Initial conversion of dwarf_expr_ctx
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include <algorithm>
42 #include <vector>
43
44 extern int dwarf_always_disassemble;
45
46 extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
47
48 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
49 struct frame_info *frame,
50 const gdb_byte *data,
51 size_t size,
52 struct dwarf2_per_cu_data *per_cu,
53 LONGEST byte_offset);
54
55 /* Until these have formal names, we define these here.
56 ref: http://gcc.gnu.org/wiki/DebugFission
57 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
58 and is then followed by data specific to that entry. */
59
60 enum debug_loc_kind
61 {
62 /* Indicates the end of the list of entries. */
63 DEBUG_LOC_END_OF_LIST = 0,
64
65 /* This is followed by an unsigned LEB128 number that is an index into
66 .debug_addr and specifies the base address for all following entries. */
67 DEBUG_LOC_BASE_ADDRESS = 1,
68
69 /* This is followed by two unsigned LEB128 numbers that are indices into
70 .debug_addr and specify the beginning and ending addresses, and then
71 a normal location expression as in .debug_loc. */
72 DEBUG_LOC_START_END = 2,
73
74 /* This is followed by an unsigned LEB128 number that is an index into
75 .debug_addr and specifies the beginning address, and a 4 byte unsigned
76 number that specifies the length, and then a normal location expression
77 as in .debug_loc. */
78 DEBUG_LOC_START_LENGTH = 3,
79
80 /* An internal value indicating there is insufficient data. */
81 DEBUG_LOC_BUFFER_OVERFLOW = -1,
82
83 /* An internal value indicating an invalid kind of entry was found. */
84 DEBUG_LOC_INVALID_ENTRY = -2
85 };
86
87 /* Helper function which throws an error if a synthetic pointer is
88 invalid. */
89
90 static void
91 invalid_synthetic_pointer (void)
92 {
93 error (_("access outside bounds of object "
94 "referenced via synthetic pointer"));
95 }
96
97 /* Decode the addresses in a non-dwo .debug_loc entry.
98 A pointer to the next byte to examine is returned in *NEW_PTR.
99 The encoded low,high addresses are return in *LOW,*HIGH.
100 The result indicates the kind of entry found. */
101
102 static enum debug_loc_kind
103 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
104 const gdb_byte **new_ptr,
105 CORE_ADDR *low, CORE_ADDR *high,
106 enum bfd_endian byte_order,
107 unsigned int addr_size,
108 int signed_addr_p)
109 {
110 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
111
112 if (buf_end - loc_ptr < 2 * addr_size)
113 return DEBUG_LOC_BUFFER_OVERFLOW;
114
115 if (signed_addr_p)
116 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
117 else
118 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
119 loc_ptr += addr_size;
120
121 if (signed_addr_p)
122 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
123 else
124 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
125 loc_ptr += addr_size;
126
127 *new_ptr = loc_ptr;
128
129 /* A base-address-selection entry. */
130 if ((*low & base_mask) == base_mask)
131 return DEBUG_LOC_BASE_ADDRESS;
132
133 /* An end-of-list entry. */
134 if (*low == 0 && *high == 0)
135 return DEBUG_LOC_END_OF_LIST;
136
137 return DEBUG_LOC_START_END;
138 }
139
140 /* Decode the addresses in .debug_loc.dwo entry.
141 A pointer to the next byte to examine is returned in *NEW_PTR.
142 The encoded low,high addresses are return in *LOW,*HIGH.
143 The result indicates the kind of entry found. */
144
145 static enum debug_loc_kind
146 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
147 const gdb_byte *loc_ptr,
148 const gdb_byte *buf_end,
149 const gdb_byte **new_ptr,
150 CORE_ADDR *low, CORE_ADDR *high,
151 enum bfd_endian byte_order)
152 {
153 uint64_t low_index, high_index;
154
155 if (loc_ptr == buf_end)
156 return DEBUG_LOC_BUFFER_OVERFLOW;
157
158 switch (*loc_ptr++)
159 {
160 case DEBUG_LOC_END_OF_LIST:
161 *new_ptr = loc_ptr;
162 return DEBUG_LOC_END_OF_LIST;
163 case DEBUG_LOC_BASE_ADDRESS:
164 *low = 0;
165 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
166 if (loc_ptr == NULL)
167 return DEBUG_LOC_BUFFER_OVERFLOW;
168 *high = dwarf2_read_addr_index (per_cu, high_index);
169 *new_ptr = loc_ptr;
170 return DEBUG_LOC_BASE_ADDRESS;
171 case DEBUG_LOC_START_END:
172 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
173 if (loc_ptr == NULL)
174 return DEBUG_LOC_BUFFER_OVERFLOW;
175 *low = dwarf2_read_addr_index (per_cu, low_index);
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *high = dwarf2_read_addr_index (per_cu, high_index);
180 *new_ptr = loc_ptr;
181 return DEBUG_LOC_START_END;
182 case DEBUG_LOC_START_LENGTH:
183 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
184 if (loc_ptr == NULL)
185 return DEBUG_LOC_BUFFER_OVERFLOW;
186 *low = dwarf2_read_addr_index (per_cu, low_index);
187 if (loc_ptr + 4 > buf_end)
188 return DEBUG_LOC_BUFFER_OVERFLOW;
189 *high = *low;
190 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
191 *new_ptr = loc_ptr + 4;
192 return DEBUG_LOC_START_LENGTH;
193 default:
194 return DEBUG_LOC_INVALID_ENTRY;
195 }
196 }
197
198 /* A function for dealing with location lists. Given a
199 symbol baton (BATON) and a pc value (PC), find the appropriate
200 location expression, set *LOCEXPR_LENGTH, and return a pointer
201 to the beginning of the expression. Returns NULL on failure.
202
203 For now, only return the first matching location expression; there
204 can be more than one in the list. */
205
206 const gdb_byte *
207 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
208 size_t *locexpr_length, CORE_ADDR pc)
209 {
210 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
212 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
213 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
214 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
215 /* Adjust base_address for relocatable objects. */
216 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
217 CORE_ADDR base_address = baton->base_address + base_offset;
218 const gdb_byte *loc_ptr, *buf_end;
219
220 loc_ptr = baton->data;
221 buf_end = baton->data + baton->size;
222
223 while (1)
224 {
225 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
226 int length;
227 enum debug_loc_kind kind;
228 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
229
230 if (baton->from_dwo)
231 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
232 loc_ptr, buf_end, &new_ptr,
233 &low, &high, byte_order);
234 else
235 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
236 &low, &high,
237 byte_order, addr_size,
238 signed_addr_p);
239 loc_ptr = new_ptr;
240 switch (kind)
241 {
242 case DEBUG_LOC_END_OF_LIST:
243 *locexpr_length = 0;
244 return NULL;
245 case DEBUG_LOC_BASE_ADDRESS:
246 base_address = high + base_offset;
247 continue;
248 case DEBUG_LOC_START_END:
249 case DEBUG_LOC_START_LENGTH:
250 break;
251 case DEBUG_LOC_BUFFER_OVERFLOW:
252 case DEBUG_LOC_INVALID_ENTRY:
253 error (_("dwarf2_find_location_expression: "
254 "Corrupted DWARF expression."));
255 default:
256 gdb_assert_not_reached ("bad debug_loc_kind");
257 }
258
259 /* Otherwise, a location expression entry.
260 If the entry is from a DWO, don't add base address: the entry is from
261 .debug_addr which already has the DWARF "base address". We still add
262 base_offset in case we're debugging a PIE executable. */
263 if (baton->from_dwo)
264 {
265 low += base_offset;
266 high += base_offset;
267 }
268 else
269 {
270 low += base_address;
271 high += base_address;
272 }
273
274 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
275 loc_ptr += 2;
276
277 if (low == high && pc == low)
278 {
279 /* This is entry PC record present only at entry point
280 of a function. Verify it is really the function entry point. */
281
282 const struct block *pc_block = block_for_pc (pc);
283 struct symbol *pc_func = NULL;
284
285 if (pc_block)
286 pc_func = block_linkage_function (pc_block);
287
288 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
289 {
290 *locexpr_length = length;
291 return loc_ptr;
292 }
293 }
294
295 if (pc >= low && pc < high)
296 {
297 *locexpr_length = length;
298 return loc_ptr;
299 }
300
301 loc_ptr += length;
302 }
303 }
304
305 /* This is the baton used when performing dwarf2 expression
306 evaluation. */
307 struct dwarf_expr_baton
308 {
309 struct frame_info *frame;
310 struct dwarf2_per_cu_data *per_cu;
311 CORE_ADDR obj_address;
312 };
313
314 /* Helper functions for dwarf2_evaluate_loc_desc. */
315
316 /* Using the frame specified in BATON, return the value of register
317 REGNUM, treated as a pointer. */
318 static CORE_ADDR
319 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
320 {
321 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
322 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
323 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
324
325 return address_from_register (regnum, debaton->frame);
326 }
327
328 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
329
330 static struct value *
331 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
332 {
333 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
334 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
335 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
336
337 return value_from_register (type, regnum, debaton->frame);
338 }
339
340 /* Read memory at ADDR (length LEN) into BUF. */
341
342 static void
343 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
344 {
345 read_memory (addr, buf, len);
346 }
347
348 /* Using the frame specified in BATON, find the location expression
349 describing the frame base. Return a pointer to it in START and
350 its length in LENGTH. */
351 static void
352 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
353 {
354 /* FIXME: cagney/2003-03-26: This code should be using
355 get_frame_base_address(), and then implement a dwarf2 specific
356 this_base method. */
357 struct symbol *framefunc;
358 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
359 const struct block *bl = get_frame_block (debaton->frame, NULL);
360
361 if (bl == NULL)
362 error (_("frame address is not available."));
363
364 /* Use block_linkage_function, which returns a real (not inlined)
365 function, instead of get_frame_function, which may return an
366 inlined function. */
367 framefunc = block_linkage_function (bl);
368
369 /* If we found a frame-relative symbol then it was certainly within
370 some function associated with a frame. If we can't find the frame,
371 something has gone wrong. */
372 gdb_assert (framefunc != NULL);
373
374 func_get_frame_base_dwarf_block (framefunc,
375 get_frame_address_in_block (debaton->frame),
376 start, length);
377 }
378
379 /* Implement find_frame_base_location method for LOC_BLOCK functions using
380 DWARF expression for its DW_AT_frame_base. */
381
382 static void
383 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
384 const gdb_byte **start, size_t *length)
385 {
386 struct dwarf2_locexpr_baton *symbaton
387 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
388
389 *length = symbaton->size;
390 *start = symbaton->data;
391 }
392
393 /* Implement the struct symbol_block_ops::get_frame_base method for
394 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
395
396 static CORE_ADDR
397 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
398 {
399 struct gdbarch *gdbarch;
400 struct type *type;
401 struct dwarf2_locexpr_baton *dlbaton;
402 const gdb_byte *start;
403 size_t length;
404 struct value *result;
405
406 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
407 Thus, it's supposed to provide the find_frame_base_location method as
408 well. */
409 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
410
411 gdbarch = get_frame_arch (frame);
412 type = builtin_type (gdbarch)->builtin_data_ptr;
413 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
414
415 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
416 (framefunc, get_frame_pc (frame), &start, &length);
417 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
418 dlbaton->per_cu);
419
420 /* The DW_AT_frame_base attribute contains a location description which
421 computes the base address itself. However, the call to
422 dwarf2_evaluate_loc_desc returns a value representing a variable at
423 that address. The frame base address is thus this variable's
424 address. */
425 return value_address (result);
426 }
427
428 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
429 function uses DWARF expression for its DW_AT_frame_base. */
430
431 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
432 {
433 locexpr_find_frame_base_location,
434 locexpr_get_frame_base
435 };
436
437 /* Implement find_frame_base_location method for LOC_BLOCK functions using
438 DWARF location list for its DW_AT_frame_base. */
439
440 static void
441 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
442 const gdb_byte **start, size_t *length)
443 {
444 struct dwarf2_loclist_baton *symbaton
445 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
446
447 *start = dwarf2_find_location_expression (symbaton, length, pc);
448 }
449
450 /* Implement the struct symbol_block_ops::get_frame_base method for
451 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
452
453 static CORE_ADDR
454 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
455 {
456 struct gdbarch *gdbarch;
457 struct type *type;
458 struct dwarf2_loclist_baton *dlbaton;
459 const gdb_byte *start;
460 size_t length;
461 struct value *result;
462
463 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
464 Thus, it's supposed to provide the find_frame_base_location method as
465 well. */
466 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
467
468 gdbarch = get_frame_arch (frame);
469 type = builtin_type (gdbarch)->builtin_data_ptr;
470 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
471
472 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
473 (framefunc, get_frame_pc (frame), &start, &length);
474 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
475 dlbaton->per_cu);
476
477 /* The DW_AT_frame_base attribute contains a location description which
478 computes the base address itself. However, the call to
479 dwarf2_evaluate_loc_desc returns a value representing a variable at
480 that address. The frame base address is thus this variable's
481 address. */
482 return value_address (result);
483 }
484
485 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
486 function uses DWARF location list for its DW_AT_frame_base. */
487
488 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
489 {
490 loclist_find_frame_base_location,
491 loclist_get_frame_base
492 };
493
494 /* See dwarf2loc.h. */
495
496 void
497 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
498 const gdb_byte **start, size_t *length)
499 {
500 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
501 {
502 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
503
504 ops_block->find_frame_base_location (framefunc, pc, start, length);
505 }
506 else
507 *length = 0;
508
509 if (*length == 0)
510 error (_("Could not find the frame base for \"%s\"."),
511 SYMBOL_NATURAL_NAME (framefunc));
512 }
513
514 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
515 the frame in BATON. */
516
517 static CORE_ADDR
518 dwarf_expr_frame_cfa (void *baton)
519 {
520 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
521
522 return dwarf2_frame_cfa (debaton->frame);
523 }
524
525 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
526 the frame in BATON. */
527
528 static CORE_ADDR
529 dwarf_expr_frame_pc (void *baton)
530 {
531 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
532
533 return get_frame_address_in_block (debaton->frame);
534 }
535
536 /* Using the objfile specified in BATON, find the address for the
537 current thread's thread-local storage with offset OFFSET. */
538 static CORE_ADDR
539 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
540 {
541 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
542 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
543
544 return target_translate_tls_address (objfile, offset);
545 }
546
547 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
548 current CU (as is PER_CU). State of the CTX is not affected by the
549 call and return. */
550
551 static void
552 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
553 struct dwarf2_per_cu_data *per_cu,
554 CORE_ADDR (*get_frame_pc) (void *baton),
555 void *baton)
556 {
557 struct dwarf2_locexpr_baton block;
558
559 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
560
561 /* DW_OP_call_ref is currently not supported. */
562 gdb_assert (block.per_cu == per_cu);
563
564 dwarf_expr_eval (ctx, block.data, block.size);
565 }
566
567 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
568
569 static void
570 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
571 {
572 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
573
574 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
575 ctx->funcs->get_frame_pc, ctx->baton);
576 }
577
578 /* Callback function for dwarf2_evaluate_loc_desc. */
579
580 static struct type *
581 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
582 cu_offset die_offset)
583 {
584 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
585
586 return dwarf2_get_die_type (die_offset, debaton->per_cu);
587 }
588
589 /* See dwarf2loc.h. */
590
591 unsigned int entry_values_debug = 0;
592
593 /* Helper to set entry_values_debug. */
594
595 static void
596 show_entry_values_debug (struct ui_file *file, int from_tty,
597 struct cmd_list_element *c, const char *value)
598 {
599 fprintf_filtered (file,
600 _("Entry values and tail call frames debugging is %s.\n"),
601 value);
602 }
603
604 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
605 CALLER_FRAME (for registers) can be NULL if it is not known. This function
606 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
607
608 static CORE_ADDR
609 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
610 struct call_site *call_site,
611 struct frame_info *caller_frame)
612 {
613 switch (FIELD_LOC_KIND (call_site->target))
614 {
615 case FIELD_LOC_KIND_DWARF_BLOCK:
616 {
617 struct dwarf2_locexpr_baton *dwarf_block;
618 struct value *val;
619 struct type *caller_core_addr_type;
620 struct gdbarch *caller_arch;
621
622 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
623 if (dwarf_block == NULL)
624 {
625 struct bound_minimal_symbol msym;
626
627 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
628 throw_error (NO_ENTRY_VALUE_ERROR,
629 _("DW_AT_GNU_call_site_target is not specified "
630 "at %s in %s"),
631 paddress (call_site_gdbarch, call_site->pc),
632 (msym.minsym == NULL ? "???"
633 : MSYMBOL_PRINT_NAME (msym.minsym)));
634
635 }
636 if (caller_frame == NULL)
637 {
638 struct bound_minimal_symbol msym;
639
640 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
641 throw_error (NO_ENTRY_VALUE_ERROR,
642 _("DW_AT_GNU_call_site_target DWARF block resolving "
643 "requires known frame which is currently not "
644 "available at %s in %s"),
645 paddress (call_site_gdbarch, call_site->pc),
646 (msym.minsym == NULL ? "???"
