Add ATTRIBUTE_UNUSED_RESULT to ref_ptr::release
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "common/selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
47
48 extern int dwarf_always_disassemble;
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
57
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
64 static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
68 struct type *type, bool resolve_abstract_p = false);
69
70 /* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75 enum debug_loc_kind
76 {
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
94
95 /* An internal value indicating there is insufficient data. */
96 DEBUG_LOC_BUFFER_OVERFLOW = -1,
97
98 /* An internal value indicating an invalid kind of entry was found. */
99 DEBUG_LOC_INVALID_ENTRY = -2
100 };
101
102 /* Helper function which throws an error if a synthetic pointer is
103 invalid. */
104
105 static void
106 invalid_synthetic_pointer (void)
107 {
108 error (_("access outside bounds of object "
109 "referenced via synthetic pointer"));
110 }
111
112 /* Decode the addresses in a non-dwo .debug_loc entry.
113 A pointer to the next byte to examine is returned in *NEW_PTR.
114 The encoded low,high addresses are return in *LOW,*HIGH.
115 The result indicates the kind of entry found. */
116
117 static enum debug_loc_kind
118 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
119 const gdb_byte **new_ptr,
120 CORE_ADDR *low, CORE_ADDR *high,
121 enum bfd_endian byte_order,
122 unsigned int addr_size,
123 int signed_addr_p)
124 {
125 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
126
127 if (buf_end - loc_ptr < 2 * addr_size)
128 return DEBUG_LOC_BUFFER_OVERFLOW;
129
130 if (signed_addr_p)
131 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 if (signed_addr_p)
137 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
138 else
139 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
140 loc_ptr += addr_size;
141
142 *new_ptr = loc_ptr;
143
144 /* A base-address-selection entry. */
145 if ((*low & base_mask) == base_mask)
146 return DEBUG_LOC_BASE_ADDRESS;
147
148 /* An end-of-list entry. */
149 if (*low == 0 && *high == 0)
150 return DEBUG_LOC_END_OF_LIST;
151
152 return DEBUG_LOC_START_END;
153 }
154
155 /* Decode the addresses in .debug_loclists entry.
156 A pointer to the next byte to examine is returned in *NEW_PTR.
157 The encoded low,high addresses are return in *LOW,*HIGH.
158 The result indicates the kind of entry found. */
159
160 static enum debug_loc_kind
161 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
162 const gdb_byte *loc_ptr,
163 const gdb_byte *buf_end,
164 const gdb_byte **new_ptr,
165 CORE_ADDR *low, CORE_ADDR *high,
166 enum bfd_endian byte_order,
167 unsigned int addr_size,
168 int signed_addr_p)
169 {
170 uint64_t u64;
171
172 if (loc_ptr == buf_end)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174
175 switch (*loc_ptr++)
176 {
177 case DW_LLE_end_of_list:
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_END_OF_LIST;
180 case DW_LLE_base_address:
181 if (loc_ptr + addr_size > buf_end)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 if (signed_addr_p)
184 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
185 else
186 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
187 loc_ptr += addr_size;
188 *new_ptr = loc_ptr;
189 return DEBUG_LOC_BASE_ADDRESS;
190 case DW_LLE_offset_pair:
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
192 if (loc_ptr == NULL)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *low = u64;
195 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
196 if (loc_ptr == NULL)
197 return DEBUG_LOC_BUFFER_OVERFLOW;
198 *high = u64;
199 *new_ptr = loc_ptr;
200 return DEBUG_LOC_START_END;
201 default:
202 return DEBUG_LOC_INVALID_ENTRY;
203 }
204 }
205
206 /* Decode the addresses in .debug_loc.dwo entry.
207 A pointer to the next byte to examine is returned in *NEW_PTR.
208 The encoded low,high addresses are return in *LOW,*HIGH.
209 The result indicates the kind of entry found. */
210
211 static enum debug_loc_kind
212 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
213 const gdb_byte *loc_ptr,
214 const gdb_byte *buf_end,
215 const gdb_byte **new_ptr,
216 CORE_ADDR *low, CORE_ADDR *high,
217 enum bfd_endian byte_order)
218 {
219 uint64_t low_index, high_index;
220
221 if (loc_ptr == buf_end)
222 return DEBUG_LOC_BUFFER_OVERFLOW;
223
224 switch (*loc_ptr++)
225 {
226 case DW_LLE_GNU_end_of_list_entry:
227 *new_ptr = loc_ptr;
228 return DEBUG_LOC_END_OF_LIST;
229 case DW_LLE_GNU_base_address_selection_entry:
230 *low = 0;
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *high = dwarf2_read_addr_index (per_cu, high_index);
235 *new_ptr = loc_ptr;
236 return DEBUG_LOC_BASE_ADDRESS;
237 case DW_LLE_GNU_start_end_entry:
238 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
239 if (loc_ptr == NULL)
240 return DEBUG_LOC_BUFFER_OVERFLOW;
241 *low = dwarf2_read_addr_index (per_cu, low_index);
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *high = dwarf2_read_addr_index (per_cu, high_index);
246 *new_ptr = loc_ptr;
247 return DEBUG_LOC_START_END;
248 case DW_LLE_GNU_start_length_entry:
249 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
250 if (loc_ptr == NULL)
251 return DEBUG_LOC_BUFFER_OVERFLOW;
252 *low = dwarf2_read_addr_index (per_cu, low_index);
253 if (loc_ptr + 4 > buf_end)
254 return DEBUG_LOC_BUFFER_OVERFLOW;
255 *high = *low;
256 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
257 *new_ptr = loc_ptr + 4;
258 return DEBUG_LOC_START_LENGTH;
259 default:
260 return DEBUG_LOC_INVALID_ENTRY;
261 }
262 }
263
264 /* A function for dealing with location lists. Given a
265 symbol baton (BATON) and a pc value (PC), find the appropriate
266 location expression, set *LOCEXPR_LENGTH, and return a pointer
267 to the beginning of the expression. Returns NULL on failure.
268
269 For now, only return the first matching location expression; there
270 can be more than one in the list. */
271
272 const gdb_byte *
273 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
274 size_t *locexpr_length, CORE_ADDR pc)
275 {
276 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
280 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
281 /* Adjust base_address for relocatable objects. */
282 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
283 CORE_ADDR base_address = baton->base_address + base_offset;
284 const gdb_byte *loc_ptr, *buf_end;
285
286 loc_ptr = baton->data;
287 buf_end = baton->data + baton->size;
288
289 while (1)
290 {
291 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
292 int length;
293 enum debug_loc_kind kind;
294 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
295
296 if (baton->from_dwo)
297 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
298 loc_ptr, buf_end, &new_ptr,
299 &low, &high, byte_order);
300 else if (dwarf2_version (baton->per_cu) < 5)
301 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
302 &low, &high,
303 byte_order, addr_size,
304 signed_addr_p);
305 else
306 kind = decode_debug_loclists_addresses (baton->per_cu,
307 loc_ptr, buf_end, &new_ptr,
308 &low, &high, byte_order,
309 addr_size, signed_addr_p);
310
311 loc_ptr = new_ptr;
312 switch (kind)
313 {
314 case DEBUG_LOC_END_OF_LIST:
315 *locexpr_length = 0;
316 return NULL;
317 case DEBUG_LOC_BASE_ADDRESS:
318 base_address = high + base_offset;
319 continue;
320 case DEBUG_LOC_START_END:
321 case DEBUG_LOC_START_LENGTH:
322 break;
323 case DEBUG_LOC_BUFFER_OVERFLOW:
324 case DEBUG_LOC_INVALID_ENTRY:
325 error (_("dwarf2_find_location_expression: "
326 "Corrupted DWARF expression."));
327 default:
328 gdb_assert_not_reached ("bad debug_loc_kind");
329 }
330
331 /* Otherwise, a location expression entry.
332 If the entry is from a DWO, don't add base address: the entry is from
333 .debug_addr which already has the DWARF "base address". We still add
334 base_offset in case we're debugging a PIE executable. */
335 if (baton->from_dwo)
336 {
337 low += base_offset;
338 high += base_offset;
339 }
340 else
341 {
342 low += base_address;
343 high += base_address;
344 }
345
346 if (dwarf2_version (baton->per_cu) < 5)
347 {
348 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
349 loc_ptr += 2;
350 }
351 else
352 {
353 unsigned int bytes_read;
354
355 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
356 loc_ptr += bytes_read;
357 }
358
359 if (low == high && pc == low)
360 {
361 /* This is entry PC record present only at entry point
362 of a function. Verify it is really the function entry point. */
363
364 const struct block *pc_block = block_for_pc (pc);
365 struct symbol *pc_func = NULL;
366
367 if (pc_block)
368 pc_func = block_linkage_function (pc_block);
369
370 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375 }
376
377 if (pc >= low && pc < high)
378 {
379 *locexpr_length = length;
380 return loc_ptr;
381 }
382
383 loc_ptr += length;
384 }
385 }
386
387 /* This is the baton used when performing dwarf2 expression
388 evaluation. */
389 struct dwarf_expr_baton
390 {
391 struct frame_info *frame;
392 struct dwarf2_per_cu_data *per_cu;
393 CORE_ADDR obj_address;
394 };
395
396 /* Implement find_frame_base_location method for LOC_BLOCK functions using
397 DWARF expression for its DW_AT_frame_base. */
398
399 static void
400 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
401 const gdb_byte **start, size_t *length)
402 {
403 struct dwarf2_locexpr_baton *symbaton
404 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
405
406 *length = symbaton->size;
407 *start = symbaton->data;
408 }
409
410 /* Implement the struct symbol_block_ops::get_frame_base method for
411 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
412
413 static CORE_ADDR
414 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
415 {
416 struct gdbarch *gdbarch;
417 struct type *type;
418 struct dwarf2_locexpr_baton *dlbaton;
419 const gdb_byte *start;
420 size_t length;
421 struct value *result;
422
423 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
424 Thus, it's supposed to provide the find_frame_base_location method as
425 well. */
426 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
427
428 gdbarch = get_frame_arch (frame);
429 type = builtin_type (gdbarch)->builtin_data_ptr;
430 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
431
432 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
433 (framefunc, get_frame_pc (frame), &start, &length);
434 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
435 dlbaton->per_cu);
436
437 /* The DW_AT_frame_base attribute contains a location description which
438 computes the base address itself. However, the call to
439 dwarf2_evaluate_loc_desc returns a value representing a variable at
440 that address. The frame base address is thus this variable's
441 address. */
442 return value_address (result);
443 }
444
445 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
446 function uses DWARF expression for its DW_AT_frame_base. */
447
448 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
449 {
450 locexpr_find_frame_base_location,
451 locexpr_get_frame_base
452 };
453
454 /* Implement find_frame_base_location method for LOC_BLOCK functions using
455 DWARF location list for its DW_AT_frame_base. */
456
457 static void
458 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
459 const gdb_byte **start, size_t *length)
460 {
461 struct dwarf2_loclist_baton *symbaton
462 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
463
464 *start = dwarf2_find_location_expression (symbaton, length, pc);
465 }
466
467 /* Implement the struct symbol_block_ops::get_frame_base method for
468 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
469
470 static CORE_ADDR
471 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
472 {
473 struct gdbarch *gdbarch;
474 struct type *type;
475 struct dwarf2_loclist_baton *dlbaton;
476 const gdb_byte *start;
477 size_t length;
478 struct value *result;
479
480 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
481 Thus, it's supposed to provide the find_frame_base_location method as
482 well. */
483 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
484
485 gdbarch = get_frame_arch (frame);
486 type = builtin_type (gdbarch)->builtin_data_ptr;
487 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
488
489 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
490 (framefunc, get_frame_pc (frame), &start, &length);
491 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
492 dlbaton->per_cu);
493
494 /* The DW_AT_frame_base attribute contains a location description which
495 computes the base address itself. However, the call to
496 dwarf2_evaluate_loc_desc returns a value representing a variable at
497 that address. The frame base address is thus this variable's
498 address. */
499 return value_address (result);
500 }
501
502 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
503 function uses DWARF location list for its DW_AT_frame_base. */
504
505 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
506 {
507 loclist_find_frame_base_location,
508 loclist_get_frame_base
509 };
510
511 /* See dwarf2loc.h. */
512
513 void
514 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
515 const gdb_byte **start, size_t *length)
516 {
517 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
518 {
519 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
520
521 ops_block->find_frame_base_location (framefunc, pc, start, length);
522 }
523 else
524 *length = 0;
525
526 if (*length == 0)
527 error (_("Could not find the frame base for \"%s\"."),
528 SYMBOL_NATURAL_NAME (framefunc));
529 }
530
531 static CORE_ADDR
532 get_frame_pc_for_per_cu_dwarf_call (void *baton)
533 {
534 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
535
536 return ctx->get_frame_pc ();
537 }
538
539 static void
540 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
541 struct dwarf2_per_cu_data *per_cu)
542 {
543 struct dwarf2_locexpr_baton block;
544
545 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
546 get_frame_pc_for_per_cu_dwarf_call,
547 ctx);
548
549 /* DW_OP_call_ref is currently not supported. */
550 gdb_assert (block.per_cu == per_cu);
551
552 ctx->eval (block.data, block.size);
553 }
554
555 /* Given context CTX, section offset SECT_OFF, and compilation unit
556 data PER_CU, execute the "variable value" operation on the DIE
557 found at SECT_OFF. */
558
559 static struct value *
560 sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
561 struct dwarf2_per_cu_data *per_cu)
562 {
563 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
564
565 if (die_type == NULL)
566 error (_("Bad DW_OP_GNU_variable_value DIE."));
567
568 /* Note: Things still work when the following test is removed. This
569 test and error is here to conform to the proposed specification. */
570 if (TYPE_CODE (die_type) != TYPE_CODE_INT
571 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
572 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
573
574 struct type *type = lookup_pointer_type (die_type);
575 struct frame_info *frame = get_selected_frame (_("No frame selected."));
576 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
577 }
578
579 class dwarf_evaluate_loc_desc : public dwarf_expr_context
580 {
581 public:
582
583 struct frame_info *frame;
584 struct dwarf2_per_cu_data *per_cu;
585 CORE_ADDR obj_address;
586
587 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
588 the frame in BATON. */
589
590 CORE_ADDR get_frame_cfa () override
591 {
592 return dwarf2_frame_cfa (frame);
593 }
594
595 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
596 the frame in BATON. */
597
598 CORE_ADDR get_frame_pc () override
599 {
600 return get_frame_address_in_block (frame);
601 }
602
603 /* Using the objfile specified in BATON, find the address for the
604 current thread's thread-local storage with offset OFFSET. */
605 CORE_ADDR get_tls_address (CORE_ADDR offset) override
606 {
607 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
608
609 return target_translate_tls_address (objfile, offset);
610 }
611
612 /* Helper interface of per_cu_dwarf_call for
613 dwarf2_evaluate_loc_desc. */
614
615 void dwarf_call (cu_offset die_offset) override
616 {
617 per_cu_dwarf_call (this, die_offset, per_cu);
618 }
619
620 /* Helper interface of sect_variable_value for
621 dwarf2_evaluate_loc_desc. */
622
623 struct value *dwarf_variable_value (sect_offset sect_off) override
624 {
625 return sect_variable_value (this, sect_off, per_cu);
626 }
627
628 struct type *get_base_type (cu_offset die_offset, int size) override
629 {
630 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
631 if (result == NULL)
632 error (_("Could not find type for DW_OP_const_type"));
633 if (size != 0 && TYPE_LENGTH (result) != size)
634 error (_("DW_OP_const_type has different sizes for type and data"));
635 return result;
636 }
637
638 /* Callback function for dwarf2_evaluate_loc_desc.
639 Fetch the address indexed by DW_OP_GNU_addr_index. */
640
641 CORE_ADDR get_addr_index (unsigned int index) override
642 {
643 return dwarf2_read_addr_index (per_cu, index);
644 }
645
646 /* Callback function for get_object_address. Return the address of the VLA
647 object. */
648
649 CORE_ADDR get_object_address () override
650 {
651 if (obj_address == 0)
652 error (_("Location address is not set."));
653 return obj_address;
654 }
655
656 /* Execute DWARF block of call_site_parameter which matches KIND and
657 KIND_U. Choose DEREF_SIZE value of that parameter. Search
658 caller of this objects's frame.
