Split struct symtab into two: struct symtab and compunit_symtab.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The compunit symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *);
1518
1519 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
1522
1523 static struct symbol *new_symbol (struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
1529 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1530 struct dwarf2_cu *);
1531
1532 static void dwarf2_const_value_attr (const struct attribute *attr,
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
1536 struct dwarf2_cu *cu, LONGEST *value,
1537 const gdb_byte **bytes,
1538 struct dwarf2_locexpr_baton **baton);
1539
1540 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1541
1542 static int need_gnat_info (struct dwarf2_cu *);
1543
1544 static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
1546
1547 static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
1550 static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1554 struct dwarf2_cu *);
1555
1556 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1557
1558 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
1560 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1561
1562 static char *typename_concat (struct obstack *obs, const char *prefix,
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
1565
1566 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1567
1568 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
1576 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
1579 static int dwarf2_get_pc_bounds (struct die_info *,
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
1582
1583 static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
1587 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
1590 static void dwarf2_add_field (struct field_info *, struct die_info *,
1591 struct dwarf2_cu *);
1592
1593 static void dwarf2_attach_fields_to_type (struct field_info *,
1594 struct type *, struct dwarf2_cu *);
1595
1596 static void dwarf2_add_member_fn (struct field_info *,
1597 struct die_info *, struct type *,
1598 struct dwarf2_cu *);
1599
1600 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1601 struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1609
1610 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
1641
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
1645
1646 static void process_die (struct die_info *, struct dwarf2_cu *);
1647
1648 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
1650
1651 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652
1653 static const char *dwarf2_full_name (const char *name,
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657 static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
1660 static struct die_info *dwarf2_extension (struct die_info *die,
1661 struct dwarf2_cu **);
1662
1663 static const char *dwarf_tag_name (unsigned int);
1664
1665 static const char *dwarf_attr_name (unsigned int);
1666
1667 static const char *dwarf_form_name (unsigned int);
1668
1669 static char *dwarf_bool_name (unsigned int);
1670
1671 static const char *dwarf_type_encoding_name (unsigned int);
1672
1673 static struct die_info *sibling_die (struct die_info *);
1674
1675 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677 static void dump_die_for_error (struct die_info *);
1678
1679 static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
1681
1682 /*static*/ void dump_die (struct die_info *, int max_level);
1683
1684 static void store_in_ref_table (struct die_info *,
1685 struct dwarf2_cu *);
1686
1687 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1688
1689 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1690
1691 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1692 const struct attribute *,
1693 struct dwarf2_cu **);
1694
1695 static struct die_info *follow_die_ref (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_sig (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706 static struct type *get_DW_AT_signature_type (struct die_info *,
1707 const struct attribute *,
1708 struct dwarf2_cu *);
1709
1710 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1711
1712 static void read_signatured_type (struct signatured_type *);
1713
1714 /* memory allocation interface */
1715
1716 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1717
1718 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1719
1720 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct compunit_symtab *compunit_symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->compunit_symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct compunit_symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->compunit_symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663
2664 return per_cu->v.quick->compunit_symtab;
2665 }
2666
2667 /* Return the CU/TU given its index.
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2675
2676 ...;
2677 }
2678 */
2679
2680 static struct dwarf2_per_cu_data *
2681 dw2_get_cutu (int index)
2682 {
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
2685 index -= dwarf2_per_objfile->n_comp_units;
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691 }
2692
2693 /* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
2696
2697 static struct dwarf2_per_cu_data *
2698 dw2_get_cu (int index)
2699 {
2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2701
2702 return dwarf2_per_objfile->all_comp_units[index];
2703 }
2704
2705 /* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2707
2708 static void
2709 create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
2714 {
2715 offset_type i;
2716
2717 for (i = 0; i < n_elements; i += 2)
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
2729 the_cu->offset.sect_off = offset;
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
2732 the_cu->section = section;
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2737 }
2738 }
2739
2740 /* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2742
2743 static void
2744 create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747 {
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2758
2759 if (dwz_elements == 0)
2760 return;
2761
2762 dwz = dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2765 }
2766
2767 /* Create the signatured type hash table from the index. */
2768
2769 static void
2770 create_signatured_type_table_from_index (struct objfile *objfile,
2771 struct dwarf2_section_info *section,
2772 const gdb_byte *bytes,
2773 offset_type elements)
2774 {
2775 offset_type i;
2776 htab_t sig_types_hash;
2777
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
2781 dwarf2_per_objfile->all_type_units
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
2784
2785 sig_types_hash = allocate_signatured_type_table (objfile);
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
2791 void **slot;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2801 struct signatured_type);
2802 sig_type->signature = signature;
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
2805 sig_type->per_cu.section = section;
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
2814
2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2816 }
2817
2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
2819 }
2820
2821 /* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2823
2824 static void
2825 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826 {
2827 const gdb_byte *iter, *end;
2828 struct obstack temp_obstack;
2829 struct addrmap *mutable_map;
2830 struct cleanup *cleanup;
2831 CORE_ADDR baseaddr;
2832
2833 obstack_init (&temp_obstack);
2834 cleanup = make_cleanup_obstack_free (&temp_obstack);
2835 mutable_map = addrmap_create_mutable (&temp_obstack);
2836
2837 iter = index->address_table;
2838 end = iter + index->address_table_size;
2839
2840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2841
2842 while (iter < end)
2843 {
2844 ULONGEST hi, lo, cu_index;
2845 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2846 iter += 8;
2847 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2850 iter += 4;
2851
2852 if (lo > hi)
2853 {
2854 complaint (&symfile_complaints,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
2856 hex_string (lo), hex_string (hi));
2857 continue;
2858 }
2859
2860 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2861 {
2862 complaint (&symfile_complaints,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index);
2865 continue;
2866 }
2867
2868 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2869 dw2_get_cutu (cu_index));
2870 }
2871
2872 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2873 &objfile->objfile_obstack);
2874 do_cleanups (cleanup);
2875 }
2876
2877 /* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
2881 SYMBOL_HASH_NEXT.
2882
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2884
2885 static hashval_t
2886 mapped_index_string_hash (int index_version, const void *p)
2887 {
2888 const unsigned char *str = (const unsigned char *) p;
2889 hashval_t r = 0;
2890 unsigned char c;
2891
2892 while ((c = *str++) != 0)
2893 {
2894 if (index_version >= 5)
2895 c = tolower (c);
2896 r = r * 67 + c - 113;
2897 }
2898
2899 return r;
2900 }
2901
2902 /* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2905
2906 static int
2907 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2908 offset_type **vec_out)
2909 {
2910 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2911 offset_type hash;
2912 offset_type slot, step;
2913 int (*cmp) (const char *, const char *);
2914
2915 if (current_language->la_language == language_cplus
2916 || current_language->la_language == language_java
2917 || current_language->la_language == language_fortran)
2918 {
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2920 not contain any. */
2921 const char *paren = NULL;
2922
2923 /* Need to handle "(anonymous namespace)". */
2924 if (*name != '(')
2925 paren = strchr (name, '(');
2926
2927 if (paren)
2928 {
2929 char *dup;
2930
2931 dup = xmalloc (paren - name + 1);
2932 memcpy (dup, name, paren - name);
2933 dup[paren - name] = 0;
2934
2935 make_cleanup (xfree, dup);
2936 name = dup;
2937 }
2938 }
2939
2940 /* Index version 4 did not support case insensitive searches. But the
2941 indices for case insensitive languages are built in lowercase, therefore
2942 simulate our NAME being searched is also lowercased. */
2943 hash = mapped_index_string_hash ((index->version == 4
2944 && case_sensitivity == case_sensitive_off
2945 ? 5 : index->version),
2946 name);
2947
2948 slot = hash & (index->symbol_table_slots - 1);
2949 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2950 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2951
2952 for (;;)
2953 {
2954 /* Convert a slot number to an offset into the table. */
2955 offset_type i = 2 * slot;
2956 const char *str;
2957 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2958 {
2959 do_cleanups (back_to);
2960 return 0;
2961 }
2962
2963 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2964 if (!cmp (name, str))
2965 {
2966 *vec_out = (offset_type *) (index->constant_pool
2967 + MAYBE_SWAP (index->symbol_table[i + 1]));
2968 do_cleanups (back_to);
2969 return 1;
2970 }
2971
2972 slot = (slot + step) & (index->symbol_table_slots - 1);
2973 }
2974 }
2975
2976 /* A helper function that reads the .gdb_index from SECTION and fills
2977 in MAP. FILENAME is the name of the file containing the section;
2978 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2979 ok to use deprecated sections.
2980
2981 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2982 out parameters that are filled in with information about the CU and
2983 TU lists in the section.
2984
2985 Returns 1 if all went well, 0 otherwise. */
2986
2987 static int
2988 read_index_from_section (struct objfile *objfile,
2989 const char *filename,
2990 int deprecated_ok,
2991 struct dwarf2_section_info *section,
2992 struct mapped_index *map,
2993 const gdb_byte **cu_list,
2994 offset_type *cu_list_elements,
2995 const gdb_byte **types_list,
2996 offset_type *types_list_elements)
2997 {
2998 const gdb_byte *addr;
2999 offset_type version;
3000 offset_type *metadata;
3001 int i;
3002
3003 if (dwarf2_section_empty_p (section))
3004 return 0;
3005
3006 /* Older elfutils strip versions could keep the section in the main
3007 executable while splitting it for the separate debug info file. */
3008 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3009 return 0;
3010
3011 dwarf2_read_section (objfile, section);
3012
3013 addr = section->buffer;
3014 /* Version check. */
3015 version = MAYBE_SWAP (*(offset_type *) addr);
3016 /* Versions earlier than 3 emitted every copy of a psymbol. This
3017 causes the index to behave very poorly for certain requests. Version 3
3018 contained incomplete addrmap. So, it seems better to just ignore such
3019 indices. */
3020 if (version < 4)
3021 {
3022 static int warning_printed = 0;
3023 if (!warning_printed)
3024 {
3025 warning (_("Skipping obsolete .gdb_index section in %s."),
3026 filename);
3027 warning_printed = 1;
3028 }
3029 return 0;
3030 }
3031 /* Index version 4 uses a different hash function than index version
3032 5 and later.
3033
3034 Versions earlier than 6 did not emit psymbols for inlined
3035 functions. Using these files will cause GDB not to be able to
3036 set breakpoints on inlined functions by name, so we ignore these
3037 indices unless the user has done
3038 "set use-deprecated-index-sections on". */
3039 if (version < 6 && !deprecated_ok)
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("\
3045 Skipping deprecated .gdb_index section in %s.\n\
3046 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3047 to use the section anyway."),
3048 filename);
3049 warning_printed = 1;
3050 }
3051 return 0;
3052 }
3053 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3054 of the TU (for symbols coming from TUs),
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3056 Plus gold-generated indices can have duplicate entries for global symbols,
3057 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3058 These are just performance bugs, and we can't distinguish gdb-generated
3059 indices from gold-generated ones, so issue no warning here. */
3060
3061 /* Indexes with higher version than the one supported by GDB may be no
3062 longer backward compatible. */
3063 if (version > 8)
3064 return 0;
3065
3066 map->version = version;
3067 map->total_size = section->size;
3068
3069 metadata = (offset_type *) (addr + sizeof (offset_type));
3070
3071 i = 0;
3072 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3073 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3074 / 8);
3075 ++i;
3076
3077 *types_list = addr + MAYBE_SWAP (metadata[i]);
3078 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3079 - MAYBE_SWAP (metadata[i]))
3080 / 8);
3081 ++i;
3082
3083 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3084 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3085 - MAYBE_SWAP (metadata[i]));
3086 ++i;
3087
3088 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3089 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3090 - MAYBE_SWAP (metadata[i]))
3091 / (2 * sizeof (offset_type)));
3092 ++i;
3093
3094 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3095
3096 return 1;
3097 }
3098
3099
3100 /* Read the index file. If everything went ok, initialize the "quick"
3101 elements of all the CUs and return 1. Otherwise, return 0. */
3102
3103 static int
3104 dwarf2_read_index (struct objfile *objfile)
3105 {
3106 struct mapped_index local_map, *map;
3107 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3108 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3109 struct dwz_file *dwz;
3110
3111 if (!read_index_from_section (objfile, objfile_name (objfile),
3112 use_deprecated_index_sections,
3113 &dwarf2_per_objfile->gdb_index, &local_map,
3114 &cu_list, &cu_list_elements,
3115 &types_list, &types_list_elements))
3116 return 0;
3117
3118 /* Don't use the index if it's empty. */
3119 if (local_map.symbol_table_slots == 0)
3120 return 0;
3121
3122 /* If there is a .dwz file, read it so we can get its CU list as
3123 well. */
3124 dwz = dwarf2_get_dwz_file ();
3125 if (dwz != NULL)
3126 {
3127 struct mapped_index dwz_map;
3128 const gdb_byte *dwz_types_ignore;
3129 offset_type dwz_types_elements_ignore;
3130
3131 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3132 1,
3133 &dwz->gdb_index, &dwz_map,
3134 &dwz_list, &dwz_list_elements,
3135 &dwz_types_ignore,
3136 &dwz_types_elements_ignore))
3137 {
3138 warning (_("could not read '.gdb_index' section from %s; skipping"),
3139 bfd_get_filename (dwz->dwz_bfd));
3140 return 0;
3141 }
3142 }
3143
3144 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3145 dwz_list_elements);
3146
3147 if (types_list_elements)
3148 {
3149 struct dwarf2_section_info *section;
3150
3151 /* We can only handle a single .debug_types when we have an
3152 index. */
3153 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3154 return 0;
3155
3156 section = VEC_index (dwarf2_section_info_def,
3157 dwarf2_per_objfile->types, 0);
3158
3159 create_signatured_type_table_from_index (objfile, section, types_list,
3160 types_list_elements);
3161 }
3162
3163 create_addrmap_from_index (objfile, &local_map);
3164
3165 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3166 *map = local_map;
3167
3168 dwarf2_per_objfile->index_table = map;
3169 dwarf2_per_objfile->using_index = 1;
3170 dwarf2_per_objfile->quick_file_names_table =
3171 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3172
3173 return 1;
3174 }
3175
3176 /* A helper for the "quick" functions which sets the global
3177 dwarf2_per_objfile according to OBJFILE. */
3178
3179 static void
3180 dw2_setup (struct objfile *objfile)
3181 {
3182 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3183 gdb_assert (dwarf2_per_objfile);
3184 }
3185
3186 /* die_reader_func for dw2_get_file_names. */
3187
3188 static void
3189 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3190 const gdb_byte *info_ptr,
3191 struct die_info *comp_unit_die,
3192 int has_children,
3193 void *data)
3194 {
3195 struct dwarf2_cu *cu = reader->cu;
3196 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3197 struct objfile *objfile = dwarf2_per_objfile->objfile;
3198 struct dwarf2_per_cu_data *lh_cu;
3199 struct line_header *lh;
3200 struct attribute *attr;
3201 int i;
3202 const char *name, *comp_dir;
3203 void **slot;
3204 struct quick_file_names *qfn;
3205 unsigned int line_offset;
3206
3207 gdb_assert (! this_cu->is_debug_types);
3208
3209 /* Our callers never want to match partial units -- instead they
3210 will match the enclosing full CU. */
3211 if (comp_unit_die->tag == DW_TAG_partial_unit)
3212 {
3213 this_cu->v.quick->no_file_data = 1;
3214 return;
3215 }
3216
3217 lh_cu = this_cu;
3218 lh = NULL;
3219 slot = NULL;
3220 line_offset = 0;
3221
3222 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3223 if (attr)
3224 {
3225 struct quick_file_names find_entry;
3226
3227 line_offset = DW_UNSND (attr);
3228
3229 /* We may have already read in this line header (TU line header sharing).
