Decode the addresses in .debug_loc.dwo entry.
201 A pointer to the next byte to examine is returned in *NEW_PTR.
202 The encoded low,high addresses are return in *LOW,*HIGH.
203 The result indicates the kind of entry found. */
204
205 static enum debug_loc_kind
206 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
207 const gdb_byte *loc_ptr,
208 const gdb_byte *buf_end,
209 const gdb_byte **new_ptr,
210 CORE_ADDR *low, CORE_ADDR *high,
211 enum bfd_endian byte_order)
212 {
213 uint64_t low_index, high_index;
214
215 if (loc_ptr == buf_end)
216 return DEBUG_LOC_BUFFER_OVERFLOW;
217
218 switch (*loc_ptr++)
219 {
220 case DW_LLE_GNU_end_of_list_entry:
221 *new_ptr = loc_ptr;
222 return DEBUG_LOC_END_OF_LIST;
223 case DW_LLE_GNU_base_address_selection_entry:
224 *low = 0;
225 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
226 if (loc_ptr == NULL)
227 return DEBUG_LOC_BUFFER_OVERFLOW;
228 *high = dwarf2_read_addr_index (per_cu, high_index);
229 *new_ptr = loc_ptr;
230 return DEBUG_LOC_BASE_ADDRESS;
231 case DW_LLE_GNU_start_end_entry:
232 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
233 if (loc_ptr == NULL)
234 return DEBUG_LOC_BUFFER_OVERFLOW;
235 *low = dwarf2_read_addr_index (per_cu, low_index);
236 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
237 if (loc_ptr == NULL)
238 return DEBUG_LOC_BUFFER_OVERFLOW;
239 *high = dwarf2_read_addr_index (per_cu, high_index);
240 *new_ptr = loc_ptr;
241 return DEBUG_LOC_START_END;
242 case DW_LLE_GNU_start_length_entry:
243 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
244 if (loc_ptr == NULL)
245 return DEBUG_LOC_BUFFER_OVERFLOW;
246 *low = dwarf2_read_addr_index (per_cu, low_index);
247 if (loc_ptr + 4 > buf_end)
248 return DEBUG_LOC_BUFFER_OVERFLOW;
249 *high = *low;
250 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
251 *new_ptr = loc_ptr + 4;
252 return DEBUG_LOC_START_LENGTH;
253 default:
254 return DEBUG_LOC_INVALID_ENTRY;
255 }
256 }
257
258 /* A function for dealing with location lists. Given a
259 symbol baton (BATON) and a pc value (PC), find the appropriate
260 location expression, set *LOCEXPR_LENGTH, and return a pointer
261 to the beginning of the expression. Returns NULL on failure.
262
263 For now, only return the first matching location expression; there
264 can be more than one in the list. */
265
266 const gdb_byte *
267 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
268 size_t *locexpr_length, CORE_ADDR pc)
269 {
270 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
273 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
274 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
275 /* Adjust base_address for relocatable objects. */
276 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
277 CORE_ADDR base_address = baton->base_address + base_offset;
278 const gdb_byte *loc_ptr, *buf_end;
279
280 loc_ptr = baton->data;
281 buf_end = baton->data + baton->size;
282
283 while (1)
284 {
285 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
286 int length;
287 enum debug_loc_kind kind;
288 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
289
290 if (baton->from_dwo)
291 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
292 loc_ptr, buf_end, &new_ptr,
293 &low, &high, byte_order);
294 else if (dwarf2_version (baton->per_cu) < 5)
295 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
296 &low, &high,
297 byte_order, addr_size,
298 signed_addr_p);
299 else
300 kind = decode_debug_loclists_addresses (baton->per_cu,
301 loc_ptr, buf_end, &new_ptr,
302 &low, &high, byte_order,
303 addr_size, signed_addr_p);
304
305 loc_ptr = new_ptr;
306 switch (kind)
307 {
308 case DEBUG_LOC_END_OF_LIST:
309 *locexpr_length = 0;
310 return NULL;
311 case DEBUG_LOC_BASE_ADDRESS:
312 base_address = high + base_offset;
313 continue;
314 case DEBUG_LOC_START_END:
315 case DEBUG_LOC_START_LENGTH:
316 break;
317 case DEBUG_LOC_BUFFER_OVERFLOW:
318 case DEBUG_LOC_INVALID_ENTRY:
319 error (_("dwarf2_find_location_expression: "
320 "Corrupted DWARF expression."));
321 default:
322 gdb_assert_not_reached ("bad debug_loc_kind");
323 }
324
325 /* Otherwise, a location expression entry.
326 If the entry is from a DWO, don't add base address: the entry is from
327 .debug_addr which already has the DWARF "base address". We still add
328 base_offset in case we're debugging a PIE executable. */
329 if (baton->from_dwo)
330 {
331 low += base_offset;
332 high += base_offset;
333 }
334 else
335 {
336 low += base_address;
337 high += base_address;
338 }
339
340 if (dwarf2_version (baton->per_cu) < 5)
341 {
342 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
343 loc_ptr += 2;
344 }
345 else
346 {
347 unsigned int bytes_read;
348
349 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
350 loc_ptr += bytes_read;
351 }
352
353 if (low == high && pc == low)
354 {
355 /* This is entry PC record present only at entry point
356 of a function. Verify it is really the function entry point. */
357
358 const struct block *pc_block = block_for_pc (pc);
359 struct symbol *pc_func = NULL;
360
361 if (pc_block)
362 pc_func = block_linkage_function (pc_block);
363
364 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
365 {
366 *locexpr_length = length;
367 return loc_ptr;
368 }
369 }
370
371 if (pc >= low && pc < high)
372 {
373 *locexpr_length = length;
374 return loc_ptr;
375 }
376
377 loc_ptr += length;
378 }
379 }
380
381 /* This is the baton used when performing dwarf2 expression
382 evaluation. */
383 struct dwarf_expr_baton
384 {
385 struct frame_info *frame;
386 struct dwarf2_per_cu_data *per_cu;
387 CORE_ADDR obj_address;
388 };
389
390 /* Implement find_frame_base_location method for LOC_BLOCK functions using
391 DWARF expression for its DW_AT_frame_base. */
392
393 static void
394 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
395 const gdb_byte **start, size_t *length)
396 {
397 struct dwarf2_locexpr_baton *symbaton
398 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
399
400 *length = symbaton->size;
401 *start = symbaton->data;
402 }
403
404 /* Implement the struct symbol_block_ops::get_frame_base method for
405 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
406
407 static CORE_ADDR
408 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
409 {
410 struct gdbarch *gdbarch;
411 struct type *type;
412 struct dwarf2_locexpr_baton *dlbaton;
413 const gdb_byte *start;
414 size_t length;
415 struct value *result;
416
417 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
418 Thus, it's supposed to provide the find_frame_base_location method as
419 well. */
420 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
421
422 gdbarch = get_frame_arch (frame);
423 type = builtin_type (gdbarch)->builtin_data_ptr;
424 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
425
426 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
427 (framefunc, get_frame_pc (frame), &start, &length);
428 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
429 dlbaton->per_cu);
430
431 /* The DW_AT_frame_base attribute contains a location description which
432 computes the base address itself. However, the call to
433 dwarf2_evaluate_loc_desc returns a value representing a variable at
434 that address. The frame base address is thus this variable's
435 address. */
436 return value_address (result);
437 }
438
439 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
440 function uses DWARF expression for its DW_AT_frame_base. */
441
442 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
443 {
444 locexpr_find_frame_base_location,
445 locexpr_get_frame_base
446 };
447
448 /* Implement find_frame_base_location method for LOC_BLOCK functions using
449 DWARF location list for its DW_AT_frame_base. */
450
451 static void
452 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
453 const gdb_byte **start, size_t *length)
454 {
455 struct dwarf2_loclist_baton *symbaton
456 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
457
458 *start = dwarf2_find_location_expression (symbaton, length, pc);
459 }
460
461 /* Implement the struct symbol_block_ops::get_frame_base method for
462 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
463
464 static CORE_ADDR
465 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
466 {
467 struct gdbarch *gdbarch;
468 struct type *type;
469 struct dwarf2_loclist_baton *dlbaton;
470 const gdb_byte *start;
471 size_t length;
472 struct value *result;
473
474 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
475 Thus, it's supposed to provide the find_frame_base_location method as
476 well. */
477 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
478
479 gdbarch = get_frame_arch (frame);
480 type = builtin_type (gdbarch)->builtin_data_ptr;
481 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
482
483 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
484 (framefunc, get_frame_pc (frame), &start, &length);
485 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
486 dlbaton->per_cu);
487
488 /* The DW_AT_frame_base attribute contains a location description which
489 computes the base address itself. However, the call to
490 dwarf2_evaluate_loc_desc returns a value representing a variable at
491 that address. The frame base address is thus this variable's
492 address. */
493 return value_address (result);
494 }
495
496 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
497 function uses DWARF location list for its DW_AT_frame_base. */
498
499 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
500 {
501 loclist_find_frame_base_location,
502 loclist_get_frame_base
503 };
504
505 /* See dwarf2loc.h. */
506
507 void
508 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
509 const gdb_byte **start, size_t *length)
510 {
511 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
512 {
513 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
514
515 ops_block->find_frame_base_location (framefunc, pc, start, length);
516 }
517 else
518 *length = 0;
519
520 if (*length == 0)
521 error (_("Could not find the frame base for \"%s\"."),
522 SYMBOL_NATURAL_NAME (framefunc));
523 }
524
525 static CORE_ADDR
526 get_frame_pc_for_per_cu_dwarf_call (void *baton)
527 {
528 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
529
530 return ctx->get_frame_pc ();
531 }
532
533 static void
534 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
535 struct dwarf2_per_cu_data *per_cu)
536 {
537 struct dwarf2_locexpr_baton block;
538
539 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
540 get_frame_pc_for_per_cu_dwarf_call,
541 ctx);
542
543 /* DW_OP_call_ref is currently not supported. */
544 gdb_assert (block.per_cu == per_cu);
545
546 ctx->eval (block.data, block.size);
547 }
548
549 class dwarf_evaluate_loc_desc : public dwarf_expr_context
550 {
551 public:
552
553 struct frame_info *frame;
554 struct dwarf2_per_cu_data *per_cu;
555 CORE_ADDR obj_address;
556
557 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
558 the frame in BATON. */
559
560 CORE_ADDR get_frame_cfa () OVERRIDE
561 {
562 return dwarf2_frame_cfa (frame);
563 }
564
565 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
566 the frame in BATON. */
567
568 CORE_ADDR get_frame_pc () OVERRIDE
569 {
570 return get_frame_address_in_block (frame);
571 }
572
573 /* Using the objfile specified in BATON, find the address for the
574 current thread's thread-local storage with offset OFFSET. */
575 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
576 {
577 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
578
579 return target_translate_tls_address (objfile, offset);
580 }
581
582 /* Helper interface of per_cu_dwarf_call for
583 dwarf2_evaluate_loc_desc. */
584
585 void dwarf_call (cu_offset die_offset) OVERRIDE
586 {
587 per_cu_dwarf_call (this, die_offset, per_cu);
588 }
589
590 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
591 {
592 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
593 if (result == NULL)
594 error (_("Could not find type for DW_OP_const_type"));
595 if (size != 0 && TYPE_LENGTH (result) != size)
596 error (_("DW_OP_const_type has different sizes for type and data"));
597 return result;
598 }
599
600 /* Callback function for dwarf2_evaluate_loc_desc.
601 Fetch the address indexed by DW_OP_GNU_addr_index. */
602
603 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
604 {
605 return dwarf2_read_addr_index (per_cu, index);
606 }
607
608 /* Callback function for get_object_address. Return the address of the VLA
609 object. */
610
611 CORE_ADDR get_object_address () OVERRIDE
612 {
613 if (obj_address == 0)
614 error (_("Location address is not set."));
615 return obj_address;
616 }
617
618 /* Execute DWARF block of call_site_parameter which matches KIND and
619 KIND_U. Choose DEREF_SIZE value of that parameter. Search
620 caller of this objects's frame.
621
622 The caller can be from a different CU - per_cu_dwarf_call
623 implementation can be more simple as it does not support cross-CU
624 DWARF executions. */
625
626 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
627 union call_site_parameter_u kind_u,
628 int deref_size) OVERRIDE
629 {
630 struct frame_info *caller_frame;
631 struct dwarf2_per_cu_data *caller_per_cu;
632 struct call_site_parameter *parameter;
633 const gdb_byte *data_src;
634 size_t size;
635
636 caller_frame = get_prev_frame (frame);
637
638 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
639 &caller_per_cu);
640 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
641 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
642
643 /* DEREF_SIZE size is not verified here. */
644 if (data_src == NULL)
645 throw_error (NO_ENTRY_VALUE_ERROR,
646 _("Cannot resolve DW_AT_call_data_value"));
647
648 scoped_restore save_frame = make_scoped_restore (&this->frame,
649 caller_frame);
650 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
651 caller_per_cu);
652 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
653 (CORE_ADDR) 0);
654
655 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
656 this->gdbarch
657 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
658 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
659 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
660 scoped_restore save_offset = make_scoped_restore (&this->offset);
661 this->offset = dwarf2_per_cu_text_offset (per_cu);
662
663 this->eval (data_src, size);
664 }
665
666 /* Using the frame specified in BATON, find the location expression
667 describing the frame base. Return a pointer to it in START and
668 its length in LENGTH. */
669 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
670 {
671 /* FIXME: cagney/2003-03-26: This code should be using
672 get_frame_base_address(), and then implement a dwarf2 specific
673 this_base method. */
674 struct symbol *framefunc;
675 const struct block *bl = get_frame_block (frame, NULL);
676
677 if (bl == NULL)
678 error (_("frame address is not available."));
679
680 /* Use block_linkage_function, which returns a real (not inlined)
681 function, instead of get_frame_function, which may return an
682 inlined function. */
683 framefunc = block_linkage_function (bl);
684
685 /* If we found a frame-relative symbol then it was certainly within
686 some function associated with a frame. If we can't find the frame,
687 something has gone wrong. */
688 gdb_assert (framefunc != NULL);
689
690 func_get_frame_base_dwarf_block (framefunc,
691 get_frame_address_in_block (frame),
692 start, length);
693 }
694
695 /* Read memory at ADDR (length LEN) into BUF. */
696
697 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
698 {
699 read_memory (addr, buf, len);
700 }
701
702 /* Using the frame specified in BATON, return the value of register
703 REGNUM, treated as a pointer. */
704 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
705 {
706 struct gdbarch *gdbarch = get_frame_arch (frame);
707 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
708
709 return address_from_register (regnum, frame);
710 }
711
712 /* Implement "get_reg_value" callback. */
713
714 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
715 {
716 struct gdbarch *gdbarch = get_frame_arch (frame);
717 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
718
719 return value_from_register (type, regnum, frame);
720 }
721 };
722
723 /* See dwarf2loc.h. */
724
725 unsigned int entry_values_debug = 0;
726
727 /* Helper to set entry_values_debug. */
728
729 static void
730 show_entry_values_debug (struct ui_file *file, int from_tty,
731 struct cmd_list_element *c, const char *value)
732 {
733 fprintf_filtered (file,
734 _("Entry values and tail call frames debugging is %s.\n"),
735 value);
736 }
737
738 /* Find DW_TAG_call_site's DW_AT_call_target address.
739 CALLER_FRAME (for registers) can be NULL if it is not known. This function
740 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
741
742 static CORE_ADDR
743 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
744 struct call_site *call_site,
745 struct frame_info *caller_frame)
746 {
747 switch (FIELD_LOC_KIND (call_site->target))
748 {
749 case FIELD_LOC_KIND_DWARF_BLOCK:
750 {
751 struct dwarf2_locexpr_baton *dwarf_block;
752 struct value *val;
753 struct type *caller_core_addr_type;
754 struct gdbarch *caller_arch;
755
756 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
757 if (dwarf_block == NULL)
758 {
759 struct bound_minimal_symbol msym;
760
761 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
762 throw_error (NO_ENTRY_VALUE_ERROR,
763 _("DW_AT_call_target is not specified at %s in %s"),
764 paddress (call_site_gdbarch, call_site->pc),
765 (msym.minsym == NULL ? "???"
766 : MSYMBOL_PRINT_NAME (msym.minsym)));
767
768 }
769 if (caller_frame == NULL)
770 {
771 struct bound_minimal_symbol msym;
772
773 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
774 throw_error (NO_ENTRY_VALUE_ERROR,
775 _("DW_AT_call_target DWARF block resolving "
776 "requires known frame which is currently not "
777 "available at %s in %s"),
778 paddress (call_site_gdbarch, call_site->pc),
779 (msym.minsym == NULL ? "???"