659
660 The caller can be from a different CU - per_cu_dwarf_call
661 implementation can be more simple as it does not support cross-CU
662 DWARF executions. */
663
664 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
665 union call_site_parameter_u kind_u,
666 int deref_size) override
667 {
668 struct frame_info *caller_frame;
669 struct dwarf2_per_cu_data *caller_per_cu;
670 struct call_site_parameter *parameter;
671 const gdb_byte *data_src;
672 size_t size;
673
674 caller_frame = get_prev_frame (frame);
675
676 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
677 &caller_per_cu);
678 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
679 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
680
681 /* DEREF_SIZE size is not verified here. */
682 if (data_src == NULL)
683 throw_error (NO_ENTRY_VALUE_ERROR,
684 _("Cannot resolve DW_AT_call_data_value"));
685
686 scoped_restore save_frame = make_scoped_restore (&this->frame,
687 caller_frame);
688 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
689 caller_per_cu);
690 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
691 (CORE_ADDR) 0);
692
693 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
694 this->gdbarch
695 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
696 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
697 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
698 scoped_restore save_offset = make_scoped_restore (&this->offset);
699 this->offset = dwarf2_per_cu_text_offset (per_cu);
700
701 this->eval (data_src, size);
702 }
703
704 /* Using the frame specified in BATON, find the location expression
705 describing the frame base. Return a pointer to it in START and
706 its length in LENGTH. */
707 void get_frame_base (const gdb_byte **start, size_t * length) override
708 {
709 /* FIXME: cagney/2003-03-26: This code should be using
710 get_frame_base_address(), and then implement a dwarf2 specific
711 this_base method. */
712 struct symbol *framefunc;
713 const struct block *bl = get_frame_block (frame, NULL);
714
715 if (bl == NULL)
716 error (_("frame address is not available."));
717
718 /* Use block_linkage_function, which returns a real (not inlined)
719 function, instead of get_frame_function, which may return an
720 inlined function. */
721 framefunc = block_linkage_function (bl);
722
723 /* If we found a frame-relative symbol then it was certainly within
724 some function associated with a frame. If we can't find the frame,
725 something has gone wrong. */
726 gdb_assert (framefunc != NULL);
727
728 func_get_frame_base_dwarf_block (framefunc,
729 get_frame_address_in_block (frame),
730 start, length);
731 }
732
733 /* Read memory at ADDR (length LEN) into BUF. */
734
735 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
736 {
737 read_memory (addr, buf, len);
738 }
739
740 /* Using the frame specified in BATON, return the value of register
741 REGNUM, treated as a pointer. */
742 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
743 {
744 struct gdbarch *gdbarch = get_frame_arch (frame);
745 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
746
747 return address_from_register (regnum, frame);
748 }
749
750 /* Implement "get_reg_value" callback. */
751
752 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
753 {
754 struct gdbarch *gdbarch = get_frame_arch (frame);
755 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
756
757 return value_from_register (type, regnum, frame);
758 }
759 };
760
761 /* See dwarf2loc.h. */
762
763 unsigned int entry_values_debug = 0;
764
765 /* Helper to set entry_values_debug. */
766
767 static void
768 show_entry_values_debug (struct ui_file *file, int from_tty,
769 struct cmd_list_element *c, const char *value)
770 {
771 fprintf_filtered (file,
772 _("Entry values and tail call frames debugging is %s.\n"),
773 value);
774 }
775
776 /* Find DW_TAG_call_site's DW_AT_call_target address.
777 CALLER_FRAME (for registers) can be NULL if it is not known. This function
778 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
779
780 static CORE_ADDR
781 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
782 struct call_site *call_site,
783 struct frame_info *caller_frame)
784 {
785 switch (FIELD_LOC_KIND (call_site->target))
786 {
787 case FIELD_LOC_KIND_DWARF_BLOCK:
788 {
789 struct dwarf2_locexpr_baton *dwarf_block;
790 struct value *val;
791 struct type *caller_core_addr_type;
792 struct gdbarch *caller_arch;
793
794 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
795 if (dwarf_block == NULL)
796 {
797 struct bound_minimal_symbol msym;
798
799 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
800 throw_error (NO_ENTRY_VALUE_ERROR,
801 _("DW_AT_call_target is not specified at %s in %s"),
802 paddress (call_site_gdbarch, call_site->pc),
803 (msym.minsym == NULL ? "???"
804 : MSYMBOL_PRINT_NAME (msym.minsym)));
805
806 }
807 if (caller_frame == NULL)
808 {
809 struct bound_minimal_symbol msym;
810
811 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
812 throw_error (NO_ENTRY_VALUE_ERROR,
813 _("DW_AT_call_target DWARF block resolving "
814 "requires known frame which is currently not "
815 "available at %s in %s"),
816 paddress (call_site_gdbarch, call_site->pc),
817 (msym.minsym == NULL ? "???"
818 : MSYMBOL_PRINT_NAME (msym.minsym)));
819
820 }
821 caller_arch = get_frame_arch (caller_frame);
822 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
823 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
824 dwarf_block->data, dwarf_block->size,
825 dwarf_block->per_cu);
826 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
827 if (VALUE_LVAL (val) == lval_memory)
828 return value_address (val);
829 else
830 return value_as_address (val);
831 }
832
833 case FIELD_LOC_KIND_PHYSNAME:
834 {
835 const char *physname;
836 struct bound_minimal_symbol msym;
837
838 physname = FIELD_STATIC_PHYSNAME (call_site->target);
839
840 /* Handle both the mangled and demangled PHYSNAME. */
841 msym = lookup_minimal_symbol (physname, NULL, NULL);
842 if (msym.minsym == NULL)
843 {
844 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
845 throw_error (NO_ENTRY_VALUE_ERROR,
846 _("Cannot find function \"%s\" for a call site target "
847 "at %s in %s"),
848 physname, paddress (call_site_gdbarch, call_site->pc),
849 (msym.minsym == NULL ? "???"
850 : MSYMBOL_PRINT_NAME (msym.minsym)));
851
852 }
853 return BMSYMBOL_VALUE_ADDRESS (msym);
854 }
855
856 case FIELD_LOC_KIND_PHYSADDR:
857 return FIELD_STATIC_PHYSADDR (call_site->target);
858
859 default:
860 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
861 }
862 }
863
864 /* Convert function entry point exact address ADDR to the function which is
865 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
866 NO_ENTRY_VALUE_ERROR otherwise. */
867
868 static struct symbol *
869 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
870 {
871 struct symbol *sym = find_pc_function (addr);
872 struct type *type;
873
874 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
875 throw_error (NO_ENTRY_VALUE_ERROR,
876 _("DW_TAG_call_site resolving failed to find function "
877 "name for address %s"),
878 paddress (gdbarch, addr));
879
880 type = SYMBOL_TYPE (sym);
881 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
882 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
883
884 return sym;
885 }
886
887 /* Verify function with entry point exact address ADDR can never call itself
888 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
889 can call itself via tail calls.
890
891 If a funtion can tail call itself its entry value based parameters are
892 unreliable. There is no verification whether the value of some/all
893 parameters is unchanged through the self tail call, we expect if there is
894 a self tail call all the parameters can be modified. */
895
896 static void
897 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
898 {
899 CORE_ADDR addr;
900
901 /* The verification is completely unordered. Track here function addresses
902 which still need to be iterated. */
903 std::vector<CORE_ADDR> todo;
904
905 /* Track here CORE_ADDRs which were already visited. */
906 std::unordered_set<CORE_ADDR> addr_hash;
907
908 todo.push_back (verify_addr);
909 while (!todo.empty ())
910 {
911 struct symbol *func_sym;
912 struct call_site *call_site;
913
914 addr = todo.back ();
915 todo.pop_back ();
916
917 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
918
919 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
920 call_site; call_site = call_site->tail_call_next)
921 {
922 CORE_ADDR target_addr;
923
924 /* CALLER_FRAME with registers is not available for tail-call jumped
925 frames. */
926 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
927
928 if (target_addr == verify_addr)
929 {
930 struct bound_minimal_symbol msym;
931
932 msym = lookup_minimal_symbol_by_pc (verify_addr);
933 throw_error (NO_ENTRY_VALUE_ERROR,
934 _("DW_OP_entry_value resolving has found "
935 "function \"%s\" at %s can call itself via tail "
936 "calls"),
937 (msym.minsym == NULL ? "???"
938 : MSYMBOL_PRINT_NAME (msym.minsym)),
939 paddress (gdbarch, verify_addr));
940 }
941
942 if (addr_hash.insert (target_addr).second)
943 todo.push_back (target_addr);
944 }
945 }
946 }
947
948 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
949 ENTRY_VALUES_DEBUG. */
950
951 static void
952 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
953 {
954 CORE_ADDR addr = call_site->pc;
955 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
956
957 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
958 (msym.minsym == NULL ? "???"
959 : MSYMBOL_PRINT_NAME (msym.minsym)));
960
961 }
962
963 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
964 only top callers and bottom callees which are present in both. GDBARCH is
965 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
966 no remaining possibilities to provide unambiguous non-trivial result.
967 RESULTP should point to NULL on the first (initialization) call. Caller is
968 responsible for xfree of any RESULTP data. */
969
970 static void
971 chain_candidate (struct gdbarch *gdbarch,
972 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
973 std::vector<struct call_site *> *chain)
974 {
975 long length = chain->size ();
976 int callers, callees, idx;
977
978 if (*resultp == NULL)
979 {
980 /* Create the initial chain containing all the passed PCs. */
981
982 struct call_site_chain *result
983 = ((struct call_site_chain *)
984 xmalloc (sizeof (*result)
985 + sizeof (*result->call_site) * (length - 1)));
986 result->length = length;
987 result->callers = result->callees = length;
988 if (!chain->empty ())
989 memcpy (result->call_site, chain->data (),
990 sizeof (*result->call_site) * length);
991 resultp->reset (result);
992
993 if (entry_values_debug)
994 {
995 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
996 for (idx = 0; idx < length; idx++)
997 tailcall_dump (gdbarch, result->call_site[idx]);
998 fputc_unfiltered ('\n', gdb_stdlog);
999 }
1000
1001 return;
1002 }
1003
1004 if (entry_values_debug)
1005 {
1006 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1007 for (idx = 0; idx < length; idx++)
1008 tailcall_dump (gdbarch, chain->at (idx));
1009 fputc_unfiltered ('\n', gdb_stdlog);
1010 }
1011
1012 /* Intersect callers. */
1013
1014 callers = std::min ((long) (*resultp)->callers, length);
1015 for (idx = 0; idx < callers; idx++)
1016 if ((*resultp)->call_site[idx] != chain->at (idx))
1017 {
1018 (*resultp)->callers = idx;
1019 break;
1020 }
1021
1022 /* Intersect callees. */
1023
1024 callees = std::min ((long) (*resultp)->callees, length);
1025 for (idx = 0; idx < callees; idx++)
1026 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1027 != chain->at (length - 1 - idx))
1028 {
1029 (*resultp)->callees = idx;
1030 break;
1031 }
1032
1033 if (entry_values_debug)
1034 {
1035 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
1036 for (idx = 0; idx < (*resultp)->callers; idx++)
1037 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1038 fputs_unfiltered (" |", gdb_stdlog);
1039 for (idx = 0; idx < (*resultp)->callees; idx++)
1040 tailcall_dump (gdbarch,
1041 (*resultp)->call_site[(*resultp)->length
1042 - (*resultp)->callees + idx]);
1043 fputc_unfiltered ('\n', gdb_stdlog);
1044 }
1045
1046 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1047 {
1048 /* There are no common callers or callees. It could be also a direct
1049 call (which has length 0) with ambiguous possibility of an indirect
1050 call - CALLERS == CALLEES == 0 is valid during the first allocation
1051 but any subsequence processing of such entry means ambiguity. */
1052 resultp->reset (NULL);
1053 return;
1054 }
1055
1056 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1057 PC again. In such case there must be two different code paths to reach
1058 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1059 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1060 }
1061
1062 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1063 assumed frames between them use GDBARCH. Use depth first search so we can
1064 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1065 would have needless GDB stack overhead. Caller is responsible for xfree of
1066 the returned result. Any unreliability results in thrown
1067 NO_ENTRY_VALUE_ERROR. */
1068
1069 static struct call_site_chain *
1070 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1071 CORE_ADDR callee_pc)
1072 {
1073 CORE_ADDR save_callee_pc = callee_pc;
1074 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1075 struct call_site *call_site;
1076
1077 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1078 call_site nor any possible call_site at CALLEE_PC's function is there.
1079 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1080 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1081 std::vector<struct call_site *> chain;
1082
1083 /* We are not interested in the specific PC inside the callee function. */
1084 callee_pc = get_pc_function_start (callee_pc);
1085 if (callee_pc == 0)
1086 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1087 paddress (gdbarch, save_callee_pc));
1088
1089 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1090 std::unordered_set<CORE_ADDR> addr_hash;
1091
1092 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1093 at the target's function. All the possible tail call sites in the
1094 target's function will get iterated as already pushed into CHAIN via their
1095 TAIL_CALL_NEXT. */
1096 call_site = call_site_for_pc (gdbarch, caller_pc);
1097
1098 while (call_site)
1099 {
1100 CORE_ADDR target_func_addr;
1101 struct call_site *target_call_site;
1102
1103 /* CALLER_FRAME with registers is not available for tail-call jumped
1104 frames. */
1105 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1106
1107 if (target_func_addr == callee_pc)
1108 {
1109 chain_candidate (gdbarch, &retval, &chain);
1110 if (retval == NULL)
1111 break;
1112
1113 /* There is no way to reach CALLEE_PC again as we would prevent
1114 entering it twice as being already marked in ADDR_HASH. */
1115 target_call_site = NULL;
1116 }
1117 else
1118 {
1119 struct symbol *target_func;
1120
1121 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1122 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1123 }
1124
1125 do
1126 {
1127 /* Attempt to visit TARGET_CALL_SITE. */
1128
1129 if (target_call_site)
1130 {
1131 if (addr_hash.insert (target_call_site->pc).second)
1132 {
1133 /* Successfully entered TARGET_CALL_SITE. */
1134
1135 chain.push_back (target_call_site);
1136 break;
1137 }
1138 }
1139
1140 /* Backtrack (without revisiting the originating call_site). Try the
1141 callers's sibling; if there isn't any try the callers's callers's
1142 sibling etc. */
1143
1144 target_call_site = NULL;
1145 while (!chain.empty ())
1146 {
1147 call_site = chain.back ();
1148 chain.pop_back ();
1149
1150 size_t removed = addr_hash.erase (call_site->pc);
1151 gdb_assert (removed == 1);
1152
1153 target_call_site = call_site->tail_call_next;
1154 if (target_call_site)
1155 break;
1156 }
1157 }
1158 while (target_call_site);
1159
1160 if (chain.empty ())
1161 call_site = NULL;
1162 else
1163 call_site = chain.back ();
1164 }
1165
1166 if (retval == NULL)
1167 {
1168 struct bound_minimal_symbol msym_caller, msym_callee;
1169
1170 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1171 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1172 throw_error (NO_ENTRY_VALUE_ERROR,
1173 _("There are no unambiguously determinable intermediate "
1174 "callers or callees between caller function \"%s\" at %s "
1175 "and callee function \"%s\" at %s"),
1176 (msym_caller.minsym == NULL
1177 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1178 paddress (gdbarch, caller_pc),
1179 (msym_callee.minsym == NULL
1180 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1181 paddress (gdbarch, callee_pc));
1182 }
1183
1184 return retval.release ();
1185 }
1186
1187 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1188 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1189 constructed return NULL. Caller is responsible for xfree of the returned
1190 result. */
1191
1192 struct call_site_chain *
1193 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1194 CORE_ADDR callee_pc)
1195 {
1196 struct call_site_chain *retval = NULL;
1197
1198 TRY
1199 {
1200 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1201 }
1202 CATCH (e, RETURN_MASK_ERROR)
1203 {
1204 if (e.error == NO_ENTRY_VALUE_ERROR)
1205 {
1206 if (entry_values_debug)
1207 exception_print (gdb_stdout, e);
1208
1209 return NULL;
1210 }
1211 else
1212 throw_exception (e);
1213 }
1214 END_CATCH
1215
1216 return retval;
1217 }
1218
1219 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1220
1221 static int
1222 call_site_parameter_matches (struct call_site_parameter *parameter,
1223 enum call_site_parameter_kind kind,
1224 union call_site_parameter_u kind_u)
1225 {
1226 if (kind == parameter->kind)
1227 switch (kind)
1228 {
1229 case CALL_SITE_PARAMETER_DWARF_REG:
1230 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1231 case CALL_SITE_PARAMETER_FB_OFFSET:
1232 return kind_u.fb_offset == parameter->u.fb_offset;
1233 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1234 return kind_u.param_cu_off == parameter->u.param_cu_off;
1235 }
1236 return 0;
1237 }
1238
1239 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1240 FRAME is for callee.
