gdb: Carry default property type around with dynamic properties
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2read.h"
40 #include "dwarf2-frame.h"
41 #include "compile/compile.h"
42 #include "gdbsupport/selftest.h"
43 #include <algorithm>
44 #include <vector>
45 #include <unordered_set>
46 #include "gdbsupport/underlying.h"
47 #include "gdbsupport/byte-vector.h"
48
49 extern int dwarf_always_disassemble;
50
51 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
52 struct frame_info *frame,
53 const gdb_byte *data,
54 size_t size,
55 struct dwarf2_per_cu_data *per_cu,
56 struct type *subobj_type,
57 LONGEST subobj_byte_offset);
58
59 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
60 (struct frame_info *frame,
61 enum call_site_parameter_kind kind,
62 union call_site_parameter_u kind_u,
63 struct dwarf2_per_cu_data **per_cu_return);
64
65 static struct value *indirect_synthetic_pointer
66 (sect_offset die, LONGEST byte_offset,
67 struct dwarf2_per_cu_data *per_cu,
68 struct frame_info *frame,
69 struct type *type, bool resolve_abstract_p = false);
70
71 /* Until these have formal names, we define these here.
72 ref: http://gcc.gnu.org/wiki/DebugFission
73 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
74 and is then followed by data specific to that entry. */
75
76 enum debug_loc_kind
77 {
78 /* Indicates the end of the list of entries. */
79 DEBUG_LOC_END_OF_LIST = 0,
80
81 /* This is followed by an unsigned LEB128 number that is an index into
82 .debug_addr and specifies the base address for all following entries. */
83 DEBUG_LOC_BASE_ADDRESS = 1,
84
85 /* This is followed by two unsigned LEB128 numbers that are indices into
86 .debug_addr and specify the beginning and ending addresses, and then
87 a normal location expression as in .debug_loc. */
88 DEBUG_LOC_START_END = 2,
89
90 /* This is followed by an unsigned LEB128 number that is an index into
91 .debug_addr and specifies the beginning address, and a 4 byte unsigned
92 number that specifies the length, and then a normal location expression
93 as in .debug_loc. */
94 DEBUG_LOC_START_LENGTH = 3,
95
96 /* An internal value indicating there is insufficient data. */
97 DEBUG_LOC_BUFFER_OVERFLOW = -1,
98
99 /* An internal value indicating an invalid kind of entry was found. */
100 DEBUG_LOC_INVALID_ENTRY = -2
101 };
102
103 /* Helper function which throws an error if a synthetic pointer is
104 invalid. */
105
106 static void
107 invalid_synthetic_pointer (void)
108 {
109 error (_("access outside bounds of object "
110 "referenced via synthetic pointer"));
111 }
112
113 /* Decode the addresses in a non-dwo .debug_loc entry.
114 A pointer to the next byte to examine is returned in *NEW_PTR.
115 The encoded low,high addresses are return in *LOW,*HIGH.
116 The result indicates the kind of entry found. */
117
118 static enum debug_loc_kind
119 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
120 const gdb_byte **new_ptr,
121 CORE_ADDR *low, CORE_ADDR *high,
122 enum bfd_endian byte_order,
123 unsigned int addr_size,
124 int signed_addr_p)
125 {
126 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
127
128 if (buf_end - loc_ptr < 2 * addr_size)
129 return DEBUG_LOC_BUFFER_OVERFLOW;
130
131 if (signed_addr_p)
132 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
133 else
134 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
135 loc_ptr += addr_size;
136
137 if (signed_addr_p)
138 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
139 else
140 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
141 loc_ptr += addr_size;
142
143 *new_ptr = loc_ptr;
144
145 /* A base-address-selection entry. */
146 if ((*low & base_mask) == base_mask)
147 return DEBUG_LOC_BASE_ADDRESS;
148
149 /* An end-of-list entry. */
150 if (*low == 0 && *high == 0)
151 return DEBUG_LOC_END_OF_LIST;
152
153 return DEBUG_LOC_START_END;
154 }
155
156 /* Decode the addresses in .debug_loclists entry.
157 A pointer to the next byte to examine is returned in *NEW_PTR.
158 The encoded low,high addresses are return in *LOW,*HIGH.
159 The result indicates the kind of entry found. */
160
161 static enum debug_loc_kind
162 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
163 const gdb_byte *loc_ptr,
164 const gdb_byte *buf_end,
165 const gdb_byte **new_ptr,
166 CORE_ADDR *low, CORE_ADDR *high,
167 enum bfd_endian byte_order,
168 unsigned int addr_size,
169 int signed_addr_p)
170 {
171 uint64_t u64;
172
173 if (loc_ptr == buf_end)
174 return DEBUG_LOC_BUFFER_OVERFLOW;
175
176 switch (*loc_ptr++)
177 {
178 case DW_LLE_end_of_list:
179 *new_ptr = loc_ptr;
180 return DEBUG_LOC_END_OF_LIST;
181 case DW_LLE_base_address:
182 if (loc_ptr + addr_size > buf_end)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 if (signed_addr_p)
185 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
186 else
187 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
188 loc_ptr += addr_size;
189 *new_ptr = loc_ptr;
190 return DEBUG_LOC_BASE_ADDRESS;
191 case DW_LLE_offset_pair:
192 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
193 if (loc_ptr == NULL)
194 return DEBUG_LOC_BUFFER_OVERFLOW;
195 *low = u64;
196 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
197 if (loc_ptr == NULL)
198 return DEBUG_LOC_BUFFER_OVERFLOW;
199 *high = u64;
200 *new_ptr = loc_ptr;
201 return DEBUG_LOC_START_END;
202 default:
203 return DEBUG_LOC_INVALID_ENTRY;
204 }
205 }
206
207 /* Decode the addresses in .debug_loc.dwo entry.
208 A pointer to the next byte to examine is returned in *NEW_PTR.
209 The encoded low,high addresses are return in *LOW,*HIGH.
210 The result indicates the kind of entry found. */
211
212 static enum debug_loc_kind
213 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
214 const gdb_byte *loc_ptr,
215 const gdb_byte *buf_end,
216 const gdb_byte **new_ptr,
217 CORE_ADDR *low, CORE_ADDR *high,
218 enum bfd_endian byte_order)
219 {
220 uint64_t low_index, high_index;
221
222 if (loc_ptr == buf_end)
223 return DEBUG_LOC_BUFFER_OVERFLOW;
224
225 switch (*loc_ptr++)
226 {
227 case DW_LLE_GNU_end_of_list_entry:
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_END_OF_LIST;
230 case DW_LLE_GNU_base_address_selection_entry:
231 *low = 0;
232 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
233 if (loc_ptr == NULL)
234 return DEBUG_LOC_BUFFER_OVERFLOW;
235 *high = dwarf2_read_addr_index (per_cu, high_index);
236 *new_ptr = loc_ptr;
237 return DEBUG_LOC_BASE_ADDRESS;
238 case DW_LLE_GNU_start_end_entry:
239 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
240 if (loc_ptr == NULL)
241 return DEBUG_LOC_BUFFER_OVERFLOW;
242 *low = dwarf2_read_addr_index (per_cu, low_index);
243 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
244 if (loc_ptr == NULL)
245 return DEBUG_LOC_BUFFER_OVERFLOW;
246 *high = dwarf2_read_addr_index (per_cu, high_index);
247 *new_ptr = loc_ptr;
248 return DEBUG_LOC_START_END;
249 case DW_LLE_GNU_start_length_entry:
250 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
251 if (loc_ptr == NULL)
252 return DEBUG_LOC_BUFFER_OVERFLOW;
253 *low = dwarf2_read_addr_index (per_cu, low_index);
254 if (loc_ptr + 4 > buf_end)
255 return DEBUG_LOC_BUFFER_OVERFLOW;
256 *high = *low;
257 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
258 *new_ptr = loc_ptr + 4;
259 return DEBUG_LOC_START_LENGTH;
260 default:
261 return DEBUG_LOC_INVALID_ENTRY;
262 }
263 }
264
265 /* A function for dealing with location lists. Given a
266 symbol baton (BATON) and a pc value (PC), find the appropriate
267 location expression, set *LOCEXPR_LENGTH, and return a pointer
268 to the beginning of the expression. Returns NULL on failure.
269
270 For now, only return the first matching location expression; there
271 can be more than one in the list. */
272
273 const gdb_byte *
274 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
275 size_t *locexpr_length, CORE_ADDR pc)
276 {
277 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
278 struct gdbarch *gdbarch = get_objfile_arch (objfile);
279 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
280 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
281 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
282 /* Adjust base_address for relocatable objects. */
283 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
284 CORE_ADDR base_address = baton->base_address + base_offset;
285 const gdb_byte *loc_ptr, *buf_end;
286
287 loc_ptr = baton->data;
288 buf_end = baton->data + baton->size;
289
290 while (1)
291 {
292 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
293 int length;
294 enum debug_loc_kind kind;
295 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
296
297 if (baton->from_dwo)
298 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
299 loc_ptr, buf_end, &new_ptr,
300 &low, &high, byte_order);
301 else if (dwarf2_version (baton->per_cu) < 5)
302 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
303 &low, &high,
304 byte_order, addr_size,
305 signed_addr_p);
306 else
307 kind = decode_debug_loclists_addresses (baton->per_cu,
308 loc_ptr, buf_end, &new_ptr,
309 &low, &high, byte_order,
310 addr_size, signed_addr_p);
311
312 loc_ptr = new_ptr;
313 switch (kind)
314 {
315 case DEBUG_LOC_END_OF_LIST:
316 *locexpr_length = 0;
317 return NULL;
318 case DEBUG_LOC_BASE_ADDRESS:
319 base_address = high + base_offset;
320 continue;
321 case DEBUG_LOC_START_END:
322 case DEBUG_LOC_START_LENGTH:
323 break;
324 case DEBUG_LOC_BUFFER_OVERFLOW:
325 case DEBUG_LOC_INVALID_ENTRY:
326 error (_("dwarf2_find_location_expression: "
327 "Corrupted DWARF expression."));
328 default:
329 gdb_assert_not_reached ("bad debug_loc_kind");
330 }
331
332 /* Otherwise, a location expression entry.
333 If the entry is from a DWO, don't add base address: the entry is from
334 .debug_addr which already has the DWARF "base address". We still add
335 base_offset in case we're debugging a PIE executable. */
336 if (baton->from_dwo)
337 {
338 low += base_offset;
339 high += base_offset;
340 }
341 else
342 {
343 low += base_address;
344 high += base_address;
345 }
346
347 if (dwarf2_version (baton->per_cu) < 5)
348 {
349 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
350 loc_ptr += 2;
351 }
352 else
353 {
354 unsigned int bytes_read;
355
356 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
357 loc_ptr += bytes_read;
358 }
359
360 if (low == high && pc == low)
361 {
362 /* This is entry PC record present only at entry point
363 of a function. Verify it is really the function entry point. */
364
365 const struct block *pc_block = block_for_pc (pc);
366 struct symbol *pc_func = NULL;
367
368 if (pc_block)
369 pc_func = block_linkage_function (pc_block);
370
371 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
372 {
373 *locexpr_length = length;
374 return loc_ptr;
375 }
376 }
377
378 if (pc >= low && pc < high)
379 {
380 *locexpr_length = length;
381 return loc_ptr;
382 }
383
384 loc_ptr += length;
385 }
386 }
387
388 /* This is the baton used when performing dwarf2 expression
389 evaluation. */
390 struct dwarf_expr_baton
391 {
392 struct frame_info *frame;
393 struct dwarf2_per_cu_data *per_cu;
394 CORE_ADDR obj_address;
395 };
396
397 /* Implement find_frame_base_location method for LOC_BLOCK functions using
398 DWARF expression for its DW_AT_frame_base. */
399
400 static void
401 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
402 const gdb_byte **start, size_t *length)
403 {
404 struct dwarf2_locexpr_baton *symbaton
405 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
406
407 *length = symbaton->size;
408 *start = symbaton->data;
409 }
410
411 /* Implement the struct symbol_block_ops::get_frame_base method for
412 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
413
414 static CORE_ADDR
415 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
416 {
417 struct gdbarch *gdbarch;
418 struct type *type;
419 struct dwarf2_locexpr_baton *dlbaton;
420 const gdb_byte *start;
421 size_t length;
422 struct value *result;
423
424 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
425 Thus, it's supposed to provide the find_frame_base_location method as
426 well. */
427 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
428
429 gdbarch = get_frame_arch (frame);
430 type = builtin_type (gdbarch)->builtin_data_ptr;
431 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
432
433 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
434 (framefunc, get_frame_pc (frame), &start, &length);
435 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
436 dlbaton->per_cu);
437
438 /* The DW_AT_frame_base attribute contains a location description which
439 computes the base address itself. However, the call to
440 dwarf2_evaluate_loc_desc returns a value representing a variable at
441 that address. The frame base address is thus this variable's
442 address. */
443 return value_address (result);
444 }
445
446 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
447 function uses DWARF expression for its DW_AT_frame_base. */
448
449 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
450 {
451 locexpr_find_frame_base_location,
452 locexpr_get_frame_base
453 };
454
455 /* Implement find_frame_base_location method for LOC_BLOCK functions using
456 DWARF location list for its DW_AT_frame_base. */
457
458 static void
459 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
460 const gdb_byte **start, size_t *length)
461 {
462 struct dwarf2_loclist_baton *symbaton
463 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
464
465 *start = dwarf2_find_location_expression (symbaton, length, pc);
466 }
467
468 /* Implement the struct symbol_block_ops::get_frame_base method for
469 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
470
471 static CORE_ADDR
472 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
473 {
474 struct gdbarch *gdbarch;
475 struct type *type;
476 struct dwarf2_loclist_baton *dlbaton;
477 const gdb_byte *start;
478 size_t length;
479 struct value *result;
480
481 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
482 Thus, it's supposed to provide the find_frame_base_location method as
483 well. */
484 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
485
486 gdbarch = get_frame_arch (frame);
487 type = builtin_type (gdbarch)->builtin_data_ptr;
488 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
489
490 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
491 (framefunc, get_frame_pc (frame), &start, &length);
492 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
493 dlbaton->per_cu);
494
495 /* The DW_AT_frame_base attribute contains a location description which
496 computes the base address itself. However, the call to
497 dwarf2_evaluate_loc_desc returns a value representing a variable at
498 that address. The frame base address is thus this variable's
499 address. */
500 return value_address (result);
501 }
502
503 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
504 function uses DWARF location list for its DW_AT_frame_base. */
505
506 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
507 {
508 loclist_find_frame_base_location,
509 loclist_get_frame_base
510 };
511
512 /* See dwarf2loc.h. */
513
514 void
515 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
516 const gdb_byte **start, size_t *length)
517 {
518 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
519 {
520 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
521
522 ops_block->find_frame_base_location (framefunc, pc, start, length);
523 }
524 else
525 *length = 0;
526
527 if (*length == 0)
528 error (_("Could not find the frame base for \"%s\"."),
529 SYMBOL_NATURAL_NAME (framefunc));
530 }
531
532 static CORE_ADDR
533 get_frame_pc_for_per_cu_dwarf_call (void *baton)
534 {
535 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
536
537 return ctx->get_frame_pc ();
538 }
539
540 static void
541 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
542 struct dwarf2_per_cu_data *per_cu)
543 {
544 struct dwarf2_locexpr_baton block;
545
546 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
547 get_frame_pc_for_per_cu_dwarf_call,
548 ctx);
549
550 /* DW_OP_call_ref is currently not supported. */
551 gdb_assert (block.per_cu == per_cu);
552
553 ctx->eval (block.data, block.size);
554 }
555
556 /* Given context CTX, section offset SECT_OFF, and compilation unit
557 data PER_CU, execute the "variable value" operation on the DIE
558 found at SECT_OFF. */
559
560 static struct value *
561 sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
562 struct dwarf2_per_cu_data *per_cu)
563 {
564 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
565
566 if (die_type == NULL)
567 error (_("Bad DW_OP_GNU_variable_value DIE."));
568
569 /* Note: Things still work when the following test is removed. This
570 test and error is here to conform to the proposed specification. */
571 if (TYPE_CODE (die_type) != TYPE_CODE_INT
572 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
573 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
574
575 struct type *type = lookup_pointer_type (die_type);
576 struct frame_info *frame = get_selected_frame (_("No frame selected."));
577 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
578 }
579
580 class dwarf_evaluate_loc_desc : public dwarf_expr_context
581 {
582 public:
583
584 struct frame_info *frame;
585 struct dwarf2_per_cu_data *per_cu;
586 CORE_ADDR obj_address;
587
588 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
589 the frame in BATON. */
590
591 CORE_ADDR get_frame_cfa () override
592 {
593 return dwarf2_frame_cfa (frame);
594 }
595
596 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
597 the frame in BATON. */
598
599 CORE_ADDR get_frame_pc () override
600 {
601 return get_frame_address_in_block (frame);
602 }
603
604 /* Using the objfile specified in BATON, find the address for the
605 current thread's thread-local storage with offset OFFSET. */
606 CORE_ADDR get_tls_address (CORE_ADDR offset) override
607 {
608 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
609
610 return target_translate_tls_address (objfile, offset);
611 }
612
613 /* Helper interface of per_cu_dwarf_call for
614 dwarf2_evaluate_loc_desc. */
615
616 void dwarf_call (cu_offset die_offset) override
617 {
618 per_cu_dwarf_call (this, die_offset, per_cu);
619 }
620
621 /* Helper interface of sect_variable_value for
622 dwarf2_evaluate_loc_desc. */
623
624 struct value *dwarf_variable_value (sect_offset sect_off) override
625 {
626 return sect_variable_value (this, sect_off, per_cu);
627 }
628
629 struct type *get_base_type (cu_offset die_offset, int size) override
630 {
631 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
632 if (result == NULL)
633 error (_("Could not find type for DW_OP_const_type"));
634 if (size != 0 && TYPE_LENGTH (result) != size)
635 error (_("DW_OP_const_type has different sizes for type and data"));
636 return result;
637 }
638
639 /* Callback function for dwarf2_evaluate_loc_desc.