780 : MSYMBOL_PRINT_NAME (msym.minsym)));
781
782 }
783 caller_arch = get_frame_arch (caller_frame);
784 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
785 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
786 dwarf_block->data, dwarf_block->size,
787 dwarf_block->per_cu);
788 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
789 if (VALUE_LVAL (val) == lval_memory)
790 return value_address (val);
791 else
792 return value_as_address (val);
793 }
794
795 case FIELD_LOC_KIND_PHYSNAME:
796 {
797 const char *physname;
798 struct bound_minimal_symbol msym;
799
800 physname = FIELD_STATIC_PHYSNAME (call_site->target);
801
802 /* Handle both the mangled and demangled PHYSNAME. */
803 msym = lookup_minimal_symbol (physname, NULL, NULL);
804 if (msym.minsym == NULL)
805 {
806 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
807 throw_error (NO_ENTRY_VALUE_ERROR,
808 _("Cannot find function \"%s\" for a call site target "
809 "at %s in %s"),
810 physname, paddress (call_site_gdbarch, call_site->pc),
811 (msym.minsym == NULL ? "???"
812 : MSYMBOL_PRINT_NAME (msym.minsym)));
813
814 }
815 return BMSYMBOL_VALUE_ADDRESS (msym);
816 }
817
818 case FIELD_LOC_KIND_PHYSADDR:
819 return FIELD_STATIC_PHYSADDR (call_site->target);
820
821 default:
822 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
823 }
824 }
825
826 /* Convert function entry point exact address ADDR to the function which is
827 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
828 NO_ENTRY_VALUE_ERROR otherwise. */
829
830 static struct symbol *
831 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
832 {
833 struct symbol *sym = find_pc_function (addr);
834 struct type *type;
835
836 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
837 throw_error (NO_ENTRY_VALUE_ERROR,
838 _("DW_TAG_call_site resolving failed to find function "
839 "name for address %s"),
840 paddress (gdbarch, addr));
841
842 type = SYMBOL_TYPE (sym);
843 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
844 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
845
846 return sym;
847 }
848
849 /* Verify function with entry point exact address ADDR can never call itself
850 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
851 can call itself via tail calls.
852
853 If a funtion can tail call itself its entry value based parameters are
854 unreliable. There is no verification whether the value of some/all
855 parameters is unchanged through the self tail call, we expect if there is
856 a self tail call all the parameters can be modified. */
857
858 static void
859 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
860 {
861 CORE_ADDR addr;
862
863 /* The verification is completely unordered. Track here function addresses
864 which still need to be iterated. */
865 std::vector<CORE_ADDR> todo;
866
867 /* Track here CORE_ADDRs which were already visited. */
868 std::unordered_set<CORE_ADDR> addr_hash;
869
870 todo.push_back (verify_addr);
871 while (!todo.empty ())
872 {
873 struct symbol *func_sym;
874 struct call_site *call_site;
875
876 addr = todo.back ();
877 todo.pop_back ();
878
879 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
880
881 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
882 call_site; call_site = call_site->tail_call_next)
883 {
884 CORE_ADDR target_addr;
885
886 /* CALLER_FRAME with registers is not available for tail-call jumped
887 frames. */
888 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
889
890 if (target_addr == verify_addr)
891 {
892 struct bound_minimal_symbol msym;
893
894 msym = lookup_minimal_symbol_by_pc (verify_addr);
895 throw_error (NO_ENTRY_VALUE_ERROR,
896 _("DW_OP_entry_value resolving has found "
897 "function \"%s\" at %s can call itself via tail "
898 "calls"),
899 (msym.minsym == NULL ? "???"
900 : MSYMBOL_PRINT_NAME (msym.minsym)),
901 paddress (gdbarch, verify_addr));
902 }
903
904 if (addr_hash.insert (target_addr).second)
905 todo.push_back (target_addr);
906 }
907 }
908 }
909
910 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
911 ENTRY_VALUES_DEBUG. */
912
913 static void
914 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
915 {
916 CORE_ADDR addr = call_site->pc;
917 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
918
919 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
920 (msym.minsym == NULL ? "???"
921 : MSYMBOL_PRINT_NAME (msym.minsym)));
922
923 }
924
925 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
926 only top callers and bottom callees which are present in both. GDBARCH is
927 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
928 no remaining possibilities to provide unambiguous non-trivial result.
929 RESULTP should point to NULL on the first (initialization) call. Caller is
930 responsible for xfree of any RESULTP data. */
931
932 static void
933 chain_candidate (struct gdbarch *gdbarch,
934 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
935 std::vector<struct call_site *> *chain)
936 {
937 long length = chain->size ();
938 int callers, callees, idx;
939
940 if (*resultp == NULL)
941 {
942 /* Create the initial chain containing all the passed PCs. */
943
944 struct call_site_chain *result
945 = ((struct call_site_chain *)
946 xmalloc (sizeof (*result)
947 + sizeof (*result->call_site) * (length - 1)));
948 result->length = length;
949 result->callers = result->callees = length;
950 if (!chain->empty ())
951 memcpy (result->call_site, chain->data (),
952 sizeof (*result->call_site) * length);
953 resultp->reset (result);
954
955 if (entry_values_debug)
956 {
957 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
958 for (idx = 0; idx < length; idx++)
959 tailcall_dump (gdbarch, result->call_site[idx]);
960 fputc_unfiltered ('\n', gdb_stdlog);
961 }
962
963 return;
964 }
965
966 if (entry_values_debug)
967 {
968 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
969 for (idx = 0; idx < length; idx++)
970 tailcall_dump (gdbarch, chain->at (idx));
971 fputc_unfiltered ('\n', gdb_stdlog);
972 }
973
974 /* Intersect callers. */
975
976 callers = std::min ((long) (*resultp)->callers, length);
977 for (idx = 0; idx < callers; idx++)
978 if ((*resultp)->call_site[idx] != chain->at (idx))
979 {
980 (*resultp)->callers = idx;
981 break;
982 }
983
984 /* Intersect callees. */
985
986 callees = std::min ((long) (*resultp)->callees, length);
987 for (idx = 0; idx < callees; idx++)
988 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
989 != chain->at (length - 1 - idx))
990 {
991 (*resultp)->callees = idx;
992 break;
993 }
994
995 if (entry_values_debug)
996 {
997 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
998 for (idx = 0; idx < (*resultp)->callers; idx++)
999 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1000 fputs_unfiltered (" |", gdb_stdlog);
1001 for (idx = 0; idx < (*resultp)->callees; idx++)
1002 tailcall_dump (gdbarch,
1003 (*resultp)->call_site[(*resultp)->length
1004 - (*resultp)->callees + idx]);
1005 fputc_unfiltered ('\n', gdb_stdlog);
1006 }
1007
1008 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1009 {
1010 /* There are no common callers or callees. It could be also a direct
1011 call (which has length 0) with ambiguous possibility of an indirect
1012 call - CALLERS == CALLEES == 0 is valid during the first allocation
1013 but any subsequence processing of such entry means ambiguity. */
1014 resultp->reset (NULL);
1015 return;
1016 }
1017
1018 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1019 PC again. In such case there must be two different code paths to reach
1020 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1021 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1022 }
1023
1024 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1025 assumed frames between them use GDBARCH. Use depth first search so we can
1026 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1027 would have needless GDB stack overhead. Caller is responsible for xfree of
1028 the returned result. Any unreliability results in thrown
1029 NO_ENTRY_VALUE_ERROR. */
1030
1031 static struct call_site_chain *
1032 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1033 CORE_ADDR callee_pc)
1034 {
1035 CORE_ADDR save_callee_pc = callee_pc;
1036 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1037 struct call_site *call_site;
1038
1039 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1040 call_site nor any possible call_site at CALLEE_PC's function is there.
1041 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1042 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1043 std::vector<struct call_site *> chain;
1044
1045 /* We are not interested in the specific PC inside the callee function. */
1046 callee_pc = get_pc_function_start (callee_pc);
1047 if (callee_pc == 0)
1048 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1049 paddress (gdbarch, save_callee_pc));
1050
1051 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1052 std::unordered_set<CORE_ADDR> addr_hash;
1053
1054 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1055 at the target's function. All the possible tail call sites in the
1056 target's function will get iterated as already pushed into CHAIN via their
1057 TAIL_CALL_NEXT. */
1058 call_site = call_site_for_pc (gdbarch, caller_pc);
1059
1060 while (call_site)
1061 {
1062 CORE_ADDR target_func_addr;
1063 struct call_site *target_call_site;
1064
1065 /* CALLER_FRAME with registers is not available for tail-call jumped
1066 frames. */
1067 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1068
1069 if (target_func_addr == callee_pc)
1070 {
1071 chain_candidate (gdbarch, &retval, &chain);
1072 if (retval == NULL)
1073 break;
1074
1075 /* There is no way to reach CALLEE_PC again as we would prevent
1076 entering it twice as being already marked in ADDR_HASH. */
1077 target_call_site = NULL;
1078 }
1079 else
1080 {
1081 struct symbol *target_func;
1082
1083 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1084 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1085 }
1086
1087 do
1088 {
1089 /* Attempt to visit TARGET_CALL_SITE. */
1090
1091 if (target_call_site)
1092 {
1093 if (addr_hash.insert (target_call_site->pc).second)
1094 {
1095 /* Successfully entered TARGET_CALL_SITE. */
1096
1097 chain.push_back (target_call_site);
1098 break;
1099 }
1100 }
1101
1102 /* Backtrack (without revisiting the originating call_site). Try the
1103 callers's sibling; if there isn't any try the callers's callers's
1104 sibling etc. */
1105
1106 target_call_site = NULL;
1107 while (!chain.empty ())
1108 {
1109 call_site = chain.back ();
1110 chain.pop_back ();
1111
1112 size_t removed = addr_hash.erase (call_site->pc);
1113 gdb_assert (removed == 1);
1114
1115 target_call_site = call_site->tail_call_next;
1116 if (target_call_site)
1117 break;
1118 }
1119 }
1120 while (target_call_site);
1121
1122 if (chain.empty ())
1123 call_site = NULL;
1124 else
1125 call_site = chain.back ();
1126 }
1127
1128 if (retval == NULL)
1129 {
1130 struct bound_minimal_symbol msym_caller, msym_callee;
1131
1132 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1133 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1134 throw_error (NO_ENTRY_VALUE_ERROR,
1135 _("There are no unambiguously determinable intermediate "
1136 "callers or callees between caller function \"%s\" at %s "
1137 "and callee function \"%s\" at %s"),
1138 (msym_caller.minsym == NULL
1139 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1140 paddress (gdbarch, caller_pc),
1141 (msym_callee.minsym == NULL
1142 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1143 paddress (gdbarch, callee_pc));
1144 }
1145
1146 return retval.release ();
1147 }
1148
1149 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1150 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1151 constructed return NULL. Caller is responsible for xfree of the returned
1152 result. */
1153
1154 struct call_site_chain *
1155 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1156 CORE_ADDR callee_pc)
1157 {
1158 struct call_site_chain *retval = NULL;
1159
1160 TRY
1161 {
1162 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1163 }
1164 CATCH (e, RETURN_MASK_ERROR)
1165 {
1166 if (e.error == NO_ENTRY_VALUE_ERROR)
1167 {
1168 if (entry_values_debug)
1169 exception_print (gdb_stdout, e);
1170
1171 return NULL;
1172 }
1173 else
1174 throw_exception (e);
1175 }
1176 END_CATCH
1177
1178 return retval;
1179 }
1180
1181 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1182
1183 static int
1184 call_site_parameter_matches (struct call_site_parameter *parameter,
1185 enum call_site_parameter_kind kind,
1186 union call_site_parameter_u kind_u)
1187 {
1188 if (kind == parameter->kind)
1189 switch (kind)
1190 {
1191 case CALL_SITE_PARAMETER_DWARF_REG:
1192 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1193 case CALL_SITE_PARAMETER_FB_OFFSET:
1194 return kind_u.fb_offset == parameter->u.fb_offset;
1195 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1196 return kind_u.param_cu_off == parameter->u.param_cu_off;
1197 }
1198 return 0;
1199 }
1200
1201 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1202 FRAME is for callee.
1203
1204 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1205 otherwise. */
1206
1207 static struct call_site_parameter *
1208 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1209 enum call_site_parameter_kind kind,
1210 union call_site_parameter_u kind_u,
1211 struct dwarf2_per_cu_data **per_cu_return)
1212 {
1213 CORE_ADDR func_addr, caller_pc;
1214 struct gdbarch *gdbarch;
1215 struct frame_info *caller_frame;
1216 struct call_site *call_site;
1217 int iparams;
1218 /* Initialize it just to avoid a GCC false warning. */
1219 struct call_site_parameter *parameter = NULL;
1220 CORE_ADDR target_addr;
1221
1222 while (get_frame_type (frame) == INLINE_FRAME)
1223 {
1224 frame = get_prev_frame (frame);
1225 gdb_assert (frame != NULL);
1226 }
1227
1228 func_addr = get_frame_func (frame);
1229 gdbarch = get_frame_arch (frame);
1230 caller_frame = get_prev_frame (frame);
1231 if (gdbarch != frame_unwind_arch (frame))
1232 {
1233 struct bound_minimal_symbol msym
1234 = lookup_minimal_symbol_by_pc (func_addr);
1235 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1236
1237 throw_error (NO_ENTRY_VALUE_ERROR,
1238 _("DW_OP_entry_value resolving callee gdbarch %s "
1239 "(of %s (%s)) does not match caller gdbarch %s"),
1240 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1241 paddress (gdbarch, func_addr),
1242 (msym.minsym == NULL ? "???"
1243 : MSYMBOL_PRINT_NAME (msym.minsym)),
1244 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1245 }
1246
1247 if (caller_frame == NULL)
1248 {
1249 struct bound_minimal_symbol msym
1250 = lookup_minimal_symbol_by_pc (func_addr);
1251
1252 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1253 "requires caller of %s (%s)"),
1254 paddress (gdbarch, func_addr),
1255 (msym.minsym == NULL ? "???"
1256 : MSYMBOL_PRINT_NAME (msym.minsym)));
1257 }
1258 caller_pc = get_frame_pc (caller_frame);
1259 call_site = call_site_for_pc (gdbarch, caller_pc);
1260
1261 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1262 if (target_addr != func_addr)
1263 {
1264 struct minimal_symbol *target_msym, *func_msym;
1265
1266 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1267 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1268 throw_error (NO_ENTRY_VALUE_ERROR,
1269 _("DW_OP_entry_value resolving expects callee %s at %s "
1270 "but the called frame is for %s at %s"),
1271 (target_msym == NULL ? "???"
1272 : MSYMBOL_PRINT_NAME (target_msym)),
1273 paddress (gdbarch, target_addr),
1274 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1275 paddress (gdbarch, func_addr));
1276 }
1277
1278 /* No entry value based parameters would be reliable if this function can
1279 call itself via tail calls. */
1280 func_verify_no_selftailcall (gdbarch, func_addr);
1281
1282 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1283 {
1284 parameter = &call_site->parameter[iparams];
1285 if (call_site_parameter_matches (parameter, kind, kind_u))
1286 break;
1287 }
1288 if (iparams == call_site->parameter_count)
1289 {
1290 struct minimal_symbol *msym
1291 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1292
1293 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1294 determine its value. */
1295 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1296 "at DW_TAG_call_site %s at %s"),
1297 paddress (gdbarch, caller_pc),
1298 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1299 }
1300
1301 *per_cu_return = call_site->per_cu;
1302 return parameter;
1303 }
1304
1305 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1306 the normal DW_AT_call_value block. Otherwise return the
1307 DW_AT_call_data_value (dereferenced) block.
1308
1309 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1310 struct value.
