PR symtab/19999 gdb unable to resolve vars with fission+PIE
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41
42 extern int dwarf_always_disassemble;
43
44 extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
45
46 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
51 LONGEST byte_offset);
52
53 /* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58 enum debug_loc_kind
59 {
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83 };
84
85 /* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88 static void
89 invalid_synthetic_pointer (void)
90 {
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93 }
94
95 /* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100 static enum debug_loc_kind
101 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107 {
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
135 return DEBUG_LOC_START_END;
136 }
137
138 /* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143 static enum debug_loc_kind
144 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
150 {
151 uint64_t low_index, high_index;
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
169 case DEBUG_LOC_START_END:
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194 }
195
196 /* A function for dealing with location lists. Given a
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
204 const gdb_byte *
205 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
207 {
208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
213 /* Adjust base_address for relocatable objects. */
214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
215 CORE_ADDR base_address = baton->base_address + base_offset;
216 const gdb_byte *loc_ptr, *buf_end;
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
231 &low, &high, byte_order);
232 else
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
239 {
240 case DEBUG_LOC_END_OF_LIST:
241 *locexpr_length = 0;
242 return NULL;
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
255 }
256
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is from
259 .debug_addr which already has the DWARF "base address". We still add
260 base_offset in case we're debugging a PIE executable. */
261 if (baton->from_dwo)
262 {
263 low += base_offset;
264 high += base_offset;
265 }
266 else
267 {
268 low += base_address;
269 high += base_address;
270 }
271
272 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
273 loc_ptr += 2;
274
275 if (low == high && pc == low)
276 {
277 /* This is entry PC record present only at entry point
278 of a function. Verify it is really the function entry point. */
279
280 const struct block *pc_block = block_for_pc (pc);
281 struct symbol *pc_func = NULL;
282
283 if (pc_block)
284 pc_func = block_linkage_function (pc_block);
285
286 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
287 {
288 *locexpr_length = length;
289 return loc_ptr;
290 }
291 }
292
293 if (pc >= low && pc < high)
294 {
295 *locexpr_length = length;
296 return loc_ptr;
297 }
298
299 loc_ptr += length;
300 }
301 }
302
303 /* This is the baton used when performing dwarf2 expression
304 evaluation. */
305 struct dwarf_expr_baton
306 {
307 struct frame_info *frame;
308 struct dwarf2_per_cu_data *per_cu;
309 CORE_ADDR obj_address;
310 };
311
312 /* Helper functions for dwarf2_evaluate_loc_desc. */
313
314 /* Using the frame specified in BATON, return the value of register
315 REGNUM, treated as a pointer. */
316 static CORE_ADDR
317 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
318 {
319 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
320 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
321 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
322
323 return address_from_register (regnum, debaton->frame);
324 }
325
326 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
327
328 static struct value *
329 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
330 {
331 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
332 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
333 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
334
335 return value_from_register (type, regnum, debaton->frame);
336 }
337
338 /* Read memory at ADDR (length LEN) into BUF. */
339
340 static void
341 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
342 {
343 read_memory (addr, buf, len);
344 }
345
346 /* Using the frame specified in BATON, find the location expression
347 describing the frame base. Return a pointer to it in START and
348 its length in LENGTH. */
349 static void
350 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
351 {
352 /* FIXME: cagney/2003-03-26: This code should be using
353 get_frame_base_address(), and then implement a dwarf2 specific
354 this_base method. */
355 struct symbol *framefunc;
356 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
357 const struct block *bl = get_frame_block (debaton->frame, NULL);
358
359 if (bl == NULL)
360 error (_("frame address is not available."));
361
362 /* Use block_linkage_function, which returns a real (not inlined)
363 function, instead of get_frame_function, which may return an
364 inlined function. */
365 framefunc = block_linkage_function (bl);
366
367 /* If we found a frame-relative symbol then it was certainly within
368 some function associated with a frame. If we can't find the frame,
369 something has gone wrong. */
370 gdb_assert (framefunc != NULL);
371
372 func_get_frame_base_dwarf_block (framefunc,
373 get_frame_address_in_block (debaton->frame),
374 start, length);
375 }
376
377 /* Implement find_frame_base_location method for LOC_BLOCK functions using
378 DWARF expression for its DW_AT_frame_base. */
379
380 static void
381 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
382 const gdb_byte **start, size_t *length)
383 {
384 struct dwarf2_locexpr_baton *symbaton
385 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
386
387 *length = symbaton->size;
388 *start = symbaton->data;
389 }
390
391 /* Implement the struct symbol_block_ops::get_frame_base method for
392 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
393
394 static CORE_ADDR
395 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
396 {
397 struct gdbarch *gdbarch;
398 struct type *type;
399 struct dwarf2_locexpr_baton *dlbaton;
400 const gdb_byte *start;
401 size_t length;
402 struct value *result;
403
404 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
405 Thus, it's supposed to provide the find_frame_base_location method as
406 well. */
407 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
408
409 gdbarch = get_frame_arch (frame);
410 type = builtin_type (gdbarch)->builtin_data_ptr;
411 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
412
413 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
414 (framefunc, get_frame_pc (frame), &start, &length);
415 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
416 dlbaton->per_cu);
417
418 /* The DW_AT_frame_base attribute contains a location description which
419 computes the base address itself. However, the call to
420 dwarf2_evaluate_loc_desc returns a value representing a variable at
421 that address. The frame base address is thus this variable's
422 address. */
423 return value_address (result);
424 }
425
426 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
427 function uses DWARF expression for its DW_AT_frame_base. */
428
429 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
430 {
431 locexpr_find_frame_base_location,
432 locexpr_get_frame_base
433 };
434
435 /* Implement find_frame_base_location method for LOC_BLOCK functions using
436 DWARF location list for its DW_AT_frame_base. */
437
438 static void
439 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
440 const gdb_byte **start, size_t *length)
441 {
442 struct dwarf2_loclist_baton *symbaton
443 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
444
445 *start = dwarf2_find_location_expression (symbaton, length, pc);
446 }
447
448 /* Implement the struct symbol_block_ops::get_frame_base method for
449 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
450
451 static CORE_ADDR
452 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
453 {
454 struct gdbarch *gdbarch;
455 struct type *type;
456 struct dwarf2_loclist_baton *dlbaton;
457 const gdb_byte *start;
458 size_t length;
459 struct value *result;
460
461 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
462 Thus, it's supposed to provide the find_frame_base_location method as
463 well. */
464 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
465
466 gdbarch = get_frame_arch (frame);
467 type = builtin_type (gdbarch)->builtin_data_ptr;
468 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
469
470 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
471 (framefunc, get_frame_pc (frame), &start, &length);
472 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
473 dlbaton->per_cu);
474
475 /* The DW_AT_frame_base attribute contains a location description which
476 computes the base address itself. However, the call to
477 dwarf2_evaluate_loc_desc returns a value representing a variable at
478 that address. The frame base address is thus this variable's
479 address. */
480 return value_address (result);
481 }
482
483 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
484 function uses DWARF location list for its DW_AT_frame_base. */
485
486 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
487 {
488 loclist_find_frame_base_location,
489 loclist_get_frame_base
490 };
491
492 /* See dwarf2loc.h. */
493
494 void
495 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
496 const gdb_byte **start, size_t *length)
497 {
498 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
499 {
500 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
501
502 ops_block->find_frame_base_location (framefunc, pc, start, length);
503 }
504 else
505 *length = 0;
506
507 if (*length == 0)
508 error (_("Could not find the frame base for \"%s\"."),
509 SYMBOL_NATURAL_NAME (framefunc));
510 }
511
512 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
513 the frame in BATON. */
514
515 static CORE_ADDR
516 dwarf_expr_frame_cfa (void *baton)
517 {
518 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
519
520 return dwarf2_frame_cfa (debaton->frame);
521 }
522
523 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
524 the frame in BATON. */
525
526 static CORE_ADDR
527 dwarf_expr_frame_pc (void *baton)
528 {
529 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
530
531 return get_frame_address_in_block (debaton->frame);
532 }
533
534 /* Using the objfile specified in BATON, find the address for the
535 current thread's thread-local storage with offset OFFSET. */
536 static CORE_ADDR
537 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
538 {
539 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
540 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
541
542 return target_translate_tls_address (objfile, offset);
543 }
544
545 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
546 current CU (as is PER_CU). State of the CTX is not affected by the
547 call and return. */
548
549 static void
550 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
551 struct dwarf2_per_cu_data *per_cu,
552 CORE_ADDR (*get_frame_pc) (void *baton),
553 void *baton)
554 {
555 struct dwarf2_locexpr_baton block;
556
557 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
558
559 /* DW_OP_call_ref is currently not supported. */
560 gdb_assert (block.per_cu == per_cu);
561
562 dwarf_expr_eval (ctx, block.data, block.size);
563 }
564
565 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
566
567 static void
568 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
569 {
570 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
571
572 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
573 ctx->funcs->get_frame_pc, ctx->baton);
574 }
575
576 /* Callback function for dwarf2_evaluate_loc_desc. */
577
578 static struct type *
579 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
580 cu_offset die_offset)
581 {
582 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) ctx->baton;
583
584 return dwarf2_get_die_type (die_offset, debaton->per_cu);
585 }
586
587 /* See dwarf2loc.h. */
588
589 unsigned int entry_values_debug = 0;
590
591 /* Helper to set entry_values_debug. */
592
593 static void
594 show_entry_values_debug (struct ui_file *file, int from_tty,
595 struct cmd_list_element *c, const char *value)
596 {
597 fprintf_filtered (file,
598 _("Entry values and tail call frames debugging is %s.\n"),
599 value);
600 }
601
602 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
603 CALLER_FRAME (for registers) can be NULL if it is not known. This function
604 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
605
606 static CORE_ADDR
607 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
608 struct call_site *call_site,
609 struct frame_info *caller_frame)
610 {
611 switch (FIELD_LOC_KIND (call_site->target))
612 {
613 case FIELD_LOC_KIND_DWARF_BLOCK:
614 {
615 struct dwarf2_locexpr_baton *dwarf_block;
616 struct value *val;
617 struct type *caller_core_addr_type;
618 struct gdbarch *caller_arch;
619
620 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
621 if (dwarf_block == NULL)
622 {
623 struct bound_minimal_symbol msym;
624
625 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
626 throw_error (NO_ENTRY_VALUE_ERROR,
627 _("DW_AT_GNU_call_site_target is not specified "
628 "at %s in %s"),
629 paddress (call_site_gdbarch, call_site->pc),
630 (msym.minsym == NULL ? "???"
631 : MSYMBOL_PRINT_NAME (msym.minsym)));
632
633 }
634 if (caller_frame == NULL)
635 {
636 struct bound_minimal_symbol msym;
637
638 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
639 throw_error (NO_ENTRY_VALUE_ERROR,
640 _("DW_AT_GNU_call_site_target DWARF block resolving "
641 "requires known frame which is currently not "
642 "available at %s in %s"),
643 paddress (call_site_gdbarch, call_site->pc),
644 (msym.minsym == NULL ? "???"
645 : MSYMBOL_PRINT_NAME (msym.minsym)));
646
647 }
648 caller_arch = get_frame_arch (caller_frame);
649 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
650 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
651 dwarf_block->data, dwarf_block->size,
652 dwarf_block->per_cu);
653 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
654 location. */
655 if (VALUE_LVAL (val) == lval_memory)
656 return value_address (val);
657 else
658 return value_as_address (val);
659 }
660
661 case FIELD_LOC_KIND_PHYSNAME:
662 {
663 const char *physname;
664 struct bound_minimal_symbol msym;
665
666 physname = FIELD_STATIC_PHYSNAME (call_site->target);
667
668 /* Handle both the mangled and demangled PHYSNAME. */
669 msym = lookup_minimal_symbol (physname, NULL, NULL);
670 if (msym.minsym == NULL)
671 {
672 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
673 throw_error (NO_ENTRY_VALUE_ERROR,
674 _("Cannot find function \"%s\" for a call site target "
675 "at %s in %s"),
676 physname, paddress (call_site_gdbarch, call_site->pc),
677 (msym.minsym == NULL ? "???"
678 : MSYMBOL_PRINT_NAME (msym.minsym)));
679
680 }
681 return BMSYMBOL_VALUE_ADDRESS (msym);
682 }
683
684 case FIELD_LOC_KIND_PHYSADDR:
685 return FIELD_STATIC_PHYSADDR (call_site->target);
686
687 default:
688 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
689 }
690 }
691
692 /* Convert function entry point exact address ADDR to the function which is
693 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
694 NO_ENTRY_VALUE_ERROR otherwise. */
695
696 static struct symbol *
697 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
698 {
699 struct symbol *sym = find_pc_function (addr);
700 struct type *type;
701
702 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
703 throw_error (NO_ENTRY_VALUE_ERROR,
704 _("DW_TAG_GNU_call_site resolving failed to find function "
705 "name for address %s"),
706 paddress (gdbarch, addr));
707
708 type = SYMBOL_TYPE (sym);
709 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
710 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
711
712 return sym;
713 }
714
715 /* Verify function with entry point exact address ADDR can never call itself
716 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
717 can call itself via tail calls.
718
719 If a funtion can tail call itself its entry value based parameters are
720 unreliable. There is no verification whether the value of some/all
721 parameters is unchanged through the self tail call, we expect if there is
722 a self tail call all the parameters can be modified. */
723
724 static void
725 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
726 {
727 struct obstack addr_obstack;
728 struct cleanup *old_chain;
729 CORE_ADDR addr;
730
731 /* Track here CORE_ADDRs which were already visited. */
732 htab_t addr_hash;
733
734 /* The verification is completely unordered. Track here function addresses
735 which still need to be iterated. */
736 VEC (CORE_ADDR) *todo = NULL;
737
738 obstack_init (&addr_obstack);
739 old_chain = make_cleanup_obstack_free (&addr_obstack);
740 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
741 &addr_obstack, hashtab_obstack_allocate,
742 NULL);
743 make_cleanup_htab_delete (addr_hash);
744
745 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
746
747 VEC_safe_push (CORE_ADDR, todo, verify_addr);
748 while (!VEC_empty (CORE_ADDR, todo))
749 {
750 struct symbol *func_sym;
751 struct call_site *call_site;
752
753 addr = VEC_pop (CORE_ADDR, todo);
754
755 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
756
757 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
758 call_site; call_site = call_site->tail_call_next)
759 {
760 CORE_ADDR target_addr;
761 void **slot;
762
763 /* CALLER_FRAME with registers is not available for tail-call jumped
764 frames. */
765 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
766
767 if (target_addr == verify_addr)
768 {
769 struct bound_minimal_symbol msym;
770
771 msym = lookup_minimal_symbol_by_pc (verify_addr);
772 throw_error (NO_ENTRY_VALUE_ERROR,
773 _("DW_OP_GNU_entry_value resolving has found "
774 "function \"%s\" at %s can call itself via tail "
775 "calls"),
776 (msym.minsym == NULL ? "???"
777 : MSYMBOL_PRINT_NAME (msym.minsym)),
778 paddress (gdbarch, verify_addr));
779 }
780
781 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
782 if (*slot == NULL)
783 {
784 *slot = obstack_copy (&addr_obstack, &target_addr,
785 sizeof (target_addr));
786 VEC_safe_push (CORE_ADDR, todo, target_addr);
787 }
788 }
789 }
790
791 do_cleanups (old_chain);
792 }
793
794 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
795 ENTRY_VALUES_DEBUG. */
796
797 static void
798 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
799 {
800 CORE_ADDR addr = call_site->pc;
801 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
802
803 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
804 (msym.minsym == NULL ? "???"
805 : MSYMBOL_PRINT_NAME (msym.minsym)));
806
807 }
808
809 /* vec.h needs single word type name, typedef it. */
810 typedef struct call_site *call_sitep;
811
812 /* Define VEC (call_sitep) functions. */
813 DEF_VEC_P (call_sitep);
814
815 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
816 only top callers and bottom callees which are present in both. GDBARCH is
817 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
818 no remaining possibilities to provide unambiguous non-trivial result.
