read/write_pieced_value: Remove unnecessary variable copies
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1756 bits whose first bit is located at bit offset START. */
1757
1758 static size_t
1759 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1760 {
1761 return (start % 8 + n_bits + 7) / 8;
1762 }
1763
1764 static void
1765 read_pieced_value (struct value *v)
1766 {
1767 int i;
1768 LONGEST offset = 0, max_offset;
1769 ULONGEST bits_to_skip;
1770 gdb_byte *contents;
1771 struct piece_closure *c
1772 = (struct piece_closure *) value_computed_closure (v);
1773 std::vector<gdb_byte> buffer;
1774 int bits_big_endian
1775 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1776
1777 if (value_type (v) != value_enclosing_type (v))
1778 internal_error (__FILE__, __LINE__,
1779 _("Should not be able to create a lazy value with "
1780 "an enclosing type"));
1781
1782 contents = value_contents_raw (v);
1783 bits_to_skip = 8 * value_offset (v);
1784 if (value_bitsize (v))
1785 {
1786 bits_to_skip += (8 * value_offset (value_parent (v))
1787 + value_bitpos (v));
1788 max_offset = value_bitsize (v);
1789 }
1790 else
1791 max_offset = 8 * TYPE_LENGTH (value_type (v));
1792
1793 /* Advance to the first non-skipped piece. */
1794 for (i = 0; i < c->n_pieces && bits_to_skip >= c->pieces[i].size; i++)
1795 bits_to_skip -= c->pieces[i].size;
1796
1797 for (; i < c->n_pieces && offset < max_offset; i++)
1798 {
1799 struct dwarf_expr_piece *p = &c->pieces[i];
1800 size_t this_size, this_size_bits;
1801
1802 this_size_bits = p->size - bits_to_skip;
1803 if (this_size_bits > max_offset - offset)
1804 this_size_bits = max_offset - offset;
1805
1806 /* Copy from the source to DEST_BUFFER. */
1807 switch (p->location)
1808 {
1809 case DWARF_VALUE_REGISTER:
1810 {
1811 struct frame_info *frame = frame_find_by_id (c->frame_id);
1812 struct gdbarch *arch = get_frame_arch (frame);
1813 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1814 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1815 int optim, unavail;
1816
1817 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1818 && p->offset + p->size < reg_bits)
1819 {
1820 /* Big-endian, and we want less than full size. */
1821 bits_to_skip += reg_bits - (p->offset + p->size);
1822 }
1823 else
1824 bits_to_skip += p->offset;
1825
1826 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1827 buffer.reserve (this_size);
1828
1829 if (!get_frame_register_bytes (frame, gdb_regnum,
1830 bits_to_skip / 8,
1831 this_size, buffer.data (),
1832 &optim, &unavail))
1833 {
1834 if (optim)
1835 mark_value_bits_optimized_out (v, offset, this_size_bits);
1836 if (unavail)
1837 mark_value_bits_unavailable (v, offset, this_size_bits);
1838 break;
1839 }
1840 copy_bitwise (contents, offset,
1841 buffer.data (), bits_to_skip % 8,
1842 this_size_bits, bits_big_endian);
1843 }
1844 break;
1845
1846 case DWARF_VALUE_MEMORY:
1847 bits_to_skip += p->offset;
1848 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1849 buffer.reserve (this_size);
1850
1851 read_value_memory (v, offset,
1852 p->v.mem.in_stack_memory,
1853 p->v.mem.addr + bits_to_skip / 8,
1854 buffer.data (), this_size);
1855 copy_bitwise (contents, offset,
1856 buffer.data (), bits_to_skip % 8,
1857 this_size_bits, bits_big_endian);
1858 break;
1859
1860 case DWARF_VALUE_STACK:
1861 {
1862 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1863 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1864 ULONGEST stack_value_size_bits
1865 = 8 * TYPE_LENGTH (value_type (p->v.value));
1866
1867 /* Use zeroes if piece reaches beyond stack value. */
1868 if (p->offset + p->size > stack_value_size_bits)
1869 break;
1870
1871 /* Piece is anchored at least significant bit end. */
1872 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1873 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1874 else
1875 bits_to_skip += p->offset;
1876
1877 copy_bitwise (contents, offset,
1878 value_contents_all (p->v.value),
1879 bits_to_skip,
1880 this_size_bits, bits_big_endian);
1881 }
1882 break;
1883
1884 case DWARF_VALUE_LITERAL:
1885 {
1886 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1887 size_t n = this_size_bits;
1888
1889 /* Cut off at the end of the implicit value. */
1890 bits_to_skip += p->offset;
1891 if (bits_to_skip >= literal_size_bits)
1892 break;
1893 if (n > literal_size_bits - bits_to_skip)
1894 n = literal_size_bits - bits_to_skip;
1895
1896 copy_bitwise (contents, offset,
1897 p->v.literal.data, bits_to_skip,
1898 n, bits_big_endian);
1899 }
1900 break;
1901
1902 /* These bits show up as zeros -- but do not cause the value
1903 to be considered optimized-out. */
1904 case DWARF_VALUE_IMPLICIT_POINTER:
1905 break;
1906
1907 case DWARF_VALUE_OPTIMIZED_OUT:
1908 mark_value_bits_optimized_out (v, offset, this_size_bits);
1909 break;
1910
1911 default:
1912 internal_error (__FILE__, __LINE__, _("invalid location type"));
1913 }
1914
1915 offset += this_size_bits;
1916 bits_to_skip = 0;
1917 }
1918 }
1919
1920 static void
1921 write_pieced_value (struct value *to, struct value *from)
1922 {
1923 int i;
1924 ULONGEST bits_to_skip;
1925 LONGEST offset = 0, max_offset;
1926 const gdb_byte *contents;
1927 struct piece_closure *c
1928 = (struct piece_closure *) value_computed_closure (to);
1929 std::vector<gdb_byte> buffer;
1930 int bits_big_endian
1931 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1932
1933 contents = value_contents (from);
1934 bits_to_skip = 8 * value_offset (to);
1935 if (value_bitsize (to))
1936 {
1937 bits_to_skip += (8 * value_offset (value_parent (to))
1938 + value_bitpos (to));
1939 /* Use the least significant bits of FROM. */
1940 if (gdbarch_byte_order (get_type_arch (value_type (from)))
1941 == BFD_ENDIAN_BIG)
1942 {
1943 max_offset = 8 * TYPE_LENGTH (value_type (from));
1944 offset = max_offset - value_bitsize (to);
1945 }
1946 else
1947 max_offset = value_bitsize (to);
1948 }
1949 else
1950 max_offset = 8 * TYPE_LENGTH (value_type (to));
1951
1952 /* Advance to the first non-skipped piece. */
1953 for (i = 0; i < c->n_pieces && bits_to_skip >= c->pieces[i].size; i++)
1954 bits_to_skip -= c->pieces[i].size;
1955
1956 for (; i < c->n_pieces && offset < max_offset; i++)
1957 {
1958 struct dwarf_expr_piece *p = &c->pieces[i];
1959 size_t this_size_bits, this_size;
1960
1961 this_size_bits = p->size - bits_to_skip;
1962 if (this_size_bits > max_offset - offset)
1963 this_size_bits = max_offset - offset;
1964
1965 switch (p->location)
1966 {
1967 case DWARF_VALUE_REGISTER:
1968 {
1969 struct frame_info *frame = frame_find_by_id (c->frame_id);
1970 struct gdbarch *arch = get_frame_arch (frame);
1971 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1972 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1973
1974 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1975 && p->offset + p->size < reg_bits)
1976 {
1977 /* Big-endian, and we want less than full size. */
1978 bits_to_skip += reg_bits - (p->offset + p->size);
1979 }
1980 else
1981 bits_to_skip += p->offset;
1982
1983 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1984 buffer.reserve (this_size);
1985
1986 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1987 {
1988 /* Data is copied non-byte-aligned into the register.
1989 Need some bits from original register value. */
1990 int optim, unavail;
1991
1992 if (!get_frame_register_bytes (frame, gdb_regnum,
1993 bits_to_skip / 8,
1994 this_size, buffer.data (),
1995 &optim, &unavail))
1996 {
1997 if (optim)
1998 throw_error (OPTIMIZED_OUT_ERROR,
1999 _("Can't do read-modify-write to "
2000 "update bitfield; containing word "
2001 "has been optimized out"));
2002 if (unavail)
2003 throw_error (NOT_AVAILABLE_ERROR,
2004 _("Can't do read-modify-write to update "
2005 "bitfield; containing word "
2006 "is unavailable"));
2007 }
2008 }
2009
2010 copy_bitwise (buffer.data (), bits_to_skip % 8,
2011 contents, offset,
2012 this_size_bits, bits_big_endian);
2013 put_frame_register_bytes (frame, gdb_regnum,
2014 bits_to_skip / 8,
2015 this_size, buffer.data ());
2016 }
2017 break;
2018 case DWARF_VALUE_MEMORY:
2019 {
2020 bits_to_skip += p->offset;
2021
2022 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
2023
2024 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
2025 && offset % 8 == 0)
2026 {
2027 /* Everything is byte-aligned; no buffer needed. */
2028 write_memory (start_addr,
2029 contents + offset / 8,
2030 this_size_bits / 8);
2031 break;
2032 }
2033
2034 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
2035 buffer.reserve (this_size);
2036
2037 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
2038 {
2039 if (this_size <= 8)
2040 {
2041 /* Perform a single read for small sizes. */
2042 read_memory (start_addr, buffer.data (), this_size);
2043 }
2044 else
2045 {
2046 /* Only the first and last bytes can possibly have any
2047 bits reused. */
2048 read_memory (start_addr, buffer.data (), 1);
2049 read_memory (start_addr + this_size - 1,
2050 &buffer[this_size - 1], 1);
2051 }
2052 }
2053
2054 copy_bitwise (buffer.data (), bits_to_skip % 8,
2055 contents, offset,
2056 this_size_bits, bits_big_endian);
2057 write_memory (start_addr, buffer.data (), this_size);
2058 }
2059 break;
2060 default:
2061 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2062 break;
2063 }
2064 offset += this_size_bits;
2065 bits_to_skip = 0;
2066 }
2067 }
2068
2069 /* An implementation of an lval_funcs method to see whether a value is
2070 a synthetic pointer. */
2071
2072 static int
2073 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2074 int bit_length)
2075 {
2076 struct piece_closure *c
2077 = (struct piece_closure *) value_computed_closure (value);
2078 int i;
2079
2080 bit_offset += 8 * value_offset (value);
2081 if (value_bitsize (value))
2082 bit_offset += value_bitpos (value);
2083
2084 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2085 {
2086 struct dwarf_expr_piece *p = &c->pieces[i];
2087 size_t this_size_bits = p->size;
2088
2089 if (bit_offset > 0)
2090 {
2091 if (bit_offset >= this_size_bits)
2092 {
2093 bit_offset -= this_size_bits;
2094 continue;
2095 }
2096
2097 bit_length -= this_size_bits - bit_offset;
2098 bit_offset = 0;
2099 }
2100 else
2101 bit_length -= this_size_bits;
2102
2103 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2104 return 0;
2105 }
2106
2107 return 1;
2108 }
2109
2110 /* A wrapper function for get_frame_address_in_block. */
2111
2112 static CORE_ADDR
2113 get_frame_address_in_block_wrapper (void *baton)
2114 {
2115 return get_frame_address_in_block ((struct frame_info *) baton);
2116 }
2117
2118 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2119
2120 static struct value *
2121 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2122 struct dwarf2_per_cu_data *per_cu,
2123 struct type *type)
2124 {
2125 struct value *result = NULL;
2126 struct obstack temp_obstack;
2127 struct cleanup *cleanup;
2128 const gdb_byte *bytes;
2129 LONGEST len;
2130
2131 obstack_init (&temp_obstack);
2132 cleanup = make_cleanup_obstack_free (&temp_obstack);
2133 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2134
2135 if (bytes != NULL)
2136 {
2137 if (byte_offset >= 0
2138 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2139 {
2140 bytes += byte_offset;
2141 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2142 }
2143 else
2144 invalid_synthetic_pointer ();
2145 }
2146 else
2147 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2148
2149 do_cleanups (cleanup);
2150
2151 return result;
2152 }
2153
2154 /* Fetch the value pointed to by a synthetic pointer. */
2155
2156 static struct value *
2157 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2158 struct dwarf2_per_cu_data *per_cu,
2159 struct frame_info *frame, struct type *type)
2160 {
2161 /* Fetch the location expression of the DIE we're pointing to. */
2162 struct dwarf2_locexpr_baton baton
2163 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2164 get_frame_address_in_block_wrapper, frame);
2165
2166 /* Get type of pointed-to DIE. */
2167 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2168 if (orig_type == NULL)
2169 invalid_synthetic_pointer ();
2170