1241
1242 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1243 otherwise. */
1244
1245 static struct call_site_parameter *
1246 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1247 enum call_site_parameter_kind kind,
1248 union call_site_parameter_u kind_u,
1249 struct dwarf2_per_cu_data **per_cu_return)
1250 {
1251 CORE_ADDR func_addr, caller_pc;
1252 struct gdbarch *gdbarch;
1253 struct frame_info *caller_frame;
1254 struct call_site *call_site;
1255 int iparams;
1256 /* Initialize it just to avoid a GCC false warning. */
1257 struct call_site_parameter *parameter = NULL;
1258 CORE_ADDR target_addr;
1259
1260 while (get_frame_type (frame) == INLINE_FRAME)
1261 {
1262 frame = get_prev_frame (frame);
1263 gdb_assert (frame != NULL);
1264 }
1265
1266 func_addr = get_frame_func (frame);
1267 gdbarch = get_frame_arch (frame);
1268 caller_frame = get_prev_frame (frame);
1269 if (gdbarch != frame_unwind_arch (frame))
1270 {
1271 struct bound_minimal_symbol msym
1272 = lookup_minimal_symbol_by_pc (func_addr);
1273 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1274
1275 throw_error (NO_ENTRY_VALUE_ERROR,
1276 _("DW_OP_entry_value resolving callee gdbarch %s "
1277 "(of %s (%s)) does not match caller gdbarch %s"),
1278 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1279 paddress (gdbarch, func_addr),
1280 (msym.minsym == NULL ? "???"
1281 : MSYMBOL_PRINT_NAME (msym.minsym)),
1282 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1283 }
1284
1285 if (caller_frame == NULL)
1286 {
1287 struct bound_minimal_symbol msym
1288 = lookup_minimal_symbol_by_pc (func_addr);
1289
1290 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1291 "requires caller of %s (%s)"),
1292 paddress (gdbarch, func_addr),
1293 (msym.minsym == NULL ? "???"
1294 : MSYMBOL_PRINT_NAME (msym.minsym)));
1295 }
1296 caller_pc = get_frame_pc (caller_frame);
1297 call_site = call_site_for_pc (gdbarch, caller_pc);
1298
1299 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1300 if (target_addr != func_addr)
1301 {
1302 struct minimal_symbol *target_msym, *func_msym;
1303
1304 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1305 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1306 throw_error (NO_ENTRY_VALUE_ERROR,
1307 _("DW_OP_entry_value resolving expects callee %s at %s "
1308 "but the called frame is for %s at %s"),
1309 (target_msym == NULL ? "???"
1310 : MSYMBOL_PRINT_NAME (target_msym)),
1311 paddress (gdbarch, target_addr),
1312 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1313 paddress (gdbarch, func_addr));
1314 }
1315
1316 /* No entry value based parameters would be reliable if this function can
1317 call itself via tail calls. */
1318 func_verify_no_selftailcall (gdbarch, func_addr);
1319
1320 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1321 {
1322 parameter = &call_site->parameter[iparams];
1323 if (call_site_parameter_matches (parameter, kind, kind_u))
1324 break;
1325 }
1326 if (iparams == call_site->parameter_count)
1327 {
1328 struct minimal_symbol *msym
1329 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1330
1331 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1332 determine its value. */
1333 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1334 "at DW_TAG_call_site %s at %s"),
1335 paddress (gdbarch, caller_pc),
1336 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1337 }
1338
1339 *per_cu_return = call_site->per_cu;
1340 return parameter;
1341 }
1342
1343 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1344 the normal DW_AT_call_value block. Otherwise return the
1345 DW_AT_call_data_value (dereferenced) block.
1346
1347 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1348 struct value.
1349
1350 Function always returns non-NULL, non-optimized out value. It throws
1351 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1352
1353 static struct value *
1354 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1355 CORE_ADDR deref_size, struct type *type,
1356 struct frame_info *caller_frame,
1357 struct dwarf2_per_cu_data *per_cu)
1358 {
1359 const gdb_byte *data_src;
1360 gdb_byte *data;
1361 size_t size;
1362
1363 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1364 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1365
1366 /* DEREF_SIZE size is not verified here. */
1367 if (data_src == NULL)
1368 throw_error (NO_ENTRY_VALUE_ERROR,
1369 _("Cannot resolve DW_AT_call_data_value"));
1370
1371 /* DW_AT_call_value is a DWARF expression, not a DWARF
1372 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1373 DWARF block. */
1374 data = (gdb_byte *) alloca (size + 1);
1375 memcpy (data, data_src, size);
1376 data[size] = DW_OP_stack_value;
1377
1378 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1379 }
1380
1381 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1382 the indirect method on it, that is use its stored target value, the sole
1383 purpose of entry_data_value_funcs.. */
1384
1385 static struct value *
1386 entry_data_value_coerce_ref (const struct value *value)
1387 {
1388 struct type *checked_type = check_typedef (value_type (value));
1389 struct value *target_val;
1390
1391 if (!TYPE_IS_REFERENCE (checked_type))
1392 return NULL;
1393
1394 target_val = (struct value *) value_computed_closure (value);
1395 value_incref (target_val);
1396 return target_val;
1397 }
1398
1399 /* Implement copy_closure. */
1400
1401 static void *
1402 entry_data_value_copy_closure (const struct value *v)
1403 {
1404 struct value *target_val = (struct value *) value_computed_closure (v);
1405
1406 value_incref (target_val);
1407 return target_val;
1408 }
1409
1410 /* Implement free_closure. */
1411
1412 static void
1413 entry_data_value_free_closure (struct value *v)
1414 {
1415 struct value *target_val = (struct value *) value_computed_closure (v);
1416
1417 value_decref (target_val);
1418 }
1419
1420 /* Vector for methods for an entry value reference where the referenced value
1421 is stored in the caller. On the first dereference use
1422 DW_AT_call_data_value in the caller. */
1423
1424 static const struct lval_funcs entry_data_value_funcs =
1425 {
1426 NULL, /* read */
1427 NULL, /* write */
1428 NULL, /* indirect */
1429 entry_data_value_coerce_ref,
1430 NULL, /* check_synthetic_pointer */
1431 entry_data_value_copy_closure,
1432 entry_data_value_free_closure
1433 };
1434
1435 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1436 are used to match DW_AT_location at the caller's
1437 DW_TAG_call_site_parameter.
1438
1439 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1440 cannot resolve the parameter for any reason. */
1441
1442 static struct value *
1443 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1444 enum call_site_parameter_kind kind,
1445 union call_site_parameter_u kind_u)
1446 {
1447 struct type *checked_type = check_typedef (type);
1448 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1449 struct frame_info *caller_frame = get_prev_frame (frame);
1450 struct value *outer_val, *target_val, *val;
1451 struct call_site_parameter *parameter;
1452 struct dwarf2_per_cu_data *caller_per_cu;
1453
1454 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1455 &caller_per_cu);
1456
1457 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1458 type, caller_frame,
1459 caller_per_cu);
1460
1461 /* Check if DW_AT_call_data_value cannot be used. If it should be
1462 used and it is not available do not fall back to OUTER_VAL - dereferencing
1463 TYPE_CODE_REF with non-entry data value would give current value - not the
1464 entry value. */
1465
1466 if (!TYPE_IS_REFERENCE (checked_type)
1467 || TYPE_TARGET_TYPE (checked_type) == NULL)
1468 return outer_val;
1469
1470 target_val = dwarf_entry_parameter_to_value (parameter,
1471 TYPE_LENGTH (target_type),
1472 target_type, caller_frame,
1473 caller_per_cu);
1474
1475 val = allocate_computed_value (type, &entry_data_value_funcs,
1476 release_value (target_val).release ());
1477
1478 /* Copy the referencing pointer to the new computed value. */
1479 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1480 TYPE_LENGTH (checked_type));
1481 set_value_lazy (val, 0);
1482
1483 return val;
1484 }
1485
1486 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1487 SIZE are DWARF block used to match DW_AT_location at the caller's
1488 DW_TAG_call_site_parameter.
1489
1490 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1491 cannot resolve the parameter for any reason. */
1492
1493 static struct value *
1494 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1495 const gdb_byte *block, size_t block_len)
1496 {
1497 union call_site_parameter_u kind_u;
1498
1499 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1500 if (kind_u.dwarf_reg != -1)
1501 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1502 kind_u);
1503
1504 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1505 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1506 kind_u);
1507
1508 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1509 suppressed during normal operation. The expression can be arbitrary if
1510 there is no caller-callee entry value binding expected. */
1511 throw_error (NO_ENTRY_VALUE_ERROR,
1512 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1513 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1514 }
1515
1516 struct piece_closure
1517 {
1518 /* Reference count. */
1519 int refc = 0;
1520
1521 /* The CU from which this closure's expression came. */
1522 struct dwarf2_per_cu_data *per_cu = NULL;
1523
1524 /* The pieces describing this variable. */
1525 std::vector<dwarf_expr_piece> pieces;
1526
1527 /* Frame ID of frame to which a register value is relative, used
1528 only by DWARF_VALUE_REGISTER. */
1529 struct frame_id frame_id;
1530 };
1531
1532 /* Allocate a closure for a value formed from separately-described
1533 PIECES. */
1534
1535 static struct piece_closure *
1536 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1537 std::vector<dwarf_expr_piece> &&pieces,
1538 struct frame_info *frame)
1539 {
1540 struct piece_closure *c = new piece_closure;
1541
1542 c->refc = 1;
1543 c->per_cu = per_cu;
1544 c->pieces = std::move (pieces);
1545 if (frame == NULL)
1546 c->frame_id = null_frame_id;
1547 else
1548 c->frame_id = get_frame_id (frame);
1549
1550 for (dwarf_expr_piece &piece : c->pieces)
1551 if (piece.location == DWARF_VALUE_STACK)
1552 value_incref (piece.v.value);
1553
1554 return c;
1555 }
1556
1557 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1558 bits whose first bit is located at bit offset START. */
1559
1560 static size_t
1561 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1562 {
1563 return (start % 8 + n_bits + 7) / 8;
1564 }
1565
1566 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1567 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1568 operate in "read mode": fetch the contents of the (lazy) value V by
1569 composing it from its pieces. */
1570
1571 static void
1572 rw_pieced_value (struct value *v, struct value *from)
1573 {
1574 int i;
1575 LONGEST offset = 0, max_offset;
1576 ULONGEST bits_to_skip;
1577 gdb_byte *v_contents;
1578 const gdb_byte *from_contents;
1579 struct piece_closure *c
1580 = (struct piece_closure *) value_computed_closure (v);
1581 gdb::byte_vector buffer;
1582 int bits_big_endian
1583 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1584
1585 if (from != NULL)
1586 {
1587 from_contents = value_contents (from);
1588 v_contents = NULL;
1589 }
1590 else
1591 {
1592 if (value_type (v) != value_enclosing_type (v))
1593 internal_error (__FILE__, __LINE__,
1594 _("Should not be able to create a lazy value with "
1595 "an enclosing type"));
1596 v_contents = value_contents_raw (v);
1597 from_contents = NULL;
1598 }
1599
1600 bits_to_skip = 8 * value_offset (v);
1601 if (value_bitsize (v))
1602 {
1603 bits_to_skip += (8 * value_offset (value_parent (v))
1604 + value_bitpos (v));
1605 if (from != NULL
1606 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1607 == BFD_ENDIAN_BIG))
1608 {
1609 /* Use the least significant bits of FROM. */
1610 max_offset = 8 * TYPE_LENGTH (value_type (from));
1611 offset = max_offset - value_bitsize (v);
1612 }
1613 else
1614 max_offset = value_bitsize (v);
1615 }
1616 else
1617 max_offset = 8 * TYPE_LENGTH (value_type (v));
1618
1619 /* Advance to the first non-skipped piece. */
1620 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1621 bits_to_skip -= c->pieces[i].size;
1622
1623 for (; i < c->pieces.size () && offset < max_offset; i++)
1624 {
1625 struct dwarf_expr_piece *p = &c->pieces[i];
1626 size_t this_size_bits, this_size;
1627
1628 this_size_bits = p->size - bits_to_skip;
1629 if (this_size_bits > max_offset - offset)
1630 this_size_bits = max_offset - offset;
1631
1632 switch (p->location)
1633 {
1634 case DWARF_VALUE_REGISTER:
1635 {
1636 struct frame_info *frame = frame_find_by_id (c->frame_id);
1637 struct gdbarch *arch = get_frame_arch (frame);
1638 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1639 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1640 int optim, unavail;
1641
1642 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1643 && p->offset + p->size < reg_bits)
1644 {
1645 /* Big-endian, and we want less than full size. */
1646 bits_to_skip += reg_bits - (p->offset + p->size);
1647 }
1648 else
1649 bits_to_skip += p->offset;
1650
1651 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1652 buffer.resize (this_size);
1653
1654 if (from == NULL)
1655 {
1656 /* Read mode. */
1657 if (!get_frame_register_bytes (frame, gdb_regnum,
1658 bits_to_skip / 8,
1659 this_size, buffer.data (),
1660 &optim, &unavail))
1661 {
1662 if (optim)
1663 mark_value_bits_optimized_out (v, offset,
1664 this_size_bits);
1665 if (unavail)
1666 mark_value_bits_unavailable (v, offset,
1667 this_size_bits);
1668 break;
1669 }
1670
1671 copy_bitwise (v_contents, offset,
1672 buffer.data (), bits_to_skip % 8,
1673 this_size_bits, bits_big_endian);
1674 }
1675 else
1676 {
1677 /* Write mode. */
1678 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1679 {
1680 /* Data is copied non-byte-aligned into the register.