1311
1312 Function always returns non-NULL, non-optimized out value. It throws
1313 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1314
1315 static struct value *
1316 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1317 CORE_ADDR deref_size, struct type *type,
1318 struct frame_info *caller_frame,
1319 struct dwarf2_per_cu_data *per_cu)
1320 {
1321 const gdb_byte *data_src;
1322 gdb_byte *data;
1323 size_t size;
1324
1325 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1326 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1327
1328 /* DEREF_SIZE size is not verified here. */
1329 if (data_src == NULL)
1330 throw_error (NO_ENTRY_VALUE_ERROR,
1331 _("Cannot resolve DW_AT_call_data_value"));
1332
1333 /* DW_AT_call_value is a DWARF expression, not a DWARF
1334 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1335 DWARF block. */
1336 data = (gdb_byte *) alloca (size + 1);
1337 memcpy (data, data_src, size);
1338 data[size] = DW_OP_stack_value;
1339
1340 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1341 }
1342
1343 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1344 the indirect method on it, that is use its stored target value, the sole
1345 purpose of entry_data_value_funcs.. */
1346
1347 static struct value *
1348 entry_data_value_coerce_ref (const struct value *value)
1349 {
1350 struct type *checked_type = check_typedef (value_type (value));
1351 struct value *target_val;
1352
1353 if (!TYPE_IS_REFERENCE (checked_type))
1354 return NULL;
1355
1356 target_val = (struct value *) value_computed_closure (value);
1357 value_incref (target_val);
1358 return target_val;
1359 }
1360
1361 /* Implement copy_closure. */
1362
1363 static void *
1364 entry_data_value_copy_closure (const struct value *v)
1365 {
1366 struct value *target_val = (struct value *) value_computed_closure (v);
1367
1368 value_incref (target_val);
1369 return target_val;
1370 }
1371
1372 /* Implement free_closure. */
1373
1374 static void
1375 entry_data_value_free_closure (struct value *v)
1376 {
1377 struct value *target_val = (struct value *) value_computed_closure (v);
1378
1379 value_free (target_val);
1380 }
1381
1382 /* Vector for methods for an entry value reference where the referenced value
1383 is stored in the caller. On the first dereference use
1384 DW_AT_call_data_value in the caller. */
1385
1386 static const struct lval_funcs entry_data_value_funcs =
1387 {
1388 NULL, /* read */
1389 NULL, /* write */
1390 NULL, /* indirect */
1391 entry_data_value_coerce_ref,
1392 NULL, /* check_synthetic_pointer */
1393 entry_data_value_copy_closure,
1394 entry_data_value_free_closure
1395 };
1396
1397 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1398 are used to match DW_AT_location at the caller's
1399 DW_TAG_call_site_parameter.
1400
1401 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1402 cannot resolve the parameter for any reason. */
1403
1404 static struct value *
1405 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1406 enum call_site_parameter_kind kind,
1407 union call_site_parameter_u kind_u)
1408 {
1409 struct type *checked_type = check_typedef (type);
1410 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1411 struct frame_info *caller_frame = get_prev_frame (frame);
1412 struct value *outer_val, *target_val, *val;
1413 struct call_site_parameter *parameter;
1414 struct dwarf2_per_cu_data *caller_per_cu;
1415
1416 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1417 &caller_per_cu);
1418
1419 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1420 type, caller_frame,
1421 caller_per_cu);
1422
1423 /* Check if DW_AT_call_data_value cannot be used. If it should be
1424 used and it is not available do not fall back to OUTER_VAL - dereferencing
1425 TYPE_CODE_REF with non-entry data value would give current value - not the
1426 entry value. */
1427
1428 if (!TYPE_IS_REFERENCE (checked_type)
1429 || TYPE_TARGET_TYPE (checked_type) == NULL)
1430 return outer_val;
1431
1432 target_val = dwarf_entry_parameter_to_value (parameter,
1433 TYPE_LENGTH (target_type),
1434 target_type, caller_frame,
1435 caller_per_cu);
1436
1437 release_value (target_val);
1438 val = allocate_computed_value (type, &entry_data_value_funcs,
1439 target_val /* closure */);
1440
1441 /* Copy the referencing pointer to the new computed value. */
1442 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1443 TYPE_LENGTH (checked_type));
1444 set_value_lazy (val, 0);
1445
1446 return val;
1447 }
1448
1449 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1450 SIZE are DWARF block used to match DW_AT_location at the caller's
1451 DW_TAG_call_site_parameter.
1452
1453 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1454 cannot resolve the parameter for any reason. */
1455
1456 static struct value *
1457 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1458 const gdb_byte *block, size_t block_len)
1459 {
1460 union call_site_parameter_u kind_u;
1461
1462 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1463 if (kind_u.dwarf_reg != -1)
1464 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1465 kind_u);
1466
1467 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1468 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1469 kind_u);
1470
1471 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1472 suppressed during normal operation. The expression can be arbitrary if
1473 there is no caller-callee entry value binding expected. */
1474 throw_error (NO_ENTRY_VALUE_ERROR,
1475 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1476 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1477 }
1478
1479 struct piece_closure
1480 {
1481 /* Reference count. */
1482 int refc = 0;
1483
1484 /* The CU from which this closure's expression came. */
1485 struct dwarf2_per_cu_data *per_cu = NULL;
1486
1487 /* The pieces describing this variable. */
1488 std::vector<dwarf_expr_piece> pieces;
1489
1490 /* Frame ID of frame to which a register value is relative, used
1491 only by DWARF_VALUE_REGISTER. */
1492 struct frame_id frame_id;
1493 };
1494
1495 /* Allocate a closure for a value formed from separately-described
1496 PIECES. */
1497
1498 static struct piece_closure *
1499 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1500 std::vector<dwarf_expr_piece> &&pieces,
1501 struct frame_info *frame)
1502 {
1503 struct piece_closure *c = new piece_closure;
1504 int i;
1505
1506 c->refc = 1;
1507 c->per_cu = per_cu;
1508 c->pieces = std::move (pieces);
1509 if (frame == NULL)
1510 c->frame_id = null_frame_id;
1511 else
1512 c->frame_id = get_frame_id (frame);
1513
1514 for (dwarf_expr_piece &piece : c->pieces)
1515 if (piece.location == DWARF_VALUE_STACK)
1516 value_incref (piece.v.value);
1517
1518 return c;
1519 }
1520
1521 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1522 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1523 Source and destination buffers must not overlap. */
1524
1525 static void
1526 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1527 const gdb_byte *source, ULONGEST source_offset,
1528 ULONGEST nbits, int bits_big_endian)
1529 {
1530 unsigned int buf, avail;
1531
1532 if (nbits == 0)
1533 return;
1534
1535 if (bits_big_endian)
1536 {
1537 /* Start from the end, then work backwards. */
1538 dest_offset += nbits - 1;
1539 dest += dest_offset / 8;
1540 dest_offset = 7 - dest_offset % 8;
1541 source_offset += nbits - 1;
1542 source += source_offset / 8;
1543 source_offset = 7 - source_offset % 8;
1544 }
1545 else
1546 {
1547 dest += dest_offset / 8;
1548 dest_offset %= 8;
1549 source += source_offset / 8;
1550 source_offset %= 8;
1551 }
1552
1553 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1554 SOURCE_OFFSET bits from the source. */
1555 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1556 buf <<= dest_offset;
1557 buf |= *dest & ((1 << dest_offset) - 1);
1558
1559 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1560 nbits += dest_offset;
1561 avail = dest_offset + 8 - source_offset;
1562
1563 /* Flush 8 bits from BUF, if appropriate. */
1564 if (nbits >= 8 && avail >= 8)
1565 {
1566 *(bits_big_endian ? dest-- : dest++) = buf;
1567 buf >>= 8;
1568 avail -= 8;
1569 nbits -= 8;
1570 }
1571
1572 /* Copy the middle part. */
1573 if (nbits >= 8)
1574 {
1575 size_t len = nbits / 8;
1576
1577 /* Use a faster method for byte-aligned copies. */
1578 if (avail == 0)
1579 {
1580 if (bits_big_endian)
1581 {
1582 dest -= len;
1583 source -= len;
1584 memcpy (dest + 1, source + 1, len);
1585 }
1586 else
1587 {
1588 memcpy (dest, source, len);
1589 dest += len;
1590 source += len;
1591 }
1592 }
1593 else
1594 {
1595 while (len--)
1596 {
1597 buf |= *(bits_big_endian ? source-- : source++) << avail;
1598 *(bits_big_endian ? dest-- : dest++) = buf;
1599 buf >>= 8;
1600 }
1601 }
1602 nbits %= 8;
1603 }
1604
1605 /* Write the last byte. */
1606 if (nbits)
1607 {
1608 if (avail < nbits)
1609 buf |= *source << avail;
1610
1611 buf &= (1 << nbits) - 1;
1612 *dest = (*dest & (~0 << nbits)) | buf;
1613 }
1614 }
1615
1616 #if GDB_SELF_TEST
1617
1618 namespace selftests {
1619
1620 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1621 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1622 specifies whether to assume big endian bit numbering. Store the
1623 resulting (not null-terminated) string at STR. */
1624
1625 static void
1626 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1627 ULONGEST nbits, int msb0)
1628 {
1629 unsigned int j;
1630 size_t i;
1631
1632 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1633 {
1634 unsigned int ch = bits[i];
1635 for (; j < 8 && nbits; j++, nbits--)
1636 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1637 }
1638 }
1639
1640 /* Check one invocation of copy_bitwise with the given parameters. */
1641
1642 static void
1643 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1644 const gdb_byte *source, unsigned int source_offset,
1645 unsigned int nbits, int msb0)
1646 {
1647 size_t len = align_up (dest_offset + nbits, 8);
1648 char *expected = (char *) alloca (len + 1);
1649 char *actual = (char *) alloca (len + 1);
1650 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1651
1652 /* Compose a '0'/'1'-string that represents the expected result of
1653 copy_bitwise below:
1654 Bits from [0, DEST_OFFSET) are filled from DEST.
1655 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1656 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1657
1658 E.g., with:
1659 dest_offset: 4
1660 nbits: 2
1661 len: 8
1662 dest: 00000000
1663 source: 11111111
1664
1665 We should end up with:
1666 buf: 00001100
1667 DDDDSSDD (D=dest, S=source)
1668 */
1669 bits_to_str (expected, dest, 0, len, msb0);
1670 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1671
1672 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1673 result to a '0'/'1'-string. */
1674 memcpy (buf, dest, len / 8);
1675 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1676 bits_to_str (actual, buf, 0, len, msb0);
1677
1678 /* Compare the resulting strings. */
1679 expected[len] = actual[len] = '\0';
1680 if (strcmp (expected, actual) != 0)
1681 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1682 expected, actual, source_offset, nbits, dest_offset);
1683 }
1684
1685 /* Unit test for copy_bitwise. */
1686
1687 static void
1688 copy_bitwise_tests (void)
1689 {
1690 /* Data to be used as both source and destination buffers. The two
1691 arrays below represent the lsb0- and msb0- encoded versions of the
1692 following bit string, respectively:
1693 00000000 00011111 11111111 01001000 10100101 11110010
1694 This pattern is chosen such that it contains:
1695 - constant 0- and 1- chunks of more than a full byte;
1696 - 0/1- and 1/0 transitions on all bit positions within a byte;
1697 - several sufficiently asymmetric bytes.
1698 */
1699 static const gdb_byte data_lsb0[] = {
1700 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1701 };
1702 static const gdb_byte data_msb0[] = {
1703 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1704 };
1705
1706 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1707 constexpr unsigned max_nbits = 24;
1708
1709 /* Try all combinations of:
1710 lsb0/msb0 bit order (using the respective data array)
1711 X [0, MAX_NBITS] copy bit width
1712 X feasible source offsets for the given copy bit width
1713 X feasible destination offsets
1714 */
1715 for (int msb0 = 0; msb0 < 2; msb0++)
1716 {
1717 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1718
1719 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1720 {
1721 const unsigned int max_offset = data_nbits - nbits;
1722
1723 for (unsigned source_offset = 0;
1724 source_offset <= max_offset;
1725 source_offset++)
1726 {
1727 for (unsigned dest_offset = 0;
1728 dest_offset <= max_offset;
1729 dest_offset++)
1730 {
1731 check_copy_bitwise (data + dest_offset / 8,
1732 dest_offset % 8,
1733 data + source_offset / 8,
1734 source_offset % 8,
1735 nbits, msb0);
1736 }
1737 }
1738 }
1739
1740 /* Special cases: copy all, copy nothing. */
1741 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1742 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1743 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1744 }
1745 }
1746
1747 } /* namespace selftests */
1748
1749 #endif /* GDB_SELF_TEST */
1750
1751 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1752 bits whose first bit is located at bit offset START. */
1753
1754 static size_t
1755 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1756 {
1757 return (start % 8 + n_bits + 7) / 8;
1758 }
1759
1760 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1761 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1762 operate in "read mode": fetch the contents of the (lazy) value V by
1763 composing it from its pieces. */
1764
1765 static void
1766 rw_pieced_value (struct value *v, struct value *from)
1767 {
1768 int i;
1769 LONGEST offset = 0, max_offset;
1770 ULONGEST bits_to_skip;
1771 gdb_byte *v_contents;
1772 const gdb_byte *from_contents;
1773 struct piece_closure *c
1774 = (struct piece_closure *) value_computed_closure (v);
1775 gdb::byte_vector buffer;
1776 int bits_big_endian
1777 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1778
1779 if (from != NULL)
1780 {
1781 from_contents = value_contents (from);
1782 v_contents = NULL;
1783 }
1784 else
1785 {
1786 if (value_type (v) != value_enclosing_type (v))
1787 internal_error (__FILE__, __LINE__,
1788 _("Should not be able to create a lazy value with "
1789 "an enclosing type"));
1790 v_contents = value_contents_raw (v);
1791 from_contents = NULL;
1792 }
1793
1794 bits_to_skip = 8 * value_offset (v);
1795 if (value_bitsize (v))
1796 {
1797 bits_to_skip += (8 * value_offset (value_parent (v))
1798 + value_bitpos (v));
1799 if (from != NULL
1800 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1801 == BFD_ENDIAN_BIG))
1802 {
1803 /* Use the least significant bits of FROM. */
1804 max_offset = 8 * TYPE_LENGTH (value_type (from));
1805 offset = max_offset - value_bitsize (v);
1806 }
1807 else
1808 max_offset = value_bitsize (v);
1809 }
1810 else
1811 max_offset = 8 * TYPE_LENGTH (value_type (v));
1812
1813 /* Advance to the first non-skipped piece. */
1814 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1815 bits_to_skip -= c->pieces[i].size;
1816
1817 for (; i < c->pieces.size () && offset < max_offset; i++)
1818 {
1819 struct dwarf_expr_piece *p = &c->pieces[i];
1820 size_t this_size_bits, this_size;
1821
1822 this_size_bits = p->size - bits_to_skip;
1823 if (this_size_bits > max_offset - offset)
1824 this_size_bits = max_offset - offset;
1825
1826 switch (p->location)
1827 {
1828 case DWARF_VALUE_REGISTER:
1829 {
1830 struct frame_info *frame = frame_find_by_id (c->frame_id);
1831 struct gdbarch *arch = get_frame_arch (frame);
1832 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1833 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1834 int optim, unavail;
1835
1836 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1837 && p->offset + p->size < reg_bits)
1838 {
1839 /* Big-endian, and we want less than full size. */
1840 bits_to_skip += reg_bits - (p->offset + p->size);
1841 }
1842 else
1843 bits_to_skip += p->offset;
1844
1845 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1846 buffer.resize (this_size);
1847
1848 if (from == NULL)
1849 {
1850 /* Read mode. */
1851 if (!get_frame_register_bytes (frame, gdb_regnum,
1852 bits_to_skip / 8,
1853 this_size, buffer.data (),
1854 &optim, &unavail))
1855 {
1856 if (optim)
1857 mark_value_bits_optimized_out (v, offset,
1858 this_size_bits);
1859 if (unavail)
1860 mark_value_bits_unavailable (v, offset,
1861 this_size_bits);
1862 break;
1863 }
1864
1865 copy_bitwise (v_contents, offset,
1866 buffer.data (), bits_to_skip % 8,
1867 this_size_bits, bits_big_endian);
1868 }
1869 else
1870 {
1871 /* Write mode. */
1872 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1873 {
1874 /* Data is copied non-byte-aligned into the register.
