write_pieced_value: Fix copy/paste error in size calculation
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 static void
1756 read_pieced_value (struct value *v)
1757 {
1758 int i;
1759 long offset = 0;
1760 ULONGEST bits_to_skip;
1761 gdb_byte *contents;
1762 struct piece_closure *c
1763 = (struct piece_closure *) value_computed_closure (v);
1764 size_t type_len;
1765 size_t buffer_size = 0;
1766 std::vector<gdb_byte> buffer;
1767 int bits_big_endian
1768 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1769
1770 if (value_type (v) != value_enclosing_type (v))
1771 internal_error (__FILE__, __LINE__,
1772 _("Should not be able to create a lazy value with "
1773 "an enclosing type"));
1774
1775 contents = value_contents_raw (v);
1776 bits_to_skip = 8 * value_offset (v);
1777 if (value_bitsize (v))
1778 {
1779 bits_to_skip += (8 * value_offset (value_parent (v))
1780 + value_bitpos (v));
1781 type_len = value_bitsize (v);
1782 }
1783 else
1784 type_len = 8 * TYPE_LENGTH (value_type (v));
1785
1786 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1787 {
1788 struct dwarf_expr_piece *p = &c->pieces[i];
1789 size_t this_size, this_size_bits;
1790 long dest_offset_bits, source_offset_bits, source_offset;
1791 const gdb_byte *intermediate_buffer;
1792
1793 /* Compute size, source, and destination offsets for copying, in
1794 bits. */
1795 this_size_bits = p->size;
1796 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1797 {
1798 bits_to_skip -= this_size_bits;
1799 continue;
1800 }
1801 if (bits_to_skip > 0)
1802 {
1803 dest_offset_bits = 0;
1804 source_offset_bits = bits_to_skip;
1805 this_size_bits -= bits_to_skip;
1806 bits_to_skip = 0;
1807 }
1808 else
1809 {
1810 dest_offset_bits = offset;
1811 source_offset_bits = 0;
1812 }
1813 if (this_size_bits > type_len - offset)
1814 this_size_bits = type_len - offset;
1815
1816 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1817 source_offset = source_offset_bits / 8;
1818 if (buffer_size < this_size)
1819 {
1820 buffer_size = this_size;
1821 buffer.reserve (buffer_size);
1822 }
1823 intermediate_buffer = buffer.data ();
1824
1825 /* Copy from the source to DEST_BUFFER. */
1826 switch (p->location)
1827 {
1828 case DWARF_VALUE_REGISTER:
1829 {
1830 struct frame_info *frame = frame_find_by_id (c->frame_id);
1831 struct gdbarch *arch = get_frame_arch (frame);
1832 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1833 int optim, unavail;
1834 LONGEST reg_offset = source_offset;
1835
1836 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1837 && this_size < register_size (arch, gdb_regnum))
1838 {
1839 /* Big-endian, and we want less than full size. */
1840 reg_offset = register_size (arch, gdb_regnum) - this_size;
1841 /* We want the lower-order THIS_SIZE_BITS of the bytes
1842 we extract from the register. */
1843 source_offset_bits += 8 * this_size - this_size_bits;
1844 }
1845
1846 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1847 this_size, buffer.data (),
1848 &optim, &unavail))
1849 {
1850 /* Just so garbage doesn't ever shine through. */
1851 memset (buffer.data (), 0, this_size);
1852
1853 if (optim)
1854 mark_value_bits_optimized_out (v, offset, this_size_bits);
1855 if (unavail)
1856 mark_value_bits_unavailable (v, offset, this_size_bits);
1857 }
1858
1859 copy_bitwise (contents, dest_offset_bits,
1860 intermediate_buffer, source_offset_bits % 8,
1861 this_size_bits, bits_big_endian);
1862 }
1863 break;
1864
1865 case DWARF_VALUE_MEMORY:
1866 read_value_memory (v, offset,
1867 p->v.mem.in_stack_memory,
1868 p->v.mem.addr + source_offset,
1869 buffer.data (), this_size);
1870 copy_bitwise (contents, dest_offset_bits,
1871 intermediate_buffer, source_offset_bits % 8,
1872 this_size_bits, bits_big_endian);
1873 break;
1874
1875 case DWARF_VALUE_STACK:
1876 {
1877 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1878 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1879 ULONGEST stack_value_size_bits
1880 = 8 * TYPE_LENGTH (value_type (p->v.value));
1881
1882 /* Use zeroes if piece reaches beyond stack value. */
1883 if (p->size > stack_value_size_bits)
1884 break;
1885
1886 /* Piece is anchored at least significant bit end. */
1887 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1888 source_offset_bits += stack_value_size_bits - p->size;
1889
1890 copy_bitwise (contents, dest_offset_bits,
1891 value_contents_all (p->v.value),
1892 source_offset_bits,
1893 this_size_bits, bits_big_endian);
1894 }
1895 break;
1896
1897 case DWARF_VALUE_LITERAL:
1898 {
1899 size_t n = this_size;
1900
1901 if (n > p->v.literal.length - source_offset)
1902 n = (p->v.literal.length >= source_offset
1903 ? p->v.literal.length - source_offset
1904 : 0);
1905 if (n != 0)
1906 intermediate_buffer = p->v.literal.data + source_offset;
1907
1908 copy_bitwise (contents, dest_offset_bits,
1909 intermediate_buffer, source_offset_bits % 8,
1910 this_size_bits, bits_big_endian);
1911 }
1912 break;
1913
1914 /* These bits show up as zeros -- but do not cause the value
1915 to be considered optimized-out. */
1916 case DWARF_VALUE_IMPLICIT_POINTER:
1917 break;
1918
1919 case DWARF_VALUE_OPTIMIZED_OUT:
1920 mark_value_bits_optimized_out (v, offset, this_size_bits);
1921 break;
1922
1923 default:
1924 internal_error (__FILE__, __LINE__, _("invalid location type"));
1925 }
1926
1927 offset += this_size_bits;
1928 }
1929 }
1930
1931 static void
1932 write_pieced_value (struct value *to, struct value *from)
1933 {
1934 int i;
1935 long offset = 0;
1936 ULONGEST bits_to_skip;
1937 const gdb_byte *contents;
1938 struct piece_closure *c
1939 = (struct piece_closure *) value_computed_closure (to);
1940 size_t type_len;
1941 size_t buffer_size = 0;
1942 std::vector<gdb_byte> buffer;
1943 int bits_big_endian
1944 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1945
1946 contents = value_contents (from);
1947 bits_to_skip = 8 * value_offset (to);
1948 if (value_bitsize (to))
1949 {
1950 bits_to_skip += (8 * value_offset (value_parent (to))
1951 + value_bitpos (to));
1952 type_len = value_bitsize (to);
1953 }
1954 else
1955 type_len = 8 * TYPE_LENGTH (value_type (to));
1956
1957 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1958 {
1959 struct dwarf_expr_piece *p = &c->pieces[i];
1960 size_t this_size_bits, this_size;
1961 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1962 int need_bitwise;
1963 const gdb_byte *source_buffer;
1964
1965 this_size_bits = p->size;
1966 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1967 {
1968 bits_to_skip -= this_size_bits;
1969 continue;
1970 }
1971 if (bits_to_skip > 0)
1972 {
1973 dest_offset_bits = bits_to_skip;
1974 source_offset_bits = 0;
1975 this_size_bits -= bits_to_skip;
1976 bits_to_skip = 0;
1977 }
1978 else
1979 {
1980 dest_offset_bits = 0;
1981 source_offset_bits = offset;
1982 }
1983 if (this_size_bits > type_len - offset)
1984 this_size_bits = type_len - offset;
1985
1986 this_size = (this_size_bits + dest_offset_bits % 8 + 7) / 8;
1987 source_offset = source_offset_bits / 8;
1988 dest_offset = dest_offset_bits / 8;
1989 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1990 {
1991 source_buffer = contents + source_offset;
1992 need_bitwise = 0;
1993 }
1994 else
1995 {
1996 if (buffer_size < this_size)
1997 {
1998 buffer_size = this_size;
1999 buffer.reserve (buffer_size);
2000 }
2001 source_buffer = buffer.data ();
2002 need_bitwise = 1;
2003 }
2004
2005 switch (p->location)
2006 {
2007 case DWARF_VALUE_REGISTER:
2008 {
2009 struct frame_info *frame = frame_find_by_id (c->frame_id);
2010 struct gdbarch *arch = get_frame_arch (frame);
2011 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
2012 int reg_offset = dest_offset;
2013
2014 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2015 && this_size <= register_size (arch, gdb_regnum))
2016 {
2017 /* Big-endian, and we want less than full size. */
2018 reg_offset = register_size (arch, gdb_regnum) - this_size;
2019 }
2020
2021 if (need_bitwise)
2022 {
2023 int optim, unavail;
2024
2025 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
2026 this_size, buffer.data (),
2027 &optim, &unavail))
2028 {
2029 if (optim)
2030 throw_error (OPTIMIZED_OUT_ERROR,
2031 _("Can't do read-modify-write to "
2032 "update bitfield; containing word "
2033 "has been optimized out"));
2034 if (unavail)
2035 throw_error (NOT_AVAILABLE_ERROR,
2036 _("Can't do read-modify-write to update "
2037 "bitfield; containing word "
2038 "is unavailable"));
2039 }
2040 copy_bitwise (buffer.data (), dest_offset_bits,
2041 contents, source_offset_bits,
2042 this_size_bits,
2043 bits_big_endian);
2044 }
2045
2046 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2047 this_size, source_buffer);
2048 }
2049 break;
2050 case DWARF_VALUE_MEMORY:
2051 if (need_bitwise)
2052 {
2053 /* Only the first and last bytes can possibly have any
2054 bits reused. */
2055 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2056 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2057 &buffer[this_size - 1], 1);
2058 copy_bitwise (buffer.data (), dest_offset_bits,
2059 contents, source_offset_bits,
2060 this_size_bits,
2061 bits_big_endian);
2062 }
2063
2064 write_memory (p->v.mem.addr + dest_offset,
2065 source_buffer, this_size);
2066 break;
2067 default:
2068 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2069 break;
2070 }
2071 offset += this_size_bits;
2072 }
2073 }
2074
2075 /* An implementation of an lval_funcs method to see whether a value is
2076 a synthetic pointer. */
2077
2078 static int
2079 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2080 int bit_length)
2081 {
2082 struct piece_closure *c
2083 = (struct piece_closure *) value_computed_closure (value);
2084 int i;
2085
2086 bit_offset += 8 * value_offset (value);
2087 if (value_bitsize (value))
2088 bit_offset += value_bitpos (value);
2089
2090 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2091 {
2092 struct dwarf_expr_piece *p = &c->pieces[i];
2093 size_t this_size_bits = p->size;
2094
2095 if (bit_offset > 0)
2096 {
2097 if (bit_offset >= this_size_bits)
2098 {
2099 bit_offset -= this_size_bits;
2100 continue;
2101 }
2102
2103 bit_length -= this_size_bits - bit_offset;
2104 bit_offset = 0;
2105 }
2106 else
2107 bit_length -= this_size_bits;
2108
2109 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2110 return 0;
2111 }
2112
2113 return 1;
2114 }
2115
2116 /* A wrapper function for get_frame_address_in_block. */
2117
2118 static CORE_ADDR
2119 get_frame_address_in_block_wrapper (void *baton)
2120 {
2121 return get_frame_address_in_block ((struct frame_info *) baton);
2122 }
2123
2124 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2125
2126 static struct value *
2127 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2128 struct dwarf2_per_cu_data *per_cu,
2129 struct type *type)
2130 {
2131 struct value *result = NULL;
2132 struct obstack temp_obstack;
2133 struct cleanup *cleanup;
2134 const gdb_byte *bytes;
2135 LONGEST len;
2136
2137 obstack_init (&temp_obstack);
2138 cleanup = make_cleanup_obstack_free (&temp_obstack);
2139 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2140
2141 if (bytes != NULL)
2142 {
2143 if (byte_offset >= 0
2144 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2145 {
2146 bytes += byte_offset;
2147 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2148 }
2149 else
2150 invalid_synthetic_pointer ();
2151 }
2152 else
2153 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2154
2155 do_cleanups (cleanup);
2156
2157 return result;
2158 }
2159
2160 /* Fetch the value pointed to by a synthetic pointer. */
2161
2162 static struct value *
2163 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2164 struct dwarf2_per_cu_data *per_cu,
2165 struct frame_info *frame, struct type *type)
2166 {
2167 /* Fetch the location expression of the DIE we're pointing to. */
2168 struct dwarf2_locexpr_baton baton
2169 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2170 get_frame_address_in_block_wrapper, frame);
2171
2172 /* Get type of pointed-to DIE. */
2173 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2174 if (orig_type == NULL)
2175 invalid_synthetic_pointer ();
2176
