write_pieced_value: Notify memory_changed observers
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The pieces themselves. */
1490 struct dwarf_expr_piece *pieces;
1491
1492 /* Frame ID of frame to which a register value is relative, used
1493 only by DWARF_VALUE_REGISTER. */
1494 struct frame_id frame_id;
1495 };
1496
1497 /* Allocate a closure for a value formed from separately-described
1498 PIECES. */
1499
1500 static struct piece_closure *
1501 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1502 int n_pieces, struct dwarf_expr_piece *pieces,
1503 struct frame_info *frame)
1504 {
1505 struct piece_closure *c = XCNEW (struct piece_closure);
1506 int i;
1507
1508 c->refc = 1;
1509 c->per_cu = per_cu;
1510 c->n_pieces = n_pieces;
1511 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1512 if (frame == NULL)
1513 c->frame_id = null_frame_id;
1514 else
1515 c->frame_id = get_frame_id (frame);
1516
1517 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1518 for (i = 0; i < n_pieces; ++i)
1519 if (c->pieces[i].location == DWARF_VALUE_STACK)
1520 value_incref (c->pieces[i].v.value);
1521
1522 return c;
1523 }
1524
1525 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1526 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1527 Source and destination buffers must not overlap. */
1528
1529 static void
1530 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1531 const gdb_byte *source, ULONGEST source_offset,
1532 ULONGEST nbits, int bits_big_endian)
1533 {
1534 unsigned int buf, avail;
1535
1536 if (nbits == 0)
1537 return;
1538
1539 if (bits_big_endian)
1540 {
1541 /* Start from the end, then work backwards. */
1542 dest_offset += nbits - 1;
1543 dest += dest_offset / 8;
1544 dest_offset = 7 - dest_offset % 8;
1545 source_offset += nbits - 1;
1546 source += source_offset / 8;
1547 source_offset = 7 - source_offset % 8;
1548 }
1549 else
1550 {
1551 dest += dest_offset / 8;
1552 dest_offset %= 8;
1553 source += source_offset / 8;
1554 source_offset %= 8;
1555 }
1556
1557 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1558 SOURCE_OFFSET bits from the source. */
1559 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1560 buf <<= dest_offset;
1561 buf |= *dest & ((1 << dest_offset) - 1);
1562
1563 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1564 nbits += dest_offset;
1565 avail = dest_offset + 8 - source_offset;
1566
1567 /* Flush 8 bits from BUF, if appropriate. */
1568 if (nbits >= 8 && avail >= 8)
1569 {
1570 *(bits_big_endian ? dest-- : dest++) = buf;
1571 buf >>= 8;
1572 avail -= 8;
1573 nbits -= 8;
1574 }
1575
1576 /* Copy the middle part. */
1577 if (nbits >= 8)
1578 {
1579 size_t len = nbits / 8;
1580
1581 /* Use a faster method for byte-aligned copies. */
1582 if (avail == 0)
1583 {
1584 if (bits_big_endian)
1585 {
1586 dest -= len;
1587 source -= len;
1588 memcpy (dest + 1, source + 1, len);
1589 }
1590 else
1591 {
1592 memcpy (dest, source, len);
1593 dest += len;
1594 source += len;
1595 }
1596 }
1597 else
1598 {
1599 while (len--)
1600 {
1601 buf |= *(bits_big_endian ? source-- : source++) << avail;
1602 *(bits_big_endian ? dest-- : dest++) = buf;
1603 buf >>= 8;
1604 }
1605 }
1606 nbits %= 8;
1607 }
1608
1609 /* Write the last byte. */
1610 if (nbits)
1611 {
1612 if (avail < nbits)
1613 buf |= *source << avail;
1614
1615 buf &= (1 << nbits) - 1;
1616 *dest = (*dest & (~0 << nbits)) | buf;
1617 }
1618 }
1619
1620 #if GDB_SELF_TEST
1621
1622 namespace selftests {
1623
1624 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1625 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1626 specifies whether to assume big endian bit numbering. Store the
1627 resulting (not null-terminated) string at STR. */
1628
1629 static void
1630 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1631 ULONGEST nbits, int msb0)
1632 {
1633 unsigned int j;
1634 size_t i;
1635
1636 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1637 {
1638 unsigned int ch = bits[i];
1639 for (; j < 8 && nbits; j++, nbits--)
1640 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1641 }
1642 }
1643
1644 /* Check one invocation of copy_bitwise with the given parameters. */
1645
1646 static void
1647 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1648 const gdb_byte *source, unsigned int source_offset,
1649 unsigned int nbits, int msb0)
1650 {
1651 size_t len = align_up (dest_offset + nbits, 8);
1652 char *expected = (char *) alloca (len + 1);
1653 char *actual = (char *) alloca (len + 1);
1654 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1655
1656 /* Compose a '0'/'1'-string that represents the expected result of
1657 copy_bitwise below:
1658 Bits from [0, DEST_OFFSET) are filled from DEST.
1659 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1660 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1661
1662 E.g., with:
1663 dest_offset: 4
1664 nbits: 2
1665 len: 8
1666 dest: 00000000
1667 source: 11111111
1668
1669 We should end up with:
1670 buf: 00001100
1671 DDDDSSDD (D=dest, S=source)
1672 */
1673 bits_to_str (expected, dest, 0, len, msb0);
1674 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1675
1676 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1677 result to a '0'/'1'-string. */
1678 memcpy (buf, dest, len / 8);
1679 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1680 bits_to_str (actual, buf, 0, len, msb0);
1681
1682 /* Compare the resulting strings. */
1683 expected[len] = actual[len] = '\0';
1684 if (strcmp (expected, actual) != 0)
1685 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1686 expected, actual, source_offset, nbits, dest_offset);
1687 }
1688
1689 /* Unit test for copy_bitwise. */
1690
1691 static void
1692 copy_bitwise_tests (void)
1693 {
1694 /* Data to be used as both source and destination buffers. The two
1695 arrays below represent the lsb0- and msb0- encoded versions of the
1696 following bit string, respectively:
1697 00000000 00011111 11111111 01001000 10100101 11110010
1698 This pattern is chosen such that it contains:
1699 - constant 0- and 1- chunks of more than a full byte;
1700 - 0/1- and 1/0 transitions on all bit positions within a byte;
1701 - several sufficiently asymmetric bytes.
1702 */
1703 static const gdb_byte data_lsb0[] = {
1704 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1705 };
1706 static const gdb_byte data_msb0[] = {
1707 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1708 };
1709
1710 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1711 constexpr unsigned max_nbits = 24;
1712
1713 /* Try all combinations of:
1714 lsb0/msb0 bit order (using the respective data array)
1715 X [0, MAX_NBITS] copy bit width
1716 X feasible source offsets for the given copy bit width
1717 X feasible destination offsets
1718 */
1719 for (int msb0 = 0; msb0 < 2; msb0++)
1720 {
1721 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1722
1723 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1724 {
1725 const unsigned int max_offset = data_nbits - nbits;
1726
1727 for (unsigned source_offset = 0;
1728 source_offset <= max_offset;
1729 source_offset++)
1730 {
1731 for (unsigned dest_offset = 0;
1732 dest_offset <= max_offset;
1733 dest_offset++)
1734 {
1735 check_copy_bitwise (data + dest_offset / 8,
1736 dest_offset % 8,
1737 data + source_offset / 8,
1738 source_offset % 8,
1739 nbits, msb0);
1740 }
1741 }
1742 }
1743
1744 /* Special cases: copy all, copy nothing. */
1745 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1746 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1747 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1748 }
1749 }
1750
1751 } /* namespace selftests */
1752
1753 #endif /* GDB_SELF_TEST */
1754
1755 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1756 bits whose first bit is located at bit offset START. */
1757
1758 static size_t
1759 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1760 {
1761 return (start % 8 + n_bits + 7) / 8;
1762 }
1763
1764 static void
1765 read_pieced_value (struct value *v)
1766 {
1767 int i;
1768 LONGEST offset = 0, max_offset;
1769 ULONGEST bits_to_skip;
1770 gdb_byte *contents;
1771 struct piece_closure *c
1772 = (struct piece_closure *) value_computed_closure (v);
1773 std::vector<gdb_byte> buffer;
1774 int bits_big_endian
1775 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1776
1777 if (value_type (v) != value_enclosing_type (v))
1778 internal_error (__FILE__, __LINE__,
1779 _("Should not be able to create a lazy value with "
1780 "an enclosing type"));
1781
1782 contents = value_contents_raw (v);
1783 bits_to_skip = 8 * value_offset (v);
1784 if (value_bitsize (v))
1785 {
1786 bits_to_skip += (8 * value_offset (value_parent (v))
1787 + value_bitpos (v));
1788 max_offset = value_bitsize (v);
1789 }
1790 else
1791 max_offset = 8 * TYPE_LENGTH (value_type (v));
1792
1793 /* Advance to the first non-skipped piece. */
1794 for (i = 0; i < c->n_pieces && bits_to_skip >= c->pieces[i].size; i++)
1795 bits_to_skip -= c->pieces[i].size;
1796
1797 for (; i < c->n_pieces && offset < max_offset; i++)
1798 {
1799 struct dwarf_expr_piece *p = &c->pieces[i];
1800 size_t this_size, this_size_bits;
1801
1802 this_size_bits = p->size - bits_to_skip;
1803 if (this_size_bits > max_offset - offset)
1804 this_size_bits = max_offset - offset;
1805
1806 /* Copy from the source to DEST_BUFFER. */
1807 switch (p->location)
1808 {
1809 case DWARF_VALUE_REGISTER:
1810 {
1811 struct frame_info *frame = frame_find_by_id (c->frame_id);
1812 struct gdbarch *arch = get_frame_arch (frame);
1813 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1814 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1815 int optim, unavail;
1816
1817 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1818 && p->offset + p->size < reg_bits)
1819 {
1820 /* Big-endian, and we want less than full size. */
1821 bits_to_skip += reg_bits - (p->offset + p->size);
1822 }
1823 else
1824 bits_to_skip += p->offset;
1825
1826 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1827 buffer.reserve (this_size);
1828
1829 if (!get_frame_register_bytes (frame, gdb_regnum,
1830 bits_to_skip / 8,
1831 this_size, buffer.data (),
1832 &optim, &unavail))
1833 {
1834 if (optim)
1835 mark_value_bits_optimized_out (v, offset, this_size_bits);
1836 if (unavail)
1837 mark_value_bits_unavailable (v, offset, this_size_bits);
1838 break;
1839 }
1840 copy_bitwise (contents, offset,
1841 buffer.data (), bits_to_skip % 8,
1842 this_size_bits, bits_big_endian);
1843 }
1844 break;
1845
1846 case DWARF_VALUE_MEMORY:
1847 bits_to_skip += p->offset;
1848 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1849 buffer.reserve (this_size);
1850
1851 read_value_memory (v, offset,
1852 p->v.mem.in_stack_memory,
1853 p->v.mem.addr + bits_to_skip / 8,
1854 buffer.data (), this_size);
1855 copy_bitwise (contents, offset,
1856 buffer.data (), bits_to_skip % 8,
1857 this_size_bits, bits_big_endian);
1858 break;
1859
1860 case DWARF_VALUE_STACK:
1861 {
1862 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1863 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1864 ULONGEST stack_value_size_bits
1865 = 8 * TYPE_LENGTH (value_type (p->v.value));
1866
1867 /* Use zeroes if piece reaches beyond stack value. */
1868 if (p->offset + p->size > stack_value_size_bits)
1869 break;
1870
1871 /* Piece is anchored at least significant bit end. */
1872 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1873 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1874 else
1875 bits_to_skip += p->offset;
1876
1877 copy_bitwise (contents, offset,
1878 value_contents_all (p->v.value),
1879 bits_to_skip,
1880 this_size_bits, bits_big_endian);
1881 }
1882 break;
1883
1884 case DWARF_VALUE_LITERAL:
1885 {
1886 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1887 size_t n = this_size_bits;
1888
1889 /* Cut off at the end of the implicit value. */
1890 bits_to_skip += p->offset;
1891 if (bits_to_skip >= literal_size_bits)
1892 break;
1893 if (n > literal_size_bits - bits_to_skip)
1894 n = literal_size_bits - bits_to_skip;
1895
1896 copy_bitwise (contents, offset,
1897 p->v.literal.data, bits_to_skip,
1898 n, bits_big_endian);
1899 }
1900 break;
1901
1902 /* These bits show up as zeros -- but do not cause the value
1903 to be considered optimized-out. */
1904 case DWARF_VALUE_IMPLICIT_POINTER:
1905 break;
1906
1907 case DWARF_VALUE_OPTIMIZED_OUT:
1908 mark_value_bits_optimized_out (v, offset, this_size_bits);
1909 break;
1910
1911 default:
1912 internal_error (__FILE__, __LINE__, _("invalid location type"));
1913 }
1914
1915 offset += this_size_bits;
1916 bits_to_skip = 0;
1917 }
1918 }
1919
1920 static void
1921 write_pieced_value (struct value *to, struct value *from)
1922 {
1923 int i;
1924 ULONGEST bits_to_skip;
1925 LONGEST offset = 0, max_offset;
1926 const gdb_byte *contents;
1927 struct piece_closure *c
1928 = (struct piece_closure *) value_computed_closure (to);
1929 std::vector<gdb_byte> buffer;
1930 int bits_big_endian
1931 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1932
1933 contents = value_contents (from);
1934 bits_to_skip = 8 * value_offset (to);
1935 if (value_bitsize (to))
1936 {
1937 bits_to_skip += (8 * value_offset (value_parent (to))
1938 + value_bitpos (to));
1939 /* Use the least significant bits of FROM. */
1940 if (gdbarch_byte_order (get_type_arch (value_type (from)))
1941 == BFD_ENDIAN_BIG)
1942 {
1943 max_offset = 8 * TYPE_LENGTH (value_type (from));
1944 offset = max_offset - value_bitsize (to);
1945 }
1946 else
1947 max_offset = value_bitsize (to);
1948 }
1949 else
1950 max_offset = 8 * TYPE_LENGTH (value_type (to));
1951
1952 /* Advance to the first non-skipped piece. */
1953 for (i = 0; i < c->n_pieces && bits_to_skip >= c->pieces[i].size; i++)
1954 bits_to_skip -= c->pieces[i].size;
1955
1956 for (; i < c->n_pieces && offset < max_offset; i++)
1957 {
1958 struct dwarf_expr_piece *p = &c->pieces[i];
1959 size_t this_size_bits, this_size;
1960
1961 this_size_bits = p->size - bits_to_skip;
1962 if (this_size_bits > max_offset - offset)
1963 this_size_bits = max_offset - offset;
1964
1965 switch (p->location)
1966 {
1967 case DWARF_VALUE_REGISTER:
1968 {
1969 struct frame_info *frame = frame_find_by_id (c->frame_id);
1970 struct gdbarch *arch = get_frame_arch (frame);
1971 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1972 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1973
1974 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1975 && p->offset + p->size < reg_bits)
1976 {
1977 /* Big-endian, and we want less than full size. */
1978 bits_to_skip += reg_bits - (p->offset + p->size);
1979 }
1980 else
1981 bits_to_skip += p->offset;
1982
1983 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1984 buffer.reserve (this_size);
1985
1986 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1987 {
1988 /* Data is copied non-byte-aligned into the register.
