read/write_pieced_value: Drop 'buffer_size' variable
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 static void
1756 read_pieced_value (struct value *v)
1757 {
1758 int i;
1759 LONGEST offset = 0, max_offset;
1760 ULONGEST bits_to_skip;
1761 gdb_byte *contents;
1762 struct piece_closure *c
1763 = (struct piece_closure *) value_computed_closure (v);
1764 std::vector<gdb_byte> buffer;
1765 int bits_big_endian
1766 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1767
1768 if (value_type (v) != value_enclosing_type (v))
1769 internal_error (__FILE__, __LINE__,
1770 _("Should not be able to create a lazy value with "
1771 "an enclosing type"));
1772
1773 contents = value_contents_raw (v);
1774 bits_to_skip = 8 * value_offset (v);
1775 if (value_bitsize (v))
1776 {
1777 bits_to_skip += (8 * value_offset (value_parent (v))
1778 + value_bitpos (v));
1779 max_offset = value_bitsize (v);
1780 }
1781 else
1782 max_offset = 8 * TYPE_LENGTH (value_type (v));
1783
1784 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1785 {
1786 struct dwarf_expr_piece *p = &c->pieces[i];
1787 size_t this_size, this_size_bits;
1788 long dest_offset_bits, source_offset_bits, source_offset;
1789 const gdb_byte *intermediate_buffer;
1790
1791 /* Compute size, source, and destination offsets for copying, in
1792 bits. */
1793 this_size_bits = p->size;
1794 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1795 {
1796 bits_to_skip -= this_size_bits;
1797 continue;
1798 }
1799 source_offset_bits = bits_to_skip;
1800 this_size_bits -= bits_to_skip;
1801 bits_to_skip = 0;
1802 dest_offset_bits = offset;
1803
1804 if (this_size_bits > max_offset - offset)
1805 this_size_bits = max_offset - offset;
1806
1807 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1808 buffer.reserve (this_size);
1809 source_offset = source_offset_bits / 8;
1810 intermediate_buffer = buffer.data ();
1811
1812 /* Copy from the source to DEST_BUFFER. */
1813 switch (p->location)
1814 {
1815 case DWARF_VALUE_REGISTER:
1816 {
1817 struct frame_info *frame = frame_find_by_id (c->frame_id);
1818 struct gdbarch *arch = get_frame_arch (frame);
1819 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1820 int optim, unavail;
1821 LONGEST reg_offset = source_offset;
1822
1823 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1824 && this_size < register_size (arch, gdb_regnum))
1825 {
1826 /* Big-endian, and we want less than full size. */
1827 reg_offset = register_size (arch, gdb_regnum) - this_size;
1828 /* We want the lower-order THIS_SIZE_BITS of the bytes
1829 we extract from the register. */
1830 source_offset_bits += 8 * this_size - this_size_bits;
1831 }
1832
1833 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1834 this_size, buffer.data (),
1835 &optim, &unavail))
1836 {
1837 /* Just so garbage doesn't ever shine through. */
1838 memset (buffer.data (), 0, this_size);
1839
1840 if (optim)
1841 mark_value_bits_optimized_out (v, offset, this_size_bits);
1842 if (unavail)
1843 mark_value_bits_unavailable (v, offset, this_size_bits);
1844 }
1845
1846 copy_bitwise (contents, dest_offset_bits,
1847 intermediate_buffer, source_offset_bits % 8,
1848 this_size_bits, bits_big_endian);
1849 }
1850 break;
1851
1852 case DWARF_VALUE_MEMORY:
1853 read_value_memory (v, offset,
1854 p->v.mem.in_stack_memory,
1855 p->v.mem.addr + source_offset,
1856 buffer.data (), this_size);
1857 copy_bitwise (contents, dest_offset_bits,
1858 intermediate_buffer, source_offset_bits % 8,
1859 this_size_bits, bits_big_endian);
1860 break;
1861
1862 case DWARF_VALUE_STACK:
1863 {
1864 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1865 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1866 ULONGEST stack_value_size_bits
1867 = 8 * TYPE_LENGTH (value_type (p->v.value));
1868
1869 /* Use zeroes if piece reaches beyond stack value. */
1870 if (p->size > stack_value_size_bits)
1871 break;
1872
1873 /* Piece is anchored at least significant bit end. */
1874 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1875 source_offset_bits += stack_value_size_bits - p->size;
1876
1877 copy_bitwise (contents, dest_offset_bits,
1878 value_contents_all (p->v.value),
1879 source_offset_bits,
1880 this_size_bits, bits_big_endian);
1881 }
1882 break;
1883
1884 case DWARF_VALUE_LITERAL:
1885 {
1886 size_t n = this_size;
1887
1888 if (n > p->v.literal.length - source_offset)
1889 n = (p->v.literal.length >= source_offset
1890 ? p->v.literal.length - source_offset
1891 : 0);
1892 if (n != 0)
1893 intermediate_buffer = p->v.literal.data + source_offset;
1894
1895 copy_bitwise (contents, dest_offset_bits,
1896 intermediate_buffer, source_offset_bits % 8,
1897 this_size_bits, bits_big_endian);
1898 }
1899 break;
1900
1901 /* These bits show up as zeros -- but do not cause the value
1902 to be considered optimized-out. */
1903 case DWARF_VALUE_IMPLICIT_POINTER:
1904 break;
1905
1906 case DWARF_VALUE_OPTIMIZED_OUT:
1907 mark_value_bits_optimized_out (v, offset, this_size_bits);
1908 break;
1909
1910 default:
1911 internal_error (__FILE__, __LINE__, _("invalid location type"));
1912 }
1913
1914 offset += this_size_bits;
1915 }
1916 }
1917
1918 static void
1919 write_pieced_value (struct value *to, struct value *from)
1920 {
1921 int i;
1922 ULONGEST bits_to_skip;
1923 LONGEST offset = 0, max_offset;
1924 const gdb_byte *contents;
1925 struct piece_closure *c
1926 = (struct piece_closure *) value_computed_closure (to);
1927 std::vector<gdb_byte> buffer;
1928 int bits_big_endian
1929 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1930
1931 contents = value_contents (from);
1932 bits_to_skip = 8 * value_offset (to);
1933 if (value_bitsize (to))
1934 {
1935 bits_to_skip += (8 * value_offset (value_parent (to))
1936 + value_bitpos (to));
1937 /* Use the least significant bits of FROM. */
1938 if (gdbarch_byte_order (get_type_arch (value_type (from)))
1939 == BFD_ENDIAN_BIG)
1940 {
1941 max_offset = 8 * TYPE_LENGTH (value_type (from));
1942 offset = max_offset - value_bitsize (to);
1943 }
1944 else
1945 max_offset = value_bitsize (to);
1946 }
1947 else
1948 max_offset = 8 * TYPE_LENGTH (value_type (to));
1949
1950 for (i = 0; i < c->n_pieces && offset < max_offset; i++)
1951 {
1952 struct dwarf_expr_piece *p = &c->pieces[i];
1953 size_t this_size_bits, this_size;
1954 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1955 int need_bitwise;
1956 const gdb_byte *source_buffer;
1957
1958 this_size_bits = p->size;
1959 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1960 {
1961 bits_to_skip -= this_size_bits;
1962 continue;
1963 }
1964 dest_offset_bits = bits_to_skip;
1965 this_size_bits -= bits_to_skip;
1966 bits_to_skip = 0;
1967 source_offset_bits = offset;
1968
1969 if (this_size_bits > max_offset - offset)
1970 this_size_bits = max_offset - offset;
1971
1972 this_size = (this_size_bits + dest_offset_bits % 8 + 7) / 8;
1973 source_offset = source_offset_bits / 8;
1974 dest_offset = dest_offset_bits / 8;
1975
1976 /* Check whether the data can be transferred byte-wise. */
1977 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0
1978 && this_size_bits % 8 == 0)
1979 {
1980 source_buffer = contents + source_offset;
1981 need_bitwise = 0;
1982 }
1983 else
1984 {
1985 buffer.reserve (this_size);
1986 source_buffer = buffer.data ();
1987 need_bitwise = 1;
1988 }
1989
1990 switch (p->location)
1991 {
1992 case DWARF_VALUE_REGISTER:
1993 {
1994 struct frame_info *frame = frame_find_by_id (c->frame_id);
1995 struct gdbarch *arch = get_frame_arch (frame);
1996 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1997 int reg_offset = dest_offset;
1998
1999 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2000 && this_size <= register_size (arch, gdb_regnum))
2001 {
2002 /* Big-endian, and we want less than full size. */
2003 reg_offset = register_size (arch, gdb_regnum) - this_size;
2004 }
2005
2006 if (need_bitwise)
2007 {
2008 int optim, unavail;
2009
2010 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
2011 this_size, buffer.data (),
2012 &optim, &unavail))
2013 {
2014 if (optim)
2015 throw_error (OPTIMIZED_OUT_ERROR,
2016 _("Can't do read-modify-write to "
2017 "update bitfield; containing word "
2018 "has been optimized out"));
2019 if (unavail)
2020 throw_error (NOT_AVAILABLE_ERROR,
2021 _("Can't do read-modify-write to update "
2022 "bitfield; containing word "
2023 "is unavailable"));
2024 }
2025 copy_bitwise (buffer.data (), dest_offset_bits,
2026 contents, source_offset_bits,
2027 this_size_bits,
2028 bits_big_endian);
2029 }
2030
2031 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2032 this_size, source_buffer);
2033 }
2034 break;
2035 case DWARF_VALUE_MEMORY:
2036 if (need_bitwise)
2037 {
2038 /* Only the first and last bytes can possibly have any
2039 bits reused. */
2040 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2041 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2042 &buffer[this_size - 1], 1);
2043 copy_bitwise (buffer.data (), dest_offset_bits % 8,
2044 contents, source_offset_bits,
2045 this_size_bits,
2046 bits_big_endian);
2047 }
2048
2049 write_memory (p->v.mem.addr + dest_offset,
2050 source_buffer, this_size);
2051 break;
2052 default:
2053 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2054 break;
2055 }
2056 offset += this_size_bits;
2057 }
2058 }
2059
2060 /* An implementation of an lval_funcs method to see whether a value is
2061 a synthetic pointer. */
2062
2063 static int
2064 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2065 int bit_length)
2066 {
2067 struct piece_closure *c
2068 = (struct piece_closure *) value_computed_closure (value);
2069 int i;
2070
2071 bit_offset += 8 * value_offset (value);
2072 if (value_bitsize (value))
2073 bit_offset += value_bitpos (value);
2074
2075 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2076 {
2077 struct dwarf_expr_piece *p = &c->pieces[i];
2078 size_t this_size_bits = p->size;
2079
2080 if (bit_offset > 0)
2081 {
2082 if (bit_offset >= this_size_bits)
2083 {
2084 bit_offset -= this_size_bits;
2085 continue;
2086 }
2087
2088 bit_length -= this_size_bits - bit_offset;
2089 bit_offset = 0;
2090 }
2091 else
2092 bit_length -= this_size_bits;
2093
2094 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2095 return 0;
2096 }
2097
2098 return 1;
2099 }
2100
2101 /* A wrapper function for get_frame_address_in_block. */
2102
2103 static CORE_ADDR
2104 get_frame_address_in_block_wrapper (void *baton)
2105 {
2106 return get_frame_address_in_block ((struct frame_info *) baton);
2107 }
2108
2109 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2110
2111 static struct value *
2112 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2113 struct dwarf2_per_cu_data *per_cu,
2114 struct type *type)
2115 {
2116 struct value *result = NULL;
2117 struct obstack temp_obstack;
2118 struct cleanup *cleanup;
2119 const gdb_byte *bytes;
2120 LONGEST len;
2121
2122 obstack_init (&temp_obstack);
2123 cleanup = make_cleanup_obstack_free (&temp_obstack);
2124 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2125
2126 if (bytes != NULL)
2127 {
2128 if (byte_offset >= 0
2129 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2130 {
2131 bytes += byte_offset;
2132 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2133 }
2134 else
2135 invalid_synthetic_pointer ();
2136 }
2137 else
2138 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2139
2140 do_cleanups (cleanup);
2141
2142 return result;
2143 }
2144
2145 /* Fetch the value pointed to by a synthetic pointer. */
2146
2147 static struct value *
2148 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2149 struct dwarf2_per_cu_data *per_cu,
2150 struct frame_info *frame, struct type *type)
2151 {
2152 /* Fetch the location expression of the DIE we're pointing to. */
2153 struct dwarf2_locexpr_baton baton
2154 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2155 get_frame_address_in_block_wrapper, frame);
2156
2157 /* Get type of pointed-to DIE. */
2158 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2159 if (orig_type == NULL)
2160 invalid_synthetic_pointer ();
2161
2162 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2163 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2164 or it may've been optimized out. */
