Convert lvalue reference type check to general reference type check
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45
46 extern int dwarf_always_disassemble;
47
48 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
49 struct frame_info *frame,
50 const gdb_byte *data,
51 size_t size,
52 struct dwarf2_per_cu_data *per_cu,
53 struct type *subobj_type,
54 LONGEST subobj_byte_offset);
55
56 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
57 (struct frame_info *frame,
58 enum call_site_parameter_kind kind,
59 union call_site_parameter_u kind_u,
60 struct dwarf2_per_cu_data **per_cu_return);
61
62 /* Until these have formal names, we define these here.
63 ref: http://gcc.gnu.org/wiki/DebugFission
64 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
65 and is then followed by data specific to that entry. */
66
67 enum debug_loc_kind
68 {
69 /* Indicates the end of the list of entries. */
70 DEBUG_LOC_END_OF_LIST = 0,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the base address for all following entries. */
74 DEBUG_LOC_BASE_ADDRESS = 1,
75
76 /* This is followed by two unsigned LEB128 numbers that are indices into
77 .debug_addr and specify the beginning and ending addresses, and then
78 a normal location expression as in .debug_loc. */
79 DEBUG_LOC_START_END = 2,
80
81 /* This is followed by an unsigned LEB128 number that is an index into
82 .debug_addr and specifies the beginning address, and a 4 byte unsigned
83 number that specifies the length, and then a normal location expression
84 as in .debug_loc. */
85 DEBUG_LOC_START_LENGTH = 3,
86
87 /* An internal value indicating there is insufficient data. */
88 DEBUG_LOC_BUFFER_OVERFLOW = -1,
89
90 /* An internal value indicating an invalid kind of entry was found. */
91 DEBUG_LOC_INVALID_ENTRY = -2
92 };
93
94 /* Helper function which throws an error if a synthetic pointer is
95 invalid. */
96
97 static void
98 invalid_synthetic_pointer (void)
99 {
100 error (_("access outside bounds of object "
101 "referenced via synthetic pointer"));
102 }
103
104 /* Decode the addresses in a non-dwo .debug_loc entry.
105 A pointer to the next byte to examine is returned in *NEW_PTR.
106 The encoded low,high addresses are return in *LOW,*HIGH.
107 The result indicates the kind of entry found. */
108
109 static enum debug_loc_kind
110 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
111 const gdb_byte **new_ptr,
112 CORE_ADDR *low, CORE_ADDR *high,
113 enum bfd_endian byte_order,
114 unsigned int addr_size,
115 int signed_addr_p)
116 {
117 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
118
119 if (buf_end - loc_ptr < 2 * addr_size)
120 return DEBUG_LOC_BUFFER_OVERFLOW;
121
122 if (signed_addr_p)
123 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
124 else
125 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
126 loc_ptr += addr_size;
127
128 if (signed_addr_p)
129 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
130 else
131 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
132 loc_ptr += addr_size;
133
134 *new_ptr = loc_ptr;
135
136 /* A base-address-selection entry. */
137 if ((*low & base_mask) == base_mask)
138 return DEBUG_LOC_BASE_ADDRESS;
139
140 /* An end-of-list entry. */
141 if (*low == 0 && *high == 0)
142 return DEBUG_LOC_END_OF_LIST;
143
144 return DEBUG_LOC_START_END;
145 }
146
147 /* Decode the addresses in .debug_loclists entry.
148 A pointer to the next byte to examine is returned in *NEW_PTR.
149 The encoded low,high addresses are return in *LOW,*HIGH.
150 The result indicates the kind of entry found. */
151
152 static enum debug_loc_kind
153 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
154 const gdb_byte *loc_ptr,
155 const gdb_byte *buf_end,
156 const gdb_byte **new_ptr,
157 CORE_ADDR *low, CORE_ADDR *high,
158 enum bfd_endian byte_order,
159 unsigned int addr_size,
160 int signed_addr_p)
161 {
162 uint64_t u64;
163
164 if (loc_ptr == buf_end)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166
167 switch (*loc_ptr++)
168 {
169 case DW_LLE_end_of_list:
170 *new_ptr = loc_ptr;
171 return DEBUG_LOC_END_OF_LIST;
172 case DW_LLE_base_address:
173 if (loc_ptr + addr_size > buf_end)
174 return DEBUG_LOC_BUFFER_OVERFLOW;
175 if (signed_addr_p)
176 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
177 else
178 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
179 loc_ptr += addr_size;
180 *new_ptr = loc_ptr;
181 return DEBUG_LOC_BASE_ADDRESS;
182 case DW_LLE_offset_pair:
183 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
184 if (loc_ptr == NULL)
185 return DEBUG_LOC_BUFFER_OVERFLOW;
186 *low = u64;
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
188 if (loc_ptr == NULL)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *high = u64;
191 *new_ptr = loc_ptr;
192 return DEBUG_LOC_START_END;
193 default:
194 return DEBUG_LOC_INVALID_ENTRY;
195 }
196 }
197
198 /* Decode the addresses in .debug_loc.dwo entry.
199 A pointer to the next byte to examine is returned in *NEW_PTR.
200 The encoded low,high addresses are return in *LOW,*HIGH.
201 The result indicates the kind of entry found. */
202
203 static enum debug_loc_kind
204 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
205 const gdb_byte *loc_ptr,
206 const gdb_byte *buf_end,
207 const gdb_byte **new_ptr,
208 CORE_ADDR *low, CORE_ADDR *high,
209 enum bfd_endian byte_order)
210 {
211 uint64_t low_index, high_index;
212
213 if (loc_ptr == buf_end)
214 return DEBUG_LOC_BUFFER_OVERFLOW;
215
216 switch (*loc_ptr++)
217 {
218 case DW_LLE_GNU_end_of_list_entry:
219 *new_ptr = loc_ptr;
220 return DEBUG_LOC_END_OF_LIST;
221 case DW_LLE_GNU_base_address_selection_entry:
222 *low = 0;
223 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
224 if (loc_ptr == NULL)
225 return DEBUG_LOC_BUFFER_OVERFLOW;
226 *high = dwarf2_read_addr_index (per_cu, high_index);
227 *new_ptr = loc_ptr;
228 return DEBUG_LOC_BASE_ADDRESS;
229 case DW_LLE_GNU_start_end_entry:
230 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
231 if (loc_ptr == NULL)
232 return DEBUG_LOC_BUFFER_OVERFLOW;
233 *low = dwarf2_read_addr_index (per_cu, low_index);
234 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
235 if (loc_ptr == NULL)
236 return DEBUG_LOC_BUFFER_OVERFLOW;
237 *high = dwarf2_read_addr_index (per_cu, high_index);
238 *new_ptr = loc_ptr;
239 return DEBUG_LOC_START_END;
240 case DW_LLE_GNU_start_length_entry:
241 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
242 if (loc_ptr == NULL)
243 return DEBUG_LOC_BUFFER_OVERFLOW;
244 *low = dwarf2_read_addr_index (per_cu, low_index);
245 if (loc_ptr + 4 > buf_end)
246 return DEBUG_LOC_BUFFER_OVERFLOW;
247 *high = *low;
248 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
249 *new_ptr = loc_ptr + 4;
250 return DEBUG_LOC_START_LENGTH;
251 default:
252 return DEBUG_LOC_INVALID_ENTRY;
253 }
254 }
255
256 /* A function for dealing with location lists. Given a
257 symbol baton (BATON) and a pc value (PC), find the appropriate
258 location expression, set *LOCEXPR_LENGTH, and return a pointer
259 to the beginning of the expression. Returns NULL on failure.
260
261 For now, only return the first matching location expression; there
262 can be more than one in the list. */
263
264 const gdb_byte *
265 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
266 size_t *locexpr_length, CORE_ADDR pc)
267 {
268 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
269 struct gdbarch *gdbarch = get_objfile_arch (objfile);
270 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
271 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
272 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
273 /* Adjust base_address for relocatable objects. */
274 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
275 CORE_ADDR base_address = baton->base_address + base_offset;
276 const gdb_byte *loc_ptr, *buf_end;
277
278 loc_ptr = baton->data;
279 buf_end = baton->data + baton->size;
280
281 while (1)
282 {
283 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
284 int length;
285 enum debug_loc_kind kind;
286 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
287
288 if (baton->from_dwo)
289 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
290 loc_ptr, buf_end, &new_ptr,
291 &low, &high, byte_order);
292 else if (dwarf2_version (baton->per_cu) < 5)
293 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
294 &low, &high,
295 byte_order, addr_size,
296 signed_addr_p);
297 else
298 kind = decode_debug_loclists_addresses (baton->per_cu,
299 loc_ptr, buf_end, &new_ptr,
300 &low, &high, byte_order,
301 addr_size, signed_addr_p);
302
303 loc_ptr = new_ptr;
304 switch (kind)
305 {
306 case DEBUG_LOC_END_OF_LIST:
307 *locexpr_length = 0;
308 return NULL;
309 case DEBUG_LOC_BASE_ADDRESS:
310 base_address = high + base_offset;
311 continue;
312 case DEBUG_LOC_START_END:
313 case DEBUG_LOC_START_LENGTH:
314 break;
315 case DEBUG_LOC_BUFFER_OVERFLOW:
316 case DEBUG_LOC_INVALID_ENTRY:
317 error (_("dwarf2_find_location_expression: "
318 "Corrupted DWARF expression."));
319 default:
320 gdb_assert_not_reached ("bad debug_loc_kind");
321 }
322
323 /* Otherwise, a location expression entry.
324 If the entry is from a DWO, don't add base address: the entry is from
325 .debug_addr which already has the DWARF "base address". We still add
326 base_offset in case we're debugging a PIE executable. */
327 if (baton->from_dwo)
328 {
329 low += base_offset;
330 high += base_offset;
331 }
332 else
333 {
334 low += base_address;
335 high += base_address;
336 }
337
338 if (dwarf2_version (baton->per_cu) < 5)
339 {
340 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
341 loc_ptr += 2;
342 }
343 else
344 {
345 unsigned int bytes_read;
346
347 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
348 loc_ptr += bytes_read;
349 }
350
351 if (low == high && pc == low)
352 {
353 /* This is entry PC record present only at entry point
354 of a function. Verify it is really the function entry point. */
355
356 const struct block *pc_block = block_for_pc (pc);
357 struct symbol *pc_func = NULL;
358
359 if (pc_block)
360 pc_func = block_linkage_function (pc_block);
361
362 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
363 {
364 *locexpr_length = length;
365 return loc_ptr;
366 }
367 }
368
369 if (pc >= low && pc < high)
370 {
371 *locexpr_length = length;
372 return loc_ptr;
373 }
374
375 loc_ptr += length;
376 }
377 }
378
379 /* This is the baton used when performing dwarf2 expression
380 evaluation. */
381 struct dwarf_expr_baton
382 {
383 struct frame_info *frame;
384 struct dwarf2_per_cu_data *per_cu;
385 CORE_ADDR obj_address;
386 };
387
388 /* Implement find_frame_base_location method for LOC_BLOCK functions using
389 DWARF expression for its DW_AT_frame_base. */
390
391 static void
392 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
393 const gdb_byte **start, size_t *length)
394 {
395 struct dwarf2_locexpr_baton *symbaton
396 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
397
398 *length = symbaton->size;
399 *start = symbaton->data;
400 }
401
402 /* Implement the struct symbol_block_ops::get_frame_base method for
403 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
404
405 static CORE_ADDR
406 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
407 {
408 struct gdbarch *gdbarch;
409 struct type *type;
410 struct dwarf2_locexpr_baton *dlbaton;
411 const gdb_byte *start;
412 size_t length;
413 struct value *result;
414
415 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
416 Thus, it's supposed to provide the find_frame_base_location method as
417 well. */
418 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
419
420 gdbarch = get_frame_arch (frame);
421 type = builtin_type (gdbarch)->builtin_data_ptr;
422 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
423
424 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
425 (framefunc, get_frame_pc (frame), &start, &length);
426 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
427 dlbaton->per_cu);
428
429 /* The DW_AT_frame_base attribute contains a location description which
430 computes the base address itself. However, the call to
431 dwarf2_evaluate_loc_desc returns a value representing a variable at
432 that address. The frame base address is thus this variable's
433 address. */
434 return value_address (result);
435 }
436
437 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
438 function uses DWARF expression for its DW_AT_frame_base. */
439
440 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
441 {
442 locexpr_find_frame_base_location,
443 locexpr_get_frame_base
444 };
445
446 /* Implement find_frame_base_location method for LOC_BLOCK functions using
447 DWARF location list for its DW_AT_frame_base. */
448
449 static void
450 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
451 const gdb_byte **start, size_t *length)
452 {
453 struct dwarf2_loclist_baton *symbaton
454 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
455
456 *start = dwarf2_find_location_expression (symbaton, length, pc);
457 }
458
459 /* Implement the struct symbol_block_ops::get_frame_base method for
460 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
461
462 static CORE_ADDR
463 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
464 {
465 struct gdbarch *gdbarch;
466 struct type *type;
467 struct dwarf2_loclist_baton *dlbaton;
468 const gdb_byte *start;
469 size_t length;
470 struct value *result;
471
472 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
473 Thus, it's supposed to provide the find_frame_base_location method as
474 well. */
475 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
476
477 gdbarch = get_frame_arch (frame);
478 type = builtin_type (gdbarch)->builtin_data_ptr;
479 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
480
481 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
482 (framefunc, get_frame_pc (frame), &start, &length);
483 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
484 dlbaton->per_cu);
485
486 /* The DW_AT_frame_base attribute contains a location description which
487 computes the base address itself. However, the call to
488 dwarf2_evaluate_loc_desc returns a value representing a variable at
489 that address. The frame base address is thus this variable's
490 address. */
491 return value_address (result);
492 }
493
494 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
495 function uses DWARF location list for its DW_AT_frame_base. */
496
497 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
498 {
499 loclist_find_frame_base_location,
500 loclist_get_frame_base
501 };
502
503 /* See dwarf2loc.h. */
504
505 void
506 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
507 const gdb_byte **start, size_t *length)
508 {
509 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
510 {
511 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
512
513 ops_block->find_frame_base_location (framefunc, pc, start, length);
514 }
515 else
516 *length = 0;
517
518 if (*length == 0)
519 error (_("Could not find the frame base for \"%s\"."),
520 SYMBOL_NATURAL_NAME (framefunc));
521 }
522
523 static CORE_ADDR
524 get_frame_pc_for_per_cu_dwarf_call (void *baton)
525 {
526 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
527
528 return ctx->get_frame_pc ();
529 }
530
531 static void
532 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
533 struct dwarf2_per_cu_data *per_cu)
534 {
535 struct dwarf2_locexpr_baton block;
536
537 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
538 get_frame_pc_for_per_cu_dwarf_call,
539 ctx);
540
541 /* DW_OP_call_ref is currently not supported. */
542 gdb_assert (block.per_cu == per_cu);
543
544 ctx->eval (block.data, block.size);
545 }
546
547 class dwarf_evaluate_loc_desc : public dwarf_expr_context
548 {
549 public:
550
551 struct frame_info *frame;
552 struct dwarf2_per_cu_data *per_cu;
553 CORE_ADDR obj_address;
554
555 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
556 the frame in BATON. */
557
558 CORE_ADDR get_frame_cfa () OVERRIDE
559 {
560 return dwarf2_frame_cfa (frame);
561 }
562
563 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
564 the frame in BATON. */
565
566 CORE_ADDR get_frame_pc () OVERRIDE
567 {
568 return get_frame_address_in_block (frame);
569 }
570
571 /* Using the objfile specified in BATON, find the address for the
572 current thread's thread-local storage with offset OFFSET. */
573 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
574 {
575 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
576
577 return target_translate_tls_address (objfile, offset);
578 }
579
580 /* Helper interface of per_cu_dwarf_call for
581 dwarf2_evaluate_loc_desc. */
582
583 void dwarf_call (cu_offset die_offset) OVERRIDE
584 {
585 per_cu_dwarf_call (this, die_offset, per_cu);
586 }
587
588 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
589 {
590 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
591 if (result == NULL)
592 error (_("Could not find type for DW_OP_const_type"));
593 if (size != 0 && TYPE_LENGTH (result) != size)
594 error (_("DW_OP_const_type has different sizes for type and data"));
595 return result;
596 }
597
598 /* Callback function for dwarf2_evaluate_loc_desc.
599 Fetch the address indexed by DW_OP_GNU_addr_index. */
600
601 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
602 {
603 return dwarf2_read_addr_index (per_cu, index);
604 }
605
606 /* Callback function for get_object_address. Return the address of the VLA
607 object. */
608
609 CORE_ADDR get_object_address () OVERRIDE
610 {
611 if (obj_address == 0)
612 error (_("Location address is not set."));
613 return obj_address;
614 }
615
616 /* Execute DWARF block of call_site_parameter which matches KIND and
617 KIND_U. Choose DEREF_SIZE value of that parameter. Search
618 caller of this objects's frame.