1989 Need some bits from original register value. */
1990 int optim, unavail;
1991
1992 if (!get_frame_register_bytes (frame, gdb_regnum,
1993 bits_to_skip / 8,
1994 this_size, buffer.data (),
1995 &optim, &unavail))
1996 {
1997 if (optim)
1998 throw_error (OPTIMIZED_OUT_ERROR,
1999 _("Can't do read-modify-write to "
2000 "update bitfield; containing word "
2001 "has been optimized out"));
2002 if (unavail)
2003 throw_error (NOT_AVAILABLE_ERROR,
2004 _("Can't do read-modify-write to update "
2005 "bitfield; containing word "
2006 "is unavailable"));
2007 }
2008 }
2009
2010 copy_bitwise (buffer.data (), bits_to_skip % 8,
2011 contents, offset,
2012 this_size_bits, bits_big_endian);
2013 put_frame_register_bytes (frame, gdb_regnum,
2014 bits_to_skip / 8,
2015 this_size, buffer.data ());
2016 }
2017 break;
2018 case DWARF_VALUE_MEMORY:
2019 {
2020 bits_to_skip += p->offset;
2021
2022 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
2023
2024 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
2025 && offset % 8 == 0)
2026 {
2027 /* Everything is byte-aligned; no buffer needed. */
2028 write_memory_with_notification (start_addr,
2029 contents + offset / 8,
2030 this_size_bits / 8);
2031 break;
2032 }
2033
2034 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
2035 buffer.reserve (this_size);
2036
2037 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
2038 {
2039 if (this_size <= 8)
2040 {
2041 /* Perform a single read for small sizes. */
2042 read_memory (start_addr, buffer.data (), this_size);
2043 }
2044 else
2045 {
2046 /* Only the first and last bytes can possibly have any
2047 bits reused. */
2048 read_memory (start_addr, buffer.data (), 1);
2049 read_memory (start_addr + this_size - 1,
2050 &buffer[this_size - 1], 1);
2051 }
2052 }
2053
2054 copy_bitwise (buffer.data (), bits_to_skip % 8,
2055 contents, offset,
2056 this_size_bits, bits_big_endian);
2057 write_memory_with_notification (start_addr, buffer.data (),
2058 this_size);
2059 }
2060 break;
2061 default:
2062 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2063 break;
2064 }
2065 offset += this_size_bits;
2066 bits_to_skip = 0;
2067 }
2068 }
2069
2070 /* An implementation of an lval_funcs method to see whether a value is
2071 a synthetic pointer. */
2072
2073 static int
2074 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2075 int bit_length)
2076 {
2077 struct piece_closure *c
2078 = (struct piece_closure *) value_computed_closure (value);
2079 int i;
2080
2081 bit_offset += 8 * value_offset (value);
2082 if (value_bitsize (value))
2083 bit_offset += value_bitpos (value);
2084
2085 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2086 {
2087 struct dwarf_expr_piece *p = &c->pieces[i];
2088 size_t this_size_bits = p->size;
2089
2090 if (bit_offset > 0)
2091 {
2092 if (bit_offset >= this_size_bits)
2093 {
2094 bit_offset -= this_size_bits;
2095 continue;
2096 }
2097
2098 bit_length -= this_size_bits - bit_offset;
2099 bit_offset = 0;
2100 }
2101 else
2102 bit_length -= this_size_bits;
2103
2104 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2105 return 0;
2106 }
2107
2108 return 1;
2109 }
2110
2111 /* A wrapper function for get_frame_address_in_block. */
2112
2113 static CORE_ADDR
2114 get_frame_address_in_block_wrapper (void *baton)
2115 {
2116 return get_frame_address_in_block ((struct frame_info *) baton);
2117 }
2118
2119 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2120
2121 static struct value *
2122 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2123 struct dwarf2_per_cu_data *per_cu,
2124 struct type *type)
2125 {
2126 struct value *result = NULL;
2127 struct obstack temp_obstack;
2128 struct cleanup *cleanup;
2129 const gdb_byte *bytes;
2130 LONGEST len;
2131
2132 obstack_init (&temp_obstack);
2133 cleanup = make_cleanup_obstack_free (&temp_obstack);
2134 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2135
2136 if (bytes != NULL)
2137 {
2138 if (byte_offset >= 0
2139 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2140 {
2141 bytes += byte_offset;
2142 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2143 }
2144 else
2145 invalid_synthetic_pointer ();
2146 }
2147 else
2148 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2149
2150 do_cleanups (cleanup);
2151
2152 return result;
2153 }
2154
2155 /* Fetch the value pointed to by a synthetic pointer. */
2156
2157 static struct value *
2158 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2159 struct dwarf2_per_cu_data *per_cu,
2160 struct frame_info *frame, struct type *type)
2161 {
2162 /* Fetch the location expression of the DIE we're pointing to. */
2163 struct dwarf2_locexpr_baton baton
2164 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2165 get_frame_address_in_block_wrapper, frame);
2166
2167 /* Get type of pointed-to DIE. */
2168 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2169 if (orig_type == NULL)
2170 invalid_synthetic_pointer ();
2171
2172 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2173 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2174 or it may've been optimized out. */
2175 if (baton.data != NULL)
2176 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2177 baton.size, baton.per_cu,
2178 TYPE_TARGET_TYPE (type),
2179 byte_offset);
2180 else
2181 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2182 type);
2183 }
2184
2185 /* An implementation of an lval_funcs method to indirect through a
2186 pointer. This handles the synthetic pointer case when needed. */
2187
2188 static struct value *
2189 indirect_pieced_value (struct value *value)
2190 {
2191 struct piece_closure *c
2192 = (struct piece_closure *) value_computed_closure (value);
2193 struct type *type;
2194 struct frame_info *frame;
2195 struct dwarf2_locexpr_baton baton;
2196 int i, bit_length;
2197 LONGEST bit_offset;
2198 struct dwarf_expr_piece *piece = NULL;
2199 LONGEST byte_offset;
2200 enum bfd_endian byte_order;
2201
2202 type = check_typedef (value_type (value));
2203 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2204 return NULL;
2205
2206 bit_length = 8 * TYPE_LENGTH (type);
2207 bit_offset = 8 * value_offset (value);
2208 if (value_bitsize (value))
2209 bit_offset += value_bitpos (value);
2210
2211 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2212 {
2213 struct dwarf_expr_piece *p = &c->pieces[i];
2214 size_t this_size_bits = p->size;
2215
2216 if (bit_offset > 0)
2217 {
2218 if (bit_offset >= this_size_bits)
2219 {
2220 bit_offset -= this_size_bits;
2221 continue;
2222 }
2223
2224 bit_length -= this_size_bits - bit_offset;
2225 bit_offset = 0;
2226 }
2227 else
2228 bit_length -= this_size_bits;
2229
2230 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2231 return NULL;
2232
2233 if (bit_length != 0)
2234 error (_("Invalid use of DW_OP_implicit_pointer"));
2235
2236 piece = p;
2237 break;
2238 }
2239
2240 gdb_assert (piece != NULL);
2241 frame = get_selected_frame (_("No frame selected."));
2242
2243 /* This is an offset requested by GDB, such as value subscripts.