1875 Need some bits from original register value. */
1876 get_frame_register_bytes (frame, gdb_regnum,
1877 bits_to_skip / 8,
1878 this_size, buffer.data (),
1879 &optim, &unavail);
1880 if (optim)
1881 throw_error (OPTIMIZED_OUT_ERROR,
1882 _("Can't do read-modify-write to "
1883 "update bitfield; containing word "
1884 "has been optimized out"));
1885 if (unavail)
1886 throw_error (NOT_AVAILABLE_ERROR,
1887 _("Can't do read-modify-write to "
1888 "update bitfield; containing word "
1889 "is unavailable"));
1890 }
1891
1892 copy_bitwise (buffer.data (), bits_to_skip % 8,
1893 from_contents, offset,
1894 this_size_bits, bits_big_endian);
1895 put_frame_register_bytes (frame, gdb_regnum,
1896 bits_to_skip / 8,
1897 this_size, buffer.data ());
1898 }
1899 }
1900 break;
1901
1902 case DWARF_VALUE_MEMORY:
1903 {
1904 bits_to_skip += p->offset;
1905
1906 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1907
1908 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1909 && offset % 8 == 0)
1910 {
1911 /* Everything is byte-aligned; no buffer needed. */
1912 if (from != NULL)
1913 write_memory_with_notification (start_addr,
1914 (from_contents
1915 + offset / 8),
1916 this_size_bits / 8);
1917 else
1918 read_value_memory (v, offset,
1919 p->v.mem.in_stack_memory,
1920 p->v.mem.addr + bits_to_skip / 8,
1921 v_contents + offset / 8,
1922 this_size_bits / 8);
1923 break;
1924 }
1925
1926 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1927 buffer.resize (this_size);
1928
1929 if (from == NULL)
1930 {
1931 /* Read mode. */
1932 read_value_memory (v, offset,
1933 p->v.mem.in_stack_memory,
1934 p->v.mem.addr + bits_to_skip / 8,
1935 buffer.data (), this_size);
1936 copy_bitwise (v_contents, offset,
1937 buffer.data (), bits_to_skip % 8,
1938 this_size_bits, bits_big_endian);
1939 }
1940 else
1941 {
1942 /* Write mode. */
1943 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1944 {
1945 if (this_size <= 8)
1946 {
1947 /* Perform a single read for small sizes. */
1948 read_memory (start_addr, buffer.data (),
1949 this_size);
1950 }
1951 else
1952 {
1953 /* Only the first and last bytes can possibly have
1954 any bits reused. */
1955 read_memory (start_addr, buffer.data (), 1);
1956 read_memory (start_addr + this_size - 1,
1957 &buffer[this_size - 1], 1);
1958 }
1959 }
1960
1961 copy_bitwise (buffer.data (), bits_to_skip % 8,
1962 from_contents, offset,
1963 this_size_bits, bits_big_endian);
1964 write_memory_with_notification (start_addr,
1965 buffer.data (),
1966 this_size);
1967 }
1968 }
1969 break;
1970
1971 case DWARF_VALUE_STACK:
1972 {
1973 if (from != NULL)
1974 {
1975 mark_value_bits_optimized_out (v, offset, this_size_bits);
1976 break;
1977 }
1978
1979 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1980 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1981 ULONGEST stack_value_size_bits
1982 = 8 * TYPE_LENGTH (value_type (p->v.value));
1983
1984 /* Use zeroes if piece reaches beyond stack value. */
1985 if (p->offset + p->size > stack_value_size_bits)
1986 break;
1987
1988 /* Piece is anchored at least significant bit end. */
1989 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1990 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1991 else
1992 bits_to_skip += p->offset;
1993
1994 copy_bitwise (v_contents, offset,
1995 value_contents_all (p->v.value),
1996 bits_to_skip,
1997 this_size_bits, bits_big_endian);
1998 }
1999 break;
2000
2001 case DWARF_VALUE_LITERAL:
2002 {
2003 if (from != NULL)
2004 {
2005 mark_value_bits_optimized_out (v, offset, this_size_bits);
2006 break;
2007 }
2008
2009 ULONGEST literal_size_bits = 8 * p->v.literal.length;
2010 size_t n = this_size_bits;
2011
2012 /* Cut off at the end of the implicit value. */
2013 bits_to_skip += p->offset;
2014 if (bits_to_skip >= literal_size_bits)
2015 break;
2016 if (n > literal_size_bits - bits_to_skip)
2017 n = literal_size_bits - bits_to_skip;
2018
2019 copy_bitwise (v_contents, offset,
2020 p->v.literal.data, bits_to_skip,
2021 n, bits_big_endian);
2022 }
2023 break;
2024
2025 case DWARF_VALUE_IMPLICIT_POINTER:
2026 if (from != NULL)
2027 {
2028 mark_value_bits_optimized_out (v, offset, this_size_bits);
2029 break;
2030 }
2031
2032 /* These bits show up as zeros -- but do not cause the value to
2033 be considered optimized-out. */
2034 break;
2035
2036 case DWARF_VALUE_OPTIMIZED_OUT:
2037 mark_value_bits_optimized_out (v, offset, this_size_bits);
2038 break;
2039
2040 default:
2041 internal_error (__FILE__, __LINE__, _("invalid location type"));
2042 }
2043
2044 offset += this_size_bits;
2045 bits_to_skip = 0;
2046 }
2047 }
2048
2049
2050 static void
2051 read_pieced_value (struct value *v)
2052 {
2053 rw_pieced_value (v, NULL);
2054 }
2055
2056 static void
2057 write_pieced_value (struct value *to, struct value *from)
2058 {
2059 rw_pieced_value (to, from);
2060 }
2061
2062 /* An implementation of an lval_funcs method to see whether a value is
2063 a synthetic pointer. */
2064
2065 static int
2066 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2067 int bit_length)
2068 {
2069 struct piece_closure *c
2070 = (struct piece_closure *) value_computed_closure (value);
2071 int i;
2072
2073 bit_offset += 8 * value_offset (value);
2074 if (value_bitsize (value))
2075 bit_offset += value_bitpos (value);
2076
2077 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2078 {
2079 struct dwarf_expr_piece *p = &c->pieces[i];
2080 size_t this_size_bits = p->size;
2081
2082 if (bit_offset > 0)
2083 {
2084 if (bit_offset >= this_size_bits)
2085 {
2086 bit_offset -= this_size_bits;
2087 continue;
2088 }
2089
2090 bit_length -= this_size_bits - bit_offset;
2091 bit_offset = 0;
2092 }
2093 else
2094 bit_length -= this_size_bits;
2095
2096 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2097 return 0;
2098 }
2099
2100 return 1;
2101 }
2102
2103 /* A wrapper function for get_frame_address_in_block. */
2104
2105 static CORE_ADDR
2106 get_frame_address_in_block_wrapper (void *baton)
2107 {
2108 return get_frame_address_in_block ((struct frame_info *) baton);
2109 }
2110
2111 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2112
2113 static struct value *
2114 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2115 struct dwarf2_per_cu_data *per_cu,
2116 struct type *type)
2117 {
2118 struct value *result = NULL;
2119 const gdb_byte *bytes;
2120 LONGEST len;
2121
2122 auto_obstack temp_obstack;
2123 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2124
2125 if (bytes != NULL)
2126 {
2127 if (byte_offset >= 0
2128 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2129 {
2130 bytes += byte_offset;
2131 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2132 }
2133 else
2134 invalid_synthetic_pointer ();
2135 }
2136 else
2137 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2138
2139 return result;
2140 }
2141
2142 /* Fetch the value pointed to by a synthetic pointer. */
2143
2144 static struct value *
2145 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2146 struct dwarf2_per_cu_data *per_cu,
2147 struct frame_info *frame, struct type *type)
2148 {
2149 /* Fetch the location expression of the DIE we're pointing to. */
2150 struct dwarf2_locexpr_baton baton
2151 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2152 get_frame_address_in_block_wrapper, frame);
2153
2154 /* Get type of pointed-to DIE. */
2155 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2156 if (orig_type == NULL)
2157 invalid_synthetic_pointer ();
2158
2159 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2160 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2161 or it may've been optimized out. */
2162 if (baton.data != NULL)
2163 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2164 baton.size, baton.per_cu,
2165 TYPE_TARGET_TYPE (type),
2166 byte_offset);
2167 else
2168 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2169 type);
2170 }
2171
2172 /* An implementation of an lval_funcs method to indirect through a
2173 pointer. This handles the synthetic pointer case when needed. */
2174
2175 static struct value *
2176 indirect_pieced_value (struct value *value)
2177 {
2178 struct piece_closure *c
2179 = (struct piece_closure *) value_computed_closure (value);
2180 struct type *type;
2181 struct frame_info *frame;
2182 struct dwarf2_locexpr_baton baton;
2183 int i, bit_length;
2184 LONGEST bit_offset;
2185 struct dwarf_expr_piece *piece = NULL;
2186 LONGEST byte_offset;
2187 enum bfd_endian byte_order;
2188
2189 type = check_typedef (value_type (value));
2190 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2191 return NULL;
2192
2193 bit_length = 8 * TYPE_LENGTH (type);
2194 bit_offset = 8 * value_offset (value);
2195 if (value_bitsize (value))
2196 bit_offset += value_bitpos (value);
2197
2198 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2199 {
2200 struct dwarf_expr_piece *p = &c->pieces[i];
2201 size_t this_size_bits = p->size;
2202
2203 if (bit_offset > 0)
2204 {
2205 if (bit_offset >= this_size_bits)
2206 {
2207 bit_offset -= this_size_bits;
2208 continue;
2209 }
2210
2211 bit_length -= this_size_bits - bit_offset;
2212 bit_offset = 0;
2213 }
2214 else
2215 bit_length -= this_size_bits;
2216
2217 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2218 return NULL;
2219
2220 if (bit_length != 0)
2221 error (_("Invalid use of DW_OP_implicit_pointer"));
2222
2223 piece = p;
2224 break;
2225 }
2226
2227 gdb_assert (piece != NULL);
2228 frame = get_selected_frame (_("No frame selected."));
2229
2230 /* This is an offset requested by GDB, such as value subscripts.
2231 However, due to how synthetic pointers are implemented, this is
2232 always presented to us as a pointer type. This means we have to
2233 sign-extend it manually as appropriate. Use raw
2234 extract_signed_integer directly rather than value_as_address and
2235 sign extend afterwards on architectures that would need it
2236 (mostly everywhere except MIPS, which has signed addresses) as
2237 the later would go through gdbarch_pointer_to_address and thus
2238 return a CORE_ADDR with high bits set on architectures that
2239 encode address spaces and other things in CORE_ADDR. */
2240 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2241 byte_offset = extract_signed_integer (value_contents (value),
2242 TYPE_LENGTH (type), byte_order);
2243 byte_offset += piece->v.ptr.offset;
2244
2245 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2246 byte_offset, c->per_cu,
2247 frame, type);
2248 }
2249
2250 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2251 references. */
2252
2253 static struct value *
2254 coerce_pieced_ref (const struct value *value)
2255 {
2256 struct type *type = check_typedef (value_type (value));
2257
2258 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2259 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2260 {
2261 const struct piece_closure *closure
2262 = (struct piece_closure *) value_computed_closure (value);
2263 struct frame_info *frame
2264 = get_selected_frame (_("No frame selected."));
2265
2266 /* gdb represents synthetic pointers as pieced values with a single
2267 piece. */
2268 gdb_assert (closure != NULL);
2269 gdb_assert (closure->pieces.size () == 1);
2270
2271 return indirect_synthetic_pointer
2272 (closure->pieces[0].v.ptr.die_sect_off,
2273 closure->pieces[0].v.ptr.offset,
2274 closure->per_cu, frame, type);
2275 }
2276 else
2277 {
2278 /* Else: not a synthetic reference; do nothing. */
2279 return NULL;
2280 }
2281 }
2282
2283 static void *
2284 copy_pieced_value_closure (const struct value *v)
2285 {
2286 struct piece_closure *c
2287 = (struct piece_closure *) value_computed_closure (v);
2288
2289 ++c->refc;
2290 return c;
2291 }
2292
2293 static void
2294 free_pieced_value_closure (struct value *v)
2295 {
2296 struct piece_closure *c
2297 = (struct piece_closure *) value_computed_closure (v);
2298
2299 --c->refc;
2300 if (c->refc == 0)
2301 {
2302 for (dwarf_expr_piece &p : c->pieces)
2303 if (p.location == DWARF_VALUE_STACK)
2304 value_free (p.v.value);
2305
2306 delete c;
2307 }
2308 }
2309
2310 /* Functions for accessing a variable described by DW_OP_piece. */
2311 static const struct lval_funcs pieced_value_funcs = {
2312 read_pieced_value,
2313 write_pieced_value,
2314 indirect_pieced_value,
2315 coerce_pieced_ref,
2316 check_pieced_synthetic_pointer,
2317 copy_pieced_value_closure,
2318 free_pieced_value_closure
2319 };
2320
2321 /* Evaluate a location description, starting at DATA and with length
2322 SIZE, to find the current location of variable of TYPE in the
2323 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2324 location of the subobject of type SUBOBJ_TYPE at byte offset
2325 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2326
2327 static struct value *
2328 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2329 const gdb_byte *data, size_t size,
2330 struct dwarf2_per_cu_data *per_cu,
2331 struct type *subobj_type,
2332 LONGEST subobj_byte_offset)
2333 {
2334 struct value *retval;
2335 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2336
2337 if (subobj_type == NULL)
2338 {
2339 subobj_type = type;
2340 subobj_byte_offset = 0;
2341 }
2342 else if (subobj_byte_offset < 0)
2343 invalid_synthetic_pointer ();
2344
2345 if (size == 0)
2346 return allocate_optimized_out_value (subobj_type);
2347
2348 dwarf_evaluate_loc_desc ctx;
2349 ctx.frame = frame;
2350 ctx.per_cu = per_cu;
2351 ctx.obj_address = 0;
2352
2353 scoped_value_mark free_values;
2354
2355 ctx.gdbarch = get_objfile_arch (objfile);
2356 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2357 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2358 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2359
2360 TRY
2361 {
2362 ctx.eval (data, size);
2363 }
2364 CATCH (ex, RETURN_MASK_ERROR)
2365 {
2366 if (ex.error == NOT_AVAILABLE_ERROR)
2367 {
2368 free_values.free_to_mark ();
2369 retval = allocate_value (subobj_type);
2370 mark_value_bytes_unavailable (retval, 0,
2371 TYPE_LENGTH (subobj_type));
2372 return retval;
2373 }
2374 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2375 {
2376 if (entry_values_debug)
2377 exception_print (gdb_stdout, ex);
2378 free_values.free_to_mark ();
2379 return allocate_optimized_out_value (subobj_type);
2380 }
2381 else
2382 throw_exception (ex);
2383 }
2384 END_CATCH
2385
2386 if (ctx.pieces.size () > 0)
2387 {
2388 struct piece_closure *c;
2389 ULONGEST bit_size = 0;
2390 int i;
2391
2392 for (dwarf_expr_piece &piece : ctx.pieces)
2393 bit_size += piece.size;
2394 /* Complain if the expression is larger than the size of the
2395 outer type. */
2396 if (bit_size > 8 * TYPE_LENGTH (type))
2397 invalid_synthetic_pointer ();
2398
2399 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2400 /* We must clean up the value chain after creating the piece
2401 closure but before allocating the result. */
2402 free_values.free_to_mark ();
2403 retval = allocate_computed_value (subobj_type,
2404 &pieced_value_funcs, c);
2405 set_value_offset (retval, subobj_byte_offset);
2406 }
2407 else
2408 {
2409 switch (ctx.location)
2410 {
2411 case DWARF_VALUE_REGISTER:
2412 {
2413 struct gdbarch *arch = get_frame_arch (frame);
2414 int dwarf_regnum
2415 = longest_to_int (value_as_long (ctx.fetch (0)));
2416 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2417
2418 if (subobj_byte_offset != 0)
2419 error (_("cannot use offset on synthetic pointer to register"));
2420 free_values.free_to_mark ();
2421 retval = value_from_register (subobj_type, gdb_regnum, frame);
2422 if (value_optimized_out (retval))
2423 {
2424 struct value *tmp;
2425
2426 /* This means the register has undefined value / was
2427 not saved. As we're computing the location of some
2428 variable etc. in the program, not a value for
2429 inspecting a register ($pc, $sp, etc.), return a
2430 generic optimized out value instead, so that we show
2431 <optimized out> instead of <not saved>. */
2432 tmp = allocate_value (subobj_type);
2433 value_contents_copy (tmp, 0, retval, 0,
2434 TYPE_LENGTH (subobj_type));
2435 retval = tmp;
2436 }
2437 }
2438 break;
2439
2440 case DWARF_VALUE_MEMORY:
2441 {
2442 struct type *ptr_type;
2443 CORE_ADDR address = ctx.fetch_address (0);
2444 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2445
2446 /* DW_OP_deref_size (and possibly other operations too) may
2447 create a pointer instead of an address. Ideally, the
2448 pointer to address conversion would be performed as part
2449 of those operations, but the type of the object to
2450 which the address refers is not known at the time of
2451 the operation. Therefore, we do the conversion here
2452 since the type is readily available. */
2453
2454 switch (TYPE_CODE (subobj_type))
2455 {
2456 case TYPE_CODE_FUNC:
2457 case TYPE_CODE_METHOD:
2458 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2459 break;
2460 default:
2461 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2462 break;
2463 }
2464 address = value_as_address (value_from_pointer (ptr_type, address));
2465
2466 free_values.free_to_mark ();
2467 retval = value_at_lazy (subobj_type,
2468 address + subobj_byte_offset);
2469 if (in_stack_memory)
2470 set_value_stack (retval, 1);
2471 }
2472 break;
2473
2474 case DWARF_VALUE_STACK:
2475 {
2476 struct value *value = ctx.fetch (0);
2477 size_t n = TYPE_LENGTH (value_type (value));
2478 size_t len = TYPE_LENGTH (subobj_type);
2479 size_t max = TYPE_LENGTH (type);
2480 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2481 struct cleanup *cleanup;
2482
2483 if (subobj_byte_offset + len > max)
2484 invalid_synthetic_pointer ();
2485
2486 /* Preserve VALUE because we are going to free values back
2487 to the mark, but we still need the value contents
2488 below. */
2489 value_incref (value);
2490 free_values.free_to_mark ();
2491 cleanup = make_cleanup_value_free (value);
2492
2493 retval = allocate_value (subobj_type);
2494
2495 /* The given offset is relative to the actual object. */
2496 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2497 subobj_byte_offset += n - max;
2498
2499 memcpy (value_contents_raw (retval),
2500 value_contents_all (value) + subobj_byte_offset, len);
2501
2502 do_cleanups (cleanup);
2503 }
2504 break;
2505
2506 case DWARF_VALUE_LITERAL:
2507 {
2508 bfd_byte *contents;
2509 size_t n = TYPE_LENGTH (subobj_type);
2510
2511 if (subobj_byte_offset + n > ctx.len)
2512 invalid_synthetic_pointer ();
2513
2514 free_values.free_to_mark ();
2515 retval = allocate_value (subobj_type);
2516 contents = value_contents_raw (retval);
2517 memcpy (contents, ctx.data + subobj_byte_offset, n);
2518 }
2519 break;
2520
2521 case DWARF_VALUE_OPTIMIZED_OUT:
2522 free_values.free_to_mark ();
2523 retval = allocate_optimized_out_value (subobj_type);
2524 break;
2525
2526 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2527 operation by execute_stack_op. */
2528 case DWARF_VALUE_IMPLICIT_POINTER:
2529 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2530 it can only be encountered when making a piece. */
2531 default:
2532 internal_error (__FILE__, __LINE__, _("invalid location type"));
2533 }
2534 }
2535
2536 set_value_initialized (retval, ctx.initialized);
2537
2538 return retval;
2539 }
2540
2541 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2542 passes 0 as the byte_offset. */
2543
2544 struct value *
2545 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2546 const gdb_byte *data, size_t size,
2547 struct dwarf2_per_cu_data *per_cu)
2548 {
2549 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2550 NULL, 0);
2551 }
2552
2553 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2554 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2555 frame in which the expression is evaluated. ADDR is a context (location of
2556 a variable) and might be needed to evaluate the location expression.