2171 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2172 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2173 or it may've been optimized out. */
2174 if (baton.data != NULL)
2175 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2176 baton.size, baton.per_cu,
2177 TYPE_TARGET_TYPE (type),
2178 byte_offset);
2179 else
2180 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2181 type);
2182 }
2183
2184 /* An implementation of an lval_funcs method to indirect through a
2185 pointer. This handles the synthetic pointer case when needed. */
2186
2187 static struct value *
2188 indirect_pieced_value (struct value *value)
2189 {
2190 struct piece_closure *c
2191 = (struct piece_closure *) value_computed_closure (value);
2192 struct type *type;
2193 struct frame_info *frame;
2194 struct dwarf2_locexpr_baton baton;
2195 int i, bit_length;
2196 LONGEST bit_offset;
2197 struct dwarf_expr_piece *piece = NULL;
2198 LONGEST byte_offset;
2199 enum bfd_endian byte_order;
2200
2201 type = check_typedef (value_type (value));
2202 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2203 return NULL;
2204
2205 bit_length = 8 * TYPE_LENGTH (type);
2206 bit_offset = 8 * value_offset (value);
2207 if (value_bitsize (value))
2208 bit_offset += value_bitpos (value);
2209
2210 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2211 {
2212 struct dwarf_expr_piece *p = &c->pieces[i];
2213 size_t this_size_bits = p->size;
2214
2215 if (bit_offset > 0)
2216 {
2217 if (bit_offset >= this_size_bits)
2218 {
2219 bit_offset -= this_size_bits;
2220 continue;
2221 }
2222
2223 bit_length -= this_size_bits - bit_offset;
2224 bit_offset = 0;
2225 }
2226 else
2227 bit_length -= this_size_bits;
2228
2229 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2230 return NULL;
2231
2232 if (bit_length != 0)
2233 error (_("Invalid use of DW_OP_implicit_pointer"));
2234
2235 piece = p;
2236 break;
2237 }
2238
2239 gdb_assert (piece != NULL);
2240 frame = get_selected_frame (_("No frame selected."));
2241
2242 /* This is an offset requested by GDB, such as value subscripts.
2243 However, due to how synthetic pointers are implemented, this is
2244 always presented to us as a pointer type. This means we have to
2245 sign-extend it manually as appropriate. Use raw
2246 extract_signed_integer directly rather than value_as_address and
2247 sign extend afterwards on architectures that would need it
2248 (mostly everywhere except MIPS, which has signed addresses) as
2249 the later would go through gdbarch_pointer_to_address and thus
2250 return a CORE_ADDR with high bits set on architectures that
2251 encode address spaces and other things in CORE_ADDR. */
2252 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2253 byte_offset = extract_signed_integer (value_contents (value),
2254 TYPE_LENGTH (type), byte_order);
2255 byte_offset += piece->v.ptr.offset;
2256
2257 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2258 byte_offset, c->per_cu,
2259 frame, type);
2260 }
2261
2262 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2263 references. */
2264
2265 static struct value *
2266 coerce_pieced_ref (const struct value *value)
2267 {
2268 struct type *type = check_typedef (value_type (value));
2269
2270 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2272 {
2273 const struct piece_closure *closure
2274 = (struct piece_closure *) value_computed_closure (value);
2275 struct frame_info *frame
2276 = get_selected_frame (_("No frame selected."));
2277
2278 /* gdb represents synthetic pointers as pieced values with a single
2279 piece. */
2280 gdb_assert (closure != NULL);
2281 gdb_assert (closure->n_pieces == 1);
2282
2283 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2284 closure->pieces->v.ptr.offset,
2285 closure->per_cu, frame, type);
2286 }
2287 else
2288 {
2289 /* Else: not a synthetic reference; do nothing. */
2290 return NULL;
2291 }
2292 }
2293
2294 static void *
2295 copy_pieced_value_closure (const struct value *v)
2296 {
2297 struct piece_closure *c
2298 = (struct piece_closure *) value_computed_closure (v);
2299
2300 ++c->refc;
2301 return c;
2302 }
2303
2304 static void
2305 free_pieced_value_closure (struct value *v)
2306 {
2307 struct piece_closure *c
2308 = (struct piece_closure *) value_computed_closure (v);
2309
2310 --c->refc;
2311 if (c->refc == 0)
2312 {
2313 int i;
2314
2315 for (i = 0; i < c->n_pieces; ++i)
2316 if (c->pieces[i].location == DWARF_VALUE_STACK)
2317 value_free (c->pieces[i].v.value);
2318
2319 xfree (c->pieces);
2320 xfree (c);
2321 }
2322 }
2323
2324 /* Functions for accessing a variable described by DW_OP_piece. */
2325 static const struct lval_funcs pieced_value_funcs = {
2326 read_pieced_value,
2327 write_pieced_value,
2328 indirect_pieced_value,
2329 coerce_pieced_ref,
2330 check_pieced_synthetic_pointer,
2331 copy_pieced_value_closure,
2332 free_pieced_value_closure
2333 };
2334
2335 /* Evaluate a location description, starting at DATA and with length
2336 SIZE, to find the current location of variable of TYPE in the
2337 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2338 location of the subobject of type SUBOBJ_TYPE at byte offset
2339 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2340
2341 static struct value *
2342 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2343 const gdb_byte *data, size_t size,
2344 struct dwarf2_per_cu_data *per_cu,
2345 struct type *subobj_type,
2346 LONGEST subobj_byte_offset)
2347 {
2348 struct value *retval;
2349 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2350
2351 if (subobj_type == NULL)
2352 {
2353 subobj_type = type;
2354 subobj_byte_offset = 0;
2355 }
2356 else if (subobj_byte_offset < 0)
2357 invalid_synthetic_pointer ();
2358
2359 if (size == 0)
2360 return allocate_optimized_out_value (subobj_type);
2361
2362 dwarf_evaluate_loc_desc ctx;
2363 ctx.frame = frame;
2364 ctx.per_cu = per_cu;
2365 ctx.obj_address = 0;
2366
2367 scoped_value_mark free_values;
2368
2369 ctx.gdbarch = get_objfile_arch (objfile);
2370 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2371 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2372 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2373
2374 TRY
2375 {
2376 ctx.eval (data, size);
2377 }
2378 CATCH (ex, RETURN_MASK_ERROR)
2379 {
2380 if (ex.error == NOT_AVAILABLE_ERROR)
2381 {
2382 free_values.free_to_mark ();
2383 retval = allocate_value (subobj_type);
2384 mark_value_bytes_unavailable (retval, 0,
2385 TYPE_LENGTH (subobj_type));
2386 return retval;
2387 }
2388 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2389 {
2390 if (entry_values_debug)
2391 exception_print (gdb_stdout, ex);
2392 free_values.free_to_mark ();
2393 return allocate_optimized_out_value (subobj_type);
2394 }
2395 else
2396 throw_exception (ex);
2397 }
2398 END_CATCH
2399
2400 if (ctx.num_pieces > 0)
2401 {
2402 struct piece_closure *c;
2403 ULONGEST bit_size = 0;
2404 int i;
2405
2406 for (i = 0; i < ctx.num_pieces; ++i)
2407 bit_size += ctx.pieces[i].size;
2408 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2409 invalid_synthetic_pointer ();
2410
2411 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2412 frame);
2413 /* We must clean up the value chain after creating the piece
2414 closure but before allocating the result. */
2415 free_values.free_to_mark ();
2416 retval = allocate_computed_value (subobj_type,
2417 &pieced_value_funcs, c);
2418 set_value_offset (retval, subobj_byte_offset);
2419 }
2420 else
2421 {
2422 switch (ctx.location)
2423 {
2424 case DWARF_VALUE_REGISTER:
2425 {
2426 struct gdbarch *arch = get_frame_arch (frame);
2427 int dwarf_regnum
2428 = longest_to_int (value_as_long (ctx.fetch (0)));
2429 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2430
2431 if (subobj_byte_offset != 0)
2432 error (_("cannot use offset on synthetic pointer to register"));
2433 free_values.free_to_mark ();
2434 retval = value_from_register (subobj_type, gdb_regnum, frame);
2435 if (value_optimized_out (retval))
2436 {
2437 struct value *tmp;
2438
2439 /* This means the register has undefined value / was
2440 not saved. As we're computing the location of some
2441 variable etc. in the program, not a value for
2442 inspecting a register ($pc, $sp, etc.), return a
2443 generic optimized out value instead, so that we show
2444 <optimized out> instead of <not saved>. */
2445 tmp = allocate_value (subobj_type);
2446 value_contents_copy (tmp, 0, retval, 0,
2447 TYPE_LENGTH (subobj_type));
2448 retval = tmp;
2449 }
2450 }
2451 break;
2452
2453 case DWARF_VALUE_MEMORY:
2454 {
2455 struct type *ptr_type;
2456 CORE_ADDR address = ctx.fetch_address (0);
2457 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2458
2459 /* DW_OP_deref_size (and possibly other operations too) may
2460 create a pointer instead of an address. Ideally, the
2461 pointer to address conversion would be performed as part
2462 of those operations, but the type of the object to
2463 which the address refers is not known at the time of
2464 the operation. Therefore, we do the conversion here
2465 since the type is readily available. */
2466
2467 switch (TYPE_CODE (subobj_type))
2468 {
2469 case TYPE_CODE_FUNC:
2470 case TYPE_CODE_METHOD:
2471 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2472 break;
2473 default:
2474 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2475 break;
2476 }
2477 address = value_as_address (value_from_pointer (ptr_type, address));
2478
2479 free_values.free_to_mark ();
2480 retval = value_at_lazy (subobj_type,
2481 address + subobj_byte_offset);
2482 if (in_stack_memory)
2483 set_value_stack (retval, 1);
2484 }
2485 break;
2486
2487 case DWARF_VALUE_STACK:
2488 {
2489 struct value *value = ctx.fetch (0);
2490 size_t n = TYPE_LENGTH (value_type (value));
2491 size_t len = TYPE_LENGTH (subobj_type);
2492 size_t max = TYPE_LENGTH (type);
2493 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2494 struct cleanup *cleanup;
2495
2496 if (subobj_byte_offset + len > max)
2497 invalid_synthetic_pointer ();
2498
2499 /* Preserve VALUE because we are going to free values back
2500 to the mark, but we still need the value contents
2501 below. */
2502 value_incref (value);
2503 free_values.free_to_mark ();
2504 cleanup = make_cleanup_value_free (value);
2505
2506 retval = allocate_value (subobj_type);
2507
2508 /* The given offset is relative to the actual object. */
2509 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2510 subobj_byte_offset += n - max;
2511
2512 memcpy (value_contents_raw (retval),
2513 value_contents_all (value) + subobj_byte_offset, len);
2514
2515 do_cleanups (cleanup);
2516 }
2517 break;
2518
2519 case DWARF_VALUE_LITERAL:
2520 {
2521 bfd_byte *contents;
2522 size_t n = TYPE_LENGTH (subobj_type);
2523
2524 if (subobj_byte_offset + n > ctx.len)
2525 invalid_synthetic_pointer ();
2526
2527 free_values.free_to_mark ();
2528 retval = allocate_value (subobj_type);
2529 contents = value_contents_raw (retval);
2530 memcpy (contents, ctx.data + subobj_byte_offset, n);
2531 }
2532 break;
2533
2534 case DWARF_VALUE_OPTIMIZED_OUT:
2535 free_values.free_to_mark ();
2536 retval = allocate_optimized_out_value (subobj_type);
2537 break;
2538
2539 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2540 operation by execute_stack_op. */
2541 case DWARF_VALUE_IMPLICIT_POINTER:
2542 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2543 it can only be encountered when making a piece. */
2544 default:
2545 internal_error (__FILE__, __LINE__, _("invalid location type"));
2546 }
2547 }
2548
2549 set_value_initialized (retval, ctx.initialized);
2550
2551 return retval;
2552 }
2553
2554 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2555 passes 0 as the byte_offset. */
2556
2557 struct value *
2558 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2559 const gdb_byte *data, size_t size,
2560 struct dwarf2_per_cu_data *per_cu)
2561 {
2562 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2563 NULL, 0);
2564 }
2565
2566 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2567 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2568 frame in which the expression is evaluated. ADDR is a context (location of
2569 a variable) and might be needed to evaluate the location expression.