2244 However, due to how synthetic pointers are implemented, this is
2245 always presented to us as a pointer type. This means we have to
2246 sign-extend it manually as appropriate. Use raw
2247 extract_signed_integer directly rather than value_as_address and
2248 sign extend afterwards on architectures that would need it
2249 (mostly everywhere except MIPS, which has signed addresses) as
2250 the later would go through gdbarch_pointer_to_address and thus
2251 return a CORE_ADDR with high bits set on architectures that
2252 encode address spaces and other things in CORE_ADDR. */
2253 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2254 byte_offset = extract_signed_integer (value_contents (value),
2255 TYPE_LENGTH (type), byte_order);
2256 byte_offset += piece->v.ptr.offset;
2257
2258 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2259 byte_offset, c->per_cu,
2260 frame, type);
2261 }
2262
2263 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2264 references. */
2265
2266 static struct value *
2267 coerce_pieced_ref (const struct value *value)
2268 {
2269 struct type *type = check_typedef (value_type (value));
2270
2271 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2272 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2273 {
2274 const struct piece_closure *closure
2275 = (struct piece_closure *) value_computed_closure (value);
2276 struct frame_info *frame
2277 = get_selected_frame (_("No frame selected."));
2278
2279 /* gdb represents synthetic pointers as pieced values with a single
2280 piece. */
2281 gdb_assert (closure != NULL);
2282 gdb_assert (closure->n_pieces == 1);
2283
2284 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2285 closure->pieces->v.ptr.offset,
2286 closure->per_cu, frame, type);
2287 }
2288 else
2289 {
2290 /* Else: not a synthetic reference; do nothing. */
2291 return NULL;
2292 }
2293 }
2294
2295 static void *
2296 copy_pieced_value_closure (const struct value *v)
2297 {
2298 struct piece_closure *c
2299 = (struct piece_closure *) value_computed_closure (v);
2300
2301 ++c->refc;
2302 return c;
2303 }
2304
2305 static void
2306 free_pieced_value_closure (struct value *v)
2307 {
2308 struct piece_closure *c
2309 = (struct piece_closure *) value_computed_closure (v);
2310
2311 --c->refc;
2312 if (c->refc == 0)
2313 {
2314 int i;
2315
2316 for (i = 0; i < c->n_pieces; ++i)
2317 if (c->pieces[i].location == DWARF_VALUE_STACK)
2318 value_free (c->pieces[i].v.value);
2319
2320 xfree (c->pieces);
2321 xfree (c);
2322 }
2323 }
2324
2325 /* Functions for accessing a variable described by DW_OP_piece. */
2326 static const struct lval_funcs pieced_value_funcs = {
2327 read_pieced_value,
2328 write_pieced_value,
2329 indirect_pieced_value,
2330 coerce_pieced_ref,
2331 check_pieced_synthetic_pointer,
2332 copy_pieced_value_closure,
2333 free_pieced_value_closure
2334 };
2335
2336 /* Evaluate a location description, starting at DATA and with length
2337 SIZE, to find the current location of variable of TYPE in the
2338 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2339 location of the subobject of type SUBOBJ_TYPE at byte offset
2340 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2341
2342 static struct value *
2343 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2344 const gdb_byte *data, size_t size,
2345 struct dwarf2_per_cu_data *per_cu,
2346 struct type *subobj_type,
2347 LONGEST subobj_byte_offset)
2348 {
2349 struct value *retval;
2350 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2351
2352 if (subobj_type == NULL)
2353 {
2354 subobj_type = type;
2355 subobj_byte_offset = 0;
2356 }
2357 else if (subobj_byte_offset < 0)
2358 invalid_synthetic_pointer ();
2359
2360 if (size == 0)
2361 return allocate_optimized_out_value (subobj_type);
2362
2363 dwarf_evaluate_loc_desc ctx;
2364 ctx.frame = frame;
2365 ctx.per_cu = per_cu;
2366 ctx.obj_address = 0;
2367
2368 scoped_value_mark free_values;
2369
2370 ctx.gdbarch = get_objfile_arch (objfile);
2371 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2372 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2373 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2374
2375 TRY
2376 {
2377 ctx.eval (data, size);
2378 }
2379 CATCH (ex, RETURN_MASK_ERROR)
2380 {
2381 if (ex.error == NOT_AVAILABLE_ERROR)
2382 {
2383 free_values.free_to_mark ();
2384 retval = allocate_value (subobj_type);
2385 mark_value_bytes_unavailable (retval, 0,
2386 TYPE_LENGTH (subobj_type));
2387 return retval;
2388 }
2389 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2390 {
2391 if (entry_values_debug)
2392 exception_print (gdb_stdout, ex);
2393 free_values.free_to_mark ();
2394 return allocate_optimized_out_value (subobj_type);
2395 }
2396 else
2397 throw_exception (ex);
2398 }
2399 END_CATCH
2400
2401 if (ctx.num_pieces > 0)
2402 {
2403 struct piece_closure *c;
2404 ULONGEST bit_size = 0;
2405 int i;
2406
2407 for (i = 0; i < ctx.num_pieces; ++i)
2408 bit_size += ctx.pieces[i].size;
2409 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2410 invalid_synthetic_pointer ();
2411
2412 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2413 frame);
2414 /* We must clean up the value chain after creating the piece
2415 closure but before allocating the result. */
2416 free_values.free_to_mark ();
2417 retval = allocate_computed_value (subobj_type,
2418 &pieced_value_funcs, c);
2419 set_value_offset (retval, subobj_byte_offset);
2420 }
2421 else
2422 {
2423 switch (ctx.location)
2424 {
2425 case DWARF_VALUE_REGISTER:
2426 {
2427 struct gdbarch *arch = get_frame_arch (frame);
2428 int dwarf_regnum
2429 = longest_to_int (value_as_long (ctx.fetch (0)));
2430 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2431
2432 if (subobj_byte_offset != 0)
2433 error (_("cannot use offset on synthetic pointer to register"));
2434 free_values.free_to_mark ();
2435 retval = value_from_register (subobj_type, gdb_regnum, frame);
2436 if (value_optimized_out (retval))
2437 {
2438 struct value *tmp;
2439
2440 /* This means the register has undefined value / was
2441 not saved. As we're computing the location of some
2442 variable etc. in the program, not a value for
2443 inspecting a register ($pc, $sp, etc.), return a
2444 generic optimized out value instead, so that we show
2445 <optimized out> instead of <not saved>. */
2446 tmp = allocate_value (subobj_type);
2447 value_contents_copy (tmp, 0, retval, 0,
2448 TYPE_LENGTH (subobj_type));
2449 retval = tmp;
2450 }
2451 }
2452 break;
2453
2454 case DWARF_VALUE_MEMORY:
2455 {
2456 struct type *ptr_type;
2457 CORE_ADDR address = ctx.fetch_address (0);
2458 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2459
2460 /* DW_OP_deref_size (and possibly other operations too) may
2461 create a pointer instead of an address. Ideally, the
2462 pointer to address conversion would be performed as part
2463 of those operations, but the type of the object to
2464 which the address refers is not known at the time of
2465 the operation. Therefore, we do the conversion here
2466 since the type is readily available. */
2467
2468 switch (TYPE_CODE (subobj_type))
2469 {
2470 case TYPE_CODE_FUNC:
2471 case TYPE_CODE_METHOD:
2472 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2473 break;
2474 default:
2475 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2476 break;
2477 }
2478 address = value_as_address (value_from_pointer (ptr_type, address));
2479
2480 free_values.free_to_mark ();
2481 retval = value_at_lazy (subobj_type,
2482 address + subobj_byte_offset);
2483 if (in_stack_memory)
2484 set_value_stack (retval, 1);
2485 }
2486 break;
2487
2488 case DWARF_VALUE_STACK:
2489 {
2490 struct value *value = ctx.fetch (0);
2491 size_t n = TYPE_LENGTH (value_type (value));
2492 size_t len = TYPE_LENGTH (subobj_type);
2493 size_t max = TYPE_LENGTH (type);
2494 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2495 struct cleanup *cleanup;
2496
2497 if (subobj_byte_offset + len > max)
2498 invalid_synthetic_pointer ();
2499
2500 /* Preserve VALUE because we are going to free values back
2501 to the mark, but we still need the value contents
2502 below. */
2503 value_incref (value);
2504 free_values.free_to_mark ();
2505 cleanup = make_cleanup_value_free (value);
2506
2507 retval = allocate_value (subobj_type);
2508
2509 /* The given offset is relative to the actual object. */
2510 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2511 subobj_byte_offset += n - max;
2512
2513 memcpy (value_contents_raw (retval),
2514 value_contents_all (value) + subobj_byte_offset, len);
2515
2516 do_cleanups (cleanup);
2517 }
2518 break;
2519
2520 case DWARF_VALUE_LITERAL:
2521 {
2522 bfd_byte *contents;
2523 size_t n = TYPE_LENGTH (subobj_type);
2524
2525 if (subobj_byte_offset + n > ctx.len)
2526 invalid_synthetic_pointer ();
2527
2528 free_values.free_to_mark ();
2529 retval = allocate_value (subobj_type);
2530 contents = value_contents_raw (retval);
2531 memcpy (contents, ctx.data + subobj_byte_offset, n);
2532 }
2533 break;
2534
2535 case DWARF_VALUE_OPTIMIZED_OUT:
2536 free_values.free_to_mark ();
2537 retval = allocate_optimized_out_value (subobj_type);
2538 break;
2539
2540 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2541 operation by execute_stack_op. */
2542 case DWARF_VALUE_IMPLICIT_POINTER:
2543 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2544 it can only be encountered when making a piece. */
2545 default:
2546 internal_error (__FILE__, __LINE__, _("invalid location type"));
2547 }
2548 }
2549
2550 set_value_initialized (retval, ctx.initialized);
2551
2552 return retval;
2553 }
2554
2555 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2556 passes 0 as the byte_offset. */
2557
2558 struct value *
2559 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2560 const gdb_byte *data, size_t size,
2561 struct dwarf2_per_cu_data *per_cu)
2562 {
2563 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2564 NULL, 0);
2565 }
2566
2567 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2568 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2569 frame in which the expression is evaluated. ADDR is a context (location of
2570 a variable) and might be needed to evaluate the location expression.
2571 Returns 1 on success, 0 otherwise. */
2572
2573 static int
2574 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2575 struct frame_info *frame,
2576 CORE_ADDR addr,
2577 CORE_ADDR *valp)
2578 {
2579 struct objfile *objfile;
2580
2581 if (dlbaton == NULL || dlbaton->size == 0)
2582 return 0;
2583
2584 dwarf_evaluate_loc_desc ctx;
2585
2586 ctx.frame = frame;
2587 ctx.per_cu = dlbaton->per_cu;
2588 ctx.obj_address = addr;
2589
2590 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2591
2592 ctx.gdbarch = get_objfile_arch (objfile);
2593 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2594 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2595 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2596
2597 ctx.eval (dlbaton->data, dlbaton->size);
2598
2599 switch (ctx.location)
2600 {
2601 case DWARF_VALUE_REGISTER:
2602 case DWARF_VALUE_MEMORY:
2603 case DWARF_VALUE_STACK:
2604 *valp = ctx.fetch_address (0);
2605 if (ctx.location == DWARF_VALUE_REGISTER)
2606 *valp = ctx.read_addr_from_reg (*valp);
2607 return 1;
2608 case DWARF_VALUE_LITERAL:
2609 *valp = extract_signed_integer (ctx.data, ctx.len,
2610 gdbarch_byte_order (ctx.gdbarch));
2611 return 1;
2612 /* Unsupported dwarf values. */
2613 case DWARF_VALUE_OPTIMIZED_OUT:
2614 case DWARF_VALUE_IMPLICIT_POINTER:
2615 break;
2616 }
2617
2618 return 0;
2619 }
2620
2621 /* See dwarf2loc.h. */
2622
2623 int
2624 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2625 struct frame_info *frame,
2626 struct property_addr_info *addr_stack,
2627 CORE_ADDR *value)
2628 {
2629 if (prop == NULL)
2630 return 0;
2631
2632 if (frame == NULL && has_stack_frames ())
2633 frame = get_selected_frame (NULL);
2634
2635 switch (prop->kind)
2636 {
2637 case PROP_LOCEXPR:
2638 {
2639 const struct dwarf2_property_baton *baton