2165 if (baton.data != NULL)
2166 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2167 baton.size, baton.per_cu,
2168 TYPE_TARGET_TYPE (type),
2169 byte_offset);
2170 else
2171 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2172 type);
2173 }
2174
2175 /* An implementation of an lval_funcs method to indirect through a
2176 pointer. This handles the synthetic pointer case when needed. */
2177
2178 static struct value *
2179 indirect_pieced_value (struct value *value)
2180 {
2181 struct piece_closure *c
2182 = (struct piece_closure *) value_computed_closure (value);
2183 struct type *type;
2184 struct frame_info *frame;
2185 struct dwarf2_locexpr_baton baton;
2186 int i, bit_length;
2187 LONGEST bit_offset;
2188 struct dwarf_expr_piece *piece = NULL;
2189 LONGEST byte_offset;
2190 enum bfd_endian byte_order;
2191
2192 type = check_typedef (value_type (value));
2193 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2194 return NULL;
2195
2196 bit_length = 8 * TYPE_LENGTH (type);
2197 bit_offset = 8 * value_offset (value);
2198 if (value_bitsize (value))
2199 bit_offset += value_bitpos (value);
2200
2201 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2202 {
2203 struct dwarf_expr_piece *p = &c->pieces[i];
2204 size_t this_size_bits = p->size;
2205
2206 if (bit_offset > 0)
2207 {
2208 if (bit_offset >= this_size_bits)
2209 {
2210 bit_offset -= this_size_bits;
2211 continue;
2212 }
2213
2214 bit_length -= this_size_bits - bit_offset;
2215 bit_offset = 0;
2216 }
2217 else
2218 bit_length -= this_size_bits;
2219
2220 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2221 return NULL;
2222
2223 if (bit_length != 0)
2224 error (_("Invalid use of DW_OP_implicit_pointer"));
2225
2226 piece = p;
2227 break;
2228 }
2229
2230 gdb_assert (piece != NULL);
2231 frame = get_selected_frame (_("No frame selected."));
2232
2233 /* This is an offset requested by GDB, such as value subscripts.
2234 However, due to how synthetic pointers are implemented, this is
2235 always presented to us as a pointer type. This means we have to
2236 sign-extend it manually as appropriate. Use raw
2237 extract_signed_integer directly rather than value_as_address and
2238 sign extend afterwards on architectures that would need it
2239 (mostly everywhere except MIPS, which has signed addresses) as
2240 the later would go through gdbarch_pointer_to_address and thus
2241 return a CORE_ADDR with high bits set on architectures that
2242 encode address spaces and other things in CORE_ADDR. */
2243 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2244 byte_offset = extract_signed_integer (value_contents (value),
2245 TYPE_LENGTH (type), byte_order);
2246 byte_offset += piece->v.ptr.offset;
2247
2248 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2249 byte_offset, c->per_cu,
2250 frame, type);
2251 }
2252
2253 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2254 references. */
2255
2256 static struct value *
2257 coerce_pieced_ref (const struct value *value)
2258 {
2259 struct type *type = check_typedef (value_type (value));
2260
2261 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2262 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2263 {
2264 const struct piece_closure *closure
2265 = (struct piece_closure *) value_computed_closure (value);
2266 struct frame_info *frame
2267 = get_selected_frame (_("No frame selected."));
2268
2269 /* gdb represents synthetic pointers as pieced values with a single
2270 piece. */
2271 gdb_assert (closure != NULL);
2272 gdb_assert (closure->n_pieces == 1);
2273
2274 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2275 closure->pieces->v.ptr.offset,
2276 closure->per_cu, frame, type);
2277 }
2278 else
2279 {
2280 /* Else: not a synthetic reference; do nothing. */
2281 return NULL;
2282 }
2283 }
2284
2285 static void *
2286 copy_pieced_value_closure (const struct value *v)
2287 {
2288 struct piece_closure *c
2289 = (struct piece_closure *) value_computed_closure (v);
2290
2291 ++c->refc;
2292 return c;
2293 }
2294
2295 static void
2296 free_pieced_value_closure (struct value *v)
2297 {
2298 struct piece_closure *c
2299 = (struct piece_closure *) value_computed_closure (v);
2300
2301 --c->refc;
2302 if (c->refc == 0)
2303 {
2304 int i;
2305
2306 for (i = 0; i < c->n_pieces; ++i)
2307 if (c->pieces[i].location == DWARF_VALUE_STACK)
2308 value_free (c->pieces[i].v.value);
2309
2310 xfree (c->pieces);
2311 xfree (c);
2312 }
2313 }
2314
2315 /* Functions for accessing a variable described by DW_OP_piece. */
2316 static const struct lval_funcs pieced_value_funcs = {
2317 read_pieced_value,
2318 write_pieced_value,
2319 indirect_pieced_value,
2320 coerce_pieced_ref,
2321 check_pieced_synthetic_pointer,
2322 copy_pieced_value_closure,
2323 free_pieced_value_closure
2324 };
2325
2326 /* Evaluate a location description, starting at DATA and with length
2327 SIZE, to find the current location of variable of TYPE in the
2328 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2329 location of the subobject of type SUBOBJ_TYPE at byte offset
2330 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2331
2332 static struct value *
2333 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2334 const gdb_byte *data, size_t size,
2335 struct dwarf2_per_cu_data *per_cu,
2336 struct type *subobj_type,
2337 LONGEST subobj_byte_offset)
2338 {
2339 struct value *retval;
2340 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2341
2342 if (subobj_type == NULL)
2343 {
2344 subobj_type = type;
2345 subobj_byte_offset = 0;
2346 }
2347 else if (subobj_byte_offset < 0)
2348 invalid_synthetic_pointer ();
2349
2350 if (size == 0)
2351 return allocate_optimized_out_value (subobj_type);
2352
2353 dwarf_evaluate_loc_desc ctx;
2354 ctx.frame = frame;
2355 ctx.per_cu = per_cu;
2356 ctx.obj_address = 0;
2357
2358 scoped_value_mark free_values;
2359
2360 ctx.gdbarch = get_objfile_arch (objfile);
2361 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2362 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2363 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2364
2365 TRY
2366 {
2367 ctx.eval (data, size);
2368 }
2369 CATCH (ex, RETURN_MASK_ERROR)
2370 {
2371 if (ex.error == NOT_AVAILABLE_ERROR)
2372 {
2373 free_values.free_to_mark ();
2374 retval = allocate_value (subobj_type);
2375 mark_value_bytes_unavailable (retval, 0,
2376 TYPE_LENGTH (subobj_type));
2377 return retval;
2378 }
2379 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2380 {
2381 if (entry_values_debug)
2382 exception_print (gdb_stdout, ex);
2383 free_values.free_to_mark ();
2384 return allocate_optimized_out_value (subobj_type);
2385 }
2386 else
2387 throw_exception (ex);
2388 }
2389 END_CATCH
2390
2391 if (ctx.num_pieces > 0)
2392 {
2393 struct piece_closure *c;
2394 ULONGEST bit_size = 0;
2395 int i;
2396
2397 for (i = 0; i < ctx.num_pieces; ++i)
2398 bit_size += ctx.pieces[i].size;
2399 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2400 invalid_synthetic_pointer ();
2401
2402 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2403 frame);
2404 /* We must clean up the value chain after creating the piece
2405 closure but before allocating the result. */
2406 free_values.free_to_mark ();
2407 retval = allocate_computed_value (subobj_type,
2408 &pieced_value_funcs, c);
2409 set_value_offset (retval, subobj_byte_offset);
2410 }
2411 else
2412 {
2413 switch (ctx.location)
2414 {
2415 case DWARF_VALUE_REGISTER:
2416 {
2417 struct gdbarch *arch = get_frame_arch (frame);
2418 int dwarf_regnum
2419 = longest_to_int (value_as_long (ctx.fetch (0)));
2420 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2421
2422 if (subobj_byte_offset != 0)
2423 error (_("cannot use offset on synthetic pointer to register"));
2424 free_values.free_to_mark ();
2425 retval = value_from_register (subobj_type, gdb_regnum, frame);
2426 if (value_optimized_out (retval))
2427 {
2428 struct value *tmp;
2429
2430 /* This means the register has undefined value / was
2431 not saved. As we're computing the location of some
2432 variable etc. in the program, not a value for
2433 inspecting a register ($pc, $sp, etc.), return a
2434 generic optimized out value instead, so that we show
2435 <optimized out> instead of <not saved>. */
2436 tmp = allocate_value (subobj_type);
2437 value_contents_copy (tmp, 0, retval, 0,
2438 TYPE_LENGTH (subobj_type));
2439 retval = tmp;
2440 }
2441 }
2442 break;
2443
2444 case DWARF_VALUE_MEMORY:
2445 {
2446 struct type *ptr_type;
2447 CORE_ADDR address = ctx.fetch_address (0);
2448 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2449
2450 /* DW_OP_deref_size (and possibly other operations too) may
2451 create a pointer instead of an address. Ideally, the
2452 pointer to address conversion would be performed as part
2453 of those operations, but the type of the object to
2454 which the address refers is not known at the time of
2455 the operation. Therefore, we do the conversion here
2456 since the type is readily available. */
2457
2458 switch (TYPE_CODE (subobj_type))
2459 {
2460 case TYPE_CODE_FUNC:
2461 case TYPE_CODE_METHOD:
2462 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2463 break;
2464 default:
2465 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2466 break;
2467 }
2468 address = value_as_address (value_from_pointer (ptr_type, address));
2469
2470 free_values.free_to_mark ();
2471 retval = value_at_lazy (subobj_type,
2472 address + subobj_byte_offset);
2473 if (in_stack_memory)
2474 set_value_stack (retval, 1);
2475 }
2476 break;
2477
2478 case DWARF_VALUE_STACK:
2479 {
2480 struct value *value = ctx.fetch (0);
2481 size_t n = TYPE_LENGTH (value_type (value));
2482 size_t len = TYPE_LENGTH (subobj_type);
2483 size_t max = TYPE_LENGTH (type);
2484 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2485 struct cleanup *cleanup;
2486
2487 if (subobj_byte_offset + len > max)
2488 invalid_synthetic_pointer ();
2489
2490 /* Preserve VALUE because we are going to free values back
2491 to the mark, but we still need the value contents
2492 below. */
2493 value_incref (value);
2494 free_values.free_to_mark ();
2495 cleanup = make_cleanup_value_free (value);
2496
2497 retval = allocate_value (subobj_type);
2498
2499 /* The given offset is relative to the actual object. */
2500 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2501 subobj_byte_offset += n - max;
2502
2503 memcpy (value_contents_raw (retval),
2504 value_contents_all (value) + subobj_byte_offset, len);
2505
2506 do_cleanups (cleanup);
2507 }
2508 break;
2509
2510 case DWARF_VALUE_LITERAL:
2511 {
2512 bfd_byte *contents;
2513 size_t n = TYPE_LENGTH (subobj_type);
2514
2515 if (subobj_byte_offset + n > ctx.len)
2516 invalid_synthetic_pointer ();
2517
2518 free_values.free_to_mark ();
2519 retval = allocate_value (subobj_type);
2520 contents = value_contents_raw (retval);
2521 memcpy (contents, ctx.data + subobj_byte_offset, n);
2522 }
2523 break;
2524
2525 case DWARF_VALUE_OPTIMIZED_OUT:
2526 free_values.free_to_mark ();
2527 retval = allocate_optimized_out_value (subobj_type);
2528 break;
2529
2530 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2531 operation by execute_stack_op. */
2532 case DWARF_VALUE_IMPLICIT_POINTER:
2533 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2534 it can only be encountered when making a piece. */
2535 default:
2536 internal_error (__FILE__, __LINE__, _("invalid location type"));
2537 }
2538 }
2539
2540 set_value_initialized (retval, ctx.initialized);
2541
2542 return retval;
2543 }
2544
2545 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2546 passes 0 as the byte_offset. */
2547
2548 struct value *
2549 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2550 const gdb_byte *data, size_t size,
2551 struct dwarf2_per_cu_data *per_cu)
2552 {
2553 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2554 NULL, 0);
2555 }
2556
2557 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2558 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2559 frame in which the expression is evaluated. ADDR is a context (location of
2560 a variable) and might be needed to evaluate the location expression.