819 RESULTP should point to NULL on the first (initialization) call. Caller is
820 responsible for xfree of any RESULTP data. */
821
822 static void
823 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
824 VEC (call_sitep) *chain)
825 {
826 struct call_site_chain *result = *resultp;
827 long length = VEC_length (call_sitep, chain);
828 int callers, callees, idx;
829
830 if (result == NULL)
831 {
832 /* Create the initial chain containing all the passed PCs. */
833
834 result = ((struct call_site_chain *)
835 xmalloc (sizeof (*result)
836 + sizeof (*result->call_site) * (length - 1)));
837 result->length = length;
838 result->callers = result->callees = length;
839 if (!VEC_empty (call_sitep, chain))
840 memcpy (result->call_site, VEC_address (call_sitep, chain),
841 sizeof (*result->call_site) * length);
842 *resultp = result;
843
844 if (entry_values_debug)
845 {
846 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
847 for (idx = 0; idx < length; idx++)
848 tailcall_dump (gdbarch, result->call_site[idx]);
849 fputc_unfiltered ('\n', gdb_stdlog);
850 }
851
852 return;
853 }
854
855 if (entry_values_debug)
856 {
857 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
858 for (idx = 0; idx < length; idx++)
859 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
860 fputc_unfiltered ('\n', gdb_stdlog);
861 }
862
863 /* Intersect callers. */
864
865 callers = min (result->callers, length);
866 for (idx = 0; idx < callers; idx++)
867 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
868 {
869 result->callers = idx;
870 break;
871 }
872
873 /* Intersect callees. */
874
875 callees = min (result->callees, length);
876 for (idx = 0; idx < callees; idx++)
877 if (result->call_site[result->length - 1 - idx]
878 != VEC_index (call_sitep, chain, length - 1 - idx))
879 {
880 result->callees = idx;
881 break;
882 }
883
884 if (entry_values_debug)
885 {
886 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
887 for (idx = 0; idx < result->callers; idx++)
888 tailcall_dump (gdbarch, result->call_site[idx]);
889 fputs_unfiltered (" |", gdb_stdlog);
890 for (idx = 0; idx < result->callees; idx++)
891 tailcall_dump (gdbarch, result->call_site[result->length
892 - result->callees + idx]);
893 fputc_unfiltered ('\n', gdb_stdlog);
894 }
895
896 if (result->callers == 0 && result->callees == 0)
897 {
898 /* There are no common callers or callees. It could be also a direct
899 call (which has length 0) with ambiguous possibility of an indirect
900 call - CALLERS == CALLEES == 0 is valid during the first allocation
901 but any subsequence processing of such entry means ambiguity. */
902 xfree (result);
903 *resultp = NULL;
904 return;
905 }
906
907 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
908 PC again. In such case there must be two different code paths to reach
909 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
910 gdb_assert (result->callers + result->callees <= result->length);
911 }
912
913 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
914 assumed frames between them use GDBARCH. Use depth first search so we can
915 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
916 would have needless GDB stack overhead. Caller is responsible for xfree of
917 the returned result. Any unreliability results in thrown
918 NO_ENTRY_VALUE_ERROR. */
919
920 static struct call_site_chain *
921 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
922 CORE_ADDR callee_pc)
923 {
924 CORE_ADDR save_callee_pc = callee_pc;
925 struct obstack addr_obstack;
926 struct cleanup *back_to_retval, *back_to_workdata;
927 struct call_site_chain *retval = NULL;
928 struct call_site *call_site;
929
930 /* Mark CALL_SITEs so we do not visit the same ones twice. */
931 htab_t addr_hash;
932
933 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
934 call_site nor any possible call_site at CALLEE_PC's function is there.
935 Any CALL_SITE in CHAIN will be iterated to its siblings - via
936 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
937 VEC (call_sitep) *chain = NULL;
938
939 /* We are not interested in the specific PC inside the callee function. */
940 callee_pc = get_pc_function_start (callee_pc);
941 if (callee_pc == 0)
942 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
943 paddress (gdbarch, save_callee_pc));
944
945 back_to_retval = make_cleanup (free_current_contents, &retval);
946
947 obstack_init (&addr_obstack);
948 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
949 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
950 &addr_obstack, hashtab_obstack_allocate,
951 NULL);
952 make_cleanup_htab_delete (addr_hash);
953
954 make_cleanup (VEC_cleanup (call_sitep), &chain);
955
956 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
957 at the target's function. All the possible tail call sites in the
958 target's function will get iterated as already pushed into CHAIN via their
959 TAIL_CALL_NEXT. */
960 call_site = call_site_for_pc (gdbarch, caller_pc);
961
962 while (call_site)
963 {
964 CORE_ADDR target_func_addr;
965 struct call_site *target_call_site;
966
967 /* CALLER_FRAME with registers is not available for tail-call jumped
968 frames. */
969 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
970
971 if (target_func_addr == callee_pc)
972 {
973 chain_candidate (gdbarch, &retval, chain);
974 if (retval == NULL)
975 break;
976
977 /* There is no way to reach CALLEE_PC again as we would prevent
978 entering it twice as being already marked in ADDR_HASH. */
979 target_call_site = NULL;
980 }
981 else
982 {
983 struct symbol *target_func;
984
985 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
986 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
987 }
988
989 do
990 {
991 /* Attempt to visit TARGET_CALL_SITE. */
992
993 if (target_call_site)
994 {
995 void **slot;
996
997 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
998 if (*slot == NULL)
999 {
1000 /* Successfully entered TARGET_CALL_SITE. */
1001
1002 *slot = &target_call_site->pc;
1003 VEC_safe_push (call_sitep, chain, target_call_site);
1004 break;
1005 }
1006 }
1007
1008 /* Backtrack (without revisiting the originating call_site). Try the
1009 callers's sibling; if there isn't any try the callers's callers's
1010 sibling etc. */
1011
1012 target_call_site = NULL;
1013 while (!VEC_empty (call_sitep, chain))
1014 {
1015 call_site = VEC_pop (call_sitep, chain);
1016
1017 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
1018 NO_INSERT) != NULL);
1019 htab_remove_elt (addr_hash, &call_site->pc);
1020
1021 target_call_site = call_site->tail_call_next;
1022 if (target_call_site)
1023 break;
1024 }
1025 }
1026 while (target_call_site);
1027
1028 if (VEC_empty (call_sitep, chain))
1029 call_site = NULL;
1030 else
1031 call_site = VEC_last (call_sitep, chain);
1032 }
1033
1034 if (retval == NULL)
1035 {
1036 struct bound_minimal_symbol msym_caller, msym_callee;
1037
1038 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1039 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1040 throw_error (NO_ENTRY_VALUE_ERROR,
1041 _("There are no unambiguously determinable intermediate "
1042 "callers or callees between caller function \"%s\" at %s "
1043 "and callee function \"%s\" at %s"),
1044 (msym_caller.minsym == NULL
1045 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1046 paddress (gdbarch, caller_pc),
1047 (msym_callee.minsym == NULL
1048 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1049 paddress (gdbarch, callee_pc));
1050 }
1051
1052 do_cleanups (back_to_workdata);
1053 discard_cleanups (back_to_retval);
1054 return retval;
1055 }
1056
1057 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1058 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1059 constructed return NULL. Caller is responsible for xfree of the returned
1060 result. */
1061
1062 struct call_site_chain *
1063 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1064 CORE_ADDR callee_pc)
1065 {
1066 struct call_site_chain *retval = NULL;
1067
1068 TRY
1069 {
1070 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1071 }
1072 CATCH (e, RETURN_MASK_ERROR)
1073 {
1074 if (e.error == NO_ENTRY_VALUE_ERROR)
1075 {
1076 if (entry_values_debug)
1077 exception_print (gdb_stdout, e);
1078
1079 return NULL;
1080 }
1081 else
1082 throw_exception (e);
1083 }
1084 END_CATCH
1085
1086 return retval;
1087 }
1088
1089 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1090
1091 static int
1092 call_site_parameter_matches (struct call_site_parameter *parameter,
1093 enum call_site_parameter_kind kind,
1094 union call_site_parameter_u kind_u)
1095 {
1096 if (kind == parameter->kind)
1097 switch (kind)
1098 {
1099 case CALL_SITE_PARAMETER_DWARF_REG:
1100 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1101 case CALL_SITE_PARAMETER_FB_OFFSET:
1102 return kind_u.fb_offset == parameter->u.fb_offset;
1103 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1104 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1105 }
1106 return 0;
1107 }
1108
1109 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1110 FRAME is for callee.
1111
1112 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1113 otherwise. */
1114
1115 static struct call_site_parameter *
1116 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1117 enum call_site_parameter_kind kind,
1118 union call_site_parameter_u kind_u,
1119 struct dwarf2_per_cu_data **per_cu_return)
1120 {
1121 CORE_ADDR func_addr, caller_pc;
1122 struct gdbarch *gdbarch;
1123 struct frame_info *caller_frame;
1124 struct call_site *call_site;
1125 int iparams;
1126 /* Initialize it just to avoid a GCC false warning. */
1127 struct call_site_parameter *parameter = NULL;
1128 CORE_ADDR target_addr;
1129
1130 while (get_frame_type (frame) == INLINE_FRAME)
1131 {
1132 frame = get_prev_frame (frame);
1133 gdb_assert (frame != NULL);
1134 }
1135
1136 func_addr = get_frame_func (frame);
1137 gdbarch = get_frame_arch (frame);
1138 caller_frame = get_prev_frame (frame);
1139 if (gdbarch != frame_unwind_arch (frame))
1140 {
1141 struct bound_minimal_symbol msym
1142 = lookup_minimal_symbol_by_pc (func_addr);
1143 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1144
1145 throw_error (NO_ENTRY_VALUE_ERROR,
1146 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1147 "(of %s (%s)) does not match caller gdbarch %s"),
1148 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1149 paddress (gdbarch, func_addr),
1150 (msym.minsym == NULL ? "???"
1151 : MSYMBOL_PRINT_NAME (msym.minsym)),
1152 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1153 }
1154
1155 if (caller_frame == NULL)
1156 {
1157 struct bound_minimal_symbol msym
1158 = lookup_minimal_symbol_by_pc (func_addr);
1159
1160 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1161 "requires caller of %s (%s)"),
1162 paddress (gdbarch, func_addr),
1163 (msym.minsym == NULL ? "???"
1164 : MSYMBOL_PRINT_NAME (msym.minsym)));
1165 }
1166 caller_pc = get_frame_pc (caller_frame);
1167 call_site = call_site_for_pc (gdbarch, caller_pc);
1168
1169 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1170 if (target_addr != func_addr)
1171 {
1172 struct minimal_symbol *target_msym, *func_msym;
1173
1174 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1175 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1176 throw_error (NO_ENTRY_VALUE_ERROR,
1177 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1178 "but the called frame is for %s at %s"),
1179 (target_msym == NULL ? "???"
1180 : MSYMBOL_PRINT_NAME (target_msym)),
1181 paddress (gdbarch, target_addr),
1182 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1183 paddress (gdbarch, func_addr));
1184 }
1185
1186 /* No entry value based parameters would be reliable if this function can
1187 call itself via tail calls. */
1188 func_verify_no_selftailcall (gdbarch, func_addr);
1189
1190 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1191 {
1192 parameter = &call_site->parameter[iparams];
1193 if (call_site_parameter_matches (parameter, kind, kind_u))
1194 break;
1195 }
1196 if (iparams == call_site->parameter_count)
1197 {
1198 struct minimal_symbol *msym
1199 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1200
1201 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1202 determine its value. */
1203 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1204 "at DW_TAG_GNU_call_site %s at %s"),
1205 paddress (gdbarch, caller_pc),
1206 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1207 }
1208
1209 *per_cu_return = call_site->per_cu;
1210 return parameter;
1211 }
1212
1213 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1214 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1215 DW_AT_GNU_call_site_data_value (dereferenced) block.
1216
1217 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1218 struct value.
1219
1220 Function always returns non-NULL, non-optimized out value. It throws
1221 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1222
1223 static struct value *
1224 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1225 CORE_ADDR deref_size, struct type *type,
1226 struct frame_info *caller_frame,
1227 struct dwarf2_per_cu_data *per_cu)
1228 {
1229 const gdb_byte *data_src;
1230 gdb_byte *data;
1231 size_t size;
1232
1233 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1234 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1235
1236 /* DEREF_SIZE size is not verified here. */
1237 if (data_src == NULL)
1238 throw_error (NO_ENTRY_VALUE_ERROR,
1239 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1240
1241 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1242 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1243 DWARF block. */
1244 data = (gdb_byte *) alloca (size + 1);
1245 memcpy (data, data_src, size);
1246 data[size] = DW_OP_stack_value;
1247
1248 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1249 }
1250
1251 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1252 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1253 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1254
1255 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1256 can be more simple as it does not support cross-CU DWARF executions. */
1257
1258 static void
1259 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1260 enum call_site_parameter_kind kind,
1261 union call_site_parameter_u kind_u,
1262 int deref_size)
1263 {
1264 struct dwarf_expr_baton *debaton;
1265 struct frame_info *frame, *caller_frame;
1266 struct dwarf2_per_cu_data *caller_per_cu;
1267 struct dwarf_expr_baton baton_local;
1268 struct dwarf_expr_context saved_ctx;
1269 struct call_site_parameter *parameter;
1270 const gdb_byte *data_src;
1271 size_t size;
1272
1273 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1274 debaton = (struct dwarf_expr_baton *) ctx->baton;
1275 frame = debaton->frame;
1276 caller_frame = get_prev_frame (frame);
1277
1278 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1279 &caller_per_cu);
1280 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1281 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1282
1283 /* DEREF_SIZE size is not verified here. */
1284 if (data_src == NULL)
1285 throw_error (NO_ENTRY_VALUE_ERROR,
1286 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1287
1288 baton_local.frame = caller_frame;
1289 baton_local.per_cu = caller_per_cu;
1290 baton_local.obj_address = 0;
1291
1292 saved_ctx.gdbarch = ctx->gdbarch;
1293 saved_ctx.addr_size = ctx->addr_size;
1294 saved_ctx.offset = ctx->offset;
1295 saved_ctx.baton = ctx->baton;
1296 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1297 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1298 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1299 ctx->baton = &baton_local;
1300
1301 dwarf_expr_eval (ctx, data_src, size);
1302
1303 ctx->gdbarch = saved_ctx.gdbarch;
1304 ctx->addr_size = saved_ctx.addr_size;
1305 ctx->offset = saved_ctx.offset;
1306 ctx->baton = saved_ctx.baton;
1307 }
1308
1309 /* Callback function for dwarf2_evaluate_loc_desc.