619
620 The caller can be from a different CU - per_cu_dwarf_call
621 implementation can be more simple as it does not support cross-CU
622 DWARF executions. */
623
624 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
625 union call_site_parameter_u kind_u,
626 int deref_size) OVERRIDE
627 {
628 struct frame_info *caller_frame;
629 struct dwarf2_per_cu_data *caller_per_cu;
630 struct call_site_parameter *parameter;
631 const gdb_byte *data_src;
632 size_t size;
633
634 caller_frame = get_prev_frame (frame);
635
636 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
637 &caller_per_cu);
638 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
639 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
640
641 /* DEREF_SIZE size is not verified here. */
642 if (data_src == NULL)
643 throw_error (NO_ENTRY_VALUE_ERROR,
644 _("Cannot resolve DW_AT_call_data_value"));
645
646 scoped_restore save_frame = make_scoped_restore (&this->frame,
647 caller_frame);
648 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
649 caller_per_cu);
650 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
651 (CORE_ADDR) 0);
652
653 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
654 this->gdbarch
655 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
656 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
657 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
658 scoped_restore save_offset = make_scoped_restore (&this->offset);
659 this->offset = dwarf2_per_cu_text_offset (per_cu);
660
661 this->eval (data_src, size);
662 }
663
664 /* Using the frame specified in BATON, find the location expression
665 describing the frame base. Return a pointer to it in START and
666 its length in LENGTH. */
667 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
668 {
669 /* FIXME: cagney/2003-03-26: This code should be using
670 get_frame_base_address(), and then implement a dwarf2 specific
671 this_base method. */
672 struct symbol *framefunc;
673 const struct block *bl = get_frame_block (frame, NULL);
674
675 if (bl == NULL)
676 error (_("frame address is not available."));
677
678 /* Use block_linkage_function, which returns a real (not inlined)
679 function, instead of get_frame_function, which may return an
680 inlined function. */
681 framefunc = block_linkage_function (bl);
682
683 /* If we found a frame-relative symbol then it was certainly within
684 some function associated with a frame. If we can't find the frame,
685 something has gone wrong. */
686 gdb_assert (framefunc != NULL);
687
688 func_get_frame_base_dwarf_block (framefunc,
689 get_frame_address_in_block (frame),
690 start, length);
691 }
692
693 /* Read memory at ADDR (length LEN) into BUF. */
694
695 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
696 {
697 read_memory (addr, buf, len);
698 }
699
700 /* Using the frame specified in BATON, return the value of register
701 REGNUM, treated as a pointer. */
702 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
703 {
704 struct gdbarch *gdbarch = get_frame_arch (frame);
705 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
706
707 return address_from_register (regnum, frame);
708 }
709
710 /* Implement "get_reg_value" callback. */
711
712 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
713 {
714 struct gdbarch *gdbarch = get_frame_arch (frame);
715 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
716
717 return value_from_register (type, regnum, frame);
718 }
719 };
720
721 /* See dwarf2loc.h. */
722
723 unsigned int entry_values_debug = 0;
724
725 /* Helper to set entry_values_debug. */
726
727 static void
728 show_entry_values_debug (struct ui_file *file, int from_tty,
729 struct cmd_list_element *c, const char *value)
730 {
731 fprintf_filtered (file,
732 _("Entry values and tail call frames debugging is %s.\n"),
733 value);
734 }
735
736 /* Find DW_TAG_call_site's DW_AT_call_target address.
737 CALLER_FRAME (for registers) can be NULL if it is not known. This function
738 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
739
740 static CORE_ADDR
741 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
742 struct call_site *call_site,
743 struct frame_info *caller_frame)
744 {
745 switch (FIELD_LOC_KIND (call_site->target))
746 {
747 case FIELD_LOC_KIND_DWARF_BLOCK:
748 {
749 struct dwarf2_locexpr_baton *dwarf_block;
750 struct value *val;
751 struct type *caller_core_addr_type;
752 struct gdbarch *caller_arch;
753
754 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
755 if (dwarf_block == NULL)
756 {
757 struct bound_minimal_symbol msym;
758
759 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
760 throw_error (NO_ENTRY_VALUE_ERROR,
761 _("DW_AT_call_target is not specified at %s in %s"),
762 paddress (call_site_gdbarch, call_site->pc),
763 (msym.minsym == NULL ? "???"
764 : MSYMBOL_PRINT_NAME (msym.minsym)));
765
766 }
767 if (caller_frame == NULL)
768 {
769 struct bound_minimal_symbol msym;
770
771 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
772 throw_error (NO_ENTRY_VALUE_ERROR,
773 _("DW_AT_call_target DWARF block resolving "
774 "requires known frame which is currently not "
775 "available at %s in %s"),
776 paddress (call_site_gdbarch, call_site->pc),
777 (msym.minsym == NULL ? "???"
778 : MSYMBOL_PRINT_NAME (msym.minsym)));
779
780 }
781 caller_arch = get_frame_arch (caller_frame);
782 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
783 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
784 dwarf_block->data, dwarf_block->size,
785 dwarf_block->per_cu);
786 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
787 if (VALUE_LVAL (val) == lval_memory)
788 return value_address (val);
789 else
790 return value_as_address (val);
791 }
792
793 case FIELD_LOC_KIND_PHYSNAME:
794 {
795 const char *physname;
796 struct bound_minimal_symbol msym;
797
798 physname = FIELD_STATIC_PHYSNAME (call_site->target);
799
800 /* Handle both the mangled and demangled PHYSNAME. */
801 msym = lookup_minimal_symbol (physname, NULL, NULL);
802 if (msym.minsym == NULL)
803 {
804 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
805 throw_error (NO_ENTRY_VALUE_ERROR,
806 _("Cannot find function \"%s\" for a call site target "
807 "at %s in %s"),
808 physname, paddress (call_site_gdbarch, call_site->pc),
809 (msym.minsym == NULL ? "???"
810 : MSYMBOL_PRINT_NAME (msym.minsym)));
811
812 }
813 return BMSYMBOL_VALUE_ADDRESS (msym);
814 }
815
816 case FIELD_LOC_KIND_PHYSADDR:
817 return FIELD_STATIC_PHYSADDR (call_site->target);
818
819 default:
820 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
821 }
822 }
823
824 /* Convert function entry point exact address ADDR to the function which is
825 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
826 NO_ENTRY_VALUE_ERROR otherwise. */
827
828 static struct symbol *
829 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
830 {
831 struct symbol *sym = find_pc_function (addr);
832 struct type *type;
833
834 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
835 throw_error (NO_ENTRY_VALUE_ERROR,
836 _("DW_TAG_call_site resolving failed to find function "
837 "name for address %s"),
838 paddress (gdbarch, addr));
839
840 type = SYMBOL_TYPE (sym);
841 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
842 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
843
844 return sym;
845 }
846
847 /* Verify function with entry point exact address ADDR can never call itself
848 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
849 can call itself via tail calls.
850
851 If a funtion can tail call itself its entry value based parameters are
852 unreliable. There is no verification whether the value of some/all
853 parameters is unchanged through the self tail call, we expect if there is
854 a self tail call all the parameters can be modified. */
855
856 static void
857 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
858 {
859 CORE_ADDR addr;
860
861 /* The verification is completely unordered. Track here function addresses
862 which still need to be iterated. */
863 std::vector<CORE_ADDR> todo;
864
865 /* Track here CORE_ADDRs which were already visited. */
866 std::unordered_set<CORE_ADDR> addr_hash;
867
868 todo.push_back (verify_addr);
869 while (!todo.empty ())
870 {
871 struct symbol *func_sym;
872 struct call_site *call_site;
873
874 addr = todo.back ();
875 todo.pop_back ();
876
877 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
878
879 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
880 call_site; call_site = call_site->tail_call_next)
881 {
882 CORE_ADDR target_addr;
883
884 /* CALLER_FRAME with registers is not available for tail-call jumped
885 frames. */
886 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
887
888 if (target_addr == verify_addr)
889 {
890 struct bound_minimal_symbol msym;
891
892 msym = lookup_minimal_symbol_by_pc (verify_addr);
893 throw_error (NO_ENTRY_VALUE_ERROR,
894 _("DW_OP_entry_value resolving has found "
895 "function \"%s\" at %s can call itself via tail "
896 "calls"),
897 (msym.minsym == NULL ? "???"
898 : MSYMBOL_PRINT_NAME (msym.minsym)),
899 paddress (gdbarch, verify_addr));
900 }
901
902 if (addr_hash.insert (target_addr).second)
903 todo.push_back (target_addr);
904 }
905 }
906 }
907
908 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
909 ENTRY_VALUES_DEBUG. */
910
911 static void
912 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
913 {
914 CORE_ADDR addr = call_site->pc;
915 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
916
917 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
918 (msym.minsym == NULL ? "???"
919 : MSYMBOL_PRINT_NAME (msym.minsym)));
920
921 }
922
923 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
924 only top callers and bottom callees which are present in both. GDBARCH is
925 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
926 no remaining possibilities to provide unambiguous non-trivial result.
927 RESULTP should point to NULL on the first (initialization) call. Caller is
928 responsible for xfree of any RESULTP data. */
929
930 static void
931 chain_candidate (struct gdbarch *gdbarch,
932 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
933 std::vector<struct call_site *> *chain)
934 {
935 long length = chain->size ();
936 int callers, callees, idx;
937
938 if (*resultp == NULL)
939 {
940 /* Create the initial chain containing all the passed PCs. */
941
942 struct call_site_chain *result
943 = ((struct call_site_chain *)
944 xmalloc (sizeof (*result)
945 + sizeof (*result->call_site) * (length - 1)));
946 result->length = length;
947 result->callers = result->callees = length;
948 if (!chain->empty ())
949 memcpy (result->call_site, chain->data (),
950 sizeof (*result->call_site) * length);
951 resultp->reset (result);
952
953 if (entry_values_debug)
954 {
955 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
956 for (idx = 0; idx < length; idx++)
957 tailcall_dump (gdbarch, result->call_site[idx]);
958 fputc_unfiltered ('\n', gdb_stdlog);
959 }
960
961 return;
962 }
963
964 if (entry_values_debug)
965 {
966 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
967 for (idx = 0; idx < length; idx++)
968 tailcall_dump (gdbarch, chain->at (idx));
969 fputc_unfiltered ('\n', gdb_stdlog);
970 }
971
972 /* Intersect callers. */
973
974 callers = std::min ((long) (*resultp)->callers, length);
975 for (idx = 0; idx < callers; idx++)
976 if ((*resultp)->call_site[idx] != chain->at (idx))
977 {
978 (*resultp)->callers = idx;
979 break;
980 }
981
982 /* Intersect callees. */
983
984 callees = std::min ((long) (*resultp)->callees, length);
985 for (idx = 0; idx < callees; idx++)
986 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
987 != chain->at (length - 1 - idx))
988 {
989 (*resultp)->callees = idx;
990 break;
991 }
992
993 if (entry_values_debug)
994 {
995 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
996 for (idx = 0; idx < (*resultp)->callers; idx++)
997 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
998 fputs_unfiltered (" |", gdb_stdlog);
999 for (idx = 0; idx < (*resultp)->callees; idx++)
1000 tailcall_dump (gdbarch,
1001 (*resultp)->call_site[(*resultp)->length
1002 - (*resultp)->callees + idx]);
1003 fputc_unfiltered ('\n', gdb_stdlog);
1004 }
1005
1006 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1007 {
1008 /* There are no common callers or callees. It could be also a direct
1009 call (which has length 0) with ambiguous possibility of an indirect
1010 call - CALLERS == CALLEES == 0 is valid during the first allocation
1011 but any subsequence processing of such entry means ambiguity. */
1012 resultp->reset (NULL);
1013 return;
1014 }
1015
1016 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1017 PC again. In such case there must be two different code paths to reach
1018 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1019 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1020 }
1021
1022 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1023 assumed frames between them use GDBARCH. Use depth first search so we can
1024 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1025 would have needless GDB stack overhead. Caller is responsible for xfree of
1026 the returned result. Any unreliability results in thrown
1027 NO_ENTRY_VALUE_ERROR. */
1028
1029 static struct call_site_chain *
1030 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1031 CORE_ADDR callee_pc)
1032 {
1033 CORE_ADDR save_callee_pc = callee_pc;
1034 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1035 struct call_site *call_site;
1036
1037 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1038 call_site nor any possible call_site at CALLEE_PC's function is there.
1039 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1040 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1041 std::vector<struct call_site *> chain;
1042
1043 /* We are not interested in the specific PC inside the callee function. */
1044 callee_pc = get_pc_function_start (callee_pc);
1045 if (callee_pc == 0)
1046 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1047 paddress (gdbarch, save_callee_pc));
1048
1049 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1050 std::unordered_set<CORE_ADDR> addr_hash;
1051
1052 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1053 at the target's function. All the possible tail call sites in the
1054 target's function will get iterated as already pushed into CHAIN via their
1055 TAIL_CALL_NEXT. */
1056 call_site = call_site_for_pc (gdbarch, caller_pc);
1057
1058 while (call_site)
1059 {
1060 CORE_ADDR target_func_addr;
1061 struct call_site *target_call_site;
1062
1063 /* CALLER_FRAME with registers is not available for tail-call jumped
1064 frames. */
1065 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1066
1067 if (target_func_addr == callee_pc)
1068 {
1069 chain_candidate (gdbarch, &retval, &chain);
1070 if (retval == NULL)
1071 break;
1072
1073 /* There is no way to reach CALLEE_PC again as we would prevent
1074 entering it twice as being already marked in ADDR_HASH. */
1075 target_call_site = NULL;
1076 }
1077 else
1078 {
1079 struct symbol *target_func;
1080
1081 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1082 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1083 }
1084
1085 do
1086 {
1087 /* Attempt to visit TARGET_CALL_SITE. */
1088
1089 if (target_call_site)
1090 {
1091 if (addr_hash.insert (target_call_site->pc).second)
1092 {
1093 /* Successfully entered TARGET_CALL_SITE. */
1094
1095 chain.push_back (target_call_site);
1096 break;
1097 }
1098 }
1099
1100 /* Backtrack (without revisiting the originating call_site). Try the
1101 callers's sibling; if there isn't any try the callers's callers's
1102 sibling etc. */
1103
1104 target_call_site = NULL;
1105 while (!chain.empty ())
1106 {
1107 call_site = chain.back ();
1108 chain.pop_back ();
1109
1110 size_t removed = addr_hash.erase (call_site->pc);
1111 gdb_assert (removed == 1);
1112
1113 target_call_site = call_site->tail_call_next;
1114 if (target_call_site)
1115 break;
1116 }
1117 }
1118 while (target_call_site);
1119
1120 if (chain.empty ())
1121 call_site = NULL;
1122 else
1123 call_site = chain.back ();
1124 }
1125
1126 if (retval == NULL)
1127 {
1128 struct bound_minimal_symbol msym_caller, msym_callee;
1129
1130 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1131 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1132 throw_error (NO_ENTRY_VALUE_ERROR,
1133 _("There are no unambiguously determinable intermediate "
1134 "callers or callees between caller function \"%s\" at %s "
1135 "and callee function \"%s\" at %s"),
1136 (msym_caller.minsym == NULL
1137 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1138 paddress (gdbarch, caller_pc),
1139 (msym_callee.minsym == NULL
1140 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1141 paddress (gdbarch, callee_pc));
1142 }
1143
1144 return retval.release ();
1145 }
1146
1147 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1148 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1149 constructed return NULL. Caller is responsible for xfree of the returned
1150 result. */
1151
1152 struct call_site_chain *
1153 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1154 CORE_ADDR callee_pc)
1155 {
1156 struct call_site_chain *retval = NULL;
1157
1158 TRY
1159 {
1160 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1161 }
1162 CATCH (e, RETURN_MASK_ERROR)
1163 {
1164 if (e.error == NO_ENTRY_VALUE_ERROR)
1165 {
1166 if (entry_values_debug)
1167 exception_print (gdb_stdout, e);
1168
1169 return NULL;
1170 }
1171 else
1172 throw_exception (e);
1173 }
1174 END_CATCH
1175
1176 return retval;
1177 }
1178
1179 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1180
1181 static int
1182 call_site_parameter_matches (struct call_site_parameter *parameter,
1183 enum call_site_parameter_kind kind,
1184 union call_site_parameter_u kind_u)
1185 {
1186 if (kind == parameter->kind)
1187 switch (kind)
1188 {
1189 case CALL_SITE_PARAMETER_DWARF_REG:
1190 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1191 case CALL_SITE_PARAMETER_FB_OFFSET:
1192 return kind_u.fb_offset == parameter->u.fb_offset;
1193 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1194 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1195 }
1196 return 0;
1197 }
1198
1199 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1200 FRAME is for callee.
1201
1202 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1203 otherwise. */
1204
1205 static struct call_site_parameter *
1206 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1207 enum call_site_parameter_kind kind,
1208 union call_site_parameter_u kind_u,
1209 struct dwarf2_per_cu_data **per_cu_return)
1210 {
1211 CORE_ADDR func_addr, caller_pc;
1212 struct gdbarch *gdbarch;
1213 struct frame_info *caller_frame;
1214 struct call_site *call_site;
1215 int iparams;
1216 /* Initialize it just to avoid a GCC false warning. */
1217 struct call_site_parameter *parameter = NULL;
1218 CORE_ADDR target_addr;
1219
1220 while (get_frame_type (frame) == INLINE_FRAME)
1221 {
1222 frame = get_prev_frame (frame);
1223 gdb_assert (frame != NULL);
1224 }
1225
1226 func_addr = get_frame_func (frame);
1227 gdbarch = get_frame_arch (frame);
1228 caller_frame = get_prev_frame (frame);
1229 if (gdbarch != frame_unwind_arch (frame))
1230 {
1231 struct bound_minimal_symbol msym
1232 = lookup_minimal_symbol_by_pc (func_addr);
1233 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1234
1235 throw_error (NO_ENTRY_VALUE_ERROR,
1236 _("DW_OP_entry_value resolving callee gdbarch %s "
1237 "(of %s (%s)) does not match caller gdbarch %s"),
1238 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1239 paddress (gdbarch, func_addr),
1240 (msym.minsym == NULL ? "???"