2177 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2178 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2179 or it may've been optimized out. */
2180 if (baton.data != NULL)
2181 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2182 baton.size, baton.per_cu,
2183 TYPE_TARGET_TYPE (type),
2184 byte_offset);
2185 else
2186 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2187 type);
2188 }
2189
2190 /* An implementation of an lval_funcs method to indirect through a
2191 pointer. This handles the synthetic pointer case when needed. */
2192
2193 static struct value *
2194 indirect_pieced_value (struct value *value)
2195 {
2196 struct piece_closure *c
2197 = (struct piece_closure *) value_computed_closure (value);
2198 struct type *type;
2199 struct frame_info *frame;
2200 struct dwarf2_locexpr_baton baton;
2201 int i, bit_length;
2202 LONGEST bit_offset;
2203 struct dwarf_expr_piece *piece = NULL;
2204 LONGEST byte_offset;
2205 enum bfd_endian byte_order;
2206
2207 type = check_typedef (value_type (value));
2208 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2209 return NULL;
2210
2211 bit_length = 8 * TYPE_LENGTH (type);
2212 bit_offset = 8 * value_offset (value);
2213 if (value_bitsize (value))
2214 bit_offset += value_bitpos (value);
2215
2216 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2217 {
2218 struct dwarf_expr_piece *p = &c->pieces[i];
2219 size_t this_size_bits = p->size;
2220
2221 if (bit_offset > 0)
2222 {
2223 if (bit_offset >= this_size_bits)
2224 {
2225 bit_offset -= this_size_bits;
2226 continue;
2227 }
2228
2229 bit_length -= this_size_bits - bit_offset;
2230 bit_offset = 0;
2231 }
2232 else
2233 bit_length -= this_size_bits;
2234
2235 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2236 return NULL;
2237
2238 if (bit_length != 0)
2239 error (_("Invalid use of DW_OP_implicit_pointer"));
2240
2241 piece = p;
2242 break;
2243 }
2244
2245 gdb_assert (piece != NULL);
2246 frame = get_selected_frame (_("No frame selected."));
2247
2248 /* This is an offset requested by GDB, such as value subscripts.
2249 However, due to how synthetic pointers are implemented, this is
2250 always presented to us as a pointer type. This means we have to
2251 sign-extend it manually as appropriate. Use raw
2252 extract_signed_integer directly rather than value_as_address and
2253 sign extend afterwards on architectures that would need it
2254 (mostly everywhere except MIPS, which has signed addresses) as
2255 the later would go through gdbarch_pointer_to_address and thus
2256 return a CORE_ADDR with high bits set on architectures that
2257 encode address spaces and other things in CORE_ADDR. */
2258 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2259 byte_offset = extract_signed_integer (value_contents (value),
2260 TYPE_LENGTH (type), byte_order);
2261 byte_offset += piece->v.ptr.offset;
2262
2263 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2264 byte_offset, c->per_cu,
2265 frame, type);
2266 }
2267
2268 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2269 references. */
2270
2271 static struct value *
2272 coerce_pieced_ref (const struct value *value)
2273 {
2274 struct type *type = check_typedef (value_type (value));
2275
2276 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2277 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2278 {
2279 const struct piece_closure *closure
2280 = (struct piece_closure *) value_computed_closure (value);
2281 struct frame_info *frame
2282 = get_selected_frame (_("No frame selected."));
2283
2284 /* gdb represents synthetic pointers as pieced values with a single
2285 piece. */
2286 gdb_assert (closure != NULL);
2287 gdb_assert (closure->n_pieces == 1);
2288
2289 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2290 closure->pieces->v.ptr.offset,
2291 closure->per_cu, frame, type);
2292 }
2293 else
2294 {
2295 /* Else: not a synthetic reference; do nothing. */
2296 return NULL;
2297 }
2298 }
2299
2300 static void *
2301 copy_pieced_value_closure (const struct value *v)
2302 {
2303 struct piece_closure *c
2304 = (struct piece_closure *) value_computed_closure (v);
2305
2306 ++c->refc;
2307 return c;
2308 }
2309
2310 static void
2311 free_pieced_value_closure (struct value *v)
2312 {
2313 struct piece_closure *c
2314 = (struct piece_closure *) value_computed_closure (v);
2315
2316 --c->refc;
2317 if (c->refc == 0)
2318 {
2319 int i;
2320
2321 for (i = 0; i < c->n_pieces; ++i)
2322 if (c->pieces[i].location == DWARF_VALUE_STACK)
2323 value_free (c->pieces[i].v.value);
2324
2325 xfree (c->pieces);
2326 xfree (c);
2327 }
2328 }
2329
2330 /* Functions for accessing a variable described by DW_OP_piece. */
2331 static const struct lval_funcs pieced_value_funcs = {
2332 read_pieced_value,
2333 write_pieced_value,
2334 indirect_pieced_value,
2335 coerce_pieced_ref,
2336 check_pieced_synthetic_pointer,
2337 copy_pieced_value_closure,
2338 free_pieced_value_closure
2339 };
2340
2341 /* Evaluate a location description, starting at DATA and with length
2342 SIZE, to find the current location of variable of TYPE in the
2343 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2344 location of the subobject of type SUBOBJ_TYPE at byte offset
2345 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2346
2347 static struct value *
2348 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2349 const gdb_byte *data, size_t size,
2350 struct dwarf2_per_cu_data *per_cu,
2351 struct type *subobj_type,
2352 LONGEST subobj_byte_offset)
2353 {
2354 struct value *retval;
2355 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2356
2357 if (subobj_type == NULL)
2358 {
2359 subobj_type = type;
2360 subobj_byte_offset = 0;
2361 }
2362 else if (subobj_byte_offset < 0)
2363 invalid_synthetic_pointer ();
2364
2365 if (size == 0)
2366 return allocate_optimized_out_value (subobj_type);
2367
2368 dwarf_evaluate_loc_desc ctx;
2369 ctx.frame = frame;
2370 ctx.per_cu = per_cu;
2371 ctx.obj_address = 0;
2372
2373 scoped_value_mark free_values;
2374
2375 ctx.gdbarch = get_objfile_arch (objfile);
2376 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2377 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2378 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2379
2380 TRY
2381 {
2382 ctx.eval (data, size);
2383 }
2384 CATCH (ex, RETURN_MASK_ERROR)
2385 {
2386 if (ex.error == NOT_AVAILABLE_ERROR)
2387 {
2388 free_values.free_to_mark ();
2389 retval = allocate_value (subobj_type);
2390 mark_value_bytes_unavailable (retval, 0,
2391 TYPE_LENGTH (subobj_type));
2392 return retval;
2393 }
2394 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2395 {
2396 if (entry_values_debug)
2397 exception_print (gdb_stdout, ex);
2398 free_values.free_to_mark ();
2399 return allocate_optimized_out_value (subobj_type);
2400 }
2401 else
2402 throw_exception (ex);
2403 }
2404 END_CATCH
2405
2406 if (ctx.num_pieces > 0)
2407 {
2408 struct piece_closure *c;
2409 ULONGEST bit_size = 0;
2410 int i;
2411
2412 for (i = 0; i < ctx.num_pieces; ++i)
2413 bit_size += ctx.pieces[i].size;
2414 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2415 invalid_synthetic_pointer ();
2416
2417 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2418 frame);
2419 /* We must clean up the value chain after creating the piece
2420 closure but before allocating the result. */
2421 free_values.free_to_mark ();
2422 retval = allocate_computed_value (subobj_type,
2423 &pieced_value_funcs, c);
2424 set_value_offset (retval, subobj_byte_offset);
2425 }
2426 else
2427 {
2428 switch (ctx.location)
2429 {
2430 case DWARF_VALUE_REGISTER:
2431 {
2432 struct gdbarch *arch = get_frame_arch (frame);
2433 int dwarf_regnum
2434 = longest_to_int (value_as_long (ctx.fetch (0)));
2435 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2436
2437 if (subobj_byte_offset != 0)
2438 error (_("cannot use offset on synthetic pointer to register"));
2439 free_values.free_to_mark ();
2440 retval = value_from_register (subobj_type, gdb_regnum, frame);
2441 if (value_optimized_out (retval))
2442 {
2443 struct value *tmp;
2444
2445 /* This means the register has undefined value / was
2446 not saved. As we're computing the location of some
2447 variable etc. in the program, not a value for
2448 inspecting a register ($pc, $sp, etc.), return a
2449 generic optimized out value instead, so that we show
2450 <optimized out> instead of <not saved>. */
2451 tmp = allocate_value (subobj_type);
2452 value_contents_copy (tmp, 0, retval, 0,
2453 TYPE_LENGTH (subobj_type));
2454 retval = tmp;
2455 }
2456 }
2457 break;
2458
2459 case DWARF_VALUE_MEMORY:
2460 {
2461 struct type *ptr_type;
2462 CORE_ADDR address = ctx.fetch_address (0);
2463 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2464
2465 /* DW_OP_deref_size (and possibly other operations too) may
2466 create a pointer instead of an address. Ideally, the
2467 pointer to address conversion would be performed as part
2468 of those operations, but the type of the object to
2469 which the address refers is not known at the time of
2470 the operation. Therefore, we do the conversion here
2471 since the type is readily available. */
2472
2473 switch (TYPE_CODE (subobj_type))
2474 {
2475 case TYPE_CODE_FUNC:
2476 case TYPE_CODE_METHOD:
2477 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2478 break;
2479 default:
2480 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2481 break;
2482 }
2483 address = value_as_address (value_from_pointer (ptr_type, address));
2484
2485 free_values.free_to_mark ();
2486 retval = value_at_lazy (subobj_type,
2487 address + subobj_byte_offset);
2488 if (in_stack_memory)
2489 set_value_stack (retval, 1);
2490 }
2491 break;
2492
2493 case DWARF_VALUE_STACK:
2494 {
2495 struct value *value = ctx.fetch (0);
2496 size_t n = TYPE_LENGTH (value_type (value));
2497 size_t len = TYPE_LENGTH (subobj_type);
2498 size_t max = TYPE_LENGTH (type);
2499 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2500 struct cleanup *cleanup;
2501
2502 if (subobj_byte_offset + len > max)
2503 invalid_synthetic_pointer ();
2504
2505 /* Preserve VALUE because we are going to free values back
2506 to the mark, but we still need the value contents
2507 below. */
2508 value_incref (value);
2509 free_values.free_to_mark ();
2510 cleanup = make_cleanup_value_free (value);
2511
2512 retval = allocate_value (subobj_type);
2513
2514 /* The given offset is relative to the actual object. */
2515 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2516 subobj_byte_offset += n - max;
2517
2518 memcpy (value_contents_raw (retval),
2519 value_contents_all (value) + subobj_byte_offset, len);
2520
2521 do_cleanups (cleanup);
2522 }
2523 break;
2524
2525 case DWARF_VALUE_LITERAL:
2526 {
2527 bfd_byte *contents;
2528 size_t n = TYPE_LENGTH (subobj_type);
2529
2530 if (subobj_byte_offset + n > ctx.len)
2531 invalid_synthetic_pointer ();
2532
2533 free_values.free_to_mark ();
2534 retval = allocate_value (subobj_type);
2535 contents = value_contents_raw (retval);
2536 memcpy (contents, ctx.data + subobj_byte_offset, n);
2537 }
2538 break;
2539
2540 case DWARF_VALUE_OPTIMIZED_OUT:
2541 free_values.free_to_mark ();
2542 retval = allocate_optimized_out_value (subobj_type);
2543 break;
2544
2545 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2546 operation by execute_stack_op. */
2547 case DWARF_VALUE_IMPLICIT_POINTER:
2548 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2549 it can only be encountered when making a piece. */
2550 default:
2551 internal_error (__FILE__, __LINE__, _("invalid location type"));
2552 }
2553 }
2554
2555 set_value_initialized (retval, ctx.initialized);
2556
2557 return retval;
2558 }
2559
2560 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2561 passes 0 as the byte_offset. */
2562
2563 struct value *
2564 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2565 const gdb_byte *data, size_t size,
2566 struct dwarf2_per_cu_data *per_cu)
2567 {
2568 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2569 NULL, 0);
2570 }
2571
2572 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2573 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2574 frame in which the expression is evaluated. ADDR is a context (location of
2575 a variable) and might be needed to evaluate the location expression.