640 Fetch the address indexed by DW_OP_addrx or DW_OP_GNU_addr_index. */
641
642 CORE_ADDR get_addr_index (unsigned int index) override
643 {
644 return dwarf2_read_addr_index (per_cu, index);
645 }
646
647 /* Callback function for get_object_address. Return the address of the VLA
648 object. */
649
650 CORE_ADDR get_object_address () override
651 {
652 if (obj_address == 0)
653 error (_("Location address is not set."));
654 return obj_address;
655 }
656
657 /* Execute DWARF block of call_site_parameter which matches KIND and
658 KIND_U. Choose DEREF_SIZE value of that parameter. Search
659 caller of this objects's frame.
660
661 The caller can be from a different CU - per_cu_dwarf_call
662 implementation can be more simple as it does not support cross-CU
663 DWARF executions. */
664
665 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
666 union call_site_parameter_u kind_u,
667 int deref_size) override
668 {
669 struct frame_info *caller_frame;
670 struct dwarf2_per_cu_data *caller_per_cu;
671 struct call_site_parameter *parameter;
672 const gdb_byte *data_src;
673 size_t size;
674
675 caller_frame = get_prev_frame (frame);
676
677 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
678 &caller_per_cu);
679 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
680 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
681
682 /* DEREF_SIZE size is not verified here. */
683 if (data_src == NULL)
684 throw_error (NO_ENTRY_VALUE_ERROR,
685 _("Cannot resolve DW_AT_call_data_value"));
686
687 scoped_restore save_frame = make_scoped_restore (&this->frame,
688 caller_frame);
689 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
690 caller_per_cu);
691 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
692 (CORE_ADDR) 0);
693
694 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
695 this->gdbarch
696 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
697 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
698 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
699 scoped_restore save_offset = make_scoped_restore (&this->offset);
700 this->offset = dwarf2_per_cu_text_offset (per_cu);
701
702 this->eval (data_src, size);
703 }
704
705 /* Using the frame specified in BATON, find the location expression
706 describing the frame base. Return a pointer to it in START and
707 its length in LENGTH. */
708 void get_frame_base (const gdb_byte **start, size_t * length) override
709 {
710 /* FIXME: cagney/2003-03-26: This code should be using
711 get_frame_base_address(), and then implement a dwarf2 specific
712 this_base method. */
713 struct symbol *framefunc;
714 const struct block *bl = get_frame_block (frame, NULL);
715
716 if (bl == NULL)
717 error (_("frame address is not available."));
718
719 /* Use block_linkage_function, which returns a real (not inlined)
720 function, instead of get_frame_function, which may return an
721 inlined function. */
722 framefunc = block_linkage_function (bl);
723
724 /* If we found a frame-relative symbol then it was certainly within
725 some function associated with a frame. If we can't find the frame,
726 something has gone wrong. */
727 gdb_assert (framefunc != NULL);
728
729 func_get_frame_base_dwarf_block (framefunc,
730 get_frame_address_in_block (frame),
731 start, length);
732 }
733
734 /* Read memory at ADDR (length LEN) into BUF. */
735
736 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
737 {
738 read_memory (addr, buf, len);
739 }
740
741 /* Using the frame specified in BATON, return the value of register
742 REGNUM, treated as a pointer. */
743 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
744 {
745 struct gdbarch *gdbarch = get_frame_arch (frame);
746 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
747
748 return address_from_register (regnum, frame);
749 }
750
751 /* Implement "get_reg_value" callback. */
752
753 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
754 {
755 struct gdbarch *gdbarch = get_frame_arch (frame);
756 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
757
758 return value_from_register (type, regnum, frame);
759 }
760 };
761
762 /* See dwarf2loc.h. */
763
764 unsigned int entry_values_debug = 0;
765
766 /* Helper to set entry_values_debug. */
767
768 static void
769 show_entry_values_debug (struct ui_file *file, int from_tty,
770 struct cmd_list_element *c, const char *value)
771 {
772 fprintf_filtered (file,
773 _("Entry values and tail call frames debugging is %s.\n"),
774 value);
775 }
776
777 /* Find DW_TAG_call_site's DW_AT_call_target address.
778 CALLER_FRAME (for registers) can be NULL if it is not known. This function
779 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
780
781 static CORE_ADDR
782 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
783 struct call_site *call_site,
784 struct frame_info *caller_frame)
785 {
786 switch (FIELD_LOC_KIND (call_site->target))
787 {
788 case FIELD_LOC_KIND_DWARF_BLOCK:
789 {
790 struct dwarf2_locexpr_baton *dwarf_block;
791 struct value *val;
792 struct type *caller_core_addr_type;
793 struct gdbarch *caller_arch;
794
795 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
796 if (dwarf_block == NULL)
797 {
798 struct bound_minimal_symbol msym;
799
800 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
801 throw_error (NO_ENTRY_VALUE_ERROR,
802 _("DW_AT_call_target is not specified at %s in %s"),
803 paddress (call_site_gdbarch, call_site->pc),
804 (msym.minsym == NULL ? "???"
805 : MSYMBOL_PRINT_NAME (msym.minsym)));
806
807 }
808 if (caller_frame == NULL)
809 {
810 struct bound_minimal_symbol msym;
811
812 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
813 throw_error (NO_ENTRY_VALUE_ERROR,
814 _("DW_AT_call_target DWARF block resolving "
815 "requires known frame which is currently not "
816 "available at %s in %s"),
817 paddress (call_site_gdbarch, call_site->pc),
818 (msym.minsym == NULL ? "???"
819 : MSYMBOL_PRINT_NAME (msym.minsym)));
820
821 }
822 caller_arch = get_frame_arch (caller_frame);
823 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
824 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
825 dwarf_block->data, dwarf_block->size,
826 dwarf_block->per_cu);
827 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
828 if (VALUE_LVAL (val) == lval_memory)
829 return value_address (val);
830 else
831 return value_as_address (val);
832 }
833
834 case FIELD_LOC_KIND_PHYSNAME:
835 {
836 const char *physname;
837 struct bound_minimal_symbol msym;
838
839 physname = FIELD_STATIC_PHYSNAME (call_site->target);
840
841 /* Handle both the mangled and demangled PHYSNAME. */
842 msym = lookup_minimal_symbol (physname, NULL, NULL);
843 if (msym.minsym == NULL)
844 {
845 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
846 throw_error (NO_ENTRY_VALUE_ERROR,
847 _("Cannot find function \"%s\" for a call site target "
848 "at %s in %s"),
849 physname, paddress (call_site_gdbarch, call_site->pc),
850 (msym.minsym == NULL ? "???"
851 : MSYMBOL_PRINT_NAME (msym.minsym)));
852
853 }
854 return BMSYMBOL_VALUE_ADDRESS (msym);
855 }
856
857 case FIELD_LOC_KIND_PHYSADDR:
858 return FIELD_STATIC_PHYSADDR (call_site->target);
859
860 default:
861 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
862 }
863 }
864
865 /* Convert function entry point exact address ADDR to the function which is
866 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
867 NO_ENTRY_VALUE_ERROR otherwise. */
868
869 static struct symbol *
870 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
871 {
872 struct symbol *sym = find_pc_function (addr);
873 struct type *type;
874
875 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
876 throw_error (NO_ENTRY_VALUE_ERROR,
877 _("DW_TAG_call_site resolving failed to find function "
878 "name for address %s"),
879 paddress (gdbarch, addr));
880
881 type = SYMBOL_TYPE (sym);
882 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
883 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
884
885 return sym;
886 }
887
888 /* Verify function with entry point exact address ADDR can never call itself
889 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
890 can call itself via tail calls.
891
892 If a funtion can tail call itself its entry value based parameters are
893 unreliable. There is no verification whether the value of some/all
894 parameters is unchanged through the self tail call, we expect if there is
895 a self tail call all the parameters can be modified. */
896
897 static void
898 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
899 {
900 CORE_ADDR addr;
901
902 /* The verification is completely unordered. Track here function addresses
903 which still need to be iterated. */
904 std::vector<CORE_ADDR> todo;
905
906 /* Track here CORE_ADDRs which were already visited. */
907 std::unordered_set<CORE_ADDR> addr_hash;
908
909 todo.push_back (verify_addr);
910 while (!todo.empty ())
911 {
912 struct symbol *func_sym;
913 struct call_site *call_site;
914
915 addr = todo.back ();
916 todo.pop_back ();
917
918 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
919
920 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
921 call_site; call_site = call_site->tail_call_next)
922 {
923 CORE_ADDR target_addr;
924
925 /* CALLER_FRAME with registers is not available for tail-call jumped
926 frames. */
927 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
928
929 if (target_addr == verify_addr)
930 {
931 struct bound_minimal_symbol msym;
932
933 msym = lookup_minimal_symbol_by_pc (verify_addr);
934 throw_error (NO_ENTRY_VALUE_ERROR,
935 _("DW_OP_entry_value resolving has found "
936 "function \"%s\" at %s can call itself via tail "
937 "calls"),
938 (msym.minsym == NULL ? "???"
939 : MSYMBOL_PRINT_NAME (msym.minsym)),
940 paddress (gdbarch, verify_addr));
941 }
942
943 if (addr_hash.insert (target_addr).second)
944 todo.push_back (target_addr);
945 }
946 }
947 }
948
949 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
950 ENTRY_VALUES_DEBUG. */
951
952 static void
953 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
954 {
955 CORE_ADDR addr = call_site->pc;
956 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
957
958 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
959 (msym.minsym == NULL ? "???"
960 : MSYMBOL_PRINT_NAME (msym.minsym)));
961
962 }
963
964 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
965 only top callers and bottom callees which are present in both. GDBARCH is
966 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
967 no remaining possibilities to provide unambiguous non-trivial result.
968 RESULTP should point to NULL on the first (initialization) call. Caller is
969 responsible for xfree of any RESULTP data. */
970
971 static void
972 chain_candidate (struct gdbarch *gdbarch,
973 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
974 std::vector<struct call_site *> *chain)
975 {
976 long length = chain->size ();
977 int callers, callees, idx;
978
979 if (*resultp == NULL)
980 {
981 /* Create the initial chain containing all the passed PCs. */
982
983 struct call_site_chain *result
984 = ((struct call_site_chain *)
985 xmalloc (sizeof (*result)
986 + sizeof (*result->call_site) * (length - 1)));
987 result->length = length;
988 result->callers = result->callees = length;
989 if (!chain->empty ())
990 memcpy (result->call_site, chain->data (),
991 sizeof (*result->call_site) * length);
992 resultp->reset (result);
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
997 for (idx = 0; idx < length; idx++)
998 tailcall_dump (gdbarch, result->call_site[idx]);
999 fputc_unfiltered ('\n', gdb_stdlog);
1000 }
1001
1002 return;
1003 }
1004
1005 if (entry_values_debug)
1006 {
1007 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1008 for (idx = 0; idx < length; idx++)
1009 tailcall_dump (gdbarch, chain->at (idx));
1010 fputc_unfiltered ('\n', gdb_stdlog);
1011 }
1012
1013 /* Intersect callers. */
1014
1015 callers = std::min ((long) (*resultp)->callers, length);
1016 for (idx = 0; idx < callers; idx++)
1017 if ((*resultp)->call_site[idx] != chain->at (idx))
1018 {
1019 (*resultp)->callers = idx;
1020 break;
1021 }
1022
1023 /* Intersect callees. */
1024
1025 callees = std::min ((long) (*resultp)->callees, length);
1026 for (idx = 0; idx < callees; idx++)
1027 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1028 != chain->at (length - 1 - idx))
1029 {
1030 (*resultp)->callees = idx;
1031 break;
1032 }
1033
1034 if (entry_values_debug)
1035 {
1036 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
1037 for (idx = 0; idx < (*resultp)->callers; idx++)
1038 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1039 fputs_unfiltered (" |", gdb_stdlog);
1040 for (idx = 0; idx < (*resultp)->callees; idx++)
1041 tailcall_dump (gdbarch,
1042 (*resultp)->call_site[(*resultp)->length
1043 - (*resultp)->callees + idx]);
1044 fputc_unfiltered ('\n', gdb_stdlog);
1045 }
1046
1047 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1048 {
1049 /* There are no common callers or callees. It could be also a direct
1050 call (which has length 0) with ambiguous possibility of an indirect
1051 call - CALLERS == CALLEES == 0 is valid during the first allocation
1052 but any subsequence processing of such entry means ambiguity. */
1053 resultp->reset (NULL);
1054 return;
1055 }
1056
1057 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1058 PC again. In such case there must be two different code paths to reach
1059 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1060 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1061 }
1062
1063 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1064 assumed frames between them use GDBARCH. Use depth first search so we can
1065 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1066 would have needless GDB stack overhead. Caller is responsible for xfree of
1067 the returned result. Any unreliability results in thrown
1068 NO_ENTRY_VALUE_ERROR. */
1069
1070 static struct call_site_chain *
1071 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1072 CORE_ADDR callee_pc)
1073 {
1074 CORE_ADDR save_callee_pc = callee_pc;
1075 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1076 struct call_site *call_site;
1077
1078 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1079 call_site nor any possible call_site at CALLEE_PC's function is there.
1080 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1081 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1082 std::vector<struct call_site *> chain;
1083
1084 /* We are not interested in the specific PC inside the callee function. */
1085 callee_pc = get_pc_function_start (callee_pc);
1086 if (callee_pc == 0)
1087 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1088 paddress (gdbarch, save_callee_pc));
1089
1090 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1091 std::unordered_set<CORE_ADDR> addr_hash;
1092
1093 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1094 at the target's function. All the possible tail call sites in the
1095 target's function will get iterated as already pushed into CHAIN via their
1096 TAIL_CALL_NEXT. */
1097 call_site = call_site_for_pc (gdbarch, caller_pc);
1098
1099 while (call_site)
1100 {
1101 CORE_ADDR target_func_addr;
1102 struct call_site *target_call_site;
1103
1104 /* CALLER_FRAME with registers is not available for tail-call jumped
1105 frames. */
1106 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1107
1108 if (target_func_addr == callee_pc)
1109 {
1110 chain_candidate (gdbarch, &retval, &chain);
1111 if (retval == NULL)
1112 break;
1113
1114 /* There is no way to reach CALLEE_PC again as we would prevent
1115 entering it twice as being already marked in ADDR_HASH. */
1116 target_call_site = NULL;
1117 }
1118 else
1119 {
1120 struct symbol *target_func;
1121
1122 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1123 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1124 }
1125
1126 do
1127 {
1128 /* Attempt to visit TARGET_CALL_SITE. */
1129
1130 if (target_call_site)
1131 {
1132 if (addr_hash.insert (target_call_site->pc).second)
1133 {
1134 /* Successfully entered TARGET_CALL_SITE. */
1135
1136 chain.push_back (target_call_site);
1137 break;
1138 }
1139 }
1140
1141 /* Backtrack (without revisiting the originating call_site). Try the
1142 callers's sibling; if there isn't any try the callers's callers's
1143 sibling etc. */
1144
1145 target_call_site = NULL;
1146 while (!chain.empty ())
1147 {
1148 call_site = chain.back ();
1149 chain.pop_back ();
1150
1151 size_t removed = addr_hash.erase (call_site->pc);
1152 gdb_assert (removed == 1);
1153
1154 target_call_site = call_site->tail_call_next;
1155 if (target_call_site)
1156 break;
1157 }
1158 }
1159 while (target_call_site);
1160
1161 if (chain.empty ())
1162 call_site = NULL;
1163 else
1164 call_site = chain.back ();
1165 }
1166
1167 if (retval == NULL)
1168 {
1169 struct bound_minimal_symbol msym_caller, msym_callee;
1170
1171 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1172 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1173 throw_error (NO_ENTRY_VALUE_ERROR,
1174 _("There are no unambiguously determinable intermediate "
1175 "callers or callees between caller function \"%s\" at %s "
1176 "and callee function \"%s\" at %s"),
1177 (msym_caller.minsym == NULL
1178 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1179 paddress (gdbarch, caller_pc),
1180 (msym_callee.minsym == NULL
1181 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1182 paddress (gdbarch, callee_pc));
1183 }
1184
1185 return retval.release ();
1186 }
1187
1188 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1189 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1190 constructed return NULL. Caller is responsible for xfree of the returned
1191 result. */
1192
1193 struct call_site_chain *
1194 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1195 CORE_ADDR callee_pc)
1196 {
1197 struct call_site_chain *retval = NULL;
1198
1199 try
1200 {
1201 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1202 }
1203 catch (const gdb_exception_error &e)
1204 {
1205 if (e.error == NO_ENTRY_VALUE_ERROR)
1206 {
1207 if (entry_values_debug)
1208 exception_print (gdb_stdout, e);
1209
1210 return NULL;
1211 }
1212 else
1213 throw;
1214 }
1215
1216 return retval;
1217 }
1218
1219 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1220
1221 static int
1222 call_site_parameter_matches (struct call_site_parameter *parameter,
1223 enum call_site_parameter_kind kind,
1224 union call_site_parameter_u kind_u)
1225 {
1226 if (kind == parameter->kind)
1227 switch (kind)
1228 {
1229 case CALL_SITE_PARAMETER_DWARF_REG:
1230 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1231 case CALL_SITE_PARAMETER_FB_OFFSET:
1232 return kind_u.fb_offset == parameter->u.fb_offset;
1233 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1234 return kind_u.param_cu_off == parameter->u.param_cu_off;
1235 }
1236 return 0;
1237 }
1238
1239 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1240 FRAME is for callee.
