[gdb/exp] Handle DW_OP_GNU_variable_value refs to abstract dies
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
47
48 extern int dwarf_always_disassemble;
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
57
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
64 static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
68 struct type *type, bool resolve_abstract_p = false);
69
70 /* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75 enum debug_loc_kind
76 {
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
94
95 /* An internal value indicating there is insufficient data. */
96 DEBUG_LOC_BUFFER_OVERFLOW = -1,
97
98 /* An internal value indicating an invalid kind of entry was found. */
99 DEBUG_LOC_INVALID_ENTRY = -2
100 };
101
102 /* Helper function which throws an error if a synthetic pointer is
103 invalid. */
104
105 static void
106 invalid_synthetic_pointer (void)
107 {
108 error (_("access outside bounds of object "
109 "referenced via synthetic pointer"));
110 }
111
112 /* Decode the addresses in a non-dwo .debug_loc entry.
113 A pointer to the next byte to examine is returned in *NEW_PTR.
114 The encoded low,high addresses are return in *LOW,*HIGH.
115 The result indicates the kind of entry found. */
116
117 static enum debug_loc_kind
118 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
119 const gdb_byte **new_ptr,
120 CORE_ADDR *low, CORE_ADDR *high,
121 enum bfd_endian byte_order,
122 unsigned int addr_size,
123 int signed_addr_p)
124 {
125 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
126
127 if (buf_end - loc_ptr < 2 * addr_size)
128 return DEBUG_LOC_BUFFER_OVERFLOW;
129
130 if (signed_addr_p)
131 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 if (signed_addr_p)
137 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
138 else
139 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
140 loc_ptr += addr_size;
141
142 *new_ptr = loc_ptr;
143
144 /* A base-address-selection entry. */
145 if ((*low & base_mask) == base_mask)
146 return DEBUG_LOC_BASE_ADDRESS;
147
148 /* An end-of-list entry. */
149 if (*low == 0 && *high == 0)
150 return DEBUG_LOC_END_OF_LIST;
151
152 return DEBUG_LOC_START_END;
153 }
154
155 /* Decode the addresses in .debug_loclists entry.
156 A pointer to the next byte to examine is returned in *NEW_PTR.
157 The encoded low,high addresses are return in *LOW,*HIGH.
158 The result indicates the kind of entry found. */
159
160 static enum debug_loc_kind
161 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
162 const gdb_byte *loc_ptr,
163 const gdb_byte *buf_end,
164 const gdb_byte **new_ptr,
165 CORE_ADDR *low, CORE_ADDR *high,
166 enum bfd_endian byte_order,
167 unsigned int addr_size,
168 int signed_addr_p)
169 {
170 uint64_t u64;
171
172 if (loc_ptr == buf_end)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174
175 switch (*loc_ptr++)
176 {
177 case DW_LLE_end_of_list:
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_END_OF_LIST;
180 case DW_LLE_base_address:
181 if (loc_ptr + addr_size > buf_end)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 if (signed_addr_p)
184 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
185 else
186 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
187 loc_ptr += addr_size;
188 *new_ptr = loc_ptr;
189 return DEBUG_LOC_BASE_ADDRESS;
190 case DW_LLE_offset_pair:
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
192 if (loc_ptr == NULL)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *low = u64;
195 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
196 if (loc_ptr == NULL)
197 return DEBUG_LOC_BUFFER_OVERFLOW;
198 *high = u64;
199 *new_ptr = loc_ptr;
200 return DEBUG_LOC_START_END;
201 default:
202 return DEBUG_LOC_INVALID_ENTRY;
203 }
204 }
205
206 /* Decode the addresses in .debug_loc.dwo entry.
207 A pointer to the next byte to examine is returned in *NEW_PTR.
208 The encoded low,high addresses are return in *LOW,*HIGH.
209 The result indicates the kind of entry found. */
210
211 static enum debug_loc_kind
212 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
213 const gdb_byte *loc_ptr,
214 const gdb_byte *buf_end,
215 const gdb_byte **new_ptr,
216 CORE_ADDR *low, CORE_ADDR *high,
217 enum bfd_endian byte_order)
218 {
219 uint64_t low_index, high_index;
220
221 if (loc_ptr == buf_end)
222 return DEBUG_LOC_BUFFER_OVERFLOW;
223
224 switch (*loc_ptr++)
225 {
226 case DW_LLE_GNU_end_of_list_entry:
227 *new_ptr = loc_ptr;
228 return DEBUG_LOC_END_OF_LIST;
229 case DW_LLE_GNU_base_address_selection_entry:
230 *low = 0;
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *high = dwarf2_read_addr_index (per_cu, high_index);
235 *new_ptr = loc_ptr;
236 return DEBUG_LOC_BASE_ADDRESS;
237 case DW_LLE_GNU_start_end_entry:
238 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
239 if (loc_ptr == NULL)
240 return DEBUG_LOC_BUFFER_OVERFLOW;
241 *low = dwarf2_read_addr_index (per_cu, low_index);
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *high = dwarf2_read_addr_index (per_cu, high_index);
246 *new_ptr = loc_ptr;
247 return DEBUG_LOC_START_END;
248 case DW_LLE_GNU_start_length_entry:
249 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
250 if (loc_ptr == NULL)
251 return DEBUG_LOC_BUFFER_OVERFLOW;
252 *low = dwarf2_read_addr_index (per_cu, low_index);
253 if (loc_ptr + 4 > buf_end)
254 return DEBUG_LOC_BUFFER_OVERFLOW;
255 *high = *low;
256 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
257 *new_ptr = loc_ptr + 4;
258 return DEBUG_LOC_START_LENGTH;
259 default:
260 return DEBUG_LOC_INVALID_ENTRY;
261 }
262 }
263
264 /* A function for dealing with location lists. Given a
265 symbol baton (BATON) and a pc value (PC), find the appropriate
266 location expression, set *LOCEXPR_LENGTH, and return a pointer
267 to the beginning of the expression. Returns NULL on failure.
268
269 For now, only return the first matching location expression; there
270 can be more than one in the list. */
271
272 const gdb_byte *
273 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
274 size_t *locexpr_length, CORE_ADDR pc)
275 {
276 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
280 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
281 /* Adjust base_address for relocatable objects. */
282 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
283 CORE_ADDR base_address = baton->base_address + base_offset;
284 const gdb_byte *loc_ptr, *buf_end;
285
286 loc_ptr = baton->data;
287 buf_end = baton->data + baton->size;
288
289 while (1)
290 {
291 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
292 int length;
293 enum debug_loc_kind kind;
294 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
295
296 if (baton->from_dwo)
297 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
298 loc_ptr, buf_end, &new_ptr,
299 &low, &high, byte_order);
300 else if (dwarf2_version (baton->per_cu) < 5)
301 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
302 &low, &high,
303 byte_order, addr_size,
304 signed_addr_p);
305 else
306 kind = decode_debug_loclists_addresses (baton->per_cu,
307 loc_ptr, buf_end, &new_ptr,
308 &low, &high, byte_order,
309 addr_size, signed_addr_p);
310
311 loc_ptr = new_ptr;
312 switch (kind)
313 {
314 case DEBUG_LOC_END_OF_LIST:
315 *locexpr_length = 0;
316 return NULL;
317 case DEBUG_LOC_BASE_ADDRESS:
318 base_address = high + base_offset;
319 continue;
320 case DEBUG_LOC_START_END:
321 case DEBUG_LOC_START_LENGTH:
322 break;
323 case DEBUG_LOC_BUFFER_OVERFLOW:
324 case DEBUG_LOC_INVALID_ENTRY:
325 error (_("dwarf2_find_location_expression: "
326 "Corrupted DWARF expression."));
327 default:
328 gdb_assert_not_reached ("bad debug_loc_kind");
329 }
330
331 /* Otherwise, a location expression entry.
332 If the entry is from a DWO, don't add base address: the entry is from
333 .debug_addr which already has the DWARF "base address". We still add
334 base_offset in case we're debugging a PIE executable. */
335 if (baton->from_dwo)
336 {
337 low += base_offset;
338 high += base_offset;
339 }
340 else
341 {
342 low += base_address;
343 high += base_address;
344 }
345
346 if (dwarf2_version (baton->per_cu) < 5)
347 {
348 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
349 loc_ptr += 2;
350 }
351 else
352 {
353 unsigned int bytes_read;
354
355 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
356 loc_ptr += bytes_read;
357 }
358
359 if (low == high && pc == low)
360 {
361 /* This is entry PC record present only at entry point
362 of a function. Verify it is really the function entry point. */
363
364 const struct block *pc_block = block_for_pc (pc);
365 struct symbol *pc_func = NULL;
366
367 if (pc_block)
368 pc_func = block_linkage_function (pc_block);
369
370 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375 }
376
377 if (pc >= low && pc < high)
378 {
379 *locexpr_length = length;
380 return loc_ptr;
381 }
382
383 loc_ptr += length;
384 }
385 }
386
387 /* This is the baton used when performing dwarf2 expression
388 evaluation. */
389 struct dwarf_expr_baton
390 {
391 struct frame_info *frame;
392 struct dwarf2_per_cu_data *per_cu;
393 CORE_ADDR obj_address;
394 };
395
396 /* Implement find_frame_base_location method for LOC_BLOCK functions using
397 DWARF expression for its DW_AT_frame_base. */
398
399 static void
400 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
401 const gdb_byte **start, size_t *length)
402 {
403 struct dwarf2_locexpr_baton *symbaton
404 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
405
406 *length = symbaton->size;
407 *start = symbaton->data;
408 }
409
410 /* Implement the struct symbol_block_ops::get_frame_base method for
411 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
412
413 static CORE_ADDR
414 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
415 {
416 struct gdbarch *gdbarch;
417 struct type *type;
418 struct dwarf2_locexpr_baton *dlbaton;
419 const gdb_byte *start;
420 size_t length;
421 struct value *result;
422
423 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
424 Thus, it's supposed to provide the find_frame_base_location method as
425 well. */
426 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
427
428 gdbarch = get_frame_arch (frame);
429 type = builtin_type (gdbarch)->builtin_data_ptr;
430 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
431
432 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
433 (framefunc, get_frame_pc (frame), &start, &length);
434 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
435 dlbaton->per_cu);
436
437 /* The DW_AT_frame_base attribute contains a location description which
438 computes the base address itself. However, the call to
439 dwarf2_evaluate_loc_desc returns a value representing a variable at
440 that address. The frame base address is thus this variable's
441 address. */
442 return value_address (result);
443 }
444
445 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
446 function uses DWARF expression for its DW_AT_frame_base. */
447
448 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
449 {
450 locexpr_find_frame_base_location,
451 locexpr_get_frame_base
452 };
453
454 /* Implement find_frame_base_location method for LOC_BLOCK functions using
455 DWARF location list for its DW_AT_frame_base. */
456
457 static void
458 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
459 const gdb_byte **start, size_t *length)
460 {
461 struct dwarf2_loclist_baton *symbaton
462 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
463
464 *start = dwarf2_find_location_expression (symbaton, length, pc);
465 }
466
467 /* Implement the struct symbol_block_ops::get_frame_base method for
468 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
469
470 static CORE_ADDR
471 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
472 {
473 struct gdbarch *gdbarch;
474 struct type *type;
475 struct dwarf2_loclist_baton *dlbaton;
476 const gdb_byte *start;
477 size_t length;
478 struct value *result;
479
480 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
481 Thus, it's supposed to provide the find_frame_base_location method as
482 well. */
483 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
484
485 gdbarch = get_frame_arch (frame);
486 type = builtin_type (gdbarch)->builtin_data_ptr;
487 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
488
489 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
490 (framefunc, get_frame_pc (frame), &start, &length);
491 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
492 dlbaton->per_cu);
493
494 /* The DW_AT_frame_base attribute contains a location description which
495 computes the base address itself. However, the call to
496 dwarf2_evaluate_loc_desc returns a value representing a variable at
497 that address. The frame base address is thus this variable's
498 address. */
499 return value_address (result);
500 }
501
502 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
503 function uses DWARF location list for its DW_AT_frame_base. */
504
505 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
506 {
507 loclist_find_frame_base_location,
508 loclist_get_frame_base
509 };
510
511 /* See dwarf2loc.h. */
512
513 void
514 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
515 const gdb_byte **start, size_t *length)
516 {
517 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
518 {
519 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
520
521 ops_block->find_frame_base_location (framefunc, pc, start, length);
522 }
523 else
524 *length = 0;
525
526 if (*length == 0)
527 error (_("Could not find the frame base for \"%s\"."),
528 SYMBOL_NATURAL_NAME (framefunc));
529 }
530
531 static CORE_ADDR
532 get_frame_pc_for_per_cu_dwarf_call (void *baton)
533 {
534 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
535
536 return ctx->get_frame_pc ();
537 }
538
539 static void
540 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
541 struct dwarf2_per_cu_data *per_cu)
542 {
543 struct dwarf2_locexpr_baton block;
544
545 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
546 get_frame_pc_for_per_cu_dwarf_call,
547 ctx);
548
549 /* DW_OP_call_ref is currently not supported. */
550 gdb_assert (block.per_cu == per_cu);
551
552 ctx->eval (block.data, block.size);
553 }
554
555 /* Given context CTX, section offset SECT_OFF, and compilation unit
556 data PER_CU, execute the "variable value" operation on the DIE
557 found at SECT_OFF. */
558
559 static struct value *
560 sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
561 struct dwarf2_per_cu_data *per_cu)
562 {
563 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
564
565 if (die_type == NULL)
566 error (_("Bad DW_OP_GNU_variable_value DIE."));
567
568 /* Note: Things still work when the following test is removed. This
569 test and error is here to conform to the proposed specification. */
570 if (TYPE_CODE (die_type) != TYPE_CODE_INT
571 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
572 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
573
574 struct type *type = lookup_pointer_type (die_type);
575 struct frame_info *frame = get_selected_frame (_("No frame selected."));
576 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
577 }
578
579 class dwarf_evaluate_loc_desc : public dwarf_expr_context
580 {
581 public:
582
583 struct frame_info *frame;
584 struct dwarf2_per_cu_data *per_cu;
585 CORE_ADDR obj_address;
586
587 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
588 the frame in BATON. */
589
590 CORE_ADDR get_frame_cfa () override
591 {
592 return dwarf2_frame_cfa (frame);
593 }
594
595 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
596 the frame in BATON. */
597
598 CORE_ADDR get_frame_pc () override
599 {
600 return get_frame_address_in_block (frame);
601 }
602
603 /* Using the objfile specified in BATON, find the address for the
604 current thread's thread-local storage with offset OFFSET. */
605 CORE_ADDR get_tls_address (CORE_ADDR offset) override
606 {
607 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
608
609 return target_translate_tls_address (objfile, offset);
610 }
611
612 /* Helper interface of per_cu_dwarf_call for
613 dwarf2_evaluate_loc_desc. */
614
615 void dwarf_call (cu_offset die_offset) override
616 {
617 per_cu_dwarf_call (this, die_offset, per_cu);
618 }
619
620 /* Helper interface of sect_variable_value for
621 dwarf2_evaluate_loc_desc. */
622
623 struct value *dwarf_variable_value (sect_offset sect_off) override
624 {
625 return sect_variable_value (this, sect_off, per_cu);
626 }
627
628 struct type *get_base_type (cu_offset die_offset, int size) override
629 {
630 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
631 if (result == NULL)
632 error (_("Could not find type for DW_OP_const_type"));
633 if (size != 0 && TYPE_LENGTH (result) != size)
634 error (_("DW_OP_const_type has different sizes for type and data"));
635 return result;
636 }
637
638 /* Callback function for dwarf2_evaluate_loc_desc.
639 Fetch the address indexed by DW_OP_GNU_addr_index. */
640
641 CORE_ADDR get_addr_index (unsigned int index) override
642 {
643 return dwarf2_read_addr_index (per_cu, index);
644 }
645
646 /* Callback function for get_object_address. Return the address of the VLA
647 object. */
648
649 CORE_ADDR get_object_address () override
650 {
651 if (obj_address == 0)
652 error (_("Location address is not set."));
653 return obj_address;
654 }
655
656 /* Execute DWARF block of call_site_parameter which matches KIND and
657 KIND_U. Choose DEREF_SIZE value of that parameter. Search
658 caller of this objects's frame.