1241 : MSYMBOL_PRINT_NAME (msym.minsym)),
1242 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1243 }
1244
1245 if (caller_frame == NULL)
1246 {
1247 struct bound_minimal_symbol msym
1248 = lookup_minimal_symbol_by_pc (func_addr);
1249
1250 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1251 "requires caller of %s (%s)"),
1252 paddress (gdbarch, func_addr),
1253 (msym.minsym == NULL ? "???"
1254 : MSYMBOL_PRINT_NAME (msym.minsym)));
1255 }
1256 caller_pc = get_frame_pc (caller_frame);
1257 call_site = call_site_for_pc (gdbarch, caller_pc);
1258
1259 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1260 if (target_addr != func_addr)
1261 {
1262 struct minimal_symbol *target_msym, *func_msym;
1263
1264 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1265 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1266 throw_error (NO_ENTRY_VALUE_ERROR,
1267 _("DW_OP_entry_value resolving expects callee %s at %s "
1268 "but the called frame is for %s at %s"),
1269 (target_msym == NULL ? "???"
1270 : MSYMBOL_PRINT_NAME (target_msym)),
1271 paddress (gdbarch, target_addr),
1272 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1273 paddress (gdbarch, func_addr));
1274 }
1275
1276 /* No entry value based parameters would be reliable if this function can
1277 call itself via tail calls. */
1278 func_verify_no_selftailcall (gdbarch, func_addr);
1279
1280 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1281 {
1282 parameter = &call_site->parameter[iparams];
1283 if (call_site_parameter_matches (parameter, kind, kind_u))
1284 break;
1285 }
1286 if (iparams == call_site->parameter_count)
1287 {
1288 struct minimal_symbol *msym
1289 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1290
1291 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1292 determine its value. */
1293 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1294 "at DW_TAG_call_site %s at %s"),
1295 paddress (gdbarch, caller_pc),
1296 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1297 }
1298
1299 *per_cu_return = call_site->per_cu;
1300 return parameter;
1301 }
1302
1303 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1304 the normal DW_AT_call_value block. Otherwise return the
1305 DW_AT_call_data_value (dereferenced) block.
1306
1307 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1308 struct value.
1309
1310 Function always returns non-NULL, non-optimized out value. It throws
1311 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1312
1313 static struct value *
1314 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1315 CORE_ADDR deref_size, struct type *type,
1316 struct frame_info *caller_frame,
1317 struct dwarf2_per_cu_data *per_cu)
1318 {
1319 const gdb_byte *data_src;
1320 gdb_byte *data;
1321 size_t size;
1322
1323 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1324 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1325
1326 /* DEREF_SIZE size is not verified here. */
1327 if (data_src == NULL)
1328 throw_error (NO_ENTRY_VALUE_ERROR,
1329 _("Cannot resolve DW_AT_call_data_value"));
1330
1331 /* DW_AT_call_value is a DWARF expression, not a DWARF
1332 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1333 DWARF block. */
1334 data = (gdb_byte *) alloca (size + 1);
1335 memcpy (data, data_src, size);
1336 data[size] = DW_OP_stack_value;
1337
1338 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1339 }
1340
1341 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1342 the indirect method on it, that is use its stored target value, the sole
1343 purpose of entry_data_value_funcs.. */
1344
1345 static struct value *
1346 entry_data_value_coerce_ref (const struct value *value)
1347 {
1348 struct type *checked_type = check_typedef (value_type (value));
1349 struct value *target_val;
1350
1351 if (!TYPE_IS_REFERENCE (checked_type))
1352 return NULL;
1353
1354 target_val = (struct value *) value_computed_closure (value);
1355 value_incref (target_val);
1356 return target_val;
1357 }
1358
1359 /* Implement copy_closure. */
1360
1361 static void *
1362 entry_data_value_copy_closure (const struct value *v)
1363 {
1364 struct value *target_val = (struct value *) value_computed_closure (v);
1365
1366 value_incref (target_val);
1367 return target_val;
1368 }
1369
1370 /* Implement free_closure. */
1371
1372 static void
1373 entry_data_value_free_closure (struct value *v)
1374 {
1375 struct value *target_val = (struct value *) value_computed_closure (v);
1376
1377 value_free (target_val);
1378 }
1379
1380 /* Vector for methods for an entry value reference where the referenced value
1381 is stored in the caller. On the first dereference use
1382 DW_AT_call_data_value in the caller. */
1383
1384 static const struct lval_funcs entry_data_value_funcs =
1385 {
1386 NULL, /* read */
1387 NULL, /* write */
1388 NULL, /* indirect */
1389 entry_data_value_coerce_ref,
1390 NULL, /* check_synthetic_pointer */
1391 entry_data_value_copy_closure,
1392 entry_data_value_free_closure
1393 };
1394
1395 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1396 are used to match DW_AT_location at the caller's
1397 DW_TAG_call_site_parameter.
1398
1399 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1400 cannot resolve the parameter for any reason. */
1401
1402 static struct value *
1403 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1404 enum call_site_parameter_kind kind,
1405 union call_site_parameter_u kind_u)
1406 {
1407 struct type *checked_type = check_typedef (type);
1408 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1409 struct frame_info *caller_frame = get_prev_frame (frame);
1410 struct value *outer_val, *target_val, *val;
1411 struct call_site_parameter *parameter;
1412 struct dwarf2_per_cu_data *caller_per_cu;
1413
1414 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1415 &caller_per_cu);
1416
1417 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1418 type, caller_frame,
1419 caller_per_cu);
1420
1421 /* Check if DW_AT_call_data_value cannot be used. If it should be
1422 used and it is not available do not fall back to OUTER_VAL - dereferencing
1423 TYPE_CODE_REF with non-entry data value would give current value - not the
1424 entry value. */
1425
1426 if (!TYPE_IS_REFERENCE (checked_type)
1427 || TYPE_TARGET_TYPE (checked_type) == NULL)
1428 return outer_val;
1429
1430 target_val = dwarf_entry_parameter_to_value (parameter,
1431 TYPE_LENGTH (target_type),
1432 target_type, caller_frame,
1433 caller_per_cu);
1434
1435 release_value (target_val);
1436 val = allocate_computed_value (type, &entry_data_value_funcs,
1437 target_val /* closure */);
1438
1439 /* Copy the referencing pointer to the new computed value. */
1440 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1441 TYPE_LENGTH (checked_type));
1442 set_value_lazy (val, 0);
1443
1444 return val;
1445 }
1446
1447 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1448 SIZE are DWARF block used to match DW_AT_location at the caller's
1449 DW_TAG_call_site_parameter.
1450
1451 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1452 cannot resolve the parameter for any reason. */
1453
1454 static struct value *
1455 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1456 const gdb_byte *block, size_t block_len)
1457 {
1458 union call_site_parameter_u kind_u;
1459
1460 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1461 if (kind_u.dwarf_reg != -1)
1462 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1463 kind_u);
1464
1465 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1466 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1467 kind_u);
1468
1469 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1470 suppressed during normal operation. The expression can be arbitrary if
1471 there is no caller-callee entry value binding expected. */
1472 throw_error (NO_ENTRY_VALUE_ERROR,
1473 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1474 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1475 }
1476
1477 struct piece_closure
1478 {
1479 /* Reference count. */
1480 int refc;
1481
1482 /* The CU from which this closure's expression came. */
1483 struct dwarf2_per_cu_data *per_cu;
1484
1485 /* The number of pieces used to describe this variable. */
1486 int n_pieces;
1487
1488 /* The target address size, used only for DWARF_VALUE_STACK. */
1489 int addr_size;
1490
1491 /* The pieces themselves. */
1492 struct dwarf_expr_piece *pieces;
1493
1494 /* Frame ID of frame to which a register value is relative, used
1495 only by DWARF_VALUE_REGISTER. */
1496 struct frame_id frame_id;
1497 };
1498
1499 /* Allocate a closure for a value formed from separately-described
1500 PIECES. */
1501
1502 static struct piece_closure *
1503 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1504 int n_pieces, struct dwarf_expr_piece *pieces,
1505 int addr_size, struct frame_info *frame)
1506 {
1507 struct piece_closure *c = XCNEW (struct piece_closure);
1508 int i;
1509
1510 c->refc = 1;
1511 c->per_cu = per_cu;
1512 c->n_pieces = n_pieces;
1513 c->addr_size = addr_size;
1514 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1515 if (frame == NULL)
1516 c->frame_id = null_frame_id;
1517 else
1518 c->frame_id = get_frame_id (frame);
1519
1520 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1521 for (i = 0; i < n_pieces; ++i)
1522 if (c->pieces[i].location == DWARF_VALUE_STACK)
1523 value_incref (c->pieces[i].v.value);
1524
1525 return c;
1526 }
1527
1528 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1529 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1530 Source and destination buffers must not overlap. */
1531
1532 static void
1533 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1534 const gdb_byte *source, ULONGEST source_offset,
1535 ULONGEST nbits, int bits_big_endian)
1536 {
1537 unsigned int buf, avail;
1538
1539 if (nbits == 0)
1540 return;
1541
1542 if (bits_big_endian)
1543 {
1544 /* Start from the end, then work backwards. */
1545 dest_offset += nbits - 1;
1546 dest += dest_offset / 8;
1547 dest_offset = 7 - dest_offset % 8;
1548 source_offset += nbits - 1;
1549 source += source_offset / 8;
1550 source_offset = 7 - source_offset % 8;
1551 }
1552 else
1553 {
1554 dest += dest_offset / 8;
1555 dest_offset %= 8;
1556 source += source_offset / 8;
1557 source_offset %= 8;
1558 }
1559
1560 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1561 SOURCE_OFFSET bits from the source. */
1562 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1563 buf <<= dest_offset;
1564 buf |= *dest & ((1 << dest_offset) - 1);
1565
1566 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1567 nbits += dest_offset;
1568 avail = dest_offset + 8 - source_offset;
1569
1570 /* Flush 8 bits from BUF, if appropriate. */
1571 if (nbits >= 8 && avail >= 8)
1572 {
1573 *(bits_big_endian ? dest-- : dest++) = buf;
1574 buf >>= 8;
1575 avail -= 8;
1576 nbits -= 8;
1577 }
1578
1579 /* Copy the middle part. */
1580 if (nbits >= 8)
1581 {
1582 size_t len = nbits / 8;
1583
1584 /* Use a faster method for byte-aligned copies. */
1585 if (avail == 0)
1586 {
1587 if (bits_big_endian)
1588 {
1589 dest -= len;
1590 source -= len;
1591 memcpy (dest + 1, source + 1, len);
1592 }
1593 else
1594 {
1595 memcpy (dest, source, len);
1596 dest += len;
1597 source += len;
1598 }
1599 }
1600 else
1601 {
1602 while (len--)
1603 {
1604 buf |= *(bits_big_endian ? source-- : source++) << avail;
1605 *(bits_big_endian ? dest-- : dest++) = buf;
1606 buf >>= 8;
1607 }
1608 }
1609 nbits %= 8;
1610 }
1611
1612 /* Write the last byte. */
1613 if (nbits)
1614 {
1615 if (avail < nbits)
1616 buf |= *source << avail;
1617
1618 buf &= (1 << nbits) - 1;
1619 *dest = (*dest & (~0 << nbits)) | buf;
1620 }
1621 }
1622
1623 #if GDB_SELF_TEST
1624
1625 namespace selftests {
1626
1627 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1628 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1629 specifies whether to assume big endian bit numbering. Store the
1630 resulting (not null-terminated) string at STR. */
1631
1632 static void
1633 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1634 ULONGEST nbits, int msb0)
1635 {
1636 unsigned int j;
1637 size_t i;
1638
1639 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1640 {
1641 unsigned int ch = bits[i];
1642 for (; j < 8 && nbits; j++, nbits--)
1643 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1644 }
1645 }
1646
1647 /* Check one invocation of copy_bitwise with the given parameters. */
1648
1649 static void
1650 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1651 const gdb_byte *source, unsigned int source_offset,
1652 unsigned int nbits, int msb0)
1653 {
1654 size_t len = align_up (dest_offset + nbits, 8);
1655 char *expected = (char *) alloca (len + 1);
1656 char *actual = (char *) alloca (len + 1);
1657 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1658
1659 /* Compose a '0'/'1'-string that represents the expected result of
1660 copy_bitwise below:
1661 Bits from [0, DEST_OFFSET) are filled from DEST.
1662 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1663 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1664
1665 E.g., with:
1666 dest_offset: 4
1667 nbits: 2
1668 len: 8
1669 dest: 00000000
1670 source: 11111111
1671
1672 We should end up with:
1673 buf: 00001100
1674 DDDDSSDD (D=dest, S=source)
1675 */
1676 bits_to_str (expected, dest, 0, len, msb0);
1677 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1678
1679 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1680 result to a '0'/'1'-string. */
1681 memcpy (buf, dest, len / 8);
1682 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1683 bits_to_str (actual, buf, 0, len, msb0);
1684
1685 /* Compare the resulting strings. */
1686 expected[len] = actual[len] = '\0';
1687 if (strcmp (expected, actual) != 0)
1688 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1689 expected, actual, source_offset, nbits, dest_offset);
1690 }
1691
1692 /* Unit test for copy_bitwise. */
1693
1694 static void
1695 copy_bitwise_tests (void)
1696 {
1697 /* Data to be used as both source and destination buffers. The two
1698 arrays below represent the lsb0- and msb0- encoded versions of the
1699 following bit string, respectively:
1700 00000000 00011111 11111111 01001000 10100101 11110010
1701 This pattern is chosen such that it contains:
1702 - constant 0- and 1- chunks of more than a full byte;
1703 - 0/1- and 1/0 transitions on all bit positions within a byte;
1704 - several sufficiently asymmetric bytes.