2640 = (const struct dwarf2_property_baton *) prop->data.baton;
2641
2642 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2643 addr_stack ? addr_stack->addr : 0,
2644 value))
2645 {
2646 if (baton->referenced_type)
2647 {
2648 struct value *val = value_at (baton->referenced_type, *value);
2649
2650 *value = value_as_address (val);
2651 }
2652 return 1;
2653 }
2654 }
2655 break;
2656
2657 case PROP_LOCLIST:
2658 {
2659 struct dwarf2_property_baton *baton
2660 = (struct dwarf2_property_baton *) prop->data.baton;
2661 CORE_ADDR pc = get_frame_address_in_block (frame);
2662 const gdb_byte *data;
2663 struct value *val;
2664 size_t size;
2665
2666 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2667 if (data != NULL)
2668 {
2669 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2670 size, baton->loclist.per_cu);
2671 if (!value_optimized_out (val))
2672 {
2673 *value = value_as_address (val);
2674 return 1;
2675 }
2676 }
2677 }
2678 break;
2679
2680 case PROP_CONST:
2681 *value = prop->data.const_val;
2682 return 1;
2683
2684 case PROP_ADDR_OFFSET:
2685 {
2686 struct dwarf2_property_baton *baton
2687 = (struct dwarf2_property_baton *) prop->data.baton;
2688 struct property_addr_info *pinfo;
2689 struct value *val;
2690
2691 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2692 if (pinfo->type == baton->referenced_type)
2693 break;
2694 if (pinfo == NULL)
2695 error (_("cannot find reference address for offset property"));
2696 if (pinfo->valaddr != NULL)
2697 val = value_from_contents
2698 (baton->offset_info.type,
2699 pinfo->valaddr + baton->offset_info.offset);
2700 else
2701 val = value_at (baton->offset_info.type,
2702 pinfo->addr + baton->offset_info.offset);
2703 *value = value_as_address (val);
2704 return 1;
2705 }
2706 }
2707
2708 return 0;
2709 }
2710
2711 /* See dwarf2loc.h. */
2712
2713 void
2714 dwarf2_compile_property_to_c (string_file &stream,
2715 const char *result_name,
2716 struct gdbarch *gdbarch,
2717 unsigned char *registers_used,
2718 const struct dynamic_prop *prop,
2719 CORE_ADDR pc,
2720 struct symbol *sym)
2721 {
2722 struct dwarf2_property_baton *baton
2723 = (struct dwarf2_property_baton *) prop->data.baton;
2724 const gdb_byte *data;
2725 size_t size;
2726 struct dwarf2_per_cu_data *per_cu;
2727
2728 if (prop->kind == PROP_LOCEXPR)
2729 {
2730 data = baton->locexpr.data;
2731 size = baton->locexpr.size;
2732 per_cu = baton->locexpr.per_cu;
2733 }
2734 else
2735 {
2736 gdb_assert (prop->kind == PROP_LOCLIST);
2737
2738 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2739 per_cu = baton->loclist.per_cu;
2740 }
2741
2742 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2743 gdbarch, registers_used,
2744 dwarf2_per_cu_addr_size (per_cu),
2745 data, data + size, per_cu);
2746 }
2747
2748 \f
2749 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2750
2751 class symbol_needs_eval_context : public dwarf_expr_context
2752 {
2753 public:
2754
2755 enum symbol_needs_kind needs;
2756 struct dwarf2_per_cu_data *per_cu;
2757
2758 /* Reads from registers do require a frame. */
2759 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2760 {
2761 needs = SYMBOL_NEEDS_FRAME;
2762 return 1;
2763 }
2764
2765 /* "get_reg_value" callback: Reads from registers do require a
2766 frame. */
2767
2768 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2769 {
2770 needs = SYMBOL_NEEDS_FRAME;
2771 return value_zero (type, not_lval);
2772 }
2773
2774 /* Reads from memory do not require a frame. */
2775 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2776 {
2777 memset (buf, 0, len);
2778 }
2779
2780 /* Frame-relative accesses do require a frame. */
2781 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2782 {
2783 static gdb_byte lit0 = DW_OP_lit0;
2784
2785 *start = &lit0;
2786 *length = 1;
2787
2788 needs = SYMBOL_NEEDS_FRAME;
2789 }
2790
2791 /* CFA accesses require a frame. */
2792 CORE_ADDR get_frame_cfa () OVERRIDE
2793 {
2794 needs = SYMBOL_NEEDS_FRAME;
2795 return 1;
2796 }
2797
2798 CORE_ADDR get_frame_pc () OVERRIDE
2799 {
2800 needs = SYMBOL_NEEDS_FRAME;
2801 return 1;
2802 }
2803
2804 /* Thread-local accesses require registers, but not a frame. */
2805 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2806 {
2807 if (needs <= SYMBOL_NEEDS_REGISTERS)
2808 needs = SYMBOL_NEEDS_REGISTERS;
2809 return 1;
2810 }
2811
2812 /* Helper interface of per_cu_dwarf_call for
2813 dwarf2_loc_desc_get_symbol_read_needs. */
2814
2815 void dwarf_call (cu_offset die_offset) OVERRIDE
2816 {
2817 per_cu_dwarf_call (this, die_offset, per_cu);
2818 }
2819
2820 /* DW_OP_entry_value accesses require a caller, therefore a
2821 frame. */
2822
2823 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2824 union call_site_parameter_u kind_u,
2825 int deref_size) OVERRIDE
2826 {
2827 needs = SYMBOL_NEEDS_FRAME;
2828
2829 /* The expression may require some stub values on DWARF stack. */
2830 push_address (0, 0);
2831 }
2832
2833 /* DW_OP_GNU_addr_index doesn't require a frame. */
2834
2835 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2836 {
2837 /* Nothing to do. */
2838 return 1;
2839 }
2840
2841 /* DW_OP_push_object_address has a frame already passed through. */
2842
2843 CORE_ADDR get_object_address () OVERRIDE
2844 {
2845 /* Nothing to do. */
2846 return 1;
2847 }
2848 };
2849
2850 /* Compute the correct symbol_needs_kind value for the location
2851 expression at DATA (length SIZE). */
2852
2853 static enum symbol_needs_kind
2854 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2855 struct dwarf2_per_cu_data *per_cu)
2856 {
2857 int in_reg;
2858 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2859
2860 scoped_value_mark free_values;
2861
2862 symbol_needs_eval_context ctx;
2863
2864 ctx.needs = SYMBOL_NEEDS_NONE;
2865 ctx.per_cu = per_cu;
2866 ctx.gdbarch = get_objfile_arch (objfile);
2867 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2868 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2869 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2870
2871 ctx.eval (data, size);
2872
2873 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2874
2875 if (ctx.num_pieces > 0)
2876 {
2877 int i;
2878
2879 /* If the location has several pieces, and any of them are in
2880 registers, then we will need a frame to fetch them from. */
2881 for (i = 0; i < ctx.num_pieces; i++)
2882 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2883 in_reg = 1;
2884 }
2885
2886 if (in_reg)
2887 ctx.needs = SYMBOL_NEEDS_FRAME;
2888 return ctx.needs;
2889 }
2890
2891 /* A helper function that throws an unimplemented error mentioning a
2892 given DWARF operator. */
2893
2894 static void
2895 unimplemented (unsigned int op)
2896 {
2897 const char *name = get_DW_OP_name (op);
2898
2899 if (name)
2900 error (_("DWARF operator %s cannot be translated to an agent expression"),
2901 name);
2902 else
2903 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2904 "to an agent expression"),
2905 op);
2906 }
2907
2908 /* See dwarf2loc.h.
2909
2910 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2911 can issue a complaint, which is better than having every target's
2912 implementation of dwarf2_reg_to_regnum do it. */
2913
2914 int
2915 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2916 {
2917 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2918
2919 if (reg == -1)
2920 {
2921 complaint (&symfile_complaints,
2922 _("bad DWARF register number %d"), dwarf_reg);
2923 }
2924 return reg;
2925 }
2926
2927 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2928 Throw an error because DWARF_REG is bad. */
2929
2930 static void
2931 throw_bad_regnum_error (ULONGEST dwarf_reg)
2932 {
2933 /* Still want to print -1 as "-1".
2934 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2935 but that's overkill for now. */
2936 if ((int) dwarf_reg == dwarf_reg)
2937 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2938 error (_("Unable to access DWARF register number %s"),
2939 pulongest (dwarf_reg));
2940 }
2941
2942 /* See dwarf2loc.h. */
2943
2944 int
2945 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2946 {
2947 int reg;
2948
2949 if (dwarf_reg > INT_MAX)
2950 throw_bad_regnum_error (dwarf_reg);
2951 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2952 bad, but that's ok. */
2953 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2954 if (reg == -1)
2955 throw_bad_regnum_error (dwarf_reg);
2956 return reg;
2957 }
2958
2959 /* A helper function that emits an access to memory. ARCH is the
2960 target architecture. EXPR is the expression which we are building.
2961 NBITS is the number of bits we want to read. This emits the
2962 opcodes needed to read the memory and then extract the desired
2963 bits. */
2964
2965 static void
2966 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2967 {
2968 ULONGEST nbytes = (nbits + 7) / 8;
2969
2970 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2971
2972 if (expr->tracing)
2973 ax_trace_quick (expr, nbytes);
2974
2975 if (nbits <= 8)
2976 ax_simple (expr, aop_ref8);
2977 else if (nbits <= 16)
2978 ax_simple (expr, aop_ref16);
2979 else if (nbits <= 32)
2980 ax_simple (expr, aop_ref32);
2981 else
2982 ax_simple (expr, aop_ref64);
2983
2984 /* If we read exactly the number of bytes we wanted, we're done. */
2985 if (8 * nbytes == nbits)
2986 return;
2987
2988 if (gdbarch_bits_big_endian (arch))
2989 {
2990 /* On a bits-big-endian machine, we want the high-order
2991 NBITS. */
2992 ax_const_l (expr, 8 * nbytes - nbits);
2993 ax_simple (expr, aop_rsh_unsigned);
2994 }
2995 else
2996 {
2997 /* On a bits-little-endian box, we want the low-order NBITS. */
2998 ax_zero_ext (expr, nbits);
2999 }
3000 }
3001
3002 /* A helper function to return the frame's PC. */
3003
3004 static CORE_ADDR
3005 get_ax_pc (void *baton)
3006 {
3007 struct agent_expr *expr = (struct agent_expr *) baton;
3008
3009 return expr->scope;
3010 }
3011
3012 /* Compile a DWARF location expression to an agent expression.
3013
3014 EXPR is the agent expression we are building.
3015 LOC is the agent value we modify.
3016 ARCH is the architecture.
3017 ADDR_SIZE is the size of addresses, in bytes.
3018 OP_PTR is the start of the location expression.
3019 OP_END is one past the last byte of the location expression.
3020
3021 This will throw an exception for various kinds of errors -- for
3022 example, if the expression cannot be compiled, or if the expression
3023 is invalid. */
3024
3025 void
3026 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3027 struct gdbarch *arch, unsigned int addr_size,
3028 const gdb_byte *op_ptr, const gdb_byte *op_end,
3029 struct dwarf2_per_cu_data *per_cu)
3030 {
3031 int i;
3032 std::vector<int> dw_labels, patches;
3033 const gdb_byte * const base = op_ptr;
3034 const gdb_byte *previous_piece = op_ptr;
3035 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3036 ULONGEST bits_collected = 0;
3037 unsigned int addr_size_bits = 8 * addr_size;
3038 int bits_big_endian = gdbarch_bits_big_endian (arch);
3039
3040 std::vector<int> offsets (op_end - op_ptr, -1);
3041
3042 /* By default we are making an address. */
3043 loc->kind = axs_lvalue_memory;
3044
3045 while (op_ptr < op_end)
3046 {
3047 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3048 uint64_t uoffset, reg;
3049 int64_t offset;
3050 int i;
3051
3052 offsets[op_ptr - base] = expr->len;
3053 ++op_ptr;
3054
3055 /* Our basic approach to code generation is to map DWARF
3056 operations directly to AX operations. However, there are
3057 some differences.
3058
3059 First, DWARF works on address-sized units, but AX always uses
3060 LONGEST. For most operations we simply ignore this
3061 difference; instead we generate sign extensions as needed
3062 before division and comparison operations. It would be nice
3063 to omit the sign extensions, but there is no way to determine
3064 the size of the target's LONGEST. (This code uses the size
3065 of the host LONGEST in some cases -- that is a bug but it is
3066 difficult to fix.)