659
660 The caller can be from a different CU - per_cu_dwarf_call
661 implementation can be more simple as it does not support cross-CU
662 DWARF executions. */
663
664 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
665 union call_site_parameter_u kind_u,
666 int deref_size) override
667 {
668 struct frame_info *caller_frame;
669 struct dwarf2_per_cu_data *caller_per_cu;
670 struct call_site_parameter *parameter;
671 const gdb_byte *data_src;
672 size_t size;
673
674 caller_frame = get_prev_frame (frame);
675
676 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
677 &caller_per_cu);
678 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
679 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
680
681 /* DEREF_SIZE size is not verified here. */
682 if (data_src == NULL)
683 throw_error (NO_ENTRY_VALUE_ERROR,
684 _("Cannot resolve DW_AT_call_data_value"));
685
686 scoped_restore save_frame = make_scoped_restore (&this->frame,
687 caller_frame);
688 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
689 caller_per_cu);
690 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
691 (CORE_ADDR) 0);
692
693 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
694 this->gdbarch
695 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
696 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
697 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
698 scoped_restore save_offset = make_scoped_restore (&this->offset);
699 this->offset = dwarf2_per_cu_text_offset (per_cu);
700
701 this->eval (data_src, size);
702 }
703
704 /* Using the frame specified in BATON, find the location expression
705 describing the frame base. Return a pointer to it in START and
706 its length in LENGTH. */
707 void get_frame_base (const gdb_byte **start, size_t * length) override
708 {
709 /* FIXME: cagney/2003-03-26: This code should be using
710 get_frame_base_address(), and then implement a dwarf2 specific
711 this_base method. */
712 struct symbol *framefunc;
713 const struct block *bl = get_frame_block (frame, NULL);
714
715 if (bl == NULL)
716 error (_("frame address is not available."));
717
718 /* Use block_linkage_function, which returns a real (not inlined)
719 function, instead of get_frame_function, which may return an
720 inlined function. */
721 framefunc = block_linkage_function (bl);
722
723 /* If we found a frame-relative symbol then it was certainly within
724 some function associated with a frame. If we can't find the frame,
725 something has gone wrong. */
726 gdb_assert (framefunc != NULL);
727
728 func_get_frame_base_dwarf_block (framefunc,
729 get_frame_address_in_block (frame),
730 start, length);
731 }
732
733 /* Read memory at ADDR (length LEN) into BUF. */
734
735 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
736 {
737 read_memory (addr, buf, len);
738 }
739
740 /* Using the frame specified in BATON, return the value of register
741 REGNUM, treated as a pointer. */
742 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
743 {
744 struct gdbarch *gdbarch = get_frame_arch (frame);
745 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
746
747 return address_from_register (regnum, frame);
748 }
749
750 /* Implement "get_reg_value" callback. */
751
752 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
753 {
754 struct gdbarch *gdbarch = get_frame_arch (frame);
755 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
756
757 return value_from_register (type, regnum, frame);
758 }
759 };
760
761 /* See dwarf2loc.h. */
762
763 unsigned int entry_values_debug = 0;
764
765 /* Helper to set entry_values_debug. */
766
767 static void
768 show_entry_values_debug (struct ui_file *file, int from_tty,
769 struct cmd_list_element *c, const char *value)
770 {
771 fprintf_filtered (file,
772 _("Entry values and tail call frames debugging is %s.\n"),
773 value);
774 }
775
776 /* Find DW_TAG_call_site's DW_AT_call_target address.
777 CALLER_FRAME (for registers) can be NULL if it is not known. This function
778 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
779
780 static CORE_ADDR
781 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
782 struct call_site *call_site,
783 struct frame_info *caller_frame)
784 {
785 switch (FIELD_LOC_KIND (call_site->target))
786 {
787 case FIELD_LOC_KIND_DWARF_BLOCK:
788 {
789 struct dwarf2_locexpr_baton *dwarf_block;
790 struct value *val;
791 struct type *caller_core_addr_type;
792 struct gdbarch *caller_arch;
793
794 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
795 if (dwarf_block == NULL)
796 {
797 struct bound_minimal_symbol msym;
798
799 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
800 throw_error (NO_ENTRY_VALUE_ERROR,
801 _("DW_AT_call_target is not specified at %s in %s"),
802 paddress (call_site_gdbarch, call_site->pc),
803 (msym.minsym == NULL ? "???"
804 : MSYMBOL_PRINT_NAME (msym.minsym)));
805
806 }
807 if (caller_frame == NULL)
808 {
809 struct bound_minimal_symbol msym;
810
811 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
812 throw_error (NO_ENTRY_VALUE_ERROR,
813 _("DW_AT_call_target DWARF block resolving "
814 "requires known frame which is currently not "
815 "available at %s in %s"),
816 paddress (call_site_gdbarch, call_site->pc),
817 (msym.minsym == NULL ? "???"
818 : MSYMBOL_PRINT_NAME (msym.minsym)));
819
820 }
821 caller_arch = get_frame_arch (caller_frame);
822 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
823 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
824 dwarf_block->data, dwarf_block->size,
825 dwarf_block->per_cu);
826 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
827 if (VALUE_LVAL (val) == lval_memory)
828 return value_address (val);
829 else
830 return value_as_address (val);
831 }
832
833 case FIELD_LOC_KIND_PHYSNAME:
834 {
835 const char *physname;
836 struct bound_minimal_symbol msym;
837
838 physname = FIELD_STATIC_PHYSNAME (call_site->target);
839
840 /* Handle both the mangled and demangled PHYSNAME. */
841 msym = lookup_minimal_symbol (physname, NULL, NULL);
842 if (msym.minsym == NULL)
843 {
844 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
845 throw_error (NO_ENTRY_VALUE_ERROR,
846 _("Cannot find function \"%s\" for a call site target "
847 "at %s in %s"),
848 physname, paddress (call_site_gdbarch, call_site->pc),
849 (msym.minsym == NULL ? "???"
850 : MSYMBOL_PRINT_NAME (msym.minsym)));
851
852 }
853 return BMSYMBOL_VALUE_ADDRESS (msym);
854 }
855
856 case FIELD_LOC_KIND_PHYSADDR:
857 return FIELD_STATIC_PHYSADDR (call_site->target);
858
859 default:
860 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
861 }
862 }
863
864 /* Convert function entry point exact address ADDR to the function which is
865 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
866 NO_ENTRY_VALUE_ERROR otherwise. */
867
868 static struct symbol *
869 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
870 {
871 struct symbol *sym = find_pc_function (addr);
872 struct type *type;
873
874 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
875 throw_error (NO_ENTRY_VALUE_ERROR,
876 _("DW_TAG_call_site resolving failed to find function "
877 "name for address %s"),
878 paddress (gdbarch, addr));
879
880 type = SYMBOL_TYPE (sym);
881 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
882 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
883
884 return sym;
885 }
886
887 /* Verify function with entry point exact address ADDR can never call itself
888 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
889 can call itself via tail calls.
890
891 If a funtion can tail call itself its entry value based parameters are
892 unreliable. There is no verification whether the value of some/all
893 parameters is unchanged through the self tail call, we expect if there is
894 a self tail call all the parameters can be modified. */
895
896 static void
897 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
898 {
899 CORE_ADDR addr;
900
901 /* The verification is completely unordered. Track here function addresses
902 which still need to be iterated. */
903 std::vector<CORE_ADDR> todo;
904
905 /* Track here CORE_ADDRs which were already visited. */
906 std::unordered_set<CORE_ADDR> addr_hash;
907
908 todo.push_back (verify_addr);
909 while (!todo.empty ())
910 {
911 struct symbol *func_sym;
912 struct call_site *call_site;
913
914 addr = todo.back ();
915 todo.pop_back ();
916
917 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
918
919 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
920 call_site; call_site = call_site->tail_call_next)
921 {
922 CORE_ADDR target_addr;
923
924 /* CALLER_FRAME with registers is not available for tail-call jumped
925 frames. */
926 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
927
928 if (target_addr == verify_addr)
929 {
930 struct bound_minimal_symbol msym;
931
932 msym = lookup_minimal_symbol_by_pc (verify_addr);
933 throw_error (NO_ENTRY_VALUE_ERROR,
934 _("DW_OP_entry_value resolving has found "
935 "function \"%s\" at %s can call itself via tail "
936 "calls"),
937 (msym.minsym == NULL ? "???"
938 : MSYMBOL_PRINT_NAME (msym.minsym)),
939 paddress (gdbarch, verify_addr));
940 }
941
942 if (addr_hash.insert (target_addr).second)
943 todo.push_back (target_addr);
944 }
945 }
946 }
947
948 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
949 ENTRY_VALUES_DEBUG. */
950
951 static void
952 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
953 {
954 CORE_ADDR addr = call_site->pc;
955 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
956
957 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
958 (msym.minsym == NULL ? "???"
959 : MSYMBOL_PRINT_NAME (msym.minsym)));
960
961 }
962
963 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
964 only top callers and bottom callees which are present in both. GDBARCH is
965 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
966 no remaining possibilities to provide unambiguous non-trivial result.
967 RESULTP should point to NULL on the first (initialization) call. Caller is
968 responsible for xfree of any RESULTP data. */
969
970 static void
971 chain_candidate (struct gdbarch *gdbarch,
972 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
973 std::vector<struct call_site *> *chain)
974 {
975 long length = chain->size ();
976 int callers, callees, idx;
977
978 if (*resultp == NULL)
979 {
980 /* Create the initial chain containing all the passed PCs. */
981
982 struct call_site_chain *result
983 = ((struct call_site_chain *)
984 xmalloc (sizeof (*result)
985 + sizeof (*result->call_site) * (length - 1)));
986 result->length = length;
987 result->callers = result->callees = length;
988 if (!chain->empty ())
989 memcpy (result->call_site, chain->data (),
990 sizeof (*result->call_site) * length);
991 resultp->reset (result);
992
993 if (entry_values_debug)
994 {
995 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
996 for (idx = 0; idx < length; idx++)
997 tailcall_dump (gdbarch, result->call_site[idx]);
998 fputc_unfiltered ('\n', gdb_stdlog);
999 }
1000
1001 return;
1002 }
1003
1004 if (entry_values_debug)
1005 {
1006 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1007 for (idx = 0; idx < length; idx++)
1008 tailcall_dump (gdbarch, chain->at (idx));
1009 fputc_unfiltered ('\n', gdb_stdlog);
1010 }
1011
1012 /* Intersect callers. */
1013
1014 callers = std::min ((long) (*resultp)->callers, length);
1015 for (idx = 0; idx < callers; idx++)
1016 if ((*resultp)->call_site[idx] != chain->at (idx))
1017 {
1018 (*resultp)->callers = idx;
1019 break;
1020 }
1021
1022 /* Intersect callees. */
1023
1024 callees = std::min ((long) (*resultp)->callees, length);
1025 for (idx = 0; idx < callees; idx++)
1026 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1027 != chain->at (length - 1 - idx))
1028 {
1029 (*resultp)->callees = idx;
1030 break;
1031 }
1032
1033 if (entry_values_debug)
1034 {
1035 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
1036 for (idx = 0; idx < (*resultp)->callers; idx++)
1037 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1038 fputs_unfiltered (" |", gdb_stdlog);
1039 for (idx = 0; idx < (*resultp)->callees; idx++)
1040 tailcall_dump (gdbarch,
1041 (*resultp)->call_site[(*resultp)->length
1042 - (*resultp)->callees + idx]);
1043 fputc_unfiltered ('\n', gdb_stdlog);
1044 }
1045
1046 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1047 {
1048 /* There are no common callers or callees. It could be also a direct
1049 call (which has length 0) with ambiguous possibility of an indirect
1050 call - CALLERS == CALLEES == 0 is valid during the first allocation
1051 but any subsequence processing of such entry means ambiguity. */
1052 resultp->reset (NULL);
1053 return;
1054 }
1055
1056 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1057 PC again. In such case there must be two different code paths to reach
1058 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1059 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1060 }
1061
1062 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1063 assumed frames between them use GDBARCH. Use depth first search so we can
1064 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1065 would have needless GDB stack overhead. Caller is responsible for xfree of
1066 the returned result. Any unreliability results in thrown
1067 NO_ENTRY_VALUE_ERROR. */
1068
1069 static struct call_site_chain *
1070 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1071 CORE_ADDR callee_pc)
1072 {
1073 CORE_ADDR save_callee_pc = callee_pc;
1074 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1075 struct call_site *call_site;
1076
1077 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1078 call_site nor any possible call_site at CALLEE_PC's function is there.
1079 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1080 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1081 std::vector<struct call_site *> chain;
1082
1083 /* We are not interested in the specific PC inside the callee function. */
1084 callee_pc = get_pc_function_start (callee_pc);
1085 if (callee_pc == 0)
1086 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1087 paddress (gdbarch, save_callee_pc));
1088
1089 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1090 std::unordered_set<CORE_ADDR> addr_hash;
1091
1092 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1093 at the target's function. All the possible tail call sites in the
1094 target's function will get iterated as already pushed into CHAIN via their
1095 TAIL_CALL_NEXT. */
1096 call_site = call_site_for_pc (gdbarch, caller_pc);
1097
1098 while (call_site)
1099 {
1100 CORE_ADDR target_func_addr;
1101 struct call_site *target_call_site;
1102
1103 /* CALLER_FRAME with registers is not available for tail-call jumped
1104 frames. */
1105 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1106
1107 if (target_func_addr == callee_pc)
1108 {
1109 chain_candidate (gdbarch, &retval, &chain);
1110 if (retval == NULL)
1111 break;
1112
1113 /* There is no way to reach CALLEE_PC again as we would prevent
1114 entering it twice as being already marked in ADDR_HASH. */
1115 target_call_site = NULL;
1116 }
1117 else
1118 {
1119 struct symbol *target_func;
1120
1121 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1122 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1123 }
1124
1125 do
1126 {
1127 /* Attempt to visit TARGET_CALL_SITE. */
1128
1129 if (target_call_site)
1130 {
1131 if (addr_hash.insert (target_call_site->pc).second)
1132 {
1133 /* Successfully entered TARGET_CALL_SITE. */
1134
1135 chain.push_back (target_call_site);
1136 break;
1137 }
1138 }
1139
1140 /* Backtrack (without revisiting the originating call_site). Try the
1141 callers's sibling; if there isn't any try the callers's callers's
1142 sibling etc. */
1143
1144 target_call_site = NULL;
1145 while (!chain.empty ())
1146 {
1147 call_site = chain.back ();
1148 chain.pop_back ();
1149
1150 size_t removed = addr_hash.erase (call_site->pc);
1151 gdb_assert (removed == 1);
1152
1153 target_call_site = call_site->tail_call_next;
1154 if (target_call_site)
1155 break;
1156 }
1157 }
1158 while (target_call_site);
1159
1160 if (chain.empty ())
1161 call_site = NULL;
1162 else
1163 call_site = chain.back ();
1164 }
1165
1166 if (retval == NULL)
1167 {
1168 struct bound_minimal_symbol msym_caller, msym_callee;
1169
1170 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1171 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1172 throw_error (NO_ENTRY_VALUE_ERROR,
1173 _("There are no unambiguously determinable intermediate "
1174 "callers or callees between caller function \"%s\" at %s "
1175 "and callee function \"%s\" at %s"),
1176 (msym_caller.minsym == NULL
1177 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1178 paddress (gdbarch, caller_pc),
1179 (msym_callee.minsym == NULL
1180 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1181 paddress (gdbarch, callee_pc));
1182 }
1183
1184 return retval.release ();
1185 }
1186
1187 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1188 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1189 constructed return NULL. Caller is responsible for xfree of the returned
1190 result. */
1191
1192 struct call_site_chain *
1193 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1194 CORE_ADDR callee_pc)
1195 {
1196 struct call_site_chain *retval = NULL;
1197
1198 TRY
1199 {
1200 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1201 }
1202 CATCH (e, RETURN_MASK_ERROR)
1203 {
1204 if (e.error == NO_ENTRY_VALUE_ERROR)
1205 {
1206 if (entry_values_debug)
1207 exception_print (gdb_stdout, e);
1208
1209 return NULL;
1210 }
1211 else
1212 throw_exception (e);
1213 }
1214 END_CATCH
1215
1216 return retval;
1217 }
1218
1219 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1220
1221 static int
1222 call_site_parameter_matches (struct call_site_parameter *parameter,
1223 enum call_site_parameter_kind kind,
1224 union call_site_parameter_u kind_u)
1225 {
1226 if (kind == parameter->kind)
1227 switch (kind)
1228 {
1229 case CALL_SITE_PARAMETER_DWARF_REG:
1230 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1231 case CALL_SITE_PARAMETER_FB_OFFSET:
1232 return kind_u.fb_offset == parameter->u.fb_offset;
1233 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1234 return kind_u.param_cu_off == parameter->u.param_cu_off;
1235 }
1236 return 0;
1237 }
1238
1239 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1240 FRAME is for callee.
1241
1242 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1243 otherwise. */
1244
1245 static struct call_site_parameter *
1246 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1247 enum call_site_parameter_kind kind,
1248 union call_site_parameter_u kind_u,
1249 struct dwarf2_per_cu_data **per_cu_return)
1250 {
1251 CORE_ADDR func_addr, caller_pc;
1252 struct gdbarch *gdbarch;
1253 struct frame_info *caller_frame;
1254 struct call_site *call_site;
1255 int iparams;
1256 /* Initialize it just to avoid a GCC false warning. */
1257 struct call_site_parameter *parameter = NULL;
1258 CORE_ADDR target_addr;
1259
1260 while (get_frame_type (frame) == INLINE_FRAME)
1261 {
1262 frame = get_prev_frame (frame);
1263 gdb_assert (frame != NULL);
1264 }
1265
1266 func_addr = get_frame_func (frame);
1267 gdbarch = get_frame_arch (frame);
1268 caller_frame = get_prev_frame (frame);
1269 if (gdbarch != frame_unwind_arch (frame))
1270 {
1271 struct bound_minimal_symbol msym
1272 = lookup_minimal_symbol_by_pc (func_addr);
1273 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1274
1275 throw_error (NO_ENTRY_VALUE_ERROR,
1276 _("DW_OP_entry_value resolving callee gdbarch %s "
1277 "(of %s (%s)) does not match caller gdbarch %s"),
1278 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1279 paddress (gdbarch, func_addr),
1280 (msym.minsym == NULL ? "???"