1705 */
1706 static const gdb_byte data_lsb0[] = {
1707 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1708 };
1709 static const gdb_byte data_msb0[] = {
1710 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1711 };
1712
1713 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1714 constexpr unsigned max_nbits = 24;
1715
1716 /* Try all combinations of:
1717 lsb0/msb0 bit order (using the respective data array)
1718 X [0, MAX_NBITS] copy bit width
1719 X feasible source offsets for the given copy bit width
1720 X feasible destination offsets
1721 */
1722 for (int msb0 = 0; msb0 < 2; msb0++)
1723 {
1724 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1725
1726 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1727 {
1728 const unsigned int max_offset = data_nbits - nbits;
1729
1730 for (unsigned source_offset = 0;
1731 source_offset <= max_offset;
1732 source_offset++)
1733 {
1734 for (unsigned dest_offset = 0;
1735 dest_offset <= max_offset;
1736 dest_offset++)
1737 {
1738 check_copy_bitwise (data + dest_offset / 8,
1739 dest_offset % 8,
1740 data + source_offset / 8,
1741 source_offset % 8,
1742 nbits, msb0);
1743 }
1744 }
1745 }
1746
1747 /* Special cases: copy all, copy nothing. */
1748 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1749 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1750 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1751 }
1752 }
1753
1754 } /* namespace selftests */
1755
1756 #endif /* GDB_SELF_TEST */
1757
1758 static void
1759 read_pieced_value (struct value *v)
1760 {
1761 int i;
1762 long offset = 0;
1763 ULONGEST bits_to_skip;
1764 gdb_byte *contents;
1765 struct piece_closure *c
1766 = (struct piece_closure *) value_computed_closure (v);
1767 size_t type_len;
1768 size_t buffer_size = 0;
1769 std::vector<gdb_byte> buffer;
1770 int bits_big_endian
1771 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1772
1773 if (value_type (v) != value_enclosing_type (v))
1774 internal_error (__FILE__, __LINE__,
1775 _("Should not be able to create a lazy value with "
1776 "an enclosing type"));
1777
1778 contents = value_contents_raw (v);
1779 bits_to_skip = 8 * value_offset (v);
1780 if (value_bitsize (v))
1781 {
1782 bits_to_skip += value_bitpos (v);
1783 type_len = value_bitsize (v);
1784 }
1785 else
1786 type_len = 8 * TYPE_LENGTH (value_type (v));
1787
1788 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1789 {
1790 struct dwarf_expr_piece *p = &c->pieces[i];
1791 size_t this_size, this_size_bits;
1792 long dest_offset_bits, source_offset_bits, source_offset;
1793 const gdb_byte *intermediate_buffer;
1794
1795 /* Compute size, source, and destination offsets for copying, in
1796 bits. */
1797 this_size_bits = p->size;
1798 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1799 {
1800 bits_to_skip -= this_size_bits;
1801 continue;
1802 }
1803 if (bits_to_skip > 0)
1804 {
1805 dest_offset_bits = 0;
1806 source_offset_bits = bits_to_skip;
1807 this_size_bits -= bits_to_skip;
1808 bits_to_skip = 0;
1809 }
1810 else
1811 {
1812 dest_offset_bits = offset;
1813 source_offset_bits = 0;
1814 }
1815 if (this_size_bits > type_len - offset)
1816 this_size_bits = type_len - offset;
1817
1818 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1819 source_offset = source_offset_bits / 8;
1820 if (buffer_size < this_size)
1821 {
1822 buffer_size = this_size;
1823 buffer.reserve (buffer_size);
1824 }
1825 intermediate_buffer = buffer.data ();
1826
1827 /* Copy from the source to DEST_BUFFER. */
1828 switch (p->location)
1829 {
1830 case DWARF_VALUE_REGISTER:
1831 {
1832 struct frame_info *frame = frame_find_by_id (c->frame_id);
1833 struct gdbarch *arch = get_frame_arch (frame);
1834 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1835 int optim, unavail;
1836 LONGEST reg_offset = source_offset;
1837
1838 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1839 && this_size < register_size (arch, gdb_regnum))
1840 {
1841 /* Big-endian, and we want less than full size. */
1842 reg_offset = register_size (arch, gdb_regnum) - this_size;
1843 /* We want the lower-order THIS_SIZE_BITS of the bytes
1844 we extract from the register. */
1845 source_offset_bits += 8 * this_size - this_size_bits;
1846 }
1847
1848 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1849 this_size, buffer.data (),
1850 &optim, &unavail))
1851 {
1852 /* Just so garbage doesn't ever shine through. */
1853 memset (buffer.data (), 0, this_size);
1854
1855 if (optim)
1856 mark_value_bits_optimized_out (v, offset, this_size_bits);
1857 if (unavail)
1858 mark_value_bits_unavailable (v, offset, this_size_bits);
1859 }
1860 }
1861 break;
1862
1863 case DWARF_VALUE_MEMORY:
1864 read_value_memory (v, offset,
1865 p->v.mem.in_stack_memory,
1866 p->v.mem.addr + source_offset,
1867 buffer.data (), this_size);
1868 break;
1869
1870 case DWARF_VALUE_STACK:
1871 {
1872 size_t n = this_size;
1873
1874 if (n > c->addr_size - source_offset)
1875 n = (c->addr_size >= source_offset
1876 ? c->addr_size - source_offset
1877 : 0);
1878 if (n == 0)
1879 {
1880 /* Nothing. */
1881 }
1882 else
1883 {
1884 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1885
1886 intermediate_buffer = val_bytes + source_offset;
1887 }
1888 }
1889 break;
1890
1891 case DWARF_VALUE_LITERAL:
1892 {
1893 size_t n = this_size;
1894
1895 if (n > p->v.literal.length - source_offset)
1896 n = (p->v.literal.length >= source_offset
1897 ? p->v.literal.length - source_offset
1898 : 0);
1899 if (n != 0)
1900 intermediate_buffer = p->v.literal.data + source_offset;
1901 }
1902 break;
1903
1904 /* These bits show up as zeros -- but do not cause the value
1905 to be considered optimized-out. */
1906 case DWARF_VALUE_IMPLICIT_POINTER:
1907 break;
1908
1909 case DWARF_VALUE_OPTIMIZED_OUT:
1910 mark_value_bits_optimized_out (v, offset, this_size_bits);
1911 break;
1912
1913 default:
1914 internal_error (__FILE__, __LINE__, _("invalid location type"));
1915 }
1916
1917 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1918 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1919 copy_bitwise (contents, dest_offset_bits,
1920 intermediate_buffer, source_offset_bits % 8,
1921 this_size_bits, bits_big_endian);
1922
1923 offset += this_size_bits;
1924 }
1925 }
1926
1927 static void
1928 write_pieced_value (struct value *to, struct value *from)
1929 {
1930 int i;
1931 long offset = 0;
1932 ULONGEST bits_to_skip;
1933 const gdb_byte *contents;
1934 struct piece_closure *c
1935 = (struct piece_closure *) value_computed_closure (to);
1936 size_t type_len;
1937 size_t buffer_size = 0;
1938 std::vector<gdb_byte> buffer;
1939 int bits_big_endian
1940 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1941
1942 contents = value_contents (from);
1943 bits_to_skip = 8 * value_offset (to);
1944 if (value_bitsize (to))
1945 {
1946 bits_to_skip += value_bitpos (to);
1947 type_len = value_bitsize (to);
1948 }
1949 else
1950 type_len = 8 * TYPE_LENGTH (value_type (to));
1951
1952 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1953 {
1954 struct dwarf_expr_piece *p = &c->pieces[i];
1955 size_t this_size_bits, this_size;
1956 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1957 int need_bitwise;
1958 const gdb_byte *source_buffer;
1959
1960 this_size_bits = p->size;
1961 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1962 {
1963 bits_to_skip -= this_size_bits;
1964 continue;
1965 }
1966 if (this_size_bits > type_len - offset)
1967 this_size_bits = type_len - offset;
1968 if (bits_to_skip > 0)
1969 {
1970 dest_offset_bits = bits_to_skip;
1971 source_offset_bits = 0;
1972 this_size_bits -= bits_to_skip;
1973 bits_to_skip = 0;
1974 }
1975 else
1976 {
1977 dest_offset_bits = 0;
1978 source_offset_bits = offset;
1979 }
1980
1981 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1982 source_offset = source_offset_bits / 8;
1983 dest_offset = dest_offset_bits / 8;
1984 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1985 {
1986 source_buffer = contents + source_offset;
1987 need_bitwise = 0;
1988 }
1989 else
1990 {
1991 if (buffer_size < this_size)
1992 {
1993 buffer_size = this_size;
1994 buffer.reserve (buffer_size);
1995 }
1996 source_buffer = buffer.data ();
1997 need_bitwise = 1;
1998 }
1999
2000 switch (p->location)
2001 {
2002 case DWARF_VALUE_REGISTER:
2003 {
2004 struct frame_info *frame = frame_find_by_id (c->frame_id);
2005 struct gdbarch *arch = get_frame_arch (frame);
2006 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
2007 int reg_offset = dest_offset;
2008
2009 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2010 && this_size <= register_size (arch, gdb_regnum))
2011 {
2012 /* Big-endian, and we want less than full size. */
2013 reg_offset = register_size (arch, gdb_regnum) - this_size;
2014 }
2015
2016 if (need_bitwise)
2017 {
2018 int optim, unavail;
2019
2020 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
2021 this_size, buffer.data (),
2022 &optim, &unavail))
2023 {
2024 if (optim)
2025 throw_error (OPTIMIZED_OUT_ERROR,
2026 _("Can't do read-modify-write to "
2027 "update bitfield; containing word "
2028 "has been optimized out"));
2029 if (unavail)
2030 throw_error (NOT_AVAILABLE_ERROR,
2031 _("Can't do read-modify-write to update "
2032 "bitfield; containing word "
2033 "is unavailable"));
2034 }
2035 copy_bitwise (buffer.data (), dest_offset_bits,
2036 contents, source_offset_bits,
2037 this_size_bits,
2038 bits_big_endian);
2039 }
2040
2041 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2042 this_size, source_buffer);
2043 }
2044 break;
2045 case DWARF_VALUE_MEMORY:
2046 if (need_bitwise)
2047 {
2048 /* Only the first and last bytes can possibly have any
2049 bits reused. */
2050 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2051 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2052 &buffer[this_size - 1], 1);
2053 copy_bitwise (buffer.data (), dest_offset_bits,
2054 contents, source_offset_bits,
2055 this_size_bits,
2056 bits_big_endian);
2057 }
2058
2059 write_memory (p->v.mem.addr + dest_offset,
2060 source_buffer, this_size);
2061 break;
2062 default:
2063 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2064 break;
2065 }
2066 offset += this_size_bits;
2067 }
2068 }
2069
2070 /* An implementation of an lval_funcs method to see whether a value is
2071 a synthetic pointer. */
2072
2073 static int
2074 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2075 int bit_length)
2076 {
2077 struct piece_closure *c
2078 = (struct piece_closure *) value_computed_closure (value);
2079 int i;
2080
2081 bit_offset += 8 * value_offset (value);
2082 if (value_bitsize (value))
2083 bit_offset += value_bitpos (value);
2084
2085 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2086 {
2087 struct dwarf_expr_piece *p = &c->pieces[i];
2088 size_t this_size_bits = p->size;
2089
2090 if (bit_offset > 0)
2091 {
2092 if (bit_offset >= this_size_bits)
2093 {
2094 bit_offset -= this_size_bits;
2095 continue;
2096 }
2097
2098 bit_length -= this_size_bits - bit_offset;
2099 bit_offset = 0;
2100 }
2101 else
2102 bit_length -= this_size_bits;
2103
2104 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2105 return 0;
2106 }
2107
2108 return 1;
2109 }
2110
2111 /* A wrapper function for get_frame_address_in_block. */
2112
2113 static CORE_ADDR
2114 get_frame_address_in_block_wrapper (void *baton)
2115 {
2116 return get_frame_address_in_block ((struct frame_info *) baton);
2117 }
2118
2119 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2120
2121 static struct value *
2122 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2123 struct dwarf2_per_cu_data *per_cu,
2124 struct type *type)
2125 {
2126 struct value *result = NULL;
2127 struct obstack temp_obstack;
2128 struct cleanup *cleanup;
2129 const gdb_byte *bytes;
2130 LONGEST len;
2131
2132 obstack_init (&temp_obstack);
2133 cleanup = make_cleanup_obstack_free (&temp_obstack);
2134 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2135
2136 if (bytes != NULL)
2137 {
2138 if (byte_offset >= 0
2139 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2140 {
2141 bytes += byte_offset;
2142 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2143 }
2144 else
2145 invalid_synthetic_pointer ();
2146 }
2147 else
2148 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2149
2150 do_cleanups (cleanup);
2151
2152 return result;
2153 }
2154
2155 /* Fetch the value pointed to by a synthetic pointer. */
2156
2157 static struct value *
2158 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2159 struct dwarf2_per_cu_data *per_cu,
2160 struct frame_info *frame, struct type *type)
2161 {
2162 /* Fetch the location expression of the DIE we're pointing to. */
2163 struct dwarf2_locexpr_baton baton
2164 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2165 get_frame_address_in_block_wrapper, frame);
2166
2167 /* Get type of pointed-to DIE. */
2168 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2169 if (orig_type == NULL)
2170 invalid_synthetic_pointer ();
2171
2172 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2173 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2174 or it may've been optimized out. */
2175 if (baton.data != NULL)
2176 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2177 baton.size, baton.per_cu,
2178 TYPE_TARGET_TYPE (type),
2179 byte_offset);
2180 else
2181 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2182 type);
2183 }
2184
2185 /* An implementation of an lval_funcs method to indirect through a
2186 pointer. This handles the synthetic pointer case when needed. */
2187
2188 static struct value *
2189 indirect_pieced_value (struct value *value)
2190 {
2191 struct piece_closure *c
2192 = (struct piece_closure *) value_computed_closure (value);
2193 struct type *type;
2194 struct frame_info *frame;
2195 struct dwarf2_locexpr_baton baton;
2196 int i, bit_length;
2197 LONGEST bit_offset;
2198 struct dwarf_expr_piece *piece = NULL;
2199 LONGEST byte_offset;
2200 enum bfd_endian byte_order;
2201
2202 type = check_typedef (value_type (value));
2203 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2204 return NULL;
2205
2206 bit_length = 8 * TYPE_LENGTH (type);
2207 bit_offset = 8 * value_offset (value);
2208 if (value_bitsize (value))
2209 bit_offset += value_bitpos (value);
2210
2211 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2212 {
2213 struct dwarf_expr_piece *p = &c->pieces[i];
2214 size_t this_size_bits = p->size;
2215
2216 if (bit_offset > 0)
2217 {
2218 if (bit_offset >= this_size_bits)
2219 {
2220 bit_offset -= this_size_bits;
2221 continue;
2222 }
2223
2224 bit_length -= this_size_bits - bit_offset;
2225 bit_offset = 0;
2226 }
2227 else
2228 bit_length -= this_size_bits;
2229
2230 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2231 return NULL;
2232
2233 if (bit_length != 0)
2234 error (_("Invalid use of DW_OP_implicit_pointer"));
2235
2236 piece = p;
2237 break;
2238 }
2239
2240 gdb_assert (piece != NULL);
2241 frame = get_selected_frame (_("No frame selected."));
2242
2243 /* This is an offset requested by GDB, such as value subscripts.