3230 If we have we're done. */
3231 find_entry.hash.dwo_unit = cu->dwo_unit;
3232 find_entry.hash.line_offset.sect_off = line_offset;
3233 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3234 &find_entry, INSERT);
3235 if (*slot != NULL)
3236 {
3237 lh_cu->v.quick->file_names = *slot;
3238 return;
3239 }
3240
3241 lh = dwarf_decode_line_header (line_offset, cu);
3242 }
3243 if (lh == NULL)
3244 {
3245 lh_cu->v.quick->no_file_data = 1;
3246 return;
3247 }
3248
3249 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3250 qfn->hash.dwo_unit = cu->dwo_unit;
3251 qfn->hash.line_offset.sect_off = line_offset;
3252 gdb_assert (slot != NULL);
3253 *slot = qfn;
3254
3255 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3256
3257 qfn->num_file_names = lh->num_file_names;
3258 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3259 lh->num_file_names * sizeof (char *));
3260 for (i = 0; i < lh->num_file_names; ++i)
3261 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3262 qfn->real_names = NULL;
3263
3264 free_line_header (lh);
3265
3266 lh_cu->v.quick->file_names = qfn;
3267 }
3268
3269 /* A helper for the "quick" functions which attempts to read the line
3270 table for THIS_CU. */
3271
3272 static struct quick_file_names *
3273 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3274 {
3275 /* This should never be called for TUs. */
3276 gdb_assert (! this_cu->is_debug_types);
3277 /* Nor type unit groups. */
3278 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3279
3280 if (this_cu->v.quick->file_names != NULL)
3281 return this_cu->v.quick->file_names;
3282 /* If we know there is no line data, no point in looking again. */
3283 if (this_cu->v.quick->no_file_data)
3284 return NULL;
3285
3286 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3287
3288 if (this_cu->v.quick->no_file_data)
3289 return NULL;
3290 return this_cu->v.quick->file_names;
3291 }
3292
3293 /* A helper for the "quick" functions which computes and caches the
3294 real path for a given file name from the line table. */
3295
3296 static const char *
3297 dw2_get_real_path (struct objfile *objfile,
3298 struct quick_file_names *qfn, int index)
3299 {
3300 if (qfn->real_names == NULL)
3301 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3302 qfn->num_file_names, const char *);
3303
3304 if (qfn->real_names[index] == NULL)
3305 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3306
3307 return qfn->real_names[index];
3308 }
3309
3310 static struct symtab *
3311 dw2_find_last_source_symtab (struct objfile *objfile)
3312 {
3313 struct compunit_symtab *cust;
3314 int index;
3315
3316 dw2_setup (objfile);
3317 index = dwarf2_per_objfile->n_comp_units - 1;
3318 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3319 if (cust == NULL)
3320 return NULL;
3321 return compunit_primary_filetab (cust);
3322 }
3323
3324 /* Traversal function for dw2_forget_cached_source_info. */
3325
3326 static int
3327 dw2_free_cached_file_names (void **slot, void *info)
3328 {
3329 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3330
3331 if (file_data->real_names)
3332 {
3333 int i;
3334
3335 for (i = 0; i < file_data->num_file_names; ++i)
3336 {
3337 xfree ((void*) file_data->real_names[i]);
3338 file_data->real_names[i] = NULL;
3339 }
3340 }
3341
3342 return 1;
3343 }
3344
3345 static void
3346 dw2_forget_cached_source_info (struct objfile *objfile)
3347 {
3348 dw2_setup (objfile);
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3351 dw2_free_cached_file_names, NULL);
3352 }
3353
3354 /* Helper function for dw2_map_symtabs_matching_filename that expands
3355 the symtabs and calls the iterator. */
3356
3357 static int
3358 dw2_map_expand_apply (struct objfile *objfile,
3359 struct dwarf2_per_cu_data *per_cu,
3360 const char *name, const char *real_path,
3361 int (*callback) (struct symtab *, void *),
3362 void *data)
3363 {
3364 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3365
3366 /* Don't visit already-expanded CUs. */
3367 if (per_cu->v.quick->compunit_symtab)
3368 return 0;
3369
3370 /* This may expand more than one symtab, and we want to iterate over
3371 all of them. */
3372 dw2_instantiate_symtab (per_cu);
3373
3374 return iterate_over_some_symtabs (name, real_path, callback, data,
3375 objfile->compunit_symtabs, last_made);
3376 }
3377
3378 /* Implementation of the map_symtabs_matching_filename method. */
3379
3380 static int
3381 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3382 const char *real_path,
3383 int (*callback) (struct symtab *, void *),
3384 void *data)
3385 {
3386 int i;
3387 const char *name_basename = lbasename (name);
3388
3389 dw2_setup (objfile);
3390
3391 /* The rule is CUs specify all the files, including those used by
3392 any TU, so there's no need to scan TUs here. */
3393
3394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3395 {
3396 int j;
3397 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3398 struct quick_file_names *file_data;
3399
3400 /* We only need to look at symtabs not already expanded. */
3401 if (per_cu->v.quick->compunit_symtab)
3402 continue;
3403
3404 file_data = dw2_get_file_names (per_cu);
3405 if (file_data == NULL)
3406 continue;
3407
3408 for (j = 0; j < file_data->num_file_names; ++j)
3409 {
3410 const char *this_name = file_data->file_names[j];
3411 const char *this_real_name;
3412
3413 if (compare_filenames_for_search (this_name, name))
3414 {
3415 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3416 callback, data))
3417 return 1;
3418 continue;
3419 }
3420
3421 /* Before we invoke realpath, which can get expensive when many
3422 files are involved, do a quick comparison of the basenames. */
3423 if (! basenames_may_differ
3424 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3425 continue;
3426
3427 this_real_name = dw2_get_real_path (objfile, file_data, j);
3428 if (compare_filenames_for_search (this_real_name, name))
3429 {
3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3431 callback, data))
3432 return 1;
3433 continue;
3434 }
3435
3436 if (real_path != NULL)
3437 {
3438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3439 gdb_assert (IS_ABSOLUTE_PATH (name));
3440 if (this_real_name != NULL
3441 && FILENAME_CMP (real_path, this_real_name) == 0)
3442 {
3443 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3444 callback, data))
3445 return 1;
3446 continue;
3447 }
3448 }
3449 }
3450 }
3451
3452 return 0;
3453 }
3454
3455 /* Struct used to manage iterating over all CUs looking for a symbol. */
3456
3457 struct dw2_symtab_iterator
3458 {
3459 /* The internalized form of .gdb_index. */
3460 struct mapped_index *index;
3461 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3462 int want_specific_block;
3463 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3464 Unused if !WANT_SPECIFIC_BLOCK. */
3465 int block_index;
3466 /* The kind of symbol we're looking for. */
3467 domain_enum domain;
3468 /* The list of CUs from the index entry of the symbol,
3469 or NULL if not found. */
3470 offset_type *vec;
3471 /* The next element in VEC to look at. */
3472 int next;
3473 /* The number of elements in VEC, or zero if there is no match. */
3474 int length;
3475 /* Have we seen a global version of the symbol?
3476 If so we can ignore all further global instances.
3477 This is to work around gold/15646, inefficient gold-generated
3478 indices. */
3479 int global_seen;
3480 };
3481
3482 /* Initialize the index symtab iterator ITER.
3483 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3484 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3485
3486 static void
3487 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3488 struct mapped_index *index,
3489 int want_specific_block,
3490 int block_index,
3491 domain_enum domain,
3492 const char *name)
3493 {
3494 iter->index = index;
3495 iter->want_specific_block = want_specific_block;
3496 iter->block_index = block_index;
3497 iter->domain = domain;
3498 iter->next = 0;
3499 iter->global_seen = 0;
3500
3501 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3502 iter->length = MAYBE_SWAP (*iter->vec);
3503 else
3504 {
3505 iter->vec = NULL;
3506 iter->length = 0;
3507 }
3508 }
3509
3510 /* Return the next matching CU or NULL if there are no more. */
3511
3512 static struct dwarf2_per_cu_data *
3513 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3514 {
3515 for ( ; iter->next < iter->length; ++iter->next)
3516 {
3517 offset_type cu_index_and_attrs =
3518 MAYBE_SWAP (iter->vec[iter->next + 1]);
3519 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3520 struct dwarf2_per_cu_data *per_cu;
3521 int want_static = iter->block_index != GLOBAL_BLOCK;
3522 /* This value is only valid for index versions >= 7. */
3523 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3524 gdb_index_symbol_kind symbol_kind =
3525 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3526 /* Only check the symbol attributes if they're present.
3527 Indices prior to version 7 don't record them,
3528 and indices >= 7 may elide them for certain symbols
3529 (gold does this). */
3530 int attrs_valid =
3531 (iter->index->version >= 7
3532 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3533
3534 /* Don't crash on bad data. */
3535 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3536 + dwarf2_per_objfile->n_type_units))
3537 {
3538 complaint (&symfile_complaints,
3539 _(".gdb_index entry has bad CU index"
3540 " [in module %s]"),
3541 objfile_name (dwarf2_per_objfile->objfile));
3542 continue;
3543 }
3544
3545 per_cu = dw2_get_cutu (cu_index);
3546
3547 /* Skip if already read in. */
3548 if (per_cu->v.quick->compunit_symtab)
3549 continue;
3550
3551 /* Check static vs global. */
3552 if (attrs_valid)
3553 {
3554 if (iter->want_specific_block
3555 && want_static != is_static)
3556 continue;
3557 /* Work around gold/15646. */
3558 if (!is_static && iter->global_seen)
3559 continue;
3560 if (!is_static)
3561 iter->global_seen = 1;
3562 }
3563
3564 /* Only check the symbol's kind if it has one. */
3565 if (attrs_valid)
3566 {
3567 switch (iter->domain)
3568 {
3569 case VAR_DOMAIN:
3570 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3571 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3572 /* Some types are also in VAR_DOMAIN. */
3573 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3574 continue;
3575 break;
3576 case STRUCT_DOMAIN:
3577 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3578 continue;
3579 break;
3580 case LABEL_DOMAIN:
3581 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3582 continue;
3583 break;
3584 default:
3585 break;
3586 }
3587 }
3588
3589 ++iter->next;
3590 return per_cu;
3591 }
3592
3593 return NULL;
3594 }
3595
3596 static struct compunit_symtab *
3597 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3598 const char *name, domain_enum domain)
3599 {
3600 struct compunit_symtab *stab_best = NULL;
3601 struct mapped_index *index;
3602
3603 dw2_setup (objfile);
3604
3605 index = dwarf2_per_objfile->index_table;
3606
3607 /* index is NULL if OBJF_READNOW. */
3608 if (index)
3609 {
3610 struct dw2_symtab_iterator iter;
3611 struct dwarf2_per_cu_data *per_cu;
3612
3613 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3614
3615 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3616 {
3617 struct symbol *sym = NULL;
3618 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3619 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3621
3622 /* Some caution must be observed with overloaded functions
3623 and methods, since the index will not contain any overload
3624 information (but NAME might contain it). */
3625 sym = block_lookup_symbol (block, name, domain);
3626
3627 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3628 {
3629 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3630 return stab;
3631
3632 stab_best = stab;
3633 }
3634
3635 /* Keep looking through other CUs. */
3636 }
3637 }
3638
3639 return stab_best;
3640 }
3641
3642 static void
3643 dw2_print_stats (struct objfile *objfile)
3644 {
3645 int i, total, count;
3646
3647 dw2_setup (objfile);
3648 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3649 count = 0;
3650 for (i = 0; i < total; ++i)
3651 {
3652 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3653
3654 if (!per_cu->v.quick->compunit_symtab)
3655 ++count;
3656 }
3657 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3658 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3659 }
3660
3661 /* This dumps minimal information about the index.
3662 It is called via "mt print objfiles".
3663 One use is to verify .gdb_index has been loaded by the
3664 gdb.dwarf2/gdb-index.exp testcase. */
3665
3666 static void
3667 dw2_dump (struct objfile *objfile)
3668 {
3669 dw2_setup (objfile);
3670 gdb_assert (dwarf2_per_objfile->using_index);
3671 printf_filtered (".gdb_index:");
3672 if (dwarf2_per_objfile->index_table != NULL)
3673 {
3674 printf_filtered (" version %d\n",
3675 dwarf2_per_objfile->index_table->version);
3676 }
3677 else
3678 printf_filtered (" faked for \"readnow\"\n");
3679 printf_filtered ("\n");
3680 }
3681
3682 static void
3683 dw2_relocate (struct objfile *objfile,
3684 const struct section_offsets *new_offsets,
3685 const struct section_offsets *delta)
3686 {
3687 /* There's nothing to relocate here. */
3688 }
3689
3690 static void
3691 dw2_expand_symtabs_for_function (struct objfile *objfile,
3692 const char *func_name)
3693 {
3694 struct mapped_index *index;
3695
3696 dw2_setup (objfile);
3697
3698 index = dwarf2_per_objfile->index_table;
3699
3700 /* index is NULL if OBJF_READNOW. */
3701 if (index)
3702 {
3703 struct dw2_symtab_iterator iter;
3704 struct dwarf2_per_cu_data *per_cu;
3705
3706 /* Note: It doesn't matter what we pass for block_index here. */
3707 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3708 func_name);
3709
3710 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3711 dw2_instantiate_symtab (per_cu);
3712 }
3713 }
3714
3715 static void
3716 dw2_expand_all_symtabs (struct objfile *objfile)
3717 {
3718 int i;
3719
3720 dw2_setup (objfile);
3721
3722 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3723 + dwarf2_per_objfile->n_type_units); ++i)
3724 {
3725 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3726
3727 dw2_instantiate_symtab (per_cu);
3728 }
3729 }
3730
3731 static void
3732 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3733 const char *fullname)
3734 {
3735 int i;
3736
3737 dw2_setup (objfile);
3738
3739 /* We don't need to consider type units here.
3740 This is only called for examining code, e.g. expand_line_sal.
3741 There can be an order of magnitude (or more) more type units
3742 than comp units, and we avoid them if we can. */
3743
3744 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3745 {
3746 int j;
3747 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3748 struct quick_file_names *file_data;
3749
3750 /* We only need to look at symtabs not already expanded. */
3751 if (per_cu->v.quick->compunit_symtab)
3752 continue;
3753
3754 file_data = dw2_get_file_names (per_cu);
3755 if (file_data == NULL)
3756 continue;
3757
3758 for (j = 0; j < file_data->num_file_names; ++j)
3759 {
3760 const char *this_fullname = file_data->file_names[j];
3761
3762 if (filename_cmp (this_fullname, fullname) == 0)
3763 {
3764 dw2_instantiate_symtab (per_cu);
3765 break;
3766 }
3767 }
3768 }
3769 }
3770
3771 static void
3772 dw2_map_matching_symbols (struct objfile *objfile,
3773 const char * name, domain_enum namespace,
3774 int global,
3775 int (*callback) (struct block *,
3776 struct symbol *, void *),
3777 void *data, symbol_compare_ftype *match,
3778 symbol_compare_ftype *ordered_compare)
3779 {
3780 /* Currently unimplemented; used for Ada. The function can be called if the
3781 current language is Ada for a non-Ada objfile using GNU index. As Ada
3782 does not look for non-Ada symbols this function should just return. */
3783 }
3784
3785 static void
3786 dw2_expand_symtabs_matching
3787 (struct objfile *objfile,
3788 expand_symtabs_file_matcher_ftype *file_matcher,
3789 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3790 enum search_domain kind,
3791 void *data)
3792 {
3793 int i;
3794 offset_type iter;
3795 struct mapped_index *index;
3796
3797 dw2_setup (objfile);
3798
3799 /* index_table is NULL if OBJF_READNOW. */
3800 if (!dwarf2_per_objfile->index_table)
3801 return;
3802 index = dwarf2_per_objfile->index_table;
3803
3804 if (file_matcher != NULL)
3805 {
3806 struct cleanup *cleanup;
3807 htab_t visited_found, visited_not_found;
3808
3809 visited_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 cleanup = make_cleanup_htab_delete (visited_found);
3813 visited_not_found = htab_create_alloc (10,
3814 htab_hash_pointer, htab_eq_pointer,
3815 NULL, xcalloc, xfree);
3816 make_cleanup_htab_delete (visited_not_found);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3822 {
3823 int j;
3824 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3825 struct quick_file_names *file_data;
3826 void **slot;
3827
3828 per_cu->v.quick->mark = 0;
3829
3830 /* We only need to look at symtabs not already expanded. */
3831 if (per_cu->v.quick->compunit_symtab)
3832 continue;
3833
3834 file_data = dw2_get_file_names (per_cu);
3835 if (file_data == NULL)
3836 continue;
3837
3838 if (htab_find (visited_not_found, file_data) != NULL)
3839 continue;
3840 else if (htab_find (visited_found, file_data) != NULL)
3841 {
3842 per_cu->v.quick->mark = 1;
3843 continue;
3844 }
3845
3846 for (j = 0; j < file_data->num_file_names; ++j)
3847 {
3848 const char *this_real_name;
3849
3850 if (file_matcher (file_data->file_names[j], data, 0))
3851 {
3852 per_cu->v.quick->mark = 1;
3853 break;
3854 }
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (!basenames_may_differ
3859 && !file_matcher (lbasename (file_data->file_names[j]),
3860 data, 1))
3861 continue;
3862
3863 this_real_name = dw2_get_real_path (objfile, file_data, j);
3864 if (file_matcher (this_real_name, data, 0))
3865 {
3866 per_cu->v.quick->mark = 1;
3867 break;
3868 }
3869 }
3870
3871 slot = htab_find_slot (per_cu->v.quick->mark
3872 ? visited_found
3873 : visited_not_found,
3874 file_data, INSERT);
3875 *slot = file_data;
3876 }
3877
3878 do_cleanups (cleanup);
3879 }
3880
3881 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3882 {
3883 offset_type idx = 2 * iter;
3884 const char *name;
3885 offset_type *vec, vec_len, vec_idx;
3886 int global_seen = 0;
3887
3888 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3889 continue;
3890
3891 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3892
3893 if (! (*symbol_matcher) (name, data))
3894 continue;
3895
3896 /* The name was matched, now expand corresponding CUs that were
3897 marked. */
3898 vec = (offset_type *) (index->constant_pool
3899 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3900 vec_len = MAYBE_SWAP (vec[0]);
3901 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3902 {
3903 struct dwarf2_per_cu_data *per_cu;
3904 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3905 /* This value is only valid for index versions >= 7. */
3906 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3907 gdb_index_symbol_kind symbol_kind =
3908 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3909 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3910 /* Only check the symbol attributes if they're present.