1281 : MSYMBOL_PRINT_NAME (msym.minsym)),
1282 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1283 }
1284
1285 if (caller_frame == NULL)
1286 {
1287 struct bound_minimal_symbol msym
1288 = lookup_minimal_symbol_by_pc (func_addr);
1289
1290 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1291 "requires caller of %s (%s)"),
1292 paddress (gdbarch, func_addr),
1293 (msym.minsym == NULL ? "???"
1294 : MSYMBOL_PRINT_NAME (msym.minsym)));
1295 }
1296 caller_pc = get_frame_pc (caller_frame);
1297 call_site = call_site_for_pc (gdbarch, caller_pc);
1298
1299 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1300 if (target_addr != func_addr)
1301 {
1302 struct minimal_symbol *target_msym, *func_msym;
1303
1304 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1305 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1306 throw_error (NO_ENTRY_VALUE_ERROR,
1307 _("DW_OP_entry_value resolving expects callee %s at %s "
1308 "but the called frame is for %s at %s"),
1309 (target_msym == NULL ? "???"
1310 : MSYMBOL_PRINT_NAME (target_msym)),
1311 paddress (gdbarch, target_addr),
1312 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1313 paddress (gdbarch, func_addr));
1314 }
1315
1316 /* No entry value based parameters would be reliable if this function can
1317 call itself via tail calls. */
1318 func_verify_no_selftailcall (gdbarch, func_addr);
1319
1320 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1321 {
1322 parameter = &call_site->parameter[iparams];
1323 if (call_site_parameter_matches (parameter, kind, kind_u))
1324 break;
1325 }
1326 if (iparams == call_site->parameter_count)
1327 {
1328 struct minimal_symbol *msym
1329 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1330
1331 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1332 determine its value. */
1333 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1334 "at DW_TAG_call_site %s at %s"),
1335 paddress (gdbarch, caller_pc),
1336 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1337 }
1338
1339 *per_cu_return = call_site->per_cu;
1340 return parameter;
1341 }
1342
1343 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1344 the normal DW_AT_call_value block. Otherwise return the
1345 DW_AT_call_data_value (dereferenced) block.
1346
1347 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1348 struct value.
1349
1350 Function always returns non-NULL, non-optimized out value. It throws
1351 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1352
1353 static struct value *
1354 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1355 CORE_ADDR deref_size, struct type *type,
1356 struct frame_info *caller_frame,
1357 struct dwarf2_per_cu_data *per_cu)
1358 {
1359 const gdb_byte *data_src;
1360 gdb_byte *data;
1361 size_t size;
1362
1363 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1364 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1365
1366 /* DEREF_SIZE size is not verified here. */
1367 if (data_src == NULL)
1368 throw_error (NO_ENTRY_VALUE_ERROR,
1369 _("Cannot resolve DW_AT_call_data_value"));
1370
1371 /* DW_AT_call_value is a DWARF expression, not a DWARF
1372 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1373 DWARF block. */
1374 data = (gdb_byte *) alloca (size + 1);
1375 memcpy (data, data_src, size);
1376 data[size] = DW_OP_stack_value;
1377
1378 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1379 }
1380
1381 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1382 the indirect method on it, that is use its stored target value, the sole
1383 purpose of entry_data_value_funcs.. */
1384
1385 static struct value *
1386 entry_data_value_coerce_ref (const struct value *value)
1387 {
1388 struct type *checked_type = check_typedef (value_type (value));
1389 struct value *target_val;
1390
1391 if (!TYPE_IS_REFERENCE (checked_type))
1392 return NULL;
1393
1394 target_val = (struct value *) value_computed_closure (value);
1395 value_incref (target_val);
1396 return target_val;
1397 }
1398
1399 /* Implement copy_closure. */
1400
1401 static void *
1402 entry_data_value_copy_closure (const struct value *v)
1403 {
1404 struct value *target_val = (struct value *) value_computed_closure (v);
1405
1406 value_incref (target_val);
1407 return target_val;
1408 }
1409
1410 /* Implement free_closure. */
1411
1412 static void
1413 entry_data_value_free_closure (struct value *v)
1414 {
1415 struct value *target_val = (struct value *) value_computed_closure (v);
1416
1417 value_decref (target_val);
1418 }
1419
1420 /* Vector for methods for an entry value reference where the referenced value
1421 is stored in the caller. On the first dereference use
1422 DW_AT_call_data_value in the caller. */
1423
1424 static const struct lval_funcs entry_data_value_funcs =
1425 {
1426 NULL, /* read */
1427 NULL, /* write */
1428 NULL, /* indirect */
1429 entry_data_value_coerce_ref,
1430 NULL, /* check_synthetic_pointer */
1431 entry_data_value_copy_closure,
1432 entry_data_value_free_closure
1433 };
1434
1435 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1436 are used to match DW_AT_location at the caller's
1437 DW_TAG_call_site_parameter.
1438
1439 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1440 cannot resolve the parameter for any reason. */
1441
1442 static struct value *
1443 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1444 enum call_site_parameter_kind kind,
1445 union call_site_parameter_u kind_u)
1446 {
1447 struct type *checked_type = check_typedef (type);
1448 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1449 struct frame_info *caller_frame = get_prev_frame (frame);
1450 struct value *outer_val, *target_val, *val;
1451 struct call_site_parameter *parameter;
1452 struct dwarf2_per_cu_data *caller_per_cu;
1453
1454 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1455 &caller_per_cu);
1456
1457 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1458 type, caller_frame,
1459 caller_per_cu);
1460
1461 /* Check if DW_AT_call_data_value cannot be used. If it should be
1462 used and it is not available do not fall back to OUTER_VAL - dereferencing
1463 TYPE_CODE_REF with non-entry data value would give current value - not the
1464 entry value. */
1465
1466 if (!TYPE_IS_REFERENCE (checked_type)
1467 || TYPE_TARGET_TYPE (checked_type) == NULL)
1468 return outer_val;
1469
1470 target_val = dwarf_entry_parameter_to_value (parameter,
1471 TYPE_LENGTH (target_type),
1472 target_type, caller_frame,
1473 caller_per_cu);
1474
1475 release_value (target_val).release ();
1476 val = allocate_computed_value (type, &entry_data_value_funcs,
1477 target_val /* closure */);
1478
1479 /* Copy the referencing pointer to the new computed value. */
1480 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1481 TYPE_LENGTH (checked_type));
1482 set_value_lazy (val, 0);
1483
1484 return val;
1485 }
1486
1487 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1488 SIZE are DWARF block used to match DW_AT_location at the caller's
1489 DW_TAG_call_site_parameter.
1490
1491 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1492 cannot resolve the parameter for any reason. */
1493
1494 static struct value *
1495 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1496 const gdb_byte *block, size_t block_len)
1497 {
1498 union call_site_parameter_u kind_u;
1499
1500 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1501 if (kind_u.dwarf_reg != -1)
1502 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1503 kind_u);
1504
1505 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1506 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1507 kind_u);
1508
1509 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1510 suppressed during normal operation. The expression can be arbitrary if
1511 there is no caller-callee entry value binding expected. */
1512 throw_error (NO_ENTRY_VALUE_ERROR,
1513 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1514 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1515 }
1516
1517 struct piece_closure
1518 {
1519 /* Reference count. */
1520 int refc = 0;
1521
1522 /* The CU from which this closure's expression came. */
1523 struct dwarf2_per_cu_data *per_cu = NULL;
1524
1525 /* The pieces describing this variable. */
1526 std::vector<dwarf_expr_piece> pieces;
1527
1528 /* Frame ID of frame to which a register value is relative, used
1529 only by DWARF_VALUE_REGISTER. */
1530 struct frame_id frame_id;
1531 };
1532
1533 /* Allocate a closure for a value formed from separately-described
1534 PIECES. */
1535
1536 static struct piece_closure *
1537 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1538 std::vector<dwarf_expr_piece> &&pieces,
1539 struct frame_info *frame)
1540 {
1541 struct piece_closure *c = new piece_closure;
1542
1543 c->refc = 1;
1544 c->per_cu = per_cu;
1545 c->pieces = std::move (pieces);
1546 if (frame == NULL)
1547 c->frame_id = null_frame_id;
1548 else
1549 c->frame_id = get_frame_id (frame);
1550
1551 for (dwarf_expr_piece &piece : c->pieces)
1552 if (piece.location == DWARF_VALUE_STACK)
1553 value_incref (piece.v.value);
1554
1555 return c;
1556 }
1557
1558 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1559 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1560 Source and destination buffers must not overlap. */
1561
1562 static void
1563 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1564 const gdb_byte *source, ULONGEST source_offset,
1565 ULONGEST nbits, int bits_big_endian)
1566 {
1567 unsigned int buf, avail;
1568
1569 if (nbits == 0)
1570 return;
1571
1572 if (bits_big_endian)
1573 {
1574 /* Start from the end, then work backwards. */
1575 dest_offset += nbits - 1;
1576 dest += dest_offset / 8;
1577 dest_offset = 7 - dest_offset % 8;
1578 source_offset += nbits - 1;
1579 source += source_offset / 8;
1580 source_offset = 7 - source_offset % 8;
1581 }
1582 else
1583 {
1584 dest += dest_offset / 8;
1585 dest_offset %= 8;
1586 source += source_offset / 8;
1587 source_offset %= 8;
1588 }
1589
1590 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1591 SOURCE_OFFSET bits from the source. */
1592 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1593 buf <<= dest_offset;
1594 buf |= *dest & ((1 << dest_offset) - 1);
1595
1596 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1597 nbits += dest_offset;
1598 avail = dest_offset + 8 - source_offset;
1599
1600 /* Flush 8 bits from BUF, if appropriate. */
1601 if (nbits >= 8 && avail >= 8)
1602 {
1603 *(bits_big_endian ? dest-- : dest++) = buf;
1604 buf >>= 8;
1605 avail -= 8;
1606 nbits -= 8;
1607 }
1608
1609 /* Copy the middle part. */
1610 if (nbits >= 8)
1611 {
1612 size_t len = nbits / 8;
1613
1614 /* Use a faster method for byte-aligned copies. */
1615 if (avail == 0)
1616 {
1617 if (bits_big_endian)
1618 {
1619 dest -= len;
1620 source -= len;
1621 memcpy (dest + 1, source + 1, len);
1622 }
1623 else
1624 {
1625 memcpy (dest, source, len);
1626 dest += len;
1627 source += len;
1628 }
1629 }
1630 else
1631 {
1632 while (len--)
1633 {
1634 buf |= *(bits_big_endian ? source-- : source++) << avail;
1635 *(bits_big_endian ? dest-- : dest++) = buf;
1636 buf >>= 8;
1637 }
1638 }
1639 nbits %= 8;
1640 }
1641
1642 /* Write the last byte. */
1643 if (nbits)
1644 {
1645 if (avail < nbits)
1646 buf |= *source << avail;
1647
1648 buf &= (1 << nbits) - 1;
1649 *dest = (*dest & (~0 << nbits)) | buf;
1650 }
1651 }
1652
1653 #if GDB_SELF_TEST
1654
1655 namespace selftests {
1656
1657 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1658 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1659 specifies whether to assume big endian bit numbering. Store the
1660 resulting (not null-terminated) string at STR. */
1661
1662 static void
1663 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1664 ULONGEST nbits, int msb0)
1665 {
1666 unsigned int j;
1667 size_t i;
1668
1669 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1670 {
1671 unsigned int ch = bits[i];
1672 for (; j < 8 && nbits; j++, nbits--)
1673 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1674 }
1675 }
1676
1677 /* Check one invocation of copy_bitwise with the given parameters. */
1678
1679 static void
1680 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1681 const gdb_byte *source, unsigned int source_offset,
1682 unsigned int nbits, int msb0)
1683 {
1684 size_t len = align_up (dest_offset + nbits, 8);
1685 char *expected = (char *) alloca (len + 1);
1686 char *actual = (char *) alloca (len + 1);
1687 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1688
1689 /* Compose a '0'/'1'-string that represents the expected result of
1690 copy_bitwise below:
1691 Bits from [0, DEST_OFFSET) are filled from DEST.
1692 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1693 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1694
1695 E.g., with:
1696 dest_offset: 4
1697 nbits: 2
1698 len: 8
1699 dest: 00000000
1700 source: 11111111
1701
1702 We should end up with:
1703 buf: 00001100
1704 DDDDSSDD (D=dest, S=source)
1705 */
1706 bits_to_str (expected, dest, 0, len, msb0);
1707 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1708
1709 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1710 result to a '0'/'1'-string. */
1711 memcpy (buf, dest, len / 8);
1712 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1713 bits_to_str (actual, buf, 0, len, msb0);
1714
1715 /* Compare the resulting strings. */
1716 expected[len] = actual[len] = '\0';
1717 if (strcmp (expected, actual) != 0)
1718 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1719 expected, actual, source_offset, nbits, dest_offset);
1720 }
1721
1722 /* Unit test for copy_bitwise. */
1723
1724 static void
1725 copy_bitwise_tests (void)
1726 {
1727 /* Data to be used as both source and destination buffers. The two
1728 arrays below represent the lsb0- and msb0- encoded versions of the
1729 following bit string, respectively:
1730 00000000 00011111 11111111 01001000 10100101 11110010
1731 This pattern is chosen such that it contains:
1732 - constant 0- and 1- chunks of more than a full byte;
1733 - 0/1- and 1/0 transitions on all bit positions within a byte;
1734 - several sufficiently asymmetric bytes.
1735 */
1736 static const gdb_byte data_lsb0[] = {
1737 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1738 };
1739 static const gdb_byte data_msb0[] = {
1740 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1741 };
1742
1743 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1744 constexpr unsigned max_nbits = 24;
1745
1746 /* Try all combinations of:
1747 lsb0/msb0 bit order (using the respective data array)
1748 X [0, MAX_NBITS] copy bit width
1749 X feasible source offsets for the given copy bit width
1750 X feasible destination offsets
1751 */
1752 for (int msb0 = 0; msb0 < 2; msb0++)
1753 {
1754 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1755
1756 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1757 {
1758 const unsigned int max_offset = data_nbits - nbits;
1759
1760 for (unsigned source_offset = 0;
1761 source_offset <= max_offset;
1762 source_offset++)
1763 {
1764 for (unsigned dest_offset = 0;
1765 dest_offset <= max_offset;
1766 dest_offset++)
1767 {
1768 check_copy_bitwise (data + dest_offset / 8,
1769 dest_offset % 8,
1770 data + source_offset / 8,
1771 source_offset % 8,
1772 nbits, msb0);
1773 }
1774 }
1775 }
1776
1777 /* Special cases: copy all, copy nothing. */
1778 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1779 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1780 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1781 }
1782 }
1783
1784 } /* namespace selftests */
1785
1786 #endif /* GDB_SELF_TEST */
1787
1788 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1789 bits whose first bit is located at bit offset START. */
1790
1791 static size_t
1792 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1793 {
1794 return (start % 8 + n_bits + 7) / 8;
1795 }
1796
1797 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1798 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1799 operate in "read mode": fetch the contents of the (lazy) value V by
1800 composing it from its pieces. */
1801
1802 static void
1803 rw_pieced_value (struct value *v, struct value *from)
1804 {
1805 int i;
1806 LONGEST offset = 0, max_offset;
1807 ULONGEST bits_to_skip;
1808 gdb_byte *v_contents;
1809 const gdb_byte *from_contents;
1810 struct piece_closure *c
1811 = (struct piece_closure *) value_computed_closure (v);
1812 gdb::byte_vector buffer;
1813 int bits_big_endian
1814 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1815
1816 if (from != NULL)
1817 {
1818 from_contents = value_contents (from);
1819 v_contents = NULL;
1820 }
1821 else
1822 {
1823 if (value_type (v) != value_enclosing_type (v))
1824 internal_error (__FILE__, __LINE__,
1825 _("Should not be able to create a lazy value with "
1826 "an enclosing type"));
1827 v_contents = value_contents_raw (v);
1828 from_contents = NULL;
1829 }
1830
1831 bits_to_skip = 8 * value_offset (v);
1832 if (value_bitsize (v))
1833 {
1834 bits_to_skip += (8 * value_offset (value_parent (v))
1835 + value_bitpos (v));
1836 if (from != NULL
1837 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1838 == BFD_ENDIAN_BIG))
1839 {
1840 /* Use the least significant bits of FROM. */
1841 max_offset = 8 * TYPE_LENGTH (value_type (from));
1842 offset = max_offset - value_bitsize (v);
1843 }
1844 else
1845 max_offset = value_bitsize (v);
1846 }
1847 else
1848 max_offset = 8 * TYPE_LENGTH (value_type (v));
1849
1850 /* Advance to the first non-skipped piece. */
1851 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1852 bits_to_skip -= c->pieces[i].size;
1853
1854 for (; i < c->pieces.size () && offset < max_offset; i++)
1855 {
1856 struct dwarf_expr_piece *p = &c->pieces[i];
1857 size_t this_size_bits, this_size;
1858
1859 this_size_bits = p->size - bits_to_skip;
1860 if (this_size_bits > max_offset - offset)
1861 this_size_bits = max_offset - offset;
1862
1863 switch (p->location)
1864 {
1865 case DWARF_VALUE_REGISTER:
1866 {
1867 struct frame_info *frame = frame_find_by_id (c->frame_id);
1868 struct gdbarch *arch = get_frame_arch (frame);
1869 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1870 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1871 int optim, unavail;
1872
1873 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1874 && p->offset + p->size < reg_bits)
1875 {
1876 /* Big-endian, and we want less than full size. */
1877 bits_to_skip += reg_bits - (p->offset + p->size);
1878 }
1879 else
1880 bits_to_skip += p->offset;
1881
1882 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1883 buffer.resize (this_size);
1884
1885 if (from == NULL)
1886 {
1887 /* Read mode. */
1888 if (!get_frame_register_bytes (frame, gdb_regnum,
1889 bits_to_skip / 8,
1890 this_size, buffer.data (),
1891 &optim, &unavail))
1892 {
1893 if (optim)
1894 mark_value_bits_optimized_out (v, offset,
1895 this_size_bits);
1896 if (unavail)
1897 mark_value_bits_unavailable (v, offset,
1898 this_size_bits);
1899 break;
1900 }
1901
1902 copy_bitwise (v_contents, offset,
1903 buffer.data (), bits_to_skip % 8,
1904 this_size_bits, bits_big_endian);
1905 }
1906 else
1907 {
1908 /* Write mode. */
1909 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1910 {
1911 /* Data is copied non-byte-aligned into the register.