2570 Returns 1 on success, 0 otherwise. */
2571
2572 static int
2573 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2574 struct frame_info *frame,
2575 CORE_ADDR addr,
2576 CORE_ADDR *valp)
2577 {
2578 struct objfile *objfile;
2579
2580 if (dlbaton == NULL || dlbaton->size == 0)
2581 return 0;
2582
2583 dwarf_evaluate_loc_desc ctx;
2584
2585 ctx.frame = frame;
2586 ctx.per_cu = dlbaton->per_cu;
2587 ctx.obj_address = addr;
2588
2589 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2590
2591 ctx.gdbarch = get_objfile_arch (objfile);
2592 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2593 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2594 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2595
2596 ctx.eval (dlbaton->data, dlbaton->size);
2597
2598 switch (ctx.location)
2599 {
2600 case DWARF_VALUE_REGISTER:
2601 case DWARF_VALUE_MEMORY:
2602 case DWARF_VALUE_STACK:
2603 *valp = ctx.fetch_address (0);
2604 if (ctx.location == DWARF_VALUE_REGISTER)
2605 *valp = ctx.read_addr_from_reg (*valp);
2606 return 1;
2607 case DWARF_VALUE_LITERAL:
2608 *valp = extract_signed_integer (ctx.data, ctx.len,
2609 gdbarch_byte_order (ctx.gdbarch));
2610 return 1;
2611 /* Unsupported dwarf values. */
2612 case DWARF_VALUE_OPTIMIZED_OUT:
2613 case DWARF_VALUE_IMPLICIT_POINTER:
2614 break;
2615 }
2616
2617 return 0;
2618 }
2619
2620 /* See dwarf2loc.h. */
2621
2622 int
2623 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2624 struct frame_info *frame,
2625 struct property_addr_info *addr_stack,
2626 CORE_ADDR *value)
2627 {
2628 if (prop == NULL)
2629 return 0;
2630
2631 if (frame == NULL && has_stack_frames ())
2632 frame = get_selected_frame (NULL);
2633
2634 switch (prop->kind)
2635 {
2636 case PROP_LOCEXPR:
2637 {
2638 const struct dwarf2_property_baton *baton
2639 = (const struct dwarf2_property_baton *) prop->data.baton;
2640
2641 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2642 addr_stack ? addr_stack->addr : 0,
2643 value))
2644 {
2645 if (baton->referenced_type)
2646 {
2647 struct value *val = value_at (baton->referenced_type, *value);
2648
2649 *value = value_as_address (val);
2650 }
2651 return 1;
2652 }
2653 }
2654 break;
2655
2656 case PROP_LOCLIST:
2657 {
2658 struct dwarf2_property_baton *baton
2659 = (struct dwarf2_property_baton *) prop->data.baton;
2660 CORE_ADDR pc = get_frame_address_in_block (frame);
2661 const gdb_byte *data;
2662 struct value *val;
2663 size_t size;
2664
2665 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2666 if (data != NULL)
2667 {
2668 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2669 size, baton->loclist.per_cu);
2670 if (!value_optimized_out (val))
2671 {
2672 *value = value_as_address (val);
2673 return 1;
2674 }
2675 }
2676 }
2677 break;
2678
2679 case PROP_CONST:
2680 *value = prop->data.const_val;
2681 return 1;
2682
2683 case PROP_ADDR_OFFSET:
2684 {
2685 struct dwarf2_property_baton *baton
2686 = (struct dwarf2_property_baton *) prop->data.baton;
2687 struct property_addr_info *pinfo;
2688 struct value *val;
2689
2690 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2691 if (pinfo->type == baton->referenced_type)
2692 break;
2693 if (pinfo == NULL)
2694 error (_("cannot find reference address for offset property"));
2695 if (pinfo->valaddr != NULL)
2696 val = value_from_contents
2697 (baton->offset_info.type,
2698 pinfo->valaddr + baton->offset_info.offset);
2699 else
2700 val = value_at (baton->offset_info.type,
2701 pinfo->addr + baton->offset_info.offset);
2702 *value = value_as_address (val);
2703 return 1;
2704 }
2705 }
2706
2707 return 0;
2708 }
2709
2710 /* See dwarf2loc.h. */
2711
2712 void
2713 dwarf2_compile_property_to_c (string_file &stream,
2714 const char *result_name,
2715 struct gdbarch *gdbarch,
2716 unsigned char *registers_used,
2717 const struct dynamic_prop *prop,
2718 CORE_ADDR pc,
2719 struct symbol *sym)
2720 {
2721 struct dwarf2_property_baton *baton
2722 = (struct dwarf2_property_baton *) prop->data.baton;
2723 const gdb_byte *data;
2724 size_t size;
2725 struct dwarf2_per_cu_data *per_cu;
2726
2727 if (prop->kind == PROP_LOCEXPR)
2728 {
2729 data = baton->locexpr.data;
2730 size = baton->locexpr.size;
2731 per_cu = baton->locexpr.per_cu;
2732 }
2733 else
2734 {
2735 gdb_assert (prop->kind == PROP_LOCLIST);
2736
2737 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2738 per_cu = baton->loclist.per_cu;
2739 }
2740
2741 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2742 gdbarch, registers_used,
2743 dwarf2_per_cu_addr_size (per_cu),
2744 data, data + size, per_cu);
2745 }
2746
2747 \f
2748 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2749
2750 class symbol_needs_eval_context : public dwarf_expr_context
2751 {
2752 public:
2753
2754 enum symbol_needs_kind needs;
2755 struct dwarf2_per_cu_data *per_cu;
2756
2757 /* Reads from registers do require a frame. */
2758 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2759 {
2760 needs = SYMBOL_NEEDS_FRAME;
2761 return 1;
2762 }
2763
2764 /* "get_reg_value" callback: Reads from registers do require a
2765 frame. */
2766
2767 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2768 {
2769 needs = SYMBOL_NEEDS_FRAME;
2770 return value_zero (type, not_lval);
2771 }
2772
2773 /* Reads from memory do not require a frame. */
2774 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2775 {
2776 memset (buf, 0, len);
2777 }
2778
2779 /* Frame-relative accesses do require a frame. */
2780 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2781 {
2782 static gdb_byte lit0 = DW_OP_lit0;
2783
2784 *start = &lit0;
2785 *length = 1;
2786
2787 needs = SYMBOL_NEEDS_FRAME;
2788 }
2789
2790 /* CFA accesses require a frame. */
2791 CORE_ADDR get_frame_cfa () OVERRIDE
2792 {
2793 needs = SYMBOL_NEEDS_FRAME;
2794 return 1;
2795 }
2796
2797 CORE_ADDR get_frame_pc () OVERRIDE
2798 {
2799 needs = SYMBOL_NEEDS_FRAME;
2800 return 1;
2801 }
2802
2803 /* Thread-local accesses require registers, but not a frame. */
2804 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2805 {
2806 if (needs <= SYMBOL_NEEDS_REGISTERS)
2807 needs = SYMBOL_NEEDS_REGISTERS;
2808 return 1;
2809 }
2810
2811 /* Helper interface of per_cu_dwarf_call for
2812 dwarf2_loc_desc_get_symbol_read_needs. */
2813
2814 void dwarf_call (cu_offset die_offset) OVERRIDE
2815 {
2816 per_cu_dwarf_call (this, die_offset, per_cu);
2817 }
2818
2819 /* DW_OP_entry_value accesses require a caller, therefore a
2820 frame. */
2821
2822 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2823 union call_site_parameter_u kind_u,
2824 int deref_size) OVERRIDE
2825 {
2826 needs = SYMBOL_NEEDS_FRAME;
2827
2828 /* The expression may require some stub values on DWARF stack. */
2829 push_address (0, 0);
2830 }
2831
2832 /* DW_OP_GNU_addr_index doesn't require a frame. */
2833
2834 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2835 {
2836 /* Nothing to do. */
2837 return 1;
2838 }
2839
2840 /* DW_OP_push_object_address has a frame already passed through. */
2841
2842 CORE_ADDR get_object_address () OVERRIDE
2843 {
2844 /* Nothing to do. */
2845 return 1;
2846 }
2847 };
2848
2849 /* Compute the correct symbol_needs_kind value for the location
2850 expression at DATA (length SIZE). */
2851
2852 static enum symbol_needs_kind
2853 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2854 struct dwarf2_per_cu_data *per_cu)
2855 {
2856 int in_reg;
2857 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2858
2859 scoped_value_mark free_values;
2860
2861 symbol_needs_eval_context ctx;
2862
2863 ctx.needs = SYMBOL_NEEDS_NONE;
2864 ctx.per_cu = per_cu;
2865 ctx.gdbarch = get_objfile_arch (objfile);
2866 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2867 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2868 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2869
2870 ctx.eval (data, size);
2871
2872 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2873
2874 if (ctx.num_pieces > 0)
2875 {
2876 int i;
2877
2878 /* If the location has several pieces, and any of them are in
2879 registers, then we will need a frame to fetch them from. */
2880 for (i = 0; i < ctx.num_pieces; i++)
2881 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2882 in_reg = 1;
2883 }
2884
2885 if (in_reg)
2886 ctx.needs = SYMBOL_NEEDS_FRAME;
2887 return ctx.needs;
2888 }
2889
2890 /* A helper function that throws an unimplemented error mentioning a
2891 given DWARF operator. */
2892
2893 static void
2894 unimplemented (unsigned int op)
2895 {
2896 const char *name = get_DW_OP_name (op);
2897
2898 if (name)
2899 error (_("DWARF operator %s cannot be translated to an agent expression"),
2900 name);
2901 else
2902 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2903 "to an agent expression"),
2904 op);
2905 }
2906
2907 /* See dwarf2loc.h.