647 : MSYMBOL_PRINT_NAME (msym.minsym)));
648
649 }
650 caller_arch = get_frame_arch (caller_frame);
651 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
652 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
653 dwarf_block->data, dwarf_block->size,
654 dwarf_block->per_cu);
655 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
656 location. */
657 if (VALUE_LVAL (val) == lval_memory)
658 return value_address (val);
659 else
660 return value_as_address (val);
661 }
662
663 case FIELD_LOC_KIND_PHYSNAME:
664 {
665 const char *physname;
666 struct bound_minimal_symbol msym;
667
668 physname = FIELD_STATIC_PHYSNAME (call_site->target);
669
670 /* Handle both the mangled and demangled PHYSNAME. */
671 msym = lookup_minimal_symbol (physname, NULL, NULL);
672 if (msym.minsym == NULL)
673 {
674 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
675 throw_error (NO_ENTRY_VALUE_ERROR,
676 _("Cannot find function \"%s\" for a call site target "
677 "at %s in %s"),
678 physname, paddress (call_site_gdbarch, call_site->pc),
679 (msym.minsym == NULL ? "???"
680 : MSYMBOL_PRINT_NAME (msym.minsym)));
681
682 }
683 return BMSYMBOL_VALUE_ADDRESS (msym);
684 }
685
686 case FIELD_LOC_KIND_PHYSADDR:
687 return FIELD_STATIC_PHYSADDR (call_site->target);
688
689 default:
690 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
691 }
692 }
693
694 /* Convert function entry point exact address ADDR to the function which is
695 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
696 NO_ENTRY_VALUE_ERROR otherwise. */
697
698 static struct symbol *
699 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
700 {
701 struct symbol *sym = find_pc_function (addr);
702 struct type *type;
703
704 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
705 throw_error (NO_ENTRY_VALUE_ERROR,
706 _("DW_TAG_GNU_call_site resolving failed to find function "
707 "name for address %s"),
708 paddress (gdbarch, addr));
709
710 type = SYMBOL_TYPE (sym);
711 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
712 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
713
714 return sym;
715 }
716
717 /* Verify function with entry point exact address ADDR can never call itself
718 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
719 can call itself via tail calls.
720
721 If a funtion can tail call itself its entry value based parameters are
722 unreliable. There is no verification whether the value of some/all
723 parameters is unchanged through the self tail call, we expect if there is
724 a self tail call all the parameters can be modified. */
725
726 static void
727 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
728 {
729 struct obstack addr_obstack;
730 struct cleanup *old_chain;
731 CORE_ADDR addr;
732
733 /* Track here CORE_ADDRs which were already visited. */
734 htab_t addr_hash;
735
736 /* The verification is completely unordered. Track here function addresses
737 which still need to be iterated. */
738 VEC (CORE_ADDR) *todo = NULL;
739
740 obstack_init (&addr_obstack);
741 old_chain = make_cleanup_obstack_free (&addr_obstack);
742 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
743 &addr_obstack, hashtab_obstack_allocate,
744 NULL);
745 make_cleanup_htab_delete (addr_hash);
746
747 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
748
749 VEC_safe_push (CORE_ADDR, todo, verify_addr);
750 while (!VEC_empty (CORE_ADDR, todo))
751 {
752 struct symbol *func_sym;
753 struct call_site *call_site;
754
755 addr = VEC_pop (CORE_ADDR, todo);
756
757 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
758
759 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
760 call_site; call_site = call_site->tail_call_next)
761 {
762 CORE_ADDR target_addr;
763 void **slot;
764
765 /* CALLER_FRAME with registers is not available for tail-call jumped
766 frames. */
767 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
768
769 if (target_addr == verify_addr)
770 {
771 struct bound_minimal_symbol msym;
772
773 msym = lookup_minimal_symbol_by_pc (verify_addr);
774 throw_error (NO_ENTRY_VALUE_ERROR,
775 _("DW_OP_GNU_entry_value resolving has found "
776 "function \"%s\" at %s can call itself via tail "
777 "calls"),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)),
780 paddress (gdbarch, verify_addr));
781 }
782
783 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
784 if (*slot == NULL)
785 {
786 *slot = obstack_copy (&addr_obstack, &target_addr,
787 sizeof (target_addr));
788 VEC_safe_push (CORE_ADDR, todo, target_addr);
789 }
790 }
791 }
792
793 do_cleanups (old_chain);
794 }
795
796 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
797 ENTRY_VALUES_DEBUG. */
798
799 static void
800 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
801 {
802 CORE_ADDR addr = call_site->pc;
803 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
804
805 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
806 (msym.minsym == NULL ? "???"
807 : MSYMBOL_PRINT_NAME (msym.minsym)));
808
809 }
810
811 /* vec.h needs single word type name, typedef it. */
812 typedef struct call_site *call_sitep;
813
814 /* Define VEC (call_sitep) functions. */
815 DEF_VEC_P (call_sitep);
816
817 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
818 only top callers and bottom callees which are present in both. GDBARCH is
819 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
820 no remaining possibilities to provide unambiguous non-trivial result.
821 RESULTP should point to NULL on the first (initialization) call. Caller is
822 responsible for xfree of any RESULTP data. */
823
824 static void
825 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
826 VEC (call_sitep) *chain)
827 {
828 struct call_site_chain *result = *resultp;
829 long length = VEC_length (call_sitep, chain);
830 int callers, callees, idx;
831
832 if (result == NULL)
833 {
834 /* Create the initial chain containing all the passed PCs. */
835
836 result = ((struct call_site_chain *)
837 xmalloc (sizeof (*result)
838 + sizeof (*result->call_site) * (length - 1)));
839 result->length = length;
840 result->callers = result->callees = length;
841 if (!VEC_empty (call_sitep, chain))
842 memcpy (result->call_site, VEC_address (call_sitep, chain),
843 sizeof (*result->call_site) * length);
844 *resultp = result;
845
846 if (entry_values_debug)
847 {
848 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
849 for (idx = 0; idx < length; idx++)
850 tailcall_dump (gdbarch, result->call_site[idx]);
851 fputc_unfiltered ('\n', gdb_stdlog);
852 }
853
854 return;
855 }
856
857 if (entry_values_debug)
858 {
859 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
860 for (idx = 0; idx < length; idx++)
861 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
862 fputc_unfiltered ('\n', gdb_stdlog);
863 }
864
865 /* Intersect callers. */
866
867 callers = std::min ((long) result->callers, length);
868 for (idx = 0; idx < callers; idx++)
869 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
870 {
871 result->callers = idx;
872 break;
873 }
874
875 /* Intersect callees. */
876
877 callees = std::min ((long) result->callees, length);
878 for (idx = 0; idx < callees; idx++)
879 if (result->call_site[result->length - 1 - idx]
880 != VEC_index (call_sitep, chain, length - 1 - idx))
881 {
882 result->callees = idx;
883 break;
884 }
885
886 if (entry_values_debug)
887 {
888 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
889 for (idx = 0; idx < result->callers; idx++)
890 tailcall_dump (gdbarch, result->call_site[idx]);
891 fputs_unfiltered (" |", gdb_stdlog);
892 for (idx = 0; idx < result->callees; idx++)
893 tailcall_dump (gdbarch, result->call_site[result->length
894 - result->callees + idx]);
895 fputc_unfiltered ('\n', gdb_stdlog);
896 }
897
898 if (result->callers == 0 && result->callees == 0)
899 {
900 /* There are no common callers or callees. It could be also a direct
901 call (which has length 0) with ambiguous possibility of an indirect
902 call - CALLERS == CALLEES == 0 is valid during the first allocation
903 but any subsequence processing of such entry means ambiguity. */
904 xfree (result);
905 *resultp = NULL;
906 return;
907 }
908
909 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
910 PC again. In such case there must be two different code paths to reach
911 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
912 gdb_assert (result->callers + result->callees <= result->length);
913 }
914
915 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
916 assumed frames between them use GDBARCH. Use depth first search so we can
917 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
918 would have needless GDB stack overhead. Caller is responsible for xfree of
919 the returned result. Any unreliability results in thrown
920 NO_ENTRY_VALUE_ERROR. */
921
922 static struct call_site_chain *
923 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
924 CORE_ADDR callee_pc)
925 {
926 CORE_ADDR save_callee_pc = callee_pc;
927 struct obstack addr_obstack;
928 struct cleanup *back_to_retval, *back_to_workdata;
929 struct call_site_chain *retval = NULL;
930 struct call_site *call_site;
931
932 /* Mark CALL_SITEs so we do not visit the same ones twice. */
933 htab_t addr_hash;
934
935 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
936 call_site nor any possible call_site at CALLEE_PC's function is there.
937 Any CALL_SITE in CHAIN will be iterated to its siblings - via
938 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
939 VEC (call_sitep) *chain = NULL;
940
941 /* We are not interested in the specific PC inside the callee function. */
942 callee_pc = get_pc_function_start (callee_pc);
943 if (callee_pc == 0)
944 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
945 paddress (gdbarch, save_callee_pc));
946
947 back_to_retval = make_cleanup (free_current_contents, &retval);
948
949 obstack_init (&addr_obstack);
950 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
951 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
952 &addr_obstack, hashtab_obstack_allocate,
953 NULL);
954 make_cleanup_htab_delete (addr_hash);
955
956 make_cleanup (VEC_cleanup (call_sitep), &chain);
957
958 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
959 at the target's function. All the possible tail call sites in the
960 target's function will get iterated as already pushed into CHAIN via their
961 TAIL_CALL_NEXT. */
962 call_site = call_site_for_pc (gdbarch, caller_pc);
963
964 while (call_site)
965 {
966 CORE_ADDR target_func_addr;
967 struct call_site *target_call_site;
968
969 /* CALLER_FRAME with registers is not available for tail-call jumped
970 frames. */
971 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
972
973 if (target_func_addr == callee_pc)
974 {
975 chain_candidate (gdbarch, &retval, chain);
976 if (retval == NULL)
977 break;
978
979 /* There is no way to reach CALLEE_PC again as we would prevent
980 entering it twice as being already marked in ADDR_HASH. */
981 target_call_site = NULL;
982 }
983 else
984 {
985 struct symbol *target_func;
986
987 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
988 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
989 }
990
991 do
992 {
993 /* Attempt to visit TARGET_CALL_SITE. */
994
995 if (target_call_site)
996 {
997 void **slot;
998
999 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
1000 if (*slot == NULL)
1001 {
1002 /* Successfully entered TARGET_CALL_SITE. */
1003
1004 *slot = &target_call_site->pc;
1005 VEC_safe_push (call_sitep, chain, target_call_site);
1006 break;
1007 }
1008 }
1009
1010 /* Backtrack (without revisiting the originating call_site). Try the
1011 callers's sibling; if there isn't any try the callers's callers's
1012 sibling etc. */
1013
1014 target_call_site = NULL;
1015 while (!VEC_empty (call_sitep, chain))
1016 {
1017 call_site = VEC_pop (call_sitep, chain);
1018
1019 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
1020 NO_INSERT) != NULL);
1021 htab_remove_elt (addr_hash, &call_site->pc);
1022
1023 target_call_site = call_site->tail_call_next;
1024 if (target_call_site)
1025 break;
1026 }
1027 }
1028 while (target_call_site);
1029
1030 if (VEC_empty (call_sitep, chain))
1031 call_site = NULL;
1032 else
1033 call_site = VEC_last (call_sitep, chain);
1034 }
1035
1036 if (retval == NULL)
1037 {
1038 struct bound_minimal_symbol msym_caller, msym_callee;
1039
1040 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1041 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1042 throw_error (NO_ENTRY_VALUE_ERROR,
1043 _("There are no unambiguously determinable intermediate "
1044 "callers or callees between caller function \"%s\" at %s "
1045 "and callee function \"%s\" at %s"),
1046 (msym_caller.minsym == NULL
1047 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1048 paddress (gdbarch, caller_pc),
1049 (msym_callee.minsym == NULL
1050 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1051 paddress (gdbarch, callee_pc));
1052 }
1053
1054 do_cleanups (back_to_workdata);
1055 discard_cleanups (back_to_retval);
1056 return retval;
1057 }
1058
1059 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1060 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1061 constructed return NULL. Caller is responsible for xfree of the returned
1062 result. */
1063
1064 struct call_site_chain *
1065 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1066 CORE_ADDR callee_pc)
1067 {
1068 struct call_site_chain *retval = NULL;
1069
1070 TRY
1071 {
1072 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1073 }
1074 CATCH (e, RETURN_MASK_ERROR)
1075 {
1076 if (e.error == NO_ENTRY_VALUE_ERROR)
1077 {
1078 if (entry_values_debug)
1079 exception_print (gdb_stdout, e);
1080
1081 return NULL;
1082 }
1083 else
1084 throw_exception (e);
1085 }
1086 END_CATCH
1087
1088 return retval;
1089 }
1090
1091 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1092
1093 static int
1094 call_site_parameter_matches (struct call_site_parameter *parameter,
1095 enum call_site_parameter_kind kind,
1096 union call_site_parameter_u kind_u)
1097 {
1098 if (kind == parameter->kind)
1099 switch (kind)
1100 {
1101 case CALL_SITE_PARAMETER_DWARF_REG:
1102 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1103 case CALL_SITE_PARAMETER_FB_OFFSET:
1104 return kind_u.fb_offset == parameter->u.fb_offset;
1105 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1106 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1107 }
1108 return 0;
1109 }
1110
1111 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1112 FRAME is for callee.
1113
1114 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1115 otherwise. */
1116
1117 static struct call_site_parameter *
1118 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1119 enum call_site_parameter_kind kind,
1120 union call_site_parameter_u kind_u,
1121 struct dwarf2_per_cu_data **per_cu_return)
1122 {
1123 CORE_ADDR func_addr, caller_pc;
1124 struct gdbarch *gdbarch;
1125 struct frame_info *caller_frame;
1126 struct call_site *call_site;
1127 int iparams;
1128 /* Initialize it just to avoid a GCC false warning. */
1129 struct call_site_parameter *parameter = NULL;
1130 CORE_ADDR target_addr;
1131
1132 while (get_frame_type (frame) == INLINE_FRAME)
1133 {
1134 frame = get_prev_frame (frame);
1135 gdb_assert (frame != NULL);
1136 }
1137
1138 func_addr = get_frame_func (frame);
1139 gdbarch = get_frame_arch (frame);
1140 caller_frame = get_prev_frame (frame);
1141 if (gdbarch != frame_unwind_arch (frame))
1142 {
1143 struct bound_minimal_symbol msym
1144 = lookup_minimal_symbol_by_pc (func_addr);
1145 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1146
1147 throw_error (NO_ENTRY_VALUE_ERROR,
1148 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1149 "(of %s (%s)) does not match caller gdbarch %s"),
1150 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1151 paddress (gdbarch, func_addr),
1152 (msym.minsym == NULL ? "???"
1153 : MSYMBOL_PRINT_NAME (msym.minsym)),
1154 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1155 }
1156
1157 if (caller_frame == NULL)
1158 {
1159 struct bound_minimal_symbol msym
1160 = lookup_minimal_symbol_by_pc (func_addr);
1161
1162 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1163 "requires caller of %s (%s)"),
1164 paddress (gdbarch, func_addr),
1165 (msym.minsym == NULL ? "???"
1166 : MSYMBOL_PRINT_NAME (msym.minsym)));
1167 }
1168 caller_pc = get_frame_pc (caller_frame);
1169 call_site = call_site_for_pc (gdbarch, caller_pc);
1170
1171 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1172 if (target_addr != func_addr)
1173 {
1174 struct minimal_symbol *target_msym, *func_msym;
1175
1176 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1177 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1178 throw_error (NO_ENTRY_VALUE_ERROR,
1179 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1180 "but the called frame is for %s at %s"),
1181 (target_msym == NULL ? "???"
1182 : MSYMBOL_PRINT_NAME (target_msym)),
1183 paddress (gdbarch, target_addr),
1184 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1185 paddress (gdbarch, func_addr));
1186 }
1187
1188 /* No entry value based parameters would be reliable if this function can
1189 call itself via tail calls. */
1190 func_verify_no_selftailcall (gdbarch, func_addr);
1191
1192 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1193 {
1194 parameter = &call_site->parameter[iparams];
1195 if (call_site_parameter_matches (parameter, kind, kind_u))
1196 break;
1197 }
1198 if (iparams == call_site->parameter_count)
1199 {
1200 struct minimal_symbol *msym
1201 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1202
1203 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1204 determine its value. */
1205 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1206 "at DW_TAG_GNU_call_site %s at %s"),
1207 paddress (gdbarch, caller_pc),
1208 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1209 }
1210
1211 *per_cu_return = call_site->per_cu;
1212 return parameter;
1213 }
1214
1215 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1216 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1217 DW_AT_GNU_call_site_data_value (dereferenced) block.
1218
1219 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1220 struct value.