1912 Need some bits from original register value. */
1913 get_frame_register_bytes (frame, gdb_regnum,
1914 bits_to_skip / 8,
1915 this_size, buffer.data (),
1916 &optim, &unavail);
1917 if (optim)
1918 throw_error (OPTIMIZED_OUT_ERROR,
1919 _("Can't do read-modify-write to "
1920 "update bitfield; containing word "
1921 "has been optimized out"));
1922 if (unavail)
1923 throw_error (NOT_AVAILABLE_ERROR,
1924 _("Can't do read-modify-write to "
1925 "update bitfield; containing word "
1926 "is unavailable"));
1927 }
1928
1929 copy_bitwise (buffer.data (), bits_to_skip % 8,
1930 from_contents, offset,
1931 this_size_bits, bits_big_endian);
1932 put_frame_register_bytes (frame, gdb_regnum,
1933 bits_to_skip / 8,
1934 this_size, buffer.data ());
1935 }
1936 }
1937 break;
1938
1939 case DWARF_VALUE_MEMORY:
1940 {
1941 bits_to_skip += p->offset;
1942
1943 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1944
1945 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1946 && offset % 8 == 0)
1947 {
1948 /* Everything is byte-aligned; no buffer needed. */
1949 if (from != NULL)
1950 write_memory_with_notification (start_addr,
1951 (from_contents
1952 + offset / 8),
1953 this_size_bits / 8);
1954 else
1955 read_value_memory (v, offset,
1956 p->v.mem.in_stack_memory,
1957 p->v.mem.addr + bits_to_skip / 8,
1958 v_contents + offset / 8,
1959 this_size_bits / 8);
1960 break;
1961 }
1962
1963 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1964 buffer.resize (this_size);
1965
1966 if (from == NULL)
1967 {
1968 /* Read mode. */
1969 read_value_memory (v, offset,
1970 p->v.mem.in_stack_memory,
1971 p->v.mem.addr + bits_to_skip / 8,
1972 buffer.data (), this_size);
1973 copy_bitwise (v_contents, offset,
1974 buffer.data (), bits_to_skip % 8,
1975 this_size_bits, bits_big_endian);
1976 }
1977 else
1978 {
1979 /* Write mode. */
1980 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1981 {
1982 if (this_size <= 8)
1983 {
1984 /* Perform a single read for small sizes. */
1985 read_memory (start_addr, buffer.data (),
1986 this_size);
1987 }
1988 else
1989 {
1990 /* Only the first and last bytes can possibly have
1991 any bits reused. */
1992 read_memory (start_addr, buffer.data (), 1);
1993 read_memory (start_addr + this_size - 1,
1994 &buffer[this_size - 1], 1);
1995 }
1996 }
1997
1998 copy_bitwise (buffer.data (), bits_to_skip % 8,
1999 from_contents, offset,
2000 this_size_bits, bits_big_endian);
2001 write_memory_with_notification (start_addr,
2002 buffer.data (),
2003 this_size);
2004 }
2005 }
2006 break;
2007
2008 case DWARF_VALUE_STACK:
2009 {
2010 if (from != NULL)
2011 {
2012 mark_value_bits_optimized_out (v, offset, this_size_bits);
2013 break;
2014 }
2015
2016 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
2017 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2018 ULONGEST stack_value_size_bits
2019 = 8 * TYPE_LENGTH (value_type (p->v.value));
2020
2021 /* Use zeroes if piece reaches beyond stack value. */
2022 if (p->offset + p->size > stack_value_size_bits)
2023 break;
2024
2025 /* Piece is anchored at least significant bit end. */
2026 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2027 bits_to_skip += stack_value_size_bits - p->offset - p->size;
2028 else
2029 bits_to_skip += p->offset;
2030
2031 copy_bitwise (v_contents, offset,
2032 value_contents_all (p->v.value),
2033 bits_to_skip,
2034 this_size_bits, bits_big_endian);
2035 }
2036 break;
2037
2038 case DWARF_VALUE_LITERAL:
2039 {
2040 if (from != NULL)
2041 {
2042 mark_value_bits_optimized_out (v, offset, this_size_bits);
2043 break;
2044 }
2045
2046 ULONGEST literal_size_bits = 8 * p->v.literal.length;
2047 size_t n = this_size_bits;
2048
2049 /* Cut off at the end of the implicit value. */
2050 bits_to_skip += p->offset;
2051 if (bits_to_skip >= literal_size_bits)
2052 break;
2053 if (n > literal_size_bits - bits_to_skip)
2054 n = literal_size_bits - bits_to_skip;
2055
2056 copy_bitwise (v_contents, offset,
2057 p->v.literal.data, bits_to_skip,
2058 n, bits_big_endian);
2059 }
2060 break;
2061
2062 case DWARF_VALUE_IMPLICIT_POINTER:
2063 if (from != NULL)
2064 {
2065 mark_value_bits_optimized_out (v, offset, this_size_bits);
2066 break;
2067 }
2068
2069 /* These bits show up as zeros -- but do not cause the value to
2070 be considered optimized-out. */
2071 break;
2072
2073 case DWARF_VALUE_OPTIMIZED_OUT:
2074 mark_value_bits_optimized_out (v, offset, this_size_bits);
2075 break;
2076
2077 default:
2078 internal_error (__FILE__, __LINE__, _("invalid location type"));
2079 }
2080
2081 offset += this_size_bits;
2082 bits_to_skip = 0;
2083 }
2084 }
2085
2086
2087 static void
2088 read_pieced_value (struct value *v)
2089 {
2090 rw_pieced_value (v, NULL);
2091 }
2092
2093 static void
2094 write_pieced_value (struct value *to, struct value *from)
2095 {
2096 rw_pieced_value (to, from);
2097 }
2098
2099 /* An implementation of an lval_funcs method to see whether a value is
2100 a synthetic pointer. */
2101
2102 static int
2103 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2104 int bit_length)
2105 {
2106 struct piece_closure *c
2107 = (struct piece_closure *) value_computed_closure (value);
2108 int i;
2109
2110 bit_offset += 8 * value_offset (value);
2111 if (value_bitsize (value))
2112 bit_offset += value_bitpos (value);
2113
2114 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2115 {
2116 struct dwarf_expr_piece *p = &c->pieces[i];
2117 size_t this_size_bits = p->size;
2118
2119 if (bit_offset > 0)
2120 {
2121 if (bit_offset >= this_size_bits)
2122 {
2123 bit_offset -= this_size_bits;
2124 continue;
2125 }
2126
2127 bit_length -= this_size_bits - bit_offset;
2128 bit_offset = 0;
2129 }
2130 else
2131 bit_length -= this_size_bits;
2132
2133 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2134 return 0;
2135 }
2136
2137 return 1;
2138 }
2139
2140 /* A wrapper function for get_frame_address_in_block. */
2141
2142 static CORE_ADDR
2143 get_frame_address_in_block_wrapper (void *baton)
2144 {
2145 return get_frame_address_in_block ((struct frame_info *) baton);
2146 }
2147
2148 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2149
2150 static struct value *
2151 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2152 struct dwarf2_per_cu_data *per_cu,
2153 struct type *type)
2154 {
2155 struct value *result = NULL;
2156 const gdb_byte *bytes;
2157 LONGEST len;
2158
2159 auto_obstack temp_obstack;
2160 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2161
2162 if (bytes != NULL)
2163 {
2164 if (byte_offset >= 0
2165 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2166 {
2167 bytes += byte_offset;
2168 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2169 }
2170 else
2171 invalid_synthetic_pointer ();
2172 }
2173 else
2174 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2175
2176 return result;
2177 }
2178
2179 /* Fetch the value pointed to by a synthetic pointer. */
2180
2181 static struct value *
2182 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2183 struct dwarf2_per_cu_data *per_cu,
2184 struct frame_info *frame, struct type *type,
2185 bool resolve_abstract_p)
2186 {
2187 /* Fetch the location expression of the DIE we're pointing to. */
2188 struct dwarf2_locexpr_baton baton
2189 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2190 get_frame_address_in_block_wrapper, frame,
2191 resolve_abstract_p);
2192
2193 /* Get type of pointed-to DIE. */
2194 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2195 if (orig_type == NULL)
2196 invalid_synthetic_pointer ();
2197
2198 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2199 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2200 or it may've been optimized out. */
2201 if (baton.data != NULL)
2202 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2203 baton.size, baton.per_cu,
2204 TYPE_TARGET_TYPE (type),
2205 byte_offset);
2206 else
2207 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2208 type);
2209 }
2210
2211 /* An implementation of an lval_funcs method to indirect through a
2212 pointer. This handles the synthetic pointer case when needed. */
2213
2214 static struct value *
2215 indirect_pieced_value (struct value *value)
2216 {
2217 struct piece_closure *c
2218 = (struct piece_closure *) value_computed_closure (value);
2219 struct type *type;
2220 struct frame_info *frame;
2221 int i, bit_length;
2222 LONGEST bit_offset;
2223 struct dwarf_expr_piece *piece = NULL;
2224 LONGEST byte_offset;
2225 enum bfd_endian byte_order;
2226
2227 type = check_typedef (value_type (value));
2228 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2229 return NULL;
2230
2231 bit_length = 8 * TYPE_LENGTH (type);
2232 bit_offset = 8 * value_offset (value);
2233 if (value_bitsize (value))
2234 bit_offset += value_bitpos (value);
2235
2236 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2237 {
2238 struct dwarf_expr_piece *p = &c->pieces[i];
2239 size_t this_size_bits = p->size;
2240
2241 if (bit_offset > 0)
2242 {
2243 if (bit_offset >= this_size_bits)
2244 {
2245 bit_offset -= this_size_bits;
2246 continue;
2247 }
2248
2249 bit_length -= this_size_bits - bit_offset;
2250 bit_offset = 0;
2251 }
2252 else
2253 bit_length -= this_size_bits;
2254
2255 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2256 return NULL;
2257
2258 if (bit_length != 0)
2259 error (_("Invalid use of DW_OP_implicit_pointer"));
2260
2261 piece = p;
2262 break;
2263 }
2264
2265 gdb_assert (piece != NULL);
2266 frame = get_selected_frame (_("No frame selected."));
2267
2268 /* This is an offset requested by GDB, such as value subscripts.
2269 However, due to how synthetic pointers are implemented, this is
2270 always presented to us as a pointer type. This means we have to
2271 sign-extend it manually as appropriate. Use raw
2272 extract_signed_integer directly rather than value_as_address and
2273 sign extend afterwards on architectures that would need it
2274 (mostly everywhere except MIPS, which has signed addresses) as
2275 the later would go through gdbarch_pointer_to_address and thus
2276 return a CORE_ADDR with high bits set on architectures that
2277 encode address spaces and other things in CORE_ADDR. */
2278 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2279 byte_offset = extract_signed_integer (value_contents (value),
2280 TYPE_LENGTH (type), byte_order);
2281 byte_offset += piece->v.ptr.offset;
2282
2283 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2284 byte_offset, c->per_cu,
2285 frame, type);
2286 }
2287
2288 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2289 references. */
2290
2291 static struct value *
2292 coerce_pieced_ref (const struct value *value)
2293 {
2294 struct type *type = check_typedef (value_type (value));
2295
2296 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2297 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2298 {
2299 const struct piece_closure *closure
2300 = (struct piece_closure *) value_computed_closure (value);
2301 struct frame_info *frame
2302 = get_selected_frame (_("No frame selected."));
2303
2304 /* gdb represents synthetic pointers as pieced values with a single
2305 piece. */
2306 gdb_assert (closure != NULL);
2307 gdb_assert (closure->pieces.size () == 1);
2308
2309 return indirect_synthetic_pointer
2310 (closure->pieces[0].v.ptr.die_sect_off,
2311 closure->pieces[0].v.ptr.offset,
2312 closure->per_cu, frame, type);
2313 }
2314 else
2315 {
2316 /* Else: not a synthetic reference; do nothing. */
2317 return NULL;
2318 }
2319 }
2320
2321 static void *
2322 copy_pieced_value_closure (const struct value *v)
2323 {
2324 struct piece_closure *c
2325 = (struct piece_closure *) value_computed_closure (v);
2326
2327 ++c->refc;
2328 return c;
2329 }
2330
2331 static void
2332 free_pieced_value_closure (struct value *v)
2333 {
2334 struct piece_closure *c
2335 = (struct piece_closure *) value_computed_closure (v);
2336
2337 --c->refc;
2338 if (c->refc == 0)
2339 {
2340 for (dwarf_expr_piece &p : c->pieces)
2341 if (p.location == DWARF_VALUE_STACK)
2342 value_decref (p.v.value);
2343
2344 delete c;
2345 }
2346 }
2347
2348 /* Functions for accessing a variable described by DW_OP_piece. */
2349 static const struct lval_funcs pieced_value_funcs = {
2350 read_pieced_value,
2351 write_pieced_value,
2352 indirect_pieced_value,
2353 coerce_pieced_ref,
2354 check_pieced_synthetic_pointer,
2355 copy_pieced_value_closure,
2356 free_pieced_value_closure
2357 };
2358
2359 /* Evaluate a location description, starting at DATA and with length
2360 SIZE, to find the current location of variable of TYPE in the
2361 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2362 location of the subobject of type SUBOBJ_TYPE at byte offset
2363 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2364
2365 static struct value *
2366 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2367 const gdb_byte *data, size_t size,
2368 struct dwarf2_per_cu_data *per_cu,
2369 struct type *subobj_type,
2370 LONGEST subobj_byte_offset)
2371 {
2372 struct value *retval;
2373 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2374
2375 if (subobj_type == NULL)
2376 {
2377 subobj_type = type;
2378 subobj_byte_offset = 0;
2379 }
2380 else if (subobj_byte_offset < 0)
2381 invalid_synthetic_pointer ();
2382
2383 if (size == 0)
2384 return allocate_optimized_out_value (subobj_type);
2385
2386 dwarf_evaluate_loc_desc ctx;
2387 ctx.frame = frame;
2388 ctx.per_cu = per_cu;
2389 ctx.obj_address = 0;
2390
2391 scoped_value_mark free_values;
2392
2393 ctx.gdbarch = get_objfile_arch (objfile);
2394 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2395 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2396 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2397
2398 TRY
2399 {
2400 ctx.eval (data, size);
2401 }
2402 CATCH (ex, RETURN_MASK_ERROR)
2403 {
2404 if (ex.error == NOT_AVAILABLE_ERROR)
2405 {
2406 free_values.free_to_mark ();
2407 retval = allocate_value (subobj_type);
2408 mark_value_bytes_unavailable (retval, 0,
2409 TYPE_LENGTH (subobj_type));
2410 return retval;
2411 }
2412 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2413 {
2414 if (entry_values_debug)
2415 exception_print (gdb_stdout, ex);
2416 free_values.free_to_mark ();
2417 return allocate_optimized_out_value (subobj_type);
2418 }
2419 else
2420 throw_exception (ex);
2421 }
2422 END_CATCH
2423
2424 if (ctx.pieces.size () > 0)
2425 {
2426 struct piece_closure *c;
2427 ULONGEST bit_size = 0;
2428
2429 for (dwarf_expr_piece &piece : ctx.pieces)
2430 bit_size += piece.size;
2431 /* Complain if the expression is larger than the size of the
2432 outer type. */
2433 if (bit_size > 8 * TYPE_LENGTH (type))
2434 invalid_synthetic_pointer ();
2435
2436 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2437 /* We must clean up the value chain after creating the piece
2438 closure but before allocating the result. */
2439 free_values.free_to_mark ();
2440 retval = allocate_computed_value (subobj_type,
2441 &pieced_value_funcs, c);
2442 set_value_offset (retval, subobj_byte_offset);
2443 }
2444 else
2445 {
2446 switch (ctx.location)
2447 {
2448 case DWARF_VALUE_REGISTER:
2449 {
2450 struct gdbarch *arch = get_frame_arch (frame);
2451 int dwarf_regnum
2452 = longest_to_int (value_as_long (ctx.fetch (0)));
2453 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2454
2455 if (subobj_byte_offset != 0)
2456 error (_("cannot use offset on synthetic pointer to register"));
2457 free_values.free_to_mark ();
2458 retval = value_from_register (subobj_type, gdb_regnum, frame);
2459 if (value_optimized_out (retval))
2460 {
2461 struct value *tmp;
2462
2463 /* This means the register has undefined value / was
2464 not saved. As we're computing the location of some
2465 variable etc. in the program, not a value for
2466 inspecting a register ($pc, $sp, etc.), return a
2467 generic optimized out value instead, so that we show
2468 <optimized out> instead of <not saved>. */
2469 tmp = allocate_value (subobj_type);
2470 value_contents_copy (tmp, 0, retval, 0,
2471 TYPE_LENGTH (subobj_type));
2472 retval = tmp;
2473 }
2474 }
2475 break;
2476
2477 case DWARF_VALUE_MEMORY:
2478 {
2479 struct type *ptr_type;
2480 CORE_ADDR address = ctx.fetch_address (0);
2481 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2482
2483 /* DW_OP_deref_size (and possibly other operations too) may
2484 create a pointer instead of an address. Ideally, the
2485 pointer to address conversion would be performed as part
2486 of those operations, but the type of the object to
2487 which the address refers is not known at the time of
2488 the operation. Therefore, we do the conversion here
2489 since the type is readily available. */
2490
2491 switch (TYPE_CODE (subobj_type))
2492 {
2493 case TYPE_CODE_FUNC:
2494 case TYPE_CODE_METHOD:
2495 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2496 break;
2497 default:
2498 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2499 break;
2500 }
2501 address = value_as_address (value_from_pointer (ptr_type, address));
2502
2503 free_values.free_to_mark ();
2504 retval = value_at_lazy (subobj_type,
2505 address + subobj_byte_offset);
2506 if (in_stack_memory)
2507 set_value_stack (retval, 1);
2508 }
2509 break;
2510
2511 case DWARF_VALUE_STACK:
2512 {
2513 struct value *value = ctx.fetch (0);
2514 size_t n = TYPE_LENGTH (value_type (value));
2515 size_t len = TYPE_LENGTH (subobj_type);
2516 size_t max = TYPE_LENGTH (type);
2517 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2518
2519 if (subobj_byte_offset + len > max)
2520 invalid_synthetic_pointer ();
2521
2522 /* Preserve VALUE because we are going to free values back
2523 to the mark, but we still need the value contents
2524 below. */
2525 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
2526 free_values.free_to_mark ();
2527
2528 retval = allocate_value (subobj_type);
2529
2530 /* The given offset is relative to the actual object. */
2531 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2532 subobj_byte_offset += n - max;
2533
2534 memcpy (value_contents_raw (retval),
2535 value_contents_all (value) + subobj_byte_offset, len);
2536 }
2537 break;
2538
2539 case DWARF_VALUE_LITERAL:
2540 {
2541 bfd_byte *contents;
2542 size_t n = TYPE_LENGTH (subobj_type);
2543
2544 if (subobj_byte_offset + n > ctx.len)
2545 invalid_synthetic_pointer ();
2546
2547 free_values.free_to_mark ();
2548 retval = allocate_value (subobj_type);
2549 contents = value_contents_raw (retval);
2550 memcpy (contents, ctx.data + subobj_byte_offset, n);
2551 }
2552 break;
2553
2554 case DWARF_VALUE_OPTIMIZED_OUT:
2555 free_values.free_to_mark ();
2556 retval = allocate_optimized_out_value (subobj_type);
2557 break;
2558
2559 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2560 operation by execute_stack_op. */
2561 case DWARF_VALUE_IMPLICIT_POINTER:
2562 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2563 it can only be encountered when making a piece. */
2564 default:
2565 internal_error (__FILE__, __LINE__, _("invalid location type"));
2566 }
2567 }
2568
2569 set_value_initialized (retval, ctx.initialized);
2570
2571 return retval;
2572 }
2573
2574 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2575 passes 0 as the byte_offset. */
2576
2577 struct value *
2578 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2579 const gdb_byte *data, size_t size,
2580 struct dwarf2_per_cu_data *per_cu)
2581 {
2582 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2583 NULL, 0);
2584 }
2585
2586 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2587 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2588 frame in which the expression is evaluated. ADDR is a context (location of
2589 a variable) and might be needed to evaluate the location expression.
