write_pieced_value: Include transfer size in byte-wise check
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 static void
1756 read_pieced_value (struct value *v)
1757 {
1758 int i;
1759 long offset = 0;
1760 ULONGEST bits_to_skip;
1761 gdb_byte *contents;
1762 struct piece_closure *c
1763 = (struct piece_closure *) value_computed_closure (v);
1764 size_t type_len;
1765 size_t buffer_size = 0;
1766 std::vector<gdb_byte> buffer;
1767 int bits_big_endian
1768 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1769
1770 if (value_type (v) != value_enclosing_type (v))
1771 internal_error (__FILE__, __LINE__,
1772 _("Should not be able to create a lazy value with "
1773 "an enclosing type"));
1774
1775 contents = value_contents_raw (v);
1776 bits_to_skip = 8 * value_offset (v);
1777 if (value_bitsize (v))
1778 {
1779 bits_to_skip += (8 * value_offset (value_parent (v))
1780 + value_bitpos (v));
1781 type_len = value_bitsize (v);
1782 }
1783 else
1784 type_len = 8 * TYPE_LENGTH (value_type (v));
1785
1786 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1787 {
1788 struct dwarf_expr_piece *p = &c->pieces[i];
1789 size_t this_size, this_size_bits;
1790 long dest_offset_bits, source_offset_bits, source_offset;
1791 const gdb_byte *intermediate_buffer;
1792
1793 /* Compute size, source, and destination offsets for copying, in
1794 bits. */
1795 this_size_bits = p->size;
1796 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1797 {
1798 bits_to_skip -= this_size_bits;
1799 continue;
1800 }
1801 if (bits_to_skip > 0)
1802 {
1803 dest_offset_bits = 0;
1804 source_offset_bits = bits_to_skip;
1805 this_size_bits -= bits_to_skip;
1806 bits_to_skip = 0;
1807 }
1808 else
1809 {
1810 dest_offset_bits = offset;
1811 source_offset_bits = 0;
1812 }
1813 if (this_size_bits > type_len - offset)
1814 this_size_bits = type_len - offset;
1815
1816 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1817 source_offset = source_offset_bits / 8;
1818 if (buffer_size < this_size)
1819 {
1820 buffer_size = this_size;
1821 buffer.reserve (buffer_size);
1822 }
1823 intermediate_buffer = buffer.data ();
1824
1825 /* Copy from the source to DEST_BUFFER. */
1826 switch (p->location)
1827 {
1828 case DWARF_VALUE_REGISTER:
1829 {
1830 struct frame_info *frame = frame_find_by_id (c->frame_id);
1831 struct gdbarch *arch = get_frame_arch (frame);
1832 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1833 int optim, unavail;
1834 LONGEST reg_offset = source_offset;
1835
1836 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1837 && this_size < register_size (arch, gdb_regnum))
1838 {
1839 /* Big-endian, and we want less than full size. */
1840 reg_offset = register_size (arch, gdb_regnum) - this_size;
1841 /* We want the lower-order THIS_SIZE_BITS of the bytes
1842 we extract from the register. */
1843 source_offset_bits += 8 * this_size - this_size_bits;
1844 }
1845
1846 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1847 this_size, buffer.data (),
1848 &optim, &unavail))
1849 {
1850 /* Just so garbage doesn't ever shine through. */
1851 memset (buffer.data (), 0, this_size);
1852
1853 if (optim)
1854 mark_value_bits_optimized_out (v, offset, this_size_bits);
1855 if (unavail)
1856 mark_value_bits_unavailable (v, offset, this_size_bits);
1857 }
1858
1859 copy_bitwise (contents, dest_offset_bits,
1860 intermediate_buffer, source_offset_bits % 8,
1861 this_size_bits, bits_big_endian);
1862 }
1863 break;
1864
1865 case DWARF_VALUE_MEMORY:
1866 read_value_memory (v, offset,
1867 p->v.mem.in_stack_memory,
1868 p->v.mem.addr + source_offset,
1869 buffer.data (), this_size);
1870 copy_bitwise (contents, dest_offset_bits,
1871 intermediate_buffer, source_offset_bits % 8,
1872 this_size_bits, bits_big_endian);
1873 break;
1874
1875 case DWARF_VALUE_STACK:
1876 {
1877 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1878 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1879 ULONGEST stack_value_size_bits
1880 = 8 * TYPE_LENGTH (value_type (p->v.value));
1881
1882 /* Use zeroes if piece reaches beyond stack value. */
1883 if (p->size > stack_value_size_bits)
1884 break;
1885
1886 /* Piece is anchored at least significant bit end. */
1887 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1888 source_offset_bits += stack_value_size_bits - p->size;
1889
1890 copy_bitwise (contents, dest_offset_bits,
1891 value_contents_all (p->v.value),
1892 source_offset_bits,
1893 this_size_bits, bits_big_endian);
1894 }
1895 break;
1896
1897 case DWARF_VALUE_LITERAL:
1898 {
1899 size_t n = this_size;
1900
1901 if (n > p->v.literal.length - source_offset)
1902 n = (p->v.literal.length >= source_offset
1903 ? p->v.literal.length - source_offset
1904 : 0);
1905 if (n != 0)
1906 intermediate_buffer = p->v.literal.data + source_offset;
1907
1908 copy_bitwise (contents, dest_offset_bits,
1909 intermediate_buffer, source_offset_bits % 8,
1910 this_size_bits, bits_big_endian);
1911 }
1912 break;
1913
1914 /* These bits show up as zeros -- but do not cause the value
1915 to be considered optimized-out. */
1916 case DWARF_VALUE_IMPLICIT_POINTER:
1917 break;
1918
1919 case DWARF_VALUE_OPTIMIZED_OUT:
1920 mark_value_bits_optimized_out (v, offset, this_size_bits);
1921 break;
1922
1923 default:
1924 internal_error (__FILE__, __LINE__, _("invalid location type"));
1925 }
1926
1927 offset += this_size_bits;
1928 }
1929 }
1930
1931 static void
1932 write_pieced_value (struct value *to, struct value *from)
1933 {
1934 int i;
1935 long offset = 0;
1936 ULONGEST bits_to_skip;
1937 const gdb_byte *contents;
1938 struct piece_closure *c
1939 = (struct piece_closure *) value_computed_closure (to);
1940 size_t type_len;
1941 size_t buffer_size = 0;
1942 std::vector<gdb_byte> buffer;
1943 int bits_big_endian
1944 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1945
1946 contents = value_contents (from);
1947 bits_to_skip = 8 * value_offset (to);
1948 if (value_bitsize (to))
1949 {
1950 bits_to_skip += (8 * value_offset (value_parent (to))
1951 + value_bitpos (to));
1952 type_len = value_bitsize (to);
1953 }
1954 else
1955 type_len = 8 * TYPE_LENGTH (value_type (to));
1956
1957 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1958 {
1959 struct dwarf_expr_piece *p = &c->pieces[i];
1960 size_t this_size_bits, this_size;
1961 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1962 int need_bitwise;
1963 const gdb_byte *source_buffer;
1964
1965 this_size_bits = p->size;
1966 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1967 {
1968 bits_to_skip -= this_size_bits;
1969 continue;
1970 }
1971 if (bits_to_skip > 0)
1972 {
1973 dest_offset_bits = bits_to_skip;
1974 source_offset_bits = 0;
1975 this_size_bits -= bits_to_skip;
1976 bits_to_skip = 0;
1977 }
1978 else
1979 {
1980 dest_offset_bits = 0;
1981 source_offset_bits = offset;
1982 }
1983 if (this_size_bits > type_len - offset)
1984 this_size_bits = type_len - offset;
1985
1986 this_size = (this_size_bits + dest_offset_bits % 8 + 7) / 8;
1987 source_offset = source_offset_bits / 8;
1988 dest_offset = dest_offset_bits / 8;
1989
1990 /* Check whether the data can be transferred byte-wise. */
1991 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0
1992 && this_size_bits % 8 == 0)
1993 {
1994 source_buffer = contents + source_offset;
1995 need_bitwise = 0;
1996 }
1997 else
1998 {
1999 if (buffer_size < this_size)
2000 {
2001 buffer_size = this_size;
2002 buffer.reserve (buffer_size);
2003 }
2004 source_buffer = buffer.data ();
2005 need_bitwise = 1;
2006 }
2007
2008 switch (p->location)
2009 {
2010 case DWARF_VALUE_REGISTER:
2011 {
2012 struct frame_info *frame = frame_find_by_id (c->frame_id);
2013 struct gdbarch *arch = get_frame_arch (frame);
2014 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
2015 int reg_offset = dest_offset;
2016
2017 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2018 && this_size <= register_size (arch, gdb_regnum))
2019 {
2020 /* Big-endian, and we want less than full size. */
2021 reg_offset = register_size (arch, gdb_regnum) - this_size;
2022 }
2023
2024 if (need_bitwise)
2025 {
2026 int optim, unavail;
2027
2028 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
2029 this_size, buffer.data (),
2030 &optim, &unavail))
2031 {
2032 if (optim)
2033 throw_error (OPTIMIZED_OUT_ERROR,
2034 _("Can't do read-modify-write to "
2035 "update bitfield; containing word "
2036 "has been optimized out"));
2037 if (unavail)
2038 throw_error (NOT_AVAILABLE_ERROR,
2039 _("Can't do read-modify-write to update "
2040 "bitfield; containing word "
2041 "is unavailable"));
2042 }
2043 copy_bitwise (buffer.data (), dest_offset_bits,
2044 contents, source_offset_bits,
2045 this_size_bits,
2046 bits_big_endian);
2047 }
2048
2049 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2050 this_size, source_buffer);
2051 }
2052 break;
2053 case DWARF_VALUE_MEMORY:
2054 if (need_bitwise)
2055 {
2056 /* Only the first and last bytes can possibly have any
2057 bits reused. */
2058 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2059 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2060 &buffer[this_size - 1], 1);
2061 copy_bitwise (buffer.data (), dest_offset_bits,
2062 contents, source_offset_bits,
2063 this_size_bits,
2064 bits_big_endian);
2065 }
2066
2067 write_memory (p->v.mem.addr + dest_offset,
2068 source_buffer, this_size);
2069 break;
2070 default:
2071 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2072 break;
2073 }
2074 offset += this_size_bits;
2075 }
2076 }
2077
2078 /* An implementation of an lval_funcs method to see whether a value is
2079 a synthetic pointer. */
2080
2081 static int
2082 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2083 int bit_length)
2084 {
2085 struct piece_closure *c
2086 = (struct piece_closure *) value_computed_closure (value);
2087 int i;
2088
2089 bit_offset += 8 * value_offset (value);
2090 if (value_bitsize (value))
2091 bit_offset += value_bitpos (value);
2092
2093 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2094 {
2095 struct dwarf_expr_piece *p = &c->pieces[i];
2096 size_t this_size_bits = p->size;
2097
2098 if (bit_offset > 0)
2099 {
2100 if (bit_offset >= this_size_bits)
2101 {
2102 bit_offset -= this_size_bits;
2103 continue;
2104 }
2105
2106 bit_length -= this_size_bits - bit_offset;
2107 bit_offset = 0;
2108 }
2109 else
2110 bit_length -= this_size_bits;
2111
2112 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2113 return 0;
2114 }
2115
2116 return 1;
2117 }
2118
2119 /* A wrapper function for get_frame_address_in_block. */
2120
2121 static CORE_ADDR
2122 get_frame_address_in_block_wrapper (void *baton)
2123 {
2124 return get_frame_address_in_block ((struct frame_info *) baton);
2125 }
2126
2127 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2128
2129 static struct value *
2130 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2131 struct dwarf2_per_cu_data *per_cu,
2132 struct type *type)
2133 {
2134 struct value *result = NULL;
2135 struct obstack temp_obstack;
2136 struct cleanup *cleanup;
2137 const gdb_byte *bytes;
2138 LONGEST len;
2139
2140 obstack_init (&temp_obstack);
2141 cleanup = make_cleanup_obstack_free (&temp_obstack);
2142 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2143
2144 if (bytes != NULL)
2145 {
2146 if (byte_offset >= 0
2147 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2148 {
2149 bytes += byte_offset;
2150 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2151 }
2152 else
2153 invalid_synthetic_pointer ();
2154 }
2155 else
2156 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2157
2158 do_cleanups (cleanup);
2159
2160 return result;
2161 }
2162
2163 /* Fetch the value pointed to by a synthetic pointer. */
2164
2165 static struct value *
2166 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2167 struct dwarf2_per_cu_data *per_cu,
2168 struct frame_info *frame, struct type *type)
2169 {
2170 /* Fetch the location expression of the DIE we're pointing to. */
2171 struct dwarf2_locexpr_baton baton
2172 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2173 get_frame_address_in_block_wrapper, frame);
2174
2175 /* Get type of pointed-to DIE. */
2176 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2177 if (orig_type == NULL)
2178 invalid_synthetic_pointer ();