1221
1222 Function always returns non-NULL, non-optimized out value. It throws
1223 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1224
1225 static struct value *
1226 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1227 CORE_ADDR deref_size, struct type *type,
1228 struct frame_info *caller_frame,
1229 struct dwarf2_per_cu_data *per_cu)
1230 {
1231 const gdb_byte *data_src;
1232 gdb_byte *data;
1233 size_t size;
1234
1235 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1236 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1237
1238 /* DEREF_SIZE size is not verified here. */
1239 if (data_src == NULL)
1240 throw_error (NO_ENTRY_VALUE_ERROR,
1241 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1242
1243 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1244 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1245 DWARF block. */
1246 data = (gdb_byte *) alloca (size + 1);
1247 memcpy (data, data_src, size);
1248 data[size] = DW_OP_stack_value;
1249
1250 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1251 }
1252
1253 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1254 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1255 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1256
1257 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1258 can be more simple as it does not support cross-CU DWARF executions. */
1259
1260 static void
1261 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1262 enum call_site_parameter_kind kind,
1263 union call_site_parameter_u kind_u,
1264 int deref_size)
1265 {
1266 struct dwarf_expr_baton *debaton;
1267 struct frame_info *frame, *caller_frame;
1268 struct dwarf2_per_cu_data *caller_per_cu;
1269 struct dwarf_expr_baton baton_local;
1270 struct dwarf_expr_context saved_ctx;
1271 struct call_site_parameter *parameter;
1272 const gdb_byte *data_src;
1273 size_t size;
1274
1275 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1276 debaton = (struct dwarf_expr_baton *) ctx->baton;
1277 frame = debaton->frame;
1278 caller_frame = get_prev_frame (frame);
1279
1280 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1281 &caller_per_cu);
1282 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1283 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1284
1285 /* DEREF_SIZE size is not verified here. */
1286 if (data_src == NULL)
1287 throw_error (NO_ENTRY_VALUE_ERROR,
1288 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1289
1290 baton_local.frame = caller_frame;
1291 baton_local.per_cu = caller_per_cu;
1292 baton_local.obj_address = 0;
1293
1294 saved_ctx.gdbarch = ctx->gdbarch;
1295 saved_ctx.addr_size = ctx->addr_size;
1296 saved_ctx.offset = ctx->offset;
1297 saved_ctx.baton = ctx->baton;
1298 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1299 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1300 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1301 ctx->baton = &baton_local;
1302
1303 dwarf_expr_eval (ctx, data_src, size);
1304
1305 ctx->gdbarch = saved_ctx.gdbarch;
1306 ctx->addr_size = saved_ctx.addr_size;
1307 ctx->offset = saved_ctx.offset;
1308 ctx->baton = saved_ctx.baton;
1309 }
1310
1311 /* Callback function for dwarf2_evaluate_loc_desc.
1312 Fetch the address indexed by DW_OP_GNU_addr_index. */
1313
1314 static CORE_ADDR
1315 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1316 {
1317 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1318
1319 return dwarf2_read_addr_index (debaton->per_cu, index);
1320 }
1321
1322 /* Callback function for get_object_address. Return the address of the VLA
1323 object. */
1324
1325 static CORE_ADDR
1326 dwarf_expr_get_obj_addr (void *baton)
1327 {
1328 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1329
1330 gdb_assert (debaton != NULL);
1331
1332 if (debaton->obj_address == 0)
1333 error (_("Location address is not set."));
1334
1335 return debaton->obj_address;
1336 }
1337
1338 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1339 the indirect method on it, that is use its stored target value, the sole
1340 purpose of entry_data_value_funcs.. */
1341
1342 static struct value *
1343 entry_data_value_coerce_ref (const struct value *value)
1344 {
1345 struct type *checked_type = check_typedef (value_type (value));
1346 struct value *target_val;
1347
1348 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1349 return NULL;
1350
1351 target_val = (struct value *) value_computed_closure (value);
1352 value_incref (target_val);
1353 return target_val;
1354 }
1355
1356 /* Implement copy_closure. */
1357
1358 static void *
1359 entry_data_value_copy_closure (const struct value *v)
1360 {
1361 struct value *target_val = (struct value *) value_computed_closure (v);
1362
1363 value_incref (target_val);
1364 return target_val;
1365 }
1366
1367 /* Implement free_closure. */
1368
1369 static void
1370 entry_data_value_free_closure (struct value *v)
1371 {
1372 struct value *target_val = (struct value *) value_computed_closure (v);
1373
1374 value_free (target_val);
1375 }
1376
1377 /* Vector for methods for an entry value reference where the referenced value
1378 is stored in the caller. On the first dereference use
1379 DW_AT_GNU_call_site_data_value in the caller. */
1380
1381 static const struct lval_funcs entry_data_value_funcs =
1382 {
1383 NULL, /* read */
1384 NULL, /* write */
1385 NULL, /* indirect */
1386 entry_data_value_coerce_ref,
1387 NULL, /* check_synthetic_pointer */
1388 entry_data_value_copy_closure,
1389 entry_data_value_free_closure
1390 };
1391
1392 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1393 are used to match DW_AT_location at the caller's
1394 DW_TAG_GNU_call_site_parameter.
1395
1396 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1397 cannot resolve the parameter for any reason. */
1398
1399 static struct value *
1400 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1401 enum call_site_parameter_kind kind,
1402 union call_site_parameter_u kind_u)
1403 {
1404 struct type *checked_type = check_typedef (type);
1405 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1406 struct frame_info *caller_frame = get_prev_frame (frame);
1407 struct value *outer_val, *target_val, *val;
1408 struct call_site_parameter *parameter;
1409 struct dwarf2_per_cu_data *caller_per_cu;
1410
1411 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1412 &caller_per_cu);
1413
1414 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1415 type, caller_frame,
1416 caller_per_cu);
1417
1418 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1419 used and it is not available do not fall back to OUTER_VAL - dereferencing
1420 TYPE_CODE_REF with non-entry data value would give current value - not the
1421 entry value. */
1422
1423 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1424 || TYPE_TARGET_TYPE (checked_type) == NULL)
1425 return outer_val;
1426
1427 target_val = dwarf_entry_parameter_to_value (parameter,
1428 TYPE_LENGTH (target_type),
1429 target_type, caller_frame,
1430 caller_per_cu);
1431
1432 release_value (target_val);
1433 val = allocate_computed_value (type, &entry_data_value_funcs,
1434 target_val /* closure */);
1435
1436 /* Copy the referencing pointer to the new computed value. */
1437 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1438 TYPE_LENGTH (checked_type));
1439 set_value_lazy (val, 0);
1440
1441 return val;
1442 }
1443
1444 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1445 SIZE are DWARF block used to match DW_AT_location at the caller's
1446 DW_TAG_GNU_call_site_parameter.
1447
1448 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1449 cannot resolve the parameter for any reason. */
1450
1451 static struct value *
1452 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1453 const gdb_byte *block, size_t block_len)
1454 {
1455 union call_site_parameter_u kind_u;
1456
1457 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1458 if (kind_u.dwarf_reg != -1)
1459 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1460 kind_u);
1461
1462 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1464 kind_u);
1465
1466 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1467 suppressed during normal operation. The expression can be arbitrary if
1468 there is no caller-callee entry value binding expected. */
1469 throw_error (NO_ENTRY_VALUE_ERROR,
1470 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1471 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1472 }
1473
1474 struct piece_closure
1475 {
1476 /* Reference count. */
1477 int refc;
1478
1479 /* The CU from which this closure's expression came. */
1480 struct dwarf2_per_cu_data *per_cu;
1481
1482 /* The number of pieces used to describe this variable. */
1483 int n_pieces;
1484
1485 /* The target address size, used only for DWARF_VALUE_STACK. */
1486 int addr_size;
1487
1488 /* The pieces themselves. */
1489 struct dwarf_expr_piece *pieces;
1490 };
1491
1492 /* Allocate a closure for a value formed from separately-described
1493 PIECES. */
1494
1495 static struct piece_closure *
1496 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1497 int n_pieces, struct dwarf_expr_piece *pieces,
1498 int addr_size)
1499 {
1500 struct piece_closure *c = XCNEW (struct piece_closure);
1501 int i;
1502
1503 c->refc = 1;
1504 c->per_cu = per_cu;
1505 c->n_pieces = n_pieces;
1506 c->addr_size = addr_size;
1507 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1508
1509 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1510 for (i = 0; i < n_pieces; ++i)
1511 if (c->pieces[i].location == DWARF_VALUE_STACK)
1512 value_incref (c->pieces[i].v.value);
1513
1514 return c;
1515 }
1516
1517 /* The lowest-level function to extract bits from a byte buffer.
1518 SOURCE is the buffer. It is updated if we read to the end of a
1519 byte.
1520 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1521 updated to reflect the number of bits actually read.
1522 NBITS is the number of bits we want to read. It is updated to
1523 reflect the number of bits actually read. This function may read
1524 fewer bits.
1525 BITS_BIG_ENDIAN is taken directly from gdbarch.
1526 This function returns the extracted bits. */
1527
1528 static unsigned int
1529 extract_bits_primitive (const gdb_byte **source,
1530 unsigned int *source_offset_bits,
1531 int *nbits, int bits_big_endian)
1532 {
1533 unsigned int avail, mask, datum;
1534
1535 gdb_assert (*source_offset_bits < 8);
1536
1537 avail = 8 - *source_offset_bits;
1538 if (avail > *nbits)
1539 avail = *nbits;
1540
1541 mask = (1 << avail) - 1;
1542 datum = **source;
1543 if (bits_big_endian)
1544 datum >>= 8 - (*source_offset_bits + *nbits);
1545 else
1546 datum >>= *source_offset_bits;
1547 datum &= mask;
1548
1549 *nbits -= avail;
1550 *source_offset_bits += avail;
1551 if (*source_offset_bits >= 8)
1552 {
1553 *source_offset_bits -= 8;
1554 ++*source;
1555 }
1556
1557 return datum;
1558 }
1559
1560 /* Extract some bits from a source buffer and move forward in the
1561 buffer.
1562
1563 SOURCE is the source buffer. It is updated as bytes are read.
1564 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1565 bits are read.
1566 NBITS is the number of bits to read.
1567 BITS_BIG_ENDIAN is taken directly from gdbarch.
1568
1569 This function returns the bits that were read. */
1570
1571 static unsigned int
1572 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1573 int nbits, int bits_big_endian)
1574 {
1575 unsigned int datum;
1576
1577 gdb_assert (nbits > 0 && nbits <= 8);
1578
1579 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1580 bits_big_endian);
1581 if (nbits > 0)
1582 {
1583 unsigned int more;
1584
1585 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1586 bits_big_endian);
1587 if (bits_big_endian)
1588 datum <<= nbits;
1589 else
1590 more <<= nbits;
1591 datum |= more;
1592 }
1593
1594 return datum;
1595 }
1596
1597 /* Write some bits into a buffer and move forward in the buffer.
1598
1599 DATUM is the bits to write. The low-order bits of DATUM are used.
1600 DEST is the destination buffer. It is updated as bytes are
1601 written.
1602 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1603 done.
1604 NBITS is the number of valid bits in DATUM.
1605 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1606
1607 static void
1608 insert_bits (unsigned int datum,
1609 gdb_byte *dest, unsigned int dest_offset_bits,
1610 int nbits, int bits_big_endian)
1611 {
1612 unsigned int mask;
1613
1614 gdb_assert (dest_offset_bits + nbits <= 8);
1615
1616 mask = (1 << nbits) - 1;
1617 if (bits_big_endian)
1618 {
1619 datum <<= 8 - (dest_offset_bits + nbits);
1620 mask <<= 8 - (dest_offset_bits + nbits);
1621 }
1622 else
1623 {
1624 datum <<= dest_offset_bits;
1625 mask <<= dest_offset_bits;
1626 }
1627
1628 gdb_assert ((datum & ~mask) == 0);
1629
1630 *dest = (*dest & ~mask) | datum;
1631 }
1632
1633 /* Copy bits from a source to a destination.
1634
1635 DEST is where the bits should be written.
1636 DEST_OFFSET_BITS is the bit offset into DEST.
1637 SOURCE is the source of bits.
1638 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1639 BIT_COUNT is the number of bits to copy.
1640 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1641
1642 static void
1643 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1644 const gdb_byte *source, unsigned int source_offset_bits,
1645 unsigned int bit_count,
1646 int bits_big_endian)
1647 {
1648 unsigned int dest_avail;
1649 int datum;
1650
1651 /* Reduce everything to byte-size pieces. */
1652 dest += dest_offset_bits / 8;
1653 dest_offset_bits %= 8;
1654 source += source_offset_bits / 8;
1655 source_offset_bits %= 8;
1656
1657 dest_avail = 8 - dest_offset_bits % 8;
1658
1659 /* See if we can fill the first destination byte. */
1660 if (dest_avail < bit_count)
1661 {
1662 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1663 bits_big_endian);
1664 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1665 ++dest;
1666 dest_offset_bits = 0;
1667 bit_count -= dest_avail;
1668 }
1669
1670 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1671 than 8 bits remaining. */
1672 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1673 for (; bit_count >= 8; bit_count -= 8)
1674 {
1675 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1676 *dest++ = (gdb_byte) datum;
1677 }
1678
1679 /* Finally, we may have a few leftover bits. */
1680 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1681 if (bit_count > 0)
1682 {
1683 datum = extract_bits (&source, &source_offset_bits, bit_count,
1684 bits_big_endian);
1685 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1686 }
1687 }
1688
1689 static void
1690 read_pieced_value (struct value *v)
1691 {
1692 int i;
1693 long offset = 0;
1694 ULONGEST bits_to_skip;
1695 gdb_byte *contents;
1696 struct piece_closure *c
1697 = (struct piece_closure *) value_computed_closure (v);
1698 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1699 size_t type_len;
1700 size_t buffer_size = 0;
1701 std::vector<gdb_byte> buffer;
1702 int bits_big_endian
1703 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1704
1705 if (value_type (v) != value_enclosing_type (v))
1706 internal_error (__FILE__, __LINE__,
1707 _("Should not be able to create a lazy value with "
1708 "an enclosing type"));
1709
1710 contents = value_contents_raw (v);
1711 bits_to_skip = 8 * value_offset (v);
1712 if (value_bitsize (v))
1713 {
1714 bits_to_skip += value_bitpos (v);
1715 type_len = value_bitsize (v);
1716 }
1717 else
1718 type_len = 8 * TYPE_LENGTH (value_type (v));
1719
1720 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1721 {
1722 struct dwarf_expr_piece *p = &c->pieces[i];
1723 size_t this_size, this_size_bits;
1724 long dest_offset_bits, source_offset_bits, source_offset;
1725 const gdb_byte *intermediate_buffer;
1726
1727 /* Compute size, source, and destination offsets for copying, in
1728 bits. */
1729 this_size_bits = p->size;
1730 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1731 {
1732 bits_to_skip -= this_size_bits;
1733 continue;
1734 }
1735 if (bits_to_skip > 0)
1736 {
1737 dest_offset_bits = 0;
1738 source_offset_bits = bits_to_skip;
1739 this_size_bits -= bits_to_skip;
1740 bits_to_skip = 0;
1741 }
1742 else
1743 {
1744 dest_offset_bits = offset;
1745 source_offset_bits = 0;
1746 }
1747 if (this_size_bits > type_len - offset)
1748 this_size_bits = type_len - offset;
1749
1750 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1751 source_offset = source_offset_bits / 8;
1752 if (buffer_size < this_size)
1753 {
1754 buffer_size = this_size;
1755 buffer.reserve (buffer_size);
1756 }
1757 intermediate_buffer = buffer.data ();
1758
1759 /* Copy from the source to DEST_BUFFER. */
1760 switch (p->location)
1761 {
1762 case DWARF_VALUE_REGISTER:
1763 {
1764 struct gdbarch *arch = get_frame_arch (frame);
1765 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1766 int optim, unavail;
1767 LONGEST reg_offset = source_offset;
1768
1769 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1770 && this_size < register_size (arch, gdb_regnum))
1771 {
1772 /* Big-endian, and we want less than full size. */
1773 reg_offset = register_size (arch, gdb_regnum) - this_size;
1774 /* We want the lower-order THIS_SIZE_BITS of the bytes
1775 we extract from the register. */
1776 source_offset_bits += 8 * this_size - this_size_bits;
1777 }
1778
1779 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1780 this_size, buffer.data (),
1781 &optim, &unavail))
1782 {
1783 /* Just so garbage doesn't ever shine through. */
1784 memset (buffer.data (), 0, this_size);
1785
1786 if (optim)
1787 mark_value_bits_optimized_out (v, offset, this_size_bits);
1788 if (unavail)
1789 mark_value_bits_unavailable (v, offset, this_size_bits);
1790 }
1791 }
1792 break;
1793
1794 case DWARF_VALUE_MEMORY:
1795 read_value_memory (v, offset,
1796 p->v.mem.in_stack_memory,
1797 p->v.mem.addr + source_offset,
1798 buffer.data (), this_size);
1799 break;
1800
1801 case DWARF_VALUE_STACK:
1802 {
1803 size_t n = this_size;
1804
1805 if (n > c->addr_size - source_offset)
1806 n = (c->addr_size >= source_offset
1807 ? c->addr_size - source_offset
1808 : 0);
1809 if (n == 0)
1810 {
1811 /* Nothing. */
1812 }
1813 else
1814 {
1815 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1816
1817 intermediate_buffer = val_bytes + source_offset;
1818 }
1819 }
1820 break;
1821
1822 case DWARF_VALUE_LITERAL:
1823 {
1824 size_t n = this_size;
1825
1826 if (n > p->v.literal.length - source_offset)
1827 n = (p->v.literal.length >= source_offset
1828 ? p->v.literal.length - source_offset
1829 : 0);
1830 if (n != 0)
1831 intermediate_buffer = p->v.literal.data + source_offset;
1832 }
1833 break;
1834
1835 /* These bits show up as zeros -- but do not cause the value
1836 to be considered optimized-out. */
1837 case DWARF_VALUE_IMPLICIT_POINTER:
1838 break;
1839
1840 case DWARF_VALUE_OPTIMIZED_OUT:
1841 mark_value_bits_optimized_out (v, offset, this_size_bits);
1842 break;
1843
1844 default:
1845 internal_error (__FILE__, __LINE__, _("invalid location type"));
1846 }
1847
1848 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1849 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1850 copy_bitwise (contents, dest_offset_bits,
1851 intermediate_buffer, source_offset_bits % 8,
1852 this_size_bits, bits_big_endian);
1853
1854 offset += this_size_bits;
1855 }
1856 }
1857
1858 static void
1859 write_pieced_value (struct value *to, struct value *from)
1860 {
1861 int i;
1862 long offset = 0;
1863 ULONGEST bits_to_skip;