2908
2909 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2910 can issue a complaint, which is better than having every target's
2911 implementation of dwarf2_reg_to_regnum do it. */
2912
2913 int
2914 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2915 {
2916 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2917
2918 if (reg == -1)
2919 {
2920 complaint (&symfile_complaints,
2921 _("bad DWARF register number %d"), dwarf_reg);
2922 }
2923 return reg;
2924 }
2925
2926 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2927 Throw an error because DWARF_REG is bad. */
2928
2929 static void
2930 throw_bad_regnum_error (ULONGEST dwarf_reg)
2931 {
2932 /* Still want to print -1 as "-1".
2933 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2934 but that's overkill for now. */
2935 if ((int) dwarf_reg == dwarf_reg)
2936 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2937 error (_("Unable to access DWARF register number %s"),
2938 pulongest (dwarf_reg));
2939 }
2940
2941 /* See dwarf2loc.h. */
2942
2943 int
2944 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2945 {
2946 int reg;
2947
2948 if (dwarf_reg > INT_MAX)
2949 throw_bad_regnum_error (dwarf_reg);
2950 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2951 bad, but that's ok. */
2952 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2953 if (reg == -1)
2954 throw_bad_regnum_error (dwarf_reg);
2955 return reg;
2956 }
2957
2958 /* A helper function that emits an access to memory. ARCH is the
2959 target architecture. EXPR is the expression which we are building.
2960 NBITS is the number of bits we want to read. This emits the
2961 opcodes needed to read the memory and then extract the desired
2962 bits. */
2963
2964 static void
2965 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2966 {
2967 ULONGEST nbytes = (nbits + 7) / 8;
2968
2969 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2970
2971 if (expr->tracing)
2972 ax_trace_quick (expr, nbytes);
2973
2974 if (nbits <= 8)
2975 ax_simple (expr, aop_ref8);
2976 else if (nbits <= 16)
2977 ax_simple (expr, aop_ref16);
2978 else if (nbits <= 32)
2979 ax_simple (expr, aop_ref32);
2980 else
2981 ax_simple (expr, aop_ref64);
2982
2983 /* If we read exactly the number of bytes we wanted, we're done. */
2984 if (8 * nbytes == nbits)
2985 return;
2986
2987 if (gdbarch_bits_big_endian (arch))
2988 {
2989 /* On a bits-big-endian machine, we want the high-order
2990 NBITS. */
2991 ax_const_l (expr, 8 * nbytes - nbits);
2992 ax_simple (expr, aop_rsh_unsigned);
2993 }
2994 else
2995 {
2996 /* On a bits-little-endian box, we want the low-order NBITS. */
2997 ax_zero_ext (expr, nbits);
2998 }
2999 }
3000
3001 /* A helper function to return the frame's PC. */
3002
3003 static CORE_ADDR
3004 get_ax_pc (void *baton)
3005 {
3006 struct agent_expr *expr = (struct agent_expr *) baton;
3007
3008 return expr->scope;
3009 }
3010
3011 /* Compile a DWARF location expression to an agent expression.
3012
3013 EXPR is the agent expression we are building.
3014 LOC is the agent value we modify.
3015 ARCH is the architecture.
3016 ADDR_SIZE is the size of addresses, in bytes.
3017 OP_PTR is the start of the location expression.
3018 OP_END is one past the last byte of the location expression.
3019
3020 This will throw an exception for various kinds of errors -- for
3021 example, if the expression cannot be compiled, or if the expression
3022 is invalid. */
3023
3024 void
3025 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3026 struct gdbarch *arch, unsigned int addr_size,
3027 const gdb_byte *op_ptr, const gdb_byte *op_end,
3028 struct dwarf2_per_cu_data *per_cu)
3029 {
3030 int i;
3031 std::vector<int> dw_labels, patches;
3032 const gdb_byte * const base = op_ptr;
3033 const gdb_byte *previous_piece = op_ptr;
3034 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3035 ULONGEST bits_collected = 0;
3036 unsigned int addr_size_bits = 8 * addr_size;
3037 int bits_big_endian = gdbarch_bits_big_endian (arch);
3038
3039 std::vector<int> offsets (op_end - op_ptr, -1);
3040
3041 /* By default we are making an address. */
3042 loc->kind = axs_lvalue_memory;
3043
3044 while (op_ptr < op_end)
3045 {
3046 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3047 uint64_t uoffset, reg;
3048 int64_t offset;
3049 int i;
3050
3051 offsets[op_ptr - base] = expr->len;
3052 ++op_ptr;
3053
3054 /* Our basic approach to code generation is to map DWARF
3055 operations directly to AX operations. However, there are
3056 some differences.
3057
3058 First, DWARF works on address-sized units, but AX always uses
3059 LONGEST. For most operations we simply ignore this
3060 difference; instead we generate sign extensions as needed
3061 before division and comparison operations. It would be nice
3062 to omit the sign extensions, but there is no way to determine
3063 the size of the target's LONGEST. (This code uses the size
3064 of the host LONGEST in some cases -- that is a bug but it is
3065 difficult to fix.)
3066
3067 Second, some DWARF operations cannot be translated to AX.
3068 For these we simply fail. See
3069 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3070 switch (op)
3071 {
3072 case DW_OP_lit0:
3073 case DW_OP_lit1:
3074 case DW_OP_lit2:
3075 case DW_OP_lit3:
3076 case DW_OP_lit4:
3077 case DW_OP_lit5:
3078 case DW_OP_lit6:
3079 case DW_OP_lit7:
3080 case DW_OP_lit8:
3081 case DW_OP_lit9:
3082 case DW_OP_lit10:
3083 case DW_OP_lit11:
3084 case DW_OP_lit12:
3085 case DW_OP_lit13:
3086 case DW_OP_lit14:
3087 case DW_OP_lit15:
3088 case DW_OP_lit16:
3089 case DW_OP_lit17:
3090 case DW_OP_lit18:
3091 case DW_OP_lit19:
3092 case DW_OP_lit20:
3093 case DW_OP_lit21:
3094 case DW_OP_lit22:
3095 case DW_OP_lit23:
3096 case DW_OP_lit24:
3097 case DW_OP_lit25:
3098 case DW_OP_lit26:
3099 case DW_OP_lit27:
3100 case DW_OP_lit28:
3101 case DW_OP_lit29:
3102 case DW_OP_lit30:
3103 case DW_OP_lit31:
3104 ax_const_l (expr, op - DW_OP_lit0);
3105 break;
3106
3107 case DW_OP_addr:
3108 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3109 op_ptr += addr_size;
3110 /* Some versions of GCC emit DW_OP_addr before
3111 DW_OP_GNU_push_tls_address. In this case the value is an
3112 index, not an address. We don't support things like
3113 branching between the address and the TLS op. */
3114 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3115 uoffset += dwarf2_per_cu_text_offset (per_cu);
3116 ax_const_l (expr, uoffset);
3117 break;
3118
3119 case DW_OP_const1u:
3120 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3121 op_ptr += 1;
3122 break;
3123 case DW_OP_const1s:
3124 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3125 op_ptr += 1;
3126 break;
3127 case DW_OP_const2u:
3128 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3129 op_ptr += 2;
3130 break;
3131 case DW_OP_const2s:
3132 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3133 op_ptr += 2;
3134 break;
3135 case DW_OP_const4u:
3136 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3137 op_ptr += 4;
3138 break;
3139 case DW_OP_const4s:
3140 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3141 op_ptr += 4;
3142 break;
3143 case DW_OP_const8u:
3144 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3145 op_ptr += 8;
3146 break;
3147 case DW_OP_const8s:
3148 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3149 op_ptr += 8;
3150 break;
3151 case DW_OP_constu:
3152 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3153 ax_const_l (expr, uoffset);
3154 break;
3155 case DW_OP_consts:
3156 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3157 ax_const_l (expr, offset);
3158 break;
3159
3160 case DW_OP_reg0:
3161 case DW_OP_reg1:
3162 case DW_OP_reg2:
3163 case DW_OP_reg3:
3164 case DW_OP_reg4:
3165 case DW_OP_reg5:
3166 case DW_OP_reg6:
3167 case DW_OP_reg7:
3168 case DW_OP_reg8:
3169 case DW_OP_reg9:
3170 case DW_OP_reg10:
3171 case DW_OP_reg11:
3172 case DW_OP_reg12:
3173 case DW_OP_reg13:
3174 case DW_OP_reg14:
3175 case DW_OP_reg15:
3176 case DW_OP_reg16:
3177 case DW_OP_reg17:
3178 case DW_OP_reg18:
3179 case DW_OP_reg19:
3180 case DW_OP_reg20:
3181 case DW_OP_reg21:
3182 case DW_OP_reg22:
3183 case DW_OP_reg23:
3184 case DW_OP_reg24:
3185 case DW_OP_reg25:
3186 case DW_OP_reg26:
3187 case DW_OP_reg27:
3188 case DW_OP_reg28:
3189 case DW_OP_reg29:
3190 case DW_OP_reg30:
3191 case DW_OP_reg31:
3192 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3193 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3194 loc->kind = axs_lvalue_register;
3195 break;
3196
3197 case DW_OP_regx:
3198 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3199 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3200 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3201 loc->kind = axs_lvalue_register;
3202 break;
3203
3204 case DW_OP_implicit_value:
3205 {
3206 uint64_t len;
3207
3208 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3209 if (op_ptr + len > op_end)
3210 error (_("DW_OP_implicit_value: too few bytes available."));
3211 if (len > sizeof (ULONGEST))
3212 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3213 (int) len);
3214
3215 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3216 byte_order));
3217 op_ptr += len;
3218 dwarf_expr_require_composition (op_ptr, op_end,
3219 "DW_OP_implicit_value");
3220
3221 loc->kind = axs_rvalue;
3222 }
3223 break;
3224
3225 case DW_OP_stack_value:
3226 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3227 loc->kind = axs_rvalue;
3228 break;
3229
3230 case DW_OP_breg0:
3231 case DW_OP_breg1:
3232 case DW_OP_breg2:
3233 case DW_OP_breg3:
