Eliminate make_cleanup_obstack_free, introduce auto_obstack
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
47
48 extern int dwarf_always_disassemble;
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
57
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
64 /* Until these have formal names, we define these here.
65 ref: http://gcc.gnu.org/wiki/DebugFission
66 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
67 and is then followed by data specific to that entry. */
68
69 enum debug_loc_kind
70 {
71 /* Indicates the end of the list of entries. */
72 DEBUG_LOC_END_OF_LIST = 0,
73
74 /* This is followed by an unsigned LEB128 number that is an index into
75 .debug_addr and specifies the base address for all following entries. */
76 DEBUG_LOC_BASE_ADDRESS = 1,
77
78 /* This is followed by two unsigned LEB128 numbers that are indices into
79 .debug_addr and specify the beginning and ending addresses, and then
80 a normal location expression as in .debug_loc. */
81 DEBUG_LOC_START_END = 2,
82
83 /* This is followed by an unsigned LEB128 number that is an index into
84 .debug_addr and specifies the beginning address, and a 4 byte unsigned
85 number that specifies the length, and then a normal location expression
86 as in .debug_loc. */
87 DEBUG_LOC_START_LENGTH = 3,
88
89 /* An internal value indicating there is insufficient data. */
90 DEBUG_LOC_BUFFER_OVERFLOW = -1,
91
92 /* An internal value indicating an invalid kind of entry was found. */
93 DEBUG_LOC_INVALID_ENTRY = -2
94 };
95
96 /* Helper function which throws an error if a synthetic pointer is
97 invalid. */
98
99 static void
100 invalid_synthetic_pointer (void)
101 {
102 error (_("access outside bounds of object "
103 "referenced via synthetic pointer"));
104 }
105
106 /* Decode the addresses in a non-dwo .debug_loc entry.
107 A pointer to the next byte to examine is returned in *NEW_PTR.
108 The encoded low,high addresses are return in *LOW,*HIGH.
109 The result indicates the kind of entry found. */
110
111 static enum debug_loc_kind
112 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
113 const gdb_byte **new_ptr,
114 CORE_ADDR *low, CORE_ADDR *high,
115 enum bfd_endian byte_order,
116 unsigned int addr_size,
117 int signed_addr_p)
118 {
119 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
120
121 if (buf_end - loc_ptr < 2 * addr_size)
122 return DEBUG_LOC_BUFFER_OVERFLOW;
123
124 if (signed_addr_p)
125 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
126 else
127 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
128 loc_ptr += addr_size;
129
130 if (signed_addr_p)
131 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 *new_ptr = loc_ptr;
137
138 /* A base-address-selection entry. */
139 if ((*low & base_mask) == base_mask)
140 return DEBUG_LOC_BASE_ADDRESS;
141
142 /* An end-of-list entry. */
143 if (*low == 0 && *high == 0)
144 return DEBUG_LOC_END_OF_LIST;
145
146 return DEBUG_LOC_START_END;
147 }
148
149 /* Decode the addresses in .debug_loclists entry.
150 A pointer to the next byte to examine is returned in *NEW_PTR.
151 The encoded low,high addresses are return in *LOW,*HIGH.
152 The result indicates the kind of entry found. */
153
154 static enum debug_loc_kind
155 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
156 const gdb_byte *loc_ptr,
157 const gdb_byte *buf_end,
158 const gdb_byte **new_ptr,
159 CORE_ADDR *low, CORE_ADDR *high,
160 enum bfd_endian byte_order,
161 unsigned int addr_size,
162 int signed_addr_p)
163 {
164 uint64_t u64;
165
166 if (loc_ptr == buf_end)
167 return DEBUG_LOC_BUFFER_OVERFLOW;
168
169 switch (*loc_ptr++)
170 {
171 case DW_LLE_end_of_list:
172 *new_ptr = loc_ptr;
173 return DEBUG_LOC_END_OF_LIST;
174 case DW_LLE_base_address:
175 if (loc_ptr + addr_size > buf_end)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 if (signed_addr_p)
178 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
179 else
180 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
181 loc_ptr += addr_size;
182 *new_ptr = loc_ptr;
183 return DEBUG_LOC_BASE_ADDRESS;
184 case DW_LLE_offset_pair:
185 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
186 if (loc_ptr == NULL)
187 return DEBUG_LOC_BUFFER_OVERFLOW;
188 *low = u64;
189 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
190 if (loc_ptr == NULL)
191 return DEBUG_LOC_BUFFER_OVERFLOW;
192 *high = u64;
193 *new_ptr = loc_ptr;
194 return DEBUG_LOC_START_END;
195 default:
196 return DEBUG_LOC_INVALID_ENTRY;
197 }
198 }
199
200 /* Decode the addresses in .debug_loc.dwo entry.
201 A pointer to the next byte to examine is returned in *NEW_PTR.
202 The encoded low,high addresses are return in *LOW,*HIGH.
203 The result indicates the kind of entry found. */
204
205 static enum debug_loc_kind
206 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
207 const gdb_byte *loc_ptr,
208 const gdb_byte *buf_end,
209 const gdb_byte **new_ptr,
210 CORE_ADDR *low, CORE_ADDR *high,
211 enum bfd_endian byte_order)
212 {
213 uint64_t low_index, high_index;
214
215 if (loc_ptr == buf_end)
216 return DEBUG_LOC_BUFFER_OVERFLOW;
217
218 switch (*loc_ptr++)
219 {
220 case DW_LLE_GNU_end_of_list_entry:
221 *new_ptr = loc_ptr;
222 return DEBUG_LOC_END_OF_LIST;
223 case DW_LLE_GNU_base_address_selection_entry:
224 *low = 0;
225 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
226 if (loc_ptr == NULL)
227 return DEBUG_LOC_BUFFER_OVERFLOW;
228 *high = dwarf2_read_addr_index (per_cu, high_index);
229 *new_ptr = loc_ptr;
230 return DEBUG_LOC_BASE_ADDRESS;
231 case DW_LLE_GNU_start_end_entry:
232 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
233 if (loc_ptr == NULL)
234 return DEBUG_LOC_BUFFER_OVERFLOW;
235 *low = dwarf2_read_addr_index (per_cu, low_index);
236 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
237 if (loc_ptr == NULL)
238 return DEBUG_LOC_BUFFER_OVERFLOW;
239 *high = dwarf2_read_addr_index (per_cu, high_index);
240 *new_ptr = loc_ptr;
241 return DEBUG_LOC_START_END;
242 case DW_LLE_GNU_start_length_entry:
243 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
244 if (loc_ptr == NULL)
245 return DEBUG_LOC_BUFFER_OVERFLOW;
246 *low = dwarf2_read_addr_index (per_cu, low_index);
247 if (loc_ptr + 4 > buf_end)
248 return DEBUG_LOC_BUFFER_OVERFLOW;
249 *high = *low;
250 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
251 *new_ptr = loc_ptr + 4;
252 return DEBUG_LOC_START_LENGTH;
253 default:
254 return DEBUG_LOC_INVALID_ENTRY;
255 }
256 }
257
258 /* A function for dealing with location lists. Given a
259 symbol baton (BATON) and a pc value (PC), find the appropriate
260 location expression, set *LOCEXPR_LENGTH, and return a pointer
261 to the beginning of the expression. Returns NULL on failure.
262
263 For now, only return the first matching location expression; there
264 can be more than one in the list. */
265
266 const gdb_byte *
267 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
268 size_t *locexpr_length, CORE_ADDR pc)
269 {
270 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
273 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
274 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
275 /* Adjust base_address for relocatable objects. */
276 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
277 CORE_ADDR base_address = baton->base_address + base_offset;
278 const gdb_byte *loc_ptr, *buf_end;
279
280 loc_ptr = baton->data;
281 buf_end = baton->data + baton->size;
282
283 while (1)
284 {
285 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
286 int length;
287 enum debug_loc_kind kind;
288 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
289
290 if (baton->from_dwo)
291 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
292 loc_ptr, buf_end, &new_ptr,
293 &low, &high, byte_order);
294 else if (dwarf2_version (baton->per_cu) < 5)
295 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
296 &low, &high,
297 byte_order, addr_size,
298 signed_addr_p);
299 else
300 kind = decode_debug_loclists_addresses (baton->per_cu,
301 loc_ptr, buf_end, &new_ptr,
302 &low, &high, byte_order,
303 addr_size, signed_addr_p);
304
305 loc_ptr = new_ptr;
306 switch (kind)
307 {
308 case DEBUG_LOC_END_OF_LIST:
309 *locexpr_length = 0;
310 return NULL;
311 case DEBUG_LOC_BASE_ADDRESS:
312 base_address = high + base_offset;
313 continue;
314 case DEBUG_LOC_START_END:
315 case DEBUG_LOC_START_LENGTH:
316 break;
317 case DEBUG_LOC_BUFFER_OVERFLOW:
318 case DEBUG_LOC_INVALID_ENTRY:
319 error (_("dwarf2_find_location_expression: "
320 "Corrupted DWARF expression."));
321 default:
322 gdb_assert_not_reached ("bad debug_loc_kind");
323 }
324
325 /* Otherwise, a location expression entry.
326 If the entry is from a DWO, don't add base address: the entry is from
327 .debug_addr which already has the DWARF "base address". We still add
328 base_offset in case we're debugging a PIE executable. */
329 if (baton->from_dwo)
330 {
331 low += base_offset;
332 high += base_offset;
333 }
334 else
335 {
336 low += base_address;
337 high += base_address;
338 }
339
340 if (dwarf2_version (baton->per_cu) < 5)
341 {
342 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
343 loc_ptr += 2;
344 }
345 else
346 {
347 unsigned int bytes_read;
348
349 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
350 loc_ptr += bytes_read;
351 }
352
353 if (low == high && pc == low)
354 {
355 /* This is entry PC record present only at entry point
356 of a function. Verify it is really the function entry point. */
357
358 const struct block *pc_block = block_for_pc (pc);
359 struct symbol *pc_func = NULL;
360
361 if (pc_block)
362 pc_func = block_linkage_function (pc_block);
363
364 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
365 {
366 *locexpr_length = length;
367 return loc_ptr;
368 }
369 }
370
371 if (pc >= low && pc < high)
372 {
373 *locexpr_length = length;
374 return loc_ptr;
375 }
376
377 loc_ptr += length;
378 }
379 }
380
381 /* This is the baton used when performing dwarf2 expression
382 evaluation. */
383 struct dwarf_expr_baton
384 {
385 struct frame_info *frame;
386 struct dwarf2_per_cu_data *per_cu;
387 CORE_ADDR obj_address;
388 };
389
390 /* Implement find_frame_base_location method for LOC_BLOCK functions using
391 DWARF expression for its DW_AT_frame_base. */
392
393 static void
394 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
395 const gdb_byte **start, size_t *length)
396 {
397 struct dwarf2_locexpr_baton *symbaton
398 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
399
400 *length = symbaton->size;
401 *start = symbaton->data;
402 }
403
404 /* Implement the struct symbol_block_ops::get_frame_base method for
405 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
406
407 static CORE_ADDR
408 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
409 {
410 struct gdbarch *gdbarch;
411 struct type *type;
412 struct dwarf2_locexpr_baton *dlbaton;
413 const gdb_byte *start;
414 size_t length;
415 struct value *result;
416
417 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
418 Thus, it's supposed to provide the find_frame_base_location method as
419 well. */
420 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
421
422 gdbarch = get_frame_arch (frame);
423 type = builtin_type (gdbarch)->builtin_data_ptr;
424 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
425
426 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
427 (framefunc, get_frame_pc (frame), &start, &length);
428 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
429 dlbaton->per_cu);
430
431 /* The DW_AT_frame_base attribute contains a location description which
432 computes the base address itself. However, the call to
433 dwarf2_evaluate_loc_desc returns a value representing a variable at
434 that address. The frame base address is thus this variable's
435 address. */
436 return value_address (result);
437 }
438
439 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
440 function uses DWARF expression for its DW_AT_frame_base. */
441
442 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
443 {
444 locexpr_find_frame_base_location,
445 locexpr_get_frame_base
446 };
447
448 /* Implement find_frame_base_location method for LOC_BLOCK functions using
449 DWARF location list for its DW_AT_frame_base. */
450
451 static void
452 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
453 const gdb_byte **start, size_t *length)
454 {
455 struct dwarf2_loclist_baton *symbaton
456 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
457
458 *start = dwarf2_find_location_expression (symbaton, length, pc);
459 }
460
461 /* Implement the struct symbol_block_ops::get_frame_base method for
462 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
463
464 static CORE_ADDR
465 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
466 {
467 struct gdbarch *gdbarch;
468 struct type *type;
469 struct dwarf2_loclist_baton *dlbaton;
470 const gdb_byte *start;
471 size_t length;
472 struct value *result;
473
474 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
475 Thus, it's supposed to provide the find_frame_base_location method as
476 well. */
477 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
478
479 gdbarch = get_frame_arch (frame);
480 type = builtin_type (gdbarch)->builtin_data_ptr;
481 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
482
483 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
484 (framefunc, get_frame_pc (frame), &start, &length);
485 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
486 dlbaton->per_cu);
487
488 /* The DW_AT_frame_base attribute contains a location description which
489 computes the base address itself. However, the call to
490 dwarf2_evaluate_loc_desc returns a value representing a variable at
491 that address. The frame base address is thus this variable's
492 address. */
493 return value_address (result);
494 }
495
496 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
497 function uses DWARF location list for its DW_AT_frame_base. */
498
499 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
500 {
501 loclist_find_frame_base_location,
502 loclist_get_frame_base
503 };
504
505 /* See dwarf2loc.h. */
506
507 void
508 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
509 const gdb_byte **start, size_t *length)
510 {
511 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
512 {
513 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
514
515 ops_block->find_frame_base_location (framefunc, pc, start, length);
516 }
517 else
518 *length = 0;
519
520 if (*length == 0)
521 error (_("Could not find the frame base for \"%s\"."),
522 SYMBOL_NATURAL_NAME (framefunc));
523 }
524
525 static CORE_ADDR
526 get_frame_pc_for_per_cu_dwarf_call (void *baton)
527 {
528 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
529
530 return ctx->get_frame_pc ();
531 }
532
533 static void
534 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
535 struct dwarf2_per_cu_data *per_cu)
536 {
537 struct dwarf2_locexpr_baton block;
538
539 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
540 get_frame_pc_for_per_cu_dwarf_call,
541 ctx);
542
543 /* DW_OP_call_ref is currently not supported. */
544 gdb_assert (block.per_cu == per_cu);
545
546 ctx->eval (block.data, block.size);
547 }
548
549 class dwarf_evaluate_loc_desc : public dwarf_expr_context
550 {
551 public:
552
553 struct frame_info *frame;
554 struct dwarf2_per_cu_data *per_cu;
555 CORE_ADDR obj_address;
556
557 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
558 the frame in BATON. */
559
560 CORE_ADDR get_frame_cfa () OVERRIDE
561 {
562 return dwarf2_frame_cfa (frame);
563 }
564
565 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
566 the frame in BATON. */
567
568 CORE_ADDR get_frame_pc () OVERRIDE
569 {
570 return get_frame_address_in_block (frame);
571 }
572
573 /* Using the objfile specified in BATON, find the address for the
574 current thread's thread-local storage with offset OFFSET. */
575 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
576 {
577 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
578
579 return target_translate_tls_address (objfile, offset);
580 }
581
582 /* Helper interface of per_cu_dwarf_call for
583 dwarf2_evaluate_loc_desc. */
584
585 void dwarf_call (cu_offset die_offset) OVERRIDE
586 {
587 per_cu_dwarf_call (this, die_offset, per_cu);
588 }
589
590 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
591 {
592 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
593 if (result == NULL)
594 error (_("Could not find type for DW_OP_const_type"));
595 if (size != 0 && TYPE_LENGTH (result) != size)
596 error (_("DW_OP_const_type has different sizes for type and data"));
597 return result;
598 }
599
600 /* Callback function for dwarf2_evaluate_loc_desc.
601 Fetch the address indexed by DW_OP_GNU_addr_index. */
602
603 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
604 {
605 return dwarf2_read_addr_index (per_cu, index);
606 }
607
608 /* Callback function for get_object_address. Return the address of the VLA
609 object. */
610
611 CORE_ADDR get_object_address () OVERRIDE
612 {
613 if (obj_address == 0)
614 error (_("Location address is not set."));
615 return obj_address;
616 }
617
618 /* Execute DWARF block of call_site_parameter which matches KIND and
619 KIND_U. Choose DEREF_SIZE value of that parameter. Search
620 caller of this objects's frame.