1864 const gdb_byte *contents;
1865 struct piece_closure *c
1866 = (struct piece_closure *) value_computed_closure (to);
1867 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1868 size_t type_len;
1869 size_t buffer_size = 0;
1870 std::vector<gdb_byte> buffer;
1871 int bits_big_endian
1872 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1873
1874 if (frame == NULL)
1875 {
1876 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1877 return;
1878 }
1879
1880 contents = value_contents (from);
1881 bits_to_skip = 8 * value_offset (to);
1882 if (value_bitsize (to))
1883 {
1884 bits_to_skip += value_bitpos (to);
1885 type_len = value_bitsize (to);
1886 }
1887 else
1888 type_len = 8 * TYPE_LENGTH (value_type (to));
1889
1890 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1891 {
1892 struct dwarf_expr_piece *p = &c->pieces[i];
1893 size_t this_size_bits, this_size;
1894 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1895 int need_bitwise;
1896 const gdb_byte *source_buffer;
1897
1898 this_size_bits = p->size;
1899 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1900 {
1901 bits_to_skip -= this_size_bits;
1902 continue;
1903 }
1904 if (this_size_bits > type_len - offset)
1905 this_size_bits = type_len - offset;
1906 if (bits_to_skip > 0)
1907 {
1908 dest_offset_bits = bits_to_skip;
1909 source_offset_bits = 0;
1910 this_size_bits -= bits_to_skip;
1911 bits_to_skip = 0;
1912 }
1913 else
1914 {
1915 dest_offset_bits = 0;
1916 source_offset_bits = offset;
1917 }
1918
1919 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1920 source_offset = source_offset_bits / 8;
1921 dest_offset = dest_offset_bits / 8;
1922 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1923 {
1924 source_buffer = contents + source_offset;
1925 need_bitwise = 0;
1926 }
1927 else
1928 {
1929 if (buffer_size < this_size)
1930 {
1931 buffer_size = this_size;
1932 buffer.reserve (buffer_size);
1933 }
1934 source_buffer = buffer.data ();
1935 need_bitwise = 1;
1936 }
1937
1938 switch (p->location)
1939 {
1940 case DWARF_VALUE_REGISTER:
1941 {
1942 struct gdbarch *arch = get_frame_arch (frame);
1943 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1944 int reg_offset = dest_offset;
1945
1946 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1947 && this_size <= register_size (arch, gdb_regnum))
1948 {
1949 /* Big-endian, and we want less than full size. */
1950 reg_offset = register_size (arch, gdb_regnum) - this_size;
1951 }
1952
1953 if (need_bitwise)
1954 {
1955 int optim, unavail;
1956
1957 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1958 this_size, buffer.data (),
1959 &optim, &unavail))
1960 {
1961 if (optim)
1962 throw_error (OPTIMIZED_OUT_ERROR,
1963 _("Can't do read-modify-write to "
1964 "update bitfield; containing word "
1965 "has been optimized out"));
1966 if (unavail)
1967 throw_error (NOT_AVAILABLE_ERROR,
1968 _("Can't do read-modify-write to update "
1969 "bitfield; containing word "
1970 "is unavailable"));
1971 }
1972 copy_bitwise (buffer.data (), dest_offset_bits,
1973 contents, source_offset_bits,
1974 this_size_bits,
1975 bits_big_endian);
1976 }
1977
1978 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1979 this_size, source_buffer);
1980 }
1981 break;
1982 case DWARF_VALUE_MEMORY:
1983 if (need_bitwise)
1984 {
1985 /* Only the first and last bytes can possibly have any
1986 bits reused. */
1987 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
1988 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1989 &buffer[this_size - 1], 1);
1990 copy_bitwise (buffer.data (), dest_offset_bits,
1991 contents, source_offset_bits,
1992 this_size_bits,
1993 bits_big_endian);
1994 }
1995
1996 write_memory (p->v.mem.addr + dest_offset,
1997 source_buffer, this_size);
1998 break;
1999 default:
2000 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2001 break;
2002 }
2003 offset += this_size_bits;
2004 }
2005 }
2006
2007 /* An implementation of an lval_funcs method to see whether a value is
2008 a synthetic pointer. */
2009
2010 static int
2011 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2012 int bit_length)
2013 {
2014 struct piece_closure *c
2015 = (struct piece_closure *) value_computed_closure (value);
2016 int i;
2017
2018 bit_offset += 8 * value_offset (value);
2019 if (value_bitsize (value))
2020 bit_offset += value_bitpos (value);
2021
2022 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2023 {
2024 struct dwarf_expr_piece *p = &c->pieces[i];
2025 size_t this_size_bits = p->size;
2026
2027 if (bit_offset > 0)
2028 {
2029 if (bit_offset >= this_size_bits)
2030 {
2031 bit_offset -= this_size_bits;
2032 continue;
2033 }
2034
2035 bit_length -= this_size_bits - bit_offset;
2036 bit_offset = 0;
2037 }
2038 else
2039 bit_length -= this_size_bits;
2040
2041 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2042 return 0;
2043 }
2044
2045 return 1;
2046 }
2047
2048 /* A wrapper function for get_frame_address_in_block. */
2049
2050 static CORE_ADDR
2051 get_frame_address_in_block_wrapper (void *baton)
2052 {
2053 return get_frame_address_in_block ((struct frame_info *) baton);
2054 }
2055
2056 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2057
2058 static struct value *
2059 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2060 struct dwarf2_per_cu_data *per_cu,
2061 struct type *type)
2062 {
2063 struct value *result = NULL;
2064 struct obstack temp_obstack;
2065 struct cleanup *cleanup;
2066 const gdb_byte *bytes;
2067 LONGEST len;
2068
2069 obstack_init (&temp_obstack);
2070 cleanup = make_cleanup_obstack_free (&temp_obstack);
2071 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2072
2073 if (bytes != NULL)
2074 {
2075 if (byte_offset >= 0
2076 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2077 {
2078 bytes += byte_offset;
2079 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2080 }
2081 else
2082 invalid_synthetic_pointer ();
2083 }
2084 else
2085 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2086
2087 do_cleanups (cleanup);
2088
2089 return result;
2090 }
2091
2092 /* Fetch the value pointed to by a synthetic pointer. */
2093
2094 static struct value *
2095 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2096 struct dwarf2_per_cu_data *per_cu,
2097 struct frame_info *frame, struct type *type)
2098 {
2099 /* Fetch the location expression of the DIE we're pointing to. */
2100 struct dwarf2_locexpr_baton baton
2101 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2102 get_frame_address_in_block_wrapper, frame);
2103
2104 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2105 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2106 or it may've been optimized out. */
2107 if (baton.data != NULL)
2108 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2109 baton.data, baton.size, baton.per_cu,
2110 byte_offset);
2111 else
2112 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2113 type);
2114 }
2115
2116 /* An implementation of an lval_funcs method to indirect through a
2117 pointer. This handles the synthetic pointer case when needed. */
2118
2119 static struct value *
2120 indirect_pieced_value (struct value *value)
2121 {
2122 struct piece_closure *c
2123 = (struct piece_closure *) value_computed_closure (value);
2124 struct type *type;
2125 struct frame_info *frame;
2126 struct dwarf2_locexpr_baton baton;
2127 int i, bit_length;
2128 LONGEST bit_offset;
2129 struct dwarf_expr_piece *piece = NULL;
2130 LONGEST byte_offset;
2131 enum bfd_endian byte_order;
2132
2133 type = check_typedef (value_type (value));
2134 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2135 return NULL;
2136
2137 bit_length = 8 * TYPE_LENGTH (type);
2138 bit_offset = 8 * value_offset (value);
2139 if (value_bitsize (value))
2140 bit_offset += value_bitpos (value);
2141
2142 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2143 {
2144 struct dwarf_expr_piece *p = &c->pieces[i];
2145 size_t this_size_bits = p->size;
2146
2147 if (bit_offset > 0)
2148 {
2149 if (bit_offset >= this_size_bits)
2150 {
2151 bit_offset -= this_size_bits;
2152 continue;
2153 }
2154
2155 bit_length -= this_size_bits - bit_offset;
2156 bit_offset = 0;
2157 }
2158 else
2159 bit_length -= this_size_bits;
2160
2161 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2162 return NULL;
2163
2164 if (bit_length != 0)
2165 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2166
2167 piece = p;
2168 break;
2169 }
2170
2171 gdb_assert (piece != NULL);
2172 frame = get_selected_frame (_("No frame selected."));
2173
2174 /* This is an offset requested by GDB, such as value subscripts.
2175 However, due to how synthetic pointers are implemented, this is
2176 always presented to us as a pointer type. This means we have to
2177 sign-extend it manually as appropriate. Use raw
2178 extract_signed_integer directly rather than value_as_address and
2179 sign extend afterwards on architectures that would need it
2180 (mostly everywhere except MIPS, which has signed addresses) as
2181 the later would go through gdbarch_pointer_to_address and thus
2182 return a CORE_ADDR with high bits set on architectures that
2183 encode address spaces and other things in CORE_ADDR. */
2184 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2185 byte_offset = extract_signed_integer (value_contents (value),
2186 TYPE_LENGTH (type), byte_order);
2187 byte_offset += piece->v.ptr.offset;
2188
2189 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2190 frame, type);
2191 }
2192
2193 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2194 references. */
2195
2196 static struct value *
2197 coerce_pieced_ref (const struct value *value)
2198 {
2199 struct type *type = check_typedef (value_type (value));
2200
2201 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2202 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2203 {
2204 const struct piece_closure *closure
2205 = (struct piece_closure *) value_computed_closure (value);
2206 struct frame_info *frame
2207 = get_selected_frame (_("No frame selected."));
2208
2209 /* gdb represents synthetic pointers as pieced values with a single
2210 piece. */
2211 gdb_assert (closure != NULL);
2212 gdb_assert (closure->n_pieces == 1);
2213
2214 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2215 closure->pieces->v.ptr.offset,
2216 closure->per_cu, frame, type);
2217 }
2218 else
2219 {
2220 /* Else: not a synthetic reference; do nothing. */
2221 return NULL;
2222 }
2223 }
2224
2225 static void *
2226 copy_pieced_value_closure (const struct value *v)
2227 {
2228 struct piece_closure *c
2229 = (struct piece_closure *) value_computed_closure (v);
2230
2231 ++c->refc;
2232 return c;
2233 }
2234
2235 static void
2236 free_pieced_value_closure (struct value *v)
2237 {
2238 struct piece_closure *c
2239 = (struct piece_closure *) value_computed_closure (v);
2240
2241 --c->refc;
2242 if (c->refc == 0)
2243 {
2244 int i;
2245
2246 for (i = 0; i < c->n_pieces; ++i)
2247 if (c->pieces[i].location == DWARF_VALUE_STACK)
2248 value_free (c->pieces[i].v.value);
2249
2250 xfree (c->pieces);
2251 xfree (c);
2252 }
2253 }
2254
2255 /* Functions for accessing a variable described by DW_OP_piece. */
2256 static const struct lval_funcs pieced_value_funcs = {
2257 read_pieced_value,
2258 write_pieced_value,
2259 indirect_pieced_value,
2260 coerce_pieced_ref,
2261 check_pieced_synthetic_pointer,
2262 copy_pieced_value_closure,
2263 free_pieced_value_closure
2264 };
2265
2266 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2267
2268 const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2269 {
2270 dwarf_expr_read_addr_from_reg,
2271 dwarf_expr_get_reg_value,
2272 dwarf_expr_read_mem,
2273 dwarf_expr_frame_base,
2274 dwarf_expr_frame_cfa,
2275 dwarf_expr_frame_pc,
2276 dwarf_expr_tls_address,
2277 dwarf_expr_dwarf_call,
2278 dwarf_expr_get_base_type,
2279 dwarf_expr_push_dwarf_reg_entry_value,
2280 dwarf_expr_get_addr_index,
2281 dwarf_expr_get_obj_addr
2282 };
2283
2284 /* Evaluate a location description, starting at DATA and with length
2285 SIZE, to find the current location of variable of TYPE in the
2286 context of FRAME. BYTE_OFFSET is applied after the contents are
2287 computed. */
2288
2289 static struct value *
2290 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2291 const gdb_byte *data, size_t size,
2292 struct dwarf2_per_cu_data *per_cu,
2293 LONGEST byte_offset)
2294 {
2295 struct value *retval;
2296 struct dwarf_expr_baton baton;
2297 struct cleanup *value_chain;
2298 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2299
2300 if (byte_offset < 0)
2301 invalid_synthetic_pointer ();
2302
2303 if (size == 0)
2304 return allocate_optimized_out_value (type);
2305
2306 baton.frame = frame;
2307 baton.per_cu = per_cu;
2308 baton.obj_address = 0;
2309
2310 dwarf_expr_context ctx;
2311 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2312
2313 ctx.gdbarch = get_objfile_arch (objfile);
2314 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2315 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2316 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2317 ctx.baton = &baton;
2318 ctx.funcs = &dwarf_expr_ctx_funcs;
2319
2320 TRY
2321 {
2322 dwarf_expr_eval (&ctx, data, size);
2323 }
2324 CATCH (ex, RETURN_MASK_ERROR)
2325 {
2326 if (ex.error == NOT_AVAILABLE_ERROR)
2327 {
2328 do_cleanups (value_chain);
2329 retval = allocate_value (type);
2330 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2331 return retval;
2332 }
2333 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2334 {
2335 if (entry_values_debug)
2336 exception_print (gdb_stdout, ex);
2337 do_cleanups (value_chain);
2338 return allocate_optimized_out_value (type);
2339 }
2340 else
2341 throw_exception (ex);
2342 }
2343 END_CATCH
2344
2345 if (ctx.num_pieces > 0)
2346 {
2347 struct piece_closure *c;
2348 struct frame_id frame_id = get_frame_id (frame);
2349 ULONGEST bit_size = 0;
2350 int i;
2351
2352 for (i = 0; i < ctx.num_pieces; ++i)
2353 bit_size += ctx.pieces[i].size;
2354 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2355 invalid_synthetic_pointer ();
2356
2357 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2358 ctx.addr_size);
2359 /* We must clean up the value chain after creating the piece
2360 closure but before allocating the result. */
2361 do_cleanups (value_chain);
2362 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2363 VALUE_FRAME_ID (retval) = frame_id;
2364 set_value_offset (retval, byte_offset);
2365 }
2366 else
2367 {
2368 switch (ctx.location)
2369 {
2370 case DWARF_VALUE_REGISTER:
2371 {
2372 struct gdbarch *arch = get_frame_arch (frame);
2373 int dwarf_regnum
2374 = longest_to_int (value_as_long (dwarf_expr_fetch (&ctx, 0)));
2375 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2376
2377 if (byte_offset != 0)
2378 error (_("cannot use offset on synthetic pointer to register"));
2379 do_cleanups (value_chain);
2380 retval = value_from_register (type, gdb_regnum, frame);
2381 if (value_optimized_out (retval))
2382 {
2383 struct value *tmp;
2384
2385 /* This means the register has undefined value / was
2386 not saved. As we're computing the location of some
2387 variable etc. in the program, not a value for
2388 inspecting a register ($pc, $sp, etc.), return a
2389 generic optimized out value instead, so that we show
2390 <optimized out> instead of <not saved>. */
2391 do_cleanups (value_chain);
2392 tmp = allocate_value (type);
2393 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2394 retval = tmp;
2395 }
2396 }
2397 break;
2398
2399 case DWARF_VALUE_MEMORY:
2400 {
2401 struct type *ptr_type;
2402 CORE_ADDR address = dwarf_expr_fetch_address (&ctx, 0);
2403 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (&ctx, 0);
2404
2405 /* DW_OP_deref_size (and possibly other operations too) may
2406 create a pointer instead of an address. Ideally, the
2407 pointer to address conversion would be performed as part
2408 of those operations, but the type of the object to
2409 which the address refers is not known at the time of
2410 the operation. Therefore, we do the conversion here
2411 since the type is readily available. */
2412
2413 switch (TYPE_CODE (type))
2414 {
2415 case TYPE_CODE_FUNC:
2416 case TYPE_CODE_METHOD:
2417 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2418 break;
2419 default:
2420 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2421 break;
2422 }
2423 address = value_as_address (value_from_pointer (ptr_type, address));
2424
2425 do_cleanups (value_chain);
2426 retval = value_at_lazy (type, address + byte_offset);
2427 if (in_stack_memory)
2428 set_value_stack (retval, 1);
2429 }
2430 break;
2431
2432 case DWARF_VALUE_STACK:
2433 {
2434 struct value *value = dwarf_expr_fetch (&ctx, 0);
2435 gdb_byte *contents;
2436 const gdb_byte *val_bytes;
2437 size_t n = TYPE_LENGTH (value_type (value));
2438
2439 if (byte_offset + TYPE_LENGTH (type) > n)
2440 invalid_synthetic_pointer ();
2441
2442 val_bytes = value_contents_all (value);
2443 val_bytes += byte_offset;
2444 n -= byte_offset;
2445
2446 /* Preserve VALUE because we are going to free values back
2447 to the mark, but we still need the value contents
2448 below. */
2449 value_incref (value);
2450 do_cleanups (value_chain);
2451 make_cleanup_value_free (value);
2452
2453 retval = allocate_value (type);
2454 contents = value_contents_raw (retval);
2455 if (n > TYPE_LENGTH (type))
2456 {
2457 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2458
2459 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2460 val_bytes += n - TYPE_LENGTH (type);
2461 n = TYPE_LENGTH (type);
2462 }
2463 memcpy (contents, val_bytes, n);
2464 }
2465 break;
2466
2467 case DWARF_VALUE_LITERAL:
2468 {
2469 bfd_byte *contents;
2470 const bfd_byte *ldata;
2471 size_t n = ctx.len;
2472
2473 if (byte_offset + TYPE_LENGTH (type) > n)
2474 invalid_synthetic_pointer ();
2475
2476 do_cleanups (value_chain);
2477 retval = allocate_value (type);
2478 contents = value_contents_raw (retval);
2479
2480 ldata = ctx.data + byte_offset;
2481 n -= byte_offset;
2482
2483 if (n > TYPE_LENGTH (type))
2484 {
2485 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2486
2487 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2488 ldata += n - TYPE_LENGTH (type);
2489 n = TYPE_LENGTH (type);
2490 }
2491 memcpy (contents, ldata, n);
2492 }
2493 break;
2494
2495 case DWARF_VALUE_OPTIMIZED_OUT:
2496 do_cleanups (value_chain);
2497 retval = allocate_optimized_out_value (type);
2498 break;
2499
2500 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2501 operation by execute_stack_op. */
2502 case DWARF_VALUE_IMPLICIT_POINTER:
2503 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2504 it can only be encountered when making a piece. */
2505 default:
2506 internal_error (__FILE__, __LINE__, _("invalid location type"));
2507 }
2508 }
2509
2510 set_value_initialized (retval, ctx.initialized);
2511
2512 do_cleanups (value_chain);
2513
2514 return retval;
2515 }
2516
2517 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2518 passes 0 as the byte_offset. */
2519
2520 struct value *
2521 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2522 const gdb_byte *data, size_t size,
2523 struct dwarf2_per_cu_data *per_cu)
2524 {
2525 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2526 }
2527
2528 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2529 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2530 frame in which the expression is evaluated. ADDR is a context (location of
2531 a variable) and might be needed to evaluate the location expression.