2561 Returns 1 on success, 0 otherwise. */
2562
2563 static int
2564 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2565 struct frame_info *frame,
2566 CORE_ADDR addr,
2567 CORE_ADDR *valp)
2568 {
2569 struct objfile *objfile;
2570
2571 if (dlbaton == NULL || dlbaton->size == 0)
2572 return 0;
2573
2574 dwarf_evaluate_loc_desc ctx;
2575
2576 ctx.frame = frame;
2577 ctx.per_cu = dlbaton->per_cu;
2578 ctx.obj_address = addr;
2579
2580 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2581
2582 ctx.gdbarch = get_objfile_arch (objfile);
2583 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2584 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2585 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2586
2587 ctx.eval (dlbaton->data, dlbaton->size);
2588
2589 switch (ctx.location)
2590 {
2591 case DWARF_VALUE_REGISTER:
2592 case DWARF_VALUE_MEMORY:
2593 case DWARF_VALUE_STACK:
2594 *valp = ctx.fetch_address (0);
2595 if (ctx.location == DWARF_VALUE_REGISTER)
2596 *valp = ctx.read_addr_from_reg (*valp);
2597 return 1;
2598 case DWARF_VALUE_LITERAL:
2599 *valp = extract_signed_integer (ctx.data, ctx.len,
2600 gdbarch_byte_order (ctx.gdbarch));
2601 return 1;
2602 /* Unsupported dwarf values. */
2603 case DWARF_VALUE_OPTIMIZED_OUT:
2604 case DWARF_VALUE_IMPLICIT_POINTER:
2605 break;
2606 }
2607
2608 return 0;
2609 }
2610
2611 /* See dwarf2loc.h. */
2612
2613 int
2614 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2615 struct frame_info *frame,
2616 struct property_addr_info *addr_stack,
2617 CORE_ADDR *value)
2618 {
2619 if (prop == NULL)
2620 return 0;
2621
2622 if (frame == NULL && has_stack_frames ())
2623 frame = get_selected_frame (NULL);
2624
2625 switch (prop->kind)
2626 {
2627 case PROP_LOCEXPR:
2628 {
2629 const struct dwarf2_property_baton *baton
2630 = (const struct dwarf2_property_baton *) prop->data.baton;
2631
2632 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2633 addr_stack ? addr_stack->addr : 0,
2634 value))
2635 {
2636 if (baton->referenced_type)
2637 {
2638 struct value *val = value_at (baton->referenced_type, *value);
2639
2640 *value = value_as_address (val);
2641 }
2642 return 1;
2643 }
2644 }
2645 break;
2646
2647 case PROP_LOCLIST:
2648 {
2649 struct dwarf2_property_baton *baton
2650 = (struct dwarf2_property_baton *) prop->data.baton;
2651 CORE_ADDR pc = get_frame_address_in_block (frame);
2652 const gdb_byte *data;
2653 struct value *val;
2654 size_t size;
2655
2656 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2657 if (data != NULL)
2658 {
2659 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2660 size, baton->loclist.per_cu);
2661 if (!value_optimized_out (val))
2662 {
2663 *value = value_as_address (val);
2664 return 1;
2665 }
2666 }
2667 }
2668 break;
2669
2670 case PROP_CONST:
2671 *value = prop->data.const_val;
2672 return 1;
2673
2674 case PROP_ADDR_OFFSET:
2675 {
2676 struct dwarf2_property_baton *baton
2677 = (struct dwarf2_property_baton *) prop->data.baton;
2678 struct property_addr_info *pinfo;
2679 struct value *val;
2680
2681 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2682 if (pinfo->type == baton->referenced_type)
2683 break;
2684 if (pinfo == NULL)
2685 error (_("cannot find reference address for offset property"));
2686 if (pinfo->valaddr != NULL)
2687 val = value_from_contents
2688 (baton->offset_info.type,
2689 pinfo->valaddr + baton->offset_info.offset);
2690 else
2691 val = value_at (baton->offset_info.type,
2692 pinfo->addr + baton->offset_info.offset);
2693 *value = value_as_address (val);
2694 return 1;
2695 }
2696 }
2697
2698 return 0;
2699 }
2700
2701 /* See dwarf2loc.h. */
2702
2703 void
2704 dwarf2_compile_property_to_c (string_file &stream,
2705 const char *result_name,
2706 struct gdbarch *gdbarch,
2707 unsigned char *registers_used,
2708 const struct dynamic_prop *prop,
2709 CORE_ADDR pc,
2710 struct symbol *sym)
2711 {
2712 struct dwarf2_property_baton *baton
2713 = (struct dwarf2_property_baton *) prop->data.baton;
2714 const gdb_byte *data;
2715 size_t size;
2716 struct dwarf2_per_cu_data *per_cu;
2717
2718 if (prop->kind == PROP_LOCEXPR)
2719 {
2720 data = baton->locexpr.data;
2721 size = baton->locexpr.size;
2722 per_cu = baton->locexpr.per_cu;
2723 }
2724 else
2725 {
2726 gdb_assert (prop->kind == PROP_LOCLIST);
2727
2728 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2729 per_cu = baton->loclist.per_cu;
2730 }
2731
2732 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2733 gdbarch, registers_used,
2734 dwarf2_per_cu_addr_size (per_cu),
2735 data, data + size, per_cu);
2736 }
2737
2738 \f
2739 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2740
2741 class symbol_needs_eval_context : public dwarf_expr_context
2742 {
2743 public:
2744
2745 enum symbol_needs_kind needs;
2746 struct dwarf2_per_cu_data *per_cu;
2747
2748 /* Reads from registers do require a frame. */
2749 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2750 {
2751 needs = SYMBOL_NEEDS_FRAME;
2752 return 1;
2753 }
2754
2755 /* "get_reg_value" callback: Reads from registers do require a
2756 frame. */
2757
2758 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2759 {
2760 needs = SYMBOL_NEEDS_FRAME;
2761 return value_zero (type, not_lval);
2762 }
2763
2764 /* Reads from memory do not require a frame. */
2765 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2766 {
2767 memset (buf, 0, len);
2768 }
2769
2770 /* Frame-relative accesses do require a frame. */
2771 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2772 {
2773 static gdb_byte lit0 = DW_OP_lit0;
2774
2775 *start = &lit0;
2776 *length = 1;
2777
2778 needs = SYMBOL_NEEDS_FRAME;
2779 }
2780
2781 /* CFA accesses require a frame. */
2782 CORE_ADDR get_frame_cfa () OVERRIDE
2783 {
2784 needs = SYMBOL_NEEDS_FRAME;
2785 return 1;
2786 }
2787
2788 CORE_ADDR get_frame_pc () OVERRIDE
2789 {
2790 needs = SYMBOL_NEEDS_FRAME;
2791 return 1;
2792 }
2793
2794 /* Thread-local accesses require registers, but not a frame. */
2795 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2796 {
2797 if (needs <= SYMBOL_NEEDS_REGISTERS)
2798 needs = SYMBOL_NEEDS_REGISTERS;
2799 return 1;
2800 }
2801
2802 /* Helper interface of per_cu_dwarf_call for
2803 dwarf2_loc_desc_get_symbol_read_needs. */
2804
2805 void dwarf_call (cu_offset die_offset) OVERRIDE
2806 {
2807 per_cu_dwarf_call (this, die_offset, per_cu);
2808 }
2809
2810 /* DW_OP_entry_value accesses require a caller, therefore a
2811 frame. */
2812
2813 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2814 union call_site_parameter_u kind_u,
2815 int deref_size) OVERRIDE
2816 {
2817 needs = SYMBOL_NEEDS_FRAME;
2818
2819 /* The expression may require some stub values on DWARF stack. */
2820 push_address (0, 0);
2821 }
2822
2823 /* DW_OP_GNU_addr_index doesn't require a frame. */
2824
2825 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2826 {
2827 /* Nothing to do. */
2828 return 1;
2829 }
2830
2831 /* DW_OP_push_object_address has a frame already passed through. */
2832
2833 CORE_ADDR get_object_address () OVERRIDE
2834 {
2835 /* Nothing to do. */
2836 return 1;
2837 }
2838 };
2839
2840 /* Compute the correct symbol_needs_kind value for the location
2841 expression at DATA (length SIZE). */
2842
2843 static enum symbol_needs_kind
2844 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2845 struct dwarf2_per_cu_data *per_cu)
2846 {
2847 int in_reg;
2848 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2849
2850 scoped_value_mark free_values;
2851
2852 symbol_needs_eval_context ctx;
2853
2854 ctx.needs = SYMBOL_NEEDS_NONE;
2855 ctx.per_cu = per_cu;
2856 ctx.gdbarch = get_objfile_arch (objfile);
2857 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2858 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2859 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2860
2861 ctx.eval (data, size);
2862
2863 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2864
2865 if (ctx.num_pieces > 0)
2866 {
2867 int i;
2868
2869 /* If the location has several pieces, and any of them are in
2870 registers, then we will need a frame to fetch them from. */
2871 for (i = 0; i < ctx.num_pieces; i++)
2872 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2873 in_reg = 1;
2874 }
2875
2876 if (in_reg)
2877 ctx.needs = SYMBOL_NEEDS_FRAME;
2878 return ctx.needs;
2879 }
2880
2881 /* A helper function that throws an unimplemented error mentioning a
2882 given DWARF operator. */
2883
2884 static void
2885 unimplemented (unsigned int op)
2886 {
2887 const char *name = get_DW_OP_name (op);
2888
2889 if (name)
2890 error (_("DWARF operator %s cannot be translated to an agent expression"),
2891 name);
2892 else
2893 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2894 "to an agent expression"),
2895 op);
2896 }
2897
2898 /* See dwarf2loc.h.