2557 Returns 1 on success, 0 otherwise. */
2558
2559 static int
2560 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2561 struct frame_info *frame,
2562 CORE_ADDR addr,
2563 CORE_ADDR *valp)
2564 {
2565 struct objfile *objfile;
2566
2567 if (dlbaton == NULL || dlbaton->size == 0)
2568 return 0;
2569
2570 dwarf_evaluate_loc_desc ctx;
2571
2572 ctx.frame = frame;
2573 ctx.per_cu = dlbaton->per_cu;
2574 ctx.obj_address = addr;
2575
2576 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2577
2578 ctx.gdbarch = get_objfile_arch (objfile);
2579 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2580 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2581 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2582
2583 ctx.eval (dlbaton->data, dlbaton->size);
2584
2585 switch (ctx.location)
2586 {
2587 case DWARF_VALUE_REGISTER:
2588 case DWARF_VALUE_MEMORY:
2589 case DWARF_VALUE_STACK:
2590 *valp = ctx.fetch_address (0);
2591 if (ctx.location == DWARF_VALUE_REGISTER)
2592 *valp = ctx.read_addr_from_reg (*valp);
2593 return 1;
2594 case DWARF_VALUE_LITERAL:
2595 *valp = extract_signed_integer (ctx.data, ctx.len,
2596 gdbarch_byte_order (ctx.gdbarch));
2597 return 1;
2598 /* Unsupported dwarf values. */
2599 case DWARF_VALUE_OPTIMIZED_OUT:
2600 case DWARF_VALUE_IMPLICIT_POINTER:
2601 break;
2602 }
2603
2604 return 0;
2605 }
2606
2607 /* See dwarf2loc.h. */
2608
2609 int
2610 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2611 struct frame_info *frame,
2612 struct property_addr_info *addr_stack,
2613 CORE_ADDR *value)
2614 {
2615 if (prop == NULL)
2616 return 0;
2617
2618 if (frame == NULL && has_stack_frames ())
2619 frame = get_selected_frame (NULL);
2620
2621 switch (prop->kind)
2622 {
2623 case PROP_LOCEXPR:
2624 {
2625 const struct dwarf2_property_baton *baton
2626 = (const struct dwarf2_property_baton *) prop->data.baton;
2627
2628 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2629 addr_stack ? addr_stack->addr : 0,
2630 value))
2631 {
2632 if (baton->referenced_type)
2633 {
2634 struct value *val = value_at (baton->referenced_type, *value);
2635
2636 *value = value_as_address (val);
2637 }
2638 return 1;
2639 }
2640 }
2641 break;
2642
2643 case PROP_LOCLIST:
2644 {
2645 struct dwarf2_property_baton *baton
2646 = (struct dwarf2_property_baton *) prop->data.baton;
2647 CORE_ADDR pc = get_frame_address_in_block (frame);
2648 const gdb_byte *data;
2649 struct value *val;
2650 size_t size;
2651
2652 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2653 if (data != NULL)
2654 {
2655 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2656 size, baton->loclist.per_cu);
2657 if (!value_optimized_out (val))
2658 {
2659 *value = value_as_address (val);
2660 return 1;
2661 }
2662 }
2663 }
2664 break;
2665
2666 case PROP_CONST:
2667 *value = prop->data.const_val;
2668 return 1;
2669
2670 case PROP_ADDR_OFFSET:
2671 {
2672 struct dwarf2_property_baton *baton
2673 = (struct dwarf2_property_baton *) prop->data.baton;
2674 struct property_addr_info *pinfo;
2675 struct value *val;
2676
2677 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2678 if (pinfo->type == baton->referenced_type)
2679 break;
2680 if (pinfo == NULL)
2681 error (_("cannot find reference address for offset property"));
2682 if (pinfo->valaddr != NULL)
2683 val = value_from_contents
2684 (baton->offset_info.type,
2685 pinfo->valaddr + baton->offset_info.offset);
2686 else
2687 val = value_at (baton->offset_info.type,
2688 pinfo->addr + baton->offset_info.offset);
2689 *value = value_as_address (val);
2690 return 1;
2691 }
2692 }
2693
2694 return 0;
2695 }
2696
2697 /* See dwarf2loc.h. */
2698
2699 void
2700 dwarf2_compile_property_to_c (string_file &stream,
2701 const char *result_name,
2702 struct gdbarch *gdbarch,
2703 unsigned char *registers_used,
2704 const struct dynamic_prop *prop,
2705 CORE_ADDR pc,
2706 struct symbol *sym)
2707 {
2708 struct dwarf2_property_baton *baton
2709 = (struct dwarf2_property_baton *) prop->data.baton;
2710 const gdb_byte *data;
2711 size_t size;
2712 struct dwarf2_per_cu_data *per_cu;
2713
2714 if (prop->kind == PROP_LOCEXPR)
2715 {
2716 data = baton->locexpr.data;
2717 size = baton->locexpr.size;
2718 per_cu = baton->locexpr.per_cu;
2719 }
2720 else
2721 {
2722 gdb_assert (prop->kind == PROP_LOCLIST);
2723
2724 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2725 per_cu = baton->loclist.per_cu;
2726 }
2727
2728 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2729 gdbarch, registers_used,
2730 dwarf2_per_cu_addr_size (per_cu),
2731 data, data + size, per_cu);
2732 }
2733
2734 \f
2735 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2736
2737 class symbol_needs_eval_context : public dwarf_expr_context
2738 {
2739 public:
2740
2741 enum symbol_needs_kind needs;
2742 struct dwarf2_per_cu_data *per_cu;
2743
2744 /* Reads from registers do require a frame. */
2745 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2746 {
2747 needs = SYMBOL_NEEDS_FRAME;
2748 return 1;
2749 }
2750
2751 /* "get_reg_value" callback: Reads from registers do require a
2752 frame. */
2753
2754 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2755 {
2756 needs = SYMBOL_NEEDS_FRAME;
2757 return value_zero (type, not_lval);
2758 }
2759
2760 /* Reads from memory do not require a frame. */
2761 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2762 {
2763 memset (buf, 0, len);
2764 }
2765
2766 /* Frame-relative accesses do require a frame. */
2767 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2768 {
2769 static gdb_byte lit0 = DW_OP_lit0;
2770
2771 *start = &lit0;
2772 *length = 1;
2773
2774 needs = SYMBOL_NEEDS_FRAME;
2775 }
2776
2777 /* CFA accesses require a frame. */
2778 CORE_ADDR get_frame_cfa () OVERRIDE
2779 {
2780 needs = SYMBOL_NEEDS_FRAME;
2781 return 1;
2782 }
2783
2784 CORE_ADDR get_frame_pc () OVERRIDE
2785 {
2786 needs = SYMBOL_NEEDS_FRAME;
2787 return 1;
2788 }
2789
2790 /* Thread-local accesses require registers, but not a frame. */
2791 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2792 {
2793 if (needs <= SYMBOL_NEEDS_REGISTERS)
2794 needs = SYMBOL_NEEDS_REGISTERS;
2795 return 1;
2796 }
2797
2798 /* Helper interface of per_cu_dwarf_call for
2799 dwarf2_loc_desc_get_symbol_read_needs. */
2800
2801 void dwarf_call (cu_offset die_offset) OVERRIDE
2802 {
2803 per_cu_dwarf_call (this, die_offset, per_cu);
2804 }
2805
2806 /* DW_OP_entry_value accesses require a caller, therefore a
2807 frame. */
2808
2809 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2810 union call_site_parameter_u kind_u,
2811 int deref_size) OVERRIDE
2812 {
2813 needs = SYMBOL_NEEDS_FRAME;
2814
2815 /* The expression may require some stub values on DWARF stack. */
2816 push_address (0, 0);
2817 }
2818
2819 /* DW_OP_GNU_addr_index doesn't require a frame. */
2820
2821 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2822 {
2823 /* Nothing to do. */
2824 return 1;
2825 }
2826
2827 /* DW_OP_push_object_address has a frame already passed through. */
2828
2829 CORE_ADDR get_object_address () OVERRIDE
2830 {
2831 /* Nothing to do. */
2832 return 1;
2833 }
2834 };
2835
2836 /* Compute the correct symbol_needs_kind value for the location
2837 expression at DATA (length SIZE). */
2838
2839 static enum symbol_needs_kind
2840 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2841 struct dwarf2_per_cu_data *per_cu)
2842 {
2843 int in_reg;
2844 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2845
2846 scoped_value_mark free_values;
2847
2848 symbol_needs_eval_context ctx;
2849
2850 ctx.needs = SYMBOL_NEEDS_NONE;
2851 ctx.per_cu = per_cu;
2852 ctx.gdbarch = get_objfile_arch (objfile);
2853 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2854 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2855 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2856
2857 ctx.eval (data, size);
2858
2859 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2860
2861 /* If the location has several pieces, and any of them are in
2862 registers, then we will need a frame to fetch them from. */
2863 for (dwarf_expr_piece &p : ctx.pieces)
2864 if (p.location == DWARF_VALUE_REGISTER)
2865 in_reg = 1;
2866
2867 if (in_reg)
2868 ctx.needs = SYMBOL_NEEDS_FRAME;
2869 return ctx.needs;
2870 }
2871
2872 /* A helper function that throws an unimplemented error mentioning a
2873 given DWARF operator. */
2874
2875 static void
2876 unimplemented (unsigned int op)
2877 {
2878 const char *name = get_DW_OP_name (op);
2879
2880 if (name)
2881 error (_("DWARF operator %s cannot be translated to an agent expression"),
2882 name);
2883 else
2884 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2885 "to an agent expression"),
2886 op);
2887 }
2888
2889 /* See dwarf2loc.h.
2890
2891 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2892 can issue a complaint, which is better than having every target's
2893 implementation of dwarf2_reg_to_regnum do it. */
2894
2895 int
2896 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2897 {
2898 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2899
2900 if (reg == -1)
2901 {
2902 complaint (&symfile_complaints,
2903 _("bad DWARF register number %d"), dwarf_reg);
2904 }
2905 return reg;
2906 }
2907
2908 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2909 Throw an error because DWARF_REG is bad. */
2910
2911 static void
2912 throw_bad_regnum_error (ULONGEST dwarf_reg)
2913 {
2914 /* Still want to print -1 as "-1".
2915 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2916 but that's overkill for now. */
2917 if ((int) dwarf_reg == dwarf_reg)
2918 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2919 error (_("Unable to access DWARF register number %s"),
2920 pulongest (dwarf_reg));
2921 }
2922
2923 /* See dwarf2loc.h. */
2924
2925 int
2926 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2927 {
2928 int reg;
2929
2930 if (dwarf_reg > INT_MAX)
2931 throw_bad_regnum_error (dwarf_reg);
2932 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2933 bad, but that's ok. */
2934 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2935 if (reg == -1)
2936 throw_bad_regnum_error (dwarf_reg);
2937 return reg;
2938 }
2939
2940 /* A helper function that emits an access to memory. ARCH is the
2941 target architecture. EXPR is the expression which we are building.
2942 NBITS is the number of bits we want to read. This emits the
2943 opcodes needed to read the memory and then extract the desired
2944 bits. */
2945
2946 static void
2947 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2948 {
2949 ULONGEST nbytes = (nbits + 7) / 8;
2950
2951 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2952
2953 if (expr->tracing)
2954 ax_trace_quick (expr, nbytes);
2955
2956 if (nbits <= 8)
2957 ax_simple (expr, aop_ref8);
2958 else if (nbits <= 16)
2959 ax_simple (expr, aop_ref16);
2960 else if (nbits <= 32)
2961 ax_simple (expr, aop_ref32);
2962 else
2963 ax_simple (expr, aop_ref64);
2964
2965 /* If we read exactly the number of bytes we wanted, we're done. */
2966 if (8 * nbytes == nbits)
2967 return;
2968
2969 if (gdbarch_bits_big_endian (arch))
2970 {
2971 /* On a bits-big-endian machine, we want the high-order
2972 NBITS. */
2973 ax_const_l (expr, 8 * nbytes - nbits);
2974 ax_simple (expr, aop_rsh_unsigned);
2975 }
2976 else
2977 {
2978 /* On a bits-little-endian box, we want the low-order NBITS. */
2979 ax_zero_ext (expr, nbits);
2980 }
2981 }
2982
2983 /* A helper function to return the frame's PC. */
2984
2985 static CORE_ADDR
2986 get_ax_pc (void *baton)
2987 {
2988 struct agent_expr *expr = (struct agent_expr *) baton;
2989
2990 return expr->scope;
2991 }
2992
2993 /* Compile a DWARF location expression to an agent expression.
2994
2995 EXPR is the agent expression we are building.
2996 LOC is the agent value we modify.
2997 ARCH is the architecture.
2998 ADDR_SIZE is the size of addresses, in bytes.
2999 OP_PTR is the start of the location expression.
3000 OP_END is one past the last byte of the location expression.
3001
3002 This will throw an exception for various kinds of errors -- for
3003 example, if the expression cannot be compiled, or if the expression
3004 is invalid. */
3005
3006 void
3007 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3008 unsigned int addr_size, const gdb_byte *op_ptr,
3009 const gdb_byte *op_end,
3010 struct dwarf2_per_cu_data *per_cu)
3011 {
3012 gdbarch *arch = expr->gdbarch;
3013 int i;
3014 std::vector<int> dw_labels, patches;
3015 const gdb_byte * const base = op_ptr;
3016 const gdb_byte *previous_piece = op_ptr;
3017 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3018 ULONGEST bits_collected = 0;
3019 unsigned int addr_size_bits = 8 * addr_size;
3020 int bits_big_endian = gdbarch_bits_big_endian (arch);
3021
3022 std::vector<int> offsets (op_end - op_ptr, -1);
3023
3024 /* By default we are making an address. */
3025 loc->kind = axs_lvalue_memory;
3026
3027 while (op_ptr < op_end)
3028 {
3029 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3030 uint64_t uoffset, reg;
3031 int64_t offset;
3032 int i;
3033
3034 offsets[op_ptr - base] = expr->len;
3035 ++op_ptr;
3036
3037 /* Our basic approach to code generation is to map DWARF
3038 operations directly to AX operations. However, there are
3039 some differences.