3234 case DW_OP_breg4:
3235 case DW_OP_breg5:
3236 case DW_OP_breg6:
3237 case DW_OP_breg7:
3238 case DW_OP_breg8:
3239 case DW_OP_breg9:
3240 case DW_OP_breg10:
3241 case DW_OP_breg11:
3242 case DW_OP_breg12:
3243 case DW_OP_breg13:
3244 case DW_OP_breg14:
3245 case DW_OP_breg15:
3246 case DW_OP_breg16:
3247 case DW_OP_breg17:
3248 case DW_OP_breg18:
3249 case DW_OP_breg19:
3250 case DW_OP_breg20:
3251 case DW_OP_breg21:
3252 case DW_OP_breg22:
3253 case DW_OP_breg23:
3254 case DW_OP_breg24:
3255 case DW_OP_breg25:
3256 case DW_OP_breg26:
3257 case DW_OP_breg27:
3258 case DW_OP_breg28:
3259 case DW_OP_breg29:
3260 case DW_OP_breg30:
3261 case DW_OP_breg31:
3262 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3263 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3264 ax_reg (expr, i);
3265 if (offset != 0)
3266 {
3267 ax_const_l (expr, offset);
3268 ax_simple (expr, aop_add);
3269 }
3270 break;
3271 case DW_OP_bregx:
3272 {
3273 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3274 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3275 i = dwarf_reg_to_regnum_or_error (arch, reg);
3276 ax_reg (expr, i);
3277 if (offset != 0)
3278 {
3279 ax_const_l (expr, offset);
3280 ax_simple (expr, aop_add);
3281 }
3282 }
3283 break;
3284 case DW_OP_fbreg:
3285 {
3286 const gdb_byte *datastart;
3287 size_t datalen;
3288 const struct block *b;
3289 struct symbol *framefunc;
3290
3291 b = block_for_pc (expr->scope);
3292
3293 if (!b)
3294 error (_("No block found for address"));
3295
3296 framefunc = block_linkage_function (b);
3297
3298 if (!framefunc)
3299 error (_("No function found for block"));
3300
3301 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3302 &datastart, &datalen);
3303
3304 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3305 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3306 datastart + datalen, per_cu);
3307 if (loc->kind == axs_lvalue_register)
3308 require_rvalue (expr, loc);
3309
3310 if (offset != 0)
3311 {
3312 ax_const_l (expr, offset);
3313 ax_simple (expr, aop_add);
3314 }
3315
3316 loc->kind = axs_lvalue_memory;
3317 }
3318 break;
3319
3320 case DW_OP_dup:
3321 ax_simple (expr, aop_dup);
3322 break;
3323
3324 case DW_OP_drop:
3325 ax_simple (expr, aop_pop);
3326 break;
3327
3328 case DW_OP_pick:
3329 offset = *op_ptr++;
3330 ax_pick (expr, offset);
3331 break;
3332
3333 case DW_OP_swap:
3334 ax_simple (expr, aop_swap);
3335 break;
3336
3337 case DW_OP_over:
3338 ax_pick (expr, 1);
3339 break;
3340
3341 case DW_OP_rot:
3342 ax_simple (expr, aop_rot);
3343 break;
3344
3345 case DW_OP_deref:
3346 case DW_OP_deref_size:
3347 {
3348 int size;
3349
3350 if (op == DW_OP_deref_size)
3351 size = *op_ptr++;
3352 else
3353 size = addr_size;
3354
3355 if (size != 1 && size != 2 && size != 4 && size != 8)
3356 error (_("Unsupported size %d in %s"),
3357 size, get_DW_OP_name (op));
3358 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3359 }
3360 break;
3361
3362 case DW_OP_abs:
3363 /* Sign extend the operand. */
3364 ax_ext (expr, addr_size_bits);
3365 ax_simple (expr, aop_dup);
3366 ax_const_l (expr, 0);
3367 ax_simple (expr, aop_less_signed);
3368 ax_simple (expr, aop_log_not);
3369 i = ax_goto (expr, aop_if_goto);
3370 /* We have to emit 0 - X. */
3371 ax_const_l (expr, 0);
3372 ax_simple (expr, aop_swap);
3373 ax_simple (expr, aop_sub);
3374 ax_label (expr, i, expr->len);
3375 break;
3376
3377 case DW_OP_neg:
3378 /* No need to sign extend here. */
3379 ax_const_l (expr, 0);
3380 ax_simple (expr, aop_swap);
3381 ax_simple (expr, aop_sub);
3382 break;
3383
3384 case DW_OP_not:
3385 /* Sign extend the operand. */
3386 ax_ext (expr, addr_size_bits);
3387 ax_simple (expr, aop_bit_not);
3388 break;
3389
3390 case DW_OP_plus_uconst:
3391 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3392 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3393 but we micro-optimize anyhow. */
3394 if (reg != 0)
3395 {
3396 ax_const_l (expr, reg);
3397 ax_simple (expr, aop_add);
3398 }
3399 break;
3400
3401 case DW_OP_and:
3402 ax_simple (expr, aop_bit_and);
3403 break;
3404
3405 case DW_OP_div:
3406 /* Sign extend the operands. */
3407 ax_ext (expr, addr_size_bits);
3408 ax_simple (expr, aop_swap);
3409 ax_ext (expr, addr_size_bits);
3410 ax_simple (expr, aop_swap);
3411 ax_simple (expr, aop_div_signed);
3412 break;
3413
3414 case DW_OP_minus:
3415 ax_simple (expr, aop_sub);
3416 break;
3417
3418 case DW_OP_mod:
3419 ax_simple (expr, aop_rem_unsigned);
3420 break;
3421
3422 case DW_OP_mul:
3423 ax_simple (expr, aop_mul);
3424 break;
3425
3426 case DW_OP_or:
3427 ax_simple (expr, aop_bit_or);
3428 break;
3429
3430 case DW_OP_plus:
3431 ax_simple (expr, aop_add);
3432 break;
3433
3434 case DW_OP_shl:
3435 ax_simple (expr, aop_lsh);
3436 break;
3437
3438 case DW_OP_shr:
3439 ax_simple (expr, aop_rsh_unsigned);
3440 break;
3441
3442 case DW_OP_shra:
3443 ax_simple (expr, aop_rsh_signed);
3444 break;
3445
3446 case DW_OP_xor:
3447 ax_simple (expr, aop_bit_xor);
3448 break;
3449
3450 case DW_OP_le:
3451 /* Sign extend the operands. */
3452 ax_ext (expr, addr_size_bits);
3453 ax_simple (expr, aop_swap);
3454 ax_ext (expr, addr_size_bits);
3455 /* Note no swap here: A <= B is !(B < A). */
3456 ax_simple (expr, aop_less_signed);
3457 ax_simple (expr, aop_log_not);
3458 break;
3459
3460 case DW_OP_ge:
3461 /* Sign extend the operands. */
3462 ax_ext (expr, addr_size_bits);
3463 ax_simple (expr, aop_swap);
3464 ax_ext (expr, addr_size_bits);
3465 ax_simple (expr, aop_swap);
3466 /* A >= B is !(A < B). */
3467 ax_simple (expr, aop_less_signed);
3468 ax_simple (expr, aop_log_not);
3469 break;
3470
3471 case DW_OP_eq:
3472 /* Sign extend the operands. */
3473 ax_ext (expr, addr_size_bits);
3474 ax_simple (expr, aop_swap);
3475 ax_ext (expr, addr_size_bits);
3476 /* No need for a second swap here. */
3477 ax_simple (expr, aop_equal);
3478 break;
3479
3480 case DW_OP_lt:
3481 /* Sign extend the operands. */
3482 ax_ext (expr, addr_size_bits);
3483 ax_simple (expr, aop_swap);
3484 ax_ext (expr, addr_size_bits);
3485 ax_simple (expr, aop_swap);
3486 ax_simple (expr, aop_less_signed);
3487 break;
3488
3489 case DW_OP_gt:
3490 /* Sign extend the operands. */
3491 ax_ext (expr, addr_size_bits);
3492 ax_simple (expr, aop_swap);
3493 ax_ext (expr, addr_size_bits);
3494 /* Note no swap here: A > B is B < A. */
3495 ax_simple (expr, aop_less_signed);
3496 break;
3497
3498 case DW_OP_ne:
3499 /* Sign extend the operands. */
3500 ax_ext (expr, addr_size_bits);
3501 ax_simple (expr, aop_swap);
3502 ax_ext (expr, addr_size_bits);
3503 /* No need for a swap here. */
3504 ax_simple (expr, aop_equal);
3505 ax_simple (expr, aop_log_not);
3506 break;
3507
3508 case DW_OP_call_frame_cfa:
3509 {
3510 int regnum;
3511 CORE_ADDR text_offset;
3512 LONGEST off;
3513 const gdb_byte *cfa_start, *cfa_end;
3514
3515 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3516 &regnum, &off,
3517 &text_offset, &cfa_start, &cfa_end))
3518 {
3519 /* Register. */
3520 ax_reg (expr, regnum);
3521 if (off != 0)
3522 {
3523 ax_const_l (expr, off);
3524 ax_simple (expr, aop_add);
3525 }
3526 }
3527 else
3528 {
3529 /* Another expression. */
3530 ax_const_l (expr, text_offset);
3531 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3532 cfa_start, cfa_end, per_cu);
3533 }
3534
3535 loc->kind = axs_lvalue_memory;
3536 }
3537 break;
3538
3539 case DW_OP_GNU_push_tls_address:
3540 case DW_OP_form_tls_address:
3541 unimplemented (op);
3542 break;
3543
3544 case DW_OP_push_object_address:
3545 unimplemented (op);
3546 break;
3547
3548 case DW_OP_skip:
3549 offset = extract_signed_integer (op_ptr, 2, byte_order);
3550 op_ptr += 2;
3551 i = ax_goto (expr, aop_goto);
3552 dw_labels.push_back (op_ptr + offset - base);
3553 patches.push_back (i);
3554 break;
3555
3556 case DW_OP_bra:
3557 offset = extract_signed_integer (op_ptr, 2, byte_order);
3558 op_ptr += 2;
3559 /* Zero extend the operand. */
3560 ax_zero_ext (expr, addr_size_bits);
3561 i = ax_goto (expr, aop_if_goto);
3562 dw_labels.push_back (op_ptr + offset - base);
3563 patches.push_back (i);
3564 break;
3565
3566 case DW_OP_nop:
3567 break;
3568
3569 case DW_OP_piece:
3570 case DW_OP_bit_piece:
3571 {
3572 uint64_t size, offset;
3573
3574 if (op_ptr - 1 == previous_piece)
3575 error (_("Cannot translate empty pieces to agent expressions"));
3576 previous_piece = op_ptr - 1;
3577
3578 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3579 if (op == DW_OP_piece)
3580 {
3581 size *= 8;
3582 offset = 0;
3583 }
3584 else
3585 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3586
3587 if (bits_collected + size > 8 * sizeof (LONGEST))
3588 error (_("Expression pieces exceed word size"));
3589
3590 /* Access the bits. */
3591 switch (loc->kind)
3592 {
3593 case axs_lvalue_register:
3594 ax_reg (expr, loc->u.reg);
3595 break;
3596
3597 case axs_lvalue_memory:
3598 /* Offset the pointer, if needed. */
3599 if (offset > 8)
3600 {
3601 ax_const_l (expr, offset / 8);
3602 ax_simple (expr, aop_add);
3603 offset %= 8;
3604 }
3605 access_memory (arch, expr, size);
3606 break;
3607 }
3608
3609 /* For a bits-big-endian target, shift up what we already
3610 have. For a bits-little-endian target, shift up the
3611 new data. Note that there is a potential bug here if
3612 the DWARF expression leaves multiple values on the
3613 stack. */
3614 if (bits_collected > 0)
3615 {
3616 if (bits_big_endian)
3617 {
3618 ax_simple (expr, aop_swap);
3619 ax_const_l (expr, size);
3620 ax_simple (expr, aop_lsh);
3621 /* We don't need a second swap here, because
3622 aop_bit_or is symmetric. */