621
622 The caller can be from a different CU - per_cu_dwarf_call
623 implementation can be more simple as it does not support cross-CU
624 DWARF executions. */
625
626 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
627 union call_site_parameter_u kind_u,
628 int deref_size) OVERRIDE
629 {
630 struct frame_info *caller_frame;
631 struct dwarf2_per_cu_data *caller_per_cu;
632 struct call_site_parameter *parameter;
633 const gdb_byte *data_src;
634 size_t size;
635
636 caller_frame = get_prev_frame (frame);
637
638 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
639 &caller_per_cu);
640 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
641 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
642
643 /* DEREF_SIZE size is not verified here. */
644 if (data_src == NULL)
645 throw_error (NO_ENTRY_VALUE_ERROR,
646 _("Cannot resolve DW_AT_call_data_value"));
647
648 scoped_restore save_frame = make_scoped_restore (&this->frame,
649 caller_frame);
650 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
651 caller_per_cu);
652 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
653 (CORE_ADDR) 0);
654
655 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
656 this->gdbarch
657 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
658 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
659 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
660 scoped_restore save_offset = make_scoped_restore (&this->offset);
661 this->offset = dwarf2_per_cu_text_offset (per_cu);
662
663 this->eval (data_src, size);
664 }
665
666 /* Using the frame specified in BATON, find the location expression
667 describing the frame base. Return a pointer to it in START and
668 its length in LENGTH. */
669 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
670 {
671 /* FIXME: cagney/2003-03-26: This code should be using
672 get_frame_base_address(), and then implement a dwarf2 specific
673 this_base method. */
674 struct symbol *framefunc;
675 const struct block *bl = get_frame_block (frame, NULL);
676
677 if (bl == NULL)
678 error (_("frame address is not available."));
679
680 /* Use block_linkage_function, which returns a real (not inlined)
681 function, instead of get_frame_function, which may return an
682 inlined function. */
683 framefunc = block_linkage_function (bl);
684
685 /* If we found a frame-relative symbol then it was certainly within
686 some function associated with a frame. If we can't find the frame,
687 something has gone wrong. */
688 gdb_assert (framefunc != NULL);
689
690 func_get_frame_base_dwarf_block (framefunc,
691 get_frame_address_in_block (frame),
692 start, length);
693 }
694
695 /* Read memory at ADDR (length LEN) into BUF. */
696
697 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
698 {
699 read_memory (addr, buf, len);
700 }
701
702 /* Using the frame specified in BATON, return the value of register
703 REGNUM, treated as a pointer. */
704 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
705 {
706 struct gdbarch *gdbarch = get_frame_arch (frame);
707 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
708
709 return address_from_register (regnum, frame);
710 }
711
712 /* Implement "get_reg_value" callback. */
713
714 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
715 {
716 struct gdbarch *gdbarch = get_frame_arch (frame);
717 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
718
719 return value_from_register (type, regnum, frame);
720 }
721 };
722
723 /* See dwarf2loc.h. */
724
725 unsigned int entry_values_debug = 0;
726
727 /* Helper to set entry_values_debug. */
728
729 static void
730 show_entry_values_debug (struct ui_file *file, int from_tty,
731 struct cmd_list_element *c, const char *value)
732 {
733 fprintf_filtered (file,
734 _("Entry values and tail call frames debugging is %s.\n"),
735 value);
736 }
737
738 /* Find DW_TAG_call_site's DW_AT_call_target address.
739 CALLER_FRAME (for registers) can be NULL if it is not known. This function
740 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
741
742 static CORE_ADDR
743 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
744 struct call_site *call_site,
745 struct frame_info *caller_frame)
746 {
747 switch (FIELD_LOC_KIND (call_site->target))
748 {
749 case FIELD_LOC_KIND_DWARF_BLOCK:
750 {
751 struct dwarf2_locexpr_baton *dwarf_block;
752 struct value *val;
753 struct type *caller_core_addr_type;
754 struct gdbarch *caller_arch;
755
756 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
757 if (dwarf_block == NULL)
758 {
759 struct bound_minimal_symbol msym;
760
761 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
762 throw_error (NO_ENTRY_VALUE_ERROR,
763 _("DW_AT_call_target is not specified at %s in %s"),
764 paddress (call_site_gdbarch, call_site->pc),
765 (msym.minsym == NULL ? "???"
766 : MSYMBOL_PRINT_NAME (msym.minsym)));
767
768 }
769 if (caller_frame == NULL)
770 {
771 struct bound_minimal_symbol msym;
772
773 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
774 throw_error (NO_ENTRY_VALUE_ERROR,
775 _("DW_AT_call_target DWARF block resolving "
776 "requires known frame which is currently not "
777 "available at %s in %s"),
778 paddress (call_site_gdbarch, call_site->pc),
779 (msym.minsym == NULL ? "???"
780 : MSYMBOL_PRINT_NAME (msym.minsym)));
781
782 }
783 caller_arch = get_frame_arch (caller_frame);
784 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
785 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
786 dwarf_block->data, dwarf_block->size,
787 dwarf_block->per_cu);
788 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
789 if (VALUE_LVAL (val) == lval_memory)
790 return value_address (val);
791 else
792 return value_as_address (val);
793 }
794
795 case FIELD_LOC_KIND_PHYSNAME:
796 {
797 const char *physname;
798 struct bound_minimal_symbol msym;
799
800 physname = FIELD_STATIC_PHYSNAME (call_site->target);
801
802 /* Handle both the mangled and demangled PHYSNAME. */
803 msym = lookup_minimal_symbol (physname, NULL, NULL);
804 if (msym.minsym == NULL)
805 {
806 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
807 throw_error (NO_ENTRY_VALUE_ERROR,
808 _("Cannot find function \"%s\" for a call site target "
809 "at %s in %s"),
810 physname, paddress (call_site_gdbarch, call_site->pc),
811 (msym.minsym == NULL ? "???"
812 : MSYMBOL_PRINT_NAME (msym.minsym)));
813
814 }
815 return BMSYMBOL_VALUE_ADDRESS (msym);
816 }
817
818 case FIELD_LOC_KIND_PHYSADDR:
819 return FIELD_STATIC_PHYSADDR (call_site->target);
820
821 default:
822 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
823 }
824 }
825
826 /* Convert function entry point exact address ADDR to the function which is
827 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
828 NO_ENTRY_VALUE_ERROR otherwise. */
829
830 static struct symbol *
831 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
832 {
833 struct symbol *sym = find_pc_function (addr);
834 struct type *type;
835
836 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
837 throw_error (NO_ENTRY_VALUE_ERROR,
838 _("DW_TAG_call_site resolving failed to find function "
839 "name for address %s"),
840 paddress (gdbarch, addr));
841
842 type = SYMBOL_TYPE (sym);
843 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
844 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
845
846 return sym;
847 }
848
849 /* Verify function with entry point exact address ADDR can never call itself
850 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
851 can call itself via tail calls.
852
853 If a funtion can tail call itself its entry value based parameters are
854 unreliable. There is no verification whether the value of some/all
855 parameters is unchanged through the self tail call, we expect if there is
856 a self tail call all the parameters can be modified. */
857
858 static void
859 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
860 {
861 CORE_ADDR addr;
862
863 /* The verification is completely unordered. Track here function addresses
864 which still need to be iterated. */
865 std::vector<CORE_ADDR> todo;
866
867 /* Track here CORE_ADDRs which were already visited. */
868 std::unordered_set<CORE_ADDR> addr_hash;
869
870 todo.push_back (verify_addr);
871 while (!todo.empty ())
872 {
873 struct symbol *func_sym;
874 struct call_site *call_site;
875
876 addr = todo.back ();
877 todo.pop_back ();
878
879 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
880
881 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
882 call_site; call_site = call_site->tail_call_next)
883 {
884 CORE_ADDR target_addr;
885
886 /* CALLER_FRAME with registers is not available for tail-call jumped
887 frames. */
888 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
889
890 if (target_addr == verify_addr)
891 {
892 struct bound_minimal_symbol msym;
893
894 msym = lookup_minimal_symbol_by_pc (verify_addr);
895 throw_error (NO_ENTRY_VALUE_ERROR,
896 _("DW_OP_entry_value resolving has found "
897 "function \"%s\" at %s can call itself via tail "
898 "calls"),
899 (msym.minsym == NULL ? "???"
900 : MSYMBOL_PRINT_NAME (msym.minsym)),
901 paddress (gdbarch, verify_addr));
902 }
903
904 if (addr_hash.insert (target_addr).second)
905 todo.push_back (target_addr);
906 }
907 }
908 }
909
910 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
911 ENTRY_VALUES_DEBUG. */
912
913 static void
914 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
915 {
916 CORE_ADDR addr = call_site->pc;
917 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
918
919 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
920 (msym.minsym == NULL ? "???"
921 : MSYMBOL_PRINT_NAME (msym.minsym)));
922
923 }
924
925 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
926 only top callers and bottom callees which are present in both. GDBARCH is
927 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
928 no remaining possibilities to provide unambiguous non-trivial result.
929 RESULTP should point to NULL on the first (initialization) call. Caller is
930 responsible for xfree of any RESULTP data. */
931
932 static void
933 chain_candidate (struct gdbarch *gdbarch,
934 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
935 std::vector<struct call_site *> *chain)
936 {
937 long length = chain->size ();
938 int callers, callees, idx;
939
940 if (*resultp == NULL)
941 {
942 /* Create the initial chain containing all the passed PCs. */
943
944 struct call_site_chain *result
945 = ((struct call_site_chain *)
946 xmalloc (sizeof (*result)
947 + sizeof (*result->call_site) * (length - 1)));
948 result->length = length;
949 result->callers = result->callees = length;
950 if (!chain->empty ())
951 memcpy (result->call_site, chain->data (),
952 sizeof (*result->call_site) * length);
953 resultp->reset (result);
954
955 if (entry_values_debug)
956 {
957 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
958 for (idx = 0; idx < length; idx++)
959 tailcall_dump (gdbarch, result->call_site[idx]);
960 fputc_unfiltered ('\n', gdb_stdlog);
961 }
962
963 return;
964 }
965
966 if (entry_values_debug)
967 {
968 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
969 for (idx = 0; idx < length; idx++)
970 tailcall_dump (gdbarch, chain->at (idx));
971 fputc_unfiltered ('\n', gdb_stdlog);
972 }
973
974 /* Intersect callers. */
975
976 callers = std::min ((long) (*resultp)->callers, length);
977 for (idx = 0; idx < callers; idx++)
978 if ((*resultp)->call_site[idx] != chain->at (idx))
979 {
980 (*resultp)->callers = idx;
981 break;
982 }
983
984 /* Intersect callees. */
985
986 callees = std::min ((long) (*resultp)->callees, length);
987 for (idx = 0; idx < callees; idx++)
988 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
989 != chain->at (length - 1 - idx))
990 {
991 (*resultp)->callees = idx;
992 break;
993 }
994
995 if (entry_values_debug)
996 {
997 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
998 for (idx = 0; idx < (*resultp)->callers; idx++)
999 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1000 fputs_unfiltered (" |", gdb_stdlog);
1001 for (idx = 0; idx < (*resultp)->callees; idx++)
1002 tailcall_dump (gdbarch,
1003 (*resultp)->call_site[(*resultp)->length
1004 - (*resultp)->callees + idx]);
1005 fputc_unfiltered ('\n', gdb_stdlog);
1006 }
1007
1008 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1009 {
1010 /* There are no common callers or callees. It could be also a direct
1011 call (which has length 0) with ambiguous possibility of an indirect
1012 call - CALLERS == CALLEES == 0 is valid during the first allocation
1013 but any subsequence processing of such entry means ambiguity. */
1014 resultp->reset (NULL);
1015 return;
1016 }
1017
1018 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1019 PC again. In such case there must be two different code paths to reach
1020 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1021 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1022 }
1023
1024 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1025 assumed frames between them use GDBARCH. Use depth first search so we can
1026 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1027 would have needless GDB stack overhead. Caller is responsible for xfree of
1028 the returned result. Any unreliability results in thrown
1029 NO_ENTRY_VALUE_ERROR. */
1030
1031 static struct call_site_chain *
1032 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1033 CORE_ADDR callee_pc)
1034 {
1035 CORE_ADDR save_callee_pc = callee_pc;
1036 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1037 struct call_site *call_site;
1038
1039 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1040 call_site nor any possible call_site at CALLEE_PC's function is there.
1041 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1042 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1043 std::vector<struct call_site *> chain;
1044
1045 /* We are not interested in the specific PC inside the callee function. */
1046 callee_pc = get_pc_function_start (callee_pc);
1047 if (callee_pc == 0)
1048 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1049 paddress (gdbarch, save_callee_pc));
1050
1051 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1052 std::unordered_set<CORE_ADDR> addr_hash;
1053
1054 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1055 at the target's function. All the possible tail call sites in the
1056 target's function will get iterated as already pushed into CHAIN via their
1057 TAIL_CALL_NEXT. */
1058 call_site = call_site_for_pc (gdbarch, caller_pc);
1059
1060 while (call_site)
1061 {
1062 CORE_ADDR target_func_addr;
1063 struct call_site *target_call_site;
1064
1065 /* CALLER_FRAME with registers is not available for tail-call jumped
1066 frames. */
1067 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1068
1069 if (target_func_addr == callee_pc)
1070 {
1071 chain_candidate (gdbarch, &retval, &chain);
1072 if (retval == NULL)
1073 break;
1074
1075 /* There is no way to reach CALLEE_PC again as we would prevent
1076 entering it twice as being already marked in ADDR_HASH. */
1077 target_call_site = NULL;
1078 }
1079 else
1080 {
1081 struct symbol *target_func;
1082
1083 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1084 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1085 }
1086
1087 do
1088 {
1089 /* Attempt to visit TARGET_CALL_SITE. */
1090
1091 if (target_call_site)
1092 {
1093 if (addr_hash.insert (target_call_site->pc).second)
1094 {
1095 /* Successfully entered TARGET_CALL_SITE. */
1096
1097 chain.push_back (target_call_site);
1098 break;
1099 }
1100 }
1101
1102 /* Backtrack (without revisiting the originating call_site). Try the
1103 callers's sibling; if there isn't any try the callers's callers's
1104 sibling etc. */
1105
1106 target_call_site = NULL;
1107 while (!chain.empty ())
1108 {
1109 call_site = chain.back ();
1110 chain.pop_back ();
1111
1112 size_t removed = addr_hash.erase (call_site->pc);
1113 gdb_assert (removed == 1);
1114
1115 target_call_site = call_site->tail_call_next;
1116 if (target_call_site)
1117 break;
1118 }
1119 }
1120 while (target_call_site);
1121
1122 if (chain.empty ())
1123 call_site = NULL;
1124 else
1125 call_site = chain.back ();
1126 }
1127
1128 if (retval == NULL)
1129 {
1130 struct bound_minimal_symbol msym_caller, msym_callee;
1131
1132 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1133 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1134 throw_error (NO_ENTRY_VALUE_ERROR,
1135 _("There are no unambiguously determinable intermediate "
1136 "callers or callees between caller function \"%s\" at %s "
1137 "and callee function \"%s\" at %s"),
1138 (msym_caller.minsym == NULL
1139 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1140 paddress (gdbarch, caller_pc),
1141 (msym_callee.minsym == NULL
1142 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1143 paddress (gdbarch, callee_pc));
1144 }
1145
1146 return retval.release ();
1147 }
1148
1149 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1150 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1151 constructed return NULL. Caller is responsible for xfree of the returned
1152 result. */
1153
1154 struct call_site_chain *
1155 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1156 CORE_ADDR callee_pc)
1157 {
1158 struct call_site_chain *retval = NULL;
1159
1160 TRY
1161 {
1162 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1163 }
1164 CATCH (e, RETURN_MASK_ERROR)
1165 {
1166 if (e.error == NO_ENTRY_VALUE_ERROR)
1167 {
1168 if (entry_values_debug)
1169 exception_print (gdb_stdout, e);
1170
1171 return NULL;
1172 }
1173 else
1174 throw_exception (e);
1175 }
1176 END_CATCH
1177
1178 return retval;
1179 }
1180
1181 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1182
1183 static int
1184 call_site_parameter_matches (struct call_site_parameter *parameter,
1185 enum call_site_parameter_kind kind,
1186 union call_site_parameter_u kind_u)
1187 {
1188 if (kind == parameter->kind)
1189 switch (kind)
1190 {
1191 case CALL_SITE_PARAMETER_DWARF_REG:
1192 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1193 case CALL_SITE_PARAMETER_FB_OFFSET:
1194 return kind_u.fb_offset == parameter->u.fb_offset;
1195 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1196 return kind_u.param_cu_off == parameter->u.param_cu_off;
1197 }
1198 return 0;
1199 }
1200
1201 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1202 FRAME is for callee.
1203
1204 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1205 otherwise. */
1206
1207 static struct call_site_parameter *
1208 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1209 enum call_site_parameter_kind kind,
1210 union call_site_parameter_u kind_u,
1211 struct dwarf2_per_cu_data **per_cu_return)
1212 {
1213 CORE_ADDR func_addr, caller_pc;
1214 struct gdbarch *gdbarch;
1215 struct frame_info *caller_frame;
1216 struct call_site *call_site;
1217 int iparams;
1218 /* Initialize it just to avoid a GCC false warning. */
1219 struct call_site_parameter *parameter = NULL;
1220 CORE_ADDR target_addr;
1221
1222 while (get_frame_type (frame) == INLINE_FRAME)
1223 {
1224 frame = get_prev_frame (frame);
1225 gdb_assert (frame != NULL);
1226 }
1227
1228 func_addr = get_frame_func (frame);
1229 gdbarch = get_frame_arch (frame);
1230 caller_frame = get_prev_frame (frame);
1231 if (gdbarch != frame_unwind_arch (frame))
1232 {
1233 struct bound_minimal_symbol msym
1234 = lookup_minimal_symbol_by_pc (func_addr);
1235 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1236
1237 throw_error (NO_ENTRY_VALUE_ERROR,
1238 _("DW_OP_entry_value resolving callee gdbarch %s "
1239 "(of %s (%s)) does not match caller gdbarch %s"),
1240 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1241 paddress (gdbarch, func_addr),
1242 (msym.minsym == NULL ? "???"