3911 Indices prior to version 7 don't record them,
3912 and indices >= 7 may elide them for certain symbols
3913 (gold does this). */
3914 int attrs_valid =
3915 (index->version >= 7
3916 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3917
3918 /* Work around gold/15646. */
3919 if (attrs_valid)
3920 {
3921 if (!is_static && global_seen)
3922 continue;
3923 if (!is_static)
3924 global_seen = 1;
3925 }
3926
3927 /* Only check the symbol's kind if it has one. */
3928 if (attrs_valid)
3929 {
3930 switch (kind)
3931 {
3932 case VARIABLES_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3934 continue;
3935 break;
3936 case FUNCTIONS_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3938 continue;
3939 break;
3940 case TYPES_DOMAIN:
3941 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3942 continue;
3943 break;
3944 default:
3945 break;
3946 }
3947 }
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3951 + dwarf2_per_objfile->n_type_units))
3952 {
3953 complaint (&symfile_complaints,
3954 _(".gdb_index entry has bad CU index"
3955 " [in module %s]"), objfile_name (objfile));
3956 continue;
3957 }
3958
3959 per_cu = dw2_get_cutu (cu_index);
3960 if (file_matcher == NULL || per_cu->v.quick->mark)
3961 dw2_instantiate_symtab (per_cu);
3962 }
3963 }
3964 }
3965
3966 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
3967 symtab. */
3968
3969 static struct compunit_symtab *
3970 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3971 CORE_ADDR pc)
3972 {
3973 int i;
3974
3975 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3976 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3977 return cust;
3978
3979 if (cust->includes == NULL)
3980 return NULL;
3981
3982 for (i = 0; cust->includes[i]; ++i)
3983 {
3984 struct compunit_symtab *s = cust->includes[i];
3985
3986 s = recursively_find_pc_sect_compunit_symtab (s, pc);
3987 if (s != NULL)
3988 return s;
3989 }
3990
3991 return NULL;
3992 }
3993
3994 static struct compunit_symtab *
3995 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3996 struct bound_minimal_symbol msymbol,
3997 CORE_ADDR pc,
3998 struct obj_section *section,
3999 int warn_if_readin)
4000 {
4001 struct dwarf2_per_cu_data *data;
4002 struct compunit_symtab *result;
4003
4004 dw2_setup (objfile);
4005
4006 if (!objfile->psymtabs_addrmap)
4007 return NULL;
4008
4009 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4010 if (!data)
4011 return NULL;
4012
4013 if (warn_if_readin && data->v.quick->compunit_symtab)
4014 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4015 paddress (get_objfile_arch (objfile), pc));
4016
4017 result
4018 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4019 pc);
4020 gdb_assert (result != NULL);
4021 return result;
4022 }
4023
4024 static void
4025 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4026 void *data, int need_fullname)
4027 {
4028 int i;
4029 struct cleanup *cleanup;
4030 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4031 NULL, xcalloc, xfree);
4032
4033 cleanup = make_cleanup_htab_delete (visited);
4034 dw2_setup (objfile);
4035
4036 /* The rule is CUs specify all the files, including those used by
4037 any TU, so there's no need to scan TUs here.
4038 We can ignore file names coming from already-expanded CUs. */
4039
4040 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4041 {
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4043
4044 if (per_cu->v.quick->compunit_symtab)
4045 {
4046 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4047 INSERT);
4048
4049 *slot = per_cu->v.quick->file_names;
4050 }
4051 }
4052
4053 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4054 {
4055 int j;
4056 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4057 struct quick_file_names *file_data;
4058 void **slot;
4059
4060 /* We only need to look at symtabs not already expanded. */
4061 if (per_cu->v.quick->compunit_symtab)
4062 continue;
4063
4064 file_data = dw2_get_file_names (per_cu);
4065 if (file_data == NULL)
4066 continue;
4067
4068 slot = htab_find_slot (visited, file_data, INSERT);
4069 if (*slot)
4070 {
4071 /* Already visited. */
4072 continue;
4073 }
4074 *slot = file_data;
4075
4076 for (j = 0; j < file_data->num_file_names; ++j)
4077 {
4078 const char *this_real_name;
4079
4080 if (need_fullname)
4081 this_real_name = dw2_get_real_path (objfile, file_data, j);
4082 else
4083 this_real_name = NULL;
4084 (*fun) (file_data->file_names[j], this_real_name, data);
4085 }
4086 }
4087
4088 do_cleanups (cleanup);
4089 }
4090
4091 static int
4092 dw2_has_symbols (struct objfile *objfile)
4093 {
4094 return 1;
4095 }
4096
4097 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4098 {
4099 dw2_has_symbols,
4100 dw2_find_last_source_symtab,
4101 dw2_forget_cached_source_info,
4102 dw2_map_symtabs_matching_filename,
4103 dw2_lookup_symbol,
4104 dw2_print_stats,
4105 dw2_dump,
4106 dw2_relocate,
4107 dw2_expand_symtabs_for_function,
4108 dw2_expand_all_symtabs,
4109 dw2_expand_symtabs_with_fullname,
4110 dw2_map_matching_symbols,
4111 dw2_expand_symtabs_matching,
4112 dw2_find_pc_sect_compunit_symtab,
4113 dw2_map_symbol_filenames
4114 };
4115
4116 /* Initialize for reading DWARF for this objfile. Return 0 if this
4117 file will use psymtabs, or 1 if using the GNU index. */
4118
4119 int
4120 dwarf2_initialize_objfile (struct objfile *objfile)
4121 {
4122 /* If we're about to read full symbols, don't bother with the
4123 indices. In this case we also don't care if some other debug
4124 format is making psymtabs, because they are all about to be
4125 expanded anyway. */
4126 if ((objfile->flags & OBJF_READNOW))
4127 {
4128 int i;
4129
4130 dwarf2_per_objfile->using_index = 1;
4131 create_all_comp_units (objfile);
4132 create_all_type_units (objfile);
4133 dwarf2_per_objfile->quick_file_names_table =
4134 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4135
4136 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4137 + dwarf2_per_objfile->n_type_units); ++i)
4138 {
4139 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4140
4141 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4142 struct dwarf2_per_cu_quick_data);
4143 }
4144
4145 /* Return 1 so that gdb sees the "quick" functions. However,
4146 these functions will be no-ops because we will have expanded
4147 all symtabs. */
4148 return 1;
4149 }
4150
4151 if (dwarf2_read_index (objfile))
4152 return 1;
4153
4154 return 0;
4155 }
4156
4157 \f
4158
4159 /* Build a partial symbol table. */
4160
4161 void
4162 dwarf2_build_psymtabs (struct objfile *objfile)
4163 {
4164 volatile struct gdb_exception except;
4165
4166 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4167 {
4168 init_psymbol_list (objfile, 1024);
4169 }
4170
4171 TRY_CATCH (except, RETURN_MASK_ERROR)
4172 {
4173 /* This isn't really ideal: all the data we allocate on the
4174 objfile's obstack is still uselessly kept around. However,
4175 freeing it seems unsafe. */
4176 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4177
4178 dwarf2_build_psymtabs_hard (objfile);
4179 discard_cleanups (cleanups);
4180 }
4181 if (except.reason < 0)
4182 exception_print (gdb_stderr, except);
4183 }
4184
4185 /* Return the total length of the CU described by HEADER. */
4186
4187 static unsigned int
4188 get_cu_length (const struct comp_unit_head *header)
4189 {
4190 return header->initial_length_size + header->length;
4191 }
4192
4193 /* Return TRUE if OFFSET is within CU_HEADER. */
4194
4195 static inline int
4196 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4197 {
4198 sect_offset bottom = { cu_header->offset.sect_off };
4199 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4200
4201 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4202 }
4203
4204 /* Find the base address of the compilation unit for range lists and
4205 location lists. It will normally be specified by DW_AT_low_pc.
4206 In DWARF-3 draft 4, the base address could be overridden by
4207 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4208 compilation units with discontinuous ranges. */
4209
4210 static void
4211 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4212 {
4213 struct attribute *attr;
4214
4215 cu->base_known = 0;
4216 cu->base_address = 0;
4217
4218 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4219 if (attr)
4220 {
4221 cu->base_address = attr_value_as_address (attr);
4222 cu->base_known = 1;
4223 }
4224 else
4225 {
4226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4227 if (attr)
4228 {
4229 cu->base_address = attr_value_as_address (attr);
4230 cu->base_known = 1;
4231 }
4232 }
4233 }
4234
4235 /* Read in the comp unit header information from the debug_info at info_ptr.
4236 NOTE: This leaves members offset, first_die_offset to be filled in
4237 by the caller. */
4238
4239 static const gdb_byte *
4240 read_comp_unit_head (struct comp_unit_head *cu_header,
4241 const gdb_byte *info_ptr, bfd *abfd)
4242 {
4243 int signed_addr;
4244 unsigned int bytes_read;
4245
4246 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4247 cu_header->initial_length_size = bytes_read;
4248 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4249 info_ptr += bytes_read;
4250 cu_header->version = read_2_bytes (abfd, info_ptr);
4251 info_ptr += 2;
4252 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4253 &bytes_read);
4254 info_ptr += bytes_read;
4255 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4256 info_ptr += 1;
4257 signed_addr = bfd_get_sign_extend_vma (abfd);
4258 if (signed_addr < 0)
4259 internal_error (__FILE__, __LINE__,
4260 _("read_comp_unit_head: dwarf from non elf file"));
4261 cu_header->signed_addr_p = signed_addr;
4262
4263 return info_ptr;
4264 }
4265
4266 /* Helper function that returns the proper abbrev section for
4267 THIS_CU. */
4268
4269 static struct dwarf2_section_info *
4270 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4271 {
4272 struct dwarf2_section_info *abbrev;
4273
4274 if (this_cu->is_dwz)
4275 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4276 else
4277 abbrev = &dwarf2_per_objfile->abbrev;
4278
4279 return abbrev;
4280 }
4281
4282 /* Subroutine of read_and_check_comp_unit_head and
4283 read_and_check_type_unit_head to simplify them.
4284 Perform various error checking on the header. */
4285
4286 static void
4287 error_check_comp_unit_head (struct comp_unit_head *header,
4288 struct dwarf2_section_info *section,
4289 struct dwarf2_section_info *abbrev_section)
4290 {
4291 bfd *abfd = get_section_bfd_owner (section);
4292 const char *filename = get_section_file_name (section);
4293
4294 if (header->version != 2 && header->version != 3 && header->version != 4)
4295 error (_("Dwarf Error: wrong version in compilation unit header "
4296 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4297 filename);
4298
4299 if (header->abbrev_offset.sect_off
4300 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4301 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4302 "(offset 0x%lx + 6) [in module %s]"),
4303 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4304 filename);
4305
4306 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4307 avoid potential 32-bit overflow. */
4308 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4309 > section->size)
4310 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4311 "(offset 0x%lx + 0) [in module %s]"),
4312 (long) header->length, (long) header->offset.sect_off,
4313 filename);
4314 }
4315
4316 /* Read in a CU/TU header and perform some basic error checking.
4317 The contents of the header are stored in HEADER.
4318 The result is a pointer to the start of the first DIE. */
4319
4320 static const gdb_byte *
4321 read_and_check_comp_unit_head (struct comp_unit_head *header,
4322 struct dwarf2_section_info *section,
4323 struct dwarf2_section_info *abbrev_section,
4324 const gdb_byte *info_ptr,
4325 int is_debug_types_section)
4326 {
4327 const gdb_byte *beg_of_comp_unit = info_ptr;
4328 bfd *abfd = get_section_bfd_owner (section);
4329
4330 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4331
4332 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4333
4334 /* If we're reading a type unit, skip over the signature and
4335 type_offset fields. */
4336 if (is_debug_types_section)
4337 info_ptr += 8 /*signature*/ + header->offset_size;
4338
4339 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4340
4341 error_check_comp_unit_head (header, section, abbrev_section);
4342
4343 return info_ptr;
4344 }
4345
4346 /* Read in the types comp unit header information from .debug_types entry at
4347 types_ptr. The result is a pointer to one past the end of the header. */
4348
4349 static const gdb_byte *
4350 read_and_check_type_unit_head (struct comp_unit_head *header,
4351 struct dwarf2_section_info *section,
4352 struct dwarf2_section_info *abbrev_section,
4353 const gdb_byte *info_ptr,
4354 ULONGEST *signature,
4355 cu_offset *type_offset_in_tu)
4356 {
4357 const gdb_byte *beg_of_comp_unit = info_ptr;
4358 bfd *abfd = get_section_bfd_owner (section);
4359
4360 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4361
4362 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4363
4364 /* If we're reading a type unit, skip over the signature and
4365 type_offset fields. */
4366 if (signature != NULL)
4367 *signature = read_8_bytes (abfd, info_ptr);
4368 info_ptr += 8;
4369 if (type_offset_in_tu != NULL)
4370 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4371 header->offset_size);
4372 info_ptr += header->offset_size;
4373
4374 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4375
4376 error_check_comp_unit_head (header, section, abbrev_section);
4377
4378 return info_ptr;
4379 }
4380
4381 /* Fetch the abbreviation table offset from a comp or type unit header. */
4382
4383 static sect_offset
4384 read_abbrev_offset (struct dwarf2_section_info *section,
4385 sect_offset offset)
4386 {
4387 bfd *abfd = get_section_bfd_owner (section);
4388 const gdb_byte *info_ptr;
4389 unsigned int length, initial_length_size, offset_size;
4390 sect_offset abbrev_offset;
4391
4392 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4393 info_ptr = section->buffer + offset.sect_off;
4394 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4395 offset_size = initial_length_size == 4 ? 4 : 8;
4396 info_ptr += initial_length_size + 2 /*version*/;
4397 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4398 return abbrev_offset;
4399 }
4400
4401 /* Allocate a new partial symtab for file named NAME and mark this new
4402 partial symtab as being an include of PST. */
4403
4404 static void
4405 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4406 struct objfile *objfile)
4407 {
4408 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4409
4410 if (!IS_ABSOLUTE_PATH (subpst->filename))
4411 {
4412 /* It shares objfile->objfile_obstack. */
4413 subpst->dirname = pst->dirname;
4414 }
4415
4416 subpst->section_offsets = pst->section_offsets;
4417 subpst->textlow = 0;
4418 subpst->texthigh = 0;
4419
4420 subpst->dependencies = (struct partial_symtab **)
4421 obstack_alloc (&objfile->objfile_obstack,
4422 sizeof (struct partial_symtab *));
4423 subpst->dependencies[0] = pst;
4424 subpst->number_of_dependencies = 1;
4425
4426 subpst->globals_offset = 0;
4427 subpst->n_global_syms = 0;
4428 subpst->statics_offset = 0;
4429 subpst->n_static_syms = 0;
4430 subpst->compunit_symtab = NULL;
4431 subpst->read_symtab = pst->read_symtab;
4432 subpst->readin = 0;
4433
4434 /* No private part is necessary for include psymtabs. This property
4435 can be used to differentiate between such include psymtabs and
4436 the regular ones. */
4437 subpst->read_symtab_private = NULL;
4438 }
4439
4440 /* Read the Line Number Program data and extract the list of files
4441 included by the source file represented by PST. Build an include
4442 partial symtab for each of these included files. */
4443
4444 static void
4445 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4446 struct die_info *die,
4447 struct partial_symtab *pst)
4448 {
4449 struct line_header *lh = NULL;
4450 struct attribute *attr;
4451
4452 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4453 if (attr)
4454 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4455 if (lh == NULL)
4456 return; /* No linetable, so no includes. */
4457
4458 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4459 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4460
4461 free_line_header (lh);
4462 }
4463
4464 static hashval_t
4465 hash_signatured_type (const void *item)
4466 {
4467 const struct signatured_type *sig_type = item;
4468
4469 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4470 return sig_type->signature;
4471 }
4472
4473 static int
4474 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4475 {
4476 const struct signatured_type *lhs = item_lhs;
4477 const struct signatured_type *rhs = item_rhs;
4478
4479 return lhs->signature == rhs->signature;
4480 }
4481
4482 /* Allocate a hash table for signatured types. */
4483
4484 static htab_t
4485 allocate_signatured_type_table (struct objfile *objfile)
4486 {
4487 return htab_create_alloc_ex (41,
4488 hash_signatured_type,
4489 eq_signatured_type,
4490 NULL,
4491 &objfile->objfile_obstack,
4492 hashtab_obstack_allocate,
4493 dummy_obstack_deallocate);
4494 }
4495
4496 /* A helper function to add a signatured type CU to a table. */
4497
4498 static int
4499 add_signatured_type_cu_to_table (void **slot, void *datum)
4500 {
4501 struct signatured_type *sigt = *slot;
4502 struct signatured_type ***datap = datum;
4503
4504 **datap = sigt;
4505 ++*datap;
4506
4507 return 1;
4508 }
4509
4510 /* Create the hash table of all entries in the .debug_types
4511 (or .debug_types.dwo) section(s).