3067
3068 Second, some DWARF operations cannot be translated to AX.
3069 For these we simply fail. See
3070 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3071 switch (op)
3072 {
3073 case DW_OP_lit0:
3074 case DW_OP_lit1:
3075 case DW_OP_lit2:
3076 case DW_OP_lit3:
3077 case DW_OP_lit4:
3078 case DW_OP_lit5:
3079 case DW_OP_lit6:
3080 case DW_OP_lit7:
3081 case DW_OP_lit8:
3082 case DW_OP_lit9:
3083 case DW_OP_lit10:
3084 case DW_OP_lit11:
3085 case DW_OP_lit12:
3086 case DW_OP_lit13:
3087 case DW_OP_lit14:
3088 case DW_OP_lit15:
3089 case DW_OP_lit16:
3090 case DW_OP_lit17:
3091 case DW_OP_lit18:
3092 case DW_OP_lit19:
3093 case DW_OP_lit20:
3094 case DW_OP_lit21:
3095 case DW_OP_lit22:
3096 case DW_OP_lit23:
3097 case DW_OP_lit24:
3098 case DW_OP_lit25:
3099 case DW_OP_lit26:
3100 case DW_OP_lit27:
3101 case DW_OP_lit28:
3102 case DW_OP_lit29:
3103 case DW_OP_lit30:
3104 case DW_OP_lit31:
3105 ax_const_l (expr, op - DW_OP_lit0);
3106 break;
3107
3108 case DW_OP_addr:
3109 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3110 op_ptr += addr_size;
3111 /* Some versions of GCC emit DW_OP_addr before
3112 DW_OP_GNU_push_tls_address. In this case the value is an
3113 index, not an address. We don't support things like
3114 branching between the address and the TLS op. */
3115 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3116 uoffset += dwarf2_per_cu_text_offset (per_cu);
3117 ax_const_l (expr, uoffset);
3118 break;
3119
3120 case DW_OP_const1u:
3121 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3122 op_ptr += 1;
3123 break;
3124 case DW_OP_const1s:
3125 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3126 op_ptr += 1;
3127 break;
3128 case DW_OP_const2u:
3129 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3130 op_ptr += 2;
3131 break;
3132 case DW_OP_const2s:
3133 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3134 op_ptr += 2;
3135 break;
3136 case DW_OP_const4u:
3137 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3138 op_ptr += 4;
3139 break;
3140 case DW_OP_const4s:
3141 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3142 op_ptr += 4;
3143 break;
3144 case DW_OP_const8u:
3145 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3146 op_ptr += 8;
3147 break;
3148 case DW_OP_const8s:
3149 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3150 op_ptr += 8;
3151 break;
3152 case DW_OP_constu:
3153 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3154 ax_const_l (expr, uoffset);
3155 break;
3156 case DW_OP_consts:
3157 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3158 ax_const_l (expr, offset);
3159 break;
3160
3161 case DW_OP_reg0:
3162 case DW_OP_reg1:
3163 case DW_OP_reg2:
3164 case DW_OP_reg3:
3165 case DW_OP_reg4:
3166 case DW_OP_reg5:
3167 case DW_OP_reg6:
3168 case DW_OP_reg7:
3169 case DW_OP_reg8:
3170 case DW_OP_reg9:
3171 case DW_OP_reg10:
3172 case DW_OP_reg11:
3173 case DW_OP_reg12:
3174 case DW_OP_reg13:
3175 case DW_OP_reg14:
3176 case DW_OP_reg15:
3177 case DW_OP_reg16:
3178 case DW_OP_reg17:
3179 case DW_OP_reg18:
3180 case DW_OP_reg19:
3181 case DW_OP_reg20:
3182 case DW_OP_reg21:
3183 case DW_OP_reg22:
3184 case DW_OP_reg23:
3185 case DW_OP_reg24:
3186 case DW_OP_reg25:
3187 case DW_OP_reg26:
3188 case DW_OP_reg27:
3189 case DW_OP_reg28:
3190 case DW_OP_reg29:
3191 case DW_OP_reg30:
3192 case DW_OP_reg31:
3193 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3194 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3195 loc->kind = axs_lvalue_register;
3196 break;
3197
3198 case DW_OP_regx:
3199 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3200 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3201 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3202 loc->kind = axs_lvalue_register;
3203 break;
3204
3205 case DW_OP_implicit_value:
3206 {
3207 uint64_t len;
3208
3209 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3210 if (op_ptr + len > op_end)
3211 error (_("DW_OP_implicit_value: too few bytes available."));
3212 if (len > sizeof (ULONGEST))
3213 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3214 (int) len);
3215
3216 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3217 byte_order));
3218 op_ptr += len;
3219 dwarf_expr_require_composition (op_ptr, op_end,
3220 "DW_OP_implicit_value");
3221
3222 loc->kind = axs_rvalue;
3223 }
3224 break;
3225
3226 case DW_OP_stack_value:
3227 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3228 loc->kind = axs_rvalue;
3229 break;
3230
3231 case DW_OP_breg0:
3232 case DW_OP_breg1:
3233 case DW_OP_breg2:
3234 case DW_OP_breg3:
3235 case DW_OP_breg4:
3236 case DW_OP_breg5:
3237 case DW_OP_breg6:
3238 case DW_OP_breg7:
3239 case DW_OP_breg8:
3240 case DW_OP_breg9:
3241 case DW_OP_breg10:
3242 case DW_OP_breg11:
3243 case DW_OP_breg12:
3244 case DW_OP_breg13:
3245 case DW_OP_breg14:
3246 case DW_OP_breg15:
3247 case DW_OP_breg16:
3248 case DW_OP_breg17:
3249 case DW_OP_breg18:
3250 case DW_OP_breg19:
3251 case DW_OP_breg20:
3252 case DW_OP_breg21:
3253 case DW_OP_breg22:
3254 case DW_OP_breg23:
3255 case DW_OP_breg24:
3256 case DW_OP_breg25:
3257 case DW_OP_breg26:
3258 case DW_OP_breg27:
3259 case DW_OP_breg28:
3260 case DW_OP_breg29:
3261 case DW_OP_breg30:
3262 case DW_OP_breg31:
3263 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3264 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3265 ax_reg (expr, i);
3266 if (offset != 0)
3267 {
3268 ax_const_l (expr, offset);
3269 ax_simple (expr, aop_add);
3270 }
3271 break;
3272 case DW_OP_bregx:
3273 {
3274 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3275 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3276 i = dwarf_reg_to_regnum_or_error (arch, reg);
3277 ax_reg (expr, i);
3278 if (offset != 0)
3279 {
3280 ax_const_l (expr, offset);
3281 ax_simple (expr, aop_add);
3282 }
3283 }
3284 break;
3285 case DW_OP_fbreg:
3286 {
3287 const gdb_byte *datastart;
3288 size_t datalen;
3289 const struct block *b;
3290 struct symbol *framefunc;
3291
3292 b = block_for_pc (expr->scope);
3293
3294 if (!b)
3295 error (_("No block found for address"));
3296
3297 framefunc = block_linkage_function (b);
3298
3299 if (!framefunc)
3300 error (_("No function found for block"));
3301
3302 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3303 &datastart, &datalen);
3304
3305 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3306 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3307 datastart + datalen, per_cu);
3308 if (loc->kind == axs_lvalue_register)
3309 require_rvalue (expr, loc);
3310
3311 if (offset != 0)
3312 {
3313 ax_const_l (expr, offset);
3314 ax_simple (expr, aop_add);
3315 }
3316
3317 loc->kind = axs_lvalue_memory;
3318 }
3319 break;
3320
3321 case DW_OP_dup:
3322 ax_simple (expr, aop_dup);
3323 break;
3324
3325 case DW_OP_drop:
3326 ax_simple (expr, aop_pop);
3327 break;
3328
3329 case DW_OP_pick:
3330 offset = *op_ptr++;
3331 ax_pick (expr, offset);
3332 break;
3333
3334 case DW_OP_swap:
3335 ax_simple (expr, aop_swap);
3336 break;
3337
3338 case DW_OP_over:
3339 ax_pick (expr, 1);
3340 break;
3341
3342 case DW_OP_rot:
3343 ax_simple (expr, aop_rot);
3344 break;
3345
3346 case DW_OP_deref:
3347 case DW_OP_deref_size:
3348 {
3349 int size;
3350
3351 if (op == DW_OP_deref_size)
3352 size = *op_ptr++;
3353 else
3354 size = addr_size;
3355
3356 if (size != 1 && size != 2 && size != 4 && size != 8)
3357 error (_("Unsupported size %d in %s"),
3358 size, get_DW_OP_name (op));
3359 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3360 }
3361 break;
3362
3363 case DW_OP_abs:
3364 /* Sign extend the operand. */
3365 ax_ext (expr, addr_size_bits);
3366 ax_simple (expr, aop_dup);
3367 ax_const_l (expr, 0);
3368 ax_simple (expr, aop_less_signed);
3369 ax_simple (expr, aop_log_not);
3370 i = ax_goto (expr, aop_if_goto);
3371 /* We have to emit 0 - X. */
3372 ax_const_l (expr, 0);
3373 ax_simple (expr, aop_swap);
3374 ax_simple (expr, aop_sub);
3375 ax_label (expr, i, expr->len);
3376 break;
3377
3378 case DW_OP_neg:
3379 /* No need to sign extend here. */
3380 ax_const_l (expr, 0);
3381 ax_simple (expr, aop_swap);
3382 ax_simple (expr, aop_sub);
3383 break;
3384
3385 case DW_OP_not:
3386 /* Sign extend the operand. */
3387 ax_ext (expr, addr_size_bits);
3388 ax_simple (expr, aop_bit_not);
3389 break;
3390
3391 case DW_OP_plus_uconst:
3392 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3393 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3394 but we micro-optimize anyhow. */
3395 if (reg != 0)
3396 {
3397 ax_const_l (expr, reg);
3398 ax_simple (expr, aop_add);
3399 }
3400 break;
3401
3402 case DW_OP_and:
3403 ax_simple (expr, aop_bit_and);
3404 break;
3405
3406 case DW_OP_div:
3407 /* Sign extend the operands. */
3408 ax_ext (expr, addr_size_bits);
3409 ax_simple (expr, aop_swap);
3410 ax_ext (expr, addr_size_bits);
3411 ax_simple (expr, aop_swap);
3412 ax_simple (expr, aop_div_signed);
3413 break;
3414
3415 case DW_OP_minus:
3416 ax_simple (expr, aop_sub);
3417 break;
3418
3419 case DW_OP_mod:
3420 ax_simple (expr, aop_rem_unsigned);
3421 break;
3422
3423 case DW_OP_mul:
3424 ax_simple (expr, aop_mul);
3425 break;
3426
3427 case DW_OP_or:
3428 ax_simple (expr, aop_bit_or);
3429 break;
3430
3431 case DW_OP_plus:
3432 ax_simple (expr, aop_add);
3433 break;
3434
3435 case DW_OP_shl:
3436 ax_simple (expr, aop_lsh);
3437 break;
3438
3439 case DW_OP_shr:
3440 ax_simple (expr, aop_rsh_unsigned);
3441 break;
3442
3443 case DW_OP_shra:
3444 ax_simple (expr, aop_rsh_signed);
3445 break;
3446
3447 case DW_OP_xor:
3448 ax_simple (expr, aop_bit_xor);
3449 break;
3450
3451 case DW_OP_le:
3452 /* Sign extend the operands. */
3453 ax_ext (expr, addr_size_bits);
3454 ax_simple (expr, aop_swap);
3455 ax_ext (expr, addr_size_bits);
3456 /* Note no swap here: A <= B is !(B < A). */
3457 ax_simple (expr, aop_less_signed);
3458 ax_simple (expr, aop_log_not);
3459 break;
3460
3461 case DW_OP_ge:
3462 /* Sign extend the operands. */
3463 ax_ext (expr, addr_size_bits);
3464 ax_simple (expr, aop_swap);
3465 ax_ext (expr, addr_size_bits);
3466 ax_simple (expr, aop_swap);
3467 /* A >= B is !(A < B). */
3468 ax_simple (expr, aop_less_signed);
3469 ax_simple (expr, aop_log_not);
3470 break;
3471
3472 case DW_OP_eq:
3473 /* Sign extend the operands. */
3474 ax_ext (expr, addr_size_bits);
3475 ax_simple (expr, aop_swap);
3476 ax_ext (expr, addr_size_bits);
3477 /* No need for a second swap here. */
3478 ax_simple (expr, aop_equal);
3479 break;
3480
3481 case DW_OP_lt:
3482 /* Sign extend the operands. */
3483 ax_ext (expr, addr_size_bits);
3484 ax_simple (expr, aop_swap);
3485 ax_ext (expr, addr_size_bits);
3486 ax_simple (expr, aop_swap);
3487 ax_simple (expr, aop_less_signed);
3488 break;
3489
3490 case DW_OP_gt:
3491 /* Sign extend the operands. */
3492 ax_ext (expr, addr_size_bits);
3493 ax_simple (expr, aop_swap);
3494 ax_ext (expr, addr_size_bits);
3495 /* Note no swap here: A > B is B < A. */
3496 ax_simple (expr, aop_less_signed);
3497 break;
3498
3499 case DW_OP_ne:
3500 /* Sign extend the operands. */
3501 ax_ext (expr, addr_size_bits);
3502 ax_simple (expr, aop_swap);
3503 ax_ext (expr, addr_size_bits);
3504 /* No need for a swap here. */
3505 ax_simple (expr, aop_equal);
3506 ax_simple (expr, aop_log_not);
3507 break;
3508
3509 case DW_OP_call_frame_cfa:
3510 {
3511 int regnum;
3512 CORE_ADDR text_offset;
3513 LONGEST off;
3514 const gdb_byte *cfa_start, *cfa_end;
3515
3516 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3517 &regnum, &off,
3518 &text_offset, &cfa_start, &cfa_end))
3519 {
3520 /* Register. */
3521 ax_reg (expr, regnum);
3522 if (off != 0)
3523 {
3524 ax_const_l (expr, off);
3525 ax_simple (expr, aop_add);
3526 }
3527 }
3528 else
3529 {
3530 /* Another expression. */
3531 ax_const_l (expr, text_offset);
3532 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3533 cfa_start, cfa_end, per_cu);