2576 Returns 1 on success, 0 otherwise. */
2577
2578 static int
2579 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2580 struct frame_info *frame,
2581 CORE_ADDR addr,
2582 CORE_ADDR *valp)
2583 {
2584 struct objfile *objfile;
2585
2586 if (dlbaton == NULL || dlbaton->size == 0)
2587 return 0;
2588
2589 dwarf_evaluate_loc_desc ctx;
2590
2591 ctx.frame = frame;
2592 ctx.per_cu = dlbaton->per_cu;
2593 ctx.obj_address = addr;
2594
2595 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2596
2597 ctx.gdbarch = get_objfile_arch (objfile);
2598 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2599 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2600 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2601
2602 ctx.eval (dlbaton->data, dlbaton->size);
2603
2604 switch (ctx.location)
2605 {
2606 case DWARF_VALUE_REGISTER:
2607 case DWARF_VALUE_MEMORY:
2608 case DWARF_VALUE_STACK:
2609 *valp = ctx.fetch_address (0);
2610 if (ctx.location == DWARF_VALUE_REGISTER)
2611 *valp = ctx.read_addr_from_reg (*valp);
2612 return 1;
2613 case DWARF_VALUE_LITERAL:
2614 *valp = extract_signed_integer (ctx.data, ctx.len,
2615 gdbarch_byte_order (ctx.gdbarch));
2616 return 1;
2617 /* Unsupported dwarf values. */
2618 case DWARF_VALUE_OPTIMIZED_OUT:
2619 case DWARF_VALUE_IMPLICIT_POINTER:
2620 break;
2621 }
2622
2623 return 0;
2624 }
2625
2626 /* See dwarf2loc.h. */
2627
2628 int
2629 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2630 struct frame_info *frame,
2631 struct property_addr_info *addr_stack,
2632 CORE_ADDR *value)
2633 {
2634 if (prop == NULL)
2635 return 0;
2636
2637 if (frame == NULL && has_stack_frames ())
2638 frame = get_selected_frame (NULL);
2639
2640 switch (prop->kind)
2641 {
2642 case PROP_LOCEXPR:
2643 {
2644 const struct dwarf2_property_baton *baton
2645 = (const struct dwarf2_property_baton *) prop->data.baton;
2646
2647 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2648 addr_stack ? addr_stack->addr : 0,
2649 value))
2650 {
2651 if (baton->referenced_type)
2652 {
2653 struct value *val = value_at (baton->referenced_type, *value);
2654
2655 *value = value_as_address (val);
2656 }
2657 return 1;
2658 }
2659 }
2660 break;
2661
2662 case PROP_LOCLIST:
2663 {
2664 struct dwarf2_property_baton *baton
2665 = (struct dwarf2_property_baton *) prop->data.baton;
2666 CORE_ADDR pc = get_frame_address_in_block (frame);
2667 const gdb_byte *data;
2668 struct value *val;
2669 size_t size;
2670
2671 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2672 if (data != NULL)
2673 {
2674 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2675 size, baton->loclist.per_cu);
2676 if (!value_optimized_out (val))
2677 {
2678 *value = value_as_address (val);
2679 return 1;
2680 }
2681 }
2682 }
2683 break;
2684
2685 case PROP_CONST:
2686 *value = prop->data.const_val;
2687 return 1;
2688
2689 case PROP_ADDR_OFFSET:
2690 {
2691 struct dwarf2_property_baton *baton
2692 = (struct dwarf2_property_baton *) prop->data.baton;
2693 struct property_addr_info *pinfo;
2694 struct value *val;
2695
2696 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2697 if (pinfo->type == baton->referenced_type)
2698 break;
2699 if (pinfo == NULL)
2700 error (_("cannot find reference address for offset property"));
2701 if (pinfo->valaddr != NULL)
2702 val = value_from_contents
2703 (baton->offset_info.type,
2704 pinfo->valaddr + baton->offset_info.offset);
2705 else
2706 val = value_at (baton->offset_info.type,
2707 pinfo->addr + baton->offset_info.offset);
2708 *value = value_as_address (val);
2709 return 1;
2710 }
2711 }
2712
2713 return 0;
2714 }
2715
2716 /* See dwarf2loc.h. */
2717
2718 void
2719 dwarf2_compile_property_to_c (string_file &stream,
2720 const char *result_name,
2721 struct gdbarch *gdbarch,
2722 unsigned char *registers_used,
2723 const struct dynamic_prop *prop,
2724 CORE_ADDR pc,
2725 struct symbol *sym)
2726 {
2727 struct dwarf2_property_baton *baton
2728 = (struct dwarf2_property_baton *) prop->data.baton;
2729 const gdb_byte *data;
2730 size_t size;
2731 struct dwarf2_per_cu_data *per_cu;
2732
2733 if (prop->kind == PROP_LOCEXPR)
2734 {
2735 data = baton->locexpr.data;
2736 size = baton->locexpr.size;
2737 per_cu = baton->locexpr.per_cu;
2738 }
2739 else
2740 {
2741 gdb_assert (prop->kind == PROP_LOCLIST);
2742
2743 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2744 per_cu = baton->loclist.per_cu;
2745 }
2746
2747 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2748 gdbarch, registers_used,
2749 dwarf2_per_cu_addr_size (per_cu),
2750 data, data + size, per_cu);
2751 }
2752
2753 \f
2754 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2755
2756 class symbol_needs_eval_context : public dwarf_expr_context
2757 {
2758 public:
2759
2760 enum symbol_needs_kind needs;
2761 struct dwarf2_per_cu_data *per_cu;
2762
2763 /* Reads from registers do require a frame. */
2764 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2765 {
2766 needs = SYMBOL_NEEDS_FRAME;
2767 return 1;
2768 }
2769
2770 /* "get_reg_value" callback: Reads from registers do require a
2771 frame. */
2772
2773 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2774 {
2775 needs = SYMBOL_NEEDS_FRAME;
2776 return value_zero (type, not_lval);
2777 }
2778
2779 /* Reads from memory do not require a frame. */
2780 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2781 {
2782 memset (buf, 0, len);
2783 }
2784
2785 /* Frame-relative accesses do require a frame. */
2786 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2787 {
2788 static gdb_byte lit0 = DW_OP_lit0;
2789
2790 *start = &lit0;
2791 *length = 1;
2792
2793 needs = SYMBOL_NEEDS_FRAME;
2794 }
2795
2796 /* CFA accesses require a frame. */
2797 CORE_ADDR get_frame_cfa () OVERRIDE
2798 {
2799 needs = SYMBOL_NEEDS_FRAME;
2800 return 1;
2801 }
2802
2803 CORE_ADDR get_frame_pc () OVERRIDE
2804 {
2805 needs = SYMBOL_NEEDS_FRAME;
2806 return 1;
2807 }
2808
2809 /* Thread-local accesses require registers, but not a frame. */
2810 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2811 {
2812 if (needs <= SYMBOL_NEEDS_REGISTERS)
2813 needs = SYMBOL_NEEDS_REGISTERS;
2814 return 1;
2815 }
2816
2817 /* Helper interface of per_cu_dwarf_call for
2818 dwarf2_loc_desc_get_symbol_read_needs. */
2819
2820 void dwarf_call (cu_offset die_offset) OVERRIDE
2821 {
2822 per_cu_dwarf_call (this, die_offset, per_cu);
2823 }
2824
2825 /* DW_OP_entry_value accesses require a caller, therefore a
2826 frame. */
2827
2828 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2829 union call_site_parameter_u kind_u,
2830 int deref_size) OVERRIDE
2831 {
2832 needs = SYMBOL_NEEDS_FRAME;
2833
2834 /* The expression may require some stub values on DWARF stack. */
2835 push_address (0, 0);
2836 }
2837
2838 /* DW_OP_GNU_addr_index doesn't require a frame. */
2839
2840 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2841 {
2842 /* Nothing to do. */
2843 return 1;
2844 }
2845
2846 /* DW_OP_push_object_address has a frame already passed through. */
2847
2848 CORE_ADDR get_object_address () OVERRIDE
2849 {
2850 /* Nothing to do. */
2851 return 1;
2852 }
2853 };
2854
2855 /* Compute the correct symbol_needs_kind value for the location
2856 expression at DATA (length SIZE). */
2857
2858 static enum symbol_needs_kind
2859 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2860 struct dwarf2_per_cu_data *per_cu)
2861 {
2862 int in_reg;
2863 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2864
2865 scoped_value_mark free_values;
2866
2867 symbol_needs_eval_context ctx;
2868
2869 ctx.needs = SYMBOL_NEEDS_NONE;
2870 ctx.per_cu = per_cu;
2871 ctx.gdbarch = get_objfile_arch (objfile);
2872 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2873 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2874 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2875
2876 ctx.eval (data, size);
2877
2878 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2879
2880 if (ctx.num_pieces > 0)
2881 {
2882 int i;
2883
2884 /* If the location has several pieces, and any of them are in
2885 registers, then we will need a frame to fetch them from. */
2886 for (i = 0; i < ctx.num_pieces; i++)
2887 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2888 in_reg = 1;
2889 }
2890
2891 if (in_reg)
2892 ctx.needs = SYMBOL_NEEDS_FRAME;
2893 return ctx.needs;
2894 }
2895
2896 /* A helper function that throws an unimplemented error mentioning a
2897 given DWARF operator. */
2898
2899 static void
2900 unimplemented (unsigned int op)
2901 {
2902 const char *name = get_DW_OP_name (op);
2903
2904 if (name)
2905 error (_("DWARF operator %s cannot be translated to an agent expression"),
2906 name);
2907 else
2908 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2909 "to an agent expression"),
2910 op);
2911 }
2912
2913 /* See dwarf2loc.h.