3623 }
3624 else
3625 {
3626 ax_const_l (expr, size);
3627 ax_simple (expr, aop_lsh);
3628 }
3629 ax_simple (expr, aop_bit_or);
3630 }
3631
3632 bits_collected += size;
3633 loc->kind = axs_rvalue;
3634 }
3635 break;
3636
3637 case DW_OP_GNU_uninit:
3638 unimplemented (op);
3639
3640 case DW_OP_call2:
3641 case DW_OP_call4:
3642 {
3643 struct dwarf2_locexpr_baton block;
3644 int size = (op == DW_OP_call2 ? 2 : 4);
3645
3646 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3647 op_ptr += size;
3648
3649 cu_offset offset = (cu_offset) uoffset;
3650 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3651 get_ax_pc, expr);
3652
3653 /* DW_OP_call_ref is currently not supported. */
3654 gdb_assert (block.per_cu == per_cu);
3655
3656 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3657 block.data, block.data + block.size,
3658 per_cu);
3659 }
3660 break;
3661
3662 case DW_OP_call_ref:
3663 unimplemented (op);
3664
3665 default:
3666 unimplemented (op);
3667 }
3668 }
3669
3670 /* Patch all the branches we emitted. */
3671 for (i = 0; i < patches.size (); ++i)
3672 {
3673 int targ = offsets[dw_labels[i]];
3674 if (targ == -1)
3675 internal_error (__FILE__, __LINE__, _("invalid label"));
3676 ax_label (expr, patches[i], targ);
3677 }
3678 }
3679
3680 \f
3681 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3682 evaluator to calculate the location. */
3683 static struct value *
3684 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3685 {
3686 struct dwarf2_locexpr_baton *dlbaton
3687 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3688 struct value *val;
3689
3690 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3691 dlbaton->size, dlbaton->per_cu);
3692
3693 return val;
3694 }
3695
3696 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3697 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3698 will be thrown. */
3699
3700 static struct value *
3701 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3702 {
3703 struct dwarf2_locexpr_baton *dlbaton
3704 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3705
3706 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3707 dlbaton->size);
3708 }
3709
3710 /* Implementation of get_symbol_read_needs from
3711 symbol_computed_ops. */
3712
3713 static enum symbol_needs_kind
3714 locexpr_get_symbol_read_needs (struct symbol *symbol)
3715 {
3716 struct dwarf2_locexpr_baton *dlbaton
3717 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3718
3719 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3720 dlbaton->per_cu);
3721 }
3722
3723 /* Return true if DATA points to the end of a piece. END is one past
3724 the last byte in the expression. */
3725
3726 static int
3727 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3728 {
3729 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3730 }
3731
3732 /* Helper for locexpr_describe_location_piece that finds the name of a
3733 DWARF register. */
3734
3735 static const char *
3736 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3737 {
3738 int regnum;
3739
3740 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3741 We'd rather print *something* here than throw an error. */
3742 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3743 /* gdbarch_register_name may just return "", return something more
3744 descriptive for bad register numbers. */
3745 if (regnum == -1)
3746 {
3747 /* The text is output as "$bad_register_number".
3748 That is why we use the underscores. */
3749 return _("bad_register_number");
3750 }
3751 return gdbarch_register_name (gdbarch, regnum);
3752 }
3753
3754 /* Nicely describe a single piece of a location, returning an updated
3755 position in the bytecode sequence. This function cannot recognize
3756 all locations; if a location is not recognized, it simply returns
3757 DATA. If there is an error during reading, e.g. we run off the end
3758 of the buffer, an error is thrown. */
3759
3760 static const gdb_byte *
3761 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3762 CORE_ADDR addr, struct objfile *objfile,
3763 struct dwarf2_per_cu_data *per_cu,
3764 const gdb_byte *data, const gdb_byte *end,
3765 unsigned int addr_size)
3766 {
3767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3768 size_t leb128_size;
3769
3770 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3771 {
3772 fprintf_filtered (stream, _("a variable in $%s"),
3773 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3774 data += 1;
3775 }
3776 else if (data[0] == DW_OP_regx)
3777 {
3778 uint64_t reg;
3779
3780 data = safe_read_uleb128 (data + 1, end, &reg);
3781 fprintf_filtered (stream, _("a variable in $%s"),
3782 locexpr_regname (gdbarch, reg));
3783 }
3784 else if (data[0] == DW_OP_fbreg)
3785 {
3786 const struct block *b;
3787 struct symbol *framefunc;
3788 int frame_reg = 0;
3789 int64_t frame_offset;
3790 const gdb_byte *base_data, *new_data, *save_data = data;
3791 size_t base_size;
3792 int64_t base_offset = 0;
3793
3794 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3795 if (!piece_end_p (new_data, end))
3796 return data;
3797 data = new_data;
3798
3799 b = block_for_pc (addr);
3800
3801 if (!b)
3802 error (_("No block found for address for symbol \"%s\"."),
3803 SYMBOL_PRINT_NAME (symbol));
3804
3805 framefunc = block_linkage_function (b);
3806
3807 if (!framefunc)
3808 error (_("No function found for block for symbol \"%s\"."),
3809 SYMBOL_PRINT_NAME (symbol));
3810
3811 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3812
3813 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3814 {
3815 const gdb_byte *buf_end;
3816
3817 frame_reg = base_data[0] - DW_OP_breg0;
3818 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3819 &base_offset);
3820 if (buf_end != base_data + base_size)
3821 error (_("Unexpected opcode after "
3822 "DW_OP_breg%u for symbol \"%s\"."),
3823 frame_reg, SYMBOL_PRINT_NAME (symbol));
3824 }
3825 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3826 {
3827 /* The frame base is just the register, with no offset. */
3828 frame_reg = base_data[0] - DW_OP_reg0;
3829 base_offset = 0;
3830 }
3831 else
3832 {
3833 /* We don't know what to do with the frame base expression,
3834 so we can't trace this variable; give up. */
3835 return save_data;
3836 }
3837
3838 fprintf_filtered (stream,
3839 _("a variable at frame base reg $%s offset %s+%s"),
3840 locexpr_regname (gdbarch, frame_reg),
3841 plongest (base_offset), plongest (frame_offset));
3842 }
3843 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3844 && piece_end_p (data, end))
3845 {
3846 int64_t offset;
3847
3848 data = safe_read_sleb128 (data + 1, end, &offset);
3849
3850 fprintf_filtered (stream,
3851 _("a variable at offset %s from base reg $%s"),
3852 plongest (offset),
3853 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3854 }
3855
3856 /* The location expression for a TLS variable looks like this (on a
3857 64-bit LE machine):
3858
3859 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3860 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3861
3862 0x3 is the encoding for DW_OP_addr, which has an operand as long
3863 as the size of an address on the target machine (here is 8
3864 bytes). Note that more recent version of GCC emit DW_OP_const4u
3865 or DW_OP_const8u, depending on address size, rather than
3866 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3867 The operand represents the offset at which the variable is within
3868 the thread local storage. */
3869
3870 else if (data + 1 + addr_size < end
3871 && (data[0] == DW_OP_addr
3872 || (addr_size == 4 && data[0] == DW_OP_const4u)
3873 || (addr_size == 8 && data[0] == DW_OP_const8u))
3874 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3875 || data[1 + addr_size] == DW_OP_form_tls_address)
3876 && piece_end_p (data + 2 + addr_size, end))
3877 {
3878 ULONGEST offset;
3879 offset = extract_unsigned_integer (data + 1, addr_size,
3880 gdbarch_byte_order (gdbarch));
3881
3882 fprintf_filtered (stream,
3883 _("a thread-local variable at offset 0x%s "
3884 "in the thread-local storage for `%s'"),
3885 phex_nz (offset, addr_size), objfile_name (objfile));
3886
3887 data += 1 + addr_size + 1;
3888 }
3889
3890 /* With -gsplit-dwarf a TLS variable can also look like this:
3891 DW_AT_location : 3 byte block: fc 4 e0
3892 (DW_OP_GNU_const_index: 4;
3893 DW_OP_GNU_push_tls_address) */
3894 else if (data + 3 <= end
3895 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3896 && data[0] == DW_OP_GNU_const_index
3897 && leb128_size > 0
3898 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3899 || data[1 + leb128_size] == DW_OP_form_tls_address)
3900 && piece_end_p (data + 2 + leb128_size, end))
3901 {
3902 uint64_t offset;
3903
3904 data = safe_read_uleb128 (data + 1, end, &offset);
3905 offset = dwarf2_read_addr_index (per_cu, offset);
3906 fprintf_filtered (stream,
3907 _("a thread-local variable at offset 0x%s "
3908 "in the thread-local storage for `%s'"),
3909 phex_nz (offset, addr_size), objfile_name (objfile));
3910 ++data;
3911 }
3912
3913 else if (data[0] >= DW_OP_lit0
3914 && data[0] <= DW_OP_lit31
3915 && data + 1 < end
3916 && data[1] == DW_OP_stack_value)
3917 {
3918 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3919 data += 2;
3920 }
3921
3922 return data;
3923 }
3924
3925 /* Disassemble an expression, stopping at the end of a piece or at the
3926 end of the expression. Returns a pointer to the next unread byte
3927 in the input expression. If ALL is nonzero, then this function
3928 will keep going until it reaches the end of the expression.