1243 : MSYMBOL_PRINT_NAME (msym.minsym)),
1244 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1245 }
1246
1247 if (caller_frame == NULL)
1248 {
1249 struct bound_minimal_symbol msym
1250 = lookup_minimal_symbol_by_pc (func_addr);
1251
1252 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1253 "requires caller of %s (%s)"),
1254 paddress (gdbarch, func_addr),
1255 (msym.minsym == NULL ? "???"
1256 : MSYMBOL_PRINT_NAME (msym.minsym)));
1257 }
1258 caller_pc = get_frame_pc (caller_frame);
1259 call_site = call_site_for_pc (gdbarch, caller_pc);
1260
1261 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1262 if (target_addr != func_addr)
1263 {
1264 struct minimal_symbol *target_msym, *func_msym;
1265
1266 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1267 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1268 throw_error (NO_ENTRY_VALUE_ERROR,
1269 _("DW_OP_entry_value resolving expects callee %s at %s "
1270 "but the called frame is for %s at %s"),
1271 (target_msym == NULL ? "???"
1272 : MSYMBOL_PRINT_NAME (target_msym)),
1273 paddress (gdbarch, target_addr),
1274 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1275 paddress (gdbarch, func_addr));
1276 }
1277
1278 /* No entry value based parameters would be reliable if this function can
1279 call itself via tail calls. */
1280 func_verify_no_selftailcall (gdbarch, func_addr);
1281
1282 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1283 {
1284 parameter = &call_site->parameter[iparams];
1285 if (call_site_parameter_matches (parameter, kind, kind_u))
1286 break;
1287 }
1288 if (iparams == call_site->parameter_count)
1289 {
1290 struct minimal_symbol *msym
1291 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1292
1293 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1294 determine its value. */
1295 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1296 "at DW_TAG_call_site %s at %s"),
1297 paddress (gdbarch, caller_pc),
1298 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1299 }
1300
1301 *per_cu_return = call_site->per_cu;
1302 return parameter;
1303 }
1304
1305 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1306 the normal DW_AT_call_value block. Otherwise return the
1307 DW_AT_call_data_value (dereferenced) block.
1308
1309 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1310 struct value.
1311
1312 Function always returns non-NULL, non-optimized out value. It throws
1313 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1314
1315 static struct value *
1316 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1317 CORE_ADDR deref_size, struct type *type,
1318 struct frame_info *caller_frame,
1319 struct dwarf2_per_cu_data *per_cu)
1320 {
1321 const gdb_byte *data_src;
1322 gdb_byte *data;
1323 size_t size;
1324
1325 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1326 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1327
1328 /* DEREF_SIZE size is not verified here. */
1329 if (data_src == NULL)
1330 throw_error (NO_ENTRY_VALUE_ERROR,
1331 _("Cannot resolve DW_AT_call_data_value"));
1332
1333 /* DW_AT_call_value is a DWARF expression, not a DWARF
1334 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1335 DWARF block. */
1336 data = (gdb_byte *) alloca (size + 1);
1337 memcpy (data, data_src, size);
1338 data[size] = DW_OP_stack_value;
1339
1340 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1341 }
1342
1343 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1344 the indirect method on it, that is use its stored target value, the sole
1345 purpose of entry_data_value_funcs.. */
1346
1347 static struct value *
1348 entry_data_value_coerce_ref (const struct value *value)
1349 {
1350 struct type *checked_type = check_typedef (value_type (value));
1351 struct value *target_val;
1352
1353 if (!TYPE_IS_REFERENCE (checked_type))
1354 return NULL;
1355
1356 target_val = (struct value *) value_computed_closure (value);
1357 value_incref (target_val);
1358 return target_val;
1359 }
1360
1361 /* Implement copy_closure. */
1362
1363 static void *
1364 entry_data_value_copy_closure (const struct value *v)
1365 {
1366 struct value *target_val = (struct value *) value_computed_closure (v);
1367
1368 value_incref (target_val);
1369 return target_val;
1370 }
1371
1372 /* Implement free_closure. */
1373
1374 static void
1375 entry_data_value_free_closure (struct value *v)
1376 {
1377 struct value *target_val = (struct value *) value_computed_closure (v);
1378
1379 value_free (target_val);
1380 }
1381
1382 /* Vector for methods for an entry value reference where the referenced value
1383 is stored in the caller. On the first dereference use
1384 DW_AT_call_data_value in the caller. */
1385
1386 static const struct lval_funcs entry_data_value_funcs =
1387 {
1388 NULL, /* read */
1389 NULL, /* write */
1390 NULL, /* indirect */
1391 entry_data_value_coerce_ref,
1392 NULL, /* check_synthetic_pointer */
1393 entry_data_value_copy_closure,
1394 entry_data_value_free_closure
1395 };
1396
1397 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1398 are used to match DW_AT_location at the caller's
1399 DW_TAG_call_site_parameter.
1400
1401 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1402 cannot resolve the parameter for any reason. */
1403
1404 static struct value *
1405 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1406 enum call_site_parameter_kind kind,
1407 union call_site_parameter_u kind_u)
1408 {
1409 struct type *checked_type = check_typedef (type);
1410 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1411 struct frame_info *caller_frame = get_prev_frame (frame);
1412 struct value *outer_val, *target_val, *val;
1413 struct call_site_parameter *parameter;
1414 struct dwarf2_per_cu_data *caller_per_cu;
1415
1416 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1417 &caller_per_cu);
1418
1419 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1420 type, caller_frame,
1421 caller_per_cu);
1422
1423 /* Check if DW_AT_call_data_value cannot be used. If it should be
1424 used and it is not available do not fall back to OUTER_VAL - dereferencing
1425 TYPE_CODE_REF with non-entry data value would give current value - not the
1426 entry value. */
1427
1428 if (!TYPE_IS_REFERENCE (checked_type)
1429 || TYPE_TARGET_TYPE (checked_type) == NULL)
1430 return outer_val;
1431
1432 target_val = dwarf_entry_parameter_to_value (parameter,
1433 TYPE_LENGTH (target_type),
1434 target_type, caller_frame,
1435 caller_per_cu);
1436
1437 release_value (target_val);
1438 val = allocate_computed_value (type, &entry_data_value_funcs,
1439 target_val /* closure */);
1440
1441 /* Copy the referencing pointer to the new computed value. */
1442 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1443 TYPE_LENGTH (checked_type));
1444 set_value_lazy (val, 0);
1445
1446 return val;
1447 }
1448
1449 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1450 SIZE are DWARF block used to match DW_AT_location at the caller's
1451 DW_TAG_call_site_parameter.
1452
1453 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1454 cannot resolve the parameter for any reason. */
1455
1456 static struct value *
1457 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1458 const gdb_byte *block, size_t block_len)
1459 {
1460 union call_site_parameter_u kind_u;
1461
1462 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1463 if (kind_u.dwarf_reg != -1)
1464 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1465 kind_u);
1466
1467 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1468 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1469 kind_u);
1470
1471 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1472 suppressed during normal operation. The expression can be arbitrary if
1473 there is no caller-callee entry value binding expected. */
1474 throw_error (NO_ENTRY_VALUE_ERROR,
1475 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1476 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1477 }
1478
1479 struct piece_closure
1480 {
1481 /* Reference count. */
1482 int refc;
1483
1484 /* The CU from which this closure's expression came. */
1485 struct dwarf2_per_cu_data *per_cu;
1486
1487 /* The number of pieces used to describe this variable. */
1488 int n_pieces;
1489
1490 /* The pieces themselves. */
1491 struct dwarf_expr_piece *pieces;
1492
1493 /* Frame ID of frame to which a register value is relative, used
1494 only by DWARF_VALUE_REGISTER. */
1495 struct frame_id frame_id;
1496 };
1497
1498 /* Allocate a closure for a value formed from separately-described
1499 PIECES. */
1500
1501 static struct piece_closure *
1502 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1503 int n_pieces, struct dwarf_expr_piece *pieces,
1504 struct frame_info *frame)
1505 {
1506 struct piece_closure *c = XCNEW (struct piece_closure);
1507 int i;
1508
1509 c->refc = 1;
1510 c->per_cu = per_cu;
1511 c->n_pieces = n_pieces;
1512 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1513 if (frame == NULL)
1514 c->frame_id = null_frame_id;
1515 else
1516 c->frame_id = get_frame_id (frame);
1517
1518 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1519 for (i = 0; i < n_pieces; ++i)
1520 if (c->pieces[i].location == DWARF_VALUE_STACK)
1521 value_incref (c->pieces[i].v.value);
1522
1523 return c;
1524 }
1525
1526 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1527 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1528 Source and destination buffers must not overlap. */
1529
1530 static void
1531 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1532 const gdb_byte *source, ULONGEST source_offset,
1533 ULONGEST nbits, int bits_big_endian)
1534 {
1535 unsigned int buf, avail;
1536
1537 if (nbits == 0)
1538 return;
1539
1540 if (bits_big_endian)
1541 {
1542 /* Start from the end, then work backwards. */
1543 dest_offset += nbits - 1;
1544 dest += dest_offset / 8;
1545 dest_offset = 7 - dest_offset % 8;
1546 source_offset += nbits - 1;
1547 source += source_offset / 8;
1548 source_offset = 7 - source_offset % 8;
1549 }
1550 else
1551 {
1552 dest += dest_offset / 8;
1553 dest_offset %= 8;
1554 source += source_offset / 8;
1555 source_offset %= 8;
1556 }
1557
1558 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1559 SOURCE_OFFSET bits from the source. */
1560 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1561 buf <<= dest_offset;
1562 buf |= *dest & ((1 << dest_offset) - 1);
1563
1564 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1565 nbits += dest_offset;
1566 avail = dest_offset + 8 - source_offset;
1567
1568 /* Flush 8 bits from BUF, if appropriate. */
1569 if (nbits >= 8 && avail >= 8)
1570 {
1571 *(bits_big_endian ? dest-- : dest++) = buf;
1572 buf >>= 8;
1573 avail -= 8;
1574 nbits -= 8;
1575 }
1576
1577 /* Copy the middle part. */
1578 if (nbits >= 8)
1579 {
1580 size_t len = nbits / 8;
1581
1582 /* Use a faster method for byte-aligned copies. */
1583 if (avail == 0)
1584 {
1585 if (bits_big_endian)
1586 {
1587 dest -= len;
1588 source -= len;
1589 memcpy (dest + 1, source + 1, len);
1590 }
1591 else
1592 {
1593 memcpy (dest, source, len);
1594 dest += len;
1595 source += len;
1596 }
1597 }
1598 else
1599 {
1600 while (len--)
1601 {
1602 buf |= *(bits_big_endian ? source-- : source++) << avail;
1603 *(bits_big_endian ? dest-- : dest++) = buf;
1604 buf >>= 8;
1605 }
1606 }
1607 nbits %= 8;
1608 }
1609
1610 /* Write the last byte. */
1611 if (nbits)
1612 {
1613 if (avail < nbits)
1614 buf |= *source << avail;
1615
1616 buf &= (1 << nbits) - 1;
1617 *dest = (*dest & (~0 << nbits)) | buf;
1618 }
1619 }
1620
1621 #if GDB_SELF_TEST
1622
1623 namespace selftests {
1624
1625 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1626 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1627 specifies whether to assume big endian bit numbering. Store the
1628 resulting (not null-terminated) string at STR. */
1629
1630 static void
1631 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1632 ULONGEST nbits, int msb0)
1633 {
1634 unsigned int j;
1635 size_t i;
1636
1637 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1638 {
1639 unsigned int ch = bits[i];
1640 for (; j < 8 && nbits; j++, nbits--)
1641 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1642 }
1643 }
1644
1645 /* Check one invocation of copy_bitwise with the given parameters. */
1646
1647 static void
1648 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1649 const gdb_byte *source, unsigned int source_offset,
1650 unsigned int nbits, int msb0)
1651 {
1652 size_t len = align_up (dest_offset + nbits, 8);
1653 char *expected = (char *) alloca (len + 1);
1654 char *actual = (char *) alloca (len + 1);
1655 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1656
1657 /* Compose a '0'/'1'-string that represents the expected result of
1658 copy_bitwise below:
1659 Bits from [0, DEST_OFFSET) are filled from DEST.
1660 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1661 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1662
1663 E.g., with:
1664 dest_offset: 4
1665 nbits: 2
1666 len: 8
1667 dest: 00000000
1668 source: 11111111
1669
1670 We should end up with:
1671 buf: 00001100
1672 DDDDSSDD (D=dest, S=source)
1673 */
1674 bits_to_str (expected, dest, 0, len, msb0);
1675 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1676
1677 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1678 result to a '0'/'1'-string. */
1679 memcpy (buf, dest, len / 8);
1680 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1681 bits_to_str (actual, buf, 0, len, msb0);
1682
1683 /* Compare the resulting strings. */
1684 expected[len] = actual[len] = '\0';
1685 if (strcmp (expected, actual) != 0)
1686 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1687 expected, actual, source_offset, nbits, dest_offset);
1688 }
1689
1690 /* Unit test for copy_bitwise. */
1691
1692 static void
1693 copy_bitwise_tests (void)
1694 {
1695 /* Data to be used as both source and destination buffers. The two
1696 arrays below represent the lsb0- and msb0- encoded versions of the
1697 following bit string, respectively:
1698 00000000 00011111 11111111 01001000 10100101 11110010
1699 This pattern is chosen such that it contains:
1700 - constant 0- and 1- chunks of more than a full byte;
1701 - 0/1- and 1/0 transitions on all bit positions within a byte;
1702 - several sufficiently asymmetric bytes.
1703 */
1704 static const gdb_byte data_lsb0[] = {
1705 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1706 };
1707 static const gdb_byte data_msb0[] = {
1708 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1709 };
1710
1711 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1712 constexpr unsigned max_nbits = 24;
1713
1714 /* Try all combinations of:
1715 lsb0/msb0 bit order (using the respective data array)
1716 X [0, MAX_NBITS] copy bit width
1717 X feasible source offsets for the given copy bit width
1718 X feasible destination offsets
1719 */
1720 for (int msb0 = 0; msb0 < 2; msb0++)
1721 {
1722 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1723
1724 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1725 {
1726 const unsigned int max_offset = data_nbits - nbits;
1727
1728 for (unsigned source_offset = 0;
1729 source_offset <= max_offset;
1730 source_offset++)
1731 {
1732 for (unsigned dest_offset = 0;
1733 dest_offset <= max_offset;
1734 dest_offset++)
1735 {
1736 check_copy_bitwise (data + dest_offset / 8,
1737 dest_offset % 8,
1738 data + source_offset / 8,
1739 source_offset % 8,
1740 nbits, msb0);
1741 }
1742 }
1743 }
1744
1745 /* Special cases: copy all, copy nothing. */
1746 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1748 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1749 }
1750 }
1751
1752 } /* namespace selftests */
1753
1754 #endif /* GDB_SELF_TEST */
1755
1756 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1757 bits whose first bit is located at bit offset START. */
1758
1759 static size_t
1760 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1761 {
1762 return (start % 8 + n_bits + 7) / 8;
1763 }
1764
1765 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1766 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1767 operate in "read mode": fetch the contents of the (lazy) value V by
1768 composing it from its pieces. */
1769
1770 static void
1771 rw_pieced_value (struct value *v, struct value *from)
1772 {
1773 int i;
1774 LONGEST offset = 0, max_offset;
1775 ULONGEST bits_to_skip;
1776 gdb_byte *v_contents;
1777 const gdb_byte *from_contents;
1778 struct piece_closure *c
1779 = (struct piece_closure *) value_computed_closure (v);
1780 gdb::byte_vector buffer;
1781 int bits_big_endian
1782 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1783
1784 if (from != NULL)
1785 {
1786 from_contents = value_contents (from);
1787 v_contents = NULL;
1788 }
1789 else
1790 {
1791 if (value_type (v) != value_enclosing_type (v))
1792 internal_error (__FILE__, __LINE__,
1793 _("Should not be able to create a lazy value with "
1794 "an enclosing type"));
1795 v_contents = value_contents_raw (v);
1796 from_contents = NULL;
1797 }
1798
1799 bits_to_skip = 8 * value_offset (v);
1800 if (value_bitsize (v))
1801 {
1802 bits_to_skip += (8 * value_offset (value_parent (v))
1803 + value_bitpos (v));
1804 if (from != NULL
1805 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1806 == BFD_ENDIAN_BIG))
1807 {
1808 /* Use the least significant bits of FROM. */
1809 max_offset = 8 * TYPE_LENGTH (value_type (from));
1810 offset = max_offset - value_bitsize (v);
1811 }
1812 else
1813 max_offset = value_bitsize (v);
1814 }
1815 else
1816 max_offset = 8 * TYPE_LENGTH (value_type (v));
1817
1818 /* Advance to the first non-skipped piece. */
1819 for (i = 0; i < c->n_pieces && bits_to_skip >= c->pieces[i].size; i++)
1820 bits_to_skip -= c->pieces[i].size;
1821
1822 for (; i < c->n_pieces && offset < max_offset; i++)
1823 {
1824 struct dwarf_expr_piece *p = &c->pieces[i];
1825 size_t this_size_bits, this_size;
1826
1827 this_size_bits = p->size - bits_to_skip;
1828 if (this_size_bits > max_offset - offset)
1829 this_size_bits = max_offset - offset;
1830
1831 switch (p->location)
1832 {
1833 case DWARF_VALUE_REGISTER:
1834 {
1835 struct frame_info *frame = frame_find_by_id (c->frame_id);
1836 struct gdbarch *arch = get_frame_arch (frame);
1837 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1838 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1839 int optim, unavail;
1840
1841 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1842 && p->offset + p->size < reg_bits)
1843 {
1844 /* Big-endian, and we want less than full size. */
1845 bits_to_skip += reg_bits - (p->offset + p->size);
1846 }
1847 else
1848 bits_to_skip += p->offset;
1849
1850 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1851 buffer.resize (this_size);
1852
1853 if (from == NULL)
1854 {
1855 /* Read mode. */
1856 if (!get_frame_register_bytes (frame, gdb_regnum,
1857 bits_to_skip / 8,
1858 this_size, buffer.data (),
1859 &optim, &unavail))
1860 {
1861 if (optim)
1862 mark_value_bits_optimized_out (v, offset,
1863 this_size_bits);
1864 if (unavail)
1865 mark_value_bits_unavailable (v, offset,
1866 this_size_bits);
1867 break;
1868 }
1869
1870 copy_bitwise (v_contents, offset,
1871 buffer.data (), bits_to_skip % 8,
1872 this_size_bits, bits_big_endian);
1873 }
1874 else
1875 {
1876 /* Write mode. */
1877 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1878 {
1879 /* Data is copied non-byte-aligned into the register.