2899
2900 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2901 can issue a complaint, which is better than having every target's
2902 implementation of dwarf2_reg_to_regnum do it. */
2903
2904 int
2905 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2906 {
2907 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2908
2909 if (reg == -1)
2910 {
2911 complaint (&symfile_complaints,
2912 _("bad DWARF register number %d"), dwarf_reg);
2913 }
2914 return reg;
2915 }
2916
2917 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2918 Throw an error because DWARF_REG is bad. */
2919
2920 static void
2921 throw_bad_regnum_error (ULONGEST dwarf_reg)
2922 {
2923 /* Still want to print -1 as "-1".
2924 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2925 but that's overkill for now. */
2926 if ((int) dwarf_reg == dwarf_reg)
2927 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2928 error (_("Unable to access DWARF register number %s"),
2929 pulongest (dwarf_reg));
2930 }
2931
2932 /* See dwarf2loc.h. */
2933
2934 int
2935 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2936 {
2937 int reg;
2938
2939 if (dwarf_reg > INT_MAX)
2940 throw_bad_regnum_error (dwarf_reg);
2941 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2942 bad, but that's ok. */
2943 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2944 if (reg == -1)
2945 throw_bad_regnum_error (dwarf_reg);
2946 return reg;
2947 }
2948
2949 /* A helper function that emits an access to memory. ARCH is the
2950 target architecture. EXPR is the expression which we are building.
2951 NBITS is the number of bits we want to read. This emits the
2952 opcodes needed to read the memory and then extract the desired
2953 bits. */
2954
2955 static void
2956 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2957 {
2958 ULONGEST nbytes = (nbits + 7) / 8;
2959
2960 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2961
2962 if (expr->tracing)
2963 ax_trace_quick (expr, nbytes);
2964
2965 if (nbits <= 8)
2966 ax_simple (expr, aop_ref8);
2967 else if (nbits <= 16)
2968 ax_simple (expr, aop_ref16);
2969 else if (nbits <= 32)
2970 ax_simple (expr, aop_ref32);
2971 else
2972 ax_simple (expr, aop_ref64);
2973
2974 /* If we read exactly the number of bytes we wanted, we're done. */
2975 if (8 * nbytes == nbits)
2976 return;
2977
2978 if (gdbarch_bits_big_endian (arch))
2979 {
2980 /* On a bits-big-endian machine, we want the high-order
2981 NBITS. */
2982 ax_const_l (expr, 8 * nbytes - nbits);
2983 ax_simple (expr, aop_rsh_unsigned);
2984 }
2985 else
2986 {
2987 /* On a bits-little-endian box, we want the low-order NBITS. */
2988 ax_zero_ext (expr, nbits);
2989 }
2990 }
2991
2992 /* A helper function to return the frame's PC. */
2993
2994 static CORE_ADDR
2995 get_ax_pc (void *baton)
2996 {
2997 struct agent_expr *expr = (struct agent_expr *) baton;
2998
2999 return expr->scope;
3000 }
3001
3002 /* Compile a DWARF location expression to an agent expression.
3003
3004 EXPR is the agent expression we are building.
3005 LOC is the agent value we modify.
3006 ARCH is the architecture.
3007 ADDR_SIZE is the size of addresses, in bytes.
3008 OP_PTR is the start of the location expression.
3009 OP_END is one past the last byte of the location expression.
3010
3011 This will throw an exception for various kinds of errors -- for
3012 example, if the expression cannot be compiled, or if the expression
3013 is invalid. */
3014
3015 void
3016 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3017 struct gdbarch *arch, unsigned int addr_size,
3018 const gdb_byte *op_ptr, const gdb_byte *op_end,
3019 struct dwarf2_per_cu_data *per_cu)
3020 {
3021 int i;
3022 std::vector<int> dw_labels, patches;
3023 const gdb_byte * const base = op_ptr;
3024 const gdb_byte *previous_piece = op_ptr;
3025 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3026 ULONGEST bits_collected = 0;
3027 unsigned int addr_size_bits = 8 * addr_size;
3028 int bits_big_endian = gdbarch_bits_big_endian (arch);
3029
3030 std::vector<int> offsets (op_end - op_ptr, -1);
3031
3032 /* By default we are making an address. */
3033 loc->kind = axs_lvalue_memory;
3034
3035 while (op_ptr < op_end)
3036 {
3037 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3038 uint64_t uoffset, reg;
3039 int64_t offset;
3040 int i;
3041
3042 offsets[op_ptr - base] = expr->len;
3043 ++op_ptr;
3044
3045 /* Our basic approach to code generation is to map DWARF
3046 operations directly to AX operations. However, there are
3047 some differences.
3048
3049 First, DWARF works on address-sized units, but AX always uses
3050 LONGEST. For most operations we simply ignore this
3051 difference; instead we generate sign extensions as needed
3052 before division and comparison operations. It would be nice
3053 to omit the sign extensions, but there is no way to determine
3054 the size of the target's LONGEST. (This code uses the size
3055 of the host LONGEST in some cases -- that is a bug but it is
3056 difficult to fix.)
3057
3058 Second, some DWARF operations cannot be translated to AX.
3059 For these we simply fail. See
3060 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3061 switch (op)
3062 {
3063 case DW_OP_lit0:
3064 case DW_OP_lit1:
3065 case DW_OP_lit2:
3066 case DW_OP_lit3:
3067 case DW_OP_lit4:
3068 case DW_OP_lit5:
3069 case DW_OP_lit6:
3070 case DW_OP_lit7:
3071 case DW_OP_lit8:
3072 case DW_OP_lit9:
3073 case DW_OP_lit10:
3074 case DW_OP_lit11:
3075 case DW_OP_lit12:
3076 case DW_OP_lit13:
3077 case DW_OP_lit14:
3078 case DW_OP_lit15:
3079 case DW_OP_lit16:
3080 case DW_OP_lit17:
3081 case DW_OP_lit18:
3082 case DW_OP_lit19:
3083 case DW_OP_lit20:
3084 case DW_OP_lit21:
3085 case DW_OP_lit22:
3086 case DW_OP_lit23:
3087 case DW_OP_lit24:
3088 case DW_OP_lit25:
3089 case DW_OP_lit26:
3090 case DW_OP_lit27:
3091 case DW_OP_lit28:
3092 case DW_OP_lit29:
3093 case DW_OP_lit30:
3094 case DW_OP_lit31:
3095 ax_const_l (expr, op - DW_OP_lit0);
3096 break;
3097
3098 case DW_OP_addr:
3099 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3100 op_ptr += addr_size;
3101 /* Some versions of GCC emit DW_OP_addr before
3102 DW_OP_GNU_push_tls_address. In this case the value is an
3103 index, not an address. We don't support things like
3104 branching between the address and the TLS op. */
3105 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3106 uoffset += dwarf2_per_cu_text_offset (per_cu);
3107 ax_const_l (expr, uoffset);
3108 break;
3109
3110 case DW_OP_const1u:
3111 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3112 op_ptr += 1;
3113 break;
3114 case DW_OP_const1s:
3115 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3116 op_ptr += 1;
3117 break;
3118 case DW_OP_const2u:
3119 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3120 op_ptr += 2;
3121 break;
3122 case DW_OP_const2s:
3123 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3124 op_ptr += 2;
3125 break;
3126 case DW_OP_const4u:
3127 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3128 op_ptr += 4;
3129 break;
3130 case DW_OP_const4s:
3131 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3132 op_ptr += 4;
3133 break;
3134 case DW_OP_const8u:
3135 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3136 op_ptr += 8;
3137 break;
3138 case DW_OP_const8s:
3139 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3140 op_ptr += 8;
3141 break;
3142 case DW_OP_constu:
3143 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3144 ax_const_l (expr, uoffset);
3145 break;
3146 case DW_OP_consts:
3147 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3148 ax_const_l (expr, offset);
3149 break;
3150
3151 case DW_OP_reg0:
3152 case DW_OP_reg1:
3153 case DW_OP_reg2:
3154 case DW_OP_reg3:
3155 case DW_OP_reg4:
3156 case DW_OP_reg5:
3157 case DW_OP_reg6:
3158 case DW_OP_reg7:
3159 case DW_OP_reg8:
3160 case DW_OP_reg9:
3161 case DW_OP_reg10:
3162 case DW_OP_reg11:
3163 case DW_OP_reg12:
3164 case DW_OP_reg13:
3165 case DW_OP_reg14:
3166 case DW_OP_reg15:
3167 case DW_OP_reg16:
3168 case DW_OP_reg17:
3169 case DW_OP_reg18:
3170 case DW_OP_reg19:
3171 case DW_OP_reg20:
3172 case DW_OP_reg21:
3173 case DW_OP_reg22:
3174 case DW_OP_reg23:
3175 case DW_OP_reg24:
3176 case DW_OP_reg25:
3177 case DW_OP_reg26:
3178 case DW_OP_reg27:
3179 case DW_OP_reg28:
3180 case DW_OP_reg29:
3181 case DW_OP_reg30:
3182 case DW_OP_reg31:
3183 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3184 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3185 loc->kind = axs_lvalue_register;
3186 break;
3187
3188 case DW_OP_regx:
3189 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3190 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3191 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3192 loc->kind = axs_lvalue_register;
3193 break;
3194
3195 case DW_OP_implicit_value:
3196 {
3197 uint64_t len;
3198
3199 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3200 if (op_ptr + len > op_end)
3201 error (_("DW_OP_implicit_value: too few bytes available."));
3202 if (len > sizeof (ULONGEST))
3203 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3204 (int) len);
3205
3206 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3207 byte_order));
3208 op_ptr += len;
3209 dwarf_expr_require_composition (op_ptr, op_end,
3210 "DW_OP_implicit_value");
3211
3212 loc->kind = axs_rvalue;
3213 }
3214 break;
3215
3216 case DW_OP_stack_value:
3217 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3218 loc->kind = axs_rvalue;
3219 break;
3220
3221 case DW_OP_breg0:
3222 case DW_OP_breg1:
3223 case DW_OP_breg2:
3224 case DW_OP_breg3:
