Big-endian targets: Don't ignore offset into DW_OP_implicit_value
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45
46 extern int dwarf_always_disassemble;
47
48 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
49 struct frame_info *frame,
50 const gdb_byte *data,
51 size_t size,
52 struct dwarf2_per_cu_data *per_cu,
53 LONGEST byte_offset);
54
55 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
56 (struct frame_info *frame,
57 enum call_site_parameter_kind kind,
58 union call_site_parameter_u kind_u,
59 struct dwarf2_per_cu_data **per_cu_return);
60
61 /* Until these have formal names, we define these here.
62 ref: http://gcc.gnu.org/wiki/DebugFission
63 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
64 and is then followed by data specific to that entry. */
65
66 enum debug_loc_kind
67 {
68 /* Indicates the end of the list of entries. */
69 DEBUG_LOC_END_OF_LIST = 0,
70
71 /* This is followed by an unsigned LEB128 number that is an index into
72 .debug_addr and specifies the base address for all following entries. */
73 DEBUG_LOC_BASE_ADDRESS = 1,
74
75 /* This is followed by two unsigned LEB128 numbers that are indices into
76 .debug_addr and specify the beginning and ending addresses, and then
77 a normal location expression as in .debug_loc. */
78 DEBUG_LOC_START_END = 2,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the beginning address, and a 4 byte unsigned
82 number that specifies the length, and then a normal location expression
83 as in .debug_loc. */
84 DEBUG_LOC_START_LENGTH = 3,
85
86 /* An internal value indicating there is insufficient data. */
87 DEBUG_LOC_BUFFER_OVERFLOW = -1,
88
89 /* An internal value indicating an invalid kind of entry was found. */
90 DEBUG_LOC_INVALID_ENTRY = -2
91 };
92
93 /* Helper function which throws an error if a synthetic pointer is
94 invalid. */
95
96 static void
97 invalid_synthetic_pointer (void)
98 {
99 error (_("access outside bounds of object "
100 "referenced via synthetic pointer"));
101 }
102
103 /* Decode the addresses in a non-dwo .debug_loc entry.
104 A pointer to the next byte to examine is returned in *NEW_PTR.
105 The encoded low,high addresses are return in *LOW,*HIGH.
106 The result indicates the kind of entry found. */
107
108 static enum debug_loc_kind
109 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
110 const gdb_byte **new_ptr,
111 CORE_ADDR *low, CORE_ADDR *high,
112 enum bfd_endian byte_order,
113 unsigned int addr_size,
114 int signed_addr_p)
115 {
116 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
117
118 if (buf_end - loc_ptr < 2 * addr_size)
119 return DEBUG_LOC_BUFFER_OVERFLOW;
120
121 if (signed_addr_p)
122 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
123 else
124 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
125 loc_ptr += addr_size;
126
127 if (signed_addr_p)
128 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
129 else
130 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
131 loc_ptr += addr_size;
132
133 *new_ptr = loc_ptr;
134
135 /* A base-address-selection entry. */
136 if ((*low & base_mask) == base_mask)
137 return DEBUG_LOC_BASE_ADDRESS;
138
139 /* An end-of-list entry. */
140 if (*low == 0 && *high == 0)
141 return DEBUG_LOC_END_OF_LIST;
142
143 return DEBUG_LOC_START_END;
144 }
145
146 /* Decode the addresses in .debug_loc.dwo entry.
147 A pointer to the next byte to examine is returned in *NEW_PTR.
148 The encoded low,high addresses are return in *LOW,*HIGH.
149 The result indicates the kind of entry found. */
150
151 static enum debug_loc_kind
152 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
153 const gdb_byte *loc_ptr,
154 const gdb_byte *buf_end,
155 const gdb_byte **new_ptr,
156 CORE_ADDR *low, CORE_ADDR *high,
157 enum bfd_endian byte_order)
158 {
159 uint64_t low_index, high_index;
160
161 if (loc_ptr == buf_end)
162 return DEBUG_LOC_BUFFER_OVERFLOW;
163
164 switch (*loc_ptr++)
165 {
166 case DEBUG_LOC_END_OF_LIST:
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_END_OF_LIST;
169 case DEBUG_LOC_BASE_ADDRESS:
170 *low = 0;
171 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
172 if (loc_ptr == NULL)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174 *high = dwarf2_read_addr_index (per_cu, high_index);
175 *new_ptr = loc_ptr;
176 return DEBUG_LOC_BASE_ADDRESS;
177 case DEBUG_LOC_START_END:
178 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
179 if (loc_ptr == NULL)
180 return DEBUG_LOC_BUFFER_OVERFLOW;
181 *low = dwarf2_read_addr_index (per_cu, low_index);
182 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
183 if (loc_ptr == NULL)
184 return DEBUG_LOC_BUFFER_OVERFLOW;
185 *high = dwarf2_read_addr_index (per_cu, high_index);
186 *new_ptr = loc_ptr;
187 return DEBUG_LOC_START_END;
188 case DEBUG_LOC_START_LENGTH:
189 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
190 if (loc_ptr == NULL)
191 return DEBUG_LOC_BUFFER_OVERFLOW;
192 *low = dwarf2_read_addr_index (per_cu, low_index);
193 if (loc_ptr + 4 > buf_end)
194 return DEBUG_LOC_BUFFER_OVERFLOW;
195 *high = *low;
196 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
197 *new_ptr = loc_ptr + 4;
198 return DEBUG_LOC_START_LENGTH;
199 default:
200 return DEBUG_LOC_INVALID_ENTRY;
201 }
202 }
203
204 /* A function for dealing with location lists. Given a
205 symbol baton (BATON) and a pc value (PC), find the appropriate
206 location expression, set *LOCEXPR_LENGTH, and return a pointer
207 to the beginning of the expression. Returns NULL on failure.
208
209 For now, only return the first matching location expression; there
210 can be more than one in the list. */
211
212 const gdb_byte *
213 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
214 size_t *locexpr_length, CORE_ADDR pc)
215 {
216 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
220 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
221 /* Adjust base_address for relocatable objects. */
222 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
223 CORE_ADDR base_address = baton->base_address + base_offset;
224 const gdb_byte *loc_ptr, *buf_end;
225
226 loc_ptr = baton->data;
227 buf_end = baton->data + baton->size;
228
229 while (1)
230 {
231 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
232 int length;
233 enum debug_loc_kind kind;
234 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
235
236 if (baton->from_dwo)
237 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
238 loc_ptr, buf_end, &new_ptr,
239 &low, &high, byte_order);
240 else
241 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
242 &low, &high,
243 byte_order, addr_size,
244 signed_addr_p);
245 loc_ptr = new_ptr;
246 switch (kind)
247 {
248 case DEBUG_LOC_END_OF_LIST:
249 *locexpr_length = 0;
250 return NULL;
251 case DEBUG_LOC_BASE_ADDRESS:
252 base_address = high + base_offset;
253 continue;
254 case DEBUG_LOC_START_END:
255 case DEBUG_LOC_START_LENGTH:
256 break;
257 case DEBUG_LOC_BUFFER_OVERFLOW:
258 case DEBUG_LOC_INVALID_ENTRY:
259 error (_("dwarf2_find_location_expression: "
260 "Corrupted DWARF expression."));
261 default:
262 gdb_assert_not_reached ("bad debug_loc_kind");
263 }
264
265 /* Otherwise, a location expression entry.
266 If the entry is from a DWO, don't add base address: the entry is from
267 .debug_addr which already has the DWARF "base address". We still add
268 base_offset in case we're debugging a PIE executable. */
269 if (baton->from_dwo)
270 {
271 low += base_offset;
272 high += base_offset;
273 }
274 else
275 {
276 low += base_address;
277 high += base_address;
278 }
279
280 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
281 loc_ptr += 2;
282
283 if (low == high && pc == low)
284 {
285 /* This is entry PC record present only at entry point
286 of a function. Verify it is really the function entry point. */
287
288 const struct block *pc_block = block_for_pc (pc);
289 struct symbol *pc_func = NULL;
290
291 if (pc_block)
292 pc_func = block_linkage_function (pc_block);
293
294 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
295 {
296 *locexpr_length = length;
297 return loc_ptr;
298 }
299 }
300
301 if (pc >= low && pc < high)
302 {
303 *locexpr_length = length;
304 return loc_ptr;
305 }
306
307 loc_ptr += length;
308 }
309 }
310
311 /* This is the baton used when performing dwarf2 expression
312 evaluation. */
313 struct dwarf_expr_baton
314 {
315 struct frame_info *frame;
316 struct dwarf2_per_cu_data *per_cu;
317 CORE_ADDR obj_address;
318 };
319
320 /* Implement find_frame_base_location method for LOC_BLOCK functions using
321 DWARF expression for its DW_AT_frame_base. */
322
323 static void
324 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
325 const gdb_byte **start, size_t *length)
326 {
327 struct dwarf2_locexpr_baton *symbaton
328 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
329
330 *length = symbaton->size;
331 *start = symbaton->data;
332 }
333
334 /* Implement the struct symbol_block_ops::get_frame_base method for
335 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
336
337 static CORE_ADDR
338 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
339 {
340 struct gdbarch *gdbarch;
341 struct type *type;
342 struct dwarf2_locexpr_baton *dlbaton;
343 const gdb_byte *start;
344 size_t length;
345 struct value *result;
346
347 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
348 Thus, it's supposed to provide the find_frame_base_location method as
349 well. */
350 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
351
352 gdbarch = get_frame_arch (frame);
353 type = builtin_type (gdbarch)->builtin_data_ptr;
354 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
355
356 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
357 (framefunc, get_frame_pc (frame), &start, &length);
358 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
359 dlbaton->per_cu);
360
361 /* The DW_AT_frame_base attribute contains a location description which
362 computes the base address itself. However, the call to
363 dwarf2_evaluate_loc_desc returns a value representing a variable at
364 that address. The frame base address is thus this variable's
365 address. */
366 return value_address (result);
367 }
368
369 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
370 function uses DWARF expression for its DW_AT_frame_base. */
371
372 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
373 {
374 locexpr_find_frame_base_location,
375 locexpr_get_frame_base
376 };
377
378 /* Implement find_frame_base_location method for LOC_BLOCK functions using
379 DWARF location list for its DW_AT_frame_base. */
380
381 static void
382 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
383 const gdb_byte **start, size_t *length)
384 {
385 struct dwarf2_loclist_baton *symbaton
386 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
387
388 *start = dwarf2_find_location_expression (symbaton, length, pc);
389 }
390
391 /* Implement the struct symbol_block_ops::get_frame_base method for
392 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
393
394 static CORE_ADDR
395 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
396 {
397 struct gdbarch *gdbarch;
398 struct type *type;
399 struct dwarf2_loclist_baton *dlbaton;
400 const gdb_byte *start;
401 size_t length;
402 struct value *result;
403
404 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
405 Thus, it's supposed to provide the find_frame_base_location method as
406 well. */
407 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
408
409 gdbarch = get_frame_arch (frame);
410 type = builtin_type (gdbarch)->builtin_data_ptr;
411 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
412
413 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
414 (framefunc, get_frame_pc (frame), &start, &length);
415 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
416 dlbaton->per_cu);
417
418 /* The DW_AT_frame_base attribute contains a location description which
419 computes the base address itself. However, the call to
420 dwarf2_evaluate_loc_desc returns a value representing a variable at
421 that address. The frame base address is thus this variable's
422 address. */
423 return value_address (result);
424 }
425
426 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
427 function uses DWARF location list for its DW_AT_frame_base. */
428
429 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
430 {
431 loclist_find_frame_base_location,
432 loclist_get_frame_base
433 };
434
435 /* See dwarf2loc.h. */
436
437 void
438 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
439 const gdb_byte **start, size_t *length)
440 {
441 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
442 {
443 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
444
445 ops_block->find_frame_base_location (framefunc, pc, start, length);
446 }
447 else
448 *length = 0;
449
450 if (*length == 0)
451 error (_("Could not find the frame base for \"%s\"."),
452 SYMBOL_NATURAL_NAME (framefunc));
453 }
454
455 static CORE_ADDR
456 get_frame_pc_for_per_cu_dwarf_call (void *baton)
457 {
458 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
459
460 return ctx->get_frame_pc ();
461 }
462
463 static void
464 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
465 struct dwarf2_per_cu_data *per_cu)
466 {
467 struct dwarf2_locexpr_baton block;
468
469 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
470 get_frame_pc_for_per_cu_dwarf_call,
471 ctx);
472
473 /* DW_OP_call_ref is currently not supported. */
474 gdb_assert (block.per_cu == per_cu);
475
476 ctx->eval (block.data, block.size);
477 }
478
479 class dwarf_evaluate_loc_desc : public dwarf_expr_context
480 {
481 public:
482
483 struct frame_info *frame;
484 struct dwarf2_per_cu_data *per_cu;
485 CORE_ADDR obj_address;
486
487 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
488 the frame in BATON. */
489
490 CORE_ADDR get_frame_cfa () OVERRIDE
491 {
492 return dwarf2_frame_cfa (frame);
493 }
494
495 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
496 the frame in BATON. */
497
498 CORE_ADDR get_frame_pc () OVERRIDE
499 {
500 return get_frame_address_in_block (frame);
501 }
502
503 /* Using the objfile specified in BATON, find the address for the
504 current thread's thread-local storage with offset OFFSET. */
505 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
506 {
507 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
508
509 return target_translate_tls_address (objfile, offset);
510 }
511
512 /* Helper interface of per_cu_dwarf_call for
513 dwarf2_evaluate_loc_desc. */
514
515 void dwarf_call (cu_offset die_offset) OVERRIDE
516 {
517 per_cu_dwarf_call (this, die_offset, per_cu);
518 }
519
520 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
521 {
522 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
523 if (result == NULL)
524 error (_("Could not find type for DW_OP_GNU_const_type"));
525 if (size != 0 && TYPE_LENGTH (result) != size)
526 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
527 return result;
528 }
529
530 /* Callback function for dwarf2_evaluate_loc_desc.
531 Fetch the address indexed by DW_OP_GNU_addr_index. */
532
533 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
534 {
535 return dwarf2_read_addr_index (per_cu, index);
536 }
537
538 /* Callback function for get_object_address. Return the address of the VLA
539 object. */
540
541 CORE_ADDR get_object_address () OVERRIDE
542 {
543 if (obj_address == 0)
544 error (_("Location address is not set."));
545 return obj_address;
546 }
547
548 /* Execute DWARF block of call_site_parameter which matches KIND and
549 KIND_U. Choose DEREF_SIZE value of that parameter. Search
550 caller of this objects's frame.
551
552 The caller can be from a different CU - per_cu_dwarf_call
553 implementation can be more simple as it does not support cross-CU
554 DWARF executions. */
555
556 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
557 union call_site_parameter_u kind_u,
558 int deref_size) OVERRIDE
559 {
560 struct frame_info *caller_frame;
561 struct dwarf2_per_cu_data *caller_per_cu;
562 struct call_site_parameter *parameter;
563 const gdb_byte *data_src;
564 size_t size;
565
566 caller_frame = get_prev_frame (frame);
567
568 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
569 &caller_per_cu);
570 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
571 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
572
573 /* DEREF_SIZE size is not verified here. */
574 if (data_src == NULL)
575 throw_error (NO_ENTRY_VALUE_ERROR,
576 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
577
578 scoped_restore save_frame = make_scoped_restore (&this->frame,
579 caller_frame);
580 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
581 caller_per_cu);
582 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
583 (CORE_ADDR) 0);
584
585 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
586 this->gdbarch
587 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
588 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
589 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
590 scoped_restore save_offset = make_scoped_restore (&this->offset);
591 this->offset = dwarf2_per_cu_text_offset (per_cu);
592
593 this->eval (data_src, size);
594 }
595
596 /* Using the frame specified in BATON, find the location expression
597 describing the frame base. Return a pointer to it in START and
598 its length in LENGTH. */
599 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
600 {
601 /* FIXME: cagney/2003-03-26: This code should be using
602 get_frame_base_address(), and then implement a dwarf2 specific
603 this_base method. */
604 struct symbol *framefunc;
605 const struct block *bl = get_frame_block (frame, NULL);
606
607 if (bl == NULL)
608 error (_("frame address is not available."));
609
610 /* Use block_linkage_function, which returns a real (not inlined)
611 function, instead of get_frame_function, which may return an
612 inlined function. */
613 framefunc = block_linkage_function (bl);
614
615 /* If we found a frame-relative symbol then it was certainly within
616 some function associated with a frame. If we can't find the frame,
617 something has gone wrong. */
618 gdb_assert (framefunc != NULL);
619
620 func_get_frame_base_dwarf_block (framefunc,
621 get_frame_address_in_block (frame),
622 start, length);
623 }
624
625 /* Read memory at ADDR (length LEN) into BUF. */
626
627 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
628 {
629 read_memory (addr, buf, len);
630 }
631
632 /* Using the frame specified in BATON, return the value of register
633 REGNUM, treated as a pointer. */
634 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
635 {
636 struct gdbarch *gdbarch = get_frame_arch (frame);
637 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
638
639 return address_from_register (regnum, frame);
640 }
641
642 /* Implement "get_reg_value" callback. */
643
644 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
645 {
646 struct gdbarch *gdbarch = get_frame_arch (frame);
647 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
648
649 return value_from_register (type, regnum, frame);
650 }
651 };
652
653 /* See dwarf2loc.h. */
654
655 unsigned int entry_values_debug = 0;
656
657 /* Helper to set entry_values_debug. */
658
659 static void
660 show_entry_values_debug (struct ui_file *file, int from_tty,
661 struct cmd_list_element *c, const char *value)
662 {
663 fprintf_filtered (file,
664 _("Entry values and tail call frames debugging is %s.\n"),
665 value);
666 }
667
668 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
669 CALLER_FRAME (for registers) can be NULL if it is not known. This function
670 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
671
672 static CORE_ADDR
673 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
674 struct call_site *call_site,
675 struct frame_info *caller_frame)
676 {
677 switch (FIELD_LOC_KIND (call_site->target))
678 {
679 case FIELD_LOC_KIND_DWARF_BLOCK:
680 {
681 struct dwarf2_locexpr_baton *dwarf_block;
682 struct value *val;
683 struct type *caller_core_addr_type;
684 struct gdbarch *caller_arch;
685
686 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
687 if (dwarf_block == NULL)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_AT_GNU_call_site_target is not specified "
694 "at %s in %s"),
695 paddress (call_site_gdbarch, call_site->pc),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)));
698
699 }
700 if (caller_frame == NULL)
701 {
702 struct bound_minimal_symbol msym;
703
704 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
705 throw_error (NO_ENTRY_VALUE_ERROR,
706 _("DW_AT_GNU_call_site_target DWARF block resolving "
707 "requires known frame which is currently not "
708 "available at %s in %s"),
709 paddress (call_site_gdbarch, call_site->pc),
710 (msym.minsym == NULL ? "???"