1310 Fetch the address indexed by DW_OP_GNU_addr_index. */
1311
1312 static CORE_ADDR
1313 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1314 {
1315 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1316
1317 return dwarf2_read_addr_index (debaton->per_cu, index);
1318 }
1319
1320 /* Callback function for get_object_address. Return the address of the VLA
1321 object. */
1322
1323 static CORE_ADDR
1324 dwarf_expr_get_obj_addr (void *baton)
1325 {
1326 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1327
1328 gdb_assert (debaton != NULL);
1329
1330 if (debaton->obj_address == 0)
1331 error (_("Location address is not set."));
1332
1333 return debaton->obj_address;
1334 }
1335
1336 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1337 the indirect method on it, that is use its stored target value, the sole
1338 purpose of entry_data_value_funcs.. */
1339
1340 static struct value *
1341 entry_data_value_coerce_ref (const struct value *value)
1342 {
1343 struct type *checked_type = check_typedef (value_type (value));
1344 struct value *target_val;
1345
1346 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1347 return NULL;
1348
1349 target_val = (struct value *) value_computed_closure (value);
1350 value_incref (target_val);
1351 return target_val;
1352 }
1353
1354 /* Implement copy_closure. */
1355
1356 static void *
1357 entry_data_value_copy_closure (const struct value *v)
1358 {
1359 struct value *target_val = (struct value *) value_computed_closure (v);
1360
1361 value_incref (target_val);
1362 return target_val;
1363 }
1364
1365 /* Implement free_closure. */
1366
1367 static void
1368 entry_data_value_free_closure (struct value *v)
1369 {
1370 struct value *target_val = (struct value *) value_computed_closure (v);
1371
1372 value_free (target_val);
1373 }
1374
1375 /* Vector for methods for an entry value reference where the referenced value
1376 is stored in the caller. On the first dereference use
1377 DW_AT_GNU_call_site_data_value in the caller. */
1378
1379 static const struct lval_funcs entry_data_value_funcs =
1380 {
1381 NULL, /* read */
1382 NULL, /* write */
1383 NULL, /* indirect */
1384 entry_data_value_coerce_ref,
1385 NULL, /* check_synthetic_pointer */
1386 entry_data_value_copy_closure,
1387 entry_data_value_free_closure
1388 };
1389
1390 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1391 are used to match DW_AT_location at the caller's
1392 DW_TAG_GNU_call_site_parameter.
1393
1394 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1395 cannot resolve the parameter for any reason. */
1396
1397 static struct value *
1398 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1399 enum call_site_parameter_kind kind,
1400 union call_site_parameter_u kind_u)
1401 {
1402 struct type *checked_type = check_typedef (type);
1403 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1404 struct frame_info *caller_frame = get_prev_frame (frame);
1405 struct value *outer_val, *target_val, *val;
1406 struct call_site_parameter *parameter;
1407 struct dwarf2_per_cu_data *caller_per_cu;
1408
1409 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1410 &caller_per_cu);
1411
1412 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1413 type, caller_frame,
1414 caller_per_cu);
1415
1416 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1417 used and it is not available do not fall back to OUTER_VAL - dereferencing
1418 TYPE_CODE_REF with non-entry data value would give current value - not the
1419 entry value. */
1420
1421 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1422 || TYPE_TARGET_TYPE (checked_type) == NULL)
1423 return outer_val;
1424
1425 target_val = dwarf_entry_parameter_to_value (parameter,
1426 TYPE_LENGTH (target_type),
1427 target_type, caller_frame,
1428 caller_per_cu);
1429
1430 release_value (target_val);
1431 val = allocate_computed_value (type, &entry_data_value_funcs,
1432 target_val /* closure */);
1433
1434 /* Copy the referencing pointer to the new computed value. */
1435 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1436 TYPE_LENGTH (checked_type));
1437 set_value_lazy (val, 0);
1438
1439 return val;
1440 }
1441
1442 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1443 SIZE are DWARF block used to match DW_AT_location at the caller's
1444 DW_TAG_GNU_call_site_parameter.
1445
1446 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1447 cannot resolve the parameter for any reason. */
1448
1449 static struct value *
1450 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1451 const gdb_byte *block, size_t block_len)
1452 {
1453 union call_site_parameter_u kind_u;
1454
1455 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1456 if (kind_u.dwarf_reg != -1)
1457 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1458 kind_u);
1459
1460 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1461 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1462 kind_u);
1463
1464 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1465 suppressed during normal operation. The expression can be arbitrary if
1466 there is no caller-callee entry value binding expected. */
1467 throw_error (NO_ENTRY_VALUE_ERROR,
1468 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1469 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1470 }
1471
1472 struct piece_closure
1473 {
1474 /* Reference count. */
1475 int refc;
1476
1477 /* The CU from which this closure's expression came. */
1478 struct dwarf2_per_cu_data *per_cu;
1479
1480 /* The number of pieces used to describe this variable. */
1481 int n_pieces;
1482
1483 /* The target address size, used only for DWARF_VALUE_STACK. */
1484 int addr_size;
1485
1486 /* The pieces themselves. */
1487 struct dwarf_expr_piece *pieces;
1488 };
1489
1490 /* Allocate a closure for a value formed from separately-described
1491 PIECES. */
1492
1493 static struct piece_closure *
1494 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1495 int n_pieces, struct dwarf_expr_piece *pieces,
1496 int addr_size)
1497 {
1498 struct piece_closure *c = XCNEW (struct piece_closure);
1499 int i;
1500
1501 c->refc = 1;
1502 c->per_cu = per_cu;
1503 c->n_pieces = n_pieces;
1504 c->addr_size = addr_size;
1505 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1506
1507 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1508 for (i = 0; i < n_pieces; ++i)
1509 if (c->pieces[i].location == DWARF_VALUE_STACK)
1510 value_incref (c->pieces[i].v.value);
1511
1512 return c;
1513 }
1514
1515 /* The lowest-level function to extract bits from a byte buffer.
1516 SOURCE is the buffer. It is updated if we read to the end of a
1517 byte.
1518 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1519 updated to reflect the number of bits actually read.
1520 NBITS is the number of bits we want to read. It is updated to
1521 reflect the number of bits actually read. This function may read
1522 fewer bits.
1523 BITS_BIG_ENDIAN is taken directly from gdbarch.
1524 This function returns the extracted bits. */
1525
1526 static unsigned int
1527 extract_bits_primitive (const gdb_byte **source,
1528 unsigned int *source_offset_bits,
1529 int *nbits, int bits_big_endian)
1530 {
1531 unsigned int avail, mask, datum;
1532
1533 gdb_assert (*source_offset_bits < 8);
1534
1535 avail = 8 - *source_offset_bits;
1536 if (avail > *nbits)
1537 avail = *nbits;
1538
1539 mask = (1 << avail) - 1;
1540 datum = **source;
1541 if (bits_big_endian)
1542 datum >>= 8 - (*source_offset_bits + *nbits);
1543 else
1544 datum >>= *source_offset_bits;
1545 datum &= mask;
1546
1547 *nbits -= avail;
1548 *source_offset_bits += avail;
1549 if (*source_offset_bits >= 8)
1550 {
1551 *source_offset_bits -= 8;
1552 ++*source;
1553 }
1554
1555 return datum;
1556 }
1557
1558 /* Extract some bits from a source buffer and move forward in the
1559 buffer.
1560
1561 SOURCE is the source buffer. It is updated as bytes are read.
1562 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1563 bits are read.
1564 NBITS is the number of bits to read.
1565 BITS_BIG_ENDIAN is taken directly from gdbarch.
1566
1567 This function returns the bits that were read. */
1568
1569 static unsigned int
1570 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1571 int nbits, int bits_big_endian)
1572 {
1573 unsigned int datum;
1574
1575 gdb_assert (nbits > 0 && nbits <= 8);
1576
1577 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1578 bits_big_endian);
1579 if (nbits > 0)
1580 {
1581 unsigned int more;
1582
1583 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1584 bits_big_endian);
1585 if (bits_big_endian)
1586 datum <<= nbits;
1587 else
1588 more <<= nbits;
1589 datum |= more;
1590 }
1591
1592 return datum;
1593 }
1594
1595 /* Write some bits into a buffer and move forward in the buffer.
1596
1597 DATUM is the bits to write. The low-order bits of DATUM are used.
1598 DEST is the destination buffer. It is updated as bytes are
1599 written.
1600 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1601 done.
1602 NBITS is the number of valid bits in DATUM.
1603 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1604
1605 static void
1606 insert_bits (unsigned int datum,
1607 gdb_byte *dest, unsigned int dest_offset_bits,
1608 int nbits, int bits_big_endian)
1609 {
1610 unsigned int mask;
1611
1612 gdb_assert (dest_offset_bits + nbits <= 8);
1613
1614 mask = (1 << nbits) - 1;
1615 if (bits_big_endian)
1616 {
1617 datum <<= 8 - (dest_offset_bits + nbits);
1618 mask <<= 8 - (dest_offset_bits + nbits);
1619 }
1620 else
1621 {
1622 datum <<= dest_offset_bits;
1623 mask <<= dest_offset_bits;
1624 }
1625
1626 gdb_assert ((datum & ~mask) == 0);
1627
1628 *dest = (*dest & ~mask) | datum;
1629 }
1630
1631 /* Copy bits from a source to a destination.
1632
1633 DEST is where the bits should be written.
1634 DEST_OFFSET_BITS is the bit offset into DEST.
1635 SOURCE is the source of bits.
1636 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1637 BIT_COUNT is the number of bits to copy.
1638 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1639
1640 static void
1641 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1642 const gdb_byte *source, unsigned int source_offset_bits,
1643 unsigned int bit_count,
1644 int bits_big_endian)
1645 {
1646 unsigned int dest_avail;
1647 int datum;
1648
1649 /* Reduce everything to byte-size pieces. */
1650 dest += dest_offset_bits / 8;
1651 dest_offset_bits %= 8;
1652 source += source_offset_bits / 8;
1653 source_offset_bits %= 8;
1654
1655 dest_avail = 8 - dest_offset_bits % 8;
1656
1657 /* See if we can fill the first destination byte. */
1658 if (dest_avail < bit_count)
1659 {
1660 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1661 bits_big_endian);
1662 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1663 ++dest;
1664 dest_offset_bits = 0;
1665 bit_count -= dest_avail;
1666 }
1667
1668 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1669 than 8 bits remaining. */
1670 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1671 for (; bit_count >= 8; bit_count -= 8)
1672 {
1673 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1674 *dest++ = (gdb_byte) datum;
1675 }
1676
1677 /* Finally, we may have a few leftover bits. */
1678 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1679 if (bit_count > 0)
1680 {
1681 datum = extract_bits (&source, &source_offset_bits, bit_count,
1682 bits_big_endian);
1683 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1684 }
1685 }
1686
1687 static void
1688 read_pieced_value (struct value *v)
1689 {
1690 int i;
1691 long offset = 0;
1692 ULONGEST bits_to_skip;
1693 gdb_byte *contents;
1694 struct piece_closure *c
1695 = (struct piece_closure *) value_computed_closure (v);
1696 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1697 size_t type_len;
1698 size_t buffer_size = 0;
1699 gdb_byte *buffer = NULL;
1700 struct cleanup *cleanup;
1701 int bits_big_endian
1702 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1703
1704 if (value_type (v) != value_enclosing_type (v))
1705 internal_error (__FILE__, __LINE__,
1706 _("Should not be able to create a lazy value with "
1707 "an enclosing type"));
1708
1709 cleanup = make_cleanup (free_current_contents, &buffer);
1710
1711 contents = value_contents_raw (v);
1712 bits_to_skip = 8 * value_offset (v);
1713 if (value_bitsize (v))
1714 {
1715 bits_to_skip += value_bitpos (v);
1716 type_len = value_bitsize (v);
1717 }
1718 else
1719 type_len = 8 * TYPE_LENGTH (value_type (v));
1720
1721 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1722 {
1723 struct dwarf_expr_piece *p = &c->pieces[i];
1724 size_t this_size, this_size_bits;
1725 long dest_offset_bits, source_offset_bits, source_offset;
1726 const gdb_byte *intermediate_buffer;
1727
1728 /* Compute size, source, and destination offsets for copying, in
1729 bits. */
1730 this_size_bits = p->size;
1731 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1732 {
1733 bits_to_skip -= this_size_bits;
1734 continue;
1735 }
1736 if (bits_to_skip > 0)
1737 {
1738 dest_offset_bits = 0;
1739 source_offset_bits = bits_to_skip;
1740 this_size_bits -= bits_to_skip;
1741 bits_to_skip = 0;
1742 }
1743 else
1744 {
1745 dest_offset_bits = offset;
1746 source_offset_bits = 0;
1747 }
1748 if (this_size_bits > type_len - offset)
1749 this_size_bits = type_len - offset;
1750
1751 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1752 source_offset = source_offset_bits / 8;
1753 if (buffer_size < this_size)
1754 {
1755 buffer_size = this_size;
1756 buffer = (gdb_byte *) xrealloc (buffer, buffer_size);
1757 }
1758 intermediate_buffer = buffer;
1759
1760 /* Copy from the source to DEST_BUFFER. */
1761 switch (p->location)
1762 {
1763 case DWARF_VALUE_REGISTER:
1764 {
1765 struct gdbarch *arch = get_frame_arch (frame);
1766 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1767 int optim, unavail;
1768 int reg_offset = source_offset;
1769
1770 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1771 && this_size < register_size (arch, gdb_regnum))
1772 {
1773 /* Big-endian, and we want less than full size. */
1774 reg_offset = register_size (arch, gdb_regnum) - this_size;
1775 /* We want the lower-order THIS_SIZE_BITS of the bytes
1776 we extract from the register. */
1777 source_offset_bits += 8 * this_size - this_size_bits;
1778 }
1779
1780 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1781 this_size, buffer,
1782 &optim, &unavail))
1783 {
1784 /* Just so garbage doesn't ever shine through. */
1785 memset (buffer, 0, this_size);
1786
1787 if (optim)
1788 mark_value_bits_optimized_out (v, offset, this_size_bits);
1789 if (unavail)
1790 mark_value_bits_unavailable (v, offset, this_size_bits);
1791 }
1792 }
1793 break;
1794
1795 case DWARF_VALUE_MEMORY:
1796 read_value_memory (v, offset,
1797 p->v.mem.in_stack_memory,
1798 p->v.mem.addr + source_offset,
1799 buffer, this_size);
1800 break;
1801
1802 case DWARF_VALUE_STACK:
1803 {
1804 size_t n = this_size;
1805
1806 if (n > c->addr_size - source_offset)
1807 n = (c->addr_size >= source_offset
1808 ? c->addr_size - source_offset
1809 : 0);
1810 if (n == 0)
1811 {
1812 /* Nothing. */
1813 }
1814 else
1815 {
1816 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1817
1818 intermediate_buffer = val_bytes + source_offset;
1819 }
1820 }
1821 break;
1822
1823 case DWARF_VALUE_LITERAL:
1824 {
1825 size_t n = this_size;
1826
1827 if (n > p->v.literal.length - source_offset)
1828 n = (p->v.literal.length >= source_offset
1829 ? p->v.literal.length - source_offset
1830 : 0);
1831 if (n != 0)
1832 intermediate_buffer = p->v.literal.data + source_offset;
1833 }
1834 break;
1835
1836 /* These bits show up as zeros -- but do not cause the value
1837 to be considered optimized-out. */
1838 case DWARF_VALUE_IMPLICIT_POINTER:
1839 break;
1840
1841 case DWARF_VALUE_OPTIMIZED_OUT:
1842 mark_value_bits_optimized_out (v, offset, this_size_bits);
1843 break;
1844
1845 default:
1846 internal_error (__FILE__, __LINE__, _("invalid location type"));
1847 }
1848
1849 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1850 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1851 copy_bitwise (contents, dest_offset_bits,
1852 intermediate_buffer, source_offset_bits % 8,
1853 this_size_bits, bits_big_endian);
1854
1855 offset += this_size_bits;
1856 }
1857
1858 do_cleanups (cleanup);
1859 }
1860
1861 static void
1862 write_pieced_value (struct value *to, struct value *from)
1863 {
1864 int i;
1865 long offset = 0;
1866 ULONGEST bits_to_skip;
1867 const gdb_byte *contents;
1868 struct piece_closure *c
1869 = (struct piece_closure *) value_computed_closure (to);
1870 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1871 size_t type_len;
1872 size_t buffer_size = 0;
1873 gdb_byte *buffer = NULL;
1874 struct cleanup *cleanup;
1875 int bits_big_endian
1876 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1877
1878 if (frame == NULL)
1879 {
1880 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1881 return;
1882 }
1883
1884 cleanup = make_cleanup (free_current_contents, &buffer);
1885
1886 contents = value_contents (from);
1887 bits_to_skip = 8 * value_offset (to);
1888 if (value_bitsize (to))
1889 {
1890 bits_to_skip += value_bitpos (to);
