Introduce gdb::byte_vector, add allocator that default-initializes
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
47
48 extern int dwarf_always_disassemble;
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
57
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
64 /* Until these have formal names, we define these here.
65 ref: http://gcc.gnu.org/wiki/DebugFission
66 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
67 and is then followed by data specific to that entry. */
68
69 enum debug_loc_kind
70 {
71 /* Indicates the end of the list of entries. */
72 DEBUG_LOC_END_OF_LIST = 0,
73
74 /* This is followed by an unsigned LEB128 number that is an index into
75 .debug_addr and specifies the base address for all following entries. */
76 DEBUG_LOC_BASE_ADDRESS = 1,
77
78 /* This is followed by two unsigned LEB128 numbers that are indices into
79 .debug_addr and specify the beginning and ending addresses, and then
80 a normal location expression as in .debug_loc. */
81 DEBUG_LOC_START_END = 2,
82
83 /* This is followed by an unsigned LEB128 number that is an index into
84 .debug_addr and specifies the beginning address, and a 4 byte unsigned
85 number that specifies the length, and then a normal location expression
86 as in .debug_loc. */
87 DEBUG_LOC_START_LENGTH = 3,
88
89 /* An internal value indicating there is insufficient data. */
90 DEBUG_LOC_BUFFER_OVERFLOW = -1,
91
92 /* An internal value indicating an invalid kind of entry was found. */
93 DEBUG_LOC_INVALID_ENTRY = -2
94 };
95
96 /* Helper function which throws an error if a synthetic pointer is
97 invalid. */
98
99 static void
100 invalid_synthetic_pointer (void)
101 {
102 error (_("access outside bounds of object "
103 "referenced via synthetic pointer"));
104 }
105
106 /* Decode the addresses in a non-dwo .debug_loc entry.
107 A pointer to the next byte to examine is returned in *NEW_PTR.
108 The encoded low,high addresses are return in *LOW,*HIGH.
109 The result indicates the kind of entry found. */
110
111 static enum debug_loc_kind
112 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
113 const gdb_byte **new_ptr,
114 CORE_ADDR *low, CORE_ADDR *high,
115 enum bfd_endian byte_order,
116 unsigned int addr_size,
117 int signed_addr_p)
118 {
119 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
120
121 if (buf_end - loc_ptr < 2 * addr_size)
122 return DEBUG_LOC_BUFFER_OVERFLOW;
123
124 if (signed_addr_p)
125 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
126 else
127 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
128 loc_ptr += addr_size;
129
130 if (signed_addr_p)
131 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 *new_ptr = loc_ptr;
137
138 /* A base-address-selection entry. */
139 if ((*low & base_mask) == base_mask)
140 return DEBUG_LOC_BASE_ADDRESS;
141
142 /* An end-of-list entry. */
143 if (*low == 0 && *high == 0)
144 return DEBUG_LOC_END_OF_LIST;
145
146 return DEBUG_LOC_START_END;
147 }
148
149 /* Decode the addresses in .debug_loclists entry.
150 A pointer to the next byte to examine is returned in *NEW_PTR.
151 The encoded low,high addresses are return in *LOW,*HIGH.
152 The result indicates the kind of entry found. */
153
154 static enum debug_loc_kind
155 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
156 const gdb_byte *loc_ptr,
157 const gdb_byte *buf_end,
158 const gdb_byte **new_ptr,
159 CORE_ADDR *low, CORE_ADDR *high,
160 enum bfd_endian byte_order,
161 unsigned int addr_size,
162 int signed_addr_p)
163 {
164 uint64_t u64;
165
166 if (loc_ptr == buf_end)
167 return DEBUG_LOC_BUFFER_OVERFLOW;
168
169 switch (*loc_ptr++)
170 {
171 case DW_LLE_end_of_list:
172 *new_ptr = loc_ptr;
173 return DEBUG_LOC_END_OF_LIST;
174 case DW_LLE_base_address:
175 if (loc_ptr + addr_size > buf_end)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 if (signed_addr_p)
178 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
179 else
180 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
181 loc_ptr += addr_size;
182 *new_ptr = loc_ptr;
183 return DEBUG_LOC_BASE_ADDRESS;
184 case DW_LLE_offset_pair:
185 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
186 if (loc_ptr == NULL)
187 return DEBUG_LOC_BUFFER_OVERFLOW;
188 *low = u64;
189 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
190 if (loc_ptr == NULL)
191 return DEBUG_LOC_BUFFER_OVERFLOW;
192 *high = u64;
193 *new_ptr = loc_ptr;
194 return DEBUG_LOC_START_END;
195 default:
196 return DEBUG_LOC_INVALID_ENTRY;
197 }
198 }
199
200 /* Decode the addresses in .debug_loc.dwo entry.
201 A pointer to the next byte to examine is returned in *NEW_PTR.
202 The encoded low,high addresses are return in *LOW,*HIGH.
203 The result indicates the kind of entry found. */
204
205 static enum debug_loc_kind
206 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
207 const gdb_byte *loc_ptr,
208 const gdb_byte *buf_end,
209 const gdb_byte **new_ptr,
210 CORE_ADDR *low, CORE_ADDR *high,
211 enum bfd_endian byte_order)
212 {
213 uint64_t low_index, high_index;
214
215 if (loc_ptr == buf_end)
216 return DEBUG_LOC_BUFFER_OVERFLOW;
217
218 switch (*loc_ptr++)
219 {
220 case DW_LLE_GNU_end_of_list_entry:
221 *new_ptr = loc_ptr;
222 return DEBUG_LOC_END_OF_LIST;
223 case DW_LLE_GNU_base_address_selection_entry:
224 *low = 0;
225 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
226 if (loc_ptr == NULL)
227 return DEBUG_LOC_BUFFER_OVERFLOW;
228 *high = dwarf2_read_addr_index (per_cu, high_index);
229 *new_ptr = loc_ptr;
230 return DEBUG_LOC_BASE_ADDRESS;
231 case DW_LLE_GNU_start_end_entry:
232 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
233 if (loc_ptr == NULL)
234 return DEBUG_LOC_BUFFER_OVERFLOW;
235 *low = dwarf2_read_addr_index (per_cu, low_index);
236 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
237 if (loc_ptr == NULL)
238 return DEBUG_LOC_BUFFER_OVERFLOW;
239 *high = dwarf2_read_addr_index (per_cu, high_index);
240 *new_ptr = loc_ptr;
241 return DEBUG_LOC_START_END;
242 case DW_LLE_GNU_start_length_entry:
243 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
244 if (loc_ptr == NULL)
245 return DEBUG_LOC_BUFFER_OVERFLOW;
246 *low = dwarf2_read_addr_index (per_cu, low_index);
247 if (loc_ptr + 4 > buf_end)
248 return DEBUG_LOC_BUFFER_OVERFLOW;
249 *high = *low;
250 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
251 *new_ptr = loc_ptr + 4;
252 return DEBUG_LOC_START_LENGTH;
253 default:
254 return DEBUG_LOC_INVALID_ENTRY;
255 }
256 }
257
258 /* A function for dealing with location lists. Given a
259 symbol baton (BATON) and a pc value (PC), find the appropriate
260 location expression, set *LOCEXPR_LENGTH, and return a pointer
261 to the beginning of the expression. Returns NULL on failure.
262
263 For now, only return the first matching location expression; there
264 can be more than one in the list. */
265
266 const gdb_byte *
267 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
268 size_t *locexpr_length, CORE_ADDR pc)
269 {
270 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
273 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
274 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
275 /* Adjust base_address for relocatable objects. */
276 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
277 CORE_ADDR base_address = baton->base_address + base_offset;
278 const gdb_byte *loc_ptr, *buf_end;
279
280 loc_ptr = baton->data;
281 buf_end = baton->data + baton->size;
282
283 while (1)
284 {
285 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
286 int length;
287 enum debug_loc_kind kind;
288 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
289
290 if (baton->from_dwo)
291 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
292 loc_ptr, buf_end, &new_ptr,
293 &low, &high, byte_order);
294 else if (dwarf2_version (baton->per_cu) < 5)
295 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
296 &low, &high,
297 byte_order, addr_size,
298 signed_addr_p);
299 else
300 kind = decode_debug_loclists_addresses (baton->per_cu,
301 loc_ptr, buf_end, &new_ptr,
302 &low, &high, byte_order,
303 addr_size, signed_addr_p);
304
305 loc_ptr = new_ptr;
306 switch (kind)
307 {
308 case DEBUG_LOC_END_OF_LIST:
309 *locexpr_length = 0;
310 return NULL;
311 case DEBUG_LOC_BASE_ADDRESS:
312 base_address = high + base_offset;
313 continue;
314 case DEBUG_LOC_START_END:
315 case DEBUG_LOC_START_LENGTH:
316 break;
317 case DEBUG_LOC_BUFFER_OVERFLOW:
318 case DEBUG_LOC_INVALID_ENTRY:
319 error (_("dwarf2_find_location_expression: "
320 "Corrupted DWARF expression."));
321 default:
322 gdb_assert_not_reached ("bad debug_loc_kind");
323 }
324
325 /* Otherwise, a location expression entry.
326 If the entry is from a DWO, don't add base address: the entry is from
327 .debug_addr which already has the DWARF "base address". We still add
328 base_offset in case we're debugging a PIE executable. */
329 if (baton->from_dwo)
330 {
331 low += base_offset;
332 high += base_offset;
333 }
334 else
335 {
336 low += base_address;
337 high += base_address;
338 }
339
340 if (dwarf2_version (baton->per_cu) < 5)
341 {
342 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
343 loc_ptr += 2;
344 }
345 else
346 {
347 unsigned int bytes_read;
348
349 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
350 loc_ptr += bytes_read;
351 }
352
353 if (low == high && pc == low)
354 {
355 /* This is entry PC record present only at entry point
356 of a function. Verify it is really the function entry point. */
357
358 const struct block *pc_block = block_for_pc (pc);
359 struct symbol *pc_func = NULL;
360
361 if (pc_block)
362 pc_func = block_linkage_function (pc_block);
363
364 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
365 {
366 *locexpr_length = length;
367 return loc_ptr;
368 }
369 }
370
371 if (pc >= low && pc < high)
372 {
373 *locexpr_length = length;
374 return loc_ptr;
375 }
376
377 loc_ptr += length;
378 }
379 }
380
381 /* This is the baton used when performing dwarf2 expression
382 evaluation. */
383 struct dwarf_expr_baton
384 {
385 struct frame_info *frame;
386 struct dwarf2_per_cu_data *per_cu;
387 CORE_ADDR obj_address;
388 };
389
390 /* Implement find_frame_base_location method for LOC_BLOCK functions using
391 DWARF expression for its DW_AT_frame_base. */
392
393 static void
394 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
395 const gdb_byte **start, size_t *length)
396 {
397 struct dwarf2_locexpr_baton *symbaton
398 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
399
400 *length = symbaton->size;
401 *start = symbaton->data;
402 }
403
404 /* Implement the struct symbol_block_ops::get_frame_base method for
405 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
406
407 static CORE_ADDR
408 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
409 {
410 struct gdbarch *gdbarch;
411 struct type *type;
412 struct dwarf2_locexpr_baton *dlbaton;
413 const gdb_byte *start;
414 size_t length;
415 struct value *result;
416
417 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
418 Thus, it's supposed to provide the find_frame_base_location method as
419 well. */
420 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
421
422 gdbarch = get_frame_arch (frame);
423 type = builtin_type (gdbarch)->builtin_data_ptr;
424 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
425
426 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
427 (framefunc, get_frame_pc (frame), &start, &length);
428 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
429 dlbaton->per_cu);
430
431 /* The DW_AT_frame_base attribute contains a location description which
432 computes the base address itself. However, the call to
433 dwarf2_evaluate_loc_desc returns a value representing a variable at
434 that address. The frame base address is thus this variable's
435 address. */
436 return value_address (result);
437 }
438
439 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
440 function uses DWARF expression for its DW_AT_frame_base. */
441
442 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
443 {
444 locexpr_find_frame_base_location,
445 locexpr_get_frame_base
446 };
447
448 /* Implement find_frame_base_location method for LOC_BLOCK functions using
449 DWARF location list for its DW_AT_frame_base. */
450
451 static void
452 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
453 const gdb_byte **start, size_t *length)
454 {
455 struct dwarf2_loclist_baton *symbaton
456 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
457
458 *start = dwarf2_find_location_expression (symbaton, length, pc);
459 }
460
461 /* Implement the struct symbol_block_ops::get_frame_base method for
462 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
463
464 static CORE_ADDR
465 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
466 {
467 struct gdbarch *gdbarch;
468 struct type *type;
469 struct dwarf2_loclist_baton *dlbaton;
470 const gdb_byte *start;
471 size_t length;
472 struct value *result;
473
474 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
475 Thus, it's supposed to provide the find_frame_base_location method as
476 well. */
477 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
478
479 gdbarch = get_frame_arch (frame);
480 type = builtin_type (gdbarch)->builtin_data_ptr;
481 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
482
483 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
484 (framefunc, get_frame_pc (frame), &start, &length);
485 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
486 dlbaton->per_cu);
487
488 /* The DW_AT_frame_base attribute contains a location description which
489 computes the base address itself. However, the call to
490 dwarf2_evaluate_loc_desc returns a value representing a variable at
491 that address. The frame base address is thus this variable's
492 address. */
493 return value_address (result);
494 }
495
496 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
497 function uses DWARF location list for its DW_AT_frame_base. */
498
499 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
500 {
501 loclist_find_frame_base_location,
502 loclist_get_frame_base
503 };
504
505 /* See dwarf2loc.h. */
506
507 void
508 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
509 const gdb_byte **start, size_t *length)
510 {
511 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
512 {
513 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
514
515 ops_block->find_frame_base_location (framefunc, pc, start, length);
516 }
517 else
518 *length = 0;
519
520 if (*length == 0)
521 error (_("Could not find the frame base for \"%s\"."),
522 SYMBOL_NATURAL_NAME (framefunc));
523 }
524
525 static CORE_ADDR
526 get_frame_pc_for_per_cu_dwarf_call (void *baton)
527 {
528 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
529
530 return ctx->get_frame_pc ();
531 }
532
533 static void
534 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
535 struct dwarf2_per_cu_data *per_cu)
536 {
537 struct dwarf2_locexpr_baton block;
538
539 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
540 get_frame_pc_for_per_cu_dwarf_call,
541 ctx);
542
543 /* DW_OP_call_ref is currently not supported. */
544 gdb_assert (block.per_cu == per_cu);
545
546 ctx->eval (block.data, block.size);
547 }
548
549 class dwarf_evaluate_loc_desc : public dwarf_expr_context
550 {
551 public:
552
553 struct frame_info *frame;
554 struct dwarf2_per_cu_data *per_cu;
555 CORE_ADDR obj_address;
556
557 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
558 the frame in BATON. */
559
560 CORE_ADDR get_frame_cfa () OVERRIDE
561 {
562 return dwarf2_frame_cfa (frame);
563 }
564
565 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
566 the frame in BATON. */
567
568 CORE_ADDR get_frame_pc () OVERRIDE
569 {
570 return get_frame_address_in_block (frame);
571 }
572
573 /* Using the objfile specified in BATON, find the address for the
574 current thread's thread-local storage with offset OFFSET. */
575 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
576 {
577 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
578
579 return target_translate_tls_address (objfile, offset);
580 }
581
582 /* Helper interface of per_cu_dwarf_call for
583 dwarf2_evaluate_loc_desc. */
584
585 void dwarf_call (cu_offset die_offset) OVERRIDE
586 {
587 per_cu_dwarf_call (this, die_offset, per_cu);
588 }
589
590 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
591 {
592 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
593 if (result == NULL)
594 error (_("Could not find type for DW_OP_const_type"));
595 if (size != 0 && TYPE_LENGTH (result) != size)
596 error (_("DW_OP_const_type has different sizes for type and data"));
597 return result;
598 }
599
600 /* Callback function for dwarf2_evaluate_loc_desc.
601 Fetch the address indexed by DW_OP_GNU_addr_index. */
602
603 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
604 {
605 return dwarf2_read_addr_index (per_cu, index);
606 }
607
608 /* Callback function for get_object_address. Return the address of the VLA
609 object. */
610
611 CORE_ADDR get_object_address () OVERRIDE
612 {
613 if (obj_address == 0)
614 error (_("Location address is not set."));
615 return obj_address;
616 }
617
618 /* Execute DWARF block of call_site_parameter which matches KIND and
619 KIND_U. Choose DEREF_SIZE value of that parameter. Search
620 caller of this objects's frame.