711 : MSYMBOL_PRINT_NAME (msym.minsym)));
712
713 }
714 caller_arch = get_frame_arch (caller_frame);
715 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
716 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
717 dwarf_block->data, dwarf_block->size,
718 dwarf_block->per_cu);
719 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
720 location. */
721 if (VALUE_LVAL (val) == lval_memory)
722 return value_address (val);
723 else
724 return value_as_address (val);
725 }
726
727 case FIELD_LOC_KIND_PHYSNAME:
728 {
729 const char *physname;
730 struct bound_minimal_symbol msym;
731
732 physname = FIELD_STATIC_PHYSNAME (call_site->target);
733
734 /* Handle both the mangled and demangled PHYSNAME. */
735 msym = lookup_minimal_symbol (physname, NULL, NULL);
736 if (msym.minsym == NULL)
737 {
738 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
739 throw_error (NO_ENTRY_VALUE_ERROR,
740 _("Cannot find function \"%s\" for a call site target "
741 "at %s in %s"),
742 physname, paddress (call_site_gdbarch, call_site->pc),
743 (msym.minsym == NULL ? "???"
744 : MSYMBOL_PRINT_NAME (msym.minsym)));
745
746 }
747 return BMSYMBOL_VALUE_ADDRESS (msym);
748 }
749
750 case FIELD_LOC_KIND_PHYSADDR:
751 return FIELD_STATIC_PHYSADDR (call_site->target);
752
753 default:
754 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
755 }
756 }
757
758 /* Convert function entry point exact address ADDR to the function which is
759 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
760 NO_ENTRY_VALUE_ERROR otherwise. */
761
762 static struct symbol *
763 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 struct symbol *sym = find_pc_function (addr);
766 struct type *type;
767
768 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
769 throw_error (NO_ENTRY_VALUE_ERROR,
770 _("DW_TAG_GNU_call_site resolving failed to find function "
771 "name for address %s"),
772 paddress (gdbarch, addr));
773
774 type = SYMBOL_TYPE (sym);
775 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
776 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
777
778 return sym;
779 }
780
781 /* Verify function with entry point exact address ADDR can never call itself
782 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
783 can call itself via tail calls.
784
785 If a funtion can tail call itself its entry value based parameters are
786 unreliable. There is no verification whether the value of some/all
787 parameters is unchanged through the self tail call, we expect if there is
788 a self tail call all the parameters can be modified. */
789
790 static void
791 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
792 {
793 CORE_ADDR addr;
794
795 /* The verification is completely unordered. Track here function addresses
796 which still need to be iterated. */
797 std::vector<CORE_ADDR> todo;
798
799 /* Track here CORE_ADDRs which were already visited. */
800 std::unordered_set<CORE_ADDR> addr_hash;
801
802 todo.push_back (verify_addr);
803 while (!todo.empty ())
804 {
805 struct symbol *func_sym;
806 struct call_site *call_site;
807
808 addr = todo.back ();
809 todo.pop_back ();
810
811 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
812
813 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
814 call_site; call_site = call_site->tail_call_next)
815 {
816 CORE_ADDR target_addr;
817
818 /* CALLER_FRAME with registers is not available for tail-call jumped
819 frames. */
820 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
821
822 if (target_addr == verify_addr)
823 {
824 struct bound_minimal_symbol msym;
825
826 msym = lookup_minimal_symbol_by_pc (verify_addr);
827 throw_error (NO_ENTRY_VALUE_ERROR,
828 _("DW_OP_GNU_entry_value resolving has found "
829 "function \"%s\" at %s can call itself via tail "
830 "calls"),
831 (msym.minsym == NULL ? "???"
832 : MSYMBOL_PRINT_NAME (msym.minsym)),
833 paddress (gdbarch, verify_addr));
834 }
835
836 if (addr_hash.insert (target_addr).second)
837 todo.push_back (target_addr);
838 }
839 }
840 }
841
842 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
843 ENTRY_VALUES_DEBUG. */
844
845 static void
846 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
847 {
848 CORE_ADDR addr = call_site->pc;
849 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
850
851 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
852 (msym.minsym == NULL ? "???"
853 : MSYMBOL_PRINT_NAME (msym.minsym)));
854
855 }
856
857 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
858 only top callers and bottom callees which are present in both. GDBARCH is
859 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
860 no remaining possibilities to provide unambiguous non-trivial result.
861 RESULTP should point to NULL on the first (initialization) call. Caller is
862 responsible for xfree of any RESULTP data. */
863
864 static void
865 chain_candidate (struct gdbarch *gdbarch,
866 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
867 std::vector<struct call_site *> *chain)
868 {
869 long length = chain->size ();
870 int callers, callees, idx;
871
872 if (*resultp == NULL)
873 {
874 /* Create the initial chain containing all the passed PCs. */
875
876 struct call_site_chain *result
877 = ((struct call_site_chain *)
878 xmalloc (sizeof (*result)
879 + sizeof (*result->call_site) * (length - 1)));
880 result->length = length;
881 result->callers = result->callees = length;
882 if (!chain->empty ())
883 memcpy (result->call_site, chain->data (),
884 sizeof (*result->call_site) * length);
885 resultp->reset (result);
886
887 if (entry_values_debug)
888 {
889 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
890 for (idx = 0; idx < length; idx++)
891 tailcall_dump (gdbarch, result->call_site[idx]);
892 fputc_unfiltered ('\n', gdb_stdlog);
893 }
894
895 return;
896 }
897
898 if (entry_values_debug)
899 {
900 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
901 for (idx = 0; idx < length; idx++)
902 tailcall_dump (gdbarch, chain->at (idx));
903 fputc_unfiltered ('\n', gdb_stdlog);
904 }
905
906 /* Intersect callers. */
907
908 callers = std::min ((long) (*resultp)->callers, length);
909 for (idx = 0; idx < callers; idx++)
910 if ((*resultp)->call_site[idx] != chain->at (idx))
911 {
912 (*resultp)->callers = idx;
913 break;
914 }
915
916 /* Intersect callees. */
917
918 callees = std::min ((long) (*resultp)->callees, length);
919 for (idx = 0; idx < callees; idx++)
920 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
921 != chain->at (length - 1 - idx))
922 {
923 (*resultp)->callees = idx;
924 break;
925 }
926
927 if (entry_values_debug)
928 {
929 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
930 for (idx = 0; idx < (*resultp)->callers; idx++)
931 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
932 fputs_unfiltered (" |", gdb_stdlog);
933 for (idx = 0; idx < (*resultp)->callees; idx++)
934 tailcall_dump (gdbarch,
935 (*resultp)->call_site[(*resultp)->length
936 - (*resultp)->callees + idx]);
937 fputc_unfiltered ('\n', gdb_stdlog);
938 }
939
940 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
941 {
942 /* There are no common callers or callees. It could be also a direct
943 call (which has length 0) with ambiguous possibility of an indirect
944 call - CALLERS == CALLEES == 0 is valid during the first allocation
945 but any subsequence processing of such entry means ambiguity. */
946 resultp->reset (NULL);
947 return;
948 }
949
950 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
951 PC again. In such case there must be two different code paths to reach
952 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
953 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
954 }
955
956 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
957 assumed frames between them use GDBARCH. Use depth first search so we can
958 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
959 would have needless GDB stack overhead. Caller is responsible for xfree of
960 the returned result. Any unreliability results in thrown
961 NO_ENTRY_VALUE_ERROR. */
962
963 static struct call_site_chain *
964 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
965 CORE_ADDR callee_pc)
966 {
967 CORE_ADDR save_callee_pc = callee_pc;
968 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
969 struct call_site *call_site;
970
971 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
972 call_site nor any possible call_site at CALLEE_PC's function is there.
973 Any CALL_SITE in CHAIN will be iterated to its siblings - via
974 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
975 std::vector<struct call_site *> chain;
976
977 /* We are not interested in the specific PC inside the callee function. */
978 callee_pc = get_pc_function_start (callee_pc);
979 if (callee_pc == 0)
980 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
981 paddress (gdbarch, save_callee_pc));
982
983 /* Mark CALL_SITEs so we do not visit the same ones twice. */
984 std::unordered_set<CORE_ADDR> addr_hash;
985
986 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
987 at the target's function. All the possible tail call sites in the
988 target's function will get iterated as already pushed into CHAIN via their
989 TAIL_CALL_NEXT. */
990 call_site = call_site_for_pc (gdbarch, caller_pc);
991
992 while (call_site)
993 {
994 CORE_ADDR target_func_addr;
995 struct call_site *target_call_site;
996
997 /* CALLER_FRAME with registers is not available for tail-call jumped
998 frames. */
999 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1000
1001 if (target_func_addr == callee_pc)
1002 {
1003 chain_candidate (gdbarch, &retval, &chain);
1004 if (retval == NULL)
1005 break;
1006
1007 /* There is no way to reach CALLEE_PC again as we would prevent
1008 entering it twice as being already marked in ADDR_HASH. */
1009 target_call_site = NULL;
1010 }
1011 else
1012 {
1013 struct symbol *target_func;
1014
1015 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1016 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1017 }
1018
1019 do
1020 {
1021 /* Attempt to visit TARGET_CALL_SITE. */
1022
1023 if (target_call_site)
1024 {
1025 if (addr_hash.insert (target_call_site->pc).second)
1026 {
1027 /* Successfully entered TARGET_CALL_SITE. */
1028
1029 chain.push_back (target_call_site);
1030 break;
1031 }
1032 }
1033
1034 /* Backtrack (without revisiting the originating call_site). Try the
1035 callers's sibling; if there isn't any try the callers's callers's
1036 sibling etc. */
1037
1038 target_call_site = NULL;
1039 while (!chain.empty ())
1040 {
1041 call_site = chain.back ();
1042 chain.pop_back ();
1043
1044 size_t removed = addr_hash.erase (call_site->pc);
1045 gdb_assert (removed == 1);
1046
1047 target_call_site = call_site->tail_call_next;
1048 if (target_call_site)
1049 break;
1050 }
1051 }
1052 while (target_call_site);
1053
1054 if (chain.empty ())
1055 call_site = NULL;
1056 else
1057 call_site = chain.back ();
1058 }
1059
1060 if (retval == NULL)
1061 {
1062 struct bound_minimal_symbol msym_caller, msym_callee;
1063
1064 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1065 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1066 throw_error (NO_ENTRY_VALUE_ERROR,
1067 _("There are no unambiguously determinable intermediate "
1068 "callers or callees between caller function \"%s\" at %s "
1069 "and callee function \"%s\" at %s"),
1070 (msym_caller.minsym == NULL
1071 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1072 paddress (gdbarch, caller_pc),
1073 (msym_callee.minsym == NULL
1074 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1075 paddress (gdbarch, callee_pc));
1076 }
1077
1078 return retval.release ();
1079 }
1080
1081 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1082 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1083 constructed return NULL. Caller is responsible for xfree of the returned
1084 result. */
1085
1086 struct call_site_chain *
1087 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1088 CORE_ADDR callee_pc)
1089 {
1090 struct call_site_chain *retval = NULL;
1091
1092 TRY
1093 {
1094 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1095 }
1096 CATCH (e, RETURN_MASK_ERROR)
1097 {
1098 if (e.error == NO_ENTRY_VALUE_ERROR)
1099 {
1100 if (entry_values_debug)
1101 exception_print (gdb_stdout, e);
1102
1103 return NULL;
1104 }
1105 else
1106 throw_exception (e);
1107 }
1108 END_CATCH
1109
1110 return retval;
1111 }
1112
1113 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1114
1115 static int
1116 call_site_parameter_matches (struct call_site_parameter *parameter,
1117 enum call_site_parameter_kind kind,
1118 union call_site_parameter_u kind_u)
1119 {
1120 if (kind == parameter->kind)
1121 switch (kind)
1122 {
1123 case CALL_SITE_PARAMETER_DWARF_REG:
1124 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1125 case CALL_SITE_PARAMETER_FB_OFFSET:
1126 return kind_u.fb_offset == parameter->u.fb_offset;
1127 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1128 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1129 }
1130 return 0;
1131 }
1132
1133 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1134 FRAME is for callee.
1135
1136 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1137 otherwise. */
1138
1139 static struct call_site_parameter *
1140 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1141 enum call_site_parameter_kind kind,
1142 union call_site_parameter_u kind_u,
1143 struct dwarf2_per_cu_data **per_cu_return)
1144 {
1145 CORE_ADDR func_addr, caller_pc;
1146 struct gdbarch *gdbarch;
1147 struct frame_info *caller_frame;
1148 struct call_site *call_site;
1149 int iparams;
1150 /* Initialize it just to avoid a GCC false warning. */
1151 struct call_site_parameter *parameter = NULL;
1152 CORE_ADDR target_addr;
1153
1154 while (get_frame_type (frame) == INLINE_FRAME)
1155 {
1156 frame = get_prev_frame (frame);
1157 gdb_assert (frame != NULL);
1158 }
1159
1160 func_addr = get_frame_func (frame);
1161 gdbarch = get_frame_arch (frame);
1162 caller_frame = get_prev_frame (frame);
1163 if (gdbarch != frame_unwind_arch (frame))
1164 {
1165 struct bound_minimal_symbol msym
1166 = lookup_minimal_symbol_by_pc (func_addr);
1167 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1168
1169 throw_error (NO_ENTRY_VALUE_ERROR,
1170 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1171 "(of %s (%s)) does not match caller gdbarch %s"),
1172 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1173 paddress (gdbarch, func_addr),
1174 (msym.minsym == NULL ? "???"
1175 : MSYMBOL_PRINT_NAME (msym.minsym)),
1176 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1177 }
1178
1179 if (caller_frame == NULL)
1180 {
1181 struct bound_minimal_symbol msym
1182 = lookup_minimal_symbol_by_pc (func_addr);
1183
1184 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1185 "requires caller of %s (%s)"),
1186 paddress (gdbarch, func_addr),
1187 (msym.minsym == NULL ? "???"
1188 : MSYMBOL_PRINT_NAME (msym.minsym)));
1189 }
1190 caller_pc = get_frame_pc (caller_frame);
1191 call_site = call_site_for_pc (gdbarch, caller_pc);
1192
1193 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1194 if (target_addr != func_addr)
1195 {
1196 struct minimal_symbol *target_msym, *func_msym;
1197
1198 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1199 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1200 throw_error (NO_ENTRY_VALUE_ERROR,
1201 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1202 "but the called frame is for %s at %s"),
1203 (target_msym == NULL ? "???"