3040
3041 First, DWARF works on address-sized units, but AX always uses
3042 LONGEST. For most operations we simply ignore this
3043 difference; instead we generate sign extensions as needed
3044 before division and comparison operations. It would be nice
3045 to omit the sign extensions, but there is no way to determine
3046 the size of the target's LONGEST. (This code uses the size
3047 of the host LONGEST in some cases -- that is a bug but it is
3048 difficult to fix.)
3049
3050 Second, some DWARF operations cannot be translated to AX.
3051 For these we simply fail. See
3052 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3053 switch (op)
3054 {
3055 case DW_OP_lit0:
3056 case DW_OP_lit1:
3057 case DW_OP_lit2:
3058 case DW_OP_lit3:
3059 case DW_OP_lit4:
3060 case DW_OP_lit5:
3061 case DW_OP_lit6:
3062 case DW_OP_lit7:
3063 case DW_OP_lit8:
3064 case DW_OP_lit9:
3065 case DW_OP_lit10:
3066 case DW_OP_lit11:
3067 case DW_OP_lit12:
3068 case DW_OP_lit13:
3069 case DW_OP_lit14:
3070 case DW_OP_lit15:
3071 case DW_OP_lit16:
3072 case DW_OP_lit17:
3073 case DW_OP_lit18:
3074 case DW_OP_lit19:
3075 case DW_OP_lit20:
3076 case DW_OP_lit21:
3077 case DW_OP_lit22:
3078 case DW_OP_lit23:
3079 case DW_OP_lit24:
3080 case DW_OP_lit25:
3081 case DW_OP_lit26:
3082 case DW_OP_lit27:
3083 case DW_OP_lit28:
3084 case DW_OP_lit29:
3085 case DW_OP_lit30:
3086 case DW_OP_lit31:
3087 ax_const_l (expr, op - DW_OP_lit0);
3088 break;
3089
3090 case DW_OP_addr:
3091 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3092 op_ptr += addr_size;
3093 /* Some versions of GCC emit DW_OP_addr before
3094 DW_OP_GNU_push_tls_address. In this case the value is an
3095 index, not an address. We don't support things like
3096 branching between the address and the TLS op. */
3097 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3098 uoffset += dwarf2_per_cu_text_offset (per_cu);
3099 ax_const_l (expr, uoffset);
3100 break;
3101
3102 case DW_OP_const1u:
3103 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3104 op_ptr += 1;
3105 break;
3106 case DW_OP_const1s:
3107 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3108 op_ptr += 1;
3109 break;
3110 case DW_OP_const2u:
3111 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3112 op_ptr += 2;
3113 break;
3114 case DW_OP_const2s:
3115 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3116 op_ptr += 2;
3117 break;
3118 case DW_OP_const4u:
3119 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3120 op_ptr += 4;
3121 break;
3122 case DW_OP_const4s:
3123 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3124 op_ptr += 4;
3125 break;
3126 case DW_OP_const8u:
3127 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3128 op_ptr += 8;
3129 break;
3130 case DW_OP_const8s:
3131 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3132 op_ptr += 8;
3133 break;
3134 case DW_OP_constu:
3135 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3136 ax_const_l (expr, uoffset);
3137 break;
3138 case DW_OP_consts:
3139 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3140 ax_const_l (expr, offset);
3141 break;
3142
3143 case DW_OP_reg0:
3144 case DW_OP_reg1:
3145 case DW_OP_reg2:
3146 case DW_OP_reg3:
3147 case DW_OP_reg4:
3148 case DW_OP_reg5:
3149 case DW_OP_reg6:
3150 case DW_OP_reg7:
3151 case DW_OP_reg8:
3152 case DW_OP_reg9:
3153 case DW_OP_reg10:
3154 case DW_OP_reg11:
3155 case DW_OP_reg12:
3156 case DW_OP_reg13:
3157 case DW_OP_reg14:
3158 case DW_OP_reg15:
3159 case DW_OP_reg16:
3160 case DW_OP_reg17:
3161 case DW_OP_reg18:
3162 case DW_OP_reg19:
3163 case DW_OP_reg20:
3164 case DW_OP_reg21:
3165 case DW_OP_reg22:
3166 case DW_OP_reg23:
3167 case DW_OP_reg24:
3168 case DW_OP_reg25:
3169 case DW_OP_reg26:
3170 case DW_OP_reg27:
3171 case DW_OP_reg28:
3172 case DW_OP_reg29:
3173 case DW_OP_reg30:
3174 case DW_OP_reg31:
3175 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3176 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3177 loc->kind = axs_lvalue_register;
3178 break;
3179
3180 case DW_OP_regx:
3181 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3182 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3183 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3184 loc->kind = axs_lvalue_register;
3185 break;
3186
3187 case DW_OP_implicit_value:
3188 {
3189 uint64_t len;
3190
3191 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3192 if (op_ptr + len > op_end)
3193 error (_("DW_OP_implicit_value: too few bytes available."));
3194 if (len > sizeof (ULONGEST))
3195 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3196 (int) len);
3197
3198 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3199 byte_order));
3200 op_ptr += len;
3201 dwarf_expr_require_composition (op_ptr, op_end,
3202 "DW_OP_implicit_value");
3203
3204 loc->kind = axs_rvalue;
3205 }
3206 break;
3207
3208 case DW_OP_stack_value:
3209 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3210 loc->kind = axs_rvalue;
3211 break;
3212
3213 case DW_OP_breg0:
3214 case DW_OP_breg1:
3215 case DW_OP_breg2:
3216 case DW_OP_breg3:
3217 case DW_OP_breg4:
3218 case DW_OP_breg5:
3219 case DW_OP_breg6:
3220 case DW_OP_breg7:
3221 case DW_OP_breg8:
3222 case DW_OP_breg9:
3223 case DW_OP_breg10:
3224 case DW_OP_breg11:
3225 case DW_OP_breg12:
3226 case DW_OP_breg13:
3227 case DW_OP_breg14:
3228 case DW_OP_breg15:
3229 case DW_OP_breg16:
3230 case DW_OP_breg17:
3231 case DW_OP_breg18:
3232 case DW_OP_breg19:
3233 case DW_OP_breg20:
3234 case DW_OP_breg21:
3235 case DW_OP_breg22:
3236 case DW_OP_breg23:
3237 case DW_OP_breg24:
3238 case DW_OP_breg25:
3239 case DW_OP_breg26:
3240 case DW_OP_breg27:
3241 case DW_OP_breg28:
3242 case DW_OP_breg29:
3243 case DW_OP_breg30:
3244 case DW_OP_breg31:
3245 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3246 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3247 ax_reg (expr, i);
3248 if (offset != 0)
3249 {
3250 ax_const_l (expr, offset);
3251 ax_simple (expr, aop_add);
3252 }
3253 break;
3254 case DW_OP_bregx:
3255 {
3256 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3257 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3258 i = dwarf_reg_to_regnum_or_error (arch, reg);
3259 ax_reg (expr, i);
3260 if (offset != 0)
3261 {
3262 ax_const_l (expr, offset);
3263 ax_simple (expr, aop_add);
3264 }
3265 }
3266 break;
3267 case DW_OP_fbreg:
3268 {
3269 const gdb_byte *datastart;
3270 size_t datalen;
3271 const struct block *b;
3272 struct symbol *framefunc;
3273
3274 b = block_for_pc (expr->scope);
3275
3276 if (!b)
3277 error (_("No block found for address"));
3278
3279 framefunc = block_linkage_function (b);
3280
3281 if (!framefunc)
3282 error (_("No function found for block"));
3283
3284 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3285 &datastart, &datalen);
3286
3287 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3288 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3289 datastart + datalen, per_cu);
3290 if (loc->kind == axs_lvalue_register)
3291 require_rvalue (expr, loc);
3292
3293 if (offset != 0)
3294 {
3295 ax_const_l (expr, offset);
3296 ax_simple (expr, aop_add);
3297 }
3298
3299 loc->kind = axs_lvalue_memory;
3300 }
3301 break;
3302
3303 case DW_OP_dup:
3304 ax_simple (expr, aop_dup);
3305 break;
3306
3307 case DW_OP_drop:
3308 ax_simple (expr, aop_pop);
3309 break;
3310
3311 case DW_OP_pick:
3312 offset = *op_ptr++;
3313 ax_pick (expr, offset);
3314 break;
3315
3316 case DW_OP_swap:
3317 ax_simple (expr, aop_swap);
3318 break;
3319
3320 case DW_OP_over:
3321 ax_pick (expr, 1);
3322 break;
3323
3324 case DW_OP_rot:
3325 ax_simple (expr, aop_rot);
3326 break;
3327
3328 case DW_OP_deref:
3329 case DW_OP_deref_size:
3330 {
3331 int size;
3332
3333 if (op == DW_OP_deref_size)
3334 size = *op_ptr++;
3335 else
3336 size = addr_size;
3337
3338 if (size != 1 && size != 2 && size != 4 && size != 8)
3339 error (_("Unsupported size %d in %s"),
3340 size, get_DW_OP_name (op));
3341 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3342 }
3343 break;
3344
3345 case DW_OP_abs:
3346 /* Sign extend the operand. */
3347 ax_ext (expr, addr_size_bits);
3348 ax_simple (expr, aop_dup);
3349 ax_const_l (expr, 0);
3350 ax_simple (expr, aop_less_signed);
3351 ax_simple (expr, aop_log_not);
3352 i = ax_goto (expr, aop_if_goto);
3353 /* We have to emit 0 - X. */
3354 ax_const_l (expr, 0);
3355 ax_simple (expr, aop_swap);
3356 ax_simple (expr, aop_sub);
3357 ax_label (expr, i, expr->len);
3358 break;
3359
3360 case DW_OP_neg:
3361 /* No need to sign extend here. */
3362 ax_const_l (expr, 0);
3363 ax_simple (expr, aop_swap);
3364 ax_simple (expr, aop_sub);
3365 break;
3366
3367 case DW_OP_not:
3368 /* Sign extend the operand. */
3369 ax_ext (expr, addr_size_bits);
3370 ax_simple (expr, aop_bit_not);
3371 break;
3372
3373 case DW_OP_plus_uconst:
3374 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3375 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3376 but we micro-optimize anyhow. */
3377 if (reg != 0)
3378 {
3379 ax_const_l (expr, reg);
3380 ax_simple (expr, aop_add);
3381 }
3382 break;
3383
3384 case DW_OP_and:
3385 ax_simple (expr, aop_bit_and);
3386 break;
3387
3388 case DW_OP_div:
3389 /* Sign extend the operands. */
3390 ax_ext (expr, addr_size_bits);
3391 ax_simple (expr, aop_swap);
3392 ax_ext (expr, addr_size_bits);
3393 ax_simple (expr, aop_swap);
3394 ax_simple (expr, aop_div_signed);
3395 break;
3396
3397 case DW_OP_minus:
3398 ax_simple (expr, aop_sub);
3399 break;
3400
3401 case DW_OP_mod:
3402 ax_simple (expr, aop_rem_unsigned);
3403 break;
3404
3405 case DW_OP_mul:
3406 ax_simple (expr, aop_mul);
3407 break;
3408
3409 case DW_OP_or:
3410 ax_simple (expr, aop_bit_or);
3411 break;
3412
3413 case DW_OP_plus:
3414 ax_simple (expr, aop_add);
3415 break;
3416
3417 case DW_OP_shl:
3418 ax_simple (expr, aop_lsh);
3419 break;
3420
3421 case DW_OP_shr:
3422 ax_simple (expr, aop_rsh_unsigned);
3423 break;
3424
3425 case DW_OP_shra:
3426 ax_simple (expr, aop_rsh_signed);
3427 break;
3428
3429 case DW_OP_xor:
3430 ax_simple (expr, aop_bit_xor);
3431 break;
3432
3433 case DW_OP_le:
3434 /* Sign extend the operands. */
3435 ax_ext (expr, addr_size_bits);
3436 ax_simple (expr, aop_swap);
3437 ax_ext (expr, addr_size_bits);
3438 /* Note no swap here: A <= B is !(B < A). */
3439 ax_simple (expr, aop_less_signed);
3440 ax_simple (expr, aop_log_not);
3441 break;
3442
3443 case DW_OP_ge:
3444 /* Sign extend the operands. */
3445 ax_ext (expr, addr_size_bits);
3446 ax_simple (expr, aop_swap);
3447 ax_ext (expr, addr_size_bits);
3448 ax_simple (expr, aop_swap);
3449 /* A >= B is !(A < B). */
3450 ax_simple (expr, aop_less_signed);
3451 ax_simple (expr, aop_log_not);
3452 break;
3453
3454 case DW_OP_eq:
3455 /* Sign extend the operands. */
3456 ax_ext (expr, addr_size_bits);
3457 ax_simple (expr, aop_swap);
3458 ax_ext (expr, addr_size_bits);
3459 /* No need for a second swap here. */
3460 ax_simple (expr, aop_equal);
3461 break;
3462
3463 case DW_OP_lt:
3464 /* Sign extend the operands. */
3465 ax_ext (expr, addr_size_bits);
3466 ax_simple (expr, aop_swap);
3467 ax_ext (expr, addr_size_bits);
3468 ax_simple (expr, aop_swap);
3469 ax_simple (expr, aop_less_signed);
3470 break;
3471
3472 case DW_OP_gt:
3473 /* Sign extend the operands. */
3474 ax_ext (expr, addr_size_bits);
3475 ax_simple (expr, aop_swap);
3476 ax_ext (expr, addr_size_bits);
3477 /* Note no swap here: A > B is B < A. */
3478 ax_simple (expr, aop_less_signed);
3479 break;
3480
3481 case DW_OP_ne:
3482 /* Sign extend the operands. */
3483 ax_ext (expr, addr_size_bits);
3484 ax_simple (expr, aop_swap);
3485 ax_ext (expr, addr_size_bits);
3486 /* No need for a swap here. */
3487 ax_simple (expr, aop_equal);
3488 ax_simple (expr, aop_log_not);
3489 break;
3490
3491 case DW_OP_call_frame_cfa:
3492 {
3493 int regnum;
3494 CORE_ADDR text_offset;
3495 LONGEST off;
3496 const gdb_byte *cfa_start, *cfa_end;
3497
3498 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3499 &regnum, &off,
3500 &text_offset, &cfa_start, &cfa_end))
3501 {
3502 /* Register. */
3503 ax_reg (expr, regnum);
3504 if (off != 0)
3505 {
3506 ax_const_l (expr, off);
3507 ax_simple (expr, aop_add);
3508 }
3509 }
3510 else
3511 {
3512 /* Another expression. */
3513 ax_const_l (expr, text_offset);
3514 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3515 cfa_end, per_cu);
3516 }
3517
3518 loc->kind = axs_lvalue_memory;
3519 }
3520 break;
3521
3522 case DW_OP_GNU_push_tls_address:
3523 case DW_OP_form_tls_address:
3524 unimplemented (op);
3525 break;
3526
3527 case DW_OP_push_object_address:
3528 unimplemented (op);
3529 break;
3530
3531 case DW_OP_skip:
3532 offset = extract_signed_integer (op_ptr, 2, byte_order);
3533 op_ptr += 2;
3534 i = ax_goto (expr, aop_goto);
3535 dw_labels.push_back (op_ptr + offset - base);
3536 patches.push_back (i);
3537 break;
3538
3539 case DW_OP_bra:
3540 offset = extract_signed_integer (op_ptr, 2, byte_order);
3541 op_ptr += 2;
3542 /* Zero extend the operand. */
3543 ax_zero_ext (expr, addr_size_bits);
3544 i = ax_goto (expr, aop_if_goto);
3545 dw_labels.push_back (op_ptr + offset - base);
3546 patches.push_back (i);
3547 break;
3548
3549 case DW_OP_nop:
3550 break;
3551
3552 case DW_OP_piece:
3553 case DW_OP_bit_piece:
3554 {
3555 uint64_t size, offset;
3556
3557 if (op_ptr - 1 == previous_piece)
3558 error (_("Cannot translate empty pieces to agent expressions"));
3559 previous_piece = op_ptr - 1;
3560
3561 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3562 if (op == DW_OP_piece)
3563 {
3564 size *= 8;
3565 offset = 0;
3566 }
3567 else
3568 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3569
3570 if (bits_collected + size > 8 * sizeof (LONGEST))
3571 error (_("Expression pieces exceed word size"));
3572
3573 /* Access the bits. */
3574 switch (loc->kind)
3575 {
3576 case axs_lvalue_register:
3577 ax_reg (expr, loc->u.reg);
3578 break;
3579
3580 case axs_lvalue_memory:
3581 /* Offset the pointer, if needed. */
3582 if (offset > 8)
3583 {
3584 ax_const_l (expr, offset / 8);
3585 ax_simple (expr, aop_add);
3586 offset %= 8;
3587 }
3588 access_memory (arch, expr, size);
3589 break;
3590 }
3591
3592 /* For a bits-big-endian target, shift up what we already
3593 have. For a bits-little-endian target, shift up the
3594 new data. Note that there is a potential bug here if
3595 the DWARF expression leaves multiple values on the
3596 stack. */
3597 if (bits_collected > 0)
3598 {
3599 if (bits_big_endian)
3600 {
3601 ax_simple (expr, aop_swap);
3602 ax_const_l (expr, size);
3603 ax_simple (expr, aop_lsh);
3604 /* We don't need a second swap here, because
3605 aop_bit_or is symmetric. */
3606 }
3607 else
3608 {
3609 ax_const_l (expr, size);
3610 ax_simple (expr, aop_lsh);
3611 }
3612 ax_simple (expr, aop_bit_or);
3613 }
3614
3615 bits_collected += size;
3616 loc->kind = axs_rvalue;
3617 }
3618 break;
3619
3620 case DW_OP_GNU_uninit:
3621 unimplemented (op);
3622
3623 case DW_OP_call2:
3624 case DW_OP_call4:
3625 {
3626 struct dwarf2_locexpr_baton block;
3627 int size = (op == DW_OP_call2 ? 2 : 4);
3628
3629 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3630 op_ptr += size;
3631
3632 cu_offset offset = (cu_offset) uoffset;
3633 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3634 get_ax_pc, expr);
3635
3636 /* DW_OP_call_ref is currently not supported. */
3637 gdb_assert (block.per_cu == per_cu);
3638
3639 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3640 block.data + block.size, per_cu);
3641 }
3642 break;
3643
3644 case DW_OP_call_ref:
3645 unimplemented (op);
3646
3647 default:
3648 unimplemented (op);
3649 }
3650 }
3651
3652 /* Patch all the branches we emitted. */
3653 for (i = 0; i < patches.size (); ++i)
3654 {
3655 int targ = offsets[dw_labels[i]];
3656 if (targ == -1)
3657 internal_error (__FILE__, __LINE__, _("invalid label"));
3658 ax_label (expr, patches[i], targ);
3659 }
3660 }
3661
3662 \f
3663 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3664 evaluator to calculate the location. */
3665 static struct value *
3666 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3667 {
3668 struct dwarf2_locexpr_baton *dlbaton
3669 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3670 struct value *val;
3671
3672 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3673 dlbaton->size, dlbaton->per_cu);
3674
3675 return val;
3676 }
3677
3678 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3679 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3680 will be thrown. */
3681
3682 static struct value *
3683 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3684 {
3685 struct dwarf2_locexpr_baton *dlbaton
3686 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3687
3688 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3689 dlbaton->size);
3690 }
3691
3692 /* Implementation of get_symbol_read_needs from
3693 symbol_computed_ops. */
3694
3695 static enum symbol_needs_kind
3696 locexpr_get_symbol_read_needs (struct symbol *symbol)
3697 {
3698 struct dwarf2_locexpr_baton *dlbaton
3699 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3700
3701 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3702 dlbaton->per_cu);
3703 }
3704
3705 /* Return true if DATA points to the end of a piece. END is one past
3706 the last byte in the expression. */
3707
3708 static int
3709 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3710 {
3711 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3712 }
3713
3714 /* Helper for locexpr_describe_location_piece that finds the name of a
3715 DWARF register. */
3716
3717 static const char *
3718 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3719 {
3720 int regnum;
3721
3722 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3723 We'd rather print *something* here than throw an error. */
3724 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3725 /* gdbarch_register_name may just return "", return something more
3726 descriptive for bad register numbers. */
3727 if (regnum == -1)
3728 {
3729 /* The text is output as "$bad_register_number".