621
622 The caller can be from a different CU - per_cu_dwarf_call
623 implementation can be more simple as it does not support cross-CU
624 DWARF executions. */
625
626 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
627 union call_site_parameter_u kind_u,
628 int deref_size) OVERRIDE
629 {
630 struct frame_info *caller_frame;
631 struct dwarf2_per_cu_data *caller_per_cu;
632 struct call_site_parameter *parameter;
633 const gdb_byte *data_src;
634 size_t size;
635
636 caller_frame = get_prev_frame (frame);
637
638 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
639 &caller_per_cu);
640 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
641 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
642
643 /* DEREF_SIZE size is not verified here. */
644 if (data_src == NULL)
645 throw_error (NO_ENTRY_VALUE_ERROR,
646 _("Cannot resolve DW_AT_call_data_value"));
647
648 scoped_restore save_frame = make_scoped_restore (&this->frame,
649 caller_frame);
650 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
651 caller_per_cu);
652 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
653 (CORE_ADDR) 0);
654
655 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
656 this->gdbarch
657 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
658 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
659 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
660 scoped_restore save_offset = make_scoped_restore (&this->offset);
661 this->offset = dwarf2_per_cu_text_offset (per_cu);
662
663 this->eval (data_src, size);
664 }
665
666 /* Using the frame specified in BATON, find the location expression
667 describing the frame base. Return a pointer to it in START and
668 its length in LENGTH. */
669 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
670 {
671 /* FIXME: cagney/2003-03-26: This code should be using
672 get_frame_base_address(), and then implement a dwarf2 specific
673 this_base method. */
674 struct symbol *framefunc;
675 const struct block *bl = get_frame_block (frame, NULL);
676
677 if (bl == NULL)
678 error (_("frame address is not available."));
679
680 /* Use block_linkage_function, which returns a real (not inlined)
681 function, instead of get_frame_function, which may return an
682 inlined function. */
683 framefunc = block_linkage_function (bl);
684
685 /* If we found a frame-relative symbol then it was certainly within
686 some function associated with a frame. If we can't find the frame,
687 something has gone wrong. */
688 gdb_assert (framefunc != NULL);
689
690 func_get_frame_base_dwarf_block (framefunc,
691 get_frame_address_in_block (frame),
692 start, length);
693 }
694
695 /* Read memory at ADDR (length LEN) into BUF. */
696
697 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
698 {
699 read_memory (addr, buf, len);
700 }
701
702 /* Using the frame specified in BATON, return the value of register
703 REGNUM, treated as a pointer. */
704 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
705 {
706 struct gdbarch *gdbarch = get_frame_arch (frame);
707 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
708
709 return address_from_register (regnum, frame);
710 }
711
712 /* Implement "get_reg_value" callback. */
713
714 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
715 {
716 struct gdbarch *gdbarch = get_frame_arch (frame);
717 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
718
719 return value_from_register (type, regnum, frame);
720 }
721 };
722
723 /* See dwarf2loc.h. */
724
725 unsigned int entry_values_debug = 0;
726
727 /* Helper to set entry_values_debug. */
728
729 static void
730 show_entry_values_debug (struct ui_file *file, int from_tty,
731 struct cmd_list_element *c, const char *value)
732 {
733 fprintf_filtered (file,
734 _("Entry values and tail call frames debugging is %s.\n"),
735 value);
736 }
737
738 /* Find DW_TAG_call_site's DW_AT_call_target address.
739 CALLER_FRAME (for registers) can be NULL if it is not known. This function
740 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
741
742 static CORE_ADDR
743 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
744 struct call_site *call_site,
745 struct frame_info *caller_frame)
746 {
747 switch (FIELD_LOC_KIND (call_site->target))
748 {
749 case FIELD_LOC_KIND_DWARF_BLOCK:
750 {
751 struct dwarf2_locexpr_baton *dwarf_block;
752 struct value *val;
753 struct type *caller_core_addr_type;
754 struct gdbarch *caller_arch;
755
756 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
757 if (dwarf_block == NULL)
758 {
759 struct bound_minimal_symbol msym;
760
761 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
762 throw_error (NO_ENTRY_VALUE_ERROR,
763 _("DW_AT_call_target is not specified at %s in %s"),
764 paddress (call_site_gdbarch, call_site->pc),
765 (msym.minsym == NULL ? "???"
766 : MSYMBOL_PRINT_NAME (msym.minsym)));
767
768 }
769 if (caller_frame == NULL)
770 {
771 struct bound_minimal_symbol msym;
772
773 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
774 throw_error (NO_ENTRY_VALUE_ERROR,
775 _("DW_AT_call_target DWARF block resolving "
776 "requires known frame which is currently not "
777 "available at %s in %s"),
778 paddress (call_site_gdbarch, call_site->pc),
779 (msym.minsym == NULL ? "???"
780 : MSYMBOL_PRINT_NAME (msym.minsym)));
781
782 }
783 caller_arch = get_frame_arch (caller_frame);
784 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
785 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
786 dwarf_block->data, dwarf_block->size,
787 dwarf_block->per_cu);
788 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
789 if (VALUE_LVAL (val) == lval_memory)
790 return value_address (val);
791 else
792 return value_as_address (val);
793 }
794
795 case FIELD_LOC_KIND_PHYSNAME:
796 {
797 const char *physname;
798 struct bound_minimal_symbol msym;
799
800 physname = FIELD_STATIC_PHYSNAME (call_site->target);
801
802 /* Handle both the mangled and demangled PHYSNAME. */
803 msym = lookup_minimal_symbol (physname, NULL, NULL);
804 if (msym.minsym == NULL)
805 {
806 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
807 throw_error (NO_ENTRY_VALUE_ERROR,
808 _("Cannot find function \"%s\" for a call site target "
809 "at %s in %s"),
810 physname, paddress (call_site_gdbarch, call_site->pc),
811 (msym.minsym == NULL ? "???"
812 : MSYMBOL_PRINT_NAME (msym.minsym)));
813
814 }
815 return BMSYMBOL_VALUE_ADDRESS (msym);
816 }
817
818 case FIELD_LOC_KIND_PHYSADDR:
819 return FIELD_STATIC_PHYSADDR (call_site->target);
820
821 default:
822 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
823 }
824 }
825
826 /* Convert function entry point exact address ADDR to the function which is
827 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
828 NO_ENTRY_VALUE_ERROR otherwise. */
829
830 static struct symbol *
831 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
832 {
833 struct symbol *sym = find_pc_function (addr);
834 struct type *type;
835
836 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
837 throw_error (NO_ENTRY_VALUE_ERROR,
838 _("DW_TAG_call_site resolving failed to find function "
839 "name for address %s"),
840 paddress (gdbarch, addr));
841
842 type = SYMBOL_TYPE (sym);
843 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
844 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
845
846 return sym;
847 }
848
849 /* Verify function with entry point exact address ADDR can never call itself
850 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
851 can call itself via tail calls.
852
853 If a funtion can tail call itself its entry value based parameters are
854 unreliable. There is no verification whether the value of some/all
855 parameters is unchanged through the self tail call, we expect if there is
856 a self tail call all the parameters can be modified. */
857
858 static void
859 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
860 {
861 CORE_ADDR addr;
862
863 /* The verification is completely unordered. Track here function addresses
864 which still need to be iterated. */
865 std::vector<CORE_ADDR> todo;
866
867 /* Track here CORE_ADDRs which were already visited. */
868 std::unordered_set<CORE_ADDR> addr_hash;
869
870 todo.push_back (verify_addr);
871 while (!todo.empty ())
872 {
873 struct symbol *func_sym;
874 struct call_site *call_site;
875
876 addr = todo.back ();
877 todo.pop_back ();
878
879 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
880
881 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
882 call_site; call_site = call_site->tail_call_next)
883 {
884 CORE_ADDR target_addr;
885
886 /* CALLER_FRAME with registers is not available for tail-call jumped
887 frames. */
888 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
889
890 if (target_addr == verify_addr)
891 {
892 struct bound_minimal_symbol msym;
893
894 msym = lookup_minimal_symbol_by_pc (verify_addr);
895 throw_error (NO_ENTRY_VALUE_ERROR,
896 _("DW_OP_entry_value resolving has found "
897 "function \"%s\" at %s can call itself via tail "
898 "calls"),
899 (msym.minsym == NULL ? "???"
900 : MSYMBOL_PRINT_NAME (msym.minsym)),
901 paddress (gdbarch, verify_addr));
902 }
903
904 if (addr_hash.insert (target_addr).second)
905 todo.push_back (target_addr);
906 }
907 }
908 }
909
910 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
911 ENTRY_VALUES_DEBUG. */
912
913 static void
914 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
915 {
916 CORE_ADDR addr = call_site->pc;
917 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
918
919 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
920 (msym.minsym == NULL ? "???"
921 : MSYMBOL_PRINT_NAME (msym.minsym)));
922
923 }
924
925 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
926 only top callers and bottom callees which are present in both. GDBARCH is
927 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
928 no remaining possibilities to provide unambiguous non-trivial result.
929 RESULTP should point to NULL on the first (initialization) call. Caller is
930 responsible for xfree of any RESULTP data. */
931
932 static void
933 chain_candidate (struct gdbarch *gdbarch,
934 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
935 std::vector<struct call_site *> *chain)
936 {
937 long length = chain->size ();
938 int callers, callees, idx;
939
940 if (*resultp == NULL)
941 {
942 /* Create the initial chain containing all the passed PCs. */
943
944 struct call_site_chain *result
945 = ((struct call_site_chain *)
946 xmalloc (sizeof (*result)
947 + sizeof (*result->call_site) * (length - 1)));
948 result->length = length;
949 result->callers = result->callees = length;
950 if (!chain->empty ())
951 memcpy (result->call_site, chain->data (),
952 sizeof (*result->call_site) * length);
953 resultp->reset (result);
954
955 if (entry_values_debug)
956 {
957 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
958 for (idx = 0; idx < length; idx++)
959 tailcall_dump (gdbarch, result->call_site[idx]);
960 fputc_unfiltered ('\n', gdb_stdlog);
961 }
962
963 return;
964 }
965
966 if (entry_values_debug)
967 {
968 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
969 for (idx = 0; idx < length; idx++)
970 tailcall_dump (gdbarch, chain->at (idx));
971 fputc_unfiltered ('\n', gdb_stdlog);
972 }
973
974 /* Intersect callers. */
975
976 callers = std::min ((long) (*resultp)->callers, length);
977 for (idx = 0; idx < callers; idx++)
978 if ((*resultp)->call_site[idx] != chain->at (idx))
979 {
980 (*resultp)->callers = idx;
981 break;
982 }
983
984 /* Intersect callees. */
985
986 callees = std::min ((long) (*resultp)->callees, length);
987 for (idx = 0; idx < callees; idx++)
988 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
989 != chain->at (length - 1 - idx))
990 {
991 (*resultp)->callees = idx;
992 break;
993 }
994
995 if (entry_values_debug)
996 {
997 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
998 for (idx = 0; idx < (*resultp)->callers; idx++)
999 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1000 fputs_unfiltered (" |", gdb_stdlog);
1001 for (idx = 0; idx < (*resultp)->callees; idx++)
1002 tailcall_dump (gdbarch,
1003 (*resultp)->call_site[(*resultp)->length
1004 - (*resultp)->callees + idx]);
1005 fputc_unfiltered ('\n', gdb_stdlog);
1006 }
1007
1008 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1009 {
1010 /* There are no common callers or callees. It could be also a direct
1011 call (which has length 0) with ambiguous possibility of an indirect
1012 call - CALLERS == CALLEES == 0 is valid during the first allocation
1013 but any subsequence processing of such entry means ambiguity. */
1014 resultp->reset (NULL);
1015 return;
1016 }
1017
1018 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1019 PC again. In such case there must be two different code paths to reach
1020 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1021 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1022 }
1023
1024 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1025 assumed frames between them use GDBARCH. Use depth first search so we can
1026 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1027 would have needless GDB stack overhead. Caller is responsible for xfree of
1028 the returned result. Any unreliability results in thrown
1029 NO_ENTRY_VALUE_ERROR. */
1030
1031 static struct call_site_chain *
1032 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1033 CORE_ADDR callee_pc)
1034 {
1035 CORE_ADDR save_callee_pc = callee_pc;
1036 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1037 struct call_site *call_site;
1038
1039 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1040 call_site nor any possible call_site at CALLEE_PC's function is there.
1041 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1042 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1043 std::vector<struct call_site *> chain;
1044
1045 /* We are not interested in the specific PC inside the callee function. */
1046 callee_pc = get_pc_function_start (callee_pc);
1047 if (callee_pc == 0)
1048 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1049 paddress (gdbarch, save_callee_pc));
1050
1051 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1052 std::unordered_set<CORE_ADDR> addr_hash;
1053
1054 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1055 at the target's function. All the possible tail call sites in the
1056 target's function will get iterated as already pushed into CHAIN via their
1057 TAIL_CALL_NEXT. */
1058 call_site = call_site_for_pc (gdbarch, caller_pc);
1059
1060 while (call_site)
1061 {
1062 CORE_ADDR target_func_addr;
1063 struct call_site *target_call_site;
1064
1065 /* CALLER_FRAME with registers is not available for tail-call jumped
1066 frames. */
1067 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1068
1069 if (target_func_addr == callee_pc)
1070 {
1071 chain_candidate (gdbarch, &retval, &chain);
1072 if (retval == NULL)
1073 break;
1074
1075 /* There is no way to reach CALLEE_PC again as we would prevent
1076 entering it twice as being already marked in ADDR_HASH. */
1077 target_call_site = NULL;
1078 }
1079 else
1080 {
1081 struct symbol *target_func;
1082
1083 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1084 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1085 }
1086
1087 do
1088 {
1089 /* Attempt to visit TARGET_CALL_SITE. */
1090
1091 if (target_call_site)
1092 {
1093 if (addr_hash.insert (target_call_site->pc).second)
1094 {
1095 /* Successfully entered TARGET_CALL_SITE. */
1096
1097 chain.push_back (target_call_site);
1098 break;
1099 }
1100 }
1101
1102 /* Backtrack (without revisiting the originating call_site). Try the
1103 callers's sibling; if there isn't any try the callers's callers's
1104 sibling etc. */
1105
1106 target_call_site = NULL;
1107 while (!chain.empty ())
1108 {
1109 call_site = chain.back ();
1110 chain.pop_back ();
1111
1112 size_t removed = addr_hash.erase (call_site->pc);
1113 gdb_assert (removed == 1);
1114
1115 target_call_site = call_site->tail_call_next;
1116 if (target_call_site)
1117 break;
1118 }
1119 }
1120 while (target_call_site);
1121
1122 if (chain.empty ())
1123 call_site = NULL;
1124 else
1125 call_site = chain.back ();
1126 }
1127
1128 if (retval == NULL)
1129 {
1130 struct bound_minimal_symbol msym_caller, msym_callee;
1131
1132 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1133 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1134 throw_error (NO_ENTRY_VALUE_ERROR,
1135 _("There are no unambiguously determinable intermediate "
1136 "callers or callees between caller function \"%s\" at %s "
1137 "and callee function \"%s\" at %s"),
1138 (msym_caller.minsym == NULL
1139 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1140 paddress (gdbarch, caller_pc),
1141 (msym_callee.minsym == NULL
1142 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1143 paddress (gdbarch, callee_pc));
1144 }
1145
1146 return retval.release ();
1147 }
1148
1149 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1150 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1151 constructed return NULL. Caller is responsible for xfree of the returned
1152 result. */
1153
1154 struct call_site_chain *
1155 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1156 CORE_ADDR callee_pc)
1157 {
1158 struct call_site_chain *retval = NULL;
1159
1160 TRY
1161 {
1162 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1163 }
1164 CATCH (e, RETURN_MASK_ERROR)
1165 {
1166 if (e.error == NO_ENTRY_VALUE_ERROR)
1167 {
1168 if (entry_values_debug)
1169 exception_print (gdb_stdout, e);
1170
1171 return NULL;
1172 }
1173 else
1174 throw_exception (e);
1175 }
1176 END_CATCH
1177
1178 return retval;
1179 }
1180
1181 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1182
1183 static int
1184 call_site_parameter_matches (struct call_site_parameter *parameter,
1185 enum call_site_parameter_kind kind,
1186 union call_site_parameter_u kind_u)
1187 {
1188 if (kind == parameter->kind)
1189 switch (kind)
1190 {
1191 case CALL_SITE_PARAMETER_DWARF_REG:
1192 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1193 case CALL_SITE_PARAMETER_FB_OFFSET:
1194 return kind_u.fb_offset == parameter->u.fb_offset;
1195 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1196 return kind_u.param_cu_off == parameter->u.param_cu_off;
1197 }
1198 return 0;
1199 }
1200
1201 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1202 FRAME is for callee.
1203
1204 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1205 otherwise. */
1206
1207 static struct call_site_parameter *
1208 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1209 enum call_site_parameter_kind kind,
1210 union call_site_parameter_u kind_u,
1211 struct dwarf2_per_cu_data **per_cu_return)
1212 {
1213 CORE_ADDR func_addr, caller_pc;
1214 struct gdbarch *gdbarch;
1215 struct frame_info *caller_frame;
1216 struct call_site *call_site;
1217 int iparams;
1218 /* Initialize it just to avoid a GCC false warning. */
1219 struct call_site_parameter *parameter = NULL;
1220 CORE_ADDR target_addr;
1221
1222 while (get_frame_type (frame) == INLINE_FRAME)
1223 {
1224 frame = get_prev_frame (frame);
1225 gdb_assert (frame != NULL);
1226 }
1227
1228 func_addr = get_frame_func (frame);
1229 gdbarch = get_frame_arch (frame);
1230 caller_frame = get_prev_frame (frame);
1231 if (gdbarch != frame_unwind_arch (frame))
1232 {
1233 struct bound_minimal_symbol msym
1234 = lookup_minimal_symbol_by_pc (func_addr);
1235 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1236
1237 throw_error (NO_ENTRY_VALUE_ERROR,
1238 _("DW_OP_entry_value resolving callee gdbarch %s "
1239 "(of %s (%s)) does not match caller gdbarch %s"),
1240 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1241 paddress (gdbarch, func_addr),
1242 (msym.minsym == NULL ? "???"