1880 Need some bits from original register value. */
1881 get_frame_register_bytes (frame, gdb_regnum,
1882 bits_to_skip / 8,
1883 this_size, buffer.data (),
1884 &optim, &unavail);
1885 if (optim)
1886 throw_error (OPTIMIZED_OUT_ERROR,
1887 _("Can't do read-modify-write to "
1888 "update bitfield; containing word "
1889 "has been optimized out"));
1890 if (unavail)
1891 throw_error (NOT_AVAILABLE_ERROR,
1892 _("Can't do read-modify-write to "
1893 "update bitfield; containing word "
1894 "is unavailable"));
1895 }
1896
1897 copy_bitwise (buffer.data (), bits_to_skip % 8,
1898 from_contents, offset,
1899 this_size_bits, bits_big_endian);
1900 put_frame_register_bytes (frame, gdb_regnum,
1901 bits_to_skip / 8,
1902 this_size, buffer.data ());
1903 }
1904 }
1905 break;
1906
1907 case DWARF_VALUE_MEMORY:
1908 {
1909 bits_to_skip += p->offset;
1910
1911 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1912
1913 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1914 && offset % 8 == 0)
1915 {
1916 /* Everything is byte-aligned; no buffer needed. */
1917 if (from != NULL)
1918 write_memory_with_notification (start_addr,
1919 (from_contents
1920 + offset / 8),
1921 this_size_bits / 8);
1922 else
1923 read_value_memory (v, offset,
1924 p->v.mem.in_stack_memory,
1925 p->v.mem.addr + bits_to_skip / 8,
1926 v_contents + offset / 8,
1927 this_size_bits / 8);
1928 break;
1929 }
1930
1931 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1932 buffer.resize (this_size);
1933
1934 if (from == NULL)
1935 {
1936 /* Read mode. */
1937 read_value_memory (v, offset,
1938 p->v.mem.in_stack_memory,
1939 p->v.mem.addr + bits_to_skip / 8,
1940 buffer.data (), this_size);
1941 copy_bitwise (v_contents, offset,
1942 buffer.data (), bits_to_skip % 8,
1943 this_size_bits, bits_big_endian);
1944 }
1945 else
1946 {
1947 /* Write mode. */
1948 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1949 {
1950 if (this_size <= 8)
1951 {
1952 /* Perform a single read for small sizes. */
1953 read_memory (start_addr, buffer.data (),
1954 this_size);
1955 }
1956 else
1957 {
1958 /* Only the first and last bytes can possibly have
1959 any bits reused. */
1960 read_memory (start_addr, buffer.data (), 1);
1961 read_memory (start_addr + this_size - 1,
1962 &buffer[this_size - 1], 1);
1963 }
1964 }
1965
1966 copy_bitwise (buffer.data (), bits_to_skip % 8,
1967 from_contents, offset,
1968 this_size_bits, bits_big_endian);
1969 write_memory_with_notification (start_addr,
1970 buffer.data (),
1971 this_size);
1972 }
1973 }
1974 break;
1975
1976 case DWARF_VALUE_STACK:
1977 {
1978 if (from != NULL)
1979 {
1980 mark_value_bits_optimized_out (v, offset, this_size_bits);
1981 break;
1982 }
1983
1984 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1985 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1986 ULONGEST stack_value_size_bits
1987 = 8 * TYPE_LENGTH (value_type (p->v.value));
1988
1989 /* Use zeroes if piece reaches beyond stack value. */
1990 if (p->offset + p->size > stack_value_size_bits)
1991 break;
1992
1993 /* Piece is anchored at least significant bit end. */
1994 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1995 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1996 else
1997 bits_to_skip += p->offset;
1998
1999 copy_bitwise (v_contents, offset,
2000 value_contents_all (p->v.value),
2001 bits_to_skip,
2002 this_size_bits, bits_big_endian);
2003 }
2004 break;
2005
2006 case DWARF_VALUE_LITERAL:
2007 {
2008 if (from != NULL)
2009 {
2010 mark_value_bits_optimized_out (v, offset, this_size_bits);
2011 break;
2012 }
2013
2014 ULONGEST literal_size_bits = 8 * p->v.literal.length;
2015 size_t n = this_size_bits;
2016
2017 /* Cut off at the end of the implicit value. */
2018 bits_to_skip += p->offset;
2019 if (bits_to_skip >= literal_size_bits)
2020 break;
2021 if (n > literal_size_bits - bits_to_skip)
2022 n = literal_size_bits - bits_to_skip;
2023
2024 copy_bitwise (v_contents, offset,
2025 p->v.literal.data, bits_to_skip,
2026 n, bits_big_endian);
2027 }
2028 break;
2029
2030 case DWARF_VALUE_IMPLICIT_POINTER:
2031 if (from != NULL)
2032 {
2033 mark_value_bits_optimized_out (v, offset, this_size_bits);
2034 break;
2035 }
2036
2037 /* These bits show up as zeros -- but do not cause the value to
2038 be considered optimized-out. */
2039 break;
2040
2041 case DWARF_VALUE_OPTIMIZED_OUT:
2042 mark_value_bits_optimized_out (v, offset, this_size_bits);
2043 break;
2044
2045 default:
2046 internal_error (__FILE__, __LINE__, _("invalid location type"));
2047 }
2048
2049 offset += this_size_bits;
2050 bits_to_skip = 0;
2051 }
2052 }
2053
2054
2055 static void
2056 read_pieced_value (struct value *v)
2057 {
2058 rw_pieced_value (v, NULL);
2059 }
2060
2061 static void
2062 write_pieced_value (struct value *to, struct value *from)
2063 {
2064 rw_pieced_value (to, from);
2065 }
2066
2067 /* An implementation of an lval_funcs method to see whether a value is
2068 a synthetic pointer. */
2069
2070 static int
2071 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2072 int bit_length)
2073 {
2074 struct piece_closure *c
2075 = (struct piece_closure *) value_computed_closure (value);
2076 int i;
2077
2078 bit_offset += 8 * value_offset (value);
2079 if (value_bitsize (value))
2080 bit_offset += value_bitpos (value);
2081
2082 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2083 {
2084 struct dwarf_expr_piece *p = &c->pieces[i];
2085 size_t this_size_bits = p->size;
2086
2087 if (bit_offset > 0)
2088 {
2089 if (bit_offset >= this_size_bits)
2090 {
2091 bit_offset -= this_size_bits;
2092 continue;
2093 }
2094
2095 bit_length -= this_size_bits - bit_offset;
2096 bit_offset = 0;
2097 }
2098 else
2099 bit_length -= this_size_bits;
2100
2101 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2102 return 0;
2103 }
2104
2105 return 1;
2106 }
2107
2108 /* A wrapper function for get_frame_address_in_block. */
2109
2110 static CORE_ADDR
2111 get_frame_address_in_block_wrapper (void *baton)
2112 {
2113 return get_frame_address_in_block ((struct frame_info *) baton);
2114 }
2115
2116 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2117
2118 static struct value *
2119 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2120 struct dwarf2_per_cu_data *per_cu,
2121 struct type *type)
2122 {
2123 struct value *result = NULL;
2124 const gdb_byte *bytes;
2125 LONGEST len;
2126
2127 auto_obstack temp_obstack;
2128 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2129
2130 if (bytes != NULL)
2131 {
2132 if (byte_offset >= 0
2133 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2134 {
2135 bytes += byte_offset;
2136 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2137 }
2138 else
2139 invalid_synthetic_pointer ();
2140 }
2141 else
2142 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2143
2144 return result;
2145 }
2146
2147 /* Fetch the value pointed to by a synthetic pointer. */
2148
2149 static struct value *
2150 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2151 struct dwarf2_per_cu_data *per_cu,
2152 struct frame_info *frame, struct type *type)
2153 {
2154 /* Fetch the location expression of the DIE we're pointing to. */
2155 struct dwarf2_locexpr_baton baton
2156 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2157 get_frame_address_in_block_wrapper, frame);
2158
2159 /* Get type of pointed-to DIE. */
2160 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2161 if (orig_type == NULL)
2162 invalid_synthetic_pointer ();
2163
2164 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2165 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2166 or it may've been optimized out. */
2167 if (baton.data != NULL)
2168 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2169 baton.size, baton.per_cu,
2170 TYPE_TARGET_TYPE (type),
2171 byte_offset);
2172 else
2173 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2174 type);
2175 }
2176
2177 /* An implementation of an lval_funcs method to indirect through a
2178 pointer. This handles the synthetic pointer case when needed. */
2179
2180 static struct value *
2181 indirect_pieced_value (struct value *value)
2182 {
2183 struct piece_closure *c
2184 = (struct piece_closure *) value_computed_closure (value);
2185 struct type *type;
2186 struct frame_info *frame;
2187 struct dwarf2_locexpr_baton baton;
2188 int i, bit_length;
2189 LONGEST bit_offset;
2190 struct dwarf_expr_piece *piece = NULL;
2191 LONGEST byte_offset;
2192 enum bfd_endian byte_order;
2193
2194 type = check_typedef (value_type (value));
2195 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2196 return NULL;
2197
2198 bit_length = 8 * TYPE_LENGTH (type);
2199 bit_offset = 8 * value_offset (value);
2200 if (value_bitsize (value))
2201 bit_offset += value_bitpos (value);
2202
2203 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2204 {
2205 struct dwarf_expr_piece *p = &c->pieces[i];
2206 size_t this_size_bits = p->size;
2207
2208 if (bit_offset > 0)
2209 {
2210 if (bit_offset >= this_size_bits)
2211 {
2212 bit_offset -= this_size_bits;
2213 continue;
2214 }
2215
2216 bit_length -= this_size_bits - bit_offset;
2217 bit_offset = 0;
2218 }
2219 else
2220 bit_length -= this_size_bits;
2221
2222 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2223 return NULL;
2224
2225 if (bit_length != 0)
2226 error (_("Invalid use of DW_OP_implicit_pointer"));
2227
2228 piece = p;
2229 break;
2230 }
2231
2232 gdb_assert (piece != NULL);
2233 frame = get_selected_frame (_("No frame selected."));
2234
2235 /* This is an offset requested by GDB, such as value subscripts.
2236 However, due to how synthetic pointers are implemented, this is
2237 always presented to us as a pointer type. This means we have to
2238 sign-extend it manually as appropriate. Use raw
2239 extract_signed_integer directly rather than value_as_address and
2240 sign extend afterwards on architectures that would need it
2241 (mostly everywhere except MIPS, which has signed addresses) as
2242 the later would go through gdbarch_pointer_to_address and thus
2243 return a CORE_ADDR with high bits set on architectures that
2244 encode address spaces and other things in CORE_ADDR. */
2245 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2246 byte_offset = extract_signed_integer (value_contents (value),
2247 TYPE_LENGTH (type), byte_order);
2248 byte_offset += piece->v.ptr.offset;
2249
2250 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2251 byte_offset, c->per_cu,
2252 frame, type);
2253 }
2254
2255 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2256 references. */
2257
2258 static struct value *
2259 coerce_pieced_ref (const struct value *value)
2260 {
2261 struct type *type = check_typedef (value_type (value));
2262
2263 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2264 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2265 {
2266 const struct piece_closure *closure
2267 = (struct piece_closure *) value_computed_closure (value);
2268 struct frame_info *frame
2269 = get_selected_frame (_("No frame selected."));
2270
2271 /* gdb represents synthetic pointers as pieced values with a single
2272 piece. */
2273 gdb_assert (closure != NULL);
2274 gdb_assert (closure->n_pieces == 1);
2275
2276 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2277 closure->pieces->v.ptr.offset,
2278 closure->per_cu, frame, type);
2279 }
2280 else
2281 {
2282 /* Else: not a synthetic reference; do nothing. */
2283 return NULL;
2284 }
2285 }
2286
2287 static void *
2288 copy_pieced_value_closure (const struct value *v)
2289 {
2290 struct piece_closure *c
2291 = (struct piece_closure *) value_computed_closure (v);
2292
2293 ++c->refc;
2294 return c;
2295 }
2296
2297 static void
2298 free_pieced_value_closure (struct value *v)
2299 {
2300 struct piece_closure *c
2301 = (struct piece_closure *) value_computed_closure (v);
2302
2303 --c->refc;
2304 if (c->refc == 0)
2305 {
2306 int i;
2307
2308 for (i = 0; i < c->n_pieces; ++i)
2309 if (c->pieces[i].location == DWARF_VALUE_STACK)
2310 value_free (c->pieces[i].v.value);
2311
2312 xfree (c->pieces);
2313 xfree (c);
2314 }
2315 }
2316
2317 /* Functions for accessing a variable described by DW_OP_piece. */
2318 static const struct lval_funcs pieced_value_funcs = {
2319 read_pieced_value,
2320 write_pieced_value,
2321 indirect_pieced_value,
2322 coerce_pieced_ref,
2323 check_pieced_synthetic_pointer,
2324 copy_pieced_value_closure,
2325 free_pieced_value_closure
2326 };
2327
2328 /* Evaluate a location description, starting at DATA and with length
2329 SIZE, to find the current location of variable of TYPE in the
2330 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2331 location of the subobject of type SUBOBJ_TYPE at byte offset
2332 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2333
2334 static struct value *
2335 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2336 const gdb_byte *data, size_t size,
2337 struct dwarf2_per_cu_data *per_cu,
2338 struct type *subobj_type,
2339 LONGEST subobj_byte_offset)
2340 {
2341 struct value *retval;
2342 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2343
2344 if (subobj_type == NULL)
2345 {
2346 subobj_type = type;
2347 subobj_byte_offset = 0;
2348 }
2349 else if (subobj_byte_offset < 0)
2350 invalid_synthetic_pointer ();
2351
2352 if (size == 0)
2353 return allocate_optimized_out_value (subobj_type);
2354
2355 dwarf_evaluate_loc_desc ctx;
2356 ctx.frame = frame;
2357 ctx.per_cu = per_cu;
2358 ctx.obj_address = 0;
2359
2360 scoped_value_mark free_values;
2361
2362 ctx.gdbarch = get_objfile_arch (objfile);
2363 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2364 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2365 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2366
2367 TRY
2368 {
2369 ctx.eval (data, size);
2370 }
2371 CATCH (ex, RETURN_MASK_ERROR)
2372 {
2373 if (ex.error == NOT_AVAILABLE_ERROR)
2374 {
2375 free_values.free_to_mark ();
2376 retval = allocate_value (subobj_type);
2377 mark_value_bytes_unavailable (retval, 0,
2378 TYPE_LENGTH (subobj_type));
2379 return retval;
2380 }
2381 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2382 {
2383 if (entry_values_debug)
2384 exception_print (gdb_stdout, ex);
2385 free_values.free_to_mark ();
2386 return allocate_optimized_out_value (subobj_type);
2387 }
2388 else
2389 throw_exception (ex);
2390 }
2391 END_CATCH
2392
2393 if (ctx.num_pieces > 0)
2394 {
2395 struct piece_closure *c;
2396 ULONGEST bit_size = 0;
2397 int i;
2398
2399 for (i = 0; i < ctx.num_pieces; ++i)
2400 bit_size += ctx.pieces[i].size;
2401 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2402 invalid_synthetic_pointer ();
2403
2404 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2405 frame);
2406 /* We must clean up the value chain after creating the piece
2407 closure but before allocating the result. */
2408 free_values.free_to_mark ();
2409 retval = allocate_computed_value (subobj_type,
2410 &pieced_value_funcs, c);
2411 set_value_offset (retval, subobj_byte_offset);
2412 }
2413 else
2414 {
2415 switch (ctx.location)
2416 {
2417 case DWARF_VALUE_REGISTER:
2418 {
2419 struct gdbarch *arch = get_frame_arch (frame);
2420 int dwarf_regnum
2421 = longest_to_int (value_as_long (ctx.fetch (0)));
2422 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2423
2424 if (subobj_byte_offset != 0)
2425 error (_("cannot use offset on synthetic pointer to register"));
2426 free_values.free_to_mark ();
2427 retval = value_from_register (subobj_type, gdb_regnum, frame);
2428 if (value_optimized_out (retval))
2429 {
2430 struct value *tmp;
2431
2432 /* This means the register has undefined value / was
2433 not saved. As we're computing the location of some
2434 variable etc. in the program, not a value for
2435 inspecting a register ($pc, $sp, etc.), return a
2436 generic optimized out value instead, so that we show
2437 <optimized out> instead of <not saved>. */
2438 tmp = allocate_value (subobj_type);
2439 value_contents_copy (tmp, 0, retval, 0,
2440 TYPE_LENGTH (subobj_type));
2441 retval = tmp;
2442 }
2443 }
2444 break;
2445
2446 case DWARF_VALUE_MEMORY:
2447 {
2448 struct type *ptr_type;
2449 CORE_ADDR address = ctx.fetch_address (0);
2450 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2451
2452 /* DW_OP_deref_size (and possibly other operations too) may
2453 create a pointer instead of an address. Ideally, the
2454 pointer to address conversion would be performed as part
2455 of those operations, but the type of the object to
2456 which the address refers is not known at the time of
2457 the operation. Therefore, we do the conversion here
2458 since the type is readily available. */
2459
2460 switch (TYPE_CODE (subobj_type))
2461 {
2462 case TYPE_CODE_FUNC:
2463 case TYPE_CODE_METHOD:
2464 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2465 break;
2466 default:
2467 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2468 break;
2469 }
2470 address = value_as_address (value_from_pointer (ptr_type, address));
2471
2472 free_values.free_to_mark ();
2473 retval = value_at_lazy (subobj_type,
2474 address + subobj_byte_offset);
2475 if (in_stack_memory)
2476 set_value_stack (retval, 1);
2477 }
2478 break;
2479
2480 case DWARF_VALUE_STACK:
2481 {
2482 struct value *value = ctx.fetch (0);
2483 size_t n = TYPE_LENGTH (value_type (value));
2484 size_t len = TYPE_LENGTH (subobj_type);
2485 size_t max = TYPE_LENGTH (type);
2486 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2487 struct cleanup *cleanup;
2488
2489 if (subobj_byte_offset + len > max)
2490 invalid_synthetic_pointer ();
2491
2492 /* Preserve VALUE because we are going to free values back
2493 to the mark, but we still need the value contents
2494 below. */
2495 value_incref (value);
2496 free_values.free_to_mark ();
2497 cleanup = make_cleanup_value_free (value);
2498
2499 retval = allocate_value (subobj_type);
2500
2501 /* The given offset is relative to the actual object. */
2502 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2503 subobj_byte_offset += n - max;
2504
2505 memcpy (value_contents_raw (retval),
2506 value_contents_all (value) + subobj_byte_offset, len);
2507
2508 do_cleanups (cleanup);
2509 }
2510 break;
2511
2512 case DWARF_VALUE_LITERAL:
2513 {
2514 bfd_byte *contents;
2515 size_t n = TYPE_LENGTH (subobj_type);
2516
2517 if (subobj_byte_offset + n > ctx.len)
2518 invalid_synthetic_pointer ();
2519
2520 free_values.free_to_mark ();
2521 retval = allocate_value (subobj_type);
2522 contents = value_contents_raw (retval);
2523 memcpy (contents, ctx.data + subobj_byte_offset, n);
2524 }
2525 break;
2526
2527 case DWARF_VALUE_OPTIMIZED_OUT:
2528 free_values.free_to_mark ();
2529 retval = allocate_optimized_out_value (subobj_type);
2530 break;
2531
2532 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2533 operation by execute_stack_op. */
2534 case DWARF_VALUE_IMPLICIT_POINTER:
2535 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2536 it can only be encountered when making a piece. */
2537 default:
2538 internal_error (__FILE__, __LINE__, _("invalid location type"));
2539 }
2540 }
2541
2542 set_value_initialized (retval, ctx.initialized);
2543
2544 return retval;
2545 }
2546
2547 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2548 passes 0 as the byte_offset. */
2549
2550 struct value *
2551 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2552 const gdb_byte *data, size_t size,
2553 struct dwarf2_per_cu_data *per_cu)
2554 {
2555 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2556 NULL, 0);
2557 }
2558
2559 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2560 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2561 frame in which the expression is evaluated. ADDR is a context (location of
2562 a variable) and might be needed to evaluate the location expression.