3730 That is why we use the underscores. */
3731 return _("bad_register_number");
3732 }
3733 return gdbarch_register_name (gdbarch, regnum);
3734 }
3735
3736 /* Nicely describe a single piece of a location, returning an updated
3737 position in the bytecode sequence. This function cannot recognize
3738 all locations; if a location is not recognized, it simply returns
3739 DATA. If there is an error during reading, e.g. we run off the end
3740 of the buffer, an error is thrown. */
3741
3742 static const gdb_byte *
3743 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3744 CORE_ADDR addr, struct objfile *objfile,
3745 struct dwarf2_per_cu_data *per_cu,
3746 const gdb_byte *data, const gdb_byte *end,
3747 unsigned int addr_size)
3748 {
3749 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3750 size_t leb128_size;
3751
3752 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3753 {
3754 fprintf_filtered (stream, _("a variable in $%s"),
3755 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3756 data += 1;
3757 }
3758 else if (data[0] == DW_OP_regx)
3759 {
3760 uint64_t reg;
3761
3762 data = safe_read_uleb128 (data + 1, end, &reg);
3763 fprintf_filtered (stream, _("a variable in $%s"),
3764 locexpr_regname (gdbarch, reg));
3765 }
3766 else if (data[0] == DW_OP_fbreg)
3767 {
3768 const struct block *b;
3769 struct symbol *framefunc;
3770 int frame_reg = 0;
3771 int64_t frame_offset;
3772 const gdb_byte *base_data, *new_data, *save_data = data;
3773 size_t base_size;
3774 int64_t base_offset = 0;
3775
3776 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3777 if (!piece_end_p (new_data, end))
3778 return data;
3779 data = new_data;
3780
3781 b = block_for_pc (addr);
3782
3783 if (!b)
3784 error (_("No block found for address for symbol \"%s\"."),
3785 SYMBOL_PRINT_NAME (symbol));
3786
3787 framefunc = block_linkage_function (b);
3788
3789 if (!framefunc)
3790 error (_("No function found for block for symbol \"%s\"."),
3791 SYMBOL_PRINT_NAME (symbol));
3792
3793 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3794
3795 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3796 {
3797 const gdb_byte *buf_end;
3798
3799 frame_reg = base_data[0] - DW_OP_breg0;
3800 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3801 &base_offset);
3802 if (buf_end != base_data + base_size)
3803 error (_("Unexpected opcode after "
3804 "DW_OP_breg%u for symbol \"%s\"."),
3805 frame_reg, SYMBOL_PRINT_NAME (symbol));
3806 }
3807 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3808 {
3809 /* The frame base is just the register, with no offset. */
3810 frame_reg = base_data[0] - DW_OP_reg0;
3811 base_offset = 0;
3812 }
3813 else
3814 {
3815 /* We don't know what to do with the frame base expression,
3816 so we can't trace this variable; give up. */
3817 return save_data;
3818 }
3819
3820 fprintf_filtered (stream,
3821 _("a variable at frame base reg $%s offset %s+%s"),
3822 locexpr_regname (gdbarch, frame_reg),
3823 plongest (base_offset), plongest (frame_offset));
3824 }
3825 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3826 && piece_end_p (data, end))
3827 {
3828 int64_t offset;
3829
3830 data = safe_read_sleb128 (data + 1, end, &offset);
3831
3832 fprintf_filtered (stream,
3833 _("a variable at offset %s from base reg $%s"),
3834 plongest (offset),
3835 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3836 }
3837
3838 /* The location expression for a TLS variable looks like this (on a
3839 64-bit LE machine):
3840
3841 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3842 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3843
3844 0x3 is the encoding for DW_OP_addr, which has an operand as long
3845 as the size of an address on the target machine (here is 8
3846 bytes). Note that more recent version of GCC emit DW_OP_const4u
3847 or DW_OP_const8u, depending on address size, rather than
3848 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3849 The operand represents the offset at which the variable is within
3850 the thread local storage. */
3851
3852 else if (data + 1 + addr_size < end
3853 && (data[0] == DW_OP_addr
3854 || (addr_size == 4 && data[0] == DW_OP_const4u)
3855 || (addr_size == 8 && data[0] == DW_OP_const8u))
3856 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3857 || data[1 + addr_size] == DW_OP_form_tls_address)
3858 && piece_end_p (data + 2 + addr_size, end))
3859 {
3860 ULONGEST offset;
3861 offset = extract_unsigned_integer (data + 1, addr_size,
3862 gdbarch_byte_order (gdbarch));
3863
3864 fprintf_filtered (stream,
3865 _("a thread-local variable at offset 0x%s "
3866 "in the thread-local storage for `%s'"),
3867 phex_nz (offset, addr_size), objfile_name (objfile));
3868
3869 data += 1 + addr_size + 1;
3870 }
3871
3872 /* With -gsplit-dwarf a TLS variable can also look like this:
3873 DW_AT_location : 3 byte block: fc 4 e0
3874 (DW_OP_GNU_const_index: 4;
3875 DW_OP_GNU_push_tls_address) */
3876 else if (data + 3 <= end
3877 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3878 && data[0] == DW_OP_GNU_const_index
3879 && leb128_size > 0
3880 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3881 || data[1 + leb128_size] == DW_OP_form_tls_address)
3882 && piece_end_p (data + 2 + leb128_size, end))
3883 {
3884 uint64_t offset;
3885
3886 data = safe_read_uleb128 (data + 1, end, &offset);
3887 offset = dwarf2_read_addr_index (per_cu, offset);
3888 fprintf_filtered (stream,
3889 _("a thread-local variable at offset 0x%s "
3890 "in the thread-local storage for `%s'"),
3891 phex_nz (offset, addr_size), objfile_name (objfile));
3892 ++data;
3893 }
3894
3895 else if (data[0] >= DW_OP_lit0
3896 && data[0] <= DW_OP_lit31
3897 && data + 1 < end
3898 && data[1] == DW_OP_stack_value)
3899 {
3900 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3901 data += 2;
3902 }
3903
3904 return data;
3905 }
3906
3907 /* Disassemble an expression, stopping at the end of a piece or at the
3908 end of the expression. Returns a pointer to the next unread byte
3909 in the input expression. If ALL is nonzero, then this function
3910 will keep going until it reaches the end of the expression.
3911 If there is an error during reading, e.g. we run off the end
3912 of the buffer, an error is thrown. */
3913
3914 static const gdb_byte *
3915 disassemble_dwarf_expression (struct ui_file *stream,
3916 struct gdbarch *arch, unsigned int addr_size,
3917 int offset_size, const gdb_byte *start,
3918 const gdb_byte *data, const gdb_byte *end,
3919 int indent, int all,
3920 struct dwarf2_per_cu_data *per_cu)
3921 {
3922 while (data < end
3923 && (all
3924 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3925 {
3926 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3927 uint64_t ul;
3928 int64_t l;
3929 const char *name;
3930
3931 name = get_DW_OP_name (op);
3932
3933 if (!name)
3934 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3935 op, (long) (data - 1 - start));
3936 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3937 (long) (data - 1 - start), name);
3938
3939 switch (op)
3940 {
3941 case DW_OP_addr:
3942 ul = extract_unsigned_integer (data, addr_size,
3943 gdbarch_byte_order (arch));
3944 data += addr_size;
3945 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3946 break;
3947
3948 case DW_OP_const1u:
3949 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3950 data += 1;
3951 fprintf_filtered (stream, " %s", pulongest (ul));
3952 break;
3953 case DW_OP_const1s:
3954 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3955 data += 1;
3956 fprintf_filtered (stream, " %s", plongest (l));
3957 break;
3958 case DW_OP_const2u:
3959 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3960 data += 2;
3961 fprintf_filtered (stream, " %s", pulongest (ul));
3962 break;
3963 case DW_OP_const2s:
3964 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3965 data += 2;
3966 fprintf_filtered (stream, " %s", plongest (l));
3967 break;
3968 case DW_OP_const4u:
3969 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3970 data += 4;
3971 fprintf_filtered (stream, " %s", pulongest (ul));
3972 break;
3973 case DW_OP_const4s:
3974 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3975 data += 4;
3976 fprintf_filtered (stream, " %s", plongest (l));
3977 break;
3978 case DW_OP_const8u:
3979 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3980 data += 8;
3981 fprintf_filtered (stream, " %s", pulongest (ul));
3982 break;
3983 case DW_OP_const8s:
3984 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3985 data += 8;
3986 fprintf_filtered (stream, " %s", plongest (l));
3987 break;
3988 case DW_OP_constu:
3989 data = safe_read_uleb128 (data, end, &ul);
3990 fprintf_filtered (stream, " %s", pulongest (ul));
3991 break;
3992 case DW_OP_consts:
3993 data = safe_read_sleb128 (data, end, &l);
3994 fprintf_filtered (stream, " %s", plongest (l));
3995 break;
3996
3997 case DW_OP_reg0:
3998 case DW_OP_reg1:
3999 case DW_OP_reg2:
4000 case DW_OP_reg3:
4001 case DW_OP_reg4:
4002 case DW_OP_reg5:
4003 case DW_OP_reg6:
4004 case DW_OP_reg7:
4005 case DW_OP_reg8:
4006 case DW_OP_reg9:
4007 case DW_OP_reg10:
4008 case DW_OP_reg11:
4009 case DW_OP_reg12:
4010 case DW_OP_reg13:
4011 case DW_OP_reg14:
4012 case DW_OP_reg15:
4013 case DW_OP_reg16:
4014 case DW_OP_reg17:
4015 case DW_OP_reg18:
4016 case DW_OP_reg19:
4017 case DW_OP_reg20:
4018 case DW_OP_reg21:
4019 case DW_OP_reg22:
4020 case DW_OP_reg23:
4021 case DW_OP_reg24:
4022 case DW_OP_reg25:
4023 case DW_OP_reg26:
4024 case DW_OP_reg27:
4025 case DW_OP_reg28:
4026 case DW_OP_reg29:
4027 case DW_OP_reg30:
4028 case DW_OP_reg31:
4029 fprintf_filtered (stream, " [$%s]",
4030 locexpr_regname (arch, op - DW_OP_reg0));
4031 break;
4032
4033 case DW_OP_regx:
4034 data = safe_read_uleb128 (data, end, &ul);
4035 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4036 locexpr_regname (arch, (int) ul));
4037 break;
4038
4039 case DW_OP_implicit_value:
4040 data = safe_read_uleb128 (data, end, &ul);
4041 data += ul;
4042 fprintf_filtered (stream, " %s", pulongest (ul));
4043 break;
4044
4045 case DW_OP_breg0:
4046 case DW_OP_breg1:
4047 case DW_OP_breg2:
4048 case DW_OP_breg3:
4049 case DW_OP_breg4:
4050 case DW_OP_breg5:
4051 case DW_OP_breg6:
4052 case DW_OP_breg7:
4053 case DW_OP_breg8:
4054 case DW_OP_breg9:
4055 case DW_OP_breg10:
4056 case DW_OP_breg11:
4057 case DW_OP_breg12:
4058 case DW_OP_breg13:
4059 case DW_OP_breg14:
4060 case DW_OP_breg15:
4061 case DW_OP_breg16:
4062 case DW_OP_breg17:
4063 case DW_OP_breg18:
4064 case DW_OP_breg19:
4065 case DW_OP_breg20:
4066 case DW_OP_breg21:
4067 case DW_OP_breg22:
4068 case DW_OP_breg23:
4069 case DW_OP_breg24:
4070 case DW_OP_breg25:
4071 case DW_OP_breg26:
4072 case DW_OP_breg27:
4073 case DW_OP_breg28:
4074 case DW_OP_breg29:
4075 case DW_OP_breg30:
4076 case DW_OP_breg31:
4077 data = safe_read_sleb128 (data, end, &l);
4078 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4079 locexpr_regname (arch, op - DW_OP_breg0));
4080 break;
4081
4082 case DW_OP_bregx:
4083 data = safe_read_uleb128 (data, end, &ul);
4084 data = safe_read_sleb128 (data, end, &l);
4085 fprintf_filtered (stream, " register %s [$%s] offset %s",
4086 pulongest (ul),
4087 locexpr_regname (arch, (int) ul),
4088 plongest (l));
4089 break;
4090
4091 case DW_OP_fbreg:
4092 data = safe_read_sleb128 (data, end, &l);
4093 fprintf_filtered (stream, " %s", plongest (l));
4094 break;
4095
4096 case DW_OP_xderef_size:
4097 case DW_OP_deref_size:
4098 case DW_OP_pick:
4099 fprintf_filtered (stream, " %d", *data);
4100 ++data;
4101 break;
4102
4103 case DW_OP_plus_uconst:
4104 data = safe_read_uleb128 (data, end, &ul);
4105 fprintf_filtered (stream, " %s", pulongest (ul));
4106 break;
4107
4108 case DW_OP_skip:
4109 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4110 data += 2;
4111 fprintf_filtered (stream, " to %ld",
4112 (long) (data + l - start));
4113 break;
4114
4115 case DW_OP_bra:
4116 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4117 data += 2;
4118 fprintf_filtered (stream, " %ld",
4119 (long) (data + l - start));
4120 break;
4121
4122 case DW_OP_call2:
4123 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4124 data += 2;
4125 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4126 break;
4127
4128 case DW_OP_call4:
4129 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4130 data += 4;
4131 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4132 break;
4133
4134 case DW_OP_call_ref:
4135 ul = extract_unsigned_integer (data, offset_size,
4136 gdbarch_byte_order (arch));
4137 data += offset_size;
4138 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4139 break;
4140
4141 case DW_OP_piece:
4142 data = safe_read_uleb128 (data, end, &ul);
4143 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4144 break;
4145
4146 case DW_OP_bit_piece:
4147 {
4148 uint64_t offset;
4149
4150 data = safe_read_uleb128 (data, end, &ul);
4151 data = safe_read_uleb128 (data, end, &offset);
4152 fprintf_filtered (stream, " size %s offset %s (bits)",
4153 pulongest (ul), pulongest (offset));
4154 }
4155 break;
4156
4157 case DW_OP_implicit_pointer:
4158 case DW_OP_GNU_implicit_pointer:
4159 {
4160 ul = extract_unsigned_integer (data, offset_size,
4161 gdbarch_byte_order (arch));
4162 data += offset_size;
4163
4164 data = safe_read_sleb128 (data, end, &l);
4165
4166 fprintf_filtered (stream, " DIE %s offset %s",
4167 phex_nz (ul, offset_size),
4168 plongest (l));
4169 }
4170 break;
4171
4172 case DW_OP_deref_type:
4173 case DW_OP_GNU_deref_type:
4174 {
4175 int addr_size = *data++;
4176 struct type *type;
4177
4178 data = safe_read_uleb128 (data, end, &ul);
4179 cu_offset offset = (cu_offset) ul;
4180 type = dwarf2_get_die_type (offset, per_cu);
4181 fprintf_filtered (stream, "<");
4182 type_print (type, "", stream, -1);
4183 fprintf_filtered (stream, " [0x%s]> %d",
4184 phex_nz (to_underlying (offset), 0),
4185 addr_size);
4186 }
4187 break;
4188
4189 case DW_OP_const_type:
4190 case DW_OP_GNU_const_type:
4191 {
4192 struct type *type;
4193
4194 data = safe_read_uleb128 (data, end, &ul);
4195 cu_offset type_die = (cu_offset) ul;
4196 type = dwarf2_get_die_type (type_die, per_cu);
4197 fprintf_filtered (stream, "<");
4198 type_print (type, "", stream, -1);
4199 fprintf_filtered (stream, " [0x%s]>",
4200 phex_nz (to_underlying (type_die), 0));
4201 }
4202 break;
4203
4204 case DW_OP_regval_type:
4205 case DW_OP_GNU_regval_type:
4206 {
4207 uint64_t reg;
4208 struct type *type;