1204 : MSYMBOL_PRINT_NAME (target_msym)),
1205 paddress (gdbarch, target_addr),
1206 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1207 paddress (gdbarch, func_addr));
1208 }
1209
1210 /* No entry value based parameters would be reliable if this function can
1211 call itself via tail calls. */
1212 func_verify_no_selftailcall (gdbarch, func_addr);
1213
1214 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1215 {
1216 parameter = &call_site->parameter[iparams];
1217 if (call_site_parameter_matches (parameter, kind, kind_u))
1218 break;
1219 }
1220 if (iparams == call_site->parameter_count)
1221 {
1222 struct minimal_symbol *msym
1223 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1224
1225 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1226 determine its value. */
1227 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1228 "at DW_TAG_GNU_call_site %s at %s"),
1229 paddress (gdbarch, caller_pc),
1230 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1231 }
1232
1233 *per_cu_return = call_site->per_cu;
1234 return parameter;
1235 }
1236
1237 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1238 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1239 DW_AT_GNU_call_site_data_value (dereferenced) block.
1240
1241 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1242 struct value.
1243
1244 Function always returns non-NULL, non-optimized out value. It throws
1245 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1246
1247 static struct value *
1248 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1249 CORE_ADDR deref_size, struct type *type,
1250 struct frame_info *caller_frame,
1251 struct dwarf2_per_cu_data *per_cu)
1252 {
1253 const gdb_byte *data_src;
1254 gdb_byte *data;
1255 size_t size;
1256
1257 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1258 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1259
1260 /* DEREF_SIZE size is not verified here. */
1261 if (data_src == NULL)
1262 throw_error (NO_ENTRY_VALUE_ERROR,
1263 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1264
1265 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1266 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1267 DWARF block. */
1268 data = (gdb_byte *) alloca (size + 1);
1269 memcpy (data, data_src, size);
1270 data[size] = DW_OP_stack_value;
1271
1272 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1273 }
1274
1275 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1276 the indirect method on it, that is use its stored target value, the sole
1277 purpose of entry_data_value_funcs.. */
1278
1279 static struct value *
1280 entry_data_value_coerce_ref (const struct value *value)
1281 {
1282 struct type *checked_type = check_typedef (value_type (value));
1283 struct value *target_val;
1284
1285 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1286 return NULL;
1287
1288 target_val = (struct value *) value_computed_closure (value);
1289 value_incref (target_val);
1290 return target_val;
1291 }
1292
1293 /* Implement copy_closure. */
1294
1295 static void *
1296 entry_data_value_copy_closure (const struct value *v)
1297 {
1298 struct value *target_val = (struct value *) value_computed_closure (v);
1299
1300 value_incref (target_val);
1301 return target_val;
1302 }
1303
1304 /* Implement free_closure. */
1305
1306 static void
1307 entry_data_value_free_closure (struct value *v)
1308 {
1309 struct value *target_val = (struct value *) value_computed_closure (v);
1310
1311 value_free (target_val);
1312 }
1313
1314 /* Vector for methods for an entry value reference where the referenced value
1315 is stored in the caller. On the first dereference use
1316 DW_AT_GNU_call_site_data_value in the caller. */
1317
1318 static const struct lval_funcs entry_data_value_funcs =
1319 {
1320 NULL, /* read */
1321 NULL, /* write */
1322 NULL, /* indirect */
1323 entry_data_value_coerce_ref,
1324 NULL, /* check_synthetic_pointer */
1325 entry_data_value_copy_closure,
1326 entry_data_value_free_closure
1327 };
1328
1329 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1330 are used to match DW_AT_location at the caller's
1331 DW_TAG_GNU_call_site_parameter.
1332
1333 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1334 cannot resolve the parameter for any reason. */
1335
1336 static struct value *
1337 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1338 enum call_site_parameter_kind kind,
1339 union call_site_parameter_u kind_u)
1340 {
1341 struct type *checked_type = check_typedef (type);
1342 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1343 struct frame_info *caller_frame = get_prev_frame (frame);
1344 struct value *outer_val, *target_val, *val;
1345 struct call_site_parameter *parameter;
1346 struct dwarf2_per_cu_data *caller_per_cu;
1347
1348 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1349 &caller_per_cu);
1350
1351 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1352 type, caller_frame,
1353 caller_per_cu);
1354
1355 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1356 used and it is not available do not fall back to OUTER_VAL - dereferencing
1357 TYPE_CODE_REF with non-entry data value would give current value - not the
1358 entry value. */
1359
1360 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1361 || TYPE_TARGET_TYPE (checked_type) == NULL)
1362 return outer_val;
1363
1364 target_val = dwarf_entry_parameter_to_value (parameter,
1365 TYPE_LENGTH (target_type),
1366 target_type, caller_frame,
1367 caller_per_cu);
1368
1369 release_value (target_val);
1370 val = allocate_computed_value (type, &entry_data_value_funcs,
1371 target_val /* closure */);
1372
1373 /* Copy the referencing pointer to the new computed value. */
1374 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1375 TYPE_LENGTH (checked_type));
1376 set_value_lazy (val, 0);
1377
1378 return val;
1379 }
1380
1381 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1382 SIZE are DWARF block used to match DW_AT_location at the caller's
1383 DW_TAG_GNU_call_site_parameter.
1384
1385 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1386 cannot resolve the parameter for any reason. */
1387
1388 static struct value *
1389 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1390 const gdb_byte *block, size_t block_len)
1391 {
1392 union call_site_parameter_u kind_u;
1393
1394 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1395 if (kind_u.dwarf_reg != -1)
1396 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1397 kind_u);
1398
1399 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1400 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1401 kind_u);
1402
1403 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1404 suppressed during normal operation. The expression can be arbitrary if
1405 there is no caller-callee entry value binding expected. */
1406 throw_error (NO_ENTRY_VALUE_ERROR,
1407 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1408 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1409 }
1410
1411 struct piece_closure
1412 {
1413 /* Reference count. */
1414 int refc;
1415
1416 /* The CU from which this closure's expression came. */
1417 struct dwarf2_per_cu_data *per_cu;
1418
1419 /* The number of pieces used to describe this variable. */
1420 int n_pieces;
1421
1422 /* The target address size, used only for DWARF_VALUE_STACK. */
1423 int addr_size;
1424
1425 /* The pieces themselves. */
1426 struct dwarf_expr_piece *pieces;
1427
1428 /* Frame ID of frame to which a register value is relative, used
1429 only by DWARF_VALUE_REGISTER. */
1430 struct frame_id frame_id;
1431 };
1432
1433 /* Allocate a closure for a value formed from separately-described
1434 PIECES. */
1435
1436 static struct piece_closure *
1437 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1438 int n_pieces, struct dwarf_expr_piece *pieces,
1439 int addr_size, struct frame_info *frame)
1440 {
1441 struct piece_closure *c = XCNEW (struct piece_closure);
1442 int i;
1443
1444 c->refc = 1;
1445 c->per_cu = per_cu;
1446 c->n_pieces = n_pieces;
1447 c->addr_size = addr_size;
1448 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1449 if (frame == NULL)
1450 c->frame_id = null_frame_id;
1451 else
1452 c->frame_id = get_frame_id (frame);
1453
1454 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1455 for (i = 0; i < n_pieces; ++i)
1456 if (c->pieces[i].location == DWARF_VALUE_STACK)
1457 value_incref (c->pieces[i].v.value);
1458
1459 return c;
1460 }
1461
1462 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1463 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1464 Source and destination buffers must not overlap. */
1465
1466 static void
1467 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1468 const gdb_byte *source, ULONGEST source_offset,
1469 ULONGEST nbits, int bits_big_endian)
1470 {
1471 unsigned int buf, avail;
1472
1473 if (nbits == 0)
1474 return;
1475
1476 if (bits_big_endian)
1477 {
1478 /* Start from the end, then work backwards. */
1479 dest_offset += nbits - 1;
1480 dest += dest_offset / 8;
1481 dest_offset = 7 - dest_offset % 8;
1482 source_offset += nbits - 1;
1483 source += source_offset / 8;
1484 source_offset = 7 - source_offset % 8;
1485 }
1486 else
1487 {
1488 dest += dest_offset / 8;
1489 dest_offset %= 8;
1490 source += source_offset / 8;
1491 source_offset %= 8;
1492 }
1493
1494 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1495 SOURCE_OFFSET bits from the source. */
1496 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1497 buf <<= dest_offset;
1498 buf |= *dest & ((1 << dest_offset) - 1);
1499
1500 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1501 nbits += dest_offset;
1502 avail = dest_offset + 8 - source_offset;
1503
1504 /* Flush 8 bits from BUF, if appropriate. */
1505 if (nbits >= 8 && avail >= 8)
1506 {
1507 *(bits_big_endian ? dest-- : dest++) = buf;
1508 buf >>= 8;
1509 avail -= 8;
1510 nbits -= 8;
1511 }
1512
1513 /* Copy the middle part. */
1514 if (nbits >= 8)
1515 {
1516 size_t len = nbits / 8;
1517
1518 /* Use a faster method for byte-aligned copies. */
1519 if (avail == 0)
1520 {
1521 if (bits_big_endian)
1522 {
1523 dest -= len;
1524 source -= len;
1525 memcpy (dest + 1, source + 1, len);
1526 }
1527 else
1528 {
1529 memcpy (dest, source, len);
1530 dest += len;
1531 source += len;
1532 }
1533 }
1534 else
1535 {
1536 while (len--)
1537 {
1538 buf |= *(bits_big_endian ? source-- : source++) << avail;
1539 *(bits_big_endian ? dest-- : dest++) = buf;
1540 buf >>= 8;
1541 }
1542 }
1543 nbits %= 8;
1544 }
1545
1546 /* Write the last byte. */
1547 if (nbits)
1548 {
1549 if (avail < nbits)
1550 buf |= *source << avail;
1551
1552 buf &= (1 << nbits) - 1;
1553 *dest = (*dest & (~0 << nbits)) | buf;
1554 }
1555 }
1556
1557 #if GDB_SELF_TEST
1558
1559 namespace selftests {
1560
1561 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1562 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1563 specifies whether to assume big endian bit numbering. Store the
1564 resulting (not null-terminated) string at STR. */
1565
1566 static void
1567 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1568 ULONGEST nbits, int msb0)
1569 {
1570 unsigned int j;
1571 size_t i;
1572
1573 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1574 {
1575 unsigned int ch = bits[i];
1576 for (; j < 8 && nbits; j++, nbits--)
1577 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1578 }
1579 }
1580
1581 /* Check one invocation of copy_bitwise with the given parameters. */
1582
1583 static void
1584 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1585 const gdb_byte *source, unsigned int source_offset,
1586 unsigned int nbits, int msb0)
1587 {
1588 size_t len = align_up (dest_offset + nbits, 8);
1589 char *expected = (char *) alloca (len + 1);
1590 char *actual = (char *) alloca (len + 1);
1591 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1592
1593 /* Compose a '0'/'1'-string that represents the expected result of
1594 copy_bitwise below:
1595 Bits from [0, DEST_OFFSET) are filled from DEST.
1596 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1597 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1598
1599 E.g., with:
1600 dest_offset: 4
1601 nbits: 2
1602 len: 8
1603 dest: 00000000
1604 source: 11111111
1605
1606 We should end up with:
1607 buf: 00001100
1608 DDDDSSDD (D=dest, S=source)
1609 */
1610 bits_to_str (expected, dest, 0, len, msb0);
1611 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1612
1613 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1614 result to a '0'/'1'-string. */
1615 memcpy (buf, dest, len / 8);
1616 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1617 bits_to_str (actual, buf, 0, len, msb0);
1618
1619 /* Compare the resulting strings. */
1620 expected[len] = actual[len] = '\0';
1621 if (strcmp (expected, actual) != 0)
1622 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1623 expected, actual, source_offset, nbits, dest_offset);
1624 }
1625
1626 /* Unit test for copy_bitwise. */
1627
1628 static void
1629 copy_bitwise_tests (void)
1630 {
1631 /* Data to be used as both source and destination buffers. The two
1632 arrays below represent the lsb0- and msb0- encoded versions of the
1633 following bit string, respectively:
1634 00000000 00011111 11111111 01001000 10100101 11110010
1635 This pattern is chosen such that it contains:
1636 - constant 0- and 1- chunks of more than a full byte;
1637 - 0/1- and 1/0 transitions on all bit positions within a byte;
1638 - several sufficiently asymmetric bytes.