2563 Returns 1 on success, 0 otherwise. */
2564
2565 static int
2566 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2567 struct frame_info *frame,
2568 CORE_ADDR addr,
2569 CORE_ADDR *valp)
2570 {
2571 struct objfile *objfile;
2572
2573 if (dlbaton == NULL || dlbaton->size == 0)
2574 return 0;
2575
2576 dwarf_evaluate_loc_desc ctx;
2577
2578 ctx.frame = frame;
2579 ctx.per_cu = dlbaton->per_cu;
2580 ctx.obj_address = addr;
2581
2582 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2583
2584 ctx.gdbarch = get_objfile_arch (objfile);
2585 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2586 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2587 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2588
2589 ctx.eval (dlbaton->data, dlbaton->size);
2590
2591 switch (ctx.location)
2592 {
2593 case DWARF_VALUE_REGISTER:
2594 case DWARF_VALUE_MEMORY:
2595 case DWARF_VALUE_STACK:
2596 *valp = ctx.fetch_address (0);
2597 if (ctx.location == DWARF_VALUE_REGISTER)
2598 *valp = ctx.read_addr_from_reg (*valp);
2599 return 1;
2600 case DWARF_VALUE_LITERAL:
2601 *valp = extract_signed_integer (ctx.data, ctx.len,
2602 gdbarch_byte_order (ctx.gdbarch));
2603 return 1;
2604 /* Unsupported dwarf values. */
2605 case DWARF_VALUE_OPTIMIZED_OUT:
2606 case DWARF_VALUE_IMPLICIT_POINTER:
2607 break;
2608 }
2609
2610 return 0;
2611 }
2612
2613 /* See dwarf2loc.h. */
2614
2615 int
2616 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2617 struct frame_info *frame,
2618 struct property_addr_info *addr_stack,
2619 CORE_ADDR *value)
2620 {
2621 if (prop == NULL)
2622 return 0;
2623
2624 if (frame == NULL && has_stack_frames ())
2625 frame = get_selected_frame (NULL);
2626
2627 switch (prop->kind)
2628 {
2629 case PROP_LOCEXPR:
2630 {
2631 const struct dwarf2_property_baton *baton
2632 = (const struct dwarf2_property_baton *) prop->data.baton;
2633
2634 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2635 addr_stack ? addr_stack->addr : 0,
2636 value))
2637 {
2638 if (baton->referenced_type)
2639 {
2640 struct value *val = value_at (baton->referenced_type, *value);
2641
2642 *value = value_as_address (val);
2643 }
2644 return 1;
2645 }
2646 }
2647 break;
2648
2649 case PROP_LOCLIST:
2650 {
2651 struct dwarf2_property_baton *baton
2652 = (struct dwarf2_property_baton *) prop->data.baton;
2653 CORE_ADDR pc = get_frame_address_in_block (frame);
2654 const gdb_byte *data;
2655 struct value *val;
2656 size_t size;
2657
2658 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2659 if (data != NULL)
2660 {
2661 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2662 size, baton->loclist.per_cu);
2663 if (!value_optimized_out (val))
2664 {
2665 *value = value_as_address (val);
2666 return 1;
2667 }
2668 }
2669 }
2670 break;
2671
2672 case PROP_CONST:
2673 *value = prop->data.const_val;
2674 return 1;
2675
2676 case PROP_ADDR_OFFSET:
2677 {
2678 struct dwarf2_property_baton *baton
2679 = (struct dwarf2_property_baton *) prop->data.baton;
2680 struct property_addr_info *pinfo;
2681 struct value *val;
2682
2683 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2684 if (pinfo->type == baton->referenced_type)
2685 break;
2686 if (pinfo == NULL)
2687 error (_("cannot find reference address for offset property"));
2688 if (pinfo->valaddr != NULL)
2689 val = value_from_contents
2690 (baton->offset_info.type,
2691 pinfo->valaddr + baton->offset_info.offset);
2692 else
2693 val = value_at (baton->offset_info.type,
2694 pinfo->addr + baton->offset_info.offset);
2695 *value = value_as_address (val);
2696 return 1;
2697 }
2698 }
2699
2700 return 0;
2701 }
2702
2703 /* See dwarf2loc.h. */
2704
2705 void
2706 dwarf2_compile_property_to_c (string_file &stream,
2707 const char *result_name,
2708 struct gdbarch *gdbarch,
2709 unsigned char *registers_used,
2710 const struct dynamic_prop *prop,
2711 CORE_ADDR pc,
2712 struct symbol *sym)
2713 {
2714 struct dwarf2_property_baton *baton
2715 = (struct dwarf2_property_baton *) prop->data.baton;
2716 const gdb_byte *data;
2717 size_t size;
2718 struct dwarf2_per_cu_data *per_cu;
2719
2720 if (prop->kind == PROP_LOCEXPR)
2721 {
2722 data = baton->locexpr.data;
2723 size = baton->locexpr.size;
2724 per_cu = baton->locexpr.per_cu;
2725 }
2726 else
2727 {
2728 gdb_assert (prop->kind == PROP_LOCLIST);
2729
2730 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2731 per_cu = baton->loclist.per_cu;
2732 }
2733
2734 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2735 gdbarch, registers_used,
2736 dwarf2_per_cu_addr_size (per_cu),
2737 data, data + size, per_cu);
2738 }
2739
2740 \f
2741 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2742
2743 class symbol_needs_eval_context : public dwarf_expr_context
2744 {
2745 public:
2746
2747 enum symbol_needs_kind needs;
2748 struct dwarf2_per_cu_data *per_cu;
2749
2750 /* Reads from registers do require a frame. */
2751 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2752 {
2753 needs = SYMBOL_NEEDS_FRAME;
2754 return 1;
2755 }
2756
2757 /* "get_reg_value" callback: Reads from registers do require a
2758 frame. */
2759
2760 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2761 {
2762 needs = SYMBOL_NEEDS_FRAME;
2763 return value_zero (type, not_lval);
2764 }
2765
2766 /* Reads from memory do not require a frame. */
2767 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2768 {
2769 memset (buf, 0, len);
2770 }
2771
2772 /* Frame-relative accesses do require a frame. */
2773 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2774 {
2775 static gdb_byte lit0 = DW_OP_lit0;
2776
2777 *start = &lit0;
2778 *length = 1;
2779
2780 needs = SYMBOL_NEEDS_FRAME;
2781 }
2782
2783 /* CFA accesses require a frame. */
2784 CORE_ADDR get_frame_cfa () OVERRIDE
2785 {
2786 needs = SYMBOL_NEEDS_FRAME;
2787 return 1;
2788 }
2789
2790 CORE_ADDR get_frame_pc () OVERRIDE
2791 {
2792 needs = SYMBOL_NEEDS_FRAME;
2793 return 1;
2794 }
2795
2796 /* Thread-local accesses require registers, but not a frame. */
2797 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2798 {
2799 if (needs <= SYMBOL_NEEDS_REGISTERS)
2800 needs = SYMBOL_NEEDS_REGISTERS;
2801 return 1;
2802 }
2803
2804 /* Helper interface of per_cu_dwarf_call for
2805 dwarf2_loc_desc_get_symbol_read_needs. */
2806
2807 void dwarf_call (cu_offset die_offset) OVERRIDE
2808 {
2809 per_cu_dwarf_call (this, die_offset, per_cu);
2810 }
2811
2812 /* DW_OP_entry_value accesses require a caller, therefore a
2813 frame. */
2814
2815 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2816 union call_site_parameter_u kind_u,
2817 int deref_size) OVERRIDE
2818 {
2819 needs = SYMBOL_NEEDS_FRAME;
2820
2821 /* The expression may require some stub values on DWARF stack. */
2822 push_address (0, 0);
2823 }
2824
2825 /* DW_OP_GNU_addr_index doesn't require a frame. */
2826
2827 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2828 {
2829 /* Nothing to do. */
2830 return 1;
2831 }
2832
2833 /* DW_OP_push_object_address has a frame already passed through. */
2834
2835 CORE_ADDR get_object_address () OVERRIDE
2836 {
2837 /* Nothing to do. */
2838 return 1;
2839 }
2840 };
2841
2842 /* Compute the correct symbol_needs_kind value for the location
2843 expression at DATA (length SIZE). */
2844
2845 static enum symbol_needs_kind
2846 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2847 struct dwarf2_per_cu_data *per_cu)
2848 {
2849 int in_reg;
2850 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2851
2852 scoped_value_mark free_values;
2853
2854 symbol_needs_eval_context ctx;
2855
2856 ctx.needs = SYMBOL_NEEDS_NONE;
2857 ctx.per_cu = per_cu;
2858 ctx.gdbarch = get_objfile_arch (objfile);
2859 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2860 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2861 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2862
2863 ctx.eval (data, size);
2864
2865 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2866
2867 if (ctx.num_pieces > 0)
2868 {
2869 int i;
2870
2871 /* If the location has several pieces, and any of them are in
2872 registers, then we will need a frame to fetch them from. */
2873 for (i = 0; i < ctx.num_pieces; i++)
2874 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2875 in_reg = 1;
2876 }
2877
2878 if (in_reg)
2879 ctx.needs = SYMBOL_NEEDS_FRAME;
2880 return ctx.needs;
2881 }
2882
2883 /* A helper function that throws an unimplemented error mentioning a
2884 given DWARF operator. */
2885
2886 static void
2887 unimplemented (unsigned int op)
2888 {
2889 const char *name = get_DW_OP_name (op);
2890
2891 if (name)
2892 error (_("DWARF operator %s cannot be translated to an agent expression"),
2893 name);
2894 else
2895 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2896 "to an agent expression"),
2897 op);
2898 }
2899
2900 /* See dwarf2loc.h.
2901
2902 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2903 can issue a complaint, which is better than having every target's
2904 implementation of dwarf2_reg_to_regnum do it. */
2905
2906 int
2907 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2908 {
2909 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2910
2911 if (reg == -1)
2912 {
2913 complaint (&symfile_complaints,
2914 _("bad DWARF register number %d"), dwarf_reg);
2915 }
2916 return reg;
2917 }
2918
2919 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2920 Throw an error because DWARF_REG is bad. */
2921
2922 static void
2923 throw_bad_regnum_error (ULONGEST dwarf_reg)
2924 {
2925 /* Still want to print -1 as "-1".
2926 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2927 but that's overkill for now. */
2928 if ((int) dwarf_reg == dwarf_reg)
2929 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2930 error (_("Unable to access DWARF register number %s"),
2931 pulongest (dwarf_reg));
2932 }
2933
2934 /* See dwarf2loc.h. */
2935
2936 int
2937 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2938 {
2939 int reg;
2940
2941 if (dwarf_reg > INT_MAX)
2942 throw_bad_regnum_error (dwarf_reg);
2943 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2944 bad, but that's ok. */
2945 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2946 if (reg == -1)
2947 throw_bad_regnum_error (dwarf_reg);
2948 return reg;
2949 }
2950
2951 /* A helper function that emits an access to memory. ARCH is the
2952 target architecture. EXPR is the expression which we are building.
2953 NBITS is the number of bits we want to read. This emits the
2954 opcodes needed to read the memory and then extract the desired
2955 bits. */
2956
2957 static void
2958 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2959 {
2960 ULONGEST nbytes = (nbits + 7) / 8;
2961
2962 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2963
2964 if (expr->tracing)
2965 ax_trace_quick (expr, nbytes);
2966
2967 if (nbits <= 8)
2968 ax_simple (expr, aop_ref8);
2969 else if (nbits <= 16)
2970 ax_simple (expr, aop_ref16);
2971 else if (nbits <= 32)
2972 ax_simple (expr, aop_ref32);
2973 else
2974 ax_simple (expr, aop_ref64);
2975
2976 /* If we read exactly the number of bytes we wanted, we're done. */
2977 if (8 * nbytes == nbits)
2978 return;
2979
2980 if (gdbarch_bits_big_endian (arch))
2981 {
2982 /* On a bits-big-endian machine, we want the high-order
2983 NBITS. */
2984 ax_const_l (expr, 8 * nbytes - nbits);
2985 ax_simple (expr, aop_rsh_unsigned);
2986 }
2987 else
2988 {
2989 /* On a bits-little-endian box, we want the low-order NBITS. */
2990 ax_zero_ext (expr, nbits);
2991 }
2992 }
2993
2994 /* A helper function to return the frame's PC. */
2995
2996 static CORE_ADDR
2997 get_ax_pc (void *baton)
2998 {
2999 struct agent_expr *expr = (struct agent_expr *) baton;
3000
3001 return expr->scope;
3002 }
3003
3004 /* Compile a DWARF location expression to an agent expression.