2532 Returns 1 on success, 0 otherwise. */
2533
2534 static int
2535 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2536 struct frame_info *frame,
2537 CORE_ADDR addr,
2538 CORE_ADDR *valp)
2539 {
2540 struct dwarf_expr_baton baton;
2541 struct objfile *objfile;
2542 struct cleanup *cleanup;
2543
2544 if (dlbaton == NULL || dlbaton->size == 0)
2545 return 0;
2546
2547 dwarf_expr_context ctx;
2548
2549 baton.frame = frame;
2550 baton.per_cu = dlbaton->per_cu;
2551 baton.obj_address = addr;
2552
2553 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2554
2555 ctx.gdbarch = get_objfile_arch (objfile);
2556 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2557 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2558 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2559 ctx.funcs = &dwarf_expr_ctx_funcs;
2560 ctx.baton = &baton;
2561
2562 dwarf_expr_eval (&ctx, dlbaton->data, dlbaton->size);
2563
2564 switch (ctx.location)
2565 {
2566 case DWARF_VALUE_REGISTER:
2567 case DWARF_VALUE_MEMORY:
2568 case DWARF_VALUE_STACK:
2569 *valp = dwarf_expr_fetch_address (&ctx, 0);
2570 if (ctx.location == DWARF_VALUE_REGISTER)
2571 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2572 return 1;
2573 case DWARF_VALUE_LITERAL:
2574 *valp = extract_signed_integer (ctx.data, ctx.len,
2575 gdbarch_byte_order (ctx.gdbarch));
2576 return 1;
2577 /* Unsupported dwarf values. */
2578 case DWARF_VALUE_OPTIMIZED_OUT:
2579 case DWARF_VALUE_IMPLICIT_POINTER:
2580 break;
2581 }
2582
2583 return 0;
2584 }
2585
2586 /* See dwarf2loc.h. */
2587
2588 int
2589 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2590 struct frame_info *frame,
2591 struct property_addr_info *addr_stack,
2592 CORE_ADDR *value)
2593 {
2594 if (prop == NULL)
2595 return 0;
2596
2597 if (frame == NULL && has_stack_frames ())
2598 frame = get_selected_frame (NULL);
2599
2600 switch (prop->kind)
2601 {
2602 case PROP_LOCEXPR:
2603 {
2604 const struct dwarf2_property_baton *baton
2605 = (const struct dwarf2_property_baton *) prop->data.baton;
2606
2607 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2608 addr_stack ? addr_stack->addr : 0,
2609 value))
2610 {
2611 if (baton->referenced_type)
2612 {
2613 struct value *val = value_at (baton->referenced_type, *value);
2614
2615 *value = value_as_address (val);
2616 }
2617 return 1;
2618 }
2619 }
2620 break;
2621
2622 case PROP_LOCLIST:
2623 {
2624 struct dwarf2_property_baton *baton
2625 = (struct dwarf2_property_baton *) prop->data.baton;
2626 CORE_ADDR pc = get_frame_address_in_block (frame);
2627 const gdb_byte *data;
2628 struct value *val;
2629 size_t size;
2630
2631 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2632 if (data != NULL)
2633 {
2634 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2635 size, baton->loclist.per_cu);
2636 if (!value_optimized_out (val))
2637 {
2638 *value = value_as_address (val);
2639 return 1;
2640 }
2641 }
2642 }
2643 break;
2644
2645 case PROP_CONST:
2646 *value = prop->data.const_val;
2647 return 1;
2648
2649 case PROP_ADDR_OFFSET:
2650 {
2651 struct dwarf2_property_baton *baton
2652 = (struct dwarf2_property_baton *) prop->data.baton;
2653 struct property_addr_info *pinfo;
2654 struct value *val;
2655
2656 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2657 if (pinfo->type == baton->referenced_type)
2658 break;
2659 if (pinfo == NULL)
2660 error (_("cannot find reference address for offset property"));
2661 if (pinfo->valaddr != NULL)
2662 val = value_from_contents
2663 (baton->offset_info.type,
2664 pinfo->valaddr + baton->offset_info.offset);
2665 else
2666 val = value_at (baton->offset_info.type,
2667 pinfo->addr + baton->offset_info.offset);
2668 *value = value_as_address (val);
2669 return 1;
2670 }
2671 }
2672
2673 return 0;
2674 }
2675
2676 /* See dwarf2loc.h. */
2677
2678 void
2679 dwarf2_compile_property_to_c (struct ui_file *stream,
2680 const char *result_name,
2681 struct gdbarch *gdbarch,
2682 unsigned char *registers_used,
2683 const struct dynamic_prop *prop,
2684 CORE_ADDR pc,
2685 struct symbol *sym)
2686 {
2687 struct dwarf2_property_baton *baton
2688 = (struct dwarf2_property_baton *) prop->data.baton;
2689 const gdb_byte *data;
2690 size_t size;
2691 struct dwarf2_per_cu_data *per_cu;
2692
2693 if (prop->kind == PROP_LOCEXPR)
2694 {
2695 data = baton->locexpr.data;
2696 size = baton->locexpr.size;
2697 per_cu = baton->locexpr.per_cu;
2698 }
2699 else
2700 {
2701 gdb_assert (prop->kind == PROP_LOCLIST);
2702
2703 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2704 per_cu = baton->loclist.per_cu;
2705 }
2706
2707 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2708 gdbarch, registers_used,
2709 dwarf2_per_cu_addr_size (per_cu),
2710 data, data + size, per_cu);
2711 }
2712
2713 \f
2714 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2715
2716 struct symbol_needs_baton
2717 {
2718 enum symbol_needs_kind needs;
2719 struct dwarf2_per_cu_data *per_cu;
2720 };
2721
2722 /* Reads from registers do require a frame. */
2723 static CORE_ADDR
2724 symbol_needs_read_addr_from_reg (void *baton, int regnum)
2725 {
2726 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2727
2728 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2729 return 1;
2730 }
2731
2732 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2733 Reads from registers do require a frame. */
2734
2735 static struct value *
2736 symbol_needs_get_reg_value (void *baton, struct type *type, int regnum)
2737 {
2738 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2739
2740 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2741 return value_zero (type, not_lval);
2742 }
2743
2744 /* Reads from memory do not require a frame. */
2745 static void
2746 symbol_needs_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2747 {
2748 memset (buf, 0, len);
2749 }
2750
2751 /* Frame-relative accesses do require a frame. */
2752 static void
2753 symbol_needs_frame_base (void *baton, const gdb_byte **start, size_t * length)
2754 {
2755 static gdb_byte lit0 = DW_OP_lit0;
2756 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2757
2758 *start = &lit0;
2759 *length = 1;
2760
2761 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2762 }
2763
2764 /* CFA accesses require a frame. */
2765
2766 static CORE_ADDR
2767 symbol_needs_frame_cfa (void *baton)
2768 {
2769 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2770
2771 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2772 return 1;
2773 }
2774
2775 /* Thread-local accesses require registers, but not a frame. */
2776 static CORE_ADDR
2777 symbol_needs_tls_address (void *baton, CORE_ADDR offset)
2778 {
2779 struct symbol_needs_baton *nf_baton = (struct symbol_needs_baton *) baton;
2780
2781 if (nf_baton->needs <= SYMBOL_NEEDS_REGISTERS)
2782 nf_baton->needs = SYMBOL_NEEDS_REGISTERS;
2783 return 1;
2784 }
2785
2786 /* Helper interface of per_cu_dwarf_call for
2787 dwarf2_loc_desc_get_symbol_read_needs. */
2788
2789 static void
2790 symbol_needs_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2791 {
2792 struct symbol_needs_baton *nf_baton =
2793 (struct symbol_needs_baton *) ctx->baton;
2794
2795 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2796 ctx->funcs->get_frame_pc, ctx->baton);
2797 }
2798
2799 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2800
2801 static void
2802 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2803 enum call_site_parameter_kind kind,
2804 union call_site_parameter_u kind_u, int deref_size)
2805 {
2806 struct symbol_needs_baton *nf_baton =
2807 (struct symbol_needs_baton *) ctx->baton;
2808
2809 nf_baton->needs = SYMBOL_NEEDS_FRAME;
2810
2811 /* The expression may require some stub values on DWARF stack. */
2812 dwarf_expr_push_address (ctx, 0, 0);
2813 }
2814
2815 /* DW_OP_GNU_addr_index doesn't require a frame. */
2816
2817 static CORE_ADDR
2818 needs_get_addr_index (void *baton, unsigned int index)
2819 {
2820 /* Nothing to do. */
2821 return 1;
2822 }
2823
2824 /* DW_OP_push_object_address has a frame already passed through. */
2825
2826 static CORE_ADDR
2827 needs_get_obj_addr (void *baton)
2828 {
2829 /* Nothing to do. */
2830 return 1;
2831 }
2832
2833 /* Virtual method table for dwarf2_loc_desc_get_symbol_read_needs
2834 below. */
2835
2836 static const struct dwarf_expr_context_funcs symbol_needs_ctx_funcs =
2837 {
2838 symbol_needs_read_addr_from_reg,
2839 symbol_needs_get_reg_value,
2840 symbol_needs_read_mem,
2841 symbol_needs_frame_base,
2842 symbol_needs_frame_cfa,
2843 symbol_needs_frame_cfa, /* get_frame_pc */
2844 symbol_needs_tls_address,
2845 symbol_needs_dwarf_call,
2846 NULL, /* get_base_type */
2847 needs_dwarf_reg_entry_value,
2848 needs_get_addr_index,
2849 needs_get_obj_addr
2850 };
2851
2852 /* Compute the correct symbol_needs_kind value for the location
2853 expression at DATA (length SIZE). */
2854
2855 static enum symbol_needs_kind
2856 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2857 struct dwarf2_per_cu_data *per_cu)
2858 {
2859 struct symbol_needs_baton baton;
2860 int in_reg;
2861 struct cleanup *old_chain;
2862 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2863
2864 baton.needs = SYMBOL_NEEDS_NONE;
2865 baton.per_cu = per_cu;
2866
2867 dwarf_expr_context ctx;
2868 old_chain = make_cleanup_value_free_to_mark (value_mark ());
2869
2870 ctx.gdbarch = get_objfile_arch (objfile);
2871 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2872 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2873 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2874 ctx.baton = &baton;
2875 ctx.funcs = &symbol_needs_ctx_funcs;
2876
2877 dwarf_expr_eval (&ctx, data, size);
2878
2879 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2880
2881 if (ctx.num_pieces > 0)
2882 {
2883 int i;
2884
2885 /* If the location has several pieces, and any of them are in
2886 registers, then we will need a frame to fetch them from. */
2887 for (i = 0; i < ctx.num_pieces; i++)
2888 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2889 in_reg = 1;
2890 }
2891
2892 do_cleanups (old_chain);
2893
2894 if (in_reg)
2895 baton.needs = SYMBOL_NEEDS_FRAME;
2896 return baton.needs;
2897 }
2898
2899 /* A helper function that throws an unimplemented error mentioning a
2900 given DWARF operator. */
2901
2902 static void
2903 unimplemented (unsigned int op)
2904 {
2905 const char *name = get_DW_OP_name (op);
2906
2907 if (name)
2908 error (_("DWARF operator %s cannot be translated to an agent expression"),
2909 name);
2910 else
2911 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2912 "to an agent expression"),
2913 op);
2914 }
2915
2916 /* See dwarf2loc.h.
2917
2918 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2919 can issue a complaint, which is better than having every target's
2920 implementation of dwarf2_reg_to_regnum do it. */
2921
2922 int
2923 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2924 {
2925 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2926
2927 if (reg == -1)
2928 {
2929 complaint (&symfile_complaints,
2930 _("bad DWARF register number %d"), dwarf_reg);
2931 }
2932 return reg;
2933 }
2934
2935 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2936 Throw an error because DWARF_REG is bad. */
2937
2938 static void
2939 throw_bad_regnum_error (ULONGEST dwarf_reg)
2940 {
2941 /* Still want to print -1 as "-1".
2942 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2943 but that's overkill for now. */
2944 if ((int) dwarf_reg == dwarf_reg)
2945 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2946 error (_("Unable to access DWARF register number %s"),
2947 pulongest (dwarf_reg));
2948 }
2949
2950 /* See dwarf2loc.h. */
2951
2952 int
2953 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2954 {
2955 int reg;
2956
2957 if (dwarf_reg > INT_MAX)
2958 throw_bad_regnum_error (dwarf_reg);
2959 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2960 bad, but that's ok. */
2961 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2962 if (reg == -1)
2963 throw_bad_regnum_error (dwarf_reg);
2964 return reg;
2965 }
2966
2967 /* A helper function that emits an access to memory. ARCH is the
2968 target architecture. EXPR is the expression which we are building.
2969 NBITS is the number of bits we want to read. This emits the
2970 opcodes needed to read the memory and then extract the desired
2971 bits. */
2972
2973 static void
2974 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2975 {
2976 ULONGEST nbytes = (nbits + 7) / 8;
2977
2978 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2979
2980 if (expr->tracing)
2981 ax_trace_quick (expr, nbytes);
2982
2983 if (nbits <= 8)
2984 ax_simple (expr, aop_ref8);
2985 else if (nbits <= 16)
2986 ax_simple (expr, aop_ref16);
2987 else if (nbits <= 32)
2988 ax_simple (expr, aop_ref32);
2989 else
2990 ax_simple (expr, aop_ref64);
2991
2992 /* If we read exactly the number of bytes we wanted, we're done. */
2993 if (8 * nbytes == nbits)
2994 return;
2995
2996 if (gdbarch_bits_big_endian (arch))
2997 {
2998 /* On a bits-big-endian machine, we want the high-order
2999 NBITS. */
3000 ax_const_l (expr, 8 * nbytes - nbits);
3001 ax_simple (expr, aop_rsh_unsigned);
3002 }
3003 else
3004 {
3005 /* On a bits-little-endian box, we want the low-order NBITS. */
3006 ax_zero_ext (expr, nbits);
3007 }
3008 }
3009
3010 /* A helper function to return the frame's PC. */
3011
3012 static CORE_ADDR
3013 get_ax_pc (void *baton)
3014 {
3015 struct agent_expr *expr = (struct agent_expr *) baton;
3016
3017 return expr->scope;
3018 }
3019
3020 /* Compile a DWARF location expression to an agent expression.