1891 type_len = value_bitsize (to);
1892 }
1893 else
1894 type_len = 8 * TYPE_LENGTH (value_type (to));
1895
1896 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1897 {
1898 struct dwarf_expr_piece *p = &c->pieces[i];
1899 size_t this_size_bits, this_size;
1900 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1901 int need_bitwise;
1902 const gdb_byte *source_buffer;
1903
1904 this_size_bits = p->size;
1905 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1906 {
1907 bits_to_skip -= this_size_bits;
1908 continue;
1909 }
1910 if (this_size_bits > type_len - offset)
1911 this_size_bits = type_len - offset;
1912 if (bits_to_skip > 0)
1913 {
1914 dest_offset_bits = bits_to_skip;
1915 source_offset_bits = 0;
1916 this_size_bits -= bits_to_skip;
1917 bits_to_skip = 0;
1918 }
1919 else
1920 {
1921 dest_offset_bits = 0;
1922 source_offset_bits = offset;
1923 }
1924
1925 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1926 source_offset = source_offset_bits / 8;
1927 dest_offset = dest_offset_bits / 8;
1928 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1929 {
1930 source_buffer = contents + source_offset;
1931 need_bitwise = 0;
1932 }
1933 else
1934 {
1935 if (buffer_size < this_size)
1936 {
1937 buffer_size = this_size;
1938 buffer = (gdb_byte *) xrealloc (buffer, buffer_size);
1939 }
1940 source_buffer = buffer;
1941 need_bitwise = 1;
1942 }
1943
1944 switch (p->location)
1945 {
1946 case DWARF_VALUE_REGISTER:
1947 {
1948 struct gdbarch *arch = get_frame_arch (frame);
1949 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1950 int reg_offset = dest_offset;
1951
1952 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1953 && this_size <= register_size (arch, gdb_regnum))
1954 {
1955 /* Big-endian, and we want less than full size. */
1956 reg_offset = register_size (arch, gdb_regnum) - this_size;
1957 }
1958
1959 if (need_bitwise)
1960 {
1961 int optim, unavail;
1962
1963 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1964 this_size, buffer,
1965 &optim, &unavail))
1966 {
1967 if (optim)
1968 throw_error (OPTIMIZED_OUT_ERROR,
1969 _("Can't do read-modify-write to "
1970 "update bitfield; containing word "
1971 "has been optimized out"));
1972 if (unavail)
1973 throw_error (NOT_AVAILABLE_ERROR,
1974 _("Can't do read-modify-write to update "
1975 "bitfield; containing word "
1976 "is unavailable"));
1977 }
1978 copy_bitwise (buffer, dest_offset_bits,
1979 contents, source_offset_bits,
1980 this_size_bits,
1981 bits_big_endian);
1982 }
1983
1984 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1985 this_size, source_buffer);
1986 }
1987 break;
1988 case DWARF_VALUE_MEMORY:
1989 if (need_bitwise)
1990 {
1991 /* Only the first and last bytes can possibly have any
1992 bits reused. */
1993 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1994 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1995 buffer + this_size - 1, 1);
1996 copy_bitwise (buffer, dest_offset_bits,
1997 contents, source_offset_bits,
1998 this_size_bits,
1999 bits_big_endian);
2000 }
2001
2002 write_memory (p->v.mem.addr + dest_offset,
2003 source_buffer, this_size);
2004 break;
2005 default:
2006 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2007 break;
2008 }
2009 offset += this_size_bits;
2010 }
2011
2012 do_cleanups (cleanup);
2013 }
2014
2015 /* An implementation of an lval_funcs method to see whether a value is
2016 a synthetic pointer. */
2017
2018 static int
2019 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2020 int bit_length)
2021 {
2022 struct piece_closure *c
2023 = (struct piece_closure *) value_computed_closure (value);
2024 int i;
2025
2026 bit_offset += 8 * value_offset (value);
2027 if (value_bitsize (value))
2028 bit_offset += value_bitpos (value);
2029
2030 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2031 {
2032 struct dwarf_expr_piece *p = &c->pieces[i];
2033 size_t this_size_bits = p->size;
2034
2035 if (bit_offset > 0)
2036 {
2037 if (bit_offset >= this_size_bits)
2038 {
2039 bit_offset -= this_size_bits;
2040 continue;
2041 }
2042
2043 bit_length -= this_size_bits - bit_offset;
2044 bit_offset = 0;
2045 }
2046 else
2047 bit_length -= this_size_bits;
2048
2049 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2050 return 0;
2051 }
2052
2053 return 1;
2054 }
2055
2056 /* A wrapper function for get_frame_address_in_block. */
2057
2058 static CORE_ADDR
2059 get_frame_address_in_block_wrapper (void *baton)
2060 {
2061 return get_frame_address_in_block ((struct frame_info *) baton);
2062 }
2063
2064 /* An implementation of an lval_funcs method to indirect through a
2065 pointer. This handles the synthetic pointer case when needed. */
2066
2067 static struct value *
2068 indirect_pieced_value (struct value *value)
2069 {
2070 struct piece_closure *c
2071 = (struct piece_closure *) value_computed_closure (value);
2072 struct type *type;
2073 struct frame_info *frame;
2074 struct dwarf2_locexpr_baton baton;
2075 int i, bit_offset, bit_length;
2076 struct dwarf_expr_piece *piece = NULL;
2077 LONGEST byte_offset;
2078 enum bfd_endian byte_order;
2079
2080 type = check_typedef (value_type (value));
2081 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2082 return NULL;
2083
2084 bit_length = 8 * TYPE_LENGTH (type);
2085 bit_offset = 8 * value_offset (value);
2086 if (value_bitsize (value))
2087 bit_offset += value_bitpos (value);
2088
2089 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2090 {
2091 struct dwarf_expr_piece *p = &c->pieces[i];
2092 size_t this_size_bits = p->size;
2093
2094 if (bit_offset > 0)
2095 {
2096 if (bit_offset >= this_size_bits)
2097 {
2098 bit_offset -= this_size_bits;
2099 continue;
2100 }
2101
2102 bit_length -= this_size_bits - bit_offset;
2103 bit_offset = 0;
2104 }
2105 else
2106 bit_length -= this_size_bits;
2107
2108 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2109 return NULL;
2110
2111 if (bit_length != 0)
2112 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2113
2114 piece = p;
2115 break;
2116 }
2117
2118 frame = get_selected_frame (_("No frame selected."));
2119
2120 /* This is an offset requested by GDB, such as value subscripts.
2121 However, due to how synthetic pointers are implemented, this is
2122 always presented to us as a pointer type. This means we have to
2123 sign-extend it manually as appropriate. Use raw
2124 extract_signed_integer directly rather than value_as_address and
2125 sign extend afterwards on architectures that would need it
2126 (mostly everywhere except MIPS, which has signed addresses) as
2127 the later would go through gdbarch_pointer_to_address and thus
2128 return a CORE_ADDR with high bits set on architectures that
2129 encode address spaces and other things in CORE_ADDR. */
2130 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2131 byte_offset = extract_signed_integer (value_contents (value),
2132 TYPE_LENGTH (type), byte_order);
2133 byte_offset += piece->v.ptr.offset;
2134
2135 gdb_assert (piece);
2136 baton
2137 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2138 get_frame_address_in_block_wrapper,
2139 frame);
2140
2141 if (baton.data != NULL)
2142 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2143 baton.data, baton.size, baton.per_cu,
2144 byte_offset);
2145
2146 {
2147 struct obstack temp_obstack;
2148 struct cleanup *cleanup;
2149 const gdb_byte *bytes;
2150 LONGEST len;
2151 struct value *result;
2152
2153 obstack_init (&temp_obstack);
2154 cleanup = make_cleanup_obstack_free (&temp_obstack);
2155
2156 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2157 &temp_obstack, &len);
2158 if (bytes == NULL)
2159 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2160 else
2161 {
2162 if (byte_offset < 0
2163 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2164 invalid_synthetic_pointer ();
2165 bytes += byte_offset;
2166 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2167 }
2168
2169 do_cleanups (cleanup);
2170 return result;
2171 }
2172 }
2173
2174 static void *
2175 copy_pieced_value_closure (const struct value *v)
2176 {
2177 struct piece_closure *c
2178 = (struct piece_closure *) value_computed_closure (v);
2179
2180 ++c->refc;
2181 return c;
2182 }
2183
2184 static void
2185 free_pieced_value_closure (struct value *v)
2186 {
2187 struct piece_closure *c
2188 = (struct piece_closure *) value_computed_closure (v);
2189
2190 --c->refc;
2191 if (c->refc == 0)
2192 {
2193 int i;
2194
2195 for (i = 0; i < c->n_pieces; ++i)
2196 if (c->pieces[i].location == DWARF_VALUE_STACK)
2197 value_free (c->pieces[i].v.value);
2198
2199 xfree (c->pieces);
2200 xfree (c);
2201 }
2202 }
2203
2204 /* Functions for accessing a variable described by DW_OP_piece. */
2205 static const struct lval_funcs pieced_value_funcs = {
2206 read_pieced_value,
2207 write_pieced_value,
2208 indirect_pieced_value,
2209 NULL, /* coerce_ref */
2210 check_pieced_synthetic_pointer,
2211 copy_pieced_value_closure,
2212 free_pieced_value_closure
2213 };
2214
2215 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2216
2217 const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2218 {
2219 dwarf_expr_read_addr_from_reg,
2220 dwarf_expr_get_reg_value,
2221 dwarf_expr_read_mem,
2222 dwarf_expr_frame_base,
2223 dwarf_expr_frame_cfa,
2224 dwarf_expr_frame_pc,
2225 dwarf_expr_tls_address,
2226 dwarf_expr_dwarf_call,
2227 dwarf_expr_get_base_type,
2228 dwarf_expr_push_dwarf_reg_entry_value,
2229 dwarf_expr_get_addr_index,
2230 dwarf_expr_get_obj_addr
2231 };
2232
2233 /* Evaluate a location description, starting at DATA and with length
2234 SIZE, to find the current location of variable of TYPE in the
2235 context of FRAME. BYTE_OFFSET is applied after the contents are
2236 computed. */
2237
2238 static struct value *
2239 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2240 const gdb_byte *data, size_t size,
2241 struct dwarf2_per_cu_data *per_cu,
2242 LONGEST byte_offset)
2243 {
2244 struct value *retval;
2245 struct dwarf_expr_baton baton;
2246 struct dwarf_expr_context *ctx;
2247 struct cleanup *old_chain, *value_chain;
2248 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2249
2250 if (byte_offset < 0)
2251 invalid_synthetic_pointer ();
2252
2253 if (size == 0)
2254 return allocate_optimized_out_value (type);
2255
2256 baton.frame = frame;
2257 baton.per_cu = per_cu;
2258 baton.obj_address = 0;
2259
2260 ctx = new_dwarf_expr_context ();
2261 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2262 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2263
2264 ctx->gdbarch = get_objfile_arch (objfile);
2265 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2266 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2267 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2268 ctx->baton = &baton;
2269 ctx->funcs = &dwarf_expr_ctx_funcs;
2270
2271 TRY
2272 {
2273 dwarf_expr_eval (ctx, data, size);
2274 }
2275 CATCH (ex, RETURN_MASK_ERROR)
2276 {
2277 if (ex.error == NOT_AVAILABLE_ERROR)
2278 {
2279 do_cleanups (old_chain);
2280 retval = allocate_value (type);
2281 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2282 return retval;
2283 }
2284 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2285 {
2286 if (entry_values_debug)
2287 exception_print (gdb_stdout, ex);
2288 do_cleanups (old_chain);
2289 return allocate_optimized_out_value (type);
2290 }
2291 else
2292 throw_exception (ex);
2293 }
2294 END_CATCH
2295
2296 if (ctx->num_pieces > 0)
2297 {
2298 struct piece_closure *c;
2299 struct frame_id frame_id = get_frame_id (frame);
2300 ULONGEST bit_size = 0;
2301 int i;
2302
2303 for (i = 0; i < ctx->num_pieces; ++i)
2304 bit_size += ctx->pieces[i].size;
2305 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2306 invalid_synthetic_pointer ();
2307
2308 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2309 ctx->addr_size);
2310 /* We must clean up the value chain after creating the piece
2311 closure but before allocating the result. */
2312 do_cleanups (value_chain);
2313 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2314 VALUE_FRAME_ID (retval) = frame_id;
2315 set_value_offset (retval, byte_offset);
2316 }
2317 else
2318 {
2319 switch (ctx->location)
2320 {
2321 case DWARF_VALUE_REGISTER:
2322 {
2323 struct gdbarch *arch = get_frame_arch (frame);
2324 int dwarf_regnum
2325 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2326 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2327
2328 if (byte_offset != 0)
2329 error (_("cannot use offset on synthetic pointer to register"));
2330 do_cleanups (value_chain);
2331 retval = value_from_register (type, gdb_regnum, frame);
2332 if (value_optimized_out (retval))
2333 {
2334 struct value *tmp;
2335
2336 /* This means the register has undefined value / was
2337 not saved. As we're computing the location of some
2338 variable etc. in the program, not a value for
2339 inspecting a register ($pc, $sp, etc.), return a
2340 generic optimized out value instead, so that we show
2341 <optimized out> instead of <not saved>. */
2342 do_cleanups (value_chain);
2343 tmp = allocate_value (type);
2344 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2345 retval = tmp;
2346 }
2347 }
2348 break;
2349
2350 case DWARF_VALUE_MEMORY:
2351 {
2352 struct type *ptr_type;
2353 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2354 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2355
2356 /* DW_OP_deref_size (and possibly other operations too) may
2357 create a pointer instead of an address. Ideally, the
2358 pointer to address conversion would be performed as part
2359 of those operations, but the type of the object to
2360 which the address refers is not known at the time of
2361 the operation. Therefore, we do the conversion here
2362 since the type is readily available. */
2363
2364 switch (TYPE_CODE (type))
2365 {
2366 case TYPE_CODE_FUNC:
2367 case TYPE_CODE_METHOD:
2368 ptr_type = builtin_type (ctx->gdbarch)->builtin_func_ptr;
2369 break;
2370 default:
2371 ptr_type = builtin_type (ctx->gdbarch)->builtin_data_ptr;
2372 break;
2373 }
2374 address = value_as_address (value_from_pointer (ptr_type, address));
2375
2376 do_cleanups (value_chain);
2377 retval = value_at_lazy (type, address + byte_offset);
2378 if (in_stack_memory)
2379 set_value_stack (retval, 1);
2380 }
2381 break;
2382
2383 case DWARF_VALUE_STACK:
2384 {
2385 struct value *value = dwarf_expr_fetch (ctx, 0);
2386 gdb_byte *contents;
2387 const gdb_byte *val_bytes;
2388 size_t n = TYPE_LENGTH (value_type (value));
2389
2390 if (byte_offset + TYPE_LENGTH (type) > n)
2391 invalid_synthetic_pointer ();
2392
2393 val_bytes = value_contents_all (value);
2394 val_bytes += byte_offset;
2395 n -= byte_offset;
2396
2397 /* Preserve VALUE because we are going to free values back
2398 to the mark, but we still need the value contents
2399 below. */
2400 value_incref (value);
2401 do_cleanups (value_chain);
2402 make_cleanup_value_free (value);
2403
2404 retval = allocate_value (type);
2405 contents = value_contents_raw (retval);
2406 if (n > TYPE_LENGTH (type))
2407 {
2408 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2409
2410 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2411 val_bytes += n - TYPE_LENGTH (type);
2412 n = TYPE_LENGTH (type);
2413 }
2414 memcpy (contents, val_bytes, n);
2415 }
2416 break;
2417
2418 case DWARF_VALUE_LITERAL:
2419 {
2420 bfd_byte *contents;
2421 const bfd_byte *ldata;
2422 size_t n = ctx->len;
2423
2424 if (byte_offset + TYPE_LENGTH (type) > n)
2425 invalid_synthetic_pointer ();
2426
2427 do_cleanups (value_chain);
2428 retval = allocate_value (type);
2429 contents = value_contents_raw (retval);
2430
2431 ldata = ctx->data + byte_offset;
2432 n -= byte_offset;
2433
2434 if (n > TYPE_LENGTH (type))
2435 {
2436 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2437
2438 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2439 ldata += n - TYPE_LENGTH (type);
2440 n = TYPE_LENGTH (type);
2441 }
2442 memcpy (contents, ldata, n);
2443 }
2444 break;
2445
2446 case DWARF_VALUE_OPTIMIZED_OUT:
2447 do_cleanups (value_chain);
2448 retval = allocate_optimized_out_value (type);
2449 break;
2450
2451 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2452 operation by execute_stack_op. */
2453 case DWARF_VALUE_IMPLICIT_POINTER:
2454 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2455 it can only be encountered when making a piece. */
2456 default:
2457 internal_error (__FILE__, __LINE__, _("invalid location type"));
2458 }
2459 }
2460
2461 set_value_initialized (retval, ctx->initialized);
2462
2463 do_cleanups (old_chain);
2464
2465 return retval;
2466 }
2467
2468 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2469 passes 0 as the byte_offset. */
2470
2471 struct value *
2472 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2473 const gdb_byte *data, size_t size,
2474 struct dwarf2_per_cu_data *per_cu)
2475 {
2476 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2477 }
2478
2479 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2480 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2481 frame in which the expression is evaluated. ADDR is a context (location of
2482 a variable) and might be needed to evaluate the location expression.