2244 However, due to how synthetic pointers are implemented, this is
2245 always presented to us as a pointer type. This means we have to
2246 sign-extend it manually as appropriate. Use raw
2247 extract_signed_integer directly rather than value_as_address and
2248 sign extend afterwards on architectures that would need it
2249 (mostly everywhere except MIPS, which has signed addresses) as
2250 the later would go through gdbarch_pointer_to_address and thus
2251 return a CORE_ADDR with high bits set on architectures that
2252 encode address spaces and other things in CORE_ADDR. */
2253 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2254 byte_offset = extract_signed_integer (value_contents (value),
2255 TYPE_LENGTH (type), byte_order);
2256 byte_offset += piece->v.ptr.offset;
2257
2258 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2259 frame, type);
2260 }
2261
2262 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2263 references. */
2264
2265 static struct value *
2266 coerce_pieced_ref (const struct value *value)
2267 {
2268 struct type *type = check_typedef (value_type (value));
2269
2270 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2272 {
2273 const struct piece_closure *closure
2274 = (struct piece_closure *) value_computed_closure (value);
2275 struct frame_info *frame
2276 = get_selected_frame (_("No frame selected."));
2277
2278 /* gdb represents synthetic pointers as pieced values with a single
2279 piece. */
2280 gdb_assert (closure != NULL);
2281 gdb_assert (closure->n_pieces == 1);
2282
2283 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2284 closure->pieces->v.ptr.offset,
2285 closure->per_cu, frame, type);
2286 }
2287 else
2288 {
2289 /* Else: not a synthetic reference; do nothing. */
2290 return NULL;
2291 }
2292 }
2293
2294 static void *
2295 copy_pieced_value_closure (const struct value *v)
2296 {
2297 struct piece_closure *c
2298 = (struct piece_closure *) value_computed_closure (v);
2299
2300 ++c->refc;
2301 return c;
2302 }
2303
2304 static void
2305 free_pieced_value_closure (struct value *v)
2306 {
2307 struct piece_closure *c
2308 = (struct piece_closure *) value_computed_closure (v);
2309
2310 --c->refc;
2311 if (c->refc == 0)
2312 {
2313 int i;
2314
2315 for (i = 0; i < c->n_pieces; ++i)
2316 if (c->pieces[i].location == DWARF_VALUE_STACK)
2317 value_free (c->pieces[i].v.value);
2318
2319 xfree (c->pieces);
2320 xfree (c);
2321 }
2322 }
2323
2324 /* Functions for accessing a variable described by DW_OP_piece. */
2325 static const struct lval_funcs pieced_value_funcs = {
2326 read_pieced_value,
2327 write_pieced_value,
2328 indirect_pieced_value,
2329 coerce_pieced_ref,
2330 check_pieced_synthetic_pointer,
2331 copy_pieced_value_closure,
2332 free_pieced_value_closure
2333 };
2334
2335 /* Evaluate a location description, starting at DATA and with length
2336 SIZE, to find the current location of variable of TYPE in the
2337 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2338 location of the subobject of type SUBOBJ_TYPE at byte offset
2339 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2340
2341 static struct value *
2342 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2343 const gdb_byte *data, size_t size,
2344 struct dwarf2_per_cu_data *per_cu,
2345 struct type *subobj_type,
2346 LONGEST subobj_byte_offset)
2347 {
2348 struct value *retval;
2349 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2350
2351 if (subobj_type == NULL)
2352 {
2353 subobj_type = type;
2354 subobj_byte_offset = 0;
2355 }
2356 else if (subobj_byte_offset < 0)
2357 invalid_synthetic_pointer ();
2358
2359 if (size == 0)
2360 return allocate_optimized_out_value (subobj_type);
2361
2362 dwarf_evaluate_loc_desc ctx;
2363 ctx.frame = frame;
2364 ctx.per_cu = per_cu;
2365 ctx.obj_address = 0;
2366
2367 scoped_value_mark free_values;
2368
2369 ctx.gdbarch = get_objfile_arch (objfile);
2370 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2371 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2372 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2373
2374 TRY
2375 {
2376 ctx.eval (data, size);
2377 }
2378 CATCH (ex, RETURN_MASK_ERROR)
2379 {
2380 if (ex.error == NOT_AVAILABLE_ERROR)
2381 {
2382 free_values.free_to_mark ();
2383 retval = allocate_value (subobj_type);
2384 mark_value_bytes_unavailable (retval, 0,
2385 TYPE_LENGTH (subobj_type));
2386 return retval;
2387 }
2388 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2389 {
2390 if (entry_values_debug)
2391 exception_print (gdb_stdout, ex);
2392 free_values.free_to_mark ();
2393 return allocate_optimized_out_value (subobj_type);
2394 }
2395 else
2396 throw_exception (ex);
2397 }
2398 END_CATCH
2399
2400 if (ctx.num_pieces > 0)
2401 {
2402 struct piece_closure *c;
2403 ULONGEST bit_size = 0;
2404 int i;
2405
2406 for (i = 0; i < ctx.num_pieces; ++i)
2407 bit_size += ctx.pieces[i].size;
2408 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2409 invalid_synthetic_pointer ();
2410
2411 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2412 ctx.addr_size, frame);
2413 /* We must clean up the value chain after creating the piece
2414 closure but before allocating the result. */
2415 free_values.free_to_mark ();
2416 retval = allocate_computed_value (subobj_type,
2417 &pieced_value_funcs, c);
2418 set_value_offset (retval, subobj_byte_offset);
2419 }
2420 else
2421 {
2422 switch (ctx.location)
2423 {
2424 case DWARF_VALUE_REGISTER:
2425 {
2426 struct gdbarch *arch = get_frame_arch (frame);
2427 int dwarf_regnum
2428 = longest_to_int (value_as_long (ctx.fetch (0)));
2429 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2430
2431 if (subobj_byte_offset != 0)
2432 error (_("cannot use offset on synthetic pointer to register"));
2433 free_values.free_to_mark ();
2434 retval = value_from_register (subobj_type, gdb_regnum, frame);
2435 if (value_optimized_out (retval))
2436 {
2437 struct value *tmp;
2438
2439 /* This means the register has undefined value / was
2440 not saved. As we're computing the location of some
2441 variable etc. in the program, not a value for
2442 inspecting a register ($pc, $sp, etc.), return a
2443 generic optimized out value instead, so that we show
2444 <optimized out> instead of <not saved>. */
2445 tmp = allocate_value (subobj_type);
2446 value_contents_copy (tmp, 0, retval, 0,
2447 TYPE_LENGTH (subobj_type));
2448 retval = tmp;
2449 }
2450 }
2451 break;
2452
2453 case DWARF_VALUE_MEMORY:
2454 {
2455 struct type *ptr_type;
2456 CORE_ADDR address = ctx.fetch_address (0);
2457 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2458
2459 /* DW_OP_deref_size (and possibly other operations too) may
2460 create a pointer instead of an address. Ideally, the
2461 pointer to address conversion would be performed as part
2462 of those operations, but the type of the object to
2463 which the address refers is not known at the time of
2464 the operation. Therefore, we do the conversion here
2465 since the type is readily available. */
2466
2467 switch (TYPE_CODE (subobj_type))
2468 {
2469 case TYPE_CODE_FUNC:
2470 case TYPE_CODE_METHOD:
2471 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2472 break;
2473 default:
2474 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2475 break;
2476 }
2477 address = value_as_address (value_from_pointer (ptr_type, address));
2478
2479 free_values.free_to_mark ();
2480 retval = value_at_lazy (subobj_type,
2481 address + subobj_byte_offset);
2482 if (in_stack_memory)
2483 set_value_stack (retval, 1);
2484 }
2485 break;
2486
2487 case DWARF_VALUE_STACK:
2488 {
2489 struct value *value = ctx.fetch (0);
2490 size_t n = TYPE_LENGTH (value_type (value));
2491 size_t len = TYPE_LENGTH (subobj_type);
2492 size_t max = TYPE_LENGTH (type);
2493 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2494 struct cleanup *cleanup;
2495
2496 if (subobj_byte_offset + len > max)
2497 invalid_synthetic_pointer ();
2498
2499 /* Preserve VALUE because we are going to free values back
2500 to the mark, but we still need the value contents
2501 below. */
2502 value_incref (value);
2503 free_values.free_to_mark ();
2504 cleanup = make_cleanup_value_free (value);
2505
2506 retval = allocate_value (subobj_type);
2507
2508 /* The given offset is relative to the actual object. */
2509 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2510 subobj_byte_offset += n - max;
2511
2512 memcpy (value_contents_raw (retval),
2513 value_contents_all (value) + subobj_byte_offset, len);
2514
2515 do_cleanups (cleanup);
2516 }
2517 break;
2518
2519 case DWARF_VALUE_LITERAL:
2520 {
2521 bfd_byte *contents;
2522 size_t n = TYPE_LENGTH (subobj_type);
2523
2524 if (subobj_byte_offset + n > ctx.len)
2525 invalid_synthetic_pointer ();
2526
2527 free_values.free_to_mark ();
2528 retval = allocate_value (subobj_type);
2529 contents = value_contents_raw (retval);
2530 memcpy (contents, ctx.data + subobj_byte_offset, n);
2531 }
2532 break;
2533
2534 case DWARF_VALUE_OPTIMIZED_OUT:
2535 free_values.free_to_mark ();
2536 retval = allocate_optimized_out_value (subobj_type);
2537 break;
2538
2539 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2540 operation by execute_stack_op. */
2541 case DWARF_VALUE_IMPLICIT_POINTER:
2542 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2543 it can only be encountered when making a piece. */
2544 default:
2545 internal_error (__FILE__, __LINE__, _("invalid location type"));
2546 }
2547 }
2548
2549 set_value_initialized (retval, ctx.initialized);
2550
2551 return retval;
2552 }
2553
2554 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2555 passes 0 as the byte_offset. */
2556
2557 struct value *
2558 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2559 const gdb_byte *data, size_t size,
2560 struct dwarf2_per_cu_data *per_cu)
2561 {
2562 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2563 NULL, 0);
2564 }
2565
2566 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2567 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2568 frame in which the expression is evaluated. ADDR is a context (location of
2569 a variable) and might be needed to evaluate the location expression.
2570 Returns 1 on success, 0 otherwise. */
2571
2572 static int
2573 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2574 struct frame_info *frame,
2575 CORE_ADDR addr,
2576 CORE_ADDR *valp)
2577 {
2578 struct objfile *objfile;
2579
2580 if (dlbaton == NULL || dlbaton->size == 0)
2581 return 0;
2582
2583 dwarf_evaluate_loc_desc ctx;
2584
2585 ctx.frame = frame;
2586 ctx.per_cu = dlbaton->per_cu;
2587 ctx.obj_address = addr;
2588
2589 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2590
2591 ctx.gdbarch = get_objfile_arch (objfile);
2592 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2593 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2594 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2595
2596 ctx.eval (dlbaton->data, dlbaton->size);
2597
2598 switch (ctx.location)
2599 {
2600 case DWARF_VALUE_REGISTER:
2601 case DWARF_VALUE_MEMORY:
2602 case DWARF_VALUE_STACK:
2603 *valp = ctx.fetch_address (0);
2604 if (ctx.location == DWARF_VALUE_REGISTER)
2605 *valp = ctx.read_addr_from_reg (*valp);
2606 return 1;
2607 case DWARF_VALUE_LITERAL:
2608 *valp = extract_signed_integer (ctx.data, ctx.len,
2609 gdbarch_byte_order (ctx.gdbarch));
2610 return 1;
2611 /* Unsupported dwarf values. */
2612 case DWARF_VALUE_OPTIMIZED_OUT:
2613 case DWARF_VALUE_IMPLICIT_POINTER:
2614 break;
2615 }
2616
2617 return 0;
2618 }
2619
2620 /* See dwarf2loc.h. */
2621
2622 int
2623 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2624 struct frame_info *frame,
2625 struct property_addr_info *addr_stack,
2626 CORE_ADDR *value)
2627 {
2628 if (prop == NULL)
2629 return 0;
2630
2631 if (frame == NULL && has_stack_frames ())
2632 frame = get_selected_frame (NULL);
2633
2634 switch (prop->kind)
2635 {
2636 case PROP_LOCEXPR:
2637 {
2638 const struct dwarf2_property_baton *baton
2639 = (const struct dwarf2_property_baton *) prop->data.baton;
2640
2641 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2642 addr_stack ? addr_stack->addr : 0,
2643 value))
2644 {
2645 if (baton->referenced_type)
2646 {
2647 struct value *val = value_at (baton->referenced_type, *value);
2648
2649 *value = value_as_address (val);
2650 }
2651 return 1;
2652 }
2653 }
2654 break;
2655
2656 case PROP_LOCLIST:
2657 {
2658 struct dwarf2_property_baton *baton
2659 = (struct dwarf2_property_baton *) prop->data.baton;
2660 CORE_ADDR pc = get_frame_address_in_block (frame);
2661 const gdb_byte *data;
2662 struct value *val;
2663 size_t size;
2664
2665 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2666 if (data != NULL)
2667 {
2668 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2669 size, baton->loclist.per_cu);
2670 if (!value_optimized_out (val))
2671 {
2672 *value = value_as_address (val);
2673 return 1;
2674 }
2675 }
2676 }
2677 break;
2678
2679 case PROP_CONST:
2680 *value = prop->data.const_val;
2681 return 1;
2682
2683 case PROP_ADDR_OFFSET:
2684 {
2685 struct dwarf2_property_baton *baton
2686 = (struct dwarf2_property_baton *) prop->data.baton;
2687 struct property_addr_info *pinfo;
2688 struct value *val;
2689
2690 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2691 if (pinfo->type == baton->referenced_type)
2692 break;
2693 if (pinfo == NULL)
2694 error (_("cannot find reference address for offset property"));
2695 if (pinfo->valaddr != NULL)
2696 val = value_from_contents
2697 (baton->offset_info.type,
2698 pinfo->valaddr + baton->offset_info.offset);
2699 else
2700 val = value_at (baton->offset_info.type,
2701 pinfo->addr + baton->offset_info.offset);
2702 *value = value_as_address (val);
2703 return 1;
2704 }
2705 }
2706
2707 return 0;
2708 }
2709
2710 /* See dwarf2loc.h. */
2711
2712 void
2713 dwarf2_compile_property_to_c (string_file &stream,
2714 const char *result_name,
2715 struct gdbarch *gdbarch,
2716 unsigned char *registers_used,
2717 const struct dynamic_prop *prop,
2718 CORE_ADDR pc,
2719 struct symbol *sym)
2720 {
2721 struct dwarf2_property_baton *baton
2722 = (struct dwarf2_property_baton *) prop->data.baton;
2723 const gdb_byte *data;
2724 size_t size;
2725 struct dwarf2_per_cu_data *per_cu;
2726
2727 if (prop->kind == PROP_LOCEXPR)
2728 {
2729 data = baton->locexpr.data;
2730 size = baton->locexpr.size;
2731 per_cu = baton->locexpr.per_cu;
2732 }
2733 else
2734 {
2735 gdb_assert (prop->kind == PROP_LOCLIST);
2736
2737 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2738 per_cu = baton->loclist.per_cu;
2739 }
2740
2741 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2742 gdbarch, registers_used,
2743 dwarf2_per_cu_addr_size (per_cu),
2744 data, data + size, per_cu);
2745 }
2746
2747 \f
2748 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2749
2750 class symbol_needs_eval_context : public dwarf_expr_context
2751 {
2752 public:
2753
2754 enum symbol_needs_kind needs;
2755 struct dwarf2_per_cu_data *per_cu;
2756
2757 /* Reads from registers do require a frame. */
2758 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2759 {
2760 needs = SYMBOL_NEEDS_FRAME;
2761 return 1;
2762 }
2763
2764 /* "get_reg_value" callback: Reads from registers do require a
2765 frame. */
2766
2767 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2768 {
2769 needs = SYMBOL_NEEDS_FRAME;
2770 return value_zero (type, not_lval);
2771 }
2772
2773 /* Reads from memory do not require a frame. */
2774 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2775 {
2776 memset (buf, 0, len);
2777 }
2778
2779 /* Frame-relative accesses do require a frame. */
2780 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2781 {
2782 static gdb_byte lit0 = DW_OP_lit0;
2783
2784 *start = &lit0;
2785 *length = 1;
2786
2787 needs = SYMBOL_NEEDS_FRAME;
2788 }
2789
2790 /* CFA accesses require a frame. */
2791 CORE_ADDR get_frame_cfa () OVERRIDE
2792 {
2793 needs = SYMBOL_NEEDS_FRAME;
2794 return 1;
2795 }
2796
2797 CORE_ADDR get_frame_pc () OVERRIDE
2798 {
2799 needs = SYMBOL_NEEDS_FRAME;
2800 return 1;
2801 }
2802
2803 /* Thread-local accesses require registers, but not a frame. */
2804 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2805 {
2806 if (needs <= SYMBOL_NEEDS_REGISTERS)
2807 needs = SYMBOL_NEEDS_REGISTERS;
2808 return 1;
2809 }
2810
2811 /* Helper interface of per_cu_dwarf_call for
2812 dwarf2_loc_desc_get_symbol_read_needs. */
2813
2814 void dwarf_call (cu_offset die_offset) OVERRIDE
2815 {
2816 per_cu_dwarf_call (this, die_offset, per_cu);
2817 }
2818
2819 /* DW_OP_entry_value accesses require a caller, therefore a
2820 frame. */
2821
2822 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2823 union call_site_parameter_u kind_u,
2824 int deref_size) OVERRIDE
2825 {
2826 needs = SYMBOL_NEEDS_FRAME;
2827
2828 /* The expression may require some stub values on DWARF stack. */
2829 push_address (0, 0);
2830 }
2831
2832 /* DW_OP_GNU_addr_index doesn't require a frame. */
2833
2834 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2835 {
2836 /* Nothing to do. */
2837 return 1;
2838 }
2839
2840 /* DW_OP_push_object_address has a frame already passed through. */
2841
2842 CORE_ADDR get_object_address () OVERRIDE
2843 {
2844 /* Nothing to do. */
2845 return 1;
2846 }
2847 };
2848
2849 /* Compute the correct symbol_needs_kind value for the location
2850 expression at DATA (length SIZE). */
2851
2852 static enum symbol_needs_kind
2853 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2854 struct dwarf2_per_cu_data *per_cu)
2855 {
2856 int in_reg;
2857 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2858
2859 scoped_value_mark free_values;
2860
2861 symbol_needs_eval_context ctx;
2862
2863 ctx.needs = SYMBOL_NEEDS_NONE;
2864 ctx.per_cu = per_cu;
2865 ctx.gdbarch = get_objfile_arch (objfile);
2866 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2867 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2868 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2869
2870 ctx.eval (data, size);
2871
2872 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2873
2874 if (ctx.num_pieces > 0)
2875 {
2876 int i;
2877
2878 /* If the location has several pieces, and any of them are in
2879 registers, then we will need a frame to fetch them from. */
2880 for (i = 0; i < ctx.num_pieces; i++)
2881 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2882 in_reg = 1;
2883 }
2884
2885 if (in_reg)
2886 ctx.needs = SYMBOL_NEEDS_FRAME;
2887 return ctx.needs;
2888 }
2889
2890 /* A helper function that throws an unimplemented error mentioning a
2891 given DWARF operator. */
2892
2893 static void
2894 unimplemented (unsigned int op)
2895 {
2896 const char *name = get_DW_OP_name (op);
2897
2898 if (name)
2899 error (_("DWARF operator %s cannot be translated to an agent expression"),
2900 name);
2901 else
2902 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2903 "to an agent expression"),
2904 op);
2905 }
2906
2907 /* See dwarf2loc.h.
2908
2909 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2910 can issue a complaint, which is better than having every target's
2911 implementation of dwarf2_reg_to_regnum do it. */
2912
2913 int
2914 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2915 {
2916 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2917
2918 if (reg == -1)
2919 {
2920 complaint (&symfile_complaints,
2921 _("bad DWARF register number %d"), dwarf_reg);
2922 }
2923 return reg;
2924 }
2925
2926 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2927 Throw an error because DWARF_REG is bad. */
2928
2929 static void
2930 throw_bad_regnum_error (ULONGEST dwarf_reg)
2931 {
2932 /* Still want to print -1 as "-1".
2933 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2934 but that's overkill for now. */
2935 if ((int) dwarf_reg == dwarf_reg)
2936 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2937 error (_("Unable to access DWARF register number %s"),
2938 pulongest (dwarf_reg));
2939 }
2940
2941 /* See dwarf2loc.h. */
2942
2943 int
2944 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2945 {
2946 int reg;
2947
2948 if (dwarf_reg > INT_MAX)
2949 throw_bad_regnum_error (dwarf_reg);
2950 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2951 bad, but that's ok. */
2952 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2953 if (reg == -1)
2954 throw_bad_regnum_error (dwarf_reg);
2955 return reg;
2956 }
2957
2958 /* A helper function that emits an access to memory. ARCH is the
2959 target architecture. EXPR is the expression which we are building.
2960 NBITS is the number of bits we want to read. This emits the
2961 opcodes needed to read the memory and then extract the desired
2962 bits. */
2963
2964 static void
2965 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2966 {
2967 ULONGEST nbytes = (nbits + 7) / 8;
2968
2969 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2970
2971 if (expr->tracing)
2972 ax_trace_quick (expr, nbytes);
2973
2974 if (nbits <= 8)
2975 ax_simple (expr, aop_ref8);
2976 else if (nbits <= 16)
2977 ax_simple (expr, aop_ref16);
2978 else if (nbits <= 32)
2979 ax_simple (expr, aop_ref32);
2980 else
2981 ax_simple (expr, aop_ref64);
2982
2983 /* If we read exactly the number of bytes we wanted, we're done. */
2984 if (8 * nbytes == nbits)
2985 return;
2986
2987 if (gdbarch_bits_big_endian (arch))
2988 {
2989 /* On a bits-big-endian machine, we want the high-order
2990 NBITS. */
2991 ax_const_l (expr, 8 * nbytes - nbits);
2992 ax_simple (expr, aop_rsh_unsigned);
2993 }
2994 else
2995 {
2996 /* On a bits-little-endian box, we want the low-order NBITS. */
2997 ax_zero_ext (expr, nbits);
2998 }
2999 }
3000
3001 /* A helper function to return the frame's PC. */
3002
3003 static CORE_ADDR
3004 get_ax_pc (void *baton)
3005 {
3006 struct agent_expr *expr = (struct agent_expr *) baton;
3007
3008 return expr->scope;
3009 }
3010
3011 /* Compile a DWARF location expression to an agent expression.