3021
3022 EXPR is the agent expression we are building.
3023 LOC is the agent value we modify.
3024 ARCH is the architecture.
3025 ADDR_SIZE is the size of addresses, in bytes.
3026 OP_PTR is the start of the location expression.
3027 OP_END is one past the last byte of the location expression.
3028
3029 This will throw an exception for various kinds of errors -- for
3030 example, if the expression cannot be compiled, or if the expression
3031 is invalid. */
3032
3033 void
3034 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3035 struct gdbarch *arch, unsigned int addr_size,
3036 const gdb_byte *op_ptr, const gdb_byte *op_end,
3037 struct dwarf2_per_cu_data *per_cu)
3038 {
3039 int i;
3040 std::vector<int> dw_labels, patches;
3041 const gdb_byte * const base = op_ptr;
3042 const gdb_byte *previous_piece = op_ptr;
3043 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3044 ULONGEST bits_collected = 0;
3045 unsigned int addr_size_bits = 8 * addr_size;
3046 int bits_big_endian = gdbarch_bits_big_endian (arch);
3047
3048 std::vector<int> offsets (op_end - op_ptr, -1);
3049
3050 /* By default we are making an address. */
3051 loc->kind = axs_lvalue_memory;
3052
3053 while (op_ptr < op_end)
3054 {
3055 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3056 uint64_t uoffset, reg;
3057 int64_t offset;
3058 int i;
3059
3060 offsets[op_ptr - base] = expr->len;
3061 ++op_ptr;
3062
3063 /* Our basic approach to code generation is to map DWARF
3064 operations directly to AX operations. However, there are
3065 some differences.
3066
3067 First, DWARF works on address-sized units, but AX always uses
3068 LONGEST. For most operations we simply ignore this
3069 difference; instead we generate sign extensions as needed
3070 before division and comparison operations. It would be nice
3071 to omit the sign extensions, but there is no way to determine
3072 the size of the target's LONGEST. (This code uses the size
3073 of the host LONGEST in some cases -- that is a bug but it is
3074 difficult to fix.)
3075
3076 Second, some DWARF operations cannot be translated to AX.
3077 For these we simply fail. See
3078 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3079 switch (op)
3080 {
3081 case DW_OP_lit0:
3082 case DW_OP_lit1:
3083 case DW_OP_lit2:
3084 case DW_OP_lit3:
3085 case DW_OP_lit4:
3086 case DW_OP_lit5:
3087 case DW_OP_lit6:
3088 case DW_OP_lit7:
3089 case DW_OP_lit8:
3090 case DW_OP_lit9:
3091 case DW_OP_lit10:
3092 case DW_OP_lit11:
3093 case DW_OP_lit12:
3094 case DW_OP_lit13:
3095 case DW_OP_lit14:
3096 case DW_OP_lit15:
3097 case DW_OP_lit16:
3098 case DW_OP_lit17:
3099 case DW_OP_lit18:
3100 case DW_OP_lit19:
3101 case DW_OP_lit20:
3102 case DW_OP_lit21:
3103 case DW_OP_lit22:
3104 case DW_OP_lit23:
3105 case DW_OP_lit24:
3106 case DW_OP_lit25:
3107 case DW_OP_lit26:
3108 case DW_OP_lit27:
3109 case DW_OP_lit28:
3110 case DW_OP_lit29:
3111 case DW_OP_lit30:
3112 case DW_OP_lit31:
3113 ax_const_l (expr, op - DW_OP_lit0);
3114 break;
3115
3116 case DW_OP_addr:
3117 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3118 op_ptr += addr_size;
3119 /* Some versions of GCC emit DW_OP_addr before
3120 DW_OP_GNU_push_tls_address. In this case the value is an
3121 index, not an address. We don't support things like
3122 branching between the address and the TLS op. */
3123 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3124 uoffset += dwarf2_per_cu_text_offset (per_cu);
3125 ax_const_l (expr, uoffset);
3126 break;
3127
3128 case DW_OP_const1u:
3129 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3130 op_ptr += 1;
3131 break;
3132 case DW_OP_const1s:
3133 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3134 op_ptr += 1;
3135 break;
3136 case DW_OP_const2u:
3137 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3138 op_ptr += 2;
3139 break;
3140 case DW_OP_const2s:
3141 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3142 op_ptr += 2;
3143 break;
3144 case DW_OP_const4u:
3145 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3146 op_ptr += 4;
3147 break;
3148 case DW_OP_const4s:
3149 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3150 op_ptr += 4;
3151 break;
3152 case DW_OP_const8u:
3153 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3154 op_ptr += 8;
3155 break;
3156 case DW_OP_const8s:
3157 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3158 op_ptr += 8;
3159 break;
3160 case DW_OP_constu:
3161 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3162 ax_const_l (expr, uoffset);
3163 break;
3164 case DW_OP_consts:
3165 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3166 ax_const_l (expr, offset);
3167 break;
3168
3169 case DW_OP_reg0:
3170 case DW_OP_reg1:
3171 case DW_OP_reg2:
3172 case DW_OP_reg3:
3173 case DW_OP_reg4:
3174 case DW_OP_reg5:
3175 case DW_OP_reg6:
3176 case DW_OP_reg7:
3177 case DW_OP_reg8:
3178 case DW_OP_reg9:
3179 case DW_OP_reg10:
3180 case DW_OP_reg11:
3181 case DW_OP_reg12:
3182 case DW_OP_reg13:
3183 case DW_OP_reg14:
3184 case DW_OP_reg15:
3185 case DW_OP_reg16:
3186 case DW_OP_reg17:
3187 case DW_OP_reg18:
3188 case DW_OP_reg19:
3189 case DW_OP_reg20:
3190 case DW_OP_reg21:
3191 case DW_OP_reg22:
3192 case DW_OP_reg23:
3193 case DW_OP_reg24:
3194 case DW_OP_reg25:
3195 case DW_OP_reg26:
3196 case DW_OP_reg27:
3197 case DW_OP_reg28:
3198 case DW_OP_reg29:
3199 case DW_OP_reg30:
3200 case DW_OP_reg31:
3201 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3202 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3203 loc->kind = axs_lvalue_register;
3204 break;
3205
3206 case DW_OP_regx:
3207 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3208 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3209 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3210 loc->kind = axs_lvalue_register;
3211 break;
3212
3213 case DW_OP_implicit_value:
3214 {
3215 uint64_t len;
3216
3217 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3218 if (op_ptr + len > op_end)
3219 error (_("DW_OP_implicit_value: too few bytes available."));
3220 if (len > sizeof (ULONGEST))
3221 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3222 (int) len);
3223
3224 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3225 byte_order));
3226 op_ptr += len;
3227 dwarf_expr_require_composition (op_ptr, op_end,
3228 "DW_OP_implicit_value");
3229
3230 loc->kind = axs_rvalue;
3231 }
3232 break;
3233
3234 case DW_OP_stack_value:
3235 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3236 loc->kind = axs_rvalue;
3237 break;
3238
3239 case DW_OP_breg0:
3240 case DW_OP_breg1:
3241 case DW_OP_breg2:
3242 case DW_OP_breg3:
3243 case DW_OP_breg4:
3244 case DW_OP_breg5:
3245 case DW_OP_breg6:
3246 case DW_OP_breg7:
3247 case DW_OP_breg8:
3248 case DW_OP_breg9:
3249 case DW_OP_breg10:
3250 case DW_OP_breg11:
3251 case DW_OP_breg12:
3252 case DW_OP_breg13:
3253 case DW_OP_breg14:
3254 case DW_OP_breg15:
3255 case DW_OP_breg16:
3256 case DW_OP_breg17:
3257 case DW_OP_breg18:
3258 case DW_OP_breg19:
3259 case DW_OP_breg20:
3260 case DW_OP_breg21:
3261 case DW_OP_breg22:
3262 case DW_OP_breg23:
3263 case DW_OP_breg24:
3264 case DW_OP_breg25:
3265 case DW_OP_breg26:
3266 case DW_OP_breg27:
3267 case DW_OP_breg28:
3268 case DW_OP_breg29:
3269 case DW_OP_breg30:
3270 case DW_OP_breg31:
3271 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3272 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3273 ax_reg (expr, i);
3274 if (offset != 0)
3275 {
3276 ax_const_l (expr, offset);
3277 ax_simple (expr, aop_add);
3278 }
3279 break;
3280 case DW_OP_bregx:
3281 {
3282 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3283 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3284 i = dwarf_reg_to_regnum_or_error (arch, reg);
3285 ax_reg (expr, i);
3286 if (offset != 0)
3287 {
3288 ax_const_l (expr, offset);
3289 ax_simple (expr, aop_add);
3290 }
3291 }
3292 break;
3293 case DW_OP_fbreg:
3294 {
3295 const gdb_byte *datastart;
3296 size_t datalen;
3297 const struct block *b;
3298 struct symbol *framefunc;
3299
3300 b = block_for_pc (expr->scope);
3301
3302 if (!b)
3303 error (_("No block found for address"));
3304
3305 framefunc = block_linkage_function (b);
3306
3307 if (!framefunc)
3308 error (_("No function found for block"));
3309
3310 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3311 &datastart, &datalen);
3312
3313 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3314 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3315 datastart + datalen, per_cu);
3316 if (loc->kind == axs_lvalue_register)
3317 require_rvalue (expr, loc);
3318
3319 if (offset != 0)
3320 {
3321 ax_const_l (expr, offset);
3322 ax_simple (expr, aop_add);
3323 }
3324
3325 loc->kind = axs_lvalue_memory;
3326 }
3327 break;
3328
3329 case DW_OP_dup:
3330 ax_simple (expr, aop_dup);
3331 break;
3332
3333 case DW_OP_drop:
3334 ax_simple (expr, aop_pop);
3335 break;
3336
3337 case DW_OP_pick:
3338 offset = *op_ptr++;
3339 ax_pick (expr, offset);
3340 break;
3341
3342 case DW_OP_swap:
3343 ax_simple (expr, aop_swap);
3344 break;
3345
3346 case DW_OP_over:
3347 ax_pick (expr, 1);
3348 break;
3349
3350 case DW_OP_rot:
3351 ax_simple (expr, aop_rot);
3352 break;
3353
3354 case DW_OP_deref:
3355 case DW_OP_deref_size:
3356 {
3357 int size;
3358
3359 if (op == DW_OP_deref_size)
3360 size = *op_ptr++;
3361 else
3362 size = addr_size;
3363
3364 if (size != 1 && size != 2 && size != 4 && size != 8)
3365 error (_("Unsupported size %d in %s"),
3366 size, get_DW_OP_name (op));
3367 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3368 }
3369 break;
3370
3371 case DW_OP_abs:
3372 /* Sign extend the operand. */
3373 ax_ext (expr, addr_size_bits);
3374 ax_simple (expr, aop_dup);
3375 ax_const_l (expr, 0);
3376 ax_simple (expr, aop_less_signed);
3377 ax_simple (expr, aop_log_not);
3378 i = ax_goto (expr, aop_if_goto);
3379 /* We have to emit 0 - X. */
3380 ax_const_l (expr, 0);
3381 ax_simple (expr, aop_swap);
3382 ax_simple (expr, aop_sub);
3383 ax_label (expr, i, expr->len);
3384 break;
3385
3386 case DW_OP_neg:
3387 /* No need to sign extend here. */
3388 ax_const_l (expr, 0);
3389 ax_simple (expr, aop_swap);
3390 ax_simple (expr, aop_sub);
3391 break;
3392
3393 case DW_OP_not:
3394 /* Sign extend the operand. */
3395 ax_ext (expr, addr_size_bits);
3396 ax_simple (expr, aop_bit_not);
3397 break;
3398
3399 case DW_OP_plus_uconst:
3400 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3401 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3402 but we micro-optimize anyhow. */
3403 if (reg != 0)
3404 {
3405 ax_const_l (expr, reg);
3406 ax_simple (expr, aop_add);
3407 }
3408 break;
3409
3410 case DW_OP_and:
3411 ax_simple (expr, aop_bit_and);
3412 break;
3413
3414 case DW_OP_div:
3415 /* Sign extend the operands. */
3416 ax_ext (expr, addr_size_bits);
3417 ax_simple (expr, aop_swap);
3418 ax_ext (expr, addr_size_bits);
3419 ax_simple (expr, aop_swap);
3420 ax_simple (expr, aop_div_signed);
3421 break;
3422
3423 case DW_OP_minus:
3424 ax_simple (expr, aop_sub);
3425 break;
3426
3427 case DW_OP_mod:
3428 ax_simple (expr, aop_rem_unsigned);
3429 break;
3430
3431 case DW_OP_mul:
3432 ax_simple (expr, aop_mul);
3433 break;
3434
3435 case DW_OP_or:
3436 ax_simple (expr, aop_bit_or);
3437 break;
3438
3439 case DW_OP_plus:
3440 ax_simple (expr, aop_add);
3441 break;
3442
3443 case DW_OP_shl:
3444 ax_simple (expr, aop_lsh);
3445 break;
3446
3447 case DW_OP_shr:
3448 ax_simple (expr, aop_rsh_unsigned);
3449 break;
3450
3451 case DW_OP_shra:
3452 ax_simple (expr, aop_rsh_signed);
3453 break;
3454
3455 case DW_OP_xor:
3456 ax_simple (expr, aop_bit_xor);
3457 break;
3458
3459 case DW_OP_le:
3460 /* Sign extend the operands. */
3461 ax_ext (expr, addr_size_bits);
3462 ax_simple (expr, aop_swap);
3463 ax_ext (expr, addr_size_bits);
3464 /* Note no swap here: A <= B is !(B < A). */
3465 ax_simple (expr, aop_less_signed);
3466 ax_simple (expr, aop_log_not);
3467 break;
3468
3469 case DW_OP_ge:
3470 /* Sign extend the operands. */
3471 ax_ext (expr, addr_size_bits);
3472 ax_simple (expr, aop_swap);
3473 ax_ext (expr, addr_size_bits);
3474 ax_simple (expr, aop_swap);
3475 /* A >= B is !(A < B). */
3476 ax_simple (expr, aop_less_signed);
3477 ax_simple (expr, aop_log_not);
3478 break;
3479
3480 case DW_OP_eq:
3481 /* Sign extend the operands. */
3482 ax_ext (expr, addr_size_bits);
3483 ax_simple (expr, aop_swap);
3484 ax_ext (expr, addr_size_bits);
3485 /* No need for a second swap here. */
3486 ax_simple (expr, aop_equal);
3487 break;
3488
3489 case DW_OP_lt:
3490 /* Sign extend the operands. */
3491 ax_ext (expr, addr_size_bits);
3492 ax_simple (expr, aop_swap);
3493 ax_ext (expr, addr_size_bits);
3494 ax_simple (expr, aop_swap);
3495 ax_simple (expr, aop_less_signed);
3496 break;
3497
3498 case DW_OP_gt:
3499 /* Sign extend the operands. */
3500 ax_ext (expr, addr_size_bits);
3501 ax_simple (expr, aop_swap);
3502 ax_ext (expr, addr_size_bits);
3503 /* Note no swap here: A > B is B < A. */
3504 ax_simple (expr, aop_less_signed);
3505 break;
3506
3507 case DW_OP_ne:
3508 /* Sign extend the operands. */
3509 ax_ext (expr, addr_size_bits);
3510 ax_simple (expr, aop_swap);
3511 ax_ext (expr, addr_size_bits);
3512 /* No need for a swap here. */
3513 ax_simple (expr, aop_equal);
3514 ax_simple (expr, aop_log_not);
3515 break;
3516
3517 case DW_OP_call_frame_cfa:
3518 {
3519 int regnum;
3520 CORE_ADDR text_offset;
3521 LONGEST off;
3522 const gdb_byte *cfa_start, *cfa_end;
3523
3524 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3525 &regnum, &off,
3526 &text_offset, &cfa_start, &cfa_end))
3527 {
3528 /* Register. */
3529 ax_reg (expr, regnum);
3530 if (off != 0)
3531 {
3532 ax_const_l (expr, off);
3533 ax_simple (expr, aop_add);
3534 }
3535 }
3536 else
3537 {
3538 /* Another expression. */
3539 ax_const_l (expr, text_offset);
3540 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3541 cfa_start, cfa_end, per_cu);
3542 }
3543
3544 loc->kind = axs_lvalue_memory;
3545 }
3546 break;
3547
3548 case DW_OP_GNU_push_tls_address:
3549 case DW_OP_form_tls_address:
3550 unimplemented (op);
3551 break;
3552
3553 case DW_OP_push_object_address:
3554 unimplemented (op);
3555 break;
3556
3557 case DW_OP_skip:
3558 offset = extract_signed_integer (op_ptr, 2, byte_order);
3559 op_ptr += 2;
3560 i = ax_goto (expr, aop_goto);
3561 dw_labels.push_back (op_ptr + offset - base);
3562 patches.push_back (i);
3563 break;
3564
3565 case DW_OP_bra:
3566 offset = extract_signed_integer (op_ptr, 2, byte_order);
3567 op_ptr += 2;
3568 /* Zero extend the operand. */
3569 ax_zero_ext (expr, addr_size_bits);
3570 i = ax_goto (expr, aop_if_goto);
3571 dw_labels.push_back (op_ptr + offset - base);
3572 patches.push_back (i);
3573 break;
3574
3575 case DW_OP_nop:
3576 break;
3577
3578 case DW_OP_piece:
3579 case DW_OP_bit_piece:
3580 {
3581 uint64_t size, offset;
3582
3583 if (op_ptr - 1 == previous_piece)
3584 error (_("Cannot translate empty pieces to agent expressions"));
3585 previous_piece = op_ptr - 1;
3586
3587 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3588 if (op == DW_OP_piece)
3589 {
3590 size *= 8;
3591 offset = 0;
3592 }
3593 else
3594 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3595
3596 if (bits_collected + size > 8 * sizeof (LONGEST))
3597 error (_("Expression pieces exceed word size"));
3598
3599 /* Access the bits. */
3600 switch (loc->kind)
3601 {
3602 case axs_lvalue_register:
3603 ax_reg (expr, loc->u.reg);
3604 break;
3605
3606 case axs_lvalue_memory:
3607 /* Offset the pointer, if needed. */
3608 if (offset > 8)
3609 {
3610 ax_const_l (expr, offset / 8);
3611 ax_simple (expr, aop_add);
3612 offset %= 8;
3613 }
3614 access_memory (arch, expr, size);
3615 break;
3616 }
3617
3618 /* For a bits-big-endian target, shift up what we already
3619 have. For a bits-little-endian target, shift up the
3620 new data. Note that there is a potential bug here if
3621 the DWARF expression leaves multiple values on the
3622 stack. */
3623 if (bits_collected > 0)
3624 {
3625 if (bits_big_endian)
3626 {
3627 ax_simple (expr, aop_swap);
3628 ax_const_l (expr, size);
3629 ax_simple (expr, aop_lsh);