2179
2180 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2181 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2182 or it may've been optimized out. */
2183 if (baton.data != NULL)
2184 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2185 baton.size, baton.per_cu,
2186 TYPE_TARGET_TYPE (type),
2187 byte_offset);
2188 else
2189 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2190 type);
2191 }
2192
2193 /* An implementation of an lval_funcs method to indirect through a
2194 pointer. This handles the synthetic pointer case when needed. */
2195
2196 static struct value *
2197 indirect_pieced_value (struct value *value)
2198 {
2199 struct piece_closure *c
2200 = (struct piece_closure *) value_computed_closure (value);
2201 struct type *type;
2202 struct frame_info *frame;
2203 struct dwarf2_locexpr_baton baton;
2204 int i, bit_length;
2205 LONGEST bit_offset;
2206 struct dwarf_expr_piece *piece = NULL;
2207 LONGEST byte_offset;
2208 enum bfd_endian byte_order;
2209
2210 type = check_typedef (value_type (value));
2211 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2212 return NULL;
2213
2214 bit_length = 8 * TYPE_LENGTH (type);
2215 bit_offset = 8 * value_offset (value);
2216 if (value_bitsize (value))
2217 bit_offset += value_bitpos (value);
2218
2219 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2220 {
2221 struct dwarf_expr_piece *p = &c->pieces[i];
2222 size_t this_size_bits = p->size;
2223
2224 if (bit_offset > 0)
2225 {
2226 if (bit_offset >= this_size_bits)
2227 {
2228 bit_offset -= this_size_bits;
2229 continue;
2230 }
2231
2232 bit_length -= this_size_bits - bit_offset;
2233 bit_offset = 0;
2234 }
2235 else
2236 bit_length -= this_size_bits;
2237
2238 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2239 return NULL;
2240
2241 if (bit_length != 0)
2242 error (_("Invalid use of DW_OP_implicit_pointer"));
2243
2244 piece = p;
2245 break;
2246 }
2247
2248 gdb_assert (piece != NULL);
2249 frame = get_selected_frame (_("No frame selected."));
2250
2251 /* This is an offset requested by GDB, such as value subscripts.
2252 However, due to how synthetic pointers are implemented, this is
2253 always presented to us as a pointer type. This means we have to
2254 sign-extend it manually as appropriate. Use raw
2255 extract_signed_integer directly rather than value_as_address and
2256 sign extend afterwards on architectures that would need it
2257 (mostly everywhere except MIPS, which has signed addresses) as
2258 the later would go through gdbarch_pointer_to_address and thus
2259 return a CORE_ADDR with high bits set on architectures that
2260 encode address spaces and other things in CORE_ADDR. */
2261 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2262 byte_offset = extract_signed_integer (value_contents (value),
2263 TYPE_LENGTH (type), byte_order);
2264 byte_offset += piece->v.ptr.offset;
2265
2266 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2267 byte_offset, c->per_cu,
2268 frame, type);
2269 }
2270
2271 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2272 references. */
2273
2274 static struct value *
2275 coerce_pieced_ref (const struct value *value)
2276 {
2277 struct type *type = check_typedef (value_type (value));
2278
2279 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2281 {
2282 const struct piece_closure *closure
2283 = (struct piece_closure *) value_computed_closure (value);
2284 struct frame_info *frame
2285 = get_selected_frame (_("No frame selected."));
2286
2287 /* gdb represents synthetic pointers as pieced values with a single
2288 piece. */
2289 gdb_assert (closure != NULL);
2290 gdb_assert (closure->n_pieces == 1);
2291
2292 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2293 closure->pieces->v.ptr.offset,
2294 closure->per_cu, frame, type);
2295 }
2296 else
2297 {
2298 /* Else: not a synthetic reference; do nothing. */
2299 return NULL;
2300 }
2301 }
2302
2303 static void *
2304 copy_pieced_value_closure (const struct value *v)
2305 {
2306 struct piece_closure *c
2307 = (struct piece_closure *) value_computed_closure (v);
2308
2309 ++c->refc;
2310 return c;
2311 }
2312
2313 static void
2314 free_pieced_value_closure (struct value *v)
2315 {
2316 struct piece_closure *c
2317 = (struct piece_closure *) value_computed_closure (v);
2318
2319 --c->refc;
2320 if (c->refc == 0)
2321 {
2322 int i;
2323
2324 for (i = 0; i < c->n_pieces; ++i)
2325 if (c->pieces[i].location == DWARF_VALUE_STACK)
2326 value_free (c->pieces[i].v.value);
2327
2328 xfree (c->pieces);
2329 xfree (c);
2330 }
2331 }
2332
2333 /* Functions for accessing a variable described by DW_OP_piece. */
2334 static const struct lval_funcs pieced_value_funcs = {
2335 read_pieced_value,
2336 write_pieced_value,
2337 indirect_pieced_value,
2338 coerce_pieced_ref,
2339 check_pieced_synthetic_pointer,
2340 copy_pieced_value_closure,
2341 free_pieced_value_closure
2342 };
2343
2344 /* Evaluate a location description, starting at DATA and with length
2345 SIZE, to find the current location of variable of TYPE in the
2346 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2347 location of the subobject of type SUBOBJ_TYPE at byte offset
2348 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2349
2350 static struct value *
2351 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2352 const gdb_byte *data, size_t size,
2353 struct dwarf2_per_cu_data *per_cu,
2354 struct type *subobj_type,
2355 LONGEST subobj_byte_offset)
2356 {
2357 struct value *retval;
2358 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2359
2360 if (subobj_type == NULL)
2361 {
2362 subobj_type = type;
2363 subobj_byte_offset = 0;
2364 }
2365 else if (subobj_byte_offset < 0)
2366 invalid_synthetic_pointer ();
2367
2368 if (size == 0)
2369 return allocate_optimized_out_value (subobj_type);
2370
2371 dwarf_evaluate_loc_desc ctx;
2372 ctx.frame = frame;
2373 ctx.per_cu = per_cu;
2374 ctx.obj_address = 0;
2375
2376 scoped_value_mark free_values;
2377
2378 ctx.gdbarch = get_objfile_arch (objfile);
2379 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2380 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2381 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2382
2383 TRY
2384 {
2385 ctx.eval (data, size);
2386 }
2387 CATCH (ex, RETURN_MASK_ERROR)
2388 {
2389 if (ex.error == NOT_AVAILABLE_ERROR)
2390 {
2391 free_values.free_to_mark ();
2392 retval = allocate_value (subobj_type);
2393 mark_value_bytes_unavailable (retval, 0,
2394 TYPE_LENGTH (subobj_type));
2395 return retval;
2396 }
2397 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2398 {
2399 if (entry_values_debug)
2400 exception_print (gdb_stdout, ex);
2401 free_values.free_to_mark ();
2402 return allocate_optimized_out_value (subobj_type);
2403 }
2404 else
2405 throw_exception (ex);
2406 }
2407 END_CATCH
2408
2409 if (ctx.num_pieces > 0)
2410 {
2411 struct piece_closure *c;
2412 ULONGEST bit_size = 0;
2413 int i;
2414
2415 for (i = 0; i < ctx.num_pieces; ++i)
2416 bit_size += ctx.pieces[i].size;
2417 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2418 invalid_synthetic_pointer ();
2419
2420 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2421 frame);
2422 /* We must clean up the value chain after creating the piece
2423 closure but before allocating the result. */
2424 free_values.free_to_mark ();
2425 retval = allocate_computed_value (subobj_type,
2426 &pieced_value_funcs, c);
2427 set_value_offset (retval, subobj_byte_offset);
2428 }
2429 else
2430 {
2431 switch (ctx.location)
2432 {
2433 case DWARF_VALUE_REGISTER:
2434 {
2435 struct gdbarch *arch = get_frame_arch (frame);
2436 int dwarf_regnum
2437 = longest_to_int (value_as_long (ctx.fetch (0)));
2438 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2439
2440 if (subobj_byte_offset != 0)
2441 error (_("cannot use offset on synthetic pointer to register"));
2442 free_values.free_to_mark ();
2443 retval = value_from_register (subobj_type, gdb_regnum, frame);
2444 if (value_optimized_out (retval))
2445 {
2446 struct value *tmp;
2447
2448 /* This means the register has undefined value / was
2449 not saved. As we're computing the location of some
2450 variable etc. in the program, not a value for
2451 inspecting a register ($pc, $sp, etc.), return a
2452 generic optimized out value instead, so that we show
2453 <optimized out> instead of <not saved>. */
2454 tmp = allocate_value (subobj_type);
2455 value_contents_copy (tmp, 0, retval, 0,
2456 TYPE_LENGTH (subobj_type));
2457 retval = tmp;
2458 }
2459 }
2460 break;
2461
2462 case DWARF_VALUE_MEMORY:
2463 {
2464 struct type *ptr_type;
2465 CORE_ADDR address = ctx.fetch_address (0);
2466 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2467
2468 /* DW_OP_deref_size (and possibly other operations too) may
2469 create a pointer instead of an address. Ideally, the
2470 pointer to address conversion would be performed as part
2471 of those operations, but the type of the object to
2472 which the address refers is not known at the time of
2473 the operation. Therefore, we do the conversion here
2474 since the type is readily available. */
2475
2476 switch (TYPE_CODE (subobj_type))
2477 {
2478 case TYPE_CODE_FUNC:
2479 case TYPE_CODE_METHOD:
2480 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2481 break;
2482 default:
2483 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2484 break;
2485 }
2486 address = value_as_address (value_from_pointer (ptr_type, address));
2487
2488 free_values.free_to_mark ();
2489 retval = value_at_lazy (subobj_type,
2490 address + subobj_byte_offset);
2491 if (in_stack_memory)
2492 set_value_stack (retval, 1);
2493 }
2494 break;
2495
2496 case DWARF_VALUE_STACK:
2497 {
2498 struct value *value = ctx.fetch (0);
2499 size_t n = TYPE_LENGTH (value_type (value));
2500 size_t len = TYPE_LENGTH (subobj_type);
2501 size_t max = TYPE_LENGTH (type);
2502 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2503 struct cleanup *cleanup;
2504
2505 if (subobj_byte_offset + len > max)
2506 invalid_synthetic_pointer ();
2507
2508 /* Preserve VALUE because we are going to free values back
2509 to the mark, but we still need the value contents
2510 below. */
2511 value_incref (value);
2512 free_values.free_to_mark ();
2513 cleanup = make_cleanup_value_free (value);
2514
2515 retval = allocate_value (subobj_type);
2516
2517 /* The given offset is relative to the actual object. */
2518 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2519 subobj_byte_offset += n - max;
2520
2521 memcpy (value_contents_raw (retval),
2522 value_contents_all (value) + subobj_byte_offset, len);
2523
2524 do_cleanups (cleanup);
2525 }
2526 break;
2527
2528 case DWARF_VALUE_LITERAL:
2529 {
2530 bfd_byte *contents;
2531 size_t n = TYPE_LENGTH (subobj_type);
2532
2533 if (subobj_byte_offset + n > ctx.len)
2534 invalid_synthetic_pointer ();
2535
2536 free_values.free_to_mark ();
2537 retval = allocate_value (subobj_type);
2538 contents = value_contents_raw (retval);
2539 memcpy (contents, ctx.data + subobj_byte_offset, n);
2540 }
2541 break;
2542
2543 case DWARF_VALUE_OPTIMIZED_OUT:
2544 free_values.free_to_mark ();
2545 retval = allocate_optimized_out_value (subobj_type);
2546 break;
2547
2548 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2549 operation by execute_stack_op. */
2550 case DWARF_VALUE_IMPLICIT_POINTER:
2551 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2552 it can only be encountered when making a piece. */
2553 default:
2554 internal_error (__FILE__, __LINE__, _("invalid location type"));
2555 }
2556 }
2557
2558 set_value_initialized (retval, ctx.initialized);
2559
2560 return retval;
2561 }
2562
2563 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2564 passes 0 as the byte_offset. */
2565
2566 struct value *
2567 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2568 const gdb_byte *data, size_t size,
2569 struct dwarf2_per_cu_data *per_cu)
2570 {
2571 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2572 NULL, 0);
2573 }
2574
2575 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2576 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2577 frame in which the expression is evaluated. ADDR is a context (location of
2578 a variable) and might be needed to evaluate the location expression.
