Remove addr_size field from struct piece_closure
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 static void
1756 read_pieced_value (struct value *v)
1757 {
1758 int i;
1759 long offset = 0;
1760 ULONGEST bits_to_skip;
1761 gdb_byte *contents;
1762 struct piece_closure *c
1763 = (struct piece_closure *) value_computed_closure (v);
1764 size_t type_len;
1765 size_t buffer_size = 0;
1766 std::vector<gdb_byte> buffer;
1767 int bits_big_endian
1768 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1769
1770 if (value_type (v) != value_enclosing_type (v))
1771 internal_error (__FILE__, __LINE__,
1772 _("Should not be able to create a lazy value with "
1773 "an enclosing type"));
1774
1775 contents = value_contents_raw (v);
1776 bits_to_skip = 8 * value_offset (v);
1777 if (value_bitsize (v))
1778 {
1779 bits_to_skip += value_bitpos (v);
1780 type_len = value_bitsize (v);
1781 }
1782 else
1783 type_len = 8 * TYPE_LENGTH (value_type (v));
1784
1785 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1786 {
1787 struct dwarf_expr_piece *p = &c->pieces[i];
1788 size_t this_size, this_size_bits;
1789 long dest_offset_bits, source_offset_bits, source_offset;
1790 const gdb_byte *intermediate_buffer;
1791
1792 /* Compute size, source, and destination offsets for copying, in
1793 bits. */
1794 this_size_bits = p->size;
1795 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1796 {
1797 bits_to_skip -= this_size_bits;
1798 continue;
1799 }
1800 if (bits_to_skip > 0)
1801 {
1802 dest_offset_bits = 0;
1803 source_offset_bits = bits_to_skip;
1804 this_size_bits -= bits_to_skip;
1805 bits_to_skip = 0;
1806 }
1807 else
1808 {
1809 dest_offset_bits = offset;
1810 source_offset_bits = 0;
1811 }
1812 if (this_size_bits > type_len - offset)
1813 this_size_bits = type_len - offset;
1814
1815 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1816 source_offset = source_offset_bits / 8;
1817 if (buffer_size < this_size)
1818 {
1819 buffer_size = this_size;
1820 buffer.reserve (buffer_size);
1821 }
1822 intermediate_buffer = buffer.data ();
1823
1824 /* Copy from the source to DEST_BUFFER. */
1825 switch (p->location)
1826 {
1827 case DWARF_VALUE_REGISTER:
1828 {
1829 struct frame_info *frame = frame_find_by_id (c->frame_id);
1830 struct gdbarch *arch = get_frame_arch (frame);
1831 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1832 int optim, unavail;
1833 LONGEST reg_offset = source_offset;
1834
1835 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1836 && this_size < register_size (arch, gdb_regnum))
1837 {
1838 /* Big-endian, and we want less than full size. */
1839 reg_offset = register_size (arch, gdb_regnum) - this_size;
1840 /* We want the lower-order THIS_SIZE_BITS of the bytes
1841 we extract from the register. */
1842 source_offset_bits += 8 * this_size - this_size_bits;
1843 }
1844
1845 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1846 this_size, buffer.data (),
1847 &optim, &unavail))
1848 {
1849 /* Just so garbage doesn't ever shine through. */
1850 memset (buffer.data (), 0, this_size);
1851
1852 if (optim)
1853 mark_value_bits_optimized_out (v, offset, this_size_bits);
1854 if (unavail)
1855 mark_value_bits_unavailable (v, offset, this_size_bits);
1856 }
1857
1858 copy_bitwise (contents, dest_offset_bits,
1859 intermediate_buffer, source_offset_bits % 8,
1860 this_size_bits, bits_big_endian);
1861 }
1862 break;
1863
1864 case DWARF_VALUE_MEMORY:
1865 read_value_memory (v, offset,
1866 p->v.mem.in_stack_memory,
1867 p->v.mem.addr + source_offset,
1868 buffer.data (), this_size);
1869 copy_bitwise (contents, dest_offset_bits,
1870 intermediate_buffer, source_offset_bits % 8,
1871 this_size_bits, bits_big_endian);
1872 break;
1873
1874 case DWARF_VALUE_STACK:
1875 {
1876 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1877 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1878 ULONGEST stack_value_size_bits
1879 = 8 * TYPE_LENGTH (value_type (p->v.value));
1880
1881 /* Use zeroes if piece reaches beyond stack value. */
1882 if (p->size > stack_value_size_bits)
1883 break;
1884
1885 /* Piece is anchored at least significant bit end. */
1886 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1887 source_offset_bits += stack_value_size_bits - p->size;
1888
1889 copy_bitwise (contents, dest_offset_bits,
1890 value_contents_all (p->v.value),
1891 source_offset_bits,
1892 this_size_bits, bits_big_endian);
1893 }
1894 break;
1895
1896 case DWARF_VALUE_LITERAL:
1897 {
1898 size_t n = this_size;
1899
1900 if (n > p->v.literal.length - source_offset)
1901 n = (p->v.literal.length >= source_offset
1902 ? p->v.literal.length - source_offset
1903 : 0);
1904 if (n != 0)
1905 intermediate_buffer = p->v.literal.data + source_offset;
1906
1907 copy_bitwise (contents, dest_offset_bits,
1908 intermediate_buffer, source_offset_bits % 8,
1909 this_size_bits, bits_big_endian);
1910 }
1911 break;
1912
1913 /* These bits show up as zeros -- but do not cause the value
1914 to be considered optimized-out. */
1915 case DWARF_VALUE_IMPLICIT_POINTER:
1916 break;
1917
1918 case DWARF_VALUE_OPTIMIZED_OUT:
1919 mark_value_bits_optimized_out (v, offset, this_size_bits);
1920 break;
1921
1922 default:
1923 internal_error (__FILE__, __LINE__, _("invalid location type"));
1924 }
1925
1926 offset += this_size_bits;
1927 }
1928 }
1929
1930 static void
1931 write_pieced_value (struct value *to, struct value *from)
1932 {
1933 int i;
1934 long offset = 0;
1935 ULONGEST bits_to_skip;
1936 const gdb_byte *contents;
1937 struct piece_closure *c
1938 = (struct piece_closure *) value_computed_closure (to);
1939 size_t type_len;
1940 size_t buffer_size = 0;
1941 std::vector<gdb_byte> buffer;
1942 int bits_big_endian
1943 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1944
1945 contents = value_contents (from);
1946 bits_to_skip = 8 * value_offset (to);
1947 if (value_bitsize (to))
1948 {
1949 bits_to_skip += value_bitpos (to);
1950 type_len = value_bitsize (to);
1951 }
1952 else
1953 type_len = 8 * TYPE_LENGTH (value_type (to));
1954
1955 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1956 {
1957 struct dwarf_expr_piece *p = &c->pieces[i];
1958 size_t this_size_bits, this_size;
1959 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1960 int need_bitwise;
1961 const gdb_byte *source_buffer;
1962
1963 this_size_bits = p->size;
1964 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1965 {
1966 bits_to_skip -= this_size_bits;
1967 continue;
1968 }
1969 if (bits_to_skip > 0)
1970 {
1971 dest_offset_bits = bits_to_skip;
1972 source_offset_bits = 0;
1973 this_size_bits -= bits_to_skip;
1974 bits_to_skip = 0;
1975 }
1976 else
1977 {
1978 dest_offset_bits = 0;
1979 source_offset_bits = offset;
1980 }
1981 if (this_size_bits > type_len - offset)
1982 this_size_bits = type_len - offset;
1983
1984 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1985 source_offset = source_offset_bits / 8;
1986 dest_offset = dest_offset_bits / 8;
1987 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1988 {
1989 source_buffer = contents + source_offset;
1990 need_bitwise = 0;
1991 }
1992 else
1993 {
1994 if (buffer_size < this_size)
1995 {
1996 buffer_size = this_size;
1997 buffer.reserve (buffer_size);
1998 }
1999 source_buffer = buffer.data ();
2000 need_bitwise = 1;
2001 }
2002
2003 switch (p->location)
2004 {
2005 case DWARF_VALUE_REGISTER:
2006 {
2007 struct frame_info *frame = frame_find_by_id (c->frame_id);
2008 struct gdbarch *arch = get_frame_arch (frame);
2009 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
2010 int reg_offset = dest_offset;
2011
2012 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2013 && this_size <= register_size (arch, gdb_regnum))
2014 {
2015 /* Big-endian, and we want less than full size. */
2016 reg_offset = register_size (arch, gdb_regnum) - this_size;
2017 }
2018
2019 if (need_bitwise)
2020 {
2021 int optim, unavail;
2022
2023 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
2024 this_size, buffer.data (),
2025 &optim, &unavail))
2026 {
2027 if (optim)
2028 throw_error (OPTIMIZED_OUT_ERROR,
2029 _("Can't do read-modify-write to "
2030 "update bitfield; containing word "
2031 "has been optimized out"));
2032 if (unavail)
2033 throw_error (NOT_AVAILABLE_ERROR,
2034 _("Can't do read-modify-write to update "
2035 "bitfield; containing word "
2036 "is unavailable"));
2037 }
2038 copy_bitwise (buffer.data (), dest_offset_bits,
2039 contents, source_offset_bits,
2040 this_size_bits,
2041 bits_big_endian);
2042 }
2043
2044 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2045 this_size, source_buffer);
2046 }
2047 break;
2048 case DWARF_VALUE_MEMORY:
2049 if (need_bitwise)
2050 {
2051 /* Only the first and last bytes can possibly have any
2052 bits reused. */
2053 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2054 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2055 &buffer[this_size - 1], 1);
2056 copy_bitwise (buffer.data (), dest_offset_bits,
2057 contents, source_offset_bits,
2058 this_size_bits,
2059 bits_big_endian);
2060 }
2061
2062 write_memory (p->v.mem.addr + dest_offset,
2063 source_buffer, this_size);
2064 break;
2065 default:
2066 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2067 break;
2068 }
2069 offset += this_size_bits;
2070 }
2071 }
2072
2073 /* An implementation of an lval_funcs method to see whether a value is
2074 a synthetic pointer. */
2075
2076 static int
2077 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2078 int bit_length)
2079 {
2080 struct piece_closure *c
2081 = (struct piece_closure *) value_computed_closure (value);
2082 int i;
2083
2084 bit_offset += 8 * value_offset (value);
2085 if (value_bitsize (value))
2086 bit_offset += value_bitpos (value);
2087
2088 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2089 {
2090 struct dwarf_expr_piece *p = &c->pieces[i];
2091 size_t this_size_bits = p->size;
2092
2093 if (bit_offset > 0)
2094 {
2095 if (bit_offset >= this_size_bits)
2096 {
2097 bit_offset -= this_size_bits;
2098 continue;
2099 }
2100
2101 bit_length -= this_size_bits - bit_offset;
2102 bit_offset = 0;
2103 }
2104 else
2105 bit_length -= this_size_bits;
2106
2107 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2108 return 0;
2109 }
2110
2111 return 1;
2112 }
2113
2114 /* A wrapper function for get_frame_address_in_block. */
2115
2116 static CORE_ADDR
2117 get_frame_address_in_block_wrapper (void *baton)
2118 {
2119 return get_frame_address_in_block ((struct frame_info *) baton);
2120 }
2121
2122 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2123
2124 static struct value *
2125 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2126 struct dwarf2_per_cu_data *per_cu,
2127 struct type *type)
2128 {
2129 struct value *result = NULL;
2130 struct obstack temp_obstack;
2131 struct cleanup *cleanup;
2132 const gdb_byte *bytes;
2133 LONGEST len;
2134
2135 obstack_init (&temp_obstack);
2136 cleanup = make_cleanup_obstack_free (&temp_obstack);
2137 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2138
2139 if (bytes != NULL)
2140 {
2141 if (byte_offset >= 0
2142 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2143 {
2144 bytes += byte_offset;
2145 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2146 }
2147 else
2148 invalid_synthetic_pointer ();
2149 }
2150 else
2151 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2152
2153 do_cleanups (cleanup);
2154
2155 return result;
2156 }
2157
2158 /* Fetch the value pointed to by a synthetic pointer. */
2159
2160 static struct value *
2161 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2162 struct dwarf2_per_cu_data *per_cu,
2163 struct frame_info *frame, struct type *type)
2164 {
2165 /* Fetch the location expression of the DIE we're pointing to. */
2166 struct dwarf2_locexpr_baton baton
2167 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2168 get_frame_address_in_block_wrapper, frame);
2169
2170 /* Get type of pointed-to DIE. */
2171 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2172 if (orig_type == NULL)
2173 invalid_synthetic_pointer ();
2174
2175 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2176 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2177 or it may've been optimized out. */