1243 : MSYMBOL_PRINT_NAME (msym.minsym)),
1244 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1245 }
1246
1247 if (caller_frame == NULL)
1248 {
1249 struct bound_minimal_symbol msym
1250 = lookup_minimal_symbol_by_pc (func_addr);
1251
1252 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1253 "requires caller of %s (%s)"),
1254 paddress (gdbarch, func_addr),
1255 (msym.minsym == NULL ? "???"
1256 : MSYMBOL_PRINT_NAME (msym.minsym)));
1257 }
1258 caller_pc = get_frame_pc (caller_frame);
1259 call_site = call_site_for_pc (gdbarch, caller_pc);
1260
1261 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1262 if (target_addr != func_addr)
1263 {
1264 struct minimal_symbol *target_msym, *func_msym;
1265
1266 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1267 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1268 throw_error (NO_ENTRY_VALUE_ERROR,
1269 _("DW_OP_entry_value resolving expects callee %s at %s "
1270 "but the called frame is for %s at %s"),
1271 (target_msym == NULL ? "???"
1272 : MSYMBOL_PRINT_NAME (target_msym)),
1273 paddress (gdbarch, target_addr),
1274 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1275 paddress (gdbarch, func_addr));
1276 }
1277
1278 /* No entry value based parameters would be reliable if this function can
1279 call itself via tail calls. */
1280 func_verify_no_selftailcall (gdbarch, func_addr);
1281
1282 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1283 {
1284 parameter = &call_site->parameter[iparams];
1285 if (call_site_parameter_matches (parameter, kind, kind_u))
1286 break;
1287 }
1288 if (iparams == call_site->parameter_count)
1289 {
1290 struct minimal_symbol *msym
1291 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1292
1293 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1294 determine its value. */
1295 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1296 "at DW_TAG_call_site %s at %s"),
1297 paddress (gdbarch, caller_pc),
1298 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1299 }
1300
1301 *per_cu_return = call_site->per_cu;
1302 return parameter;
1303 }
1304
1305 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1306 the normal DW_AT_call_value block. Otherwise return the
1307 DW_AT_call_data_value (dereferenced) block.
1308
1309 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1310 struct value.
1311
1312 Function always returns non-NULL, non-optimized out value. It throws
1313 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1314
1315 static struct value *
1316 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1317 CORE_ADDR deref_size, struct type *type,
1318 struct frame_info *caller_frame,
1319 struct dwarf2_per_cu_data *per_cu)
1320 {
1321 const gdb_byte *data_src;
1322 gdb_byte *data;
1323 size_t size;
1324
1325 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1326 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1327
1328 /* DEREF_SIZE size is not verified here. */
1329 if (data_src == NULL)
1330 throw_error (NO_ENTRY_VALUE_ERROR,
1331 _("Cannot resolve DW_AT_call_data_value"));
1332
1333 /* DW_AT_call_value is a DWARF expression, not a DWARF
1334 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1335 DWARF block. */
1336 data = (gdb_byte *) alloca (size + 1);
1337 memcpy (data, data_src, size);
1338 data[size] = DW_OP_stack_value;
1339
1340 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1341 }
1342
1343 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1344 the indirect method on it, that is use its stored target value, the sole
1345 purpose of entry_data_value_funcs.. */
1346
1347 static struct value *
1348 entry_data_value_coerce_ref (const struct value *value)
1349 {
1350 struct type *checked_type = check_typedef (value_type (value));
1351 struct value *target_val;
1352
1353 if (!TYPE_IS_REFERENCE (checked_type))
1354 return NULL;
1355
1356 target_val = (struct value *) value_computed_closure (value);
1357 value_incref (target_val);
1358 return target_val;
1359 }
1360
1361 /* Implement copy_closure. */
1362
1363 static void *
1364 entry_data_value_copy_closure (const struct value *v)
1365 {
1366 struct value *target_val = (struct value *) value_computed_closure (v);
1367
1368 value_incref (target_val);
1369 return target_val;
1370 }
1371
1372 /* Implement free_closure. */
1373
1374 static void
1375 entry_data_value_free_closure (struct value *v)
1376 {
1377 struct value *target_val = (struct value *) value_computed_closure (v);
1378
1379 value_free (target_val);
1380 }
1381
1382 /* Vector for methods for an entry value reference where the referenced value
1383 is stored in the caller. On the first dereference use
1384 DW_AT_call_data_value in the caller. */
1385
1386 static const struct lval_funcs entry_data_value_funcs =
1387 {
1388 NULL, /* read */
1389 NULL, /* write */
1390 NULL, /* indirect */
1391 entry_data_value_coerce_ref,
1392 NULL, /* check_synthetic_pointer */
1393 entry_data_value_copy_closure,
1394 entry_data_value_free_closure
1395 };
1396
1397 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1398 are used to match DW_AT_location at the caller's
1399 DW_TAG_call_site_parameter.
1400
1401 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1402 cannot resolve the parameter for any reason. */
1403
1404 static struct value *
1405 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1406 enum call_site_parameter_kind kind,
1407 union call_site_parameter_u kind_u)
1408 {
1409 struct type *checked_type = check_typedef (type);
1410 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1411 struct frame_info *caller_frame = get_prev_frame (frame);
1412 struct value *outer_val, *target_val, *val;
1413 struct call_site_parameter *parameter;
1414 struct dwarf2_per_cu_data *caller_per_cu;
1415
1416 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1417 &caller_per_cu);
1418
1419 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1420 type, caller_frame,
1421 caller_per_cu);
1422
1423 /* Check if DW_AT_call_data_value cannot be used. If it should be
1424 used and it is not available do not fall back to OUTER_VAL - dereferencing
1425 TYPE_CODE_REF with non-entry data value would give current value - not the
1426 entry value. */
1427
1428 if (!TYPE_IS_REFERENCE (checked_type)
1429 || TYPE_TARGET_TYPE (checked_type) == NULL)
1430 return outer_val;
1431
1432 target_val = dwarf_entry_parameter_to_value (parameter,
1433 TYPE_LENGTH (target_type),
1434 target_type, caller_frame,
1435 caller_per_cu);
1436
1437 release_value (target_val);
1438 val = allocate_computed_value (type, &entry_data_value_funcs,
1439 target_val /* closure */);
1440
1441 /* Copy the referencing pointer to the new computed value. */
1442 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1443 TYPE_LENGTH (checked_type));
1444 set_value_lazy (val, 0);
1445
1446 return val;
1447 }
1448
1449 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1450 SIZE are DWARF block used to match DW_AT_location at the caller's
1451 DW_TAG_call_site_parameter.
1452
1453 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1454 cannot resolve the parameter for any reason. */
1455
1456 static struct value *
1457 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1458 const gdb_byte *block, size_t block_len)
1459 {
1460 union call_site_parameter_u kind_u;
1461
1462 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1463 if (kind_u.dwarf_reg != -1)
1464 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1465 kind_u);
1466
1467 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1468 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1469 kind_u);
1470
1471 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1472 suppressed during normal operation. The expression can be arbitrary if
1473 there is no caller-callee entry value binding expected. */
1474 throw_error (NO_ENTRY_VALUE_ERROR,
1475 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1476 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1477 }
1478
1479 struct piece_closure
1480 {
1481 /* Reference count. */
1482 int refc;
1483
1484 /* The CU from which this closure's expression came. */
1485 struct dwarf2_per_cu_data *per_cu;
1486
1487 /* The number of pieces used to describe this variable. */
1488 int n_pieces;
1489
1490 /* The pieces themselves. */
1491 struct dwarf_expr_piece *pieces;
1492
1493 /* Frame ID of frame to which a register value is relative, used
1494 only by DWARF_VALUE_REGISTER. */
1495 struct frame_id frame_id;
1496 };
1497
1498 /* Allocate a closure for a value formed from separately-described
1499 PIECES. */
1500
1501 static struct piece_closure *
1502 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1503 int n_pieces, struct dwarf_expr_piece *pieces,
1504 struct frame_info *frame)
1505 {
1506 struct piece_closure *c = XCNEW (struct piece_closure);
1507 int i;
1508
1509 c->refc = 1;
1510 c->per_cu = per_cu;
1511 c->n_pieces = n_pieces;
1512 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1513 if (frame == NULL)
1514 c->frame_id = null_frame_id;
1515 else
1516 c->frame_id = get_frame_id (frame);
1517
1518 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1519 for (i = 0; i < n_pieces; ++i)
1520 if (c->pieces[i].location == DWARF_VALUE_STACK)
1521 value_incref (c->pieces[i].v.value);
1522
1523 return c;
1524 }
1525
1526 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1527 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1528 Source and destination buffers must not overlap. */
1529
1530 static void
1531 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1532 const gdb_byte *source, ULONGEST source_offset,
1533 ULONGEST nbits, int bits_big_endian)
1534 {
1535 unsigned int buf, avail;
1536
1537 if (nbits == 0)
1538 return;
1539
1540 if (bits_big_endian)
1541 {
1542 /* Start from the end, then work backwards. */
1543 dest_offset += nbits - 1;
1544 dest += dest_offset / 8;
1545 dest_offset = 7 - dest_offset % 8;
1546 source_offset += nbits - 1;
1547 source += source_offset / 8;
1548 source_offset = 7 - source_offset % 8;
1549 }
1550 else
1551 {
1552 dest += dest_offset / 8;
1553 dest_offset %= 8;
1554 source += source_offset / 8;
1555 source_offset %= 8;
1556 }
1557
1558 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1559 SOURCE_OFFSET bits from the source. */
1560 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1561 buf <<= dest_offset;
1562 buf |= *dest & ((1 << dest_offset) - 1);
1563
1564 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1565 nbits += dest_offset;
1566 avail = dest_offset + 8 - source_offset;
1567
1568 /* Flush 8 bits from BUF, if appropriate. */
1569 if (nbits >= 8 && avail >= 8)
1570 {
1571 *(bits_big_endian ? dest-- : dest++) = buf;
1572 buf >>= 8;
1573 avail -= 8;
1574 nbits -= 8;
1575 }
1576
1577 /* Copy the middle part. */
1578 if (nbits >= 8)
1579 {
1580 size_t len = nbits / 8;
1581
1582 /* Use a faster method for byte-aligned copies. */
1583 if (avail == 0)
1584 {
1585 if (bits_big_endian)
1586 {
1587 dest -= len;
1588 source -= len;
1589 memcpy (dest + 1, source + 1, len);
1590 }
1591 else
1592 {
1593 memcpy (dest, source, len);
1594 dest += len;
1595 source += len;
1596 }
1597 }
1598 else
1599 {
1600 while (len--)
1601 {
1602 buf |= *(bits_big_endian ? source-- : source++) << avail;
1603 *(bits_big_endian ? dest-- : dest++) = buf;
1604 buf >>= 8;
1605 }
1606 }
1607 nbits %= 8;
1608 }
1609
1610 /* Write the last byte. */
1611 if (nbits)
1612 {
1613 if (avail < nbits)
1614 buf |= *source << avail;
1615
1616 buf &= (1 << nbits) - 1;
1617 *dest = (*dest & (~0 << nbits)) | buf;
1618 }
1619 }
1620
1621 #if GDB_SELF_TEST
1622
1623 namespace selftests {
1624
1625 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1626 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1627 specifies whether to assume big endian bit numbering. Store the
1628 resulting (not null-terminated) string at STR. */
1629
1630 static void
1631 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1632 ULONGEST nbits, int msb0)
1633 {
1634 unsigned int j;
1635 size_t i;
1636
1637 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1638 {
1639 unsigned int ch = bits[i];
1640 for (; j < 8 && nbits; j++, nbits--)
1641 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1642 }
1643 }
1644
1645 /* Check one invocation of copy_bitwise with the given parameters. */
1646
1647 static void
1648 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1649 const gdb_byte *source, unsigned int source_offset,
1650 unsigned int nbits, int msb0)
1651 {
1652 size_t len = align_up (dest_offset + nbits, 8);
1653 char *expected = (char *) alloca (len + 1);
1654 char *actual = (char *) alloca (len + 1);
1655 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1656
1657 /* Compose a '0'/'1'-string that represents the expected result of
1658 copy_bitwise below:
1659 Bits from [0, DEST_OFFSET) are filled from DEST.
1660 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1661 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1662
1663 E.g., with:
1664 dest_offset: 4
1665 nbits: 2
1666 len: 8
1667 dest: 00000000
1668 source: 11111111
1669
1670 We should end up with:
1671 buf: 00001100
1672 DDDDSSDD (D=dest, S=source)
1673 */
1674 bits_to_str (expected, dest, 0, len, msb0);
1675 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1676
1677 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1678 result to a '0'/'1'-string. */
1679 memcpy (buf, dest, len / 8);
1680 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1681 bits_to_str (actual, buf, 0, len, msb0);
1682
1683 /* Compare the resulting strings. */
1684 expected[len] = actual[len] = '\0';
1685 if (strcmp (expected, actual) != 0)
1686 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1687 expected, actual, source_offset, nbits, dest_offset);
1688 }
1689
1690 /* Unit test for copy_bitwise. */
1691
1692 static void
1693 copy_bitwise_tests (void)
1694 {
1695 /* Data to be used as both source and destination buffers. The two
1696 arrays below represent the lsb0- and msb0- encoded versions of the
1697 following bit string, respectively:
1698 00000000 00011111 11111111 01001000 10100101 11110010
1699 This pattern is chosen such that it contains:
1700 - constant 0- and 1- chunks of more than a full byte;
1701 - 0/1- and 1/0 transitions on all bit positions within a byte;
1702 - several sufficiently asymmetric bytes.
1703 */
1704 static const gdb_byte data_lsb0[] = {
1705 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1706 };
1707 static const gdb_byte data_msb0[] = {
1708 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1709 };
1710
1711 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1712 constexpr unsigned max_nbits = 24;
1713
1714 /* Try all combinations of:
1715 lsb0/msb0 bit order (using the respective data array)
1716 X [0, MAX_NBITS] copy bit width
1717 X feasible source offsets for the given copy bit width
1718 X feasible destination offsets
1719 */
1720 for (int msb0 = 0; msb0 < 2; msb0++)
1721 {
1722 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1723
1724 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1725 {
1726 const unsigned int max_offset = data_nbits - nbits;
1727
1728 for (unsigned source_offset = 0;
1729 source_offset <= max_offset;
1730 source_offset++)
1731 {
1732 for (unsigned dest_offset = 0;
1733 dest_offset <= max_offset;
1734 dest_offset++)
1735 {
1736 check_copy_bitwise (data + dest_offset / 8,
1737 dest_offset % 8,
1738 data + source_offset / 8,
1739 source_offset % 8,
1740 nbits, msb0);
1741 }
1742 }
1743 }
1744
1745 /* Special cases: copy all, copy nothing. */
1746 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1748 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1749 }
1750 }
1751
1752 } /* namespace selftests */
1753
1754 #endif /* GDB_SELF_TEST */
1755
1756 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1757 bits whose first bit is located at bit offset START. */
1758
1759 static size_t
1760 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1761 {
1762 return (start % 8 + n_bits + 7) / 8;
1763 }
1764
1765 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1766 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1767 operate in "read mode": fetch the contents of the (lazy) value V by
1768 composing it from its pieces. */
1769
1770 static void
1771 rw_pieced_value (struct value *v, struct value *from)
1772 {
1773 int i;
1774 LONGEST offset = 0, max_offset;
1775 ULONGEST bits_to_skip;
1776 gdb_byte *v_contents;
1777 const gdb_byte *from_contents;
1778 struct piece_closure *c
1779 = (struct piece_closure *) value_computed_closure (v);
1780 gdb::byte_vector buffer;
1781 int bits_big_endian
1782 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1783
1784 if (from != NULL)
1785 {
1786 from_contents = value_contents (from);
1787 v_contents = NULL;
1788 }
1789 else
1790 {
1791 if (value_type (v) != value_enclosing_type (v))
1792 internal_error (__FILE__, __LINE__,
1793 _("Should not be able to create a lazy value with "
1794 "an enclosing type"));
1795 v_contents = value_contents_raw (v);
1796 from_contents = NULL;
1797 }
1798
1799 bits_to_skip = 8 * value_offset (v);
1800 if (value_bitsize (v))
1801 {
1802 bits_to_skip += (8 * value_offset (value_parent (v))
1803 + value_bitpos (v));
1804 if (from != NULL
1805 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1806 == BFD_ENDIAN_BIG))
1807 {
1808 /* Use the least significant bits of FROM. */
1809 max_offset = 8 * TYPE_LENGTH (value_type (from));
1810 offset = max_offset - value_bitsize (v);
1811 }
1812 else
1813 max_offset = value_bitsize (v);
1814 }
1815 else
1816 max_offset = 8 * TYPE_LENGTH (value_type (v));
1817
1818 /* Advance to the first non-skipped piece. */
1819 for (i = 0; i < c->n_pieces && bits_to_skip >= c->pieces[i].size; i++)
1820 bits_to_skip -= c->pieces[i].size;
1821
1822 for (; i < c->n_pieces && offset < max_offset; i++)
1823 {
1824 struct dwarf_expr_piece *p = &c->pieces[i];
1825 size_t this_size_bits, this_size;
1826
1827 this_size_bits = p->size - bits_to_skip;
1828 if (this_size_bits > max_offset - offset)
1829 this_size_bits = max_offset - offset;
1830
1831 switch (p->location)
1832 {
1833 case DWARF_VALUE_REGISTER:
1834 {
1835 struct frame_info *frame = frame_find_by_id (c->frame_id);
1836 struct gdbarch *arch = get_frame_arch (frame);
1837 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1838 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1839 int optim, unavail;
1840
1841 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1842 && p->offset + p->size < reg_bits)
1843 {
1844 /* Big-endian, and we want less than full size. */
1845 bits_to_skip += reg_bits - (p->offset + p->size);
1846 }
1847 else
1848 bits_to_skip += p->offset;
1849
1850 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1851 buffer.resize (this_size);
1852
1853 if (from == NULL)
1854 {
1855 /* Read mode. */
1856 if (!get_frame_register_bytes (frame, gdb_regnum,
1857 bits_to_skip / 8,
1858 this_size, buffer.data (),
1859 &optim, &unavail))
1860 {
1861 if (optim)
1862 mark_value_bits_optimized_out (v, offset,
1863 this_size_bits);
1864 if (unavail)
1865 mark_value_bits_unavailable (v, offset,
1866 this_size_bits);
1867 break;
1868 }
1869
1870 copy_bitwise (v_contents, offset,
1871 buffer.data (), bits_to_skip % 8,
1872 this_size_bits, bits_big_endian);
1873 }
1874 else
1875 {
1876 /* Write mode. */
1877 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1878 {
1879 /* Data is copied non-byte-aligned into the register.