1241
1242 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1243 otherwise. */
1244
1245 static struct call_site_parameter *
1246 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1247 enum call_site_parameter_kind kind,
1248 union call_site_parameter_u kind_u,
1249 struct dwarf2_per_cu_data **per_cu_return)
1250 {
1251 CORE_ADDR func_addr, caller_pc;
1252 struct gdbarch *gdbarch;
1253 struct frame_info *caller_frame;
1254 struct call_site *call_site;
1255 int iparams;
1256 /* Initialize it just to avoid a GCC false warning. */
1257 struct call_site_parameter *parameter = NULL;
1258 CORE_ADDR target_addr;
1259
1260 while (get_frame_type (frame) == INLINE_FRAME)
1261 {
1262 frame = get_prev_frame (frame);
1263 gdb_assert (frame != NULL);
1264 }
1265
1266 func_addr = get_frame_func (frame);
1267 gdbarch = get_frame_arch (frame);
1268 caller_frame = get_prev_frame (frame);
1269 if (gdbarch != frame_unwind_arch (frame))
1270 {
1271 struct bound_minimal_symbol msym
1272 = lookup_minimal_symbol_by_pc (func_addr);
1273 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1274
1275 throw_error (NO_ENTRY_VALUE_ERROR,
1276 _("DW_OP_entry_value resolving callee gdbarch %s "
1277 "(of %s (%s)) does not match caller gdbarch %s"),
1278 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1279 paddress (gdbarch, func_addr),
1280 (msym.minsym == NULL ? "???"
1281 : MSYMBOL_PRINT_NAME (msym.minsym)),
1282 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1283 }
1284
1285 if (caller_frame == NULL)
1286 {
1287 struct bound_minimal_symbol msym
1288 = lookup_minimal_symbol_by_pc (func_addr);
1289
1290 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1291 "requires caller of %s (%s)"),
1292 paddress (gdbarch, func_addr),
1293 (msym.minsym == NULL ? "???"
1294 : MSYMBOL_PRINT_NAME (msym.minsym)));
1295 }
1296 caller_pc = get_frame_pc (caller_frame);
1297 call_site = call_site_for_pc (gdbarch, caller_pc);
1298
1299 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1300 if (target_addr != func_addr)
1301 {
1302 struct minimal_symbol *target_msym, *func_msym;
1303
1304 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1305 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1306 throw_error (NO_ENTRY_VALUE_ERROR,
1307 _("DW_OP_entry_value resolving expects callee %s at %s "
1308 "but the called frame is for %s at %s"),
1309 (target_msym == NULL ? "???"
1310 : MSYMBOL_PRINT_NAME (target_msym)),
1311 paddress (gdbarch, target_addr),
1312 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1313 paddress (gdbarch, func_addr));
1314 }
1315
1316 /* No entry value based parameters would be reliable if this function can
1317 call itself via tail calls. */
1318 func_verify_no_selftailcall (gdbarch, func_addr);
1319
1320 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1321 {
1322 parameter = &call_site->parameter[iparams];
1323 if (call_site_parameter_matches (parameter, kind, kind_u))
1324 break;
1325 }
1326 if (iparams == call_site->parameter_count)
1327 {
1328 struct minimal_symbol *msym
1329 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1330
1331 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1332 determine its value. */
1333 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1334 "at DW_TAG_call_site %s at %s"),
1335 paddress (gdbarch, caller_pc),
1336 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1337 }
1338
1339 *per_cu_return = call_site->per_cu;
1340 return parameter;
1341 }
1342
1343 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1344 the normal DW_AT_call_value block. Otherwise return the
1345 DW_AT_call_data_value (dereferenced) block.
1346
1347 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1348 struct value.
1349
1350 Function always returns non-NULL, non-optimized out value. It throws
1351 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1352
1353 static struct value *
1354 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1355 CORE_ADDR deref_size, struct type *type,
1356 struct frame_info *caller_frame,
1357 struct dwarf2_per_cu_data *per_cu)
1358 {
1359 const gdb_byte *data_src;
1360 gdb_byte *data;
1361 size_t size;
1362
1363 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1364 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1365
1366 /* DEREF_SIZE size is not verified here. */
1367 if (data_src == NULL)
1368 throw_error (NO_ENTRY_VALUE_ERROR,
1369 _("Cannot resolve DW_AT_call_data_value"));
1370
1371 /* DW_AT_call_value is a DWARF expression, not a DWARF
1372 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1373 DWARF block. */
1374 data = (gdb_byte *) alloca (size + 1);
1375 memcpy (data, data_src, size);
1376 data[size] = DW_OP_stack_value;
1377
1378 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1379 }
1380
1381 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1382 the indirect method on it, that is use its stored target value, the sole
1383 purpose of entry_data_value_funcs.. */
1384
1385 static struct value *
1386 entry_data_value_coerce_ref (const struct value *value)
1387 {
1388 struct type *checked_type = check_typedef (value_type (value));
1389 struct value *target_val;
1390
1391 if (!TYPE_IS_REFERENCE (checked_type))
1392 return NULL;
1393
1394 target_val = (struct value *) value_computed_closure (value);
1395 value_incref (target_val);
1396 return target_val;
1397 }
1398
1399 /* Implement copy_closure. */
1400
1401 static void *
1402 entry_data_value_copy_closure (const struct value *v)
1403 {
1404 struct value *target_val = (struct value *) value_computed_closure (v);
1405
1406 value_incref (target_val);
1407 return target_val;
1408 }
1409
1410 /* Implement free_closure. */
1411
1412 static void
1413 entry_data_value_free_closure (struct value *v)
1414 {
1415 struct value *target_val = (struct value *) value_computed_closure (v);
1416
1417 value_decref (target_val);
1418 }
1419
1420 /* Vector for methods for an entry value reference where the referenced value
1421 is stored in the caller. On the first dereference use
1422 DW_AT_call_data_value in the caller. */
1423
1424 static const struct lval_funcs entry_data_value_funcs =
1425 {
1426 NULL, /* read */
1427 NULL, /* write */
1428 NULL, /* indirect */
1429 entry_data_value_coerce_ref,
1430 NULL, /* check_synthetic_pointer */
1431 entry_data_value_copy_closure,
1432 entry_data_value_free_closure
1433 };
1434
1435 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1436 are used to match DW_AT_location at the caller's
1437 DW_TAG_call_site_parameter.
1438
1439 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1440 cannot resolve the parameter for any reason. */
1441
1442 static struct value *
1443 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1444 enum call_site_parameter_kind kind,
1445 union call_site_parameter_u kind_u)
1446 {
1447 struct type *checked_type = check_typedef (type);
1448 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1449 struct frame_info *caller_frame = get_prev_frame (frame);
1450 struct value *outer_val, *target_val, *val;
1451 struct call_site_parameter *parameter;
1452 struct dwarf2_per_cu_data *caller_per_cu;
1453
1454 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1455 &caller_per_cu);
1456
1457 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1458 type, caller_frame,
1459 caller_per_cu);
1460
1461 /* Check if DW_AT_call_data_value cannot be used. If it should be
1462 used and it is not available do not fall back to OUTER_VAL - dereferencing
1463 TYPE_CODE_REF with non-entry data value would give current value - not the
1464 entry value. */
1465
1466 if (!TYPE_IS_REFERENCE (checked_type)
1467 || TYPE_TARGET_TYPE (checked_type) == NULL)
1468 return outer_val;
1469
1470 target_val = dwarf_entry_parameter_to_value (parameter,
1471 TYPE_LENGTH (target_type),
1472 target_type, caller_frame,
1473 caller_per_cu);
1474
1475 val = allocate_computed_value (type, &entry_data_value_funcs,
1476 release_value (target_val).release ());
1477
1478 /* Copy the referencing pointer to the new computed value. */
1479 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1480 TYPE_LENGTH (checked_type));
1481 set_value_lazy (val, 0);
1482
1483 return val;
1484 }
1485
1486 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1487 SIZE are DWARF block used to match DW_AT_location at the caller's
1488 DW_TAG_call_site_parameter.
1489
1490 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1491 cannot resolve the parameter for any reason. */
1492
1493 static struct value *
1494 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1495 const gdb_byte *block, size_t block_len)
1496 {
1497 union call_site_parameter_u kind_u;
1498
1499 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1500 if (kind_u.dwarf_reg != -1)
1501 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1502 kind_u);
1503
1504 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1505 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1506 kind_u);
1507
1508 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1509 suppressed during normal operation. The expression can be arbitrary if
1510 there is no caller-callee entry value binding expected. */
1511 throw_error (NO_ENTRY_VALUE_ERROR,
1512 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1513 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1514 }
1515
1516 struct piece_closure
1517 {
1518 /* Reference count. */
1519 int refc = 0;
1520
1521 /* The CU from which this closure's expression came. */
1522 struct dwarf2_per_cu_data *per_cu = NULL;
1523
1524 /* The pieces describing this variable. */
1525 std::vector<dwarf_expr_piece> pieces;
1526
1527 /* Frame ID of frame to which a register value is relative, used
1528 only by DWARF_VALUE_REGISTER. */
1529 struct frame_id frame_id;
1530 };
1531
1532 /* Allocate a closure for a value formed from separately-described
1533 PIECES. */
1534
1535 static struct piece_closure *
1536 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1537 std::vector<dwarf_expr_piece> &&pieces,
1538 struct frame_info *frame)
1539 {
1540 struct piece_closure *c = new piece_closure;
1541
1542 c->refc = 1;
1543 c->per_cu = per_cu;
1544 c->pieces = std::move (pieces);
1545 if (frame == NULL)
1546 c->frame_id = null_frame_id;
1547 else
1548 c->frame_id = get_frame_id (frame);
1549
1550 for (dwarf_expr_piece &piece : c->pieces)
1551 if (piece.location == DWARF_VALUE_STACK)
1552 value_incref (piece.v.value);
1553
1554 return c;
1555 }
1556
1557 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1558 bits whose first bit is located at bit offset START. */
1559
1560 static size_t
1561 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1562 {
1563 return (start % 8 + n_bits + 7) / 8;
1564 }
1565
1566 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1567 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1568 operate in "read mode": fetch the contents of the (lazy) value V by
1569 composing it from its pieces. */
1570
1571 static void
1572 rw_pieced_value (struct value *v, struct value *from)
1573 {
1574 int i;
1575 LONGEST offset = 0, max_offset;
1576 ULONGEST bits_to_skip;
1577 gdb_byte *v_contents;
1578 const gdb_byte *from_contents;
1579 struct piece_closure *c
1580 = (struct piece_closure *) value_computed_closure (v);
1581 gdb::byte_vector buffer;
1582 int bits_big_endian
1583 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1584
1585 if (from != NULL)
1586 {
1587 from_contents = value_contents (from);
1588 v_contents = NULL;
1589 }
1590 else
1591 {
1592 if (value_type (v) != value_enclosing_type (v))
1593 internal_error (__FILE__, __LINE__,
1594 _("Should not be able to create a lazy value with "
1595 "an enclosing type"));
1596 v_contents = value_contents_raw (v);
1597 from_contents = NULL;
1598 }
1599
1600 bits_to_skip = 8 * value_offset (v);
1601 if (value_bitsize (v))
1602 {
1603 bits_to_skip += (8 * value_offset (value_parent (v))
1604 + value_bitpos (v));
1605 if (from != NULL
1606 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1607 == BFD_ENDIAN_BIG))
1608 {
1609 /* Use the least significant bits of FROM. */
1610 max_offset = 8 * TYPE_LENGTH (value_type (from));
1611 offset = max_offset - value_bitsize (v);
1612 }
1613 else
1614 max_offset = value_bitsize (v);
1615 }
1616 else
1617 max_offset = 8 * TYPE_LENGTH (value_type (v));
1618
1619 /* Advance to the first non-skipped piece. */
1620 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1621 bits_to_skip -= c->pieces[i].size;
1622
1623 for (; i < c->pieces.size () && offset < max_offset; i++)
1624 {
1625 struct dwarf_expr_piece *p = &c->pieces[i];
1626 size_t this_size_bits, this_size;
1627
1628 this_size_bits = p->size - bits_to_skip;
1629 if (this_size_bits > max_offset - offset)
1630 this_size_bits = max_offset - offset;
1631
1632 switch (p->location)
1633 {
1634 case DWARF_VALUE_REGISTER:
1635 {
1636 struct frame_info *frame = frame_find_by_id (c->frame_id);
1637 struct gdbarch *arch = get_frame_arch (frame);
1638 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1639 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1640 int optim, unavail;
1641
1642 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1643 && p->offset + p->size < reg_bits)
1644 {
1645 /* Big-endian, and we want less than full size. */
1646 bits_to_skip += reg_bits - (p->offset + p->size);
1647 }
1648 else
1649 bits_to_skip += p->offset;
1650
1651 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1652 buffer.resize (this_size);
1653
1654 if (from == NULL)
1655 {
1656 /* Read mode. */
1657 if (!get_frame_register_bytes (frame, gdb_regnum,
1658 bits_to_skip / 8,
1659 this_size, buffer.data (),
1660 &optim, &unavail))
1661 {
1662 if (optim)
1663 mark_value_bits_optimized_out (v, offset,
1664 this_size_bits);
1665 if (unavail)
1666 mark_value_bits_unavailable (v, offset,
1667 this_size_bits);
1668 break;
1669 }
1670
1671 copy_bitwise (v_contents, offset,
1672 buffer.data (), bits_to_skip % 8,
1673 this_size_bits, bits_big_endian);
1674 }
1675 else
1676 {
1677 /* Write mode. */
1678 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1679 {
1680 /* Data is copied non-byte-aligned into the register.