2178 if (baton.data != NULL)
2179 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2180 baton.size, baton.per_cu,
2181 TYPE_TARGET_TYPE (type),
2182 byte_offset);
2183 else
2184 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2185 type);
2186 }
2187
2188 /* An implementation of an lval_funcs method to indirect through a
2189 pointer. This handles the synthetic pointer case when needed. */
2190
2191 static struct value *
2192 indirect_pieced_value (struct value *value)
2193 {
2194 struct piece_closure *c
2195 = (struct piece_closure *) value_computed_closure (value);
2196 struct type *type;
2197 struct frame_info *frame;
2198 struct dwarf2_locexpr_baton baton;
2199 int i, bit_length;
2200 LONGEST bit_offset;
2201 struct dwarf_expr_piece *piece = NULL;
2202 LONGEST byte_offset;
2203 enum bfd_endian byte_order;
2204
2205 type = check_typedef (value_type (value));
2206 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2207 return NULL;
2208
2209 bit_length = 8 * TYPE_LENGTH (type);
2210 bit_offset = 8 * value_offset (value);
2211 if (value_bitsize (value))
2212 bit_offset += value_bitpos (value);
2213
2214 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2215 {
2216 struct dwarf_expr_piece *p = &c->pieces[i];
2217 size_t this_size_bits = p->size;
2218
2219 if (bit_offset > 0)
2220 {
2221 if (bit_offset >= this_size_bits)
2222 {
2223 bit_offset -= this_size_bits;
2224 continue;
2225 }
2226
2227 bit_length -= this_size_bits - bit_offset;
2228 bit_offset = 0;
2229 }
2230 else
2231 bit_length -= this_size_bits;
2232
2233 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2234 return NULL;
2235
2236 if (bit_length != 0)
2237 error (_("Invalid use of DW_OP_implicit_pointer"));
2238
2239 piece = p;
2240 break;
2241 }
2242
2243 gdb_assert (piece != NULL);
2244 frame = get_selected_frame (_("No frame selected."));
2245
2246 /* This is an offset requested by GDB, such as value subscripts.
2247 However, due to how synthetic pointers are implemented, this is
2248 always presented to us as a pointer type. This means we have to
2249 sign-extend it manually as appropriate. Use raw
2250 extract_signed_integer directly rather than value_as_address and
2251 sign extend afterwards on architectures that would need it
2252 (mostly everywhere except MIPS, which has signed addresses) as
2253 the later would go through gdbarch_pointer_to_address and thus
2254 return a CORE_ADDR with high bits set on architectures that
2255 encode address spaces and other things in CORE_ADDR. */
2256 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2257 byte_offset = extract_signed_integer (value_contents (value),
2258 TYPE_LENGTH (type), byte_order);
2259 byte_offset += piece->v.ptr.offset;
2260
2261 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2262 byte_offset, c->per_cu,
2263 frame, type);
2264 }
2265
2266 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2267 references. */
2268
2269 static struct value *
2270 coerce_pieced_ref (const struct value *value)
2271 {
2272 struct type *type = check_typedef (value_type (value));
2273
2274 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2275 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2276 {
2277 const struct piece_closure *closure
2278 = (struct piece_closure *) value_computed_closure (value);
2279 struct frame_info *frame
2280 = get_selected_frame (_("No frame selected."));
2281
2282 /* gdb represents synthetic pointers as pieced values with a single
2283 piece. */
2284 gdb_assert (closure != NULL);
2285 gdb_assert (closure->n_pieces == 1);
2286
2287 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2288 closure->pieces->v.ptr.offset,
2289 closure->per_cu, frame, type);
2290 }
2291 else
2292 {
2293 /* Else: not a synthetic reference; do nothing. */
2294 return NULL;
2295 }
2296 }
2297
2298 static void *
2299 copy_pieced_value_closure (const struct value *v)
2300 {
2301 struct piece_closure *c
2302 = (struct piece_closure *) value_computed_closure (v);
2303
2304 ++c->refc;
2305 return c;
2306 }
2307
2308 static void
2309 free_pieced_value_closure (struct value *v)
2310 {
2311 struct piece_closure *c
2312 = (struct piece_closure *) value_computed_closure (v);
2313
2314 --c->refc;
2315 if (c->refc == 0)
2316 {
2317 int i;
2318
2319 for (i = 0; i < c->n_pieces; ++i)
2320 if (c->pieces[i].location == DWARF_VALUE_STACK)
2321 value_free (c->pieces[i].v.value);
2322
2323 xfree (c->pieces);
2324 xfree (c);
2325 }
2326 }
2327
2328 /* Functions for accessing a variable described by DW_OP_piece. */
2329 static const struct lval_funcs pieced_value_funcs = {
2330 read_pieced_value,
2331 write_pieced_value,
2332 indirect_pieced_value,
2333 coerce_pieced_ref,
2334 check_pieced_synthetic_pointer,
2335 copy_pieced_value_closure,
2336 free_pieced_value_closure
2337 };
2338
2339 /* Evaluate a location description, starting at DATA and with length
2340 SIZE, to find the current location of variable of TYPE in the
2341 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2342 location of the subobject of type SUBOBJ_TYPE at byte offset
2343 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2344
2345 static struct value *
2346 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2347 const gdb_byte *data, size_t size,
2348 struct dwarf2_per_cu_data *per_cu,
2349 struct type *subobj_type,
2350 LONGEST subobj_byte_offset)
2351 {
2352 struct value *retval;
2353 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2354
2355 if (subobj_type == NULL)
2356 {
2357 subobj_type = type;
2358 subobj_byte_offset = 0;
2359 }
2360 else if (subobj_byte_offset < 0)
2361 invalid_synthetic_pointer ();
2362
2363 if (size == 0)
2364 return allocate_optimized_out_value (subobj_type);
2365
2366 dwarf_evaluate_loc_desc ctx;
2367 ctx.frame = frame;
2368 ctx.per_cu = per_cu;
2369 ctx.obj_address = 0;
2370
2371 scoped_value_mark free_values;
2372
2373 ctx.gdbarch = get_objfile_arch (objfile);
2374 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2375 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2376 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2377
2378 TRY
2379 {
2380 ctx.eval (data, size);
2381 }
2382 CATCH (ex, RETURN_MASK_ERROR)
2383 {
2384 if (ex.error == NOT_AVAILABLE_ERROR)
2385 {
2386 free_values.free_to_mark ();
2387 retval = allocate_value (subobj_type);
2388 mark_value_bytes_unavailable (retval, 0,
2389 TYPE_LENGTH (subobj_type));
2390 return retval;
2391 }
2392 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2393 {
2394 if (entry_values_debug)
2395 exception_print (gdb_stdout, ex);
2396 free_values.free_to_mark ();
2397 return allocate_optimized_out_value (subobj_type);
2398 }
2399 else
2400 throw_exception (ex);
2401 }
2402 END_CATCH
2403
2404 if (ctx.num_pieces > 0)
2405 {
2406 struct piece_closure *c;
2407 ULONGEST bit_size = 0;
2408 int i;
2409
2410 for (i = 0; i < ctx.num_pieces; ++i)
2411 bit_size += ctx.pieces[i].size;
2412 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2413 invalid_synthetic_pointer ();
2414
2415 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2416 frame);
2417 /* We must clean up the value chain after creating the piece
2418 closure but before allocating the result. */
2419 free_values.free_to_mark ();
2420 retval = allocate_computed_value (subobj_type,
2421 &pieced_value_funcs, c);
2422 set_value_offset (retval, subobj_byte_offset);
2423 }
2424 else
2425 {
2426 switch (ctx.location)
2427 {
2428 case DWARF_VALUE_REGISTER:
2429 {
2430 struct gdbarch *arch = get_frame_arch (frame);
2431 int dwarf_regnum
2432 = longest_to_int (value_as_long (ctx.fetch (0)));
2433 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2434
2435 if (subobj_byte_offset != 0)
2436 error (_("cannot use offset on synthetic pointer to register"));
2437 free_values.free_to_mark ();
2438 retval = value_from_register (subobj_type, gdb_regnum, frame);
2439 if (value_optimized_out (retval))
2440 {
2441 struct value *tmp;
2442
2443 /* This means the register has undefined value / was
2444 not saved. As we're computing the location of some
2445 variable etc. in the program, not a value for
2446 inspecting a register ($pc, $sp, etc.), return a
2447 generic optimized out value instead, so that we show
2448 <optimized out> instead of <not saved>. */
2449 tmp = allocate_value (subobj_type);
2450 value_contents_copy (tmp, 0, retval, 0,
2451 TYPE_LENGTH (subobj_type));
2452 retval = tmp;
2453 }
2454 }
2455 break;
2456
2457 case DWARF_VALUE_MEMORY:
2458 {
2459 struct type *ptr_type;
2460 CORE_ADDR address = ctx.fetch_address (0);
2461 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2462
2463 /* DW_OP_deref_size (and possibly other operations too) may
2464 create a pointer instead of an address. Ideally, the
2465 pointer to address conversion would be performed as part
2466 of those operations, but the type of the object to
2467 which the address refers is not known at the time of
2468 the operation. Therefore, we do the conversion here
2469 since the type is readily available. */
2470
2471 switch (TYPE_CODE (subobj_type))
2472 {
2473 case TYPE_CODE_FUNC:
2474 case TYPE_CODE_METHOD:
2475 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2476 break;
2477 default:
2478 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2479 break;
2480 }
2481 address = value_as_address (value_from_pointer (ptr_type, address));
2482
2483 free_values.free_to_mark ();
2484 retval = value_at_lazy (subobj_type,
2485 address + subobj_byte_offset);
2486 if (in_stack_memory)
2487 set_value_stack (retval, 1);
2488 }
2489 break;
2490
2491 case DWARF_VALUE_STACK:
2492 {
2493 struct value *value = ctx.fetch (0);
2494 size_t n = TYPE_LENGTH (value_type (value));
2495 size_t len = TYPE_LENGTH (subobj_type);
2496 size_t max = TYPE_LENGTH (type);
2497 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2498 struct cleanup *cleanup;
2499
2500 if (subobj_byte_offset + len > max)
2501 invalid_synthetic_pointer ();
2502
2503 /* Preserve VALUE because we are going to free values back
2504 to the mark, but we still need the value contents
2505 below. */
2506 value_incref (value);
2507 free_values.free_to_mark ();
2508 cleanup = make_cleanup_value_free (value);
2509
2510 retval = allocate_value (subobj_type);
2511
2512 /* The given offset is relative to the actual object. */
2513 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2514 subobj_byte_offset += n - max;
2515
2516 memcpy (value_contents_raw (retval),
2517 value_contents_all (value) + subobj_byte_offset, len);
2518
2519 do_cleanups (cleanup);
2520 }
2521 break;
2522
2523 case DWARF_VALUE_LITERAL:
2524 {
2525 bfd_byte *contents;
2526 size_t n = TYPE_LENGTH (subobj_type);
2527
2528 if (subobj_byte_offset + n > ctx.len)
2529 invalid_synthetic_pointer ();
2530
2531 free_values.free_to_mark ();
2532 retval = allocate_value (subobj_type);
2533 contents = value_contents_raw (retval);
2534 memcpy (contents, ctx.data + subobj_byte_offset, n);
2535 }
2536 break;
2537
2538 case DWARF_VALUE_OPTIMIZED_OUT:
2539 free_values.free_to_mark ();
2540 retval = allocate_optimized_out_value (subobj_type);
2541 break;
2542
2543 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2544 operation by execute_stack_op. */
2545 case DWARF_VALUE_IMPLICIT_POINTER:
2546 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2547 it can only be encountered when making a piece. */
2548 default:
2549 internal_error (__FILE__, __LINE__, _("invalid location type"));
2550 }
2551 }
2552
2553 set_value_initialized (retval, ctx.initialized);
2554
2555 return retval;
2556 }
2557
2558 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2559 passes 0 as the byte_offset. */
2560
2561 struct value *
2562 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2563 const gdb_byte *data, size_t size,
2564 struct dwarf2_per_cu_data *per_cu)
2565 {
2566 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2567 NULL, 0);
2568 }
2569
2570 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2571 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2572 frame in which the expression is evaluated. ADDR is a context (location of
2573 a variable) and might be needed to evaluate the location expression.