3929 If there is an error during reading, e.g. we run off the end
3930 of the buffer, an error is thrown. */
3931
3932 static const gdb_byte *
3933 disassemble_dwarf_expression (struct ui_file *stream,
3934 struct gdbarch *arch, unsigned int addr_size,
3935 int offset_size, const gdb_byte *start,
3936 const gdb_byte *data, const gdb_byte *end,
3937 int indent, int all,
3938 struct dwarf2_per_cu_data *per_cu)
3939 {
3940 while (data < end
3941 && (all
3942 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3943 {
3944 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3945 uint64_t ul;
3946 int64_t l;
3947 const char *name;
3948
3949 name = get_DW_OP_name (op);
3950
3951 if (!name)
3952 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3953 op, (long) (data - 1 - start));
3954 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3955 (long) (data - 1 - start), name);
3956
3957 switch (op)
3958 {
3959 case DW_OP_addr:
3960 ul = extract_unsigned_integer (data, addr_size,
3961 gdbarch_byte_order (arch));
3962 data += addr_size;
3963 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3964 break;
3965
3966 case DW_OP_const1u:
3967 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3968 data += 1;
3969 fprintf_filtered (stream, " %s", pulongest (ul));
3970 break;
3971 case DW_OP_const1s:
3972 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3973 data += 1;
3974 fprintf_filtered (stream, " %s", plongest (l));
3975 break;
3976 case DW_OP_const2u:
3977 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3978 data += 2;
3979 fprintf_filtered (stream, " %s", pulongest (ul));
3980 break;
3981 case DW_OP_const2s:
3982 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3983 data += 2;
3984 fprintf_filtered (stream, " %s", plongest (l));
3985 break;
3986 case DW_OP_const4u:
3987 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3988 data += 4;
3989 fprintf_filtered (stream, " %s", pulongest (ul));
3990 break;
3991 case DW_OP_const4s:
3992 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3993 data += 4;
3994 fprintf_filtered (stream, " %s", plongest (l));
3995 break;
3996 case DW_OP_const8u:
3997 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3998 data += 8;
3999 fprintf_filtered (stream, " %s", pulongest (ul));
4000 break;
4001 case DW_OP_const8s:
4002 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4003 data += 8;
4004 fprintf_filtered (stream, " %s", plongest (l));
4005 break;
4006 case DW_OP_constu:
4007 data = safe_read_uleb128 (data, end, &ul);
4008 fprintf_filtered (stream, " %s", pulongest (ul));
4009 break;
4010 case DW_OP_consts:
4011 data = safe_read_sleb128 (data, end, &l);
4012 fprintf_filtered (stream, " %s", plongest (l));
4013 break;
4014
4015 case DW_OP_reg0:
4016 case DW_OP_reg1:
4017 case DW_OP_reg2:
4018 case DW_OP_reg3:
4019 case DW_OP_reg4:
4020 case DW_OP_reg5:
4021 case DW_OP_reg6:
4022 case DW_OP_reg7:
4023 case DW_OP_reg8:
4024 case DW_OP_reg9:
4025 case DW_OP_reg10:
4026 case DW_OP_reg11:
4027 case DW_OP_reg12:
4028 case DW_OP_reg13:
4029 case DW_OP_reg14:
4030 case DW_OP_reg15:
4031 case DW_OP_reg16:
4032 case DW_OP_reg17:
4033 case DW_OP_reg18:
4034 case DW_OP_reg19:
4035 case DW_OP_reg20:
4036 case DW_OP_reg21:
4037 case DW_OP_reg22:
4038 case DW_OP_reg23:
4039 case DW_OP_reg24:
4040 case DW_OP_reg25:
4041 case DW_OP_reg26:
4042 case DW_OP_reg27:
4043 case DW_OP_reg28:
4044 case DW_OP_reg29:
4045 case DW_OP_reg30:
4046 case DW_OP_reg31:
4047 fprintf_filtered (stream, " [$%s]",
4048 locexpr_regname (arch, op - DW_OP_reg0));
4049 break;
4050
4051 case DW_OP_regx:
4052 data = safe_read_uleb128 (data, end, &ul);
4053 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4054 locexpr_regname (arch, (int) ul));
4055 break;
4056
4057 case DW_OP_implicit_value:
4058 data = safe_read_uleb128 (data, end, &ul);
4059 data += ul;
4060 fprintf_filtered (stream, " %s", pulongest (ul));
4061 break;
4062
4063 case DW_OP_breg0:
4064 case DW_OP_breg1:
4065 case DW_OP_breg2:
4066 case DW_OP_breg3:
4067 case DW_OP_breg4:
4068 case DW_OP_breg5:
4069 case DW_OP_breg6:
4070 case DW_OP_breg7:
4071 case DW_OP_breg8:
4072 case DW_OP_breg9:
4073 case DW_OP_breg10:
4074 case DW_OP_breg11:
4075 case DW_OP_breg12:
4076 case DW_OP_breg13:
4077 case DW_OP_breg14:
4078 case DW_OP_breg15:
4079 case DW_OP_breg16:
4080 case DW_OP_breg17:
4081 case DW_OP_breg18:
4082 case DW_OP_breg19:
4083 case DW_OP_breg20:
4084 case DW_OP_breg21:
4085 case DW_OP_breg22:
4086 case DW_OP_breg23:
4087 case DW_OP_breg24:
4088 case DW_OP_breg25:
4089 case DW_OP_breg26:
4090 case DW_OP_breg27:
4091 case DW_OP_breg28:
4092 case DW_OP_breg29:
4093 case DW_OP_breg30:
4094 case DW_OP_breg31:
4095 data = safe_read_sleb128 (data, end, &l);
4096 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4097 locexpr_regname (arch, op - DW_OP_breg0));
4098 break;
4099
4100 case DW_OP_bregx:
4101 data = safe_read_uleb128 (data, end, &ul);
4102 data = safe_read_sleb128 (data, end, &l);
4103 fprintf_filtered (stream, " register %s [$%s] offset %s",
4104 pulongest (ul),
4105 locexpr_regname (arch, (int) ul),
4106 plongest (l));
4107 break;
4108
4109 case DW_OP_fbreg:
4110 data = safe_read_sleb128 (data, end, &l);
4111 fprintf_filtered (stream, " %s", plongest (l));
4112 break;
4113
4114 case DW_OP_xderef_size:
4115 case DW_OP_deref_size:
4116 case DW_OP_pick:
4117 fprintf_filtered (stream, " %d", *data);
4118 ++data;
4119 break;
4120
4121 case DW_OP_plus_uconst:
4122 data = safe_read_uleb128 (data, end, &ul);
4123 fprintf_filtered (stream, " %s", pulongest (ul));
4124 break;
4125
4126 case DW_OP_skip:
4127 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4128 data += 2;
4129 fprintf_filtered (stream, " to %ld",
4130 (long) (data + l - start));
4131 break;
4132
4133 case DW_OP_bra:
4134 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4135 data += 2;
4136 fprintf_filtered (stream, " %ld",
4137 (long) (data + l - start));
4138 break;
4139
4140 case DW_OP_call2:
4141 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4142 data += 2;
4143 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4144 break;
4145
4146 case DW_OP_call4:
4147 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4148 data += 4;
4149 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4150 break;
4151
4152 case DW_OP_call_ref:
4153 ul = extract_unsigned_integer (data, offset_size,
4154 gdbarch_byte_order (arch));
4155 data += offset_size;
4156 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4157 break;
4158
4159 case DW_OP_piece:
4160 data = safe_read_uleb128 (data, end, &ul);
4161 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4162 break;
4163
4164 case DW_OP_bit_piece:
4165 {
4166 uint64_t offset;
4167
4168 data = safe_read_uleb128 (data, end, &ul);
4169 data = safe_read_uleb128 (data, end, &offset);
4170 fprintf_filtered (stream, " size %s offset %s (bits)",
4171 pulongest (ul), pulongest (offset));
4172 }
4173 break;
4174
4175 case DW_OP_implicit_pointer:
4176 case DW_OP_GNU_implicit_pointer:
4177 {
4178 ul = extract_unsigned_integer (data, offset_size,
4179 gdbarch_byte_order (arch));
4180 data += offset_size;
4181
4182 data = safe_read_sleb128 (data, end, &l);
4183
4184 fprintf_filtered (stream, " DIE %s offset %s",
4185 phex_nz (ul, offset_size),
4186 plongest (l));
4187 }
4188 break;
4189
4190 case DW_OP_deref_type:
4191 case DW_OP_GNU_deref_type:
4192 {
4193 int addr_size = *data++;
4194 struct type *type;
4195
4196 data = safe_read_uleb128 (data, end, &ul);
4197 cu_offset offset = (cu_offset) ul;
4198 type = dwarf2_get_die_type (offset, per_cu);
4199 fprintf_filtered (stream, "<");
4200 type_print (type, "", stream, -1);
4201 fprintf_filtered (stream, " [0x%s]> %d",
4202 phex_nz (to_underlying (offset), 0),
4203 addr_size);
4204 }
4205 break;
4206
4207 case DW_OP_const_type:
4208 case DW_OP_GNU_const_type:
4209 {
4210 struct type *type;
4211
4212 data = safe_read_uleb128 (data, end, &ul);
4213 cu_offset type_die = (cu_offset) ul;
4214 type = dwarf2_get_die_type (type_die, per_cu);
4215 fprintf_filtered (stream, "<");
4216 type_print (type, "", stream, -1);
4217 fprintf_filtered (stream, " [0x%s]>",
4218 phex_nz (to_underlying (type_die), 0));
4219 }
4220 break;
4221
4222 case DW_OP_regval_type:
4223 case DW_OP_GNU_regval_type:
4224 {
4225 uint64_t reg;
4226 struct type *type;
4227
4228 data = safe_read_uleb128 (data, end, &reg);
4229 data = safe_read_uleb128 (data, end, &ul);
4230 cu_offset type_die = (cu_offset) ul;
4231
4232 type = dwarf2_get_die_type (type_die, per_cu);
4233 fprintf_filtered (stream, "<");
4234 type_print (type, "", stream, -1);
4235 fprintf_filtered (stream, " [0x%s]> [$%s]",
4236 phex_nz (to_underlying (type_die), 0),
4237 locexpr_regname (arch, reg));
4238 }
4239 break;
4240
4241 case DW_OP_convert:
4242 case DW_OP_GNU_convert:
4243 case DW_OP_reinterpret:
4244 case DW_OP_GNU_reinterpret:
4245 {
4246 data = safe_read_uleb128 (data, end, &ul);
4247 cu_offset type_die = (cu_offset) ul;
4248
4249 if (to_underlying (type_die) == 0)
4250 fprintf_filtered (stream, "<0>");
4251 else
4252 {
4253 struct type *type;
4254
4255 type = dwarf2_get_die_type (type_die, per_cu);
4256 fprintf_filtered (stream, "<");
4257 type_print (type, "", stream, -1);
4258 fprintf_filtered (stream, " [0x%s]>",
4259 phex_nz (to_underlying (type_die), 0));
4260 }
4261 }
4262 break;
4263
4264 case DW_OP_entry_value:
4265 case DW_OP_GNU_entry_value:
4266 data = safe_read_uleb128 (data, end, &ul);
4267 fputc_filtered ('\n', stream);
4268 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4269 start, data, data + ul, indent + 2,
4270 all, per_cu);
4271 data += ul;
4272 continue;
4273
4274 case DW_OP_GNU_parameter_ref:
4275 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4276 data += 4;
4277 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4278 break;
4279
4280 case DW_OP_GNU_addr_index:
4281 data = safe_read_uleb128 (data, end, &ul);
4282 ul = dwarf2_read_addr_index (per_cu, ul);
4283 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4284 break;
4285 case DW_OP_GNU_const_index:
4286 data = safe_read_uleb128 (data, end, &ul);
4287 ul = dwarf2_read_addr_index (per_cu, ul);
4288 fprintf_filtered (stream, " %s", pulongest (ul));
4289 break;
4290 }
4291
4292 fprintf_filtered (stream, "\n");
4293 }
4294
4295 return data;
4296 }
4297
4298 /* Describe a single location, which may in turn consist of multiple
4299 pieces. */
4300
4301 static void
4302 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4303 struct ui_file *stream,
4304 const gdb_byte *data, size_t size,
4305 struct objfile *objfile, unsigned int addr_size,
4306 int offset_size, struct dwarf2_per_cu_data *per_cu)
4307 {
4308 const gdb_byte *end = data + size;
4309 int first_piece = 1, bad = 0;
4310
4311 while (data < end)
4312 {
4313 const gdb_byte *here = data;
4314 int disassemble = 1;
4315
4316 if (first_piece)
4317 first_piece = 0;
4318 else
4319 fprintf_filtered (stream, _(", and "));
4320
4321 if (!dwarf_always_disassemble)
4322 {
4323 data = locexpr_describe_location_piece (symbol, stream,
4324 addr, objfile, per_cu,
4325 data, end, addr_size);
4326 /* If we printed anything, or if we have an empty piece,
4327 then don't disassemble. */
4328 if (data != here
4329 || data[0] == DW_OP_piece
4330 || data[0] == DW_OP_bit_piece)
4331 disassemble = 0;
4332 }
4333 if (disassemble)
4334 {
4335 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4336 data = disassemble_dwarf_expression (stream,