3012
3013 EXPR is the agent expression we are building.
3014 LOC is the agent value we modify.
3015 ARCH is the architecture.
3016 ADDR_SIZE is the size of addresses, in bytes.
3017 OP_PTR is the start of the location expression.
3018 OP_END is one past the last byte of the location expression.
3019
3020 This will throw an exception for various kinds of errors -- for
3021 example, if the expression cannot be compiled, or if the expression
3022 is invalid. */
3023
3024 void
3025 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3026 struct gdbarch *arch, unsigned int addr_size,
3027 const gdb_byte *op_ptr, const gdb_byte *op_end,
3028 struct dwarf2_per_cu_data *per_cu)
3029 {
3030 int i;
3031 std::vector<int> dw_labels, patches;
3032 const gdb_byte * const base = op_ptr;
3033 const gdb_byte *previous_piece = op_ptr;
3034 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3035 ULONGEST bits_collected = 0;
3036 unsigned int addr_size_bits = 8 * addr_size;
3037 int bits_big_endian = gdbarch_bits_big_endian (arch);
3038
3039 std::vector<int> offsets (op_end - op_ptr, -1);
3040
3041 /* By default we are making an address. */
3042 loc->kind = axs_lvalue_memory;
3043
3044 while (op_ptr < op_end)
3045 {
3046 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3047 uint64_t uoffset, reg;
3048 int64_t offset;
3049 int i;
3050
3051 offsets[op_ptr - base] = expr->len;
3052 ++op_ptr;
3053
3054 /* Our basic approach to code generation is to map DWARF
3055 operations directly to AX operations. However, there are
3056 some differences.
3057
3058 First, DWARF works on address-sized units, but AX always uses
3059 LONGEST. For most operations we simply ignore this
3060 difference; instead we generate sign extensions as needed
3061 before division and comparison operations. It would be nice
3062 to omit the sign extensions, but there is no way to determine
3063 the size of the target's LONGEST. (This code uses the size
3064 of the host LONGEST in some cases -- that is a bug but it is
3065 difficult to fix.)
3066
3067 Second, some DWARF operations cannot be translated to AX.
3068 For these we simply fail. See
3069 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3070 switch (op)
3071 {
3072 case DW_OP_lit0:
3073 case DW_OP_lit1:
3074 case DW_OP_lit2:
3075 case DW_OP_lit3:
3076 case DW_OP_lit4:
3077 case DW_OP_lit5:
3078 case DW_OP_lit6:
3079 case DW_OP_lit7:
3080 case DW_OP_lit8:
3081 case DW_OP_lit9:
3082 case DW_OP_lit10:
3083 case DW_OP_lit11:
3084 case DW_OP_lit12:
3085 case DW_OP_lit13:
3086 case DW_OP_lit14:
3087 case DW_OP_lit15:
3088 case DW_OP_lit16:
3089 case DW_OP_lit17:
3090 case DW_OP_lit18:
3091 case DW_OP_lit19:
3092 case DW_OP_lit20:
3093 case DW_OP_lit21:
3094 case DW_OP_lit22:
3095 case DW_OP_lit23:
3096 case DW_OP_lit24:
3097 case DW_OP_lit25:
3098 case DW_OP_lit26:
3099 case DW_OP_lit27:
3100 case DW_OP_lit28:
3101 case DW_OP_lit29:
3102 case DW_OP_lit30:
3103 case DW_OP_lit31:
3104 ax_const_l (expr, op - DW_OP_lit0);
3105 break;
3106
3107 case DW_OP_addr:
3108 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3109 op_ptr += addr_size;
3110 /* Some versions of GCC emit DW_OP_addr before
3111 DW_OP_GNU_push_tls_address. In this case the value is an
3112 index, not an address. We don't support things like
3113 branching between the address and the TLS op. */
3114 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3115 uoffset += dwarf2_per_cu_text_offset (per_cu);
3116 ax_const_l (expr, uoffset);
3117 break;
3118
3119 case DW_OP_const1u:
3120 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3121 op_ptr += 1;
3122 break;
3123 case DW_OP_const1s:
3124 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3125 op_ptr += 1;
3126 break;
3127 case DW_OP_const2u:
3128 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3129 op_ptr += 2;
3130 break;
3131 case DW_OP_const2s:
3132 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3133 op_ptr += 2;
3134 break;
3135 case DW_OP_const4u:
3136 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3137 op_ptr += 4;
3138 break;
3139 case DW_OP_const4s:
3140 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3141 op_ptr += 4;
3142 break;
3143 case DW_OP_const8u:
3144 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3145 op_ptr += 8;
3146 break;
3147 case DW_OP_const8s:
3148 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3149 op_ptr += 8;
3150 break;
3151 case DW_OP_constu:
3152 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3153 ax_const_l (expr, uoffset);
3154 break;
3155 case DW_OP_consts:
3156 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3157 ax_const_l (expr, offset);
3158 break;
3159
3160 case DW_OP_reg0:
3161 case DW_OP_reg1:
3162 case DW_OP_reg2:
3163 case DW_OP_reg3:
3164 case DW_OP_reg4:
3165 case DW_OP_reg5:
3166 case DW_OP_reg6:
3167 case DW_OP_reg7:
3168 case DW_OP_reg8:
3169 case DW_OP_reg9:
3170 case DW_OP_reg10:
3171 case DW_OP_reg11:
3172 case DW_OP_reg12:
3173 case DW_OP_reg13:
3174 case DW_OP_reg14:
3175 case DW_OP_reg15:
3176 case DW_OP_reg16:
3177 case DW_OP_reg17:
3178 case DW_OP_reg18:
3179 case DW_OP_reg19:
3180 case DW_OP_reg20:
3181 case DW_OP_reg21:
3182 case DW_OP_reg22:
3183 case DW_OP_reg23:
3184 case DW_OP_reg24:
3185 case DW_OP_reg25:
3186 case DW_OP_reg26:
3187 case DW_OP_reg27:
3188 case DW_OP_reg28:
3189 case DW_OP_reg29:
3190 case DW_OP_reg30:
3191 case DW_OP_reg31:
3192 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3193 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3194 loc->kind = axs_lvalue_register;
3195 break;
3196
3197 case DW_OP_regx:
3198 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3199 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3200 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3201 loc->kind = axs_lvalue_register;
3202 break;
3203
3204 case DW_OP_implicit_value:
3205 {
3206 uint64_t len;
3207
3208 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3209 if (op_ptr + len > op_end)
3210 error (_("DW_OP_implicit_value: too few bytes available."));
3211 if (len > sizeof (ULONGEST))
3212 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3213 (int) len);
3214
3215 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3216 byte_order));
3217 op_ptr += len;
3218 dwarf_expr_require_composition (op_ptr, op_end,
3219 "DW_OP_implicit_value");
3220
3221 loc->kind = axs_rvalue;
3222 }
3223 break;
3224
3225 case DW_OP_stack_value:
3226 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3227 loc->kind = axs_rvalue;
3228 break;
3229
3230 case DW_OP_breg0:
3231 case DW_OP_breg1:
3232 case DW_OP_breg2:
3233 case DW_OP_breg3:
3234 case DW_OP_breg4:
3235 case DW_OP_breg5:
3236 case DW_OP_breg6:
3237 case DW_OP_breg7:
3238 case DW_OP_breg8:
3239 case DW_OP_breg9:
3240 case DW_OP_breg10:
3241 case DW_OP_breg11:
3242 case DW_OP_breg12:
3243 case DW_OP_breg13:
3244 case DW_OP_breg14:
3245 case DW_OP_breg15:
3246 case DW_OP_breg16:
3247 case DW_OP_breg17:
3248 case DW_OP_breg18:
3249 case DW_OP_breg19:
3250 case DW_OP_breg20:
3251 case DW_OP_breg21:
3252 case DW_OP_breg22:
3253 case DW_OP_breg23:
3254 case DW_OP_breg24:
3255 case DW_OP_breg25:
3256 case DW_OP_breg26:
3257 case DW_OP_breg27:
3258 case DW_OP_breg28:
3259 case DW_OP_breg29:
3260 case DW_OP_breg30:
3261 case DW_OP_breg31:
3262 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3263 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3264 ax_reg (expr, i);
3265 if (offset != 0)
3266 {
3267 ax_const_l (expr, offset);
3268 ax_simple (expr, aop_add);
3269 }
3270 break;
3271 case DW_OP_bregx:
3272 {
3273 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3274 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3275 i = dwarf_reg_to_regnum_or_error (arch, reg);
3276 ax_reg (expr, i);
3277 if (offset != 0)
3278 {
3279 ax_const_l (expr, offset);
3280 ax_simple (expr, aop_add);
3281 }
3282 }
3283 break;
3284 case DW_OP_fbreg:
3285 {
3286 const gdb_byte *datastart;
3287 size_t datalen;
3288 const struct block *b;
3289 struct symbol *framefunc;
3290
3291 b = block_for_pc (expr->scope);
3292
3293 if (!b)
3294 error (_("No block found for address"));
3295
3296 framefunc = block_linkage_function (b);
3297
3298 if (!framefunc)
3299 error (_("No function found for block"));
3300
3301 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3302 &datastart, &datalen);
3303
3304 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3305 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3306 datastart + datalen, per_cu);
3307 if (loc->kind == axs_lvalue_register)
3308 require_rvalue (expr, loc);
3309
3310 if (offset != 0)
3311 {
3312 ax_const_l (expr, offset);
3313 ax_simple (expr, aop_add);
3314 }
3315
3316 loc->kind = axs_lvalue_memory;
3317 }
3318 break;
3319
3320 case DW_OP_dup:
3321 ax_simple (expr, aop_dup);
3322 break;
3323
3324 case DW_OP_drop:
3325 ax_simple (expr, aop_pop);
3326 break;
3327
3328 case DW_OP_pick:
3329 offset = *op_ptr++;
3330 ax_pick (expr, offset);
3331 break;
3332
3333 case DW_OP_swap:
3334 ax_simple (expr, aop_swap);
3335 break;
3336
3337 case DW_OP_over:
3338 ax_pick (expr, 1);
3339 break;
3340
3341 case DW_OP_rot:
3342 ax_simple (expr, aop_rot);
3343 break;
3344
3345 case DW_OP_deref:
3346 case DW_OP_deref_size:
3347 {
3348 int size;
3349
3350 if (op == DW_OP_deref_size)
3351 size = *op_ptr++;
3352 else
3353 size = addr_size;
3354
3355 if (size != 1 && size != 2 && size != 4 && size != 8)
3356 error (_("Unsupported size %d in %s"),
3357 size, get_DW_OP_name (op));
3358 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3359 }
3360 break;
3361
3362 case DW_OP_abs:
3363 /* Sign extend the operand. */
3364 ax_ext (expr, addr_size_bits);
3365 ax_simple (expr, aop_dup);
3366 ax_const_l (expr, 0);
3367 ax_simple (expr, aop_less_signed);
3368 ax_simple (expr, aop_log_not);
3369 i = ax_goto (expr, aop_if_goto);
3370 /* We have to emit 0 - X. */
3371 ax_const_l (expr, 0);
3372 ax_simple (expr, aop_swap);
3373 ax_simple (expr, aop_sub);
3374 ax_label (expr, i, expr->len);
3375 break;
3376
3377 case DW_OP_neg:
3378 /* No need to sign extend here. */
3379 ax_const_l (expr, 0);
3380 ax_simple (expr, aop_swap);
3381 ax_simple (expr, aop_sub);
3382 break;
3383
3384 case DW_OP_not:
3385 /* Sign extend the operand. */
3386 ax_ext (expr, addr_size_bits);
3387 ax_simple (expr, aop_bit_not);
3388 break;
3389
3390 case DW_OP_plus_uconst:
3391 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3392 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3393 but we micro-optimize anyhow. */
3394 if (reg != 0)
3395 {
3396 ax_const_l (expr, reg);
3397 ax_simple (expr, aop_add);
3398 }
3399 break;
3400
3401 case DW_OP_and:
3402 ax_simple (expr, aop_bit_and);
3403 break;
3404
3405 case DW_OP_div:
3406 /* Sign extend the operands. */
3407 ax_ext (expr, addr_size_bits);
3408 ax_simple (expr, aop_swap);
3409 ax_ext (expr, addr_size_bits);
3410 ax_simple (expr, aop_swap);
3411 ax_simple (expr, aop_div_signed);
3412 break;
3413
3414 case DW_OP_minus:
3415 ax_simple (expr, aop_sub);
3416 break;
3417
3418 case DW_OP_mod:
3419 ax_simple (expr, aop_rem_unsigned);
3420 break;
3421
3422 case DW_OP_mul:
3423 ax_simple (expr, aop_mul);
3424 break;
3425
3426 case DW_OP_or:
3427 ax_simple (expr, aop_bit_or);
3428 break;
3429
3430 case DW_OP_plus:
3431 ax_simple (expr, aop_add);
3432 break;
3433
3434 case DW_OP_shl:
3435 ax_simple (expr, aop_lsh);
3436 break;
3437
3438 case DW_OP_shr:
3439 ax_simple (expr, aop_rsh_unsigned);
3440 break;
3441
3442 case DW_OP_shra:
3443 ax_simple (expr, aop_rsh_signed);
3444 break;
3445
3446 case DW_OP_xor:
3447 ax_simple (expr, aop_bit_xor);
3448 break;
3449
3450 case DW_OP_le:
3451 /* Sign extend the operands. */
3452 ax_ext (expr, addr_size_bits);
3453 ax_simple (expr, aop_swap);
3454 ax_ext (expr, addr_size_bits);
3455 /* Note no swap here: A <= B is !(B < A). */
3456 ax_simple (expr, aop_less_signed);
3457 ax_simple (expr, aop_log_not);
3458 break;
3459
3460 case DW_OP_ge:
3461 /* Sign extend the operands. */
3462 ax_ext (expr, addr_size_bits);
3463 ax_simple (expr, aop_swap);
3464 ax_ext (expr, addr_size_bits);
3465 ax_simple (expr, aop_swap);
3466 /* A >= B is !(A < B). */
3467 ax_simple (expr, aop_less_signed);
3468 ax_simple (expr, aop_log_not);
3469 break;
3470
3471 case DW_OP_eq:
3472 /* Sign extend the operands. */
3473 ax_ext (expr, addr_size_bits);
3474 ax_simple (expr, aop_swap);
3475 ax_ext (expr, addr_size_bits);
3476 /* No need for a second swap here. */
3477 ax_simple (expr, aop_equal);
3478 break;
3479
3480 case DW_OP_lt:
3481 /* Sign extend the operands. */
3482 ax_ext (expr, addr_size_bits);
3483 ax_simple (expr, aop_swap);
3484 ax_ext (expr, addr_size_bits);
3485 ax_simple (expr, aop_swap);
3486 ax_simple (expr, aop_less_signed);
3487 break;
3488
3489 case DW_OP_gt:
3490 /* Sign extend the operands. */
3491 ax_ext (expr, addr_size_bits);
3492 ax_simple (expr, aop_swap);
3493 ax_ext (expr, addr_size_bits);
3494 /* Note no swap here: A > B is B < A. */
3495 ax_simple (expr, aop_less_signed);
3496 break;
3497
3498 case DW_OP_ne:
3499 /* Sign extend the operands. */
3500 ax_ext (expr, addr_size_bits);
3501 ax_simple (expr, aop_swap);
3502 ax_ext (expr, addr_size_bits);
3503 /* No need for a swap here. */
3504 ax_simple (expr, aop_equal);
3505 ax_simple (expr, aop_log_not);
3506 break;
3507
3508 case DW_OP_call_frame_cfa:
3509 {
3510 int regnum;
3511 CORE_ADDR text_offset;
3512 LONGEST off;
3513 const gdb_byte *cfa_start, *cfa_end;
3514
3515 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3516 &regnum, &off,
3517 &text_offset, &cfa_start, &cfa_end))
3518 {
3519 /* Register. */
3520 ax_reg (expr, regnum);
3521 if (off != 0)
3522 {
3523 ax_const_l (expr, off);
3524 ax_simple (expr, aop_add);
3525 }
3526 }
3527 else
3528 {
3529 /* Another expression. */
3530 ax_const_l (expr, text_offset);
3531 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3532 cfa_start, cfa_end, per_cu);
3533 }
3534
3535 loc->kind = axs_lvalue_memory;
3536 }
3537 break;
3538
3539 case DW_OP_GNU_push_tls_address:
3540 case DW_OP_form_tls_address:
3541 unimplemented (op);
3542 break;
3543
3544 case DW_OP_push_object_address:
3545 unimplemented (op);
3546 break;
3547
3548 case DW_OP_skip:
3549 offset = extract_signed_integer (op_ptr, 2, byte_order);
3550 op_ptr += 2;
3551 i = ax_goto (expr, aop_goto);
3552 dw_labels.push_back (op_ptr + offset - base);
3553 patches.push_back (i);
3554 break;
3555
3556 case DW_OP_bra:
3557 offset = extract_signed_integer (op_ptr, 2, byte_order);
3558 op_ptr += 2;
3559 /* Zero extend the operand. */
3560 ax_zero_ext (expr, addr_size_bits);
3561 i = ax_goto (expr, aop_if_goto);
3562 dw_labels.push_back (op_ptr + offset - base);
3563 patches.push_back (i);
3564 break;
3565
3566 case DW_OP_nop:
3567 break;
3568
3569 case DW_OP_piece:
3570 case DW_OP_bit_piece:
3571 {
3572 uint64_t size, offset;
3573
3574 if (op_ptr - 1 == previous_piece)
3575 error (_("Cannot translate empty pieces to agent expressions"));
3576 previous_piece = op_ptr - 1;
3577
3578 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3579 if (op == DW_OP_piece)
3580 {
3581 size *= 8;
3582 offset = 0;
3583 }
3584 else
3585 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3586
3587 if (bits_collected + size > 8 * sizeof (LONGEST))
3588 error (_("Expression pieces exceed word size"));
3589
3590 /* Access the bits. */
3591 switch (loc->kind)
3592 {
3593 case axs_lvalue_register:
3594 ax_reg (expr, loc->u.reg);
3595 break;
3596
3597 case axs_lvalue_memory:
3598 /* Offset the pointer, if needed. */
3599 if (offset > 8)
3600 {
3601 ax_const_l (expr, offset / 8);
3602 ax_simple (expr, aop_add);
3603 offset %= 8;
3604 }
3605 access_memory (arch, expr, size);
3606 break;
3607 }
3608
3609 /* For a bits-big-endian target, shift up what we already
3610 have. For a bits-little-endian target, shift up the
3611 new data. Note that there is a potential bug here if
3612 the DWARF expression leaves multiple values on the
3613 stack. */
3614 if (bits_collected > 0)
3615 {
3616 if (bits_big_endian)
3617 {
3618 ax_simple (expr, aop_swap);
3619 ax_const_l (expr, size);
3620 ax_simple (expr, aop_lsh);
3621 /* We don't need a second swap here, because
3622 aop_bit_or is symmetric. */
3623 }