2574 Returns 1 on success, 0 otherwise. */
2575
2576 static int
2577 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2578 struct frame_info *frame,
2579 CORE_ADDR addr,
2580 CORE_ADDR *valp)
2581 {
2582 struct objfile *objfile;
2583
2584 if (dlbaton == NULL || dlbaton->size == 0)
2585 return 0;
2586
2587 dwarf_evaluate_loc_desc ctx;
2588
2589 ctx.frame = frame;
2590 ctx.per_cu = dlbaton->per_cu;
2591 ctx.obj_address = addr;
2592
2593 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2594
2595 ctx.gdbarch = get_objfile_arch (objfile);
2596 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2597 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2598 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2599
2600 ctx.eval (dlbaton->data, dlbaton->size);
2601
2602 switch (ctx.location)
2603 {
2604 case DWARF_VALUE_REGISTER:
2605 case DWARF_VALUE_MEMORY:
2606 case DWARF_VALUE_STACK:
2607 *valp = ctx.fetch_address (0);
2608 if (ctx.location == DWARF_VALUE_REGISTER)
2609 *valp = ctx.read_addr_from_reg (*valp);
2610 return 1;
2611 case DWARF_VALUE_LITERAL:
2612 *valp = extract_signed_integer (ctx.data, ctx.len,
2613 gdbarch_byte_order (ctx.gdbarch));
2614 return 1;
2615 /* Unsupported dwarf values. */
2616 case DWARF_VALUE_OPTIMIZED_OUT:
2617 case DWARF_VALUE_IMPLICIT_POINTER:
2618 break;
2619 }
2620
2621 return 0;
2622 }
2623
2624 /* See dwarf2loc.h. */
2625
2626 int
2627 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2628 struct frame_info *frame,
2629 struct property_addr_info *addr_stack,
2630 CORE_ADDR *value)
2631 {
2632 if (prop == NULL)
2633 return 0;
2634
2635 if (frame == NULL && has_stack_frames ())
2636 frame = get_selected_frame (NULL);
2637
2638 switch (prop->kind)
2639 {
2640 case PROP_LOCEXPR:
2641 {
2642 const struct dwarf2_property_baton *baton
2643 = (const struct dwarf2_property_baton *) prop->data.baton;
2644
2645 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2646 addr_stack ? addr_stack->addr : 0,
2647 value))
2648 {
2649 if (baton->referenced_type)
2650 {
2651 struct value *val = value_at (baton->referenced_type, *value);
2652
2653 *value = value_as_address (val);
2654 }
2655 return 1;
2656 }
2657 }
2658 break;
2659
2660 case PROP_LOCLIST:
2661 {
2662 struct dwarf2_property_baton *baton
2663 = (struct dwarf2_property_baton *) prop->data.baton;
2664 CORE_ADDR pc = get_frame_address_in_block (frame);
2665 const gdb_byte *data;
2666 struct value *val;
2667 size_t size;
2668
2669 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2670 if (data != NULL)
2671 {
2672 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2673 size, baton->loclist.per_cu);
2674 if (!value_optimized_out (val))
2675 {
2676 *value = value_as_address (val);
2677 return 1;
2678 }
2679 }
2680 }
2681 break;
2682
2683 case PROP_CONST:
2684 *value = prop->data.const_val;
2685 return 1;
2686
2687 case PROP_ADDR_OFFSET:
2688 {
2689 struct dwarf2_property_baton *baton
2690 = (struct dwarf2_property_baton *) prop->data.baton;
2691 struct property_addr_info *pinfo;
2692 struct value *val;
2693
2694 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2695 if (pinfo->type == baton->referenced_type)
2696 break;
2697 if (pinfo == NULL)
2698 error (_("cannot find reference address for offset property"));
2699 if (pinfo->valaddr != NULL)
2700 val = value_from_contents
2701 (baton->offset_info.type,
2702 pinfo->valaddr + baton->offset_info.offset);
2703 else
2704 val = value_at (baton->offset_info.type,
2705 pinfo->addr + baton->offset_info.offset);
2706 *value = value_as_address (val);
2707 return 1;
2708 }
2709 }
2710
2711 return 0;
2712 }
2713
2714 /* See dwarf2loc.h. */
2715
2716 void
2717 dwarf2_compile_property_to_c (string_file &stream,
2718 const char *result_name,
2719 struct gdbarch *gdbarch,
2720 unsigned char *registers_used,
2721 const struct dynamic_prop *prop,
2722 CORE_ADDR pc,
2723 struct symbol *sym)
2724 {
2725 struct dwarf2_property_baton *baton
2726 = (struct dwarf2_property_baton *) prop->data.baton;
2727 const gdb_byte *data;
2728 size_t size;
2729 struct dwarf2_per_cu_data *per_cu;
2730
2731 if (prop->kind == PROP_LOCEXPR)
2732 {
2733 data = baton->locexpr.data;
2734 size = baton->locexpr.size;
2735 per_cu = baton->locexpr.per_cu;
2736 }
2737 else
2738 {
2739 gdb_assert (prop->kind == PROP_LOCLIST);
2740
2741 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2742 per_cu = baton->loclist.per_cu;
2743 }
2744
2745 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2746 gdbarch, registers_used,
2747 dwarf2_per_cu_addr_size (per_cu),
2748 data, data + size, per_cu);
2749 }
2750
2751 \f
2752 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2753
2754 class symbol_needs_eval_context : public dwarf_expr_context
2755 {
2756 public:
2757
2758 enum symbol_needs_kind needs;
2759 struct dwarf2_per_cu_data *per_cu;
2760
2761 /* Reads from registers do require a frame. */
2762 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2763 {
2764 needs = SYMBOL_NEEDS_FRAME;
2765 return 1;
2766 }
2767
2768 /* "get_reg_value" callback: Reads from registers do require a
2769 frame. */
2770
2771 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2772 {
2773 needs = SYMBOL_NEEDS_FRAME;
2774 return value_zero (type, not_lval);
2775 }
2776
2777 /* Reads from memory do not require a frame. */
2778 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2779 {
2780 memset (buf, 0, len);
2781 }
2782
2783 /* Frame-relative accesses do require a frame. */
2784 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2785 {
2786 static gdb_byte lit0 = DW_OP_lit0;
2787
2788 *start = &lit0;
2789 *length = 1;
2790
2791 needs = SYMBOL_NEEDS_FRAME;
2792 }
2793
2794 /* CFA accesses require a frame. */
2795 CORE_ADDR get_frame_cfa () OVERRIDE
2796 {
2797 needs = SYMBOL_NEEDS_FRAME;
2798 return 1;
2799 }
2800
2801 CORE_ADDR get_frame_pc () OVERRIDE
2802 {
2803 needs = SYMBOL_NEEDS_FRAME;
2804 return 1;
2805 }
2806
2807 /* Thread-local accesses require registers, but not a frame. */
2808 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2809 {
2810 if (needs <= SYMBOL_NEEDS_REGISTERS)
2811 needs = SYMBOL_NEEDS_REGISTERS;
2812 return 1;
2813 }
2814
2815 /* Helper interface of per_cu_dwarf_call for
2816 dwarf2_loc_desc_get_symbol_read_needs. */
2817
2818 void dwarf_call (cu_offset die_offset) OVERRIDE
2819 {
2820 per_cu_dwarf_call (this, die_offset, per_cu);
2821 }
2822
2823 /* DW_OP_entry_value accesses require a caller, therefore a
2824 frame. */
2825
2826 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2827 union call_site_parameter_u kind_u,
2828 int deref_size) OVERRIDE
2829 {
2830 needs = SYMBOL_NEEDS_FRAME;
2831
2832 /* The expression may require some stub values on DWARF stack. */
2833 push_address (0, 0);
2834 }
2835
2836 /* DW_OP_GNU_addr_index doesn't require a frame. */
2837
2838 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2839 {
2840 /* Nothing to do. */
2841 return 1;
2842 }
2843
2844 /* DW_OP_push_object_address has a frame already passed through. */
2845
2846 CORE_ADDR get_object_address () OVERRIDE
2847 {
2848 /* Nothing to do. */
2849 return 1;
2850 }
2851 };
2852
2853 /* Compute the correct symbol_needs_kind value for the location
2854 expression at DATA (length SIZE). */
2855
2856 static enum symbol_needs_kind
2857 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2858 struct dwarf2_per_cu_data *per_cu)
2859 {
2860 int in_reg;
2861 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2862
2863 scoped_value_mark free_values;
2864
2865 symbol_needs_eval_context ctx;
2866
2867 ctx.needs = SYMBOL_NEEDS_NONE;
2868 ctx.per_cu = per_cu;
2869 ctx.gdbarch = get_objfile_arch (objfile);
2870 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2871 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2872 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2873
2874 ctx.eval (data, size);
2875
2876 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2877
2878 if (ctx.num_pieces > 0)
2879 {
2880 int i;
2881
2882 /* If the location has several pieces, and any of them are in
2883 registers, then we will need a frame to fetch them from. */
2884 for (i = 0; i < ctx.num_pieces; i++)
2885 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2886 in_reg = 1;
2887 }
2888
2889 if (in_reg)
2890 ctx.needs = SYMBOL_NEEDS_FRAME;
2891 return ctx.needs;
2892 }
2893
2894 /* A helper function that throws an unimplemented error mentioning a
2895 given DWARF operator. */
2896
2897 static void
2898 unimplemented (unsigned int op)
2899 {
2900 const char *name = get_DW_OP_name (op);
2901
2902 if (name)
2903 error (_("DWARF operator %s cannot be translated to an agent expression"),
2904 name);
2905 else
2906 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2907 "to an agent expression"),
2908 op);
2909 }
2910
2911 /* See dwarf2loc.h.