1880 Need some bits from original register value. */
1881 get_frame_register_bytes (frame, gdb_regnum,
1882 bits_to_skip / 8,
1883 this_size, buffer.data (),
1884 &optim, &unavail);
1885 if (optim)
1886 throw_error (OPTIMIZED_OUT_ERROR,
1887 _("Can't do read-modify-write to "
1888 "update bitfield; containing word "
1889 "has been optimized out"));
1890 if (unavail)
1891 throw_error (NOT_AVAILABLE_ERROR,
1892 _("Can't do read-modify-write to "
1893 "update bitfield; containing word "
1894 "is unavailable"));
1895 }
1896
1897 copy_bitwise (buffer.data (), bits_to_skip % 8,
1898 from_contents, offset,
1899 this_size_bits, bits_big_endian);
1900 put_frame_register_bytes (frame, gdb_regnum,
1901 bits_to_skip / 8,
1902 this_size, buffer.data ());
1903 }
1904 }
1905 break;
1906
1907 case DWARF_VALUE_MEMORY:
1908 {
1909 bits_to_skip += p->offset;
1910
1911 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1912
1913 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1914 && offset % 8 == 0)
1915 {
1916 /* Everything is byte-aligned; no buffer needed. */
1917 if (from != NULL)
1918 write_memory_with_notification (start_addr,
1919 (from_contents
1920 + offset / 8),
1921 this_size_bits / 8);
1922 else
1923 read_value_memory (v, offset,
1924 p->v.mem.in_stack_memory,
1925 p->v.mem.addr + bits_to_skip / 8,
1926 v_contents + offset / 8,
1927 this_size_bits / 8);
1928 break;
1929 }
1930
1931 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1932 buffer.resize (this_size);
1933
1934 if (from == NULL)
1935 {
1936 /* Read mode. */
1937 read_value_memory (v, offset,
1938 p->v.mem.in_stack_memory,
1939 p->v.mem.addr + bits_to_skip / 8,
1940 buffer.data (), this_size);
1941 copy_bitwise (v_contents, offset,
1942 buffer.data (), bits_to_skip % 8,
1943 this_size_bits, bits_big_endian);
1944 }
1945 else
1946 {
1947 /* Write mode. */
1948 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1949 {
1950 if (this_size <= 8)
1951 {
1952 /* Perform a single read for small sizes. */
1953 read_memory (start_addr, buffer.data (),
1954 this_size);
1955 }
1956 else
1957 {
1958 /* Only the first and last bytes can possibly have
1959 any bits reused. */
1960 read_memory (start_addr, buffer.data (), 1);
1961 read_memory (start_addr + this_size - 1,
1962 &buffer[this_size - 1], 1);
1963 }
1964 }
1965
1966 copy_bitwise (buffer.data (), bits_to_skip % 8,
1967 from_contents, offset,
1968 this_size_bits, bits_big_endian);
1969 write_memory_with_notification (start_addr,
1970 buffer.data (),
1971 this_size);
1972 }
1973 }
1974 break;
1975
1976 case DWARF_VALUE_STACK:
1977 {
1978 if (from != NULL)
1979 {
1980 mark_value_bits_optimized_out (v, offset, this_size_bits);
1981 break;
1982 }
1983
1984 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1985 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1986 ULONGEST stack_value_size_bits
1987 = 8 * TYPE_LENGTH (value_type (p->v.value));
1988
1989 /* Use zeroes if piece reaches beyond stack value. */
1990 if (p->offset + p->size > stack_value_size_bits)
1991 break;
1992
1993 /* Piece is anchored at least significant bit end. */
1994 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1995 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1996 else
1997 bits_to_skip += p->offset;
1998
1999 copy_bitwise (v_contents, offset,
2000 value_contents_all (p->v.value),
2001 bits_to_skip,
2002 this_size_bits, bits_big_endian);
2003 }
2004 break;
2005
2006 case DWARF_VALUE_LITERAL:
2007 {
2008 if (from != NULL)
2009 {
2010 mark_value_bits_optimized_out (v, offset, this_size_bits);
2011 break;
2012 }
2013
2014 ULONGEST literal_size_bits = 8 * p->v.literal.length;
2015 size_t n = this_size_bits;
2016
2017 /* Cut off at the end of the implicit value. */
2018 bits_to_skip += p->offset;
2019 if (bits_to_skip >= literal_size_bits)
2020 break;
2021 if (n > literal_size_bits - bits_to_skip)
2022 n = literal_size_bits - bits_to_skip;
2023
2024 copy_bitwise (v_contents, offset,
2025 p->v.literal.data, bits_to_skip,
2026 n, bits_big_endian);
2027 }
2028 break;
2029
2030 case DWARF_VALUE_IMPLICIT_POINTER:
2031 if (from != NULL)
2032 {
2033 mark_value_bits_optimized_out (v, offset, this_size_bits);
2034 break;
2035 }
2036
2037 /* These bits show up as zeros -- but do not cause the value to
2038 be considered optimized-out. */
2039 break;
2040
2041 case DWARF_VALUE_OPTIMIZED_OUT:
2042 mark_value_bits_optimized_out (v, offset, this_size_bits);
2043 break;
2044
2045 default:
2046 internal_error (__FILE__, __LINE__, _("invalid location type"));
2047 }
2048
2049 offset += this_size_bits;
2050 bits_to_skip = 0;
2051 }
2052 }
2053
2054
2055 static void
2056 read_pieced_value (struct value *v)
2057 {
2058 rw_pieced_value (v, NULL);
2059 }
2060
2061 static void
2062 write_pieced_value (struct value *to, struct value *from)
2063 {
2064 rw_pieced_value (to, from);
2065 }
2066
2067 /* An implementation of an lval_funcs method to see whether a value is
2068 a synthetic pointer. */
2069
2070 static int
2071 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2072 int bit_length)
2073 {
2074 struct piece_closure *c
2075 = (struct piece_closure *) value_computed_closure (value);
2076 int i;
2077
2078 bit_offset += 8 * value_offset (value);
2079 if (value_bitsize (value))
2080 bit_offset += value_bitpos (value);
2081
2082 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2083 {
2084 struct dwarf_expr_piece *p = &c->pieces[i];
2085 size_t this_size_bits = p->size;
2086
2087 if (bit_offset > 0)
2088 {
2089 if (bit_offset >= this_size_bits)
2090 {
2091 bit_offset -= this_size_bits;
2092 continue;
2093 }
2094
2095 bit_length -= this_size_bits - bit_offset;
2096 bit_offset = 0;
2097 }
2098 else
2099 bit_length -= this_size_bits;
2100
2101 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2102 return 0;
2103 }
2104
2105 return 1;
2106 }
2107
2108 /* A wrapper function for get_frame_address_in_block. */
2109
2110 static CORE_ADDR
2111 get_frame_address_in_block_wrapper (void *baton)
2112 {
2113 return get_frame_address_in_block ((struct frame_info *) baton);
2114 }
2115
2116 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2117
2118 static struct value *
2119 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2120 struct dwarf2_per_cu_data *per_cu,
2121 struct type *type)
2122 {
2123 struct value *result = NULL;
2124 struct obstack temp_obstack;
2125 struct cleanup *cleanup;
2126 const gdb_byte *bytes;
2127 LONGEST len;
2128
2129 obstack_init (&temp_obstack);
2130 cleanup = make_cleanup_obstack_free (&temp_obstack);
2131 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2132
2133 if (bytes != NULL)
2134 {
2135 if (byte_offset >= 0
2136 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2137 {
2138 bytes += byte_offset;
2139 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2140 }
2141 else
2142 invalid_synthetic_pointer ();
2143 }
2144 else
2145 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2146
2147 do_cleanups (cleanup);
2148
2149 return result;
2150 }
2151
2152 /* Fetch the value pointed to by a synthetic pointer. */
2153
2154 static struct value *
2155 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2156 struct dwarf2_per_cu_data *per_cu,
2157 struct frame_info *frame, struct type *type)
2158 {
2159 /* Fetch the location expression of the DIE we're pointing to. */
2160 struct dwarf2_locexpr_baton baton
2161 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2162 get_frame_address_in_block_wrapper, frame);
2163
2164 /* Get type of pointed-to DIE. */
2165 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2166 if (orig_type == NULL)
2167 invalid_synthetic_pointer ();
2168
2169 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2170 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2171 or it may've been optimized out. */
2172 if (baton.data != NULL)
2173 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2174 baton.size, baton.per_cu,
2175 TYPE_TARGET_TYPE (type),
2176 byte_offset);
2177 else
2178 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2179 type);
2180 }
2181
2182 /* An implementation of an lval_funcs method to indirect through a
2183 pointer. This handles the synthetic pointer case when needed. */
2184
2185 static struct value *
2186 indirect_pieced_value (struct value *value)
2187 {
2188 struct piece_closure *c
2189 = (struct piece_closure *) value_computed_closure (value);
2190 struct type *type;
2191 struct frame_info *frame;
2192 struct dwarf2_locexpr_baton baton;
2193 int i, bit_length;
2194 LONGEST bit_offset;
2195 struct dwarf_expr_piece *piece = NULL;
2196 LONGEST byte_offset;
2197 enum bfd_endian byte_order;
2198
2199 type = check_typedef (value_type (value));
2200 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2201 return NULL;
2202
2203 bit_length = 8 * TYPE_LENGTH (type);
2204 bit_offset = 8 * value_offset (value);
2205 if (value_bitsize (value))
2206 bit_offset += value_bitpos (value);
2207
2208 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2209 {
2210 struct dwarf_expr_piece *p = &c->pieces[i];
2211 size_t this_size_bits = p->size;
2212
2213 if (bit_offset > 0)
2214 {
2215 if (bit_offset >= this_size_bits)
2216 {
2217 bit_offset -= this_size_bits;
2218 continue;
2219 }
2220
2221 bit_length -= this_size_bits - bit_offset;
2222 bit_offset = 0;
2223 }
2224 else
2225 bit_length -= this_size_bits;
2226
2227 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2228 return NULL;
2229
2230 if (bit_length != 0)
2231 error (_("Invalid use of DW_OP_implicit_pointer"));
2232
2233 piece = p;
2234 break;
2235 }
2236
2237 gdb_assert (piece != NULL);
2238 frame = get_selected_frame (_("No frame selected."));
2239
2240 /* This is an offset requested by GDB, such as value subscripts.
2241 However, due to how synthetic pointers are implemented, this is
2242 always presented to us as a pointer type. This means we have to
2243 sign-extend it manually as appropriate. Use raw
2244 extract_signed_integer directly rather than value_as_address and
2245 sign extend afterwards on architectures that would need it
2246 (mostly everywhere except MIPS, which has signed addresses) as
2247 the later would go through gdbarch_pointer_to_address and thus
2248 return a CORE_ADDR with high bits set on architectures that
2249 encode address spaces and other things in CORE_ADDR. */
2250 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2251 byte_offset = extract_signed_integer (value_contents (value),
2252 TYPE_LENGTH (type), byte_order);
2253 byte_offset += piece->v.ptr.offset;
2254
2255 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2256 byte_offset, c->per_cu,
2257 frame, type);
2258 }
2259
2260 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2261 references. */
2262
2263 static struct value *
2264 coerce_pieced_ref (const struct value *value)
2265 {
2266 struct type *type = check_typedef (value_type (value));
2267
2268 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2269 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2270 {
2271 const struct piece_closure *closure
2272 = (struct piece_closure *) value_computed_closure (value);
2273 struct frame_info *frame
2274 = get_selected_frame (_("No frame selected."));
2275
2276 /* gdb represents synthetic pointers as pieced values with a single
2277 piece. */
2278 gdb_assert (closure != NULL);
2279 gdb_assert (closure->n_pieces == 1);
2280
2281 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2282 closure->pieces->v.ptr.offset,
2283 closure->per_cu, frame, type);
2284 }
2285 else
2286 {
2287 /* Else: not a synthetic reference; do nothing. */
2288 return NULL;
2289 }
2290 }
2291
2292 static void *
2293 copy_pieced_value_closure (const struct value *v)
2294 {
2295 struct piece_closure *c
2296 = (struct piece_closure *) value_computed_closure (v);
2297
2298 ++c->refc;
2299 return c;
2300 }
2301
2302 static void
2303 free_pieced_value_closure (struct value *v)
2304 {
2305 struct piece_closure *c
2306 = (struct piece_closure *) value_computed_closure (v);
2307
2308 --c->refc;
2309 if (c->refc == 0)
2310 {
2311 int i;
2312
2313 for (i = 0; i < c->n_pieces; ++i)
2314 if (c->pieces[i].location == DWARF_VALUE_STACK)
2315 value_free (c->pieces[i].v.value);
2316
2317 xfree (c->pieces);
2318 xfree (c);
2319 }
2320 }
2321
2322 /* Functions for accessing a variable described by DW_OP_piece. */
2323 static const struct lval_funcs pieced_value_funcs = {
2324 read_pieced_value,
2325 write_pieced_value,
2326 indirect_pieced_value,
2327 coerce_pieced_ref,
2328 check_pieced_synthetic_pointer,
2329 copy_pieced_value_closure,
2330 free_pieced_value_closure
2331 };
2332
2333 /* Evaluate a location description, starting at DATA and with length
2334 SIZE, to find the current location of variable of TYPE in the
2335 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2336 location of the subobject of type SUBOBJ_TYPE at byte offset
2337 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2338
2339 static struct value *
2340 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2341 const gdb_byte *data, size_t size,
2342 struct dwarf2_per_cu_data *per_cu,
2343 struct type *subobj_type,
2344 LONGEST subobj_byte_offset)
2345 {
2346 struct value *retval;
2347 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2348
2349 if (subobj_type == NULL)
2350 {
2351 subobj_type = type;
2352 subobj_byte_offset = 0;
2353 }
2354 else if (subobj_byte_offset < 0)
2355 invalid_synthetic_pointer ();
2356
2357 if (size == 0)
2358 return allocate_optimized_out_value (subobj_type);
2359
2360 dwarf_evaluate_loc_desc ctx;
2361 ctx.frame = frame;
2362 ctx.per_cu = per_cu;
2363 ctx.obj_address = 0;
2364
2365 scoped_value_mark free_values;
2366
2367 ctx.gdbarch = get_objfile_arch (objfile);
2368 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2369 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2370 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2371
2372 TRY
2373 {
2374 ctx.eval (data, size);
2375 }
2376 CATCH (ex, RETURN_MASK_ERROR)
2377 {
2378 if (ex.error == NOT_AVAILABLE_ERROR)
2379 {
2380 free_values.free_to_mark ();
2381 retval = allocate_value (subobj_type);
2382 mark_value_bytes_unavailable (retval, 0,
2383 TYPE_LENGTH (subobj_type));
2384 return retval;
2385 }
2386 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2387 {
2388 if (entry_values_debug)
2389 exception_print (gdb_stdout, ex);
2390 free_values.free_to_mark ();
2391 return allocate_optimized_out_value (subobj_type);
2392 }
2393 else
2394 throw_exception (ex);
2395 }
2396 END_CATCH
2397
2398 if (ctx.num_pieces > 0)
2399 {
2400 struct piece_closure *c;
2401 ULONGEST bit_size = 0;
2402 int i;
2403
2404 for (i = 0; i < ctx.num_pieces; ++i)
2405 bit_size += ctx.pieces[i].size;
2406 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2407 invalid_synthetic_pointer ();
2408
2409 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2410 frame);
2411 /* We must clean up the value chain after creating the piece
2412 closure but before allocating the result. */
2413 free_values.free_to_mark ();
2414 retval = allocate_computed_value (subobj_type,
2415 &pieced_value_funcs, c);
2416 set_value_offset (retval, subobj_byte_offset);
2417 }
2418 else
2419 {
2420 switch (ctx.location)
2421 {
2422 case DWARF_VALUE_REGISTER:
2423 {
2424 struct gdbarch *arch = get_frame_arch (frame);
2425 int dwarf_regnum
2426 = longest_to_int (value_as_long (ctx.fetch (0)));
2427 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2428
2429 if (subobj_byte_offset != 0)
2430 error (_("cannot use offset on synthetic pointer to register"));
2431 free_values.free_to_mark ();
2432 retval = value_from_register (subobj_type, gdb_regnum, frame);
2433 if (value_optimized_out (retval))
2434 {
2435 struct value *tmp;
2436
2437 /* This means the register has undefined value / was
2438 not saved. As we're computing the location of some
2439 variable etc. in the program, not a value for
2440 inspecting a register ($pc, $sp, etc.), return a
2441 generic optimized out value instead, so that we show
2442 <optimized out> instead of <not saved>. */
2443 tmp = allocate_value (subobj_type);
2444 value_contents_copy (tmp, 0, retval, 0,
2445 TYPE_LENGTH (subobj_type));
2446 retval = tmp;
2447 }
2448 }
2449 break;
2450
2451 case DWARF_VALUE_MEMORY:
2452 {
2453 struct type *ptr_type;
2454 CORE_ADDR address = ctx.fetch_address (0);
2455 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2456
2457 /* DW_OP_deref_size (and possibly other operations too) may
2458 create a pointer instead of an address. Ideally, the
2459 pointer to address conversion would be performed as part
2460 of those operations, but the type of the object to
2461 which the address refers is not known at the time of
2462 the operation. Therefore, we do the conversion here
2463 since the type is readily available. */
2464
2465 switch (TYPE_CODE (subobj_type))
2466 {
2467 case TYPE_CODE_FUNC:
2468 case TYPE_CODE_METHOD:
2469 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2470 break;
2471 default:
2472 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2473 break;
2474 }
2475 address = value_as_address (value_from_pointer (ptr_type, address));
2476
2477 free_values.free_to_mark ();
2478 retval = value_at_lazy (subobj_type,
2479 address + subobj_byte_offset);
2480 if (in_stack_memory)
2481 set_value_stack (retval, 1);
2482 }
2483 break;
2484
2485 case DWARF_VALUE_STACK:
2486 {
2487 struct value *value = ctx.fetch (0);
2488 size_t n = TYPE_LENGTH (value_type (value));
2489 size_t len = TYPE_LENGTH (subobj_type);
2490 size_t max = TYPE_LENGTH (type);
2491 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2492 struct cleanup *cleanup;
2493
2494 if (subobj_byte_offset + len > max)
2495 invalid_synthetic_pointer ();
2496
2497 /* Preserve VALUE because we are going to free values back
2498 to the mark, but we still need the value contents
2499 below. */
2500 value_incref (value);
2501 free_values.free_to_mark ();
2502 cleanup = make_cleanup_value_free (value);
2503
2504 retval = allocate_value (subobj_type);
2505
2506 /* The given offset is relative to the actual object. */
2507 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2508 subobj_byte_offset += n - max;
2509
2510 memcpy (value_contents_raw (retval),
2511 value_contents_all (value) + subobj_byte_offset, len);
2512
2513 do_cleanups (cleanup);
2514 }
2515 break;
2516
2517 case DWARF_VALUE_LITERAL:
2518 {
2519 bfd_byte *contents;
2520 size_t n = TYPE_LENGTH (subobj_type);
2521
2522 if (subobj_byte_offset + n > ctx.len)
2523 invalid_synthetic_pointer ();
2524
2525 free_values.free_to_mark ();
2526 retval = allocate_value (subobj_type);
2527 contents = value_contents_raw (retval);
2528 memcpy (contents, ctx.data + subobj_byte_offset, n);
2529 }
2530 break;
2531
2532 case DWARF_VALUE_OPTIMIZED_OUT:
2533 free_values.free_to_mark ();
2534 retval = allocate_optimized_out_value (subobj_type);
2535 break;
2536
2537 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2538 operation by execute_stack_op. */
2539 case DWARF_VALUE_IMPLICIT_POINTER:
2540 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2541 it can only be encountered when making a piece. */
2542 default:
2543 internal_error (__FILE__, __LINE__, _("invalid location type"));
2544 }
2545 }
2546
2547 set_value_initialized (retval, ctx.initialized);
2548
2549 return retval;
2550 }
2551
2552 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2553 passes 0 as the byte_offset. */
2554
2555 struct value *
2556 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2557 const gdb_byte *data, size_t size,
2558 struct dwarf2_per_cu_data *per_cu)
2559 {
2560 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2561 NULL, 0);
2562 }
2563
2564 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2565 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2566 frame in which the expression is evaluated. ADDR is a context (location of
2567 a variable) and might be needed to evaluate the location expression.