2483 Returns 1 on success, 0 otherwise. */
2484
2485 static int
2486 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2487 struct frame_info *frame,
2488 CORE_ADDR addr,
2489 CORE_ADDR *valp)
2490 {
2491 struct dwarf_expr_context *ctx;
2492 struct dwarf_expr_baton baton;
2493 struct objfile *objfile;
2494 struct cleanup *cleanup;
2495
2496 if (dlbaton == NULL || dlbaton->size == 0)
2497 return 0;
2498
2499 ctx = new_dwarf_expr_context ();
2500 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2501
2502 baton.frame = frame;
2503 baton.per_cu = dlbaton->per_cu;
2504 baton.obj_address = addr;
2505
2506 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2507
2508 ctx->gdbarch = get_objfile_arch (objfile);
2509 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2510 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2511 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2512 ctx->funcs = &dwarf_expr_ctx_funcs;
2513 ctx->baton = &baton;
2514
2515 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2516
2517 switch (ctx->location)
2518 {
2519 case DWARF_VALUE_REGISTER:
2520 case DWARF_VALUE_MEMORY:
2521 case DWARF_VALUE_STACK:
2522 *valp = dwarf_expr_fetch_address (ctx, 0);
2523 if (ctx->location == DWARF_VALUE_REGISTER)
2524 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2525 do_cleanups (cleanup);
2526 return 1;
2527 case DWARF_VALUE_LITERAL:
2528 *valp = extract_signed_integer (ctx->data, ctx->len,
2529 gdbarch_byte_order (ctx->gdbarch));
2530 do_cleanups (cleanup);
2531 return 1;
2532 /* Unsupported dwarf values. */
2533 case DWARF_VALUE_OPTIMIZED_OUT:
2534 case DWARF_VALUE_IMPLICIT_POINTER:
2535 break;
2536 }
2537
2538 do_cleanups (cleanup);
2539 return 0;
2540 }
2541
2542 /* See dwarf2loc.h. */
2543
2544 int
2545 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2546 struct frame_info *frame,
2547 struct property_addr_info *addr_stack,
2548 CORE_ADDR *value)
2549 {
2550 if (prop == NULL)
2551 return 0;
2552
2553 if (frame == NULL && has_stack_frames ())
2554 frame = get_selected_frame (NULL);
2555
2556 switch (prop->kind)
2557 {
2558 case PROP_LOCEXPR:
2559 {
2560 const struct dwarf2_property_baton *baton
2561 = (const struct dwarf2_property_baton *) prop->data.baton;
2562
2563 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2564 addr_stack ? addr_stack->addr : 0,
2565 value))
2566 {
2567 if (baton->referenced_type)
2568 {
2569 struct value *val = value_at (baton->referenced_type, *value);
2570
2571 *value = value_as_address (val);
2572 }
2573 return 1;
2574 }
2575 }
2576 break;
2577
2578 case PROP_LOCLIST:
2579 {
2580 struct dwarf2_property_baton *baton
2581 = (struct dwarf2_property_baton *) prop->data.baton;
2582 CORE_ADDR pc = get_frame_address_in_block (frame);
2583 const gdb_byte *data;
2584 struct value *val;
2585 size_t size;
2586
2587 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2588 if (data != NULL)
2589 {
2590 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2591 size, baton->loclist.per_cu);
2592 if (!value_optimized_out (val))
2593 {
2594 *value = value_as_address (val);
2595 return 1;
2596 }
2597 }
2598 }
2599 break;
2600
2601 case PROP_CONST:
2602 *value = prop->data.const_val;
2603 return 1;
2604
2605 case PROP_ADDR_OFFSET:
2606 {
2607 struct dwarf2_property_baton *baton
2608 = (struct dwarf2_property_baton *) prop->data.baton;
2609 struct property_addr_info *pinfo;
2610 struct value *val;
2611
2612 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2613 if (pinfo->type == baton->referenced_type)
2614 break;
2615 if (pinfo == NULL)
2616 error (_("cannot find reference address for offset property"));
2617 if (pinfo->valaddr != NULL)
2618 val = value_from_contents
2619 (baton->offset_info.type,
2620 pinfo->valaddr + baton->offset_info.offset);
2621 else
2622 val = value_at (baton->offset_info.type,
2623 pinfo->addr + baton->offset_info.offset);
2624 *value = value_as_address (val);
2625 return 1;
2626 }
2627 }
2628
2629 return 0;
2630 }
2631
2632 /* See dwarf2loc.h. */
2633
2634 void
2635 dwarf2_compile_property_to_c (struct ui_file *stream,
2636 const char *result_name,
2637 struct gdbarch *gdbarch,
2638 unsigned char *registers_used,
2639 const struct dynamic_prop *prop,
2640 CORE_ADDR pc,
2641 struct symbol *sym)
2642 {
2643 struct dwarf2_property_baton *baton
2644 = (struct dwarf2_property_baton *) prop->data.baton;
2645 const gdb_byte *data;
2646 size_t size;
2647 struct dwarf2_per_cu_data *per_cu;
2648
2649 if (prop->kind == PROP_LOCEXPR)
2650 {
2651 data = baton->locexpr.data;
2652 size = baton->locexpr.size;
2653 per_cu = baton->locexpr.per_cu;
2654 }
2655 else
2656 {
2657 gdb_assert (prop->kind == PROP_LOCLIST);
2658
2659 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2660 per_cu = baton->loclist.per_cu;
2661 }
2662
2663 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2664 gdbarch, registers_used,
2665 dwarf2_per_cu_addr_size (per_cu),
2666 data, data + size, per_cu);
2667 }
2668
2669 \f
2670 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2671
2672 struct needs_frame_baton
2673 {
2674 int needs_frame;
2675 struct dwarf2_per_cu_data *per_cu;
2676 };
2677
2678 /* Reads from registers do require a frame. */
2679 static CORE_ADDR
2680 needs_frame_read_addr_from_reg (void *baton, int regnum)
2681 {
2682 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2683
2684 nf_baton->needs_frame = 1;
2685 return 1;
2686 }
2687
2688 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2689 Reads from registers do require a frame. */
2690
2691 static struct value *
2692 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2693 {
2694 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2695
2696 nf_baton->needs_frame = 1;
2697 return value_zero (type, not_lval);
2698 }
2699
2700 /* Reads from memory do not require a frame. */
2701 static void
2702 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2703 {
2704 memset (buf, 0, len);
2705 }
2706
2707 /* Frame-relative accesses do require a frame. */
2708 static void
2709 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2710 {
2711 static gdb_byte lit0 = DW_OP_lit0;
2712 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2713
2714 *start = &lit0;
2715 *length = 1;
2716
2717 nf_baton->needs_frame = 1;
2718 }
2719
2720 /* CFA accesses require a frame. */
2721
2722 static CORE_ADDR
2723 needs_frame_frame_cfa (void *baton)
2724 {
2725 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2726
2727 nf_baton->needs_frame = 1;
2728 return 1;
2729 }
2730
2731 /* Thread-local accesses do require a frame. */
2732 static CORE_ADDR
2733 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2734 {
2735 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) baton;
2736
2737 nf_baton->needs_frame = 1;
2738 return 1;
2739 }
2740
2741 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2742
2743 static void
2744 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2745 {
2746 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) ctx->baton;
2747
2748 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2749 ctx->funcs->get_frame_pc, ctx->baton);
2750 }
2751
2752 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2753
2754 static void
2755 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2756 enum call_site_parameter_kind kind,
2757 union call_site_parameter_u kind_u, int deref_size)
2758 {
2759 struct needs_frame_baton *nf_baton = (struct needs_frame_baton *) ctx->baton;
2760
2761 nf_baton->needs_frame = 1;
2762
2763 /* The expression may require some stub values on DWARF stack. */
2764 dwarf_expr_push_address (ctx, 0, 0);
2765 }
2766
2767 /* DW_OP_GNU_addr_index doesn't require a frame. */
2768
2769 static CORE_ADDR
2770 needs_get_addr_index (void *baton, unsigned int index)
2771 {
2772 /* Nothing to do. */
2773 return 1;
2774 }
2775
2776 /* DW_OP_push_object_address has a frame already passed through. */
2777
2778 static CORE_ADDR
2779 needs_get_obj_addr (void *baton)
2780 {
2781 /* Nothing to do. */
2782 return 1;
2783 }
2784
2785 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2786
2787 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2788 {
2789 needs_frame_read_addr_from_reg,
2790 needs_frame_get_reg_value,
2791 needs_frame_read_mem,
2792 needs_frame_frame_base,
2793 needs_frame_frame_cfa,
2794 needs_frame_frame_cfa, /* get_frame_pc */
2795 needs_frame_tls_address,
2796 needs_frame_dwarf_call,
2797 NULL, /* get_base_type */
2798 needs_dwarf_reg_entry_value,
2799 needs_get_addr_index,
2800 needs_get_obj_addr
2801 };
2802
2803 /* Return non-zero iff the location expression at DATA (length SIZE)
2804 requires a frame to evaluate. */
2805
2806 static int
2807 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2808 struct dwarf2_per_cu_data *per_cu)
2809 {
2810 struct needs_frame_baton baton;
2811 struct dwarf_expr_context *ctx;
2812 int in_reg;
2813 struct cleanup *old_chain;
2814 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2815
2816 baton.needs_frame = 0;
2817 baton.per_cu = per_cu;
2818
2819 ctx = new_dwarf_expr_context ();
2820 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2821 make_cleanup_value_free_to_mark (value_mark ());
2822
2823 ctx->gdbarch = get_objfile_arch (objfile);
2824 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2825 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2826 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2827 ctx->baton = &baton;
2828 ctx->funcs = &needs_frame_ctx_funcs;
2829
2830 dwarf_expr_eval (ctx, data, size);
2831
2832 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2833
2834 if (ctx->num_pieces > 0)
2835 {
2836 int i;
2837
2838 /* If the location has several pieces, and any of them are in
2839 registers, then we will need a frame to fetch them from. */
2840 for (i = 0; i < ctx->num_pieces; i++)
2841 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2842 in_reg = 1;
2843 }
2844
2845 do_cleanups (old_chain);
2846
2847 return baton.needs_frame || in_reg;
2848 }
2849
2850 /* A helper function that throws an unimplemented error mentioning a
2851 given DWARF operator. */
2852
2853 static void
2854 unimplemented (unsigned int op)
2855 {
2856 const char *name = get_DW_OP_name (op);
2857
2858 if (name)
2859 error (_("DWARF operator %s cannot be translated to an agent expression"),
2860 name);
2861 else
2862 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2863 "to an agent expression"),
2864 op);
2865 }
2866
2867 /* See dwarf2loc.h.
2868
2869 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2870 can issue a complaint, which is better than having every target's
2871 implementation of dwarf2_reg_to_regnum do it. */
2872
2873 int
2874 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2875 {
2876 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2877
2878 if (reg == -1)
2879 {
2880 complaint (&symfile_complaints,
2881 _("bad DWARF register number %d"), dwarf_reg);
2882 }
2883 return reg;
2884 }
2885
2886 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2887 Throw an error because DWARF_REG is bad. */
2888
2889 static void
2890 throw_bad_regnum_error (ULONGEST dwarf_reg)
2891 {
2892 /* Still want to print -1 as "-1".
2893 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2894 but that's overkill for now. */
2895 if ((int) dwarf_reg == dwarf_reg)
2896 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2897 error (_("Unable to access DWARF register number %s"),
2898 pulongest (dwarf_reg));
2899 }
2900
2901 /* See dwarf2loc.h. */
2902
2903 int
2904 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2905 {
2906 int reg;
2907
2908 if (dwarf_reg > INT_MAX)
2909 throw_bad_regnum_error (dwarf_reg);
2910 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2911 bad, but that's ok. */
2912 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2913 if (reg == -1)
2914 throw_bad_regnum_error (dwarf_reg);
2915 return reg;
2916 }
2917
2918 /* A helper function that emits an access to memory. ARCH is the
2919 target architecture. EXPR is the expression which we are building.
2920 NBITS is the number of bits we want to read. This emits the
2921 opcodes needed to read the memory and then extract the desired
2922 bits. */
2923
2924 static void
2925 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2926 {
2927 ULONGEST nbytes = (nbits + 7) / 8;
2928
2929 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2930
2931 if (expr->tracing)
2932 ax_trace_quick (expr, nbytes);
2933
2934 if (nbits <= 8)
2935 ax_simple (expr, aop_ref8);
2936 else if (nbits <= 16)
2937 ax_simple (expr, aop_ref16);
2938 else if (nbits <= 32)
2939 ax_simple (expr, aop_ref32);
2940 else
2941 ax_simple (expr, aop_ref64);
2942
2943 /* If we read exactly the number of bytes we wanted, we're done. */
2944 if (8 * nbytes == nbits)
2945 return;
2946
2947 if (gdbarch_bits_big_endian (arch))
2948 {
2949 /* On a bits-big-endian machine, we want the high-order
2950 NBITS. */
2951 ax_const_l (expr, 8 * nbytes - nbits);
2952 ax_simple (expr, aop_rsh_unsigned);
2953 }
2954 else
2955 {
2956 /* On a bits-little-endian box, we want the low-order NBITS. */
2957 ax_zero_ext (expr, nbits);
2958 }
2959 }
2960
2961 /* A helper function to return the frame's PC. */
2962
2963 static CORE_ADDR
2964 get_ax_pc (void *baton)
2965 {
2966 struct agent_expr *expr = (struct agent_expr *) baton;
2967
2968 return expr->scope;
2969 }
2970
2971 /* Compile a DWARF location expression to an agent expression.
2972
2973 EXPR is the agent expression we are building.
2974 LOC is the agent value we modify.
2975 ARCH is the architecture.
2976 ADDR_SIZE is the size of addresses, in bytes.
2977 OP_PTR is the start of the location expression.
2978 OP_END is one past the last byte of the location expression.
2979
2980 This will throw an exception for various kinds of errors -- for
2981 example, if the expression cannot be compiled, or if the expression
2982 is invalid. */
2983
2984 void
2985 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2986 struct gdbarch *arch, unsigned int addr_size,
2987 const gdb_byte *op_ptr, const gdb_byte *op_end,
2988 struct dwarf2_per_cu_data *per_cu)
2989 {
2990 struct cleanup *cleanups;
2991 int i, *offsets;
2992 VEC(int) *dw_labels = NULL, *patches = NULL;
2993 const gdb_byte * const base = op_ptr;
2994 const gdb_byte *previous_piece = op_ptr;
2995 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2996 ULONGEST bits_collected = 0;
2997 unsigned int addr_size_bits = 8 * addr_size;
2998 int bits_big_endian = gdbarch_bits_big_endian (arch);
2999
3000 offsets = XNEWVEC (int, op_end - op_ptr);
3001 cleanups = make_cleanup (xfree, offsets);
3002
3003 for (i = 0; i < op_end - op_ptr; ++i)
3004 offsets[i] = -1;
3005
3006 make_cleanup (VEC_cleanup (int), &dw_labels);
3007 make_cleanup (VEC_cleanup (int), &patches);
3008
3009 /* By default we are making an address. */
3010 loc->kind = axs_lvalue_memory;
3011
3012 while (op_ptr < op_end)
3013 {
3014 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3015 uint64_t uoffset, reg;
3016 int64_t offset;
3017 int i;
3018
3019 offsets[op_ptr - base] = expr->len;
3020 ++op_ptr;
3021
3022 /* Our basic approach to code generation is to map DWARF
3023 operations directly to AX operations. However, there are
3024 some differences.
3025
3026 First, DWARF works on address-sized units, but AX always uses
3027 LONGEST. For most operations we simply ignore this
3028 difference; instead we generate sign extensions as needed
3029 before division and comparison operations. It would be nice
3030 to omit the sign extensions, but there is no way to determine
3031 the size of the target's LONGEST. (This code uses the size
3032 of the host LONGEST in some cases -- that is a bug but it is
3033 difficult to fix.)