4512 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4513 otherwise it is NULL.
4514
4515 The result is a pointer to the hash table or NULL if there are no types.
4516
4517 Note: This function processes DWO files only, not DWP files. */
4518
4519 static htab_t
4520 create_debug_types_hash_table (struct dwo_file *dwo_file,
4521 VEC (dwarf2_section_info_def) *types)
4522 {
4523 struct objfile *objfile = dwarf2_per_objfile->objfile;
4524 htab_t types_htab = NULL;
4525 int ix;
4526 struct dwarf2_section_info *section;
4527 struct dwarf2_section_info *abbrev_section;
4528
4529 if (VEC_empty (dwarf2_section_info_def, types))
4530 return NULL;
4531
4532 abbrev_section = (dwo_file != NULL
4533 ? &dwo_file->sections.abbrev
4534 : &dwarf2_per_objfile->abbrev);
4535
4536 if (dwarf2_read_debug)
4537 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4538 dwo_file ? ".dwo" : "",
4539 get_section_file_name (abbrev_section));
4540
4541 for (ix = 0;
4542 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4543 ++ix)
4544 {
4545 bfd *abfd;
4546 const gdb_byte *info_ptr, *end_ptr;
4547
4548 dwarf2_read_section (objfile, section);
4549 info_ptr = section->buffer;
4550
4551 if (info_ptr == NULL)
4552 continue;
4553
4554 /* We can't set abfd until now because the section may be empty or
4555 not present, in which case the bfd is unknown. */
4556 abfd = get_section_bfd_owner (section);
4557
4558 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4559 because we don't need to read any dies: the signature is in the
4560 header. */
4561
4562 end_ptr = info_ptr + section->size;
4563 while (info_ptr < end_ptr)
4564 {
4565 sect_offset offset;
4566 cu_offset type_offset_in_tu;
4567 ULONGEST signature;
4568 struct signatured_type *sig_type;
4569 struct dwo_unit *dwo_tu;
4570 void **slot;
4571 const gdb_byte *ptr = info_ptr;
4572 struct comp_unit_head header;
4573 unsigned int length;
4574
4575 offset.sect_off = ptr - section->buffer;
4576
4577 /* We need to read the type's signature in order to build the hash
4578 table, but we don't need anything else just yet. */
4579
4580 ptr = read_and_check_type_unit_head (&header, section,
4581 abbrev_section, ptr,
4582 &signature, &type_offset_in_tu);
4583
4584 length = get_cu_length (&header);
4585
4586 /* Skip dummy type units. */
4587 if (ptr >= info_ptr + length
4588 || peek_abbrev_code (abfd, ptr) == 0)
4589 {
4590 info_ptr += length;
4591 continue;
4592 }
4593
4594 if (types_htab == NULL)
4595 {
4596 if (dwo_file)
4597 types_htab = allocate_dwo_unit_table (objfile);
4598 else
4599 types_htab = allocate_signatured_type_table (objfile);
4600 }
4601
4602 if (dwo_file)
4603 {
4604 sig_type = NULL;
4605 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4606 struct dwo_unit);
4607 dwo_tu->dwo_file = dwo_file;
4608 dwo_tu->signature = signature;
4609 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4610 dwo_tu->section = section;
4611 dwo_tu->offset = offset;
4612 dwo_tu->length = length;
4613 }
4614 else
4615 {
4616 /* N.B.: type_offset is not usable if this type uses a DWO file.
4617 The real type_offset is in the DWO file. */
4618 dwo_tu = NULL;
4619 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4620 struct signatured_type);
4621 sig_type->signature = signature;
4622 sig_type->type_offset_in_tu = type_offset_in_tu;
4623 sig_type->per_cu.objfile = objfile;
4624 sig_type->per_cu.is_debug_types = 1;
4625 sig_type->per_cu.section = section;
4626 sig_type->per_cu.offset = offset;
4627 sig_type->per_cu.length = length;
4628 }
4629
4630 slot = htab_find_slot (types_htab,
4631 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4632 INSERT);
4633 gdb_assert (slot != NULL);
4634 if (*slot != NULL)
4635 {
4636 sect_offset dup_offset;
4637
4638 if (dwo_file)
4639 {
4640 const struct dwo_unit *dup_tu = *slot;
4641
4642 dup_offset = dup_tu->offset;
4643 }
4644 else
4645 {
4646 const struct signatured_type *dup_tu = *slot;
4647
4648 dup_offset = dup_tu->per_cu.offset;
4649 }
4650
4651 complaint (&symfile_complaints,
4652 _("debug type entry at offset 0x%x is duplicate to"
4653 " the entry at offset 0x%x, signature %s"),
4654 offset.sect_off, dup_offset.sect_off,
4655 hex_string (signature));
4656 }
4657 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4658
4659 if (dwarf2_read_debug > 1)
4660 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4661 offset.sect_off,
4662 hex_string (signature));
4663
4664 info_ptr += length;
4665 }
4666 }
4667
4668 return types_htab;
4669 }
4670
4671 /* Create the hash table of all entries in the .debug_types section,
4672 and initialize all_type_units.
4673 The result is zero if there is an error (e.g. missing .debug_types section),
4674 otherwise non-zero. */
4675
4676 static int
4677 create_all_type_units (struct objfile *objfile)
4678 {
4679 htab_t types_htab;
4680 struct signatured_type **iter;
4681
4682 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4683 if (types_htab == NULL)
4684 {
4685 dwarf2_per_objfile->signatured_types = NULL;
4686 return 0;
4687 }
4688
4689 dwarf2_per_objfile->signatured_types = types_htab;
4690
4691 dwarf2_per_objfile->n_type_units
4692 = dwarf2_per_objfile->n_allocated_type_units
4693 = htab_elements (types_htab);
4694 dwarf2_per_objfile->all_type_units
4695 = xmalloc (dwarf2_per_objfile->n_type_units
4696 * sizeof (struct signatured_type *));
4697 iter = &dwarf2_per_objfile->all_type_units[0];
4698 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4699 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4700 == dwarf2_per_objfile->n_type_units);
4701
4702 return 1;
4703 }
4704
4705 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4706 If SLOT is non-NULL, it is the entry to use in the hash table.
4707 Otherwise we find one. */
4708
4709 static struct signatured_type *
4710 add_type_unit (ULONGEST sig, void **slot)
4711 {
4712 struct objfile *objfile = dwarf2_per_objfile->objfile;
4713 int n_type_units = dwarf2_per_objfile->n_type_units;
4714 struct signatured_type *sig_type;
4715
4716 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4717 ++n_type_units;
4718 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4719 {
4720 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4721 dwarf2_per_objfile->n_allocated_type_units = 1;
4722 dwarf2_per_objfile->n_allocated_type_units *= 2;
4723 dwarf2_per_objfile->all_type_units
4724 = xrealloc (dwarf2_per_objfile->all_type_units,
4725 dwarf2_per_objfile->n_allocated_type_units
4726 * sizeof (struct signatured_type *));
4727 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4728 }
4729 dwarf2_per_objfile->n_type_units = n_type_units;
4730
4731 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct signatured_type);
4733 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4734 sig_type->signature = sig;
4735 sig_type->per_cu.is_debug_types = 1;
4736 if (dwarf2_per_objfile->using_index)
4737 {
4738 sig_type->per_cu.v.quick =
4739 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4740 struct dwarf2_per_cu_quick_data);
4741 }
4742
4743 if (slot == NULL)
4744 {
4745 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4746 sig_type, INSERT);
4747 }
4748 gdb_assert (*slot == NULL);
4749 *slot = sig_type;
4750 /* The rest of sig_type must be filled in by the caller. */
4751 return sig_type;
4752 }
4753
4754 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4755 Fill in SIG_ENTRY with DWO_ENTRY. */
4756
4757 static void
4758 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4759 struct signatured_type *sig_entry,
4760 struct dwo_unit *dwo_entry)
4761 {
4762 /* Make sure we're not clobbering something we don't expect to. */
4763 gdb_assert (! sig_entry->per_cu.queued);
4764 gdb_assert (sig_entry->per_cu.cu == NULL);
4765 if (dwarf2_per_objfile->using_index)
4766 {
4767 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4768 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4769 }
4770 else
4771 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4772 gdb_assert (sig_entry->signature == dwo_entry->signature);
4773 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4774 gdb_assert (sig_entry->type_unit_group == NULL);
4775 gdb_assert (sig_entry->dwo_unit == NULL);
4776
4777 sig_entry->per_cu.section = dwo_entry->section;
4778 sig_entry->per_cu.offset = dwo_entry->offset;
4779 sig_entry->per_cu.length = dwo_entry->length;
4780 sig_entry->per_cu.reading_dwo_directly = 1;
4781 sig_entry->per_cu.objfile = objfile;
4782 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4783 sig_entry->dwo_unit = dwo_entry;
4784 }
4785
4786 /* Subroutine of lookup_signatured_type.
4787 If we haven't read the TU yet, create the signatured_type data structure
4788 for a TU to be read in directly from a DWO file, bypassing the stub.
4789 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4790 using .gdb_index, then when reading a CU we want to stay in the DWO file
4791 containing that CU. Otherwise we could end up reading several other DWO
4792 files (due to comdat folding) to process the transitive closure of all the
4793 mentioned TUs, and that can be slow. The current DWO file will have every
4794 type signature that it needs.
4795 We only do this for .gdb_index because in the psymtab case we already have
4796 to read all the DWOs to build the type unit groups. */
4797
4798 static struct signatured_type *
4799 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4800 {
4801 struct objfile *objfile = dwarf2_per_objfile->objfile;
4802 struct dwo_file *dwo_file;
4803 struct dwo_unit find_dwo_entry, *dwo_entry;
4804 struct signatured_type find_sig_entry, *sig_entry;
4805 void **slot;
4806
4807 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4808
4809 /* If TU skeletons have been removed then we may not have read in any
4810 TUs yet. */
4811 if (dwarf2_per_objfile->signatured_types == NULL)
4812 {
4813 dwarf2_per_objfile->signatured_types
4814 = allocate_signatured_type_table (objfile);
4815 }
4816
4817 /* We only ever need to read in one copy of a signatured type.
4818 Use the global signatured_types array to do our own comdat-folding
4819 of types. If this is the first time we're reading this TU, and
4820 the TU has an entry in .gdb_index, replace the recorded data from
4821 .gdb_index with this TU. */
4822
4823 find_sig_entry.signature = sig;
4824 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4825 &find_sig_entry, INSERT);
4826 sig_entry = *slot;
4827
4828 /* We can get here with the TU already read, *or* in the process of being
4829 read. Don't reassign the global entry to point to this DWO if that's
4830 the case. Also note that if the TU is already being read, it may not
4831 have come from a DWO, the program may be a mix of Fission-compiled
4832 code and non-Fission-compiled code. */
4833
4834 /* Have we already tried to read this TU?
4835 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4836 needn't exist in the global table yet). */
4837 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4838 return sig_entry;
4839
4840 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4841 dwo_unit of the TU itself. */
4842 dwo_file = cu->dwo_unit->dwo_file;
4843
4844 /* Ok, this is the first time we're reading this TU. */
4845 if (dwo_file->tus == NULL)
4846 return NULL;
4847 find_dwo_entry.signature = sig;
4848 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4849 if (dwo_entry == NULL)
4850 return NULL;
4851
4852 /* If the global table doesn't have an entry for this TU, add one. */
4853 if (sig_entry == NULL)
4854 sig_entry = add_type_unit (sig, slot);
4855
4856 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4857 sig_entry->per_cu.tu_read = 1;
4858 return sig_entry;
4859 }
4860
4861 /* Subroutine of lookup_signatured_type.
4862 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4863 then try the DWP file. If the TU stub (skeleton) has been removed then
4864 it won't be in .gdb_index. */
4865
4866 static struct signatured_type *
4867 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4868 {
4869 struct objfile *objfile = dwarf2_per_objfile->objfile;
4870 struct dwp_file *dwp_file = get_dwp_file ();
4871 struct dwo_unit *dwo_entry;
4872 struct signatured_type find_sig_entry, *sig_entry;
4873 void **slot;
4874
4875 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4876 gdb_assert (dwp_file != NULL);
4877
4878 /* If TU skeletons have been removed then we may not have read in any
4879 TUs yet. */
4880 if (dwarf2_per_objfile->signatured_types == NULL)
4881 {
4882 dwarf2_per_objfile->signatured_types
4883 = allocate_signatured_type_table (objfile);
4884 }
4885
4886 find_sig_entry.signature = sig;
4887 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4888 &find_sig_entry, INSERT);
4889 sig_entry = *slot;
4890
4891 /* Have we already tried to read this TU?
4892 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4893 needn't exist in the global table yet). */
4894 if (sig_entry != NULL)
4895 return sig_entry;
4896
4897 if (dwp_file->tus == NULL)
4898 return NULL;
4899 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4900 sig, 1 /* is_debug_types */);
4901 if (dwo_entry == NULL)
4902 return NULL;
4903
4904 sig_entry = add_type_unit (sig, slot);
4905 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4906
4907 return sig_entry;
4908 }
4909
4910 /* Lookup a signature based type for DW_FORM_ref_sig8.
4911 Returns NULL if signature SIG is not present in the table.
4912 It is up to the caller to complain about this. */
4913
4914 static struct signatured_type *
4915 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4916 {
4917 if (cu->dwo_unit
4918 && dwarf2_per_objfile->using_index)
4919 {
4920 /* We're in a DWO/DWP file, and we're using .gdb_index.
4921 These cases require special processing. */
4922 if (get_dwp_file () == NULL)
4923 return lookup_dwo_signatured_type (cu, sig);
4924 else
4925 return lookup_dwp_signatured_type (cu, sig);
4926 }
4927 else
4928 {
4929 struct signatured_type find_entry, *entry;
4930
4931 if (dwarf2_per_objfile->signatured_types == NULL)
4932 return NULL;
4933 find_entry.signature = sig;
4934 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4935 return entry;
4936 }
4937 }
4938 \f
4939 /* Low level DIE reading support. */
4940
4941 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4942
4943 static void
4944 init_cu_die_reader (struct die_reader_specs *reader,
4945 struct dwarf2_cu *cu,
4946 struct dwarf2_section_info *section,
4947 struct dwo_file *dwo_file)
4948 {
4949 gdb_assert (section->readin && section->buffer != NULL);
4950 reader->abfd = get_section_bfd_owner (section);
4951 reader->cu = cu;
4952 reader->dwo_file = dwo_file;
4953 reader->die_section = section;
4954 reader->buffer = section->buffer;
4955 reader->buffer_end = section->buffer + section->size;
4956 reader->comp_dir = NULL;
4957 }
4958
4959 /* Subroutine of init_cutu_and_read_dies to simplify it.
4960 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4961 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4962 already.
4963
4964 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4965 from it to the DIE in the DWO. If NULL we are skipping the stub.
4966 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4967 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4968 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4969 STUB_COMP_DIR may be non-NULL.
4970 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4971 are filled in with the info of the DIE from the DWO file.
4972 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4973 provided an abbrev table to use.
4974 The result is non-zero if a valid (non-dummy) DIE was found. */
4975
4976 static int
4977 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4978 struct dwo_unit *dwo_unit,
4979 int abbrev_table_provided,
4980 struct die_info *stub_comp_unit_die,
4981 const char *stub_comp_dir,
4982 struct die_reader_specs *result_reader,
4983 const gdb_byte **result_info_ptr,
4984 struct die_info **result_comp_unit_die,
4985 int *result_has_children)
4986 {
4987 struct objfile *objfile = dwarf2_per_objfile->objfile;
4988 struct dwarf2_cu *cu = this_cu->cu;
4989 struct dwarf2_section_info *section;
4990 bfd *abfd;
4991 const gdb_byte *begin_info_ptr, *info_ptr;
4992 ULONGEST signature; /* Or dwo_id. */
4993 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4994 int i,num_extra_attrs;
4995 struct dwarf2_section_info *dwo_abbrev_section;
4996 struct attribute *attr;
4997 struct die_info *comp_unit_die;
4998
4999 /* At most one of these may be provided. */
5000 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5001
5002 /* These attributes aren't processed until later:
5003 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5004 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5005 referenced later. However, these attributes are found in the stub
5006 which we won't have later. In order to not impose this complication
5007 on the rest of the code, we read them here and copy them to the
5008 DWO CU/TU die. */
5009
5010 stmt_list = NULL;
5011 low_pc = NULL;
5012 high_pc = NULL;
5013 ranges = NULL;
5014 comp_dir = NULL;
5015
5016 if (stub_comp_unit_die != NULL)
5017 {
5018 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5019 DWO file. */
5020 if (! this_cu->is_debug_types)
5021 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5022 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5023 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5024 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5025 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5026
5027 /* There should be a DW_AT_addr_base attribute here (if needed).