2590 Returns 1 on success, 0 otherwise. */
2591
2592 static int
2593 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2594 struct frame_info *frame,
2595 CORE_ADDR addr,
2596 CORE_ADDR *valp)
2597 {
2598 struct objfile *objfile;
2599
2600 if (dlbaton == NULL || dlbaton->size == 0)
2601 return 0;
2602
2603 dwarf_evaluate_loc_desc ctx;
2604
2605 ctx.frame = frame;
2606 ctx.per_cu = dlbaton->per_cu;
2607 ctx.obj_address = addr;
2608
2609 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2610
2611 ctx.gdbarch = get_objfile_arch (objfile);
2612 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2613 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2614 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2615
2616 TRY
2617 {
2618 ctx.eval (dlbaton->data, dlbaton->size);
2619 }
2620 CATCH (ex, RETURN_MASK_ERROR)
2621 {
2622 if (ex.error == NOT_AVAILABLE_ERROR)
2623 {
2624 return 0;
2625 }
2626 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2627 {
2628 if (entry_values_debug)
2629 exception_print (gdb_stdout, ex);
2630 return 0;
2631 }
2632 else
2633 throw_exception (ex);
2634 }
2635 END_CATCH
2636
2637 switch (ctx.location)
2638 {
2639 case DWARF_VALUE_REGISTER:
2640 case DWARF_VALUE_MEMORY:
2641 case DWARF_VALUE_STACK:
2642 *valp = ctx.fetch_address (0);
2643 if (ctx.location == DWARF_VALUE_REGISTER)
2644 *valp = ctx.read_addr_from_reg (*valp);
2645 return 1;
2646 case DWARF_VALUE_LITERAL:
2647 *valp = extract_signed_integer (ctx.data, ctx.len,
2648 gdbarch_byte_order (ctx.gdbarch));
2649 return 1;
2650 /* Unsupported dwarf values. */
2651 case DWARF_VALUE_OPTIMIZED_OUT:
2652 case DWARF_VALUE_IMPLICIT_POINTER:
2653 break;
2654 }
2655
2656 return 0;
2657 }
2658
2659 /* See dwarf2loc.h. */
2660
2661 int
2662 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2663 struct frame_info *frame,
2664 struct property_addr_info *addr_stack,
2665 CORE_ADDR *value)
2666 {
2667 if (prop == NULL)
2668 return 0;
2669
2670 if (frame == NULL && has_stack_frames ())
2671 frame = get_selected_frame (NULL);
2672
2673 switch (prop->kind)
2674 {
2675 case PROP_LOCEXPR:
2676 {
2677 const struct dwarf2_property_baton *baton
2678 = (const struct dwarf2_property_baton *) prop->data.baton;
2679
2680 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2681 addr_stack ? addr_stack->addr : 0,
2682 value))
2683 {
2684 if (baton->referenced_type)
2685 {
2686 struct value *val = value_at (baton->referenced_type, *value);
2687
2688 *value = value_as_address (val);
2689 }
2690 return 1;
2691 }
2692 }
2693 break;
2694
2695 case PROP_LOCLIST:
2696 {
2697 struct dwarf2_property_baton *baton
2698 = (struct dwarf2_property_baton *) prop->data.baton;
2699 CORE_ADDR pc = get_frame_address_in_block (frame);
2700 const gdb_byte *data;
2701 struct value *val;
2702 size_t size;
2703
2704 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2705 if (data != NULL)
2706 {
2707 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2708 size, baton->loclist.per_cu);
2709 if (!value_optimized_out (val))
2710 {
2711 *value = value_as_address (val);
2712 return 1;
2713 }
2714 }
2715 }
2716 break;
2717
2718 case PROP_CONST:
2719 *value = prop->data.const_val;
2720 return 1;
2721
2722 case PROP_ADDR_OFFSET:
2723 {
2724 struct dwarf2_property_baton *baton
2725 = (struct dwarf2_property_baton *) prop->data.baton;
2726 struct property_addr_info *pinfo;
2727 struct value *val;
2728
2729 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2730 if (pinfo->type == baton->referenced_type)
2731 break;
2732 if (pinfo == NULL)
2733 error (_("cannot find reference address for offset property"));
2734 if (pinfo->valaddr != NULL)
2735 val = value_from_contents
2736 (baton->offset_info.type,
2737 pinfo->valaddr + baton->offset_info.offset);
2738 else
2739 val = value_at (baton->offset_info.type,
2740 pinfo->addr + baton->offset_info.offset);
2741 *value = value_as_address (val);
2742 return 1;
2743 }
2744 }
2745
2746 return 0;
2747 }
2748
2749 /* See dwarf2loc.h. */
2750
2751 void
2752 dwarf2_compile_property_to_c (string_file &stream,
2753 const char *result_name,
2754 struct gdbarch *gdbarch,
2755 unsigned char *registers_used,
2756 const struct dynamic_prop *prop,
2757 CORE_ADDR pc,
2758 struct symbol *sym)
2759 {
2760 struct dwarf2_property_baton *baton
2761 = (struct dwarf2_property_baton *) prop->data.baton;
2762 const gdb_byte *data;
2763 size_t size;
2764 struct dwarf2_per_cu_data *per_cu;
2765
2766 if (prop->kind == PROP_LOCEXPR)
2767 {
2768 data = baton->locexpr.data;
2769 size = baton->locexpr.size;
2770 per_cu = baton->locexpr.per_cu;
2771 }
2772 else
2773 {
2774 gdb_assert (prop->kind == PROP_LOCLIST);
2775
2776 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2777 per_cu = baton->loclist.per_cu;
2778 }
2779
2780 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2781 gdbarch, registers_used,
2782 dwarf2_per_cu_addr_size (per_cu),
2783 data, data + size, per_cu);
2784 }
2785
2786 \f
2787 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2788
2789 class symbol_needs_eval_context : public dwarf_expr_context
2790 {
2791 public:
2792
2793 enum symbol_needs_kind needs;
2794 struct dwarf2_per_cu_data *per_cu;
2795
2796 /* Reads from registers do require a frame. */
2797 CORE_ADDR read_addr_from_reg (int regnum) override
2798 {
2799 needs = SYMBOL_NEEDS_FRAME;
2800 return 1;
2801 }
2802
2803 /* "get_reg_value" callback: Reads from registers do require a
2804 frame. */
2805
2806 struct value *get_reg_value (struct type *type, int regnum) override
2807 {
2808 needs = SYMBOL_NEEDS_FRAME;
2809 return value_zero (type, not_lval);
2810 }
2811
2812 /* Reads from memory do not require a frame. */
2813 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2814 {
2815 memset (buf, 0, len);
2816 }
2817
2818 /* Frame-relative accesses do require a frame. */
2819 void get_frame_base (const gdb_byte **start, size_t *length) override
2820 {
2821 static gdb_byte lit0 = DW_OP_lit0;
2822
2823 *start = &lit0;
2824 *length = 1;
2825
2826 needs = SYMBOL_NEEDS_FRAME;
2827 }
2828
2829 /* CFA accesses require a frame. */
2830 CORE_ADDR get_frame_cfa () override
2831 {
2832 needs = SYMBOL_NEEDS_FRAME;
2833 return 1;
2834 }
2835
2836 CORE_ADDR get_frame_pc () override
2837 {
2838 needs = SYMBOL_NEEDS_FRAME;
2839 return 1;
2840 }
2841
2842 /* Thread-local accesses require registers, but not a frame. */
2843 CORE_ADDR get_tls_address (CORE_ADDR offset) override
2844 {
2845 if (needs <= SYMBOL_NEEDS_REGISTERS)
2846 needs = SYMBOL_NEEDS_REGISTERS;
2847 return 1;
2848 }
2849
2850 /* Helper interface of per_cu_dwarf_call for
2851 dwarf2_loc_desc_get_symbol_read_needs. */
2852
2853 void dwarf_call (cu_offset die_offset) override
2854 {
2855 per_cu_dwarf_call (this, die_offset, per_cu);
2856 }
2857
2858 /* Helper interface of sect_variable_value for
2859 dwarf2_loc_desc_get_symbol_read_needs. */
2860
2861 struct value *dwarf_variable_value (sect_offset sect_off) override
2862 {
2863 return sect_variable_value (this, sect_off, per_cu);
2864 }
2865
2866 /* DW_OP_entry_value accesses require a caller, therefore a
2867 frame. */
2868
2869 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2870 union call_site_parameter_u kind_u,
2871 int deref_size) override
2872 {
2873 needs = SYMBOL_NEEDS_FRAME;
2874
2875 /* The expression may require some stub values on DWARF stack. */
2876 push_address (0, 0);
2877 }
2878
2879 /* DW_OP_GNU_addr_index doesn't require a frame. */
2880
2881 CORE_ADDR get_addr_index (unsigned int index) override
2882 {
2883 /* Nothing to do. */
2884 return 1;
2885 }
2886
2887 /* DW_OP_push_object_address has a frame already passed through. */
2888
2889 CORE_ADDR get_object_address () override
2890 {
2891 /* Nothing to do. */
2892 return 1;
2893 }
2894 };
2895
2896 /* Compute the correct symbol_needs_kind value for the location
2897 expression at DATA (length SIZE). */
2898
2899 static enum symbol_needs_kind
2900 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2901 struct dwarf2_per_cu_data *per_cu)
2902 {
2903 int in_reg;
2904 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2905
2906 scoped_value_mark free_values;
2907
2908 symbol_needs_eval_context ctx;
2909
2910 ctx.needs = SYMBOL_NEEDS_NONE;
2911 ctx.per_cu = per_cu;
2912 ctx.gdbarch = get_objfile_arch (objfile);
2913 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2914 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2915 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2916
2917 ctx.eval (data, size);
2918
2919 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2920
2921 /* If the location has several pieces, and any of them are in
2922 registers, then we will need a frame to fetch them from. */
2923 for (dwarf_expr_piece &p : ctx.pieces)
2924 if (p.location == DWARF_VALUE_REGISTER)
2925 in_reg = 1;
2926
2927 if (in_reg)
2928 ctx.needs = SYMBOL_NEEDS_FRAME;
2929 return ctx.needs;
2930 }
2931
2932 /* A helper function that throws an unimplemented error mentioning a
2933 given DWARF operator. */
2934
2935 static void ATTRIBUTE_NORETURN
2936 unimplemented (unsigned int op)
2937 {
2938 const char *name = get_DW_OP_name (op);
2939
2940 if (name)
2941 error (_("DWARF operator %s cannot be translated to an agent expression"),
2942 name);
2943 else
2944 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2945 "to an agent expression"),
2946 op);
2947 }
2948
2949 /* See dwarf2loc.h.
2950
2951 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2952 can issue a complaint, which is better than having every target's
2953 implementation of dwarf2_reg_to_regnum do it. */
2954
2955 int
2956 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2957 {
2958 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2959
2960 if (reg == -1)
2961 {
2962 complaint (_("bad DWARF register number %d"), dwarf_reg);
2963 }
2964 return reg;
2965 }
2966
2967 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2968 Throw an error because DWARF_REG is bad. */
2969
2970 static void
2971 throw_bad_regnum_error (ULONGEST dwarf_reg)
2972 {
2973 /* Still want to print -1 as "-1".
2974 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2975 but that's overkill for now. */
2976 if ((int) dwarf_reg == dwarf_reg)
2977 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2978 error (_("Unable to access DWARF register number %s"),
2979 pulongest (dwarf_reg));
2980 }
2981
2982 /* See dwarf2loc.h. */
2983
2984 int
2985 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2986 {
2987 int reg;
2988
2989 if (dwarf_reg > INT_MAX)
2990 throw_bad_regnum_error (dwarf_reg);
2991 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2992 bad, but that's ok. */
2993 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2994 if (reg == -1)
2995 throw_bad_regnum_error (dwarf_reg);
2996 return reg;
2997 }
2998
2999 /* A helper function that emits an access to memory. ARCH is the
3000 target architecture. EXPR is the expression which we are building.
3001 NBITS is the number of bits we want to read. This emits the
3002 opcodes needed to read the memory and then extract the desired
3003 bits. */
3004
3005 static void
3006 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
3007 {
3008 ULONGEST nbytes = (nbits + 7) / 8;
3009
3010 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3011
3012 if (expr->tracing)
3013 ax_trace_quick (expr, nbytes);
3014
3015 if (nbits <= 8)
3016 ax_simple (expr, aop_ref8);
3017 else if (nbits <= 16)
3018 ax_simple (expr, aop_ref16);
3019 else if (nbits <= 32)
3020 ax_simple (expr, aop_ref32);
3021 else
3022 ax_simple (expr, aop_ref64);
3023
3024 /* If we read exactly the number of bytes we wanted, we're done. */
3025 if (8 * nbytes == nbits)
3026 return;
3027
3028 if (gdbarch_bits_big_endian (arch))
3029 {
3030 /* On a bits-big-endian machine, we want the high-order
3031 NBITS. */
3032 ax_const_l (expr, 8 * nbytes - nbits);
3033 ax_simple (expr, aop_rsh_unsigned);
3034 }
3035 else
3036 {
3037 /* On a bits-little-endian box, we want the low-order NBITS. */
3038 ax_zero_ext (expr, nbits);
3039 }
3040 }
3041
3042 /* A helper function to return the frame's PC. */
3043
3044 static CORE_ADDR
3045 get_ax_pc (void *baton)
3046 {
3047 struct agent_expr *expr = (struct agent_expr *) baton;
3048
3049 return expr->scope;
3050 }
3051
3052 /* Compile a DWARF location expression to an agent expression.