3034
3035 Second, some DWARF operations cannot be translated to AX.
3036 For these we simply fail. See
3037 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3038 switch (op)
3039 {
3040 case DW_OP_lit0:
3041 case DW_OP_lit1:
3042 case DW_OP_lit2:
3043 case DW_OP_lit3:
3044 case DW_OP_lit4:
3045 case DW_OP_lit5:
3046 case DW_OP_lit6:
3047 case DW_OP_lit7:
3048 case DW_OP_lit8:
3049 case DW_OP_lit9:
3050 case DW_OP_lit10:
3051 case DW_OP_lit11:
3052 case DW_OP_lit12:
3053 case DW_OP_lit13:
3054 case DW_OP_lit14:
3055 case DW_OP_lit15:
3056 case DW_OP_lit16:
3057 case DW_OP_lit17:
3058 case DW_OP_lit18:
3059 case DW_OP_lit19:
3060 case DW_OP_lit20:
3061 case DW_OP_lit21:
3062 case DW_OP_lit22:
3063 case DW_OP_lit23:
3064 case DW_OP_lit24:
3065 case DW_OP_lit25:
3066 case DW_OP_lit26:
3067 case DW_OP_lit27:
3068 case DW_OP_lit28:
3069 case DW_OP_lit29:
3070 case DW_OP_lit30:
3071 case DW_OP_lit31:
3072 ax_const_l (expr, op - DW_OP_lit0);
3073 break;
3074
3075 case DW_OP_addr:
3076 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3077 op_ptr += addr_size;
3078 /* Some versions of GCC emit DW_OP_addr before
3079 DW_OP_GNU_push_tls_address. In this case the value is an
3080 index, not an address. We don't support things like
3081 branching between the address and the TLS op. */
3082 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3083 uoffset += dwarf2_per_cu_text_offset (per_cu);
3084 ax_const_l (expr, uoffset);
3085 break;
3086
3087 case DW_OP_const1u:
3088 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3089 op_ptr += 1;
3090 break;
3091 case DW_OP_const1s:
3092 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3093 op_ptr += 1;
3094 break;
3095 case DW_OP_const2u:
3096 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3097 op_ptr += 2;
3098 break;
3099 case DW_OP_const2s:
3100 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3101 op_ptr += 2;
3102 break;
3103 case DW_OP_const4u:
3104 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3105 op_ptr += 4;
3106 break;
3107 case DW_OP_const4s:
3108 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3109 op_ptr += 4;
3110 break;
3111 case DW_OP_const8u:
3112 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3113 op_ptr += 8;
3114 break;
3115 case DW_OP_const8s:
3116 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3117 op_ptr += 8;
3118 break;
3119 case DW_OP_constu:
3120 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3121 ax_const_l (expr, uoffset);
3122 break;
3123 case DW_OP_consts:
3124 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3125 ax_const_l (expr, offset);
3126 break;
3127
3128 case DW_OP_reg0:
3129 case DW_OP_reg1:
3130 case DW_OP_reg2:
3131 case DW_OP_reg3:
3132 case DW_OP_reg4:
3133 case DW_OP_reg5:
3134 case DW_OP_reg6:
3135 case DW_OP_reg7:
3136 case DW_OP_reg8:
3137 case DW_OP_reg9:
3138 case DW_OP_reg10:
3139 case DW_OP_reg11:
3140 case DW_OP_reg12:
3141 case DW_OP_reg13:
3142 case DW_OP_reg14:
3143 case DW_OP_reg15:
3144 case DW_OP_reg16:
3145 case DW_OP_reg17:
3146 case DW_OP_reg18:
3147 case DW_OP_reg19:
3148 case DW_OP_reg20:
3149 case DW_OP_reg21:
3150 case DW_OP_reg22:
3151 case DW_OP_reg23:
3152 case DW_OP_reg24:
3153 case DW_OP_reg25:
3154 case DW_OP_reg26:
3155 case DW_OP_reg27:
3156 case DW_OP_reg28:
3157 case DW_OP_reg29:
3158 case DW_OP_reg30:
3159 case DW_OP_reg31:
3160 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3161 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3162 loc->kind = axs_lvalue_register;
3163 break;
3164
3165 case DW_OP_regx:
3166 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3167 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3168 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3169 loc->kind = axs_lvalue_register;
3170 break;
3171
3172 case DW_OP_implicit_value:
3173 {
3174 uint64_t len;
3175
3176 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3177 if (op_ptr + len > op_end)
3178 error (_("DW_OP_implicit_value: too few bytes available."));
3179 if (len > sizeof (ULONGEST))
3180 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3181 (int) len);
3182
3183 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3184 byte_order));
3185 op_ptr += len;
3186 dwarf_expr_require_composition (op_ptr, op_end,
3187 "DW_OP_implicit_value");
3188
3189 loc->kind = axs_rvalue;
3190 }
3191 break;
3192
3193 case DW_OP_stack_value:
3194 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3195 loc->kind = axs_rvalue;
3196 break;
3197
3198 case DW_OP_breg0:
3199 case DW_OP_breg1:
3200 case DW_OP_breg2:
3201 case DW_OP_breg3:
3202 case DW_OP_breg4:
3203 case DW_OP_breg5:
3204 case DW_OP_breg6:
3205 case DW_OP_breg7:
3206 case DW_OP_breg8:
3207 case DW_OP_breg9:
3208 case DW_OP_breg10:
3209 case DW_OP_breg11:
3210 case DW_OP_breg12:
3211 case DW_OP_breg13:
3212 case DW_OP_breg14:
3213 case DW_OP_breg15:
3214 case DW_OP_breg16:
3215 case DW_OP_breg17:
3216 case DW_OP_breg18:
3217 case DW_OP_breg19:
3218 case DW_OP_breg20:
3219 case DW_OP_breg21:
3220 case DW_OP_breg22:
3221 case DW_OP_breg23:
3222 case DW_OP_breg24:
3223 case DW_OP_breg25:
3224 case DW_OP_breg26:
3225 case DW_OP_breg27:
3226 case DW_OP_breg28:
3227 case DW_OP_breg29:
3228 case DW_OP_breg30:
3229 case DW_OP_breg31:
3230 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3231 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3232 ax_reg (expr, i);
3233 if (offset != 0)
3234 {
3235 ax_const_l (expr, offset);
3236 ax_simple (expr, aop_add);
3237 }
3238 break;
3239 case DW_OP_bregx:
3240 {
3241 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3242 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3243 i = dwarf_reg_to_regnum_or_error (arch, reg);
3244 ax_reg (expr, i);
3245 if (offset != 0)
3246 {
3247 ax_const_l (expr, offset);
3248 ax_simple (expr, aop_add);
3249 }
3250 }
3251 break;
3252 case DW_OP_fbreg:
3253 {
3254 const gdb_byte *datastart;
3255 size_t datalen;
3256 const struct block *b;
3257 struct symbol *framefunc;
3258
3259 b = block_for_pc (expr->scope);
3260
3261 if (!b)
3262 error (_("No block found for address"));
3263
3264 framefunc = block_linkage_function (b);
3265
3266 if (!framefunc)
3267 error (_("No function found for block"));
3268
3269 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3270 &datastart, &datalen);
3271
3272 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3273 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3274 datastart + datalen, per_cu);
3275 if (loc->kind == axs_lvalue_register)
3276 require_rvalue (expr, loc);
3277
3278 if (offset != 0)
3279 {
3280 ax_const_l (expr, offset);
3281 ax_simple (expr, aop_add);
3282 }
3283
3284 loc->kind = axs_lvalue_memory;
3285 }
3286 break;
3287
3288 case DW_OP_dup:
3289 ax_simple (expr, aop_dup);
3290 break;
3291
3292 case DW_OP_drop:
3293 ax_simple (expr, aop_pop);
3294 break;
3295
3296 case DW_OP_pick:
3297 offset = *op_ptr++;
3298 ax_pick (expr, offset);
3299 break;
3300
3301 case DW_OP_swap:
3302 ax_simple (expr, aop_swap);
3303 break;
3304
3305 case DW_OP_over:
3306 ax_pick (expr, 1);
3307 break;
3308
3309 case DW_OP_rot:
3310 ax_simple (expr, aop_rot);
3311 break;
3312
3313 case DW_OP_deref:
3314 case DW_OP_deref_size:
3315 {
3316 int size;
3317
3318 if (op == DW_OP_deref_size)
3319 size = *op_ptr++;
3320 else
3321 size = addr_size;
3322
3323 if (size != 1 && size != 2 && size != 4 && size != 8)
3324 error (_("Unsupported size %d in %s"),
3325 size, get_DW_OP_name (op));
3326 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3327 }
3328 break;
3329
3330 case DW_OP_abs:
3331 /* Sign extend the operand. */
3332 ax_ext (expr, addr_size_bits);
3333 ax_simple (expr, aop_dup);
3334 ax_const_l (expr, 0);
3335 ax_simple (expr, aop_less_signed);
3336 ax_simple (expr, aop_log_not);
3337 i = ax_goto (expr, aop_if_goto);
3338 /* We have to emit 0 - X. */
3339 ax_const_l (expr, 0);
3340 ax_simple (expr, aop_swap);
3341 ax_simple (expr, aop_sub);
3342 ax_label (expr, i, expr->len);
3343 break;
3344
3345 case DW_OP_neg:
3346 /* No need to sign extend here. */
3347 ax_const_l (expr, 0);
3348 ax_simple (expr, aop_swap);
3349 ax_simple (expr, aop_sub);
3350 break;
3351
3352 case DW_OP_not:
3353 /* Sign extend the operand. */
3354 ax_ext (expr, addr_size_bits);
3355 ax_simple (expr, aop_bit_not);
3356 break;
3357
3358 case DW_OP_plus_uconst:
3359 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3360 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3361 but we micro-optimize anyhow. */
3362 if (reg != 0)
3363 {
3364 ax_const_l (expr, reg);
3365 ax_simple (expr, aop_add);
3366 }
3367 break;
3368
3369 case DW_OP_and:
3370 ax_simple (expr, aop_bit_and);
3371 break;
3372
3373 case DW_OP_div:
3374 /* Sign extend the operands. */
3375 ax_ext (expr, addr_size_bits);
3376 ax_simple (expr, aop_swap);
3377 ax_ext (expr, addr_size_bits);
3378 ax_simple (expr, aop_swap);
3379 ax_simple (expr, aop_div_signed);
3380 break;
3381
3382 case DW_OP_minus:
3383 ax_simple (expr, aop_sub);
3384 break;
3385
3386 case DW_OP_mod:
3387 ax_simple (expr, aop_rem_unsigned);
3388 break;
3389
3390 case DW_OP_mul:
3391 ax_simple (expr, aop_mul);
3392 break;
3393
3394 case DW_OP_or:
3395 ax_simple (expr, aop_bit_or);
3396 break;
3397
3398 case DW_OP_plus:
3399 ax_simple (expr, aop_add);
3400 break;
3401
3402 case DW_OP_shl:
3403 ax_simple (expr, aop_lsh);
3404 break;
3405
3406 case DW_OP_shr:
3407 ax_simple (expr, aop_rsh_unsigned);
3408 break;
3409
3410 case DW_OP_shra:
3411 ax_simple (expr, aop_rsh_signed);
3412 break;
3413
3414 case DW_OP_xor:
3415 ax_simple (expr, aop_bit_xor);
3416 break;
3417
3418 case DW_OP_le:
3419 /* Sign extend the operands. */
3420 ax_ext (expr, addr_size_bits);
3421 ax_simple (expr, aop_swap);
3422 ax_ext (expr, addr_size_bits);
3423 /* Note no swap here: A <= B is !(B < A). */
3424 ax_simple (expr, aop_less_signed);
3425 ax_simple (expr, aop_log_not);
3426 break;
3427
3428 case DW_OP_ge:
3429 /* Sign extend the operands. */
3430 ax_ext (expr, addr_size_bits);
3431 ax_simple (expr, aop_swap);
3432 ax_ext (expr, addr_size_bits);
3433 ax_simple (expr, aop_swap);
3434 /* A >= B is !(A < B). */
3435 ax_simple (expr, aop_less_signed);
3436 ax_simple (expr, aop_log_not);
3437 break;
3438
3439 case DW_OP_eq:
3440 /* Sign extend the operands. */
3441 ax_ext (expr, addr_size_bits);
3442 ax_simple (expr, aop_swap);
3443 ax_ext (expr, addr_size_bits);
3444 /* No need for a second swap here. */
3445 ax_simple (expr, aop_equal);
3446 break;
3447
3448 case DW_OP_lt:
3449 /* Sign extend the operands. */
3450 ax_ext (expr, addr_size_bits);
3451 ax_simple (expr, aop_swap);
3452 ax_ext (expr, addr_size_bits);
3453 ax_simple (expr, aop_swap);
3454 ax_simple (expr, aop_less_signed);
3455 break;
3456
3457 case DW_OP_gt:
3458 /* Sign extend the operands. */
3459 ax_ext (expr, addr_size_bits);
3460 ax_simple (expr, aop_swap);
3461 ax_ext (expr, addr_size_bits);
3462 /* Note no swap here: A > B is B < A. */
3463 ax_simple (expr, aop_less_signed);
3464 break;
3465
3466 case DW_OP_ne:
3467 /* Sign extend the operands. */
3468 ax_ext (expr, addr_size_bits);
3469 ax_simple (expr, aop_swap);
3470 ax_ext (expr, addr_size_bits);
3471 /* No need for a swap here. */
3472 ax_simple (expr, aop_equal);
3473 ax_simple (expr, aop_log_not);
3474 break;
3475
3476 case DW_OP_call_frame_cfa:
3477 {
3478 int regnum;
3479 CORE_ADDR text_offset;
3480 LONGEST off;
3481 const gdb_byte *cfa_start, *cfa_end;
3482
3483 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3484 &regnum, &off,
3485 &text_offset, &cfa_start, &cfa_end))
3486 {
3487 /* Register. */
3488 ax_reg (expr, regnum);
3489 if (off != 0)
3490 {
3491 ax_const_l (expr, off);
3492 ax_simple (expr, aop_add);
3493 }
3494 }
3495 else
3496 {
3497 /* Another expression. */
3498 ax_const_l (expr, text_offset);
3499 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3500 cfa_start, cfa_end, per_cu);
3501 }
3502
3503 loc->kind = axs_lvalue_memory;
3504 }
3505 break;
3506
3507 case DW_OP_GNU_push_tls_address:
3508 unimplemented (op);
3509 break;
3510
3511 case DW_OP_push_object_address:
3512 unimplemented (op);
3513 break;
3514
3515 case DW_OP_skip:
3516 offset = extract_signed_integer (op_ptr, 2, byte_order);
3517 op_ptr += 2;
3518 i = ax_goto (expr, aop_goto);
3519 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3520 VEC_safe_push (int, patches, i);
3521 break;
3522
3523 case DW_OP_bra:
3524 offset = extract_signed_integer (op_ptr, 2, byte_order);
3525 op_ptr += 2;
3526 /* Zero extend the operand. */
3527 ax_zero_ext (expr, addr_size_bits);
3528 i = ax_goto (expr, aop_if_goto);
3529 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3530 VEC_safe_push (int, patches, i);
3531 break;
3532
3533 case DW_OP_nop:
3534 break;
3535
3536 case DW_OP_piece:
3537 case DW_OP_bit_piece:
3538 {
3539 uint64_t size, offset;
3540
3541 if (op_ptr - 1 == previous_piece)
3542 error (_("Cannot translate empty pieces to agent expressions"));
3543 previous_piece = op_ptr - 1;
3544
3545 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3546 if (op == DW_OP_piece)
3547 {
3548 size *= 8;
3549 offset = 0;
3550 }
3551 else
3552 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3553
3554 if (bits_collected + size > 8 * sizeof (LONGEST))
3555 error (_("Expression pieces exceed word size"));
3556
3557 /* Access the bits. */
3558 switch (loc->kind)
3559 {
3560 case axs_lvalue_register:
3561 ax_reg (expr, loc->u.reg);
3562 break;
3563
3564 case axs_lvalue_memory:
3565 /* Offset the pointer, if needed. */
3566 if (offset > 8)
3567 {
3568 ax_const_l (expr, offset / 8);
3569 ax_simple (expr, aop_add);
3570 offset %= 8;
3571 }
3572 access_memory (arch, expr, size);
3573 break;
3574 }
3575
3576 /* For a bits-big-endian target, shift up what we already
3577 have. For a bits-little-endian target, shift up the
3578 new data. Note that there is a potential bug here if
3579 the DWARF expression leaves multiple values on the
3580 stack. */
3581 if (bits_collected > 0)
3582 {
3583 if (bits_big_endian)
3584 {
3585 ax_simple (expr, aop_swap);
3586 ax_const_l (expr, size);
3587 ax_simple (expr, aop_lsh);
3588 /* We don't need a second swap here, because
3589 aop_bit_or is symmetric. */
3590 }
3591 else
3592 {
3593 ax_const_l (expr, size);
3594 ax_simple (expr, aop_lsh);
3595 }
3596 ax_simple (expr, aop_bit_or);
3597 }
3598
3599 bits_collected += size;
3600 loc->kind = axs_rvalue;
3601 }
3602 break;
3603
3604 case DW_OP_GNU_uninit:
3605 unimplemented (op);
3606
3607 case DW_OP_call2:
3608 case DW_OP_call4:
3609 {
3610 struct dwarf2_locexpr_baton block;
3611 int size = (op == DW_OP_call2 ? 2 : 4);
3612 cu_offset offset;
3613
3614 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3615 op_ptr += size;
3616
3617 offset.cu_off = uoffset;
3618 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3619 get_ax_pc, expr);
3620
3621 /* DW_OP_call_ref is currently not supported. */
3622 gdb_assert (block.per_cu == per_cu);
3623
3624 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3625 block.data, block.data + block.size,
3626 per_cu);
3627 }
3628 break;
3629
3630 case DW_OP_call_ref:
3631 unimplemented (op);
3632
3633 default:
3634 unimplemented (op);
3635 }
3636 }
3637
3638 /* Patch all the branches we emitted. */
3639 for (i = 0; i < VEC_length (int, patches); ++i)
3640 {
3641 int targ = offsets[VEC_index (int, dw_labels, i)];
3642 if (targ == -1)
3643 internal_error (__FILE__, __LINE__, _("invalid label"));
3644 ax_label (expr, VEC_index (int, patches, i), targ);
3645 }
3646
3647 do_cleanups (cleanups);
3648 }
3649
3650 \f
3651 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3652 evaluator to calculate the location. */
3653 static struct value *
3654 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3655 {
3656 struct dwarf2_locexpr_baton *dlbaton
3657 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3658 struct value *val;
3659
3660 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3661 dlbaton->size, dlbaton->per_cu);
3662
3663 return val;
3664 }
3665
3666 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3667 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3668 will be thrown. */
3669
3670 static struct value *
3671 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3672 {
3673 struct dwarf2_locexpr_baton *dlbaton
3674 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3675
3676 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3677 dlbaton->size);
3678 }
3679
3680 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3681 static int
3682 locexpr_read_needs_frame (struct symbol *symbol)
3683 {
3684 struct dwarf2_locexpr_baton *dlbaton
3685 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3686
3687 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3688 dlbaton->per_cu);
3689 }
3690
3691 /* Return true if DATA points to the end of a piece. END is one past
3692 the last byte in the expression. */
3693
3694 static int
3695 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3696 {
3697 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3698 }
3699
3700 /* Helper for locexpr_describe_location_piece that finds the name of a
3701 DWARF register. */
3702
3703 static const char *
3704 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3705 {
3706 int regnum;
3707
3708 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3709 We'd rather print *something* here than throw an error. */
3710 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3711 /* gdbarch_register_name may just return "", return something more
3712 descriptive for bad register numbers. */
3713 if (regnum == -1)
3714 {
3715 /* The text is output as "$bad_register_number".