1681 Need some bits from original register value. */
1682 get_frame_register_bytes (frame, gdb_regnum,
1683 bits_to_skip / 8,
1684 this_size, buffer.data (),
1685 &optim, &unavail);
1686 if (optim)
1687 throw_error (OPTIMIZED_OUT_ERROR,
1688 _("Can't do read-modify-write to "
1689 "update bitfield; containing word "
1690 "has been optimized out"));
1691 if (unavail)
1692 throw_error (NOT_AVAILABLE_ERROR,
1693 _("Can't do read-modify-write to "
1694 "update bitfield; containing word "
1695 "is unavailable"));
1696 }
1697
1698 copy_bitwise (buffer.data (), bits_to_skip % 8,
1699 from_contents, offset,
1700 this_size_bits, bits_big_endian);
1701 put_frame_register_bytes (frame, gdb_regnum,
1702 bits_to_skip / 8,
1703 this_size, buffer.data ());
1704 }
1705 }
1706 break;
1707
1708 case DWARF_VALUE_MEMORY:
1709 {
1710 bits_to_skip += p->offset;
1711
1712 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1713
1714 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1715 && offset % 8 == 0)
1716 {
1717 /* Everything is byte-aligned; no buffer needed. */
1718 if (from != NULL)
1719 write_memory_with_notification (start_addr,
1720 (from_contents
1721 + offset / 8),
1722 this_size_bits / 8);
1723 else
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + bits_to_skip / 8,
1727 v_contents + offset / 8,
1728 this_size_bits / 8);
1729 break;
1730 }
1731
1732 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1733 buffer.resize (this_size);
1734
1735 if (from == NULL)
1736 {
1737 /* Read mode. */
1738 read_value_memory (v, offset,
1739 p->v.mem.in_stack_memory,
1740 p->v.mem.addr + bits_to_skip / 8,
1741 buffer.data (), this_size);
1742 copy_bitwise (v_contents, offset,
1743 buffer.data (), bits_to_skip % 8,
1744 this_size_bits, bits_big_endian);
1745 }
1746 else
1747 {
1748 /* Write mode. */
1749 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1750 {
1751 if (this_size <= 8)
1752 {
1753 /* Perform a single read for small sizes. */
1754 read_memory (start_addr, buffer.data (),
1755 this_size);
1756 }
1757 else
1758 {
1759 /* Only the first and last bytes can possibly have
1760 any bits reused. */
1761 read_memory (start_addr, buffer.data (), 1);
1762 read_memory (start_addr + this_size - 1,
1763 &buffer[this_size - 1], 1);
1764 }
1765 }
1766
1767 copy_bitwise (buffer.data (), bits_to_skip % 8,
1768 from_contents, offset,
1769 this_size_bits, bits_big_endian);
1770 write_memory_with_notification (start_addr,
1771 buffer.data (),
1772 this_size);
1773 }
1774 }
1775 break;
1776
1777 case DWARF_VALUE_STACK:
1778 {
1779 if (from != NULL)
1780 {
1781 mark_value_bits_optimized_out (v, offset, this_size_bits);
1782 break;
1783 }
1784
1785 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1786 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1787 ULONGEST stack_value_size_bits
1788 = 8 * TYPE_LENGTH (value_type (p->v.value));
1789
1790 /* Use zeroes if piece reaches beyond stack value. */
1791 if (p->offset + p->size > stack_value_size_bits)
1792 break;
1793
1794 /* Piece is anchored at least significant bit end. */
1795 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1796 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1797 else
1798 bits_to_skip += p->offset;
1799
1800 copy_bitwise (v_contents, offset,
1801 value_contents_all (p->v.value),
1802 bits_to_skip,
1803 this_size_bits, bits_big_endian);
1804 }
1805 break;
1806
1807 case DWARF_VALUE_LITERAL:
1808 {
1809 if (from != NULL)
1810 {
1811 mark_value_bits_optimized_out (v, offset, this_size_bits);
1812 break;
1813 }
1814
1815 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1816 size_t n = this_size_bits;
1817
1818 /* Cut off at the end of the implicit value. */
1819 bits_to_skip += p->offset;
1820 if (bits_to_skip >= literal_size_bits)
1821 break;
1822 if (n > literal_size_bits - bits_to_skip)
1823 n = literal_size_bits - bits_to_skip;
1824
1825 copy_bitwise (v_contents, offset,
1826 p->v.literal.data, bits_to_skip,
1827 n, bits_big_endian);
1828 }
1829 break;
1830
1831 case DWARF_VALUE_IMPLICIT_POINTER:
1832 if (from != NULL)
1833 {
1834 mark_value_bits_optimized_out (v, offset, this_size_bits);
1835 break;
1836 }
1837
1838 /* These bits show up as zeros -- but do not cause the value to
1839 be considered optimized-out. */
1840 break;
1841
1842 case DWARF_VALUE_OPTIMIZED_OUT:
1843 mark_value_bits_optimized_out (v, offset, this_size_bits);
1844 break;
1845
1846 default:
1847 internal_error (__FILE__, __LINE__, _("invalid location type"));
1848 }
1849
1850 offset += this_size_bits;
1851 bits_to_skip = 0;
1852 }
1853 }
1854
1855
1856 static void
1857 read_pieced_value (struct value *v)
1858 {
1859 rw_pieced_value (v, NULL);
1860 }
1861
1862 static void
1863 write_pieced_value (struct value *to, struct value *from)
1864 {
1865 rw_pieced_value (to, from);
1866 }
1867
1868 /* An implementation of an lval_funcs method to see whether a value is
1869 a synthetic pointer. */
1870
1871 static int
1872 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
1873 int bit_length)
1874 {
1875 struct piece_closure *c
1876 = (struct piece_closure *) value_computed_closure (value);
1877 int i;
1878
1879 bit_offset += 8 * value_offset (value);
1880 if (value_bitsize (value))
1881 bit_offset += value_bitpos (value);
1882
1883 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
1884 {
1885 struct dwarf_expr_piece *p = &c->pieces[i];
1886 size_t this_size_bits = p->size;
1887
1888 if (bit_offset > 0)
1889 {
1890 if (bit_offset >= this_size_bits)
1891 {
1892 bit_offset -= this_size_bits;
1893 continue;
1894 }
1895
1896 bit_length -= this_size_bits - bit_offset;
1897 bit_offset = 0;
1898 }
1899 else
1900 bit_length -= this_size_bits;
1901
1902 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1903 return 0;
1904 }
1905
1906 return 1;
1907 }
1908
1909 /* A wrapper function for get_frame_address_in_block. */
1910
1911 static CORE_ADDR
1912 get_frame_address_in_block_wrapper (void *baton)
1913 {
1914 return get_frame_address_in_block ((struct frame_info *) baton);
1915 }
1916
1917 /* Fetch a DW_AT_const_value through a synthetic pointer. */
1918
1919 static struct value *
1920 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1921 struct dwarf2_per_cu_data *per_cu,
1922 struct type *type)
1923 {
1924 struct value *result = NULL;
1925 const gdb_byte *bytes;
1926 LONGEST len;
1927
1928 auto_obstack temp_obstack;
1929 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1930
1931 if (bytes != NULL)
1932 {
1933 if (byte_offset >= 0
1934 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1935 {
1936 bytes += byte_offset;
1937 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1938 }
1939 else
1940 invalid_synthetic_pointer ();
1941 }
1942 else
1943 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1944
1945 return result;
1946 }
1947
1948 /* Fetch the value pointed to by a synthetic pointer. */
1949
1950 static struct value *
1951 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1952 struct dwarf2_per_cu_data *per_cu,
1953 struct frame_info *frame, struct type *type,
1954 bool resolve_abstract_p)
1955 {
1956 /* Fetch the location expression of the DIE we're pointing to. */
1957 struct dwarf2_locexpr_baton baton
1958 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
1959 get_frame_address_in_block_wrapper, frame,
1960 resolve_abstract_p);
1961
1962 /* Get type of pointed-to DIE. */
1963 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1964 if (orig_type == NULL)
1965 invalid_synthetic_pointer ();
1966
1967 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
1968 resulting value. Otherwise, it may have a DW_AT_const_value instead,
1969 or it may've been optimized out. */
1970 if (baton.data != NULL)
1971 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
1972 baton.size, baton.per_cu,
1973 TYPE_TARGET_TYPE (type),
1974 byte_offset);
1975 else
1976 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
1977 type);
1978 }
1979
1980 /* An implementation of an lval_funcs method to indirect through a
1981 pointer. This handles the synthetic pointer case when needed. */
1982
1983 static struct value *
1984 indirect_pieced_value (struct value *value)
1985 {
1986 struct piece_closure *c
1987 = (struct piece_closure *) value_computed_closure (value);
1988 struct type *type;
1989 struct frame_info *frame;
1990 int i, bit_length;
1991 LONGEST bit_offset;
1992 struct dwarf_expr_piece *piece = NULL;
1993 LONGEST byte_offset;
1994 enum bfd_endian byte_order;
1995
1996 type = check_typedef (value_type (value));
1997 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1998 return NULL;
1999
2000 bit_length = 8 * TYPE_LENGTH (type);
2001 bit_offset = 8 * value_offset (value);
2002 if (value_bitsize (value))
2003 bit_offset += value_bitpos (value);
2004
2005 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2006 {
2007 struct dwarf_expr_piece *p = &c->pieces[i];
2008 size_t this_size_bits = p->size;
2009
2010 if (bit_offset > 0)
2011 {
2012 if (bit_offset >= this_size_bits)
2013 {
2014 bit_offset -= this_size_bits;
2015 continue;
2016 }
2017
2018 bit_length -= this_size_bits - bit_offset;
2019 bit_offset = 0;
2020 }
2021 else
2022 bit_length -= this_size_bits;
2023
2024 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2025 return NULL;
2026
2027 if (bit_length != 0)
2028 error (_("Invalid use of DW_OP_implicit_pointer"));
2029
2030 piece = p;
2031 break;
2032 }
2033
2034 gdb_assert (piece != NULL);
2035 frame = get_selected_frame (_("No frame selected."));
2036
2037 /* This is an offset requested by GDB, such as value subscripts.
2038 However, due to how synthetic pointers are implemented, this is
2039 always presented to us as a pointer type. This means we have to
2040 sign-extend it manually as appropriate. Use raw
2041 extract_signed_integer directly rather than value_as_address and
2042 sign extend afterwards on architectures that would need it
2043 (mostly everywhere except MIPS, which has signed addresses) as
2044 the later would go through gdbarch_pointer_to_address and thus
2045 return a CORE_ADDR with high bits set on architectures that
2046 encode address spaces and other things in CORE_ADDR. */
2047 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2048 byte_offset = extract_signed_integer (value_contents (value),
2049 TYPE_LENGTH (type), byte_order);
2050 byte_offset += piece->v.ptr.offset;
2051
2052 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2053 byte_offset, c->per_cu,
2054 frame, type);
2055 }
2056
2057 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2058 references. */
2059
2060 static struct value *
2061 coerce_pieced_ref (const struct value *value)
2062 {
2063 struct type *type = check_typedef (value_type (value));
2064
2065 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2066 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2067 {
2068 const struct piece_closure *closure
2069 = (struct piece_closure *) value_computed_closure (value);
2070 struct frame_info *frame
2071 = get_selected_frame (_("No frame selected."));
2072
2073 /* gdb represents synthetic pointers as pieced values with a single
2074 piece. */
2075 gdb_assert (closure != NULL);
2076 gdb_assert (closure->pieces.size () == 1);
2077
2078 return indirect_synthetic_pointer
2079 (closure->pieces[0].v.ptr.die_sect_off,
2080 closure->pieces[0].v.ptr.offset,
2081 closure->per_cu, frame, type);
2082 }
2083 else
2084 {
2085 /* Else: not a synthetic reference; do nothing. */
2086 return NULL;
2087 }
2088 }
2089
2090 static void *
2091 copy_pieced_value_closure (const struct value *v)
2092 {
2093 struct piece_closure *c
2094 = (struct piece_closure *) value_computed_closure (v);
2095
2096 ++c->refc;
2097 return c;
2098 }
2099
2100 static void
2101 free_pieced_value_closure (struct value *v)
2102 {
2103 struct piece_closure *c
2104 = (struct piece_closure *) value_computed_closure (v);
2105
2106 --c->refc;
2107 if (c->refc == 0)
2108 {
2109 for (dwarf_expr_piece &p : c->pieces)
2110 if (p.location == DWARF_VALUE_STACK)
2111 value_decref (p.v.value);
2112
2113 delete c;
2114 }
2115 }
2116
2117 /* Functions for accessing a variable described by DW_OP_piece. */
2118 static const struct lval_funcs pieced_value_funcs = {
2119 read_pieced_value,
2120 write_pieced_value,
2121 indirect_pieced_value,
2122 coerce_pieced_ref,
2123 check_pieced_synthetic_pointer,
2124 copy_pieced_value_closure,
2125 free_pieced_value_closure
2126 };
2127
2128 /* Evaluate a location description, starting at DATA and with length
2129 SIZE, to find the current location of variable of TYPE in the
2130 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2131 location of the subobject of type SUBOBJ_TYPE at byte offset
2132 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2133
2134 static struct value *
2135 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2136 const gdb_byte *data, size_t size,
2137 struct dwarf2_per_cu_data *per_cu,
2138 struct type *subobj_type,
2139 LONGEST subobj_byte_offset)
2140 {
2141 struct value *retval;
2142 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2143
2144 if (subobj_type == NULL)
2145 {
2146 subobj_type = type;
2147 subobj_byte_offset = 0;
2148 }
2149 else if (subobj_byte_offset < 0)
2150 invalid_synthetic_pointer ();
2151
2152 if (size == 0)
2153 return allocate_optimized_out_value (subobj_type);
2154
2155 dwarf_evaluate_loc_desc ctx;
2156 ctx.frame = frame;
2157 ctx.per_cu = per_cu;
2158 ctx.obj_address = 0;
2159
2160 scoped_value_mark free_values;
2161
2162 ctx.gdbarch = get_objfile_arch (objfile);
2163 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2164 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2165 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2166
2167 TRY
2168 {
2169 ctx.eval (data, size);
2170 }
2171 CATCH (ex, RETURN_MASK_ERROR)
2172 {
2173 if (ex.error == NOT_AVAILABLE_ERROR)
2174 {
2175 free_values.free_to_mark ();
2176 retval = allocate_value (subobj_type);
2177 mark_value_bytes_unavailable (retval, 0,
2178 TYPE_LENGTH (subobj_type));
2179 return retval;
2180 }
2181 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2182 {
2183 if (entry_values_debug)
2184 exception_print (gdb_stdout, ex);
2185 free_values.free_to_mark ();
2186 return allocate_optimized_out_value (subobj_type);
2187 }
2188 else
2189 throw_exception (ex);
2190 }
2191 END_CATCH
2192
2193 if (ctx.pieces.size () > 0)
2194 {
2195 struct piece_closure *c;
2196 ULONGEST bit_size = 0;
2197
2198 for (dwarf_expr_piece &piece : ctx.pieces)
2199 bit_size += piece.size;
2200 /* Complain if the expression is larger than the size of the
2201 outer type. */
2202 if (bit_size > 8 * TYPE_LENGTH (type))
2203 invalid_synthetic_pointer ();
2204
2205 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2206 /* We must clean up the value chain after creating the piece
2207 closure but before allocating the result. */
2208 free_values.free_to_mark ();
2209 retval = allocate_computed_value (subobj_type,
2210 &pieced_value_funcs, c);
2211 set_value_offset (retval, subobj_byte_offset);
2212 }
2213 else
2214 {
2215 switch (ctx.location)
2216 {
2217 case DWARF_VALUE_REGISTER:
2218 {
2219 struct gdbarch *arch = get_frame_arch (frame);
2220 int dwarf_regnum
2221 = longest_to_int (value_as_long (ctx.fetch (0)));
2222 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2223
2224 if (subobj_byte_offset != 0)
2225 error (_("cannot use offset on synthetic pointer to register"));
2226 free_values.free_to_mark ();
2227 retval = value_from_register (subobj_type, gdb_regnum, frame);
2228 if (value_optimized_out (retval))
2229 {
2230 struct value *tmp;
2231
2232 /* This means the register has undefined value / was
2233 not saved. As we're computing the location of some
2234 variable etc. in the program, not a value for
2235 inspecting a register ($pc, $sp, etc.), return a
2236 generic optimized out value instead, so that we show
2237 <optimized out> instead of <not saved>. */
2238 tmp = allocate_value (subobj_type);
2239 value_contents_copy (tmp, 0, retval, 0,
2240 TYPE_LENGTH (subobj_type));
2241 retval = tmp;
2242 }
2243 }
2244 break;
2245
2246 case DWARF_VALUE_MEMORY:
2247 {
2248 struct type *ptr_type;
2249 CORE_ADDR address = ctx.fetch_address (0);
2250 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2251
2252 /* DW_OP_deref_size (and possibly other operations too) may
2253 create a pointer instead of an address. Ideally, the
2254 pointer to address conversion would be performed as part
2255 of those operations, but the type of the object to
2256 which the address refers is not known at the time of
2257 the operation. Therefore, we do the conversion here
2258 since the type is readily available. */
2259
2260 switch (TYPE_CODE (subobj_type))
2261 {
2262 case TYPE_CODE_FUNC:
2263 case TYPE_CODE_METHOD:
2264 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2265 break;
2266 default:
2267 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2268 break;
2269 }
2270 address = value_as_address (value_from_pointer (ptr_type, address));
2271
2272 free_values.free_to_mark ();
2273 retval = value_at_lazy (subobj_type,
2274 address + subobj_byte_offset);
2275 if (in_stack_memory)
2276 set_value_stack (retval, 1);
2277 }
2278 break;
2279
2280 case DWARF_VALUE_STACK:
2281 {
2282 struct value *value = ctx.fetch (0);
2283 size_t n = TYPE_LENGTH (value_type (value));
2284 size_t len = TYPE_LENGTH (subobj_type);
2285 size_t max = TYPE_LENGTH (type);
2286 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2287
2288 if (subobj_byte_offset + len > max)
2289 invalid_synthetic_pointer ();
2290
2291 /* Preserve VALUE because we are going to free values back
2292 to the mark, but we still need the value contents
2293 below. */
2294 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
2295 free_values.free_to_mark ();
2296
2297 retval = allocate_value (subobj_type);
2298
2299 /* The given offset is relative to the actual object. */
2300 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2301 subobj_byte_offset += n - max;
2302
2303 memcpy (value_contents_raw (retval),
2304 value_contents_all (value) + subobj_byte_offset, len);
2305 }
2306 break;
2307
2308 case DWARF_VALUE_LITERAL:
2309 {
2310 bfd_byte *contents;
2311 size_t n = TYPE_LENGTH (subobj_type);
2312
2313 if (subobj_byte_offset + n > ctx.len)
2314 invalid_synthetic_pointer ();
2315
2316 free_values.free_to_mark ();
2317 retval = allocate_value (subobj_type);
2318 contents = value_contents_raw (retval);
2319 memcpy (contents, ctx.data + subobj_byte_offset, n);
2320 }
2321 break;
2322
2323 case DWARF_VALUE_OPTIMIZED_OUT:
2324 free_values.free_to_mark ();
2325 retval = allocate_optimized_out_value (subobj_type);
2326 break;
2327
2328 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2329 operation by execute_stack_op. */
2330 case DWARF_VALUE_IMPLICIT_POINTER:
2331 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2332 it can only be encountered when making a piece. */
2333 default:
2334 internal_error (__FILE__, __LINE__, _("invalid location type"));
2335 }
2336 }
2337
2338 set_value_initialized (retval, ctx.initialized);
2339
2340 return retval;
2341 }
2342
2343 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2344 passes 0 as the byte_offset. */
2345
2346 struct value *
2347 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2348 const gdb_byte *data, size_t size,
2349 struct dwarf2_per_cu_data *per_cu)
2350 {
2351 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2352 NULL, 0);
2353 }
2354
2355 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2356 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2357 frame in which the expression is evaluated. ADDR is a context (location of
2358 a variable) and might be needed to evaluate the location expression.