5028 We need the value before we can process DW_FORM_GNU_addr_index. */
5029 cu->addr_base = 0;
5030 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5031 if (attr)
5032 cu->addr_base = DW_UNSND (attr);
5033
5034 /* There should be a DW_AT_ranges_base attribute here (if needed).
5035 We need the value before we can process DW_AT_ranges. */
5036 cu->ranges_base = 0;
5037 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5038 if (attr)
5039 cu->ranges_base = DW_UNSND (attr);
5040 }
5041 else if (stub_comp_dir != NULL)
5042 {
5043 /* Reconstruct the comp_dir attribute to simplify the code below. */
5044 comp_dir = (struct attribute *)
5045 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5046 comp_dir->name = DW_AT_comp_dir;
5047 comp_dir->form = DW_FORM_string;
5048 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5049 DW_STRING (comp_dir) = stub_comp_dir;
5050 }
5051
5052 /* Set up for reading the DWO CU/TU. */
5053 cu->dwo_unit = dwo_unit;
5054 section = dwo_unit->section;
5055 dwarf2_read_section (objfile, section);
5056 abfd = get_section_bfd_owner (section);
5057 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5058 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5059 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5060
5061 if (this_cu->is_debug_types)
5062 {
5063 ULONGEST header_signature;
5064 cu_offset type_offset_in_tu;
5065 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5066
5067 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5068 dwo_abbrev_section,
5069 info_ptr,
5070 &header_signature,
5071 &type_offset_in_tu);
5072 /* This is not an assert because it can be caused by bad debug info. */
5073 if (sig_type->signature != header_signature)
5074 {
5075 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5076 " TU at offset 0x%x [in module %s]"),
5077 hex_string (sig_type->signature),
5078 hex_string (header_signature),
5079 dwo_unit->offset.sect_off,
5080 bfd_get_filename (abfd));
5081 }
5082 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5083 /* For DWOs coming from DWP files, we don't know the CU length
5084 nor the type's offset in the TU until now. */
5085 dwo_unit->length = get_cu_length (&cu->header);
5086 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5087
5088 /* Establish the type offset that can be used to lookup the type.
5089 For DWO files, we don't know it until now. */
5090 sig_type->type_offset_in_section.sect_off =
5091 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5092 }
5093 else
5094 {
5095 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5096 dwo_abbrev_section,
5097 info_ptr, 0);
5098 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5099 /* For DWOs coming from DWP files, we don't know the CU length
5100 until now. */
5101 dwo_unit->length = get_cu_length (&cu->header);
5102 }
5103
5104 /* Replace the CU's original abbrev table with the DWO's.
5105 Reminder: We can't read the abbrev table until we've read the header. */
5106 if (abbrev_table_provided)
5107 {
5108 /* Don't free the provided abbrev table, the caller of
5109 init_cutu_and_read_dies owns it. */
5110 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5111 /* Ensure the DWO abbrev table gets freed. */
5112 make_cleanup (dwarf2_free_abbrev_table, cu);
5113 }
5114 else
5115 {
5116 dwarf2_free_abbrev_table (cu);
5117 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5118 /* Leave any existing abbrev table cleanup as is. */
5119 }
5120
5121 /* Read in the die, but leave space to copy over the attributes
5122 from the stub. This has the benefit of simplifying the rest of
5123 the code - all the work to maintain the illusion of a single
5124 DW_TAG_{compile,type}_unit DIE is done here. */
5125 num_extra_attrs = ((stmt_list != NULL)
5126 + (low_pc != NULL)
5127 + (high_pc != NULL)
5128 + (ranges != NULL)
5129 + (comp_dir != NULL));
5130 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5131 result_has_children, num_extra_attrs);
5132
5133 /* Copy over the attributes from the stub to the DIE we just read in. */
5134 comp_unit_die = *result_comp_unit_die;
5135 i = comp_unit_die->num_attrs;
5136 if (stmt_list != NULL)
5137 comp_unit_die->attrs[i++] = *stmt_list;
5138 if (low_pc != NULL)
5139 comp_unit_die->attrs[i++] = *low_pc;
5140 if (high_pc != NULL)
5141 comp_unit_die->attrs[i++] = *high_pc;
5142 if (ranges != NULL)
5143 comp_unit_die->attrs[i++] = *ranges;
5144 if (comp_dir != NULL)
5145 comp_unit_die->attrs[i++] = *comp_dir;
5146 comp_unit_die->num_attrs += num_extra_attrs;
5147
5148 if (dwarf2_die_debug)
5149 {
5150 fprintf_unfiltered (gdb_stdlog,
5151 "Read die from %s@0x%x of %s:\n",
5152 get_section_name (section),
5153 (unsigned) (begin_info_ptr - section->buffer),
5154 bfd_get_filename (abfd));
5155 dump_die (comp_unit_die, dwarf2_die_debug);
5156 }
5157
5158 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5159 TUs by skipping the stub and going directly to the entry in the DWO file.
5160 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5161 to get it via circuitous means. Blech. */
5162 if (comp_dir != NULL)
5163 result_reader->comp_dir = DW_STRING (comp_dir);
5164
5165 /* Skip dummy compilation units. */
5166 if (info_ptr >= begin_info_ptr + dwo_unit->length
5167 || peek_abbrev_code (abfd, info_ptr) == 0)
5168 return 0;
5169
5170 *result_info_ptr = info_ptr;
5171 return 1;
5172 }
5173
5174 /* Subroutine of init_cutu_and_read_dies to simplify it.
5175 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5176 Returns NULL if the specified DWO unit cannot be found. */
5177
5178 static struct dwo_unit *
5179 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5180 struct die_info *comp_unit_die)
5181 {
5182 struct dwarf2_cu *cu = this_cu->cu;
5183 struct attribute *attr;
5184 ULONGEST signature;
5185 struct dwo_unit *dwo_unit;
5186 const char *comp_dir, *dwo_name;
5187
5188 gdb_assert (cu != NULL);
5189
5190 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5192 gdb_assert (attr != NULL);
5193 dwo_name = DW_STRING (attr);
5194 comp_dir = NULL;
5195 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5196 if (attr)
5197 comp_dir = DW_STRING (attr);
5198
5199 if (this_cu->is_debug_types)
5200 {
5201 struct signatured_type *sig_type;
5202
5203 /* Since this_cu is the first member of struct signatured_type,
5204 we can go from a pointer to one to a pointer to the other. */
5205 sig_type = (struct signatured_type *) this_cu;
5206 signature = sig_type->signature;
5207 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5208 }
5209 else
5210 {
5211 struct attribute *attr;
5212
5213 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5214 if (! attr)
5215 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5216 " [in module %s]"),
5217 dwo_name, objfile_name (this_cu->objfile));
5218 signature = DW_UNSND (attr);
5219 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5220 signature);
5221 }
5222
5223 return dwo_unit;
5224 }
5225
5226 /* Subroutine of init_cutu_and_read_dies to simplify it.
5227 See it for a description of the parameters.
5228 Read a TU directly from a DWO file, bypassing the stub.
5229
5230 Note: This function could be a little bit simpler if we shared cleanups
5231 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5232 to do, so we keep this function self-contained. Or we could move this
5233 into our caller, but it's complex enough already. */
5234
5235 static void
5236 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5237 int use_existing_cu, int keep,
5238 die_reader_func_ftype *die_reader_func,
5239 void *data)
5240 {
5241 struct dwarf2_cu *cu;
5242 struct signatured_type *sig_type;
5243 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5244 struct die_reader_specs reader;
5245 const gdb_byte *info_ptr;
5246 struct die_info *comp_unit_die;
5247 int has_children;
5248
5249 /* Verify we can do the following downcast, and that we have the
5250 data we need. */
5251 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5252 sig_type = (struct signatured_type *) this_cu;
5253 gdb_assert (sig_type->dwo_unit != NULL);
5254
5255 cleanups = make_cleanup (null_cleanup, NULL);
5256
5257 if (use_existing_cu && this_cu->cu != NULL)
5258 {
5259 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5260 cu = this_cu->cu;
5261 /* There's no need to do the rereading_dwo_cu handling that
5262 init_cutu_and_read_dies does since we don't read the stub. */
5263 }
5264 else
5265 {
5266 /* If !use_existing_cu, this_cu->cu must be NULL. */
5267 gdb_assert (this_cu->cu == NULL);
5268 cu = xmalloc (sizeof (*cu));
5269 init_one_comp_unit (cu, this_cu);
5270 /* If an error occurs while loading, release our storage. */
5271 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5272 }
5273
5274 /* A future optimization, if needed, would be to use an existing
5275 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5276 could share abbrev tables. */
5277
5278 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5279 0 /* abbrev_table_provided */,
5280 NULL /* stub_comp_unit_die */,
5281 sig_type->dwo_unit->dwo_file->comp_dir,
5282 &reader, &info_ptr,
5283 &comp_unit_die, &has_children) == 0)
5284 {
5285 /* Dummy die. */
5286 do_cleanups (cleanups);
5287 return;
5288 }
5289
5290 /* All the "real" work is done here. */
5291 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5292
5293 /* This duplicates the code in init_cutu_and_read_dies,
5294 but the alternative is making the latter more complex.
5295 This function is only for the special case of using DWO files directly:
5296 no point in overly complicating the general case just to handle this. */
5297 if (free_cu_cleanup != NULL)
5298 {
5299 if (keep)
5300 {
5301 /* We've successfully allocated this compilation unit. Let our
5302 caller clean it up when finished with it. */
5303 discard_cleanups (free_cu_cleanup);
5304
5305 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5306 So we have to manually free the abbrev table. */
5307 dwarf2_free_abbrev_table (cu);
5308
5309 /* Link this CU into read_in_chain. */
5310 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5311 dwarf2_per_objfile->read_in_chain = this_cu;
5312 }
5313 else
5314 do_cleanups (free_cu_cleanup);
5315 }
5316
5317 do_cleanups (cleanups);
5318 }
5319
5320 /* Initialize a CU (or TU) and read its DIEs.
5321 If the CU defers to a DWO file, read the DWO file as well.
5322
5323 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5324 Otherwise the table specified in the comp unit header is read in and used.
5325 This is an optimization for when we already have the abbrev table.
5326
5327 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5328 Otherwise, a new CU is allocated with xmalloc.
5329
5330 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5331 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5332
5333 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5334 linker) then DIE_READER_FUNC will not get called. */
5335
5336 static void
5337 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5338 struct abbrev_table *abbrev_table,
5339 int use_existing_cu, int keep,
5340 die_reader_func_ftype *die_reader_func,
5341 void *data)
5342 {
5343 struct objfile *objfile = dwarf2_per_objfile->objfile;
5344 struct dwarf2_section_info *section = this_cu->section;
5345 bfd *abfd = get_section_bfd_owner (section);
5346 struct dwarf2_cu *cu;
5347 const gdb_byte *begin_info_ptr, *info_ptr;
5348 struct die_reader_specs reader;
5349 struct die_info *comp_unit_die;
5350 int has_children;
5351 struct attribute *attr;
5352 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5353 struct signatured_type *sig_type = NULL;
5354 struct dwarf2_section_info *abbrev_section;
5355 /* Non-zero if CU currently points to a DWO file and we need to
5356 reread it. When this happens we need to reread the skeleton die
5357 before we can reread the DWO file (this only applies to CUs, not TUs). */
5358 int rereading_dwo_cu = 0;
5359
5360 if (dwarf2_die_debug)
5361 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5362 this_cu->is_debug_types ? "type" : "comp",
5363 this_cu->offset.sect_off);
5364
5365 if (use_existing_cu)
5366 gdb_assert (keep);
5367
5368 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5369 file (instead of going through the stub), short-circuit all of this. */
5370 if (this_cu->reading_dwo_directly)
5371 {
5372 /* Narrow down the scope of possibilities to have to understand. */
5373 gdb_assert (this_cu->is_debug_types);
5374 gdb_assert (abbrev_table == NULL);
5375 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5376 die_reader_func, data);
5377 return;
5378 }
5379
5380 cleanups = make_cleanup (null_cleanup, NULL);
5381
5382 /* This is cheap if the section is already read in. */
5383 dwarf2_read_section (objfile, section);
5384
5385 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5386
5387 abbrev_section = get_abbrev_section_for_cu (this_cu);
5388
5389 if (use_existing_cu && this_cu->cu != NULL)
5390 {
5391 cu = this_cu->cu;
5392 /* If this CU is from a DWO file we need to start over, we need to
5393 refetch the attributes from the skeleton CU.
5394 This could be optimized by retrieving those attributes from when we
5395 were here the first time: the previous comp_unit_die was stored in
5396 comp_unit_obstack. But there's no data yet that we need this
5397 optimization. */
5398 if (cu->dwo_unit != NULL)
5399 rereading_dwo_cu = 1;
5400 }
5401 else
5402 {
5403 /* If !use_existing_cu, this_cu->cu must be NULL. */
5404 gdb_assert (this_cu->cu == NULL);
5405 cu = xmalloc (sizeof (*cu));
5406 init_one_comp_unit (cu, this_cu);
5407 /* If an error occurs while loading, release our storage. */
5408 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5409 }
5410
5411 /* Get the header. */
5412 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5413 {
5414 /* We already have the header, there's no need to read it in again. */
5415 info_ptr += cu->header.first_die_offset.cu_off;
5416 }
5417 else
5418 {
5419 if (this_cu->is_debug_types)
5420 {
5421 ULONGEST signature;
5422 cu_offset type_offset_in_tu;
5423
5424 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5425 abbrev_section, info_ptr,
5426 &signature,
5427 &type_offset_in_tu);
5428
5429 /* Since per_cu is the first member of struct signatured_type,
5430 we can go from a pointer to one to a pointer to the other. */
5431 sig_type = (struct signatured_type *) this_cu;
5432 gdb_assert (sig_type->signature == signature);
5433 gdb_assert (sig_type->type_offset_in_tu.cu_off
5434 == type_offset_in_tu.cu_off);
5435 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5436
5437 /* LENGTH has not been set yet for type units if we're
5438 using .gdb_index. */
5439 this_cu->length = get_cu_length (&cu->header);
5440
5441 /* Establish the type offset that can be used to lookup the type. */
5442 sig_type->type_offset_in_section.sect_off =
5443 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5444 }
5445 else
5446 {
5447 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5448 abbrev_section,
5449 info_ptr, 0);
5450
5451 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5452 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5453 }
5454 }
5455
5456 /* Skip dummy compilation units. */
5457 if (info_ptr >= begin_info_ptr + this_cu->length
5458 || peek_abbrev_code (abfd, info_ptr) == 0)
5459 {
5460 do_cleanups (cleanups);
5461 return;
5462 }
5463
5464 /* If we don't have them yet, read the abbrevs for this compilation unit.
5465 And if we need to read them now, make sure they're freed when we're
5466 done. Note that it's important that if the CU had an abbrev table
5467 on entry we don't free it when we're done: Somewhere up the call stack
5468 it may be in use. */
5469 if (abbrev_table != NULL)
5470 {
5471 gdb_assert (cu->abbrev_table == NULL);
5472 gdb_assert (cu->header.abbrev_offset.sect_off
5473 == abbrev_table->offset.sect_off);
5474 cu->abbrev_table = abbrev_table;
5475 }
5476 else if (cu->abbrev_table == NULL)
5477 {
5478 dwarf2_read_abbrevs (cu, abbrev_section);
5479 make_cleanup (dwarf2_free_abbrev_table, cu);
5480 }
5481 else if (rereading_dwo_cu)
5482 {
5483 dwarf2_free_abbrev_table (cu);
5484 dwarf2_read_abbrevs (cu, abbrev_section);
5485 }
5486
5487 /* Read the top level CU/TU die. */
5488 init_cu_die_reader (&reader, cu, section, NULL);
5489 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5490
5491 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5492 from the DWO file.
5493 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5494 DWO CU, that this test will fail (the attribute will not be present). */
5495 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5496 if (attr)
5497 {
5498 struct dwo_unit *dwo_unit;
5499 struct die_info *dwo_comp_unit_die;
5500
5501 if (has_children)
5502 {
5503 complaint (&symfile_complaints,
5504 _("compilation unit with DW_AT_GNU_dwo_name"
5505 " has children (offset 0x%x) [in module %s]"),
5506 this_cu->offset.sect_off, bfd_get_filename (abfd));
5507 }
5508 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5509 if (dwo_unit != NULL)
5510 {
5511 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5512 abbrev_table != NULL,
5513 comp_unit_die, NULL,
5514 &reader, &info_ptr,
5515 &dwo_comp_unit_die, &has_children) == 0)
5516 {
5517 /* Dummy die. */
5518 do_cleanups (cleanups);
5519 return;
5520 }
5521 comp_unit_die = dwo_comp_unit_die;
5522 }
5523 else
5524 {
5525 /* Yikes, we couldn't find the rest of the DIE, we only have
5526 the stub. A complaint has already been logged. There's
5527 not much more we can do except pass on the stub DIE to
5528 die_reader_func. We don't want to throw an error on bad
5529 debug info. */
5530 }
5531 }
5532
5533 /* All of the above is setup for this call. Yikes. */
5534 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5535
5536 /* Done, clean up. */
5537 if (free_cu_cleanup != NULL)
5538 {
5539 if (keep)
5540 {
5541 /* We've successfully allocated this compilation unit. Let our
5542 caller clean it up when finished with it. */
5543 discard_cleanups (free_cu_cleanup);
5544
5545 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5546 So we have to manually free the abbrev table. */
5547 dwarf2_free_abbrev_table (cu);
5548
5549 /* Link this CU into read_in_chain. */
5550 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5551 dwarf2_per_objfile->read_in_chain = this_cu;
5552 }
5553 else
5554 do_cleanups (free_cu_cleanup);
5555 }
5556
5557 do_cleanups (cleanups);
5558 }
5559
5560 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5561 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5562 to have already done the lookup to find the DWO file).