1681 Need some bits from original register value. */
1682 get_frame_register_bytes (frame, gdb_regnum,
1683 bits_to_skip / 8,
1684 this_size, buffer.data (),
1685 &optim, &unavail);
1686 if (optim)
1687 throw_error (OPTIMIZED_OUT_ERROR,
1688 _("Can't do read-modify-write to "
1689 "update bitfield; containing word "
1690 "has been optimized out"));
1691 if (unavail)
1692 throw_error (NOT_AVAILABLE_ERROR,
1693 _("Can't do read-modify-write to "
1694 "update bitfield; containing word "
1695 "is unavailable"));
1696 }
1697
1698 copy_bitwise (buffer.data (), bits_to_skip % 8,
1699 from_contents, offset,
1700 this_size_bits, bits_big_endian);
1701 put_frame_register_bytes (frame, gdb_regnum,
1702 bits_to_skip / 8,
1703 this_size, buffer.data ());
1704 }
1705 }
1706 break;
1707
1708 case DWARF_VALUE_MEMORY:
1709 {
1710 bits_to_skip += p->offset;
1711
1712 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1713
1714 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1715 && offset % 8 == 0)
1716 {
1717 /* Everything is byte-aligned; no buffer needed. */
1718 if (from != NULL)
1719 write_memory_with_notification (start_addr,
1720 (from_contents
1721 + offset / 8),
1722 this_size_bits / 8);
1723 else
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + bits_to_skip / 8,
1727 v_contents + offset / 8,
1728 this_size_bits / 8);
1729 break;
1730 }
1731
1732 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1733 buffer.resize (this_size);
1734
1735 if (from == NULL)
1736 {
1737 /* Read mode. */
1738 read_value_memory (v, offset,
1739 p->v.mem.in_stack_memory,
1740 p->v.mem.addr + bits_to_skip / 8,
1741 buffer.data (), this_size);
1742 copy_bitwise (v_contents, offset,
1743 buffer.data (), bits_to_skip % 8,
1744 this_size_bits, bits_big_endian);
1745 }
1746 else
1747 {
1748 /* Write mode. */
1749 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1750 {
1751 if (this_size <= 8)
1752 {
1753 /* Perform a single read for small sizes. */
1754 read_memory (start_addr, buffer.data (),
1755 this_size);
1756 }
1757 else
1758 {
1759 /* Only the first and last bytes can possibly have
1760 any bits reused. */
1761 read_memory (start_addr, buffer.data (), 1);
1762 read_memory (start_addr + this_size - 1,
1763 &buffer[this_size - 1], 1);
1764 }
1765 }
1766
1767 copy_bitwise (buffer.data (), bits_to_skip % 8,
1768 from_contents, offset,
1769 this_size_bits, bits_big_endian);
1770 write_memory_with_notification (start_addr,
1771 buffer.data (),
1772 this_size);
1773 }
1774 }
1775 break;
1776
1777 case DWARF_VALUE_STACK:
1778 {
1779 if (from != NULL)
1780 {
1781 mark_value_bits_optimized_out (v, offset, this_size_bits);
1782 break;
1783 }
1784
1785 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1786 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1787 ULONGEST stack_value_size_bits
1788 = 8 * TYPE_LENGTH (value_type (p->v.value));
1789
1790 /* Use zeroes if piece reaches beyond stack value. */
1791 if (p->offset + p->size > stack_value_size_bits)
1792 break;
1793
1794 /* Piece is anchored at least significant bit end. */
1795 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1796 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1797 else
1798 bits_to_skip += p->offset;
1799
1800 copy_bitwise (v_contents, offset,
1801 value_contents_all (p->v.value),
1802 bits_to_skip,
1803 this_size_bits, bits_big_endian);
1804 }
1805 break;
1806
1807 case DWARF_VALUE_LITERAL:
1808 {
1809 if (from != NULL)
1810 {
1811 mark_value_bits_optimized_out (v, offset, this_size_bits);
1812 break;
1813 }
1814
1815 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1816 size_t n = this_size_bits;
1817
1818 /* Cut off at the end of the implicit value. */
1819 bits_to_skip += p->offset;
1820 if (bits_to_skip >= literal_size_bits)
1821 break;
1822 if (n > literal_size_bits - bits_to_skip)
1823 n = literal_size_bits - bits_to_skip;
1824
1825 copy_bitwise (v_contents, offset,
1826 p->v.literal.data, bits_to_skip,
1827 n, bits_big_endian);
1828 }
1829 break;
1830
1831 case DWARF_VALUE_IMPLICIT_POINTER:
1832 if (from != NULL)
1833 {
1834 mark_value_bits_optimized_out (v, offset, this_size_bits);
1835 break;
1836 }
1837
1838 /* These bits show up as zeros -- but do not cause the value to
1839 be considered optimized-out. */
1840 break;
1841
1842 case DWARF_VALUE_OPTIMIZED_OUT:
1843 mark_value_bits_optimized_out (v, offset, this_size_bits);
1844 break;
1845
1846 default:
1847 internal_error (__FILE__, __LINE__, _("invalid location type"));
1848 }
1849
1850 offset += this_size_bits;
1851 bits_to_skip = 0;
1852 }
1853 }
1854
1855
1856 static void
1857 read_pieced_value (struct value *v)
1858 {
1859 rw_pieced_value (v, NULL);
1860 }
1861
1862 static void
1863 write_pieced_value (struct value *to, struct value *from)
1864 {
1865 rw_pieced_value (to, from);
1866 }
1867
1868 /* An implementation of an lval_funcs method to see whether a value is
1869 a synthetic pointer. */
1870
1871 static int
1872 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
1873 int bit_length)
1874 {
1875 struct piece_closure *c
1876 = (struct piece_closure *) value_computed_closure (value);
1877 int i;
1878
1879 bit_offset += 8 * value_offset (value);
1880 if (value_bitsize (value))
1881 bit_offset += value_bitpos (value);
1882
1883 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
1884 {
1885 struct dwarf_expr_piece *p = &c->pieces[i];
1886 size_t this_size_bits = p->size;
1887
1888 if (bit_offset > 0)
1889 {
1890 if (bit_offset >= this_size_bits)
1891 {
1892 bit_offset -= this_size_bits;
1893 continue;
1894 }
1895
1896 bit_length -= this_size_bits - bit_offset;
1897 bit_offset = 0;
1898 }
1899 else
1900 bit_length -= this_size_bits;
1901
1902 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1903 return 0;
1904 }
1905
1906 return 1;
1907 }
1908
1909 /* A wrapper function for get_frame_address_in_block. */
1910
1911 static CORE_ADDR
1912 get_frame_address_in_block_wrapper (void *baton)
1913 {
1914 return get_frame_address_in_block ((struct frame_info *) baton);
1915 }
1916
1917 /* Fetch a DW_AT_const_value through a synthetic pointer. */
1918
1919 static struct value *
1920 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1921 struct dwarf2_per_cu_data *per_cu,
1922 struct type *type)
1923 {
1924 struct value *result = NULL;
1925 const gdb_byte *bytes;
1926 LONGEST len;
1927
1928 auto_obstack temp_obstack;
1929 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1930
1931 if (bytes != NULL)
1932 {
1933 if (byte_offset >= 0
1934 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1935 {
1936 bytes += byte_offset;
1937 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1938 }
1939 else
1940 invalid_synthetic_pointer ();
1941 }
1942 else
1943 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1944
1945 return result;
1946 }
1947
1948 /* Fetch the value pointed to by a synthetic pointer. */
1949
1950 static struct value *
1951 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1952 struct dwarf2_per_cu_data *per_cu,
1953 struct frame_info *frame, struct type *type,
1954 bool resolve_abstract_p)
1955 {
1956 /* Fetch the location expression of the DIE we're pointing to. */
1957 struct dwarf2_locexpr_baton baton
1958 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
1959 get_frame_address_in_block_wrapper, frame,
1960 resolve_abstract_p);
1961
1962 /* Get type of pointed-to DIE. */
1963 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1964 if (orig_type == NULL)
1965 invalid_synthetic_pointer ();
1966
1967 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
1968 resulting value. Otherwise, it may have a DW_AT_const_value instead,
1969 or it may've been optimized out. */
1970 if (baton.data != NULL)
1971 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
1972 baton.size, baton.per_cu,
1973 TYPE_TARGET_TYPE (type),
1974 byte_offset);
1975 else
1976 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
1977 type);
1978 }
1979
1980 /* An implementation of an lval_funcs method to indirect through a
1981 pointer. This handles the synthetic pointer case when needed. */
1982
1983 static struct value *
1984 indirect_pieced_value (struct value *value)
1985 {
1986 struct piece_closure *c
1987 = (struct piece_closure *) value_computed_closure (value);
1988 struct type *type;
1989 struct frame_info *frame;
1990 int i, bit_length;
1991 LONGEST bit_offset;
1992 struct dwarf_expr_piece *piece = NULL;
1993 LONGEST byte_offset;
1994 enum bfd_endian byte_order;
1995
1996 type = check_typedef (value_type (value));
1997 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1998 return NULL;
1999
2000 bit_length = 8 * TYPE_LENGTH (type);
2001 bit_offset = 8 * value_offset (value);
2002 if (value_bitsize (value))
2003 bit_offset += value_bitpos (value);
2004
2005 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2006 {
2007 struct dwarf_expr_piece *p = &c->pieces[i];
2008 size_t this_size_bits = p->size;
2009
2010 if (bit_offset > 0)
2011 {
2012 if (bit_offset >= this_size_bits)
2013 {
2014 bit_offset -= this_size_bits;
2015 continue;
2016 }
2017
2018 bit_length -= this_size_bits - bit_offset;
2019 bit_offset = 0;
2020 }
2021 else
2022 bit_length -= this_size_bits;
2023
2024 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2025 return NULL;
2026
2027 if (bit_length != 0)
2028 error (_("Invalid use of DW_OP_implicit_pointer"));
2029
2030 piece = p;
2031 break;
2032 }
2033
2034 gdb_assert (piece != NULL);
2035 frame = get_selected_frame (_("No frame selected."));
2036
2037 /* This is an offset requested by GDB, such as value subscripts.
2038 However, due to how synthetic pointers are implemented, this is
2039 always presented to us as a pointer type. This means we have to
2040 sign-extend it manually as appropriate. Use raw
2041 extract_signed_integer directly rather than value_as_address and
2042 sign extend afterwards on architectures that would need it
2043 (mostly everywhere except MIPS, which has signed addresses) as
2044 the later would go through gdbarch_pointer_to_address and thus
2045 return a CORE_ADDR with high bits set on architectures that
2046 encode address spaces and other things in CORE_ADDR. */
2047 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2048 byte_offset = extract_signed_integer (value_contents (value),
2049 TYPE_LENGTH (type), byte_order);
2050 byte_offset += piece->v.ptr.offset;
2051
2052 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2053 byte_offset, c->per_cu,
2054 frame, type);
2055 }
2056
2057 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2058 references. */
2059
2060 static struct value *
2061 coerce_pieced_ref (const struct value *value)
2062 {
2063 struct type *type = check_typedef (value_type (value));
2064
2065 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2066 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2067 {
2068 const struct piece_closure *closure
2069 = (struct piece_closure *) value_computed_closure (value);
2070 struct frame_info *frame
2071 = get_selected_frame (_("No frame selected."));
2072
2073 /* gdb represents synthetic pointers as pieced values with a single
2074 piece. */
2075 gdb_assert (closure != NULL);
2076 gdb_assert (closure->pieces.size () == 1);
2077
2078 return indirect_synthetic_pointer
2079 (closure->pieces[0].v.ptr.die_sect_off,
2080 closure->pieces[0].v.ptr.offset,
2081 closure->per_cu, frame, type);
2082 }
2083 else
2084 {
2085 /* Else: not a synthetic reference; do nothing. */
2086 return NULL;
2087 }
2088 }
2089
2090 static void *
2091 copy_pieced_value_closure (const struct value *v)
2092 {
2093 struct piece_closure *c
2094 = (struct piece_closure *) value_computed_closure (v);
2095
2096 ++c->refc;
2097 return c;
2098 }
2099
2100 static void
2101 free_pieced_value_closure (struct value *v)
2102 {
2103 struct piece_closure *c
2104 = (struct piece_closure *) value_computed_closure (v);
2105
2106 --c->refc;
2107 if (c->refc == 0)
2108 {
2109 for (dwarf_expr_piece &p : c->pieces)
2110 if (p.location == DWARF_VALUE_STACK)
2111 value_decref (p.v.value);
2112
2113 delete c;
2114 }
2115 }
2116
2117 /* Functions for accessing a variable described by DW_OP_piece. */
2118 static const struct lval_funcs pieced_value_funcs = {
2119 read_pieced_value,
2120 write_pieced_value,
2121 indirect_pieced_value,
2122 coerce_pieced_ref,
2123 check_pieced_synthetic_pointer,
2124 copy_pieced_value_closure,
2125 free_pieced_value_closure
2126 };
2127
2128 /* Evaluate a location description, starting at DATA and with length
2129 SIZE, to find the current location of variable of TYPE in the
2130 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2131 location of the subobject of type SUBOBJ_TYPE at byte offset
2132 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2133
2134 static struct value *
2135 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2136 const gdb_byte *data, size_t size,
2137 struct dwarf2_per_cu_data *per_cu,
2138 struct type *subobj_type,
2139 LONGEST subobj_byte_offset)
2140 {
2141 struct value *retval;
2142 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2143
2144 if (subobj_type == NULL)
2145 {
2146 subobj_type = type;
2147 subobj_byte_offset = 0;
2148 }
2149 else if (subobj_byte_offset < 0)
2150 invalid_synthetic_pointer ();
2151
2152 if (size == 0)
2153 return allocate_optimized_out_value (subobj_type);
2154
2155 dwarf_evaluate_loc_desc ctx;
2156 ctx.frame = frame;
2157 ctx.per_cu = per_cu;
2158 ctx.obj_address = 0;
2159
2160 scoped_value_mark free_values;
2161
2162 ctx.gdbarch = get_objfile_arch (objfile);
2163 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2164 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2165 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2166
2167 try
2168 {
2169 ctx.eval (data, size);
2170 }
2171 catch (const gdb_exception_error &ex)
2172 {
2173 if (ex.error == NOT_AVAILABLE_ERROR)
2174 {
2175 free_values.free_to_mark ();
2176 retval = allocate_value (subobj_type);
2177 mark_value_bytes_unavailable (retval, 0,
2178 TYPE_LENGTH (subobj_type));
2179 return retval;
2180 }
2181 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2182 {
2183 if (entry_values_debug)
2184 exception_print (gdb_stdout, ex);
2185 free_values.free_to_mark ();
2186 return allocate_optimized_out_value (subobj_type);
2187 }
2188 else
2189 throw;
2190 }
2191
2192 if (ctx.pieces.size () > 0)
2193 {
2194 struct piece_closure *c;
2195 ULONGEST bit_size = 0;
2196
2197 for (dwarf_expr_piece &piece : ctx.pieces)
2198 bit_size += piece.size;
2199 /* Complain if the expression is larger than the size of the
2200 outer type. */
2201 if (bit_size > 8 * TYPE_LENGTH (type))
2202 invalid_synthetic_pointer ();
2203
2204 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2205 /* We must clean up the value chain after creating the piece
2206 closure but before allocating the result. */
2207 free_values.free_to_mark ();
2208 retval = allocate_computed_value (subobj_type,
2209 &pieced_value_funcs, c);
2210 set_value_offset (retval, subobj_byte_offset);
2211 }
2212 else
2213 {
2214 switch (ctx.location)
2215 {
2216 case DWARF_VALUE_REGISTER:
2217 {
2218 struct gdbarch *arch = get_frame_arch (frame);
2219 int dwarf_regnum
2220 = longest_to_int (value_as_long (ctx.fetch (0)));
2221 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2222
2223 if (subobj_byte_offset != 0)
2224 error (_("cannot use offset on synthetic pointer to register"));
2225 free_values.free_to_mark ();
2226 retval = value_from_register (subobj_type, gdb_regnum, frame);
2227 if (value_optimized_out (retval))
2228 {
2229 struct value *tmp;
2230
2231 /* This means the register has undefined value / was
2232 not saved. As we're computing the location of some
2233 variable etc. in the program, not a value for
2234 inspecting a register ($pc, $sp, etc.), return a
2235 generic optimized out value instead, so that we show
2236 <optimized out> instead of <not saved>. */
2237 tmp = allocate_value (subobj_type);
2238 value_contents_copy (tmp, 0, retval, 0,
2239 TYPE_LENGTH (subobj_type));
2240 retval = tmp;
2241 }
2242 }
2243 break;
2244
2245 case DWARF_VALUE_MEMORY:
2246 {
2247 struct type *ptr_type;
2248 CORE_ADDR address = ctx.fetch_address (0);
2249 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2250
2251 /* DW_OP_deref_size (and possibly other operations too) may
2252 create a pointer instead of an address. Ideally, the
2253 pointer to address conversion would be performed as part
2254 of those operations, but the type of the object to
2255 which the address refers is not known at the time of
2256 the operation. Therefore, we do the conversion here
2257 since the type is readily available. */
2258
2259 switch (TYPE_CODE (subobj_type))
2260 {
2261 case TYPE_CODE_FUNC:
2262 case TYPE_CODE_METHOD:
2263 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2264 break;
2265 default:
2266 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2267 break;
2268 }
2269 address = value_as_address (value_from_pointer (ptr_type, address));
2270
2271 free_values.free_to_mark ();
2272 retval = value_at_lazy (subobj_type,
2273 address + subobj_byte_offset);
2274 if (in_stack_memory)
2275 set_value_stack (retval, 1);
2276 }
2277 break;
2278
2279 case DWARF_VALUE_STACK:
2280 {
2281 struct value *value = ctx.fetch (0);
2282 size_t n = TYPE_LENGTH (value_type (value));
2283 size_t len = TYPE_LENGTH (subobj_type);
2284 size_t max = TYPE_LENGTH (type);
2285 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2286
2287 if (subobj_byte_offset + len > max)
2288 invalid_synthetic_pointer ();
2289
2290 /* Preserve VALUE because we are going to free values back
2291 to the mark, but we still need the value contents
2292 below. */
2293 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
2294 free_values.free_to_mark ();
2295
2296 retval = allocate_value (subobj_type);
2297
2298 /* The given offset is relative to the actual object. */
2299 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2300 subobj_byte_offset += n - max;
2301
2302 memcpy (value_contents_raw (retval),
2303 value_contents_all (value) + subobj_byte_offset, len);
2304 }
2305 break;
2306
2307 case DWARF_VALUE_LITERAL:
2308 {
2309 bfd_byte *contents;
2310 size_t n = TYPE_LENGTH (subobj_type);
2311
2312 if (subobj_byte_offset + n > ctx.len)
2313 invalid_synthetic_pointer ();
2314
2315 free_values.free_to_mark ();
2316 retval = allocate_value (subobj_type);
2317 contents = value_contents_raw (retval);
2318 memcpy (contents, ctx.data + subobj_byte_offset, n);
2319 }
2320 break;
2321
2322 case DWARF_VALUE_OPTIMIZED_OUT:
2323 free_values.free_to_mark ();
2324 retval = allocate_optimized_out_value (subobj_type);
2325 break;
2326
2327 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2328 operation by execute_stack_op. */
2329 case DWARF_VALUE_IMPLICIT_POINTER:
2330 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2331 it can only be encountered when making a piece. */
2332 default:
2333 internal_error (__FILE__, __LINE__, _("invalid location type"));
2334 }
2335 }
2336
2337 set_value_initialized (retval, ctx.initialized);
2338
2339 return retval;
2340 }
2341
2342 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2343 passes 0 as the byte_offset. */
2344
2345 struct value *
2346 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2347 const gdb_byte *data, size_t size,
2348 struct dwarf2_per_cu_data *per_cu)
2349 {
2350 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2351 NULL, 0);
2352 }
2353
2354 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2355 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2356 frame in which the expression is evaluated. ADDR is a context (location of
2357 a variable) and might be needed to evaluate the location expression.