3716 That is why we use the underscores. */
3717 return _("bad_register_number");
3718 }
3719 return gdbarch_register_name (gdbarch, regnum);
3720 }
3721
3722 /* Nicely describe a single piece of a location, returning an updated
3723 position in the bytecode sequence. This function cannot recognize
3724 all locations; if a location is not recognized, it simply returns
3725 DATA. If there is an error during reading, e.g. we run off the end
3726 of the buffer, an error is thrown. */
3727
3728 static const gdb_byte *
3729 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3730 CORE_ADDR addr, struct objfile *objfile,
3731 struct dwarf2_per_cu_data *per_cu,
3732 const gdb_byte *data, const gdb_byte *end,
3733 unsigned int addr_size)
3734 {
3735 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3736 size_t leb128_size;
3737
3738 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3739 {
3740 fprintf_filtered (stream, _("a variable in $%s"),
3741 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3742 data += 1;
3743 }
3744 else if (data[0] == DW_OP_regx)
3745 {
3746 uint64_t reg;
3747
3748 data = safe_read_uleb128 (data + 1, end, &reg);
3749 fprintf_filtered (stream, _("a variable in $%s"),
3750 locexpr_regname (gdbarch, reg));
3751 }
3752 else if (data[0] == DW_OP_fbreg)
3753 {
3754 const struct block *b;
3755 struct symbol *framefunc;
3756 int frame_reg = 0;
3757 int64_t frame_offset;
3758 const gdb_byte *base_data, *new_data, *save_data = data;
3759 size_t base_size;
3760 int64_t base_offset = 0;
3761
3762 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3763 if (!piece_end_p (new_data, end))
3764 return data;
3765 data = new_data;
3766
3767 b = block_for_pc (addr);
3768
3769 if (!b)
3770 error (_("No block found for address for symbol \"%s\"."),
3771 SYMBOL_PRINT_NAME (symbol));
3772
3773 framefunc = block_linkage_function (b);
3774
3775 if (!framefunc)
3776 error (_("No function found for block for symbol \"%s\"."),
3777 SYMBOL_PRINT_NAME (symbol));
3778
3779 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3780
3781 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3782 {
3783 const gdb_byte *buf_end;
3784
3785 frame_reg = base_data[0] - DW_OP_breg0;
3786 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3787 &base_offset);
3788 if (buf_end != base_data + base_size)
3789 error (_("Unexpected opcode after "
3790 "DW_OP_breg%u for symbol \"%s\"."),
3791 frame_reg, SYMBOL_PRINT_NAME (symbol));
3792 }
3793 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3794 {
3795 /* The frame base is just the register, with no offset. */
3796 frame_reg = base_data[0] - DW_OP_reg0;
3797 base_offset = 0;
3798 }
3799 else
3800 {
3801 /* We don't know what to do with the frame base expression,
3802 so we can't trace this variable; give up. */
3803 return save_data;
3804 }
3805
3806 fprintf_filtered (stream,
3807 _("a variable at frame base reg $%s offset %s+%s"),
3808 locexpr_regname (gdbarch, frame_reg),
3809 plongest (base_offset), plongest (frame_offset));
3810 }
3811 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3812 && piece_end_p (data, end))
3813 {
3814 int64_t offset;
3815
3816 data = safe_read_sleb128 (data + 1, end, &offset);
3817
3818 fprintf_filtered (stream,
3819 _("a variable at offset %s from base reg $%s"),
3820 plongest (offset),
3821 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3822 }
3823
3824 /* The location expression for a TLS variable looks like this (on a
3825 64-bit LE machine):
3826
3827 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3828 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3829
3830 0x3 is the encoding for DW_OP_addr, which has an operand as long
3831 as the size of an address on the target machine (here is 8
3832 bytes). Note that more recent version of GCC emit DW_OP_const4u
3833 or DW_OP_const8u, depending on address size, rather than
3834 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3835 The operand represents the offset at which the variable is within
3836 the thread local storage. */
3837
3838 else if (data + 1 + addr_size < end
3839 && (data[0] == DW_OP_addr
3840 || (addr_size == 4 && data[0] == DW_OP_const4u)
3841 || (addr_size == 8 && data[0] == DW_OP_const8u))
3842 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3843 && piece_end_p (data + 2 + addr_size, end))
3844 {
3845 ULONGEST offset;
3846 offset = extract_unsigned_integer (data + 1, addr_size,
3847 gdbarch_byte_order (gdbarch));
3848
3849 fprintf_filtered (stream,
3850 _("a thread-local variable at offset 0x%s "
3851 "in the thread-local storage for `%s'"),
3852 phex_nz (offset, addr_size), objfile_name (objfile));
3853
3854 data += 1 + addr_size + 1;
3855 }
3856
3857 /* With -gsplit-dwarf a TLS variable can also look like this:
3858 DW_AT_location : 3 byte block: fc 4 e0
3859 (DW_OP_GNU_const_index: 4;
3860 DW_OP_GNU_push_tls_address) */
3861 else if (data + 3 <= end
3862 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3863 && data[0] == DW_OP_GNU_const_index
3864 && leb128_size > 0
3865 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3866 && piece_end_p (data + 2 + leb128_size, end))
3867 {
3868 uint64_t offset;
3869
3870 data = safe_read_uleb128 (data + 1, end, &offset);
3871 offset = dwarf2_read_addr_index (per_cu, offset);
3872 fprintf_filtered (stream,
3873 _("a thread-local variable at offset 0x%s "
3874 "in the thread-local storage for `%s'"),
3875 phex_nz (offset, addr_size), objfile_name (objfile));
3876 ++data;
3877 }
3878
3879 else if (data[0] >= DW_OP_lit0
3880 && data[0] <= DW_OP_lit31
3881 && data + 1 < end
3882 && data[1] == DW_OP_stack_value)
3883 {
3884 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3885 data += 2;
3886 }
3887
3888 return data;
3889 }
3890
3891 /* Disassemble an expression, stopping at the end of a piece or at the
3892 end of the expression. Returns a pointer to the next unread byte
3893 in the input expression. If ALL is nonzero, then this function
3894 will keep going until it reaches the end of the expression.
3895 If there is an error during reading, e.g. we run off the end
3896 of the buffer, an error is thrown. */
3897
3898 static const gdb_byte *
3899 disassemble_dwarf_expression (struct ui_file *stream,
3900 struct gdbarch *arch, unsigned int addr_size,
3901 int offset_size, const gdb_byte *start,
3902 const gdb_byte *data, const gdb_byte *end,
3903 int indent, int all,
3904 struct dwarf2_per_cu_data *per_cu)
3905 {
3906 while (data < end
3907 && (all
3908 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3909 {
3910 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3911 uint64_t ul;
3912 int64_t l;
3913 const char *name;
3914
3915 name = get_DW_OP_name (op);
3916
3917 if (!name)
3918 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3919 op, (long) (data - 1 - start));
3920 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3921 (long) (data - 1 - start), name);
3922
3923 switch (op)
3924 {
3925 case DW_OP_addr:
3926 ul = extract_unsigned_integer (data, addr_size,
3927 gdbarch_byte_order (arch));
3928 data += addr_size;
3929 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3930 break;
3931
3932 case DW_OP_const1u:
3933 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3934 data += 1;
3935 fprintf_filtered (stream, " %s", pulongest (ul));
3936 break;
3937 case DW_OP_const1s:
3938 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3939 data += 1;
3940 fprintf_filtered (stream, " %s", plongest (l));
3941 break;
3942 case DW_OP_const2u:
3943 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3944 data += 2;
3945 fprintf_filtered (stream, " %s", pulongest (ul));
3946 break;
3947 case DW_OP_const2s:
3948 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3949 data += 2;
3950 fprintf_filtered (stream, " %s", plongest (l));
3951 break;
3952 case DW_OP_const4u:
3953 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3954 data += 4;
3955 fprintf_filtered (stream, " %s", pulongest (ul));
3956 break;
3957 case DW_OP_const4s:
3958 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3959 data += 4;
3960 fprintf_filtered (stream, " %s", plongest (l));
3961 break;
3962 case DW_OP_const8u:
3963 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3964 data += 8;
3965 fprintf_filtered (stream, " %s", pulongest (ul));
3966 break;
3967 case DW_OP_const8s:
3968 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3969 data += 8;
3970 fprintf_filtered (stream, " %s", plongest (l));
3971 break;
3972 case DW_OP_constu:
3973 data = safe_read_uleb128 (data, end, &ul);
3974 fprintf_filtered (stream, " %s", pulongest (ul));
3975 break;
3976 case DW_OP_consts:
3977 data = safe_read_sleb128 (data, end, &l);
3978 fprintf_filtered (stream, " %s", plongest (l));
3979 break;
3980
3981 case DW_OP_reg0:
3982 case DW_OP_reg1:
3983 case DW_OP_reg2:
3984 case DW_OP_reg3:
3985 case DW_OP_reg4:
3986 case DW_OP_reg5:
3987 case DW_OP_reg6:
3988 case DW_OP_reg7:
3989 case DW_OP_reg8:
3990 case DW_OP_reg9:
3991 case DW_OP_reg10:
3992 case DW_OP_reg11:
3993 case DW_OP_reg12:
3994 case DW_OP_reg13:
3995 case DW_OP_reg14:
3996 case DW_OP_reg15:
3997 case DW_OP_reg16:
3998 case DW_OP_reg17:
3999 case DW_OP_reg18:
4000 case DW_OP_reg19:
4001 case DW_OP_reg20:
4002 case DW_OP_reg21:
4003 case DW_OP_reg22:
4004 case DW_OP_reg23:
4005 case DW_OP_reg24:
4006 case DW_OP_reg25:
4007 case DW_OP_reg26:
4008 case DW_OP_reg27:
4009 case DW_OP_reg28:
4010 case DW_OP_reg29:
4011 case DW_OP_reg30:
4012 case DW_OP_reg31:
4013 fprintf_filtered (stream, " [$%s]",
4014 locexpr_regname (arch, op - DW_OP_reg0));
4015 break;
4016
4017 case DW_OP_regx:
4018 data = safe_read_uleb128 (data, end, &ul);
4019 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4020 locexpr_regname (arch, (int) ul));
4021 break;
4022
4023 case DW_OP_implicit_value:
4024 data = safe_read_uleb128 (data, end, &ul);
4025 data += ul;
4026 fprintf_filtered (stream, " %s", pulongest (ul));
4027 break;
4028
4029 case DW_OP_breg0:
4030 case DW_OP_breg1:
4031 case DW_OP_breg2:
4032 case DW_OP_breg3:
4033 case DW_OP_breg4:
4034 case DW_OP_breg5:
4035 case DW_OP_breg6:
4036 case DW_OP_breg7:
4037 case DW_OP_breg8:
4038 case DW_OP_breg9:
4039 case DW_OP_breg10:
4040 case DW_OP_breg11:
4041 case DW_OP_breg12:
4042 case DW_OP_breg13:
4043 case DW_OP_breg14:
4044 case DW_OP_breg15:
4045 case DW_OP_breg16:
4046 case DW_OP_breg17:
4047 case DW_OP_breg18:
4048 case DW_OP_breg19:
4049 case DW_OP_breg20:
4050 case DW_OP_breg21:
4051 case DW_OP_breg22:
4052 case DW_OP_breg23:
4053 case DW_OP_breg24:
4054 case DW_OP_breg25:
4055 case DW_OP_breg26:
4056 case DW_OP_breg27:
4057 case DW_OP_breg28:
4058 case DW_OP_breg29:
4059 case DW_OP_breg30:
4060 case DW_OP_breg31:
4061 data = safe_read_sleb128 (data, end, &l);
4062 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4063 locexpr_regname (arch, op - DW_OP_breg0));
4064 break;
4065
4066 case DW_OP_bregx:
4067 data = safe_read_uleb128 (data, end, &ul);
4068 data = safe_read_sleb128 (data, end, &l);
4069 fprintf_filtered (stream, " register %s [$%s] offset %s",
4070 pulongest (ul),
4071 locexpr_regname (arch, (int) ul),
4072 plongest (l));
4073 break;
4074
4075 case DW_OP_fbreg:
4076 data = safe_read_sleb128 (data, end, &l);
4077 fprintf_filtered (stream, " %s", plongest (l));
4078 break;
4079
4080 case DW_OP_xderef_size:
4081 case DW_OP_deref_size:
4082 case DW_OP_pick:
4083 fprintf_filtered (stream, " %d", *data);
4084 ++data;
4085 break;
4086
4087 case DW_OP_plus_uconst:
4088 data = safe_read_uleb128 (data, end, &ul);
4089 fprintf_filtered (stream, " %s", pulongest (ul));
4090 break;
4091
4092 case DW_OP_skip:
4093 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4094 data += 2;
4095 fprintf_filtered (stream, " to %ld",
4096 (long) (data + l - start));
4097 break;
4098
4099 case DW_OP_bra:
4100 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4101 data += 2;
4102 fprintf_filtered (stream, " %ld",
4103 (long) (data + l - start));
4104 break;
4105
4106 case DW_OP_call2:
4107 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4108 data += 2;
4109 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4110 break;
4111
4112 case DW_OP_call4:
4113 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4114 data += 4;
4115 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4116 break;
4117
4118 case DW_OP_call_ref:
4119 ul = extract_unsigned_integer (data, offset_size,
4120 gdbarch_byte_order (arch));
4121 data += offset_size;
4122 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4123 break;
4124
4125 case DW_OP_piece:
4126 data = safe_read_uleb128 (data, end, &ul);
4127 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4128 break;
4129
4130 case DW_OP_bit_piece:
4131 {
4132 uint64_t offset;
4133
4134 data = safe_read_uleb128 (data, end, &ul);
4135 data = safe_read_uleb128 (data, end, &offset);
4136 fprintf_filtered (stream, " size %s offset %s (bits)",
4137 pulongest (ul), pulongest (offset));
4138 }
4139 break;
4140
4141 case DW_OP_GNU_implicit_pointer:
4142 {
4143 ul = extract_unsigned_integer (data, offset_size,
4144 gdbarch_byte_order (arch));
4145 data += offset_size;
4146
4147 data = safe_read_sleb128 (data, end, &l);
4148
4149 fprintf_filtered (stream, " DIE %s offset %s",
4150 phex_nz (ul, offset_size),
4151 plongest (l));
4152 }
4153 break;
4154
4155 case DW_OP_GNU_deref_type:
4156 {
4157 int addr_size = *data++;
4158 cu_offset offset;
4159 struct type *type;
4160
4161 data = safe_read_uleb128 (data, end, &ul);
4162 offset.cu_off = ul;
4163 type = dwarf2_get_die_type (offset, per_cu);
4164 fprintf_filtered (stream, "<");
4165 type_print (type, "", stream, -1);
4166 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4167 addr_size);
4168 }
4169 break;
4170
4171 case DW_OP_GNU_const_type:
4172 {
4173 cu_offset type_die;
4174 struct type *type;
4175
4176 data = safe_read_uleb128 (data, end, &ul);
4177 type_die.cu_off = ul;
4178 type = dwarf2_get_die_type (type_die, per_cu);
4179 fprintf_filtered (stream, "<");
4180 type_print (type, "", stream, -1);
4181 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4182 }
4183 break;
4184
4185 case DW_OP_GNU_regval_type:
4186 {
4187 uint64_t reg;
4188 cu_offset type_die;
4189 struct type *type;
4190
4191 data = safe_read_uleb128 (data, end, &reg);