5563
5564 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5565 THIS_CU->is_debug_types, but nothing else.
5566
5567 We fill in THIS_CU->length.
5568
5569 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5570 linker) then DIE_READER_FUNC will not get called.
5571
5572 THIS_CU->cu is always freed when done.
5573 This is done in order to not leave THIS_CU->cu in a state where we have
5574 to care whether it refers to the "main" CU or the DWO CU. */
5575
5576 static void
5577 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5578 struct dwo_file *dwo_file,
5579 die_reader_func_ftype *die_reader_func,
5580 void *data)
5581 {
5582 struct objfile *objfile = dwarf2_per_objfile->objfile;
5583 struct dwarf2_section_info *section = this_cu->section;
5584 bfd *abfd = get_section_bfd_owner (section);
5585 struct dwarf2_section_info *abbrev_section;
5586 struct dwarf2_cu cu;
5587 const gdb_byte *begin_info_ptr, *info_ptr;
5588 struct die_reader_specs reader;
5589 struct cleanup *cleanups;
5590 struct die_info *comp_unit_die;
5591 int has_children;
5592
5593 if (dwarf2_die_debug)
5594 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5595 this_cu->is_debug_types ? "type" : "comp",
5596 this_cu->offset.sect_off);
5597
5598 gdb_assert (this_cu->cu == NULL);
5599
5600 abbrev_section = (dwo_file != NULL
5601 ? &dwo_file->sections.abbrev
5602 : get_abbrev_section_for_cu (this_cu));
5603
5604 /* This is cheap if the section is already read in. */
5605 dwarf2_read_section (objfile, section);
5606
5607 init_one_comp_unit (&cu, this_cu);
5608
5609 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5610
5611 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5612 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5613 abbrev_section, info_ptr,
5614 this_cu->is_debug_types);
5615
5616 this_cu->length = get_cu_length (&cu.header);
5617
5618 /* Skip dummy compilation units. */
5619 if (info_ptr >= begin_info_ptr + this_cu->length
5620 || peek_abbrev_code (abfd, info_ptr) == 0)
5621 {
5622 do_cleanups (cleanups);
5623 return;
5624 }
5625
5626 dwarf2_read_abbrevs (&cu, abbrev_section);
5627 make_cleanup (dwarf2_free_abbrev_table, &cu);
5628
5629 init_cu_die_reader (&reader, &cu, section, dwo_file);
5630 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5631
5632 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5633
5634 do_cleanups (cleanups);
5635 }
5636
5637 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5638 does not lookup the specified DWO file.
5639 This cannot be used to read DWO files.
5640
5641 THIS_CU->cu is always freed when done.
5642 This is done in order to not leave THIS_CU->cu in a state where we have
5643 to care whether it refers to the "main" CU or the DWO CU.
5644 We can revisit this if the data shows there's a performance issue. */
5645
5646 static void
5647 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5648 die_reader_func_ftype *die_reader_func,
5649 void *data)
5650 {
5651 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5652 }
5653 \f
5654 /* Type Unit Groups.
5655
5656 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5657 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5658 so that all types coming from the same compilation (.o file) are grouped
5659 together. A future step could be to put the types in the same symtab as
5660 the CU the types ultimately came from. */
5661
5662 static hashval_t
5663 hash_type_unit_group (const void *item)
5664 {
5665 const struct type_unit_group *tu_group = item;
5666
5667 return hash_stmt_list_entry (&tu_group->hash);
5668 }
5669
5670 static int
5671 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5672 {
5673 const struct type_unit_group *lhs = item_lhs;
5674 const struct type_unit_group *rhs = item_rhs;
5675
5676 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5677 }
5678
5679 /* Allocate a hash table for type unit groups. */
5680
5681 static htab_t
5682 allocate_type_unit_groups_table (void)
5683 {
5684 return htab_create_alloc_ex (3,
5685 hash_type_unit_group,
5686 eq_type_unit_group,
5687 NULL,
5688 &dwarf2_per_objfile->objfile->objfile_obstack,
5689 hashtab_obstack_allocate,
5690 dummy_obstack_deallocate);
5691 }
5692
5693 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5694 partial symtabs. We combine several TUs per psymtab to not let the size
5695 of any one psymtab grow too big. */
5696 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5697 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5698
5699 /* Helper routine for get_type_unit_group.
5700 Create the type_unit_group object used to hold one or more TUs. */
5701
5702 static struct type_unit_group *
5703 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5704 {
5705 struct objfile *objfile = dwarf2_per_objfile->objfile;
5706 struct dwarf2_per_cu_data *per_cu;
5707 struct type_unit_group *tu_group;
5708
5709 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5710 struct type_unit_group);
5711 per_cu = &tu_group->per_cu;
5712 per_cu->objfile = objfile;
5713
5714 if (dwarf2_per_objfile->using_index)
5715 {
5716 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5717 struct dwarf2_per_cu_quick_data);
5718 }
5719 else
5720 {
5721 unsigned int line_offset = line_offset_struct.sect_off;
5722 struct partial_symtab *pst;
5723 char *name;
5724
5725 /* Give the symtab a useful name for debug purposes. */
5726 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5727 name = xstrprintf ("<type_units_%d>",
5728 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5729 else
5730 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5731
5732 pst = create_partial_symtab (per_cu, name);
5733 pst->anonymous = 1;
5734
5735 xfree (name);
5736 }
5737
5738 tu_group->hash.dwo_unit = cu->dwo_unit;
5739 tu_group->hash.line_offset = line_offset_struct;
5740
5741 return tu_group;
5742 }
5743
5744 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5745 STMT_LIST is a DW_AT_stmt_list attribute. */
5746
5747 static struct type_unit_group *
5748 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5749 {
5750 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5751 struct type_unit_group *tu_group;
5752 void **slot;
5753 unsigned int line_offset;
5754 struct type_unit_group type_unit_group_for_lookup;
5755
5756 if (dwarf2_per_objfile->type_unit_groups == NULL)
5757 {
5758 dwarf2_per_objfile->type_unit_groups =
5759 allocate_type_unit_groups_table ();
5760 }
5761
5762 /* Do we need to create a new group, or can we use an existing one? */
5763
5764 if (stmt_list)
5765 {
5766 line_offset = DW_UNSND (stmt_list);
5767 ++tu_stats->nr_symtab_sharers;
5768 }
5769 else
5770 {
5771 /* Ugh, no stmt_list. Rare, but we have to handle it.
5772 We can do various things here like create one group per TU or
5773 spread them over multiple groups to split up the expansion work.
5774 To avoid worst case scenarios (too many groups or too large groups)
5775 we, umm, group them in bunches. */
5776 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5777 | (tu_stats->nr_stmt_less_type_units
5778 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5779 ++tu_stats->nr_stmt_less_type_units;
5780 }
5781
5782 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5783 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5784 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5785 &type_unit_group_for_lookup, INSERT);
5786 if (*slot != NULL)
5787 {
5788 tu_group = *slot;
5789 gdb_assert (tu_group != NULL);
5790 }
5791 else
5792 {
5793 sect_offset line_offset_struct;
5794
5795 line_offset_struct.sect_off = line_offset;
5796 tu_group = create_type_unit_group (cu, line_offset_struct);
5797 *slot = tu_group;
5798 ++tu_stats->nr_symtabs;
5799 }
5800
5801 return tu_group;
5802 }
5803 \f
5804 /* Partial symbol tables. */
5805
5806 /* Create a psymtab named NAME and assign it to PER_CU.
5807
5808 The caller must fill in the following details:
5809 dirname, textlow, texthigh. */
5810
5811 static struct partial_symtab *
5812 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5813 {
5814 struct objfile *objfile = per_cu->objfile;
5815 struct partial_symtab *pst;
5816
5817 pst = start_psymtab_common (objfile, objfile->section_offsets,
5818 name, 0,
5819 objfile->global_psymbols.next,
5820 objfile->static_psymbols.next);
5821
5822 pst->psymtabs_addrmap_supported = 1;
5823
5824 /* This is the glue that links PST into GDB's symbol API. */
5825 pst->read_symtab_private = per_cu;
5826 pst->read_symtab = dwarf2_read_symtab;
5827 per_cu->v.psymtab = pst;
5828
5829 return pst;
5830 }
5831
5832 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5833 type. */
5834
5835 struct process_psymtab_comp_unit_data
5836 {
5837 /* True if we are reading a DW_TAG_partial_unit. */
5838
5839 int want_partial_unit;
5840
5841 /* The "pretend" language that is used if the CU doesn't declare a
5842 language. */
5843
5844 enum language pretend_language;
5845 };
5846
5847 /* die_reader_func for process_psymtab_comp_unit. */
5848
5849 static void
5850 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5851 const gdb_byte *info_ptr,
5852 struct die_info *comp_unit_die,
5853 int has_children,
5854 void *data)
5855 {
5856 struct dwarf2_cu *cu = reader->cu;
5857 struct objfile *objfile = cu->objfile;
5858 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5859 struct attribute *attr;
5860 CORE_ADDR baseaddr;
5861 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5862 struct partial_symtab *pst;
5863 int has_pc_info;
5864 const char *filename;
5865 struct process_psymtab_comp_unit_data *info = data;
5866
5867 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5868 return;
5869
5870 gdb_assert (! per_cu->is_debug_types);
5871
5872 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5873
5874 cu->list_in_scope = &file_symbols;
5875
5876 /* Allocate a new partial symbol table structure. */
5877 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5878 if (attr == NULL || !DW_STRING (attr))
5879 filename = "";
5880 else
5881 filename = DW_STRING (attr);
5882
5883 pst = create_partial_symtab (per_cu, filename);
5884
5885 /* This must be done before calling dwarf2_build_include_psymtabs. */
5886 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5887 if (attr != NULL)
5888 pst->dirname = DW_STRING (attr);
5889
5890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5891
5892 dwarf2_find_base_address (comp_unit_die, cu);
5893
5894 /* Possibly set the default values of LOWPC and HIGHPC from
5895 `DW_AT_ranges'. */
5896 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5897 &best_highpc, cu, pst);
5898 if (has_pc_info == 1 && best_lowpc < best_highpc)
5899 /* Store the contiguous range if it is not empty; it can be empty for
5900 CUs with no code. */
5901 addrmap_set_empty (objfile->psymtabs_addrmap,
5902 best_lowpc + baseaddr,
5903 best_highpc + baseaddr - 1, pst);
5904
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5908 if (has_children)
5909 {
5910 struct partial_die_info *first_die;
5911 CORE_ADDR lowpc, highpc;
5912
5913 lowpc = ((CORE_ADDR) -1);
5914 highpc = ((CORE_ADDR) 0);
5915
5916 first_die = load_partial_dies (reader, info_ptr, 1);
5917
5918 scan_partial_symbols (first_die, &lowpc, &highpc,
5919 ! has_pc_info, cu);
5920
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc == ((CORE_ADDR) -1))
5924 lowpc = highpc;
5925
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5928 if (! has_pc_info)
5929 {
5930 best_lowpc = lowpc;
5931 best_highpc = highpc;
5932 }
5933 }
5934 pst->textlow = best_lowpc + baseaddr;
5935 pst->texthigh = best_highpc + baseaddr;
5936
5937 pst->n_global_syms = objfile->global_psymbols.next -
5938 (objfile->global_psymbols.list + pst->globals_offset);
5939 pst->n_static_syms = objfile->static_psymbols.next -
5940 (objfile->static_psymbols.list + pst->statics_offset);
5941 sort_pst_symbols (objfile, pst);
5942
5943 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5944 {
5945 int i;
5946 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5947 struct dwarf2_per_cu_data *iter;
5948
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5950 post-pass. */
5951 pst->number_of_dependencies = len;
5952 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5953 len * sizeof (struct symtab *));
5954 for (i = 0;
5955 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5956 i, iter);
5957 ++i)
5958 pst->dependencies[i] = iter->v.psymtab;
5959
5960 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5961 }
5962
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5966
5967 if (dwarf2_read_debug)
5968 {
5969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5970
5971 fprintf_unfiltered (gdb_stdlog,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu->is_debug_types ? "type" : "comp",
5975 per_cu->offset.sect_off,
5976 paddress (gdbarch, pst->textlow),
5977 paddress (gdbarch, pst->texthigh),
5978 pst->n_global_syms, pst->n_static_syms);
5979 }
5980 }
5981
5982 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5984
5985 static void
5986 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5987 int want_partial_unit,
5988 enum language pretend_language)
5989 {
5990 struct process_psymtab_comp_unit_data info;
5991
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu->cu != NULL)
5998 free_one_cached_comp_unit (this_cu);
5999
6000 gdb_assert (! this_cu->is_debug_types);
6001 info.want_partial_unit = want_partial_unit;
6002 info.pretend_language = pretend_language;
6003 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6004 process_psymtab_comp_unit_reader,
6005 &info);
6006
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6009 }
6010
6011 /* Reader function for build_type_psymtabs. */
6012
6013 static void
6014 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6015 const gdb_byte *info_ptr,
6016 struct die_info *type_unit_die,
6017 int has_children,
6018 void *data)
6019 {
6020 struct objfile *objfile = dwarf2_per_objfile->objfile;
6021 struct dwarf2_cu *cu = reader->cu;
6022 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6023 struct signatured_type *sig_type;
6024 struct type_unit_group *tu_group;
6025 struct attribute *attr;
6026 struct partial_die_info *first_die;
6027 CORE_ADDR lowpc, highpc;
6028 struct partial_symtab *pst;
6029
6030 gdb_assert (data == NULL);
6031 gdb_assert (per_cu->is_debug_types);
6032 sig_type = (struct signatured_type *) per_cu;
6033
6034 if (! has_children)
6035 return;
6036
6037 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6038 tu_group = get_type_unit_group (cu, attr);
6039
6040 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6041
6042 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6043 cu->list_in_scope = &file_symbols;
6044 pst = create_partial_symtab (per_cu, "");
6045 pst->anonymous = 1;
6046
6047 first_die = load_partial_dies (reader, info_ptr, 1);
6048
6049 lowpc = (CORE_ADDR) -1;
6050 highpc = (CORE_ADDR) 0;
6051 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6052
6053 pst->n_global_syms = objfile->global_psymbols.next -
6054 (objfile->global_psymbols.list + pst->globals_offset);
6055 pst->n_static_syms = objfile->static_psymbols.next -
6056 (objfile->static_psymbols.list + pst->statics_offset);
6057 sort_pst_symbols (objfile, pst);
6058 }
6059
6060 /* Struct used to sort TUs by their abbreviation table offset. */
6061
6062 struct tu_abbrev_offset
6063 {
6064 struct signatured_type *sig_type;
6065 sect_offset abbrev_offset;
6066 };
6067
6068 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6069
6070 static int
6071 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6072 {
6073 const struct tu_abbrev_offset * const *a = ap;
6074 const struct tu_abbrev_offset * const *b = bp;
6075 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6076 unsigned int boff = (*b)->abbrev_offset.sect_off;
6077
6078 return (aoff > boff) - (aoff < boff);
6079 }
6080
6081 /* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6083
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6087
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6094
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6098
6099 static void
6100 build_type_psymtabs_1 (void)
6101 {
6102 struct objfile *objfile = dwarf2_per_objfile->objfile;
6103 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6104 struct cleanup *cleanups;
6105 struct abbrev_table *abbrev_table;
6106 sect_offset abbrev_offset;
6107 struct tu_abbrev_offset *sorted_by_abbrev;
6108 struct type_unit_group **iter;
6109 int i;
6110
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6113
6114 if (dwarf2_per_objfile->n_type_units == 0)
6115 return;
6116
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6122
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6126
6127 The basic algorithm here is:
6128
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6134 call FUNC */
6135
6136 if (dwarf2_read_debug)
6137 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6138
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6142 dwarf2_per_objfile->n_type_units);
6143 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6144 {
6145 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6146
6147 sorted_by_abbrev[i].sig_type = sig_type;
6148 sorted_by_abbrev[i].abbrev_offset =
6149 read_abbrev_offset (sig_type->per_cu.section,
6150 sig_type->per_cu.offset);
6151 }
6152 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6153 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6154 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6155
6156 abbrev_offset.sect_off = ~(unsigned) 0;
6157 abbrev_table = NULL;
6158 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6159
6160 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6161 {
6162 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6163
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table == NULL
6166 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6167 {
6168 if (abbrev_table != NULL)
6169 {
6170 abbrev_table_free (abbrev_table);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table = NULL;
6174 }
6175 abbrev_offset = tu->abbrev_offset;
6176 abbrev_table =
6177 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6178 abbrev_offset);
6179 ++tu_stats->nr_uniq_abbrev_tables;
6180 }
6181