2359 Returns 1 on success, 0 otherwise. */
2360
2361 static int
2362 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2363 struct frame_info *frame,
2364 CORE_ADDR addr,
2365 CORE_ADDR *valp)
2366 {
2367 struct objfile *objfile;
2368
2369 if (dlbaton == NULL || dlbaton->size == 0)
2370 return 0;
2371
2372 dwarf_evaluate_loc_desc ctx;
2373
2374 ctx.frame = frame;
2375 ctx.per_cu = dlbaton->per_cu;
2376 ctx.obj_address = addr;
2377
2378 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2379
2380 ctx.gdbarch = get_objfile_arch (objfile);
2381 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2382 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2383 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2384
2385 TRY
2386 {
2387 ctx.eval (dlbaton->data, dlbaton->size);
2388 }
2389 CATCH (ex, RETURN_MASK_ERROR)
2390 {
2391 if (ex.error == NOT_AVAILABLE_ERROR)
2392 {
2393 return 0;
2394 }
2395 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2396 {
2397 if (entry_values_debug)
2398 exception_print (gdb_stdout, ex);
2399 return 0;
2400 }
2401 else
2402 throw_exception (ex);
2403 }
2404 END_CATCH
2405
2406 switch (ctx.location)
2407 {
2408 case DWARF_VALUE_REGISTER:
2409 case DWARF_VALUE_MEMORY:
2410 case DWARF_VALUE_STACK:
2411 *valp = ctx.fetch_address (0);
2412 if (ctx.location == DWARF_VALUE_REGISTER)
2413 *valp = ctx.read_addr_from_reg (*valp);
2414 return 1;
2415 case DWARF_VALUE_LITERAL:
2416 *valp = extract_signed_integer (ctx.data, ctx.len,
2417 gdbarch_byte_order (ctx.gdbarch));
2418 return 1;
2419 /* Unsupported dwarf values. */
2420 case DWARF_VALUE_OPTIMIZED_OUT:
2421 case DWARF_VALUE_IMPLICIT_POINTER:
2422 break;
2423 }
2424
2425 return 0;
2426 }
2427
2428 /* See dwarf2loc.h. */
2429
2430 int
2431 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2432 struct frame_info *frame,
2433 struct property_addr_info *addr_stack,
2434 CORE_ADDR *value)
2435 {
2436 if (prop == NULL)
2437 return 0;
2438
2439 if (frame == NULL && has_stack_frames ())
2440 frame = get_selected_frame (NULL);
2441
2442 switch (prop->kind)
2443 {
2444 case PROP_LOCEXPR:
2445 {
2446 const struct dwarf2_property_baton *baton
2447 = (const struct dwarf2_property_baton *) prop->data.baton;
2448
2449 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2450 addr_stack ? addr_stack->addr : 0,
2451 value))
2452 {
2453 if (baton->referenced_type)
2454 {
2455 struct value *val = value_at (baton->referenced_type, *value);
2456
2457 *value = value_as_address (val);
2458 }
2459 return 1;
2460 }
2461 }
2462 break;
2463
2464 case PROP_LOCLIST:
2465 {
2466 struct dwarf2_property_baton *baton
2467 = (struct dwarf2_property_baton *) prop->data.baton;
2468 CORE_ADDR pc = get_frame_address_in_block (frame);
2469 const gdb_byte *data;
2470 struct value *val;
2471 size_t size;
2472
2473 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2474 if (data != NULL)
2475 {
2476 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2477 size, baton->loclist.per_cu);
2478 if (!value_optimized_out (val))
2479 {
2480 *value = value_as_address (val);
2481 return 1;
2482 }
2483 }
2484 }
2485 break;
2486
2487 case PROP_CONST:
2488 *value = prop->data.const_val;
2489 return 1;
2490
2491 case PROP_ADDR_OFFSET:
2492 {
2493 struct dwarf2_property_baton *baton
2494 = (struct dwarf2_property_baton *) prop->data.baton;
2495 struct property_addr_info *pinfo;
2496 struct value *val;
2497
2498 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2499 if (pinfo->type == baton->referenced_type)
2500 break;
2501 if (pinfo == NULL)
2502 error (_("cannot find reference address for offset property"));
2503 if (pinfo->valaddr != NULL)
2504 val = value_from_contents
2505 (baton->offset_info.type,
2506 pinfo->valaddr + baton->offset_info.offset);
2507 else
2508 val = value_at (baton->offset_info.type,
2509 pinfo->addr + baton->offset_info.offset);
2510 *value = value_as_address (val);
2511 return 1;
2512 }
2513 }
2514
2515 return 0;
2516 }
2517
2518 /* See dwarf2loc.h. */
2519
2520 void
2521 dwarf2_compile_property_to_c (string_file *stream,
2522 const char *result_name,
2523 struct gdbarch *gdbarch,
2524 unsigned char *registers_used,
2525 const struct dynamic_prop *prop,
2526 CORE_ADDR pc,
2527 struct symbol *sym)
2528 {
2529 struct dwarf2_property_baton *baton
2530 = (struct dwarf2_property_baton *) prop->data.baton;
2531 const gdb_byte *data;
2532 size_t size;
2533 struct dwarf2_per_cu_data *per_cu;
2534
2535 if (prop->kind == PROP_LOCEXPR)
2536 {
2537 data = baton->locexpr.data;
2538 size = baton->locexpr.size;
2539 per_cu = baton->locexpr.per_cu;
2540 }
2541 else
2542 {
2543 gdb_assert (prop->kind == PROP_LOCLIST);
2544
2545 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2546 per_cu = baton->loclist.per_cu;
2547 }
2548
2549 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2550 gdbarch, registers_used,
2551 dwarf2_per_cu_addr_size (per_cu),
2552 data, data + size, per_cu);
2553 }
2554
2555 \f
2556 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2557
2558 class symbol_needs_eval_context : public dwarf_expr_context
2559 {
2560 public:
2561
2562 enum symbol_needs_kind needs;
2563 struct dwarf2_per_cu_data *per_cu;
2564
2565 /* Reads from registers do require a frame. */
2566 CORE_ADDR read_addr_from_reg (int regnum) override
2567 {
2568 needs = SYMBOL_NEEDS_FRAME;
2569 return 1;
2570 }
2571
2572 /* "get_reg_value" callback: Reads from registers do require a
2573 frame. */
2574
2575 struct value *get_reg_value (struct type *type, int regnum) override
2576 {
2577 needs = SYMBOL_NEEDS_FRAME;
2578 return value_zero (type, not_lval);
2579 }
2580
2581 /* Reads from memory do not require a frame. */
2582 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2583 {
2584 memset (buf, 0, len);
2585 }
2586
2587 /* Frame-relative accesses do require a frame. */
2588 void get_frame_base (const gdb_byte **start, size_t *length) override
2589 {
2590 static gdb_byte lit0 = DW_OP_lit0;
2591
2592 *start = &lit0;
2593 *length = 1;
2594
2595 needs = SYMBOL_NEEDS_FRAME;
2596 }
2597
2598 /* CFA accesses require a frame. */
2599 CORE_ADDR get_frame_cfa () override
2600 {
2601 needs = SYMBOL_NEEDS_FRAME;
2602 return 1;
2603 }
2604
2605 CORE_ADDR get_frame_pc () override
2606 {
2607 needs = SYMBOL_NEEDS_FRAME;
2608 return 1;
2609 }
2610
2611 /* Thread-local accesses require registers, but not a frame. */
2612 CORE_ADDR get_tls_address (CORE_ADDR offset) override
2613 {
2614 if (needs <= SYMBOL_NEEDS_REGISTERS)
2615 needs = SYMBOL_NEEDS_REGISTERS;
2616 return 1;
2617 }
2618
2619 /* Helper interface of per_cu_dwarf_call for
2620 dwarf2_loc_desc_get_symbol_read_needs. */
2621
2622 void dwarf_call (cu_offset die_offset) override
2623 {
2624 per_cu_dwarf_call (this, die_offset, per_cu);
2625 }
2626
2627 /* Helper interface of sect_variable_value for
2628 dwarf2_loc_desc_get_symbol_read_needs. */
2629
2630 struct value *dwarf_variable_value (sect_offset sect_off) override
2631 {
2632 return sect_variable_value (this, sect_off, per_cu);
2633 }
2634
2635 /* DW_OP_entry_value accesses require a caller, therefore a
2636 frame. */
2637
2638 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2639 union call_site_parameter_u kind_u,
2640 int deref_size) override
2641 {
2642 needs = SYMBOL_NEEDS_FRAME;
2643
2644 /* The expression may require some stub values on DWARF stack. */
2645 push_address (0, 0);
2646 }
2647
2648 /* DW_OP_GNU_addr_index doesn't require a frame. */
2649
2650 CORE_ADDR get_addr_index (unsigned int index) override
2651 {
2652 /* Nothing to do. */
2653 return 1;
2654 }
2655
2656 /* DW_OP_push_object_address has a frame already passed through. */
2657
2658 CORE_ADDR get_object_address () override
2659 {
2660 /* Nothing to do. */
2661 return 1;
2662 }
2663 };
2664
2665 /* Compute the correct symbol_needs_kind value for the location
2666 expression at DATA (length SIZE). */
2667
2668 static enum symbol_needs_kind
2669 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2670 struct dwarf2_per_cu_data *per_cu)
2671 {
2672 int in_reg;
2673 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2674
2675 scoped_value_mark free_values;
2676
2677 symbol_needs_eval_context ctx;
2678
2679 ctx.needs = SYMBOL_NEEDS_NONE;
2680 ctx.per_cu = per_cu;
2681 ctx.gdbarch = get_objfile_arch (objfile);
2682 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2683 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2684 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2685
2686 ctx.eval (data, size);
2687
2688 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2689
2690 /* If the location has several pieces, and any of them are in
2691 registers, then we will need a frame to fetch them from. */
2692 for (dwarf_expr_piece &p : ctx.pieces)
2693 if (p.location == DWARF_VALUE_REGISTER)
2694 in_reg = 1;
2695
2696 if (in_reg)
2697 ctx.needs = SYMBOL_NEEDS_FRAME;
2698 return ctx.needs;
2699 }
2700
2701 /* A helper function that throws an unimplemented error mentioning a
2702 given DWARF operator. */
2703
2704 static void ATTRIBUTE_NORETURN
2705 unimplemented (unsigned int op)
2706 {
2707 const char *name = get_DW_OP_name (op);
2708
2709 if (name)
2710 error (_("DWARF operator %s cannot be translated to an agent expression"),
2711 name);
2712 else
2713 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2714 "to an agent expression"),
2715 op);
2716 }
2717
2718 /* See dwarf2loc.h.
2719
2720 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2721 can issue a complaint, which is better than having every target's
2722 implementation of dwarf2_reg_to_regnum do it. */
2723
2724 int
2725 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2726 {
2727 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2728
2729 if (reg == -1)
2730 {
2731 complaint (_("bad DWARF register number %d"), dwarf_reg);
2732 }
2733 return reg;
2734 }
2735
2736 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2737 Throw an error because DWARF_REG is bad. */
2738
2739 static void
2740 throw_bad_regnum_error (ULONGEST dwarf_reg)
2741 {
2742 /* Still want to print -1 as "-1".
2743 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2744 but that's overkill for now. */
2745 if ((int) dwarf_reg == dwarf_reg)
2746 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2747 error (_("Unable to access DWARF register number %s"),
2748 pulongest (dwarf_reg));
2749 }
2750
2751 /* See dwarf2loc.h. */
2752
2753 int
2754 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2755 {
2756 int reg;
2757
2758 if (dwarf_reg > INT_MAX)
2759 throw_bad_regnum_error (dwarf_reg);
2760 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2761 bad, but that's ok. */
2762 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2763 if (reg == -1)
2764 throw_bad_regnum_error (dwarf_reg);
2765 return reg;
2766 }
2767
2768 /* A helper function that emits an access to memory. ARCH is the
2769 target architecture. EXPR is the expression which we are building.
2770 NBITS is the number of bits we want to read. This emits the
2771 opcodes needed to read the memory and then extract the desired
2772 bits. */
2773
2774 static void
2775 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2776 {
2777 ULONGEST nbytes = (nbits + 7) / 8;
2778
2779 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2780
2781 if (expr->tracing)
2782 ax_trace_quick (expr, nbytes);
2783
2784 if (nbits <= 8)
2785 ax_simple (expr, aop_ref8);
2786 else if (nbits <= 16)
2787 ax_simple (expr, aop_ref16);
2788 else if (nbits <= 32)
2789 ax_simple (expr, aop_ref32);
2790 else
2791 ax_simple (expr, aop_ref64);
2792
2793 /* If we read exactly the number of bytes we wanted, we're done. */
2794 if (8 * nbytes == nbits)
2795 return;
2796
2797 if (gdbarch_bits_big_endian (arch))
2798 {
2799 /* On a bits-big-endian machine, we want the high-order
2800 NBITS. */
2801 ax_const_l (expr, 8 * nbytes - nbits);
2802 ax_simple (expr, aop_rsh_unsigned);
2803 }
2804 else
2805 {
2806 /* On a bits-little-endian box, we want the low-order NBITS. */
2807 ax_zero_ext (expr, nbits);
2808 }
2809 }
2810
2811 /* A helper function to return the frame's PC. */
2812
2813 static CORE_ADDR
2814 get_ax_pc (void *baton)
2815 {
2816 struct agent_expr *expr = (struct agent_expr *) baton;
2817
2818 return expr->scope;
2819 }
2820
2821 /* Compile a DWARF location expression to an agent expression.
2822
2823 EXPR is the agent expression we are building.
2824 LOC is the agent value we modify.
2825 ARCH is the architecture.
2826 ADDR_SIZE is the size of addresses, in bytes.
2827 OP_PTR is the start of the location expression.
2828 OP_END is one past the last byte of the location expression.
2829
2830 This will throw an exception for various kinds of errors -- for
2831 example, if the expression cannot be compiled, or if the expression
2832 is invalid. */
2833
2834 void
2835 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2836 unsigned int addr_size, const gdb_byte *op_ptr,
2837 const gdb_byte *op_end,
2838 struct dwarf2_per_cu_data *per_cu)
2839 {
2840 gdbarch *arch = expr->gdbarch;
2841 std::vector<int> dw_labels, patches;
2842 const gdb_byte * const base = op_ptr;
2843 const gdb_byte *previous_piece = op_ptr;
2844 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2845 ULONGEST bits_collected = 0;
2846 unsigned int addr_size_bits = 8 * addr_size;
2847 int bits_big_endian = gdbarch_bits_big_endian (arch);
2848
2849 std::vector<int> offsets (op_end - op_ptr, -1);
2850
2851 /* By default we are making an address. */
2852 loc->kind = axs_lvalue_memory;
2853
2854 while (op_ptr < op_end)
2855 {
2856 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2857 uint64_t uoffset, reg;
2858 int64_t offset;
2859 int i;
2860
2861 offsets[op_ptr - base] = expr->len;
2862 ++op_ptr;
2863
2864 /* Our basic approach to code generation is to map DWARF
2865 operations directly to AX operations. However, there are
2866 some differences.
2867
2868 First, DWARF works on address-sized units, but AX always uses
2869 LONGEST. For most operations we simply ignore this
2870 difference; instead we generate sign extensions as needed
2871 before division and comparison operations. It would be nice
2872 to omit the sign extensions, but there is no way to determine
2873 the size of the target's LONGEST. (This code uses the size
2874 of the host LONGEST in some cases -- that is a bug but it is
2875 difficult to fix.)