2358 Returns 1 on success, 0 otherwise. */
2359
2360 static int
2361 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2362 struct frame_info *frame,
2363 CORE_ADDR addr,
2364 CORE_ADDR *valp)
2365 {
2366 struct objfile *objfile;
2367
2368 if (dlbaton == NULL || dlbaton->size == 0)
2369 return 0;
2370
2371 dwarf_evaluate_loc_desc ctx;
2372
2373 ctx.frame = frame;
2374 ctx.per_cu = dlbaton->per_cu;
2375 ctx.obj_address = addr;
2376
2377 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2378
2379 ctx.gdbarch = get_objfile_arch (objfile);
2380 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2381 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2382 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2383
2384 try
2385 {
2386 ctx.eval (dlbaton->data, dlbaton->size);
2387 }
2388 catch (const gdb_exception_error &ex)
2389 {
2390 if (ex.error == NOT_AVAILABLE_ERROR)
2391 {
2392 return 0;
2393 }
2394 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2395 {
2396 if (entry_values_debug)
2397 exception_print (gdb_stdout, ex);
2398 return 0;
2399 }
2400 else
2401 throw;
2402 }
2403
2404 switch (ctx.location)
2405 {
2406 case DWARF_VALUE_REGISTER:
2407 case DWARF_VALUE_MEMORY:
2408 case DWARF_VALUE_STACK:
2409 *valp = ctx.fetch_address (0);
2410 if (ctx.location == DWARF_VALUE_REGISTER)
2411 *valp = ctx.read_addr_from_reg (*valp);
2412 return 1;
2413 case DWARF_VALUE_LITERAL:
2414 *valp = extract_signed_integer (ctx.data, ctx.len,
2415 gdbarch_byte_order (ctx.gdbarch));
2416 return 1;
2417 /* Unsupported dwarf values. */
2418 case DWARF_VALUE_OPTIMIZED_OUT:
2419 case DWARF_VALUE_IMPLICIT_POINTER:
2420 break;
2421 }
2422
2423 return 0;
2424 }
2425
2426 /* See dwarf2loc.h. */
2427
2428 bool
2429 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2430 struct frame_info *frame,
2431 struct property_addr_info *addr_stack,
2432 CORE_ADDR *value)
2433 {
2434 if (prop == NULL)
2435 return false;
2436
2437 if (frame == NULL && has_stack_frames ())
2438 frame = get_selected_frame (NULL);
2439
2440 switch (prop->kind)
2441 {
2442 case PROP_LOCEXPR:
2443 {
2444 const struct dwarf2_property_baton *baton
2445 = (const struct dwarf2_property_baton *) prop->data.baton;
2446 gdb_assert (baton->property_type != NULL);
2447
2448 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2449 addr_stack ? addr_stack->addr : 0,
2450 value))
2451 {
2452 if (baton->locexpr.is_reference)
2453 {
2454 struct value *val = value_at (baton->property_type, *value);
2455 *value = value_as_address (val);
2456 }
2457 return true;
2458 }
2459 }
2460 break;
2461
2462 case PROP_LOCLIST:
2463 {
2464 struct dwarf2_property_baton *baton
2465 = (struct dwarf2_property_baton *) prop->data.baton;
2466 CORE_ADDR pc = get_frame_address_in_block (frame);
2467 const gdb_byte *data;
2468 struct value *val;
2469 size_t size;
2470
2471 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2472 if (data != NULL)
2473 {
2474 val = dwarf2_evaluate_loc_desc (baton->property_type, frame, data,
2475 size, baton->loclist.per_cu);
2476 if (!value_optimized_out (val))
2477 {
2478 *value = value_as_address (val);
2479 return true;
2480 }
2481 }
2482 }
2483 break;
2484
2485 case PROP_CONST:
2486 *value = prop->data.const_val;
2487 return true;
2488
2489 case PROP_ADDR_OFFSET:
2490 {
2491 struct dwarf2_property_baton *baton
2492 = (struct dwarf2_property_baton *) prop->data.baton;
2493 struct property_addr_info *pinfo;
2494 struct value *val;
2495
2496 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2497 {
2498 /* This approach lets us avoid checking the qualifiers. */
2499 if (TYPE_MAIN_TYPE (pinfo->type)
2500 == TYPE_MAIN_TYPE (baton->property_type))
2501 break;
2502 }
2503 if (pinfo == NULL)
2504 error (_("cannot find reference address for offset property"));
2505 if (pinfo->valaddr != NULL)
2506 val = value_from_contents
2507 (baton->offset_info.type,
2508 pinfo->valaddr + baton->offset_info.offset);
2509 else
2510 val = value_at (baton->offset_info.type,
2511 pinfo->addr + baton->offset_info.offset);
2512 *value = value_as_address (val);
2513 return true;
2514 }
2515 }
2516
2517 return false;
2518 }
2519
2520 /* See dwarf2loc.h. */
2521
2522 void
2523 dwarf2_compile_property_to_c (string_file *stream,
2524 const char *result_name,
2525 struct gdbarch *gdbarch,
2526 unsigned char *registers_used,
2527 const struct dynamic_prop *prop,
2528 CORE_ADDR pc,
2529 struct symbol *sym)
2530 {
2531 struct dwarf2_property_baton *baton
2532 = (struct dwarf2_property_baton *) prop->data.baton;
2533 const gdb_byte *data;
2534 size_t size;
2535 struct dwarf2_per_cu_data *per_cu;
2536
2537 if (prop->kind == PROP_LOCEXPR)
2538 {
2539 data = baton->locexpr.data;
2540 size = baton->locexpr.size;
2541 per_cu = baton->locexpr.per_cu;
2542 }
2543 else
2544 {
2545 gdb_assert (prop->kind == PROP_LOCLIST);
2546
2547 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2548 per_cu = baton->loclist.per_cu;
2549 }
2550
2551 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2552 gdbarch, registers_used,
2553 dwarf2_per_cu_addr_size (per_cu),
2554 data, data + size, per_cu);
2555 }
2556
2557 \f
2558 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2559
2560 class symbol_needs_eval_context : public dwarf_expr_context
2561 {
2562 public:
2563
2564 enum symbol_needs_kind needs;
2565 struct dwarf2_per_cu_data *per_cu;
2566
2567 /* Reads from registers do require a frame. */
2568 CORE_ADDR read_addr_from_reg (int regnum) override
2569 {
2570 needs = SYMBOL_NEEDS_FRAME;
2571 return 1;
2572 }
2573
2574 /* "get_reg_value" callback: Reads from registers do require a
2575 frame. */
2576
2577 struct value *get_reg_value (struct type *type, int regnum) override
2578 {
2579 needs = SYMBOL_NEEDS_FRAME;
2580 return value_zero (type, not_lval);
2581 }
2582
2583 /* Reads from memory do not require a frame. */
2584 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2585 {
2586 memset (buf, 0, len);
2587 }
2588
2589 /* Frame-relative accesses do require a frame. */
2590 void get_frame_base (const gdb_byte **start, size_t *length) override
2591 {
2592 static gdb_byte lit0 = DW_OP_lit0;
2593
2594 *start = &lit0;
2595 *length = 1;
2596
2597 needs = SYMBOL_NEEDS_FRAME;
2598 }
2599
2600 /* CFA accesses require a frame. */
2601 CORE_ADDR get_frame_cfa () override
2602 {
2603 needs = SYMBOL_NEEDS_FRAME;
2604 return 1;
2605 }
2606
2607 CORE_ADDR get_frame_pc () override
2608 {
2609 needs = SYMBOL_NEEDS_FRAME;
2610 return 1;
2611 }
2612
2613 /* Thread-local accesses require registers, but not a frame. */
2614 CORE_ADDR get_tls_address (CORE_ADDR offset) override
2615 {
2616 if (needs <= SYMBOL_NEEDS_REGISTERS)
2617 needs = SYMBOL_NEEDS_REGISTERS;
2618 return 1;
2619 }
2620
2621 /* Helper interface of per_cu_dwarf_call for
2622 dwarf2_loc_desc_get_symbol_read_needs. */
2623
2624 void dwarf_call (cu_offset die_offset) override
2625 {
2626 per_cu_dwarf_call (this, die_offset, per_cu);
2627 }
2628
2629 /* Helper interface of sect_variable_value for
2630 dwarf2_loc_desc_get_symbol_read_needs. */
2631
2632 struct value *dwarf_variable_value (sect_offset sect_off) override
2633 {
2634 return sect_variable_value (this, sect_off, per_cu);
2635 }
2636
2637 /* DW_OP_entry_value accesses require a caller, therefore a
2638 frame. */
2639
2640 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2641 union call_site_parameter_u kind_u,
2642 int deref_size) override
2643 {
2644 needs = SYMBOL_NEEDS_FRAME;
2645
2646 /* The expression may require some stub values on DWARF stack. */
2647 push_address (0, 0);
2648 }
2649
2650 /* DW_OP_addrx and DW_OP_GNU_addr_index doesn't require a frame. */
2651
2652 CORE_ADDR get_addr_index (unsigned int index) override
2653 {
2654 /* Nothing to do. */
2655 return 1;
2656 }
2657
2658 /* DW_OP_push_object_address has a frame already passed through. */
2659
2660 CORE_ADDR get_object_address () override
2661 {
2662 /* Nothing to do. */
2663 return 1;
2664 }
2665 };
2666
2667 /* Compute the correct symbol_needs_kind value for the location
2668 expression at DATA (length SIZE). */
2669
2670 static enum symbol_needs_kind
2671 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2672 struct dwarf2_per_cu_data *per_cu)
2673 {
2674 int in_reg;
2675 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2676
2677 scoped_value_mark free_values;
2678
2679 symbol_needs_eval_context ctx;
2680
2681 ctx.needs = SYMBOL_NEEDS_NONE;
2682 ctx.per_cu = per_cu;
2683 ctx.gdbarch = get_objfile_arch (objfile);
2684 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2685 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2686 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2687
2688 ctx.eval (data, size);
2689
2690 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2691
2692 /* If the location has several pieces, and any of them are in
2693 registers, then we will need a frame to fetch them from. */
2694 for (dwarf_expr_piece &p : ctx.pieces)
2695 if (p.location == DWARF_VALUE_REGISTER)
2696 in_reg = 1;
2697
2698 if (in_reg)
2699 ctx.needs = SYMBOL_NEEDS_FRAME;
2700 return ctx.needs;
2701 }
2702
2703 /* A helper function that throws an unimplemented error mentioning a
2704 given DWARF operator. */
2705
2706 static void ATTRIBUTE_NORETURN
2707 unimplemented (unsigned int op)
2708 {
2709 const char *name = get_DW_OP_name (op);
2710
2711 if (name)
2712 error (_("DWARF operator %s cannot be translated to an agent expression"),
2713 name);
2714 else
2715 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2716 "to an agent expression"),
2717 op);
2718 }
2719
2720 /* See dwarf2loc.h.
2721
2722 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2723 can issue a complaint, which is better than having every target's
2724 implementation of dwarf2_reg_to_regnum do it. */
2725
2726 int
2727 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2728 {
2729 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2730
2731 if (reg == -1)
2732 {
2733 complaint (_("bad DWARF register number %d"), dwarf_reg);
2734 }
2735 return reg;
2736 }
2737
2738 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2739 Throw an error because DWARF_REG is bad. */
2740
2741 static void
2742 throw_bad_regnum_error (ULONGEST dwarf_reg)
2743 {
2744 /* Still want to print -1 as "-1".
2745 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2746 but that's overkill for now. */
2747 if ((int) dwarf_reg == dwarf_reg)
2748 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2749 error (_("Unable to access DWARF register number %s"),
2750 pulongest (dwarf_reg));
2751 }
2752
2753 /* See dwarf2loc.h. */
2754
2755 int
2756 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2757 {
2758 int reg;
2759
2760 if (dwarf_reg > INT_MAX)
2761 throw_bad_regnum_error (dwarf_reg);
2762 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2763 bad, but that's ok. */
2764 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2765 if (reg == -1)
2766 throw_bad_regnum_error (dwarf_reg);
2767 return reg;
2768 }
2769
2770 /* A helper function that emits an access to memory. ARCH is the
2771 target architecture. EXPR is the expression which we are building.
2772 NBITS is the number of bits we want to read. This emits the
2773 opcodes needed to read the memory and then extract the desired
2774 bits. */
2775
2776 static void
2777 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2778 {
2779 ULONGEST nbytes = (nbits + 7) / 8;
2780
2781 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2782
2783 if (expr->tracing)
2784 ax_trace_quick (expr, nbytes);
2785
2786 if (nbits <= 8)
2787 ax_simple (expr, aop_ref8);
2788 else if (nbits <= 16)
2789 ax_simple (expr, aop_ref16);
2790 else if (nbits <= 32)
2791 ax_simple (expr, aop_ref32);
2792 else
2793 ax_simple (expr, aop_ref64);
2794
2795 /* If we read exactly the number of bytes we wanted, we're done. */
2796 if (8 * nbytes == nbits)
2797 return;
2798
2799 if (gdbarch_bits_big_endian (arch))
2800 {
2801 /* On a bits-big-endian machine, we want the high-order
2802 NBITS. */
2803 ax_const_l (expr, 8 * nbytes - nbits);
2804 ax_simple (expr, aop_rsh_unsigned);
2805 }
2806 else
2807 {
2808 /* On a bits-little-endian box, we want the low-order NBITS. */
2809 ax_zero_ext (expr, nbits);
2810 }
2811 }
2812
2813 /* A helper function to return the frame's PC. */
2814
2815 static CORE_ADDR
2816 get_ax_pc (void *baton)
2817 {
2818 struct agent_expr *expr = (struct agent_expr *) baton;
2819
2820 return expr->scope;
2821 }
2822
2823 /* Compile a DWARF location expression to an agent expression.
2824
2825 EXPR is the agent expression we are building.
2826 LOC is the agent value we modify.
2827 ARCH is the architecture.
2828 ADDR_SIZE is the size of addresses, in bytes.
2829 OP_PTR is the start of the location expression.
2830 OP_END is one past the last byte of the location expression.
2831
2832 This will throw an exception for various kinds of errors -- for
2833 example, if the expression cannot be compiled, or if the expression
2834 is invalid. */
2835
2836 void
2837 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2838 unsigned int addr_size, const gdb_byte *op_ptr,
2839 const gdb_byte *op_end,
2840 struct dwarf2_per_cu_data *per_cu)
2841 {
2842 gdbarch *arch = expr->gdbarch;
2843 std::vector<int> dw_labels, patches;
2844 const gdb_byte * const base = op_ptr;
2845 const gdb_byte *previous_piece = op_ptr;
2846 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2847 ULONGEST bits_collected = 0;
2848 unsigned int addr_size_bits = 8 * addr_size;
2849 int bits_big_endian = gdbarch_bits_big_endian (arch);
2850
2851 std::vector<int> offsets (op_end - op_ptr, -1);
2852
2853 /* By default we are making an address. */
2854 loc->kind = axs_lvalue_memory;
2855
2856 while (op_ptr < op_end)
2857 {
2858 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2859 uint64_t uoffset, reg;
2860 int64_t offset;
2861 int i;
2862
2863 offsets[op_ptr - base] = expr->len;
2864 ++op_ptr;
2865
2866 /* Our basic approach to code generation is to map DWARF
2867 operations directly to AX operations. However, there are
2868 some differences.