2579 Returns 1 on success, 0 otherwise. */
2580
2581 static int
2582 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2583 struct frame_info *frame,
2584 CORE_ADDR addr,
2585 CORE_ADDR *valp)
2586 {
2587 struct objfile *objfile;
2588
2589 if (dlbaton == NULL || dlbaton->size == 0)
2590 return 0;
2591
2592 dwarf_evaluate_loc_desc ctx;
2593
2594 ctx.frame = frame;
2595 ctx.per_cu = dlbaton->per_cu;
2596 ctx.obj_address = addr;
2597
2598 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2599
2600 ctx.gdbarch = get_objfile_arch (objfile);
2601 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2602 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2603 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2604
2605 ctx.eval (dlbaton->data, dlbaton->size);
2606
2607 switch (ctx.location)
2608 {
2609 case DWARF_VALUE_REGISTER:
2610 case DWARF_VALUE_MEMORY:
2611 case DWARF_VALUE_STACK:
2612 *valp = ctx.fetch_address (0);
2613 if (ctx.location == DWARF_VALUE_REGISTER)
2614 *valp = ctx.read_addr_from_reg (*valp);
2615 return 1;
2616 case DWARF_VALUE_LITERAL:
2617 *valp = extract_signed_integer (ctx.data, ctx.len,
2618 gdbarch_byte_order (ctx.gdbarch));
2619 return 1;
2620 /* Unsupported dwarf values. */
2621 case DWARF_VALUE_OPTIMIZED_OUT:
2622 case DWARF_VALUE_IMPLICIT_POINTER:
2623 break;
2624 }
2625
2626 return 0;
2627 }
2628
2629 /* See dwarf2loc.h. */
2630
2631 int
2632 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2633 struct frame_info *frame,
2634 struct property_addr_info *addr_stack,
2635 CORE_ADDR *value)
2636 {
2637 if (prop == NULL)
2638 return 0;
2639
2640 if (frame == NULL && has_stack_frames ())
2641 frame = get_selected_frame (NULL);
2642
2643 switch (prop->kind)
2644 {
2645 case PROP_LOCEXPR:
2646 {
2647 const struct dwarf2_property_baton *baton
2648 = (const struct dwarf2_property_baton *) prop->data.baton;
2649
2650 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2651 addr_stack ? addr_stack->addr : 0,
2652 value))
2653 {
2654 if (baton->referenced_type)
2655 {
2656 struct value *val = value_at (baton->referenced_type, *value);
2657
2658 *value = value_as_address (val);
2659 }
2660 return 1;
2661 }
2662 }
2663 break;
2664
2665 case PROP_LOCLIST:
2666 {
2667 struct dwarf2_property_baton *baton
2668 = (struct dwarf2_property_baton *) prop->data.baton;
2669 CORE_ADDR pc = get_frame_address_in_block (frame);
2670 const gdb_byte *data;
2671 struct value *val;
2672 size_t size;
2673
2674 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2675 if (data != NULL)
2676 {
2677 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2678 size, baton->loclist.per_cu);
2679 if (!value_optimized_out (val))
2680 {
2681 *value = value_as_address (val);
2682 return 1;
2683 }
2684 }
2685 }
2686 break;
2687
2688 case PROP_CONST:
2689 *value = prop->data.const_val;
2690 return 1;
2691
2692 case PROP_ADDR_OFFSET:
2693 {
2694 struct dwarf2_property_baton *baton
2695 = (struct dwarf2_property_baton *) prop->data.baton;
2696 struct property_addr_info *pinfo;
2697 struct value *val;
2698
2699 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2700 if (pinfo->type == baton->referenced_type)
2701 break;
2702 if (pinfo == NULL)
2703 error (_("cannot find reference address for offset property"));
2704 if (pinfo->valaddr != NULL)
2705 val = value_from_contents
2706 (baton->offset_info.type,
2707 pinfo->valaddr + baton->offset_info.offset);
2708 else
2709 val = value_at (baton->offset_info.type,
2710 pinfo->addr + baton->offset_info.offset);
2711 *value = value_as_address (val);
2712 return 1;
2713 }
2714 }
2715
2716 return 0;
2717 }
2718
2719 /* See dwarf2loc.h. */
2720
2721 void
2722 dwarf2_compile_property_to_c (string_file &stream,
2723 const char *result_name,
2724 struct gdbarch *gdbarch,
2725 unsigned char *registers_used,
2726 const struct dynamic_prop *prop,
2727 CORE_ADDR pc,
2728 struct symbol *sym)
2729 {
2730 struct dwarf2_property_baton *baton
2731 = (struct dwarf2_property_baton *) prop->data.baton;
2732 const gdb_byte *data;
2733 size_t size;
2734 struct dwarf2_per_cu_data *per_cu;
2735
2736 if (prop->kind == PROP_LOCEXPR)
2737 {
2738 data = baton->locexpr.data;
2739 size = baton->locexpr.size;
2740 per_cu = baton->locexpr.per_cu;
2741 }
2742 else
2743 {
2744 gdb_assert (prop->kind == PROP_LOCLIST);
2745
2746 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2747 per_cu = baton->loclist.per_cu;
2748 }
2749
2750 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2751 gdbarch, registers_used,
2752 dwarf2_per_cu_addr_size (per_cu),
2753 data, data + size, per_cu);
2754 }
2755
2756 \f
2757 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2758
2759 class symbol_needs_eval_context : public dwarf_expr_context
2760 {
2761 public:
2762
2763 enum symbol_needs_kind needs;
2764 struct dwarf2_per_cu_data *per_cu;
2765
2766 /* Reads from registers do require a frame. */
2767 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2768 {
2769 needs = SYMBOL_NEEDS_FRAME;
2770 return 1;
2771 }
2772
2773 /* "get_reg_value" callback: Reads from registers do require a
2774 frame. */
2775
2776 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2777 {
2778 needs = SYMBOL_NEEDS_FRAME;
2779 return value_zero (type, not_lval);
2780 }
2781
2782 /* Reads from memory do not require a frame. */
2783 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2784 {
2785 memset (buf, 0, len);
2786 }
2787
2788 /* Frame-relative accesses do require a frame. */
2789 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2790 {
2791 static gdb_byte lit0 = DW_OP_lit0;
2792
2793 *start = &lit0;
2794 *length = 1;
2795
2796 needs = SYMBOL_NEEDS_FRAME;
2797 }
2798
2799 /* CFA accesses require a frame. */
2800 CORE_ADDR get_frame_cfa () OVERRIDE
2801 {
2802 needs = SYMBOL_NEEDS_FRAME;
2803 return 1;
2804 }
2805
2806 CORE_ADDR get_frame_pc () OVERRIDE
2807 {
2808 needs = SYMBOL_NEEDS_FRAME;
2809 return 1;
2810 }
2811
2812 /* Thread-local accesses require registers, but not a frame. */
2813 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2814 {
2815 if (needs <= SYMBOL_NEEDS_REGISTERS)
2816 needs = SYMBOL_NEEDS_REGISTERS;
2817 return 1;
2818 }
2819
2820 /* Helper interface of per_cu_dwarf_call for
2821 dwarf2_loc_desc_get_symbol_read_needs. */
2822
2823 void dwarf_call (cu_offset die_offset) OVERRIDE
2824 {
2825 per_cu_dwarf_call (this, die_offset, per_cu);
2826 }
2827
2828 /* DW_OP_entry_value accesses require a caller, therefore a
2829 frame. */
2830
2831 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2832 union call_site_parameter_u kind_u,
2833 int deref_size) OVERRIDE
2834 {
2835 needs = SYMBOL_NEEDS_FRAME;
2836
2837 /* The expression may require some stub values on DWARF stack. */
2838 push_address (0, 0);
2839 }
2840
2841 /* DW_OP_GNU_addr_index doesn't require a frame. */
2842
2843 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2844 {
2845 /* Nothing to do. */
2846 return 1;
2847 }
2848
2849 /* DW_OP_push_object_address has a frame already passed through. */
2850
2851 CORE_ADDR get_object_address () OVERRIDE
2852 {
2853 /* Nothing to do. */
2854 return 1;
2855 }
2856 };
2857
2858 /* Compute the correct symbol_needs_kind value for the location
2859 expression at DATA (length SIZE). */
2860
2861 static enum symbol_needs_kind
2862 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2863 struct dwarf2_per_cu_data *per_cu)
2864 {
2865 int in_reg;
2866 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2867
2868 scoped_value_mark free_values;
2869
2870 symbol_needs_eval_context ctx;
2871
2872 ctx.needs = SYMBOL_NEEDS_NONE;
2873 ctx.per_cu = per_cu;
2874 ctx.gdbarch = get_objfile_arch (objfile);
2875 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2876 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2877 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2878
2879 ctx.eval (data, size);
2880
2881 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2882
2883 if (ctx.num_pieces > 0)
2884 {
2885 int i;
2886
2887 /* If the location has several pieces, and any of them are in
2888 registers, then we will need a frame to fetch them from. */
2889 for (i = 0; i < ctx.num_pieces; i++)
2890 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2891 in_reg = 1;
2892 }
2893
2894 if (in_reg)
2895 ctx.needs = SYMBOL_NEEDS_FRAME;
2896 return ctx.needs;
2897 }
2898
2899 /* A helper function that throws an unimplemented error mentioning a
2900 given DWARF operator. */
2901
2902 static void
2903 unimplemented (unsigned int op)
2904 {
2905 const char *name = get_DW_OP_name (op);
2906
2907 if (name)
2908 error (_("DWARF operator %s cannot be translated to an agent expression"),
2909 name);
2910 else
2911 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2912 "to an agent expression"),
2913 op);
2914 }
2915
2916 /* See dwarf2loc.h.