2568 Returns 1 on success, 0 otherwise. */
2569
2570 static int
2571 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2572 struct frame_info *frame,
2573 CORE_ADDR addr,
2574 CORE_ADDR *valp)
2575 {
2576 struct objfile *objfile;
2577
2578 if (dlbaton == NULL || dlbaton->size == 0)
2579 return 0;
2580
2581 dwarf_evaluate_loc_desc ctx;
2582
2583 ctx.frame = frame;
2584 ctx.per_cu = dlbaton->per_cu;
2585 ctx.obj_address = addr;
2586
2587 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2588
2589 ctx.gdbarch = get_objfile_arch (objfile);
2590 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2591 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2592 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2593
2594 ctx.eval (dlbaton->data, dlbaton->size);
2595
2596 switch (ctx.location)
2597 {
2598 case DWARF_VALUE_REGISTER:
2599 case DWARF_VALUE_MEMORY:
2600 case DWARF_VALUE_STACK:
2601 *valp = ctx.fetch_address (0);
2602 if (ctx.location == DWARF_VALUE_REGISTER)
2603 *valp = ctx.read_addr_from_reg (*valp);
2604 return 1;
2605 case DWARF_VALUE_LITERAL:
2606 *valp = extract_signed_integer (ctx.data, ctx.len,
2607 gdbarch_byte_order (ctx.gdbarch));
2608 return 1;
2609 /* Unsupported dwarf values. */
2610 case DWARF_VALUE_OPTIMIZED_OUT:
2611 case DWARF_VALUE_IMPLICIT_POINTER:
2612 break;
2613 }
2614
2615 return 0;
2616 }
2617
2618 /* See dwarf2loc.h. */
2619
2620 int
2621 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2622 struct frame_info *frame,
2623 struct property_addr_info *addr_stack,
2624 CORE_ADDR *value)
2625 {
2626 if (prop == NULL)
2627 return 0;
2628
2629 if (frame == NULL && has_stack_frames ())
2630 frame = get_selected_frame (NULL);
2631
2632 switch (prop->kind)
2633 {
2634 case PROP_LOCEXPR:
2635 {
2636 const struct dwarf2_property_baton *baton
2637 = (const struct dwarf2_property_baton *) prop->data.baton;
2638
2639 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2640 addr_stack ? addr_stack->addr : 0,
2641 value))
2642 {
2643 if (baton->referenced_type)
2644 {
2645 struct value *val = value_at (baton->referenced_type, *value);
2646
2647 *value = value_as_address (val);
2648 }
2649 return 1;
2650 }
2651 }
2652 break;
2653
2654 case PROP_LOCLIST:
2655 {
2656 struct dwarf2_property_baton *baton
2657 = (struct dwarf2_property_baton *) prop->data.baton;
2658 CORE_ADDR pc = get_frame_address_in_block (frame);
2659 const gdb_byte *data;
2660 struct value *val;
2661 size_t size;
2662
2663 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2664 if (data != NULL)
2665 {
2666 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2667 size, baton->loclist.per_cu);
2668 if (!value_optimized_out (val))
2669 {
2670 *value = value_as_address (val);
2671 return 1;
2672 }
2673 }
2674 }
2675 break;
2676
2677 case PROP_CONST:
2678 *value = prop->data.const_val;
2679 return 1;
2680
2681 case PROP_ADDR_OFFSET:
2682 {
2683 struct dwarf2_property_baton *baton
2684 = (struct dwarf2_property_baton *) prop->data.baton;
2685 struct property_addr_info *pinfo;
2686 struct value *val;
2687
2688 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2689 if (pinfo->type == baton->referenced_type)
2690 break;
2691 if (pinfo == NULL)
2692 error (_("cannot find reference address for offset property"));
2693 if (pinfo->valaddr != NULL)
2694 val = value_from_contents
2695 (baton->offset_info.type,
2696 pinfo->valaddr + baton->offset_info.offset);
2697 else
2698 val = value_at (baton->offset_info.type,
2699 pinfo->addr + baton->offset_info.offset);
2700 *value = value_as_address (val);
2701 return 1;
2702 }
2703 }
2704
2705 return 0;
2706 }
2707
2708 /* See dwarf2loc.h. */
2709
2710 void
2711 dwarf2_compile_property_to_c (string_file &stream,
2712 const char *result_name,
2713 struct gdbarch *gdbarch,
2714 unsigned char *registers_used,
2715 const struct dynamic_prop *prop,
2716 CORE_ADDR pc,
2717 struct symbol *sym)
2718 {
2719 struct dwarf2_property_baton *baton
2720 = (struct dwarf2_property_baton *) prop->data.baton;
2721 const gdb_byte *data;
2722 size_t size;
2723 struct dwarf2_per_cu_data *per_cu;
2724
2725 if (prop->kind == PROP_LOCEXPR)
2726 {
2727 data = baton->locexpr.data;
2728 size = baton->locexpr.size;
2729 per_cu = baton->locexpr.per_cu;
2730 }
2731 else
2732 {
2733 gdb_assert (prop->kind == PROP_LOCLIST);
2734
2735 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2736 per_cu = baton->loclist.per_cu;
2737 }
2738
2739 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2740 gdbarch, registers_used,
2741 dwarf2_per_cu_addr_size (per_cu),
2742 data, data + size, per_cu);
2743 }
2744
2745 \f
2746 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2747
2748 class symbol_needs_eval_context : public dwarf_expr_context
2749 {
2750 public:
2751
2752 enum symbol_needs_kind needs;
2753 struct dwarf2_per_cu_data *per_cu;
2754
2755 /* Reads from registers do require a frame. */
2756 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2757 {
2758 needs = SYMBOL_NEEDS_FRAME;
2759 return 1;
2760 }
2761
2762 /* "get_reg_value" callback: Reads from registers do require a
2763 frame. */
2764
2765 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2766 {
2767 needs = SYMBOL_NEEDS_FRAME;
2768 return value_zero (type, not_lval);
2769 }
2770
2771 /* Reads from memory do not require a frame. */
2772 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2773 {
2774 memset (buf, 0, len);
2775 }
2776
2777 /* Frame-relative accesses do require a frame. */
2778 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2779 {
2780 static gdb_byte lit0 = DW_OP_lit0;
2781
2782 *start = &lit0;
2783 *length = 1;
2784
2785 needs = SYMBOL_NEEDS_FRAME;
2786 }
2787
2788 /* CFA accesses require a frame. */
2789 CORE_ADDR get_frame_cfa () OVERRIDE
2790 {
2791 needs = SYMBOL_NEEDS_FRAME;
2792 return 1;
2793 }
2794
2795 CORE_ADDR get_frame_pc () OVERRIDE
2796 {
2797 needs = SYMBOL_NEEDS_FRAME;
2798 return 1;
2799 }
2800
2801 /* Thread-local accesses require registers, but not a frame. */
2802 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2803 {
2804 if (needs <= SYMBOL_NEEDS_REGISTERS)
2805 needs = SYMBOL_NEEDS_REGISTERS;
2806 return 1;
2807 }
2808
2809 /* Helper interface of per_cu_dwarf_call for
2810 dwarf2_loc_desc_get_symbol_read_needs. */
2811
2812 void dwarf_call (cu_offset die_offset) OVERRIDE
2813 {
2814 per_cu_dwarf_call (this, die_offset, per_cu);
2815 }
2816
2817 /* DW_OP_entry_value accesses require a caller, therefore a
2818 frame. */
2819
2820 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2821 union call_site_parameter_u kind_u,
2822 int deref_size) OVERRIDE
2823 {
2824 needs = SYMBOL_NEEDS_FRAME;
2825
2826 /* The expression may require some stub values on DWARF stack. */
2827 push_address (0, 0);
2828 }
2829
2830 /* DW_OP_GNU_addr_index doesn't require a frame. */
2831
2832 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2833 {
2834 /* Nothing to do. */
2835 return 1;
2836 }
2837
2838 /* DW_OP_push_object_address has a frame already passed through. */
2839
2840 CORE_ADDR get_object_address () OVERRIDE
2841 {
2842 /* Nothing to do. */
2843 return 1;
2844 }
2845 };
2846
2847 /* Compute the correct symbol_needs_kind value for the location
2848 expression at DATA (length SIZE). */
2849
2850 static enum symbol_needs_kind
2851 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2852 struct dwarf2_per_cu_data *per_cu)
2853 {
2854 int in_reg;
2855 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2856
2857 scoped_value_mark free_values;
2858
2859 symbol_needs_eval_context ctx;
2860
2861 ctx.needs = SYMBOL_NEEDS_NONE;
2862 ctx.per_cu = per_cu;
2863 ctx.gdbarch = get_objfile_arch (objfile);
2864 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2865 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2866 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2867
2868 ctx.eval (data, size);
2869
2870 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2871
2872 if (ctx.num_pieces > 0)
2873 {
2874 int i;
2875
2876 /* If the location has several pieces, and any of them are in
2877 registers, then we will need a frame to fetch them from. */
2878 for (i = 0; i < ctx.num_pieces; i++)
2879 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2880 in_reg = 1;
2881 }
2882
2883 if (in_reg)
2884 ctx.needs = SYMBOL_NEEDS_FRAME;
2885 return ctx.needs;
2886 }
2887
2888 /* A helper function that throws an unimplemented error mentioning a
2889 given DWARF operator. */
2890
2891 static void
2892 unimplemented (unsigned int op)
2893 {
2894 const char *name = get_DW_OP_name (op);
2895
2896 if (name)
2897 error (_("DWARF operator %s cannot be translated to an agent expression"),
2898 name);
2899 else
2900 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2901 "to an agent expression"),
2902 op);
2903 }
2904
2905 /* See dwarf2loc.h.
2906
2907 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2908 can issue a complaint, which is better than having every target's
2909 implementation of dwarf2_reg_to_regnum do it. */
2910
2911 int
2912 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2913 {
2914 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2915
2916 if (reg == -1)
2917 {
2918 complaint (&symfile_complaints,
2919 _("bad DWARF register number %d"), dwarf_reg);
2920 }
2921 return reg;
2922 }
2923
2924 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2925 Throw an error because DWARF_REG is bad. */
2926
2927 static void
2928 throw_bad_regnum_error (ULONGEST dwarf_reg)
2929 {
2930 /* Still want to print -1 as "-1".
2931 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2932 but that's overkill for now. */
2933 if ((int) dwarf_reg == dwarf_reg)
2934 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2935 error (_("Unable to access DWARF register number %s"),
2936 pulongest (dwarf_reg));
2937 }
2938
2939 /* See dwarf2loc.h. */
2940
2941 int
2942 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2943 {
2944 int reg;
2945
2946 if (dwarf_reg > INT_MAX)
2947 throw_bad_regnum_error (dwarf_reg);
2948 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2949 bad, but that's ok. */
2950 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2951 if (reg == -1)
2952 throw_bad_regnum_error (dwarf_reg);
2953 return reg;
2954 }
2955
2956 /* A helper function that emits an access to memory. ARCH is the
2957 target architecture. EXPR is the expression which we are building.
2958 NBITS is the number of bits we want to read. This emits the
2959 opcodes needed to read the memory and then extract the desired
2960 bits. */
2961
2962 static void
2963 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2964 {
2965 ULONGEST nbytes = (nbits + 7) / 8;
2966
2967 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2968
2969 if (expr->tracing)
2970 ax_trace_quick (expr, nbytes);
2971
2972 if (nbits <= 8)
2973 ax_simple (expr, aop_ref8);
2974 else if (nbits <= 16)
2975 ax_simple (expr, aop_ref16);
2976 else if (nbits <= 32)
2977 ax_simple (expr, aop_ref32);
2978 else
2979 ax_simple (expr, aop_ref64);
2980
2981 /* If we read exactly the number of bytes we wanted, we're done. */
2982 if (8 * nbytes == nbits)
2983 return;
2984
2985 if (gdbarch_bits_big_endian (arch))
2986 {
2987 /* On a bits-big-endian machine, we want the high-order
2988 NBITS. */
2989 ax_const_l (expr, 8 * nbytes - nbits);
2990 ax_simple (expr, aop_rsh_unsigned);
2991 }
2992 else
2993 {
2994 /* On a bits-little-endian box, we want the low-order NBITS. */
2995 ax_zero_ext (expr, nbits);
2996 }
2997 }
2998
2999 /* A helper function to return the frame's PC. */
3000
3001 static CORE_ADDR
3002 get_ax_pc (void *baton)
3003 {
3004 struct agent_expr *expr = (struct agent_expr *) baton;
3005
3006 return expr->scope;
3007 }
3008
3009 /* Compile a DWARF location expression to an agent expression.