2912
2913 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2914 can issue a complaint, which is better than having every target's
2915 implementation of dwarf2_reg_to_regnum do it. */
2916
2917 int
2918 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2919 {
2920 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2921
2922 if (reg == -1)
2923 {
2924 complaint (&symfile_complaints,
2925 _("bad DWARF register number %d"), dwarf_reg);
2926 }
2927 return reg;
2928 }
2929
2930 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2931 Throw an error because DWARF_REG is bad. */
2932
2933 static void
2934 throw_bad_regnum_error (ULONGEST dwarf_reg)
2935 {
2936 /* Still want to print -1 as "-1".
2937 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2938 but that's overkill for now. */
2939 if ((int) dwarf_reg == dwarf_reg)
2940 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2941 error (_("Unable to access DWARF register number %s"),
2942 pulongest (dwarf_reg));
2943 }
2944
2945 /* See dwarf2loc.h. */
2946
2947 int
2948 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2949 {
2950 int reg;
2951
2952 if (dwarf_reg > INT_MAX)
2953 throw_bad_regnum_error (dwarf_reg);
2954 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2955 bad, but that's ok. */
2956 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2957 if (reg == -1)
2958 throw_bad_regnum_error (dwarf_reg);
2959 return reg;
2960 }
2961
2962 /* A helper function that emits an access to memory. ARCH is the
2963 target architecture. EXPR is the expression which we are building.
2964 NBITS is the number of bits we want to read. This emits the
2965 opcodes needed to read the memory and then extract the desired
2966 bits. */
2967
2968 static void
2969 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2970 {
2971 ULONGEST nbytes = (nbits + 7) / 8;
2972
2973 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2974
2975 if (expr->tracing)
2976 ax_trace_quick (expr, nbytes);
2977
2978 if (nbits <= 8)
2979 ax_simple (expr, aop_ref8);
2980 else if (nbits <= 16)
2981 ax_simple (expr, aop_ref16);
2982 else if (nbits <= 32)
2983 ax_simple (expr, aop_ref32);
2984 else
2985 ax_simple (expr, aop_ref64);
2986
2987 /* If we read exactly the number of bytes we wanted, we're done. */
2988 if (8 * nbytes == nbits)
2989 return;
2990
2991 if (gdbarch_bits_big_endian (arch))
2992 {
2993 /* On a bits-big-endian machine, we want the high-order
2994 NBITS. */
2995 ax_const_l (expr, 8 * nbytes - nbits);
2996 ax_simple (expr, aop_rsh_unsigned);
2997 }
2998 else
2999 {
3000 /* On a bits-little-endian box, we want the low-order NBITS. */
3001 ax_zero_ext (expr, nbits);
3002 }
3003 }
3004
3005 /* A helper function to return the frame's PC. */
3006
3007 static CORE_ADDR
3008 get_ax_pc (void *baton)
3009 {
3010 struct agent_expr *expr = (struct agent_expr *) baton;
3011
3012 return expr->scope;
3013 }
3014
3015 /* Compile a DWARF location expression to an agent expression.
3016
3017 EXPR is the agent expression we are building.
3018 LOC is the agent value we modify.
3019 ARCH is the architecture.
3020 ADDR_SIZE is the size of addresses, in bytes.
3021 OP_PTR is the start of the location expression.
3022 OP_END is one past the last byte of the location expression.
3023
3024 This will throw an exception for various kinds of errors -- for
3025 example, if the expression cannot be compiled, or if the expression
3026 is invalid. */
3027
3028 void
3029 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3030 struct gdbarch *arch, unsigned int addr_size,
3031 const gdb_byte *op_ptr, const gdb_byte *op_end,
3032 struct dwarf2_per_cu_data *per_cu)
3033 {
3034 int i;
3035 std::vector<int> dw_labels, patches;
3036 const gdb_byte * const base = op_ptr;
3037 const gdb_byte *previous_piece = op_ptr;
3038 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3039 ULONGEST bits_collected = 0;
3040 unsigned int addr_size_bits = 8 * addr_size;
3041 int bits_big_endian = gdbarch_bits_big_endian (arch);
3042
3043 std::vector<int> offsets (op_end - op_ptr, -1);
3044
3045 /* By default we are making an address. */
3046 loc->kind = axs_lvalue_memory;
3047
3048 while (op_ptr < op_end)
3049 {
3050 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3051 uint64_t uoffset, reg;
3052 int64_t offset;
3053 int i;
3054
3055 offsets[op_ptr - base] = expr->len;
3056 ++op_ptr;
3057
3058 /* Our basic approach to code generation is to map DWARF
3059 operations directly to AX operations. However, there are
3060 some differences.
3061
3062 First, DWARF works on address-sized units, but AX always uses
3063 LONGEST. For most operations we simply ignore this
3064 difference; instead we generate sign extensions as needed
3065 before division and comparison operations. It would be nice
3066 to omit the sign extensions, but there is no way to determine
3067 the size of the target's LONGEST. (This code uses the size
3068 of the host LONGEST in some cases -- that is a bug but it is
3069 difficult to fix.)
3070
3071 Second, some DWARF operations cannot be translated to AX.
3072 For these we simply fail. See
3073 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3074 switch (op)
3075 {
3076 case DW_OP_lit0:
3077 case DW_OP_lit1:
3078 case DW_OP_lit2:
3079 case DW_OP_lit3:
3080 case DW_OP_lit4:
3081 case DW_OP_lit5:
3082 case DW_OP_lit6:
3083 case DW_OP_lit7:
3084 case DW_OP_lit8:
3085 case DW_OP_lit9:
3086 case DW_OP_lit10:
3087 case DW_OP_lit11:
3088 case DW_OP_lit12:
3089 case DW_OP_lit13:
3090 case DW_OP_lit14:
3091 case DW_OP_lit15:
3092 case DW_OP_lit16:
3093 case DW_OP_lit17:
3094 case DW_OP_lit18:
3095 case DW_OP_lit19:
3096 case DW_OP_lit20:
3097 case DW_OP_lit21:
3098 case DW_OP_lit22:
3099 case DW_OP_lit23:
3100 case DW_OP_lit24:
3101 case DW_OP_lit25:
3102 case DW_OP_lit26:
3103 case DW_OP_lit27:
3104 case DW_OP_lit28:
3105 case DW_OP_lit29:
3106 case DW_OP_lit30:
3107 case DW_OP_lit31:
3108 ax_const_l (expr, op - DW_OP_lit0);
3109 break;
3110
3111 case DW_OP_addr:
3112 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3113 op_ptr += addr_size;
3114 /* Some versions of GCC emit DW_OP_addr before
3115 DW_OP_GNU_push_tls_address. In this case the value is an
3116 index, not an address. We don't support things like
3117 branching between the address and the TLS op. */
3118 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3119 uoffset += dwarf2_per_cu_text_offset (per_cu);
3120 ax_const_l (expr, uoffset);
3121 break;
3122
3123 case DW_OP_const1u:
3124 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3125 op_ptr += 1;
3126 break;
3127 case DW_OP_const1s:
3128 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3129 op_ptr += 1;
3130 break;
3131 case DW_OP_const2u:
3132 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3133 op_ptr += 2;
3134 break;
3135 case DW_OP_const2s:
3136 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3137 op_ptr += 2;
3138 break;
3139 case DW_OP_const4u:
3140 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3141 op_ptr += 4;
3142 break;
3143 case DW_OP_const4s:
3144 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3145 op_ptr += 4;
3146 break;
3147 case DW_OP_const8u:
3148 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3149 op_ptr += 8;
3150 break;
3151 case DW_OP_const8s:
3152 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3153 op_ptr += 8;
3154 break;
3155 case DW_OP_constu:
3156 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3157 ax_const_l (expr, uoffset);
3158 break;
3159 case DW_OP_consts:
3160 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3161 ax_const_l (expr, offset);
3162 break;
3163
3164 case DW_OP_reg0:
3165 case DW_OP_reg1:
3166 case DW_OP_reg2:
3167 case DW_OP_reg3:
3168 case DW_OP_reg4:
3169 case DW_OP_reg5:
3170 case DW_OP_reg6:
3171 case DW_OP_reg7:
3172 case DW_OP_reg8:
3173 case DW_OP_reg9:
3174 case DW_OP_reg10:
3175 case DW_OP_reg11:
3176 case DW_OP_reg12:
3177 case DW_OP_reg13:
3178 case DW_OP_reg14:
3179 case DW_OP_reg15:
3180 case DW_OP_reg16:
3181 case DW_OP_reg17:
3182 case DW_OP_reg18:
3183 case DW_OP_reg19:
3184 case DW_OP_reg20:
3185 case DW_OP_reg21:
3186 case DW_OP_reg22:
3187 case DW_OP_reg23:
3188 case DW_OP_reg24:
3189 case DW_OP_reg25:
3190 case DW_OP_reg26:
3191 case DW_OP_reg27:
3192 case DW_OP_reg28:
3193 case DW_OP_reg29:
3194 case DW_OP_reg30:
3195 case DW_OP_reg31:
3196 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3197 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3198 loc->kind = axs_lvalue_register;
3199 break;
3200
3201 case DW_OP_regx:
3202 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3203 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3204 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3205 loc->kind = axs_lvalue_register;
3206 break;
3207
3208 case DW_OP_implicit_value:
3209 {
3210 uint64_t len;
3211
3212 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3213 if (op_ptr + len > op_end)
3214 error (_("DW_OP_implicit_value: too few bytes available."));
3215 if (len > sizeof (ULONGEST))
3216 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3217 (int) len);
3218
3219 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3220 byte_order));
3221 op_ptr += len;
3222 dwarf_expr_require_composition (op_ptr, op_end,
3223 "DW_OP_implicit_value");
3224
3225 loc->kind = axs_rvalue;
3226 }
3227 break;
3228
3229 case DW_OP_stack_value:
3230 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3231 loc->kind = axs_rvalue;
3232 break;
3233
3234 case DW_OP_breg0:
3235 case DW_OP_breg1:
3236 case DW_OP_breg2:
3237 case DW_OP_breg3:
3238 case DW_OP_breg4:
3239 case DW_OP_breg5:
3240 case DW_OP_breg6:
3241 case DW_OP_breg7:
3242 case DW_OP_breg8:
3243 case DW_OP_breg9:
3244 case DW_OP_breg10:
3245 case DW_OP_breg11:
3246 case DW_OP_breg12:
3247 case DW_OP_breg13:
3248 case DW_OP_breg14:
3249 case DW_OP_breg15:
3250 case DW_OP_breg16:
3251 case DW_OP_breg17:
3252 case DW_OP_breg18:
3253 case DW_OP_breg19:
3254 case DW_OP_breg20:
3255 case DW_OP_breg21:
3256 case DW_OP_breg22:
3257 case DW_OP_breg23:
3258 case DW_OP_breg24:
3259 case DW_OP_breg25:
3260 case DW_OP_breg26:
3261 case DW_OP_breg27:
3262 case DW_OP_breg28:
3263 case DW_OP_breg29:
3264 case DW_OP_breg30:
3265 case DW_OP_breg31:
3266 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3267 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3268 ax_reg (expr, i);
3269 if (offset != 0)
3270 {
3271 ax_const_l (expr, offset);
3272 ax_simple (expr, aop_add);
3273 }
3274 break;
3275 case DW_OP_bregx:
3276 {
3277 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3278 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3279 i = dwarf_reg_to_regnum_or_error (arch, reg);
3280 ax_reg (expr, i);
3281 if (offset != 0)
3282 {
3283 ax_const_l (expr, offset);
3284 ax_simple (expr, aop_add);
3285 }
3286 }
3287 break;
3288 case DW_OP_fbreg:
3289 {
3290 const gdb_byte *datastart;
3291 size_t datalen;
3292 const struct block *b;
3293 struct symbol *framefunc;
3294
3295 b = block_for_pc (expr->scope);
3296
3297 if (!b)
3298 error (_("No block found for address"));
3299
3300 framefunc = block_linkage_function (b);
3301
3302 if (!framefunc)
3303 error (_("No function found for block"));
3304
3305 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3306 &datastart, &datalen);
3307
3308 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3309 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3310 datastart + datalen, per_cu);
3311 if (loc->kind == axs_lvalue_register)
3312 require_rvalue (expr, loc);
3313
3314 if (offset != 0)
3315 {
3316 ax_const_l (expr, offset);
3317 ax_simple (expr, aop_add);
3318 }
3319
3320 loc->kind = axs_lvalue_memory;
3321 }
3322 break;
3323
3324 case DW_OP_dup:
3325 ax_simple (expr, aop_dup);
3326 break;
3327
3328 case DW_OP_drop:
3329 ax_simple (expr, aop_pop);
3330 break;
3331
3332 case DW_OP_pick:
3333 offset = *op_ptr++;
3334 ax_pick (expr, offset);
3335 break;
3336
3337 case DW_OP_swap:
3338 ax_simple (expr, aop_swap);
3339 break;
3340
3341 case DW_OP_over:
3342 ax_pick (expr, 1);
3343 break;
3344
3345 case DW_OP_rot:
3346 ax_simple (expr, aop_rot);
3347 break;
3348
3349 case DW_OP_deref:
3350 case DW_OP_deref_size:
3351 {
3352 int size;
3353
3354 if (op == DW_OP_deref_size)
3355 size = *op_ptr++;
3356 else
3357 size = addr_size;
3358
3359 if (size != 1 && size != 2 && size != 4 && size != 8)
3360 error (_("Unsupported size %d in %s"),
3361 size, get_DW_OP_name (op));
3362 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3363 }
3364 break;
3365
3366 case DW_OP_abs:
3367 /* Sign extend the operand. */
3368 ax_ext (expr, addr_size_bits);
3369 ax_simple (expr, aop_dup);
3370 ax_const_l (expr, 0);
3371 ax_simple (expr, aop_less_signed);
3372 ax_simple (expr, aop_log_not);
3373 i = ax_goto (expr, aop_if_goto);
3374 /* We have to emit 0 - X. */
3375 ax_const_l (expr, 0);
3376 ax_simple (expr, aop_swap);
3377 ax_simple (expr, aop_sub);
3378 ax_label (expr, i, expr->len);
3379 break;
3380
3381 case DW_OP_neg:
3382 /* No need to sign extend here. */
3383 ax_const_l (expr, 0);
3384 ax_simple (expr, aop_swap);
3385 ax_simple (expr, aop_sub);
3386 break;
3387
3388 case DW_OP_not:
3389 /* Sign extend the operand. */
3390 ax_ext (expr, addr_size_bits);
3391 ax_simple (expr, aop_bit_not);
3392 break;
3393
3394 case DW_OP_plus_uconst:
3395 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3396 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3397 but we micro-optimize anyhow. */
3398 if (reg != 0)
3399 {
3400 ax_const_l (expr, reg);
3401 ax_simple (expr, aop_add);
3402 }
3403 break;
3404
3405 case DW_OP_and:
3406 ax_simple (expr, aop_bit_and);
3407 break;
3408
3409 case DW_OP_div:
3410 /* Sign extend the operands. */
3411 ax_ext (expr, addr_size_bits);
3412 ax_simple (expr, aop_swap);
3413 ax_ext (expr, addr_size_bits);
3414 ax_simple (expr, aop_swap);
3415 ax_simple (expr, aop_div_signed);
3416 break;
3417
3418 case DW_OP_minus:
3419 ax_simple (expr, aop_sub);
3420 break;
3421
3422 case DW_OP_mod:
3423 ax_simple (expr, aop_rem_unsigned);
3424 break;
3425
3426 case DW_OP_mul:
3427 ax_simple (expr, aop_mul);
3428 break;
3429
3430 case DW_OP_or:
3431 ax_simple (expr, aop_bit_or);
3432 break;
3433
3434 case DW_OP_plus:
3435 ax_simple (expr, aop_add);
3436 break;
3437
3438 case DW_OP_shl:
3439 ax_simple (expr, aop_lsh);
3440 break;
3441
3442 case DW_OP_shr:
3443 ax_simple (expr, aop_rsh_unsigned);
3444 break;
3445
3446 case DW_OP_shra:
3447 ax_simple (expr, aop_rsh_signed);
3448 break;
3449
3450 case DW_OP_xor:
3451 ax_simple (expr, aop_bit_xor);
3452 break;
3453
3454 case DW_OP_le:
3455 /* Sign extend the operands. */
3456 ax_ext (expr, addr_size_bits);
3457 ax_simple (expr, aop_swap);
3458 ax_ext (expr, addr_size_bits);
3459 /* Note no swap here: A <= B is !(B < A). */
3460 ax_simple (expr, aop_less_signed);
3461 ax_simple (expr, aop_log_not);
3462 break;
3463
3464 case DW_OP_ge:
3465 /* Sign extend the operands. */
3466 ax_ext (expr, addr_size_bits);
3467 ax_simple (expr, aop_swap);
3468 ax_ext (expr, addr_size_bits);
3469 ax_simple (expr, aop_swap);
3470 /* A >= B is !(A < B). */
3471 ax_simple (expr, aop_less_signed);
3472 ax_simple (expr, aop_log_not);
3473 break;
3474
3475 case DW_OP_eq:
3476 /* Sign extend the operands. */
3477 ax_ext (expr, addr_size_bits);
3478 ax_simple (expr, aop_swap);
3479 ax_ext (expr, addr_size_bits);
3480 /* No need for a second swap here. */
3481 ax_simple (expr, aop_equal);
3482 break;
3483
3484 case DW_OP_lt:
3485 /* Sign extend the operands. */
3486 ax_ext (expr, addr_size_bits);
3487 ax_simple (expr, aop_swap);
3488 ax_ext (expr, addr_size_bits);
3489 ax_simple (expr, aop_swap);
3490 ax_simple (expr, aop_less_signed);
3491 break;
3492
3493 case DW_OP_gt:
3494 /* Sign extend the operands. */
3495 ax_ext (expr, addr_size_bits);
3496 ax_simple (expr, aop_swap);
3497 ax_ext (expr, addr_size_bits);
3498 /* Note no swap here: A > B is B < A. */
3499 ax_simple (expr, aop_less_signed);
3500 break;
3501
3502 case DW_OP_ne:
3503 /* Sign extend the operands. */
3504 ax_ext (expr, addr_size_bits);
3505 ax_simple (expr, aop_swap);
3506 ax_ext (expr, addr_size_bits);
3507 /* No need for a swap here. */
3508 ax_simple (expr, aop_equal);
3509 ax_simple (expr, aop_log_not);
3510 break;
3511
3512 case DW_OP_call_frame_cfa:
3513 {
3514 int regnum;
3515 CORE_ADDR text_offset;
3516 LONGEST off;
3517 const gdb_byte *cfa_start, *cfa_end;
3518
3519 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3520 &regnum, &off,
3521 &text_offset, &cfa_start, &cfa_end))
3522 {
3523 /* Register. */
3524 ax_reg (expr, regnum);
3525 if (off != 0)
3526 {
3527 ax_const_l (expr, off);
3528 ax_simple (expr, aop_add);
3529 }
3530 }
3531 else
3532 {
3533 /* Another expression. */
3534 ax_const_l (expr, text_offset);
3535 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3536 cfa_start, cfa_end, per_cu);
3537 }
3538
3539 loc->kind = axs_lvalue_memory;
3540 }
3541 break;
3542
3543 case DW_OP_GNU_push_tls_address:
3544 case DW_OP_form_tls_address:
3545 unimplemented (op);
3546 break;
3547
3548 case DW_OP_push_object_address:
3549 unimplemented (op);
3550 break;
3551
3552 case DW_OP_skip:
3553 offset = extract_signed_integer (op_ptr, 2, byte_order);
3554 op_ptr += 2;
3555 i = ax_goto (expr, aop_goto);
3556 dw_labels.push_back (op_ptr + offset - base);
3557 patches.push_back (i);
3558 break;
3559
3560 case DW_OP_bra:
3561 offset = extract_signed_integer (op_ptr, 2, byte_order);
3562 op_ptr += 2;
3563 /* Zero extend the operand. */
3564 ax_zero_ext (expr, addr_size_bits);
3565 i = ax_goto (expr, aop_if_goto);
3566 dw_labels.push_back (op_ptr + offset - base);
3567 patches.push_back (i);
3568 break;
3569
3570 case DW_OP_nop:
3571 break;
3572
3573 case DW_OP_piece:
3574 case DW_OP_bit_piece:
3575 {
3576 uint64_t size, offset;
3577
3578 if (op_ptr - 1 == previous_piece)
3579 error (_("Cannot translate empty pieces to agent expressions"));
3580 previous_piece = op_ptr - 1;
3581
3582 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3583 if (op == DW_OP_piece)
3584 {
3585 size *= 8;
3586 offset = 0;
3587 }
3588 else
3589 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3590
3591 if (bits_collected + size > 8 * sizeof (LONGEST))
3592 error (_("Expression pieces exceed word size"));
3593
3594 /* Access the bits. */
3595 switch (loc->kind)
3596 {
3597 case axs_lvalue_register:
3598 ax_reg (expr, loc->u.reg);
3599 break;
3600
3601 case axs_lvalue_memory:
3602 /* Offset the pointer, if needed. */
3603 if (offset > 8)
3604 {
3605 ax_const_l (expr, offset / 8);
3606 ax_simple (expr, aop_add);
3607 offset %= 8;
3608 }
3609 access_memory (arch, expr, size);
3610 break;
3611 }
3612
3613 /* For a bits-big-endian target, shift up what we already
3614 have. For a bits-little-endian target, shift up the
3615 new data. Note that there is a potential bug here if
3616 the DWARF expression leaves multiple values on the
3617 stack. */
3618 if (bits_collected > 0)
3619 {
3620 if (bits_big_endian)
3621 {
3622 ax_simple (expr, aop_swap);
3623 ax_const_l (expr, size);
3624 ax_simple (expr, aop_lsh);
3625 /* We don't need a second swap here, because
3626 aop_bit_or is symmetric. */