2917
2918 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2919 can issue a complaint, which is better than having every target's
2920 implementation of dwarf2_reg_to_regnum do it. */
2921
2922 int
2923 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2924 {
2925 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2926
2927 if (reg == -1)
2928 {
2929 complaint (&symfile_complaints,
2930 _("bad DWARF register number %d"), dwarf_reg);
2931 }
2932 return reg;
2933 }
2934
2935 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2936 Throw an error because DWARF_REG is bad. */
2937
2938 static void
2939 throw_bad_regnum_error (ULONGEST dwarf_reg)
2940 {
2941 /* Still want to print -1 as "-1".
2942 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2943 but that's overkill for now. */
2944 if ((int) dwarf_reg == dwarf_reg)
2945 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2946 error (_("Unable to access DWARF register number %s"),
2947 pulongest (dwarf_reg));
2948 }
2949
2950 /* See dwarf2loc.h. */
2951
2952 int
2953 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2954 {
2955 int reg;
2956
2957 if (dwarf_reg > INT_MAX)
2958 throw_bad_regnum_error (dwarf_reg);
2959 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2960 bad, but that's ok. */
2961 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2962 if (reg == -1)
2963 throw_bad_regnum_error (dwarf_reg);
2964 return reg;
2965 }
2966
2967 /* A helper function that emits an access to memory. ARCH is the
2968 target architecture. EXPR is the expression which we are building.
2969 NBITS is the number of bits we want to read. This emits the
2970 opcodes needed to read the memory and then extract the desired
2971 bits. */
2972
2973 static void
2974 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2975 {
2976 ULONGEST nbytes = (nbits + 7) / 8;
2977
2978 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2979
2980 if (expr->tracing)
2981 ax_trace_quick (expr, nbytes);
2982
2983 if (nbits <= 8)
2984 ax_simple (expr, aop_ref8);
2985 else if (nbits <= 16)
2986 ax_simple (expr, aop_ref16);
2987 else if (nbits <= 32)
2988 ax_simple (expr, aop_ref32);
2989 else
2990 ax_simple (expr, aop_ref64);
2991
2992 /* If we read exactly the number of bytes we wanted, we're done. */
2993 if (8 * nbytes == nbits)
2994 return;
2995
2996 if (gdbarch_bits_big_endian (arch))
2997 {
2998 /* On a bits-big-endian machine, we want the high-order
2999 NBITS. */
3000 ax_const_l (expr, 8 * nbytes - nbits);
3001 ax_simple (expr, aop_rsh_unsigned);
3002 }
3003 else
3004 {
3005 /* On a bits-little-endian box, we want the low-order NBITS. */
3006 ax_zero_ext (expr, nbits);
3007 }
3008 }
3009
3010 /* A helper function to return the frame's PC. */
3011
3012 static CORE_ADDR
3013 get_ax_pc (void *baton)
3014 {
3015 struct agent_expr *expr = (struct agent_expr *) baton;
3016
3017 return expr->scope;
3018 }
3019
3020 /* Compile a DWARF location expression to an agent expression.
3021
3022 EXPR is the agent expression we are building.
3023 LOC is the agent value we modify.
3024 ARCH is the architecture.
3025 ADDR_SIZE is the size of addresses, in bytes.
3026 OP_PTR is the start of the location expression.
3027 OP_END is one past the last byte of the location expression.
3028
3029 This will throw an exception for various kinds of errors -- for
3030 example, if the expression cannot be compiled, or if the expression
3031 is invalid. */
3032
3033 void
3034 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3035 struct gdbarch *arch, unsigned int addr_size,
3036 const gdb_byte *op_ptr, const gdb_byte *op_end,
3037 struct dwarf2_per_cu_data *per_cu)
3038 {
3039 int i;
3040 std::vector<int> dw_labels, patches;
3041 const gdb_byte * const base = op_ptr;
3042 const gdb_byte *previous_piece = op_ptr;
3043 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3044 ULONGEST bits_collected = 0;
3045 unsigned int addr_size_bits = 8 * addr_size;
3046 int bits_big_endian = gdbarch_bits_big_endian (arch);
3047
3048 std::vector<int> offsets (op_end - op_ptr, -1);
3049
3050 /* By default we are making an address. */
3051 loc->kind = axs_lvalue_memory;
3052
3053 while (op_ptr < op_end)
3054 {
3055 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3056 uint64_t uoffset, reg;
3057 int64_t offset;
3058 int i;
3059
3060 offsets[op_ptr - base] = expr->len;
3061 ++op_ptr;
3062
3063 /* Our basic approach to code generation is to map DWARF
3064 operations directly to AX operations. However, there are
3065 some differences.
3066
3067 First, DWARF works on address-sized units, but AX always uses
3068 LONGEST. For most operations we simply ignore this
3069 difference; instead we generate sign extensions as needed
3070 before division and comparison operations. It would be nice
3071 to omit the sign extensions, but there is no way to determine
3072 the size of the target's LONGEST. (This code uses the size
3073 of the host LONGEST in some cases -- that is a bug but it is
3074 difficult to fix.)
3075
3076 Second, some DWARF operations cannot be translated to AX.
3077 For these we simply fail. See
3078 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3079 switch (op)
3080 {
3081 case DW_OP_lit0:
3082 case DW_OP_lit1:
3083 case DW_OP_lit2:
3084 case DW_OP_lit3:
3085 case DW_OP_lit4:
3086 case DW_OP_lit5:
3087 case DW_OP_lit6:
3088 case DW_OP_lit7:
3089 case DW_OP_lit8:
3090 case DW_OP_lit9:
3091 case DW_OP_lit10:
3092 case DW_OP_lit11:
3093 case DW_OP_lit12:
3094 case DW_OP_lit13:
3095 case DW_OP_lit14:
3096 case DW_OP_lit15:
3097 case DW_OP_lit16:
3098 case DW_OP_lit17:
3099 case DW_OP_lit18:
3100 case DW_OP_lit19:
3101 case DW_OP_lit20:
3102 case DW_OP_lit21:
3103 case DW_OP_lit22:
3104 case DW_OP_lit23:
3105 case DW_OP_lit24:
3106 case DW_OP_lit25:
3107 case DW_OP_lit26:
3108 case DW_OP_lit27:
3109 case DW_OP_lit28:
3110 case DW_OP_lit29:
3111 case DW_OP_lit30:
3112 case DW_OP_lit31:
3113 ax_const_l (expr, op - DW_OP_lit0);
3114 break;
3115
3116 case DW_OP_addr:
3117 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3118 op_ptr += addr_size;
3119 /* Some versions of GCC emit DW_OP_addr before
3120 DW_OP_GNU_push_tls_address. In this case the value is an
3121 index, not an address. We don't support things like
3122 branching between the address and the TLS op. */
3123 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3124 uoffset += dwarf2_per_cu_text_offset (per_cu);
3125 ax_const_l (expr, uoffset);
3126 break;
3127
3128 case DW_OP_const1u:
3129 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3130 op_ptr += 1;
3131 break;
3132 case DW_OP_const1s:
3133 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3134 op_ptr += 1;
3135 break;
3136 case DW_OP_const2u:
3137 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3138 op_ptr += 2;
3139 break;
3140 case DW_OP_const2s:
3141 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3142 op_ptr += 2;
3143 break;
3144 case DW_OP_const4u:
3145 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3146 op_ptr += 4;
3147 break;
3148 case DW_OP_const4s:
3149 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3150 op_ptr += 4;
3151 break;
3152 case DW_OP_const8u:
3153 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3154 op_ptr += 8;
3155 break;
3156 case DW_OP_const8s:
3157 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3158 op_ptr += 8;
3159 break;
3160 case DW_OP_constu:
3161 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3162 ax_const_l (expr, uoffset);
3163 break;
3164 case DW_OP_consts:
3165 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3166 ax_const_l (expr, offset);
3167 break;
3168
3169 case DW_OP_reg0:
3170 case DW_OP_reg1:
3171 case DW_OP_reg2:
3172 case DW_OP_reg3:
3173 case DW_OP_reg4:
3174 case DW_OP_reg5:
3175 case DW_OP_reg6:
3176 case DW_OP_reg7:
3177 case DW_OP_reg8:
3178 case DW_OP_reg9:
3179 case DW_OP_reg10:
3180 case DW_OP_reg11:
3181 case DW_OP_reg12:
3182 case DW_OP_reg13:
3183 case DW_OP_reg14:
3184 case DW_OP_reg15:
3185 case DW_OP_reg16:
3186 case DW_OP_reg17:
3187 case DW_OP_reg18:
3188 case DW_OP_reg19:
3189 case DW_OP_reg20:
3190 case DW_OP_reg21:
3191 case DW_OP_reg22:
3192 case DW_OP_reg23:
3193 case DW_OP_reg24:
3194 case DW_OP_reg25:
3195 case DW_OP_reg26:
3196 case DW_OP_reg27:
3197 case DW_OP_reg28:
3198 case DW_OP_reg29:
3199 case DW_OP_reg30:
3200 case DW_OP_reg31:
3201 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3202 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3203 loc->kind = axs_lvalue_register;
3204 break;
3205
3206 case DW_OP_regx:
3207 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3208 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3209 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3210 loc->kind = axs_lvalue_register;
3211 break;
3212
3213 case DW_OP_implicit_value:
3214 {
3215 uint64_t len;
3216
3217 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3218 if (op_ptr + len > op_end)
3219 error (_("DW_OP_implicit_value: too few bytes available."));
3220 if (len > sizeof (ULONGEST))
3221 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3222 (int) len);
3223
3224 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3225 byte_order));
3226 op_ptr += len;
3227 dwarf_expr_require_composition (op_ptr, op_end,
3228 "DW_OP_implicit_value");
3229
3230 loc->kind = axs_rvalue;
3231 }
3232 break;
3233
3234 case DW_OP_stack_value:
3235 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3236 loc->kind = axs_rvalue;
3237 break;
3238
3239 case DW_OP_breg0:
3240 case DW_OP_breg1:
3241 case DW_OP_breg2:
3242 case DW_OP_breg3:
3243 case DW_OP_breg4:
3244 case DW_OP_breg5:
3245 case DW_OP_breg6:
3246 case DW_OP_breg7:
3247 case DW_OP_breg8:
3248 case DW_OP_breg9:
3249 case DW_OP_breg10:
3250 case DW_OP_breg11:
3251 case DW_OP_breg12:
3252 case DW_OP_breg13:
3253 case DW_OP_breg14:
3254 case DW_OP_breg15:
3255 case DW_OP_breg16:
3256 case DW_OP_breg17:
3257 case DW_OP_breg18:
3258 case DW_OP_breg19:
3259 case DW_OP_breg20:
3260 case DW_OP_breg21:
3261 case DW_OP_breg22:
3262 case DW_OP_breg23:
3263 case DW_OP_breg24:
3264 case DW_OP_breg25:
3265 case DW_OP_breg26:
3266 case DW_OP_breg27:
3267 case DW_OP_breg28:
3268 case DW_OP_breg29:
3269 case DW_OP_breg30:
3270 case DW_OP_breg31:
3271 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3272 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3273 ax_reg (expr, i);
3274 if (offset != 0)
3275 {
3276 ax_const_l (expr, offset);
3277 ax_simple (expr, aop_add);
3278 }
3279 break;
3280 case DW_OP_bregx:
3281 {
3282 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3283 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3284 i = dwarf_reg_to_regnum_or_error (arch, reg);
3285 ax_reg (expr, i);
3286 if (offset != 0)
3287 {
3288 ax_const_l (expr, offset);
3289 ax_simple (expr, aop_add);
3290 }
3291 }
3292 break;
3293 case DW_OP_fbreg:
3294 {
3295 const gdb_byte *datastart;
3296 size_t datalen;
3297 const struct block *b;
3298 struct symbol *framefunc;
3299
3300 b = block_for_pc (expr->scope);
3301
3302 if (!b)
3303 error (_("No block found for address"));
3304
3305 framefunc = block_linkage_function (b);
3306
3307 if (!framefunc)
3308 error (_("No function found for block"));
3309
3310 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3311 &datastart, &datalen);
3312
3313 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3314 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3315 datastart + datalen, per_cu);
3316 if (loc->kind == axs_lvalue_register)
3317 require_rvalue (expr, loc);
3318
3319 if (offset != 0)
3320 {
3321 ax_const_l (expr, offset);
3322 ax_simple (expr, aop_add);
3323 }
3324
3325 loc->kind = axs_lvalue_memory;
3326 }
3327 break;
3328
3329 case DW_OP_dup:
3330 ax_simple (expr, aop_dup);
3331 break;
3332
3333 case DW_OP_drop:
3334 ax_simple (expr, aop_pop);
3335 break;
3336
3337 case DW_OP_pick:
3338 offset = *op_ptr++;
3339 ax_pick (expr, offset);
3340 break;
3341
3342 case DW_OP_swap:
3343 ax_simple (expr, aop_swap);
3344 break;
3345
3346 case DW_OP_over:
3347 ax_pick (expr, 1);
3348 break;
3349
3350 case DW_OP_rot:
3351 ax_simple (expr, aop_rot);
3352 break;
3353
3354 case DW_OP_deref:
3355 case DW_OP_deref_size:
3356 {
3357 int size;
3358
3359 if (op == DW_OP_deref_size)
3360 size = *op_ptr++;
3361 else
3362 size = addr_size;
3363
3364 if (size != 1 && size != 2 && size != 4 && size != 8)
3365 error (_("Unsupported size %d in %s"),
3366 size, get_DW_OP_name (op));
3367 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3368 }
3369 break;
3370
3371 case DW_OP_abs:
3372 /* Sign extend the operand. */
3373 ax_ext (expr, addr_size_bits);
3374 ax_simple (expr, aop_dup);
3375 ax_const_l (expr, 0);
3376 ax_simple (expr, aop_less_signed);
3377 ax_simple (expr, aop_log_not);
3378 i = ax_goto (expr, aop_if_goto);
3379 /* We have to emit 0 - X. */
3380 ax_const_l (expr, 0);
3381 ax_simple (expr, aop_swap);
3382 ax_simple (expr, aop_sub);
3383 ax_label (expr, i, expr->len);
3384 break;
3385
3386 case DW_OP_neg:
3387 /* No need to sign extend here. */
3388 ax_const_l (expr, 0);
3389 ax_simple (expr, aop_swap);
3390 ax_simple (expr, aop_sub);
3391 break;
3392
3393 case DW_OP_not:
3394 /* Sign extend the operand. */
3395 ax_ext (expr, addr_size_bits);
3396 ax_simple (expr, aop_bit_not);
3397 break;
3398
3399 case DW_OP_plus_uconst:
3400 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3401 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3402 but we micro-optimize anyhow. */
3403 if (reg != 0)
3404 {
3405 ax_const_l (expr, reg);
3406 ax_simple (expr, aop_add);
3407 }
3408 break;
3409
3410 case DW_OP_and:
3411 ax_simple (expr, aop_bit_and);
3412 break;
3413
3414 case DW_OP_div:
3415 /* Sign extend the operands. */
3416 ax_ext (expr, addr_size_bits);
3417 ax_simple (expr, aop_swap);
3418 ax_ext (expr, addr_size_bits);
3419 ax_simple (expr, aop_swap);
3420 ax_simple (expr, aop_div_signed);
3421 break;
3422
3423 case DW_OP_minus:
3424 ax_simple (expr, aop_sub);
3425 break;
3426
3427 case DW_OP_mod:
3428 ax_simple (expr, aop_rem_unsigned);
3429 break;
3430
3431 case DW_OP_mul:
3432 ax_simple (expr, aop_mul);
3433 break;
3434
3435 case DW_OP_or:
3436 ax_simple (expr, aop_bit_or);
3437 break;
3438
3439 case DW_OP_plus:
3440 ax_simple (expr, aop_add);
3441 break;
3442
3443 case DW_OP_shl:
3444 ax_simple (expr, aop_lsh);
3445 break;
3446
3447 case DW_OP_shr:
3448 ax_simple (expr, aop_rsh_unsigned);
3449 break;
3450
3451 case DW_OP_shra:
3452 ax_simple (expr, aop_rsh_signed);
3453 break;
3454
3455 case DW_OP_xor:
3456 ax_simple (expr, aop_bit_xor);
3457 break;
3458
3459 case DW_OP_le:
3460 /* Sign extend the operands. */
3461 ax_ext (expr, addr_size_bits);
3462 ax_simple (expr, aop_swap);
3463 ax_ext (expr, addr_size_bits);
3464 /* Note no swap here: A <= B is !(B < A). */
3465 ax_simple (expr, aop_less_signed);
3466 ax_simple (expr, aop_log_not);
3467 break;
3468
3469 case DW_OP_ge:
3470 /* Sign extend the operands. */
3471 ax_ext (expr, addr_size_bits);
3472 ax_simple (expr, aop_swap);
3473 ax_ext (expr, addr_size_bits);
3474 ax_simple (expr, aop_swap);
3475 /* A >= B is !(A < B). */
3476 ax_simple (expr, aop_less_signed);
3477 ax_simple (expr, aop_log_not);
3478 break;
3479
3480 case DW_OP_eq:
3481 /* Sign extend the operands. */
3482 ax_ext (expr, addr_size_bits);
3483 ax_simple (expr, aop_swap);
3484 ax_ext (expr, addr_size_bits);
3485 /* No need for a second swap here. */
3486 ax_simple (expr, aop_equal);
3487 break;
3488
3489 case DW_OP_lt:
3490 /* Sign extend the operands. */
3491 ax_ext (expr, addr_size_bits);
3492 ax_simple (expr, aop_swap);
3493 ax_ext (expr, addr_size_bits);
3494 ax_simple (expr, aop_swap);
3495 ax_simple (expr, aop_less_signed);
3496 break;
3497
3498 case DW_OP_gt:
3499 /* Sign extend the operands. */
3500 ax_ext (expr, addr_size_bits);
3501 ax_simple (expr, aop_swap);
3502 ax_ext (expr, addr_size_bits);
3503 /* Note no swap here: A > B is B < A. */
3504 ax_simple (expr, aop_less_signed);
3505 break;
3506
3507 case DW_OP_ne:
3508 /* Sign extend the operands. */
3509 ax_ext (expr, addr_size_bits);
3510 ax_simple (expr, aop_swap);
3511 ax_ext (expr, addr_size_bits);
3512 /* No need for a swap here. */
3513 ax_simple (expr, aop_equal);
3514 ax_simple (expr, aop_log_not);
3515 break;
3516
3517 case DW_OP_call_frame_cfa:
3518 {
3519 int regnum;
3520 CORE_ADDR text_offset;
3521 LONGEST off;
3522 const gdb_byte *cfa_start, *cfa_end;
3523
3524 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3525 &regnum, &off,
3526 &text_offset, &cfa_start, &cfa_end))
3527 {
3528 /* Register. */
3529 ax_reg (expr, regnum);
3530 if (off != 0)
3531 {
3532 ax_const_l (expr, off);
3533 ax_simple (expr, aop_add);
3534 }
3535 }
3536 else
3537 {
3538 /* Another expression. */
3539 ax_const_l (expr, text_offset);
3540 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3541 cfa_start, cfa_end, per_cu);
3542 }
3543
3544 loc->kind = axs_lvalue_memory;
3545 }
3546 break;
3547
3548 case DW_OP_GNU_push_tls_address:
3549 case DW_OP_form_tls_address:
3550 unimplemented (op);
3551 break;
3552
3553 case DW_OP_push_object_address:
3554 unimplemented (op);
3555 break;
3556
3557 case DW_OP_skip:
3558 offset = extract_signed_integer (op_ptr, 2, byte_order);
3559 op_ptr += 2;
3560 i = ax_goto (expr, aop_goto);
3561 dw_labels.push_back (op_ptr + offset - base);
3562 patches.push_back (i);
3563 break;
3564
3565 case DW_OP_bra:
3566 offset = extract_signed_integer (op_ptr, 2, byte_order);
3567 op_ptr += 2;
3568 /* Zero extend the operand. */
3569 ax_zero_ext (expr, addr_size_bits);
3570 i = ax_goto (expr, aop_if_goto);
3571 dw_labels.push_back (op_ptr + offset - base);
3572 patches.push_back (i);
3573 break;
3574
3575 case DW_OP_nop:
3576 break;
3577
3578 case DW_OP_piece:
3579 case DW_OP_bit_piece:
3580 {
3581 uint64_t size, offset;
3582
3583 if (op_ptr - 1 == previous_piece)
3584 error (_("Cannot translate empty pieces to agent expressions"));
3585 previous_piece = op_ptr - 1;
3586
3587 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3588 if (op == DW_OP_piece)
3589 {
3590 size *= 8;
3591 offset = 0;
3592 }
3593 else
3594 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3595
3596 if (bits_collected + size > 8 * sizeof (LONGEST))
3597 error (_("Expression pieces exceed word size"));
3598
3599 /* Access the bits. */
3600 switch (loc->kind)
3601 {
3602 case axs_lvalue_register:
3603 ax_reg (expr, loc->u.reg);
3604 break;
3605
3606 case axs_lvalue_memory:
3607 /* Offset the pointer, if needed. */
3608 if (offset > 8)
3609 {
3610 ax_const_l (expr, offset / 8);
3611 ax_simple (expr, aop_add);
3612 offset %= 8;
3613 }
3614 access_memory (arch, expr, size);
3615 break;
3616 }
3617
3618 /* For a bits-big-endian target, shift up what we already
3619 have. For a bits-little-endian target, shift up the
3620 new data. Note that there is a potential bug here if
3621 the DWARF expression leaves multiple values on the
3622 stack. */
3623 if (bits_collected > 0)
3624 {
3625 if (bits_big_endian)
3626 {
3627 ax_simple (expr, aop_swap);
3628 ax_const_l (expr, size);
3629 ax_simple (expr, aop_lsh);
3630 /* We don't need a second swap here, because
3631 aop_bit_or is symmetric. */