3630 /* We don't need a second swap here, because
3631 aop_bit_or is symmetric. */
3632 }
3633 else
3634 {
3635 ax_const_l (expr, size);
3636 ax_simple (expr, aop_lsh);
3637 }
3638 ax_simple (expr, aop_bit_or);
3639 }
3640
3641 bits_collected += size;
3642 loc->kind = axs_rvalue;
3643 }
3644 break;
3645
3646 case DW_OP_GNU_uninit:
3647 unimplemented (op);
3648
3649 case DW_OP_call2:
3650 case DW_OP_call4:
3651 {
3652 struct dwarf2_locexpr_baton block;
3653 int size = (op == DW_OP_call2 ? 2 : 4);
3654 cu_offset offset;
3655
3656 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3657 op_ptr += size;
3658
3659 offset.cu_off = uoffset;
3660 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3661 get_ax_pc, expr);
3662
3663 /* DW_OP_call_ref is currently not supported. */
3664 gdb_assert (block.per_cu == per_cu);
3665
3666 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3667 block.data, block.data + block.size,
3668 per_cu);
3669 }
3670 break;
3671
3672 case DW_OP_call_ref:
3673 unimplemented (op);
3674
3675 default:
3676 unimplemented (op);
3677 }
3678 }
3679
3680 /* Patch all the branches we emitted. */
3681 for (i = 0; i < patches.size (); ++i)
3682 {
3683 int targ = offsets[dw_labels[i]];
3684 if (targ == -1)
3685 internal_error (__FILE__, __LINE__, _("invalid label"));
3686 ax_label (expr, patches[i], targ);
3687 }
3688 }
3689
3690 \f
3691 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3692 evaluator to calculate the location. */
3693 static struct value *
3694 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3695 {
3696 struct dwarf2_locexpr_baton *dlbaton
3697 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3698 struct value *val;
3699
3700 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3701 dlbaton->size, dlbaton->per_cu);
3702
3703 return val;
3704 }
3705
3706 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3707 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3708 will be thrown. */
3709
3710 static struct value *
3711 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3712 {
3713 struct dwarf2_locexpr_baton *dlbaton
3714 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3715
3716 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3717 dlbaton->size);
3718 }
3719
3720 /* Implementation of get_symbol_read_needs from
3721 symbol_computed_ops. */
3722
3723 static enum symbol_needs_kind
3724 locexpr_get_symbol_read_needs (struct symbol *symbol)
3725 {
3726 struct dwarf2_locexpr_baton *dlbaton
3727 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3728
3729 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3730 dlbaton->per_cu);
3731 }
3732
3733 /* Return true if DATA points to the end of a piece. END is one past
3734 the last byte in the expression. */
3735
3736 static int
3737 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3738 {
3739 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3740 }
3741
3742 /* Helper for locexpr_describe_location_piece that finds the name of a
3743 DWARF register. */
3744
3745 static const char *
3746 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3747 {
3748 int regnum;
3749
3750 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3751 We'd rather print *something* here than throw an error. */
3752 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3753 /* gdbarch_register_name may just return "", return something more
3754 descriptive for bad register numbers. */
3755 if (regnum == -1)
3756 {
3757 /* The text is output as "$bad_register_number".
3758 That is why we use the underscores. */
3759 return _("bad_register_number");
3760 }
3761 return gdbarch_register_name (gdbarch, regnum);
3762 }
3763
3764 /* Nicely describe a single piece of a location, returning an updated
3765 position in the bytecode sequence. This function cannot recognize
3766 all locations; if a location is not recognized, it simply returns
3767 DATA. If there is an error during reading, e.g. we run off the end
3768 of the buffer, an error is thrown. */
3769
3770 static const gdb_byte *
3771 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3772 CORE_ADDR addr, struct objfile *objfile,
3773 struct dwarf2_per_cu_data *per_cu,
3774 const gdb_byte *data, const gdb_byte *end,
3775 unsigned int addr_size)
3776 {
3777 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3778 size_t leb128_size;
3779
3780 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3781 {
3782 fprintf_filtered (stream, _("a variable in $%s"),
3783 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3784 data += 1;
3785 }
3786 else if (data[0] == DW_OP_regx)
3787 {
3788 uint64_t reg;
3789
3790 data = safe_read_uleb128 (data + 1, end, &reg);
3791 fprintf_filtered (stream, _("a variable in $%s"),
3792 locexpr_regname (gdbarch, reg));
3793 }
3794 else if (data[0] == DW_OP_fbreg)
3795 {
3796 const struct block *b;
3797 struct symbol *framefunc;
3798 int frame_reg = 0;
3799 int64_t frame_offset;
3800 const gdb_byte *base_data, *new_data, *save_data = data;
3801 size_t base_size;
3802 int64_t base_offset = 0;
3803
3804 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3805 if (!piece_end_p (new_data, end))
3806 return data;
3807 data = new_data;
3808
3809 b = block_for_pc (addr);
3810
3811 if (!b)
3812 error (_("No block found for address for symbol \"%s\"."),
3813 SYMBOL_PRINT_NAME (symbol));
3814
3815 framefunc = block_linkage_function (b);
3816
3817 if (!framefunc)
3818 error (_("No function found for block for symbol \"%s\"."),
3819 SYMBOL_PRINT_NAME (symbol));
3820
3821 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3822
3823 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3824 {
3825 const gdb_byte *buf_end;
3826
3827 frame_reg = base_data[0] - DW_OP_breg0;
3828 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3829 &base_offset);
3830 if (buf_end != base_data + base_size)
3831 error (_("Unexpected opcode after "
3832 "DW_OP_breg%u for symbol \"%s\"."),
3833 frame_reg, SYMBOL_PRINT_NAME (symbol));
3834 }
3835 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3836 {
3837 /* The frame base is just the register, with no offset. */
3838 frame_reg = base_data[0] - DW_OP_reg0;
3839 base_offset = 0;
3840 }
3841 else
3842 {
3843 /* We don't know what to do with the frame base expression,
3844 so we can't trace this variable; give up. */
3845 return save_data;
3846 }
3847
3848 fprintf_filtered (stream,
3849 _("a variable at frame base reg $%s offset %s+%s"),
3850 locexpr_regname (gdbarch, frame_reg),
3851 plongest (base_offset), plongest (frame_offset));
3852 }
3853 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3854 && piece_end_p (data, end))
3855 {
3856 int64_t offset;
3857
3858 data = safe_read_sleb128 (data + 1, end, &offset);
3859
3860 fprintf_filtered (stream,
3861 _("a variable at offset %s from base reg $%s"),
3862 plongest (offset),
3863 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3864 }
3865
3866 /* The location expression for a TLS variable looks like this (on a
3867 64-bit LE machine):
3868
3869 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3870 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3871
3872 0x3 is the encoding for DW_OP_addr, which has an operand as long
3873 as the size of an address on the target machine (here is 8
3874 bytes). Note that more recent version of GCC emit DW_OP_const4u
3875 or DW_OP_const8u, depending on address size, rather than
3876 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3877 The operand represents the offset at which the variable is within
3878 the thread local storage. */
3879
3880 else if (data + 1 + addr_size < end
3881 && (data[0] == DW_OP_addr
3882 || (addr_size == 4 && data[0] == DW_OP_const4u)
3883 || (addr_size == 8 && data[0] == DW_OP_const8u))
3884 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3885 || data[1 + addr_size] == DW_OP_form_tls_address)
3886 && piece_end_p (data + 2 + addr_size, end))
3887 {
3888 ULONGEST offset;
3889 offset = extract_unsigned_integer (data + 1, addr_size,
3890 gdbarch_byte_order (gdbarch));
3891
3892 fprintf_filtered (stream,
3893 _("a thread-local variable at offset 0x%s "
3894 "in the thread-local storage for `%s'"),
3895 phex_nz (offset, addr_size), objfile_name (objfile));
3896
3897 data += 1 + addr_size + 1;
3898 }
3899
3900 /* With -gsplit-dwarf a TLS variable can also look like this:
3901 DW_AT_location : 3 byte block: fc 4 e0
3902 (DW_OP_GNU_const_index: 4;
3903 DW_OP_GNU_push_tls_address) */
3904 else if (data + 3 <= end
3905 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3906 && data[0] == DW_OP_GNU_const_index
3907 && leb128_size > 0
3908 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3909 || data[1 + leb128_size] == DW_OP_form_tls_address)
3910 && piece_end_p (data + 2 + leb128_size, end))
3911 {
3912 uint64_t offset;
3913
3914 data = safe_read_uleb128 (data + 1, end, &offset);
3915 offset = dwarf2_read_addr_index (per_cu, offset);
3916 fprintf_filtered (stream,
3917 _("a thread-local variable at offset 0x%s "
3918 "in the thread-local storage for `%s'"),
3919 phex_nz (offset, addr_size), objfile_name (objfile));
3920 ++data;
3921 }
3922
3923 else if (data[0] >= DW_OP_lit0
3924 && data[0] <= DW_OP_lit31
3925 && data + 1 < end
3926 && data[1] == DW_OP_stack_value)
3927 {
3928 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3929 data += 2;
3930 }
3931
3932 return data;
3933 }
3934
3935 /* Disassemble an expression, stopping at the end of a piece or at the
3936 end of the expression. Returns a pointer to the next unread byte
3937 in the input expression. If ALL is nonzero, then this function
3938 will keep going until it reaches the end of the expression.
3939 If there is an error during reading, e.g. we run off the end
3940 of the buffer, an error is thrown. */
3941
3942 static const gdb_byte *
3943 disassemble_dwarf_expression (struct ui_file *stream,
3944 struct gdbarch *arch, unsigned int addr_size,
3945 int offset_size, const gdb_byte *start,
3946 const gdb_byte *data, const gdb_byte *end,
3947 int indent, int all,
3948 struct dwarf2_per_cu_data *per_cu)
3949 {
3950 while (data < end
3951 && (all
3952 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3953 {
3954 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3955 uint64_t ul;
3956 int64_t l;
3957 const char *name;
3958
3959 name = get_DW_OP_name (op);
3960
3961 if (!name)
3962 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3963 op, (long) (data - 1 - start));
3964 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3965 (long) (data - 1 - start), name);
3966
3967 switch (op)
3968 {
3969 case DW_OP_addr:
3970 ul = extract_unsigned_integer (data, addr_size,
3971 gdbarch_byte_order (arch));
3972 data += addr_size;
3973 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3974 break;
3975
3976 case DW_OP_const1u:
3977 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3978 data += 1;
3979 fprintf_filtered (stream, " %s", pulongest (ul));
3980 break;
3981 case DW_OP_const1s:
3982 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3983 data += 1;
3984 fprintf_filtered (stream, " %s", plongest (l));
3985 break;
3986 case DW_OP_const2u:
3987 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3988 data += 2;
3989 fprintf_filtered (stream, " %s", pulongest (ul));
3990 break;
3991 case DW_OP_const2s:
3992 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3993 data += 2;
3994 fprintf_filtered (stream, " %s", plongest (l));
3995 break;
3996 case DW_OP_const4u:
3997 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3998 data += 4;
3999 fprintf_filtered (stream, " %s", pulongest (ul));
4000 break;
4001 case DW_OP_const4s:
4002 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
4003 data += 4;
4004 fprintf_filtered (stream, " %s", plongest (l));
4005 break;
4006 case DW_OP_const8u:
4007 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4008 data += 8;
4009 fprintf_filtered (stream, " %s", pulongest (ul));
4010 break;
4011 case DW_OP_const8s:
4012 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4013 data += 8;
4014 fprintf_filtered (stream, " %s", plongest (l));
4015 break;
4016 case DW_OP_constu:
4017 data = safe_read_uleb128 (data, end, &ul);
4018 fprintf_filtered (stream, " %s", pulongest (ul));
4019 break;
4020 case DW_OP_consts:
4021 data = safe_read_sleb128 (data, end, &l);
4022 fprintf_filtered (stream, " %s", plongest (l));
4023 break;
4024
4025 case DW_OP_reg0:
4026 case DW_OP_reg1:
4027 case DW_OP_reg2:
4028 case DW_OP_reg3:
4029 case DW_OP_reg4:
4030 case DW_OP_reg5:
4031 case DW_OP_reg6:
4032 case DW_OP_reg7:
4033 case DW_OP_reg8:
4034 case DW_OP_reg9:
4035 case DW_OP_reg10:
4036 case DW_OP_reg11:
4037 case DW_OP_reg12:
4038 case DW_OP_reg13:
4039 case DW_OP_reg14:
4040 case DW_OP_reg15:
4041 case DW_OP_reg16:
4042 case DW_OP_reg17:
4043 case DW_OP_reg18:
4044 case DW_OP_reg19:
4045 case DW_OP_reg20:
4046 case DW_OP_reg21:
4047 case DW_OP_reg22:
4048 case DW_OP_reg23:
4049 case DW_OP_reg24:
4050 case DW_OP_reg25:
4051 case DW_OP_reg26:
4052 case DW_OP_reg27:
4053 case DW_OP_reg28:
4054 case DW_OP_reg29:
4055 case DW_OP_reg30:
4056 case DW_OP_reg31:
4057 fprintf_filtered (stream, " [$%s]",
4058 locexpr_regname (arch, op - DW_OP_reg0));
4059 break;
4060
4061 case DW_OP_regx:
4062 data = safe_read_uleb128 (data, end, &ul);
4063 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4064 locexpr_regname (arch, (int) ul));
4065 break;
4066
4067 case DW_OP_implicit_value:
4068 data = safe_read_uleb128 (data, end, &ul);
4069 data += ul;
4070 fprintf_filtered (stream, " %s", pulongest (ul));
4071 break;
4072
4073 case DW_OP_breg0:
4074 case DW_OP_breg1:
4075 case DW_OP_breg2:
4076 case DW_OP_breg3:
4077 case DW_OP_breg4:
4078 case DW_OP_breg5:
4079 case DW_OP_breg6:
4080 case DW_OP_breg7:
4081 case DW_OP_breg8:
4082 case DW_OP_breg9:
4083 case DW_OP_breg10:
4084 case DW_OP_breg11:
4085 case DW_OP_breg12:
4086 case DW_OP_breg13:
4087 case DW_OP_breg14:
4088 case DW_OP_breg15:
4089 case DW_OP_breg16:
4090 case DW_OP_breg17:
4091 case DW_OP_breg18:
4092 case DW_OP_breg19:
4093 case DW_OP_breg20:
4094 case DW_OP_breg21:
4095 case DW_OP_breg22:
4096 case DW_OP_breg23:
4097 case DW_OP_breg24:
4098 case DW_OP_breg25:
4099 case DW_OP_breg26:
4100 case DW_OP_breg27:
4101 case DW_OP_breg28:
4102 case DW_OP_breg29:
4103 case DW_OP_breg30:
4104 case DW_OP_breg31:
4105 data = safe_read_sleb128 (data, end, &l);
4106 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4107 locexpr_regname (arch, op - DW_OP_breg0));
4108 break;
4109
4110 case DW_OP_bregx:
4111 data = safe_read_uleb128 (data, end, &ul);
4112 data = safe_read_sleb128 (data, end, &l);
4113 fprintf_filtered (stream, " register %s [$%s] offset %s",
4114 pulongest (ul),
4115 locexpr_regname (arch, (int) ul),
4116 plongest (l));
4117 break;
4118
4119 case DW_OP_fbreg:
4120 data = safe_read_sleb128 (data, end, &l);
4121 fprintf_filtered (stream, " %s", plongest (l));
4122 break;
4123
4124 case DW_OP_xderef_size:
4125 case DW_OP_deref_size:
4126 case DW_OP_pick:
4127 fprintf_filtered (stream, " %d", *data);
4128 ++data;
4129 break;
4130
4131 case DW_OP_plus_uconst:
4132 data = safe_read_uleb128 (data, end, &ul);
4133 fprintf_filtered (stream, " %s", pulongest (ul));
4134 break;
4135
4136 case DW_OP_skip:
4137 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4138 data += 2;
4139 fprintf_filtered (stream, " to %ld",
4140 (long) (data + l - start));
4141 break;
4142
4143 case DW_OP_bra:
4144 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4145 data += 2;
4146 fprintf_filtered (stream, " %ld",
4147 (long) (data + l - start));
4148 break;
4149
4150 case DW_OP_call2:
4151 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4152 data += 2;
4153 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4154 break;
4155
4156 case DW_OP_call4:
4157 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4158 data += 4;
4159 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4160 break;
4161
4162 case DW_OP_call_ref:
4163 ul = extract_unsigned_integer (data, offset_size,
4164 gdbarch_byte_order (arch));
4165 data += offset_size;