3627 }
3628 else
3629 {
3630 ax_const_l (expr, size);
3631 ax_simple (expr, aop_lsh);
3632 }
3633 ax_simple (expr, aop_bit_or);
3634 }
3635
3636 bits_collected += size;
3637 loc->kind = axs_rvalue;
3638 }
3639 break;
3640
3641 case DW_OP_GNU_uninit:
3642 unimplemented (op);
3643
3644 case DW_OP_call2:
3645 case DW_OP_call4:
3646 {
3647 struct dwarf2_locexpr_baton block;
3648 int size = (op == DW_OP_call2 ? 2 : 4);
3649
3650 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3651 op_ptr += size;
3652
3653 cu_offset offset = (cu_offset) uoffset;
3654 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3655 get_ax_pc, expr);
3656
3657 /* DW_OP_call_ref is currently not supported. */
3658 gdb_assert (block.per_cu == per_cu);
3659
3660 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3661 block.data, block.data + block.size,
3662 per_cu);
3663 }
3664 break;
3665
3666 case DW_OP_call_ref:
3667 unimplemented (op);
3668
3669 default:
3670 unimplemented (op);
3671 }
3672 }
3673
3674 /* Patch all the branches we emitted. */
3675 for (i = 0; i < patches.size (); ++i)
3676 {
3677 int targ = offsets[dw_labels[i]];
3678 if (targ == -1)
3679 internal_error (__FILE__, __LINE__, _("invalid label"));
3680 ax_label (expr, patches[i], targ);
3681 }
3682 }
3683
3684 \f
3685 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3686 evaluator to calculate the location. */
3687 static struct value *
3688 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3689 {
3690 struct dwarf2_locexpr_baton *dlbaton
3691 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3692 struct value *val;
3693
3694 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3695 dlbaton->size, dlbaton->per_cu);
3696
3697 return val;
3698 }
3699
3700 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3701 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3702 will be thrown. */
3703
3704 static struct value *
3705 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3706 {
3707 struct dwarf2_locexpr_baton *dlbaton
3708 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3709
3710 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3711 dlbaton->size);
3712 }
3713
3714 /* Implementation of get_symbol_read_needs from
3715 symbol_computed_ops. */
3716
3717 static enum symbol_needs_kind
3718 locexpr_get_symbol_read_needs (struct symbol *symbol)
3719 {
3720 struct dwarf2_locexpr_baton *dlbaton
3721 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3722
3723 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3724 dlbaton->per_cu);
3725 }
3726
3727 /* Return true if DATA points to the end of a piece. END is one past
3728 the last byte in the expression. */
3729
3730 static int
3731 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3732 {
3733 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3734 }
3735
3736 /* Helper for locexpr_describe_location_piece that finds the name of a
3737 DWARF register. */
3738
3739 static const char *
3740 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3741 {
3742 int regnum;
3743
3744 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3745 We'd rather print *something* here than throw an error. */
3746 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3747 /* gdbarch_register_name may just return "", return something more
3748 descriptive for bad register numbers. */
3749 if (regnum == -1)
3750 {
3751 /* The text is output as "$bad_register_number".
3752 That is why we use the underscores. */
3753 return _("bad_register_number");
3754 }
3755 return gdbarch_register_name (gdbarch, regnum);
3756 }
3757
3758 /* Nicely describe a single piece of a location, returning an updated
3759 position in the bytecode sequence. This function cannot recognize
3760 all locations; if a location is not recognized, it simply returns
3761 DATA. If there is an error during reading, e.g. we run off the end
3762 of the buffer, an error is thrown. */
3763
3764 static const gdb_byte *
3765 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3766 CORE_ADDR addr, struct objfile *objfile,
3767 struct dwarf2_per_cu_data *per_cu,
3768 const gdb_byte *data, const gdb_byte *end,
3769 unsigned int addr_size)
3770 {
3771 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3772 size_t leb128_size;
3773
3774 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3775 {
3776 fprintf_filtered (stream, _("a variable in $%s"),
3777 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3778 data += 1;
3779 }
3780 else if (data[0] == DW_OP_regx)
3781 {
3782 uint64_t reg;
3783
3784 data = safe_read_uleb128 (data + 1, end, &reg);
3785 fprintf_filtered (stream, _("a variable in $%s"),
3786 locexpr_regname (gdbarch, reg));
3787 }
3788 else if (data[0] == DW_OP_fbreg)
3789 {
3790 const struct block *b;
3791 struct symbol *framefunc;
3792 int frame_reg = 0;
3793 int64_t frame_offset;
3794 const gdb_byte *base_data, *new_data, *save_data = data;
3795 size_t base_size;
3796 int64_t base_offset = 0;
3797
3798 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3799 if (!piece_end_p (new_data, end))
3800 return data;
3801 data = new_data;
3802
3803 b = block_for_pc (addr);
3804
3805 if (!b)
3806 error (_("No block found for address for symbol \"%s\"."),
3807 SYMBOL_PRINT_NAME (symbol));
3808
3809 framefunc = block_linkage_function (b);
3810
3811 if (!framefunc)
3812 error (_("No function found for block for symbol \"%s\"."),
3813 SYMBOL_PRINT_NAME (symbol));
3814
3815 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3816
3817 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3818 {
3819 const gdb_byte *buf_end;
3820
3821 frame_reg = base_data[0] - DW_OP_breg0;
3822 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3823 &base_offset);
3824 if (buf_end != base_data + base_size)
3825 error (_("Unexpected opcode after "
3826 "DW_OP_breg%u for symbol \"%s\"."),
3827 frame_reg, SYMBOL_PRINT_NAME (symbol));
3828 }
3829 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3830 {
3831 /* The frame base is just the register, with no offset. */
3832 frame_reg = base_data[0] - DW_OP_reg0;
3833 base_offset = 0;
3834 }
3835 else
3836 {
3837 /* We don't know what to do with the frame base expression,
3838 so we can't trace this variable; give up. */
3839 return save_data;
3840 }
3841
3842 fprintf_filtered (stream,
3843 _("a variable at frame base reg $%s offset %s+%s"),
3844 locexpr_regname (gdbarch, frame_reg),
3845 plongest (base_offset), plongest (frame_offset));
3846 }
3847 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3848 && piece_end_p (data, end))
3849 {
3850 int64_t offset;
3851
3852 data = safe_read_sleb128 (data + 1, end, &offset);
3853
3854 fprintf_filtered (stream,
3855 _("a variable at offset %s from base reg $%s"),
3856 plongest (offset),
3857 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3858 }
3859
3860 /* The location expression for a TLS variable looks like this (on a
3861 64-bit LE machine):
3862
3863 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3864 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3865
3866 0x3 is the encoding for DW_OP_addr, which has an operand as long
3867 as the size of an address on the target machine (here is 8
3868 bytes). Note that more recent version of GCC emit DW_OP_const4u
3869 or DW_OP_const8u, depending on address size, rather than
3870 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3871 The operand represents the offset at which the variable is within
3872 the thread local storage. */
3873
3874 else if (data + 1 + addr_size < end
3875 && (data[0] == DW_OP_addr
3876 || (addr_size == 4 && data[0] == DW_OP_const4u)
3877 || (addr_size == 8 && data[0] == DW_OP_const8u))
3878 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3879 || data[1 + addr_size] == DW_OP_form_tls_address)
3880 && piece_end_p (data + 2 + addr_size, end))
3881 {
3882 ULONGEST offset;
3883 offset = extract_unsigned_integer (data + 1, addr_size,
3884 gdbarch_byte_order (gdbarch));
3885
3886 fprintf_filtered (stream,
3887 _("a thread-local variable at offset 0x%s "
3888 "in the thread-local storage for `%s'"),
3889 phex_nz (offset, addr_size), objfile_name (objfile));
3890
3891 data += 1 + addr_size + 1;
3892 }
3893
3894 /* With -gsplit-dwarf a TLS variable can also look like this:
3895 DW_AT_location : 3 byte block: fc 4 e0
3896 (DW_OP_GNU_const_index: 4;
3897 DW_OP_GNU_push_tls_address) */
3898 else if (data + 3 <= end
3899 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3900 && data[0] == DW_OP_GNU_const_index
3901 && leb128_size > 0
3902 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3903 || data[1 + leb128_size] == DW_OP_form_tls_address)
3904 && piece_end_p (data + 2 + leb128_size, end))
3905 {
3906 uint64_t offset;
3907
3908 data = safe_read_uleb128 (data + 1, end, &offset);
3909 offset = dwarf2_read_addr_index (per_cu, offset);
3910 fprintf_filtered (stream,
3911 _("a thread-local variable at offset 0x%s "
3912 "in the thread-local storage for `%s'"),
3913 phex_nz (offset, addr_size), objfile_name (objfile));
3914 ++data;
3915 }
3916
3917 else if (data[0] >= DW_OP_lit0
3918 && data[0] <= DW_OP_lit31
3919 && data + 1 < end
3920 && data[1] == DW_OP_stack_value)
3921 {
3922 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3923 data += 2;
3924 }
3925
3926 return data;
3927 }
3928
3929 /* Disassemble an expression, stopping at the end of a piece or at the
3930 end of the expression. Returns a pointer to the next unread byte
3931 in the input expression. If ALL is nonzero, then this function
3932 will keep going until it reaches the end of the expression.