3632 }
3633 else
3634 {
3635 ax_const_l (expr, size);
3636 ax_simple (expr, aop_lsh);
3637 }
3638 ax_simple (expr, aop_bit_or);
3639 }
3640
3641 bits_collected += size;
3642 loc->kind = axs_rvalue;
3643 }
3644 break;
3645
3646 case DW_OP_GNU_uninit:
3647 unimplemented (op);
3648
3649 case DW_OP_call2:
3650 case DW_OP_call4:
3651 {
3652 struct dwarf2_locexpr_baton block;
3653 int size = (op == DW_OP_call2 ? 2 : 4);
3654
3655 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3656 op_ptr += size;
3657
3658 cu_offset offset = (cu_offset) uoffset;
3659 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3660 get_ax_pc, expr);
3661
3662 /* DW_OP_call_ref is currently not supported. */
3663 gdb_assert (block.per_cu == per_cu);
3664
3665 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3666 block.data, block.data + block.size,
3667 per_cu);
3668 }
3669 break;
3670
3671 case DW_OP_call_ref:
3672 unimplemented (op);
3673
3674 default:
3675 unimplemented (op);
3676 }
3677 }
3678
3679 /* Patch all the branches we emitted. */
3680 for (i = 0; i < patches.size (); ++i)
3681 {
3682 int targ = offsets[dw_labels[i]];
3683 if (targ == -1)
3684 internal_error (__FILE__, __LINE__, _("invalid label"));
3685 ax_label (expr, patches[i], targ);
3686 }
3687 }
3688
3689 \f
3690 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3691 evaluator to calculate the location. */
3692 static struct value *
3693 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3694 {
3695 struct dwarf2_locexpr_baton *dlbaton
3696 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3697 struct value *val;
3698
3699 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3700 dlbaton->size, dlbaton->per_cu);
3701
3702 return val;
3703 }
3704
3705 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3706 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3707 will be thrown. */
3708
3709 static struct value *
3710 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3711 {
3712 struct dwarf2_locexpr_baton *dlbaton
3713 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3714
3715 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3716 dlbaton->size);
3717 }
3718
3719 /* Implementation of get_symbol_read_needs from
3720 symbol_computed_ops. */
3721
3722 static enum symbol_needs_kind
3723 locexpr_get_symbol_read_needs (struct symbol *symbol)
3724 {
3725 struct dwarf2_locexpr_baton *dlbaton
3726 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3727
3728 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3729 dlbaton->per_cu);
3730 }
3731
3732 /* Return true if DATA points to the end of a piece. END is one past
3733 the last byte in the expression. */
3734
3735 static int
3736 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3737 {
3738 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3739 }
3740
3741 /* Helper for locexpr_describe_location_piece that finds the name of a
3742 DWARF register. */
3743
3744 static const char *
3745 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3746 {
3747 int regnum;
3748
3749 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3750 We'd rather print *something* here than throw an error. */
3751 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3752 /* gdbarch_register_name may just return "", return something more
3753 descriptive for bad register numbers. */
3754 if (regnum == -1)
3755 {
3756 /* The text is output as "$bad_register_number".
3757 That is why we use the underscores. */
3758 return _("bad_register_number");
3759 }
3760 return gdbarch_register_name (gdbarch, regnum);
3761 }
3762
3763 /* Nicely describe a single piece of a location, returning an updated
3764 position in the bytecode sequence. This function cannot recognize
3765 all locations; if a location is not recognized, it simply returns
3766 DATA. If there is an error during reading, e.g. we run off the end
3767 of the buffer, an error is thrown. */
3768
3769 static const gdb_byte *
3770 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3771 CORE_ADDR addr, struct objfile *objfile,
3772 struct dwarf2_per_cu_data *per_cu,
3773 const gdb_byte *data, const gdb_byte *end,
3774 unsigned int addr_size)
3775 {
3776 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3777 size_t leb128_size;
3778
3779 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3780 {
3781 fprintf_filtered (stream, _("a variable in $%s"),
3782 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3783 data += 1;
3784 }
3785 else if (data[0] == DW_OP_regx)
3786 {
3787 uint64_t reg;
3788
3789 data = safe_read_uleb128 (data + 1, end, &reg);
3790 fprintf_filtered (stream, _("a variable in $%s"),
3791 locexpr_regname (gdbarch, reg));
3792 }
3793 else if (data[0] == DW_OP_fbreg)
3794 {
3795 const struct block *b;
3796 struct symbol *framefunc;
3797 int frame_reg = 0;
3798 int64_t frame_offset;
3799 const gdb_byte *base_data, *new_data, *save_data = data;
3800 size_t base_size;
3801 int64_t base_offset = 0;
3802
3803 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3804 if (!piece_end_p (new_data, end))
3805 return data;
3806 data = new_data;
3807
3808 b = block_for_pc (addr);
3809
3810 if (!b)
3811 error (_("No block found for address for symbol \"%s\"."),
3812 SYMBOL_PRINT_NAME (symbol));
3813
3814 framefunc = block_linkage_function (b);
3815
3816 if (!framefunc)
3817 error (_("No function found for block for symbol \"%s\"."),
3818 SYMBOL_PRINT_NAME (symbol));
3819
3820 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3821
3822 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3823 {
3824 const gdb_byte *buf_end;
3825
3826 frame_reg = base_data[0] - DW_OP_breg0;
3827 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3828 &base_offset);
3829 if (buf_end != base_data + base_size)
3830 error (_("Unexpected opcode after "
3831 "DW_OP_breg%u for symbol \"%s\"."),
3832 frame_reg, SYMBOL_PRINT_NAME (symbol));
3833 }
3834 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3835 {
3836 /* The frame base is just the register, with no offset. */
3837 frame_reg = base_data[0] - DW_OP_reg0;
3838 base_offset = 0;
3839 }
3840 else
3841 {
3842 /* We don't know what to do with the frame base expression,
3843 so we can't trace this variable; give up. */
3844 return save_data;
3845 }
3846
3847 fprintf_filtered (stream,
3848 _("a variable at frame base reg $%s offset %s+%s"),
3849 locexpr_regname (gdbarch, frame_reg),
3850 plongest (base_offset), plongest (frame_offset));
3851 }
3852 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3853 && piece_end_p (data, end))
3854 {
3855 int64_t offset;
3856
3857 data = safe_read_sleb128 (data + 1, end, &offset);
3858
3859 fprintf_filtered (stream,
3860 _("a variable at offset %s from base reg $%s"),
3861 plongest (offset),
3862 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3863 }
3864
3865 /* The location expression for a TLS variable looks like this (on a
3866 64-bit LE machine):
3867
3868 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3869 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3870
3871 0x3 is the encoding for DW_OP_addr, which has an operand as long
3872 as the size of an address on the target machine (here is 8
3873 bytes). Note that more recent version of GCC emit DW_OP_const4u
3874 or DW_OP_const8u, depending on address size, rather than
3875 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3876 The operand represents the offset at which the variable is within
3877 the thread local storage. */
3878
3879 else if (data + 1 + addr_size < end
3880 && (data[0] == DW_OP_addr
3881 || (addr_size == 4 && data[0] == DW_OP_const4u)
3882 || (addr_size == 8 && data[0] == DW_OP_const8u))
3883 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3884 || data[1 + addr_size] == DW_OP_form_tls_address)
3885 && piece_end_p (data + 2 + addr_size, end))
3886 {
3887 ULONGEST offset;
3888 offset = extract_unsigned_integer (data + 1, addr_size,
3889 gdbarch_byte_order (gdbarch));
3890
3891 fprintf_filtered (stream,
3892 _("a thread-local variable at offset 0x%s "
3893 "in the thread-local storage for `%s'"),
3894 phex_nz (offset, addr_size), objfile_name (objfile));
3895
3896 data += 1 + addr_size + 1;
3897 }
3898
3899 /* With -gsplit-dwarf a TLS variable can also look like this:
3900 DW_AT_location : 3 byte block: fc 4 e0
3901 (DW_OP_GNU_const_index: 4;
3902 DW_OP_GNU_push_tls_address) */
3903 else if (data + 3 <= end
3904 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3905 && data[0] == DW_OP_GNU_const_index
3906 && leb128_size > 0
3907 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3908 || data[1 + leb128_size] == DW_OP_form_tls_address)
3909 && piece_end_p (data + 2 + leb128_size, end))
3910 {
3911 uint64_t offset;
3912
3913 data = safe_read_uleb128 (data + 1, end, &offset);
3914 offset = dwarf2_read_addr_index (per_cu, offset);
3915 fprintf_filtered (stream,
3916 _("a thread-local variable at offset 0x%s "
3917 "in the thread-local storage for `%s'"),
3918 phex_nz (offset, addr_size), objfile_name (objfile));
3919 ++data;
3920 }
3921
3922 else if (data[0] >= DW_OP_lit0
3923 && data[0] <= DW_OP_lit31
3924 && data + 1 < end
3925 && data[1] == DW_OP_stack_value)
3926 {
3927 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3928 data += 2;
3929 }
3930
3931 return data;
3932 }
3933
3934 /* Disassemble an expression, stopping at the end of a piece or at the
3935 end of the expression. Returns a pointer to the next unread byte
3936 in the input expression. If ALL is nonzero, then this function
3937 will keep going until it reaches the end of the expression.