2876
2877 Second, some DWARF operations cannot be translated to AX.
2878 For these we simply fail. See
2879 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2880 switch (op)
2881 {
2882 case DW_OP_lit0:
2883 case DW_OP_lit1:
2884 case DW_OP_lit2:
2885 case DW_OP_lit3:
2886 case DW_OP_lit4:
2887 case DW_OP_lit5:
2888 case DW_OP_lit6:
2889 case DW_OP_lit7:
2890 case DW_OP_lit8:
2891 case DW_OP_lit9:
2892 case DW_OP_lit10:
2893 case DW_OP_lit11:
2894 case DW_OP_lit12:
2895 case DW_OP_lit13:
2896 case DW_OP_lit14:
2897 case DW_OP_lit15:
2898 case DW_OP_lit16:
2899 case DW_OP_lit17:
2900 case DW_OP_lit18:
2901 case DW_OP_lit19:
2902 case DW_OP_lit20:
2903 case DW_OP_lit21:
2904 case DW_OP_lit22:
2905 case DW_OP_lit23:
2906 case DW_OP_lit24:
2907 case DW_OP_lit25:
2908 case DW_OP_lit26:
2909 case DW_OP_lit27:
2910 case DW_OP_lit28:
2911 case DW_OP_lit29:
2912 case DW_OP_lit30:
2913 case DW_OP_lit31:
2914 ax_const_l (expr, op - DW_OP_lit0);
2915 break;
2916
2917 case DW_OP_addr:
2918 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2919 op_ptr += addr_size;
2920 /* Some versions of GCC emit DW_OP_addr before
2921 DW_OP_GNU_push_tls_address. In this case the value is an
2922 index, not an address. We don't support things like
2923 branching between the address and the TLS op. */
2924 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2925 uoffset += dwarf2_per_cu_text_offset (per_cu);
2926 ax_const_l (expr, uoffset);
2927 break;
2928
2929 case DW_OP_const1u:
2930 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2931 op_ptr += 1;
2932 break;
2933 case DW_OP_const1s:
2934 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2935 op_ptr += 1;
2936 break;
2937 case DW_OP_const2u:
2938 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2939 op_ptr += 2;
2940 break;
2941 case DW_OP_const2s:
2942 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2943 op_ptr += 2;
2944 break;
2945 case DW_OP_const4u:
2946 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2947 op_ptr += 4;
2948 break;
2949 case DW_OP_const4s:
2950 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2951 op_ptr += 4;
2952 break;
2953 case DW_OP_const8u:
2954 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2955 op_ptr += 8;
2956 break;
2957 case DW_OP_const8s:
2958 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2959 op_ptr += 8;
2960 break;
2961 case DW_OP_constu:
2962 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2963 ax_const_l (expr, uoffset);
2964 break;
2965 case DW_OP_consts:
2966 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2967 ax_const_l (expr, offset);
2968 break;
2969
2970 case DW_OP_reg0:
2971 case DW_OP_reg1:
2972 case DW_OP_reg2:
2973 case DW_OP_reg3:
2974 case DW_OP_reg4:
2975 case DW_OP_reg5:
2976 case DW_OP_reg6:
2977 case DW_OP_reg7:
2978 case DW_OP_reg8:
2979 case DW_OP_reg9:
2980 case DW_OP_reg10:
2981 case DW_OP_reg11:
2982 case DW_OP_reg12:
2983 case DW_OP_reg13:
2984 case DW_OP_reg14:
2985 case DW_OP_reg15:
2986 case DW_OP_reg16:
2987 case DW_OP_reg17:
2988 case DW_OP_reg18:
2989 case DW_OP_reg19:
2990 case DW_OP_reg20:
2991 case DW_OP_reg21:
2992 case DW_OP_reg22:
2993 case DW_OP_reg23:
2994 case DW_OP_reg24:
2995 case DW_OP_reg25:
2996 case DW_OP_reg26:
2997 case DW_OP_reg27:
2998 case DW_OP_reg28:
2999 case DW_OP_reg29:
3000 case DW_OP_reg30:
3001 case DW_OP_reg31:
3002 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3003 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3004 loc->kind = axs_lvalue_register;
3005 break;
3006
3007 case DW_OP_regx:
3008 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3009 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3010 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3011 loc->kind = axs_lvalue_register;
3012 break;
3013
3014 case DW_OP_implicit_value:
3015 {
3016 uint64_t len;
3017
3018 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3019 if (op_ptr + len > op_end)
3020 error (_("DW_OP_implicit_value: too few bytes available."));
3021 if (len > sizeof (ULONGEST))
3022 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3023 (int) len);
3024
3025 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3026 byte_order));
3027 op_ptr += len;
3028 dwarf_expr_require_composition (op_ptr, op_end,
3029 "DW_OP_implicit_value");
3030
3031 loc->kind = axs_rvalue;
3032 }
3033 break;
3034
3035 case DW_OP_stack_value:
3036 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3037 loc->kind = axs_rvalue;
3038 break;
3039
3040 case DW_OP_breg0:
3041 case DW_OP_breg1:
3042 case DW_OP_breg2:
3043 case DW_OP_breg3:
3044 case DW_OP_breg4:
3045 case DW_OP_breg5:
3046 case DW_OP_breg6:
3047 case DW_OP_breg7:
3048 case DW_OP_breg8:
3049 case DW_OP_breg9:
3050 case DW_OP_breg10:
3051 case DW_OP_breg11:
3052 case DW_OP_breg12:
3053 case DW_OP_breg13:
3054 case DW_OP_breg14:
3055 case DW_OP_breg15:
3056 case DW_OP_breg16:
3057 case DW_OP_breg17:
3058 case DW_OP_breg18:
3059 case DW_OP_breg19:
3060 case DW_OP_breg20:
3061 case DW_OP_breg21:
3062 case DW_OP_breg22:
3063 case DW_OP_breg23:
3064 case DW_OP_breg24:
3065 case DW_OP_breg25:
3066 case DW_OP_breg26:
3067 case DW_OP_breg27:
3068 case DW_OP_breg28:
3069 case DW_OP_breg29:
3070 case DW_OP_breg30:
3071 case DW_OP_breg31:
3072 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3073 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3074 ax_reg (expr, i);
3075 if (offset != 0)
3076 {
3077 ax_const_l (expr, offset);
3078 ax_simple (expr, aop_add);
3079 }
3080 break;
3081 case DW_OP_bregx:
3082 {
3083 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3084 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3085 i = dwarf_reg_to_regnum_or_error (arch, reg);
3086 ax_reg (expr, i);
3087 if (offset != 0)
3088 {
3089 ax_const_l (expr, offset);
3090 ax_simple (expr, aop_add);
3091 }
3092 }
3093 break;
3094 case DW_OP_fbreg:
3095 {
3096 const gdb_byte *datastart;
3097 size_t datalen;
3098 const struct block *b;
3099 struct symbol *framefunc;
3100
3101 b = block_for_pc (expr->scope);
3102
3103 if (!b)
3104 error (_("No block found for address"));
3105
3106 framefunc = block_linkage_function (b);
3107
3108 if (!framefunc)
3109 error (_("No function found for block"));
3110
3111 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3112 &datastart, &datalen);
3113
3114 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3115 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3116 datastart + datalen, per_cu);
3117 if (loc->kind == axs_lvalue_register)
3118 require_rvalue (expr, loc);
3119
3120 if (offset != 0)
3121 {
3122 ax_const_l (expr, offset);
3123 ax_simple (expr, aop_add);
3124 }
3125
3126 loc->kind = axs_lvalue_memory;
3127 }
3128 break;
3129
3130 case DW_OP_dup:
3131 ax_simple (expr, aop_dup);
3132 break;
3133
3134 case DW_OP_drop:
3135 ax_simple (expr, aop_pop);
3136 break;
3137
3138 case DW_OP_pick:
3139 offset = *op_ptr++;
3140 ax_pick (expr, offset);
3141 break;
3142
3143 case DW_OP_swap:
3144 ax_simple (expr, aop_swap);
3145 break;
3146
3147 case DW_OP_over:
3148 ax_pick (expr, 1);
3149 break;
3150
3151 case DW_OP_rot:
3152 ax_simple (expr, aop_rot);
3153 break;
3154
3155 case DW_OP_deref:
3156 case DW_OP_deref_size:
3157 {
3158 int size;
3159
3160 if (op == DW_OP_deref_size)
3161 size = *op_ptr++;
3162 else
3163 size = addr_size;
3164
3165 if (size != 1 && size != 2 && size != 4 && size != 8)
3166 error (_("Unsupported size %d in %s"),
3167 size, get_DW_OP_name (op));
3168 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3169 }
3170 break;
3171
3172 case DW_OP_abs:
3173 /* Sign extend the operand. */
3174 ax_ext (expr, addr_size_bits);
3175 ax_simple (expr, aop_dup);
3176 ax_const_l (expr, 0);
3177 ax_simple (expr, aop_less_signed);
3178 ax_simple (expr, aop_log_not);
3179 i = ax_goto (expr, aop_if_goto);
3180 /* We have to emit 0 - X. */
3181 ax_const_l (expr, 0);
3182 ax_simple (expr, aop_swap);
3183 ax_simple (expr, aop_sub);
3184 ax_label (expr, i, expr->len);
3185 break;
3186
3187 case DW_OP_neg:
3188 /* No need to sign extend here. */
3189 ax_const_l (expr, 0);
3190 ax_simple (expr, aop_swap);
3191 ax_simple (expr, aop_sub);
3192 break;
3193
3194 case DW_OP_not:
3195 /* Sign extend the operand. */
3196 ax_ext (expr, addr_size_bits);
3197 ax_simple (expr, aop_bit_not);
3198 break;
3199
3200 case DW_OP_plus_uconst:
3201 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3202 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3203 but we micro-optimize anyhow. */
3204 if (reg != 0)
3205 {
3206 ax_const_l (expr, reg);
3207 ax_simple (expr, aop_add);
3208 }
3209 break;
3210
3211 case DW_OP_and:
3212 ax_simple (expr, aop_bit_and);
3213 break;
3214
3215 case DW_OP_div:
3216 /* Sign extend the operands. */
3217 ax_ext (expr, addr_size_bits);
3218 ax_simple (expr, aop_swap);
3219 ax_ext (expr, addr_size_bits);
3220 ax_simple (expr, aop_swap);
3221 ax_simple (expr, aop_div_signed);
3222 break;
3223
3224 case DW_OP_minus:
3225 ax_simple (expr, aop_sub);
3226 break;
3227
3228 case DW_OP_mod:
3229 ax_simple (expr, aop_rem_unsigned);
3230 break;
3231
3232 case DW_OP_mul:
3233 ax_simple (expr, aop_mul);
3234 break;
3235
3236 case DW_OP_or:
3237 ax_simple (expr, aop_bit_or);
3238 break;
3239
3240 case DW_OP_plus:
3241 ax_simple (expr, aop_add);
3242 break;
3243
3244 case DW_OP_shl:
3245 ax_simple (expr, aop_lsh);
3246 break;
3247
3248 case DW_OP_shr:
3249 ax_simple (expr, aop_rsh_unsigned);
3250 break;
3251
3252 case DW_OP_shra:
3253 ax_simple (expr, aop_rsh_signed);
3254 break;
3255
3256 case DW_OP_xor:
3257 ax_simple (expr, aop_bit_xor);
3258 break;
3259
3260 case DW_OP_le:
3261 /* Sign extend the operands. */
3262 ax_ext (expr, addr_size_bits);
3263 ax_simple (expr, aop_swap);
3264 ax_ext (expr, addr_size_bits);
3265 /* Note no swap here: A <= B is !(B < A). */
3266 ax_simple (expr, aop_less_signed);
3267 ax_simple (expr, aop_log_not);
3268 break;
3269
3270 case DW_OP_ge:
3271 /* Sign extend the operands. */
3272 ax_ext (expr, addr_size_bits);
3273 ax_simple (expr, aop_swap);
3274 ax_ext (expr, addr_size_bits);
3275 ax_simple (expr, aop_swap);
3276 /* A >= B is !(A < B). */
3277 ax_simple (expr, aop_less_signed);
3278 ax_simple (expr, aop_log_not);
3279 break;
3280
3281 case DW_OP_eq:
3282 /* Sign extend the operands. */
3283 ax_ext (expr, addr_size_bits);
3284 ax_simple (expr, aop_swap);
3285 ax_ext (expr, addr_size_bits);
3286 /* No need for a second swap here. */
3287 ax_simple (expr, aop_equal);
3288 break;
3289
3290 case DW_OP_lt:
3291 /* Sign extend the operands. */
3292 ax_ext (expr, addr_size_bits);
3293 ax_simple (expr, aop_swap);
3294 ax_ext (expr, addr_size_bits);
3295 ax_simple (expr, aop_swap);
3296 ax_simple (expr, aop_less_signed);
3297 break;
3298
3299 case DW_OP_gt:
3300 /* Sign extend the operands. */
3301 ax_ext (expr, addr_size_bits);
3302 ax_simple (expr, aop_swap);
3303 ax_ext (expr, addr_size_bits);
3304 /* Note no swap here: A > B is B < A. */
3305 ax_simple (expr, aop_less_signed);
3306 break;
3307
3308 case DW_OP_ne:
3309 /* Sign extend the operands. */
3310 ax_ext (expr, addr_size_bits);
3311 ax_simple (expr, aop_swap);
3312 ax_ext (expr, addr_size_bits);
3313 /* No need for a swap here. */
3314 ax_simple (expr, aop_equal);
3315 ax_simple (expr, aop_log_not);
3316 break;
3317
3318 case DW_OP_call_frame_cfa:
3319 {
3320 int regnum;
3321 CORE_ADDR text_offset;
3322 LONGEST off;
3323 const gdb_byte *cfa_start, *cfa_end;
3324
3325 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3326 &regnum, &off,
3327 &text_offset, &cfa_start, &cfa_end))
3328 {
3329 /* Register. */
3330 ax_reg (expr, regnum);
3331 if (off != 0)
3332 {
3333 ax_const_l (expr, off);
3334 ax_simple (expr, aop_add);
3335 }
3336 }
3337 else
3338 {
3339 /* Another expression. */
3340 ax_const_l (expr, text_offset);
3341 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3342 cfa_end, per_cu);
3343 }
3344
3345 loc->kind = axs_lvalue_memory;
3346 }
3347 break;
3348
3349 case DW_OP_GNU_push_tls_address:
3350 case DW_OP_form_tls_address:
3351 unimplemented (op);
3352 break;
3353
3354 case DW_OP_push_object_address:
3355 unimplemented (op);
3356 break;
3357
3358 case DW_OP_skip:
3359 offset = extract_signed_integer (op_ptr, 2, byte_order);
3360 op_ptr += 2;
3361 i = ax_goto (expr, aop_goto);
3362 dw_labels.push_back (op_ptr + offset - base);
3363 patches.push_back (i);
3364 break;
3365
3366 case DW_OP_bra:
3367 offset = extract_signed_integer (op_ptr, 2, byte_order);
3368 op_ptr += 2;
3369 /* Zero extend the operand. */
3370 ax_zero_ext (expr, addr_size_bits);
3371 i = ax_goto (expr, aop_if_goto);
3372 dw_labels.push_back (op_ptr + offset - base);
3373 patches.push_back (i);
3374 break;
3375
3376 case DW_OP_nop:
3377 break;
3378
3379 case DW_OP_piece:
3380 case DW_OP_bit_piece:
3381 {
3382 uint64_t size;
3383
3384 if (op_ptr - 1 == previous_piece)
3385 error (_("Cannot translate empty pieces to agent expressions"));
3386 previous_piece = op_ptr - 1;
3387
3388 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3389 if (op == DW_OP_piece)
3390 {
3391 size *= 8;
3392 uoffset = 0;
3393 }
3394 else
3395 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3396
3397 if (bits_collected + size > 8 * sizeof (LONGEST))
3398 error (_("Expression pieces exceed word size"));
3399
3400 /* Access the bits. */
3401 switch (loc->kind)
3402 {
3403 case axs_lvalue_register:
3404 ax_reg (expr, loc->u.reg);
3405 break;
3406
3407 case axs_lvalue_memory:
3408 /* Offset the pointer, if needed. */
3409 if (uoffset > 8)
3410 {
3411 ax_const_l (expr, uoffset / 8);
3412 ax_simple (expr, aop_add);
3413 uoffset %= 8;
3414 }
3415 access_memory (arch, expr, size);
3416 break;
3417 }
3418
3419 /* For a bits-big-endian target, shift up what we already
3420 have. For a bits-little-endian target, shift up the
3421 new data. Note that there is a potential bug here if
3422 the DWARF expression leaves multiple values on the
3423 stack. */
3424 if (bits_collected > 0)
3425 {
3426 if (bits_big_endian)
3427 {
3428 ax_simple (expr, aop_swap);
3429 ax_const_l (expr, size);
3430 ax_simple (expr, aop_lsh);
3431 /* We don't need a second swap here, because
3432 aop_bit_or is symmetric. */
3433 }
3434 else
3435 {
3436 ax_const_l (expr, size);
3437 ax_simple (expr, aop_lsh);
3438 }
3439 ax_simple (expr, aop_bit_or);
3440 }
3441
3442 bits_collected += size;
3443 loc->kind = axs_rvalue;
3444 }
3445 break;
3446
3447 case DW_OP_GNU_uninit:
3448 unimplemented (op);
3449
3450 case DW_OP_call2:
3451 case DW_OP_call4:
3452 {
3453 struct dwarf2_locexpr_baton block;
3454 int size = (op == DW_OP_call2 ? 2 : 4);
3455
3456 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3457 op_ptr += size;
3458
3459 cu_offset cuoffset = (cu_offset) uoffset;
3460 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
3461 get_ax_pc, expr);
3462
3463 /* DW_OP_call_ref is currently not supported. */
3464 gdb_assert (block.per_cu == per_cu);
3465
3466 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3467 block.data + block.size, per_cu);
3468 }
3469 break;
3470
3471 case DW_OP_call_ref:
3472 unimplemented (op);
3473
3474 case DW_OP_GNU_variable_value:
3475 unimplemented (op);
3476
3477 default:
3478 unimplemented (op);
3479 }
3480 }
3481
3482 /* Patch all the branches we emitted. */
3483 for (int i = 0; i < patches.size (); ++i)
3484 {
3485 int targ = offsets[dw_labels[i]];
3486 if (targ == -1)
3487 internal_error (__FILE__, __LINE__, _("invalid label"));
3488 ax_label (expr, patches[i], targ);
3489 }
3490 }
3491
3492 \f
3493 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3494 evaluator to calculate the location. */
3495 static struct value *
3496 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3497 {
3498 struct dwarf2_locexpr_baton *dlbaton
3499 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3500 struct value *val;
3501
3502 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3503 dlbaton->size, dlbaton->per_cu);
3504
3505 return val;
3506 }
3507
3508 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3509 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3510 will be thrown. */
3511
3512 static struct value *
3513 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3514 {
3515 struct dwarf2_locexpr_baton *dlbaton
3516 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3517
3518 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3519 dlbaton->size);
3520 }
3521
3522 /* Implementation of get_symbol_read_needs from
3523 symbol_computed_ops. */
3524
3525 static enum symbol_needs_kind
3526 locexpr_get_symbol_read_needs (struct symbol *symbol)
3527 {
3528 struct dwarf2_locexpr_baton *dlbaton
3529 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3530
3531 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3532 dlbaton->per_cu);
3533 }
3534
3535 /* Return true if DATA points to the end of a piece. END is one past
3536 the last byte in the expression. */
3537
3538 static int
3539 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3540 {
3541 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3542 }
3543
3544 /* Helper for locexpr_describe_location_piece that finds the name of a
3545 DWARF register. */
3546
3547 static const char *
3548 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3549 {
3550 int regnum;
3551
3552 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3553 We'd rather print *something* here than throw an error. */
3554 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3555 /* gdbarch_register_name may just return "", return something more
3556 descriptive for bad register numbers. */
3557 if (regnum == -1)
3558 {
3559 /* The text is output as "$bad_register_number".