3624 else
3625 {
3626 ax_const_l (expr, size);
3627 ax_simple (expr, aop_lsh);
3628 }
3629 ax_simple (expr, aop_bit_or);
3630 }
3631
3632 bits_collected += size;
3633 loc->kind = axs_rvalue;
3634 }
3635 break;
3636
3637 case DW_OP_GNU_uninit:
3638 unimplemented (op);
3639
3640 case DW_OP_call2:
3641 case DW_OP_call4:
3642 {
3643 struct dwarf2_locexpr_baton block;
3644 int size = (op == DW_OP_call2 ? 2 : 4);
3645 cu_offset offset;
3646
3647 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3648 op_ptr += size;
3649
3650 offset.cu_off = uoffset;
3651 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3652 get_ax_pc, expr);
3653
3654 /* DW_OP_call_ref is currently not supported. */
3655 gdb_assert (block.per_cu == per_cu);
3656
3657 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3658 block.data, block.data + block.size,
3659 per_cu);
3660 }
3661 break;
3662
3663 case DW_OP_call_ref:
3664 unimplemented (op);
3665
3666 default:
3667 unimplemented (op);
3668 }
3669 }
3670
3671 /* Patch all the branches we emitted. */
3672 for (i = 0; i < patches.size (); ++i)
3673 {
3674 int targ = offsets[dw_labels[i]];
3675 if (targ == -1)
3676 internal_error (__FILE__, __LINE__, _("invalid label"));
3677 ax_label (expr, patches[i], targ);
3678 }
3679 }
3680
3681 \f
3682 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3683 evaluator to calculate the location. */
3684 static struct value *
3685 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3686 {
3687 struct dwarf2_locexpr_baton *dlbaton
3688 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3689 struct value *val;
3690
3691 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3692 dlbaton->size, dlbaton->per_cu);
3693
3694 return val;
3695 }
3696
3697 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3698 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3699 will be thrown. */
3700
3701 static struct value *
3702 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3703 {
3704 struct dwarf2_locexpr_baton *dlbaton
3705 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3706
3707 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3708 dlbaton->size);
3709 }
3710
3711 /* Implementation of get_symbol_read_needs from
3712 symbol_computed_ops. */
3713
3714 static enum symbol_needs_kind
3715 locexpr_get_symbol_read_needs (struct symbol *symbol)
3716 {
3717 struct dwarf2_locexpr_baton *dlbaton
3718 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3719
3720 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3721 dlbaton->per_cu);
3722 }
3723
3724 /* Return true if DATA points to the end of a piece. END is one past
3725 the last byte in the expression. */
3726
3727 static int
3728 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3729 {
3730 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3731 }
3732
3733 /* Helper for locexpr_describe_location_piece that finds the name of a
3734 DWARF register. */
3735
3736 static const char *
3737 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3738 {
3739 int regnum;
3740
3741 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3742 We'd rather print *something* here than throw an error. */
3743 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3744 /* gdbarch_register_name may just return "", return something more
3745 descriptive for bad register numbers. */
3746 if (regnum == -1)
3747 {
3748 /* The text is output as "$bad_register_number".
3749 That is why we use the underscores. */
3750 return _("bad_register_number");
3751 }
3752 return gdbarch_register_name (gdbarch, regnum);
3753 }
3754
3755 /* Nicely describe a single piece of a location, returning an updated
3756 position in the bytecode sequence. This function cannot recognize
3757 all locations; if a location is not recognized, it simply returns
3758 DATA. If there is an error during reading, e.g. we run off the end
3759 of the buffer, an error is thrown. */
3760
3761 static const gdb_byte *
3762 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3763 CORE_ADDR addr, struct objfile *objfile,
3764 struct dwarf2_per_cu_data *per_cu,
3765 const gdb_byte *data, const gdb_byte *end,
3766 unsigned int addr_size)
3767 {
3768 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3769 size_t leb128_size;
3770
3771 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3772 {
3773 fprintf_filtered (stream, _("a variable in $%s"),
3774 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3775 data += 1;
3776 }
3777 else if (data[0] == DW_OP_regx)
3778 {
3779 uint64_t reg;
3780
3781 data = safe_read_uleb128 (data + 1, end, &reg);
3782 fprintf_filtered (stream, _("a variable in $%s"),
3783 locexpr_regname (gdbarch, reg));
3784 }
3785 else if (data[0] == DW_OP_fbreg)
3786 {
3787 const struct block *b;
3788 struct symbol *framefunc;
3789 int frame_reg = 0;
3790 int64_t frame_offset;
3791 const gdb_byte *base_data, *new_data, *save_data = data;
3792 size_t base_size;
3793 int64_t base_offset = 0;
3794
3795 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3796 if (!piece_end_p (new_data, end))
3797 return data;
3798 data = new_data;
3799
3800 b = block_for_pc (addr);
3801
3802 if (!b)
3803 error (_("No block found for address for symbol \"%s\"."),
3804 SYMBOL_PRINT_NAME (symbol));
3805
3806 framefunc = block_linkage_function (b);
3807
3808 if (!framefunc)
3809 error (_("No function found for block for symbol \"%s\"."),
3810 SYMBOL_PRINT_NAME (symbol));
3811
3812 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3813
3814 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3815 {
3816 const gdb_byte *buf_end;
3817
3818 frame_reg = base_data[0] - DW_OP_breg0;
3819 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3820 &base_offset);
3821 if (buf_end != base_data + base_size)
3822 error (_("Unexpected opcode after "
3823 "DW_OP_breg%u for symbol \"%s\"."),
3824 frame_reg, SYMBOL_PRINT_NAME (symbol));
3825 }
3826 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3827 {
3828 /* The frame base is just the register, with no offset. */
3829 frame_reg = base_data[0] - DW_OP_reg0;
3830 base_offset = 0;
3831 }
3832 else
3833 {
3834 /* We don't know what to do with the frame base expression,
3835 so we can't trace this variable; give up. */
3836 return save_data;
3837 }
3838
3839 fprintf_filtered (stream,
3840 _("a variable at frame base reg $%s offset %s+%s"),
3841 locexpr_regname (gdbarch, frame_reg),
3842 plongest (base_offset), plongest (frame_offset));
3843 }
3844 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3845 && piece_end_p (data, end))
3846 {
3847 int64_t offset;
3848
3849 data = safe_read_sleb128 (data + 1, end, &offset);
3850
3851 fprintf_filtered (stream,
3852 _("a variable at offset %s from base reg $%s"),
3853 plongest (offset),
3854 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3855 }
3856
3857 /* The location expression for a TLS variable looks like this (on a
3858 64-bit LE machine):
3859
3860 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3861 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3862
3863 0x3 is the encoding for DW_OP_addr, which has an operand as long
3864 as the size of an address on the target machine (here is 8
3865 bytes). Note that more recent version of GCC emit DW_OP_const4u
3866 or DW_OP_const8u, depending on address size, rather than
3867 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3868 The operand represents the offset at which the variable is within
3869 the thread local storage. */
3870
3871 else if (data + 1 + addr_size < end
3872 && (data[0] == DW_OP_addr
3873 || (addr_size == 4 && data[0] == DW_OP_const4u)
3874 || (addr_size == 8 && data[0] == DW_OP_const8u))
3875 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3876 || data[1 + addr_size] == DW_OP_form_tls_address)
3877 && piece_end_p (data + 2 + addr_size, end))
3878 {
3879 ULONGEST offset;
3880 offset = extract_unsigned_integer (data + 1, addr_size,
3881 gdbarch_byte_order (gdbarch));
3882
3883 fprintf_filtered (stream,
3884 _("a thread-local variable at offset 0x%s "
3885 "in the thread-local storage for `%s'"),
3886 phex_nz (offset, addr_size), objfile_name (objfile));
3887
3888 data += 1 + addr_size + 1;
3889 }
3890
3891 /* With -gsplit-dwarf a TLS variable can also look like this:
3892 DW_AT_location : 3 byte block: fc 4 e0
3893 (DW_OP_GNU_const_index: 4;
3894 DW_OP_GNU_push_tls_address) */
3895 else if (data + 3 <= end
3896 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3897 && data[0] == DW_OP_GNU_const_index
3898 && leb128_size > 0
3899 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3900 || data[1 + leb128_size] == DW_OP_form_tls_address)
3901 && piece_end_p (data + 2 + leb128_size, end))
3902 {
3903 uint64_t offset;
3904
3905 data = safe_read_uleb128 (data + 1, end, &offset);
3906 offset = dwarf2_read_addr_index (per_cu, offset);
3907 fprintf_filtered (stream,
3908 _("a thread-local variable at offset 0x%s "
3909 "in the thread-local storage for `%s'"),
3910 phex_nz (offset, addr_size), objfile_name (objfile));
3911 ++data;
3912 }
3913
3914 else if (data[0] >= DW_OP_lit0
3915 && data[0] <= DW_OP_lit31
3916 && data + 1 < end
3917 && data[1] == DW_OP_stack_value)
3918 {
3919 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3920 data += 2;
3921 }
3922
3923 return data;
3924 }
3925
3926 /* Disassemble an expression, stopping at the end of a piece or at the
3927 end of the expression. Returns a pointer to the next unread byte
3928 in the input expression. If ALL is nonzero, then this function
3929 will keep going until it reaches the end of the expression.
3930 If there is an error during reading, e.g. we run off the end
3931 of the buffer, an error is thrown. */
3932
3933 static const gdb_byte *
3934 disassemble_dwarf_expression (struct ui_file *stream,
3935 struct gdbarch *arch, unsigned int addr_size,
3936 int offset_size, const gdb_byte *start,
3937 const gdb_byte *data, const gdb_byte *end,
3938 int indent, int all,
3939 struct dwarf2_per_cu_data *per_cu)
3940 {
3941 while (data < end
3942 && (all
3943 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3944 {
3945 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3946 uint64_t ul;
3947 int64_t l;
3948 const char *name;
3949
3950 name = get_DW_OP_name (op);
3951
3952 if (!name)
3953 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3954 op, (long) (data - 1 - start));
3955 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3956 (long) (data - 1 - start), name);
3957
3958 switch (op)
3959 {
3960 case DW_OP_addr:
3961 ul = extract_unsigned_integer (data, addr_size,
3962 gdbarch_byte_order (arch));
3963 data += addr_size;
3964 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3965 break;
3966
3967 case DW_OP_const1u:
3968 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3969 data += 1;
3970 fprintf_filtered (stream, " %s", pulongest (ul));
3971 break;
3972 case DW_OP_const1s:
3973 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3974 data += 1;
3975 fprintf_filtered (stream, " %s", plongest (l));
3976 break;
3977 case DW_OP_const2u:
3978 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3979 data += 2;
3980 fprintf_filtered (stream, " %s", pulongest (ul));
3981 break;
3982 case DW_OP_const2s:
3983 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3984 data += 2;
3985 fprintf_filtered (stream, " %s", plongest (l));
3986 break;
3987 case DW_OP_const4u:
3988 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3989 data += 4;
3990 fprintf_filtered (stream, " %s", pulongest (ul));
3991 break;
3992 case DW_OP_const4s:
3993 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3994 data += 4;
3995 fprintf_filtered (stream, " %s", plongest (l));
3996 break;
3997 case DW_OP_const8u:
3998 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3999 data += 8;
4000 fprintf_filtered (stream, " %s", pulongest (ul));
4001 break;
4002 case DW_OP_const8s:
4003 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4004 data += 8;
4005 fprintf_filtered (stream, " %s", plongest (l));
4006 break;
4007 case DW_OP_constu:
4008 data = safe_read_uleb128 (data, end, &ul);
4009 fprintf_filtered (stream, " %s", pulongest (ul));
4010 break;
4011 case DW_OP_consts:
4012 data = safe_read_sleb128 (data, end, &l);
4013 fprintf_filtered (stream, " %s", plongest (l));
4014 break;
4015
4016 case DW_OP_reg0:
4017 case DW_OP_reg1:
4018 case DW_OP_reg2:
4019 case DW_OP_reg3:
4020 case DW_OP_reg4:
4021 case DW_OP_reg5:
4022 case DW_OP_reg6:
4023 case DW_OP_reg7:
4024 case DW_OP_reg8:
4025 case DW_OP_reg9:
4026 case DW_OP_reg10:
4027 case DW_OP_reg11:
4028 case DW_OP_reg12:
4029 case DW_OP_reg13:
4030 case DW_OP_reg14:
4031 case DW_OP_reg15:
4032 case DW_OP_reg16:
4033 case DW_OP_reg17:
4034 case DW_OP_reg18:
4035 case DW_OP_reg19:
4036 case DW_OP_reg20:
4037 case DW_OP_reg21:
4038 case DW_OP_reg22:
4039 case DW_OP_reg23:
4040 case DW_OP_reg24:
4041 case DW_OP_reg25:
4042 case DW_OP_reg26:
4043 case DW_OP_reg27:
4044 case DW_OP_reg28:
4045 case DW_OP_reg29:
4046 case DW_OP_reg30:
4047 case DW_OP_reg31:
4048 fprintf_filtered (stream, " [$%s]",
4049 locexpr_regname (arch, op - DW_OP_reg0));
4050 break;
4051
4052 case DW_OP_regx:
4053 data = safe_read_uleb128 (data, end, &ul);
4054 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4055 locexpr_regname (arch, (int) ul));
4056 break;
4057
4058 case DW_OP_implicit_value:
4059 data = safe_read_uleb128 (data, end, &ul);
4060 data += ul;
4061 fprintf_filtered (stream, " %s", pulongest (ul));
4062 break;
4063
4064 case DW_OP_breg0:
4065 case DW_OP_breg1:
4066 case DW_OP_breg2:
4067 case DW_OP_breg3:
4068 case DW_OP_breg4:
4069 case DW_OP_breg5:
4070 case DW_OP_breg6:
4071 case DW_OP_breg7:
4072 case DW_OP_breg8:
4073 case DW_OP_breg9:
4074 case DW_OP_breg10:
4075 case DW_OP_breg11:
4076 case DW_OP_breg12:
4077 case DW_OP_breg13:
4078 case DW_OP_breg14:
4079 case DW_OP_breg15:
4080 case DW_OP_breg16:
4081 case DW_OP_breg17:
4082 case DW_OP_breg18:
4083 case DW_OP_breg19:
4084 case DW_OP_breg20:
4085 case DW_OP_breg21:
4086 case DW_OP_breg22:
4087 case DW_OP_breg23:
4088 case DW_OP_breg24:
4089 case DW_OP_breg25:
4090 case DW_OP_breg26:
4091 case DW_OP_breg27:
4092 case DW_OP_breg28:
4093 case DW_OP_breg29:
4094 case DW_OP_breg30:
4095 case DW_OP_breg31:
4096 data = safe_read_sleb128 (data, end, &l);
4097 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4098 locexpr_regname (arch, op - DW_OP_breg0));
4099 break;
4100
4101 case DW_OP_bregx:
4102 data = safe_read_uleb128 (data, end, &ul);
4103 data = safe_read_sleb128 (data, end, &l);
4104 fprintf_filtered (stream, " register %s [$%s] offset %s",
4105 pulongest (ul),
4106 locexpr_regname (arch, (int) ul),
4107 plongest (l));
4108 break;
4109
4110 case DW_OP_fbreg:
4111 data = safe_read_sleb128 (data, end, &l);
4112 fprintf_filtered (stream, " %s", plongest (l));
4113 break;
4114
4115 case DW_OP_xderef_size:
4116 case DW_OP_deref_size:
4117 case DW_OP_pick:
4118 fprintf_filtered (stream, " %d", *data);
4119 ++data;
4120 break;
4121
4122 case DW_OP_plus_uconst:
4123 data = safe_read_uleb128 (data, end, &ul);
4124 fprintf_filtered (stream, " %s", pulongest (ul));
4125 break;
4126
4127 case DW_OP_skip:
4128 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4129 data += 2;
4130 fprintf_filtered (stream, " to %ld",
4131 (long) (data + l - start));
4132 break;
4133
4134 case DW_OP_bra:
4135 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4136 data += 2;
4137 fprintf_filtered (stream, " %ld",
4138 (long) (data + l - start));
4139 break;
4140
4141 case DW_OP_call2:
4142 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4143 data += 2;
4144 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4145 break;
4146
4147 case DW_OP_call4:
4148 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4149 data += 4;
4150 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4151 break;
4152
4153 case DW_OP_call_ref:
4154 ul = extract_unsigned_integer (data, offset_size,
4155 gdbarch_byte_order (arch));
4156 data += offset_size;
4157 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4158 break;
4159
4160 case DW_OP_piece:
4161 data = safe_read_uleb128 (data, end, &ul);
4162 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4163 break;