1639 */
1640 static const gdb_byte data_lsb0[] = {
1641 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1642 };
1643 static const gdb_byte data_msb0[] = {
1644 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1645 };
1646
1647 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1648 constexpr unsigned max_nbits = 24;
1649
1650 /* Try all combinations of:
1651 lsb0/msb0 bit order (using the respective data array)
1652 X [0, MAX_NBITS] copy bit width
1653 X feasible source offsets for the given copy bit width
1654 X feasible destination offsets
1655 */
1656 for (int msb0 = 0; msb0 < 2; msb0++)
1657 {
1658 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1659
1660 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1661 {
1662 const unsigned int max_offset = data_nbits - nbits;
1663
1664 for (unsigned source_offset = 0;
1665 source_offset <= max_offset;
1666 source_offset++)
1667 {
1668 for (unsigned dest_offset = 0;
1669 dest_offset <= max_offset;
1670 dest_offset++)
1671 {
1672 check_copy_bitwise (data + dest_offset / 8,
1673 dest_offset % 8,
1674 data + source_offset / 8,
1675 source_offset % 8,
1676 nbits, msb0);
1677 }
1678 }
1679 }
1680
1681 /* Special cases: copy all, copy nothing. */
1682 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1683 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1684 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1685 }
1686 }
1687
1688 } /* namespace selftests */
1689
1690 #endif /* GDB_SELF_TEST */
1691
1692 static void
1693 read_pieced_value (struct value *v)
1694 {
1695 int i;
1696 long offset = 0;
1697 ULONGEST bits_to_skip;
1698 gdb_byte *contents;
1699 struct piece_closure *c
1700 = (struct piece_closure *) value_computed_closure (v);
1701 size_t type_len;
1702 size_t buffer_size = 0;
1703 std::vector<gdb_byte> buffer;
1704 int bits_big_endian
1705 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1706
1707 if (value_type (v) != value_enclosing_type (v))
1708 internal_error (__FILE__, __LINE__,
1709 _("Should not be able to create a lazy value with "
1710 "an enclosing type"));
1711
1712 contents = value_contents_raw (v);
1713 bits_to_skip = 8 * value_offset (v);
1714 if (value_bitsize (v))
1715 {
1716 bits_to_skip += value_bitpos (v);
1717 type_len = value_bitsize (v);
1718 }
1719 else
1720 type_len = 8 * TYPE_LENGTH (value_type (v));
1721
1722 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1723 {
1724 struct dwarf_expr_piece *p = &c->pieces[i];
1725 size_t this_size, this_size_bits;
1726 long dest_offset_bits, source_offset_bits, source_offset;
1727 const gdb_byte *intermediate_buffer;
1728
1729 /* Compute size, source, and destination offsets for copying, in
1730 bits. */
1731 this_size_bits = p->size;
1732 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1733 {
1734 bits_to_skip -= this_size_bits;
1735 continue;
1736 }
1737 if (bits_to_skip > 0)
1738 {
1739 dest_offset_bits = 0;
1740 source_offset_bits = bits_to_skip;
1741 this_size_bits -= bits_to_skip;
1742 bits_to_skip = 0;
1743 }
1744 else
1745 {
1746 dest_offset_bits = offset;
1747 source_offset_bits = 0;
1748 }
1749 if (this_size_bits > type_len - offset)
1750 this_size_bits = type_len - offset;
1751
1752 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1753 source_offset = source_offset_bits / 8;
1754 if (buffer_size < this_size)
1755 {
1756 buffer_size = this_size;
1757 buffer.reserve (buffer_size);
1758 }
1759 intermediate_buffer = buffer.data ();
1760
1761 /* Copy from the source to DEST_BUFFER. */
1762 switch (p->location)
1763 {
1764 case DWARF_VALUE_REGISTER:
1765 {
1766 struct frame_info *frame = frame_find_by_id (c->frame_id);
1767 struct gdbarch *arch = get_frame_arch (frame);
1768 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1769 int optim, unavail;
1770 LONGEST reg_offset = source_offset;
1771
1772 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1773 && this_size < register_size (arch, gdb_regnum))
1774 {
1775 /* Big-endian, and we want less than full size. */
1776 reg_offset = register_size (arch, gdb_regnum) - this_size;
1777 /* We want the lower-order THIS_SIZE_BITS of the bytes
1778 we extract from the register. */
1779 source_offset_bits += 8 * this_size - this_size_bits;
1780 }
1781
1782 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1783 this_size, buffer.data (),
1784 &optim, &unavail))
1785 {
1786 /* Just so garbage doesn't ever shine through. */
1787 memset (buffer.data (), 0, this_size);
1788
1789 if (optim)
1790 mark_value_bits_optimized_out (v, offset, this_size_bits);
1791 if (unavail)
1792 mark_value_bits_unavailable (v, offset, this_size_bits);
1793 }
1794 }
1795 break;
1796
1797 case DWARF_VALUE_MEMORY:
1798 read_value_memory (v, offset,
1799 p->v.mem.in_stack_memory,
1800 p->v.mem.addr + source_offset,
1801 buffer.data (), this_size);
1802 break;
1803
1804 case DWARF_VALUE_STACK:
1805 {
1806 size_t n = this_size;
1807
1808 if (n > c->addr_size - source_offset)
1809 n = (c->addr_size >= source_offset
1810 ? c->addr_size - source_offset
1811 : 0);
1812 if (n == 0)
1813 {
1814 /* Nothing. */
1815 }
1816 else
1817 {
1818 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1819
1820 intermediate_buffer = val_bytes + source_offset;
1821 }
1822 }
1823 break;
1824
1825 case DWARF_VALUE_LITERAL:
1826 {
1827 size_t n = this_size;
1828
1829 if (n > p->v.literal.length - source_offset)
1830 n = (p->v.literal.length >= source_offset
1831 ? p->v.literal.length - source_offset
1832 : 0);
1833 if (n != 0)
1834 intermediate_buffer = p->v.literal.data + source_offset;
1835 }
1836 break;
1837
1838 /* These bits show up as zeros -- but do not cause the value
1839 to be considered optimized-out. */
1840 case DWARF_VALUE_IMPLICIT_POINTER:
1841 break;
1842
1843 case DWARF_VALUE_OPTIMIZED_OUT:
1844 mark_value_bits_optimized_out (v, offset, this_size_bits);
1845 break;
1846
1847 default:
1848 internal_error (__FILE__, __LINE__, _("invalid location type"));
1849 }
1850
1851 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1852 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1853 copy_bitwise (contents, dest_offset_bits,
1854 intermediate_buffer, source_offset_bits % 8,
1855 this_size_bits, bits_big_endian);
1856
1857 offset += this_size_bits;
1858 }
1859 }
1860
1861 static void
1862 write_pieced_value (struct value *to, struct value *from)
1863 {
1864 int i;
1865 long offset = 0;
1866 ULONGEST bits_to_skip;
1867 const gdb_byte *contents;
1868 struct piece_closure *c
1869 = (struct piece_closure *) value_computed_closure (to);
1870 size_t type_len;
1871 size_t buffer_size = 0;
1872 std::vector<gdb_byte> buffer;
1873 int bits_big_endian
1874 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1875
1876 contents = value_contents (from);
1877 bits_to_skip = 8 * value_offset (to);
1878 if (value_bitsize (to))
1879 {
1880 bits_to_skip += value_bitpos (to);
1881 type_len = value_bitsize (to);
1882 }
1883 else
1884 type_len = 8 * TYPE_LENGTH (value_type (to));
1885
1886 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1887 {
1888 struct dwarf_expr_piece *p = &c->pieces[i];
1889 size_t this_size_bits, this_size;
1890 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1891 int need_bitwise;
1892 const gdb_byte *source_buffer;
1893
1894 this_size_bits = p->size;
1895 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1896 {
1897 bits_to_skip -= this_size_bits;
1898 continue;
1899 }
1900 if (this_size_bits > type_len - offset)
1901 this_size_bits = type_len - offset;
1902 if (bits_to_skip > 0)
1903 {
1904 dest_offset_bits = bits_to_skip;
1905 source_offset_bits = 0;
1906 this_size_bits -= bits_to_skip;
1907 bits_to_skip = 0;
1908 }
1909 else
1910 {
1911 dest_offset_bits = 0;
1912 source_offset_bits = offset;
1913 }
1914
1915 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1916 source_offset = source_offset_bits / 8;
1917 dest_offset = dest_offset_bits / 8;
1918 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1919 {
1920 source_buffer = contents + source_offset;
1921 need_bitwise = 0;
1922 }
1923 else
1924 {
1925 if (buffer_size < this_size)
1926 {
1927 buffer_size = this_size;
1928 buffer.reserve (buffer_size);
1929 }
1930 source_buffer = buffer.data ();
1931 need_bitwise = 1;
1932 }
1933
1934 switch (p->location)
1935 {
1936 case DWARF_VALUE_REGISTER:
1937 {
1938 struct frame_info *frame = frame_find_by_id (c->frame_id);
1939 struct gdbarch *arch = get_frame_arch (frame);
1940 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1941 int reg_offset = dest_offset;
1942
1943 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1944 && this_size <= register_size (arch, gdb_regnum))
1945 {
1946 /* Big-endian, and we want less than full size. */
1947 reg_offset = register_size (arch, gdb_regnum) - this_size;
1948 }
1949
1950 if (need_bitwise)
1951 {
1952 int optim, unavail;
1953
1954 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1955 this_size, buffer.data (),
1956 &optim, &unavail))
1957 {
1958 if (optim)
1959 throw_error (OPTIMIZED_OUT_ERROR,
1960 _("Can't do read-modify-write to "
1961 "update bitfield; containing word "
1962 "has been optimized out"));
1963 if (unavail)
1964 throw_error (NOT_AVAILABLE_ERROR,
1965 _("Can't do read-modify-write to update "
1966 "bitfield; containing word "
1967 "is unavailable"));
1968 }
1969 copy_bitwise (buffer.data (), dest_offset_bits,
1970 contents, source_offset_bits,
1971 this_size_bits,
1972 bits_big_endian);
1973 }
1974
1975 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1976 this_size, source_buffer);
1977 }
1978 break;
1979 case DWARF_VALUE_MEMORY:
1980 if (need_bitwise)
1981 {
1982 /* Only the first and last bytes can possibly have any
1983 bits reused. */
1984 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
1985 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1986 &buffer[this_size - 1], 1);
1987 copy_bitwise (buffer.data (), dest_offset_bits,
1988 contents, source_offset_bits,
1989 this_size_bits,
1990 bits_big_endian);
1991 }
1992
1993 write_memory (p->v.mem.addr + dest_offset,
1994 source_buffer, this_size);
1995 break;
1996 default:
1997 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1998 break;
1999 }
2000 offset += this_size_bits;
2001 }
2002 }
2003
2004 /* An implementation of an lval_funcs method to see whether a value is
2005 a synthetic pointer. */
2006
2007 static int
2008 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2009 int bit_length)
2010 {
2011 struct piece_closure *c
2012 = (struct piece_closure *) value_computed_closure (value);
2013 int i;
2014
2015 bit_offset += 8 * value_offset (value);
2016 if (value_bitsize (value))
2017 bit_offset += value_bitpos (value);
2018
2019 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2020 {
2021 struct dwarf_expr_piece *p = &c->pieces[i];
2022 size_t this_size_bits = p->size;
2023
2024 if (bit_offset > 0)
2025 {
2026 if (bit_offset >= this_size_bits)
2027 {
2028 bit_offset -= this_size_bits;
2029 continue;
2030 }
2031
2032 bit_length -= this_size_bits - bit_offset;
2033 bit_offset = 0;
2034 }
2035 else
2036 bit_length -= this_size_bits;
2037
2038 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2039 return 0;
2040 }
2041
2042 return 1;
2043 }
2044
2045 /* A wrapper function for get_frame_address_in_block. */
2046
2047 static CORE_ADDR
2048 get_frame_address_in_block_wrapper (void *baton)
2049 {
2050 return get_frame_address_in_block ((struct frame_info *) baton);
2051 }
2052
2053 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2054
2055 static struct value *
2056 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2057 struct dwarf2_per_cu_data *per_cu,
2058 struct type *type)
2059 {
2060 struct value *result = NULL;
2061 struct obstack temp_obstack;
2062 struct cleanup *cleanup;
2063 const gdb_byte *bytes;
2064 LONGEST len;
2065
2066 obstack_init (&temp_obstack);
2067 cleanup = make_cleanup_obstack_free (&temp_obstack);
2068 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2069
2070 if (bytes != NULL)
2071 {
2072 if (byte_offset >= 0
2073 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2074 {
2075 bytes += byte_offset;
2076 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2077 }
2078 else
2079 invalid_synthetic_pointer ();
2080 }
2081 else
2082 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2083
2084 do_cleanups (cleanup);
2085
2086 return result;
2087 }
2088
2089 /* Fetch the value pointed to by a synthetic pointer. */
2090
2091 static struct value *
2092 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2093 struct dwarf2_per_cu_data *per_cu,
2094 struct frame_info *frame, struct type *type)
2095 {
2096 /* Fetch the location expression of the DIE we're pointing to. */
2097 struct dwarf2_locexpr_baton baton
2098 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2099 get_frame_address_in_block_wrapper, frame);
2100
2101 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2102 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2103 or it may've been optimized out. */
2104 if (baton.data != NULL)
2105 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2106 baton.data, baton.size, baton.per_cu,
2107 byte_offset);
2108 else
2109 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2110 type);
2111 }
2112
2113 /* An implementation of an lval_funcs method to indirect through a
2114 pointer. This handles the synthetic pointer case when needed. */
2115
2116 static struct value *
2117 indirect_pieced_value (struct value *value)
2118 {
2119 struct piece_closure *c
2120 = (struct piece_closure *) value_computed_closure (value);
2121 struct type *type;
2122 struct frame_info *frame;
2123 struct dwarf2_locexpr_baton baton;
2124 int i, bit_length;
2125 LONGEST bit_offset;
2126 struct dwarf_expr_piece *piece = NULL;
2127 LONGEST byte_offset;
2128 enum bfd_endian byte_order;
2129
2130 type = check_typedef (value_type (value));
2131 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2132 return NULL;
2133
2134 bit_length = 8 * TYPE_LENGTH (type);
2135 bit_offset = 8 * value_offset (value);
2136 if (value_bitsize (value))
2137 bit_offset += value_bitpos (value);
2138
2139 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2140 {
2141 struct dwarf_expr_piece *p = &c->pieces[i];
2142 size_t this_size_bits = p->size;
2143
2144 if (bit_offset > 0)
2145 {
2146 if (bit_offset >= this_size_bits)
2147 {
2148 bit_offset -= this_size_bits;
2149 continue;
2150 }
2151
2152 bit_length -= this_size_bits - bit_offset;
2153 bit_offset = 0;
2154 }
2155 else
2156 bit_length -= this_size_bits;
2157
2158 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2159 return NULL;
2160
2161 if (bit_length != 0)
2162 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2163
2164 piece = p;
2165 break;
2166 }
2167
2168 gdb_assert (piece != NULL);
2169 frame = get_selected_frame (_("No frame selected."));
2170
2171 /* This is an offset requested by GDB, such as value subscripts.
2172 However, due to how synthetic pointers are implemented, this is
2173 always presented to us as a pointer type. This means we have to
2174 sign-extend it manually as appropriate. Use raw
2175 extract_signed_integer directly rather than value_as_address and
2176 sign extend afterwards on architectures that would need it
2177 (mostly everywhere except MIPS, which has signed addresses) as
2178 the later would go through gdbarch_pointer_to_address and thus
2179 return a CORE_ADDR with high bits set on architectures that
2180 encode address spaces and other things in CORE_ADDR. */
2181 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2182 byte_offset = extract_signed_integer (value_contents (value),
2183 TYPE_LENGTH (type), byte_order);
2184 byte_offset += piece->v.ptr.offset;
2185
2186 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2187 frame, type);
2188 }
2189
2190 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2191 references. */
2192
2193 static struct value *
2194 coerce_pieced_ref (const struct value *value)
2195 {
2196 struct type *type = check_typedef (value_type (value));
2197
2198 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2199 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2200 {
2201 const struct piece_closure *closure
2202 = (struct piece_closure *) value_computed_closure (value);
2203 struct frame_info *frame
2204 = get_selected_frame (_("No frame selected."));
2205
2206 /* gdb represents synthetic pointers as pieced values with a single
2207 piece. */
2208 gdb_assert (closure != NULL);
2209 gdb_assert (closure->n_pieces == 1);
2210
2211 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2212 closure->pieces->v.ptr.offset,
2213 closure->per_cu, frame, type);
2214 }
2215 else
2216 {
2217 /* Else: not a synthetic reference; do nothing. */
2218 return NULL;
2219 }
2220 }
2221
2222 static void *
2223 copy_pieced_value_closure (const struct value *v)
2224 {
2225 struct piece_closure *c
2226 = (struct piece_closure *) value_computed_closure (v);
2227
2228 ++c->refc;
2229 return c;
2230 }
2231
2232 static void
2233 free_pieced_value_closure (struct value *v)
2234 {
2235 struct piece_closure *c
2236 = (struct piece_closure *) value_computed_closure (v);
2237
2238 --c->refc;
2239 if (c->refc == 0)
2240 {
2241 int i;
2242
2243 for (i = 0; i < c->n_pieces; ++i)
2244 if (c->pieces[i].location == DWARF_VALUE_STACK)
2245 value_free (c->pieces[i].v.value);
2246
2247 xfree (c->pieces);
2248 xfree (c);
2249 }
2250 }
2251
2252 /* Functions for accessing a variable described by DW_OP_piece. */
2253 static const struct lval_funcs pieced_value_funcs = {
2254 read_pieced_value,
2255 write_pieced_value,
2256 indirect_pieced_value,
2257 coerce_pieced_ref,
2258 check_pieced_synthetic_pointer,
2259 copy_pieced_value_closure,
2260 free_pieced_value_closure
2261 };
2262
2263 /* Evaluate a location description, starting at DATA and with length
2264 SIZE, to find the current location of variable of TYPE in the
2265 context of FRAME. BYTE_OFFSET is applied after the contents are
2266 computed. */
2267
2268 static struct value *
2269 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2270 const gdb_byte *data, size_t size,
2271 struct dwarf2_per_cu_data *per_cu,
2272 LONGEST byte_offset)
2273 {
2274 struct value *retval;
2275 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2276
2277 if (byte_offset < 0)
2278 invalid_synthetic_pointer ();
2279
2280 if (size == 0)
2281 return allocate_optimized_out_value (type);
2282
2283 dwarf_evaluate_loc_desc ctx;
2284 ctx.frame = frame;
2285 ctx.per_cu = per_cu;
2286 ctx.obj_address = 0;
2287
2288 scoped_value_mark free_values;
2289
2290 ctx.gdbarch = get_objfile_arch (objfile);
2291 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2292 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2293 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2294
2295 TRY
2296 {
2297 ctx.eval (data, size);
2298 }
2299 CATCH (ex, RETURN_MASK_ERROR)
2300 {
2301 if (ex.error == NOT_AVAILABLE_ERROR)
2302 {
2303 free_values.free_to_mark ();
2304 retval = allocate_value (type);
2305 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2306 return retval;
2307 }
2308 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2309 {
2310 if (entry_values_debug)
2311 exception_print (gdb_stdout, ex);
2312 free_values.free_to_mark ();
2313 return allocate_optimized_out_value (type);
2314 }
2315 else
2316 throw_exception (ex);
2317 }
2318 END_CATCH
2319
2320 if (ctx.num_pieces > 0)
2321 {
2322 struct piece_closure *c;
2323 ULONGEST bit_size = 0;
2324 int i;
2325
2326 for (i = 0; i < ctx.num_pieces; ++i)
2327 bit_size += ctx.pieces[i].size;
2328 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2329 invalid_synthetic_pointer ();
2330
2331 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2332 ctx.addr_size, frame);
2333 /* We must clean up the value chain after creating the piece
2334 closure but before allocating the result. */
2335 free_values.free_to_mark ();
2336 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2337 set_value_offset (retval, byte_offset);
2338 }
2339 else
2340 {
2341 switch (ctx.location)
2342 {
2343 case DWARF_VALUE_REGISTER:
2344 {
2345 struct gdbarch *arch = get_frame_arch (frame);
2346 int dwarf_regnum
2347 = longest_to_int (value_as_long (ctx.fetch (0)));
2348 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2349
2350 if (byte_offset != 0)
2351 error (_("cannot use offset on synthetic pointer to register"));
2352 free_values.free_to_mark ();
2353 retval = value_from_register (type, gdb_regnum, frame);
2354 if (value_optimized_out (retval))
2355 {
2356 struct value *tmp;
2357
2358 /* This means the register has undefined value / was
2359 not saved. As we're computing the location of some
2360 variable etc. in the program, not a value for
2361 inspecting a register ($pc, $sp, etc.), return a
2362 generic optimized out value instead, so that we show
2363 <optimized out> instead of <not saved>. */
2364 tmp = allocate_value (type);
2365 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2366 retval = tmp;
2367 }
2368 }
2369 break;
2370
2371 case DWARF_VALUE_MEMORY:
2372 {
2373 struct type *ptr_type;
2374 CORE_ADDR address = ctx.fetch_address (0);
2375 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2376
2377 /* DW_OP_deref_size (and possibly other operations too) may
2378 create a pointer instead of an address. Ideally, the
2379 pointer to address conversion would be performed as part
2380 of those operations, but the type of the object to
2381 which the address refers is not known at the time of
2382 the operation. Therefore, we do the conversion here
2383 since the type is readily available. */
2384
2385 switch (TYPE_CODE (type))
2386 {
2387 case TYPE_CODE_FUNC:
2388 case TYPE_CODE_METHOD:
2389 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2390 break;
2391 default:
2392 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2393 break;
2394 }
2395 address = value_as_address (value_from_pointer (ptr_type, address));
2396
2397 free_values.free_to_mark ();
2398 retval = value_at_lazy (type, address + byte_offset);
2399 if (in_stack_memory)
2400 set_value_stack (retval, 1);
2401 }
2402 break;
2403
2404 case DWARF_VALUE_STACK:
2405 {
2406 struct value *value = ctx.fetch (0);
2407 gdb_byte *contents;
2408 const gdb_byte *val_bytes;
2409 size_t n = TYPE_LENGTH (value_type (value));
2410 struct cleanup *cleanup;
2411
2412 if (byte_offset + TYPE_LENGTH (type) > n)
2413 invalid_synthetic_pointer ();
2414
2415 val_bytes = value_contents_all (value);
2416 val_bytes += byte_offset;
2417 n -= byte_offset;
2418
2419 /* Preserve VALUE because we are going to free values back
2420 to the mark, but we still need the value contents
2421 below. */
2422 value_incref (value);
2423 free_values.free_to_mark ();
2424 cleanup = make_cleanup_value_free (value);
2425
2426 retval = allocate_value (type);
2427 contents = value_contents_raw (retval);
2428 if (n > TYPE_LENGTH (type))
2429 {
2430 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2431
2432 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2433 val_bytes += n - TYPE_LENGTH (type);
2434 n = TYPE_LENGTH (type);
2435 }
2436 memcpy (contents, val_bytes, n);
2437
2438 do_cleanups (cleanup);
2439 }
2440 break;
2441
2442 case DWARF_VALUE_LITERAL:
2443 {
2444 bfd_byte *contents;
2445 size_t n = TYPE_LENGTH (type);
2446
2447 if (byte_offset + n > ctx.len)
2448 invalid_synthetic_pointer ();
2449
2450 free_values.free_to_mark ();
2451 retval = allocate_value (type);
2452 contents = value_contents_raw (retval);
2453 memcpy (contents, ctx.data + byte_offset, n);
2454 }
2455 break;
2456
2457 case DWARF_VALUE_OPTIMIZED_OUT:
2458 free_values.free_to_mark ();
2459 retval = allocate_optimized_out_value (type);
2460 break;
2461
2462 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2463 operation by execute_stack_op. */
2464 case DWARF_VALUE_IMPLICIT_POINTER:
2465 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2466 it can only be encountered when making a piece. */
2467 default:
2468 internal_error (__FILE__, __LINE__, _("invalid location type"));
2469 }
2470 }
2471
2472 set_value_initialized (retval, ctx.initialized);
2473
2474 return retval;
2475 }
2476
2477 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2478 passes 0 as the byte_offset. */
2479
2480 struct value *
2481 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2482 const gdb_byte *data, size_t size,
2483 struct dwarf2_per_cu_data *per_cu)
2484 {
2485 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2486 }
2487
2488 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2489 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2490 frame in which the expression is evaluated. ADDR is a context (location of
2491 a variable) and might be needed to evaluate the location expression.