3933 If there is an error during reading, e.g. we run off the end
3934 of the buffer, an error is thrown. */
3935
3936 static const gdb_byte *
3937 disassemble_dwarf_expression (struct ui_file *stream,
3938 struct gdbarch *arch, unsigned int addr_size,
3939 int offset_size, const gdb_byte *start,
3940 const gdb_byte *data, const gdb_byte *end,
3941 int indent, int all,
3942 struct dwarf2_per_cu_data *per_cu)
3943 {
3944 while (data < end
3945 && (all
3946 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3947 {
3948 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3949 uint64_t ul;
3950 int64_t l;
3951 const char *name;
3952
3953 name = get_DW_OP_name (op);
3954
3955 if (!name)
3956 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3957 op, (long) (data - 1 - start));
3958 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3959 (long) (data - 1 - start), name);
3960
3961 switch (op)
3962 {
3963 case DW_OP_addr:
3964 ul = extract_unsigned_integer (data, addr_size,
3965 gdbarch_byte_order (arch));
3966 data += addr_size;
3967 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3968 break;
3969
3970 case DW_OP_const1u:
3971 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3972 data += 1;
3973 fprintf_filtered (stream, " %s", pulongest (ul));
3974 break;
3975 case DW_OP_const1s:
3976 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3977 data += 1;
3978 fprintf_filtered (stream, " %s", plongest (l));
3979 break;
3980 case DW_OP_const2u:
3981 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3982 data += 2;
3983 fprintf_filtered (stream, " %s", pulongest (ul));
3984 break;
3985 case DW_OP_const2s:
3986 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3987 data += 2;
3988 fprintf_filtered (stream, " %s", plongest (l));
3989 break;
3990 case DW_OP_const4u:
3991 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3992 data += 4;
3993 fprintf_filtered (stream, " %s", pulongest (ul));
3994 break;
3995 case DW_OP_const4s:
3996 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3997 data += 4;
3998 fprintf_filtered (stream, " %s", plongest (l));
3999 break;
4000 case DW_OP_const8u:
4001 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4002 data += 8;
4003 fprintf_filtered (stream, " %s", pulongest (ul));
4004 break;
4005 case DW_OP_const8s:
4006 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4007 data += 8;
4008 fprintf_filtered (stream, " %s", plongest (l));
4009 break;
4010 case DW_OP_constu:
4011 data = safe_read_uleb128 (data, end, &ul);
4012 fprintf_filtered (stream, " %s", pulongest (ul));
4013 break;
4014 case DW_OP_consts:
4015 data = safe_read_sleb128 (data, end, &l);
4016 fprintf_filtered (stream, " %s", plongest (l));
4017 break;
4018
4019 case DW_OP_reg0:
4020 case DW_OP_reg1:
4021 case DW_OP_reg2:
4022 case DW_OP_reg3:
4023 case DW_OP_reg4:
4024 case DW_OP_reg5:
4025 case DW_OP_reg6:
4026 case DW_OP_reg7:
4027 case DW_OP_reg8:
4028 case DW_OP_reg9:
4029 case DW_OP_reg10:
4030 case DW_OP_reg11:
4031 case DW_OP_reg12:
4032 case DW_OP_reg13:
4033 case DW_OP_reg14:
4034 case DW_OP_reg15:
4035 case DW_OP_reg16:
4036 case DW_OP_reg17:
4037 case DW_OP_reg18:
4038 case DW_OP_reg19:
4039 case DW_OP_reg20:
4040 case DW_OP_reg21:
4041 case DW_OP_reg22:
4042 case DW_OP_reg23:
4043 case DW_OP_reg24:
4044 case DW_OP_reg25:
4045 case DW_OP_reg26:
4046 case DW_OP_reg27:
4047 case DW_OP_reg28:
4048 case DW_OP_reg29:
4049 case DW_OP_reg30:
4050 case DW_OP_reg31:
4051 fprintf_filtered (stream, " [$%s]",
4052 locexpr_regname (arch, op - DW_OP_reg0));
4053 break;
4054
4055 case DW_OP_regx:
4056 data = safe_read_uleb128 (data, end, &ul);
4057 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4058 locexpr_regname (arch, (int) ul));
4059 break;
4060
4061 case DW_OP_implicit_value:
4062 data = safe_read_uleb128 (data, end, &ul);
4063 data += ul;
4064 fprintf_filtered (stream, " %s", pulongest (ul));
4065 break;
4066
4067 case DW_OP_breg0:
4068 case DW_OP_breg1:
4069 case DW_OP_breg2:
4070 case DW_OP_breg3:
4071 case DW_OP_breg4:
4072 case DW_OP_breg5:
4073 case DW_OP_breg6:
4074 case DW_OP_breg7:
4075 case DW_OP_breg8:
4076 case DW_OP_breg9:
4077 case DW_OP_breg10:
4078 case DW_OP_breg11:
4079 case DW_OP_breg12:
4080 case DW_OP_breg13:
4081 case DW_OP_breg14:
4082 case DW_OP_breg15:
4083 case DW_OP_breg16:
4084 case DW_OP_breg17:
4085 case DW_OP_breg18:
4086 case DW_OP_breg19:
4087 case DW_OP_breg20:
4088 case DW_OP_breg21:
4089 case DW_OP_breg22:
4090 case DW_OP_breg23:
4091 case DW_OP_breg24:
4092 case DW_OP_breg25:
4093 case DW_OP_breg26:
4094 case DW_OP_breg27:
4095 case DW_OP_breg28:
4096 case DW_OP_breg29:
4097 case DW_OP_breg30:
4098 case DW_OP_breg31:
4099 data = safe_read_sleb128 (data, end, &l);
4100 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4101 locexpr_regname (arch, op - DW_OP_breg0));
4102 break;
4103
4104 case DW_OP_bregx:
4105 data = safe_read_uleb128 (data, end, &ul);
4106 data = safe_read_sleb128 (data, end, &l);
4107 fprintf_filtered (stream, " register %s [$%s] offset %s",
4108 pulongest (ul),
4109 locexpr_regname (arch, (int) ul),
4110 plongest (l));
4111 break;
4112
4113 case DW_OP_fbreg:
4114 data = safe_read_sleb128 (data, end, &l);
4115 fprintf_filtered (stream, " %s", plongest (l));
4116 break;
4117
4118 case DW_OP_xderef_size:
4119 case DW_OP_deref_size:
4120 case DW_OP_pick:
4121 fprintf_filtered (stream, " %d", *data);
4122 ++data;
4123 break;
4124
4125 case DW_OP_plus_uconst:
4126 data = safe_read_uleb128 (data, end, &ul);
4127 fprintf_filtered (stream, " %s", pulongest (ul));
4128 break;
4129
4130 case DW_OP_skip:
4131 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4132 data += 2;
4133 fprintf_filtered (stream, " to %ld",
4134 (long) (data + l - start));
4135 break;
4136
4137 case DW_OP_bra:
4138 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4139 data += 2;
4140 fprintf_filtered (stream, " %ld",
4141 (long) (data + l - start));
4142 break;
4143
4144 case DW_OP_call2:
4145 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4146 data += 2;
4147 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4148 break;
4149
4150 case DW_OP_call4:
4151 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4152 data += 4;
4153 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4154 break;
4155
4156 case DW_OP_call_ref:
4157 ul = extract_unsigned_integer (data, offset_size,
4158 gdbarch_byte_order (arch));
4159 data += offset_size;
4160 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4161 break;
4162
4163 case DW_OP_piece:
4164 data = safe_read_uleb128 (data, end, &ul);
4165 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4166 break;
4167
4168 case DW_OP_bit_piece:
4169 {
4170 uint64_t offset;
4171
4172 data = safe_read_uleb128 (data, end, &ul);
4173 data = safe_read_uleb128 (data, end, &offset);
4174 fprintf_filtered (stream, " size %s offset %s (bits)",
4175 pulongest (ul), pulongest (offset));
4176 }
4177 break;
4178
4179 case DW_OP_implicit_pointer:
4180 case DW_OP_GNU_implicit_pointer:
4181 {
4182 ul = extract_unsigned_integer (data, offset_size,
4183 gdbarch_byte_order (arch));
4184 data += offset_size;
4185
4186 data = safe_read_sleb128 (data, end, &l);
4187
4188 fprintf_filtered (stream, " DIE %s offset %s",
4189 phex_nz (ul, offset_size),
4190 plongest (l));
4191 }
4192 break;
4193
4194 case DW_OP_deref_type:
4195 case DW_OP_GNU_deref_type:
4196 {
4197 int addr_size = *data++;
4198 struct type *type;
4199
4200 data = safe_read_uleb128 (data, end, &ul);
4201 cu_offset offset = (cu_offset) ul;
4202 type = dwarf2_get_die_type (offset, per_cu);
4203 fprintf_filtered (stream, "<");
4204 type_print (type, "", stream, -1);
4205 fprintf_filtered (stream, " [0x%s]> %d",
4206 phex_nz (to_underlying (offset), 0),
4207 addr_size);
4208 }
4209 break;
4210
4211 case DW_OP_const_type:
4212 case DW_OP_GNU_const_type:
4213 {
4214 struct type *type;
4215
4216 data = safe_read_uleb128 (data, end, &ul);
4217 cu_offset type_die = (cu_offset) ul;
4218 type = dwarf2_get_die_type (type_die, per_cu);
4219 fprintf_filtered (stream, "<");
4220 type_print (type, "", stream, -1);
4221 fprintf_filtered (stream, " [0x%s]>",
4222 phex_nz (to_underlying (type_die), 0));
4223 }
4224 break;
4225
4226 case DW_OP_regval_type:
4227 case DW_OP_GNU_regval_type:
4228 {
4229 uint64_t reg;
4230 struct type *type;
4231
4232 data = safe_read_uleb128 (data, end, &reg);
4233 data = safe_read_uleb128 (data, end, &ul);
4234 cu_offset type_die = (cu_offset) ul;
4235
4236 type = dwarf2_get_die_type (type_die, per_cu);
4237 fprintf_filtered (stream, "<");
4238 type_print (type, "", stream, -1);
4239 fprintf_filtered (stream, " [0x%s]> [$%s]",
4240 phex_nz (to_underlying (type_die), 0),
4241 locexpr_regname (arch, reg));
4242 }
4243 break;
4244
4245 case DW_OP_convert:
4246 case DW_OP_GNU_convert:
4247 case DW_OP_reinterpret:
4248 case DW_OP_GNU_reinterpret:
4249 {
4250 data = safe_read_uleb128 (data, end, &ul);
4251 cu_offset type_die = (cu_offset) ul;
4252
4253 if (to_underlying (type_die) == 0)
4254 fprintf_filtered (stream, "<0>");
4255 else
4256 {
4257 struct type *type;
4258
4259 type = dwarf2_get_die_type (type_die, per_cu);
4260 fprintf_filtered (stream, "<");
4261 type_print (type, "", stream, -1);
4262 fprintf_filtered (stream, " [0x%s]>",
4263 phex_nz (to_underlying (type_die), 0));
4264 }
4265 }
4266 break;
4267
4268 case DW_OP_entry_value:
4269 case DW_OP_GNU_entry_value:
4270 data = safe_read_uleb128 (data, end, &ul);
4271 fputc_filtered ('\n', stream);
4272 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4273 start, data, data + ul, indent + 2,
4274 all, per_cu);
4275 data += ul;
4276 continue;
4277
4278 case DW_OP_GNU_parameter_ref:
4279 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4280 data += 4;
4281 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4282 break;
4283
4284 case DW_OP_GNU_addr_index:
4285 data = safe_read_uleb128 (data, end, &ul);
4286 ul = dwarf2_read_addr_index (per_cu, ul);
4287 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4288 break;
4289 case DW_OP_GNU_const_index:
4290 data = safe_read_uleb128 (data, end, &ul);
4291 ul = dwarf2_read_addr_index (per_cu, ul);
4292 fprintf_filtered (stream, " %s", pulongest (ul));
4293 break;
4294 }
4295
4296 fprintf_filtered (stream, "\n");
4297 }
4298
4299 return data;
4300 }
4301
4302 /* Describe a single location, which may in turn consist of multiple
4303 pieces. */
4304
4305 static void
4306 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4307 struct ui_file *stream,
4308 const gdb_byte *data, size_t size,
4309 struct objfile *objfile, unsigned int addr_size,
4310 int offset_size, struct dwarf2_per_cu_data *per_cu)
4311 {
4312 const gdb_byte *end = data + size;
4313 int first_piece = 1, bad = 0;
4314
4315 while (data < end)
4316 {
4317 const gdb_byte *here = data;
4318 int disassemble = 1;
4319
4320 if (first_piece)
4321 first_piece = 0;
4322 else
4323 fprintf_filtered (stream, _(", and "));
4324
4325 if (!dwarf_always_disassemble)
4326 {
4327 data = locexpr_describe_location_piece (symbol, stream,
4328 addr, objfile, per_cu,
4329 data, end, addr_size);
4330 /* If we printed anything, or if we have an empty piece,
4331 then don't disassemble. */
4332 if (data != here
4333 || data[0] == DW_OP_piece
4334 || data[0] == DW_OP_bit_piece)
4335 disassemble = 0;
4336 }
4337 if (disassemble)
4338 {
4339 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4340 data = disassemble_dwarf_expression (stream,