3005
3006 EXPR is the agent expression we are building.
3007 LOC is the agent value we modify.
3008 ARCH is the architecture.
3009 ADDR_SIZE is the size of addresses, in bytes.
3010 OP_PTR is the start of the location expression.
3011 OP_END is one past the last byte of the location expression.
3012
3013 This will throw an exception for various kinds of errors -- for
3014 example, if the expression cannot be compiled, or if the expression
3015 is invalid. */
3016
3017 void
3018 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3019 struct gdbarch *arch, unsigned int addr_size,
3020 const gdb_byte *op_ptr, const gdb_byte *op_end,
3021 struct dwarf2_per_cu_data *per_cu)
3022 {
3023 int i;
3024 std::vector<int> dw_labels, patches;
3025 const gdb_byte * const base = op_ptr;
3026 const gdb_byte *previous_piece = op_ptr;
3027 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3028 ULONGEST bits_collected = 0;
3029 unsigned int addr_size_bits = 8 * addr_size;
3030 int bits_big_endian = gdbarch_bits_big_endian (arch);
3031
3032 std::vector<int> offsets (op_end - op_ptr, -1);
3033
3034 /* By default we are making an address. */
3035 loc->kind = axs_lvalue_memory;
3036
3037 while (op_ptr < op_end)
3038 {
3039 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3040 uint64_t uoffset, reg;
3041 int64_t offset;
3042 int i;
3043
3044 offsets[op_ptr - base] = expr->len;
3045 ++op_ptr;
3046
3047 /* Our basic approach to code generation is to map DWARF
3048 operations directly to AX operations. However, there are
3049 some differences.
3050
3051 First, DWARF works on address-sized units, but AX always uses
3052 LONGEST. For most operations we simply ignore this
3053 difference; instead we generate sign extensions as needed
3054 before division and comparison operations. It would be nice
3055 to omit the sign extensions, but there is no way to determine
3056 the size of the target's LONGEST. (This code uses the size
3057 of the host LONGEST in some cases -- that is a bug but it is
3058 difficult to fix.)
3059
3060 Second, some DWARF operations cannot be translated to AX.
3061 For these we simply fail. See
3062 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3063 switch (op)
3064 {
3065 case DW_OP_lit0:
3066 case DW_OP_lit1:
3067 case DW_OP_lit2:
3068 case DW_OP_lit3:
3069 case DW_OP_lit4:
3070 case DW_OP_lit5:
3071 case DW_OP_lit6:
3072 case DW_OP_lit7:
3073 case DW_OP_lit8:
3074 case DW_OP_lit9:
3075 case DW_OP_lit10:
3076 case DW_OP_lit11:
3077 case DW_OP_lit12:
3078 case DW_OP_lit13:
3079 case DW_OP_lit14:
3080 case DW_OP_lit15:
3081 case DW_OP_lit16:
3082 case DW_OP_lit17:
3083 case DW_OP_lit18:
3084 case DW_OP_lit19:
3085 case DW_OP_lit20:
3086 case DW_OP_lit21:
3087 case DW_OP_lit22:
3088 case DW_OP_lit23:
3089 case DW_OP_lit24:
3090 case DW_OP_lit25:
3091 case DW_OP_lit26:
3092 case DW_OP_lit27:
3093 case DW_OP_lit28:
3094 case DW_OP_lit29:
3095 case DW_OP_lit30:
3096 case DW_OP_lit31:
3097 ax_const_l (expr, op - DW_OP_lit0);
3098 break;
3099
3100 case DW_OP_addr:
3101 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3102 op_ptr += addr_size;
3103 /* Some versions of GCC emit DW_OP_addr before
3104 DW_OP_GNU_push_tls_address. In this case the value is an
3105 index, not an address. We don't support things like
3106 branching between the address and the TLS op. */
3107 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3108 uoffset += dwarf2_per_cu_text_offset (per_cu);
3109 ax_const_l (expr, uoffset);
3110 break;
3111
3112 case DW_OP_const1u:
3113 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3114 op_ptr += 1;
3115 break;
3116 case DW_OP_const1s:
3117 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3118 op_ptr += 1;
3119 break;
3120 case DW_OP_const2u:
3121 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3122 op_ptr += 2;
3123 break;
3124 case DW_OP_const2s:
3125 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3126 op_ptr += 2;
3127 break;
3128 case DW_OP_const4u:
3129 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3130 op_ptr += 4;
3131 break;
3132 case DW_OP_const4s:
3133 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3134 op_ptr += 4;
3135 break;
3136 case DW_OP_const8u:
3137 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3138 op_ptr += 8;
3139 break;
3140 case DW_OP_const8s:
3141 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3142 op_ptr += 8;
3143 break;
3144 case DW_OP_constu:
3145 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3146 ax_const_l (expr, uoffset);
3147 break;
3148 case DW_OP_consts:
3149 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3150 ax_const_l (expr, offset);
3151 break;
3152
3153 case DW_OP_reg0:
3154 case DW_OP_reg1:
3155 case DW_OP_reg2:
3156 case DW_OP_reg3:
3157 case DW_OP_reg4:
3158 case DW_OP_reg5:
3159 case DW_OP_reg6:
3160 case DW_OP_reg7:
3161 case DW_OP_reg8:
3162 case DW_OP_reg9:
3163 case DW_OP_reg10:
3164 case DW_OP_reg11:
3165 case DW_OP_reg12:
3166 case DW_OP_reg13:
3167 case DW_OP_reg14:
3168 case DW_OP_reg15:
3169 case DW_OP_reg16:
3170 case DW_OP_reg17:
3171 case DW_OP_reg18:
3172 case DW_OP_reg19:
3173 case DW_OP_reg20:
3174 case DW_OP_reg21:
3175 case DW_OP_reg22:
3176 case DW_OP_reg23:
3177 case DW_OP_reg24:
3178 case DW_OP_reg25:
3179 case DW_OP_reg26:
3180 case DW_OP_reg27:
3181 case DW_OP_reg28:
3182 case DW_OP_reg29:
3183 case DW_OP_reg30:
3184 case DW_OP_reg31:
3185 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3186 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3187 loc->kind = axs_lvalue_register;
3188 break;
3189
3190 case DW_OP_regx:
3191 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3192 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3193 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3194 loc->kind = axs_lvalue_register;
3195 break;
3196
3197 case DW_OP_implicit_value:
3198 {
3199 uint64_t len;
3200
3201 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3202 if (op_ptr + len > op_end)
3203 error (_("DW_OP_implicit_value: too few bytes available."));
3204 if (len > sizeof (ULONGEST))
3205 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3206 (int) len);
3207
3208 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3209 byte_order));
3210 op_ptr += len;
3211 dwarf_expr_require_composition (op_ptr, op_end,
3212 "DW_OP_implicit_value");
3213
3214 loc->kind = axs_rvalue;
3215 }
3216 break;
3217
3218 case DW_OP_stack_value:
3219 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3220 loc->kind = axs_rvalue;
3221 break;
3222
3223 case DW_OP_breg0:
3224 case DW_OP_breg1:
3225 case DW_OP_breg2:
3226 case DW_OP_breg3:
3227 case DW_OP_breg4:
3228 case DW_OP_breg5:
3229 case DW_OP_breg6:
3230 case DW_OP_breg7:
3231 case DW_OP_breg8:
3232 case DW_OP_breg9:
3233 case DW_OP_breg10:
3234 case DW_OP_breg11:
3235 case DW_OP_breg12:
3236 case DW_OP_breg13:
3237 case DW_OP_breg14:
3238 case DW_OP_breg15:
3239 case DW_OP_breg16:
3240 case DW_OP_breg17:
3241 case DW_OP_breg18:
3242 case DW_OP_breg19:
3243 case DW_OP_breg20:
3244 case DW_OP_breg21:
3245 case DW_OP_breg22:
3246 case DW_OP_breg23:
3247 case DW_OP_breg24:
3248 case DW_OP_breg25:
3249 case DW_OP_breg26:
3250 case DW_OP_breg27:
3251 case DW_OP_breg28:
3252 case DW_OP_breg29:
3253 case DW_OP_breg30:
3254 case DW_OP_breg31:
3255 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3256 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3257 ax_reg (expr, i);
3258 if (offset != 0)
3259 {
3260 ax_const_l (expr, offset);
3261 ax_simple (expr, aop_add);
3262 }
3263 break;
3264 case DW_OP_bregx:
3265 {
3266 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3267 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3268 i = dwarf_reg_to_regnum_or_error (arch, reg);
3269 ax_reg (expr, i);
3270 if (offset != 0)
3271 {
3272 ax_const_l (expr, offset);
3273 ax_simple (expr, aop_add);
3274 }
3275 }
3276 break;
3277 case DW_OP_fbreg:
3278 {
3279 const gdb_byte *datastart;
3280 size_t datalen;
3281 const struct block *b;
3282 struct symbol *framefunc;
3283
3284 b = block_for_pc (expr->scope);
3285
3286 if (!b)
3287 error (_("No block found for address"));
3288
3289 framefunc = block_linkage_function (b);
3290
3291 if (!framefunc)
3292 error (_("No function found for block"));
3293
3294 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3295 &datastart, &datalen);
3296
3297 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3298 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3299 datastart + datalen, per_cu);
3300 if (loc->kind == axs_lvalue_register)
3301 require_rvalue (expr, loc);
3302
3303 if (offset != 0)
3304 {
3305 ax_const_l (expr, offset);
3306 ax_simple (expr, aop_add);
3307 }
3308
3309 loc->kind = axs_lvalue_memory;
3310 }
3311 break;
3312
3313 case DW_OP_dup:
3314 ax_simple (expr, aop_dup);
3315 break;
3316
3317 case DW_OP_drop:
3318 ax_simple (expr, aop_pop);
3319 break;
3320
3321 case DW_OP_pick:
3322 offset = *op_ptr++;
3323 ax_pick (expr, offset);
3324 break;
3325
3326 case DW_OP_swap:
3327 ax_simple (expr, aop_swap);
3328 break;
3329
3330 case DW_OP_over:
3331 ax_pick (expr, 1);
3332 break;
3333
3334 case DW_OP_rot:
3335 ax_simple (expr, aop_rot);
3336 break;
3337
3338 case DW_OP_deref:
3339 case DW_OP_deref_size:
3340 {
3341 int size;
3342
3343 if (op == DW_OP_deref_size)
3344 size = *op_ptr++;
3345 else
3346 size = addr_size;
3347
3348 if (size != 1 && size != 2 && size != 4 && size != 8)
3349 error (_("Unsupported size %d in %s"),
3350 size, get_DW_OP_name (op));
3351 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3352 }
3353 break;
3354
3355 case DW_OP_abs:
3356 /* Sign extend the operand. */
3357 ax_ext (expr, addr_size_bits);
3358 ax_simple (expr, aop_dup);
3359 ax_const_l (expr, 0);
3360 ax_simple (expr, aop_less_signed);
3361 ax_simple (expr, aop_log_not);
3362 i = ax_goto (expr, aop_if_goto);
3363 /* We have to emit 0 - X. */
3364 ax_const_l (expr, 0);
3365 ax_simple (expr, aop_swap);
3366 ax_simple (expr, aop_sub);
3367 ax_label (expr, i, expr->len);
3368 break;
3369
3370 case DW_OP_neg:
3371 /* No need to sign extend here. */
3372 ax_const_l (expr, 0);
3373 ax_simple (expr, aop_swap);
3374 ax_simple (expr, aop_sub);
3375 break;
3376
3377 case DW_OP_not:
3378 /* Sign extend the operand. */
3379 ax_ext (expr, addr_size_bits);
3380 ax_simple (expr, aop_bit_not);
3381 break;
3382
3383 case DW_OP_plus_uconst:
3384 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3385 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3386 but we micro-optimize anyhow. */
3387 if (reg != 0)
3388 {
3389 ax_const_l (expr, reg);
3390 ax_simple (expr, aop_add);
3391 }
3392 break;
3393
3394 case DW_OP_and:
3395 ax_simple (expr, aop_bit_and);
3396 break;
3397
3398 case DW_OP_div:
3399 /* Sign extend the operands. */
3400 ax_ext (expr, addr_size_bits);
3401 ax_simple (expr, aop_swap);
3402 ax_ext (expr, addr_size_bits);
3403 ax_simple (expr, aop_swap);
3404 ax_simple (expr, aop_div_signed);
3405 break;
3406
3407 case DW_OP_minus:
3408 ax_simple (expr, aop_sub);
3409 break;
3410
3411 case DW_OP_mod:
3412 ax_simple (expr, aop_rem_unsigned);
3413 break;
3414
3415 case DW_OP_mul:
3416 ax_simple (expr, aop_mul);
3417 break;
3418
3419 case DW_OP_or:
3420 ax_simple (expr, aop_bit_or);
3421 break;
3422
3423 case DW_OP_plus:
3424 ax_simple (expr, aop_add);
3425 break;
3426
3427 case DW_OP_shl:
3428 ax_simple (expr, aop_lsh);
3429 break;
3430
3431 case DW_OP_shr:
3432 ax_simple (expr, aop_rsh_unsigned);
3433 break;
3434
3435 case DW_OP_shra:
3436 ax_simple (expr, aop_rsh_signed);
3437 break;
3438
3439 case DW_OP_xor:
3440 ax_simple (expr, aop_bit_xor);
3441 break;
3442
3443 case DW_OP_le:
3444 /* Sign extend the operands. */
3445 ax_ext (expr, addr_size_bits);
3446 ax_simple (expr, aop_swap);
3447 ax_ext (expr, addr_size_bits);
3448 /* Note no swap here: A <= B is !(B < A). */
3449 ax_simple (expr, aop_less_signed);
3450 ax_simple (expr, aop_log_not);
3451 break;
3452
3453 case DW_OP_ge:
3454 /* Sign extend the operands. */
3455 ax_ext (expr, addr_size_bits);
3456 ax_simple (expr, aop_swap);
3457 ax_ext (expr, addr_size_bits);
3458 ax_simple (expr, aop_swap);
3459 /* A >= B is !(A < B). */
3460 ax_simple (expr, aop_less_signed);
3461 ax_simple (expr, aop_log_not);
3462 break;
3463
3464 case DW_OP_eq:
3465 /* Sign extend the operands. */
3466 ax_ext (expr, addr_size_bits);
3467 ax_simple (expr, aop_swap);
3468 ax_ext (expr, addr_size_bits);
3469 /* No need for a second swap here. */
3470 ax_simple (expr, aop_equal);
3471 break;
3472
3473 case DW_OP_lt:
3474 /* Sign extend the operands. */
3475 ax_ext (expr, addr_size_bits);
3476 ax_simple (expr, aop_swap);
3477 ax_ext (expr, addr_size_bits);
3478 ax_simple (expr, aop_swap);
3479 ax_simple (expr, aop_less_signed);
3480 break;
3481
3482 case DW_OP_gt:
3483 /* Sign extend the operands. */
3484 ax_ext (expr, addr_size_bits);
3485 ax_simple (expr, aop_swap);
3486 ax_ext (expr, addr_size_bits);
3487 /* Note no swap here: A > B is B < A. */
3488 ax_simple (expr, aop_less_signed);
3489 break;
3490
3491 case DW_OP_ne:
3492 /* Sign extend the operands. */
3493 ax_ext (expr, addr_size_bits);
3494 ax_simple (expr, aop_swap);
3495 ax_ext (expr, addr_size_bits);
3496 /* No need for a swap here. */
3497 ax_simple (expr, aop_equal);
3498 ax_simple (expr, aop_log_not);
3499 break;
3500
3501 case DW_OP_call_frame_cfa:
3502 {
3503 int regnum;
3504 CORE_ADDR text_offset;
3505 LONGEST off;
3506 const gdb_byte *cfa_start, *cfa_end;
3507
3508 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3509 &regnum, &off,
3510 &text_offset, &cfa_start, &cfa_end))
3511 {
3512 /* Register. */
3513 ax_reg (expr, regnum);
3514 if (off != 0)
3515 {
3516 ax_const_l (expr, off);
3517 ax_simple (expr, aop_add);
3518 }
3519 }
3520 else
3521 {
3522 /* Another expression. */
3523 ax_const_l (expr, text_offset);
3524 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3525 cfa_start, cfa_end, per_cu);
3526 }
3527
3528 loc->kind = axs_lvalue_memory;
3529 }
3530 break;
3531
3532 case DW_OP_GNU_push_tls_address:
3533 case DW_OP_form_tls_address:
3534 unimplemented (op);
3535 break;
3536
3537 case DW_OP_push_object_address:
3538 unimplemented (op);
3539 break;
3540
3541 case DW_OP_skip:
3542 offset = extract_signed_integer (op_ptr, 2, byte_order);
3543 op_ptr += 2;
3544 i = ax_goto (expr, aop_goto);
3545 dw_labels.push_back (op_ptr + offset - base);
3546 patches.push_back (i);
3547 break;
3548
3549 case DW_OP_bra:
3550 offset = extract_signed_integer (op_ptr, 2, byte_order);
3551 op_ptr += 2;
3552 /* Zero extend the operand. */
3553 ax_zero_ext (expr, addr_size_bits);
3554 i = ax_goto (expr, aop_if_goto);
3555 dw_labels.push_back (op_ptr + offset - base);
3556 patches.push_back (i);
3557 break;
3558
3559 case DW_OP_nop:
3560 break;
3561
3562 case DW_OP_piece:
3563 case DW_OP_bit_piece:
3564 {
3565 uint64_t size, offset;
3566
3567 if (op_ptr - 1 == previous_piece)
3568 error (_("Cannot translate empty pieces to agent expressions"));
3569 previous_piece = op_ptr - 1;
3570
3571 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3572 if (op == DW_OP_piece)
3573 {
3574 size *= 8;
3575 offset = 0;
3576 }
3577 else
3578 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3579
3580 if (bits_collected + size > 8 * sizeof (LONGEST))
3581 error (_("Expression pieces exceed word size"));
3582
3583 /* Access the bits. */
3584 switch (loc->kind)
3585 {
3586 case axs_lvalue_register:
3587 ax_reg (expr, loc->u.reg);
3588 break;
3589
3590 case axs_lvalue_memory:
3591 /* Offset the pointer, if needed. */
3592 if (offset > 8)
3593 {
3594 ax_const_l (expr, offset / 8);
3595 ax_simple (expr, aop_add);
3596 offset %= 8;
3597 }
3598 access_memory (arch, expr, size);
3599 break;
3600 }
3601
3602 /* For a bits-big-endian target, shift up what we already
3603 have. For a bits-little-endian target, shift up the
3604 new data. Note that there is a potential bug here if
3605 the DWARF expression leaves multiple values on the
3606 stack. */
3607 if (bits_collected > 0)
3608 {
3609 if (bits_big_endian)
3610 {
3611 ax_simple (expr, aop_swap);
3612 ax_const_l (expr, size);
3613 ax_simple (expr, aop_lsh);
3614 /* We don't need a second swap here, because
3615 aop_bit_or is symmetric. */
3616 }
3617 else
3618 {
3619 ax_const_l (expr, size);
3620 ax_simple (expr, aop_lsh);
3621 }
3622 ax_simple (expr, aop_bit_or);
3623 }
3624
3625 bits_collected += size;
3626 loc->kind = axs_rvalue;
3627 }
3628 break;
3629
3630 case DW_OP_GNU_uninit:
3631 unimplemented (op);
3632
3633 case DW_OP_call2:
3634 case DW_OP_call4:
3635 {
3636 struct dwarf2_locexpr_baton block;
3637 int size = (op == DW_OP_call2 ? 2 : 4);
3638
3639 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3640 op_ptr += size;
3641
3642 cu_offset offset = (cu_offset) uoffset;
3643 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3644 get_ax_pc, expr);
3645
3646 /* DW_OP_call_ref is currently not supported. */
3647 gdb_assert (block.per_cu == per_cu);
3648
3649 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3650 block.data, block.data + block.size,
3651 per_cu);
3652 }
3653 break;
3654
3655 case DW_OP_call_ref:
3656 unimplemented (op);
3657
3658 default:
3659 unimplemented (op);
3660 }
3661 }
3662
3663 /* Patch all the branches we emitted. */
3664 for (i = 0; i < patches.size (); ++i)
3665 {
3666 int targ = offsets[dw_labels[i]];
3667 if (targ == -1)
3668 internal_error (__FILE__, __LINE__, _("invalid label"));
3669 ax_label (expr, patches[i], targ);
3670 }
3671 }
3672
3673 \f
3674 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3675 evaluator to calculate the location. */
3676 static struct value *
3677 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3678 {
3679 struct dwarf2_locexpr_baton *dlbaton
3680 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3681 struct value *val;
3682
3683 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3684 dlbaton->size, dlbaton->per_cu);
3685
3686 return val;
3687 }
3688
3689 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3690 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3691 will be thrown. */
3692
3693 static struct value *
3694 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3695 {
3696 struct dwarf2_locexpr_baton *dlbaton
3697 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3698
3699 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3700 dlbaton->size);
3701 }
3702
3703 /* Implementation of get_symbol_read_needs from
3704 symbol_computed_ops. */
3705
3706 static enum symbol_needs_kind
3707 locexpr_get_symbol_read_needs (struct symbol *symbol)
3708 {
3709 struct dwarf2_locexpr_baton *dlbaton
3710 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3711
3712 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3713 dlbaton->per_cu);
3714 }
3715
3716 /* Return true if DATA points to the end of a piece. END is one past
3717 the last byte in the expression. */
3718
3719 static int
3720 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3721 {
3722 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3723 }
3724
3725 /* Helper for locexpr_describe_location_piece that finds the name of a
3726 DWARF register. */
3727
3728 static const char *
3729 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3730 {
3731 int regnum;
3732
3733 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3734 We'd rather print *something* here than throw an error. */
3735 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3736 /* gdbarch_register_name may just return "", return something more
3737 descriptive for bad register numbers. */
3738 if (regnum == -1)
3739 {
3740 /* The text is output as "$bad_register_number".