3534 }
3535
3536 loc->kind = axs_lvalue_memory;
3537 }
3538 break;
3539
3540 case DW_OP_GNU_push_tls_address:
3541 case DW_OP_form_tls_address:
3542 unimplemented (op);
3543 break;
3544
3545 case DW_OP_push_object_address:
3546 unimplemented (op);
3547 break;
3548
3549 case DW_OP_skip:
3550 offset = extract_signed_integer (op_ptr, 2, byte_order);
3551 op_ptr += 2;
3552 i = ax_goto (expr, aop_goto);
3553 dw_labels.push_back (op_ptr + offset - base);
3554 patches.push_back (i);
3555 break;
3556
3557 case DW_OP_bra:
3558 offset = extract_signed_integer (op_ptr, 2, byte_order);
3559 op_ptr += 2;
3560 /* Zero extend the operand. */
3561 ax_zero_ext (expr, addr_size_bits);
3562 i = ax_goto (expr, aop_if_goto);
3563 dw_labels.push_back (op_ptr + offset - base);
3564 patches.push_back (i);
3565 break;
3566
3567 case DW_OP_nop:
3568 break;
3569
3570 case DW_OP_piece:
3571 case DW_OP_bit_piece:
3572 {
3573 uint64_t size, offset;
3574
3575 if (op_ptr - 1 == previous_piece)
3576 error (_("Cannot translate empty pieces to agent expressions"));
3577 previous_piece = op_ptr - 1;
3578
3579 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3580 if (op == DW_OP_piece)
3581 {
3582 size *= 8;
3583 offset = 0;
3584 }
3585 else
3586 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3587
3588 if (bits_collected + size > 8 * sizeof (LONGEST))
3589 error (_("Expression pieces exceed word size"));
3590
3591 /* Access the bits. */
3592 switch (loc->kind)
3593 {
3594 case axs_lvalue_register:
3595 ax_reg (expr, loc->u.reg);
3596 break;
3597
3598 case axs_lvalue_memory:
3599 /* Offset the pointer, if needed. */
3600 if (offset > 8)
3601 {
3602 ax_const_l (expr, offset / 8);
3603 ax_simple (expr, aop_add);
3604 offset %= 8;
3605 }
3606 access_memory (arch, expr, size);
3607 break;
3608 }
3609
3610 /* For a bits-big-endian target, shift up what we already
3611 have. For a bits-little-endian target, shift up the
3612 new data. Note that there is a potential bug here if
3613 the DWARF expression leaves multiple values on the
3614 stack. */
3615 if (bits_collected > 0)
3616 {
3617 if (bits_big_endian)
3618 {
3619 ax_simple (expr, aop_swap);
3620 ax_const_l (expr, size);
3621 ax_simple (expr, aop_lsh);
3622 /* We don't need a second swap here, because
3623 aop_bit_or is symmetric. */
3624 }
3625 else
3626 {
3627 ax_const_l (expr, size);
3628 ax_simple (expr, aop_lsh);
3629 }
3630 ax_simple (expr, aop_bit_or);
3631 }
3632
3633 bits_collected += size;
3634 loc->kind = axs_rvalue;
3635 }
3636 break;
3637
3638 case DW_OP_GNU_uninit:
3639 unimplemented (op);
3640
3641 case DW_OP_call2:
3642 case DW_OP_call4:
3643 {
3644 struct dwarf2_locexpr_baton block;
3645 int size = (op == DW_OP_call2 ? 2 : 4);
3646
3647 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3648 op_ptr += size;
3649
3650 cu_offset offset = (cu_offset) uoffset;
3651 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3652 get_ax_pc, expr);
3653
3654 /* DW_OP_call_ref is currently not supported. */
3655 gdb_assert (block.per_cu == per_cu);
3656
3657 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3658 block.data, block.data + block.size,
3659 per_cu);
3660 }
3661 break;
3662
3663 case DW_OP_call_ref:
3664 unimplemented (op);
3665
3666 default:
3667 unimplemented (op);
3668 }
3669 }
3670
3671 /* Patch all the branches we emitted. */
3672 for (i = 0; i < patches.size (); ++i)
3673 {
3674 int targ = offsets[dw_labels[i]];
3675 if (targ == -1)
3676 internal_error (__FILE__, __LINE__, _("invalid label"));
3677 ax_label (expr, patches[i], targ);
3678 }
3679 }
3680
3681 \f
3682 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3683 evaluator to calculate the location. */
3684 static struct value *
3685 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3686 {
3687 struct dwarf2_locexpr_baton *dlbaton
3688 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3689 struct value *val;
3690
3691 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3692 dlbaton->size, dlbaton->per_cu);
3693
3694 return val;
3695 }
3696
3697 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3698 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3699 will be thrown. */
3700
3701 static struct value *
3702 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3703 {
3704 struct dwarf2_locexpr_baton *dlbaton
3705 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3706
3707 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3708 dlbaton->size);
3709 }
3710
3711 /* Implementation of get_symbol_read_needs from
3712 symbol_computed_ops. */
3713
3714 static enum symbol_needs_kind
3715 locexpr_get_symbol_read_needs (struct symbol *symbol)
3716 {
3717 struct dwarf2_locexpr_baton *dlbaton
3718 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3719
3720 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3721 dlbaton->per_cu);
3722 }
3723
3724 /* Return true if DATA points to the end of a piece. END is one past
3725 the last byte in the expression. */
3726
3727 static int
3728 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3729 {
3730 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3731 }
3732
3733 /* Helper for locexpr_describe_location_piece that finds the name of a
3734 DWARF register. */
3735
3736 static const char *
3737 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3738 {
3739 int regnum;
3740
3741 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3742 We'd rather print *something* here than throw an error. */
3743 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3744 /* gdbarch_register_name may just return "", return something more
3745 descriptive for bad register numbers. */
3746 if (regnum == -1)
3747 {
3748 /* The text is output as "$bad_register_number".
3749 That is why we use the underscores. */
3750 return _("bad_register_number");
3751 }
3752 return gdbarch_register_name (gdbarch, regnum);
3753 }
3754
3755 /* Nicely describe a single piece of a location, returning an updated
3756 position in the bytecode sequence. This function cannot recognize
3757 all locations; if a location is not recognized, it simply returns
3758 DATA. If there is an error during reading, e.g. we run off the end
3759 of the buffer, an error is thrown. */
3760
3761 static const gdb_byte *
3762 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3763 CORE_ADDR addr, struct objfile *objfile,
3764 struct dwarf2_per_cu_data *per_cu,
3765 const gdb_byte *data, const gdb_byte *end,
3766 unsigned int addr_size)
3767 {
3768 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3769 size_t leb128_size;
3770
3771 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3772 {
3773 fprintf_filtered (stream, _("a variable in $%s"),
3774 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3775 data += 1;
3776 }
3777 else if (data[0] == DW_OP_regx)
3778 {
3779 uint64_t reg;
3780
3781 data = safe_read_uleb128 (data + 1, end, &reg);
3782 fprintf_filtered (stream, _("a variable in $%s"),
3783 locexpr_regname (gdbarch, reg));
3784 }
3785 else if (data[0] == DW_OP_fbreg)
3786 {
3787 const struct block *b;
3788 struct symbol *framefunc;
3789 int frame_reg = 0;
3790 int64_t frame_offset;
3791 const gdb_byte *base_data, *new_data, *save_data = data;
3792 size_t base_size;
3793 int64_t base_offset = 0;
3794
3795 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3796 if (!piece_end_p (new_data, end))
3797 return data;
3798 data = new_data;
3799
3800 b = block_for_pc (addr);
3801
3802 if (!b)
3803 error (_("No block found for address for symbol \"%s\"."),
3804 SYMBOL_PRINT_NAME (symbol));
3805
3806 framefunc = block_linkage_function (b);
3807
3808 if (!framefunc)
3809 error (_("No function found for block for symbol \"%s\"."),
3810 SYMBOL_PRINT_NAME (symbol));
3811
3812 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3813
3814 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3815 {
3816 const gdb_byte *buf_end;
3817
3818 frame_reg = base_data[0] - DW_OP_breg0;
3819 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3820 &base_offset);
3821 if (buf_end != base_data + base_size)
3822 error (_("Unexpected opcode after "
3823 "DW_OP_breg%u for symbol \"%s\"."),
3824 frame_reg, SYMBOL_PRINT_NAME (symbol));
3825 }
3826 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3827 {
3828 /* The frame base is just the register, with no offset. */
3829 frame_reg = base_data[0] - DW_OP_reg0;
3830 base_offset = 0;
3831 }
3832 else
3833 {
3834 /* We don't know what to do with the frame base expression,
3835 so we can't trace this variable; give up. */
3836 return save_data;
3837 }
3838
3839 fprintf_filtered (stream,
3840 _("a variable at frame base reg $%s offset %s+%s"),
3841 locexpr_regname (gdbarch, frame_reg),
3842 plongest (base_offset), plongest (frame_offset));
3843 }
3844 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3845 && piece_end_p (data, end))
3846 {
3847 int64_t offset;
3848
3849 data = safe_read_sleb128 (data + 1, end, &offset);
3850
3851 fprintf_filtered (stream,
3852 _("a variable at offset %s from base reg $%s"),
3853 plongest (offset),
3854 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3855 }
3856
3857 /* The location expression for a TLS variable looks like this (on a
3858 64-bit LE machine):
3859
3860 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3861 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3862
3863 0x3 is the encoding for DW_OP_addr, which has an operand as long
3864 as the size of an address on the target machine (here is 8
3865 bytes). Note that more recent version of GCC emit DW_OP_const4u
3866 or DW_OP_const8u, depending on address size, rather than
3867 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3868 The operand represents the offset at which the variable is within
3869 the thread local storage. */
3870
3871 else if (data + 1 + addr_size < end
3872 && (data[0] == DW_OP_addr
3873 || (addr_size == 4 && data[0] == DW_OP_const4u)
3874 || (addr_size == 8 && data[0] == DW_OP_const8u))
3875 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3876 || data[1 + addr_size] == DW_OP_form_tls_address)
3877 && piece_end_p (data + 2 + addr_size, end))
3878 {
3879 ULONGEST offset;
3880 offset = extract_unsigned_integer (data + 1, addr_size,
3881 gdbarch_byte_order (gdbarch));
3882
3883 fprintf_filtered (stream,
3884 _("a thread-local variable at offset 0x%s "
3885 "in the thread-local storage for `%s'"),
3886 phex_nz (offset, addr_size), objfile_name (objfile));
3887
3888 data += 1 + addr_size + 1;
3889 }
3890
3891 /* With -gsplit-dwarf a TLS variable can also look like this:
3892 DW_AT_location : 3 byte block: fc 4 e0
3893 (DW_OP_GNU_const_index: 4;
3894 DW_OP_GNU_push_tls_address) */
3895 else if (data + 3 <= end
3896 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3897 && data[0] == DW_OP_GNU_const_index
3898 && leb128_size > 0
3899 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3900 || data[1 + leb128_size] == DW_OP_form_tls_address)
3901 && piece_end_p (data + 2 + leb128_size, end))
3902 {
3903 uint64_t offset;
3904
3905 data = safe_read_uleb128 (data + 1, end, &offset);
3906 offset = dwarf2_read_addr_index (per_cu, offset);
3907 fprintf_filtered (stream,
3908 _("a thread-local variable at offset 0x%s "
3909 "in the thread-local storage for `%s'"),
3910 phex_nz (offset, addr_size), objfile_name (objfile));
3911 ++data;
3912 }
3913
3914 else if (data[0] >= DW_OP_lit0
3915 && data[0] <= DW_OP_lit31
3916 && data + 1 < end
3917 && data[1] == DW_OP_stack_value)
3918 {
3919 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3920 data += 2;
3921 }
3922
3923 return data;
3924 }
3925
3926 /* Disassemble an expression, stopping at the end of a piece or at the
3927 end of the expression. Returns a pointer to the next unread byte
3928 in the input expression. If ALL is nonzero, then this function
3929 will keep going until it reaches the end of the expression.