3053
3054 EXPR is the agent expression we are building.
3055 LOC is the agent value we modify.
3056 ARCH is the architecture.
3057 ADDR_SIZE is the size of addresses, in bytes.
3058 OP_PTR is the start of the location expression.
3059 OP_END is one past the last byte of the location expression.
3060
3061 This will throw an exception for various kinds of errors -- for
3062 example, if the expression cannot be compiled, or if the expression
3063 is invalid. */
3064
3065 void
3066 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3067 unsigned int addr_size, const gdb_byte *op_ptr,
3068 const gdb_byte *op_end,
3069 struct dwarf2_per_cu_data *per_cu)
3070 {
3071 gdbarch *arch = expr->gdbarch;
3072 int i;
3073 std::vector<int> dw_labels, patches;
3074 const gdb_byte * const base = op_ptr;
3075 const gdb_byte *previous_piece = op_ptr;
3076 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3077 ULONGEST bits_collected = 0;
3078 unsigned int addr_size_bits = 8 * addr_size;
3079 int bits_big_endian = gdbarch_bits_big_endian (arch);
3080
3081 std::vector<int> offsets (op_end - op_ptr, -1);
3082
3083 /* By default we are making an address. */
3084 loc->kind = axs_lvalue_memory;
3085
3086 while (op_ptr < op_end)
3087 {
3088 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3089 uint64_t uoffset, reg;
3090 int64_t offset;
3091 int i;
3092
3093 offsets[op_ptr - base] = expr->len;
3094 ++op_ptr;
3095
3096 /* Our basic approach to code generation is to map DWARF
3097 operations directly to AX operations. However, there are
3098 some differences.
3099
3100 First, DWARF works on address-sized units, but AX always uses
3101 LONGEST. For most operations we simply ignore this
3102 difference; instead we generate sign extensions as needed
3103 before division and comparison operations. It would be nice
3104 to omit the sign extensions, but there is no way to determine
3105 the size of the target's LONGEST. (This code uses the size
3106 of the host LONGEST in some cases -- that is a bug but it is
3107 difficult to fix.)
3108
3109 Second, some DWARF operations cannot be translated to AX.
3110 For these we simply fail. See
3111 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3112 switch (op)
3113 {
3114 case DW_OP_lit0:
3115 case DW_OP_lit1:
3116 case DW_OP_lit2:
3117 case DW_OP_lit3:
3118 case DW_OP_lit4:
3119 case DW_OP_lit5:
3120 case DW_OP_lit6:
3121 case DW_OP_lit7:
3122 case DW_OP_lit8:
3123 case DW_OP_lit9:
3124 case DW_OP_lit10:
3125 case DW_OP_lit11:
3126 case DW_OP_lit12:
3127 case DW_OP_lit13:
3128 case DW_OP_lit14:
3129 case DW_OP_lit15:
3130 case DW_OP_lit16:
3131 case DW_OP_lit17:
3132 case DW_OP_lit18:
3133 case DW_OP_lit19:
3134 case DW_OP_lit20:
3135 case DW_OP_lit21:
3136 case DW_OP_lit22:
3137 case DW_OP_lit23:
3138 case DW_OP_lit24:
3139 case DW_OP_lit25:
3140 case DW_OP_lit26:
3141 case DW_OP_lit27:
3142 case DW_OP_lit28:
3143 case DW_OP_lit29:
3144 case DW_OP_lit30:
3145 case DW_OP_lit31:
3146 ax_const_l (expr, op - DW_OP_lit0);
3147 break;
3148
3149 case DW_OP_addr:
3150 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3151 op_ptr += addr_size;
3152 /* Some versions of GCC emit DW_OP_addr before
3153 DW_OP_GNU_push_tls_address. In this case the value is an
3154 index, not an address. We don't support things like
3155 branching between the address and the TLS op. */
3156 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3157 uoffset += dwarf2_per_cu_text_offset (per_cu);
3158 ax_const_l (expr, uoffset);
3159 break;
3160
3161 case DW_OP_const1u:
3162 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3163 op_ptr += 1;
3164 break;
3165 case DW_OP_const1s:
3166 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3167 op_ptr += 1;
3168 break;
3169 case DW_OP_const2u:
3170 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3171 op_ptr += 2;
3172 break;
3173 case DW_OP_const2s:
3174 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3175 op_ptr += 2;
3176 break;
3177 case DW_OP_const4u:
3178 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3179 op_ptr += 4;
3180 break;
3181 case DW_OP_const4s:
3182 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3183 op_ptr += 4;
3184 break;
3185 case DW_OP_const8u:
3186 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3187 op_ptr += 8;
3188 break;
3189 case DW_OP_const8s:
3190 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3191 op_ptr += 8;
3192 break;
3193 case DW_OP_constu:
3194 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3195 ax_const_l (expr, uoffset);
3196 break;
3197 case DW_OP_consts:
3198 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3199 ax_const_l (expr, offset);
3200 break;
3201
3202 case DW_OP_reg0:
3203 case DW_OP_reg1:
3204 case DW_OP_reg2:
3205 case DW_OP_reg3:
3206 case DW_OP_reg4:
3207 case DW_OP_reg5:
3208 case DW_OP_reg6:
3209 case DW_OP_reg7:
3210 case DW_OP_reg8:
3211 case DW_OP_reg9:
3212 case DW_OP_reg10:
3213 case DW_OP_reg11:
3214 case DW_OP_reg12:
3215 case DW_OP_reg13:
3216 case DW_OP_reg14:
3217 case DW_OP_reg15:
3218 case DW_OP_reg16:
3219 case DW_OP_reg17:
3220 case DW_OP_reg18:
3221 case DW_OP_reg19:
3222 case DW_OP_reg20:
3223 case DW_OP_reg21:
3224 case DW_OP_reg22:
3225 case DW_OP_reg23:
3226 case DW_OP_reg24:
3227 case DW_OP_reg25:
3228 case DW_OP_reg26:
3229 case DW_OP_reg27:
3230 case DW_OP_reg28:
3231 case DW_OP_reg29:
3232 case DW_OP_reg30:
3233 case DW_OP_reg31:
3234 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3235 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3236 loc->kind = axs_lvalue_register;
3237 break;
3238
3239 case DW_OP_regx:
3240 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3241 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3242 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3243 loc->kind = axs_lvalue_register;
3244 break;
3245
3246 case DW_OP_implicit_value:
3247 {
3248 uint64_t len;
3249
3250 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3251 if (op_ptr + len > op_end)
3252 error (_("DW_OP_implicit_value: too few bytes available."));
3253 if (len > sizeof (ULONGEST))
3254 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3255 (int) len);
3256
3257 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3258 byte_order));
3259 op_ptr += len;
3260 dwarf_expr_require_composition (op_ptr, op_end,
3261 "DW_OP_implicit_value");
3262
3263 loc->kind = axs_rvalue;
3264 }
3265 break;
3266
3267 case DW_OP_stack_value:
3268 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3269 loc->kind = axs_rvalue;
3270 break;
3271
3272 case DW_OP_breg0:
3273 case DW_OP_breg1:
3274 case DW_OP_breg2:
3275 case DW_OP_breg3:
3276 case DW_OP_breg4:
3277 case DW_OP_breg5:
3278 case DW_OP_breg6:
3279 case DW_OP_breg7:
3280 case DW_OP_breg8:
3281 case DW_OP_breg9:
3282 case DW_OP_breg10:
3283 case DW_OP_breg11:
3284 case DW_OP_breg12:
3285 case DW_OP_breg13:
3286 case DW_OP_breg14:
3287 case DW_OP_breg15:
3288 case DW_OP_breg16:
3289 case DW_OP_breg17:
3290 case DW_OP_breg18:
3291 case DW_OP_breg19:
3292 case DW_OP_breg20:
3293 case DW_OP_breg21:
3294 case DW_OP_breg22:
3295 case DW_OP_breg23:
3296 case DW_OP_breg24:
3297 case DW_OP_breg25:
3298 case DW_OP_breg26:
3299 case DW_OP_breg27:
3300 case DW_OP_breg28:
3301 case DW_OP_breg29:
3302 case DW_OP_breg30:
3303 case DW_OP_breg31:
3304 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3305 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3306 ax_reg (expr, i);
3307 if (offset != 0)
3308 {
3309 ax_const_l (expr, offset);
3310 ax_simple (expr, aop_add);
3311 }
3312 break;
3313 case DW_OP_bregx:
3314 {
3315 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3316 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3317 i = dwarf_reg_to_regnum_or_error (arch, reg);
3318 ax_reg (expr, i);
3319 if (offset != 0)
3320 {
3321 ax_const_l (expr, offset);
3322 ax_simple (expr, aop_add);
3323 }
3324 }
3325 break;
3326 case DW_OP_fbreg:
3327 {
3328 const gdb_byte *datastart;
3329 size_t datalen;
3330 const struct block *b;
3331 struct symbol *framefunc;
3332
3333 b = block_for_pc (expr->scope);
3334
3335 if (!b)
3336 error (_("No block found for address"));
3337
3338 framefunc = block_linkage_function (b);
3339
3340 if (!framefunc)
3341 error (_("No function found for block"));
3342
3343 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3344 &datastart, &datalen);
3345
3346 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3347 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3348 datastart + datalen, per_cu);
3349 if (loc->kind == axs_lvalue_register)
3350 require_rvalue (expr, loc);
3351
3352 if (offset != 0)
3353 {
3354 ax_const_l (expr, offset);
3355 ax_simple (expr, aop_add);
3356 }
3357
3358 loc->kind = axs_lvalue_memory;
3359 }
3360 break;
3361
3362 case DW_OP_dup:
3363 ax_simple (expr, aop_dup);
3364 break;
3365
3366 case DW_OP_drop:
3367 ax_simple (expr, aop_pop);
3368 break;
3369
3370 case DW_OP_pick:
3371 offset = *op_ptr++;
3372 ax_pick (expr, offset);
3373 break;
3374
3375 case DW_OP_swap:
3376 ax_simple (expr, aop_swap);
3377 break;
3378
3379 case DW_OP_over:
3380 ax_pick (expr, 1);
3381 break;
3382
3383 case DW_OP_rot:
3384 ax_simple (expr, aop_rot);
3385 break;
3386
3387 case DW_OP_deref:
3388 case DW_OP_deref_size:
3389 {
3390 int size;
3391
3392 if (op == DW_OP_deref_size)
3393 size = *op_ptr++;
3394 else
3395 size = addr_size;
3396
3397 if (size != 1 && size != 2 && size != 4 && size != 8)
3398 error (_("Unsupported size %d in %s"),
3399 size, get_DW_OP_name (op));
3400 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3401 }
3402 break;
3403
3404 case DW_OP_abs:
3405 /* Sign extend the operand. */
3406 ax_ext (expr, addr_size_bits);
3407 ax_simple (expr, aop_dup);
3408 ax_const_l (expr, 0);
3409 ax_simple (expr, aop_less_signed);
3410 ax_simple (expr, aop_log_not);
3411 i = ax_goto (expr, aop_if_goto);
3412 /* We have to emit 0 - X. */
3413 ax_const_l (expr, 0);
3414 ax_simple (expr, aop_swap);
3415 ax_simple (expr, aop_sub);
3416 ax_label (expr, i, expr->len);
3417 break;
3418
3419 case DW_OP_neg:
3420 /* No need to sign extend here. */
3421 ax_const_l (expr, 0);
3422 ax_simple (expr, aop_swap);
3423 ax_simple (expr, aop_sub);
3424 break;
3425
3426 case DW_OP_not:
3427 /* Sign extend the operand. */
3428 ax_ext (expr, addr_size_bits);
3429 ax_simple (expr, aop_bit_not);
3430 break;
3431
3432 case DW_OP_plus_uconst:
3433 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3434 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3435 but we micro-optimize anyhow. */
3436 if (reg != 0)
3437 {
3438 ax_const_l (expr, reg);
3439 ax_simple (expr, aop_add);
3440 }
3441 break;
3442
3443 case DW_OP_and:
3444 ax_simple (expr, aop_bit_and);
3445 break;
3446
3447 case DW_OP_div:
3448 /* Sign extend the operands. */
3449 ax_ext (expr, addr_size_bits);
3450 ax_simple (expr, aop_swap);
3451 ax_ext (expr, addr_size_bits);
3452 ax_simple (expr, aop_swap);
3453 ax_simple (expr, aop_div_signed);
3454 break;
3455
3456 case DW_OP_minus:
3457 ax_simple (expr, aop_sub);
3458 break;
3459
3460 case DW_OP_mod:
3461 ax_simple (expr, aop_rem_unsigned);
3462 break;
3463
3464 case DW_OP_mul:
3465 ax_simple (expr, aop_mul);
3466 break;
3467
3468 case DW_OP_or:
3469 ax_simple (expr, aop_bit_or);
3470 break;
3471
3472 case DW_OP_plus:
3473 ax_simple (expr, aop_add);
3474 break;
3475
3476 case DW_OP_shl:
3477 ax_simple (expr, aop_lsh);
3478 break;
3479
3480 case DW_OP_shr:
3481 ax_simple (expr, aop_rsh_unsigned);
3482 break;
3483
3484 case DW_OP_shra:
3485 ax_simple (expr, aop_rsh_signed);
3486 break;
3487
3488 case DW_OP_xor:
3489 ax_simple (expr, aop_bit_xor);
3490 break;
3491
3492 case DW_OP_le:
3493 /* Sign extend the operands. */
3494 ax_ext (expr, addr_size_bits);
3495 ax_simple (expr, aop_swap);
3496 ax_ext (expr, addr_size_bits);
3497 /* Note no swap here: A <= B is !(B < A). */
3498 ax_simple (expr, aop_less_signed);
3499 ax_simple (expr, aop_log_not);
3500 break;
3501
3502 case DW_OP_ge:
3503 /* Sign extend the operands. */
3504 ax_ext (expr, addr_size_bits);
3505 ax_simple (expr, aop_swap);
3506 ax_ext (expr, addr_size_bits);
3507 ax_simple (expr, aop_swap);
3508 /* A >= B is !(A < B). */
3509 ax_simple (expr, aop_less_signed);
3510 ax_simple (expr, aop_log_not);
3511 break;
3512
3513 case DW_OP_eq:
3514 /* Sign extend the operands. */
3515 ax_ext (expr, addr_size_bits);
3516 ax_simple (expr, aop_swap);
3517 ax_ext (expr, addr_size_bits);
3518 /* No need for a second swap here. */
3519 ax_simple (expr, aop_equal);
3520 break;
3521
3522 case DW_OP_lt:
3523 /* Sign extend the operands. */
3524 ax_ext (expr, addr_size_bits);
3525 ax_simple (expr, aop_swap);
3526 ax_ext (expr, addr_size_bits);
3527 ax_simple (expr, aop_swap);
3528 ax_simple (expr, aop_less_signed);
3529 break;
3530
3531 case DW_OP_gt:
3532 /* Sign extend the operands. */
3533 ax_ext (expr, addr_size_bits);
3534 ax_simple (expr, aop_swap);
3535 ax_ext (expr, addr_size_bits);
3536 /* Note no swap here: A > B is B < A. */
3537 ax_simple (expr, aop_less_signed);
3538 break;
3539
3540 case DW_OP_ne:
3541 /* Sign extend the operands. */
3542 ax_ext (expr, addr_size_bits);
3543 ax_simple (expr, aop_swap);
3544 ax_ext (expr, addr_size_bits);
3545 /* No need for a swap here. */
3546 ax_simple (expr, aop_equal);
3547 ax_simple (expr, aop_log_not);
3548 break;
3549
3550 case DW_OP_call_frame_cfa:
3551 {
3552 int regnum;
3553 CORE_ADDR text_offset;
3554 LONGEST off;
3555 const gdb_byte *cfa_start, *cfa_end;
3556
3557 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3558 &regnum, &off,
3559 &text_offset, &cfa_start, &cfa_end))
3560 {
3561 /* Register. */
3562 ax_reg (expr, regnum);
3563 if (off != 0)
3564 {
3565 ax_const_l (expr, off);
3566 ax_simple (expr, aop_add);
3567 }
3568 }
3569 else
3570 {
3571 /* Another expression. */
3572 ax_const_l (expr, text_offset);
3573 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3574 cfa_end, per_cu);
3575 }
3576
3577 loc->kind = axs_lvalue_memory;
3578 }
3579 break;
3580
3581 case DW_OP_GNU_push_tls_address:
3582 case DW_OP_form_tls_address:
3583 unimplemented (op);
3584 break;
3585
3586 case DW_OP_push_object_address:
3587 unimplemented (op);
3588 break;
3589
3590 case DW_OP_skip:
3591 offset = extract_signed_integer (op_ptr, 2, byte_order);
3592 op_ptr += 2;
3593 i = ax_goto (expr, aop_goto);
3594 dw_labels.push_back (op_ptr + offset - base);
3595 patches.push_back (i);
3596 break;
3597
3598 case DW_OP_bra:
3599 offset = extract_signed_integer (op_ptr, 2, byte_order);
3600 op_ptr += 2;
3601 /* Zero extend the operand. */
3602 ax_zero_ext (expr, addr_size_bits);
3603 i = ax_goto (expr, aop_if_goto);
3604 dw_labels.push_back (op_ptr + offset - base);
3605 patches.push_back (i);
3606 break;
3607
3608 case DW_OP_nop:
3609 break;
3610
3611 case DW_OP_piece:
3612 case DW_OP_bit_piece:
3613 {
3614 uint64_t size, offset;
3615
3616 if (op_ptr - 1 == previous_piece)
3617 error (_("Cannot translate empty pieces to agent expressions"));
3618 previous_piece = op_ptr - 1;
3619
3620 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3621 if (op == DW_OP_piece)
3622 {
3623 size *= 8;
3624 offset = 0;
3625 }
3626 else
3627 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3628
3629 if (bits_collected + size > 8 * sizeof (LONGEST))
3630 error (_("Expression pieces exceed word size"));
3631
3632 /* Access the bits. */
3633 switch (loc->kind)
3634 {
3635 case axs_lvalue_register:
3636 ax_reg (expr, loc->u.reg);
3637 break;
3638
3639 case axs_lvalue_memory:
3640 /* Offset the pointer, if needed. */
3641 if (offset > 8)
3642 {
3643 ax_const_l (expr, offset / 8);
3644 ax_simple (expr, aop_add);
3645 offset %= 8;
3646 }
3647 access_memory (arch, expr, size);
3648 break;
3649 }
3650
3651 /* For a bits-big-endian target, shift up what we already
3652 have. For a bits-little-endian target, shift up the
3653 new data. Note that there is a potential bug here if
3654 the DWARF expression leaves multiple values on the
3655 stack. */
3656 if (bits_collected > 0)
3657 {
3658 if (bits_big_endian)
3659 {
3660 ax_simple (expr, aop_swap);
3661 ax_const_l (expr, size);
3662 ax_simple (expr, aop_lsh);
3663 /* We don't need a second swap here, because
3664 aop_bit_or is symmetric. */
3665 }
3666 else
3667 {
3668 ax_const_l (expr, size);
3669 ax_simple (expr, aop_lsh);
3670 }
3671 ax_simple (expr, aop_bit_or);
3672 }
3673
3674 bits_collected += size;
3675 loc->kind = axs_rvalue;
3676 }
3677 break;
3678
3679 case DW_OP_GNU_uninit:
3680 unimplemented (op);
3681
3682 case DW_OP_call2:
3683 case DW_OP_call4:
3684 {
3685 struct dwarf2_locexpr_baton block;
3686 int size = (op == DW_OP_call2 ? 2 : 4);
3687
3688 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3689 op_ptr += size;
3690
3691 cu_offset offset = (cu_offset) uoffset;
3692 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3693 get_ax_pc, expr);
3694
3695 /* DW_OP_call_ref is currently not supported. */
3696 gdb_assert (block.per_cu == per_cu);
3697
3698 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3699 block.data + block.size, per_cu);
3700 }
3701 break;
3702
3703 case DW_OP_call_ref:
3704 unimplemented (op);
3705
3706 case DW_OP_GNU_variable_value:
3707 unimplemented (op);
3708
3709 default:
3710 unimplemented (op);
3711 }
3712 }
3713
3714 /* Patch all the branches we emitted. */
3715 for (i = 0; i < patches.size (); ++i)
3716 {
3717 int targ = offsets[dw_labels[i]];
3718 if (targ == -1)
3719 internal_error (__FILE__, __LINE__, _("invalid label"));
3720 ax_label (expr, patches[i], targ);
3721 }
3722 }
3723
3724 \f
3725 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3726 evaluator to calculate the location. */
3727 static struct value *
3728 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3729 {
3730 struct dwarf2_locexpr_baton *dlbaton
3731 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3732 struct value *val;
3733
3734 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3735 dlbaton->size, dlbaton->per_cu);
3736
3737 return val;
3738 }
3739
3740 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3741 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3742 will be thrown. */
3743
3744 static struct value *
3745 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3746 {
3747 struct dwarf2_locexpr_baton *dlbaton
3748 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3749
3750 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3751 dlbaton->size);
3752 }
3753
3754 /* Implementation of get_symbol_read_needs from
3755 symbol_computed_ops. */
3756
3757 static enum symbol_needs_kind
3758 locexpr_get_symbol_read_needs (struct symbol *symbol)
3759 {
3760 struct dwarf2_locexpr_baton *dlbaton
3761 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3762
3763 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3764 dlbaton->per_cu);
3765 }
3766
3767 /* Return true if DATA points to the end of a piece. END is one past
3768 the last byte in the expression. */
3769
3770 static int
3771 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3772 {
3773 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3774 }
3775
3776 /* Helper for locexpr_describe_location_piece that finds the name of a
3777 DWARF register. */
3778
3779 static const char *
3780 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3781 {
3782 int regnum;
3783
3784 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3785 We'd rather print *something* here than throw an error. */
3786 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3787 /* gdbarch_register_name may just return "", return something more
3788 descriptive for bad register numbers. */
3789 if (regnum == -1)
3790 {
3791 /* The text is output as "$bad_register_number".