6182 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6183 build_type_psymtabs_reader, NULL);
6184 }
6185
6186 do_cleanups (cleanups);
6187 }
6188
6189 /* Print collected type unit statistics. */
6190
6191 static void
6192 print_tu_stats (void)
6193 {
6194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6195
6196 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6198 dwarf2_per_objfile->n_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6200 tu_stats->nr_uniq_abbrev_tables);
6201 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6202 tu_stats->nr_symtabs);
6203 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6204 tu_stats->nr_symtab_sharers);
6205 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6206 tu_stats->nr_stmt_less_type_units);
6207 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6208 tu_stats->nr_all_type_units_reallocs);
6209 }
6210
6211 /* Traversal function for build_type_psymtabs. */
6212
6213 static int
6214 build_type_psymtab_dependencies (void **slot, void *info)
6215 {
6216 struct objfile *objfile = dwarf2_per_objfile->objfile;
6217 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6218 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6219 struct partial_symtab *pst = per_cu->v.psymtab;
6220 int len = VEC_length (sig_type_ptr, tu_group->tus);
6221 struct signatured_type *iter;
6222 int i;
6223
6224 gdb_assert (len > 0);
6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6226
6227 pst->number_of_dependencies = len;
6228 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6229 len * sizeof (struct psymtab *));
6230 for (i = 0;
6231 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6232 ++i)
6233 {
6234 gdb_assert (iter->per_cu.is_debug_types);
6235 pst->dependencies[i] = iter->per_cu.v.psymtab;
6236 iter->type_unit_group = tu_group;
6237 }
6238
6239 VEC_free (sig_type_ptr, tu_group->tus);
6240
6241 return 1;
6242 }
6243
6244 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6246
6247 static void
6248 build_type_psymtabs (struct objfile *objfile)
6249 {
6250 if (! create_all_type_units (objfile))
6251 return;
6252
6253 build_type_psymtabs_1 ();
6254 }
6255
6256 /* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6258
6259 static int
6260 process_skeletonless_type_unit (void **slot, void *info)
6261 {
6262 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6263 struct objfile *objfile = info;
6264 struct signatured_type find_entry, *entry;
6265
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6267
6268 if (dwarf2_per_objfile->signatured_types == NULL)
6269 {
6270 dwarf2_per_objfile->signatured_types
6271 = allocate_signatured_type_table (objfile);
6272 }
6273
6274 find_entry.signature = dwo_unit->signature;
6275 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6276 INSERT);
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6279 if (*slot != NULL)
6280 return 1;
6281
6282 /* This does the job that create_all_type_units would have done for
6283 this TU. */
6284 entry = add_type_unit (dwo_unit->signature, slot);
6285 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6286 *slot = entry;
6287
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6290 build_type_psymtabs_reader, NULL);
6291
6292 return 1;
6293 }
6294
6295 /* Traversal function for process_skeletonless_type_units. */
6296
6297 static int
6298 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6299 {
6300 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6301
6302 if (dwo_file->tus != NULL)
6303 {
6304 htab_traverse_noresize (dwo_file->tus,
6305 process_skeletonless_type_unit, info);
6306 }
6307
6308 return 1;
6309 }
6310
6311 /* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6314
6315 static void
6316 process_skeletonless_type_units (struct objfile *objfile)
6317 {
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile->dwo_files != NULL)
6321 {
6322 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6323 process_dwo_file_for_skeletonless_type_units,
6324 objfile);
6325 }
6326 }
6327
6328 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6329
6330 static void
6331 psymtabs_addrmap_cleanup (void *o)
6332 {
6333 struct objfile *objfile = o;
6334
6335 objfile->psymtabs_addrmap = NULL;
6336 }
6337
6338 /* Compute the 'user' field for each psymtab in OBJFILE. */
6339
6340 static void
6341 set_partial_user (struct objfile *objfile)
6342 {
6343 int i;
6344
6345 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6346 {
6347 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6348 struct partial_symtab *pst = per_cu->v.psymtab;
6349 int j;
6350
6351 if (pst == NULL)
6352 continue;
6353
6354 for (j = 0; j < pst->number_of_dependencies; ++j)
6355 {
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst->dependencies[j]->user == NULL)
6358 pst->dependencies[j]->user = pst;
6359 }
6360 }
6361 }
6362
6363 /* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
6365
6366 static void
6367 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6368 {
6369 struct cleanup *back_to, *addrmap_cleanup;
6370 struct obstack temp_obstack;
6371 int i;
6372
6373 if (dwarf2_read_debug)
6374 {
6375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6376 objfile_name (objfile));
6377 }
6378
6379 dwarf2_per_objfile->reading_partial_symbols = 1;
6380
6381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6382
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to = make_cleanup (free_cached_comp_units, NULL);
6386
6387 build_type_psymtabs (objfile);
6388
6389 create_all_comp_units (objfile);
6390
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack);
6394 make_cleanup_obstack_free (&temp_obstack);
6395 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6396 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6397
6398 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6399 {
6400 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6401
6402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6403 }
6404
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile);
6407
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile->type_unit_groups != NULL)
6410 {
6411 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6412 build_type_psymtab_dependencies, NULL);
6413 }
6414
6415 if (dwarf2_read_debug)
6416 print_tu_stats ();
6417
6418 set_partial_user (objfile);
6419
6420 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6421 &objfile->objfile_obstack);
6422 discard_cleanups (addrmap_cleanup);
6423
6424 do_cleanups (back_to);
6425
6426 if (dwarf2_read_debug)
6427 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6428 objfile_name (objfile));
6429 }
6430
6431 /* die_reader_func for load_partial_comp_unit. */
6432
6433 static void
6434 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6435 const gdb_byte *info_ptr,
6436 struct die_info *comp_unit_die,
6437 int has_children,
6438 void *data)
6439 {
6440 struct dwarf2_cu *cu = reader->cu;
6441
6442 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6443
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
6446 If not, there's no more debug_info for this comp unit. */
6447 if (has_children)
6448 load_partial_dies (reader, info_ptr, 0);
6449 }
6450
6451 /* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
6453
6454 static void
6455 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6456 {
6457 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6458 load_partial_comp_unit_reader, NULL);
6459 }
6460
6461 static void
6462 read_comp_units_from_section (struct objfile *objfile,
6463 struct dwarf2_section_info *section,
6464 unsigned int is_dwz,
6465 int *n_allocated,
6466 int *n_comp_units,
6467 struct dwarf2_per_cu_data ***all_comp_units)
6468 {
6469 const gdb_byte *info_ptr;
6470 bfd *abfd = get_section_bfd_owner (section);
6471
6472 if (dwarf2_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6474 get_section_name (section),
6475 get_section_file_name (section));
6476
6477 dwarf2_read_section (objfile, section);
6478
6479 info_ptr = section->buffer;
6480
6481 while (info_ptr < section->buffer + section->size)
6482 {
6483 unsigned int length, initial_length_size;
6484 struct dwarf2_per_cu_data *this_cu;
6485 sect_offset offset;
6486
6487 offset.sect_off = info_ptr - section->buffer;
6488
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
6491 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6492
6493 /* Save the compilation unit for later lookup. */
6494 this_cu = obstack_alloc (&objfile->objfile_obstack,
6495 sizeof (struct dwarf2_per_cu_data));
6496 memset (this_cu, 0, sizeof (*this_cu));
6497 this_cu->offset = offset;
6498 this_cu->length = length + initial_length_size;
6499 this_cu->is_dwz = is_dwz;
6500 this_cu->objfile = objfile;
6501 this_cu->section = section;
6502
6503 if (*n_comp_units == *n_allocated)
6504 {
6505 *n_allocated *= 2;
6506 *all_comp_units = xrealloc (*all_comp_units,
6507 *n_allocated
6508 * sizeof (struct dwarf2_per_cu_data *));
6509 }
6510 (*all_comp_units)[*n_comp_units] = this_cu;
6511 ++*n_comp_units;
6512
6513 info_ptr = info_ptr + this_cu->length;
6514 }
6515 }
6516
6517 /* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6519
6520 static void
6521 create_all_comp_units (struct objfile *objfile)
6522 {
6523 int n_allocated;
6524 int n_comp_units;
6525 struct dwarf2_per_cu_data **all_comp_units;
6526 struct dwz_file *dwz;
6527
6528 n_comp_units = 0;
6529 n_allocated = 10;
6530 all_comp_units = xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data *));
6532
6533 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6534 &n_allocated, &n_comp_units, &all_comp_units);
6535
6536 dwz = dwarf2_get_dwz_file ();
6537 if (dwz != NULL)
6538 read_comp_units_from_section (objfile, &dwz->info, 1,
6539 &n_allocated, &n_comp_units,
6540 &all_comp_units);
6541
6542 dwarf2_per_objfile->all_comp_units
6543 = obstack_alloc (&objfile->objfile_obstack,
6544 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6545 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6546 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6547 xfree (all_comp_units);
6548 dwarf2_per_objfile->n_comp_units = n_comp_units;
6549 }
6550
6551 /* Process all loaded DIEs for compilation unit CU, starting at
6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6556
6557 static void
6558 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6559 CORE_ADDR *highpc, int set_addrmap,
6560 struct dwarf2_cu *cu)
6561 {
6562 struct partial_die_info *pdi;
6563
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
6567
6568 pdi = first_die;
6569
6570 while (pdi != NULL)
6571 {
6572 fixup_partial_die (pdi, cu);
6573
6574 /* Anonymous namespaces or modules have no name but have interesting
6575 children, so we need to look at them. Ditto for anonymous
6576 enums. */
6577
6578 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6579 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6580 || pdi->tag == DW_TAG_imported_unit)
6581 {
6582 switch (pdi->tag)
6583 {
6584 case DW_TAG_subprogram:
6585 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6586 break;
6587 case DW_TAG_constant:
6588 case DW_TAG_variable:
6589 case DW_TAG_typedef:
6590 case DW_TAG_union_type:
6591 if (!pdi->is_declaration)
6592 {
6593 add_partial_symbol (pdi, cu);
6594 }
6595 break;
6596 case DW_TAG_class_type:
6597 case DW_TAG_interface_type:
6598 case DW_TAG_structure_type:
6599 if (!pdi->is_declaration)
6600 {
6601 add_partial_symbol (pdi, cu);
6602 }
6603 break;
6604 case DW_TAG_enumeration_type:
6605 if (!pdi->is_declaration)
6606 add_partial_enumeration (pdi, cu);
6607 break;
6608 case DW_TAG_base_type:
6609 case DW_TAG_subrange_type:
6610 /* File scope base type definitions are added to the partial
6611 symbol table. */
6612 add_partial_symbol (pdi, cu);
6613 break;
6614 case DW_TAG_namespace:
6615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6616 break;
6617 case DW_TAG_module:
6618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6619 break;
6620 case DW_TAG_imported_unit:
6621 {
6622 struct dwarf2_per_cu_data *per_cu;
6623
6624 /* For now we don't handle imported units in type units. */
6625 if (cu->per_cu->is_debug_types)
6626 {
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
6629 objfile_name (cu->objfile));
6630 }
6631
6632 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6633 pdi->is_dwz,
6634 cu->objfile);
6635
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu->v.psymtab == NULL)
6638 process_psymtab_comp_unit (per_cu, 1, cu->language);
6639
6640 VEC_safe_push (dwarf2_per_cu_ptr,
6641 cu->per_cu->imported_symtabs, per_cu);
6642 }
6643 break;
6644 case DW_TAG_imported_declaration:
6645 add_partial_symbol (pdi, cu);
6646 break;
6647 default:
6648 break;
6649 }
6650 }
6651
6652 /* If the die has a sibling, skip to the sibling. */
6653
6654 pdi = pdi->die_sibling;
6655 }
6656 }
6657
6658 /* Functions used to compute the fully scoped name of a partial DIE.
6659
6660 Normally, this is simple. For C++, the parent DIE's fully scoped
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
6666
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6676 have a parent. */
6677
6678 /* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
6682 static const char *
6683 partial_die_parent_scope (struct partial_die_info *pdi,
6684 struct dwarf2_cu *cu)
6685 {
6686 const char *grandparent_scope;
6687 struct partial_die_info *parent, *real_pdi;
6688
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6691
6692 real_pdi = pdi;
6693 while (real_pdi->has_specification)
6694 real_pdi = find_partial_die (real_pdi->spec_offset,
6695 real_pdi->spec_is_dwz, cu);
6696
6697 parent = real_pdi->die_parent;
6698 if (parent == NULL)
6699 return NULL;
6700
6701 if (parent->scope_set)
6702 return parent->scope;
6703
6704 fixup_partial_die (parent, cu);
6705
6706 grandparent_scope = partial_die_parent_scope (parent, cu);
6707
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu->language == language_cplus
6712 && parent->tag == DW_TAG_namespace
6713 && strcmp (parent->name, "::") == 0
6714 && grandparent_scope == NULL)
6715 {
6716 parent->scope = NULL;
6717 parent->scope_set = 1;
6718 return NULL;
6719 }
6720
6721 if (pdi->tag == DW_TAG_enumerator)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent->scope = grandparent_scope;
6724 else if (parent->tag == DW_TAG_namespace
6725 || parent->tag == DW_TAG_module
6726 || parent->tag == DW_TAG_structure_type
6727 || parent->tag == DW_TAG_class_type
6728 || parent->tag == DW_TAG_interface_type
6729 || parent->tag == DW_TAG_union_type
6730 || parent->tag == DW_TAG_enumeration_type)
6731 {
6732 if (grandparent_scope == NULL)
6733 parent->scope = parent->name;
6734 else
6735 parent->scope = typename_concat (&cu->comp_unit_obstack,
6736 grandparent_scope,
6737 parent->name, 0, cu);
6738 }
6739 else
6740 {
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6743 ignoring them. */
6744 complaint (&symfile_complaints,
6745 _("unhandled containing DIE tag %d for DIE at %d"),
6746 parent->tag, pdi->offset.sect_off);
6747 parent->scope = grandparent_scope;
6748 }
6749
6750 parent->scope_set = 1;
6751 return parent->scope;
6752 }
6753
6754 /* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
6756
6757 static char *
6758 partial_die_full_name (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760 {
6761 const char *parent_scope;
6762
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi->has_template_arguments)
6768 {
6769 fixup_partial_die (pdi, cu);
6770
6771 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6772 {
6773 struct die_info *die;
6774 struct attribute attr;
6775 struct dwarf2_cu *ref_cu = cu;
6776
6777 /* DW_FORM_ref_addr is using section offset. */
6778 attr.name = 0;
6779 attr.form = DW_FORM_ref_addr;
6780 attr.u.unsnd = pdi->offset.sect_off;
6781 die = follow_die_ref (NULL, &attr, &ref_cu);
6782
6783 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6784 }
6785 }
6786
6787 parent_scope = partial_die_parent_scope (pdi, cu);
6788 if (parent_scope == NULL)
6789 return NULL;
6790 else
6791 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6792 }
6793
6794 static void
6795 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6796 {
6797 struct objfile *objfile = cu->objfile;
6798 CORE_ADDR addr = 0;
6799 const char *actual_name = NULL;
6800 CORE_ADDR baseaddr;
6801 char *built_actual_name;
6802
6803 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6804
6805 built_actual_name = partial_die_full_name (pdi, cu);
6806 if (built_actual_name != NULL)
6807 actual_name = built_actual_name;
6808
6809 if (actual_name == NULL)
6810 actual_name = pdi->name;
6811
6812 switch (pdi->tag)
6813 {
6814 case DW_TAG_subprogram:
6815 if (pdi->is_external || cu->language == language_ada)
6816 {
6817 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6818 of the global scope. But in Ada, we want to be able to access
6819 nested procedures globally. So all Ada subprograms are stored
6820 in the global scope. */
6821 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6822 mst_text, objfile); */
6823 add_psymbol_to_list (actual_name, strlen (actual_name),
6824 built_actual_name != NULL,
6825 VAR_DOMAIN, LOC_BLOCK,
6826 &objfile->global_psymbols,
6827 0, pdi->lowpc + baseaddr,
6828 cu->language, objfile);
6829 }
6830 else
6831 {
6832 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6833 mst_file_text, objfile); */
6834 add_psymbol_to_list (actual_name, strlen (actual_name),
6835 built_actual_name != NULL,
6836 VAR_DOMAIN, LOC_BLOCK,
6837 &objfile->static_psymbols,
6838 0, pdi->lowpc + baseaddr,
6839 cu->language, objfile);
6840 }
6841 break;
6842 case DW_TAG_constant:
6843 {
6844 struct psymbol_allocation_list *list;
6845
6846 if (pdi->is_external)
6847 list = &objfile->global_psymbols;
6848 else
6849 list = &objfile->static_psymbols;
6850 add_psymbol_to_list (actual_name, strlen (actual_name),
6851 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6852 list, 0, 0, cu->language, objfile);
6853 }
6854 break;
6855 case DW_TAG_variable:
6856 if (pdi->d.locdesc)
6857 addr = decode_locdesc (pdi->d.locdesc, cu);
6858
6859 if (pdi->d.locdesc
6860 && addr == 0
6861 && !dwarf2_per_objfile->has_section_at_zero)
6862 {
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6867 }
6868 else if (pdi->is_external)
6869 {
6870 /* Global Variable.