3930 If there is an error during reading, e.g. we run off the end
3931 of the buffer, an error is thrown. */
3932
3933 static const gdb_byte *
3934 disassemble_dwarf_expression (struct ui_file *stream,
3935 struct gdbarch *arch, unsigned int addr_size,
3936 int offset_size, const gdb_byte *start,
3937 const gdb_byte *data, const gdb_byte *end,
3938 int indent, int all,
3939 struct dwarf2_per_cu_data *per_cu)
3940 {
3941 while (data < end
3942 && (all
3943 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3944 {
3945 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3946 uint64_t ul;
3947 int64_t l;
3948 const char *name;
3949
3950 name = get_DW_OP_name (op);
3951
3952 if (!name)
3953 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3954 op, (long) (data - 1 - start));
3955 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3956 (long) (data - 1 - start), name);
3957
3958 switch (op)
3959 {
3960 case DW_OP_addr:
3961 ul = extract_unsigned_integer (data, addr_size,
3962 gdbarch_byte_order (arch));
3963 data += addr_size;
3964 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3965 break;
3966
3967 case DW_OP_const1u:
3968 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3969 data += 1;
3970 fprintf_filtered (stream, " %s", pulongest (ul));
3971 break;
3972 case DW_OP_const1s:
3973 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3974 data += 1;
3975 fprintf_filtered (stream, " %s", plongest (l));
3976 break;
3977 case DW_OP_const2u:
3978 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3979 data += 2;
3980 fprintf_filtered (stream, " %s", pulongest (ul));
3981 break;
3982 case DW_OP_const2s:
3983 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3984 data += 2;
3985 fprintf_filtered (stream, " %s", plongest (l));
3986 break;
3987 case DW_OP_const4u:
3988 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3989 data += 4;
3990 fprintf_filtered (stream, " %s", pulongest (ul));
3991 break;
3992 case DW_OP_const4s:
3993 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3994 data += 4;
3995 fprintf_filtered (stream, " %s", plongest (l));
3996 break;
3997 case DW_OP_const8u:
3998 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3999 data += 8;
4000 fprintf_filtered (stream, " %s", pulongest (ul));
4001 break;
4002 case DW_OP_const8s:
4003 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4004 data += 8;
4005 fprintf_filtered (stream, " %s", plongest (l));
4006 break;
4007 case DW_OP_constu:
4008 data = safe_read_uleb128 (data, end, &ul);
4009 fprintf_filtered (stream, " %s", pulongest (ul));
4010 break;
4011 case DW_OP_consts:
4012 data = safe_read_sleb128 (data, end, &l);
4013 fprintf_filtered (stream, " %s", plongest (l));
4014 break;
4015
4016 case DW_OP_reg0:
4017 case DW_OP_reg1:
4018 case DW_OP_reg2:
4019 case DW_OP_reg3:
4020 case DW_OP_reg4:
4021 case DW_OP_reg5:
4022 case DW_OP_reg6:
4023 case DW_OP_reg7:
4024 case DW_OP_reg8:
4025 case DW_OP_reg9:
4026 case DW_OP_reg10:
4027 case DW_OP_reg11:
4028 case DW_OP_reg12:
4029 case DW_OP_reg13:
4030 case DW_OP_reg14:
4031 case DW_OP_reg15:
4032 case DW_OP_reg16:
4033 case DW_OP_reg17:
4034 case DW_OP_reg18:
4035 case DW_OP_reg19:
4036 case DW_OP_reg20:
4037 case DW_OP_reg21:
4038 case DW_OP_reg22:
4039 case DW_OP_reg23:
4040 case DW_OP_reg24:
4041 case DW_OP_reg25:
4042 case DW_OP_reg26:
4043 case DW_OP_reg27:
4044 case DW_OP_reg28:
4045 case DW_OP_reg29:
4046 case DW_OP_reg30:
4047 case DW_OP_reg31:
4048 fprintf_filtered (stream, " [$%s]",
4049 locexpr_regname (arch, op - DW_OP_reg0));
4050 break;
4051
4052 case DW_OP_regx:
4053 data = safe_read_uleb128 (data, end, &ul);
4054 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4055 locexpr_regname (arch, (int) ul));
4056 break;
4057
4058 case DW_OP_implicit_value:
4059 data = safe_read_uleb128 (data, end, &ul);
4060 data += ul;
4061 fprintf_filtered (stream, " %s", pulongest (ul));
4062 break;
4063
4064 case DW_OP_breg0:
4065 case DW_OP_breg1:
4066 case DW_OP_breg2:
4067 case DW_OP_breg3:
4068 case DW_OP_breg4:
4069 case DW_OP_breg5:
4070 case DW_OP_breg6:
4071 case DW_OP_breg7:
4072 case DW_OP_breg8:
4073 case DW_OP_breg9:
4074 case DW_OP_breg10:
4075 case DW_OP_breg11:
4076 case DW_OP_breg12:
4077 case DW_OP_breg13:
4078 case DW_OP_breg14:
4079 case DW_OP_breg15:
4080 case DW_OP_breg16:
4081 case DW_OP_breg17:
4082 case DW_OP_breg18:
4083 case DW_OP_breg19:
4084 case DW_OP_breg20:
4085 case DW_OP_breg21:
4086 case DW_OP_breg22:
4087 case DW_OP_breg23:
4088 case DW_OP_breg24:
4089 case DW_OP_breg25:
4090 case DW_OP_breg26:
4091 case DW_OP_breg27:
4092 case DW_OP_breg28:
4093 case DW_OP_breg29:
4094 case DW_OP_breg30:
4095 case DW_OP_breg31:
4096 data = safe_read_sleb128 (data, end, &l);
4097 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4098 locexpr_regname (arch, op - DW_OP_breg0));
4099 break;
4100
4101 case DW_OP_bregx:
4102 data = safe_read_uleb128 (data, end, &ul);
4103 data = safe_read_sleb128 (data, end, &l);
4104 fprintf_filtered (stream, " register %s [$%s] offset %s",
4105 pulongest (ul),
4106 locexpr_regname (arch, (int) ul),
4107 plongest (l));
4108 break;
4109
4110 case DW_OP_fbreg:
4111 data = safe_read_sleb128 (data, end, &l);
4112 fprintf_filtered (stream, " %s", plongest (l));
4113 break;
4114
4115 case DW_OP_xderef_size:
4116 case DW_OP_deref_size:
4117 case DW_OP_pick:
4118 fprintf_filtered (stream, " %d", *data);
4119 ++data;
4120 break;
4121
4122 case DW_OP_plus_uconst:
4123 data = safe_read_uleb128 (data, end, &ul);
4124 fprintf_filtered (stream, " %s", pulongest (ul));
4125 break;
4126
4127 case DW_OP_skip:
4128 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4129 data += 2;
4130 fprintf_filtered (stream, " to %ld",
4131 (long) (data + l - start));
4132 break;
4133
4134 case DW_OP_bra:
4135 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4136 data += 2;
4137 fprintf_filtered (stream, " %ld",
4138 (long) (data + l - start));
4139 break;
4140
4141 case DW_OP_call2:
4142 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4143 data += 2;
4144 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4145 break;
4146
4147 case DW_OP_call4:
4148 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4149 data += 4;
4150 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4151 break;
4152
4153 case DW_OP_call_ref:
4154 ul = extract_unsigned_integer (data, offset_size,
4155 gdbarch_byte_order (arch));
4156 data += offset_size;
4157 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4158 break;
4159
4160 case DW_OP_piece:
4161 data = safe_read_uleb128 (data, end, &ul);
4162 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4163 break;
4164
4165 case DW_OP_bit_piece:
4166 {
4167 uint64_t offset;
4168
4169 data = safe_read_uleb128 (data, end, &ul);
4170 data = safe_read_uleb128 (data, end, &offset);
4171 fprintf_filtered (stream, " size %s offset %s (bits)",
4172 pulongest (ul), pulongest (offset));
4173 }
4174 break;
4175
4176 case DW_OP_implicit_pointer:
4177 case DW_OP_GNU_implicit_pointer:
4178 {
4179 ul = extract_unsigned_integer (data, offset_size,
4180 gdbarch_byte_order (arch));
4181 data += offset_size;
4182
4183 data = safe_read_sleb128 (data, end, &l);
4184
4185 fprintf_filtered (stream, " DIE %s offset %s",
4186 phex_nz (ul, offset_size),
4187 plongest (l));
4188 }
4189 break;
4190
4191 case DW_OP_deref_type:
4192 case DW_OP_GNU_deref_type:
4193 {
4194 int addr_size = *data++;
4195 struct type *type;
4196
4197 data = safe_read_uleb128 (data, end, &ul);
4198 cu_offset offset = (cu_offset) ul;
4199 type = dwarf2_get_die_type (offset, per_cu);
4200 fprintf_filtered (stream, "<");
4201 type_print (type, "", stream, -1);
4202 fprintf_filtered (stream, " [0x%s]> %d",
4203 phex_nz (to_underlying (offset), 0),
4204 addr_size);
4205 }
4206 break;
4207
4208 case DW_OP_const_type:
4209 case DW_OP_GNU_const_type:
4210 {
4211 struct type *type;
4212
4213 data = safe_read_uleb128 (data, end, &ul);
4214 cu_offset type_die = (cu_offset) ul;
4215 type = dwarf2_get_die_type (type_die, per_cu);
4216 fprintf_filtered (stream, "<");
4217 type_print (type, "", stream, -1);
4218 fprintf_filtered (stream, " [0x%s]>",
4219 phex_nz (to_underlying (type_die), 0));
4220 }
4221 break;
4222
4223 case DW_OP_regval_type:
4224 case DW_OP_GNU_regval_type:
4225 {
4226 uint64_t reg;
4227 struct type *type;
4228
4229 data = safe_read_uleb128 (data, end, &reg);
4230 data = safe_read_uleb128 (data, end, &ul);
4231 cu_offset type_die = (cu_offset) ul;
4232
4233 type = dwarf2_get_die_type (type_die, per_cu);
4234 fprintf_filtered (stream, "<");
4235 type_print (type, "", stream, -1);
4236 fprintf_filtered (stream, " [0x%s]> [$%s]",
4237 phex_nz (to_underlying (type_die), 0),
4238 locexpr_regname (arch, reg));
4239 }
4240 break;
4241
4242 case DW_OP_convert:
4243 case DW_OP_GNU_convert:
4244 case DW_OP_reinterpret:
4245 case DW_OP_GNU_reinterpret:
4246 {
4247 data = safe_read_uleb128 (data, end, &ul);
4248 cu_offset type_die = (cu_offset) ul;
4249
4250 if (to_underlying (type_die) == 0)
4251 fprintf_filtered (stream, "<0>");
4252 else
4253 {
4254 struct type *type;
4255
4256 type = dwarf2_get_die_type (type_die, per_cu);
4257 fprintf_filtered (stream, "<");
4258 type_print (type, "", stream, -1);
4259 fprintf_filtered (stream, " [0x%s]>",
4260 phex_nz (to_underlying (type_die), 0));
4261 }
4262 }
4263 break;
4264
4265 case DW_OP_entry_value:
4266 case DW_OP_GNU_entry_value:
4267 data = safe_read_uleb128 (data, end, &ul);
4268 fputc_filtered ('\n', stream);
4269 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4270 start, data, data + ul, indent + 2,
4271 all, per_cu);
4272 data += ul;
4273 continue;
4274
4275 case DW_OP_GNU_parameter_ref:
4276 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4277 data += 4;
4278 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4279 break;
4280
4281 case DW_OP_GNU_addr_index:
4282 data = safe_read_uleb128 (data, end, &ul);
4283 ul = dwarf2_read_addr_index (per_cu, ul);
4284 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4285 break;
4286 case DW_OP_GNU_const_index:
4287 data = safe_read_uleb128 (data, end, &ul);
4288 ul = dwarf2_read_addr_index (per_cu, ul);
4289 fprintf_filtered (stream, " %s", pulongest (ul));
4290 break;
4291 }
4292
4293 fprintf_filtered (stream, "\n");
4294 }
4295
4296 return data;
4297 }
4298
4299 /* Describe a single location, which may in turn consist of multiple
4300 pieces. */
4301
4302 static void
4303 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4304 struct ui_file *stream,
4305 const gdb_byte *data, size_t size,
4306 struct objfile *objfile, unsigned int addr_size,
4307 int offset_size, struct dwarf2_per_cu_data *per_cu)
4308 {
4309 const gdb_byte *end = data + size;
4310 int first_piece = 1, bad = 0;
4311
4312 while (data < end)
4313 {
4314 const gdb_byte *here = data;
4315 int disassemble = 1;
4316
4317 if (first_piece)
4318 first_piece = 0;
4319 else
4320 fprintf_filtered (stream, _(", and "));
4321
4322 if (!dwarf_always_disassemble)
4323 {
4324 data = locexpr_describe_location_piece (symbol, stream,
4325 addr, objfile, per_cu,
4326 data, end, addr_size);
4327 /* If we printed anything, or if we have an empty piece,
4328 then don't disassemble. */
4329 if (data != here
4330 || data[0] == DW_OP_piece
4331 || data[0] == DW_OP_bit_piece)
4332 disassemble = 0;
4333 }
4334 if (disassemble)
4335 {
4336 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4337 data = disassemble_dwarf_expression (stream,