3560 That is why we use the underscores. */
3561 return _("bad_register_number");
3562 }
3563 return gdbarch_register_name (gdbarch, regnum);
3564 }
3565
3566 /* Nicely describe a single piece of a location, returning an updated
3567 position in the bytecode sequence. This function cannot recognize
3568 all locations; if a location is not recognized, it simply returns
3569 DATA. If there is an error during reading, e.g. we run off the end
3570 of the buffer, an error is thrown. */
3571
3572 static const gdb_byte *
3573 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3574 CORE_ADDR addr, struct objfile *objfile,
3575 struct dwarf2_per_cu_data *per_cu,
3576 const gdb_byte *data, const gdb_byte *end,
3577 unsigned int addr_size)
3578 {
3579 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3580 size_t leb128_size;
3581
3582 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3583 {
3584 fprintf_filtered (stream, _("a variable in $%s"),
3585 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3586 data += 1;
3587 }
3588 else if (data[0] == DW_OP_regx)
3589 {
3590 uint64_t reg;
3591
3592 data = safe_read_uleb128 (data + 1, end, &reg);
3593 fprintf_filtered (stream, _("a variable in $%s"),
3594 locexpr_regname (gdbarch, reg));
3595 }
3596 else if (data[0] == DW_OP_fbreg)
3597 {
3598 const struct block *b;
3599 struct symbol *framefunc;
3600 int frame_reg = 0;
3601 int64_t frame_offset;
3602 const gdb_byte *base_data, *new_data, *save_data = data;
3603 size_t base_size;
3604 int64_t base_offset = 0;
3605
3606 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3607 if (!piece_end_p (new_data, end))
3608 return data;
3609 data = new_data;
3610
3611 b = block_for_pc (addr);
3612
3613 if (!b)
3614 error (_("No block found for address for symbol \"%s\"."),
3615 SYMBOL_PRINT_NAME (symbol));
3616
3617 framefunc = block_linkage_function (b);
3618
3619 if (!framefunc)
3620 error (_("No function found for block for symbol \"%s\"."),
3621 SYMBOL_PRINT_NAME (symbol));
3622
3623 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3624
3625 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3626 {
3627 const gdb_byte *buf_end;
3628
3629 frame_reg = base_data[0] - DW_OP_breg0;
3630 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3631 &base_offset);
3632 if (buf_end != base_data + base_size)
3633 error (_("Unexpected opcode after "
3634 "DW_OP_breg%u for symbol \"%s\"."),
3635 frame_reg, SYMBOL_PRINT_NAME (symbol));
3636 }
3637 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3638 {
3639 /* The frame base is just the register, with no offset. */
3640 frame_reg = base_data[0] - DW_OP_reg0;
3641 base_offset = 0;
3642 }
3643 else
3644 {
3645 /* We don't know what to do with the frame base expression,
3646 so we can't trace this variable; give up. */
3647 return save_data;
3648 }
3649
3650 fprintf_filtered (stream,
3651 _("a variable at frame base reg $%s offset %s+%s"),
3652 locexpr_regname (gdbarch, frame_reg),
3653 plongest (base_offset), plongest (frame_offset));
3654 }
3655 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3656 && piece_end_p (data, end))
3657 {
3658 int64_t offset;
3659
3660 data = safe_read_sleb128 (data + 1, end, &offset);
3661
3662 fprintf_filtered (stream,
3663 _("a variable at offset %s from base reg $%s"),
3664 plongest (offset),
3665 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3666 }
3667
3668 /* The location expression for a TLS variable looks like this (on a
3669 64-bit LE machine):
3670
3671 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3672 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3673
3674 0x3 is the encoding for DW_OP_addr, which has an operand as long
3675 as the size of an address on the target machine (here is 8
3676 bytes). Note that more recent version of GCC emit DW_OP_const4u
3677 or DW_OP_const8u, depending on address size, rather than
3678 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3679 The operand represents the offset at which the variable is within
3680 the thread local storage. */
3681
3682 else if (data + 1 + addr_size < end
3683 && (data[0] == DW_OP_addr
3684 || (addr_size == 4 && data[0] == DW_OP_const4u)
3685 || (addr_size == 8 && data[0] == DW_OP_const8u))
3686 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3687 || data[1 + addr_size] == DW_OP_form_tls_address)
3688 && piece_end_p (data + 2 + addr_size, end))
3689 {
3690 ULONGEST offset;
3691 offset = extract_unsigned_integer (data + 1, addr_size,
3692 gdbarch_byte_order (gdbarch));
3693
3694 fprintf_filtered (stream,
3695 _("a thread-local variable at offset 0x%s "
3696 "in the thread-local storage for `%s'"),
3697 phex_nz (offset, addr_size), objfile_name (objfile));
3698
3699 data += 1 + addr_size + 1;
3700 }
3701
3702 /* With -gsplit-dwarf a TLS variable can also look like this:
3703 DW_AT_location : 3 byte block: fc 4 e0
3704 (DW_OP_GNU_const_index: 4;
3705 DW_OP_GNU_push_tls_address) */
3706 else if (data + 3 <= end
3707 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3708 && data[0] == DW_OP_GNU_const_index
3709 && leb128_size > 0
3710 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3711 || data[1 + leb128_size] == DW_OP_form_tls_address)
3712 && piece_end_p (data + 2 + leb128_size, end))
3713 {
3714 uint64_t offset;
3715
3716 data = safe_read_uleb128 (data + 1, end, &offset);
3717 offset = dwarf2_read_addr_index (per_cu, offset);
3718 fprintf_filtered (stream,
3719 _("a thread-local variable at offset 0x%s "
3720 "in the thread-local storage for `%s'"),
3721 phex_nz (offset, addr_size), objfile_name (objfile));
3722 ++data;
3723 }
3724
3725 else if (data[0] >= DW_OP_lit0
3726 && data[0] <= DW_OP_lit31
3727 && data + 1 < end
3728 && data[1] == DW_OP_stack_value)
3729 {
3730 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3731 data += 2;
3732 }
3733
3734 return data;
3735 }
3736
3737 /* Disassemble an expression, stopping at the end of a piece or at the
3738 end of the expression. Returns a pointer to the next unread byte
3739 in the input expression. If ALL is nonzero, then this function
3740 will keep going until it reaches the end of the expression.
3741 If there is an error during reading, e.g. we run off the end
3742 of the buffer, an error is thrown. */
3743
3744 static const gdb_byte *
3745 disassemble_dwarf_expression (struct ui_file *stream,
3746 struct gdbarch *arch, unsigned int addr_size,
3747 int offset_size, const gdb_byte *start,
3748 const gdb_byte *data, const gdb_byte *end,
3749 int indent, int all,
3750 struct dwarf2_per_cu_data *per_cu)
3751 {
3752 while (data < end
3753 && (all
3754 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3755 {
3756 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3757 uint64_t ul;
3758 int64_t l;
3759 const char *name;
3760
3761 name = get_DW_OP_name (op);
3762
3763 if (!name)
3764 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3765 op, (long) (data - 1 - start));
3766 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3767 (long) (data - 1 - start), name);
3768
3769 switch (op)
3770 {
3771 case DW_OP_addr:
3772 ul = extract_unsigned_integer (data, addr_size,
3773 gdbarch_byte_order (arch));
3774 data += addr_size;
3775 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3776 break;
3777
3778 case DW_OP_const1u:
3779 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3780 data += 1;
3781 fprintf_filtered (stream, " %s", pulongest (ul));
3782 break;
3783 case DW_OP_const1s:
3784 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3785 data += 1;
3786 fprintf_filtered (stream, " %s", plongest (l));
3787 break;
3788 case DW_OP_const2u:
3789 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3790 data += 2;
3791 fprintf_filtered (stream, " %s", pulongest (ul));
3792 break;
3793 case DW_OP_const2s:
3794 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3795 data += 2;
3796 fprintf_filtered (stream, " %s", plongest (l));
3797 break;
3798 case DW_OP_const4u:
3799 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3800 data += 4;
3801 fprintf_filtered (stream, " %s", pulongest (ul));
3802 break;
3803 case DW_OP_const4s:
3804 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3805 data += 4;
3806 fprintf_filtered (stream, " %s", plongest (l));
3807 break;
3808 case DW_OP_const8u:
3809 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3810 data += 8;
3811 fprintf_filtered (stream, " %s", pulongest (ul));
3812 break;
3813 case DW_OP_const8s:
3814 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3815 data += 8;
3816 fprintf_filtered (stream, " %s", plongest (l));
3817 break;
3818 case DW_OP_constu:
3819 data = safe_read_uleb128 (data, end, &ul);
3820 fprintf_filtered (stream, " %s", pulongest (ul));
3821 break;
3822 case DW_OP_consts:
3823 data = safe_read_sleb128 (data, end, &l);
3824 fprintf_filtered (stream, " %s", plongest (l));
3825 break;
3826
3827 case DW_OP_reg0:
3828 case DW_OP_reg1:
3829 case DW_OP_reg2:
3830 case DW_OP_reg3:
3831 case DW_OP_reg4:
3832 case DW_OP_reg5:
3833 case DW_OP_reg6:
3834 case DW_OP_reg7:
3835 case DW_OP_reg8:
3836 case DW_OP_reg9:
3837 case DW_OP_reg10:
3838 case DW_OP_reg11:
3839 case DW_OP_reg12:
3840 case DW_OP_reg13:
3841 case DW_OP_reg14:
3842 case DW_OP_reg15:
3843 case DW_OP_reg16:
3844 case DW_OP_reg17:
3845 case DW_OP_reg18:
3846 case DW_OP_reg19:
3847 case DW_OP_reg20:
3848 case DW_OP_reg21:
3849 case DW_OP_reg22:
3850 case DW_OP_reg23:
3851 case DW_OP_reg24:
3852 case DW_OP_reg25:
3853 case DW_OP_reg26:
3854 case DW_OP_reg27:
3855 case DW_OP_reg28:
3856 case DW_OP_reg29:
3857 case DW_OP_reg30:
3858 case DW_OP_reg31:
3859 fprintf_filtered (stream, " [$%s]",
3860 locexpr_regname (arch, op - DW_OP_reg0));
3861 break;
3862
3863 case DW_OP_regx:
3864 data = safe_read_uleb128 (data, end, &ul);
3865 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3866 locexpr_regname (arch, (int) ul));
3867 break;
3868
3869 case DW_OP_implicit_value:
3870 data = safe_read_uleb128 (data, end, &ul);
3871 data += ul;
3872 fprintf_filtered (stream, " %s", pulongest (ul));
3873 break;
3874
3875 case DW_OP_breg0:
3876 case DW_OP_breg1:
3877 case DW_OP_breg2:
3878 case DW_OP_breg3:
3879 case DW_OP_breg4:
3880 case DW_OP_breg5:
3881 case DW_OP_breg6:
3882 case DW_OP_breg7:
3883 case DW_OP_breg8:
3884 case DW_OP_breg9:
3885 case DW_OP_breg10:
3886 case DW_OP_breg11:
3887 case DW_OP_breg12:
3888 case DW_OP_breg13:
3889 case DW_OP_breg14:
3890 case DW_OP_breg15:
3891 case DW_OP_breg16:
3892 case DW_OP_breg17:
3893 case DW_OP_breg18:
3894 case DW_OP_breg19:
3895 case DW_OP_breg20:
3896 case DW_OP_breg21:
3897 case DW_OP_breg22:
3898 case DW_OP_breg23:
3899 case DW_OP_breg24:
3900 case DW_OP_breg25:
3901 case DW_OP_breg26:
3902 case DW_OP_breg27:
3903 case DW_OP_breg28:
3904 case DW_OP_breg29:
3905 case DW_OP_breg30:
3906 case DW_OP_breg31:
3907 data = safe_read_sleb128 (data, end, &l);
3908 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3909 locexpr_regname (arch, op - DW_OP_breg0));
3910 break;
3911
3912 case DW_OP_bregx:
3913 data = safe_read_uleb128 (data, end, &ul);
3914 data = safe_read_sleb128 (data, end, &l);
3915 fprintf_filtered (stream, " register %s [$%s] offset %s",
3916 pulongest (ul),
3917 locexpr_regname (arch, (int) ul),
3918 plongest (l));
3919 break;
3920
3921 case DW_OP_fbreg:
3922 data = safe_read_sleb128 (data, end, &l);
3923 fprintf_filtered (stream, " %s", plongest (l));
3924 break;
3925
3926 case DW_OP_xderef_size:
3927 case DW_OP_deref_size:
3928 case DW_OP_pick:
3929 fprintf_filtered (stream, " %d", *data);
3930 ++data;
3931 break;
3932
3933 case DW_OP_plus_uconst:
3934 data = safe_read_uleb128 (data, end, &ul);
3935 fprintf_filtered (stream, " %s", pulongest (ul));
3936 break;
3937
3938 case DW_OP_skip:
3939 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3940 data += 2;
3941 fprintf_filtered (stream, " to %ld",
3942 (long) (data + l - start));
3943 break;
3944
3945 case DW_OP_bra:
3946 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3947 data += 2;
3948 fprintf_filtered (stream, " %ld",
3949 (long) (data + l - start));
3950 break;
3951
3952 case DW_OP_call2:
3953 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3954 data += 2;
3955 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3956 break;
3957
3958 case DW_OP_call4:
3959 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3960 data += 4;
3961 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3962 break;
3963
3964 case DW_OP_call_ref:
3965 ul = extract_unsigned_integer (data, offset_size,
3966 gdbarch_byte_order (arch));
3967 data += offset_size;
3968 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3969 break;
3970
3971 case DW_OP_piece:
3972 data = safe_read_uleb128 (data, end, &ul);
3973 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3974 break;
3975
3976 case DW_OP_bit_piece:
3977 {
3978 uint64_t offset;
3979
3980 data = safe_read_uleb128 (data, end, &ul);
3981 data = safe_read_uleb128 (data, end, &offset);
3982 fprintf_filtered (stream, " size %s offset %s (bits)",
3983 pulongest (ul), pulongest (offset));
3984 }
3985 break;
3986
3987 case DW_OP_implicit_pointer:
3988 case DW_OP_GNU_implicit_pointer:
3989 {
3990 ul = extract_unsigned_integer (data, offset_size,
3991 gdbarch_byte_order (arch));
3992 data += offset_size;
3993
3994 data = safe_read_sleb128 (data, end, &l);
3995
3996 fprintf_filtered (stream, " DIE %s offset %s",
3997 phex_nz (ul, offset_size),
3998 plongest (l));
3999 }
4000 break;
4001
4002 case DW_OP_deref_type:
4003 case DW_OP_GNU_deref_type:
4004 {
4005 int deref_addr_size = *data++;
4006 struct type *type;
4007
4008 data = safe_read_uleb128 (data, end, &ul);
4009 cu_offset offset = (cu_offset) ul;
4010 type = dwarf2_get_die_type (offset, per_cu);
4011 fprintf_filtered (stream, "<");
4012 type_print (type, "", stream, -1);
4013 fprintf_filtered (stream, " [0x%s]> %d",
4014 phex_nz (to_underlying (offset), 0),
4015 deref_addr_size);
4016 }
4017 break;
4018
4019 case DW_OP_const_type:
4020 case DW_OP_GNU_const_type:
4021 {
4022 struct type *type;
4023
4024 data = safe_read_uleb128 (data, end, &ul);
4025 cu_offset type_die = (cu_offset) ul;
4026 type = dwarf2_get_die_type (type_die, per_cu);
4027 fprintf_filtered (stream, "<");
4028 type_print (type, "", stream, -1);
4029 fprintf_filtered (stream, " [0x%s]>",
4030 phex_nz (to_underlying (type_die), 0));
4031 }
4032 break;
4033
4034 case DW_OP_regval_type:
4035 case DW_OP_GNU_regval_type:
4036 {
4037 uint64_t reg;
4038 struct type *type;
4039
4040 data = safe_read_uleb128 (data, end, &reg);