4337 get_objfile_arch (objfile),
4338 addr_size, offset_size, data,
4339 data, end, 0,
4340 dwarf_always_disassemble,
4341 per_cu);
4342 }
4343
4344 if (data < end)
4345 {
4346 int empty = data == here;
4347
4348 if (disassemble)
4349 fprintf_filtered (stream, " ");
4350 if (data[0] == DW_OP_piece)
4351 {
4352 uint64_t bytes;
4353
4354 data = safe_read_uleb128 (data + 1, end, &bytes);
4355
4356 if (empty)
4357 fprintf_filtered (stream, _("an empty %s-byte piece"),
4358 pulongest (bytes));
4359 else
4360 fprintf_filtered (stream, _(" [%s-byte piece]"),
4361 pulongest (bytes));
4362 }
4363 else if (data[0] == DW_OP_bit_piece)
4364 {
4365 uint64_t bits, offset;
4366
4367 data = safe_read_uleb128 (data + 1, end, &bits);
4368 data = safe_read_uleb128 (data, end, &offset);
4369
4370 if (empty)
4371 fprintf_filtered (stream,
4372 _("an empty %s-bit piece"),
4373 pulongest (bits));
4374 else
4375 fprintf_filtered (stream,
4376 _(" [%s-bit piece, offset %s bits]"),
4377 pulongest (bits), pulongest (offset));
4378 }
4379 else
4380 {
4381 bad = 1;
4382 break;
4383 }
4384 }
4385 }
4386
4387 if (bad || data > end)
4388 error (_("Corrupted DWARF2 expression for \"%s\"."),
4389 SYMBOL_PRINT_NAME (symbol));
4390 }
4391
4392 /* Print a natural-language description of SYMBOL to STREAM. This
4393 version is for a symbol with a single location. */
4394
4395 static void
4396 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4397 struct ui_file *stream)
4398 {
4399 struct dwarf2_locexpr_baton *dlbaton
4400 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4401 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4402 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4403 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4404
4405 locexpr_describe_location_1 (symbol, addr, stream,
4406 dlbaton->data, dlbaton->size,
4407 objfile, addr_size, offset_size,
4408 dlbaton->per_cu);
4409 }
4410
4411 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4412 any necessary bytecode in AX. */
4413
4414 static void
4415 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4416 struct agent_expr *ax, struct axs_value *value)
4417 {
4418 struct dwarf2_locexpr_baton *dlbaton
4419 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4420 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4421
4422 if (dlbaton->size == 0)
4423 value->optimized_out = 1;
4424 else
4425 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4426 dlbaton->data, dlbaton->data + dlbaton->size,
4427 dlbaton->per_cu);
4428 }
4429
4430 /* symbol_computed_ops 'generate_c_location' method. */
4431
4432 static void
4433 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4434 struct gdbarch *gdbarch,
4435 unsigned char *registers_used,
4436 CORE_ADDR pc, const char *result_name)
4437 {
4438 struct dwarf2_locexpr_baton *dlbaton
4439 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4440 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4441
4442 if (dlbaton->size == 0)
4443 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4444
4445 compile_dwarf_expr_to_c (stream, result_name,
4446 sym, pc, gdbarch, registers_used, addr_size,
4447 dlbaton->data, dlbaton->data + dlbaton->size,
4448 dlbaton->per_cu);
4449 }
4450
4451 /* The set of location functions used with the DWARF-2 expression
4452 evaluator. */
4453 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4454 locexpr_read_variable,
4455 locexpr_read_variable_at_entry,
4456 locexpr_get_symbol_read_needs,
4457 locexpr_describe_location,
4458 0, /* location_has_loclist */
4459 locexpr_tracepoint_var_ref,
4460 locexpr_generate_c_location
4461 };
4462
4463
4464 /* Wrapper functions for location lists. These generally find
4465 the appropriate location expression and call something above. */
4466
4467 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4468 evaluator to calculate the location. */
4469 static struct value *
4470 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4471 {
4472 struct dwarf2_loclist_baton *dlbaton
4473 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4474 struct value *val;
4475 const gdb_byte *data;
4476 size_t size;
4477 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4478
4479 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4480 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4481 dlbaton->per_cu);
4482
4483 return val;
4484 }
4485
4486 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4487 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4488 will be thrown.
4489
4490 Function always returns non-NULL value, it may be marked optimized out if
4491 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4492 if it cannot resolve the parameter for any reason. */
4493
4494 static struct value *
4495 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4496 {
4497 struct dwarf2_loclist_baton *dlbaton
4498 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4499 const gdb_byte *data;
4500 size_t size;
4501 CORE_ADDR pc;
4502
4503 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4504 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4505
4506 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4507 if (data == NULL)
4508 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4509
4510 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4511 }
4512
4513 /* Implementation of get_symbol_read_needs from
4514 symbol_computed_ops. */
4515
4516 static enum symbol_needs_kind
4517 loclist_symbol_needs (struct symbol *symbol)
4518 {
4519 /* If there's a location list, then assume we need to have a frame
4520 to choose the appropriate location expression. With tracking of
4521 global variables this is not necessarily true, but such tracking
4522 is disabled in GCC at the moment until we figure out how to
4523 represent it. */
4524
4525 return SYMBOL_NEEDS_FRAME;
4526 }
4527
4528 /* Print a natural-language description of SYMBOL to STREAM. This
4529 version applies when there is a list of different locations, each
4530 with a specified address range. */
4531
4532 static void
4533 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4534 struct ui_file *stream)
4535 {
4536 struct dwarf2_loclist_baton *dlbaton
4537 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4538 const gdb_byte *loc_ptr, *buf_end;
4539 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4542 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4543 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4544 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4545 /* Adjust base_address for relocatable objects. */
4546 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4547 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4548 int done = 0;
4549
4550 loc_ptr = dlbaton->data;
4551 buf_end = dlbaton->data + dlbaton->size;
4552
4553 fprintf_filtered (stream, _("multi-location:\n"));
4554
4555 /* Iterate through locations until we run out. */
4556 while (!done)
4557 {
4558 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4559 int length;
4560 enum debug_loc_kind kind;
4561 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4562
4563 if (dlbaton->from_dwo)
4564 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4565 loc_ptr, buf_end, &new_ptr,
4566 &low, &high, byte_order);
4567 else
4568 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4569 &low, &high,
4570 byte_order, addr_size,
4571 signed_addr_p);
4572 loc_ptr = new_ptr;
4573 switch (kind)
4574 {
4575 case DEBUG_LOC_END_OF_LIST:
4576 done = 1;
4577 continue;
4578 case DEBUG_LOC_BASE_ADDRESS:
4579 base_address = high + base_offset;
4580 fprintf_filtered (stream, _(" Base address %s"),
4581 paddress (gdbarch, base_address));
4582 continue;
4583 case DEBUG_LOC_START_END:
4584 case DEBUG_LOC_START_LENGTH:
4585 break;
4586 case DEBUG_LOC_BUFFER_OVERFLOW:
4587 case DEBUG_LOC_INVALID_ENTRY:
4588 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4589 SYMBOL_PRINT_NAME (symbol));
4590 default:
4591 gdb_assert_not_reached ("bad debug_loc_kind");
4592 }
4593
4594 /* Otherwise, a location expression entry. */
4595 low += base_address;
4596 high += base_address;
4597
4598 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4599 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4600
4601 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4602 loc_ptr += 2;
4603
4604 /* (It would improve readability to print only the minimum
4605 necessary digits of the second number of the range.) */
4606 fprintf_filtered (stream, _(" Range %s-%s: "),
4607 paddress (gdbarch, low), paddress (gdbarch, high));
4608
4609 /* Now describe this particular location. */
4610 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4611 objfile, addr_size, offset_size,
4612 dlbaton->per_cu);
4613
4614 fprintf_filtered (stream, "\n");
4615
4616 loc_ptr += length;
4617 }
4618 }
4619
4620 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4621 any necessary bytecode in AX. */
4622 static void
4623 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4624 struct agent_expr *ax, struct axs_value *value)
4625 {
4626 struct dwarf2_loclist_baton *dlbaton
4627 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4628 const gdb_byte *data;
4629 size_t size;
4630 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4631
4632 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4633 if (size == 0)
4634 value->optimized_out = 1;
4635 else
4636 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4637 dlbaton->per_cu);
4638 }
4639
4640 /* symbol_computed_ops 'generate_c_location' method. */
4641
4642 static void
4643 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4644 struct gdbarch *gdbarch,
4645 unsigned char *registers_used,
4646 CORE_ADDR pc, const char *result_name)
4647 {
4648 struct dwarf2_loclist_baton *dlbaton
4649 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4650 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4651 const gdb_byte *data;
4652 size_t size;
4653
4654 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4655 if (size == 0)
4656 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4657
4658 compile_dwarf_expr_to_c (stream, result_name,
4659 sym, pc, gdbarch, registers_used, addr_size,
4660 data, data + size,
4661 dlbaton->per_cu);
4662 }
4663
4664 /* The set of location functions used with the DWARF-2 expression
4665 evaluator and location lists. */
4666 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4667 loclist_read_variable,
4668 loclist_read_variable_at_entry,
4669 loclist_symbol_needs,
4670 loclist_describe_location,
4671 1, /* location_has_loclist */
4672 loclist_tracepoint_var_ref,
4673 loclist_generate_c_location
4674 };
4675
4676 /* Provide a prototype to silence -Wmissing-prototypes. */
4677 extern initialize_file_ftype _initialize_dwarf2loc;
4678
4679 void
4680 _initialize_dwarf2loc (void)
4681 {
4682 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4683 &entry_values_debug,
4684 _("Set entry values and tail call frames "
4685 "debugging."),
4686 _("Show entry values and tail call frames "
4687 "debugging."),
4688 _("When non-zero, the process of determining "
4689 "parameter values from function entry point "
4690 "and tail call frames will be printed."),
4691 NULL,
4692 show_entry_values_debug,
4693 &setdebuglist, &showdebuglist);
4694
4695 #if GDB_SELF_TEST
4696 register_self_test (selftests::copy_bitwise_tests);
4697 #endif
4698 }
This page took 0.176885 seconds and 5 git commands to generate.