4341 get_objfile_arch (objfile),
4342 addr_size, offset_size, data,
4343 data, end, 0,
4344 dwarf_always_disassemble,
4345 per_cu);
4346 }
4347
4348 if (data < end)
4349 {
4350 int empty = data == here;
4351
4352 if (disassemble)
4353 fprintf_filtered (stream, " ");
4354 if (data[0] == DW_OP_piece)
4355 {
4356 uint64_t bytes;
4357
4358 data = safe_read_uleb128 (data + 1, end, &bytes);
4359
4360 if (empty)
4361 fprintf_filtered (stream, _("an empty %s-byte piece"),
4362 pulongest (bytes));
4363 else
4364 fprintf_filtered (stream, _(" [%s-byte piece]"),
4365 pulongest (bytes));
4366 }
4367 else if (data[0] == DW_OP_bit_piece)
4368 {
4369 uint64_t bits, offset;
4370
4371 data = safe_read_uleb128 (data + 1, end, &bits);
4372 data = safe_read_uleb128 (data, end, &offset);
4373
4374 if (empty)
4375 fprintf_filtered (stream,
4376 _("an empty %s-bit piece"),
4377 pulongest (bits));
4378 else
4379 fprintf_filtered (stream,
4380 _(" [%s-bit piece, offset %s bits]"),
4381 pulongest (bits), pulongest (offset));
4382 }
4383 else
4384 {
4385 bad = 1;
4386 break;
4387 }
4388 }
4389 }
4390
4391 if (bad || data > end)
4392 error (_("Corrupted DWARF2 expression for \"%s\"."),
4393 SYMBOL_PRINT_NAME (symbol));
4394 }
4395
4396 /* Print a natural-language description of SYMBOL to STREAM. This
4397 version is for a symbol with a single location. */
4398
4399 static void
4400 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4401 struct ui_file *stream)
4402 {
4403 struct dwarf2_locexpr_baton *dlbaton
4404 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4405 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4406 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4407 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4408
4409 locexpr_describe_location_1 (symbol, addr, stream,
4410 dlbaton->data, dlbaton->size,
4411 objfile, addr_size, offset_size,
4412 dlbaton->per_cu);
4413 }
4414
4415 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4416 any necessary bytecode in AX. */
4417
4418 static void
4419 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4420 struct agent_expr *ax, struct axs_value *value)
4421 {
4422 struct dwarf2_locexpr_baton *dlbaton
4423 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4424 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4425
4426 if (dlbaton->size == 0)
4427 value->optimized_out = 1;
4428 else
4429 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4430 dlbaton->data, dlbaton->data + dlbaton->size,
4431 dlbaton->per_cu);
4432 }
4433
4434 /* symbol_computed_ops 'generate_c_location' method. */
4435
4436 static void
4437 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4438 struct gdbarch *gdbarch,
4439 unsigned char *registers_used,
4440 CORE_ADDR pc, const char *result_name)
4441 {
4442 struct dwarf2_locexpr_baton *dlbaton
4443 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4444 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4445
4446 if (dlbaton->size == 0)
4447 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4448
4449 compile_dwarf_expr_to_c (stream, result_name,
4450 sym, pc, gdbarch, registers_used, addr_size,
4451 dlbaton->data, dlbaton->data + dlbaton->size,
4452 dlbaton->per_cu);
4453 }
4454
4455 /* The set of location functions used with the DWARF-2 expression
4456 evaluator. */
4457 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4458 locexpr_read_variable,
4459 locexpr_read_variable_at_entry,
4460 locexpr_get_symbol_read_needs,
4461 locexpr_describe_location,
4462 0, /* location_has_loclist */
4463 locexpr_tracepoint_var_ref,
4464 locexpr_generate_c_location
4465 };
4466
4467
4468 /* Wrapper functions for location lists. These generally find
4469 the appropriate location expression and call something above. */
4470
4471 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4472 evaluator to calculate the location. */
4473 static struct value *
4474 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4475 {
4476 struct dwarf2_loclist_baton *dlbaton
4477 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4478 struct value *val;
4479 const gdb_byte *data;
4480 size_t size;
4481 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4482
4483 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4484 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4485 dlbaton->per_cu);
4486
4487 return val;
4488 }
4489
4490 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4491 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4492 will be thrown.
4493
4494 Function always returns non-NULL value, it may be marked optimized out if
4495 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4496 if it cannot resolve the parameter for any reason. */
4497
4498 static struct value *
4499 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4500 {
4501 struct dwarf2_loclist_baton *dlbaton
4502 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4503 const gdb_byte *data;
4504 size_t size;
4505 CORE_ADDR pc;
4506
4507 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4508 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4509
4510 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4511 if (data == NULL)
4512 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4513
4514 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4515 }
4516
4517 /* Implementation of get_symbol_read_needs from
4518 symbol_computed_ops. */
4519
4520 static enum symbol_needs_kind
4521 loclist_symbol_needs (struct symbol *symbol)
4522 {
4523 /* If there's a location list, then assume we need to have a frame
4524 to choose the appropriate location expression. With tracking of
4525 global variables this is not necessarily true, but such tracking
4526 is disabled in GCC at the moment until we figure out how to
4527 represent it. */
4528
4529 return SYMBOL_NEEDS_FRAME;
4530 }
4531
4532 /* Print a natural-language description of SYMBOL to STREAM. This
4533 version applies when there is a list of different locations, each
4534 with a specified address range. */
4535
4536 static void
4537 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4538 struct ui_file *stream)
4539 {
4540 struct dwarf2_loclist_baton *dlbaton
4541 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4542 const gdb_byte *loc_ptr, *buf_end;
4543 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4546 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4547 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4548 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4549 /* Adjust base_address for relocatable objects. */
4550 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4551 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4552 int done = 0;
4553
4554 loc_ptr = dlbaton->data;
4555 buf_end = dlbaton->data + dlbaton->size;
4556
4557 fprintf_filtered (stream, _("multi-location:\n"));
4558
4559 /* Iterate through locations until we run out. */
4560 while (!done)
4561 {
4562 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4563 int length;
4564 enum debug_loc_kind kind;
4565 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4566
4567 if (dlbaton->from_dwo)
4568 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4569 loc_ptr, buf_end, &new_ptr,
4570 &low, &high, byte_order);
4571 else
4572 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4573 &low, &high,
4574 byte_order, addr_size,
4575 signed_addr_p);
4576 loc_ptr = new_ptr;
4577 switch (kind)
4578 {
4579 case DEBUG_LOC_END_OF_LIST:
4580 done = 1;
4581 continue;
4582 case DEBUG_LOC_BASE_ADDRESS:
4583 base_address = high + base_offset;
4584 fprintf_filtered (stream, _(" Base address %s"),
4585 paddress (gdbarch, base_address));
4586 continue;
4587 case DEBUG_LOC_START_END:
4588 case DEBUG_LOC_START_LENGTH:
4589 break;
4590 case DEBUG_LOC_BUFFER_OVERFLOW:
4591 case DEBUG_LOC_INVALID_ENTRY:
4592 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4593 SYMBOL_PRINT_NAME (symbol));
4594 default:
4595 gdb_assert_not_reached ("bad debug_loc_kind");
4596 }
4597
4598 /* Otherwise, a location expression entry. */
4599 low += base_address;
4600 high += base_address;
4601
4602 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4603 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4604
4605 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4606 loc_ptr += 2;
4607
4608 /* (It would improve readability to print only the minimum
4609 necessary digits of the second number of the range.) */
4610 fprintf_filtered (stream, _(" Range %s-%s: "),
4611 paddress (gdbarch, low), paddress (gdbarch, high));
4612
4613 /* Now describe this particular location. */
4614 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4615 objfile, addr_size, offset_size,
4616 dlbaton->per_cu);
4617
4618 fprintf_filtered (stream, "\n");
4619
4620 loc_ptr += length;
4621 }
4622 }
4623
4624 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4625 any necessary bytecode in AX. */
4626 static void
4627 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4628 struct agent_expr *ax, struct axs_value *value)
4629 {
4630 struct dwarf2_loclist_baton *dlbaton
4631 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4632 const gdb_byte *data;
4633 size_t size;
4634 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4635
4636 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4637 if (size == 0)
4638 value->optimized_out = 1;
4639 else
4640 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4641 dlbaton->per_cu);
4642 }
4643
4644 /* symbol_computed_ops 'generate_c_location' method. */
4645
4646 static void
4647 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4648 struct gdbarch *gdbarch,
4649 unsigned char *registers_used,
4650 CORE_ADDR pc, const char *result_name)
4651 {
4652 struct dwarf2_loclist_baton *dlbaton
4653 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4654 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4655 const gdb_byte *data;
4656 size_t size;
4657
4658 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4659 if (size == 0)
4660 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4661
4662 compile_dwarf_expr_to_c (stream, result_name,
4663 sym, pc, gdbarch, registers_used, addr_size,
4664 data, data + size,
4665 dlbaton->per_cu);
4666 }
4667
4668 /* The set of location functions used with the DWARF-2 expression
4669 evaluator and location lists. */
4670 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4671 loclist_read_variable,
4672 loclist_read_variable_at_entry,
4673 loclist_symbol_needs,
4674 loclist_describe_location,
4675 1, /* location_has_loclist */
4676 loclist_tracepoint_var_ref,
4677 loclist_generate_c_location
4678 };
4679
4680 /* Provide a prototype to silence -Wmissing-prototypes. */
4681 extern initialize_file_ftype _initialize_dwarf2loc;
4682
4683 void
4684 _initialize_dwarf2loc (void)
4685 {
4686 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4687 &entry_values_debug,
4688 _("Set entry values and tail call frames "
4689 "debugging."),
4690 _("Show entry values and tail call frames "
4691 "debugging."),
4692 _("When non-zero, the process of determining "
4693 "parameter values from function entry point "
4694 "and tail call frames will be printed."),
4695 NULL,
4696 show_entry_values_debug,
4697 &setdebuglist, &showdebuglist);
4698
4699 #if GDB_SELF_TEST
4700 register_self_test (selftests::copy_bitwise_tests);
4701 #endif
4702 }
This page took 0.135079 seconds and 5 git commands to generate.