2914
2915 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2916 can issue a complaint, which is better than having every target's
2917 implementation of dwarf2_reg_to_regnum do it. */
2918
2919 int
2920 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2921 {
2922 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2923
2924 if (reg == -1)
2925 {
2926 complaint (&symfile_complaints,
2927 _("bad DWARF register number %d"), dwarf_reg);
2928 }
2929 return reg;
2930 }
2931
2932 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2933 Throw an error because DWARF_REG is bad. */
2934
2935 static void
2936 throw_bad_regnum_error (ULONGEST dwarf_reg)
2937 {
2938 /* Still want to print -1 as "-1".
2939 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2940 but that's overkill for now. */
2941 if ((int) dwarf_reg == dwarf_reg)
2942 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2943 error (_("Unable to access DWARF register number %s"),
2944 pulongest (dwarf_reg));
2945 }
2946
2947 /* See dwarf2loc.h. */
2948
2949 int
2950 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2951 {
2952 int reg;
2953
2954 if (dwarf_reg > INT_MAX)
2955 throw_bad_regnum_error (dwarf_reg);
2956 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2957 bad, but that's ok. */
2958 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2959 if (reg == -1)
2960 throw_bad_regnum_error (dwarf_reg);
2961 return reg;
2962 }
2963
2964 /* A helper function that emits an access to memory. ARCH is the
2965 target architecture. EXPR is the expression which we are building.
2966 NBITS is the number of bits we want to read. This emits the
2967 opcodes needed to read the memory and then extract the desired
2968 bits. */
2969
2970 static void
2971 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2972 {
2973 ULONGEST nbytes = (nbits + 7) / 8;
2974
2975 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2976
2977 if (expr->tracing)
2978 ax_trace_quick (expr, nbytes);
2979
2980 if (nbits <= 8)
2981 ax_simple (expr, aop_ref8);
2982 else if (nbits <= 16)
2983 ax_simple (expr, aop_ref16);
2984 else if (nbits <= 32)
2985 ax_simple (expr, aop_ref32);
2986 else
2987 ax_simple (expr, aop_ref64);
2988
2989 /* If we read exactly the number of bytes we wanted, we're done. */
2990 if (8 * nbytes == nbits)
2991 return;
2992
2993 if (gdbarch_bits_big_endian (arch))
2994 {
2995 /* On a bits-big-endian machine, we want the high-order
2996 NBITS. */
2997 ax_const_l (expr, 8 * nbytes - nbits);
2998 ax_simple (expr, aop_rsh_unsigned);
2999 }
3000 else
3001 {
3002 /* On a bits-little-endian box, we want the low-order NBITS. */
3003 ax_zero_ext (expr, nbits);
3004 }
3005 }
3006
3007 /* A helper function to return the frame's PC. */
3008
3009 static CORE_ADDR
3010 get_ax_pc (void *baton)
3011 {
3012 struct agent_expr *expr = (struct agent_expr *) baton;
3013
3014 return expr->scope;
3015 }
3016
3017 /* Compile a DWARF location expression to an agent expression.
3018
3019 EXPR is the agent expression we are building.
3020 LOC is the agent value we modify.
3021 ARCH is the architecture.
3022 ADDR_SIZE is the size of addresses, in bytes.
3023 OP_PTR is the start of the location expression.
3024 OP_END is one past the last byte of the location expression.
3025
3026 This will throw an exception for various kinds of errors -- for
3027 example, if the expression cannot be compiled, or if the expression
3028 is invalid. */
3029
3030 void
3031 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3032 struct gdbarch *arch, unsigned int addr_size,
3033 const gdb_byte *op_ptr, const gdb_byte *op_end,
3034 struct dwarf2_per_cu_data *per_cu)
3035 {
3036 int i;
3037 std::vector<int> dw_labels, patches;
3038 const gdb_byte * const base = op_ptr;
3039 const gdb_byte *previous_piece = op_ptr;
3040 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3041 ULONGEST bits_collected = 0;
3042 unsigned int addr_size_bits = 8 * addr_size;
3043 int bits_big_endian = gdbarch_bits_big_endian (arch);
3044
3045 std::vector<int> offsets (op_end - op_ptr, -1);
3046
3047 /* By default we are making an address. */
3048 loc->kind = axs_lvalue_memory;
3049
3050 while (op_ptr < op_end)
3051 {
3052 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3053 uint64_t uoffset, reg;
3054 int64_t offset;
3055 int i;
3056
3057 offsets[op_ptr - base] = expr->len;
3058 ++op_ptr;
3059
3060 /* Our basic approach to code generation is to map DWARF
3061 operations directly to AX operations. However, there are
3062 some differences.
3063
3064 First, DWARF works on address-sized units, but AX always uses
3065 LONGEST. For most operations we simply ignore this
3066 difference; instead we generate sign extensions as needed
3067 before division and comparison operations. It would be nice
3068 to omit the sign extensions, but there is no way to determine
3069 the size of the target's LONGEST. (This code uses the size
3070 of the host LONGEST in some cases -- that is a bug but it is
3071 difficult to fix.)
3072
3073 Second, some DWARF operations cannot be translated to AX.
3074 For these we simply fail. See
3075 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3076 switch (op)
3077 {
3078 case DW_OP_lit0:
3079 case DW_OP_lit1:
3080 case DW_OP_lit2:
3081 case DW_OP_lit3:
3082 case DW_OP_lit4:
3083 case DW_OP_lit5:
3084 case DW_OP_lit6:
3085 case DW_OP_lit7:
3086 case DW_OP_lit8:
3087 case DW_OP_lit9:
3088 case DW_OP_lit10:
3089 case DW_OP_lit11:
3090 case DW_OP_lit12:
3091 case DW_OP_lit13:
3092 case DW_OP_lit14:
3093 case DW_OP_lit15:
3094 case DW_OP_lit16:
3095 case DW_OP_lit17:
3096 case DW_OP_lit18:
3097 case DW_OP_lit19:
3098 case DW_OP_lit20:
3099 case DW_OP_lit21:
3100 case DW_OP_lit22:
3101 case DW_OP_lit23:
3102 case DW_OP_lit24:
3103 case DW_OP_lit25:
3104 case DW_OP_lit26:
3105 case DW_OP_lit27:
3106 case DW_OP_lit28:
3107 case DW_OP_lit29:
3108 case DW_OP_lit30:
3109 case DW_OP_lit31:
3110 ax_const_l (expr, op - DW_OP_lit0);
3111 break;
3112
3113 case DW_OP_addr:
3114 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3115 op_ptr += addr_size;
3116 /* Some versions of GCC emit DW_OP_addr before
3117 DW_OP_GNU_push_tls_address. In this case the value is an
3118 index, not an address. We don't support things like
3119 branching between the address and the TLS op. */
3120 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3121 uoffset += dwarf2_per_cu_text_offset (per_cu);
3122 ax_const_l (expr, uoffset);
3123 break;
3124
3125 case DW_OP_const1u:
3126 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3127 op_ptr += 1;
3128 break;
3129 case DW_OP_const1s:
3130 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3131 op_ptr += 1;
3132 break;
3133 case DW_OP_const2u:
3134 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3135 op_ptr += 2;
3136 break;
3137 case DW_OP_const2s:
3138 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3139 op_ptr += 2;
3140 break;
3141 case DW_OP_const4u:
3142 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3143 op_ptr += 4;
3144 break;
3145 case DW_OP_const4s:
3146 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3147 op_ptr += 4;
3148 break;
3149 case DW_OP_const8u:
3150 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3151 op_ptr += 8;
3152 break;
3153 case DW_OP_const8s:
3154 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3155 op_ptr += 8;
3156 break;
3157 case DW_OP_constu:
3158 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3159 ax_const_l (expr, uoffset);
3160 break;
3161 case DW_OP_consts:
3162 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3163 ax_const_l (expr, offset);
3164 break;
3165
3166 case DW_OP_reg0:
3167 case DW_OP_reg1:
3168 case DW_OP_reg2:
3169 case DW_OP_reg3:
3170 case DW_OP_reg4:
3171 case DW_OP_reg5:
3172 case DW_OP_reg6:
3173 case DW_OP_reg7:
3174 case DW_OP_reg8:
3175 case DW_OP_reg9:
3176 case DW_OP_reg10:
3177 case DW_OP_reg11:
3178 case DW_OP_reg12:
3179 case DW_OP_reg13:
3180 case DW_OP_reg14:
3181 case DW_OP_reg15:
3182 case DW_OP_reg16:
3183 case DW_OP_reg17:
3184 case DW_OP_reg18:
3185 case DW_OP_reg19:
3186 case DW_OP_reg20:
3187 case DW_OP_reg21:
3188 case DW_OP_reg22:
3189 case DW_OP_reg23:
3190 case DW_OP_reg24:
3191 case DW_OP_reg25:
3192 case DW_OP_reg26:
3193 case DW_OP_reg27:
3194 case DW_OP_reg28:
3195 case DW_OP_reg29:
3196 case DW_OP_reg30:
3197 case DW_OP_reg31:
3198 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3199 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3200 loc->kind = axs_lvalue_register;
3201 break;
3202
3203 case DW_OP_regx:
3204 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3205 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3206 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3207 loc->kind = axs_lvalue_register;
3208 break;
3209
3210 case DW_OP_implicit_value:
3211 {
3212 uint64_t len;
3213
3214 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3215 if (op_ptr + len > op_end)
3216 error (_("DW_OP_implicit_value: too few bytes available."));
3217 if (len > sizeof (ULONGEST))
3218 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3219 (int) len);
3220
3221 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3222 byte_order));
3223 op_ptr += len;
3224 dwarf_expr_require_composition (op_ptr, op_end,
3225 "DW_OP_implicit_value");
3226
3227 loc->kind = axs_rvalue;
3228 }
3229 break;
3230
3231 case DW_OP_stack_value:
3232 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3233 loc->kind = axs_rvalue;
3234 break;
3235
3236 case DW_OP_breg0:
3237 case DW_OP_breg1:
3238 case DW_OP_breg2:
3239 case DW_OP_breg3:
3240 case DW_OP_breg4:
3241 case DW_OP_breg5:
3242 case DW_OP_breg6:
3243 case DW_OP_breg7:
3244 case DW_OP_breg8:
3245 case DW_OP_breg9:
3246 case DW_OP_breg10:
3247 case DW_OP_breg11:
3248 case DW_OP_breg12:
3249 case DW_OP_breg13:
3250 case DW_OP_breg14:
3251 case DW_OP_breg15:
3252 case DW_OP_breg16:
3253 case DW_OP_breg17:
3254 case DW_OP_breg18:
3255 case DW_OP_breg19:
3256 case DW_OP_breg20:
3257 case DW_OP_breg21:
3258 case DW_OP_breg22:
3259 case DW_OP_breg23:
3260 case DW_OP_breg24:
3261 case DW_OP_breg25:
3262 case DW_OP_breg26:
3263 case DW_OP_breg27:
3264 case DW_OP_breg28:
3265 case DW_OP_breg29:
3266 case DW_OP_breg30:
3267 case DW_OP_breg31:
3268 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3269 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3270 ax_reg (expr, i);
3271 if (offset != 0)
3272 {
3273 ax_const_l (expr, offset);
3274 ax_simple (expr, aop_add);
3275 }
3276 break;
3277 case DW_OP_bregx:
3278 {
3279 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3280 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3281 i = dwarf_reg_to_regnum_or_error (arch, reg);
3282 ax_reg (expr, i);
3283 if (offset != 0)
3284 {
3285 ax_const_l (expr, offset);
3286 ax_simple (expr, aop_add);
3287 }
3288 }
3289 break;
3290 case DW_OP_fbreg:
3291 {
3292 const gdb_byte *datastart;
3293 size_t datalen;
3294 const struct block *b;
3295 struct symbol *framefunc;
3296
3297 b = block_for_pc (expr->scope);
3298
3299 if (!b)
3300 error (_("No block found for address"));
3301
3302 framefunc = block_linkage_function (b);
3303
3304 if (!framefunc)
3305 error (_("No function found for block"));
3306
3307 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3308 &datastart, &datalen);
3309
3310 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3311 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3312 datastart + datalen, per_cu);
3313 if (loc->kind == axs_lvalue_register)
3314 require_rvalue (expr, loc);
3315
3316 if (offset != 0)
3317 {
3318 ax_const_l (expr, offset);
3319 ax_simple (expr, aop_add);
3320 }
3321
3322 loc->kind = axs_lvalue_memory;
3323 }
3324 break;
3325
3326 case DW_OP_dup:
3327 ax_simple (expr, aop_dup);
3328 break;
3329
3330 case DW_OP_drop:
3331 ax_simple (expr, aop_pop);
3332 break;
3333
3334 case DW_OP_pick:
3335 offset = *op_ptr++;
3336 ax_pick (expr, offset);
3337 break;
3338
3339 case DW_OP_swap:
3340 ax_simple (expr, aop_swap);
3341 break;
3342
3343 case DW_OP_over:
3344 ax_pick (expr, 1);
3345 break;
3346
3347 case DW_OP_rot:
3348 ax_simple (expr, aop_rot);
3349 break;
3350
3351 case DW_OP_deref:
3352 case DW_OP_deref_size:
3353 {
3354 int size;
3355
3356 if (op == DW_OP_deref_size)
3357 size = *op_ptr++;
3358 else
3359 size = addr_size;
3360
3361 if (size != 1 && size != 2 && size != 4 && size != 8)
3362 error (_("Unsupported size %d in %s"),
3363 size, get_DW_OP_name (op));
3364 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3365 }
3366 break;
3367
3368 case DW_OP_abs:
3369 /* Sign extend the operand. */
3370 ax_ext (expr, addr_size_bits);
3371 ax_simple (expr, aop_dup);
3372 ax_const_l (expr, 0);
3373 ax_simple (expr, aop_less_signed);
3374 ax_simple (expr, aop_log_not);
3375 i = ax_goto (expr, aop_if_goto);
3376 /* We have to emit 0 - X. */
3377 ax_const_l (expr, 0);
3378 ax_simple (expr, aop_swap);
3379 ax_simple (expr, aop_sub);
3380 ax_label (expr, i, expr->len);
3381 break;
3382
3383 case DW_OP_neg:
3384 /* No need to sign extend here. */
3385 ax_const_l (expr, 0);
3386 ax_simple (expr, aop_swap);
3387 ax_simple (expr, aop_sub);
3388 break;
3389
3390 case DW_OP_not:
3391 /* Sign extend the operand. */
3392 ax_ext (expr, addr_size_bits);
3393 ax_simple (expr, aop_bit_not);
3394 break;
3395
3396 case DW_OP_plus_uconst:
3397 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3398 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3399 but we micro-optimize anyhow. */
3400 if (reg != 0)
3401 {
3402 ax_const_l (expr, reg);
3403 ax_simple (expr, aop_add);
3404 }
3405 break;
3406
3407 case DW_OP_and:
3408 ax_simple (expr, aop_bit_and);
3409 break;
3410
3411 case DW_OP_div:
3412 /* Sign extend the operands. */
3413 ax_ext (expr, addr_size_bits);
3414 ax_simple (expr, aop_swap);
3415 ax_ext (expr, addr_size_bits);
3416 ax_simple (expr, aop_swap);
3417 ax_simple (expr, aop_div_signed);
3418 break;
3419
3420 case DW_OP_minus:
3421 ax_simple (expr, aop_sub);
3422 break;
3423
3424 case DW_OP_mod:
3425 ax_simple (expr, aop_rem_unsigned);
3426 break;
3427
3428 case DW_OP_mul:
3429 ax_simple (expr, aop_mul);
3430 break;
3431
3432 case DW_OP_or:
3433 ax_simple (expr, aop_bit_or);
3434 break;
3435
3436 case DW_OP_plus:
3437 ax_simple (expr, aop_add);
3438 break;
3439
3440 case DW_OP_shl:
3441 ax_simple (expr, aop_lsh);
3442 break;
3443
3444 case DW_OP_shr:
3445 ax_simple (expr, aop_rsh_unsigned);
3446 break;
3447
3448 case DW_OP_shra:
3449 ax_simple (expr, aop_rsh_signed);
3450 break;
3451
3452 case DW_OP_xor:
3453 ax_simple (expr, aop_bit_xor);
3454 break;
3455
3456 case DW_OP_le:
3457 /* Sign extend the operands. */
3458 ax_ext (expr, addr_size_bits);
3459 ax_simple (expr, aop_swap);
3460 ax_ext (expr, addr_size_bits);
3461 /* Note no swap here: A <= B is !(B < A). */
3462 ax_simple (expr, aop_less_signed);
3463 ax_simple (expr, aop_log_not);
3464 break;
3465
3466 case DW_OP_ge:
3467 /* Sign extend the operands. */
3468 ax_ext (expr, addr_size_bits);
3469 ax_simple (expr, aop_swap);
3470 ax_ext (expr, addr_size_bits);
3471 ax_simple (expr, aop_swap);
3472 /* A >= B is !(A < B). */
3473 ax_simple (expr, aop_less_signed);
3474 ax_simple (expr, aop_log_not);
3475 break;
3476
3477 case DW_OP_eq:
3478 /* Sign extend the operands. */
3479 ax_ext (expr, addr_size_bits);
3480 ax_simple (expr, aop_swap);
3481 ax_ext (expr, addr_size_bits);
3482 /* No need for a second swap here. */
3483 ax_simple (expr, aop_equal);
3484 break;
3485
3486 case DW_OP_lt:
3487 /* Sign extend the operands. */
3488 ax_ext (expr, addr_size_bits);
3489 ax_simple (expr, aop_swap);
3490 ax_ext (expr, addr_size_bits);
3491 ax_simple (expr, aop_swap);
3492 ax_simple (expr, aop_less_signed);
3493 break;
3494
3495 case DW_OP_gt:
3496 /* Sign extend the operands. */
3497 ax_ext (expr, addr_size_bits);
3498 ax_simple (expr, aop_swap);
3499 ax_ext (expr, addr_size_bits);
3500 /* Note no swap here: A > B is B < A. */
3501 ax_simple (expr, aop_less_signed);
3502 break;
3503
3504 case DW_OP_ne:
3505 /* Sign extend the operands. */
3506 ax_ext (expr, addr_size_bits);
3507 ax_simple (expr, aop_swap);
3508 ax_ext (expr, addr_size_bits);
3509 /* No need for a swap here. */
3510 ax_simple (expr, aop_equal);
3511 ax_simple (expr, aop_log_not);
3512 break;
3513
3514 case DW_OP_call_frame_cfa:
3515 {
3516 int regnum;
3517 CORE_ADDR text_offset;
3518 LONGEST off;
3519 const gdb_byte *cfa_start, *cfa_end;
3520
3521 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3522 &regnum, &off,
3523 &text_offset, &cfa_start, &cfa_end))
3524 {
3525 /* Register. */
3526 ax_reg (expr, regnum);
3527 if (off != 0)
3528 {
3529 ax_const_l (expr, off);
3530 ax_simple (expr, aop_add);
3531 }
3532 }
3533 else
3534 {
3535 /* Another expression. */
3536 ax_const_l (expr, text_offset);
3537 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3538 cfa_start, cfa_end, per_cu);
3539 }
3540
3541 loc->kind = axs_lvalue_memory;
3542 }
3543 break;
3544
3545 case DW_OP_GNU_push_tls_address:
3546 case DW_OP_form_tls_address:
3547 unimplemented (op);
3548 break;
3549
3550 case DW_OP_push_object_address:
3551 unimplemented (op);
3552 break;
3553
3554 case DW_OP_skip:
3555 offset = extract_signed_integer (op_ptr, 2, byte_order);
3556 op_ptr += 2;
3557 i = ax_goto (expr, aop_goto);
3558 dw_labels.push_back (op_ptr + offset - base);
3559 patches.push_back (i);
3560 break;
3561
3562 case DW_OP_bra:
3563 offset = extract_signed_integer (op_ptr, 2, byte_order);
3564 op_ptr += 2;
3565 /* Zero extend the operand. */
3566 ax_zero_ext (expr, addr_size_bits);
3567 i = ax_goto (expr, aop_if_goto);
3568 dw_labels.push_back (op_ptr + offset - base);
3569 patches.push_back (i);
3570 break;
3571
3572 case DW_OP_nop:
3573 break;
3574
3575 case DW_OP_piece:
3576 case DW_OP_bit_piece:
3577 {
3578 uint64_t size, offset;
3579
3580 if (op_ptr - 1 == previous_piece)
3581 error (_("Cannot translate empty pieces to agent expressions"));
3582 previous_piece = op_ptr - 1;
3583
3584 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3585 if (op == DW_OP_piece)
3586 {
3587 size *= 8;
3588 offset = 0;
3589 }
3590 else
3591 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3592
3593 if (bits_collected + size > 8 * sizeof (LONGEST))
3594 error (_("Expression pieces exceed word size"));
3595
3596 /* Access the bits. */
3597 switch (loc->kind)
3598 {
3599 case axs_lvalue_register:
3600 ax_reg (expr, loc->u.reg);
3601 break;
3602
3603 case axs_lvalue_memory:
3604 /* Offset the pointer, if needed. */
3605 if (offset > 8)
3606 {
3607 ax_const_l (expr, offset / 8);
3608 ax_simple (expr, aop_add);
3609 offset %= 8;
3610 }
3611 access_memory (arch, expr, size);
3612 break;
3613 }
3614
3615 /* For a bits-big-endian target, shift up what we already
3616 have. For a bits-little-endian target, shift up the
3617 new data. Note that there is a potential bug here if
3618 the DWARF expression leaves multiple values on the
3619 stack. */
3620 if (bits_collected > 0)
3621 {
3622 if (bits_big_endian)
3623 {
3624 ax_simple (expr, aop_swap);
3625 ax_const_l (expr, size);
3626 ax_simple (expr, aop_lsh);
3627 /* We don't need a second swap here, because
3628 aop_bit_or is symmetric. */