4338 get_objfile_arch (objfile),
4339 addr_size, offset_size, data,
4340 data, end, 0,
4341 dwarf_always_disassemble,
4342 per_cu);
4343 }
4344
4345 if (data < end)
4346 {
4347 int empty = data == here;
4348
4349 if (disassemble)
4350 fprintf_filtered (stream, " ");
4351 if (data[0] == DW_OP_piece)
4352 {
4353 uint64_t bytes;
4354
4355 data = safe_read_uleb128 (data + 1, end, &bytes);
4356
4357 if (empty)
4358 fprintf_filtered (stream, _("an empty %s-byte piece"),
4359 pulongest (bytes));
4360 else
4361 fprintf_filtered (stream, _(" [%s-byte piece]"),
4362 pulongest (bytes));
4363 }
4364 else if (data[0] == DW_OP_bit_piece)
4365 {
4366 uint64_t bits, offset;
4367
4368 data = safe_read_uleb128 (data + 1, end, &bits);
4369 data = safe_read_uleb128 (data, end, &offset);
4370
4371 if (empty)
4372 fprintf_filtered (stream,
4373 _("an empty %s-bit piece"),
4374 pulongest (bits));
4375 else
4376 fprintf_filtered (stream,
4377 _(" [%s-bit piece, offset %s bits]"),
4378 pulongest (bits), pulongest (offset));
4379 }
4380 else
4381 {
4382 bad = 1;
4383 break;
4384 }
4385 }
4386 }
4387
4388 if (bad || data > end)
4389 error (_("Corrupted DWARF2 expression for \"%s\"."),
4390 SYMBOL_PRINT_NAME (symbol));
4391 }
4392
4393 /* Print a natural-language description of SYMBOL to STREAM. This
4394 version is for a symbol with a single location. */
4395
4396 static void
4397 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4398 struct ui_file *stream)
4399 {
4400 struct dwarf2_locexpr_baton *dlbaton
4401 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4402 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4403 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4404 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4405
4406 locexpr_describe_location_1 (symbol, addr, stream,
4407 dlbaton->data, dlbaton->size,
4408 objfile, addr_size, offset_size,
4409 dlbaton->per_cu);
4410 }
4411
4412 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4413 any necessary bytecode in AX. */
4414
4415 static void
4416 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4417 struct agent_expr *ax, struct axs_value *value)
4418 {
4419 struct dwarf2_locexpr_baton *dlbaton
4420 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4421 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4422
4423 if (dlbaton->size == 0)
4424 value->optimized_out = 1;
4425 else
4426 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4427 dlbaton->data, dlbaton->data + dlbaton->size,
4428 dlbaton->per_cu);
4429 }
4430
4431 /* symbol_computed_ops 'generate_c_location' method. */
4432
4433 static void
4434 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4435 struct gdbarch *gdbarch,
4436 unsigned char *registers_used,
4437 CORE_ADDR pc, const char *result_name)
4438 {
4439 struct dwarf2_locexpr_baton *dlbaton
4440 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4441 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4442
4443 if (dlbaton->size == 0)
4444 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4445
4446 compile_dwarf_expr_to_c (stream, result_name,
4447 sym, pc, gdbarch, registers_used, addr_size,
4448 dlbaton->data, dlbaton->data + dlbaton->size,
4449 dlbaton->per_cu);
4450 }
4451
4452 /* The set of location functions used with the DWARF-2 expression
4453 evaluator. */
4454 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4455 locexpr_read_variable,
4456 locexpr_read_variable_at_entry,
4457 locexpr_get_symbol_read_needs,
4458 locexpr_describe_location,
4459 0, /* location_has_loclist */
4460 locexpr_tracepoint_var_ref,
4461 locexpr_generate_c_location
4462 };
4463
4464
4465 /* Wrapper functions for location lists. These generally find
4466 the appropriate location expression and call something above. */
4467
4468 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4469 evaluator to calculate the location. */
4470 static struct value *
4471 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4472 {
4473 struct dwarf2_loclist_baton *dlbaton
4474 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4475 struct value *val;
4476 const gdb_byte *data;
4477 size_t size;
4478 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4479
4480 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4481 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4482 dlbaton->per_cu);
4483
4484 return val;
4485 }
4486
4487 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4488 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4489 will be thrown.
4490
4491 Function always returns non-NULL value, it may be marked optimized out if
4492 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4493 if it cannot resolve the parameter for any reason. */
4494
4495 static struct value *
4496 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4497 {
4498 struct dwarf2_loclist_baton *dlbaton
4499 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4500 const gdb_byte *data;
4501 size_t size;
4502 CORE_ADDR pc;
4503
4504 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4505 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4506
4507 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4508 if (data == NULL)
4509 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4510
4511 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4512 }
4513
4514 /* Implementation of get_symbol_read_needs from
4515 symbol_computed_ops. */
4516
4517 static enum symbol_needs_kind
4518 loclist_symbol_needs (struct symbol *symbol)
4519 {
4520 /* If there's a location list, then assume we need to have a frame
4521 to choose the appropriate location expression. With tracking of
4522 global variables this is not necessarily true, but such tracking
4523 is disabled in GCC at the moment until we figure out how to
4524 represent it. */
4525
4526 return SYMBOL_NEEDS_FRAME;
4527 }
4528
4529 /* Print a natural-language description of SYMBOL to STREAM. This
4530 version applies when there is a list of different locations, each
4531 with a specified address range. */
4532
4533 static void
4534 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4535 struct ui_file *stream)
4536 {
4537 struct dwarf2_loclist_baton *dlbaton
4538 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4539 const gdb_byte *loc_ptr, *buf_end;
4540 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4543 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4544 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4545 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4546 /* Adjust base_address for relocatable objects. */
4547 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4548 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4549 int done = 0;
4550
4551 loc_ptr = dlbaton->data;
4552 buf_end = dlbaton->data + dlbaton->size;
4553
4554 fprintf_filtered (stream, _("multi-location:\n"));
4555
4556 /* Iterate through locations until we run out. */
4557 while (!done)
4558 {
4559 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4560 int length;
4561 enum debug_loc_kind kind;
4562 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4563
4564 if (dlbaton->from_dwo)
4565 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4566 loc_ptr, buf_end, &new_ptr,
4567 &low, &high, byte_order);
4568 else
4569 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4570 &low, &high,
4571 byte_order, addr_size,
4572 signed_addr_p);
4573 loc_ptr = new_ptr;
4574 switch (kind)
4575 {
4576 case DEBUG_LOC_END_OF_LIST:
4577 done = 1;
4578 continue;
4579 case DEBUG_LOC_BASE_ADDRESS:
4580 base_address = high + base_offset;
4581 fprintf_filtered (stream, _(" Base address %s"),
4582 paddress (gdbarch, base_address));
4583 continue;
4584 case DEBUG_LOC_START_END:
4585 case DEBUG_LOC_START_LENGTH:
4586 break;
4587 case DEBUG_LOC_BUFFER_OVERFLOW:
4588 case DEBUG_LOC_INVALID_ENTRY:
4589 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4590 SYMBOL_PRINT_NAME (symbol));
4591 default:
4592 gdb_assert_not_reached ("bad debug_loc_kind");
4593 }
4594
4595 /* Otherwise, a location expression entry. */
4596 low += base_address;
4597 high += base_address;
4598
4599 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4600 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4601
4602 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4603 loc_ptr += 2;
4604
4605 /* (It would improve readability to print only the minimum
4606 necessary digits of the second number of the range.) */
4607 fprintf_filtered (stream, _(" Range %s-%s: "),
4608 paddress (gdbarch, low), paddress (gdbarch, high));
4609
4610 /* Now describe this particular location. */
4611 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4612 objfile, addr_size, offset_size,
4613 dlbaton->per_cu);
4614
4615 fprintf_filtered (stream, "\n");
4616
4617 loc_ptr += length;
4618 }
4619 }
4620
4621 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4622 any necessary bytecode in AX. */
4623 static void
4624 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4625 struct agent_expr *ax, struct axs_value *value)
4626 {
4627 struct dwarf2_loclist_baton *dlbaton
4628 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4629 const gdb_byte *data;
4630 size_t size;
4631 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4632
4633 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4634 if (size == 0)
4635 value->optimized_out = 1;
4636 else
4637 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4638 dlbaton->per_cu);
4639 }
4640
4641 /* symbol_computed_ops 'generate_c_location' method. */
4642
4643 static void
4644 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4645 struct gdbarch *gdbarch,
4646 unsigned char *registers_used,
4647 CORE_ADDR pc, const char *result_name)
4648 {
4649 struct dwarf2_loclist_baton *dlbaton
4650 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4651 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4652 const gdb_byte *data;
4653 size_t size;
4654
4655 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4656 if (size == 0)
4657 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4658
4659 compile_dwarf_expr_to_c (stream, result_name,
4660 sym, pc, gdbarch, registers_used, addr_size,
4661 data, data + size,
4662 dlbaton->per_cu);
4663 }
4664
4665 /* The set of location functions used with the DWARF-2 expression
4666 evaluator and location lists. */
4667 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4668 loclist_read_variable,
4669 loclist_read_variable_at_entry,
4670 loclist_symbol_needs,
4671 loclist_describe_location,
4672 1, /* location_has_loclist */
4673 loclist_tracepoint_var_ref,
4674 loclist_generate_c_location
4675 };
4676
4677 /* Provide a prototype to silence -Wmissing-prototypes. */
4678 extern initialize_file_ftype _initialize_dwarf2loc;
4679
4680 void
4681 _initialize_dwarf2loc (void)
4682 {
4683 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4684 &entry_values_debug,
4685 _("Set entry values and tail call frames "
4686 "debugging."),
4687 _("Show entry values and tail call frames "
4688 "debugging."),
4689 _("When non-zero, the process of determining "
4690 "parameter values from function entry point "
4691 "and tail call frames will be printed."),
4692 NULL,
4693 show_entry_values_debug,
4694 &setdebuglist, &showdebuglist);
4695
4696 #if GDB_SELF_TEST
4697 register_self_test (selftests::copy_bitwise_tests);
4698 #endif
4699 }
This page took 0.130188 seconds and 5 git commands to generate.