4209
4210 data = safe_read_uleb128 (data, end, &reg);
4211 data = safe_read_uleb128 (data, end, &ul);
4212 cu_offset type_die = (cu_offset) ul;
4213
4214 type = dwarf2_get_die_type (type_die, per_cu);
4215 fprintf_filtered (stream, "<");
4216 type_print (type, "", stream, -1);
4217 fprintf_filtered (stream, " [0x%s]> [$%s]",
4218 phex_nz (to_underlying (type_die), 0),
4219 locexpr_regname (arch, reg));
4220 }
4221 break;
4222
4223 case DW_OP_convert:
4224 case DW_OP_GNU_convert:
4225 case DW_OP_reinterpret:
4226 case DW_OP_GNU_reinterpret:
4227 {
4228 data = safe_read_uleb128 (data, end, &ul);
4229 cu_offset type_die = (cu_offset) ul;
4230
4231 if (to_underlying (type_die) == 0)
4232 fprintf_filtered (stream, "<0>");
4233 else
4234 {
4235 struct type *type;
4236
4237 type = dwarf2_get_die_type (type_die, per_cu);
4238 fprintf_filtered (stream, "<");
4239 type_print (type, "", stream, -1);
4240 fprintf_filtered (stream, " [0x%s]>",
4241 phex_nz (to_underlying (type_die), 0));
4242 }
4243 }
4244 break;
4245
4246 case DW_OP_entry_value:
4247 case DW_OP_GNU_entry_value:
4248 data = safe_read_uleb128 (data, end, &ul);
4249 fputc_filtered ('\n', stream);
4250 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4251 start, data, data + ul, indent + 2,
4252 all, per_cu);
4253 data += ul;
4254 continue;
4255
4256 case DW_OP_GNU_parameter_ref:
4257 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4258 data += 4;
4259 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4260 break;
4261
4262 case DW_OP_GNU_addr_index:
4263 data = safe_read_uleb128 (data, end, &ul);
4264 ul = dwarf2_read_addr_index (per_cu, ul);
4265 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4266 break;
4267 case DW_OP_GNU_const_index:
4268 data = safe_read_uleb128 (data, end, &ul);
4269 ul = dwarf2_read_addr_index (per_cu, ul);
4270 fprintf_filtered (stream, " %s", pulongest (ul));
4271 break;
4272 }
4273
4274 fprintf_filtered (stream, "\n");
4275 }
4276
4277 return data;
4278 }
4279
4280 /* Describe a single location, which may in turn consist of multiple
4281 pieces. */
4282
4283 static void
4284 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4285 struct ui_file *stream,
4286 const gdb_byte *data, size_t size,
4287 struct objfile *objfile, unsigned int addr_size,
4288 int offset_size, struct dwarf2_per_cu_data *per_cu)
4289 {
4290 const gdb_byte *end = data + size;
4291 int first_piece = 1, bad = 0;
4292
4293 while (data < end)
4294 {
4295 const gdb_byte *here = data;
4296 int disassemble = 1;
4297
4298 if (first_piece)
4299 first_piece = 0;
4300 else
4301 fprintf_filtered (stream, _(", and "));
4302
4303 if (!dwarf_always_disassemble)
4304 {
4305 data = locexpr_describe_location_piece (symbol, stream,
4306 addr, objfile, per_cu,
4307 data, end, addr_size);
4308 /* If we printed anything, or if we have an empty piece,
4309 then don't disassemble. */
4310 if (data != here
4311 || data[0] == DW_OP_piece
4312 || data[0] == DW_OP_bit_piece)
4313 disassemble = 0;
4314 }
4315 if (disassemble)
4316 {
4317 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4318 data = disassemble_dwarf_expression (stream,
4319 get_objfile_arch (objfile),
4320 addr_size, offset_size, data,
4321 data, end, 0,
4322 dwarf_always_disassemble,
4323 per_cu);
4324 }
4325
4326 if (data < end)
4327 {
4328 int empty = data == here;
4329
4330 if (disassemble)
4331 fprintf_filtered (stream, " ");
4332 if (data[0] == DW_OP_piece)
4333 {
4334 uint64_t bytes;
4335
4336 data = safe_read_uleb128 (data + 1, end, &bytes);
4337
4338 if (empty)
4339 fprintf_filtered (stream, _("an empty %s-byte piece"),
4340 pulongest (bytes));
4341 else
4342 fprintf_filtered (stream, _(" [%s-byte piece]"),
4343 pulongest (bytes));
4344 }
4345 else if (data[0] == DW_OP_bit_piece)
4346 {
4347 uint64_t bits, offset;
4348
4349 data = safe_read_uleb128 (data + 1, end, &bits);
4350 data = safe_read_uleb128 (data, end, &offset);
4351
4352 if (empty)
4353 fprintf_filtered (stream,
4354 _("an empty %s-bit piece"),
4355 pulongest (bits));
4356 else
4357 fprintf_filtered (stream,
4358 _(" [%s-bit piece, offset %s bits]"),
4359 pulongest (bits), pulongest (offset));
4360 }
4361 else
4362 {
4363 bad = 1;
4364 break;
4365 }
4366 }
4367 }
4368
4369 if (bad || data > end)
4370 error (_("Corrupted DWARF2 expression for \"%s\"."),
4371 SYMBOL_PRINT_NAME (symbol));
4372 }
4373
4374 /* Print a natural-language description of SYMBOL to STREAM. This
4375 version is for a symbol with a single location. */
4376
4377 static void
4378 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4379 struct ui_file *stream)
4380 {
4381 struct dwarf2_locexpr_baton *dlbaton
4382 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4383 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4384 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4385 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4386
4387 locexpr_describe_location_1 (symbol, addr, stream,
4388 dlbaton->data, dlbaton->size,
4389 objfile, addr_size, offset_size,
4390 dlbaton->per_cu);
4391 }
4392
4393 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4394 any necessary bytecode in AX. */
4395
4396 static void
4397 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4398 struct axs_value *value)
4399 {
4400 struct dwarf2_locexpr_baton *dlbaton
4401 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4402 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4403
4404 if (dlbaton->size == 0)
4405 value->optimized_out = 1;
4406 else
4407 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4408 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4409 }
4410
4411 /* symbol_computed_ops 'generate_c_location' method. */
4412
4413 static void
4414 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4415 struct gdbarch *gdbarch,
4416 unsigned char *registers_used,
4417 CORE_ADDR pc, const char *result_name)
4418 {
4419 struct dwarf2_locexpr_baton *dlbaton
4420 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4421 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4422
4423 if (dlbaton->size == 0)
4424 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4425
4426 compile_dwarf_expr_to_c (stream, result_name,
4427 sym, pc, gdbarch, registers_used, addr_size,
4428 dlbaton->data, dlbaton->data + dlbaton->size,
4429 dlbaton->per_cu);
4430 }
4431
4432 /* The set of location functions used with the DWARF-2 expression
4433 evaluator. */
4434 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4435 locexpr_read_variable,
4436 locexpr_read_variable_at_entry,
4437 locexpr_get_symbol_read_needs,
4438 locexpr_describe_location,
4439 0, /* location_has_loclist */
4440 locexpr_tracepoint_var_ref,
4441 locexpr_generate_c_location
4442 };
4443
4444
4445 /* Wrapper functions for location lists. These generally find
4446 the appropriate location expression and call something above. */
4447
4448 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4449 evaluator to calculate the location. */
4450 static struct value *
4451 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4452 {
4453 struct dwarf2_loclist_baton *dlbaton
4454 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4455 struct value *val;
4456 const gdb_byte *data;
4457 size_t size;
4458 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4459
4460 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4461 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4462 dlbaton->per_cu);
4463
4464 return val;
4465 }
4466
4467 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4468 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4469 will be thrown.
4470
4471 Function always returns non-NULL value, it may be marked optimized out if
4472 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4473 if it cannot resolve the parameter for any reason. */
4474
4475 static struct value *
4476 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4477 {
4478 struct dwarf2_loclist_baton *dlbaton
4479 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4480 const gdb_byte *data;
4481 size_t size;
4482 CORE_ADDR pc;
4483
4484 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4485 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4486
4487 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4488 if (data == NULL)
4489 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4490
4491 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4492 }
4493
4494 /* Implementation of get_symbol_read_needs from
4495 symbol_computed_ops. */
4496
4497 static enum symbol_needs_kind
4498 loclist_symbol_needs (struct symbol *symbol)
4499 {
4500 /* If there's a location list, then assume we need to have a frame
4501 to choose the appropriate location expression. With tracking of
4502 global variables this is not necessarily true, but such tracking
4503 is disabled in GCC at the moment until we figure out how to
4504 represent it. */
4505
4506 return SYMBOL_NEEDS_FRAME;
4507 }
4508
4509 /* Print a natural-language description of SYMBOL to STREAM. This
4510 version applies when there is a list of different locations, each
4511 with a specified address range. */
4512
4513 static void
4514 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4515 struct ui_file *stream)
4516 {
4517 struct dwarf2_loclist_baton *dlbaton
4518 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4519 const gdb_byte *loc_ptr, *buf_end;
4520 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4521 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4523 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4524 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4525 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4526 /* Adjust base_address for relocatable objects. */
4527 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4528 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4529 int done = 0;
4530
4531 loc_ptr = dlbaton->data;
4532 buf_end = dlbaton->data + dlbaton->size;
4533
4534 fprintf_filtered (stream, _("multi-location:\n"));
4535
4536 /* Iterate through locations until we run out. */
4537 while (!done)
4538 {
4539 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4540 int length;
4541 enum debug_loc_kind kind;
4542 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4543
4544 if (dlbaton->from_dwo)
4545 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4546 loc_ptr, buf_end, &new_ptr,
4547 &low, &high, byte_order);
4548 else
4549 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4550 &low, &high,
4551 byte_order, addr_size,
4552 signed_addr_p);
4553 loc_ptr = new_ptr;
4554 switch (kind)
4555 {
4556 case DEBUG_LOC_END_OF_LIST:
4557 done = 1;
4558 continue;
4559 case DEBUG_LOC_BASE_ADDRESS:
4560 base_address = high + base_offset;
4561 fprintf_filtered (stream, _(" Base address %s"),
4562 paddress (gdbarch, base_address));
4563 continue;
4564 case DEBUG_LOC_START_END:
4565 case DEBUG_LOC_START_LENGTH:
4566 break;
4567 case DEBUG_LOC_BUFFER_OVERFLOW:
4568 case DEBUG_LOC_INVALID_ENTRY:
4569 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4570 SYMBOL_PRINT_NAME (symbol));
4571 default:
4572 gdb_assert_not_reached ("bad debug_loc_kind");
4573 }
4574
4575 /* Otherwise, a location expression entry. */
4576 low += base_address;
4577 high += base_address;
4578
4579 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4580 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4581
4582 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4583 loc_ptr += 2;
4584
4585 /* (It would improve readability to print only the minimum
4586 necessary digits of the second number of the range.) */
4587 fprintf_filtered (stream, _(" Range %s-%s: "),
4588 paddress (gdbarch, low), paddress (gdbarch, high));
4589
4590 /* Now describe this particular location. */
4591 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4592 objfile, addr_size, offset_size,
4593 dlbaton->per_cu);
4594
4595 fprintf_filtered (stream, "\n");
4596
4597 loc_ptr += length;
4598 }
4599 }
4600
4601 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4602 any necessary bytecode in AX. */
4603 static void
4604 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4605 struct axs_value *value)
4606 {
4607 struct dwarf2_loclist_baton *dlbaton
4608 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4609 const gdb_byte *data;
4610 size_t size;
4611 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4612
4613 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4614 if (size == 0)
4615 value->optimized_out = 1;
4616 else
4617 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4618 dlbaton->per_cu);
4619 }
4620
4621 /* symbol_computed_ops 'generate_c_location' method. */
4622
4623 static void
4624 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4625 struct gdbarch *gdbarch,
4626 unsigned char *registers_used,
4627 CORE_ADDR pc, const char *result_name)
4628 {
4629 struct dwarf2_loclist_baton *dlbaton
4630 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4631 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4632 const gdb_byte *data;
4633 size_t size;
4634
4635 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4636 if (size == 0)
4637 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4638
4639 compile_dwarf_expr_to_c (stream, result_name,
4640 sym, pc, gdbarch, registers_used, addr_size,
4641 data, data + size,
4642 dlbaton->per_cu);
4643 }
4644
4645 /* The set of location functions used with the DWARF-2 expression
4646 evaluator and location lists. */
4647 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4648 loclist_read_variable,
4649 loclist_read_variable_at_entry,
4650 loclist_symbol_needs,
4651 loclist_describe_location,
4652 1, /* location_has_loclist */
4653 loclist_tracepoint_var_ref,
4654 loclist_generate_c_location
4655 };
4656
4657 void
4658 _initialize_dwarf2loc (void)
4659 {
4660 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4661 &entry_values_debug,
4662 _("Set entry values and tail call frames "
4663 "debugging."),
4664 _("Show entry values and tail call frames "
4665 "debugging."),
4666 _("When non-zero, the process of determining "
4667 "parameter values from function entry point "
4668 "and tail call frames will be printed."),
4669 NULL,
4670 show_entry_values_debug,
4671 &setdebuglist, &showdebuglist);
4672
4673 #if GDB_SELF_TEST
4674 selftests::register_test (selftests::copy_bitwise_tests);
4675 #endif
4676 }
This page took 0.161414 seconds and 5 git commands to generate.