3792 That is why we use the underscores. */
3793 return _("bad_register_number");
3794 }
3795 return gdbarch_register_name (gdbarch, regnum);
3796 }
3797
3798 /* Nicely describe a single piece of a location, returning an updated
3799 position in the bytecode sequence. This function cannot recognize
3800 all locations; if a location is not recognized, it simply returns
3801 DATA. If there is an error during reading, e.g. we run off the end
3802 of the buffer, an error is thrown. */
3803
3804 static const gdb_byte *
3805 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3806 CORE_ADDR addr, struct objfile *objfile,
3807 struct dwarf2_per_cu_data *per_cu,
3808 const gdb_byte *data, const gdb_byte *end,
3809 unsigned int addr_size)
3810 {
3811 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3812 size_t leb128_size;
3813
3814 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3815 {
3816 fprintf_filtered (stream, _("a variable in $%s"),
3817 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3818 data += 1;
3819 }
3820 else if (data[0] == DW_OP_regx)
3821 {
3822 uint64_t reg;
3823
3824 data = safe_read_uleb128 (data + 1, end, &reg);
3825 fprintf_filtered (stream, _("a variable in $%s"),
3826 locexpr_regname (gdbarch, reg));
3827 }
3828 else if (data[0] == DW_OP_fbreg)
3829 {
3830 const struct block *b;
3831 struct symbol *framefunc;
3832 int frame_reg = 0;
3833 int64_t frame_offset;
3834 const gdb_byte *base_data, *new_data, *save_data = data;
3835 size_t base_size;
3836 int64_t base_offset = 0;
3837
3838 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3839 if (!piece_end_p (new_data, end))
3840 return data;
3841 data = new_data;
3842
3843 b = block_for_pc (addr);
3844
3845 if (!b)
3846 error (_("No block found for address for symbol \"%s\"."),
3847 SYMBOL_PRINT_NAME (symbol));
3848
3849 framefunc = block_linkage_function (b);
3850
3851 if (!framefunc)
3852 error (_("No function found for block for symbol \"%s\"."),
3853 SYMBOL_PRINT_NAME (symbol));
3854
3855 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3856
3857 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3858 {
3859 const gdb_byte *buf_end;
3860
3861 frame_reg = base_data[0] - DW_OP_breg0;
3862 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3863 &base_offset);
3864 if (buf_end != base_data + base_size)
3865 error (_("Unexpected opcode after "
3866 "DW_OP_breg%u for symbol \"%s\"."),
3867 frame_reg, SYMBOL_PRINT_NAME (symbol));
3868 }
3869 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3870 {
3871 /* The frame base is just the register, with no offset. */
3872 frame_reg = base_data[0] - DW_OP_reg0;
3873 base_offset = 0;
3874 }
3875 else
3876 {
3877 /* We don't know what to do with the frame base expression,
3878 so we can't trace this variable; give up. */
3879 return save_data;
3880 }
3881
3882 fprintf_filtered (stream,
3883 _("a variable at frame base reg $%s offset %s+%s"),
3884 locexpr_regname (gdbarch, frame_reg),
3885 plongest (base_offset), plongest (frame_offset));
3886 }
3887 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3888 && piece_end_p (data, end))
3889 {
3890 int64_t offset;
3891
3892 data = safe_read_sleb128 (data + 1, end, &offset);
3893
3894 fprintf_filtered (stream,
3895 _("a variable at offset %s from base reg $%s"),
3896 plongest (offset),
3897 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3898 }
3899
3900 /* The location expression for a TLS variable looks like this (on a
3901 64-bit LE machine):
3902
3903 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3904 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3905
3906 0x3 is the encoding for DW_OP_addr, which has an operand as long
3907 as the size of an address on the target machine (here is 8
3908 bytes). Note that more recent version of GCC emit DW_OP_const4u
3909 or DW_OP_const8u, depending on address size, rather than
3910 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3911 The operand represents the offset at which the variable is within
3912 the thread local storage. */
3913
3914 else if (data + 1 + addr_size < end
3915 && (data[0] == DW_OP_addr
3916 || (addr_size == 4 && data[0] == DW_OP_const4u)
3917 || (addr_size == 8 && data[0] == DW_OP_const8u))
3918 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3919 || data[1 + addr_size] == DW_OP_form_tls_address)
3920 && piece_end_p (data + 2 + addr_size, end))
3921 {
3922 ULONGEST offset;
3923 offset = extract_unsigned_integer (data + 1, addr_size,
3924 gdbarch_byte_order (gdbarch));
3925
3926 fprintf_filtered (stream,
3927 _("a thread-local variable at offset 0x%s "
3928 "in the thread-local storage for `%s'"),
3929 phex_nz (offset, addr_size), objfile_name (objfile));
3930
3931 data += 1 + addr_size + 1;
3932 }
3933
3934 /* With -gsplit-dwarf a TLS variable can also look like this:
3935 DW_AT_location : 3 byte block: fc 4 e0
3936 (DW_OP_GNU_const_index: 4;
3937 DW_OP_GNU_push_tls_address) */
3938 else if (data + 3 <= end
3939 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3940 && data[0] == DW_OP_GNU_const_index
3941 && leb128_size > 0
3942 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3943 || data[1 + leb128_size] == DW_OP_form_tls_address)
3944 && piece_end_p (data + 2 + leb128_size, end))
3945 {
3946 uint64_t offset;
3947
3948 data = safe_read_uleb128 (data + 1, end, &offset);
3949 offset = dwarf2_read_addr_index (per_cu, offset);
3950 fprintf_filtered (stream,
3951 _("a thread-local variable at offset 0x%s "
3952 "in the thread-local storage for `%s'"),
3953 phex_nz (offset, addr_size), objfile_name (objfile));
3954 ++data;
3955 }
3956
3957 else if (data[0] >= DW_OP_lit0
3958 && data[0] <= DW_OP_lit31
3959 && data + 1 < end
3960 && data[1] == DW_OP_stack_value)
3961 {
3962 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3963 data += 2;
3964 }
3965
3966 return data;
3967 }
3968
3969 /* Disassemble an expression, stopping at the end of a piece or at the
3970 end of the expression. Returns a pointer to the next unread byte
3971 in the input expression. If ALL is nonzero, then this function
3972 will keep going until it reaches the end of the expression.
3973 If there is an error during reading, e.g. we run off the end
3974 of the buffer, an error is thrown. */
3975
3976 static const gdb_byte *
3977 disassemble_dwarf_expression (struct ui_file *stream,
3978 struct gdbarch *arch, unsigned int addr_size,
3979 int offset_size, const gdb_byte *start,
3980 const gdb_byte *data, const gdb_byte *end,
3981 int indent, int all,
3982 struct dwarf2_per_cu_data *per_cu)
3983 {
3984 while (data < end
3985 && (all
3986 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3987 {
3988 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3989 uint64_t ul;
3990 int64_t l;
3991 const char *name;
3992
3993 name = get_DW_OP_name (op);
3994
3995 if (!name)
3996 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3997 op, (long) (data - 1 - start));
3998 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3999 (long) (data - 1 - start), name);
4000
4001 switch (op)
4002 {
4003 case DW_OP_addr:
4004 ul = extract_unsigned_integer (data, addr_size,
4005 gdbarch_byte_order (arch));
4006 data += addr_size;
4007 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4008 break;
4009
4010 case DW_OP_const1u:
4011 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
4012 data += 1;
4013 fprintf_filtered (stream, " %s", pulongest (ul));
4014 break;
4015 case DW_OP_const1s:
4016 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
4017 data += 1;
4018 fprintf_filtered (stream, " %s", plongest (l));
4019 break;
4020 case DW_OP_const2u:
4021 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4022 data += 2;
4023 fprintf_filtered (stream, " %s", pulongest (ul));
4024 break;
4025 case DW_OP_const2s:
4026 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4027 data += 2;
4028 fprintf_filtered (stream, " %s", plongest (l));
4029 break;
4030 case DW_OP_const4u:
4031 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4032 data += 4;
4033 fprintf_filtered (stream, " %s", pulongest (ul));
4034 break;
4035 case DW_OP_const4s:
4036 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
4037 data += 4;
4038 fprintf_filtered (stream, " %s", plongest (l));
4039 break;
4040 case DW_OP_const8u:
4041 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4042 data += 8;
4043 fprintf_filtered (stream, " %s", pulongest (ul));
4044 break;
4045 case DW_OP_const8s:
4046 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4047 data += 8;
4048 fprintf_filtered (stream, " %s", plongest (l));
4049 break;
4050 case DW_OP_constu:
4051 data = safe_read_uleb128 (data, end, &ul);
4052 fprintf_filtered (stream, " %s", pulongest (ul));
4053 break;
4054 case DW_OP_consts:
4055 data = safe_read_sleb128 (data, end, &l);
4056 fprintf_filtered (stream, " %s", plongest (l));
4057 break;
4058
4059 case DW_OP_reg0:
4060 case DW_OP_reg1:
4061 case DW_OP_reg2:
4062 case DW_OP_reg3:
4063 case DW_OP_reg4:
4064 case DW_OP_reg5:
4065 case DW_OP_reg6:
4066 case DW_OP_reg7:
4067 case DW_OP_reg8:
4068 case DW_OP_reg9:
4069 case DW_OP_reg10:
4070 case DW_OP_reg11:
4071 case DW_OP_reg12:
4072 case DW_OP_reg13:
4073 case DW_OP_reg14:
4074 case DW_OP_reg15:
4075 case DW_OP_reg16:
4076 case DW_OP_reg17:
4077 case DW_OP_reg18:
4078 case DW_OP_reg19:
4079 case DW_OP_reg20:
4080 case DW_OP_reg21:
4081 case DW_OP_reg22:
4082 case DW_OP_reg23:
4083 case DW_OP_reg24:
4084 case DW_OP_reg25:
4085 case DW_OP_reg26:
4086 case DW_OP_reg27:
4087 case DW_OP_reg28:
4088 case DW_OP_reg29:
4089 case DW_OP_reg30:
4090 case DW_OP_reg31:
4091 fprintf_filtered (stream, " [$%s]",
4092 locexpr_regname (arch, op - DW_OP_reg0));
4093 break;
4094
4095 case DW_OP_regx:
4096 data = safe_read_uleb128 (data, end, &ul);
4097 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4098 locexpr_regname (arch, (int) ul));
4099 break;
4100
4101 case DW_OP_implicit_value:
4102 data = safe_read_uleb128 (data, end, &ul);
4103 data += ul;
4104 fprintf_filtered (stream, " %s", pulongest (ul));
4105 break;
4106
4107 case DW_OP_breg0:
4108 case DW_OP_breg1:
4109 case DW_OP_breg2:
4110 case DW_OP_breg3:
4111 case DW_OP_breg4:
4112 case DW_OP_breg5:
4113 case DW_OP_breg6:
4114 case DW_OP_breg7:
4115 case DW_OP_breg8:
4116 case DW_OP_breg9:
4117 case DW_OP_breg10:
4118 case DW_OP_breg11:
4119 case DW_OP_breg12:
4120 case DW_OP_breg13:
4121 case DW_OP_breg14:
4122 case DW_OP_breg15:
4123 case DW_OP_breg16:
4124 case DW_OP_breg17:
4125 case DW_OP_breg18:
4126 case DW_OP_breg19:
4127 case DW_OP_breg20:
4128 case DW_OP_breg21:
4129 case DW_OP_breg22:
4130 case DW_OP_breg23:
4131 case DW_OP_breg24:
4132 case DW_OP_breg25:
4133 case DW_OP_breg26:
4134 case DW_OP_breg27:
4135 case DW_OP_breg28:
4136 case DW_OP_breg29:
4137 case DW_OP_breg30:
4138 case DW_OP_breg31:
4139 data = safe_read_sleb128 (data, end, &l);
4140 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4141 locexpr_regname (arch, op - DW_OP_breg0));
4142 break;
4143
4144 case DW_OP_bregx:
4145 data = safe_read_uleb128 (data, end, &ul);
4146 data = safe_read_sleb128 (data, end, &l);
4147 fprintf_filtered (stream, " register %s [$%s] offset %s",
4148 pulongest (ul),
4149 locexpr_regname (arch, (int) ul),
4150 plongest (l));
4151 break;
4152
4153 case DW_OP_fbreg:
4154 data = safe_read_sleb128 (data, end, &l);
4155 fprintf_filtered (stream, " %s", plongest (l));
4156 break;
4157
4158 case DW_OP_xderef_size:
4159 case DW_OP_deref_size:
4160 case DW_OP_pick:
4161 fprintf_filtered (stream, " %d", *data);
4162 ++data;
4163 break;
4164
4165 case DW_OP_plus_uconst:
4166 data = safe_read_uleb128 (data, end, &ul);
4167 fprintf_filtered (stream, " %s", pulongest (ul));
4168 break;
4169
4170 case DW_OP_skip:
4171 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4172 data += 2;
4173 fprintf_filtered (stream, " to %ld",
4174 (long) (data + l - start));
4175 break;
4176
4177 case DW_OP_bra:
4178 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4179 data += 2;
4180 fprintf_filtered (stream, " %ld",
4181 (long) (data + l - start));
4182 break;
4183
4184 case DW_OP_call2:
4185 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4186 data += 2;
4187 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4188 break;
4189
4190 case DW_OP_call4:
4191 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4192 data += 4;
4193 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4194 break;
4195
4196 case DW_OP_call_ref:
4197 ul = extract_unsigned_integer (data, offset_size,
4198 gdbarch_byte_order (arch));
4199 data += offset_size;
4200 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4201 break;
4202
4203 case DW_OP_piece:
4204 data = safe_read_uleb128 (data, end, &ul);
4205 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4206 break;
4207
4208 case DW_OP_bit_piece:
4209 {
4210 uint64_t offset;
4211
4212 data = safe_read_uleb128 (data, end, &ul);
4213 data = safe_read_uleb128 (data, end, &offset);
4214 fprintf_filtered (stream, " size %s offset %s (bits)",
4215 pulongest (ul), pulongest (offset));
4216 }
4217 break;
4218
4219 case DW_OP_implicit_pointer:
4220 case DW_OP_GNU_implicit_pointer:
4221 {
4222 ul = extract_unsigned_integer (data, offset_size,
4223 gdbarch_byte_order (arch));
4224 data += offset_size;
4225
4226 data = safe_read_sleb128 (data, end, &l);
4227
4228 fprintf_filtered (stream, " DIE %s offset %s",
4229 phex_nz (ul, offset_size),
4230 plongest (l));
4231 }
4232 break;
4233
4234 case DW_OP_deref_type:
4235 case DW_OP_GNU_deref_type:
4236 {
4237 int addr_size = *data++;
4238 struct type *type;
4239
4240 data = safe_read_uleb128 (data, end, &ul);
4241 cu_offset offset = (cu_offset) ul;
4242 type = dwarf2_get_die_type (offset, per_cu);
4243 fprintf_filtered (stream, "<");
4244 type_print (type, "", stream, -1);
4245 fprintf_filtered (stream, " [0x%s]> %d",
4246 phex_nz (to_underlying (offset), 0),
4247 addr_size);
4248 }
4249 break;
4250
4251 case DW_OP_const_type:
4252 case DW_OP_GNU_const_type:
4253 {
4254 struct type *type;
4255
4256 data = safe_read_uleb128 (data, end, &ul);
4257 cu_offset type_die = (cu_offset) ul;
4258 type = dwarf2_get_die_type (type_die, per_cu);
4259 fprintf_filtered (stream, "<");
4260 type_print (type, "", stream, -1);
4261 fprintf_filtered (stream, " [0x%s]>",
4262 phex_nz (to_underlying (type_die), 0));
4263 }
4264 break;
4265
4266 case DW_OP_regval_type:
4267 case DW_OP_GNU_regval_type:
4268 {
4269 uint64_t reg;
4270 struct type *type;
4271
4272 data = safe_read_uleb128 (data, end, &reg);
4273 data = safe_read_uleb128 (data, end, &ul);