3938 If there is an error during reading, e.g. we run off the end
3939 of the buffer, an error is thrown. */
3940
3941 static const gdb_byte *
3942 disassemble_dwarf_expression (struct ui_file *stream,
3943 struct gdbarch *arch, unsigned int addr_size,
3944 int offset_size, const gdb_byte *start,
3945 const gdb_byte *data, const gdb_byte *end,
3946 int indent, int all,
3947 struct dwarf2_per_cu_data *per_cu)
3948 {
3949 while (data < end
3950 && (all
3951 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3952 {
3953 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3954 uint64_t ul;
3955 int64_t l;
3956 const char *name;
3957
3958 name = get_DW_OP_name (op);
3959
3960 if (!name)
3961 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3962 op, (long) (data - 1 - start));
3963 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3964 (long) (data - 1 - start), name);
3965
3966 switch (op)
3967 {
3968 case DW_OP_addr:
3969 ul = extract_unsigned_integer (data, addr_size,
3970 gdbarch_byte_order (arch));
3971 data += addr_size;
3972 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3973 break;
3974
3975 case DW_OP_const1u:
3976 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3977 data += 1;
3978 fprintf_filtered (stream, " %s", pulongest (ul));
3979 break;
3980 case DW_OP_const1s:
3981 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3982 data += 1;
3983 fprintf_filtered (stream, " %s", plongest (l));
3984 break;
3985 case DW_OP_const2u:
3986 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3987 data += 2;
3988 fprintf_filtered (stream, " %s", pulongest (ul));
3989 break;
3990 case DW_OP_const2s:
3991 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3992 data += 2;
3993 fprintf_filtered (stream, " %s", plongest (l));
3994 break;
3995 case DW_OP_const4u:
3996 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3997 data += 4;
3998 fprintf_filtered (stream, " %s", pulongest (ul));
3999 break;
4000 case DW_OP_const4s:
4001 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
4002 data += 4;
4003 fprintf_filtered (stream, " %s", plongest (l));
4004 break;
4005 case DW_OP_const8u:
4006 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4007 data += 8;
4008 fprintf_filtered (stream, " %s", pulongest (ul));
4009 break;
4010 case DW_OP_const8s:
4011 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4012 data += 8;
4013 fprintf_filtered (stream, " %s", plongest (l));
4014 break;
4015 case DW_OP_constu:
4016 data = safe_read_uleb128 (data, end, &ul);
4017 fprintf_filtered (stream, " %s", pulongest (ul));
4018 break;
4019 case DW_OP_consts:
4020 data = safe_read_sleb128 (data, end, &l);
4021 fprintf_filtered (stream, " %s", plongest (l));
4022 break;
4023
4024 case DW_OP_reg0:
4025 case DW_OP_reg1:
4026 case DW_OP_reg2:
4027 case DW_OP_reg3:
4028 case DW_OP_reg4:
4029 case DW_OP_reg5:
4030 case DW_OP_reg6:
4031 case DW_OP_reg7:
4032 case DW_OP_reg8:
4033 case DW_OP_reg9:
4034 case DW_OP_reg10:
4035 case DW_OP_reg11:
4036 case DW_OP_reg12:
4037 case DW_OP_reg13:
4038 case DW_OP_reg14:
4039 case DW_OP_reg15:
4040 case DW_OP_reg16:
4041 case DW_OP_reg17:
4042 case DW_OP_reg18:
4043 case DW_OP_reg19:
4044 case DW_OP_reg20:
4045 case DW_OP_reg21:
4046 case DW_OP_reg22:
4047 case DW_OP_reg23:
4048 case DW_OP_reg24:
4049 case DW_OP_reg25:
4050 case DW_OP_reg26:
4051 case DW_OP_reg27:
4052 case DW_OP_reg28:
4053 case DW_OP_reg29:
4054 case DW_OP_reg30:
4055 case DW_OP_reg31:
4056 fprintf_filtered (stream, " [$%s]",
4057 locexpr_regname (arch, op - DW_OP_reg0));
4058 break;
4059
4060 case DW_OP_regx:
4061 data = safe_read_uleb128 (data, end, &ul);
4062 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4063 locexpr_regname (arch, (int) ul));
4064 break;
4065
4066 case DW_OP_implicit_value:
4067 data = safe_read_uleb128 (data, end, &ul);
4068 data += ul;
4069 fprintf_filtered (stream, " %s", pulongest (ul));
4070 break;
4071
4072 case DW_OP_breg0:
4073 case DW_OP_breg1:
4074 case DW_OP_breg2:
4075 case DW_OP_breg3:
4076 case DW_OP_breg4:
4077 case DW_OP_breg5:
4078 case DW_OP_breg6:
4079 case DW_OP_breg7:
4080 case DW_OP_breg8:
4081 case DW_OP_breg9:
4082 case DW_OP_breg10:
4083 case DW_OP_breg11:
4084 case DW_OP_breg12:
4085 case DW_OP_breg13:
4086 case DW_OP_breg14:
4087 case DW_OP_breg15:
4088 case DW_OP_breg16:
4089 case DW_OP_breg17:
4090 case DW_OP_breg18:
4091 case DW_OP_breg19:
4092 case DW_OP_breg20:
4093 case DW_OP_breg21:
4094 case DW_OP_breg22:
4095 case DW_OP_breg23:
4096 case DW_OP_breg24:
4097 case DW_OP_breg25:
4098 case DW_OP_breg26:
4099 case DW_OP_breg27:
4100 case DW_OP_breg28:
4101 case DW_OP_breg29:
4102 case DW_OP_breg30:
4103 case DW_OP_breg31:
4104 data = safe_read_sleb128 (data, end, &l);
4105 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4106 locexpr_regname (arch, op - DW_OP_breg0));
4107 break;
4108
4109 case DW_OP_bregx:
4110 data = safe_read_uleb128 (data, end, &ul);
4111 data = safe_read_sleb128 (data, end, &l);
4112 fprintf_filtered (stream, " register %s [$%s] offset %s",
4113 pulongest (ul),
4114 locexpr_regname (arch, (int) ul),
4115 plongest (l));
4116 break;
4117
4118 case DW_OP_fbreg:
4119 data = safe_read_sleb128 (data, end, &l);
4120 fprintf_filtered (stream, " %s", plongest (l));
4121 break;
4122
4123 case DW_OP_xderef_size:
4124 case DW_OP_deref_size:
4125 case DW_OP_pick:
4126 fprintf_filtered (stream, " %d", *data);
4127 ++data;
4128 break;
4129
4130 case DW_OP_plus_uconst:
4131 data = safe_read_uleb128 (data, end, &ul);
4132 fprintf_filtered (stream, " %s", pulongest (ul));
4133 break;
4134
4135 case DW_OP_skip:
4136 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4137 data += 2;
4138 fprintf_filtered (stream, " to %ld",
4139 (long) (data + l - start));
4140 break;
4141
4142 case DW_OP_bra:
4143 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4144 data += 2;
4145 fprintf_filtered (stream, " %ld",
4146 (long) (data + l - start));
4147 break;
4148
4149 case DW_OP_call2:
4150 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4151 data += 2;
4152 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4153 break;
4154
4155 case DW_OP_call4:
4156 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4157 data += 4;
4158 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4159 break;
4160
4161 case DW_OP_call_ref:
4162 ul = extract_unsigned_integer (data, offset_size,
4163 gdbarch_byte_order (arch));
4164 data += offset_size;
4165 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4166 break;
4167
4168 case DW_OP_piece:
4169 data = safe_read_uleb128 (data, end, &ul);
4170 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4171 break;
4172
4173 case DW_OP_bit_piece:
4174 {
4175 uint64_t offset;
4176
4177 data = safe_read_uleb128 (data, end, &ul);
4178 data = safe_read_uleb128 (data, end, &offset);
4179 fprintf_filtered (stream, " size %s offset %s (bits)",
4180 pulongest (ul), pulongest (offset));
4181 }
4182 break;
4183
4184 case DW_OP_implicit_pointer:
4185 case DW_OP_GNU_implicit_pointer:
4186 {
4187 ul = extract_unsigned_integer (data, offset_size,
4188 gdbarch_byte_order (arch));
4189 data += offset_size;
4190
4191 data = safe_read_sleb128 (data, end, &l);
4192
4193 fprintf_filtered (stream, " DIE %s offset %s",
4194 phex_nz (ul, offset_size),
4195 plongest (l));
4196 }
4197 break;
4198
4199 case DW_OP_deref_type:
4200 case DW_OP_GNU_deref_type:
4201 {
4202 int addr_size = *data++;
4203 struct type *type;
4204
4205 data = safe_read_uleb128 (data, end, &ul);
4206 cu_offset offset = (cu_offset) ul;
4207 type = dwarf2_get_die_type (offset, per_cu);
4208 fprintf_filtered (stream, "<");
4209 type_print (type, "", stream, -1);
4210 fprintf_filtered (stream, " [0x%s]> %d",
4211 phex_nz (to_underlying (offset), 0),
4212 addr_size);
4213 }
4214 break;
4215
4216 case DW_OP_const_type:
4217 case DW_OP_GNU_const_type:
4218 {
4219 struct type *type;
4220
4221 data = safe_read_uleb128 (data, end, &ul);
4222 cu_offset type_die = (cu_offset) ul;
4223 type = dwarf2_get_die_type (type_die, per_cu);
4224 fprintf_filtered (stream, "<");
4225 type_print (type, "", stream, -1);
4226 fprintf_filtered (stream, " [0x%s]>",
4227 phex_nz (to_underlying (type_die), 0));
4228 }
4229 break;
4230
4231 case DW_OP_regval_type:
4232 case DW_OP_GNU_regval_type:
4233 {
4234 uint64_t reg;
4235 struct type *type;
4236
4237 data = safe_read_uleb128 (data, end, &reg);
4238 data = safe_read_uleb128 (data, end, &ul);
4239 cu_offset type_die = (cu_offset) ul;
4240
4241 type = dwarf2_get_die_type (type_die, per_cu);
4242 fprintf_filtered (stream, "<");
4243 type_print (type, "", stream, -1);
4244 fprintf_filtered (stream, " [0x%s]> [$%s]",
4245 phex_nz (to_underlying (type_die), 0),
4246 locexpr_regname (arch, reg));
4247 }
4248 break;
4249
4250 case DW_OP_convert:
4251 case DW_OP_GNU_convert:
4252 case DW_OP_reinterpret:
4253 case DW_OP_GNU_reinterpret:
4254 {
4255 data = safe_read_uleb128 (data, end, &ul);
4256 cu_offset type_die = (cu_offset) ul;
4257
4258 if (to_underlying (type_die) == 0)
4259 fprintf_filtered (stream, "<0>");
4260 else
4261 {
4262 struct type *type;
4263
4264 type = dwarf2_get_die_type (type_die, per_cu);
4265 fprintf_filtered (stream, "<");
4266 type_print (type, "", stream, -1);
4267 fprintf_filtered (stream, " [0x%s]>",
4268 phex_nz (to_underlying (type_die), 0));
4269 }
4270 }
4271 break;
4272
4273 case DW_OP_entry_value:
4274 case DW_OP_GNU_entry_value:
4275 data = safe_read_uleb128 (data, end, &ul);
4276 fputc_filtered ('\n', stream);
4277 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4278 start, data, data + ul, indent + 2,
4279 all, per_cu);
4280 data += ul;
4281 continue;
4282
4283 case DW_OP_GNU_parameter_ref:
4284 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4285 data += 4;
4286 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4287 break;
4288
4289 case DW_OP_GNU_addr_index:
4290 data = safe_read_uleb128 (data, end, &ul);
4291 ul = dwarf2_read_addr_index (per_cu, ul);
4292 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4293 break;
4294 case DW_OP_GNU_const_index:
4295 data = safe_read_uleb128 (data, end, &ul);
4296 ul = dwarf2_read_addr_index (per_cu, ul);
4297 fprintf_filtered (stream, " %s", pulongest (ul));
4298 break;
4299 }
4300
4301 fprintf_filtered (stream, "\n");
4302 }
4303
4304 return data;
4305 }
4306
4307 /* Describe a single location, which may in turn consist of multiple
4308 pieces. */
4309
4310 static void
4311 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4312 struct ui_file *stream,
4313 const gdb_byte *data, size_t size,
4314 struct objfile *objfile, unsigned int addr_size,
4315 int offset_size, struct dwarf2_per_cu_data *per_cu)
4316 {
4317 const gdb_byte *end = data + size;
4318 int first_piece = 1, bad = 0;
4319
4320 while (data < end)
4321 {
4322 const gdb_byte *here = data;
4323 int disassemble = 1;
4324
4325 if (first_piece)
4326 first_piece = 0;
4327 else
4328 fprintf_filtered (stream, _(", and "));
4329
4330 if (!dwarf_always_disassemble)
4331 {
4332 data = locexpr_describe_location_piece (symbol, stream,
4333 addr, objfile, per_cu,
4334 data, end, addr_size);
4335 /* If we printed anything, or if we have an empty piece,
4336 then don't disassemble. */
4337 if (data != here
4338 || data[0] == DW_OP_piece
4339 || data[0] == DW_OP_bit_piece)
4340 disassemble = 0;
4341 }
4342 if (disassemble)
4343 {
4344 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4345 data = disassemble_dwarf_expression (stream,