3010
3011 EXPR is the agent expression we are building.
3012 LOC is the agent value we modify.
3013 ARCH is the architecture.
3014 ADDR_SIZE is the size of addresses, in bytes.
3015 OP_PTR is the start of the location expression.
3016 OP_END is one past the last byte of the location expression.
3017
3018 This will throw an exception for various kinds of errors -- for
3019 example, if the expression cannot be compiled, or if the expression
3020 is invalid. */
3021
3022 void
3023 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3024 struct gdbarch *arch, unsigned int addr_size,
3025 const gdb_byte *op_ptr, const gdb_byte *op_end,
3026 struct dwarf2_per_cu_data *per_cu)
3027 {
3028 int i;
3029 std::vector<int> dw_labels, patches;
3030 const gdb_byte * const base = op_ptr;
3031 const gdb_byte *previous_piece = op_ptr;
3032 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3033 ULONGEST bits_collected = 0;
3034 unsigned int addr_size_bits = 8 * addr_size;
3035 int bits_big_endian = gdbarch_bits_big_endian (arch);
3036
3037 std::vector<int> offsets (op_end - op_ptr, -1);
3038
3039 /* By default we are making an address. */
3040 loc->kind = axs_lvalue_memory;
3041
3042 while (op_ptr < op_end)
3043 {
3044 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3045 uint64_t uoffset, reg;
3046 int64_t offset;
3047 int i;
3048
3049 offsets[op_ptr - base] = expr->len;
3050 ++op_ptr;
3051
3052 /* Our basic approach to code generation is to map DWARF
3053 operations directly to AX operations. However, there are
3054 some differences.
3055
3056 First, DWARF works on address-sized units, but AX always uses
3057 LONGEST. For most operations we simply ignore this
3058 difference; instead we generate sign extensions as needed
3059 before division and comparison operations. It would be nice
3060 to omit the sign extensions, but there is no way to determine
3061 the size of the target's LONGEST. (This code uses the size
3062 of the host LONGEST in some cases -- that is a bug but it is
3063 difficult to fix.)
3064
3065 Second, some DWARF operations cannot be translated to AX.
3066 For these we simply fail. See
3067 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3068 switch (op)
3069 {
3070 case DW_OP_lit0:
3071 case DW_OP_lit1:
3072 case DW_OP_lit2:
3073 case DW_OP_lit3:
3074 case DW_OP_lit4:
3075 case DW_OP_lit5:
3076 case DW_OP_lit6:
3077 case DW_OP_lit7:
3078 case DW_OP_lit8:
3079 case DW_OP_lit9:
3080 case DW_OP_lit10:
3081 case DW_OP_lit11:
3082 case DW_OP_lit12:
3083 case DW_OP_lit13:
3084 case DW_OP_lit14:
3085 case DW_OP_lit15:
3086 case DW_OP_lit16:
3087 case DW_OP_lit17:
3088 case DW_OP_lit18:
3089 case DW_OP_lit19:
3090 case DW_OP_lit20:
3091 case DW_OP_lit21:
3092 case DW_OP_lit22:
3093 case DW_OP_lit23:
3094 case DW_OP_lit24:
3095 case DW_OP_lit25:
3096 case DW_OP_lit26:
3097 case DW_OP_lit27:
3098 case DW_OP_lit28:
3099 case DW_OP_lit29:
3100 case DW_OP_lit30:
3101 case DW_OP_lit31:
3102 ax_const_l (expr, op - DW_OP_lit0);
3103 break;
3104
3105 case DW_OP_addr:
3106 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3107 op_ptr += addr_size;
3108 /* Some versions of GCC emit DW_OP_addr before
3109 DW_OP_GNU_push_tls_address. In this case the value is an
3110 index, not an address. We don't support things like
3111 branching between the address and the TLS op. */
3112 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3113 uoffset += dwarf2_per_cu_text_offset (per_cu);
3114 ax_const_l (expr, uoffset);
3115 break;
3116
3117 case DW_OP_const1u:
3118 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3119 op_ptr += 1;
3120 break;
3121 case DW_OP_const1s:
3122 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3123 op_ptr += 1;
3124 break;
3125 case DW_OP_const2u:
3126 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3127 op_ptr += 2;
3128 break;
3129 case DW_OP_const2s:
3130 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3131 op_ptr += 2;
3132 break;
3133 case DW_OP_const4u:
3134 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3135 op_ptr += 4;
3136 break;
3137 case DW_OP_const4s:
3138 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3139 op_ptr += 4;
3140 break;
3141 case DW_OP_const8u:
3142 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3143 op_ptr += 8;
3144 break;
3145 case DW_OP_const8s:
3146 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3147 op_ptr += 8;
3148 break;
3149 case DW_OP_constu:
3150 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3151 ax_const_l (expr, uoffset);
3152 break;
3153 case DW_OP_consts:
3154 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3155 ax_const_l (expr, offset);
3156 break;
3157
3158 case DW_OP_reg0:
3159 case DW_OP_reg1:
3160 case DW_OP_reg2:
3161 case DW_OP_reg3:
3162 case DW_OP_reg4:
3163 case DW_OP_reg5:
3164 case DW_OP_reg6:
3165 case DW_OP_reg7:
3166 case DW_OP_reg8:
3167 case DW_OP_reg9:
3168 case DW_OP_reg10:
3169 case DW_OP_reg11:
3170 case DW_OP_reg12:
3171 case DW_OP_reg13:
3172 case DW_OP_reg14:
3173 case DW_OP_reg15:
3174 case DW_OP_reg16:
3175 case DW_OP_reg17:
3176 case DW_OP_reg18:
3177 case DW_OP_reg19:
3178 case DW_OP_reg20:
3179 case DW_OP_reg21:
3180 case DW_OP_reg22:
3181 case DW_OP_reg23:
3182 case DW_OP_reg24:
3183 case DW_OP_reg25:
3184 case DW_OP_reg26:
3185 case DW_OP_reg27:
3186 case DW_OP_reg28:
3187 case DW_OP_reg29:
3188 case DW_OP_reg30:
3189 case DW_OP_reg31:
3190 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3191 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3192 loc->kind = axs_lvalue_register;
3193 break;
3194
3195 case DW_OP_regx:
3196 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3197 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3198 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3199 loc->kind = axs_lvalue_register;
3200 break;
3201
3202 case DW_OP_implicit_value:
3203 {
3204 uint64_t len;
3205
3206 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3207 if (op_ptr + len > op_end)
3208 error (_("DW_OP_implicit_value: too few bytes available."));
3209 if (len > sizeof (ULONGEST))
3210 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3211 (int) len);
3212
3213 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3214 byte_order));
3215 op_ptr += len;
3216 dwarf_expr_require_composition (op_ptr, op_end,
3217 "DW_OP_implicit_value");
3218
3219 loc->kind = axs_rvalue;
3220 }
3221 break;
3222
3223 case DW_OP_stack_value:
3224 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3225 loc->kind = axs_rvalue;
3226 break;
3227
3228 case DW_OP_breg0:
3229 case DW_OP_breg1:
3230 case DW_OP_breg2:
3231 case DW_OP_breg3:
3232 case DW_OP_breg4:
3233 case DW_OP_breg5:
3234 case DW_OP_breg6:
3235 case DW_OP_breg7:
3236 case DW_OP_breg8:
3237 case DW_OP_breg9:
3238 case DW_OP_breg10:
3239 case DW_OP_breg11:
3240 case DW_OP_breg12:
3241 case DW_OP_breg13:
3242 case DW_OP_breg14:
3243 case DW_OP_breg15:
3244 case DW_OP_breg16:
3245 case DW_OP_breg17:
3246 case DW_OP_breg18:
3247 case DW_OP_breg19:
3248 case DW_OP_breg20:
3249 case DW_OP_breg21:
3250 case DW_OP_breg22:
3251 case DW_OP_breg23:
3252 case DW_OP_breg24:
3253 case DW_OP_breg25:
3254 case DW_OP_breg26:
3255 case DW_OP_breg27:
3256 case DW_OP_breg28:
3257 case DW_OP_breg29:
3258 case DW_OP_breg30:
3259 case DW_OP_breg31:
3260 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3261 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3262 ax_reg (expr, i);
3263 if (offset != 0)
3264 {
3265 ax_const_l (expr, offset);
3266 ax_simple (expr, aop_add);
3267 }
3268 break;
3269 case DW_OP_bregx:
3270 {
3271 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3272 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3273 i = dwarf_reg_to_regnum_or_error (arch, reg);
3274 ax_reg (expr, i);
3275 if (offset != 0)
3276 {
3277 ax_const_l (expr, offset);
3278 ax_simple (expr, aop_add);
3279 }
3280 }
3281 break;
3282 case DW_OP_fbreg:
3283 {
3284 const gdb_byte *datastart;
3285 size_t datalen;
3286 const struct block *b;
3287 struct symbol *framefunc;
3288
3289 b = block_for_pc (expr->scope);
3290
3291 if (!b)
3292 error (_("No block found for address"));
3293
3294 framefunc = block_linkage_function (b);
3295
3296 if (!framefunc)
3297 error (_("No function found for block"));
3298
3299 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3300 &datastart, &datalen);
3301
3302 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3303 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3304 datastart + datalen, per_cu);
3305 if (loc->kind == axs_lvalue_register)
3306 require_rvalue (expr, loc);
3307
3308 if (offset != 0)
3309 {
3310 ax_const_l (expr, offset);
3311 ax_simple (expr, aop_add);
3312 }
3313
3314 loc->kind = axs_lvalue_memory;
3315 }
3316 break;
3317
3318 case DW_OP_dup:
3319 ax_simple (expr, aop_dup);
3320 break;
3321
3322 case DW_OP_drop:
3323 ax_simple (expr, aop_pop);
3324 break;
3325
3326 case DW_OP_pick:
3327 offset = *op_ptr++;
3328 ax_pick (expr, offset);
3329 break;
3330
3331 case DW_OP_swap:
3332 ax_simple (expr, aop_swap);
3333 break;
3334
3335 case DW_OP_over:
3336 ax_pick (expr, 1);
3337 break;
3338
3339 case DW_OP_rot:
3340 ax_simple (expr, aop_rot);
3341 break;
3342
3343 case DW_OP_deref:
3344 case DW_OP_deref_size:
3345 {
3346 int size;
3347
3348 if (op == DW_OP_deref_size)
3349 size = *op_ptr++;
3350 else
3351 size = addr_size;
3352
3353 if (size != 1 && size != 2 && size != 4 && size != 8)
3354 error (_("Unsupported size %d in %s"),
3355 size, get_DW_OP_name (op));
3356 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3357 }
3358 break;
3359
3360 case DW_OP_abs:
3361 /* Sign extend the operand. */
3362 ax_ext (expr, addr_size_bits);
3363 ax_simple (expr, aop_dup);
3364 ax_const_l (expr, 0);
3365 ax_simple (expr, aop_less_signed);
3366 ax_simple (expr, aop_log_not);
3367 i = ax_goto (expr, aop_if_goto);
3368 /* We have to emit 0 - X. */
3369 ax_const_l (expr, 0);
3370 ax_simple (expr, aop_swap);
3371 ax_simple (expr, aop_sub);
3372 ax_label (expr, i, expr->len);
3373 break;
3374
3375 case DW_OP_neg:
3376 /* No need to sign extend here. */
3377 ax_const_l (expr, 0);
3378 ax_simple (expr, aop_swap);
3379 ax_simple (expr, aop_sub);
3380 break;
3381
3382 case DW_OP_not:
3383 /* Sign extend the operand. */
3384 ax_ext (expr, addr_size_bits);
3385 ax_simple (expr, aop_bit_not);
3386 break;
3387
3388 case DW_OP_plus_uconst:
3389 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3390 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3391 but we micro-optimize anyhow. */
3392 if (reg != 0)
3393 {
3394 ax_const_l (expr, reg);
3395 ax_simple (expr, aop_add);
3396 }
3397 break;
3398
3399 case DW_OP_and:
3400 ax_simple (expr, aop_bit_and);
3401 break;
3402
3403 case DW_OP_div:
3404 /* Sign extend the operands. */
3405 ax_ext (expr, addr_size_bits);
3406 ax_simple (expr, aop_swap);
3407 ax_ext (expr, addr_size_bits);
3408 ax_simple (expr, aop_swap);
3409 ax_simple (expr, aop_div_signed);
3410 break;
3411
3412 case DW_OP_minus:
3413 ax_simple (expr, aop_sub);
3414 break;
3415
3416 case DW_OP_mod:
3417 ax_simple (expr, aop_rem_unsigned);
3418 break;
3419
3420 case DW_OP_mul:
3421 ax_simple (expr, aop_mul);
3422 break;
3423
3424 case DW_OP_or:
3425 ax_simple (expr, aop_bit_or);
3426 break;
3427
3428 case DW_OP_plus:
3429 ax_simple (expr, aop_add);
3430 break;
3431
3432 case DW_OP_shl:
3433 ax_simple (expr, aop_lsh);
3434 break;
3435
3436 case DW_OP_shr:
3437 ax_simple (expr, aop_rsh_unsigned);
3438 break;
3439
3440 case DW_OP_shra:
3441 ax_simple (expr, aop_rsh_signed);
3442 break;
3443
3444 case DW_OP_xor:
3445 ax_simple (expr, aop_bit_xor);
3446 break;
3447
3448 case DW_OP_le:
3449 /* Sign extend the operands. */
3450 ax_ext (expr, addr_size_bits);
3451 ax_simple (expr, aop_swap);
3452 ax_ext (expr, addr_size_bits);
3453 /* Note no swap here: A <= B is !(B < A). */
3454 ax_simple (expr, aop_less_signed);
3455 ax_simple (expr, aop_log_not);
3456 break;
3457
3458 case DW_OP_ge:
3459 /* Sign extend the operands. */
3460 ax_ext (expr, addr_size_bits);
3461 ax_simple (expr, aop_swap);
3462 ax_ext (expr, addr_size_bits);
3463 ax_simple (expr, aop_swap);
3464 /* A >= B is !(A < B). */
3465 ax_simple (expr, aop_less_signed);
3466 ax_simple (expr, aop_log_not);
3467 break;
3468
3469 case DW_OP_eq:
3470 /* Sign extend the operands. */
3471 ax_ext (expr, addr_size_bits);
3472 ax_simple (expr, aop_swap);
3473 ax_ext (expr, addr_size_bits);
3474 /* No need for a second swap here. */
3475 ax_simple (expr, aop_equal);
3476 break;
3477
3478 case DW_OP_lt:
3479 /* Sign extend the operands. */
3480 ax_ext (expr, addr_size_bits);
3481 ax_simple (expr, aop_swap);
3482 ax_ext (expr, addr_size_bits);
3483 ax_simple (expr, aop_swap);
3484 ax_simple (expr, aop_less_signed);
3485 break;
3486
3487 case DW_OP_gt:
3488 /* Sign extend the operands. */
3489 ax_ext (expr, addr_size_bits);
3490 ax_simple (expr, aop_swap);
3491 ax_ext (expr, addr_size_bits);
3492 /* Note no swap here: A > B is B < A. */
3493 ax_simple (expr, aop_less_signed);
3494 break;
3495
3496 case DW_OP_ne:
3497 /* Sign extend the operands. */
3498 ax_ext (expr, addr_size_bits);
3499 ax_simple (expr, aop_swap);
3500 ax_ext (expr, addr_size_bits);
3501 /* No need for a swap here. */
3502 ax_simple (expr, aop_equal);
3503 ax_simple (expr, aop_log_not);
3504 break;
3505
3506 case DW_OP_call_frame_cfa:
3507 {
3508 int regnum;
3509 CORE_ADDR text_offset;
3510 LONGEST off;
3511 const gdb_byte *cfa_start, *cfa_end;
3512
3513 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3514 &regnum, &off,
3515 &text_offset, &cfa_start, &cfa_end))
3516 {
3517 /* Register. */
3518 ax_reg (expr, regnum);
3519 if (off != 0)
3520 {
3521 ax_const_l (expr, off);
3522 ax_simple (expr, aop_add);
3523 }
3524 }
3525 else
3526 {
3527 /* Another expression. */
3528 ax_const_l (expr, text_offset);
3529 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3530 cfa_start, cfa_end, per_cu);
3531 }
3532
3533 loc->kind = axs_lvalue_memory;
3534 }
3535 break;
3536
3537 case DW_OP_GNU_push_tls_address:
3538 case DW_OP_form_tls_address:
3539 unimplemented (op);
3540 break;
3541
3542 case DW_OP_push_object_address:
3543 unimplemented (op);
3544 break;
3545
3546 case DW_OP_skip:
3547 offset = extract_signed_integer (op_ptr, 2, byte_order);
3548 op_ptr += 2;
3549 i = ax_goto (expr, aop_goto);
3550 dw_labels.push_back (op_ptr + offset - base);
3551 patches.push_back (i);
3552 break;
3553
3554 case DW_OP_bra:
3555 offset = extract_signed_integer (op_ptr, 2, byte_order);
3556 op_ptr += 2;
3557 /* Zero extend the operand. */
3558 ax_zero_ext (expr, addr_size_bits);
3559 i = ax_goto (expr, aop_if_goto);
3560 dw_labels.push_back (op_ptr + offset - base);
3561 patches.push_back (i);
3562 break;
3563
3564 case DW_OP_nop:
3565 break;
3566
3567 case DW_OP_piece:
3568 case DW_OP_bit_piece:
3569 {
3570 uint64_t size, offset;
3571
3572 if (op_ptr - 1 == previous_piece)
3573 error (_("Cannot translate empty pieces to agent expressions"));
3574 previous_piece = op_ptr - 1;
3575
3576 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3577 if (op == DW_OP_piece)
3578 {
3579 size *= 8;
3580 offset = 0;
3581 }
3582 else
3583 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3584
3585 if (bits_collected + size > 8 * sizeof (LONGEST))
3586 error (_("Expression pieces exceed word size"));
3587
3588 /* Access the bits. */
3589 switch (loc->kind)
3590 {
3591 case axs_lvalue_register:
3592 ax_reg (expr, loc->u.reg);
3593 break;
3594
3595 case axs_lvalue_memory:
3596 /* Offset the pointer, if needed. */
3597 if (offset > 8)
3598 {
3599 ax_const_l (expr, offset / 8);
3600 ax_simple (expr, aop_add);
3601 offset %= 8;
3602 }
3603 access_memory (arch, expr, size);
3604 break;
3605 }
3606
3607 /* For a bits-big-endian target, shift up what we already
3608 have. For a bits-little-endian target, shift up the
3609 new data. Note that there is a potential bug here if
3610 the DWARF expression leaves multiple values on the
3611 stack. */
3612 if (bits_collected > 0)
3613 {
3614 if (bits_big_endian)
3615 {
3616 ax_simple (expr, aop_swap);
3617 ax_const_l (expr, size);
3618 ax_simple (expr, aop_lsh);
3619 /* We don't need a second swap here, because
3620 aop_bit_or is symmetric. */
3621 }
3622 else
3623 {
3624 ax_const_l (expr, size);
3625 ax_simple (expr, aop_lsh);
3626 }
3627 ax_simple (expr, aop_bit_or);
3628 }
3629
3630 bits_collected += size;
3631 loc->kind = axs_rvalue;
3632 }
3633 break;
3634
3635 case DW_OP_GNU_uninit:
3636 unimplemented (op);
3637
3638 case DW_OP_call2:
3639 case DW_OP_call4:
3640 {
3641 struct dwarf2_locexpr_baton block;
3642 int size = (op == DW_OP_call2 ? 2 : 4);
3643
3644 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3645 op_ptr += size;
3646
3647 cu_offset offset = (cu_offset) uoffset;
3648 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3649 get_ax_pc, expr);
3650
3651 /* DW_OP_call_ref is currently not supported. */
3652 gdb_assert (block.per_cu == per_cu);
3653
3654 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3655 block.data, block.data + block.size,
3656 per_cu);
3657 }
3658 break;
3659
3660 case DW_OP_call_ref:
3661 unimplemented (op);
3662
3663 default:
3664 unimplemented (op);
3665 }
3666 }
3667
3668 /* Patch all the branches we emitted. */
3669 for (i = 0; i < patches.size (); ++i)
3670 {
3671 int targ = offsets[dw_labels[i]];
3672 if (targ == -1)
3673 internal_error (__FILE__, __LINE__, _("invalid label"));
3674 ax_label (expr, patches[i], targ);
3675 }
3676 }
3677
3678 \f
3679 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3680 evaluator to calculate the location. */
3681 static struct value *
3682 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3683 {
3684 struct dwarf2_locexpr_baton *dlbaton
3685 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3686 struct value *val;
3687
3688 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3689 dlbaton->size, dlbaton->per_cu);
3690
3691 return val;
3692 }
3693
3694 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3695 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3696 will be thrown. */
3697
3698 static struct value *
3699 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3700 {
3701 struct dwarf2_locexpr_baton *dlbaton
3702 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3703
3704 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3705 dlbaton->size);
3706 }
3707
3708 /* Implementation of get_symbol_read_needs from
3709 symbol_computed_ops. */
3710
3711 static enum symbol_needs_kind
3712 locexpr_get_symbol_read_needs (struct symbol *symbol)
3713 {
3714 struct dwarf2_locexpr_baton *dlbaton
3715 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3716
3717 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3718 dlbaton->per_cu);
3719 }
3720
3721 /* Return true if DATA points to the end of a piece. END is one past
3722 the last byte in the expression. */
3723
3724 static int
3725 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3726 {
3727 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3728 }
3729
3730 /* Helper for locexpr_describe_location_piece that finds the name of a
3731 DWARF register. */
3732
3733 static const char *
3734 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3735 {
3736 int regnum;
3737
3738 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3739 We'd rather print *something* here than throw an error. */
3740 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3741 /* gdbarch_register_name may just return "", return something more
3742 descriptive for bad register numbers. */
3743 if (regnum == -1)
3744 {
3745 /* The text is output as "$bad_register_number".