2869
2870 First, DWARF works on address-sized units, but AX always uses
2871 LONGEST. For most operations we simply ignore this
2872 difference; instead we generate sign extensions as needed
2873 before division and comparison operations. It would be nice
2874 to omit the sign extensions, but there is no way to determine
2875 the size of the target's LONGEST. (This code uses the size
2876 of the host LONGEST in some cases -- that is a bug but it is
2877 difficult to fix.)
2878
2879 Second, some DWARF operations cannot be translated to AX.
2880 For these we simply fail. See
2881 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2882 switch (op)
2883 {
2884 case DW_OP_lit0:
2885 case DW_OP_lit1:
2886 case DW_OP_lit2:
2887 case DW_OP_lit3:
2888 case DW_OP_lit4:
2889 case DW_OP_lit5:
2890 case DW_OP_lit6:
2891 case DW_OP_lit7:
2892 case DW_OP_lit8:
2893 case DW_OP_lit9:
2894 case DW_OP_lit10:
2895 case DW_OP_lit11:
2896 case DW_OP_lit12:
2897 case DW_OP_lit13:
2898 case DW_OP_lit14:
2899 case DW_OP_lit15:
2900 case DW_OP_lit16:
2901 case DW_OP_lit17:
2902 case DW_OP_lit18:
2903 case DW_OP_lit19:
2904 case DW_OP_lit20:
2905 case DW_OP_lit21:
2906 case DW_OP_lit22:
2907 case DW_OP_lit23:
2908 case DW_OP_lit24:
2909 case DW_OP_lit25:
2910 case DW_OP_lit26:
2911 case DW_OP_lit27:
2912 case DW_OP_lit28:
2913 case DW_OP_lit29:
2914 case DW_OP_lit30:
2915 case DW_OP_lit31:
2916 ax_const_l (expr, op - DW_OP_lit0);
2917 break;
2918
2919 case DW_OP_addr:
2920 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2921 op_ptr += addr_size;
2922 /* Some versions of GCC emit DW_OP_addr before
2923 DW_OP_GNU_push_tls_address. In this case the value is an
2924 index, not an address. We don't support things like
2925 branching between the address and the TLS op. */
2926 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2927 uoffset += dwarf2_per_cu_text_offset (per_cu);
2928 ax_const_l (expr, uoffset);
2929 break;
2930
2931 case DW_OP_const1u:
2932 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2933 op_ptr += 1;
2934 break;
2935 case DW_OP_const1s:
2936 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2937 op_ptr += 1;
2938 break;
2939 case DW_OP_const2u:
2940 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2941 op_ptr += 2;
2942 break;
2943 case DW_OP_const2s:
2944 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2945 op_ptr += 2;
2946 break;
2947 case DW_OP_const4u:
2948 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2949 op_ptr += 4;
2950 break;
2951 case DW_OP_const4s:
2952 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2953 op_ptr += 4;
2954 break;
2955 case DW_OP_const8u:
2956 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2957 op_ptr += 8;
2958 break;
2959 case DW_OP_const8s:
2960 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2961 op_ptr += 8;
2962 break;
2963 case DW_OP_constu:
2964 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2965 ax_const_l (expr, uoffset);
2966 break;
2967 case DW_OP_consts:
2968 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2969 ax_const_l (expr, offset);
2970 break;
2971
2972 case DW_OP_reg0:
2973 case DW_OP_reg1:
2974 case DW_OP_reg2:
2975 case DW_OP_reg3:
2976 case DW_OP_reg4:
2977 case DW_OP_reg5:
2978 case DW_OP_reg6:
2979 case DW_OP_reg7:
2980 case DW_OP_reg8:
2981 case DW_OP_reg9:
2982 case DW_OP_reg10:
2983 case DW_OP_reg11:
2984 case DW_OP_reg12:
2985 case DW_OP_reg13:
2986 case DW_OP_reg14:
2987 case DW_OP_reg15:
2988 case DW_OP_reg16:
2989 case DW_OP_reg17:
2990 case DW_OP_reg18:
2991 case DW_OP_reg19:
2992 case DW_OP_reg20:
2993 case DW_OP_reg21:
2994 case DW_OP_reg22:
2995 case DW_OP_reg23:
2996 case DW_OP_reg24:
2997 case DW_OP_reg25:
2998 case DW_OP_reg26:
2999 case DW_OP_reg27:
3000 case DW_OP_reg28:
3001 case DW_OP_reg29:
3002 case DW_OP_reg30:
3003 case DW_OP_reg31:
3004 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3005 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3006 loc->kind = axs_lvalue_register;
3007 break;
3008
3009 case DW_OP_regx:
3010 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3011 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3012 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3013 loc->kind = axs_lvalue_register;
3014 break;
3015
3016 case DW_OP_implicit_value:
3017 {
3018 uint64_t len;
3019
3020 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3021 if (op_ptr + len > op_end)
3022 error (_("DW_OP_implicit_value: too few bytes available."));
3023 if (len > sizeof (ULONGEST))
3024 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3025 (int) len);
3026
3027 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3028 byte_order));
3029 op_ptr += len;
3030 dwarf_expr_require_composition (op_ptr, op_end,
3031 "DW_OP_implicit_value");
3032
3033 loc->kind = axs_rvalue;
3034 }
3035 break;
3036
3037 case DW_OP_stack_value:
3038 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3039 loc->kind = axs_rvalue;
3040 break;
3041
3042 case DW_OP_breg0:
3043 case DW_OP_breg1:
3044 case DW_OP_breg2:
3045 case DW_OP_breg3:
3046 case DW_OP_breg4:
3047 case DW_OP_breg5:
3048 case DW_OP_breg6:
3049 case DW_OP_breg7:
3050 case DW_OP_breg8:
3051 case DW_OP_breg9:
3052 case DW_OP_breg10:
3053 case DW_OP_breg11:
3054 case DW_OP_breg12:
3055 case DW_OP_breg13:
3056 case DW_OP_breg14:
3057 case DW_OP_breg15:
3058 case DW_OP_breg16:
3059 case DW_OP_breg17:
3060 case DW_OP_breg18:
3061 case DW_OP_breg19:
3062 case DW_OP_breg20:
3063 case DW_OP_breg21:
3064 case DW_OP_breg22:
3065 case DW_OP_breg23:
3066 case DW_OP_breg24:
3067 case DW_OP_breg25:
3068 case DW_OP_breg26:
3069 case DW_OP_breg27:
3070 case DW_OP_breg28:
3071 case DW_OP_breg29:
3072 case DW_OP_breg30:
3073 case DW_OP_breg31:
3074 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3075 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3076 ax_reg (expr, i);
3077 if (offset != 0)
3078 {
3079 ax_const_l (expr, offset);
3080 ax_simple (expr, aop_add);
3081 }
3082 break;
3083 case DW_OP_bregx:
3084 {
3085 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3086 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3087 i = dwarf_reg_to_regnum_or_error (arch, reg);
3088 ax_reg (expr, i);
3089 if (offset != 0)
3090 {
3091 ax_const_l (expr, offset);
3092 ax_simple (expr, aop_add);
3093 }
3094 }
3095 break;
3096 case DW_OP_fbreg:
3097 {
3098 const gdb_byte *datastart;
3099 size_t datalen;
3100 const struct block *b;
3101 struct symbol *framefunc;
3102
3103 b = block_for_pc (expr->scope);
3104
3105 if (!b)
3106 error (_("No block found for address"));
3107
3108 framefunc = block_linkage_function (b);
3109
3110 if (!framefunc)
3111 error (_("No function found for block"));
3112
3113 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3114 &datastart, &datalen);
3115
3116 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3117 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3118 datastart + datalen, per_cu);
3119 if (loc->kind == axs_lvalue_register)
3120 require_rvalue (expr, loc);
3121
3122 if (offset != 0)
3123 {
3124 ax_const_l (expr, offset);
3125 ax_simple (expr, aop_add);
3126 }
3127
3128 loc->kind = axs_lvalue_memory;
3129 }
3130 break;
3131
3132 case DW_OP_dup:
3133 ax_simple (expr, aop_dup);
3134 break;
3135
3136 case DW_OP_drop:
3137 ax_simple (expr, aop_pop);
3138 break;
3139
3140 case DW_OP_pick:
3141 offset = *op_ptr++;
3142 ax_pick (expr, offset);
3143 break;
3144
3145 case DW_OP_swap:
3146 ax_simple (expr, aop_swap);
3147 break;
3148
3149 case DW_OP_over:
3150 ax_pick (expr, 1);
3151 break;
3152
3153 case DW_OP_rot:
3154 ax_simple (expr, aop_rot);
3155 break;
3156
3157 case DW_OP_deref:
3158 case DW_OP_deref_size:
3159 {
3160 int size;
3161
3162 if (op == DW_OP_deref_size)
3163 size = *op_ptr++;
3164 else
3165 size = addr_size;
3166
3167 if (size != 1 && size != 2 && size != 4 && size != 8)
3168 error (_("Unsupported size %d in %s"),
3169 size, get_DW_OP_name (op));
3170 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3171 }
3172 break;
3173
3174 case DW_OP_abs:
3175 /* Sign extend the operand. */
3176 ax_ext (expr, addr_size_bits);
3177 ax_simple (expr, aop_dup);
3178 ax_const_l (expr, 0);
3179 ax_simple (expr, aop_less_signed);
3180 ax_simple (expr, aop_log_not);
3181 i = ax_goto (expr, aop_if_goto);
3182 /* We have to emit 0 - X. */
3183 ax_const_l (expr, 0);
3184 ax_simple (expr, aop_swap);
3185 ax_simple (expr, aop_sub);
3186 ax_label (expr, i, expr->len);
3187 break;
3188
3189 case DW_OP_neg:
3190 /* No need to sign extend here. */
3191 ax_const_l (expr, 0);
3192 ax_simple (expr, aop_swap);
3193 ax_simple (expr, aop_sub);
3194 break;
3195
3196 case DW_OP_not:
3197 /* Sign extend the operand. */
3198 ax_ext (expr, addr_size_bits);
3199 ax_simple (expr, aop_bit_not);
3200 break;
3201
3202 case DW_OP_plus_uconst:
3203 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3204 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3205 but we micro-optimize anyhow. */
3206 if (reg != 0)
3207 {
3208 ax_const_l (expr, reg);
3209 ax_simple (expr, aop_add);
3210 }
3211 break;
3212
3213 case DW_OP_and:
3214 ax_simple (expr, aop_bit_and);
3215 break;
3216
3217 case DW_OP_div:
3218 /* Sign extend the operands. */
3219 ax_ext (expr, addr_size_bits);
3220 ax_simple (expr, aop_swap);
3221 ax_ext (expr, addr_size_bits);
3222 ax_simple (expr, aop_swap);
3223 ax_simple (expr, aop_div_signed);
3224 break;
3225
3226 case DW_OP_minus:
3227 ax_simple (expr, aop_sub);
3228 break;
3229
3230 case DW_OP_mod:
3231 ax_simple (expr, aop_rem_unsigned);
3232 break;
3233
3234 case DW_OP_mul:
3235 ax_simple (expr, aop_mul);
3236 break;
3237
3238 case DW_OP_or:
3239 ax_simple (expr, aop_bit_or);
3240 break;
3241
3242 case DW_OP_plus:
3243 ax_simple (expr, aop_add);
3244 break;
3245
3246 case DW_OP_shl:
3247 ax_simple (expr, aop_lsh);
3248 break;
3249
3250 case DW_OP_shr:
3251 ax_simple (expr, aop_rsh_unsigned);
3252 break;
3253
3254 case DW_OP_shra:
3255 ax_simple (expr, aop_rsh_signed);
3256 break;
3257
3258 case DW_OP_xor:
3259 ax_simple (expr, aop_bit_xor);
3260 break;
3261
3262 case DW_OP_le:
3263 /* Sign extend the operands. */
3264 ax_ext (expr, addr_size_bits);
3265 ax_simple (expr, aop_swap);
3266 ax_ext (expr, addr_size_bits);
3267 /* Note no swap here: A <= B is !(B < A). */
3268 ax_simple (expr, aop_less_signed);
3269 ax_simple (expr, aop_log_not);
3270 break;
3271
3272 case DW_OP_ge:
3273 /* Sign extend the operands. */
3274 ax_ext (expr, addr_size_bits);
3275 ax_simple (expr, aop_swap);
3276 ax_ext (expr, addr_size_bits);
3277 ax_simple (expr, aop_swap);
3278 /* A >= B is !(A < B). */
3279 ax_simple (expr, aop_less_signed);
3280 ax_simple (expr, aop_log_not);
3281 break;
3282
3283 case DW_OP_eq:
3284 /* Sign extend the operands. */
3285 ax_ext (expr, addr_size_bits);
3286 ax_simple (expr, aop_swap);
3287 ax_ext (expr, addr_size_bits);
3288 /* No need for a second swap here. */
3289 ax_simple (expr, aop_equal);
3290 break;
3291
3292 case DW_OP_lt:
3293 /* Sign extend the operands. */
3294 ax_ext (expr, addr_size_bits);
3295 ax_simple (expr, aop_swap);
3296 ax_ext (expr, addr_size_bits);
3297 ax_simple (expr, aop_swap);
3298 ax_simple (expr, aop_less_signed);
3299 break;
3300
3301 case DW_OP_gt:
3302 /* Sign extend the operands. */
3303 ax_ext (expr, addr_size_bits);
3304 ax_simple (expr, aop_swap);
3305 ax_ext (expr, addr_size_bits);
3306 /* Note no swap here: A > B is B < A. */
3307 ax_simple (expr, aop_less_signed);
3308 break;
3309
3310 case DW_OP_ne:
3311 /* Sign extend the operands. */
3312 ax_ext (expr, addr_size_bits);
3313 ax_simple (expr, aop_swap);
3314 ax_ext (expr, addr_size_bits);
3315 /* No need for a swap here. */
3316 ax_simple (expr, aop_equal);
3317 ax_simple (expr, aop_log_not);
3318 break;
3319
3320 case DW_OP_call_frame_cfa:
3321 {
3322 int regnum;
3323 CORE_ADDR text_offset;
3324 LONGEST off;
3325 const gdb_byte *cfa_start, *cfa_end;
3326
3327 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3328 &regnum, &off,
3329 &text_offset, &cfa_start, &cfa_end))
3330 {
3331 /* Register. */
3332 ax_reg (expr, regnum);
3333 if (off != 0)
3334 {
3335 ax_const_l (expr, off);
3336 ax_simple (expr, aop_add);
3337 }
3338 }
3339 else
3340 {
3341 /* Another expression. */
3342 ax_const_l (expr, text_offset);
3343 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3344 cfa_end, per_cu);
3345 }
3346
3347 loc->kind = axs_lvalue_memory;
3348 }
3349 break;
3350
3351 case DW_OP_GNU_push_tls_address:
3352 case DW_OP_form_tls_address:
3353 unimplemented (op);
3354 break;
3355
3356 case DW_OP_push_object_address:
3357 unimplemented (op);
3358 break;
3359
3360 case DW_OP_skip:
3361 offset = extract_signed_integer (op_ptr, 2, byte_order);
3362 op_ptr += 2;
3363 i = ax_goto (expr, aop_goto);
3364 dw_labels.push_back (op_ptr + offset - base);
3365 patches.push_back (i);
3366 break;
3367
3368 case DW_OP_bra:
3369 offset = extract_signed_integer (op_ptr, 2, byte_order);
3370 op_ptr += 2;
3371 /* Zero extend the operand. */
3372 ax_zero_ext (expr, addr_size_bits);
3373 i = ax_goto (expr, aop_if_goto);
3374 dw_labels.push_back (op_ptr + offset - base);
3375 patches.push_back (i);
3376 break;
3377
3378 case DW_OP_nop:
3379 break;
3380
3381 case DW_OP_piece:
3382 case DW_OP_bit_piece:
3383 {
3384 uint64_t size;
3385
3386 if (op_ptr - 1 == previous_piece)
3387 error (_("Cannot translate empty pieces to agent expressions"));
3388 previous_piece = op_ptr - 1;
3389
3390 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3391 if (op == DW_OP_piece)
3392 {
3393 size *= 8;
3394 uoffset = 0;
3395 }
3396 else
3397 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3398
3399 if (bits_collected + size > 8 * sizeof (LONGEST))
3400 error (_("Expression pieces exceed word size"));
3401
3402 /* Access the bits. */
3403 switch (loc->kind)
3404 {
3405 case axs_lvalue_register:
3406 ax_reg (expr, loc->u.reg);
3407 break;
3408
3409 case axs_lvalue_memory:
3410 /* Offset the pointer, if needed. */
3411 if (uoffset > 8)
3412 {
3413 ax_const_l (expr, uoffset / 8);
3414 ax_simple (expr, aop_add);
3415 uoffset %= 8;
3416 }
3417 access_memory (arch, expr, size);
3418 break;
3419 }
3420
3421 /* For a bits-big-endian target, shift up what we already
3422 have. For a bits-little-endian target, shift up the
3423 new data. Note that there is a potential bug here if
3424 the DWARF expression leaves multiple values on the
3425 stack. */
3426 if (bits_collected > 0)
3427 {
3428 if (bits_big_endian)
3429 {
3430 ax_simple (expr, aop_swap);
3431 ax_const_l (expr, size);
3432 ax_simple (expr, aop_lsh);
3433 /* We don't need a second swap here, because
3434 aop_bit_or is symmetric. */
3435 }
3436 else
3437 {
3438 ax_const_l (expr, size);
3439 ax_simple (expr, aop_lsh);
3440 }
3441 ax_simple (expr, aop_bit_or);
3442 }
3443
3444 bits_collected += size;
3445 loc->kind = axs_rvalue;
3446 }
3447 break;
3448
3449 case DW_OP_GNU_uninit:
3450 unimplemented (op);
3451
3452 case DW_OP_call2:
3453 case DW_OP_call4:
3454 {
3455 struct dwarf2_locexpr_baton block;
3456 int size = (op == DW_OP_call2 ? 2 : 4);
3457
3458 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3459 op_ptr += size;
3460
3461 cu_offset cuoffset = (cu_offset) uoffset;
3462 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
3463 get_ax_pc, expr);
3464
3465 /* DW_OP_call_ref is currently not supported. */
3466 gdb_assert (block.per_cu == per_cu);
3467
3468 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3469 block.data + block.size, per_cu);
3470 }
3471 break;
3472
3473 case DW_OP_call_ref:
3474 unimplemented (op);
3475
3476 case DW_OP_GNU_variable_value:
3477 unimplemented (op);
3478
3479 default:
3480 unimplemented (op);
3481 }
3482 }
3483
3484 /* Patch all the branches we emitted. */
3485 for (int i = 0; i < patches.size (); ++i)
3486 {
3487 int targ = offsets[dw_labels[i]];
3488 if (targ == -1)
3489 internal_error (__FILE__, __LINE__, _("invalid label"));
3490 ax_label (expr, patches[i], targ);
3491 }
3492 }
3493
3494 \f
3495 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3496 evaluator to calculate the location. */
3497 static struct value *
3498 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3499 {
3500 struct dwarf2_locexpr_baton *dlbaton
3501 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3502 struct value *val;
3503
3504 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3505 dlbaton->size, dlbaton->per_cu);
3506
3507 return val;
3508 }
3509
3510 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3511 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3512 will be thrown. */
3513
3514 static struct value *
3515 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3516 {
3517 struct dwarf2_locexpr_baton *dlbaton
3518 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3519
3520 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3521 dlbaton->size);
3522 }
3523
3524 /* Implementation of get_symbol_read_needs from
3525 symbol_computed_ops. */
3526
3527 static enum symbol_needs_kind
3528 locexpr_get_symbol_read_needs (struct symbol *symbol)
3529 {
3530 struct dwarf2_locexpr_baton *dlbaton
3531 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3532
3533 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3534 dlbaton->per_cu);
3535 }
3536
3537 /* Return true if DATA points to the end of a piece. END is one past
3538 the last byte in the expression. */
3539
3540 static int
3541 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3542 {
3543 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3544 }
3545
3546 /* Helper for locexpr_describe_location_piece that finds the name of a
3547 DWARF register. */
3548
3549 static const char *
3550 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3551 {
3552 int regnum;
3553
3554 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3555 We'd rather print *something* here than throw an error. */
3556 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3557 /* gdbarch_register_name may just return "", return something more
3558 descriptive for bad register numbers. */
3559 if (regnum == -1)
3560 {
3561 /* The text is output as "$bad_register_number".