2492 Returns 1 on success, 0 otherwise. */
2493
2494 static int
2495 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2496 struct frame_info *frame,
2497 CORE_ADDR addr,
2498 CORE_ADDR *valp)
2499 {
2500 struct objfile *objfile;
2501
2502 if (dlbaton == NULL || dlbaton->size == 0)
2503 return 0;
2504
2505 dwarf_evaluate_loc_desc ctx;
2506
2507 ctx.frame = frame;
2508 ctx.per_cu = dlbaton->per_cu;
2509 ctx.obj_address = addr;
2510
2511 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2512
2513 ctx.gdbarch = get_objfile_arch (objfile);
2514 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2515 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2516 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2517
2518 ctx.eval (dlbaton->data, dlbaton->size);
2519
2520 switch (ctx.location)
2521 {
2522 case DWARF_VALUE_REGISTER:
2523 case DWARF_VALUE_MEMORY:
2524 case DWARF_VALUE_STACK:
2525 *valp = ctx.fetch_address (0);
2526 if (ctx.location == DWARF_VALUE_REGISTER)
2527 *valp = ctx.read_addr_from_reg (*valp);
2528 return 1;
2529 case DWARF_VALUE_LITERAL:
2530 *valp = extract_signed_integer (ctx.data, ctx.len,
2531 gdbarch_byte_order (ctx.gdbarch));
2532 return 1;
2533 /* Unsupported dwarf values. */
2534 case DWARF_VALUE_OPTIMIZED_OUT:
2535 case DWARF_VALUE_IMPLICIT_POINTER:
2536 break;
2537 }
2538
2539 return 0;
2540 }
2541
2542 /* See dwarf2loc.h. */
2543
2544 int
2545 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2546 struct frame_info *frame,
2547 struct property_addr_info *addr_stack,
2548 CORE_ADDR *value)
2549 {
2550 if (prop == NULL)
2551 return 0;
2552
2553 if (frame == NULL && has_stack_frames ())
2554 frame = get_selected_frame (NULL);
2555
2556 switch (prop->kind)
2557 {
2558 case PROP_LOCEXPR:
2559 {
2560 const struct dwarf2_property_baton *baton
2561 = (const struct dwarf2_property_baton *) prop->data.baton;
2562
2563 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2564 addr_stack ? addr_stack->addr : 0,
2565 value))
2566 {
2567 if (baton->referenced_type)
2568 {
2569 struct value *val = value_at (baton->referenced_type, *value);
2570
2571 *value = value_as_address (val);
2572 }
2573 return 1;
2574 }
2575 }
2576 break;
2577
2578 case PROP_LOCLIST:
2579 {
2580 struct dwarf2_property_baton *baton
2581 = (struct dwarf2_property_baton *) prop->data.baton;
2582 CORE_ADDR pc = get_frame_address_in_block (frame);
2583 const gdb_byte *data;
2584 struct value *val;
2585 size_t size;
2586
2587 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2588 if (data != NULL)
2589 {
2590 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2591 size, baton->loclist.per_cu);
2592 if (!value_optimized_out (val))
2593 {
2594 *value = value_as_address (val);
2595 return 1;
2596 }
2597 }
2598 }
2599 break;
2600
2601 case PROP_CONST:
2602 *value = prop->data.const_val;
2603 return 1;
2604
2605 case PROP_ADDR_OFFSET:
2606 {
2607 struct dwarf2_property_baton *baton
2608 = (struct dwarf2_property_baton *) prop->data.baton;
2609 struct property_addr_info *pinfo;
2610 struct value *val;
2611
2612 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2613 if (pinfo->type == baton->referenced_type)
2614 break;
2615 if (pinfo == NULL)
2616 error (_("cannot find reference address for offset property"));
2617 if (pinfo->valaddr != NULL)
2618 val = value_from_contents
2619 (baton->offset_info.type,
2620 pinfo->valaddr + baton->offset_info.offset);
2621 else
2622 val = value_at (baton->offset_info.type,
2623 pinfo->addr + baton->offset_info.offset);
2624 *value = value_as_address (val);
2625 return 1;
2626 }
2627 }
2628
2629 return 0;
2630 }
2631
2632 /* See dwarf2loc.h. */
2633
2634 void
2635 dwarf2_compile_property_to_c (struct ui_file *stream,
2636 const char *result_name,
2637 struct gdbarch *gdbarch,
2638 unsigned char *registers_used,
2639 const struct dynamic_prop *prop,
2640 CORE_ADDR pc,
2641 struct symbol *sym)
2642 {
2643 struct dwarf2_property_baton *baton
2644 = (struct dwarf2_property_baton *) prop->data.baton;
2645 const gdb_byte *data;
2646 size_t size;
2647 struct dwarf2_per_cu_data *per_cu;
2648
2649 if (prop->kind == PROP_LOCEXPR)
2650 {
2651 data = baton->locexpr.data;
2652 size = baton->locexpr.size;
2653 per_cu = baton->locexpr.per_cu;
2654 }
2655 else
2656 {
2657 gdb_assert (prop->kind == PROP_LOCLIST);
2658
2659 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2660 per_cu = baton->loclist.per_cu;
2661 }
2662
2663 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2664 gdbarch, registers_used,
2665 dwarf2_per_cu_addr_size (per_cu),
2666 data, data + size, per_cu);
2667 }
2668
2669 \f
2670 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2671
2672 class symbol_needs_eval_context : public dwarf_expr_context
2673 {
2674 public:
2675
2676 enum symbol_needs_kind needs;
2677 struct dwarf2_per_cu_data *per_cu;
2678
2679 /* Reads from registers do require a frame. */
2680 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2681 {
2682 needs = SYMBOL_NEEDS_FRAME;
2683 return 1;
2684 }
2685
2686 /* "get_reg_value" callback: Reads from registers do require a
2687 frame. */
2688
2689 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2690 {
2691 needs = SYMBOL_NEEDS_FRAME;
2692 return value_zero (type, not_lval);
2693 }
2694
2695 /* Reads from memory do not require a frame. */
2696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2697 {
2698 memset (buf, 0, len);
2699 }
2700
2701 /* Frame-relative accesses do require a frame. */
2702 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2703 {
2704 static gdb_byte lit0 = DW_OP_lit0;
2705
2706 *start = &lit0;
2707 *length = 1;
2708
2709 needs = SYMBOL_NEEDS_FRAME;
2710 }
2711
2712 /* CFA accesses require a frame. */
2713 CORE_ADDR get_frame_cfa () OVERRIDE
2714 {
2715 needs = SYMBOL_NEEDS_FRAME;
2716 return 1;
2717 }
2718
2719 CORE_ADDR get_frame_pc () OVERRIDE
2720 {
2721 needs = SYMBOL_NEEDS_FRAME;
2722 return 1;
2723 }
2724
2725 /* Thread-local accesses require registers, but not a frame. */
2726 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2727 {
2728 if (needs <= SYMBOL_NEEDS_REGISTERS)
2729 needs = SYMBOL_NEEDS_REGISTERS;
2730 return 1;
2731 }
2732
2733 /* Helper interface of per_cu_dwarf_call for
2734 dwarf2_loc_desc_get_symbol_read_needs. */
2735
2736 void dwarf_call (cu_offset die_offset) OVERRIDE
2737 {
2738 per_cu_dwarf_call (this, die_offset, per_cu);
2739 }
2740
2741 /* DW_OP_GNU_entry_value accesses require a caller, therefore a
2742 frame. */
2743
2744 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2745 union call_site_parameter_u kind_u,
2746 int deref_size) OVERRIDE
2747 {
2748 needs = SYMBOL_NEEDS_FRAME;
2749
2750 /* The expression may require some stub values on DWARF stack. */
2751 push_address (0, 0);
2752 }
2753
2754 /* DW_OP_GNU_addr_index doesn't require a frame. */
2755
2756 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2757 {
2758 /* Nothing to do. */
2759 return 1;
2760 }
2761
2762 /* DW_OP_push_object_address has a frame already passed through. */
2763
2764 CORE_ADDR get_object_address () OVERRIDE
2765 {
2766 /* Nothing to do. */
2767 return 1;
2768 }
2769 };
2770
2771 /* Compute the correct symbol_needs_kind value for the location
2772 expression at DATA (length SIZE). */
2773
2774 static enum symbol_needs_kind
2775 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2776 struct dwarf2_per_cu_data *per_cu)
2777 {
2778 int in_reg;
2779 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2780
2781 scoped_value_mark free_values;
2782
2783 symbol_needs_eval_context ctx;
2784
2785 ctx.needs = SYMBOL_NEEDS_NONE;
2786 ctx.per_cu = per_cu;
2787 ctx.gdbarch = get_objfile_arch (objfile);
2788 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2789 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2790 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2791
2792 ctx.eval (data, size);
2793
2794 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2795
2796 if (ctx.num_pieces > 0)
2797 {
2798 int i;
2799
2800 /* If the location has several pieces, and any of them are in
2801 registers, then we will need a frame to fetch them from. */
2802 for (i = 0; i < ctx.num_pieces; i++)
2803 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2804 in_reg = 1;
2805 }
2806
2807 if (in_reg)
2808 ctx.needs = SYMBOL_NEEDS_FRAME;
2809 return ctx.needs;
2810 }
2811
2812 /* A helper function that throws an unimplemented error mentioning a
2813 given DWARF operator. */
2814
2815 static void
2816 unimplemented (unsigned int op)
2817 {
2818 const char *name = get_DW_OP_name (op);
2819
2820 if (name)
2821 error (_("DWARF operator %s cannot be translated to an agent expression"),
2822 name);
2823 else
2824 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2825 "to an agent expression"),
2826 op);
2827 }
2828
2829 /* See dwarf2loc.h.
2830
2831 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2832 can issue a complaint, which is better than having every target's
2833 implementation of dwarf2_reg_to_regnum do it. */
2834
2835 int
2836 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2837 {
2838 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2839
2840 if (reg == -1)
2841 {
2842 complaint (&symfile_complaints,
2843 _("bad DWARF register number %d"), dwarf_reg);
2844 }
2845 return reg;
2846 }
2847
2848 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2849 Throw an error because DWARF_REG is bad. */
2850
2851 static void
2852 throw_bad_regnum_error (ULONGEST dwarf_reg)
2853 {
2854 /* Still want to print -1 as "-1".
2855 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2856 but that's overkill for now. */
2857 if ((int) dwarf_reg == dwarf_reg)
2858 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2859 error (_("Unable to access DWARF register number %s"),
2860 pulongest (dwarf_reg));
2861 }
2862
2863 /* See dwarf2loc.h. */
2864
2865 int
2866 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2867 {
2868 int reg;
2869
2870 if (dwarf_reg > INT_MAX)
2871 throw_bad_regnum_error (dwarf_reg);
2872 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2873 bad, but that's ok. */
2874 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2875 if (reg == -1)
2876 throw_bad_regnum_error (dwarf_reg);
2877 return reg;
2878 }
2879
2880 /* A helper function that emits an access to memory. ARCH is the
2881 target architecture. EXPR is the expression which we are building.
2882 NBITS is the number of bits we want to read. This emits the
2883 opcodes needed to read the memory and then extract the desired
2884 bits. */
2885
2886 static void
2887 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2888 {
2889 ULONGEST nbytes = (nbits + 7) / 8;
2890
2891 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2892
2893 if (expr->tracing)
2894 ax_trace_quick (expr, nbytes);
2895
2896 if (nbits <= 8)
2897 ax_simple (expr, aop_ref8);
2898 else if (nbits <= 16)
2899 ax_simple (expr, aop_ref16);
2900 else if (nbits <= 32)
2901 ax_simple (expr, aop_ref32);
2902 else
2903 ax_simple (expr, aop_ref64);
2904
2905 /* If we read exactly the number of bytes we wanted, we're done. */
2906 if (8 * nbytes == nbits)
2907 return;
2908
2909 if (gdbarch_bits_big_endian (arch))
2910 {
2911 /* On a bits-big-endian machine, we want the high-order
2912 NBITS. */
2913 ax_const_l (expr, 8 * nbytes - nbits);
2914 ax_simple (expr, aop_rsh_unsigned);
2915 }
2916 else
2917 {
2918 /* On a bits-little-endian box, we want the low-order NBITS. */
2919 ax_zero_ext (expr, nbits);
2920 }
2921 }
2922
2923 /* A helper function to return the frame's PC. */
2924
2925 static CORE_ADDR
2926 get_ax_pc (void *baton)
2927 {
2928 struct agent_expr *expr = (struct agent_expr *) baton;
2929
2930 return expr->scope;
2931 }
2932
2933 /* Compile a DWARF location expression to an agent expression.