3629 }
3630 else
3631 {
3632 ax_const_l (expr, size);
3633 ax_simple (expr, aop_lsh);
3634 }
3635 ax_simple (expr, aop_bit_or);
3636 }
3637
3638 bits_collected += size;
3639 loc->kind = axs_rvalue;
3640 }
3641 break;
3642
3643 case DW_OP_GNU_uninit:
3644 unimplemented (op);
3645
3646 case DW_OP_call2:
3647 case DW_OP_call4:
3648 {
3649 struct dwarf2_locexpr_baton block;
3650 int size = (op == DW_OP_call2 ? 2 : 4);
3651
3652 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3653 op_ptr += size;
3654
3655 cu_offset offset = (cu_offset) uoffset;
3656 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3657 get_ax_pc, expr);
3658
3659 /* DW_OP_call_ref is currently not supported. */
3660 gdb_assert (block.per_cu == per_cu);
3661
3662 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3663 block.data, block.data + block.size,
3664 per_cu);
3665 }
3666 break;
3667
3668 case DW_OP_call_ref:
3669 unimplemented (op);
3670
3671 default:
3672 unimplemented (op);
3673 }
3674 }
3675
3676 /* Patch all the branches we emitted. */
3677 for (i = 0; i < patches.size (); ++i)
3678 {
3679 int targ = offsets[dw_labels[i]];
3680 if (targ == -1)
3681 internal_error (__FILE__, __LINE__, _("invalid label"));
3682 ax_label (expr, patches[i], targ);
3683 }
3684 }
3685
3686 \f
3687 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3688 evaluator to calculate the location. */
3689 static struct value *
3690 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3691 {
3692 struct dwarf2_locexpr_baton *dlbaton
3693 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3694 struct value *val;
3695
3696 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3697 dlbaton->size, dlbaton->per_cu);
3698
3699 return val;
3700 }
3701
3702 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3703 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3704 will be thrown. */
3705
3706 static struct value *
3707 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3708 {
3709 struct dwarf2_locexpr_baton *dlbaton
3710 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3711
3712 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3713 dlbaton->size);
3714 }
3715
3716 /* Implementation of get_symbol_read_needs from
3717 symbol_computed_ops. */
3718
3719 static enum symbol_needs_kind
3720 locexpr_get_symbol_read_needs (struct symbol *symbol)
3721 {
3722 struct dwarf2_locexpr_baton *dlbaton
3723 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3724
3725 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3726 dlbaton->per_cu);
3727 }
3728
3729 /* Return true if DATA points to the end of a piece. END is one past
3730 the last byte in the expression. */
3731
3732 static int
3733 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3734 {
3735 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3736 }
3737
3738 /* Helper for locexpr_describe_location_piece that finds the name of a
3739 DWARF register. */
3740
3741 static const char *
3742 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3743 {
3744 int regnum;
3745
3746 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3747 We'd rather print *something* here than throw an error. */
3748 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3749 /* gdbarch_register_name may just return "", return something more
3750 descriptive for bad register numbers. */
3751 if (regnum == -1)
3752 {
3753 /* The text is output as "$bad_register_number".
3754 That is why we use the underscores. */
3755 return _("bad_register_number");
3756 }
3757 return gdbarch_register_name (gdbarch, regnum);
3758 }
3759
3760 /* Nicely describe a single piece of a location, returning an updated
3761 position in the bytecode sequence. This function cannot recognize
3762 all locations; if a location is not recognized, it simply returns
3763 DATA. If there is an error during reading, e.g. we run off the end
3764 of the buffer, an error is thrown. */
3765
3766 static const gdb_byte *
3767 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3768 CORE_ADDR addr, struct objfile *objfile,
3769 struct dwarf2_per_cu_data *per_cu,
3770 const gdb_byte *data, const gdb_byte *end,
3771 unsigned int addr_size)
3772 {
3773 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3774 size_t leb128_size;
3775
3776 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3777 {
3778 fprintf_filtered (stream, _("a variable in $%s"),
3779 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3780 data += 1;
3781 }
3782 else if (data[0] == DW_OP_regx)
3783 {
3784 uint64_t reg;
3785
3786 data = safe_read_uleb128 (data + 1, end, &reg);
3787 fprintf_filtered (stream, _("a variable in $%s"),
3788 locexpr_regname (gdbarch, reg));
3789 }
3790 else if (data[0] == DW_OP_fbreg)
3791 {
3792 const struct block *b;
3793 struct symbol *framefunc;
3794 int frame_reg = 0;
3795 int64_t frame_offset;
3796 const gdb_byte *base_data, *new_data, *save_data = data;
3797 size_t base_size;
3798 int64_t base_offset = 0;
3799
3800 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3801 if (!piece_end_p (new_data, end))
3802 return data;
3803 data = new_data;
3804
3805 b = block_for_pc (addr);
3806
3807 if (!b)
3808 error (_("No block found for address for symbol \"%s\"."),
3809 SYMBOL_PRINT_NAME (symbol));
3810
3811 framefunc = block_linkage_function (b);
3812
3813 if (!framefunc)
3814 error (_("No function found for block for symbol \"%s\"."),
3815 SYMBOL_PRINT_NAME (symbol));
3816
3817 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3818
3819 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3820 {
3821 const gdb_byte *buf_end;
3822
3823 frame_reg = base_data[0] - DW_OP_breg0;
3824 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3825 &base_offset);
3826 if (buf_end != base_data + base_size)
3827 error (_("Unexpected opcode after "
3828 "DW_OP_breg%u for symbol \"%s\"."),
3829 frame_reg, SYMBOL_PRINT_NAME (symbol));
3830 }
3831 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3832 {
3833 /* The frame base is just the register, with no offset. */
3834 frame_reg = base_data[0] - DW_OP_reg0;
3835 base_offset = 0;
3836 }
3837 else
3838 {
3839 /* We don't know what to do with the frame base expression,
3840 so we can't trace this variable; give up. */
3841 return save_data;
3842 }
3843
3844 fprintf_filtered (stream,
3845 _("a variable at frame base reg $%s offset %s+%s"),
3846 locexpr_regname (gdbarch, frame_reg),
3847 plongest (base_offset), plongest (frame_offset));
3848 }
3849 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3850 && piece_end_p (data, end))
3851 {
3852 int64_t offset;
3853
3854 data = safe_read_sleb128 (data + 1, end, &offset);
3855
3856 fprintf_filtered (stream,
3857 _("a variable at offset %s from base reg $%s"),
3858 plongest (offset),
3859 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3860 }
3861
3862 /* The location expression for a TLS variable looks like this (on a
3863 64-bit LE machine):
3864
3865 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3866 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3867
3868 0x3 is the encoding for DW_OP_addr, which has an operand as long
3869 as the size of an address on the target machine (here is 8
3870 bytes). Note that more recent version of GCC emit DW_OP_const4u
3871 or DW_OP_const8u, depending on address size, rather than
3872 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3873 The operand represents the offset at which the variable is within
3874 the thread local storage. */
3875
3876 else if (data + 1 + addr_size < end
3877 && (data[0] == DW_OP_addr
3878 || (addr_size == 4 && data[0] == DW_OP_const4u)
3879 || (addr_size == 8 && data[0] == DW_OP_const8u))
3880 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3881 || data[1 + addr_size] == DW_OP_form_tls_address)
3882 && piece_end_p (data + 2 + addr_size, end))
3883 {
3884 ULONGEST offset;
3885 offset = extract_unsigned_integer (data + 1, addr_size,
3886 gdbarch_byte_order (gdbarch));
3887
3888 fprintf_filtered (stream,
3889 _("a thread-local variable at offset 0x%s "
3890 "in the thread-local storage for `%s'"),
3891 phex_nz (offset, addr_size), objfile_name (objfile));
3892
3893 data += 1 + addr_size + 1;
3894 }
3895
3896 /* With -gsplit-dwarf a TLS variable can also look like this:
3897 DW_AT_location : 3 byte block: fc 4 e0
3898 (DW_OP_GNU_const_index: 4;
3899 DW_OP_GNU_push_tls_address) */
3900 else if (data + 3 <= end
3901 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3902 && data[0] == DW_OP_GNU_const_index
3903 && leb128_size > 0
3904 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3905 || data[1 + leb128_size] == DW_OP_form_tls_address)
3906 && piece_end_p (data + 2 + leb128_size, end))
3907 {
3908 uint64_t offset;
3909
3910 data = safe_read_uleb128 (data + 1, end, &offset);
3911 offset = dwarf2_read_addr_index (per_cu, offset);
3912 fprintf_filtered (stream,
3913 _("a thread-local variable at offset 0x%s "
3914 "in the thread-local storage for `%s'"),
3915 phex_nz (offset, addr_size), objfile_name (objfile));
3916 ++data;
3917 }
3918
3919 else if (data[0] >= DW_OP_lit0
3920 && data[0] <= DW_OP_lit31
3921 && data + 1 < end
3922 && data[1] == DW_OP_stack_value)
3923 {
3924 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3925 data += 2;
3926 }
3927
3928 return data;
3929 }
3930
3931 /* Disassemble an expression, stopping at the end of a piece or at the
3932 end of the expression. Returns a pointer to the next unread byte
3933 in the input expression. If ALL is nonzero, then this function
3934 will keep going until it reaches the end of the expression.