3562 That is why we use the underscores. */
3563 return _("bad_register_number");
3564 }
3565 return gdbarch_register_name (gdbarch, regnum);
3566 }
3567
3568 /* Nicely describe a single piece of a location, returning an updated
3569 position in the bytecode sequence. This function cannot recognize
3570 all locations; if a location is not recognized, it simply returns
3571 DATA. If there is an error during reading, e.g. we run off the end
3572 of the buffer, an error is thrown. */
3573
3574 static const gdb_byte *
3575 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3576 CORE_ADDR addr, struct objfile *objfile,
3577 struct dwarf2_per_cu_data *per_cu,
3578 const gdb_byte *data, const gdb_byte *end,
3579 unsigned int addr_size)
3580 {
3581 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3582 size_t leb128_size;
3583
3584 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3585 {
3586 fprintf_filtered (stream, _("a variable in $%s"),
3587 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3588 data += 1;
3589 }
3590 else if (data[0] == DW_OP_regx)
3591 {
3592 uint64_t reg;
3593
3594 data = safe_read_uleb128 (data + 1, end, &reg);
3595 fprintf_filtered (stream, _("a variable in $%s"),
3596 locexpr_regname (gdbarch, reg));
3597 }
3598 else if (data[0] == DW_OP_fbreg)
3599 {
3600 const struct block *b;
3601 struct symbol *framefunc;
3602 int frame_reg = 0;
3603 int64_t frame_offset;
3604 const gdb_byte *base_data, *new_data, *save_data = data;
3605 size_t base_size;
3606 int64_t base_offset = 0;
3607
3608 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3609 if (!piece_end_p (new_data, end))
3610 return data;
3611 data = new_data;
3612
3613 b = block_for_pc (addr);
3614
3615 if (!b)
3616 error (_("No block found for address for symbol \"%s\"."),
3617 SYMBOL_PRINT_NAME (symbol));
3618
3619 framefunc = block_linkage_function (b);
3620
3621 if (!framefunc)
3622 error (_("No function found for block for symbol \"%s\"."),
3623 SYMBOL_PRINT_NAME (symbol));
3624
3625 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3626
3627 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3628 {
3629 const gdb_byte *buf_end;
3630
3631 frame_reg = base_data[0] - DW_OP_breg0;
3632 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3633 &base_offset);
3634 if (buf_end != base_data + base_size)
3635 error (_("Unexpected opcode after "
3636 "DW_OP_breg%u for symbol \"%s\"."),
3637 frame_reg, SYMBOL_PRINT_NAME (symbol));
3638 }
3639 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3640 {
3641 /* The frame base is just the register, with no offset. */
3642 frame_reg = base_data[0] - DW_OP_reg0;
3643 base_offset = 0;
3644 }
3645 else
3646 {
3647 /* We don't know what to do with the frame base expression,
3648 so we can't trace this variable; give up. */
3649 return save_data;
3650 }
3651
3652 fprintf_filtered (stream,
3653 _("a variable at frame base reg $%s offset %s+%s"),
3654 locexpr_regname (gdbarch, frame_reg),
3655 plongest (base_offset), plongest (frame_offset));
3656 }
3657 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3658 && piece_end_p (data, end))
3659 {
3660 int64_t offset;
3661
3662 data = safe_read_sleb128 (data + 1, end, &offset);
3663
3664 fprintf_filtered (stream,
3665 _("a variable at offset %s from base reg $%s"),
3666 plongest (offset),
3667 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3668 }
3669
3670 /* The location expression for a TLS variable looks like this (on a
3671 64-bit LE machine):
3672
3673 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3674 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3675
3676 0x3 is the encoding for DW_OP_addr, which has an operand as long
3677 as the size of an address on the target machine (here is 8
3678 bytes). Note that more recent version of GCC emit DW_OP_const4u
3679 or DW_OP_const8u, depending on address size, rather than
3680 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3681 The operand represents the offset at which the variable is within
3682 the thread local storage. */
3683
3684 else if (data + 1 + addr_size < end
3685 && (data[0] == DW_OP_addr
3686 || (addr_size == 4 && data[0] == DW_OP_const4u)
3687 || (addr_size == 8 && data[0] == DW_OP_const8u))
3688 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3689 || data[1 + addr_size] == DW_OP_form_tls_address)
3690 && piece_end_p (data + 2 + addr_size, end))
3691 {
3692 ULONGEST offset;
3693 offset = extract_unsigned_integer (data + 1, addr_size,
3694 gdbarch_byte_order (gdbarch));
3695
3696 fprintf_filtered (stream,
3697 _("a thread-local variable at offset 0x%s "
3698 "in the thread-local storage for `%s'"),
3699 phex_nz (offset, addr_size), objfile_name (objfile));
3700
3701 data += 1 + addr_size + 1;
3702 }
3703
3704 /* With -gsplit-dwarf a TLS variable can also look like this:
3705 DW_AT_location : 3 byte block: fc 4 e0
3706 (DW_OP_GNU_const_index: 4;
3707 DW_OP_GNU_push_tls_address) */
3708 else if (data + 3 <= end
3709 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3710 && data[0] == DW_OP_GNU_const_index
3711 && leb128_size > 0
3712 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3713 || data[1 + leb128_size] == DW_OP_form_tls_address)
3714 && piece_end_p (data + 2 + leb128_size, end))
3715 {
3716 uint64_t offset;
3717
3718 data = safe_read_uleb128 (data + 1, end, &offset);
3719 offset = dwarf2_read_addr_index (per_cu, offset);
3720 fprintf_filtered (stream,
3721 _("a thread-local variable at offset 0x%s "
3722 "in the thread-local storage for `%s'"),
3723 phex_nz (offset, addr_size), objfile_name (objfile));
3724 ++data;
3725 }
3726
3727 else if (data[0] >= DW_OP_lit0
3728 && data[0] <= DW_OP_lit31
3729 && data + 1 < end
3730 && data[1] == DW_OP_stack_value)
3731 {
3732 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3733 data += 2;
3734 }
3735
3736 return data;
3737 }
3738
3739 /* Disassemble an expression, stopping at the end of a piece or at the
3740 end of the expression. Returns a pointer to the next unread byte
3741 in the input expression. If ALL is nonzero, then this function
3742 will keep going until it reaches the end of the expression.
3743 If there is an error during reading, e.g. we run off the end
3744 of the buffer, an error is thrown. */
3745
3746 static const gdb_byte *
3747 disassemble_dwarf_expression (struct ui_file *stream,
3748 struct gdbarch *arch, unsigned int addr_size,
3749 int offset_size, const gdb_byte *start,
3750 const gdb_byte *data, const gdb_byte *end,
3751 int indent, int all,
3752 struct dwarf2_per_cu_data *per_cu)
3753 {
3754 while (data < end
3755 && (all
3756 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3757 {
3758 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3759 uint64_t ul;
3760 int64_t l;
3761 const char *name;
3762
3763 name = get_DW_OP_name (op);
3764
3765 if (!name)
3766 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3767 op, (long) (data - 1 - start));
3768 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3769 (long) (data - 1 - start), name);
3770
3771 switch (op)
3772 {
3773 case DW_OP_addr:
3774 ul = extract_unsigned_integer (data, addr_size,
3775 gdbarch_byte_order (arch));
3776 data += addr_size;
3777 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3778 break;
3779
3780 case DW_OP_const1u:
3781 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3782 data += 1;
3783 fprintf_filtered (stream, " %s", pulongest (ul));
3784 break;
3785 case DW_OP_const1s:
3786 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3787 data += 1;
3788 fprintf_filtered (stream, " %s", plongest (l));
3789 break;
3790 case DW_OP_const2u:
3791 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3792 data += 2;
3793 fprintf_filtered (stream, " %s", pulongest (ul));
3794 break;
3795 case DW_OP_const2s:
3796 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3797 data += 2;
3798 fprintf_filtered (stream, " %s", plongest (l));
3799 break;
3800 case DW_OP_const4u:
3801 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3802 data += 4;
3803 fprintf_filtered (stream, " %s", pulongest (ul));
3804 break;
3805 case DW_OP_const4s:
3806 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3807 data += 4;
3808 fprintf_filtered (stream, " %s", plongest (l));
3809 break;
3810 case DW_OP_const8u:
3811 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3812 data += 8;
3813 fprintf_filtered (stream, " %s", pulongest (ul));
3814 break;
3815 case DW_OP_const8s:
3816 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3817 data += 8;
3818 fprintf_filtered (stream, " %s", plongest (l));
3819 break;
3820 case DW_OP_constu:
3821 data = safe_read_uleb128 (data, end, &ul);
3822 fprintf_filtered (stream, " %s", pulongest (ul));
3823 break;
3824 case DW_OP_consts:
3825 data = safe_read_sleb128 (data, end, &l);
3826 fprintf_filtered (stream, " %s", plongest (l));
3827 break;
3828
3829 case DW_OP_reg0:
3830 case DW_OP_reg1:
3831 case DW_OP_reg2:
3832 case DW_OP_reg3:
3833 case DW_OP_reg4:
3834 case DW_OP_reg5:
3835 case DW_OP_reg6:
3836 case DW_OP_reg7:
3837 case DW_OP_reg8:
3838 case DW_OP_reg9:
3839 case DW_OP_reg10:
3840 case DW_OP_reg11:
3841 case DW_OP_reg12:
3842 case DW_OP_reg13:
3843 case DW_OP_reg14:
3844 case DW_OP_reg15:
3845 case DW_OP_reg16:
3846 case DW_OP_reg17:
3847 case DW_OP_reg18:
3848 case DW_OP_reg19:
3849 case DW_OP_reg20:
3850 case DW_OP_reg21:
3851 case DW_OP_reg22:
3852 case DW_OP_reg23:
3853 case DW_OP_reg24:
3854 case DW_OP_reg25:
3855 case DW_OP_reg26:
3856 case DW_OP_reg27:
3857 case DW_OP_reg28:
3858 case DW_OP_reg29:
3859 case DW_OP_reg30:
3860 case DW_OP_reg31:
3861 fprintf_filtered (stream, " [$%s]",
3862 locexpr_regname (arch, op - DW_OP_reg0));
3863 break;
3864
3865 case DW_OP_regx:
3866 data = safe_read_uleb128 (data, end, &ul);
3867 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3868 locexpr_regname (arch, (int) ul));
3869 break;
3870
3871 case DW_OP_implicit_value:
3872 data = safe_read_uleb128 (data, end, &ul);
3873 data += ul;
3874 fprintf_filtered (stream, " %s", pulongest (ul));
3875 break;
3876
3877 case DW_OP_breg0:
3878 case DW_OP_breg1:
3879 case DW_OP_breg2:
3880 case DW_OP_breg3:
3881 case DW_OP_breg4:
3882 case DW_OP_breg5:
3883 case DW_OP_breg6:
3884 case DW_OP_breg7:
3885 case DW_OP_breg8:
3886 case DW_OP_breg9:
3887 case DW_OP_breg10:
3888 case DW_OP_breg11:
3889 case DW_OP_breg12:
3890 case DW_OP_breg13:
3891 case DW_OP_breg14:
3892 case DW_OP_breg15:
3893 case DW_OP_breg16:
3894 case DW_OP_breg17:
3895 case DW_OP_breg18:
3896 case DW_OP_breg19:
3897 case DW_OP_breg20:
3898 case DW_OP_breg21:
3899 case DW_OP_breg22:
3900 case DW_OP_breg23:
3901 case DW_OP_breg24:
3902 case DW_OP_breg25:
3903 case DW_OP_breg26:
3904 case DW_OP_breg27:
3905 case DW_OP_breg28:
3906 case DW_OP_breg29:
3907 case DW_OP_breg30:
3908 case DW_OP_breg31:
3909 data = safe_read_sleb128 (data, end, &l);
3910 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3911 locexpr_regname (arch, op - DW_OP_breg0));
3912 break;
3913
3914 case DW_OP_bregx:
3915 data = safe_read_uleb128 (data, end, &ul);
3916 data = safe_read_sleb128 (data, end, &l);
3917 fprintf_filtered (stream, " register %s [$%s] offset %s",
3918 pulongest (ul),
3919 locexpr_regname (arch, (int) ul),
3920 plongest (l));
3921 break;
3922
3923 case DW_OP_fbreg:
3924 data = safe_read_sleb128 (data, end, &l);
3925 fprintf_filtered (stream, " %s", plongest (l));
3926 break;
3927
3928 case DW_OP_xderef_size:
3929 case DW_OP_deref_size:
3930 case DW_OP_pick:
3931 fprintf_filtered (stream, " %d", *data);
3932 ++data;
3933 break;
3934
3935 case DW_OP_plus_uconst:
3936 data = safe_read_uleb128 (data, end, &ul);
3937 fprintf_filtered (stream, " %s", pulongest (ul));
3938 break;
3939
3940 case DW_OP_skip:
3941 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3942 data += 2;
3943 fprintf_filtered (stream, " to %ld",
3944 (long) (data + l - start));
3945 break;
3946
3947 case DW_OP_bra:
3948 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3949 data += 2;
3950 fprintf_filtered (stream, " %ld",
3951 (long) (data + l - start));
3952 break;
3953
3954 case DW_OP_call2:
3955 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3956 data += 2;
3957 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3958 break;
3959
3960 case DW_OP_call4:
3961 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3962 data += 4;
3963 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3964 break;
3965
3966 case DW_OP_call_ref:
3967 ul = extract_unsigned_integer (data, offset_size,
3968 gdbarch_byte_order (arch));
3969 data += offset_size;
3970 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3971 break;
3972
3973 case DW_OP_piece:
3974 data = safe_read_uleb128 (data, end, &ul);
3975 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3976 break;
3977
3978 case DW_OP_bit_piece:
3979 {
3980 uint64_t offset;
3981
3982 data = safe_read_uleb128 (data, end, &ul);
3983 data = safe_read_uleb128 (data, end, &offset);
3984 fprintf_filtered (stream, " size %s offset %s (bits)",
3985 pulongest (ul), pulongest (offset));
3986 }
3987 break;
3988
3989 case DW_OP_implicit_pointer:
3990 case DW_OP_GNU_implicit_pointer:
3991 {
3992 ul = extract_unsigned_integer (data, offset_size,
3993 gdbarch_byte_order (arch));
3994 data += offset_size;
3995
3996 data = safe_read_sleb128 (data, end, &l);
3997
3998 fprintf_filtered (stream, " DIE %s offset %s",
3999 phex_nz (ul, offset_size),
4000 plongest (l));
4001 }
4002 break;
4003
4004 case DW_OP_deref_type:
4005 case DW_OP_GNU_deref_type:
4006 {
4007 int deref_addr_size = *data++;
4008 struct type *type;
4009
4010 data = safe_read_uleb128 (data, end, &ul);
4011 cu_offset offset = (cu_offset) ul;
4012 type = dwarf2_get_die_type (offset, per_cu);
4013 fprintf_filtered (stream, "<");
4014 type_print (type, "", stream, -1);
4015 fprintf_filtered (stream, " [0x%s]> %d",
4016 phex_nz (to_underlying (offset), 0),
4017 deref_addr_size);
4018 }
4019 break;
4020
4021 case DW_OP_const_type:
4022 case DW_OP_GNU_const_type:
4023 {
4024 struct type *type;
4025
4026 data = safe_read_uleb128 (data, end, &ul);
4027 cu_offset type_die = (cu_offset) ul;
4028 type = dwarf2_get_die_type (type_die, per_cu);
4029 fprintf_filtered (stream, "<");
4030 type_print (type, "", stream, -1);
4031 fprintf_filtered (stream, " [0x%s]>",
4032 phex_nz (to_underlying (type_die), 0));
4033 }
4034 break;
4035
4036 case DW_OP_regval_type:
4037 case DW_OP_GNU_regval_type:
4038 {
4039 uint64_t reg;
4040 struct type *type;
4041
4042 data = safe_read_uleb128 (data, end, &reg);