3225 case DW_OP_breg4:
3226 case DW_OP_breg5:
3227 case DW_OP_breg6:
3228 case DW_OP_breg7:
3229 case DW_OP_breg8:
3230 case DW_OP_breg9:
3231 case DW_OP_breg10:
3232 case DW_OP_breg11:
3233 case DW_OP_breg12:
3234 case DW_OP_breg13:
3235 case DW_OP_breg14:
3236 case DW_OP_breg15:
3237 case DW_OP_breg16:
3238 case DW_OP_breg17:
3239 case DW_OP_breg18:
3240 case DW_OP_breg19:
3241 case DW_OP_breg20:
3242 case DW_OP_breg21:
3243 case DW_OP_breg22:
3244 case DW_OP_breg23:
3245 case DW_OP_breg24:
3246 case DW_OP_breg25:
3247 case DW_OP_breg26:
3248 case DW_OP_breg27:
3249 case DW_OP_breg28:
3250 case DW_OP_breg29:
3251 case DW_OP_breg30:
3252 case DW_OP_breg31:
3253 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3254 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3255 ax_reg (expr, i);
3256 if (offset != 0)
3257 {
3258 ax_const_l (expr, offset);
3259 ax_simple (expr, aop_add);
3260 }
3261 break;
3262 case DW_OP_bregx:
3263 {
3264 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3265 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3266 i = dwarf_reg_to_regnum_or_error (arch, reg);
3267 ax_reg (expr, i);
3268 if (offset != 0)
3269 {
3270 ax_const_l (expr, offset);
3271 ax_simple (expr, aop_add);
3272 }
3273 }
3274 break;
3275 case DW_OP_fbreg:
3276 {
3277 const gdb_byte *datastart;
3278 size_t datalen;
3279 const struct block *b;
3280 struct symbol *framefunc;
3281
3282 b = block_for_pc (expr->scope);
3283
3284 if (!b)
3285 error (_("No block found for address"));
3286
3287 framefunc = block_linkage_function (b);
3288
3289 if (!framefunc)
3290 error (_("No function found for block"));
3291
3292 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3293 &datastart, &datalen);
3294
3295 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3296 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3297 datastart + datalen, per_cu);
3298 if (loc->kind == axs_lvalue_register)
3299 require_rvalue (expr, loc);
3300
3301 if (offset != 0)
3302 {
3303 ax_const_l (expr, offset);
3304 ax_simple (expr, aop_add);
3305 }
3306
3307 loc->kind = axs_lvalue_memory;
3308 }
3309 break;
3310
3311 case DW_OP_dup:
3312 ax_simple (expr, aop_dup);
3313 break;
3314
3315 case DW_OP_drop:
3316 ax_simple (expr, aop_pop);
3317 break;
3318
3319 case DW_OP_pick:
3320 offset = *op_ptr++;
3321 ax_pick (expr, offset);
3322 break;
3323
3324 case DW_OP_swap:
3325 ax_simple (expr, aop_swap);
3326 break;
3327
3328 case DW_OP_over:
3329 ax_pick (expr, 1);
3330 break;
3331
3332 case DW_OP_rot:
3333 ax_simple (expr, aop_rot);
3334 break;
3335
3336 case DW_OP_deref:
3337 case DW_OP_deref_size:
3338 {
3339 int size;
3340
3341 if (op == DW_OP_deref_size)
3342 size = *op_ptr++;
3343 else
3344 size = addr_size;
3345
3346 if (size != 1 && size != 2 && size != 4 && size != 8)
3347 error (_("Unsupported size %d in %s"),
3348 size, get_DW_OP_name (op));
3349 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3350 }
3351 break;
3352
3353 case DW_OP_abs:
3354 /* Sign extend the operand. */
3355 ax_ext (expr, addr_size_bits);
3356 ax_simple (expr, aop_dup);
3357 ax_const_l (expr, 0);
3358 ax_simple (expr, aop_less_signed);
3359 ax_simple (expr, aop_log_not);
3360 i = ax_goto (expr, aop_if_goto);
3361 /* We have to emit 0 - X. */
3362 ax_const_l (expr, 0);
3363 ax_simple (expr, aop_swap);
3364 ax_simple (expr, aop_sub);
3365 ax_label (expr, i, expr->len);
3366 break;
3367
3368 case DW_OP_neg:
3369 /* No need to sign extend here. */
3370 ax_const_l (expr, 0);
3371 ax_simple (expr, aop_swap);
3372 ax_simple (expr, aop_sub);
3373 break;
3374
3375 case DW_OP_not:
3376 /* Sign extend the operand. */
3377 ax_ext (expr, addr_size_bits);
3378 ax_simple (expr, aop_bit_not);
3379 break;
3380
3381 case DW_OP_plus_uconst:
3382 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3383 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3384 but we micro-optimize anyhow. */
3385 if (reg != 0)
3386 {
3387 ax_const_l (expr, reg);
3388 ax_simple (expr, aop_add);
3389 }
3390 break;
3391
3392 case DW_OP_and:
3393 ax_simple (expr, aop_bit_and);
3394 break;
3395
3396 case DW_OP_div:
3397 /* Sign extend the operands. */
3398 ax_ext (expr, addr_size_bits);
3399 ax_simple (expr, aop_swap);
3400 ax_ext (expr, addr_size_bits);
3401 ax_simple (expr, aop_swap);
3402 ax_simple (expr, aop_div_signed);
3403 break;
3404
3405 case DW_OP_minus:
3406 ax_simple (expr, aop_sub);
3407 break;
3408
3409 case DW_OP_mod:
3410 ax_simple (expr, aop_rem_unsigned);
3411 break;
3412
3413 case DW_OP_mul:
3414 ax_simple (expr, aop_mul);
3415 break;
3416
3417 case DW_OP_or:
3418 ax_simple (expr, aop_bit_or);
3419 break;
3420
3421 case DW_OP_plus:
3422 ax_simple (expr, aop_add);
3423 break;
3424
3425 case DW_OP_shl:
3426 ax_simple (expr, aop_lsh);
3427 break;
3428
3429 case DW_OP_shr:
3430 ax_simple (expr, aop_rsh_unsigned);
3431 break;
3432
3433 case DW_OP_shra:
3434 ax_simple (expr, aop_rsh_signed);
3435 break;
3436
3437 case DW_OP_xor:
3438 ax_simple (expr, aop_bit_xor);
3439 break;
3440
3441 case DW_OP_le:
3442 /* Sign extend the operands. */
3443 ax_ext (expr, addr_size_bits);
3444 ax_simple (expr, aop_swap);
3445 ax_ext (expr, addr_size_bits);
3446 /* Note no swap here: A <= B is !(B < A). */
3447 ax_simple (expr, aop_less_signed);
3448 ax_simple (expr, aop_log_not);
3449 break;
3450
3451 case DW_OP_ge:
3452 /* Sign extend the operands. */
3453 ax_ext (expr, addr_size_bits);
3454 ax_simple (expr, aop_swap);
3455 ax_ext (expr, addr_size_bits);
3456 ax_simple (expr, aop_swap);
3457 /* A >= B is !(A < B). */
3458 ax_simple (expr, aop_less_signed);
3459 ax_simple (expr, aop_log_not);
3460 break;
3461
3462 case DW_OP_eq:
3463 /* Sign extend the operands. */
3464 ax_ext (expr, addr_size_bits);
3465 ax_simple (expr, aop_swap);
3466 ax_ext (expr, addr_size_bits);
3467 /* No need for a second swap here. */
3468 ax_simple (expr, aop_equal);
3469 break;
3470
3471 case DW_OP_lt:
3472 /* Sign extend the operands. */
3473 ax_ext (expr, addr_size_bits);
3474 ax_simple (expr, aop_swap);
3475 ax_ext (expr, addr_size_bits);
3476 ax_simple (expr, aop_swap);
3477 ax_simple (expr, aop_less_signed);
3478 break;
3479
3480 case DW_OP_gt:
3481 /* Sign extend the operands. */
3482 ax_ext (expr, addr_size_bits);
3483 ax_simple (expr, aop_swap);
3484 ax_ext (expr, addr_size_bits);
3485 /* Note no swap here: A > B is B < A. */
3486 ax_simple (expr, aop_less_signed);
3487 break;
3488
3489 case DW_OP_ne:
3490 /* Sign extend the operands. */
3491 ax_ext (expr, addr_size_bits);
3492 ax_simple (expr, aop_swap);
3493 ax_ext (expr, addr_size_bits);
3494 /* No need for a swap here. */
3495 ax_simple (expr, aop_equal);
3496 ax_simple (expr, aop_log_not);
3497 break;
3498
3499 case DW_OP_call_frame_cfa:
3500 {
3501 int regnum;
3502 CORE_ADDR text_offset;
3503 LONGEST off;
3504 const gdb_byte *cfa_start, *cfa_end;
3505
3506 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3507 &regnum, &off,
3508 &text_offset, &cfa_start, &cfa_end))
3509 {
3510 /* Register. */
3511 ax_reg (expr, regnum);
3512 if (off != 0)
3513 {
3514 ax_const_l (expr, off);
3515 ax_simple (expr, aop_add);
3516 }
3517 }
3518 else
3519 {
3520 /* Another expression. */
3521 ax_const_l (expr, text_offset);
3522 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3523 cfa_start, cfa_end, per_cu);
3524 }
3525
3526 loc->kind = axs_lvalue_memory;
3527 }
3528 break;
3529
3530 case DW_OP_GNU_push_tls_address:
3531 case DW_OP_form_tls_address:
3532 unimplemented (op);
3533 break;
3534
3535 case DW_OP_push_object_address:
3536 unimplemented (op);
3537 break;
3538
3539 case DW_OP_skip:
3540 offset = extract_signed_integer (op_ptr, 2, byte_order);
3541 op_ptr += 2;
3542 i = ax_goto (expr, aop_goto);
3543 dw_labels.push_back (op_ptr + offset - base);
3544 patches.push_back (i);
3545 break;
3546
3547 case DW_OP_bra:
3548 offset = extract_signed_integer (op_ptr, 2, byte_order);
3549 op_ptr += 2;
3550 /* Zero extend the operand. */
3551 ax_zero_ext (expr, addr_size_bits);
3552 i = ax_goto (expr, aop_if_goto);
3553 dw_labels.push_back (op_ptr + offset - base);
3554 patches.push_back (i);
3555 break;
3556
3557 case DW_OP_nop:
3558 break;
3559
3560 case DW_OP_piece:
3561 case DW_OP_bit_piece:
3562 {
3563 uint64_t size, offset;
3564
3565 if (op_ptr - 1 == previous_piece)
3566 error (_("Cannot translate empty pieces to agent expressions"));
3567 previous_piece = op_ptr - 1;
3568
3569 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3570 if (op == DW_OP_piece)
3571 {
3572 size *= 8;
3573 offset = 0;
3574 }
3575 else
3576 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3577
3578 if (bits_collected + size > 8 * sizeof (LONGEST))
3579 error (_("Expression pieces exceed word size"));
3580
3581 /* Access the bits. */
3582 switch (loc->kind)
3583 {
3584 case axs_lvalue_register:
3585 ax_reg (expr, loc->u.reg);
3586 break;
3587
3588 case axs_lvalue_memory:
3589 /* Offset the pointer, if needed. */
3590 if (offset > 8)
3591 {
3592 ax_const_l (expr, offset / 8);
3593 ax_simple (expr, aop_add);
3594 offset %= 8;
3595 }
3596 access_memory (arch, expr, size);
3597 break;
3598 }
3599
3600 /* For a bits-big-endian target, shift up what we already
3601 have. For a bits-little-endian target, shift up the
3602 new data. Note that there is a potential bug here if
3603 the DWARF expression leaves multiple values on the
3604 stack. */
3605 if (bits_collected > 0)
3606 {
3607 if (bits_big_endian)
3608 {
3609 ax_simple (expr, aop_swap);
3610 ax_const_l (expr, size);
3611 ax_simple (expr, aop_lsh);
3612 /* We don't need a second swap here, because
3613 aop_bit_or is symmetric. */