3741 That is why we use the underscores. */
3742 return _("bad_register_number");
3743 }
3744 return gdbarch_register_name (gdbarch, regnum);
3745 }
3746
3747 /* Nicely describe a single piece of a location, returning an updated
3748 position in the bytecode sequence. This function cannot recognize
3749 all locations; if a location is not recognized, it simply returns
3750 DATA. If there is an error during reading, e.g. we run off the end
3751 of the buffer, an error is thrown. */
3752
3753 static const gdb_byte *
3754 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3755 CORE_ADDR addr, struct objfile *objfile,
3756 struct dwarf2_per_cu_data *per_cu,
3757 const gdb_byte *data, const gdb_byte *end,
3758 unsigned int addr_size)
3759 {
3760 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3761 size_t leb128_size;
3762
3763 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3764 {
3765 fprintf_filtered (stream, _("a variable in $%s"),
3766 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3767 data += 1;
3768 }
3769 else if (data[0] == DW_OP_regx)
3770 {
3771 uint64_t reg;
3772
3773 data = safe_read_uleb128 (data + 1, end, &reg);
3774 fprintf_filtered (stream, _("a variable in $%s"),
3775 locexpr_regname (gdbarch, reg));
3776 }
3777 else if (data[0] == DW_OP_fbreg)
3778 {
3779 const struct block *b;
3780 struct symbol *framefunc;
3781 int frame_reg = 0;
3782 int64_t frame_offset;
3783 const gdb_byte *base_data, *new_data, *save_data = data;
3784 size_t base_size;
3785 int64_t base_offset = 0;
3786
3787 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3788 if (!piece_end_p (new_data, end))
3789 return data;
3790 data = new_data;
3791
3792 b = block_for_pc (addr);
3793
3794 if (!b)
3795 error (_("No block found for address for symbol \"%s\"."),
3796 SYMBOL_PRINT_NAME (symbol));
3797
3798 framefunc = block_linkage_function (b);
3799
3800 if (!framefunc)
3801 error (_("No function found for block for symbol \"%s\"."),
3802 SYMBOL_PRINT_NAME (symbol));
3803
3804 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3805
3806 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3807 {
3808 const gdb_byte *buf_end;
3809
3810 frame_reg = base_data[0] - DW_OP_breg0;
3811 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3812 &base_offset);
3813 if (buf_end != base_data + base_size)
3814 error (_("Unexpected opcode after "
3815 "DW_OP_breg%u for symbol \"%s\"."),
3816 frame_reg, SYMBOL_PRINT_NAME (symbol));
3817 }
3818 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3819 {
3820 /* The frame base is just the register, with no offset. */
3821 frame_reg = base_data[0] - DW_OP_reg0;
3822 base_offset = 0;
3823 }
3824 else
3825 {
3826 /* We don't know what to do with the frame base expression,
3827 so we can't trace this variable; give up. */
3828 return save_data;
3829 }
3830
3831 fprintf_filtered (stream,
3832 _("a variable at frame base reg $%s offset %s+%s"),
3833 locexpr_regname (gdbarch, frame_reg),
3834 plongest (base_offset), plongest (frame_offset));
3835 }
3836 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3837 && piece_end_p (data, end))
3838 {
3839 int64_t offset;
3840
3841 data = safe_read_sleb128 (data + 1, end, &offset);
3842
3843 fprintf_filtered (stream,
3844 _("a variable at offset %s from base reg $%s"),
3845 plongest (offset),
3846 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3847 }
3848
3849 /* The location expression for a TLS variable looks like this (on a
3850 64-bit LE machine):
3851
3852 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3853 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3854
3855 0x3 is the encoding for DW_OP_addr, which has an operand as long
3856 as the size of an address on the target machine (here is 8
3857 bytes). Note that more recent version of GCC emit DW_OP_const4u
3858 or DW_OP_const8u, depending on address size, rather than
3859 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3860 The operand represents the offset at which the variable is within
3861 the thread local storage. */
3862
3863 else if (data + 1 + addr_size < end
3864 && (data[0] == DW_OP_addr
3865 || (addr_size == 4 && data[0] == DW_OP_const4u)
3866 || (addr_size == 8 && data[0] == DW_OP_const8u))
3867 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3868 || data[1 + addr_size] == DW_OP_form_tls_address)
3869 && piece_end_p (data + 2 + addr_size, end))
3870 {
3871 ULONGEST offset;
3872 offset = extract_unsigned_integer (data + 1, addr_size,
3873 gdbarch_byte_order (gdbarch));
3874
3875 fprintf_filtered (stream,
3876 _("a thread-local variable at offset 0x%s "
3877 "in the thread-local storage for `%s'"),
3878 phex_nz (offset, addr_size), objfile_name (objfile));
3879
3880 data += 1 + addr_size + 1;
3881 }
3882
3883 /* With -gsplit-dwarf a TLS variable can also look like this:
3884 DW_AT_location : 3 byte block: fc 4 e0
3885 (DW_OP_GNU_const_index: 4;
3886 DW_OP_GNU_push_tls_address) */
3887 else if (data + 3 <= end
3888 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3889 && data[0] == DW_OP_GNU_const_index
3890 && leb128_size > 0
3891 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3892 || data[1 + leb128_size] == DW_OP_form_tls_address)
3893 && piece_end_p (data + 2 + leb128_size, end))
3894 {
3895 uint64_t offset;
3896
3897 data = safe_read_uleb128 (data + 1, end, &offset);
3898 offset = dwarf2_read_addr_index (per_cu, offset);
3899 fprintf_filtered (stream,
3900 _("a thread-local variable at offset 0x%s "
3901 "in the thread-local storage for `%s'"),
3902 phex_nz (offset, addr_size), objfile_name (objfile));
3903 ++data;
3904 }
3905
3906 else if (data[0] >= DW_OP_lit0
3907 && data[0] <= DW_OP_lit31
3908 && data + 1 < end
3909 && data[1] == DW_OP_stack_value)
3910 {
3911 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3912 data += 2;
3913 }
3914
3915 return data;
3916 }
3917
3918 /* Disassemble an expression, stopping at the end of a piece or at the
3919 end of the expression. Returns a pointer to the next unread byte
3920 in the input expression. If ALL is nonzero, then this function
3921 will keep going until it reaches the end of the expression.
3922 If there is an error during reading, e.g. we run off the end
3923 of the buffer, an error is thrown. */
3924
3925 static const gdb_byte *
3926 disassemble_dwarf_expression (struct ui_file *stream,
3927 struct gdbarch *arch, unsigned int addr_size,
3928 int offset_size, const gdb_byte *start,
3929 const gdb_byte *data, const gdb_byte *end,
3930 int indent, int all,
3931 struct dwarf2_per_cu_data *per_cu)
3932 {
3933 while (data < end
3934 && (all
3935 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3936 {
3937 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3938 uint64_t ul;
3939 int64_t l;
3940 const char *name;
3941
3942 name = get_DW_OP_name (op);
3943
3944 if (!name)
3945 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3946 op, (long) (data - 1 - start));
3947 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3948 (long) (data - 1 - start), name);
3949
3950 switch (op)
3951 {
3952 case DW_OP_addr:
3953 ul = extract_unsigned_integer (data, addr_size,
3954 gdbarch_byte_order (arch));
3955 data += addr_size;
3956 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3957 break;
3958
3959 case DW_OP_const1u:
3960 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3961 data += 1;
3962 fprintf_filtered (stream, " %s", pulongest (ul));
3963 break;
3964 case DW_OP_const1s:
3965 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3966 data += 1;
3967 fprintf_filtered (stream, " %s", plongest (l));
3968 break;
3969 case DW_OP_const2u:
3970 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3971 data += 2;
3972 fprintf_filtered (stream, " %s", pulongest (ul));
3973 break;
3974 case DW_OP_const2s:
3975 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3976 data += 2;
3977 fprintf_filtered (stream, " %s", plongest (l));
3978 break;
3979 case DW_OP_const4u:
3980 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3981 data += 4;
3982 fprintf_filtered (stream, " %s", pulongest (ul));
3983 break;
3984 case DW_OP_const4s:
3985 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3986 data += 4;
3987 fprintf_filtered (stream, " %s", plongest (l));
3988 break;
3989 case DW_OP_const8u:
3990 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3991 data += 8;
3992 fprintf_filtered (stream, " %s", pulongest (ul));
3993 break;
3994 case DW_OP_const8s:
3995 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3996 data += 8;
3997 fprintf_filtered (stream, " %s", plongest (l));
3998 break;
3999 case DW_OP_constu:
4000 data = safe_read_uleb128 (data, end, &ul);
4001 fprintf_filtered (stream, " %s", pulongest (ul));
4002 break;
4003 case DW_OP_consts:
4004 data = safe_read_sleb128 (data, end, &l);
4005 fprintf_filtered (stream, " %s", plongest (l));
4006 break;
4007
4008 case DW_OP_reg0:
4009 case DW_OP_reg1:
4010 case DW_OP_reg2:
4011 case DW_OP_reg3:
4012 case DW_OP_reg4:
4013 case DW_OP_reg5:
4014 case DW_OP_reg6:
4015 case DW_OP_reg7:
4016 case DW_OP_reg8:
4017 case DW_OP_reg9:
4018 case DW_OP_reg10:
4019 case DW_OP_reg11:
4020 case DW_OP_reg12:
4021 case DW_OP_reg13:
4022 case DW_OP_reg14:
4023 case DW_OP_reg15:
4024 case DW_OP_reg16:
4025 case DW_OP_reg17:
4026 case DW_OP_reg18:
4027 case DW_OP_reg19:
4028 case DW_OP_reg20:
4029 case DW_OP_reg21:
4030 case DW_OP_reg22:
4031 case DW_OP_reg23:
4032 case DW_OP_reg24:
4033 case DW_OP_reg25:
4034 case DW_OP_reg26:
4035 case DW_OP_reg27:
4036 case DW_OP_reg28:
4037 case DW_OP_reg29:
4038 case DW_OP_reg30:
4039 case DW_OP_reg31:
4040 fprintf_filtered (stream, " [$%s]",
4041 locexpr_regname (arch, op - DW_OP_reg0));
4042 break;
4043
4044 case DW_OP_regx:
4045 data = safe_read_uleb128 (data, end, &ul);
4046 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4047 locexpr_regname (arch, (int) ul));
4048 break;
4049
4050 case DW_OP_implicit_value:
4051 data = safe_read_uleb128 (data, end, &ul);
4052 data += ul;
4053 fprintf_filtered (stream, " %s", pulongest (ul));
4054 break;
4055
4056 case DW_OP_breg0:
4057 case DW_OP_breg1:
4058 case DW_OP_breg2:
4059 case DW_OP_breg3:
4060 case DW_OP_breg4:
4061 case DW_OP_breg5:
4062 case DW_OP_breg6:
4063 case DW_OP_breg7:
4064 case DW_OP_breg8:
4065 case DW_OP_breg9:
4066 case DW_OP_breg10:
4067 case DW_OP_breg11:
4068 case DW_OP_breg12:
4069 case DW_OP_breg13:
4070 case DW_OP_breg14:
4071 case DW_OP_breg15:
4072 case DW_OP_breg16:
4073 case DW_OP_breg17:
4074 case DW_OP_breg18:
4075 case DW_OP_breg19:
4076 case DW_OP_breg20:
4077 case DW_OP_breg21:
4078 case DW_OP_breg22:
4079 case DW_OP_breg23:
4080 case DW_OP_breg24:
4081 case DW_OP_breg25:
4082 case DW_OP_breg26:
4083 case DW_OP_breg27:
4084 case DW_OP_breg28:
4085 case DW_OP_breg29:
4086 case DW_OP_breg30:
4087 case DW_OP_breg31:
4088 data = safe_read_sleb128 (data, end, &l);
4089 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4090 locexpr_regname (arch, op - DW_OP_breg0));
4091 break;
4092
4093 case DW_OP_bregx:
4094 data = safe_read_uleb128 (data, end, &ul);
4095 data = safe_read_sleb128 (data, end, &l);
4096 fprintf_filtered (stream, " register %s [$%s] offset %s",
4097 pulongest (ul),
4098 locexpr_regname (arch, (int) ul),
4099 plongest (l));
4100 break;
4101
4102 case DW_OP_fbreg:
4103 data = safe_read_sleb128 (data, end, &l);
4104 fprintf_filtered (stream, " %s", plongest (l));
4105 break;
4106
4107 case DW_OP_xderef_size:
4108 case DW_OP_deref_size:
4109 case DW_OP_pick:
4110 fprintf_filtered (stream, " %d", *data);
4111 ++data;
4112 break;
4113
4114 case DW_OP_plus_uconst:
4115 data = safe_read_uleb128 (data, end, &ul);
4116 fprintf_filtered (stream, " %s", pulongest (ul));
4117 break;
4118
4119 case DW_OP_skip:
4120 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4121 data += 2;
4122 fprintf_filtered (stream, " to %ld",
4123 (long) (data + l - start));
4124 break;
4125
4126 case DW_OP_bra:
4127 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4128 data += 2;
4129 fprintf_filtered (stream, " %ld",
4130 (long) (data + l - start));
4131 break;
4132
4133 case DW_OP_call2:
4134 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4135 data += 2;
4136 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4137 break;
4138
4139 case DW_OP_call4:
4140 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4141 data += 4;
4142 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4143 break;
4144
4145 case DW_OP_call_ref:
4146 ul = extract_unsigned_integer (data, offset_size,
4147 gdbarch_byte_order (arch));
4148 data += offset_size;
4149 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4150 break;
4151
4152 case DW_OP_piece:
4153 data = safe_read_uleb128 (data, end, &ul);
4154 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4155 break;
4156
4157 case DW_OP_bit_piece:
4158 {
4159 uint64_t offset;
4160
4161 data = safe_read_uleb128 (data, end, &ul);
4162 data = safe_read_uleb128 (data, end, &offset);
4163 fprintf_filtered (stream, " size %s offset %s (bits)",
4164 pulongest (ul), pulongest (offset));
4165 }
4166 break;
4167
4168 case DW_OP_implicit_pointer:
4169 case DW_OP_GNU_implicit_pointer:
4170 {
4171 ul = extract_unsigned_integer (data, offset_size,
4172 gdbarch_byte_order (arch));
4173 data += offset_size;
4174
4175 data = safe_read_sleb128 (data, end, &l);
4176
4177 fprintf_filtered (stream, " DIE %s offset %s",
4178 phex_nz (ul, offset_size),
4179 plongest (l));
4180 }
4181 break;
4182
4183 case DW_OP_deref_type:
4184 case DW_OP_GNU_deref_type:
4185 {
4186 int addr_size = *data++;
4187 struct type *type;
4188
4189 data = safe_read_uleb128 (data, end, &ul);
4190 cu_offset offset = (cu_offset) ul;
4191 type = dwarf2_get_die_type (offset, per_cu);
4192 fprintf_filtered (stream, "<");
4193 type_print (type, "", stream, -1);
4194 fprintf_filtered (stream, " [0x%s]> %d",
4195 phex_nz (to_underlying (offset), 0),
4196 addr_size);
4197 }
4198 break;
4199
4200 case DW_OP_const_type:
4201 case DW_OP_GNU_const_type:
4202 {
4203 struct type *type;
4204
4205 data = safe_read_uleb128 (data, end, &ul);
4206 cu_offset type_die = (cu_offset) ul;
4207 type = dwarf2_get_die_type (type_die, per_cu);
4208 fprintf_filtered (stream, "<");
4209 type_print (type, "", stream, -1);
4210 fprintf_filtered (stream, " [0x%s]>",
4211 phex_nz (to_underlying (type_die), 0));
4212 }
4213 break;
4214
4215 case DW_OP_regval_type:
4216 case DW_OP_GNU_regval_type:
4217 {
4218 uint64_t reg;
4219 struct type *type;
4220
4221 data = safe_read_uleb128 (data, end, &reg);
4222 data = safe_read_uleb128 (data, end, &ul);