2934
2935 EXPR is the agent expression we are building.
2936 LOC is the agent value we modify.
2937 ARCH is the architecture.
2938 ADDR_SIZE is the size of addresses, in bytes.
2939 OP_PTR is the start of the location expression.
2940 OP_END is one past the last byte of the location expression.
2941
2942 This will throw an exception for various kinds of errors -- for
2943 example, if the expression cannot be compiled, or if the expression
2944 is invalid. */
2945
2946 void
2947 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2948 struct gdbarch *arch, unsigned int addr_size,
2949 const gdb_byte *op_ptr, const gdb_byte *op_end,
2950 struct dwarf2_per_cu_data *per_cu)
2951 {
2952 int i;
2953 std::vector<int> dw_labels, patches;
2954 const gdb_byte * const base = op_ptr;
2955 const gdb_byte *previous_piece = op_ptr;
2956 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2957 ULONGEST bits_collected = 0;
2958 unsigned int addr_size_bits = 8 * addr_size;
2959 int bits_big_endian = gdbarch_bits_big_endian (arch);
2960
2961 std::vector<int> offsets (op_end - op_ptr, -1);
2962
2963 /* By default we are making an address. */
2964 loc->kind = axs_lvalue_memory;
2965
2966 while (op_ptr < op_end)
2967 {
2968 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2969 uint64_t uoffset, reg;
2970 int64_t offset;
2971 int i;
2972
2973 offsets[op_ptr - base] = expr->len;
2974 ++op_ptr;
2975
2976 /* Our basic approach to code generation is to map DWARF
2977 operations directly to AX operations. However, there are
2978 some differences.
2979
2980 First, DWARF works on address-sized units, but AX always uses
2981 LONGEST. For most operations we simply ignore this
2982 difference; instead we generate sign extensions as needed
2983 before division and comparison operations. It would be nice
2984 to omit the sign extensions, but there is no way to determine
2985 the size of the target's LONGEST. (This code uses the size
2986 of the host LONGEST in some cases -- that is a bug but it is
2987 difficult to fix.)
2988
2989 Second, some DWARF operations cannot be translated to AX.
2990 For these we simply fail. See
2991 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2992 switch (op)
2993 {
2994 case DW_OP_lit0:
2995 case DW_OP_lit1:
2996 case DW_OP_lit2:
2997 case DW_OP_lit3:
2998 case DW_OP_lit4:
2999 case DW_OP_lit5:
3000 case DW_OP_lit6:
3001 case DW_OP_lit7:
3002 case DW_OP_lit8:
3003 case DW_OP_lit9:
3004 case DW_OP_lit10:
3005 case DW_OP_lit11:
3006 case DW_OP_lit12:
3007 case DW_OP_lit13:
3008 case DW_OP_lit14:
3009 case DW_OP_lit15:
3010 case DW_OP_lit16:
3011 case DW_OP_lit17:
3012 case DW_OP_lit18:
3013 case DW_OP_lit19:
3014 case DW_OP_lit20:
3015 case DW_OP_lit21:
3016 case DW_OP_lit22:
3017 case DW_OP_lit23:
3018 case DW_OP_lit24:
3019 case DW_OP_lit25:
3020 case DW_OP_lit26:
3021 case DW_OP_lit27:
3022 case DW_OP_lit28:
3023 case DW_OP_lit29:
3024 case DW_OP_lit30:
3025 case DW_OP_lit31:
3026 ax_const_l (expr, op - DW_OP_lit0);
3027 break;
3028
3029 case DW_OP_addr:
3030 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3031 op_ptr += addr_size;
3032 /* Some versions of GCC emit DW_OP_addr before
3033 DW_OP_GNU_push_tls_address. In this case the value is an
3034 index, not an address. We don't support things like
3035 branching between the address and the TLS op. */
3036 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3037 uoffset += dwarf2_per_cu_text_offset (per_cu);
3038 ax_const_l (expr, uoffset);
3039 break;
3040
3041 case DW_OP_const1u:
3042 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3043 op_ptr += 1;
3044 break;
3045 case DW_OP_const1s:
3046 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3047 op_ptr += 1;
3048 break;
3049 case DW_OP_const2u:
3050 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3051 op_ptr += 2;
3052 break;
3053 case DW_OP_const2s:
3054 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3055 op_ptr += 2;
3056 break;
3057 case DW_OP_const4u:
3058 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3059 op_ptr += 4;
3060 break;
3061 case DW_OP_const4s:
3062 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3063 op_ptr += 4;
3064 break;
3065 case DW_OP_const8u:
3066 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3067 op_ptr += 8;
3068 break;
3069 case DW_OP_const8s:
3070 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3071 op_ptr += 8;
3072 break;
3073 case DW_OP_constu:
3074 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3075 ax_const_l (expr, uoffset);
3076 break;
3077 case DW_OP_consts:
3078 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3079 ax_const_l (expr, offset);
3080 break;
3081
3082 case DW_OP_reg0:
3083 case DW_OP_reg1:
3084 case DW_OP_reg2:
3085 case DW_OP_reg3:
3086 case DW_OP_reg4:
3087 case DW_OP_reg5:
3088 case DW_OP_reg6:
3089 case DW_OP_reg7:
3090 case DW_OP_reg8:
3091 case DW_OP_reg9:
3092 case DW_OP_reg10:
3093 case DW_OP_reg11:
3094 case DW_OP_reg12:
3095 case DW_OP_reg13:
3096 case DW_OP_reg14:
3097 case DW_OP_reg15:
3098 case DW_OP_reg16:
3099 case DW_OP_reg17:
3100 case DW_OP_reg18:
3101 case DW_OP_reg19:
3102 case DW_OP_reg20:
3103 case DW_OP_reg21:
3104 case DW_OP_reg22:
3105 case DW_OP_reg23:
3106 case DW_OP_reg24:
3107 case DW_OP_reg25:
3108 case DW_OP_reg26:
3109 case DW_OP_reg27:
3110 case DW_OP_reg28:
3111 case DW_OP_reg29:
3112 case DW_OP_reg30:
3113 case DW_OP_reg31:
3114 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3115 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3116 loc->kind = axs_lvalue_register;
3117 break;
3118
3119 case DW_OP_regx:
3120 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3121 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3122 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3123 loc->kind = axs_lvalue_register;
3124 break;
3125
3126 case DW_OP_implicit_value:
3127 {
3128 uint64_t len;
3129
3130 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3131 if (op_ptr + len > op_end)
3132 error (_("DW_OP_implicit_value: too few bytes available."));
3133 if (len > sizeof (ULONGEST))
3134 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3135 (int) len);
3136
3137 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3138 byte_order));
3139 op_ptr += len;
3140 dwarf_expr_require_composition (op_ptr, op_end,
3141 "DW_OP_implicit_value");
3142
3143 loc->kind = axs_rvalue;
3144 }
3145 break;
3146
3147 case DW_OP_stack_value:
3148 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3149 loc->kind = axs_rvalue;
3150 break;
3151
3152 case DW_OP_breg0:
3153 case DW_OP_breg1:
3154 case DW_OP_breg2:
3155 case DW_OP_breg3:
3156 case DW_OP_breg4:
3157 case DW_OP_breg5:
3158 case DW_OP_breg6:
3159 case DW_OP_breg7:
3160 case DW_OP_breg8:
3161 case DW_OP_breg9:
3162 case DW_OP_breg10:
3163 case DW_OP_breg11:
3164 case DW_OP_breg12:
3165 case DW_OP_breg13:
3166 case DW_OP_breg14:
3167 case DW_OP_breg15:
3168 case DW_OP_breg16:
3169 case DW_OP_breg17:
3170 case DW_OP_breg18:
3171 case DW_OP_breg19:
3172 case DW_OP_breg20:
3173 case DW_OP_breg21:
3174 case DW_OP_breg22:
3175 case DW_OP_breg23:
3176 case DW_OP_breg24:
3177 case DW_OP_breg25:
3178 case DW_OP_breg26:
3179 case DW_OP_breg27:
3180 case DW_OP_breg28:
3181 case DW_OP_breg29:
3182 case DW_OP_breg30:
3183 case DW_OP_breg31:
3184 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3185 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3186 ax_reg (expr, i);
3187 if (offset != 0)
3188 {
3189 ax_const_l (expr, offset);
3190 ax_simple (expr, aop_add);
3191 }
3192 break;
3193 case DW_OP_bregx:
3194 {
3195 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3196 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3197 i = dwarf_reg_to_regnum_or_error (arch, reg);
3198 ax_reg (expr, i);
3199 if (offset != 0)
3200 {
3201 ax_const_l (expr, offset);
3202 ax_simple (expr, aop_add);
3203 }
3204 }
3205 break;
3206 case DW_OP_fbreg:
3207 {
3208 const gdb_byte *datastart;
3209 size_t datalen;
3210 const struct block *b;
3211 struct symbol *framefunc;
3212
3213 b = block_for_pc (expr->scope);
3214
3215 if (!b)
3216 error (_("No block found for address"));
3217
3218 framefunc = block_linkage_function (b);
3219
3220 if (!framefunc)
3221 error (_("No function found for block"));
3222
3223 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3224 &datastart, &datalen);
3225
3226 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3227 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3228 datastart + datalen, per_cu);
3229 if (loc->kind == axs_lvalue_register)
3230 require_rvalue (expr, loc);
3231
3232 if (offset != 0)
3233 {
3234 ax_const_l (expr, offset);
3235 ax_simple (expr, aop_add);
3236 }
3237
3238 loc->kind = axs_lvalue_memory;
3239 }
3240 break;
3241
3242 case DW_OP_dup:
3243 ax_simple (expr, aop_dup);
3244 break;
3245
3246 case DW_OP_drop:
3247 ax_simple (expr, aop_pop);
3248 break;
3249
3250 case DW_OP_pick:
3251 offset = *op_ptr++;
3252 ax_pick (expr, offset);
3253 break;
3254
3255 case DW_OP_swap:
3256 ax_simple (expr, aop_swap);
3257 break;
3258
3259 case DW_OP_over:
3260 ax_pick (expr, 1);
3261 break;
3262
3263 case DW_OP_rot:
3264 ax_simple (expr, aop_rot);
3265 break;
3266
3267 case DW_OP_deref:
3268 case DW_OP_deref_size:
3269 {
3270 int size;
3271
3272 if (op == DW_OP_deref_size)
3273 size = *op_ptr++;
3274 else
3275 size = addr_size;
3276
3277 if (size != 1 && size != 2 && size != 4 && size != 8)
3278 error (_("Unsupported size %d in %s"),
3279 size, get_DW_OP_name (op));
3280 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3281 }
3282 break;
3283
3284 case DW_OP_abs:
3285 /* Sign extend the operand. */
3286 ax_ext (expr, addr_size_bits);
3287 ax_simple (expr, aop_dup);
3288 ax_const_l (expr, 0);
3289 ax_simple (expr, aop_less_signed);
3290 ax_simple (expr, aop_log_not);
3291 i = ax_goto (expr, aop_if_goto);
3292 /* We have to emit 0 - X. */
3293 ax_const_l (expr, 0);
3294 ax_simple (expr, aop_swap);
3295 ax_simple (expr, aop_sub);
3296 ax_label (expr, i, expr->len);
3297 break;
3298
3299 case DW_OP_neg:
3300 /* No need to sign extend here. */
3301 ax_const_l (expr, 0);
3302 ax_simple (expr, aop_swap);
3303 ax_simple (expr, aop_sub);
3304 break;
3305
3306 case DW_OP_not:
3307 /* Sign extend the operand. */
3308 ax_ext (expr, addr_size_bits);
3309 ax_simple (expr, aop_bit_not);
3310 break;
3311
3312 case DW_OP_plus_uconst:
3313 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3314 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3315 but we micro-optimize anyhow. */
3316 if (reg != 0)
3317 {
3318 ax_const_l (expr, reg);
3319 ax_simple (expr, aop_add);
3320 }
3321 break;
3322
3323 case DW_OP_and:
3324 ax_simple (expr, aop_bit_and);
3325 break;
3326
3327 case DW_OP_div:
3328 /* Sign extend the operands. */
3329 ax_ext (expr, addr_size_bits);
3330 ax_simple (expr, aop_swap);
3331 ax_ext (expr, addr_size_bits);
3332 ax_simple (expr, aop_swap);
3333 ax_simple (expr, aop_div_signed);
3334 break;
3335
3336 case DW_OP_minus:
3337 ax_simple (expr, aop_sub);
3338 break;
3339
3340 case DW_OP_mod:
3341 ax_simple (expr, aop_rem_unsigned);
3342 break;
3343
3344 case DW_OP_mul:
3345 ax_simple (expr, aop_mul);
3346 break;
3347
3348 case DW_OP_or:
3349 ax_simple (expr, aop_bit_or);
3350 break;
3351
3352 case DW_OP_plus:
3353 ax_simple (expr, aop_add);
3354 break;
3355
3356 case DW_OP_shl:
3357 ax_simple (expr, aop_lsh);
3358 break;
3359
3360 case DW_OP_shr:
3361 ax_simple (expr, aop_rsh_unsigned);
3362 break;
3363
3364 case DW_OP_shra:
3365 ax_simple (expr, aop_rsh_signed);
3366 break;
3367
3368 case DW_OP_xor:
3369 ax_simple (expr, aop_bit_xor);
3370 break;
3371
3372 case DW_OP_le:
3373 /* Sign extend the operands. */
3374 ax_ext (expr, addr_size_bits);
3375 ax_simple (expr, aop_swap);
3376 ax_ext (expr, addr_size_bits);
3377 /* Note no swap here: A <= B is !(B < A). */
3378 ax_simple (expr, aop_less_signed);
3379 ax_simple (expr, aop_log_not);
3380 break;
3381
3382 case DW_OP_ge:
3383 /* Sign extend the operands. */
3384 ax_ext (expr, addr_size_bits);
3385 ax_simple (expr, aop_swap);
3386 ax_ext (expr, addr_size_bits);
3387 ax_simple (expr, aop_swap);
3388 /* A >= B is !(A < B). */
3389 ax_simple (expr, aop_less_signed);
3390 ax_simple (expr, aop_log_not);
3391 break;
3392
3393 case DW_OP_eq:
3394 /* Sign extend the operands. */
3395 ax_ext (expr, addr_size_bits);
3396 ax_simple (expr, aop_swap);
3397 ax_ext (expr, addr_size_bits);
3398 /* No need for a second swap here. */
3399 ax_simple (expr, aop_equal);
3400 break;
3401
3402 case DW_OP_lt:
3403 /* Sign extend the operands. */
3404 ax_ext (expr, addr_size_bits);
3405 ax_simple (expr, aop_swap);
3406 ax_ext (expr, addr_size_bits);
3407 ax_simple (expr, aop_swap);
3408 ax_simple (expr, aop_less_signed);
3409 break;
3410
3411 case DW_OP_gt:
3412 /* Sign extend the operands. */
3413 ax_ext (expr, addr_size_bits);
3414 ax_simple (expr, aop_swap);
3415 ax_ext (expr, addr_size_bits);
3416 /* Note no swap here: A > B is B < A. */
3417 ax_simple (expr, aop_less_signed);
3418 break;
3419
3420 case DW_OP_ne:
3421 /* Sign extend the operands. */
3422 ax_ext (expr, addr_size_bits);
3423 ax_simple (expr, aop_swap);
3424 ax_ext (expr, addr_size_bits);
3425 /* No need for a swap here. */
3426 ax_simple (expr, aop_equal);
3427 ax_simple (expr, aop_log_not);
3428 break;
3429
3430 case DW_OP_call_frame_cfa:
3431 {
3432 int regnum;
3433 CORE_ADDR text_offset;
3434 LONGEST off;
3435 const gdb_byte *cfa_start, *cfa_end;
3436
3437 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3438 &regnum, &off,
3439 &text_offset, &cfa_start, &cfa_end))
3440 {
3441 /* Register. */
3442 ax_reg (expr, regnum);
3443 if (off != 0)
3444 {
3445 ax_const_l (expr, off);
3446 ax_simple (expr, aop_add);
3447 }
3448 }
3449 else
3450 {
3451 /* Another expression. */
3452 ax_const_l (expr, text_offset);
3453 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3454 cfa_start, cfa_end, per_cu);
3455 }
3456
3457 loc->kind = axs_lvalue_memory;
3458 }
3459 break;
3460
3461 case DW_OP_GNU_push_tls_address:
3462 case DW_OP_form_tls_address:
3463 unimplemented (op);
3464 break;
3465
3466 case DW_OP_push_object_address:
3467 unimplemented (op);
3468 break;
3469
3470 case DW_OP_skip:
3471 offset = extract_signed_integer (op_ptr, 2, byte_order);
3472 op_ptr += 2;
3473 i = ax_goto (expr, aop_goto);
3474 dw_labels.push_back (op_ptr + offset - base);
3475 patches.push_back (i);
3476 break;
3477
3478 case DW_OP_bra:
3479 offset = extract_signed_integer (op_ptr, 2, byte_order);
3480 op_ptr += 2;
3481 /* Zero extend the operand. */
3482 ax_zero_ext (expr, addr_size_bits);
3483 i = ax_goto (expr, aop_if_goto);
3484 dw_labels.push_back (op_ptr + offset - base);
3485 patches.push_back (i);
3486 break;
3487
3488 case DW_OP_nop:
3489 break;
3490
3491 case DW_OP_piece:
3492 case DW_OP_bit_piece:
3493 {
3494 uint64_t size, offset;
3495
3496 if (op_ptr - 1 == previous_piece)
3497 error (_("Cannot translate empty pieces to agent expressions"));
3498 previous_piece = op_ptr - 1;
3499
3500 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3501 if (op == DW_OP_piece)
3502 {
3503 size *= 8;
3504 offset = 0;
3505 }
3506 else
3507 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3508
3509 if (bits_collected + size > 8 * sizeof (LONGEST))
3510 error (_("Expression pieces exceed word size"));
3511
3512 /* Access the bits. */
3513 switch (loc->kind)
3514 {
3515 case axs_lvalue_register:
3516 ax_reg (expr, loc->u.reg);
3517 break;
3518
3519 case axs_lvalue_memory:
3520 /* Offset the pointer, if needed. */
3521 if (offset > 8)
3522 {
3523 ax_const_l (expr, offset / 8);
3524 ax_simple (expr, aop_add);
3525 offset %= 8;
3526 }
3527 access_memory (arch, expr, size);
3528 break;
3529 }
3530
3531 /* For a bits-big-endian target, shift up what we already
3532 have. For a bits-little-endian target, shift up the
3533 new data. Note that there is a potential bug here if
3534 the DWARF expression leaves multiple values on the
3535 stack. */
3536 if (bits_collected > 0)
3537 {
3538 if (bits_big_endian)
3539 {
3540 ax_simple (expr, aop_swap);
3541 ax_const_l (expr, size);
3542 ax_simple (expr, aop_lsh);
3543 /* We don't need a second swap here, because
3544 aop_bit_or is symmetric. */
3545 }
3546 else
3547 {
3548 ax_const_l (expr, size);
3549 ax_simple (expr, aop_lsh);
3550 }
3551 ax_simple (expr, aop_bit_or);
3552 }
3553
3554 bits_collected += size;
3555 loc->kind = axs_rvalue;
3556 }
3557 break;
3558
3559 case DW_OP_GNU_uninit:
3560 unimplemented (op);
3561
3562 case DW_OP_call2:
3563 case DW_OP_call4:
3564 {
3565 struct dwarf2_locexpr_baton block;
3566 int size = (op == DW_OP_call2 ? 2 : 4);
3567 cu_offset offset;
3568
3569 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3570 op_ptr += size;
3571
3572 offset.cu_off = uoffset;
3573 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3574 get_ax_pc, expr);
3575
3576 /* DW_OP_call_ref is currently not supported. */
3577 gdb_assert (block.per_cu == per_cu);
3578
3579 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3580 block.data, block.data + block.size,
3581 per_cu);
3582 }
3583 break;
3584
3585 case DW_OP_call_ref:
3586 unimplemented (op);
3587
3588 default:
3589 unimplemented (op);
3590 }
3591 }
3592
3593 /* Patch all the branches we emitted. */
3594 for (i = 0; i < patches.size (); ++i)
3595 {
3596 int targ = offsets[dw_labels[i]];
3597 if (targ == -1)
3598 internal_error (__FILE__, __LINE__, _("invalid label"));
3599 ax_label (expr, patches[i], targ);
3600 }
3601 }
3602
3603 \f
3604 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3605 evaluator to calculate the location. */
3606 static struct value *
3607 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3608 {
3609 struct dwarf2_locexpr_baton *dlbaton
3610 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3611 struct value *val;
3612
3613 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3614 dlbaton->size, dlbaton->per_cu);
3615
3616 return val;
3617 }
3618
3619 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3620 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3621 will be thrown. */
3622
3623 static struct value *
3624 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3625 {
3626 struct dwarf2_locexpr_baton *dlbaton
3627 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3628
3629 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3630 dlbaton->size);
3631 }
3632
3633 /* Implementation of get_symbol_read_needs from
3634 symbol_computed_ops. */
3635
3636 static enum symbol_needs_kind
3637 locexpr_get_symbol_read_needs (struct symbol *symbol)
3638 {
3639 struct dwarf2_locexpr_baton *dlbaton
3640 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3641
3642 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3643 dlbaton->per_cu);
3644 }
3645
3646 /* Return true if DATA points to the end of a piece. END is one past
3647 the last byte in the expression. */
3648
3649 static int
3650 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3651 {
3652 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3653 }
3654
3655 /* Helper for locexpr_describe_location_piece that finds the name of a
3656 DWARF register. */
3657
3658 static const char *
3659 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3660 {
3661 int regnum;
3662
3663 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3664 We'd rather print *something* here than throw an error. */
3665 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3666 /* gdbarch_register_name may just return "", return something more
3667 descriptive for bad register numbers. */
3668 if (regnum == -1)
3669 {
3670 /* The text is output as "$bad_register_number".