3614 }
3615 else
3616 {
3617 ax_const_l (expr, size);
3618 ax_simple (expr, aop_lsh);
3619 }
3620 ax_simple (expr, aop_bit_or);
3621 }
3622
3623 bits_collected += size;
3624 loc->kind = axs_rvalue;
3625 }
3626 break;
3627
3628 case DW_OP_GNU_uninit:
3629 unimplemented (op);
3630
3631 case DW_OP_call2:
3632 case DW_OP_call4:
3633 {
3634 struct dwarf2_locexpr_baton block;
3635 int size = (op == DW_OP_call2 ? 2 : 4);
3636
3637 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3638 op_ptr += size;
3639
3640 cu_offset offset = (cu_offset) uoffset;
3641 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3642 get_ax_pc, expr);
3643
3644 /* DW_OP_call_ref is currently not supported. */
3645 gdb_assert (block.per_cu == per_cu);
3646
3647 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3648 block.data, block.data + block.size,
3649 per_cu);
3650 }
3651 break;
3652
3653 case DW_OP_call_ref:
3654 unimplemented (op);
3655
3656 default:
3657 unimplemented (op);
3658 }
3659 }
3660
3661 /* Patch all the branches we emitted. */
3662 for (i = 0; i < patches.size (); ++i)
3663 {
3664 int targ = offsets[dw_labels[i]];
3665 if (targ == -1)
3666 internal_error (__FILE__, __LINE__, _("invalid label"));
3667 ax_label (expr, patches[i], targ);
3668 }
3669 }
3670
3671 \f
3672 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3673 evaluator to calculate the location. */
3674 static struct value *
3675 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3676 {
3677 struct dwarf2_locexpr_baton *dlbaton
3678 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3679 struct value *val;
3680
3681 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3682 dlbaton->size, dlbaton->per_cu);
3683
3684 return val;
3685 }
3686
3687 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3688 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3689 will be thrown. */
3690
3691 static struct value *
3692 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3693 {
3694 struct dwarf2_locexpr_baton *dlbaton
3695 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3696
3697 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3698 dlbaton->size);
3699 }
3700
3701 /* Implementation of get_symbol_read_needs from
3702 symbol_computed_ops. */
3703
3704 static enum symbol_needs_kind
3705 locexpr_get_symbol_read_needs (struct symbol *symbol)
3706 {
3707 struct dwarf2_locexpr_baton *dlbaton
3708 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3709
3710 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3711 dlbaton->per_cu);
3712 }
3713
3714 /* Return true if DATA points to the end of a piece. END is one past
3715 the last byte in the expression. */
3716
3717 static int
3718 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3719 {
3720 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3721 }
3722
3723 /* Helper for locexpr_describe_location_piece that finds the name of a
3724 DWARF register. */
3725
3726 static const char *
3727 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3728 {
3729 int regnum;
3730
3731 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3732 We'd rather print *something* here than throw an error. */
3733 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3734 /* gdbarch_register_name may just return "", return something more
3735 descriptive for bad register numbers. */
3736 if (regnum == -1)
3737 {
3738 /* The text is output as "$bad_register_number".
3739 That is why we use the underscores. */
3740 return _("bad_register_number");
3741 }
3742 return gdbarch_register_name (gdbarch, regnum);
3743 }
3744
3745 /* Nicely describe a single piece of a location, returning an updated
3746 position in the bytecode sequence. This function cannot recognize
3747 all locations; if a location is not recognized, it simply returns
3748 DATA. If there is an error during reading, e.g. we run off the end
3749 of the buffer, an error is thrown. */
3750
3751 static const gdb_byte *
3752 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3753 CORE_ADDR addr, struct objfile *objfile,
3754 struct dwarf2_per_cu_data *per_cu,
3755 const gdb_byte *data, const gdb_byte *end,
3756 unsigned int addr_size)
3757 {
3758 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3759 size_t leb128_size;
3760
3761 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3762 {
3763 fprintf_filtered (stream, _("a variable in $%s"),
3764 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3765 data += 1;
3766 }
3767 else if (data[0] == DW_OP_regx)
3768 {
3769 uint64_t reg;
3770
3771 data = safe_read_uleb128 (data + 1, end, &reg);
3772 fprintf_filtered (stream, _("a variable in $%s"),
3773 locexpr_regname (gdbarch, reg));
3774 }
3775 else if (data[0] == DW_OP_fbreg)
3776 {
3777 const struct block *b;
3778 struct symbol *framefunc;
3779 int frame_reg = 0;
3780 int64_t frame_offset;
3781 const gdb_byte *base_data, *new_data, *save_data = data;
3782 size_t base_size;
3783 int64_t base_offset = 0;
3784
3785 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3786 if (!piece_end_p (new_data, end))
3787 return data;
3788 data = new_data;
3789
3790 b = block_for_pc (addr);
3791
3792 if (!b)
3793 error (_("No block found for address for symbol \"%s\"."),
3794 SYMBOL_PRINT_NAME (symbol));
3795
3796 framefunc = block_linkage_function (b);
3797
3798 if (!framefunc)
3799 error (_("No function found for block for symbol \"%s\"."),
3800 SYMBOL_PRINT_NAME (symbol));
3801
3802 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3803
3804 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3805 {
3806 const gdb_byte *buf_end;
3807
3808 frame_reg = base_data[0] - DW_OP_breg0;
3809 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3810 &base_offset);
3811 if (buf_end != base_data + base_size)
3812 error (_("Unexpected opcode after "
3813 "DW_OP_breg%u for symbol \"%s\"."),
3814 frame_reg, SYMBOL_PRINT_NAME (symbol));
3815 }
3816 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3817 {
3818 /* The frame base is just the register, with no offset. */
3819 frame_reg = base_data[0] - DW_OP_reg0;
3820 base_offset = 0;
3821 }
3822 else
3823 {
3824 /* We don't know what to do with the frame base expression,
3825 so we can't trace this variable; give up. */
3826 return save_data;
3827 }
3828
3829 fprintf_filtered (stream,
3830 _("a variable at frame base reg $%s offset %s+%s"),
3831 locexpr_regname (gdbarch, frame_reg),
3832 plongest (base_offset), plongest (frame_offset));
3833 }
3834 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3835 && piece_end_p (data, end))
3836 {
3837 int64_t offset;
3838
3839 data = safe_read_sleb128 (data + 1, end, &offset);
3840
3841 fprintf_filtered (stream,
3842 _("a variable at offset %s from base reg $%s"),
3843 plongest (offset),
3844 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3845 }
3846
3847 /* The location expression for a TLS variable looks like this (on a
3848 64-bit LE machine):
3849
3850 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3851 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3852
3853 0x3 is the encoding for DW_OP_addr, which has an operand as long
3854 as the size of an address on the target machine (here is 8
3855 bytes). Note that more recent version of GCC emit DW_OP_const4u
3856 or DW_OP_const8u, depending on address size, rather than
3857 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3858 The operand represents the offset at which the variable is within
3859 the thread local storage. */
3860
3861 else if (data + 1 + addr_size < end
3862 && (data[0] == DW_OP_addr
3863 || (addr_size == 4 && data[0] == DW_OP_const4u)
3864 || (addr_size == 8 && data[0] == DW_OP_const8u))
3865 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3866 || data[1 + addr_size] == DW_OP_form_tls_address)
3867 && piece_end_p (data + 2 + addr_size, end))
3868 {
3869 ULONGEST offset;
3870 offset = extract_unsigned_integer (data + 1, addr_size,
3871 gdbarch_byte_order (gdbarch));
3872
3873 fprintf_filtered (stream,
3874 _("a thread-local variable at offset 0x%s "
3875 "in the thread-local storage for `%s'"),
3876 phex_nz (offset, addr_size), objfile_name (objfile));
3877
3878 data += 1 + addr_size + 1;
3879 }
3880
3881 /* With -gsplit-dwarf a TLS variable can also look like this:
3882 DW_AT_location : 3 byte block: fc 4 e0
3883 (DW_OP_GNU_const_index: 4;
3884 DW_OP_GNU_push_tls_address) */
3885 else if (data + 3 <= end
3886 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3887 && data[0] == DW_OP_GNU_const_index
3888 && leb128_size > 0
3889 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3890 || data[1 + leb128_size] == DW_OP_form_tls_address)
3891 && piece_end_p (data + 2 + leb128_size, end))
3892 {
3893 uint64_t offset;
3894
3895 data = safe_read_uleb128 (data + 1, end, &offset);
3896 offset = dwarf2_read_addr_index (per_cu, offset);
3897 fprintf_filtered (stream,
3898 _("a thread-local variable at offset 0x%s "
3899 "in the thread-local storage for `%s'"),
3900 phex_nz (offset, addr_size), objfile_name (objfile));
3901 ++data;
3902 }
3903
3904 else if (data[0] >= DW_OP_lit0
3905 && data[0] <= DW_OP_lit31
3906 && data + 1 < end
3907 && data[1] == DW_OP_stack_value)
3908 {
3909 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3910 data += 2;
3911 }
3912
3913 return data;
3914 }
3915
3916 /* Disassemble an expression, stopping at the end of a piece or at the
3917 end of the expression. Returns a pointer to the next unread byte
3918 in the input expression. If ALL is nonzero, then this function
3919 will keep going until it reaches the end of the expression.