4043 data = safe_read_uleb128 (data, end, &ul);
4044 cu_offset type_die = (cu_offset) ul;
4045
4046 type = dwarf2_get_die_type (type_die, per_cu);
4047 fprintf_filtered (stream, "<");
4048 type_print (type, "", stream, -1);
4049 fprintf_filtered (stream, " [0x%s]> [$%s]",
4050 phex_nz (to_underlying (type_die), 0),
4051 locexpr_regname (arch, reg));
4052 }
4053 break;
4054
4055 case DW_OP_convert:
4056 case DW_OP_GNU_convert:
4057 case DW_OP_reinterpret:
4058 case DW_OP_GNU_reinterpret:
4059 {
4060 data = safe_read_uleb128 (data, end, &ul);
4061 cu_offset type_die = (cu_offset) ul;
4062
4063 if (to_underlying (type_die) == 0)
4064 fprintf_filtered (stream, "<0>");
4065 else
4066 {
4067 struct type *type;
4068
4069 type = dwarf2_get_die_type (type_die, per_cu);
4070 fprintf_filtered (stream, "<");
4071 type_print (type, "", stream, -1);
4072 fprintf_filtered (stream, " [0x%s]>",
4073 phex_nz (to_underlying (type_die), 0));
4074 }
4075 }
4076 break;
4077
4078 case DW_OP_entry_value:
4079 case DW_OP_GNU_entry_value:
4080 data = safe_read_uleb128 (data, end, &ul);
4081 fputc_filtered ('\n', stream);
4082 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4083 start, data, data + ul, indent + 2,
4084 all, per_cu);
4085 data += ul;
4086 continue;
4087
4088 case DW_OP_GNU_parameter_ref:
4089 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4090 data += 4;
4091 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4092 break;
4093
4094 case DW_OP_addrx:
4095 case DW_OP_GNU_addr_index:
4096 data = safe_read_uleb128 (data, end, &ul);
4097 ul = dwarf2_read_addr_index (per_cu, ul);
4098 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4099 break;
4100 case DW_OP_GNU_const_index:
4101 data = safe_read_uleb128 (data, end, &ul);
4102 ul = dwarf2_read_addr_index (per_cu, ul);
4103 fprintf_filtered (stream, " %s", pulongest (ul));
4104 break;
4105
4106 case DW_OP_GNU_variable_value:
4107 ul = extract_unsigned_integer (data, offset_size,
4108 gdbarch_byte_order (arch));
4109 data += offset_size;
4110 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4111 break;
4112 }
4113
4114 fprintf_filtered (stream, "\n");
4115 }
4116
4117 return data;
4118 }
4119
4120 /* Describe a single location, which may in turn consist of multiple
4121 pieces. */
4122
4123 static void
4124 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4125 struct ui_file *stream,
4126 const gdb_byte *data, size_t size,
4127 struct objfile *objfile, unsigned int addr_size,
4128 int offset_size, struct dwarf2_per_cu_data *per_cu)
4129 {
4130 const gdb_byte *end = data + size;
4131 int first_piece = 1, bad = 0;
4132
4133 while (data < end)
4134 {
4135 const gdb_byte *here = data;
4136 int disassemble = 1;
4137
4138 if (first_piece)
4139 first_piece = 0;
4140 else
4141 fprintf_filtered (stream, _(", and "));
4142
4143 if (!dwarf_always_disassemble)
4144 {
4145 data = locexpr_describe_location_piece (symbol, stream,
4146 addr, objfile, per_cu,
4147 data, end, addr_size);
4148 /* If we printed anything, or if we have an empty piece,
4149 then don't disassemble. */
4150 if (data != here
4151 || data[0] == DW_OP_piece
4152 || data[0] == DW_OP_bit_piece)
4153 disassemble = 0;
4154 }
4155 if (disassemble)
4156 {
4157 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4158 data = disassemble_dwarf_expression (stream,
4159 get_objfile_arch (objfile),
4160 addr_size, offset_size, data,
4161 data, end, 0,
4162 dwarf_always_disassemble,
4163 per_cu);
4164 }
4165
4166 if (data < end)
4167 {
4168 int empty = data == here;
4169
4170 if (disassemble)
4171 fprintf_filtered (stream, " ");
4172 if (data[0] == DW_OP_piece)
4173 {
4174 uint64_t bytes;
4175
4176 data = safe_read_uleb128 (data + 1, end, &bytes);
4177
4178 if (empty)
4179 fprintf_filtered (stream, _("an empty %s-byte piece"),
4180 pulongest (bytes));
4181 else
4182 fprintf_filtered (stream, _(" [%s-byte piece]"),
4183 pulongest (bytes));
4184 }
4185 else if (data[0] == DW_OP_bit_piece)
4186 {
4187 uint64_t bits, offset;
4188
4189 data = safe_read_uleb128 (data + 1, end, &bits);
4190 data = safe_read_uleb128 (data, end, &offset);
4191
4192 if (empty)
4193 fprintf_filtered (stream,
4194 _("an empty %s-bit piece"),
4195 pulongest (bits));
4196 else
4197 fprintf_filtered (stream,
4198 _(" [%s-bit piece, offset %s bits]"),
4199 pulongest (bits), pulongest (offset));
4200 }
4201 else
4202 {
4203 bad = 1;
4204 break;
4205 }
4206 }
4207 }
4208
4209 if (bad || data > end)
4210 error (_("Corrupted DWARF2 expression for \"%s\"."),
4211 SYMBOL_PRINT_NAME (symbol));
4212 }
4213
4214 /* Print a natural-language description of SYMBOL to STREAM. This
4215 version is for a symbol with a single location. */
4216
4217 static void
4218 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4219 struct ui_file *stream)
4220 {
4221 struct dwarf2_locexpr_baton *dlbaton
4222 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4223 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4224 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4225 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4226
4227 locexpr_describe_location_1 (symbol, addr, stream,
4228 dlbaton->data, dlbaton->size,
4229 objfile, addr_size, offset_size,
4230 dlbaton->per_cu);
4231 }
4232
4233 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4234 any necessary bytecode in AX. */
4235
4236 static void
4237 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4238 struct axs_value *value)
4239 {
4240 struct dwarf2_locexpr_baton *dlbaton
4241 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4242 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4243
4244 if (dlbaton->size == 0)
4245 value->optimized_out = 1;
4246 else
4247 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4248 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4249 }
4250
4251 /* symbol_computed_ops 'generate_c_location' method. */
4252
4253 static void
4254 locexpr_generate_c_location (struct symbol *sym, string_file *stream,
4255 struct gdbarch *gdbarch,
4256 unsigned char *registers_used,
4257 CORE_ADDR pc, const char *result_name)
4258 {
4259 struct dwarf2_locexpr_baton *dlbaton
4260 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4261 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4262
4263 if (dlbaton->size == 0)
4264 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4265
4266 compile_dwarf_expr_to_c (stream, result_name,
4267 sym, pc, gdbarch, registers_used, addr_size,
4268 dlbaton->data, dlbaton->data + dlbaton->size,
4269 dlbaton->per_cu);
4270 }
4271
4272 /* The set of location functions used with the DWARF-2 expression
4273 evaluator. */
4274 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4275 locexpr_read_variable,
4276 locexpr_read_variable_at_entry,
4277 locexpr_get_symbol_read_needs,
4278 locexpr_describe_location,
4279 0, /* location_has_loclist */
4280 locexpr_tracepoint_var_ref,
4281 locexpr_generate_c_location
4282 };
4283
4284
4285 /* Wrapper functions for location lists. These generally find
4286 the appropriate location expression and call something above. */
4287
4288 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4289 evaluator to calculate the location. */
4290 static struct value *
4291 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4292 {
4293 struct dwarf2_loclist_baton *dlbaton
4294 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4295 struct value *val;
4296 const gdb_byte *data;
4297 size_t size;
4298 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4299
4300 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4301 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4302 dlbaton->per_cu);
4303
4304 return val;
4305 }
4306
4307 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4308 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4309 will be thrown.
4310
4311 Function always returns non-NULL value, it may be marked optimized out if
4312 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4313 if it cannot resolve the parameter for any reason. */
4314
4315 static struct value *
4316 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4317 {
4318 struct dwarf2_loclist_baton *dlbaton
4319 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4320 const gdb_byte *data;
4321 size_t size;
4322 CORE_ADDR pc;
4323
4324 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4325 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4326
4327 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4328 if (data == NULL)
4329 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4330
4331 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4332 }
4333
4334 /* Implementation of get_symbol_read_needs from
4335 symbol_computed_ops. */
4336
4337 static enum symbol_needs_kind
4338 loclist_symbol_needs (struct symbol *symbol)
4339 {
4340 /* If there's a location list, then assume we need to have a frame
4341 to choose the appropriate location expression. With tracking of
4342 global variables this is not necessarily true, but such tracking
4343 is disabled in GCC at the moment until we figure out how to
4344 represent it. */
4345
4346 return SYMBOL_NEEDS_FRAME;
4347 }
4348
4349 /* Print a natural-language description of SYMBOL to STREAM. This
4350 version applies when there is a list of different locations, each
4351 with a specified address range. */
4352
4353 static void
4354 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4355 struct ui_file *stream)
4356 {
4357 struct dwarf2_loclist_baton *dlbaton
4358 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4359 const gdb_byte *loc_ptr, *buf_end;
4360 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4362 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4363 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4364 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4365 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4366 /* Adjust base_address for relocatable objects. */
4367 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4368 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4369 int done = 0;
4370
4371 loc_ptr = dlbaton->data;
4372 buf_end = dlbaton->data + dlbaton->size;
4373
4374 fprintf_filtered (stream, _("multi-location:\n"));
4375
4376 /* Iterate through locations until we run out. */
4377 while (!done)
4378 {
4379 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4380 int length;
4381 enum debug_loc_kind kind;
4382 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4383
4384 if (dlbaton->from_dwo)
4385 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4386 loc_ptr, buf_end, &new_ptr,
4387 &low, &high, byte_order);
4388 else
4389 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4390 &low, &high,
4391 byte_order, addr_size,
4392 signed_addr_p);
4393 loc_ptr = new_ptr;
4394 switch (kind)
4395 {
4396 case DEBUG_LOC_END_OF_LIST:
4397 done = 1;
4398 continue;
4399 case DEBUG_LOC_BASE_ADDRESS:
4400 base_address = high + base_offset;
4401 fprintf_filtered (stream, _(" Base address %s"),
4402 paddress (gdbarch, base_address));
4403 continue;
4404 case DEBUG_LOC_START_END:
4405 case DEBUG_LOC_START_LENGTH:
4406 break;
4407 case DEBUG_LOC_BUFFER_OVERFLOW:
4408 case DEBUG_LOC_INVALID_ENTRY:
4409 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4410 SYMBOL_PRINT_NAME (symbol));
4411 default:
4412 gdb_assert_not_reached ("bad debug_loc_kind");
4413 }
4414
4415 /* Otherwise, a location expression entry. */
4416 low += base_address;
4417 high += base_address;
4418
4419 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4420 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4421
4422 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4423 loc_ptr += 2;
4424
4425 /* (It would improve readability to print only the minimum
4426 necessary digits of the second number of the range.) */
4427 fprintf_filtered (stream, _(" Range %s-%s: "),
4428 paddress (gdbarch, low), paddress (gdbarch, high));
4429
4430 /* Now describe this particular location. */
4431 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4432 objfile, addr_size, offset_size,
4433 dlbaton->per_cu);
4434
4435 fprintf_filtered (stream, "\n");
4436
4437 loc_ptr += length;
4438 }
4439 }
4440
4441 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4442 any necessary bytecode in AX. */
4443 static void
4444 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4445 struct axs_value *value)
4446 {
4447 struct dwarf2_loclist_baton *dlbaton
4448 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4449 const gdb_byte *data;
4450 size_t size;
4451 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4452
4453 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4454 if (size == 0)
4455 value->optimized_out = 1;
4456 else
4457 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4458 dlbaton->per_cu);
4459 }
4460
4461 /* symbol_computed_ops 'generate_c_location' method. */
4462
4463 static void
4464 loclist_generate_c_location (struct symbol *sym, string_file *stream,
4465 struct gdbarch *gdbarch,
4466 unsigned char *registers_used,
4467 CORE_ADDR pc, const char *result_name)
4468 {
4469 struct dwarf2_loclist_baton *dlbaton
4470 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4471 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4472 const gdb_byte *data;
4473 size_t size;
4474
4475 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4476 if (size == 0)
4477 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4478
4479 compile_dwarf_expr_to_c (stream, result_name,
4480 sym, pc, gdbarch, registers_used, addr_size,
4481 data, data + size,
4482 dlbaton->per_cu);
4483 }
4484
4485 /* The set of location functions used with the DWARF-2 expression
4486 evaluator and location lists. */
4487 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4488 loclist_read_variable,
4489 loclist_read_variable_at_entry,
4490 loclist_symbol_needs,
4491 loclist_describe_location,
4492 1, /* location_has_loclist */
4493 loclist_tracepoint_var_ref,
4494 loclist_generate_c_location
4495 };
4496
4497 void
4498 _initialize_dwarf2loc (void)
4499 {
4500 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4501 &entry_values_debug,
4502 _("Set entry values and tail call frames "
4503 "debugging."),
4504 _("Show entry values and tail call frames "
4505 "debugging."),
4506 _("When non-zero, the process of determining "
4507 "parameter values from function entry point "
4508 "and tail call frames will be printed."),
4509 NULL,
4510 show_entry_values_debug,
4511 &setdebuglist, &showdebuglist);
4512 }
This page took 0.193813 seconds and 5 git commands to generate.