4192 data = safe_read_uleb128 (data, end, &ul);
4193 type_die.cu_off = ul;
4194
4195 type = dwarf2_get_die_type (type_die, per_cu);
4196 fprintf_filtered (stream, "<");
4197 type_print (type, "", stream, -1);
4198 fprintf_filtered (stream, " [0x%s]> [$%s]",
4199 phex_nz (type_die.cu_off, 0),
4200 locexpr_regname (arch, reg));
4201 }
4202 break;
4203
4204 case DW_OP_GNU_convert:
4205 case DW_OP_GNU_reinterpret:
4206 {
4207 cu_offset type_die;
4208
4209 data = safe_read_uleb128 (data, end, &ul);
4210 type_die.cu_off = ul;
4211
4212 if (type_die.cu_off == 0)
4213 fprintf_filtered (stream, "<0>");
4214 else
4215 {
4216 struct type *type;
4217
4218 type = dwarf2_get_die_type (type_die, per_cu);
4219 fprintf_filtered (stream, "<");
4220 type_print (type, "", stream, -1);
4221 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4222 }
4223 }
4224 break;
4225
4226 case DW_OP_GNU_entry_value:
4227 data = safe_read_uleb128 (data, end, &ul);
4228 fputc_filtered ('\n', stream);
4229 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4230 start, data, data + ul, indent + 2,
4231 all, per_cu);
4232 data += ul;
4233 continue;
4234
4235 case DW_OP_GNU_parameter_ref:
4236 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4237 data += 4;
4238 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4239 break;
4240
4241 case DW_OP_GNU_addr_index:
4242 data = safe_read_uleb128 (data, end, &ul);
4243 ul = dwarf2_read_addr_index (per_cu, ul);
4244 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4245 break;
4246 case DW_OP_GNU_const_index:
4247 data = safe_read_uleb128 (data, end, &ul);
4248 ul = dwarf2_read_addr_index (per_cu, ul);
4249 fprintf_filtered (stream, " %s", pulongest (ul));
4250 break;
4251 }
4252
4253 fprintf_filtered (stream, "\n");
4254 }
4255
4256 return data;
4257 }
4258
4259 /* Describe a single location, which may in turn consist of multiple
4260 pieces. */
4261
4262 static void
4263 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4264 struct ui_file *stream,
4265 const gdb_byte *data, size_t size,
4266 struct objfile *objfile, unsigned int addr_size,
4267 int offset_size, struct dwarf2_per_cu_data *per_cu)
4268 {
4269 const gdb_byte *end = data + size;
4270 int first_piece = 1, bad = 0;
4271
4272 while (data < end)
4273 {
4274 const gdb_byte *here = data;
4275 int disassemble = 1;
4276
4277 if (first_piece)
4278 first_piece = 0;
4279 else
4280 fprintf_filtered (stream, _(", and "));
4281
4282 if (!dwarf_always_disassemble)
4283 {
4284 data = locexpr_describe_location_piece (symbol, stream,
4285 addr, objfile, per_cu,
4286 data, end, addr_size);
4287 /* If we printed anything, or if we have an empty piece,
4288 then don't disassemble. */
4289 if (data != here
4290 || data[0] == DW_OP_piece
4291 || data[0] == DW_OP_bit_piece)
4292 disassemble = 0;
4293 }
4294 if (disassemble)
4295 {
4296 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4297 data = disassemble_dwarf_expression (stream,
4298 get_objfile_arch (objfile),
4299 addr_size, offset_size, data,
4300 data, end, 0,
4301 dwarf_always_disassemble,
4302 per_cu);
4303 }
4304
4305 if (data < end)
4306 {
4307 int empty = data == here;
4308
4309 if (disassemble)
4310 fprintf_filtered (stream, " ");
4311 if (data[0] == DW_OP_piece)
4312 {
4313 uint64_t bytes;
4314
4315 data = safe_read_uleb128 (data + 1, end, &bytes);
4316
4317 if (empty)
4318 fprintf_filtered (stream, _("an empty %s-byte piece"),
4319 pulongest (bytes));
4320 else
4321 fprintf_filtered (stream, _(" [%s-byte piece]"),
4322 pulongest (bytes));
4323 }
4324 else if (data[0] == DW_OP_bit_piece)
4325 {
4326 uint64_t bits, offset;
4327
4328 data = safe_read_uleb128 (data + 1, end, &bits);
4329 data = safe_read_uleb128 (data, end, &offset);
4330
4331 if (empty)
4332 fprintf_filtered (stream,
4333 _("an empty %s-bit piece"),
4334 pulongest (bits));
4335 else
4336 fprintf_filtered (stream,
4337 _(" [%s-bit piece, offset %s bits]"),
4338 pulongest (bits), pulongest (offset));
4339 }
4340 else
4341 {
4342 bad = 1;
4343 break;
4344 }
4345 }
4346 }
4347
4348 if (bad || data > end)
4349 error (_("Corrupted DWARF2 expression for \"%s\"."),
4350 SYMBOL_PRINT_NAME (symbol));
4351 }
4352
4353 /* Print a natural-language description of SYMBOL to STREAM. This
4354 version is for a symbol with a single location. */
4355
4356 static void
4357 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4358 struct ui_file *stream)
4359 {
4360 struct dwarf2_locexpr_baton *dlbaton
4361 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4362 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4363 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4364 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4365
4366 locexpr_describe_location_1 (symbol, addr, stream,
4367 dlbaton->data, dlbaton->size,
4368 objfile, addr_size, offset_size,
4369 dlbaton->per_cu);
4370 }
4371
4372 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4373 any necessary bytecode in AX. */
4374
4375 static void
4376 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4377 struct agent_expr *ax, struct axs_value *value)
4378 {
4379 struct dwarf2_locexpr_baton *dlbaton
4380 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4381 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4382
4383 if (dlbaton->size == 0)
4384 value->optimized_out = 1;
4385 else
4386 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4387 dlbaton->data, dlbaton->data + dlbaton->size,
4388 dlbaton->per_cu);
4389 }
4390
4391 /* symbol_computed_ops 'generate_c_location' method. */
4392
4393 static void
4394 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4395 struct gdbarch *gdbarch,
4396 unsigned char *registers_used,
4397 CORE_ADDR pc, const char *result_name)
4398 {
4399 struct dwarf2_locexpr_baton *dlbaton
4400 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4401 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4402
4403 if (dlbaton->size == 0)
4404 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4405
4406 compile_dwarf_expr_to_c (stream, result_name,
4407 sym, pc, gdbarch, registers_used, addr_size,
4408 dlbaton->data, dlbaton->data + dlbaton->size,
4409 dlbaton->per_cu);
4410 }
4411
4412 /* The set of location functions used with the DWARF-2 expression
4413 evaluator. */
4414 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4415 locexpr_read_variable,
4416 locexpr_read_variable_at_entry,
4417 locexpr_read_needs_frame,
4418 locexpr_describe_location,
4419 0, /* location_has_loclist */
4420 locexpr_tracepoint_var_ref,
4421 locexpr_generate_c_location
4422 };
4423
4424
4425 /* Wrapper functions for location lists. These generally find
4426 the appropriate location expression and call something above. */
4427
4428 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4429 evaluator to calculate the location. */
4430 static struct value *
4431 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4432 {
4433 struct dwarf2_loclist_baton *dlbaton
4434 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4435 struct value *val;
4436 const gdb_byte *data;
4437 size_t size;
4438 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4439
4440 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4441 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4442 dlbaton->per_cu);
4443
4444 return val;
4445 }
4446
4447 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4448 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4449 will be thrown.
4450
4451 Function always returns non-NULL value, it may be marked optimized out if
4452 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4453 if it cannot resolve the parameter for any reason. */
4454
4455 static struct value *
4456 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4457 {
4458 struct dwarf2_loclist_baton *dlbaton
4459 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4460 const gdb_byte *data;
4461 size_t size;
4462 CORE_ADDR pc;
4463
4464 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4465 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4466
4467 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4468 if (data == NULL)
4469 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4470
4471 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4472 }
4473
4474 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4475 static int
4476 loclist_read_needs_frame (struct symbol *symbol)
4477 {
4478 /* If there's a location list, then assume we need to have a frame
4479 to choose the appropriate location expression. With tracking of
4480 global variables this is not necessarily true, but such tracking
4481 is disabled in GCC at the moment until we figure out how to
4482 represent it. */
4483
4484 return 1;
4485 }
4486
4487 /* Print a natural-language description of SYMBOL to STREAM. This
4488 version applies when there is a list of different locations, each
4489 with a specified address range. */
4490
4491 static void
4492 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4493 struct ui_file *stream)
4494 {
4495 struct dwarf2_loclist_baton *dlbaton
4496 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4497 const gdb_byte *loc_ptr, *buf_end;
4498 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4500 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4501 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4502 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4503 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4504 /* Adjust base_address for relocatable objects. */
4505 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4506 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4507 int done = 0;
4508
4509 loc_ptr = dlbaton->data;
4510 buf_end = dlbaton->data + dlbaton->size;
4511
4512 fprintf_filtered (stream, _("multi-location:\n"));
4513
4514 /* Iterate through locations until we run out. */
4515 while (!done)
4516 {
4517 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4518 int length;
4519 enum debug_loc_kind kind;
4520 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4521
4522 if (dlbaton->from_dwo)
4523 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4524 loc_ptr, buf_end, &new_ptr,
4525 &low, &high, byte_order);
4526 else
4527 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4528 &low, &high,
4529 byte_order, addr_size,
4530 signed_addr_p);
4531 loc_ptr = new_ptr;
4532 switch (kind)
4533 {
4534 case DEBUG_LOC_END_OF_LIST:
4535 done = 1;
4536 continue;
4537 case DEBUG_LOC_BASE_ADDRESS:
4538 base_address = high + base_offset;
4539 fprintf_filtered (stream, _(" Base address %s"),
4540 paddress (gdbarch, base_address));
4541 continue;
4542 case DEBUG_LOC_START_END:
4543 case DEBUG_LOC_START_LENGTH:
4544 break;
4545 case DEBUG_LOC_BUFFER_OVERFLOW:
4546 case DEBUG_LOC_INVALID_ENTRY:
4547 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4548 SYMBOL_PRINT_NAME (symbol));
4549 default:
4550 gdb_assert_not_reached ("bad debug_loc_kind");
4551 }
4552
4553 /* Otherwise, a location expression entry. */
4554 low += base_address;
4555 high += base_address;
4556
4557 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4558 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4559
4560 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4561 loc_ptr += 2;
4562
4563 /* (It would improve readability to print only the minimum
4564 necessary digits of the second number of the range.) */
4565 fprintf_filtered (stream, _(" Range %s-%s: "),
4566 paddress (gdbarch, low), paddress (gdbarch, high));
4567
4568 /* Now describe this particular location. */
4569 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4570 objfile, addr_size, offset_size,
4571 dlbaton->per_cu);
4572
4573 fprintf_filtered (stream, "\n");
4574
4575 loc_ptr += length;
4576 }
4577 }
4578
4579 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4580 any necessary bytecode in AX. */
4581 static void
4582 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4583 struct agent_expr *ax, struct axs_value *value)
4584 {
4585 struct dwarf2_loclist_baton *dlbaton
4586 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4587 const gdb_byte *data;
4588 size_t size;
4589 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4590
4591 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4592 if (size == 0)
4593 value->optimized_out = 1;
4594 else
4595 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4596 dlbaton->per_cu);
4597 }
4598
4599 /* symbol_computed_ops 'generate_c_location' method. */
4600
4601 static void
4602 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4603 struct gdbarch *gdbarch,
4604 unsigned char *registers_used,
4605 CORE_ADDR pc, const char *result_name)
4606 {
4607 struct dwarf2_loclist_baton *dlbaton
4608 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4609 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4610 const gdb_byte *data;
4611 size_t size;
4612
4613 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4614 if (size == 0)
4615 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4616
4617 compile_dwarf_expr_to_c (stream, result_name,
4618 sym, pc, gdbarch, registers_used, addr_size,
4619 data, data + size,
4620 dlbaton->per_cu);
4621 }
4622
4623 /* The set of location functions used with the DWARF-2 expression
4624 evaluator and location lists. */
4625 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4626 loclist_read_variable,
4627 loclist_read_variable_at_entry,
4628 loclist_read_needs_frame,
4629 loclist_describe_location,
4630 1, /* location_has_loclist */
4631 loclist_tracepoint_var_ref,
4632 loclist_generate_c_location
4633 };
4634
4635 /* Provide a prototype to silence -Wmissing-prototypes. */
4636 extern initialize_file_ftype _initialize_dwarf2loc;
4637
4638 void
4639 _initialize_dwarf2loc (void)
4640 {
4641 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4642 &entry_values_debug,
4643 _("Set entry values and tail call frames "
4644 "debugging."),
4645 _("Show entry values and tail call frames "
4646 "debugging."),
4647 _("When non-zero, the process of determining "
4648 "parameter values from function entry point "
4649 "and tail call frames will be printed."),
4650 NULL,
4651 show_entry_values_debug,
4652 &setdebuglist, &showdebuglist);
4653 }
This page took 0.129389 seconds and 5 git commands to generate.