3920 If there is an error during reading, e.g. we run off the end
3921 of the buffer, an error is thrown. */
3922
3923 static const gdb_byte *
3924 disassemble_dwarf_expression (struct ui_file *stream,
3925 struct gdbarch *arch, unsigned int addr_size,
3926 int offset_size, const gdb_byte *start,
3927 const gdb_byte *data, const gdb_byte *end,
3928 int indent, int all,
3929 struct dwarf2_per_cu_data *per_cu)
3930 {
3931 while (data < end
3932 && (all
3933 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3934 {
3935 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3936 uint64_t ul;
3937 int64_t l;
3938 const char *name;
3939
3940 name = get_DW_OP_name (op);
3941
3942 if (!name)
3943 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3944 op, (long) (data - 1 - start));
3945 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3946 (long) (data - 1 - start), name);
3947
3948 switch (op)
3949 {
3950 case DW_OP_addr:
3951 ul = extract_unsigned_integer (data, addr_size,
3952 gdbarch_byte_order (arch));
3953 data += addr_size;
3954 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3955 break;
3956
3957 case DW_OP_const1u:
3958 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3959 data += 1;
3960 fprintf_filtered (stream, " %s", pulongest (ul));
3961 break;
3962 case DW_OP_const1s:
3963 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3964 data += 1;
3965 fprintf_filtered (stream, " %s", plongest (l));
3966 break;
3967 case DW_OP_const2u:
3968 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3969 data += 2;
3970 fprintf_filtered (stream, " %s", pulongest (ul));
3971 break;
3972 case DW_OP_const2s:
3973 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3974 data += 2;
3975 fprintf_filtered (stream, " %s", plongest (l));
3976 break;
3977 case DW_OP_const4u:
3978 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3979 data += 4;
3980 fprintf_filtered (stream, " %s", pulongest (ul));
3981 break;
3982 case DW_OP_const4s:
3983 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3984 data += 4;
3985 fprintf_filtered (stream, " %s", plongest (l));
3986 break;
3987 case DW_OP_const8u:
3988 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3989 data += 8;
3990 fprintf_filtered (stream, " %s", pulongest (ul));
3991 break;
3992 case DW_OP_const8s:
3993 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3994 data += 8;
3995 fprintf_filtered (stream, " %s", plongest (l));
3996 break;
3997 case DW_OP_constu:
3998 data = safe_read_uleb128 (data, end, &ul);
3999 fprintf_filtered (stream, " %s", pulongest (ul));
4000 break;
4001 case DW_OP_consts:
4002 data = safe_read_sleb128 (data, end, &l);
4003 fprintf_filtered (stream, " %s", plongest (l));
4004 break;
4005
4006 case DW_OP_reg0:
4007 case DW_OP_reg1:
4008 case DW_OP_reg2:
4009 case DW_OP_reg3:
4010 case DW_OP_reg4:
4011 case DW_OP_reg5:
4012 case DW_OP_reg6:
4013 case DW_OP_reg7:
4014 case DW_OP_reg8:
4015 case DW_OP_reg9:
4016 case DW_OP_reg10:
4017 case DW_OP_reg11:
4018 case DW_OP_reg12:
4019 case DW_OP_reg13:
4020 case DW_OP_reg14:
4021 case DW_OP_reg15:
4022 case DW_OP_reg16:
4023 case DW_OP_reg17:
4024 case DW_OP_reg18:
4025 case DW_OP_reg19:
4026 case DW_OP_reg20:
4027 case DW_OP_reg21:
4028 case DW_OP_reg22:
4029 case DW_OP_reg23:
4030 case DW_OP_reg24:
4031 case DW_OP_reg25:
4032 case DW_OP_reg26:
4033 case DW_OP_reg27:
4034 case DW_OP_reg28:
4035 case DW_OP_reg29:
4036 case DW_OP_reg30:
4037 case DW_OP_reg31:
4038 fprintf_filtered (stream, " [$%s]",
4039 locexpr_regname (arch, op - DW_OP_reg0));
4040 break;
4041
4042 case DW_OP_regx:
4043 data = safe_read_uleb128 (data, end, &ul);
4044 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4045 locexpr_regname (arch, (int) ul));
4046 break;
4047
4048 case DW_OP_implicit_value:
4049 data = safe_read_uleb128 (data, end, &ul);
4050 data += ul;
4051 fprintf_filtered (stream, " %s", pulongest (ul));
4052 break;
4053
4054 case DW_OP_breg0:
4055 case DW_OP_breg1:
4056 case DW_OP_breg2:
4057 case DW_OP_breg3:
4058 case DW_OP_breg4:
4059 case DW_OP_breg5:
4060 case DW_OP_breg6:
4061 case DW_OP_breg7:
4062 case DW_OP_breg8:
4063 case DW_OP_breg9:
4064 case DW_OP_breg10:
4065 case DW_OP_breg11:
4066 case DW_OP_breg12:
4067 case DW_OP_breg13:
4068 case DW_OP_breg14:
4069 case DW_OP_breg15:
4070 case DW_OP_breg16:
4071 case DW_OP_breg17:
4072 case DW_OP_breg18:
4073 case DW_OP_breg19:
4074 case DW_OP_breg20:
4075 case DW_OP_breg21:
4076 case DW_OP_breg22:
4077 case DW_OP_breg23:
4078 case DW_OP_breg24:
4079 case DW_OP_breg25:
4080 case DW_OP_breg26:
4081 case DW_OP_breg27:
4082 case DW_OP_breg28:
4083 case DW_OP_breg29:
4084 case DW_OP_breg30:
4085 case DW_OP_breg31:
4086 data = safe_read_sleb128 (data, end, &l);
4087 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4088 locexpr_regname (arch, op - DW_OP_breg0));
4089 break;
4090
4091 case DW_OP_bregx:
4092 data = safe_read_uleb128 (data, end, &ul);
4093 data = safe_read_sleb128 (data, end, &l);
4094 fprintf_filtered (stream, " register %s [$%s] offset %s",
4095 pulongest (ul),
4096 locexpr_regname (arch, (int) ul),
4097 plongest (l));
4098 break;
4099
4100 case DW_OP_fbreg:
4101 data = safe_read_sleb128 (data, end, &l);
4102 fprintf_filtered (stream, " %s", plongest (l));
4103 break;
4104
4105 case DW_OP_xderef_size:
4106 case DW_OP_deref_size:
4107 case DW_OP_pick:
4108 fprintf_filtered (stream, " %d", *data);
4109 ++data;
4110 break;
4111
4112 case DW_OP_plus_uconst:
4113 data = safe_read_uleb128 (data, end, &ul);
4114 fprintf_filtered (stream, " %s", pulongest (ul));
4115 break;
4116
4117 case DW_OP_skip:
4118 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4119 data += 2;
4120 fprintf_filtered (stream, " to %ld",
4121 (long) (data + l - start));
4122 break;
4123
4124 case DW_OP_bra:
4125 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4126 data += 2;
4127 fprintf_filtered (stream, " %ld",
4128 (long) (data + l - start));
4129 break;
4130
4131 case DW_OP_call2:
4132 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4133 data += 2;
4134 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4135 break;
4136
4137 case DW_OP_call4:
4138 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4139 data += 4;
4140 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4141 break;
4142
4143 case DW_OP_call_ref:
4144 ul = extract_unsigned_integer (data, offset_size,
4145 gdbarch_byte_order (arch));
4146 data += offset_size;
4147 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4148 break;
4149
4150 case DW_OP_piece:
4151 data = safe_read_uleb128 (data, end, &ul);
4152 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4153 break;
4154
4155 case DW_OP_bit_piece:
4156 {
4157 uint64_t offset;
4158
4159 data = safe_read_uleb128 (data, end, &ul);
4160 data = safe_read_uleb128 (data, end, &offset);
4161 fprintf_filtered (stream, " size %s offset %s (bits)",
4162 pulongest (ul), pulongest (offset));
4163 }
4164 break;
4165
4166 case DW_OP_implicit_pointer:
4167 case DW_OP_GNU_implicit_pointer:
4168 {
4169 ul = extract_unsigned_integer (data, offset_size,
4170 gdbarch_byte_order (arch));
4171 data += offset_size;
4172
4173 data = safe_read_sleb128 (data, end, &l);
4174
4175 fprintf_filtered (stream, " DIE %s offset %s",
4176 phex_nz (ul, offset_size),
4177 plongest (l));
4178 }
4179 break;
4180
4181 case DW_OP_deref_type:
4182 case DW_OP_GNU_deref_type:
4183 {
4184 int addr_size = *data++;
4185 struct type *type;
4186
4187 data = safe_read_uleb128 (data, end, &ul);
4188 cu_offset offset = (cu_offset) ul;
4189 type = dwarf2_get_die_type (offset, per_cu);
4190 fprintf_filtered (stream, "<");
4191 type_print (type, "", stream, -1);
4192 fprintf_filtered (stream, " [0x%s]> %d",
4193 phex_nz (to_underlying (offset), 0),
4194 addr_size);
4195 }
4196 break;
4197
4198 case DW_OP_const_type:
4199 case DW_OP_GNU_const_type:
4200 {
4201 struct type *type;
4202
4203 data = safe_read_uleb128 (data, end, &ul);
4204 cu_offset type_die = (cu_offset) ul;
4205 type = dwarf2_get_die_type (type_die, per_cu);
4206 fprintf_filtered (stream, "<");
4207 type_print (type, "", stream, -1);
4208 fprintf_filtered (stream, " [0x%s]>",
4209 phex_nz (to_underlying (type_die), 0));
4210 }
4211 break;
4212
4213 case DW_OP_regval_type:
4214 case DW_OP_GNU_regval_type:
4215 {
4216 uint64_t reg;
4217 struct type *type;
4218
4219 data = safe_read_uleb128 (data, end, &reg);
4220 data = safe_read_uleb128 (data, end, &ul);
4221 cu_offset type_die = (cu_offset) ul;
4222
4223 type = dwarf2_get_die_type (type_die, per_cu);
4224 fprintf_filtered (stream, "<");
4225 type_print (type, "", stream, -1);
4226 fprintf_filtered (stream, " [0x%s]> [$%s]",
4227 phex_nz (to_underlying (type_die), 0),
4228 locexpr_regname (arch, reg));
4229 }
4230 break;
4231
4232 case DW_OP_convert:
4233 case DW_OP_GNU_convert:
4234 case DW_OP_reinterpret:
4235 case DW_OP_GNU_reinterpret:
4236 {
4237 data = safe_read_uleb128 (data, end, &ul);
4238 cu_offset type_die = (cu_offset) ul;
4239
4240 if (to_underlying (type_die) == 0)
4241 fprintf_filtered (stream, "<0>");
4242 else
4243 {
4244 struct type *type;
4245
4246 type = dwarf2_get_die_type (type_die, per_cu);
4247 fprintf_filtered (stream, "<");
4248 type_print (type, "", stream, -1);
4249 fprintf_filtered (stream, " [0x%s]>",
4250 phex_nz (to_underlying (type_die), 0));
4251 }
4252 }
4253 break;
4254
4255 case DW_OP_entry_value:
4256 case DW_OP_GNU_entry_value:
4257 data = safe_read_uleb128 (data, end, &ul);
4258 fputc_filtered ('\n', stream);
4259 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4260 start, data, data + ul, indent + 2,
4261 all, per_cu);
4262 data += ul;
4263 continue;
4264
4265 case DW_OP_GNU_parameter_ref:
4266 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4267 data += 4;
4268 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4269 break;
4270
4271 case DW_OP_GNU_addr_index:
4272 data = safe_read_uleb128 (data, end, &ul);
4273 ul = dwarf2_read_addr_index (per_cu, ul);
4274 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4275 break;
4276 case DW_OP_GNU_const_index:
4277 data = safe_read_uleb128 (data, end, &ul);
4278 ul = dwarf2_read_addr_index (per_cu, ul);
4279 fprintf_filtered (stream, " %s", pulongest (ul));
4280 break;
4281 }
4282
4283 fprintf_filtered (stream, "\n");
4284 }
4285
4286 return data;
4287 }
4288
4289 /* Describe a single location, which may in turn consist of multiple
4290 pieces. */
4291
4292 static void
4293 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4294 struct ui_file *stream,
4295 const gdb_byte *data, size_t size,
4296 struct objfile *objfile, unsigned int addr_size,
4297 int offset_size, struct dwarf2_per_cu_data *per_cu)
4298 {
4299 const gdb_byte *end = data + size;
4300 int first_piece = 1, bad = 0;
4301
4302 while (data < end)
4303 {
4304 const gdb_byte *here = data;
4305 int disassemble = 1;
4306
4307 if (first_piece)
4308 first_piece = 0;
4309 else
4310 fprintf_filtered (stream, _(", and "));
4311
4312 if (!dwarf_always_disassemble)
4313 {
4314 data = locexpr_describe_location_piece (symbol, stream,
4315 addr, objfile, per_cu,
4316 data, end, addr_size);
4317 /* If we printed anything, or if we have an empty piece,
4318 then don't disassemble. */
4319 if (data != here
4320 || data[0] == DW_OP_piece
4321 || data[0] == DW_OP_bit_piece)
4322 disassemble = 0;
4323 }
4324 if (disassemble)
4325 {
4326 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4327 data = disassemble_dwarf_expression (stream,