4164
4165 case DW_OP_bit_piece:
4166 {
4167 uint64_t offset;
4168
4169 data = safe_read_uleb128 (data, end, &ul);
4170 data = safe_read_uleb128 (data, end, &offset);
4171 fprintf_filtered (stream, " size %s offset %s (bits)",
4172 pulongest (ul), pulongest (offset));
4173 }
4174 break;
4175
4176 case DW_OP_implicit_pointer:
4177 case DW_OP_GNU_implicit_pointer:
4178 {
4179 ul = extract_unsigned_integer (data, offset_size,
4180 gdbarch_byte_order (arch));
4181 data += offset_size;
4182
4183 data = safe_read_sleb128 (data, end, &l);
4184
4185 fprintf_filtered (stream, " DIE %s offset %s",
4186 phex_nz (ul, offset_size),
4187 plongest (l));
4188 }
4189 break;
4190
4191 case DW_OP_deref_type:
4192 case DW_OP_GNU_deref_type:
4193 {
4194 int addr_size = *data++;
4195 cu_offset offset;
4196 struct type *type;
4197
4198 data = safe_read_uleb128 (data, end, &ul);
4199 offset.cu_off = ul;
4200 type = dwarf2_get_die_type (offset, per_cu);
4201 fprintf_filtered (stream, "<");
4202 type_print (type, "", stream, -1);
4203 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4204 addr_size);
4205 }
4206 break;
4207
4208 case DW_OP_const_type:
4209 case DW_OP_GNU_const_type:
4210 {
4211 cu_offset type_die;
4212 struct type *type;
4213
4214 data = safe_read_uleb128 (data, end, &ul);
4215 type_die.cu_off = ul;
4216 type = dwarf2_get_die_type (type_die, per_cu);
4217 fprintf_filtered (stream, "<");
4218 type_print (type, "", stream, -1);
4219 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4220 }
4221 break;
4222
4223 case DW_OP_regval_type:
4224 case DW_OP_GNU_regval_type:
4225 {
4226 uint64_t reg;
4227 cu_offset type_die;
4228 struct type *type;
4229
4230 data = safe_read_uleb128 (data, end, &reg);
4231 data = safe_read_uleb128 (data, end, &ul);
4232 type_die.cu_off = ul;
4233
4234 type = dwarf2_get_die_type (type_die, per_cu);
4235 fprintf_filtered (stream, "<");
4236 type_print (type, "", stream, -1);
4237 fprintf_filtered (stream, " [0x%s]> [$%s]",
4238 phex_nz (type_die.cu_off, 0),
4239 locexpr_regname (arch, reg));
4240 }
4241 break;
4242
4243 case DW_OP_convert:
4244 case DW_OP_GNU_convert:
4245 case DW_OP_reinterpret:
4246 case DW_OP_GNU_reinterpret:
4247 {
4248 cu_offset type_die;
4249
4250 data = safe_read_uleb128 (data, end, &ul);
4251 type_die.cu_off = ul;
4252
4253 if (type_die.cu_off == 0)
4254 fprintf_filtered (stream, "<0>");
4255 else
4256 {
4257 struct type *type;
4258
4259 type = dwarf2_get_die_type (type_die, per_cu);
4260 fprintf_filtered (stream, "<");
4261 type_print (type, "", stream, -1);
4262 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4263 }
4264 }
4265 break;
4266
4267 case DW_OP_entry_value:
4268 case DW_OP_GNU_entry_value:
4269 data = safe_read_uleb128 (data, end, &ul);
4270 fputc_filtered ('\n', stream);
4271 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4272 start, data, data + ul, indent + 2,
4273 all, per_cu);
4274 data += ul;
4275 continue;
4276
4277 case DW_OP_GNU_parameter_ref:
4278 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4279 data += 4;
4280 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4281 break;
4282
4283 case DW_OP_GNU_addr_index:
4284 data = safe_read_uleb128 (data, end, &ul);
4285 ul = dwarf2_read_addr_index (per_cu, ul);
4286 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4287 break;
4288 case DW_OP_GNU_const_index:
4289 data = safe_read_uleb128 (data, end, &ul);
4290 ul = dwarf2_read_addr_index (per_cu, ul);
4291 fprintf_filtered (stream, " %s", pulongest (ul));
4292 break;
4293 }
4294
4295 fprintf_filtered (stream, "\n");
4296 }
4297
4298 return data;
4299 }
4300
4301 /* Describe a single location, which may in turn consist of multiple
4302 pieces. */
4303
4304 static void
4305 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4306 struct ui_file *stream,
4307 const gdb_byte *data, size_t size,
4308 struct objfile *objfile, unsigned int addr_size,
4309 int offset_size, struct dwarf2_per_cu_data *per_cu)
4310 {
4311 const gdb_byte *end = data + size;
4312 int first_piece = 1, bad = 0;
4313
4314 while (data < end)
4315 {
4316 const gdb_byte *here = data;
4317 int disassemble = 1;
4318
4319 if (first_piece)
4320 first_piece = 0;
4321 else
4322 fprintf_filtered (stream, _(", and "));
4323
4324 if (!dwarf_always_disassemble)
4325 {
4326 data = locexpr_describe_location_piece (symbol, stream,
4327 addr, objfile, per_cu,
4328 data, end, addr_size);
4329 /* If we printed anything, or if we have an empty piece,
4330 then don't disassemble. */
4331 if (data != here
4332 || data[0] == DW_OP_piece
4333 || data[0] == DW_OP_bit_piece)
4334 disassemble = 0;
4335 }
4336 if (disassemble)
4337 {
4338 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4339 data = disassemble_dwarf_expression (stream,
4340 get_objfile_arch (objfile),
4341 addr_size, offset_size, data,
4342 data, end, 0,
4343 dwarf_always_disassemble,
4344 per_cu);
4345 }
4346
4347 if (data < end)
4348 {
4349 int empty = data == here;
4350
4351 if (disassemble)
4352 fprintf_filtered (stream, " ");
4353 if (data[0] == DW_OP_piece)
4354 {
4355 uint64_t bytes;
4356
4357 data = safe_read_uleb128 (data + 1, end, &bytes);
4358
4359 if (empty)
4360 fprintf_filtered (stream, _("an empty %s-byte piece"),
4361 pulongest (bytes));
4362 else
4363 fprintf_filtered (stream, _(" [%s-byte piece]"),
4364 pulongest (bytes));
4365 }
4366 else if (data[0] == DW_OP_bit_piece)
4367 {
4368 uint64_t bits, offset;
4369
4370 data = safe_read_uleb128 (data + 1, end, &bits);
4371 data = safe_read_uleb128 (data, end, &offset);
4372
4373 if (empty)
4374 fprintf_filtered (stream,
4375 _("an empty %s-bit piece"),
4376 pulongest (bits));
4377 else
4378 fprintf_filtered (stream,
4379 _(" [%s-bit piece, offset %s bits]"),
4380 pulongest (bits), pulongest (offset));
4381 }
4382 else
4383 {
4384 bad = 1;
4385 break;
4386 }
4387 }
4388 }
4389
4390 if (bad || data > end)
4391 error (_("Corrupted DWARF2 expression for \"%s\"."),
4392 SYMBOL_PRINT_NAME (symbol));
4393 }
4394
4395 /* Print a natural-language description of SYMBOL to STREAM. This
4396 version is for a symbol with a single location. */
4397
4398 static void
4399 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4400 struct ui_file *stream)
4401 {
4402 struct dwarf2_locexpr_baton *dlbaton
4403 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4404 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4405 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4406 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4407
4408 locexpr_describe_location_1 (symbol, addr, stream,
4409 dlbaton->data, dlbaton->size,
4410 objfile, addr_size, offset_size,
4411 dlbaton->per_cu);
4412 }
4413
4414 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4415 any necessary bytecode in AX. */
4416
4417 static void
4418 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4419 struct agent_expr *ax, struct axs_value *value)
4420 {
4421 struct dwarf2_locexpr_baton *dlbaton
4422 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4423 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4424
4425 if (dlbaton->size == 0)
4426 value->optimized_out = 1;
4427 else
4428 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4429 dlbaton->data, dlbaton->data + dlbaton->size,
4430 dlbaton->per_cu);
4431 }
4432
4433 /* symbol_computed_ops 'generate_c_location' method. */
4434
4435 static void
4436 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4437 struct gdbarch *gdbarch,
4438 unsigned char *registers_used,
4439 CORE_ADDR pc, const char *result_name)
4440 {
4441 struct dwarf2_locexpr_baton *dlbaton
4442 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4443 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4444
4445 if (dlbaton->size == 0)
4446 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4447
4448 compile_dwarf_expr_to_c (stream, result_name,
4449 sym, pc, gdbarch, registers_used, addr_size,
4450 dlbaton->data, dlbaton->data + dlbaton->size,
4451 dlbaton->per_cu);
4452 }
4453
4454 /* The set of location functions used with the DWARF-2 expression
4455 evaluator. */
4456 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4457 locexpr_read_variable,
4458 locexpr_read_variable_at_entry,
4459 locexpr_get_symbol_read_needs,
4460 locexpr_describe_location,
4461 0, /* location_has_loclist */
4462 locexpr_tracepoint_var_ref,
4463 locexpr_generate_c_location
4464 };
4465
4466
4467 /* Wrapper functions for location lists. These generally find
4468 the appropriate location expression and call something above. */
4469
4470 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4471 evaluator to calculate the location. */
4472 static struct value *
4473 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4474 {
4475 struct dwarf2_loclist_baton *dlbaton
4476 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4477 struct value *val;
4478 const gdb_byte *data;
4479 size_t size;
4480 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4481
4482 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4483 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4484 dlbaton->per_cu);
4485
4486 return val;
4487 }
4488
4489 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4490 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4491 will be thrown.
4492
4493 Function always returns non-NULL value, it may be marked optimized out if
4494 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4495 if it cannot resolve the parameter for any reason. */
4496
4497 static struct value *
4498 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4499 {
4500 struct dwarf2_loclist_baton *dlbaton
4501 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4502 const gdb_byte *data;
4503 size_t size;
4504 CORE_ADDR pc;
4505
4506 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4507 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4508
4509 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4510 if (data == NULL)
4511 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4512
4513 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4514 }
4515
4516 /* Implementation of get_symbol_read_needs from
4517 symbol_computed_ops. */
4518
4519 static enum symbol_needs_kind
4520 loclist_symbol_needs (struct symbol *symbol)
4521 {
4522 /* If there's a location list, then assume we need to have a frame
4523 to choose the appropriate location expression. With tracking of
4524 global variables this is not necessarily true, but such tracking
4525 is disabled in GCC at the moment until we figure out how to
4526 represent it. */
4527
4528 return SYMBOL_NEEDS_FRAME;
4529 }
4530
4531 /* Print a natural-language description of SYMBOL to STREAM. This
4532 version applies when there is a list of different locations, each
4533 with a specified address range. */
4534
4535 static void
4536 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4537 struct ui_file *stream)
4538 {
4539 struct dwarf2_loclist_baton *dlbaton
4540 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4541 const gdb_byte *loc_ptr, *buf_end;
4542 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4545 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4546 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4547 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4548 /* Adjust base_address for relocatable objects. */
4549 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4550 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4551 int done = 0;
4552
4553 loc_ptr = dlbaton->data;
4554 buf_end = dlbaton->data + dlbaton->size;
4555
4556 fprintf_filtered (stream, _("multi-location:\n"));
4557
4558 /* Iterate through locations until we run out. */
4559 while (!done)
4560 {
4561 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4562 int length;
4563 enum debug_loc_kind kind;
4564 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4565
4566 if (dlbaton->from_dwo)
4567 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4568 loc_ptr, buf_end, &new_ptr,
4569 &low, &high, byte_order);
4570 else
4571 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4572 &low, &high,
4573 byte_order, addr_size,
4574 signed_addr_p);
4575 loc_ptr = new_ptr;
4576 switch (kind)
4577 {
4578 case DEBUG_LOC_END_OF_LIST:
4579 done = 1;
4580 continue;
4581 case DEBUG_LOC_BASE_ADDRESS:
4582 base_address = high + base_offset;
4583 fprintf_filtered (stream, _(" Base address %s"),
4584 paddress (gdbarch, base_address));
4585 continue;
4586 case DEBUG_LOC_START_END:
4587 case DEBUG_LOC_START_LENGTH:
4588 break;
4589 case DEBUG_LOC_BUFFER_OVERFLOW:
4590 case DEBUG_LOC_INVALID_ENTRY:
4591 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4592 SYMBOL_PRINT_NAME (symbol));
4593 default:
4594 gdb_assert_not_reached ("bad debug_loc_kind");
4595 }
4596
4597 /* Otherwise, a location expression entry. */
4598 low += base_address;
4599 high += base_address;
4600
4601 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4602 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4603
4604 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4605 loc_ptr += 2;
4606
4607 /* (It would improve readability to print only the minimum
4608 necessary digits of the second number of the range.) */
4609 fprintf_filtered (stream, _(" Range %s-%s: "),
4610 paddress (gdbarch, low), paddress (gdbarch, high));
4611
4612 /* Now describe this particular location. */
4613 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4614 objfile, addr_size, offset_size,
4615 dlbaton->per_cu);
4616
4617 fprintf_filtered (stream, "\n");
4618
4619 loc_ptr += length;
4620 }
4621 }
4622
4623 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4624 any necessary bytecode in AX. */
4625 static void
4626 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4627 struct agent_expr *ax, struct axs_value *value)
4628 {
4629 struct dwarf2_loclist_baton *dlbaton
4630 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4631 const gdb_byte *data;
4632 size_t size;
4633 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4634
4635 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4636 if (size == 0)
4637 value->optimized_out = 1;
4638 else
4639 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4640 dlbaton->per_cu);
4641 }
4642
4643 /* symbol_computed_ops 'generate_c_location' method. */
4644
4645 static void
4646 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4647 struct gdbarch *gdbarch,
4648 unsigned char *registers_used,
4649 CORE_ADDR pc, const char *result_name)
4650 {
4651 struct dwarf2_loclist_baton *dlbaton
4652 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4653 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4654 const gdb_byte *data;
4655 size_t size;
4656
4657 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4658 if (size == 0)
4659 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4660
4661 compile_dwarf_expr_to_c (stream, result_name,
4662 sym, pc, gdbarch, registers_used, addr_size,
4663 data, data + size,
4664 dlbaton->per_cu);
4665 }
4666
4667 /* The set of location functions used with the DWARF-2 expression
4668 evaluator and location lists. */
4669 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4670 loclist_read_variable,
4671 loclist_read_variable_at_entry,
4672 loclist_symbol_needs,
4673 loclist_describe_location,
4674 1, /* location_has_loclist */
4675 loclist_tracepoint_var_ref,
4676 loclist_generate_c_location
4677 };
4678
4679 /* Provide a prototype to silence -Wmissing-prototypes. */
4680 extern initialize_file_ftype _initialize_dwarf2loc;
4681
4682 void
4683 _initialize_dwarf2loc (void)
4684 {
4685 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4686 &entry_values_debug,
4687 _("Set entry values and tail call frames "
4688 "debugging."),
4689 _("Show entry values and tail call frames "
4690 "debugging."),
4691 _("When non-zero, the process of determining "
4692 "parameter values from function entry point "
4693 "and tail call frames will be printed."),
4694 NULL,
4695 show_entry_values_debug,
4696 &setdebuglist, &showdebuglist);
4697
4698 #if GDB_SELF_TEST
4699 register_self_test (selftests::copy_bitwise_tests);
4700 #endif
4701 }
This page took 0.197333 seconds and 5 git commands to generate.