3746 That is why we use the underscores. */
3747 return _("bad_register_number");
3748 }
3749 return gdbarch_register_name (gdbarch, regnum);
3750 }
3751
3752 /* Nicely describe a single piece of a location, returning an updated
3753 position in the bytecode sequence. This function cannot recognize
3754 all locations; if a location is not recognized, it simply returns
3755 DATA. If there is an error during reading, e.g. we run off the end
3756 of the buffer, an error is thrown. */
3757
3758 static const gdb_byte *
3759 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3760 CORE_ADDR addr, struct objfile *objfile,
3761 struct dwarf2_per_cu_data *per_cu,
3762 const gdb_byte *data, const gdb_byte *end,
3763 unsigned int addr_size)
3764 {
3765 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3766 size_t leb128_size;
3767
3768 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3769 {
3770 fprintf_filtered (stream, _("a variable in $%s"),
3771 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3772 data += 1;
3773 }
3774 else if (data[0] == DW_OP_regx)
3775 {
3776 uint64_t reg;
3777
3778 data = safe_read_uleb128 (data + 1, end, &reg);
3779 fprintf_filtered (stream, _("a variable in $%s"),
3780 locexpr_regname (gdbarch, reg));
3781 }
3782 else if (data[0] == DW_OP_fbreg)
3783 {
3784 const struct block *b;
3785 struct symbol *framefunc;
3786 int frame_reg = 0;
3787 int64_t frame_offset;
3788 const gdb_byte *base_data, *new_data, *save_data = data;
3789 size_t base_size;
3790 int64_t base_offset = 0;
3791
3792 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3793 if (!piece_end_p (new_data, end))
3794 return data;
3795 data = new_data;
3796
3797 b = block_for_pc (addr);
3798
3799 if (!b)
3800 error (_("No block found for address for symbol \"%s\"."),
3801 SYMBOL_PRINT_NAME (symbol));
3802
3803 framefunc = block_linkage_function (b);
3804
3805 if (!framefunc)
3806 error (_("No function found for block for symbol \"%s\"."),
3807 SYMBOL_PRINT_NAME (symbol));
3808
3809 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3810
3811 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3812 {
3813 const gdb_byte *buf_end;
3814
3815 frame_reg = base_data[0] - DW_OP_breg0;
3816 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3817 &base_offset);
3818 if (buf_end != base_data + base_size)
3819 error (_("Unexpected opcode after "
3820 "DW_OP_breg%u for symbol \"%s\"."),
3821 frame_reg, SYMBOL_PRINT_NAME (symbol));
3822 }
3823 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3824 {
3825 /* The frame base is just the register, with no offset. */
3826 frame_reg = base_data[0] - DW_OP_reg0;
3827 base_offset = 0;
3828 }
3829 else
3830 {
3831 /* We don't know what to do with the frame base expression,
3832 so we can't trace this variable; give up. */
3833 return save_data;
3834 }
3835
3836 fprintf_filtered (stream,
3837 _("a variable at frame base reg $%s offset %s+%s"),
3838 locexpr_regname (gdbarch, frame_reg),
3839 plongest (base_offset), plongest (frame_offset));
3840 }
3841 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3842 && piece_end_p (data, end))
3843 {
3844 int64_t offset;
3845
3846 data = safe_read_sleb128 (data + 1, end, &offset);
3847
3848 fprintf_filtered (stream,
3849 _("a variable at offset %s from base reg $%s"),
3850 plongest (offset),
3851 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3852 }
3853
3854 /* The location expression for a TLS variable looks like this (on a
3855 64-bit LE machine):
3856
3857 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3858 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3859
3860 0x3 is the encoding for DW_OP_addr, which has an operand as long
3861 as the size of an address on the target machine (here is 8
3862 bytes). Note that more recent version of GCC emit DW_OP_const4u
3863 or DW_OP_const8u, depending on address size, rather than
3864 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3865 The operand represents the offset at which the variable is within
3866 the thread local storage. */
3867
3868 else if (data + 1 + addr_size < end
3869 && (data[0] == DW_OP_addr
3870 || (addr_size == 4 && data[0] == DW_OP_const4u)
3871 || (addr_size == 8 && data[0] == DW_OP_const8u))
3872 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3873 || data[1 + addr_size] == DW_OP_form_tls_address)
3874 && piece_end_p (data + 2 + addr_size, end))
3875 {
3876 ULONGEST offset;
3877 offset = extract_unsigned_integer (data + 1, addr_size,
3878 gdbarch_byte_order (gdbarch));
3879
3880 fprintf_filtered (stream,
3881 _("a thread-local variable at offset 0x%s "
3882 "in the thread-local storage for `%s'"),
3883 phex_nz (offset, addr_size), objfile_name (objfile));
3884
3885 data += 1 + addr_size + 1;
3886 }
3887
3888 /* With -gsplit-dwarf a TLS variable can also look like this:
3889 DW_AT_location : 3 byte block: fc 4 e0
3890 (DW_OP_GNU_const_index: 4;
3891 DW_OP_GNU_push_tls_address) */
3892 else if (data + 3 <= end
3893 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3894 && data[0] == DW_OP_GNU_const_index
3895 && leb128_size > 0
3896 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3897 || data[1 + leb128_size] == DW_OP_form_tls_address)
3898 && piece_end_p (data + 2 + leb128_size, end))
3899 {
3900 uint64_t offset;
3901
3902 data = safe_read_uleb128 (data + 1, end, &offset);
3903 offset = dwarf2_read_addr_index (per_cu, offset);
3904 fprintf_filtered (stream,
3905 _("a thread-local variable at offset 0x%s "
3906 "in the thread-local storage for `%s'"),
3907 phex_nz (offset, addr_size), objfile_name (objfile));
3908 ++data;
3909 }
3910
3911 else if (data[0] >= DW_OP_lit0
3912 && data[0] <= DW_OP_lit31
3913 && data + 1 < end
3914 && data[1] == DW_OP_stack_value)
3915 {
3916 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3917 data += 2;
3918 }
3919
3920 return data;
3921 }
3922
3923 /* Disassemble an expression, stopping at the end of a piece or at the
3924 end of the expression. Returns a pointer to the next unread byte
3925 in the input expression. If ALL is nonzero, then this function
3926 will keep going until it reaches the end of the expression.
3927 If there is an error during reading, e.g. we run off the end
3928 of the buffer, an error is thrown. */
3929
3930 static const gdb_byte *
3931 disassemble_dwarf_expression (struct ui_file *stream,
3932 struct gdbarch *arch, unsigned int addr_size,
3933 int offset_size, const gdb_byte *start,
3934 const gdb_byte *data, const gdb_byte *end,
3935 int indent, int all,
3936 struct dwarf2_per_cu_data *per_cu)
3937 {
3938 while (data < end
3939 && (all
3940 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3941 {
3942 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3943 uint64_t ul;
3944 int64_t l;
3945 const char *name;
3946
3947 name = get_DW_OP_name (op);
3948
3949 if (!name)
3950 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3951 op, (long) (data - 1 - start));
3952 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3953 (long) (data - 1 - start), name);
3954
3955 switch (op)
3956 {
3957 case DW_OP_addr:
3958 ul = extract_unsigned_integer (data, addr_size,
3959 gdbarch_byte_order (arch));
3960 data += addr_size;
3961 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3962 break;
3963
3964 case DW_OP_const1u:
3965 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3966 data += 1;
3967 fprintf_filtered (stream, " %s", pulongest (ul));
3968 break;
3969 case DW_OP_const1s:
3970 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3971 data += 1;
3972 fprintf_filtered (stream, " %s", plongest (l));
3973 break;
3974 case DW_OP_const2u:
3975 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3976 data += 2;
3977 fprintf_filtered (stream, " %s", pulongest (ul));
3978 break;
3979 case DW_OP_const2s:
3980 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3981 data += 2;
3982 fprintf_filtered (stream, " %s", plongest (l));
3983 break;
3984 case DW_OP_const4u:
3985 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3986 data += 4;
3987 fprintf_filtered (stream, " %s", pulongest (ul));
3988 break;
3989 case DW_OP_const4s:
3990 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3991 data += 4;
3992 fprintf_filtered (stream, " %s", plongest (l));
3993 break;
3994 case DW_OP_const8u:
3995 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3996 data += 8;
3997 fprintf_filtered (stream, " %s", pulongest (ul));
3998 break;
3999 case DW_OP_const8s:
4000 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4001 data += 8;
4002 fprintf_filtered (stream, " %s", plongest (l));
4003 break;
4004 case DW_OP_constu:
4005 data = safe_read_uleb128 (data, end, &ul);
4006 fprintf_filtered (stream, " %s", pulongest (ul));
4007 break;
4008 case DW_OP_consts:
4009 data = safe_read_sleb128 (data, end, &l);
4010 fprintf_filtered (stream, " %s", plongest (l));
4011 break;
4012
4013 case DW_OP_reg0:
4014 case DW_OP_reg1:
4015 case DW_OP_reg2:
4016 case DW_OP_reg3:
4017 case DW_OP_reg4:
4018 case DW_OP_reg5:
4019 case DW_OP_reg6:
4020 case DW_OP_reg7:
4021 case DW_OP_reg8:
4022 case DW_OP_reg9:
4023 case DW_OP_reg10:
4024 case DW_OP_reg11:
4025 case DW_OP_reg12:
4026 case DW_OP_reg13:
4027 case DW_OP_reg14:
4028 case DW_OP_reg15:
4029 case DW_OP_reg16:
4030 case DW_OP_reg17:
4031 case DW_OP_reg18:
4032 case DW_OP_reg19:
4033 case DW_OP_reg20:
4034 case DW_OP_reg21:
4035 case DW_OP_reg22:
4036 case DW_OP_reg23:
4037 case DW_OP_reg24:
4038 case DW_OP_reg25:
4039 case DW_OP_reg26:
4040 case DW_OP_reg27:
4041 case DW_OP_reg28:
4042 case DW_OP_reg29:
4043 case DW_OP_reg30:
4044 case DW_OP_reg31:
4045 fprintf_filtered (stream, " [$%s]",
4046 locexpr_regname (arch, op - DW_OP_reg0));
4047 break;
4048
4049 case DW_OP_regx:
4050 data = safe_read_uleb128 (data, end, &ul);
4051 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4052 locexpr_regname (arch, (int) ul));
4053 break;
4054
4055 case DW_OP_implicit_value:
4056 data = safe_read_uleb128 (data, end, &ul);
4057 data += ul;
4058 fprintf_filtered (stream, " %s", pulongest (ul));
4059 break;
4060
4061 case DW_OP_breg0:
4062 case DW_OP_breg1:
4063 case DW_OP_breg2:
4064 case DW_OP_breg3:
4065 case DW_OP_breg4:
4066 case DW_OP_breg5:
4067 case DW_OP_breg6:
4068 case DW_OP_breg7:
4069 case DW_OP_breg8:
4070 case DW_OP_breg9:
4071 case DW_OP_breg10:
4072 case DW_OP_breg11:
4073 case DW_OP_breg12:
4074 case DW_OP_breg13:
4075 case DW_OP_breg14:
4076 case DW_OP_breg15:
4077 case DW_OP_breg16:
4078 case DW_OP_breg17:
4079 case DW_OP_breg18:
4080 case DW_OP_breg19:
4081 case DW_OP_breg20:
4082 case DW_OP_breg21:
4083 case DW_OP_breg22:
4084 case DW_OP_breg23:
4085 case DW_OP_breg24:
4086 case DW_OP_breg25:
4087 case DW_OP_breg26:
4088 case DW_OP_breg27:
4089 case DW_OP_breg28:
4090 case DW_OP_breg29:
4091 case DW_OP_breg30:
4092 case DW_OP_breg31:
4093 data = safe_read_sleb128 (data, end, &l);
4094 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4095 locexpr_regname (arch, op - DW_OP_breg0));
4096 break;
4097
4098 case DW_OP_bregx:
4099 data = safe_read_uleb128 (data, end, &ul);
4100 data = safe_read_sleb128 (data, end, &l);
4101 fprintf_filtered (stream, " register %s [$%s] offset %s",
4102 pulongest (ul),
4103 locexpr_regname (arch, (int) ul),
4104 plongest (l));
4105 break;
4106
4107 case DW_OP_fbreg:
4108 data = safe_read_sleb128 (data, end, &l);
4109 fprintf_filtered (stream, " %s", plongest (l));
4110 break;
4111
4112 case DW_OP_xderef_size:
4113 case DW_OP_deref_size:
4114 case DW_OP_pick:
4115 fprintf_filtered (stream, " %d", *data);
4116 ++data;
4117 break;
4118
4119 case DW_OP_plus_uconst:
4120 data = safe_read_uleb128 (data, end, &ul);
4121 fprintf_filtered (stream, " %s", pulongest (ul));
4122 break;
4123
4124 case DW_OP_skip:
4125 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4126 data += 2;
4127 fprintf_filtered (stream, " to %ld",
4128 (long) (data + l - start));
4129 break;
4130
4131 case DW_OP_bra:
4132 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4133 data += 2;
4134 fprintf_filtered (stream, " %ld",
4135 (long) (data + l - start));
4136 break;
4137
4138 case DW_OP_call2:
4139 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4140 data += 2;
4141 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4142 break;
4143
4144 case DW_OP_call4:
4145 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4146 data += 4;
4147 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4148 break;
4149
4150 case DW_OP_call_ref:
4151 ul = extract_unsigned_integer (data, offset_size,
4152 gdbarch_byte_order (arch));
4153 data += offset_size;
4154 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4155 break;
4156
4157 case DW_OP_piece:
4158 data = safe_read_uleb128 (data, end, &ul);
4159 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4160 break;
4161
4162 case DW_OP_bit_piece:
4163 {
4164 uint64_t offset;
4165
4166 data = safe_read_uleb128 (data, end, &ul);
4167 data = safe_read_uleb128 (data, end, &offset);
4168 fprintf_filtered (stream, " size %s offset %s (bits)",
4169 pulongest (ul), pulongest (offset));
4170 }
4171 break;
4172
4173 case DW_OP_implicit_pointer:
4174 case DW_OP_GNU_implicit_pointer:
4175 {
4176 ul = extract_unsigned_integer (data, offset_size,
4177 gdbarch_byte_order (arch));
4178 data += offset_size;
4179
4180 data = safe_read_sleb128 (data, end, &l);
4181
4182 fprintf_filtered (stream, " DIE %s offset %s",
4183 phex_nz (ul, offset_size),
4184 plongest (l));
4185 }
4186 break;
4187
4188 case DW_OP_deref_type:
4189 case DW_OP_GNU_deref_type:
4190 {
4191 int addr_size = *data++;
4192 struct type *type;
4193
4194 data = safe_read_uleb128 (data, end, &ul);
4195 cu_offset offset = (cu_offset) ul;
4196 type = dwarf2_get_die_type (offset, per_cu);
4197 fprintf_filtered (stream, "<");
4198 type_print (type, "", stream, -1);
4199 fprintf_filtered (stream, " [0x%s]> %d",
4200 phex_nz (to_underlying (offset), 0),
4201 addr_size);
4202 }
4203 break;
4204
4205 case DW_OP_const_type:
4206 case DW_OP_GNU_const_type:
4207 {
4208 struct type *type;
4209
4210 data = safe_read_uleb128 (data, end, &ul);
4211 cu_offset type_die = (cu_offset) ul;
4212 type = dwarf2_get_die_type (type_die, per_cu);
4213 fprintf_filtered (stream, "<");
4214 type_print (type, "", stream, -1);
4215 fprintf_filtered (stream, " [0x%s]>",
4216 phex_nz (to_underlying (type_die), 0));
4217 }
4218 break;
4219
4220 case DW_OP_regval_type:
4221 case DW_OP_GNU_regval_type:
4222 {
4223 uint64_t reg;
4224 struct type *type;
4225
4226 data = safe_read_uleb128 (data, end, &reg);