4328 get_objfile_arch (objfile),
4329 addr_size, offset_size, data,
4330 data, end, 0,
4331 dwarf_always_disassemble,
4332 per_cu);
4333 }
4334
4335 if (data < end)
4336 {
4337 int empty = data == here;
4338
4339 if (disassemble)
4340 fprintf_filtered (stream, " ");
4341 if (data[0] == DW_OP_piece)
4342 {
4343 uint64_t bytes;
4344
4345 data = safe_read_uleb128 (data + 1, end, &bytes);
4346
4347 if (empty)
4348 fprintf_filtered (stream, _("an empty %s-byte piece"),
4349 pulongest (bytes));
4350 else
4351 fprintf_filtered (stream, _(" [%s-byte piece]"),
4352 pulongest (bytes));
4353 }
4354 else if (data[0] == DW_OP_bit_piece)
4355 {
4356 uint64_t bits, offset;
4357
4358 data = safe_read_uleb128 (data + 1, end, &bits);
4359 data = safe_read_uleb128 (data, end, &offset);
4360
4361 if (empty)
4362 fprintf_filtered (stream,
4363 _("an empty %s-bit piece"),
4364 pulongest (bits));
4365 else
4366 fprintf_filtered (stream,
4367 _(" [%s-bit piece, offset %s bits]"),
4368 pulongest (bits), pulongest (offset));
4369 }
4370 else
4371 {
4372 bad = 1;
4373 break;
4374 }
4375 }
4376 }
4377
4378 if (bad || data > end)
4379 error (_("Corrupted DWARF2 expression for \"%s\"."),
4380 SYMBOL_PRINT_NAME (symbol));
4381 }
4382
4383 /* Print a natural-language description of SYMBOL to STREAM. This
4384 version is for a symbol with a single location. */
4385
4386 static void
4387 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4388 struct ui_file *stream)
4389 {
4390 struct dwarf2_locexpr_baton *dlbaton
4391 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4392 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4393 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4394 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4395
4396 locexpr_describe_location_1 (symbol, addr, stream,
4397 dlbaton->data, dlbaton->size,
4398 objfile, addr_size, offset_size,
4399 dlbaton->per_cu);
4400 }
4401
4402 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4403 any necessary bytecode in AX. */
4404
4405 static void
4406 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4407 struct agent_expr *ax, struct axs_value *value)
4408 {
4409 struct dwarf2_locexpr_baton *dlbaton
4410 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4411 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4412
4413 if (dlbaton->size == 0)
4414 value->optimized_out = 1;
4415 else
4416 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4417 dlbaton->data, dlbaton->data + dlbaton->size,
4418 dlbaton->per_cu);
4419 }
4420
4421 /* symbol_computed_ops 'generate_c_location' method. */
4422
4423 static void
4424 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4425 struct gdbarch *gdbarch,
4426 unsigned char *registers_used,
4427 CORE_ADDR pc, const char *result_name)
4428 {
4429 struct dwarf2_locexpr_baton *dlbaton
4430 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4431 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4432
4433 if (dlbaton->size == 0)
4434 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4435
4436 compile_dwarf_expr_to_c (stream, result_name,
4437 sym, pc, gdbarch, registers_used, addr_size,
4438 dlbaton->data, dlbaton->data + dlbaton->size,
4439 dlbaton->per_cu);
4440 }
4441
4442 /* The set of location functions used with the DWARF-2 expression
4443 evaluator. */
4444 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4445 locexpr_read_variable,
4446 locexpr_read_variable_at_entry,
4447 locexpr_get_symbol_read_needs,
4448 locexpr_describe_location,
4449 0, /* location_has_loclist */
4450 locexpr_tracepoint_var_ref,
4451 locexpr_generate_c_location
4452 };
4453
4454
4455 /* Wrapper functions for location lists. These generally find
4456 the appropriate location expression and call something above. */
4457
4458 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4459 evaluator to calculate the location. */
4460 static struct value *
4461 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4462 {
4463 struct dwarf2_loclist_baton *dlbaton
4464 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4465 struct value *val;
4466 const gdb_byte *data;
4467 size_t size;
4468 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4469
4470 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4471 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4472 dlbaton->per_cu);
4473
4474 return val;
4475 }
4476
4477 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4478 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4479 will be thrown.
4480
4481 Function always returns non-NULL value, it may be marked optimized out if
4482 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4483 if it cannot resolve the parameter for any reason. */
4484
4485 static struct value *
4486 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4487 {
4488 struct dwarf2_loclist_baton *dlbaton
4489 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4490 const gdb_byte *data;
4491 size_t size;
4492 CORE_ADDR pc;
4493
4494 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4495 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4496
4497 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4498 if (data == NULL)
4499 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4500
4501 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4502 }
4503
4504 /* Implementation of get_symbol_read_needs from
4505 symbol_computed_ops. */
4506
4507 static enum symbol_needs_kind
4508 loclist_symbol_needs (struct symbol *symbol)
4509 {
4510 /* If there's a location list, then assume we need to have a frame
4511 to choose the appropriate location expression. With tracking of
4512 global variables this is not necessarily true, but such tracking
4513 is disabled in GCC at the moment until we figure out how to
4514 represent it. */
4515
4516 return SYMBOL_NEEDS_FRAME;
4517 }
4518
4519 /* Print a natural-language description of SYMBOL to STREAM. This
4520 version applies when there is a list of different locations, each
4521 with a specified address range. */
4522
4523 static void
4524 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4525 struct ui_file *stream)
4526 {
4527 struct dwarf2_loclist_baton *dlbaton
4528 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4529 const gdb_byte *loc_ptr, *buf_end;
4530 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4532 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4533 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4534 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4535 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4536 /* Adjust base_address for relocatable objects. */
4537 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4538 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4539 int done = 0;
4540
4541 loc_ptr = dlbaton->data;
4542 buf_end = dlbaton->data + dlbaton->size;
4543
4544 fprintf_filtered (stream, _("multi-location:\n"));
4545
4546 /* Iterate through locations until we run out. */
4547 while (!done)
4548 {
4549 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4550 int length;
4551 enum debug_loc_kind kind;
4552 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4553
4554 if (dlbaton->from_dwo)
4555 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4556 loc_ptr, buf_end, &new_ptr,
4557 &low, &high, byte_order);
4558 else
4559 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4560 &low, &high,
4561 byte_order, addr_size,
4562 signed_addr_p);
4563 loc_ptr = new_ptr;
4564 switch (kind)
4565 {
4566 case DEBUG_LOC_END_OF_LIST:
4567 done = 1;
4568 continue;
4569 case DEBUG_LOC_BASE_ADDRESS:
4570 base_address = high + base_offset;
4571 fprintf_filtered (stream, _(" Base address %s"),
4572 paddress (gdbarch, base_address));
4573 continue;
4574 case DEBUG_LOC_START_END:
4575 case DEBUG_LOC_START_LENGTH:
4576 break;
4577 case DEBUG_LOC_BUFFER_OVERFLOW:
4578 case DEBUG_LOC_INVALID_ENTRY:
4579 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4580 SYMBOL_PRINT_NAME (symbol));
4581 default:
4582 gdb_assert_not_reached ("bad debug_loc_kind");
4583 }
4584
4585 /* Otherwise, a location expression entry. */
4586 low += base_address;
4587 high += base_address;
4588
4589 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4590 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4591
4592 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4593 loc_ptr += 2;
4594
4595 /* (It would improve readability to print only the minimum
4596 necessary digits of the second number of the range.) */
4597 fprintf_filtered (stream, _(" Range %s-%s: "),
4598 paddress (gdbarch, low), paddress (gdbarch, high));
4599
4600 /* Now describe this particular location. */
4601 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4602 objfile, addr_size, offset_size,
4603 dlbaton->per_cu);
4604
4605 fprintf_filtered (stream, "\n");
4606
4607 loc_ptr += length;
4608 }
4609 }
4610
4611 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4612 any necessary bytecode in AX. */
4613 static void
4614 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4615 struct agent_expr *ax, struct axs_value *value)
4616 {
4617 struct dwarf2_loclist_baton *dlbaton
4618 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4619 const gdb_byte *data;
4620 size_t size;
4621 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4622
4623 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4624 if (size == 0)
4625 value->optimized_out = 1;
4626 else
4627 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4628 dlbaton->per_cu);
4629 }
4630
4631 /* symbol_computed_ops 'generate_c_location' method. */
4632
4633 static void
4634 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4635 struct gdbarch *gdbarch,
4636 unsigned char *registers_used,
4637 CORE_ADDR pc, const char *result_name)
4638 {
4639 struct dwarf2_loclist_baton *dlbaton
4640 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4641 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4642 const gdb_byte *data;
4643 size_t size;
4644
4645 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4646 if (size == 0)
4647 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4648
4649 compile_dwarf_expr_to_c (stream, result_name,
4650 sym, pc, gdbarch, registers_used, addr_size,
4651 data, data + size,
4652 dlbaton->per_cu);
4653 }
4654
4655 /* The set of location functions used with the DWARF-2 expression
4656 evaluator and location lists. */
4657 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4658 loclist_read_variable,
4659 loclist_read_variable_at_entry,
4660 loclist_symbol_needs,
4661 loclist_describe_location,
4662 1, /* location_has_loclist */
4663 loclist_tracepoint_var_ref,
4664 loclist_generate_c_location
4665 };
4666
4667 /* Provide a prototype to silence -Wmissing-prototypes. */
4668 extern initialize_file_ftype _initialize_dwarf2loc;
4669
4670 void
4671 _initialize_dwarf2loc (void)
4672 {
4673 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4674 &entry_values_debug,
4675 _("Set entry values and tail call frames "
4676 "debugging."),
4677 _("Show entry values and tail call frames "
4678 "debugging."),
4679 _("When non-zero, the process of determining "
4680 "parameter values from function entry point "
4681 "and tail call frames will be printed."),
4682 NULL,
4683 show_entry_values_debug,
4684 &setdebuglist, &showdebuglist);
4685
4686 #if GDB_SELF_TEST
4687 register_self_test (selftests::copy_bitwise_tests);
4688 #endif
4689 }
This page took 0.200976 seconds and 5 git commands to generate.