4166 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4167 break;
4168
4169 case DW_OP_piece:
4170 data = safe_read_uleb128 (data, end, &ul);
4171 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4172 break;
4173
4174 case DW_OP_bit_piece:
4175 {
4176 uint64_t offset;
4177
4178 data = safe_read_uleb128 (data, end, &ul);
4179 data = safe_read_uleb128 (data, end, &offset);
4180 fprintf_filtered (stream, " size %s offset %s (bits)",
4181 pulongest (ul), pulongest (offset));
4182 }
4183 break;
4184
4185 case DW_OP_GNU_implicit_pointer:
4186 {
4187 ul = extract_unsigned_integer (data, offset_size,
4188 gdbarch_byte_order (arch));
4189 data += offset_size;
4190
4191 data = safe_read_sleb128 (data, end, &l);
4192
4193 fprintf_filtered (stream, " DIE %s offset %s",
4194 phex_nz (ul, offset_size),
4195 plongest (l));
4196 }
4197 break;
4198
4199 case DW_OP_GNU_deref_type:
4200 {
4201 int addr_size = *data++;
4202 cu_offset offset;
4203 struct type *type;
4204
4205 data = safe_read_uleb128 (data, end, &ul);
4206 offset.cu_off = ul;
4207 type = dwarf2_get_die_type (offset, per_cu);
4208 fprintf_filtered (stream, "<");
4209 type_print (type, "", stream, -1);
4210 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4211 addr_size);
4212 }
4213 break;
4214
4215 case DW_OP_GNU_const_type:
4216 {
4217 cu_offset type_die;
4218 struct type *type;
4219
4220 data = safe_read_uleb128 (data, end, &ul);
4221 type_die.cu_off = ul;
4222 type = dwarf2_get_die_type (type_die, per_cu);
4223 fprintf_filtered (stream, "<");
4224 type_print (type, "", stream, -1);
4225 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4226 }
4227 break;
4228
4229 case DW_OP_GNU_regval_type:
4230 {
4231 uint64_t reg;
4232 cu_offset type_die;
4233 struct type *type;
4234
4235 data = safe_read_uleb128 (data, end, &reg);
4236 data = safe_read_uleb128 (data, end, &ul);
4237 type_die.cu_off = ul;
4238
4239 type = dwarf2_get_die_type (type_die, per_cu);
4240 fprintf_filtered (stream, "<");
4241 type_print (type, "", stream, -1);
4242 fprintf_filtered (stream, " [0x%s]> [$%s]",
4243 phex_nz (type_die.cu_off, 0),
4244 locexpr_regname (arch, reg));
4245 }
4246 break;
4247
4248 case DW_OP_GNU_convert:
4249 case DW_OP_GNU_reinterpret:
4250 {
4251 cu_offset type_die;
4252
4253 data = safe_read_uleb128 (data, end, &ul);
4254 type_die.cu_off = ul;
4255
4256 if (type_die.cu_off == 0)
4257 fprintf_filtered (stream, "<0>");
4258 else
4259 {
4260 struct type *type;
4261
4262 type = dwarf2_get_die_type (type_die, per_cu);
4263 fprintf_filtered (stream, "<");
4264 type_print (type, "", stream, -1);
4265 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4266 }
4267 }
4268 break;
4269
4270 case DW_OP_GNU_entry_value:
4271 data = safe_read_uleb128 (data, end, &ul);
4272 fputc_filtered ('\n', stream);
4273 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4274 start, data, data + ul, indent + 2,
4275 all, per_cu);
4276 data += ul;
4277 continue;
4278
4279 case DW_OP_GNU_parameter_ref:
4280 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4281 data += 4;
4282 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4283 break;
4284
4285 case DW_OP_GNU_addr_index:
4286 data = safe_read_uleb128 (data, end, &ul);
4287 ul = dwarf2_read_addr_index (per_cu, ul);
4288 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4289 break;
4290 case DW_OP_GNU_const_index:
4291 data = safe_read_uleb128 (data, end, &ul);
4292 ul = dwarf2_read_addr_index (per_cu, ul);
4293 fprintf_filtered (stream, " %s", pulongest (ul));
4294 break;
4295 }
4296
4297 fprintf_filtered (stream, "\n");
4298 }
4299
4300 return data;
4301 }
4302
4303 /* Describe a single location, which may in turn consist of multiple
4304 pieces. */
4305
4306 static void
4307 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4308 struct ui_file *stream,
4309 const gdb_byte *data, size_t size,
4310 struct objfile *objfile, unsigned int addr_size,
4311 int offset_size, struct dwarf2_per_cu_data *per_cu)
4312 {
4313 const gdb_byte *end = data + size;
4314 int first_piece = 1, bad = 0;
4315
4316 while (data < end)
4317 {
4318 const gdb_byte *here = data;
4319 int disassemble = 1;
4320
4321 if (first_piece)
4322 first_piece = 0;
4323 else
4324 fprintf_filtered (stream, _(", and "));
4325
4326 if (!dwarf_always_disassemble)
4327 {
4328 data = locexpr_describe_location_piece (symbol, stream,
4329 addr, objfile, per_cu,
4330 data, end, addr_size);
4331 /* If we printed anything, or if we have an empty piece,
4332 then don't disassemble. */
4333 if (data != here
4334 || data[0] == DW_OP_piece
4335 || data[0] == DW_OP_bit_piece)
4336 disassemble = 0;
4337 }
4338 if (disassemble)
4339 {
4340 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4341 data = disassemble_dwarf_expression (stream,
4342 get_objfile_arch (objfile),
4343 addr_size, offset_size, data,
4344 data, end, 0,
4345 dwarf_always_disassemble,
4346 per_cu);
4347 }
4348
4349 if (data < end)
4350 {
4351 int empty = data == here;
4352
4353 if (disassemble)
4354 fprintf_filtered (stream, " ");
4355 if (data[0] == DW_OP_piece)
4356 {
4357 uint64_t bytes;
4358
4359 data = safe_read_uleb128 (data + 1, end, &bytes);
4360
4361 if (empty)
4362 fprintf_filtered (stream, _("an empty %s-byte piece"),
4363 pulongest (bytes));
4364 else
4365 fprintf_filtered (stream, _(" [%s-byte piece]"),
4366 pulongest (bytes));
4367 }
4368 else if (data[0] == DW_OP_bit_piece)
4369 {
4370 uint64_t bits, offset;
4371
4372 data = safe_read_uleb128 (data + 1, end, &bits);
4373 data = safe_read_uleb128 (data, end, &offset);
4374
4375 if (empty)
4376 fprintf_filtered (stream,
4377 _("an empty %s-bit piece"),
4378 pulongest (bits));
4379 else
4380 fprintf_filtered (stream,
4381 _(" [%s-bit piece, offset %s bits]"),
4382 pulongest (bits), pulongest (offset));
4383 }
4384 else
4385 {
4386 bad = 1;
4387 break;
4388 }
4389 }
4390 }
4391
4392 if (bad || data > end)
4393 error (_("Corrupted DWARF2 expression for \"%s\"."),
4394 SYMBOL_PRINT_NAME (symbol));
4395 }
4396
4397 /* Print a natural-language description of SYMBOL to STREAM. This
4398 version is for a symbol with a single location. */
4399
4400 static void
4401 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4402 struct ui_file *stream)
4403 {
4404 struct dwarf2_locexpr_baton *dlbaton
4405 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4406 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4407 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4408 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4409
4410 locexpr_describe_location_1 (symbol, addr, stream,
4411 dlbaton->data, dlbaton->size,
4412 objfile, addr_size, offset_size,
4413 dlbaton->per_cu);
4414 }
4415
4416 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4417 any necessary bytecode in AX. */
4418
4419 static void
4420 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4421 struct agent_expr *ax, struct axs_value *value)
4422 {
4423 struct dwarf2_locexpr_baton *dlbaton
4424 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4425 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4426
4427 if (dlbaton->size == 0)
4428 value->optimized_out = 1;
4429 else
4430 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4431 dlbaton->data, dlbaton->data + dlbaton->size,
4432 dlbaton->per_cu);
4433 }
4434
4435 /* symbol_computed_ops 'generate_c_location' method. */
4436
4437 static void
4438 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4439 struct gdbarch *gdbarch,
4440 unsigned char *registers_used,
4441 CORE_ADDR pc, const char *result_name)
4442 {
4443 struct dwarf2_locexpr_baton *dlbaton
4444 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4445 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4446
4447 if (dlbaton->size == 0)
4448 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4449
4450 compile_dwarf_expr_to_c (stream, result_name,
4451 sym, pc, gdbarch, registers_used, addr_size,
4452 dlbaton->data, dlbaton->data + dlbaton->size,
4453 dlbaton->per_cu);
4454 }
4455
4456 /* The set of location functions used with the DWARF-2 expression
4457 evaluator. */
4458 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4459 locexpr_read_variable,
4460 locexpr_read_variable_at_entry,
4461 locexpr_get_symbol_read_needs,
4462 locexpr_describe_location,
4463 0, /* location_has_loclist */
4464 locexpr_tracepoint_var_ref,
4465 locexpr_generate_c_location
4466 };
4467
4468
4469 /* Wrapper functions for location lists. These generally find
4470 the appropriate location expression and call something above. */
4471
4472 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4473 evaluator to calculate the location. */
4474 static struct value *
4475 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4476 {
4477 struct dwarf2_loclist_baton *dlbaton
4478 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4479 struct value *val;
4480 const gdb_byte *data;
4481 size_t size;
4482 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4483
4484 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4485 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4486 dlbaton->per_cu);
4487
4488 return val;
4489 }
4490
4491 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4492 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4493 will be thrown.
4494
4495 Function always returns non-NULL value, it may be marked optimized out if
4496 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4497 if it cannot resolve the parameter for any reason. */
4498
4499 static struct value *
4500 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4501 {
4502 struct dwarf2_loclist_baton *dlbaton
4503 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4504 const gdb_byte *data;
4505 size_t size;
4506 CORE_ADDR pc;
4507
4508 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4509 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4510
4511 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4512 if (data == NULL)
4513 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4514
4515 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4516 }
4517
4518 /* Implementation of get_symbol_read_needs from
4519 symbol_computed_ops. */
4520
4521 static enum symbol_needs_kind
4522 loclist_symbol_needs (struct symbol *symbol)
4523 {
4524 /* If there's a location list, then assume we need to have a frame
4525 to choose the appropriate location expression. With tracking of
4526 global variables this is not necessarily true, but such tracking
4527 is disabled in GCC at the moment until we figure out how to
4528 represent it. */
4529
4530 return SYMBOL_NEEDS_FRAME;
4531 }
4532
4533 /* Print a natural-language description of SYMBOL to STREAM. This
4534 version applies when there is a list of different locations, each
4535 with a specified address range. */
4536
4537 static void
4538 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4539 struct ui_file *stream)
4540 {
4541 struct dwarf2_loclist_baton *dlbaton
4542 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4543 const gdb_byte *loc_ptr, *buf_end;
4544 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4547 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4548 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4549 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4550 /* Adjust base_address for relocatable objects. */
4551 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4552 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4553 int done = 0;
4554
4555 loc_ptr = dlbaton->data;
4556 buf_end = dlbaton->data + dlbaton->size;
4557
4558 fprintf_filtered (stream, _("multi-location:\n"));
4559
4560 /* Iterate through locations until we run out. */
4561 while (!done)
4562 {
4563 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4564 int length;
4565 enum debug_loc_kind kind;
4566 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4567
4568 if (dlbaton->from_dwo)
4569 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4570 loc_ptr, buf_end, &new_ptr,
4571 &low, &high, byte_order);
4572 else
4573 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4574 &low, &high,
4575 byte_order, addr_size,
4576 signed_addr_p);
4577 loc_ptr = new_ptr;
4578 switch (kind)
4579 {
4580 case DEBUG_LOC_END_OF_LIST:
4581 done = 1;
4582 continue;
4583 case DEBUG_LOC_BASE_ADDRESS:
4584 base_address = high + base_offset;
4585 fprintf_filtered (stream, _(" Base address %s"),
4586 paddress (gdbarch, base_address));
4587 continue;
4588 case DEBUG_LOC_START_END:
4589 case DEBUG_LOC_START_LENGTH:
4590 break;
4591 case DEBUG_LOC_BUFFER_OVERFLOW:
4592 case DEBUG_LOC_INVALID_ENTRY:
4593 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4594 SYMBOL_PRINT_NAME (symbol));
4595 default:
4596 gdb_assert_not_reached ("bad debug_loc_kind");
4597 }
4598
4599 /* Otherwise, a location expression entry. */
4600 low += base_address;
4601 high += base_address;
4602
4603 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4604 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4605
4606 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4607 loc_ptr += 2;
4608
4609 /* (It would improve readability to print only the minimum
4610 necessary digits of the second number of the range.) */
4611 fprintf_filtered (stream, _(" Range %s-%s: "),
4612 paddress (gdbarch, low), paddress (gdbarch, high));
4613
4614 /* Now describe this particular location. */
4615 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4616 objfile, addr_size, offset_size,
4617 dlbaton->per_cu);
4618
4619 fprintf_filtered (stream, "\n");
4620
4621 loc_ptr += length;
4622 }
4623 }
4624
4625 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4626 any necessary bytecode in AX. */
4627 static void
4628 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4629 struct agent_expr *ax, struct axs_value *value)
4630 {
4631 struct dwarf2_loclist_baton *dlbaton
4632 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4633 const gdb_byte *data;
4634 size_t size;
4635 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4636
4637 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4638 if (size == 0)
4639 value->optimized_out = 1;
4640 else
4641 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4642 dlbaton->per_cu);
4643 }
4644
4645 /* symbol_computed_ops 'generate_c_location' method. */
4646
4647 static void
4648 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4649 struct gdbarch *gdbarch,
4650 unsigned char *registers_used,
4651 CORE_ADDR pc, const char *result_name)
4652 {
4653 struct dwarf2_loclist_baton *dlbaton
4654 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4655 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4656 const gdb_byte *data;
4657 size_t size;
4658
4659 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4660 if (size == 0)
4661 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4662
4663 compile_dwarf_expr_to_c (stream, result_name,
4664 sym, pc, gdbarch, registers_used, addr_size,
4665 data, data + size,
4666 dlbaton->per_cu);
4667 }
4668
4669 /* The set of location functions used with the DWARF-2 expression
4670 evaluator and location lists. */
4671 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4672 loclist_read_variable,
4673 loclist_read_variable_at_entry,
4674 loclist_symbol_needs,
4675 loclist_describe_location,
4676 1, /* location_has_loclist */
4677 loclist_tracepoint_var_ref,
4678 loclist_generate_c_location
4679 };
4680
4681 /* Provide a prototype to silence -Wmissing-prototypes. */
4682 extern initialize_file_ftype _initialize_dwarf2loc;
4683
4684 void
4685 _initialize_dwarf2loc (void)
4686 {
4687 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4688 &entry_values_debug,
4689 _("Set entry values and tail call frames "
4690 "debugging."),
4691 _("Show entry values and tail call frames "
4692 "debugging."),
4693 _("When non-zero, the process of determining "
4694 "parameter values from function entry point "
4695 "and tail call frames will be printed."),
4696 NULL,
4697 show_entry_values_debug,
4698 &setdebuglist, &showdebuglist);
4699 }
This page took 0.123306 seconds and 5 git commands to generate.