4223 cu_offset type_die = (cu_offset) ul;
4224
4225 type = dwarf2_get_die_type (type_die, per_cu);
4226 fprintf_filtered (stream, "<");
4227 type_print (type, "", stream, -1);
4228 fprintf_filtered (stream, " [0x%s]> [$%s]",
4229 phex_nz (to_underlying (type_die), 0),
4230 locexpr_regname (arch, reg));
4231 }
4232 break;
4233
4234 case DW_OP_convert:
4235 case DW_OP_GNU_convert:
4236 case DW_OP_reinterpret:
4237 case DW_OP_GNU_reinterpret:
4238 {
4239 data = safe_read_uleb128 (data, end, &ul);
4240 cu_offset type_die = (cu_offset) ul;
4241
4242 if (to_underlying (type_die) == 0)
4243 fprintf_filtered (stream, "<0>");
4244 else
4245 {
4246 struct type *type;
4247
4248 type = dwarf2_get_die_type (type_die, per_cu);
4249 fprintf_filtered (stream, "<");
4250 type_print (type, "", stream, -1);
4251 fprintf_filtered (stream, " [0x%s]>",
4252 phex_nz (to_underlying (type_die), 0));
4253 }
4254 }
4255 break;
4256
4257 case DW_OP_entry_value:
4258 case DW_OP_GNU_entry_value:
4259 data = safe_read_uleb128 (data, end, &ul);
4260 fputc_filtered ('\n', stream);
4261 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4262 start, data, data + ul, indent + 2,
4263 all, per_cu);
4264 data += ul;
4265 continue;
4266
4267 case DW_OP_GNU_parameter_ref:
4268 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4269 data += 4;
4270 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4271 break;
4272
4273 case DW_OP_GNU_addr_index:
4274 data = safe_read_uleb128 (data, end, &ul);
4275 ul = dwarf2_read_addr_index (per_cu, ul);
4276 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4277 break;
4278 case DW_OP_GNU_const_index:
4279 data = safe_read_uleb128 (data, end, &ul);
4280 ul = dwarf2_read_addr_index (per_cu, ul);
4281 fprintf_filtered (stream, " %s", pulongest (ul));
4282 break;
4283 }
4284
4285 fprintf_filtered (stream, "\n");
4286 }
4287
4288 return data;
4289 }
4290
4291 /* Describe a single location, which may in turn consist of multiple
4292 pieces. */
4293
4294 static void
4295 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4296 struct ui_file *stream,
4297 const gdb_byte *data, size_t size,
4298 struct objfile *objfile, unsigned int addr_size,
4299 int offset_size, struct dwarf2_per_cu_data *per_cu)
4300 {
4301 const gdb_byte *end = data + size;
4302 int first_piece = 1, bad = 0;
4303
4304 while (data < end)
4305 {
4306 const gdb_byte *here = data;
4307 int disassemble = 1;
4308
4309 if (first_piece)
4310 first_piece = 0;
4311 else
4312 fprintf_filtered (stream, _(", and "));
4313
4314 if (!dwarf_always_disassemble)
4315 {
4316 data = locexpr_describe_location_piece (symbol, stream,
4317 addr, objfile, per_cu,
4318 data, end, addr_size);
4319 /* If we printed anything, or if we have an empty piece,
4320 then don't disassemble. */
4321 if (data != here
4322 || data[0] == DW_OP_piece
4323 || data[0] == DW_OP_bit_piece)
4324 disassemble = 0;
4325 }
4326 if (disassemble)
4327 {
4328 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4329 data = disassemble_dwarf_expression (stream,
4330 get_objfile_arch (objfile),
4331 addr_size, offset_size, data,
4332 data, end, 0,
4333 dwarf_always_disassemble,
4334 per_cu);
4335 }
4336
4337 if (data < end)
4338 {
4339 int empty = data == here;
4340
4341 if (disassemble)
4342 fprintf_filtered (stream, " ");
4343 if (data[0] == DW_OP_piece)
4344 {
4345 uint64_t bytes;
4346
4347 data = safe_read_uleb128 (data + 1, end, &bytes);
4348
4349 if (empty)
4350 fprintf_filtered (stream, _("an empty %s-byte piece"),
4351 pulongest (bytes));
4352 else
4353 fprintf_filtered (stream, _(" [%s-byte piece]"),
4354 pulongest (bytes));
4355 }
4356 else if (data[0] == DW_OP_bit_piece)
4357 {
4358 uint64_t bits, offset;
4359
4360 data = safe_read_uleb128 (data + 1, end, &bits);
4361 data = safe_read_uleb128 (data, end, &offset);
4362
4363 if (empty)
4364 fprintf_filtered (stream,
4365 _("an empty %s-bit piece"),
4366 pulongest (bits));
4367 else
4368 fprintf_filtered (stream,
4369 _(" [%s-bit piece, offset %s bits]"),
4370 pulongest (bits), pulongest (offset));
4371 }
4372 else
4373 {
4374 bad = 1;
4375 break;
4376 }
4377 }
4378 }
4379
4380 if (bad || data > end)
4381 error (_("Corrupted DWARF2 expression for \"%s\"."),
4382 SYMBOL_PRINT_NAME (symbol));
4383 }
4384
4385 /* Print a natural-language description of SYMBOL to STREAM. This
4386 version is for a symbol with a single location. */
4387
4388 static void
4389 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4390 struct ui_file *stream)
4391 {
4392 struct dwarf2_locexpr_baton *dlbaton
4393 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4394 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4395 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4396 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4397
4398 locexpr_describe_location_1 (symbol, addr, stream,
4399 dlbaton->data, dlbaton->size,
4400 objfile, addr_size, offset_size,
4401 dlbaton->per_cu);
4402 }
4403
4404 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4405 any necessary bytecode in AX. */
4406
4407 static void
4408 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4409 struct agent_expr *ax, struct axs_value *value)
4410 {
4411 struct dwarf2_locexpr_baton *dlbaton
4412 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4413 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4414
4415 if (dlbaton->size == 0)
4416 value->optimized_out = 1;
4417 else
4418 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4419 dlbaton->data, dlbaton->data + dlbaton->size,
4420 dlbaton->per_cu);
4421 }
4422
4423 /* symbol_computed_ops 'generate_c_location' method. */
4424
4425 static void
4426 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4427 struct gdbarch *gdbarch,
4428 unsigned char *registers_used,
4429 CORE_ADDR pc, const char *result_name)
4430 {
4431 struct dwarf2_locexpr_baton *dlbaton
4432 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4433 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4434
4435 if (dlbaton->size == 0)
4436 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4437
4438 compile_dwarf_expr_to_c (stream, result_name,
4439 sym, pc, gdbarch, registers_used, addr_size,
4440 dlbaton->data, dlbaton->data + dlbaton->size,
4441 dlbaton->per_cu);
4442 }
4443
4444 /* The set of location functions used with the DWARF-2 expression
4445 evaluator. */
4446 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4447 locexpr_read_variable,
4448 locexpr_read_variable_at_entry,
4449 locexpr_get_symbol_read_needs,
4450 locexpr_describe_location,
4451 0, /* location_has_loclist */
4452 locexpr_tracepoint_var_ref,
4453 locexpr_generate_c_location
4454 };
4455
4456
4457 /* Wrapper functions for location lists. These generally find
4458 the appropriate location expression and call something above. */
4459
4460 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4461 evaluator to calculate the location. */
4462 static struct value *
4463 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4464 {
4465 struct dwarf2_loclist_baton *dlbaton
4466 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4467 struct value *val;
4468 const gdb_byte *data;
4469 size_t size;
4470 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4471
4472 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4473 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4474 dlbaton->per_cu);
4475
4476 return val;
4477 }
4478
4479 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4480 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4481 will be thrown.
4482
4483 Function always returns non-NULL value, it may be marked optimized out if
4484 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4485 if it cannot resolve the parameter for any reason. */
4486
4487 static struct value *
4488 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4489 {
4490 struct dwarf2_loclist_baton *dlbaton
4491 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4492 const gdb_byte *data;
4493 size_t size;
4494 CORE_ADDR pc;
4495
4496 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4497 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4498
4499 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4500 if (data == NULL)
4501 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4502
4503 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4504 }
4505
4506 /* Implementation of get_symbol_read_needs from
4507 symbol_computed_ops. */
4508
4509 static enum symbol_needs_kind
4510 loclist_symbol_needs (struct symbol *symbol)
4511 {
4512 /* If there's a location list, then assume we need to have a frame
4513 to choose the appropriate location expression. With tracking of
4514 global variables this is not necessarily true, but such tracking
4515 is disabled in GCC at the moment until we figure out how to
4516 represent it. */
4517
4518 return SYMBOL_NEEDS_FRAME;
4519 }
4520
4521 /* Print a natural-language description of SYMBOL to STREAM. This
4522 version applies when there is a list of different locations, each
4523 with a specified address range. */
4524
4525 static void
4526 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4527 struct ui_file *stream)
4528 {
4529 struct dwarf2_loclist_baton *dlbaton
4530 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4531 const gdb_byte *loc_ptr, *buf_end;
4532 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4533 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4534 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4535 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4536 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4537 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4538 /* Adjust base_address for relocatable objects. */
4539 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4540 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4541 int done = 0;
4542
4543 loc_ptr = dlbaton->data;
4544 buf_end = dlbaton->data + dlbaton->size;
4545
4546 fprintf_filtered (stream, _("multi-location:\n"));
4547
4548 /* Iterate through locations until we run out. */
4549 while (!done)
4550 {
4551 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4552 int length;
4553 enum debug_loc_kind kind;
4554 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4555
4556 if (dlbaton->from_dwo)
4557 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4558 loc_ptr, buf_end, &new_ptr,
4559 &low, &high, byte_order);
4560 else
4561 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4562 &low, &high,
4563 byte_order, addr_size,
4564 signed_addr_p);
4565 loc_ptr = new_ptr;
4566 switch (kind)
4567 {
4568 case DEBUG_LOC_END_OF_LIST:
4569 done = 1;
4570 continue;
4571 case DEBUG_LOC_BASE_ADDRESS:
4572 base_address = high + base_offset;
4573 fprintf_filtered (stream, _(" Base address %s"),
4574 paddress (gdbarch, base_address));
4575 continue;
4576 case DEBUG_LOC_START_END:
4577 case DEBUG_LOC_START_LENGTH:
4578 break;
4579 case DEBUG_LOC_BUFFER_OVERFLOW:
4580 case DEBUG_LOC_INVALID_ENTRY:
4581 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4582 SYMBOL_PRINT_NAME (symbol));
4583 default:
4584 gdb_assert_not_reached ("bad debug_loc_kind");
4585 }
4586
4587 /* Otherwise, a location expression entry. */
4588 low += base_address;
4589 high += base_address;
4590
4591 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4592 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4593
4594 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4595 loc_ptr += 2;
4596
4597 /* (It would improve readability to print only the minimum
4598 necessary digits of the second number of the range.) */
4599 fprintf_filtered (stream, _(" Range %s-%s: "),
4600 paddress (gdbarch, low), paddress (gdbarch, high));
4601
4602 /* Now describe this particular location. */
4603 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4604 objfile, addr_size, offset_size,
4605 dlbaton->per_cu);
4606
4607 fprintf_filtered (stream, "\n");
4608
4609 loc_ptr += length;
4610 }
4611 }
4612
4613 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4614 any necessary bytecode in AX. */
4615 static void
4616 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4617 struct agent_expr *ax, struct axs_value *value)
4618 {
4619 struct dwarf2_loclist_baton *dlbaton
4620 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4621 const gdb_byte *data;
4622 size_t size;
4623 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4624
4625 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4626 if (size == 0)
4627 value->optimized_out = 1;
4628 else
4629 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4630 dlbaton->per_cu);
4631 }
4632
4633 /* symbol_computed_ops 'generate_c_location' method. */
4634
4635 static void
4636 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4637 struct gdbarch *gdbarch,
4638 unsigned char *registers_used,
4639 CORE_ADDR pc, const char *result_name)
4640 {
4641 struct dwarf2_loclist_baton *dlbaton
4642 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4643 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4644 const gdb_byte *data;
4645 size_t size;
4646
4647 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4648 if (size == 0)
4649 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4650
4651 compile_dwarf_expr_to_c (stream, result_name,
4652 sym, pc, gdbarch, registers_used, addr_size,
4653 data, data + size,
4654 dlbaton->per_cu);
4655 }
4656
4657 /* The set of location functions used with the DWARF-2 expression
4658 evaluator and location lists. */
4659 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4660 loclist_read_variable,
4661 loclist_read_variable_at_entry,
4662 loclist_symbol_needs,
4663 loclist_describe_location,
4664 1, /* location_has_loclist */
4665 loclist_tracepoint_var_ref,
4666 loclist_generate_c_location
4667 };
4668
4669 /* Provide a prototype to silence -Wmissing-prototypes. */
4670 extern initialize_file_ftype _initialize_dwarf2loc;
4671
4672 void
4673 _initialize_dwarf2loc (void)
4674 {
4675 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4676 &entry_values_debug,
4677 _("Set entry values and tail call frames "
4678 "debugging."),
4679 _("Show entry values and tail call frames "
4680 "debugging."),
4681 _("When non-zero, the process of determining "
4682 "parameter values from function entry point "
4683 "and tail call frames will be printed."),
4684 NULL,
4685 show_entry_values_debug,
4686 &setdebuglist, &showdebuglist);
4687
4688 #if GDB_SELF_TEST
4689 register_self_test (selftests::copy_bitwise_tests);
4690 #endif
4691 }
This page took 0.126045 seconds and 5 git commands to generate.