3671 That is why we use the underscores. */
3672 return _("bad_register_number");
3673 }
3674 return gdbarch_register_name (gdbarch, regnum);
3675 }
3676
3677 /* Nicely describe a single piece of a location, returning an updated
3678 position in the bytecode sequence. This function cannot recognize
3679 all locations; if a location is not recognized, it simply returns
3680 DATA. If there is an error during reading, e.g. we run off the end
3681 of the buffer, an error is thrown. */
3682
3683 static const gdb_byte *
3684 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3685 CORE_ADDR addr, struct objfile *objfile,
3686 struct dwarf2_per_cu_data *per_cu,
3687 const gdb_byte *data, const gdb_byte *end,
3688 unsigned int addr_size)
3689 {
3690 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3691 size_t leb128_size;
3692
3693 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3694 {
3695 fprintf_filtered (stream, _("a variable in $%s"),
3696 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3697 data += 1;
3698 }
3699 else if (data[0] == DW_OP_regx)
3700 {
3701 uint64_t reg;
3702
3703 data = safe_read_uleb128 (data + 1, end, &reg);
3704 fprintf_filtered (stream, _("a variable in $%s"),
3705 locexpr_regname (gdbarch, reg));
3706 }
3707 else if (data[0] == DW_OP_fbreg)
3708 {
3709 const struct block *b;
3710 struct symbol *framefunc;
3711 int frame_reg = 0;
3712 int64_t frame_offset;
3713 const gdb_byte *base_data, *new_data, *save_data = data;
3714 size_t base_size;
3715 int64_t base_offset = 0;
3716
3717 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3718 if (!piece_end_p (new_data, end))
3719 return data;
3720 data = new_data;
3721
3722 b = block_for_pc (addr);
3723
3724 if (!b)
3725 error (_("No block found for address for symbol \"%s\"."),
3726 SYMBOL_PRINT_NAME (symbol));
3727
3728 framefunc = block_linkage_function (b);
3729
3730 if (!framefunc)
3731 error (_("No function found for block for symbol \"%s\"."),
3732 SYMBOL_PRINT_NAME (symbol));
3733
3734 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3735
3736 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3737 {
3738 const gdb_byte *buf_end;
3739
3740 frame_reg = base_data[0] - DW_OP_breg0;
3741 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3742 &base_offset);
3743 if (buf_end != base_data + base_size)
3744 error (_("Unexpected opcode after "
3745 "DW_OP_breg%u for symbol \"%s\"."),
3746 frame_reg, SYMBOL_PRINT_NAME (symbol));
3747 }
3748 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3749 {
3750 /* The frame base is just the register, with no offset. */
3751 frame_reg = base_data[0] - DW_OP_reg0;
3752 base_offset = 0;
3753 }
3754 else
3755 {
3756 /* We don't know what to do with the frame base expression,
3757 so we can't trace this variable; give up. */
3758 return save_data;
3759 }
3760
3761 fprintf_filtered (stream,
3762 _("a variable at frame base reg $%s offset %s+%s"),
3763 locexpr_regname (gdbarch, frame_reg),
3764 plongest (base_offset), plongest (frame_offset));
3765 }
3766 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3767 && piece_end_p (data, end))
3768 {
3769 int64_t offset;
3770
3771 data = safe_read_sleb128 (data + 1, end, &offset);
3772
3773 fprintf_filtered (stream,
3774 _("a variable at offset %s from base reg $%s"),
3775 plongest (offset),
3776 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3777 }
3778
3779 /* The location expression for a TLS variable looks like this (on a
3780 64-bit LE machine):
3781
3782 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3783 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3784
3785 0x3 is the encoding for DW_OP_addr, which has an operand as long
3786 as the size of an address on the target machine (here is 8
3787 bytes). Note that more recent version of GCC emit DW_OP_const4u
3788 or DW_OP_const8u, depending on address size, rather than
3789 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3790 The operand represents the offset at which the variable is within
3791 the thread local storage. */
3792
3793 else if (data + 1 + addr_size < end
3794 && (data[0] == DW_OP_addr
3795 || (addr_size == 4 && data[0] == DW_OP_const4u)
3796 || (addr_size == 8 && data[0] == DW_OP_const8u))
3797 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3798 || data[1 + addr_size] == DW_OP_form_tls_address)
3799 && piece_end_p (data + 2 + addr_size, end))
3800 {
3801 ULONGEST offset;
3802 offset = extract_unsigned_integer (data + 1, addr_size,
3803 gdbarch_byte_order (gdbarch));
3804
3805 fprintf_filtered (stream,
3806 _("a thread-local variable at offset 0x%s "
3807 "in the thread-local storage for `%s'"),
3808 phex_nz (offset, addr_size), objfile_name (objfile));
3809
3810 data += 1 + addr_size + 1;
3811 }
3812
3813 /* With -gsplit-dwarf a TLS variable can also look like this:
3814 DW_AT_location : 3 byte block: fc 4 e0
3815 (DW_OP_GNU_const_index: 4;
3816 DW_OP_GNU_push_tls_address) */
3817 else if (data + 3 <= end
3818 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3819 && data[0] == DW_OP_GNU_const_index
3820 && leb128_size > 0
3821 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3822 || data[1 + leb128_size] == DW_OP_form_tls_address)
3823 && piece_end_p (data + 2 + leb128_size, end))
3824 {
3825 uint64_t offset;
3826
3827 data = safe_read_uleb128 (data + 1, end, &offset);
3828 offset = dwarf2_read_addr_index (per_cu, offset);
3829 fprintf_filtered (stream,
3830 _("a thread-local variable at offset 0x%s "
3831 "in the thread-local storage for `%s'"),
3832 phex_nz (offset, addr_size), objfile_name (objfile));
3833 ++data;
3834 }
3835
3836 else if (data[0] >= DW_OP_lit0
3837 && data[0] <= DW_OP_lit31
3838 && data + 1 < end
3839 && data[1] == DW_OP_stack_value)
3840 {
3841 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3842 data += 2;
3843 }
3844
3845 return data;
3846 }
3847
3848 /* Disassemble an expression, stopping at the end of a piece or at the
3849 end of the expression. Returns a pointer to the next unread byte
3850 in the input expression. If ALL is nonzero, then this function
3851 will keep going until it reaches the end of the expression.
3852 If there is an error during reading, e.g. we run off the end
3853 of the buffer, an error is thrown. */
3854
3855 static const gdb_byte *
3856 disassemble_dwarf_expression (struct ui_file *stream,
3857 struct gdbarch *arch, unsigned int addr_size,
3858 int offset_size, const gdb_byte *start,
3859 const gdb_byte *data, const gdb_byte *end,
3860 int indent, int all,
3861 struct dwarf2_per_cu_data *per_cu)
3862 {
3863 while (data < end
3864 && (all
3865 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3866 {
3867 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3868 uint64_t ul;
3869 int64_t l;
3870 const char *name;
3871
3872 name = get_DW_OP_name (op);
3873
3874 if (!name)
3875 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3876 op, (long) (data - 1 - start));
3877 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3878 (long) (data - 1 - start), name);
3879
3880 switch (op)
3881 {
3882 case DW_OP_addr:
3883 ul = extract_unsigned_integer (data, addr_size,
3884 gdbarch_byte_order (arch));
3885 data += addr_size;
3886 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3887 break;
3888
3889 case DW_OP_const1u:
3890 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3891 data += 1;
3892 fprintf_filtered (stream, " %s", pulongest (ul));
3893 break;
3894 case DW_OP_const1s:
3895 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3896 data += 1;
3897 fprintf_filtered (stream, " %s", plongest (l));
3898 break;
3899 case DW_OP_const2u:
3900 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3901 data += 2;
3902 fprintf_filtered (stream, " %s", pulongest (ul));
3903 break;
3904 case DW_OP_const2s:
3905 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3906 data += 2;
3907 fprintf_filtered (stream, " %s", plongest (l));
3908 break;
3909 case DW_OP_const4u:
3910 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3911 data += 4;
3912 fprintf_filtered (stream, " %s", pulongest (ul));
3913 break;
3914 case DW_OP_const4s:
3915 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3916 data += 4;
3917 fprintf_filtered (stream, " %s", plongest (l));
3918 break;
3919 case DW_OP_const8u:
3920 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3921 data += 8;
3922 fprintf_filtered (stream, " %s", pulongest (ul));
3923 break;
3924 case DW_OP_const8s:
3925 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3926 data += 8;
3927 fprintf_filtered (stream, " %s", plongest (l));
3928 break;
3929 case DW_OP_constu:
3930 data = safe_read_uleb128 (data, end, &ul);
3931 fprintf_filtered (stream, " %s", pulongest (ul));
3932 break;
3933 case DW_OP_consts:
3934 data = safe_read_sleb128 (data, end, &l);
3935 fprintf_filtered (stream, " %s", plongest (l));
3936 break;
3937
3938 case DW_OP_reg0:
3939 case DW_OP_reg1:
3940 case DW_OP_reg2:
3941 case DW_OP_reg3:
3942 case DW_OP_reg4:
3943 case DW_OP_reg5:
3944 case DW_OP_reg6:
3945 case DW_OP_reg7:
3946 case DW_OP_reg8:
3947 case DW_OP_reg9:
3948 case DW_OP_reg10:
3949 case DW_OP_reg11:
3950 case DW_OP_reg12:
3951 case DW_OP_reg13:
3952 case DW_OP_reg14:
3953 case DW_OP_reg15:
3954 case DW_OP_reg16:
3955 case DW_OP_reg17:
3956 case DW_OP_reg18:
3957 case DW_OP_reg19:
3958 case DW_OP_reg20:
3959 case DW_OP_reg21:
3960 case DW_OP_reg22:
3961 case DW_OP_reg23:
3962 case DW_OP_reg24:
3963 case DW_OP_reg25:
3964 case DW_OP_reg26:
3965 case DW_OP_reg27:
3966 case DW_OP_reg28:
3967 case DW_OP_reg29:
3968 case DW_OP_reg30:
3969 case DW_OP_reg31:
3970 fprintf_filtered (stream, " [$%s]",
3971 locexpr_regname (arch, op - DW_OP_reg0));
3972 break;
3973
3974 case DW_OP_regx:
3975 data = safe_read_uleb128 (data, end, &ul);
3976 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3977 locexpr_regname (arch, (int) ul));
3978 break;
3979
3980 case DW_OP_implicit_value:
3981 data = safe_read_uleb128 (data, end, &ul);
3982 data += ul;
3983 fprintf_filtered (stream, " %s", pulongest (ul));
3984 break;
3985
3986 case DW_OP_breg0:
3987 case DW_OP_breg1:
3988 case DW_OP_breg2:
3989 case DW_OP_breg3:
3990 case DW_OP_breg4:
3991 case DW_OP_breg5:
3992 case DW_OP_breg6:
3993 case DW_OP_breg7:
3994 case DW_OP_breg8:
3995 case DW_OP_breg9:
3996 case DW_OP_breg10:
3997 case DW_OP_breg11:
3998 case DW_OP_breg12:
3999 case DW_OP_breg13:
4000 case DW_OP_breg14:
4001 case DW_OP_breg15:
4002 case DW_OP_breg16:
4003 case DW_OP_breg17:
4004 case DW_OP_breg18:
4005 case DW_OP_breg19:
4006 case DW_OP_breg20:
4007 case DW_OP_breg21:
4008 case DW_OP_breg22:
4009 case DW_OP_breg23:
4010 case DW_OP_breg24:
4011 case DW_OP_breg25:
4012 case DW_OP_breg26:
4013 case DW_OP_breg27:
4014 case DW_OP_breg28:
4015 case DW_OP_breg29:
4016 case DW_OP_breg30:
4017 case DW_OP_breg31:
4018 data = safe_read_sleb128 (data, end, &l);
4019 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4020 locexpr_regname (arch, op - DW_OP_breg0));
4021 break;
4022
4023 case DW_OP_bregx:
4024 data = safe_read_uleb128 (data, end, &ul);
4025 data = safe_read_sleb128 (data, end, &l);
4026 fprintf_filtered (stream, " register %s [$%s] offset %s",
4027 pulongest (ul),
4028 locexpr_regname (arch, (int) ul),
4029 plongest (l));
4030 break;
4031
4032 case DW_OP_fbreg:
4033 data = safe_read_sleb128 (data, end, &l);
4034 fprintf_filtered (stream, " %s", plongest (l));
4035 break;
4036
4037 case DW_OP_xderef_size:
4038 case DW_OP_deref_size:
4039 case DW_OP_pick:
4040 fprintf_filtered (stream, " %d", *data);
4041 ++data;
4042 break;
4043
4044 case DW_OP_plus_uconst:
4045 data = safe_read_uleb128 (data, end, &ul);
4046 fprintf_filtered (stream, " %s", pulongest (ul));
4047 break;
4048
4049 case DW_OP_skip:
4050 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4051 data += 2;
4052 fprintf_filtered (stream, " to %ld",
4053 (long) (data + l - start));
4054 break;
4055
4056 case DW_OP_bra:
4057 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4058 data += 2;
4059 fprintf_filtered (stream, " %ld",
4060 (long) (data + l - start));
4061 break;
4062
4063 case DW_OP_call2:
4064 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4065 data += 2;
4066 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4067 break;
4068
4069 case DW_OP_call4:
4070 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4071 data += 4;
4072 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4073 break;
4074
4075 case DW_OP_call_ref:
4076 ul = extract_unsigned_integer (data, offset_size,
4077 gdbarch_byte_order (arch));
4078 data += offset_size;
4079 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4080 break;
4081
4082 case DW_OP_piece:
4083 data = safe_read_uleb128 (data, end, &ul);
4084 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4085 break;
4086
4087 case DW_OP_bit_piece:
4088 {
4089 uint64_t offset;
4090
4091 data = safe_read_uleb128 (data, end, &ul);
4092 data = safe_read_uleb128 (data, end, &offset);
4093 fprintf_filtered (stream, " size %s offset %s (bits)",
4094 pulongest (ul), pulongest (offset));
4095 }
4096 break;
4097
4098 case DW_OP_GNU_implicit_pointer:
4099 {
4100 ul = extract_unsigned_integer (data, offset_size,
4101 gdbarch_byte_order (arch));
4102 data += offset_size;
4103
4104 data = safe_read_sleb128 (data, end, &l);
4105
4106 fprintf_filtered (stream, " DIE %s offset %s",
4107 phex_nz (ul, offset_size),
4108 plongest (l));
4109 }
4110 break;
4111
4112 case DW_OP_GNU_deref_type:
4113 {
4114 int addr_size = *data++;
4115 cu_offset offset;
4116 struct type *type;
4117
4118 data = safe_read_uleb128 (data, end, &ul);
4119 offset.cu_off = ul;
4120 type = dwarf2_get_die_type (offset, per_cu);
4121 fprintf_filtered (stream, "<");
4122 type_print (type, "", stream, -1);
4123 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4124 addr_size);
4125 }
4126 break;
4127
4128 case DW_OP_GNU_const_type:
4129 {
4130 cu_offset type_die;
4131 struct type *type;
4132
4133 data = safe_read_uleb128 (data, end, &ul);
4134 type_die.cu_off = ul;
4135 type = dwarf2_get_die_type (type_die, per_cu);
4136 fprintf_filtered (stream, "<");
4137 type_print (type, "", stream, -1);
4138 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4139 }
4140 break;
4141
4142 case DW_OP_GNU_regval_type:
4143 {
4144 uint64_t reg;
4145 cu_offset type_die;
4146 struct type *type;
4147
4148 data = safe_read_uleb128 (data, end, &reg);
4149 data = safe_read_uleb128 (data, end, &ul);