4041 data = safe_read_uleb128 (data, end, &ul);
4042 cu_offset type_die = (cu_offset) ul;
4043
4044 type = dwarf2_get_die_type (type_die, per_cu);
4045 fprintf_filtered (stream, "<");
4046 type_print (type, "", stream, -1);
4047 fprintf_filtered (stream, " [0x%s]> [$%s]",
4048 phex_nz (to_underlying (type_die), 0),
4049 locexpr_regname (arch, reg));
4050 }
4051 break;
4052
4053 case DW_OP_convert:
4054 case DW_OP_GNU_convert:
4055 case DW_OP_reinterpret:
4056 case DW_OP_GNU_reinterpret:
4057 {
4058 data = safe_read_uleb128 (data, end, &ul);
4059 cu_offset type_die = (cu_offset) ul;
4060
4061 if (to_underlying (type_die) == 0)
4062 fprintf_filtered (stream, "<0>");
4063 else
4064 {
4065 struct type *type;
4066
4067 type = dwarf2_get_die_type (type_die, per_cu);
4068 fprintf_filtered (stream, "<");
4069 type_print (type, "", stream, -1);
4070 fprintf_filtered (stream, " [0x%s]>",
4071 phex_nz (to_underlying (type_die), 0));
4072 }
4073 }
4074 break;
4075
4076 case DW_OP_entry_value:
4077 case DW_OP_GNU_entry_value:
4078 data = safe_read_uleb128 (data, end, &ul);
4079 fputc_filtered ('\n', stream);
4080 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4081 start, data, data + ul, indent + 2,
4082 all, per_cu);
4083 data += ul;
4084 continue;
4085
4086 case DW_OP_GNU_parameter_ref:
4087 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4088 data += 4;
4089 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4090 break;
4091
4092 case DW_OP_GNU_addr_index:
4093 data = safe_read_uleb128 (data, end, &ul);
4094 ul = dwarf2_read_addr_index (per_cu, ul);
4095 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4096 break;
4097 case DW_OP_GNU_const_index:
4098 data = safe_read_uleb128 (data, end, &ul);
4099 ul = dwarf2_read_addr_index (per_cu, ul);
4100 fprintf_filtered (stream, " %s", pulongest (ul));
4101 break;
4102
4103 case DW_OP_GNU_variable_value:
4104 ul = extract_unsigned_integer (data, offset_size,
4105 gdbarch_byte_order (arch));
4106 data += offset_size;
4107 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4108 break;
4109 }
4110
4111 fprintf_filtered (stream, "\n");
4112 }
4113
4114 return data;
4115 }
4116
4117 /* Describe a single location, which may in turn consist of multiple
4118 pieces. */
4119
4120 static void
4121 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4122 struct ui_file *stream,
4123 const gdb_byte *data, size_t size,
4124 struct objfile *objfile, unsigned int addr_size,
4125 int offset_size, struct dwarf2_per_cu_data *per_cu)
4126 {
4127 const gdb_byte *end = data + size;
4128 int first_piece = 1, bad = 0;
4129
4130 while (data < end)
4131 {
4132 const gdb_byte *here = data;
4133 int disassemble = 1;
4134
4135 if (first_piece)
4136 first_piece = 0;
4137 else
4138 fprintf_filtered (stream, _(", and "));
4139
4140 if (!dwarf_always_disassemble)
4141 {
4142 data = locexpr_describe_location_piece (symbol, stream,
4143 addr, objfile, per_cu,
4144 data, end, addr_size);
4145 /* If we printed anything, or if we have an empty piece,
4146 then don't disassemble. */
4147 if (data != here
4148 || data[0] == DW_OP_piece
4149 || data[0] == DW_OP_bit_piece)
4150 disassemble = 0;
4151 }
4152 if (disassemble)
4153 {
4154 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4155 data = disassemble_dwarf_expression (stream,
4156 get_objfile_arch (objfile),
4157 addr_size, offset_size, data,
4158 data, end, 0,
4159 dwarf_always_disassemble,
4160 per_cu);
4161 }
4162
4163 if (data < end)
4164 {
4165 int empty = data == here;
4166
4167 if (disassemble)
4168 fprintf_filtered (stream, " ");
4169 if (data[0] == DW_OP_piece)
4170 {
4171 uint64_t bytes;
4172
4173 data = safe_read_uleb128 (data + 1, end, &bytes);
4174
4175 if (empty)
4176 fprintf_filtered (stream, _("an empty %s-byte piece"),
4177 pulongest (bytes));
4178 else
4179 fprintf_filtered (stream, _(" [%s-byte piece]"),
4180 pulongest (bytes));
4181 }
4182 else if (data[0] == DW_OP_bit_piece)
4183 {
4184 uint64_t bits, offset;
4185
4186 data = safe_read_uleb128 (data + 1, end, &bits);
4187 data = safe_read_uleb128 (data, end, &offset);
4188
4189 if (empty)
4190 fprintf_filtered (stream,
4191 _("an empty %s-bit piece"),
4192 pulongest (bits));
4193 else
4194 fprintf_filtered (stream,
4195 _(" [%s-bit piece, offset %s bits]"),
4196 pulongest (bits), pulongest (offset));
4197 }
4198 else
4199 {
4200 bad = 1;
4201 break;
4202 }
4203 }
4204 }
4205
4206 if (bad || data > end)
4207 error (_("Corrupted DWARF2 expression for \"%s\"."),
4208 SYMBOL_PRINT_NAME (symbol));
4209 }
4210
4211 /* Print a natural-language description of SYMBOL to STREAM. This
4212 version is for a symbol with a single location. */
4213
4214 static void
4215 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4216 struct ui_file *stream)
4217 {
4218 struct dwarf2_locexpr_baton *dlbaton
4219 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4220 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4221 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4222 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4223
4224 locexpr_describe_location_1 (symbol, addr, stream,
4225 dlbaton->data, dlbaton->size,
4226 objfile, addr_size, offset_size,
4227 dlbaton->per_cu);
4228 }
4229
4230 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4231 any necessary bytecode in AX. */
4232
4233 static void
4234 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4235 struct axs_value *value)
4236 {
4237 struct dwarf2_locexpr_baton *dlbaton
4238 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4239 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4240
4241 if (dlbaton->size == 0)
4242 value->optimized_out = 1;
4243 else
4244 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4245 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4246 }
4247
4248 /* symbol_computed_ops 'generate_c_location' method. */
4249
4250 static void
4251 locexpr_generate_c_location (struct symbol *sym, string_file *stream,
4252 struct gdbarch *gdbarch,
4253 unsigned char *registers_used,
4254 CORE_ADDR pc, const char *result_name)
4255 {
4256 struct dwarf2_locexpr_baton *dlbaton
4257 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4258 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4259
4260 if (dlbaton->size == 0)
4261 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4262
4263 compile_dwarf_expr_to_c (stream, result_name,
4264 sym, pc, gdbarch, registers_used, addr_size,
4265 dlbaton->data, dlbaton->data + dlbaton->size,
4266 dlbaton->per_cu);
4267 }
4268
4269 /* The set of location functions used with the DWARF-2 expression
4270 evaluator. */
4271 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4272 locexpr_read_variable,
4273 locexpr_read_variable_at_entry,
4274 locexpr_get_symbol_read_needs,
4275 locexpr_describe_location,
4276 0, /* location_has_loclist */
4277 locexpr_tracepoint_var_ref,
4278 locexpr_generate_c_location
4279 };
4280
4281
4282 /* Wrapper functions for location lists. These generally find
4283 the appropriate location expression and call something above. */
4284
4285 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4286 evaluator to calculate the location. */
4287 static struct value *
4288 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4289 {
4290 struct dwarf2_loclist_baton *dlbaton
4291 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4292 struct value *val;
4293 const gdb_byte *data;
4294 size_t size;
4295 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4296
4297 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4298 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4299 dlbaton->per_cu);
4300
4301 return val;
4302 }
4303
4304 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4305 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4306 will be thrown.
4307
4308 Function always returns non-NULL value, it may be marked optimized out if
4309 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4310 if it cannot resolve the parameter for any reason. */
4311
4312 static struct value *
4313 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4314 {
4315 struct dwarf2_loclist_baton *dlbaton
4316 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4317 const gdb_byte *data;
4318 size_t size;
4319 CORE_ADDR pc;
4320
4321 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4322 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4323
4324 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4325 if (data == NULL)
4326 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4327
4328 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4329 }
4330
4331 /* Implementation of get_symbol_read_needs from
4332 symbol_computed_ops. */
4333
4334 static enum symbol_needs_kind
4335 loclist_symbol_needs (struct symbol *symbol)
4336 {
4337 /* If there's a location list, then assume we need to have a frame
4338 to choose the appropriate location expression. With tracking of
4339 global variables this is not necessarily true, but such tracking
4340 is disabled in GCC at the moment until we figure out how to
4341 represent it. */
4342
4343 return SYMBOL_NEEDS_FRAME;
4344 }
4345
4346 /* Print a natural-language description of SYMBOL to STREAM. This
4347 version applies when there is a list of different locations, each
4348 with a specified address range. */
4349
4350 static void
4351 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4352 struct ui_file *stream)
4353 {
4354 struct dwarf2_loclist_baton *dlbaton
4355 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4356 const gdb_byte *loc_ptr, *buf_end;
4357 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4358 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4360 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4361 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4362 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4363 /* Adjust base_address for relocatable objects. */
4364 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4365 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4366 int done = 0;
4367
4368 loc_ptr = dlbaton->data;
4369 buf_end = dlbaton->data + dlbaton->size;
4370
4371 fprintf_filtered (stream, _("multi-location:\n"));
4372
4373 /* Iterate through locations until we run out. */
4374 while (!done)
4375 {
4376 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4377 int length;
4378 enum debug_loc_kind kind;
4379 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4380
4381 if (dlbaton->from_dwo)
4382 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4383 loc_ptr, buf_end, &new_ptr,
4384 &low, &high, byte_order);
4385 else
4386 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4387 &low, &high,
4388 byte_order, addr_size,
4389 signed_addr_p);
4390 loc_ptr = new_ptr;
4391 switch (kind)
4392 {
4393 case DEBUG_LOC_END_OF_LIST:
4394 done = 1;
4395 continue;
4396 case DEBUG_LOC_BASE_ADDRESS:
4397 base_address = high + base_offset;
4398 fprintf_filtered (stream, _(" Base address %s"),
4399 paddress (gdbarch, base_address));
4400 continue;
4401 case DEBUG_LOC_START_END:
4402 case DEBUG_LOC_START_LENGTH:
4403 break;
4404 case DEBUG_LOC_BUFFER_OVERFLOW:
4405 case DEBUG_LOC_INVALID_ENTRY:
4406 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4407 SYMBOL_PRINT_NAME (symbol));
4408 default:
4409 gdb_assert_not_reached ("bad debug_loc_kind");
4410 }
4411
4412 /* Otherwise, a location expression entry. */
4413 low += base_address;
4414 high += base_address;
4415
4416 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4417 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4418
4419 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4420 loc_ptr += 2;
4421
4422 /* (It would improve readability to print only the minimum
4423 necessary digits of the second number of the range.) */
4424 fprintf_filtered (stream, _(" Range %s-%s: "),
4425 paddress (gdbarch, low), paddress (gdbarch, high));
4426
4427 /* Now describe this particular location. */
4428 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4429 objfile, addr_size, offset_size,
4430 dlbaton->per_cu);
4431
4432 fprintf_filtered (stream, "\n");
4433
4434 loc_ptr += length;
4435 }
4436 }
4437
4438 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4439 any necessary bytecode in AX. */
4440 static void
4441 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4442 struct axs_value *value)
4443 {
4444 struct dwarf2_loclist_baton *dlbaton
4445 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4446 const gdb_byte *data;
4447 size_t size;
4448 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4449
4450 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4451 if (size == 0)
4452 value->optimized_out = 1;
4453 else
4454 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4455 dlbaton->per_cu);
4456 }
4457
4458 /* symbol_computed_ops 'generate_c_location' method. */
4459
4460 static void
4461 loclist_generate_c_location (struct symbol *sym, string_file *stream,
4462 struct gdbarch *gdbarch,
4463 unsigned char *registers_used,
4464 CORE_ADDR pc, const char *result_name)
4465 {
4466 struct dwarf2_loclist_baton *dlbaton
4467 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4468 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4469 const gdb_byte *data;
4470 size_t size;
4471
4472 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4473 if (size == 0)
4474 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4475
4476 compile_dwarf_expr_to_c (stream, result_name,
4477 sym, pc, gdbarch, registers_used, addr_size,
4478 data, data + size,
4479 dlbaton->per_cu);
4480 }
4481
4482 /* The set of location functions used with the DWARF-2 expression
4483 evaluator and location lists. */
4484 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4485 loclist_read_variable,
4486 loclist_read_variable_at_entry,
4487 loclist_symbol_needs,
4488 loclist_describe_location,
4489 1, /* location_has_loclist */
4490 loclist_tracepoint_var_ref,
4491 loclist_generate_c_location
4492 };
4493
4494 void
4495 _initialize_dwarf2loc (void)
4496 {
4497 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4498 &entry_values_debug,
4499 _("Set entry values and tail call frames "
4500 "debugging."),
4501 _("Show entry values and tail call frames "
4502 "debugging."),
4503 _("When non-zero, the process of determining "
4504 "parameter values from function entry point "
4505 "and tail call frames will be printed."),
4506 NULL,
4507 show_entry_values_debug,
4508 &setdebuglist, &showdebuglist);
4509 }
This page took 0.158721 seconds and 5 git commands to generate.