4227 data = safe_read_uleb128 (data, end, &ul);
4228 cu_offset type_die = (cu_offset) ul;
4229
4230 type = dwarf2_get_die_type (type_die, per_cu);
4231 fprintf_filtered (stream, "<");
4232 type_print (type, "", stream, -1);
4233 fprintf_filtered (stream, " [0x%s]> [$%s]",
4234 phex_nz (to_underlying (type_die), 0),
4235 locexpr_regname (arch, reg));
4236 }
4237 break;
4238
4239 case DW_OP_convert:
4240 case DW_OP_GNU_convert:
4241 case DW_OP_reinterpret:
4242 case DW_OP_GNU_reinterpret:
4243 {
4244 data = safe_read_uleb128 (data, end, &ul);
4245 cu_offset type_die = (cu_offset) ul;
4246
4247 if (to_underlying (type_die) == 0)
4248 fprintf_filtered (stream, "<0>");
4249 else
4250 {
4251 struct type *type;
4252
4253 type = dwarf2_get_die_type (type_die, per_cu);
4254 fprintf_filtered (stream, "<");
4255 type_print (type, "", stream, -1);
4256 fprintf_filtered (stream, " [0x%s]>",
4257 phex_nz (to_underlying (type_die), 0));
4258 }
4259 }
4260 break;
4261
4262 case DW_OP_entry_value:
4263 case DW_OP_GNU_entry_value:
4264 data = safe_read_uleb128 (data, end, &ul);
4265 fputc_filtered ('\n', stream);
4266 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4267 start, data, data + ul, indent + 2,
4268 all, per_cu);
4269 data += ul;
4270 continue;
4271
4272 case DW_OP_GNU_parameter_ref:
4273 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4274 data += 4;
4275 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4276 break;
4277
4278 case DW_OP_GNU_addr_index:
4279 data = safe_read_uleb128 (data, end, &ul);
4280 ul = dwarf2_read_addr_index (per_cu, ul);
4281 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4282 break;
4283 case DW_OP_GNU_const_index:
4284 data = safe_read_uleb128 (data, end, &ul);
4285 ul = dwarf2_read_addr_index (per_cu, ul);
4286 fprintf_filtered (stream, " %s", pulongest (ul));
4287 break;
4288 }
4289
4290 fprintf_filtered (stream, "\n");
4291 }
4292
4293 return data;
4294 }
4295
4296 /* Describe a single location, which may in turn consist of multiple
4297 pieces. */
4298
4299 static void
4300 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4301 struct ui_file *stream,
4302 const gdb_byte *data, size_t size,
4303 struct objfile *objfile, unsigned int addr_size,
4304 int offset_size, struct dwarf2_per_cu_data *per_cu)
4305 {
4306 const gdb_byte *end = data + size;
4307 int first_piece = 1, bad = 0;
4308
4309 while (data < end)
4310 {
4311 const gdb_byte *here = data;
4312 int disassemble = 1;
4313
4314 if (first_piece)
4315 first_piece = 0;
4316 else
4317 fprintf_filtered (stream, _(", and "));
4318
4319 if (!dwarf_always_disassemble)
4320 {
4321 data = locexpr_describe_location_piece (symbol, stream,
4322 addr, objfile, per_cu,
4323 data, end, addr_size);
4324 /* If we printed anything, or if we have an empty piece,
4325 then don't disassemble. */
4326 if (data != here
4327 || data[0] == DW_OP_piece
4328 || data[0] == DW_OP_bit_piece)
4329 disassemble = 0;
4330 }
4331 if (disassemble)
4332 {
4333 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4334 data = disassemble_dwarf_expression (stream,
4335 get_objfile_arch (objfile),
4336 addr_size, offset_size, data,
4337 data, end, 0,
4338 dwarf_always_disassemble,
4339 per_cu);
4340 }
4341
4342 if (data < end)
4343 {
4344 int empty = data == here;
4345
4346 if (disassemble)
4347 fprintf_filtered (stream, " ");
4348 if (data[0] == DW_OP_piece)
4349 {
4350 uint64_t bytes;
4351
4352 data = safe_read_uleb128 (data + 1, end, &bytes);
4353
4354 if (empty)
4355 fprintf_filtered (stream, _("an empty %s-byte piece"),
4356 pulongest (bytes));
4357 else
4358 fprintf_filtered (stream, _(" [%s-byte piece]"),
4359 pulongest (bytes));
4360 }
4361 else if (data[0] == DW_OP_bit_piece)
4362 {
4363 uint64_t bits, offset;
4364
4365 data = safe_read_uleb128 (data + 1, end, &bits);
4366 data = safe_read_uleb128 (data, end, &offset);
4367
4368 if (empty)
4369 fprintf_filtered (stream,
4370 _("an empty %s-bit piece"),
4371 pulongest (bits));
4372 else
4373 fprintf_filtered (stream,
4374 _(" [%s-bit piece, offset %s bits]"),
4375 pulongest (bits), pulongest (offset));
4376 }
4377 else
4378 {
4379 bad = 1;
4380 break;
4381 }
4382 }
4383 }
4384
4385 if (bad || data > end)
4386 error (_("Corrupted DWARF2 expression for \"%s\"."),
4387 SYMBOL_PRINT_NAME (symbol));
4388 }
4389
4390 /* Print a natural-language description of SYMBOL to STREAM. This
4391 version is for a symbol with a single location. */
4392
4393 static void
4394 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4395 struct ui_file *stream)
4396 {
4397 struct dwarf2_locexpr_baton *dlbaton
4398 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4399 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4400 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4401 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4402
4403 locexpr_describe_location_1 (symbol, addr, stream,
4404 dlbaton->data, dlbaton->size,
4405 objfile, addr_size, offset_size,
4406 dlbaton->per_cu);
4407 }
4408
4409 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4410 any necessary bytecode in AX. */
4411
4412 static void
4413 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4414 struct agent_expr *ax, struct axs_value *value)
4415 {
4416 struct dwarf2_locexpr_baton *dlbaton
4417 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4418 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4419
4420 if (dlbaton->size == 0)
4421 value->optimized_out = 1;
4422 else
4423 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4424 dlbaton->data, dlbaton->data + dlbaton->size,
4425 dlbaton->per_cu);
4426 }
4427
4428 /* symbol_computed_ops 'generate_c_location' method. */
4429
4430 static void
4431 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4432 struct gdbarch *gdbarch,
4433 unsigned char *registers_used,
4434 CORE_ADDR pc, const char *result_name)
4435 {
4436 struct dwarf2_locexpr_baton *dlbaton
4437 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4438 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4439
4440 if (dlbaton->size == 0)
4441 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4442
4443 compile_dwarf_expr_to_c (stream, result_name,
4444 sym, pc, gdbarch, registers_used, addr_size,
4445 dlbaton->data, dlbaton->data + dlbaton->size,
4446 dlbaton->per_cu);
4447 }
4448
4449 /* The set of location functions used with the DWARF-2 expression
4450 evaluator. */
4451 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4452 locexpr_read_variable,
4453 locexpr_read_variable_at_entry,
4454 locexpr_get_symbol_read_needs,
4455 locexpr_describe_location,
4456 0, /* location_has_loclist */
4457 locexpr_tracepoint_var_ref,
4458 locexpr_generate_c_location
4459 };
4460
4461
4462 /* Wrapper functions for location lists. These generally find
4463 the appropriate location expression and call something above. */
4464
4465 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4466 evaluator to calculate the location. */
4467 static struct value *
4468 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4469 {
4470 struct dwarf2_loclist_baton *dlbaton
4471 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4472 struct value *val;
4473 const gdb_byte *data;
4474 size_t size;
4475 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4476
4477 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4478 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4479 dlbaton->per_cu);
4480
4481 return val;
4482 }
4483
4484 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4485 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4486 will be thrown.
4487
4488 Function always returns non-NULL value, it may be marked optimized out if
4489 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4490 if it cannot resolve the parameter for any reason. */
4491
4492 static struct value *
4493 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4494 {
4495 struct dwarf2_loclist_baton *dlbaton
4496 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4497 const gdb_byte *data;
4498 size_t size;
4499 CORE_ADDR pc;
4500
4501 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4502 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4503
4504 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4505 if (data == NULL)
4506 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4507
4508 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4509 }
4510
4511 /* Implementation of get_symbol_read_needs from
4512 symbol_computed_ops. */
4513
4514 static enum symbol_needs_kind
4515 loclist_symbol_needs (struct symbol *symbol)
4516 {
4517 /* If there's a location list, then assume we need to have a frame
4518 to choose the appropriate location expression. With tracking of
4519 global variables this is not necessarily true, but such tracking
4520 is disabled in GCC at the moment until we figure out how to
4521 represent it. */
4522
4523 return SYMBOL_NEEDS_FRAME;
4524 }
4525
4526 /* Print a natural-language description of SYMBOL to STREAM. This
4527 version applies when there is a list of different locations, each
4528 with a specified address range. */
4529
4530 static void
4531 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4532 struct ui_file *stream)
4533 {
4534 struct dwarf2_loclist_baton *dlbaton
4535 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4536 const gdb_byte *loc_ptr, *buf_end;
4537 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4540 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4541 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4542 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4543 /* Adjust base_address for relocatable objects. */
4544 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4545 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4546 int done = 0;
4547
4548 loc_ptr = dlbaton->data;
4549 buf_end = dlbaton->data + dlbaton->size;
4550
4551 fprintf_filtered (stream, _("multi-location:\n"));
4552
4553 /* Iterate through locations until we run out. */
4554 while (!done)
4555 {
4556 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4557 int length;
4558 enum debug_loc_kind kind;
4559 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4560
4561 if (dlbaton->from_dwo)
4562 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4563 loc_ptr, buf_end, &new_ptr,
4564 &low, &high, byte_order);
4565 else
4566 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4567 &low, &high,
4568 byte_order, addr_size,
4569 signed_addr_p);
4570 loc_ptr = new_ptr;
4571 switch (kind)
4572 {
4573 case DEBUG_LOC_END_OF_LIST:
4574 done = 1;
4575 continue;
4576 case DEBUG_LOC_BASE_ADDRESS:
4577 base_address = high + base_offset;
4578 fprintf_filtered (stream, _(" Base address %s"),
4579 paddress (gdbarch, base_address));
4580 continue;
4581 case DEBUG_LOC_START_END:
4582 case DEBUG_LOC_START_LENGTH:
4583 break;
4584 case DEBUG_LOC_BUFFER_OVERFLOW:
4585 case DEBUG_LOC_INVALID_ENTRY:
4586 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4587 SYMBOL_PRINT_NAME (symbol));
4588 default:
4589 gdb_assert_not_reached ("bad debug_loc_kind");
4590 }
4591
4592 /* Otherwise, a location expression entry. */
4593 low += base_address;
4594 high += base_address;
4595
4596 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4597 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4598
4599 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4600 loc_ptr += 2;
4601
4602 /* (It would improve readability to print only the minimum
4603 necessary digits of the second number of the range.) */
4604 fprintf_filtered (stream, _(" Range %s-%s: "),
4605 paddress (gdbarch, low), paddress (gdbarch, high));
4606
4607 /* Now describe this particular location. */
4608 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4609 objfile, addr_size, offset_size,
4610 dlbaton->per_cu);
4611
4612 fprintf_filtered (stream, "\n");
4613
4614 loc_ptr += length;
4615 }
4616 }
4617
4618 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4619 any necessary bytecode in AX. */
4620 static void
4621 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4622 struct agent_expr *ax, struct axs_value *value)
4623 {
4624 struct dwarf2_loclist_baton *dlbaton
4625 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4626 const gdb_byte *data;
4627 size_t size;
4628 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4629
4630 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4631 if (size == 0)
4632 value->optimized_out = 1;
4633 else
4634 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4635 dlbaton->per_cu);
4636 }
4637
4638 /* symbol_computed_ops 'generate_c_location' method. */
4639
4640 static void
4641 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4642 struct gdbarch *gdbarch,
4643 unsigned char *registers_used,
4644 CORE_ADDR pc, const char *result_name)
4645 {
4646 struct dwarf2_loclist_baton *dlbaton
4647 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4648 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4649 const gdb_byte *data;
4650 size_t size;
4651
4652 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4653 if (size == 0)
4654 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4655
4656 compile_dwarf_expr_to_c (stream, result_name,
4657 sym, pc, gdbarch, registers_used, addr_size,
4658 data, data + size,
4659 dlbaton->per_cu);
4660 }
4661
4662 /* The set of location functions used with the DWARF-2 expression
4663 evaluator and location lists. */
4664 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4665 loclist_read_variable,
4666 loclist_read_variable_at_entry,
4667 loclist_symbol_needs,
4668 loclist_describe_location,
4669 1, /* location_has_loclist */
4670 loclist_tracepoint_var_ref,
4671 loclist_generate_c_location
4672 };
4673
4674 /* Provide a prototype to silence -Wmissing-prototypes. */
4675 extern initialize_file_ftype _initialize_dwarf2loc;
4676
4677 void
4678 _initialize_dwarf2loc (void)
4679 {
4680 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4681 &entry_values_debug,
4682 _("Set entry values and tail call frames "
4683 "debugging."),
4684 _("Show entry values and tail call frames "
4685 "debugging."),
4686 _("When non-zero, the process of determining "
4687 "parameter values from function entry point "
4688 "and tail call frames will be printed."),
4689 NULL,
4690 show_entry_values_debug,
4691 &setdebuglist, &showdebuglist);
4692
4693 #if GDB_SELF_TEST
4694 register_self_test (selftests::copy_bitwise_tests);
4695 #endif
4696 }
This page took 0.162318 seconds and 5 git commands to generate.