3935 If there is an error during reading, e.g. we run off the end
3936 of the buffer, an error is thrown. */
3937
3938 static const gdb_byte *
3939 disassemble_dwarf_expression (struct ui_file *stream,
3940 struct gdbarch *arch, unsigned int addr_size,
3941 int offset_size, const gdb_byte *start,
3942 const gdb_byte *data, const gdb_byte *end,
3943 int indent, int all,
3944 struct dwarf2_per_cu_data *per_cu)
3945 {
3946 while (data < end
3947 && (all
3948 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3949 {
3950 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3951 uint64_t ul;
3952 int64_t l;
3953 const char *name;
3954
3955 name = get_DW_OP_name (op);
3956
3957 if (!name)
3958 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3959 op, (long) (data - 1 - start));
3960 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3961 (long) (data - 1 - start), name);
3962
3963 switch (op)
3964 {
3965 case DW_OP_addr:
3966 ul = extract_unsigned_integer (data, addr_size,
3967 gdbarch_byte_order (arch));
3968 data += addr_size;
3969 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3970 break;
3971
3972 case DW_OP_const1u:
3973 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3974 data += 1;
3975 fprintf_filtered (stream, " %s", pulongest (ul));
3976 break;
3977 case DW_OP_const1s:
3978 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3979 data += 1;
3980 fprintf_filtered (stream, " %s", plongest (l));
3981 break;
3982 case DW_OP_const2u:
3983 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3984 data += 2;
3985 fprintf_filtered (stream, " %s", pulongest (ul));
3986 break;
3987 case DW_OP_const2s:
3988 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3989 data += 2;
3990 fprintf_filtered (stream, " %s", plongest (l));
3991 break;
3992 case DW_OP_const4u:
3993 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3994 data += 4;
3995 fprintf_filtered (stream, " %s", pulongest (ul));
3996 break;
3997 case DW_OP_const4s:
3998 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3999 data += 4;
4000 fprintf_filtered (stream, " %s", plongest (l));
4001 break;
4002 case DW_OP_const8u:
4003 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4004 data += 8;
4005 fprintf_filtered (stream, " %s", pulongest (ul));
4006 break;
4007 case DW_OP_const8s:
4008 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4009 data += 8;
4010 fprintf_filtered (stream, " %s", plongest (l));
4011 break;
4012 case DW_OP_constu:
4013 data = safe_read_uleb128 (data, end, &ul);
4014 fprintf_filtered (stream, " %s", pulongest (ul));
4015 break;
4016 case DW_OP_consts:
4017 data = safe_read_sleb128 (data, end, &l);
4018 fprintf_filtered (stream, " %s", plongest (l));
4019 break;
4020
4021 case DW_OP_reg0:
4022 case DW_OP_reg1:
4023 case DW_OP_reg2:
4024 case DW_OP_reg3:
4025 case DW_OP_reg4:
4026 case DW_OP_reg5:
4027 case DW_OP_reg6:
4028 case DW_OP_reg7:
4029 case DW_OP_reg8:
4030 case DW_OP_reg9:
4031 case DW_OP_reg10:
4032 case DW_OP_reg11:
4033 case DW_OP_reg12:
4034 case DW_OP_reg13:
4035 case DW_OP_reg14:
4036 case DW_OP_reg15:
4037 case DW_OP_reg16:
4038 case DW_OP_reg17:
4039 case DW_OP_reg18:
4040 case DW_OP_reg19:
4041 case DW_OP_reg20:
4042 case DW_OP_reg21:
4043 case DW_OP_reg22:
4044 case DW_OP_reg23:
4045 case DW_OP_reg24:
4046 case DW_OP_reg25:
4047 case DW_OP_reg26:
4048 case DW_OP_reg27:
4049 case DW_OP_reg28:
4050 case DW_OP_reg29:
4051 case DW_OP_reg30:
4052 case DW_OP_reg31:
4053 fprintf_filtered (stream, " [$%s]",
4054 locexpr_regname (arch, op - DW_OP_reg0));
4055 break;
4056
4057 case DW_OP_regx:
4058 data = safe_read_uleb128 (data, end, &ul);
4059 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4060 locexpr_regname (arch, (int) ul));
4061 break;
4062
4063 case DW_OP_implicit_value:
4064 data = safe_read_uleb128 (data, end, &ul);
4065 data += ul;
4066 fprintf_filtered (stream, " %s", pulongest (ul));
4067 break;
4068
4069 case DW_OP_breg0:
4070 case DW_OP_breg1:
4071 case DW_OP_breg2:
4072 case DW_OP_breg3:
4073 case DW_OP_breg4:
4074 case DW_OP_breg5:
4075 case DW_OP_breg6:
4076 case DW_OP_breg7:
4077 case DW_OP_breg8:
4078 case DW_OP_breg9:
4079 case DW_OP_breg10:
4080 case DW_OP_breg11:
4081 case DW_OP_breg12:
4082 case DW_OP_breg13:
4083 case DW_OP_breg14:
4084 case DW_OP_breg15:
4085 case DW_OP_breg16:
4086 case DW_OP_breg17:
4087 case DW_OP_breg18:
4088 case DW_OP_breg19:
4089 case DW_OP_breg20:
4090 case DW_OP_breg21:
4091 case DW_OP_breg22:
4092 case DW_OP_breg23:
4093 case DW_OP_breg24:
4094 case DW_OP_breg25:
4095 case DW_OP_breg26:
4096 case DW_OP_breg27:
4097 case DW_OP_breg28:
4098 case DW_OP_breg29:
4099 case DW_OP_breg30:
4100 case DW_OP_breg31:
4101 data = safe_read_sleb128 (data, end, &l);
4102 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4103 locexpr_regname (arch, op - DW_OP_breg0));
4104 break;
4105
4106 case DW_OP_bregx:
4107 data = safe_read_uleb128 (data, end, &ul);
4108 data = safe_read_sleb128 (data, end, &l);
4109 fprintf_filtered (stream, " register %s [$%s] offset %s",
4110 pulongest (ul),
4111 locexpr_regname (arch, (int) ul),
4112 plongest (l));
4113 break;
4114
4115 case DW_OP_fbreg:
4116 data = safe_read_sleb128 (data, end, &l);
4117 fprintf_filtered (stream, " %s", plongest (l));
4118 break;
4119
4120 case DW_OP_xderef_size:
4121 case DW_OP_deref_size:
4122 case DW_OP_pick:
4123 fprintf_filtered (stream, " %d", *data);
4124 ++data;
4125 break;
4126
4127 case DW_OP_plus_uconst:
4128 data = safe_read_uleb128 (data, end, &ul);
4129 fprintf_filtered (stream, " %s", pulongest (ul));
4130 break;
4131
4132 case DW_OP_skip:
4133 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4134 data += 2;
4135 fprintf_filtered (stream, " to %ld",
4136 (long) (data + l - start));
4137 break;
4138
4139 case DW_OP_bra:
4140 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4141 data += 2;
4142 fprintf_filtered (stream, " %ld",
4143 (long) (data + l - start));
4144 break;
4145
4146 case DW_OP_call2:
4147 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4148 data += 2;
4149 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4150 break;
4151
4152 case DW_OP_call4:
4153 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4154 data += 4;
4155 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4156 break;
4157
4158 case DW_OP_call_ref:
4159 ul = extract_unsigned_integer (data, offset_size,
4160 gdbarch_byte_order (arch));
4161 data += offset_size;
4162 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4163 break;
4164
4165 case DW_OP_piece:
4166 data = safe_read_uleb128 (data, end, &ul);
4167 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4168 break;
4169
4170 case DW_OP_bit_piece:
4171 {
4172 uint64_t offset;
4173
4174 data = safe_read_uleb128 (data, end, &ul);
4175 data = safe_read_uleb128 (data, end, &offset);
4176 fprintf_filtered (stream, " size %s offset %s (bits)",
4177 pulongest (ul), pulongest (offset));
4178 }
4179 break;
4180
4181 case DW_OP_implicit_pointer:
4182 case DW_OP_GNU_implicit_pointer:
4183 {
4184 ul = extract_unsigned_integer (data, offset_size,
4185 gdbarch_byte_order (arch));
4186 data += offset_size;
4187
4188 data = safe_read_sleb128 (data, end, &l);
4189
4190 fprintf_filtered (stream, " DIE %s offset %s",
4191 phex_nz (ul, offset_size),
4192 plongest (l));
4193 }
4194 break;
4195
4196 case DW_OP_deref_type:
4197 case DW_OP_GNU_deref_type:
4198 {
4199 int addr_size = *data++;
4200 struct type *type;
4201
4202 data = safe_read_uleb128 (data, end, &ul);
4203 cu_offset offset = (cu_offset) ul;
4204 type = dwarf2_get_die_type (offset, per_cu);
4205 fprintf_filtered (stream, "<");
4206 type_print (type, "", stream, -1);
4207 fprintf_filtered (stream, " [0x%s]> %d",
4208 phex_nz (to_underlying (offset), 0),
4209 addr_size);
4210 }
4211 break;
4212
4213 case DW_OP_const_type:
4214 case DW_OP_GNU_const_type:
4215 {
4216 struct type *type;
4217
4218 data = safe_read_uleb128 (data, end, &ul);
4219 cu_offset type_die = (cu_offset) ul;
4220 type = dwarf2_get_die_type (type_die, per_cu);
4221 fprintf_filtered (stream, "<");
4222 type_print (type, "", stream, -1);
4223 fprintf_filtered (stream, " [0x%s]>",
4224 phex_nz (to_underlying (type_die), 0));
4225 }
4226 break;
4227
4228 case DW_OP_regval_type:
4229 case DW_OP_GNU_regval_type:
4230 {
4231 uint64_t reg;
4232 struct type *type;
4233
4234 data = safe_read_uleb128 (data, end, &reg);
4235 data = safe_read_uleb128 (data, end, &ul);
4236 cu_offset type_die = (cu_offset) ul;
4237
4238 type = dwarf2_get_die_type (type_die, per_cu);
4239 fprintf_filtered (stream, "<");
4240 type_print (type, "", stream, -1);
4241 fprintf_filtered (stream, " [0x%s]> [$%s]",
4242 phex_nz (to_underlying (type_die), 0),
4243 locexpr_regname (arch, reg));
4244 }
4245 break;
4246
4247 case DW_OP_convert:
4248 case DW_OP_GNU_convert:
4249 case DW_OP_reinterpret:
4250 case DW_OP_GNU_reinterpret:
4251 {
4252 data = safe_read_uleb128 (data, end, &ul);
4253 cu_offset type_die = (cu_offset) ul;
4254
4255 if (to_underlying (type_die) == 0)
4256 fprintf_filtered (stream, "<0>");
4257 else
4258 {
4259 struct type *type;
4260
4261 type = dwarf2_get_die_type (type_die, per_cu);
4262 fprintf_filtered (stream, "<");
4263 type_print (type, "", stream, -1);
4264 fprintf_filtered (stream, " [0x%s]>",
4265 phex_nz (to_underlying (type_die), 0));
4266 }
4267 }
4268 break;
4269
4270 case DW_OP_entry_value:
4271 case DW_OP_GNU_entry_value:
4272 data = safe_read_uleb128 (data, end, &ul);
4273 fputc_filtered ('\n', stream);
4274 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4275 start, data, data + ul, indent + 2,
4276 all, per_cu);
4277 data += ul;
4278 continue;
4279
4280 case DW_OP_GNU_parameter_ref:
4281 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4282 data += 4;
4283 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4284 break;
4285
4286 case DW_OP_GNU_addr_index:
4287 data = safe_read_uleb128 (data, end, &ul);
4288 ul = dwarf2_read_addr_index (per_cu, ul);
4289 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4290 break;
4291 case DW_OP_GNU_const_index:
4292 data = safe_read_uleb128 (data, end, &ul);
4293 ul = dwarf2_read_addr_index (per_cu, ul);
4294 fprintf_filtered (stream, " %s", pulongest (ul));
4295 break;
4296 }
4297
4298 fprintf_filtered (stream, "\n");
4299 }
4300
4301 return data;
4302 }
4303
4304 /* Describe a single location, which may in turn consist of multiple
4305 pieces. */
4306
4307 static void
4308 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4309 struct ui_file *stream,
4310 const gdb_byte *data, size_t size,
4311 struct objfile *objfile, unsigned int addr_size,
4312 int offset_size, struct dwarf2_per_cu_data *per_cu)
4313 {
4314 const gdb_byte *end = data + size;
4315 int first_piece = 1, bad = 0;
4316
4317 while (data < end)
4318 {
4319 const gdb_byte *here = data;
4320 int disassemble = 1;
4321
4322 if (first_piece)
4323 first_piece = 0;
4324 else
4325 fprintf_filtered (stream, _(", and "));
4326
4327 if (!dwarf_always_disassemble)
4328 {
4329 data = locexpr_describe_location_piece (symbol, stream,
4330 addr, objfile, per_cu,
4331 data, end, addr_size);
4332 /* If we printed anything, or if we have an empty piece,
4333 then don't disassemble. */
4334 if (data != here
4335 || data[0] == DW_OP_piece
4336 || data[0] == DW_OP_bit_piece)
4337 disassemble = 0;
4338 }
4339 if (disassemble)
4340 {
4341 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4342 data = disassemble_dwarf_expression (stream,