4274 cu_offset type_die = (cu_offset) ul;
4275
4276 type = dwarf2_get_die_type (type_die, per_cu);
4277 fprintf_filtered (stream, "<");
4278 type_print (type, "", stream, -1);
4279 fprintf_filtered (stream, " [0x%s]> [$%s]",
4280 phex_nz (to_underlying (type_die), 0),
4281 locexpr_regname (arch, reg));
4282 }
4283 break;
4284
4285 case DW_OP_convert:
4286 case DW_OP_GNU_convert:
4287 case DW_OP_reinterpret:
4288 case DW_OP_GNU_reinterpret:
4289 {
4290 data = safe_read_uleb128 (data, end, &ul);
4291 cu_offset type_die = (cu_offset) ul;
4292
4293 if (to_underlying (type_die) == 0)
4294 fprintf_filtered (stream, "<0>");
4295 else
4296 {
4297 struct type *type;
4298
4299 type = dwarf2_get_die_type (type_die, per_cu);
4300 fprintf_filtered (stream, "<");
4301 type_print (type, "", stream, -1);
4302 fprintf_filtered (stream, " [0x%s]>",
4303 phex_nz (to_underlying (type_die), 0));
4304 }
4305 }
4306 break;
4307
4308 case DW_OP_entry_value:
4309 case DW_OP_GNU_entry_value:
4310 data = safe_read_uleb128 (data, end, &ul);
4311 fputc_filtered ('\n', stream);
4312 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4313 start, data, data + ul, indent + 2,
4314 all, per_cu);
4315 data += ul;
4316 continue;
4317
4318 case DW_OP_GNU_parameter_ref:
4319 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4320 data += 4;
4321 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4322 break;
4323
4324 case DW_OP_GNU_addr_index:
4325 data = safe_read_uleb128 (data, end, &ul);
4326 ul = dwarf2_read_addr_index (per_cu, ul);
4327 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4328 break;
4329 case DW_OP_GNU_const_index:
4330 data = safe_read_uleb128 (data, end, &ul);
4331 ul = dwarf2_read_addr_index (per_cu, ul);
4332 fprintf_filtered (stream, " %s", pulongest (ul));
4333 break;
4334
4335 case DW_OP_GNU_variable_value:
4336 ul = extract_unsigned_integer (data, offset_size,
4337 gdbarch_byte_order (arch));
4338 data += offset_size;
4339 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4340 break;
4341 }
4342
4343 fprintf_filtered (stream, "\n");
4344 }
4345
4346 return data;
4347 }
4348
4349 /* Describe a single location, which may in turn consist of multiple
4350 pieces. */
4351
4352 static void
4353 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4354 struct ui_file *stream,
4355 const gdb_byte *data, size_t size,
4356 struct objfile *objfile, unsigned int addr_size,
4357 int offset_size, struct dwarf2_per_cu_data *per_cu)
4358 {
4359 const gdb_byte *end = data + size;
4360 int first_piece = 1, bad = 0;
4361
4362 while (data < end)
4363 {
4364 const gdb_byte *here = data;
4365 int disassemble = 1;
4366
4367 if (first_piece)
4368 first_piece = 0;
4369 else
4370 fprintf_filtered (stream, _(", and "));
4371
4372 if (!dwarf_always_disassemble)
4373 {
4374 data = locexpr_describe_location_piece (symbol, stream,
4375 addr, objfile, per_cu,
4376 data, end, addr_size);
4377 /* If we printed anything, or if we have an empty piece,
4378 then don't disassemble. */
4379 if (data != here
4380 || data[0] == DW_OP_piece
4381 || data[0] == DW_OP_bit_piece)
4382 disassemble = 0;
4383 }
4384 if (disassemble)
4385 {
4386 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4387 data = disassemble_dwarf_expression (stream,
4388 get_objfile_arch (objfile),
4389 addr_size, offset_size, data,
4390 data, end, 0,
4391 dwarf_always_disassemble,
4392 per_cu);
4393 }
4394
4395 if (data < end)
4396 {
4397 int empty = data == here;
4398
4399 if (disassemble)
4400 fprintf_filtered (stream, " ");
4401 if (data[0] == DW_OP_piece)
4402 {
4403 uint64_t bytes;
4404
4405 data = safe_read_uleb128 (data + 1, end, &bytes);
4406
4407 if (empty)
4408 fprintf_filtered (stream, _("an empty %s-byte piece"),
4409 pulongest (bytes));
4410 else
4411 fprintf_filtered (stream, _(" [%s-byte piece]"),
4412 pulongest (bytes));
4413 }
4414 else if (data[0] == DW_OP_bit_piece)
4415 {
4416 uint64_t bits, offset;
4417
4418 data = safe_read_uleb128 (data + 1, end, &bits);
4419 data = safe_read_uleb128 (data, end, &offset);
4420
4421 if (empty)
4422 fprintf_filtered (stream,
4423 _("an empty %s-bit piece"),
4424 pulongest (bits));
4425 else
4426 fprintf_filtered (stream,
4427 _(" [%s-bit piece, offset %s bits]"),
4428 pulongest (bits), pulongest (offset));
4429 }
4430 else
4431 {
4432 bad = 1;
4433 break;
4434 }
4435 }
4436 }
4437
4438 if (bad || data > end)
4439 error (_("Corrupted DWARF2 expression for \"%s\"."),
4440 SYMBOL_PRINT_NAME (symbol));
4441 }
4442
4443 /* Print a natural-language description of SYMBOL to STREAM. This
4444 version is for a symbol with a single location. */
4445
4446 static void
4447 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4448 struct ui_file *stream)
4449 {
4450 struct dwarf2_locexpr_baton *dlbaton
4451 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4452 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4453 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4454 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4455
4456 locexpr_describe_location_1 (symbol, addr, stream,
4457 dlbaton->data, dlbaton->size,
4458 objfile, addr_size, offset_size,
4459 dlbaton->per_cu);
4460 }
4461
4462 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4463 any necessary bytecode in AX. */
4464
4465 static void
4466 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4467 struct axs_value *value)
4468 {
4469 struct dwarf2_locexpr_baton *dlbaton
4470 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4471 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4472
4473 if (dlbaton->size == 0)
4474 value->optimized_out = 1;
4475 else
4476 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4477 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4478 }
4479
4480 /* symbol_computed_ops 'generate_c_location' method. */
4481
4482 static void
4483 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4484 struct gdbarch *gdbarch,
4485 unsigned char *registers_used,
4486 CORE_ADDR pc, const char *result_name)
4487 {
4488 struct dwarf2_locexpr_baton *dlbaton
4489 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4490 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4491
4492 if (dlbaton->size == 0)
4493 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4494
4495 compile_dwarf_expr_to_c (stream, result_name,
4496 sym, pc, gdbarch, registers_used, addr_size,
4497 dlbaton->data, dlbaton->data + dlbaton->size,
4498 dlbaton->per_cu);
4499 }
4500
4501 /* The set of location functions used with the DWARF-2 expression
4502 evaluator. */
4503 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4504 locexpr_read_variable,
4505 locexpr_read_variable_at_entry,
4506 locexpr_get_symbol_read_needs,
4507 locexpr_describe_location,
4508 0, /* location_has_loclist */
4509 locexpr_tracepoint_var_ref,
4510 locexpr_generate_c_location
4511 };
4512
4513
4514 /* Wrapper functions for location lists. These generally find
4515 the appropriate location expression and call something above. */
4516
4517 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4518 evaluator to calculate the location. */
4519 static struct value *
4520 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4521 {
4522 struct dwarf2_loclist_baton *dlbaton
4523 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4524 struct value *val;
4525 const gdb_byte *data;
4526 size_t size;
4527 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4528
4529 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4530 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4531 dlbaton->per_cu);
4532
4533 return val;
4534 }
4535
4536 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4537 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4538 will be thrown.
4539
4540 Function always returns non-NULL value, it may be marked optimized out if
4541 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4542 if it cannot resolve the parameter for any reason. */
4543
4544 static struct value *
4545 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4546 {
4547 struct dwarf2_loclist_baton *dlbaton
4548 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4549 const gdb_byte *data;
4550 size_t size;
4551 CORE_ADDR pc;
4552
4553 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4554 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4555
4556 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4557 if (data == NULL)
4558 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4559
4560 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4561 }
4562
4563 /* Implementation of get_symbol_read_needs from
4564 symbol_computed_ops. */
4565
4566 static enum symbol_needs_kind
4567 loclist_symbol_needs (struct symbol *symbol)
4568 {
4569 /* If there's a location list, then assume we need to have a frame
4570 to choose the appropriate location expression. With tracking of
4571 global variables this is not necessarily true, but such tracking
4572 is disabled in GCC at the moment until we figure out how to
4573 represent it. */
4574
4575 return SYMBOL_NEEDS_FRAME;
4576 }
4577
4578 /* Print a natural-language description of SYMBOL to STREAM. This
4579 version applies when there is a list of different locations, each
4580 with a specified address range. */
4581
4582 static void
4583 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4584 struct ui_file *stream)
4585 {
4586 struct dwarf2_loclist_baton *dlbaton
4587 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4588 const gdb_byte *loc_ptr, *buf_end;
4589 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4590 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4592 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4593 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4594 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4595 /* Adjust base_address for relocatable objects. */
4596 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4597 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4598 int done = 0;
4599
4600 loc_ptr = dlbaton->data;
4601 buf_end = dlbaton->data + dlbaton->size;
4602
4603 fprintf_filtered (stream, _("multi-location:\n"));
4604
4605 /* Iterate through locations until we run out. */
4606 while (!done)
4607 {
4608 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4609 int length;
4610 enum debug_loc_kind kind;
4611 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4612
4613 if (dlbaton->from_dwo)
4614 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4615 loc_ptr, buf_end, &new_ptr,
4616 &low, &high, byte_order);
4617 else
4618 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4619 &low, &high,
4620 byte_order, addr_size,
4621 signed_addr_p);
4622 loc_ptr = new_ptr;
4623 switch (kind)
4624 {
4625 case DEBUG_LOC_END_OF_LIST:
4626 done = 1;
4627 continue;
4628 case DEBUG_LOC_BASE_ADDRESS:
4629 base_address = high + base_offset;
4630 fprintf_filtered (stream, _(" Base address %s"),
4631 paddress (gdbarch, base_address));
4632 continue;
4633 case DEBUG_LOC_START_END:
4634 case DEBUG_LOC_START_LENGTH:
4635 break;
4636 case DEBUG_LOC_BUFFER_OVERFLOW:
4637 case DEBUG_LOC_INVALID_ENTRY:
4638 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4639 SYMBOL_PRINT_NAME (symbol));
4640 default:
4641 gdb_assert_not_reached ("bad debug_loc_kind");
4642 }
4643
4644 /* Otherwise, a location expression entry. */
4645 low += base_address;
4646 high += base_address;
4647
4648 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4649 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4650
4651 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4652 loc_ptr += 2;
4653
4654 /* (It would improve readability to print only the minimum
4655 necessary digits of the second number of the range.) */
4656 fprintf_filtered (stream, _(" Range %s-%s: "),
4657 paddress (gdbarch, low), paddress (gdbarch, high));
4658
4659 /* Now describe this particular location. */
4660 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4661 objfile, addr_size, offset_size,
4662 dlbaton->per_cu);
4663
4664 fprintf_filtered (stream, "\n");
4665
4666 loc_ptr += length;
4667 }
4668 }
4669
4670 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4671 any necessary bytecode in AX. */
4672 static void
4673 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4674 struct axs_value *value)
4675 {
4676 struct dwarf2_loclist_baton *dlbaton
4677 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4678 const gdb_byte *data;
4679 size_t size;
4680 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4681
4682 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4683 if (size == 0)
4684 value->optimized_out = 1;
4685 else
4686 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4687 dlbaton->per_cu);
4688 }
4689
4690 /* symbol_computed_ops 'generate_c_location' method. */
4691
4692 static void
4693 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4694 struct gdbarch *gdbarch,
4695 unsigned char *registers_used,
4696 CORE_ADDR pc, const char *result_name)
4697 {
4698 struct dwarf2_loclist_baton *dlbaton
4699 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4700 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4701 const gdb_byte *data;
4702 size_t size;
4703
4704 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4705 if (size == 0)
4706 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4707
4708 compile_dwarf_expr_to_c (stream, result_name,
4709 sym, pc, gdbarch, registers_used, addr_size,
4710 data, data + size,
4711 dlbaton->per_cu);
4712 }
4713
4714 /* The set of location functions used with the DWARF-2 expression
4715 evaluator and location lists. */
4716 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4717 loclist_read_variable,
4718 loclist_read_variable_at_entry,
4719 loclist_symbol_needs,
4720 loclist_describe_location,
4721 1, /* location_has_loclist */
4722 loclist_tracepoint_var_ref,
4723 loclist_generate_c_location
4724 };
4725
4726 void
4727 _initialize_dwarf2loc (void)
4728 {
4729 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4730 &entry_values_debug,
4731 _("Set entry values and tail call frames "
4732 "debugging."),
4733 _("Show entry values and tail call frames "
4734 "debugging."),
4735 _("When non-zero, the process of determining "
4736 "parameter values from function entry point "
4737 "and tail call frames will be printed."),
4738 NULL,
4739 show_entry_values_debug,
4740 &setdebuglist, &showdebuglist);
4741
4742 #if GDB_SELF_TEST
4743 selftests::register_test ("copy_bitwise", selftests::copy_bitwise_tests);
4744 #endif
4745 }
This page took 0.190274 seconds and 5 git commands to generate.