4150 type_die.cu_off = ul;
4151
4152 type = dwarf2_get_die_type (type_die, per_cu);
4153 fprintf_filtered (stream, "<");
4154 type_print (type, "", stream, -1);
4155 fprintf_filtered (stream, " [0x%s]> [$%s]",
4156 phex_nz (type_die.cu_off, 0),
4157 locexpr_regname (arch, reg));
4158 }
4159 break;
4160
4161 case DW_OP_GNU_convert:
4162 case DW_OP_GNU_reinterpret:
4163 {
4164 cu_offset type_die;
4165
4166 data = safe_read_uleb128 (data, end, &ul);
4167 type_die.cu_off = ul;
4168
4169 if (type_die.cu_off == 0)
4170 fprintf_filtered (stream, "<0>");
4171 else
4172 {
4173 struct type *type;
4174
4175 type = dwarf2_get_die_type (type_die, per_cu);
4176 fprintf_filtered (stream, "<");
4177 type_print (type, "", stream, -1);
4178 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4179 }
4180 }
4181 break;
4182
4183 case DW_OP_GNU_entry_value:
4184 data = safe_read_uleb128 (data, end, &ul);
4185 fputc_filtered ('\n', stream);
4186 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4187 start, data, data + ul, indent + 2,
4188 all, per_cu);
4189 data += ul;
4190 continue;
4191
4192 case DW_OP_GNU_parameter_ref:
4193 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4194 data += 4;
4195 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4196 break;
4197
4198 case DW_OP_GNU_addr_index:
4199 data = safe_read_uleb128 (data, end, &ul);
4200 ul = dwarf2_read_addr_index (per_cu, ul);
4201 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4202 break;
4203 case DW_OP_GNU_const_index:
4204 data = safe_read_uleb128 (data, end, &ul);
4205 ul = dwarf2_read_addr_index (per_cu, ul);
4206 fprintf_filtered (stream, " %s", pulongest (ul));
4207 break;
4208 }
4209
4210 fprintf_filtered (stream, "\n");
4211 }
4212
4213 return data;
4214 }
4215
4216 /* Describe a single location, which may in turn consist of multiple
4217 pieces. */
4218
4219 static void
4220 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4221 struct ui_file *stream,
4222 const gdb_byte *data, size_t size,
4223 struct objfile *objfile, unsigned int addr_size,
4224 int offset_size, struct dwarf2_per_cu_data *per_cu)
4225 {
4226 const gdb_byte *end = data + size;
4227 int first_piece = 1, bad = 0;
4228
4229 while (data < end)
4230 {
4231 const gdb_byte *here = data;
4232 int disassemble = 1;
4233
4234 if (first_piece)
4235 first_piece = 0;
4236 else
4237 fprintf_filtered (stream, _(", and "));
4238
4239 if (!dwarf_always_disassemble)
4240 {
4241 data = locexpr_describe_location_piece (symbol, stream,
4242 addr, objfile, per_cu,
4243 data, end, addr_size);
4244 /* If we printed anything, or if we have an empty piece,
4245 then don't disassemble. */
4246 if (data != here
4247 || data[0] == DW_OP_piece
4248 || data[0] == DW_OP_bit_piece)
4249 disassemble = 0;
4250 }
4251 if (disassemble)
4252 {
4253 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4254 data = disassemble_dwarf_expression (stream,
4255 get_objfile_arch (objfile),
4256 addr_size, offset_size, data,
4257 data, end, 0,
4258 dwarf_always_disassemble,
4259 per_cu);
4260 }
4261
4262 if (data < end)
4263 {
4264 int empty = data == here;
4265
4266 if (disassemble)
4267 fprintf_filtered (stream, " ");
4268 if (data[0] == DW_OP_piece)
4269 {
4270 uint64_t bytes;
4271
4272 data = safe_read_uleb128 (data + 1, end, &bytes);
4273
4274 if (empty)
4275 fprintf_filtered (stream, _("an empty %s-byte piece"),
4276 pulongest (bytes));
4277 else
4278 fprintf_filtered (stream, _(" [%s-byte piece]"),
4279 pulongest (bytes));
4280 }
4281 else if (data[0] == DW_OP_bit_piece)
4282 {
4283 uint64_t bits, offset;
4284
4285 data = safe_read_uleb128 (data + 1, end, &bits);
4286 data = safe_read_uleb128 (data, end, &offset);
4287
4288 if (empty)
4289 fprintf_filtered (stream,
4290 _("an empty %s-bit piece"),
4291 pulongest (bits));
4292 else
4293 fprintf_filtered (stream,
4294 _(" [%s-bit piece, offset %s bits]"),
4295 pulongest (bits), pulongest (offset));
4296 }
4297 else
4298 {
4299 bad = 1;
4300 break;
4301 }
4302 }
4303 }
4304
4305 if (bad || data > end)
4306 error (_("Corrupted DWARF2 expression for \"%s\"."),
4307 SYMBOL_PRINT_NAME (symbol));
4308 }
4309
4310 /* Print a natural-language description of SYMBOL to STREAM. This
4311 version is for a symbol with a single location. */
4312
4313 static void
4314 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4315 struct ui_file *stream)
4316 {
4317 struct dwarf2_locexpr_baton *dlbaton
4318 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4319 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4320 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4321 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4322
4323 locexpr_describe_location_1 (symbol, addr, stream,
4324 dlbaton->data, dlbaton->size,
4325 objfile, addr_size, offset_size,
4326 dlbaton->per_cu);
4327 }
4328
4329 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4330 any necessary bytecode in AX. */
4331
4332 static void
4333 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4334 struct agent_expr *ax, struct axs_value *value)
4335 {
4336 struct dwarf2_locexpr_baton *dlbaton
4337 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4338 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4339
4340 if (dlbaton->size == 0)
4341 value->optimized_out = 1;
4342 else
4343 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4344 dlbaton->data, dlbaton->data + dlbaton->size,
4345 dlbaton->per_cu);
4346 }
4347
4348 /* symbol_computed_ops 'generate_c_location' method. */
4349
4350 static void
4351 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4352 struct gdbarch *gdbarch,
4353 unsigned char *registers_used,
4354 CORE_ADDR pc, const char *result_name)
4355 {
4356 struct dwarf2_locexpr_baton *dlbaton
4357 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4358 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4359
4360 if (dlbaton->size == 0)
4361 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4362
4363 compile_dwarf_expr_to_c (stream, result_name,
4364 sym, pc, gdbarch, registers_used, addr_size,
4365 dlbaton->data, dlbaton->data + dlbaton->size,
4366 dlbaton->per_cu);
4367 }
4368
4369 /* The set of location functions used with the DWARF-2 expression
4370 evaluator. */
4371 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4372 locexpr_read_variable,
4373 locexpr_read_variable_at_entry,
4374 locexpr_get_symbol_read_needs,
4375 locexpr_describe_location,
4376 0, /* location_has_loclist */
4377 locexpr_tracepoint_var_ref,
4378 locexpr_generate_c_location
4379 };
4380
4381
4382 /* Wrapper functions for location lists. These generally find
4383 the appropriate location expression and call something above. */
4384
4385 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4386 evaluator to calculate the location. */
4387 static struct value *
4388 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4389 {
4390 struct dwarf2_loclist_baton *dlbaton
4391 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4392 struct value *val;
4393 const gdb_byte *data;
4394 size_t size;
4395 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4396
4397 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4398 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4399 dlbaton->per_cu);
4400
4401 return val;
4402 }
4403
4404 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4405 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4406 will be thrown.
4407
4408 Function always returns non-NULL value, it may be marked optimized out if
4409 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4410 if it cannot resolve the parameter for any reason. */
4411
4412 static struct value *
4413 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4414 {
4415 struct dwarf2_loclist_baton *dlbaton
4416 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4417 const gdb_byte *data;
4418 size_t size;
4419 CORE_ADDR pc;
4420
4421 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4422 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4423
4424 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4425 if (data == NULL)
4426 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4427
4428 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4429 }
4430
4431 /* Implementation of get_symbol_read_needs from
4432 symbol_computed_ops. */
4433
4434 static enum symbol_needs_kind
4435 loclist_symbol_needs (struct symbol *symbol)
4436 {
4437 /* If there's a location list, then assume we need to have a frame
4438 to choose the appropriate location expression. With tracking of
4439 global variables this is not necessarily true, but such tracking
4440 is disabled in GCC at the moment until we figure out how to
4441 represent it. */
4442
4443 return SYMBOL_NEEDS_FRAME;
4444 }
4445
4446 /* Print a natural-language description of SYMBOL to STREAM. This
4447 version applies when there is a list of different locations, each
4448 with a specified address range. */
4449
4450 static void
4451 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4452 struct ui_file *stream)
4453 {
4454 struct dwarf2_loclist_baton *dlbaton
4455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4456 const gdb_byte *loc_ptr, *buf_end;
4457 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4458 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4459 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4460 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4461 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4462 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4463 /* Adjust base_address for relocatable objects. */
4464 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4465 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4466 int done = 0;
4467
4468 loc_ptr = dlbaton->data;
4469 buf_end = dlbaton->data + dlbaton->size;
4470
4471 fprintf_filtered (stream, _("multi-location:\n"));
4472
4473 /* Iterate through locations until we run out. */
4474 while (!done)
4475 {
4476 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4477 int length;
4478 enum debug_loc_kind kind;
4479 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4480
4481 if (dlbaton->from_dwo)
4482 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4483 loc_ptr, buf_end, &new_ptr,
4484 &low, &high, byte_order);
4485 else
4486 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4487 &low, &high,
4488 byte_order, addr_size,
4489 signed_addr_p);
4490 loc_ptr = new_ptr;
4491 switch (kind)
4492 {
4493 case DEBUG_LOC_END_OF_LIST:
4494 done = 1;
4495 continue;
4496 case DEBUG_LOC_BASE_ADDRESS:
4497 base_address = high + base_offset;
4498 fprintf_filtered (stream, _(" Base address %s"),
4499 paddress (gdbarch, base_address));
4500 continue;
4501 case DEBUG_LOC_START_END:
4502 case DEBUG_LOC_START_LENGTH:
4503 break;
4504 case DEBUG_LOC_BUFFER_OVERFLOW:
4505 case DEBUG_LOC_INVALID_ENTRY:
4506 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4507 SYMBOL_PRINT_NAME (symbol));
4508 default:
4509 gdb_assert_not_reached ("bad debug_loc_kind");
4510 }
4511
4512 /* Otherwise, a location expression entry. */
4513 low += base_address;
4514 high += base_address;
4515
4516 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4517 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4518
4519 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4520 loc_ptr += 2;
4521
4522 /* (It would improve readability to print only the minimum
4523 necessary digits of the second number of the range.) */
4524 fprintf_filtered (stream, _(" Range %s-%s: "),
4525 paddress (gdbarch, low), paddress (gdbarch, high));
4526
4527 /* Now describe this particular location. */
4528 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4529 objfile, addr_size, offset_size,
4530 dlbaton->per_cu);
4531
4532 fprintf_filtered (stream, "\n");
4533
4534 loc_ptr += length;
4535 }
4536 }
4537
4538 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4539 any necessary bytecode in AX. */
4540 static void
4541 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4542 struct agent_expr *ax, struct axs_value *value)
4543 {
4544 struct dwarf2_loclist_baton *dlbaton
4545 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4546 const gdb_byte *data;
4547 size_t size;
4548 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4549
4550 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4551 if (size == 0)
4552 value->optimized_out = 1;
4553 else
4554 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4555 dlbaton->per_cu);
4556 }
4557
4558 /* symbol_computed_ops 'generate_c_location' method. */
4559
4560 static void
4561 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4562 struct gdbarch *gdbarch,
4563 unsigned char *registers_used,
4564 CORE_ADDR pc, const char *result_name)
4565 {
4566 struct dwarf2_loclist_baton *dlbaton
4567 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4568 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4569 const gdb_byte *data;
4570 size_t size;
4571
4572 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4573 if (size == 0)
4574 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4575
4576 compile_dwarf_expr_to_c (stream, result_name,
4577 sym, pc, gdbarch, registers_used, addr_size,
4578 data, data + size,
4579 dlbaton->per_cu);
4580 }
4581
4582 /* The set of location functions used with the DWARF-2 expression
4583 evaluator and location lists. */
4584 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4585 loclist_read_variable,
4586 loclist_read_variable_at_entry,
4587 loclist_symbol_needs,
4588 loclist_describe_location,
4589 1, /* location_has_loclist */
4590 loclist_tracepoint_var_ref,
4591 loclist_generate_c_location
4592 };
4593
4594 /* Provide a prototype to silence -Wmissing-prototypes. */
4595 extern initialize_file_ftype _initialize_dwarf2loc;
4596
4597 void
4598 _initialize_dwarf2loc (void)
4599 {
4600 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4601 &entry_values_debug,
4602 _("Set entry values and tail call frames "
4603 "debugging."),
4604 _("Show entry values and tail call frames "
4605 "debugging."),
4606 _("When non-zero, the process of determining "
4607 "parameter values from function entry point "
4608 "and tail call frames will be printed."),
4609 NULL,
4610 show_entry_values_debug,
4611 &setdebuglist, &showdebuglist);
4612
4613 #if GDB_SELF_TEST
4614 register_self_test (selftests::copy_bitwise_tests);
4615 #endif
4616 }
This page took 0.227462 seconds and 5 git commands to generate.