4346 get_objfile_arch (objfile),
4347 addr_size, offset_size, data,
4348 data, end, 0,
4349 dwarf_always_disassemble,
4350 per_cu);
4351 }
4352
4353 if (data < end)
4354 {
4355 int empty = data == here;
4356
4357 if (disassemble)
4358 fprintf_filtered (stream, " ");
4359 if (data[0] == DW_OP_piece)
4360 {
4361 uint64_t bytes;
4362
4363 data = safe_read_uleb128 (data + 1, end, &bytes);
4364
4365 if (empty)
4366 fprintf_filtered (stream, _("an empty %s-byte piece"),
4367 pulongest (bytes));
4368 else
4369 fprintf_filtered (stream, _(" [%s-byte piece]"),
4370 pulongest (bytes));
4371 }
4372 else if (data[0] == DW_OP_bit_piece)
4373 {
4374 uint64_t bits, offset;
4375
4376 data = safe_read_uleb128 (data + 1, end, &bits);
4377 data = safe_read_uleb128 (data, end, &offset);
4378
4379 if (empty)
4380 fprintf_filtered (stream,
4381 _("an empty %s-bit piece"),
4382 pulongest (bits));
4383 else
4384 fprintf_filtered (stream,
4385 _(" [%s-bit piece, offset %s bits]"),
4386 pulongest (bits), pulongest (offset));
4387 }
4388 else
4389 {
4390 bad = 1;
4391 break;
4392 }
4393 }
4394 }
4395
4396 if (bad || data > end)
4397 error (_("Corrupted DWARF2 expression for \"%s\"."),
4398 SYMBOL_PRINT_NAME (symbol));
4399 }
4400
4401 /* Print a natural-language description of SYMBOL to STREAM. This
4402 version is for a symbol with a single location. */
4403
4404 static void
4405 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4406 struct ui_file *stream)
4407 {
4408 struct dwarf2_locexpr_baton *dlbaton
4409 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4410 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4411 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4412 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4413
4414 locexpr_describe_location_1 (symbol, addr, stream,
4415 dlbaton->data, dlbaton->size,
4416 objfile, addr_size, offset_size,
4417 dlbaton->per_cu);
4418 }
4419
4420 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4421 any necessary bytecode in AX. */
4422
4423 static void
4424 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4425 struct agent_expr *ax, struct axs_value *value)
4426 {
4427 struct dwarf2_locexpr_baton *dlbaton
4428 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4429 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4430
4431 if (dlbaton->size == 0)
4432 value->optimized_out = 1;
4433 else
4434 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4435 dlbaton->data, dlbaton->data + dlbaton->size,
4436 dlbaton->per_cu);
4437 }
4438
4439 /* symbol_computed_ops 'generate_c_location' method. */
4440
4441 static void
4442 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4443 struct gdbarch *gdbarch,
4444 unsigned char *registers_used,
4445 CORE_ADDR pc, const char *result_name)
4446 {
4447 struct dwarf2_locexpr_baton *dlbaton
4448 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4449 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4450
4451 if (dlbaton->size == 0)
4452 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4453
4454 compile_dwarf_expr_to_c (stream, result_name,
4455 sym, pc, gdbarch, registers_used, addr_size,
4456 dlbaton->data, dlbaton->data + dlbaton->size,
4457 dlbaton->per_cu);
4458 }
4459
4460 /* The set of location functions used with the DWARF-2 expression
4461 evaluator. */
4462 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4463 locexpr_read_variable,
4464 locexpr_read_variable_at_entry,
4465 locexpr_get_symbol_read_needs,
4466 locexpr_describe_location,
4467 0, /* location_has_loclist */
4468 locexpr_tracepoint_var_ref,
4469 locexpr_generate_c_location
4470 };
4471
4472
4473 /* Wrapper functions for location lists. These generally find
4474 the appropriate location expression and call something above. */
4475
4476 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4477 evaluator to calculate the location. */
4478 static struct value *
4479 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4480 {
4481 struct dwarf2_loclist_baton *dlbaton
4482 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4483 struct value *val;
4484 const gdb_byte *data;
4485 size_t size;
4486 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4487
4488 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4489 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4490 dlbaton->per_cu);
4491
4492 return val;
4493 }
4494
4495 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4496 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4497 will be thrown.
4498
4499 Function always returns non-NULL value, it may be marked optimized out if
4500 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4501 if it cannot resolve the parameter for any reason. */
4502
4503 static struct value *
4504 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4505 {
4506 struct dwarf2_loclist_baton *dlbaton
4507 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4508 const gdb_byte *data;
4509 size_t size;
4510 CORE_ADDR pc;
4511
4512 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4513 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4514
4515 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4516 if (data == NULL)
4517 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4518
4519 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4520 }
4521
4522 /* Implementation of get_symbol_read_needs from
4523 symbol_computed_ops. */
4524
4525 static enum symbol_needs_kind
4526 loclist_symbol_needs (struct symbol *symbol)
4527 {
4528 /* If there's a location list, then assume we need to have a frame
4529 to choose the appropriate location expression. With tracking of
4530 global variables this is not necessarily true, but such tracking
4531 is disabled in GCC at the moment until we figure out how to
4532 represent it. */
4533
4534 return SYMBOL_NEEDS_FRAME;
4535 }
4536
4537 /* Print a natural-language description of SYMBOL to STREAM. This
4538 version applies when there is a list of different locations, each
4539 with a specified address range. */
4540
4541 static void
4542 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4543 struct ui_file *stream)
4544 {
4545 struct dwarf2_loclist_baton *dlbaton
4546 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4547 const gdb_byte *loc_ptr, *buf_end;
4548 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4550 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4551 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4552 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4553 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4554 /* Adjust base_address for relocatable objects. */
4555 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4556 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4557 int done = 0;
4558
4559 loc_ptr = dlbaton->data;
4560 buf_end = dlbaton->data + dlbaton->size;
4561
4562 fprintf_filtered (stream, _("multi-location:\n"));
4563
4564 /* Iterate through locations until we run out. */
4565 while (!done)
4566 {
4567 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4568 int length;
4569 enum debug_loc_kind kind;
4570 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4571
4572 if (dlbaton->from_dwo)
4573 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4574 loc_ptr, buf_end, &new_ptr,
4575 &low, &high, byte_order);
4576 else
4577 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4578 &low, &high,
4579 byte_order, addr_size,
4580 signed_addr_p);
4581 loc_ptr = new_ptr;
4582 switch (kind)
4583 {
4584 case DEBUG_LOC_END_OF_LIST:
4585 done = 1;
4586 continue;
4587 case DEBUG_LOC_BASE_ADDRESS:
4588 base_address = high + base_offset;
4589 fprintf_filtered (stream, _(" Base address %s"),
4590 paddress (gdbarch, base_address));
4591 continue;
4592 case DEBUG_LOC_START_END:
4593 case DEBUG_LOC_START_LENGTH:
4594 break;
4595 case DEBUG_LOC_BUFFER_OVERFLOW:
4596 case DEBUG_LOC_INVALID_ENTRY:
4597 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4598 SYMBOL_PRINT_NAME (symbol));
4599 default:
4600 gdb_assert_not_reached ("bad debug_loc_kind");
4601 }
4602
4603 /* Otherwise, a location expression entry. */
4604 low += base_address;
4605 high += base_address;
4606
4607 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4608 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4609
4610 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4611 loc_ptr += 2;
4612
4613 /* (It would improve readability to print only the minimum
4614 necessary digits of the second number of the range.) */
4615 fprintf_filtered (stream, _(" Range %s-%s: "),
4616 paddress (gdbarch, low), paddress (gdbarch, high));
4617
4618 /* Now describe this particular location. */
4619 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4620 objfile, addr_size, offset_size,
4621 dlbaton->per_cu);
4622
4623 fprintf_filtered (stream, "\n");
4624
4625 loc_ptr += length;
4626 }
4627 }
4628
4629 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4630 any necessary bytecode in AX. */
4631 static void
4632 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4633 struct agent_expr *ax, struct axs_value *value)
4634 {
4635 struct dwarf2_loclist_baton *dlbaton
4636 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4637 const gdb_byte *data;
4638 size_t size;
4639 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4640
4641 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4642 if (size == 0)
4643 value->optimized_out = 1;
4644 else
4645 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4646 dlbaton->per_cu);
4647 }
4648
4649 /* symbol_computed_ops 'generate_c_location' method. */
4650
4651 static void
4652 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4653 struct gdbarch *gdbarch,
4654 unsigned char *registers_used,
4655 CORE_ADDR pc, const char *result_name)
4656 {
4657 struct dwarf2_loclist_baton *dlbaton
4658 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4659 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4660 const gdb_byte *data;
4661 size_t size;
4662
4663 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4664 if (size == 0)
4665 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4666
4667 compile_dwarf_expr_to_c (stream, result_name,
4668 sym, pc, gdbarch, registers_used, addr_size,
4669 data, data + size,
4670 dlbaton->per_cu);
4671 }
4672
4673 /* The set of location functions used with the DWARF-2 expression
4674 evaluator and location lists. */
4675 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4676 loclist_read_variable,
4677 loclist_read_variable_at_entry,
4678 loclist_symbol_needs,
4679 loclist_describe_location,
4680 1, /* location_has_loclist */
4681 loclist_tracepoint_var_ref,
4682 loclist_generate_c_location
4683 };
4684
4685 /* Provide a prototype to silence -Wmissing-prototypes. */
4686 extern initialize_file_ftype _initialize_dwarf2loc;
4687
4688 void
4689 _initialize_dwarf2loc (void)
4690 {
4691 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4692 &entry_values_debug,
4693 _("Set entry values and tail call frames "
4694 "debugging."),
4695 _("Show entry values and tail call frames "
4696 "debugging."),
4697 _("When non-zero, the process of determining "
4698 "parameter values from function entry point "
4699 "and tail call frames will be printed."),
4700 NULL,
4701 show_entry_values_debug,
4702 &setdebuglist, &showdebuglist);
4703
4704 #if GDB_SELF_TEST
4705 register_self_test (selftests::copy_bitwise_tests);
4706 #endif
4707 }
This page took 0.170322 seconds and 5 git commands to generate.