4343 get_objfile_arch (objfile),
4344 addr_size, offset_size, data,
4345 data, end, 0,
4346 dwarf_always_disassemble,
4347 per_cu);
4348 }
4349
4350 if (data < end)
4351 {
4352 int empty = data == here;
4353
4354 if (disassemble)
4355 fprintf_filtered (stream, " ");
4356 if (data[0] == DW_OP_piece)
4357 {
4358 uint64_t bytes;
4359
4360 data = safe_read_uleb128 (data + 1, end, &bytes);
4361
4362 if (empty)
4363 fprintf_filtered (stream, _("an empty %s-byte piece"),
4364 pulongest (bytes));
4365 else
4366 fprintf_filtered (stream, _(" [%s-byte piece]"),
4367 pulongest (bytes));
4368 }
4369 else if (data[0] == DW_OP_bit_piece)
4370 {
4371 uint64_t bits, offset;
4372
4373 data = safe_read_uleb128 (data + 1, end, &bits);
4374 data = safe_read_uleb128 (data, end, &offset);
4375
4376 if (empty)
4377 fprintf_filtered (stream,
4378 _("an empty %s-bit piece"),
4379 pulongest (bits));
4380 else
4381 fprintf_filtered (stream,
4382 _(" [%s-bit piece, offset %s bits]"),
4383 pulongest (bits), pulongest (offset));
4384 }
4385 else
4386 {
4387 bad = 1;
4388 break;
4389 }
4390 }
4391 }
4392
4393 if (bad || data > end)
4394 error (_("Corrupted DWARF2 expression for \"%s\"."),
4395 SYMBOL_PRINT_NAME (symbol));
4396 }
4397
4398 /* Print a natural-language description of SYMBOL to STREAM. This
4399 version is for a symbol with a single location. */
4400
4401 static void
4402 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4403 struct ui_file *stream)
4404 {
4405 struct dwarf2_locexpr_baton *dlbaton
4406 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4407 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4408 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4409 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4410
4411 locexpr_describe_location_1 (symbol, addr, stream,
4412 dlbaton->data, dlbaton->size,
4413 objfile, addr_size, offset_size,
4414 dlbaton->per_cu);
4415 }
4416
4417 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4418 any necessary bytecode in AX. */
4419
4420 static void
4421 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4422 struct agent_expr *ax, struct axs_value *value)
4423 {
4424 struct dwarf2_locexpr_baton *dlbaton
4425 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4426 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4427
4428 if (dlbaton->size == 0)
4429 value->optimized_out = 1;
4430 else
4431 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4432 dlbaton->data, dlbaton->data + dlbaton->size,
4433 dlbaton->per_cu);
4434 }
4435
4436 /* symbol_computed_ops 'generate_c_location' method. */
4437
4438 static void
4439 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4440 struct gdbarch *gdbarch,
4441 unsigned char *registers_used,
4442 CORE_ADDR pc, const char *result_name)
4443 {
4444 struct dwarf2_locexpr_baton *dlbaton
4445 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4446 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4447
4448 if (dlbaton->size == 0)
4449 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4450
4451 compile_dwarf_expr_to_c (stream, result_name,
4452 sym, pc, gdbarch, registers_used, addr_size,
4453 dlbaton->data, dlbaton->data + dlbaton->size,
4454 dlbaton->per_cu);
4455 }
4456
4457 /* The set of location functions used with the DWARF-2 expression
4458 evaluator. */
4459 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4460 locexpr_read_variable,
4461 locexpr_read_variable_at_entry,
4462 locexpr_get_symbol_read_needs,
4463 locexpr_describe_location,
4464 0, /* location_has_loclist */
4465 locexpr_tracepoint_var_ref,
4466 locexpr_generate_c_location
4467 };
4468
4469
4470 /* Wrapper functions for location lists. These generally find
4471 the appropriate location expression and call something above. */
4472
4473 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4474 evaluator to calculate the location. */
4475 static struct value *
4476 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4477 {
4478 struct dwarf2_loclist_baton *dlbaton
4479 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4480 struct value *val;
4481 const gdb_byte *data;
4482 size_t size;
4483 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4484
4485 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4486 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4487 dlbaton->per_cu);
4488
4489 return val;
4490 }
4491
4492 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4493 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4494 will be thrown.
4495
4496 Function always returns non-NULL value, it may be marked optimized out if
4497 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4498 if it cannot resolve the parameter for any reason. */
4499
4500 static struct value *
4501 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4502 {
4503 struct dwarf2_loclist_baton *dlbaton
4504 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4505 const gdb_byte *data;
4506 size_t size;
4507 CORE_ADDR pc;
4508
4509 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4510 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4511
4512 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4513 if (data == NULL)
4514 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4515
4516 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4517 }
4518
4519 /* Implementation of get_symbol_read_needs from
4520 symbol_computed_ops. */
4521
4522 static enum symbol_needs_kind
4523 loclist_symbol_needs (struct symbol *symbol)
4524 {
4525 /* If there's a location list, then assume we need to have a frame
4526 to choose the appropriate location expression. With tracking of
4527 global variables this is not necessarily true, but such tracking
4528 is disabled in GCC at the moment until we figure out how to
4529 represent it. */
4530
4531 return SYMBOL_NEEDS_FRAME;
4532 }
4533
4534 /* Print a natural-language description of SYMBOL to STREAM. This
4535 version applies when there is a list of different locations, each
4536 with a specified address range. */
4537
4538 static void
4539 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4540 struct ui_file *stream)
4541 {
4542 struct dwarf2_loclist_baton *dlbaton
4543 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4544 const gdb_byte *loc_ptr, *buf_end;
4545 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4548 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4549 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4550 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4551 /* Adjust base_address for relocatable objects. */
4552 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4553 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4554 int done = 0;
4555
4556 loc_ptr = dlbaton->data;
4557 buf_end = dlbaton->data + dlbaton->size;
4558
4559 fprintf_filtered (stream, _("multi-location:\n"));
4560
4561 /* Iterate through locations until we run out. */
4562 while (!done)
4563 {
4564 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4565 int length;
4566 enum debug_loc_kind kind;
4567 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4568
4569 if (dlbaton->from_dwo)
4570 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4571 loc_ptr, buf_end, &new_ptr,
4572 &low, &high, byte_order);
4573 else
4574 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4575 &low, &high,
4576 byte_order, addr_size,
4577 signed_addr_p);
4578 loc_ptr = new_ptr;
4579 switch (kind)
4580 {
4581 case DEBUG_LOC_END_OF_LIST:
4582 done = 1;
4583 continue;
4584 case DEBUG_LOC_BASE_ADDRESS:
4585 base_address = high + base_offset;
4586 fprintf_filtered (stream, _(" Base address %s"),
4587 paddress (gdbarch, base_address));
4588 continue;
4589 case DEBUG_LOC_START_END:
4590 case DEBUG_LOC_START_LENGTH:
4591 break;
4592 case DEBUG_LOC_BUFFER_OVERFLOW:
4593 case DEBUG_LOC_INVALID_ENTRY:
4594 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4595 SYMBOL_PRINT_NAME (symbol));
4596 default:
4597 gdb_assert_not_reached ("bad debug_loc_kind");
4598 }
4599
4600 /* Otherwise, a location expression entry. */
4601 low += base_address;
4602 high += base_address;
4603
4604 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4605 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4606
4607 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4608 loc_ptr += 2;
4609
4610 /* (It would improve readability to print only the minimum
4611 necessary digits of the second number of the range.) */
4612 fprintf_filtered (stream, _(" Range %s-%s: "),
4613 paddress (gdbarch, low), paddress (gdbarch, high));
4614
4615 /* Now describe this particular location. */
4616 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4617 objfile, addr_size, offset_size,
4618 dlbaton->per_cu);
4619
4620 fprintf_filtered (stream, "\n");
4621
4622 loc_ptr += length;
4623 }
4624 }
4625
4626 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4627 any necessary bytecode in AX. */
4628 static void
4629 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4630 struct agent_expr *ax, struct axs_value *value)
4631 {
4632 struct dwarf2_loclist_baton *dlbaton
4633 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4634 const gdb_byte *data;
4635 size_t size;
4636 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4637
4638 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4639 if (size == 0)
4640 value->optimized_out = 1;
4641 else
4642 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4643 dlbaton->per_cu);
4644 }
4645
4646 /* symbol_computed_ops 'generate_c_location' method. */
4647
4648 static void
4649 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4650 struct gdbarch *gdbarch,
4651 unsigned char *registers_used,
4652 CORE_ADDR pc, const char *result_name)
4653 {
4654 struct dwarf2_loclist_baton *dlbaton
4655 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4656 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4657 const gdb_byte *data;
4658 size_t size;
4659
4660 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4661 if (size == 0)
4662 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4663
4664 compile_dwarf_expr_to_c (stream, result_name,
4665 sym, pc, gdbarch, registers_used, addr_size,
4666 data, data + size,
4667 dlbaton->per_cu);
4668 }
4669
4670 /* The set of location functions used with the DWARF-2 expression
4671 evaluator and location lists. */
4672 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4673 loclist_read_variable,
4674 loclist_read_variable_at_entry,
4675 loclist_symbol_needs,
4676 loclist_describe_location,
4677 1, /* location_has_loclist */
4678 loclist_tracepoint_var_ref,
4679 loclist_generate_c_location
4680 };
4681
4682 /* Provide a prototype to silence -Wmissing-prototypes. */
4683 extern initialize_file_ftype _initialize_dwarf2loc;
4684
4685 void
4686 _initialize_dwarf2loc (void)
4687 {
4688 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4689 &entry_values_debug,
4690 _("Set entry values and tail call frames "
4691 "debugging."),
4692 _("Show entry values and tail call frames "
4693 "debugging."),
4694 _("When non-zero, the process of determining "
4695 "parameter values from function entry point "
4696 "and tail call frames will be printed."),
4697 NULL,
4698 show_entry_values_debug,
4699 &setdebuglist, &showdebuglist);
4700
4701 #if GDB_SELF_TEST
4702 register_self_test (selftests::copy_bitwise_tests);
4703 #endif
4704 }
This page took 0.185551 seconds and 5 git commands to generate.