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6878 is referenced.
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6881 table building. */
6882
6883 if (pdi->d.locdesc || pdi->has_type)
6884 add_psymbol_to_list (actual_name, strlen (actual_name),
6885 built_actual_name != NULL,
6886 VAR_DOMAIN, LOC_STATIC,
6887 &objfile->global_psymbols,
6888 0, addr + baseaddr,
6889 cu->language, objfile);
6890 }
6891 else
6892 {
6893 /* Static Variable. Skip symbols without location descriptors. */
6894 if (pdi->d.locdesc == NULL)
6895 {
6896 xfree (built_actual_name);
6897 return;
6898 }
6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6900 mst_file_data, objfile); */
6901 add_psymbol_to_list (actual_name, strlen (actual_name),
6902 built_actual_name != NULL,
6903 VAR_DOMAIN, LOC_STATIC,
6904 &objfile->static_psymbols,
6905 0, addr + baseaddr,
6906 cu->language, objfile);
6907 }
6908 break;
6909 case DW_TAG_typedef:
6910 case DW_TAG_base_type:
6911 case DW_TAG_subrange_type:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->static_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6917 break;
6918 case DW_TAG_imported_declaration:
6919 case DW_TAG_namespace:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 VAR_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
6926 case DW_TAG_module:
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 MODULE_DOMAIN, LOC_TYPEDEF,
6930 &objfile->global_psymbols,
6931 0, (CORE_ADDR) 0, cu->language, objfile);
6932 break;
6933 case DW_TAG_class_type:
6934 case DW_TAG_interface_type:
6935 case DW_TAG_structure_type:
6936 case DW_TAG_union_type:
6937 case DW_TAG_enumeration_type:
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi->has_byte_size && pdi->is_declaration)
6944 {
6945 xfree (built_actual_name);
6946 return;
6947 }
6948
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
6951 add_psymbol_to_list (actual_name, strlen (actual_name),
6952 built_actual_name != NULL,
6953 STRUCT_DOMAIN, LOC_TYPEDEF,
6954 (cu->language == language_cplus
6955 || cu->language == language_java)
6956 ? &objfile->global_psymbols
6957 : &objfile->static_psymbols,
6958 0, (CORE_ADDR) 0, cu->language, objfile);
6959
6960 break;
6961 case DW_TAG_enumerator:
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
6963 built_actual_name != NULL,
6964 VAR_DOMAIN, LOC_CONST,
6965 (cu->language == language_cplus
6966 || cu->language == language_java)
6967 ? &objfile->global_psymbols
6968 : &objfile->static_psymbols,
6969 0, (CORE_ADDR) 0, cu->language, objfile);
6970 break;
6971 default:
6972 break;
6973 }
6974
6975 xfree (built_actual_name);
6976 }
6977
6978 /* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
6981
6982 static void
6983 add_partial_namespace (struct partial_die_info *pdi,
6984 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6985 int set_addrmap, struct dwarf2_cu *cu)
6986 {
6987 /* Add a symbol for the namespace. */
6988
6989 add_partial_symbol (pdi, cu);
6990
6991 /* Now scan partial symbols in that namespace. */
6992
6993 if (pdi->has_children)
6994 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6995 }
6996
6997 /* Read a partial die corresponding to a Fortran module. */
6998
6999 static void
7000 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7001 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7002 {
7003 /* Add a symbol for the namespace. */
7004
7005 add_partial_symbol (pdi, cu);
7006
7007 /* Now scan partial symbols in that module. */
7008
7009 if (pdi->has_children)
7010 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7011 }
7012
7013 /* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
7016 that this subprogram contains. If SET_ADDRMAP is true, record the
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
7019
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7024
7025 static void
7026 add_partial_subprogram (struct partial_die_info *pdi,
7027 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7028 int set_addrmap, struct dwarf2_cu *cu)
7029 {
7030 if (pdi->tag == DW_TAG_subprogram)
7031 {
7032 if (pdi->has_pc_info)
7033 {
7034 if (pdi->lowpc < *lowpc)
7035 *lowpc = pdi->lowpc;
7036 if (pdi->highpc > *highpc)
7037 *highpc = pdi->highpc;
7038 if (set_addrmap)
7039 {
7040 CORE_ADDR baseaddr;
7041 struct objfile *objfile = cu->objfile;
7042
7043 baseaddr = ANOFFSET (objfile->section_offsets,
7044 SECT_OFF_TEXT (objfile));
7045 addrmap_set_empty (objfile->psymtabs_addrmap,
7046 pdi->lowpc + baseaddr,
7047 pdi->highpc - 1 + baseaddr,
7048 cu->per_cu->v.psymtab);
7049 }
7050 }
7051
7052 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7053 {
7054 if (!pdi->is_declaration)
7055 /* Ignore subprogram DIEs that do not have a name, they are
7056 illegal. Do not emit a complaint at this point, we will
7057 do so when we convert this psymtab into a symtab. */
7058 if (pdi->name)
7059 add_partial_symbol (pdi, cu);
7060 }
7061 }
7062
7063 if (! pdi->has_children)
7064 return;
7065
7066 if (cu->language == language_ada)
7067 {
7068 pdi = pdi->die_child;
7069 while (pdi != NULL)
7070 {
7071 fixup_partial_die (pdi, cu);
7072 if (pdi->tag == DW_TAG_subprogram
7073 || pdi->tag == DW_TAG_lexical_block)
7074 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7075 pdi = pdi->die_sibling;
7076 }
7077 }
7078 }
7079
7080 /* Read a partial die corresponding to an enumeration type. */
7081
7082 static void
7083 add_partial_enumeration (struct partial_die_info *enum_pdi,
7084 struct dwarf2_cu *cu)
7085 {
7086 struct partial_die_info *pdi;
7087
7088 if (enum_pdi->name != NULL)
7089 add_partial_symbol (enum_pdi, cu);
7090
7091 pdi = enum_pdi->die_child;
7092 while (pdi)
7093 {
7094 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7095 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7096 else
7097 add_partial_symbol (pdi, cu);
7098 pdi = pdi->die_sibling;
7099 }
7100 }
7101
7102 /* Return the initial uleb128 in the die at INFO_PTR. */
7103
7104 static unsigned int
7105 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7106 {
7107 unsigned int bytes_read;
7108
7109 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7110 }
7111
7112 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7113 Return the corresponding abbrev, or NULL if the number is zero (indicating
7114 an empty DIE). In either case *BYTES_READ will be set to the length of
7115 the initial number. */
7116
7117 static struct abbrev_info *
7118 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7119 struct dwarf2_cu *cu)
7120 {
7121 bfd *abfd = cu->objfile->obfd;
7122 unsigned int abbrev_number;
7123 struct abbrev_info *abbrev;
7124
7125 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7126
7127 if (abbrev_number == 0)
7128 return NULL;
7129
7130 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7131 if (!abbrev)
7132 {
7133 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7134 abbrev_number, bfd_get_filename (abfd));
7135 }
7136
7137 return abbrev;
7138 }
7139
7140 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7141 Returns a pointer to the end of a series of DIEs, terminated by an empty
7142 DIE. Any children of the skipped DIEs will also be skipped. */
7143
7144 static const gdb_byte *
7145 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7146 {
7147 struct dwarf2_cu *cu = reader->cu;
7148 struct abbrev_info *abbrev;
7149 unsigned int bytes_read;
7150
7151 while (1)
7152 {
7153 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7154 if (abbrev == NULL)
7155 return info_ptr + bytes_read;
7156 else
7157 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7158 }
7159 }
7160
7161 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7162 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7163 abbrev corresponding to that skipped uleb128 should be passed in
7164 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7165 children. */
7166
7167 static const gdb_byte *
7168 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7169 struct abbrev_info *abbrev)
7170 {
7171 unsigned int bytes_read;
7172 struct attribute attr;
7173 bfd *abfd = reader->abfd;
7174 struct dwarf2_cu *cu = reader->cu;
7175 const gdb_byte *buffer = reader->buffer;
7176 const gdb_byte *buffer_end = reader->buffer_end;
7177 const gdb_byte *start_info_ptr = info_ptr;
7178 unsigned int form, i;
7179
7180 for (i = 0; i < abbrev->num_attrs; i++)
7181 {
7182 /* The only abbrev we care about is DW_AT_sibling. */
7183 if (abbrev->attrs[i].name == DW_AT_sibling)
7184 {
7185 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7186 if (attr.form == DW_FORM_ref_addr)
7187 complaint (&symfile_complaints,
7188 _("ignoring absolute DW_AT_sibling"));
7189 else
7190 {
7191 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7192 const gdb_byte *sibling_ptr = buffer + off;
7193
7194 if (sibling_ptr < info_ptr)
7195 complaint (&symfile_complaints,
7196 _("DW_AT_sibling points backwards"));
7197 else if (sibling_ptr > reader->buffer_end)
7198 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7199 else
7200 return sibling_ptr;
7201 }
7202 }
7203
7204 /* If it isn't DW_AT_sibling, skip this attribute. */
7205 form = abbrev->attrs[i].form;
7206 skip_attribute:
7207 switch (form)
7208 {
7209 case DW_FORM_ref_addr:
7210 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7211 and later it is offset sized. */
7212 if (cu->header.version == 2)
7213 info_ptr += cu->header.addr_size;
7214 else
7215 info_ptr += cu->header.offset_size;
7216 break;
7217 case DW_FORM_GNU_ref_alt:
7218 info_ptr += cu->header.offset_size;
7219 break;
7220 case DW_FORM_addr:
7221 info_ptr += cu->header.addr_size;
7222 break;
7223 case DW_FORM_data1:
7224 case DW_FORM_ref1:
7225 case DW_FORM_flag:
7226 info_ptr += 1;
7227 break;
7228 case DW_FORM_flag_present:
7229 break;
7230 case DW_FORM_data2:
7231 case DW_FORM_ref2:
7232 info_ptr += 2;
7233 break;
7234 case DW_FORM_data4:
7235 case DW_FORM_ref4:
7236 info_ptr += 4;
7237 break;
7238 case DW_FORM_data8:
7239 case DW_FORM_ref8:
7240 case DW_FORM_ref_sig8:
7241 info_ptr += 8;
7242 break;
7243 case DW_FORM_string:
7244 read_direct_string (abfd, info_ptr, &bytes_read);
7245 info_ptr += bytes_read;
7246 break;
7247 case DW_FORM_sec_offset:
7248 case DW_FORM_strp:
7249 case DW_FORM_GNU_strp_alt:
7250 info_ptr += cu->header.offset_size;
7251 break;
7252 case DW_FORM_exprloc:
7253 case DW_FORM_block:
7254 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7255 info_ptr += bytes_read;
7256 break;
7257 case DW_FORM_block1:
7258 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7259 break;
7260 case DW_FORM_block2:
7261 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7262 break;
7263 case DW_FORM_block4:
7264 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7265 break;
7266 case DW_FORM_sdata:
7267 case DW_FORM_udata:
7268 case DW_FORM_ref_udata:
7269 case DW_FORM_GNU_addr_index:
7270 case DW_FORM_GNU_str_index:
7271 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7272 break;
7273 case DW_FORM_indirect:
7274 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7275 info_ptr += bytes_read;
7276 /* We need to continue parsing from here, so just go back to
7277 the top. */
7278 goto skip_attribute;
7279
7280 default:
7281 error (_("Dwarf Error: Cannot handle %s "
7282 "in DWARF reader [in module %s]"),
7283 dwarf_form_name (form),
7284 bfd_get_filename (abfd));
7285 }
7286 }
7287
7288 if (abbrev->has_children)
7289 return skip_children (reader, info_ptr);
7290 else
7291 return info_ptr;
7292 }
7293
7294 /* Locate ORIG_PDI's sibling.
7295 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7296
7297 static const gdb_byte *
7298 locate_pdi_sibling (const struct die_reader_specs *reader,
7299 struct partial_die_info *orig_pdi,
7300 const gdb_byte *info_ptr)
7301 {
7302 /* Do we know the sibling already? */
7303
7304 if (orig_pdi->sibling)
7305 return orig_pdi->sibling;
7306
7307 /* Are there any children to deal with? */
7308
7309 if (!orig_pdi->has_children)
7310 return info_ptr;
7311
7312 /* Skip the children the long way. */
7313
7314 return skip_children (reader, info_ptr);
7315 }
7316
7317 /* Expand this partial symbol table into a full symbol table. SELF is
7318 not NULL. */
7319
7320 static void
7321 dwarf2_read_symtab (struct partial_symtab *self,
7322 struct objfile *objfile)
7323 {
7324 if (self->readin)
7325 {
7326 warning (_("bug: psymtab for %s is already read in."),
7327 self->filename);
7328 }
7329 else
7330 {
7331 if (info_verbose)
7332 {
7333 printf_filtered (_("Reading in symbols for %s..."),
7334 self->filename);
7335 gdb_flush (gdb_stdout);
7336 }
7337
7338 /* Restore our global data. */
7339 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7340
7341 /* If this psymtab is constructed from a debug-only objfile, the
7342 has_section_at_zero flag will not necessarily be correct. We
7343 can get the correct value for this flag by looking at the data
7344 associated with the (presumably stripped) associated objfile. */
7345 if (objfile->separate_debug_objfile_backlink)
7346 {
7347 struct dwarf2_per_objfile *dpo_backlink
7348 = objfile_data (objfile->separate_debug_objfile_backlink,
7349 dwarf2_objfile_data_key);
7350
7351 dwarf2_per_objfile->has_section_at_zero
7352 = dpo_backlink->has_section_at_zero;
7353 }
7354
7355 dwarf2_per_objfile->reading_partial_symbols = 0;
7356
7357 psymtab_to_symtab_1 (self);
7358
7359 /* Finish up the debug error message. */
7360 if (info_verbose)
7361 printf_filtered (_("done.\n"));
7362 }
7363
7364 process_cu_includes ();
7365 }
7366 \f
7367 /* Reading in full CUs. */
7368
7369 /* Add PER_CU to the queue. */
7370
7371 static void
7372 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7373 enum language pretend_language)
7374 {
7375 struct dwarf2_queue_item *item;
7376
7377 per_cu->queued = 1;
7378 item = xmalloc (sizeof (*item));
7379 item->per_cu = per_cu;
7380 item->pretend_language = pretend_language;
7381 item->next = NULL;
7382
7383 if (dwarf2_queue == NULL)
7384 dwarf2_queue = item;
7385 else
7386 dwarf2_queue_tail->next = item;
7387
7388 dwarf2_queue_tail = item;
7389 }
7390
7391 /* If PER_CU is not yet queued, add it to the queue.
7392 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7393 dependency.
7394 The result is non-zero if PER_CU was queued, otherwise the result is zero
7395 meaning either PER_CU is already queued or it is already loaded.
7396
7397 N.B. There is an invariant here that if a CU is queued then it is loaded.
7398 The caller is required to load PER_CU if we return non-zero. */
7399
7400 static int
7401 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7402 struct dwarf2_per_cu_data *per_cu,
7403 enum language pretend_language)
7404 {
7405 /* We may arrive here during partial symbol reading, if we need full
7406 DIEs to process an unusual case (e.g. template arguments). Do
7407 not queue PER_CU, just tell our caller to load its DIEs. */
7408 if (dwarf2_per_objfile->reading_partial_symbols)
7409 {
7410 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7411 return 1;
7412 return 0;
7413 }
7414
7415 /* Mark the dependence relation so that we don't flush PER_CU
7416 too early. */
7417 if (dependent_cu != NULL)
7418 dwarf2_add_dependence (dependent_cu, per_cu);
7419
7420 /* If it's already on the queue, we have nothing to do. */
7421 if (per_cu->queued)
7422 return 0;
7423
7424 /* If the compilation unit is already loaded, just mark it as
7425 used. */
7426 if (per_cu->cu != NULL)
7427 {
7428 per_cu->cu->last_used = 0;
7429 return 0;
7430 }
7431
7432 /* Add it to the queue. */
7433 queue_comp_unit (per_cu, pretend_language);
7434
7435 return 1;
7436 }
7437
7438 /* Process the queue. */
7439
7440 static void
7441 process_queue (void)
7442 {
7443 struct dwarf2_queue_item *item, *next_item;
7444
7445 if (dwarf2_read_debug)
7446 {
7447 fprintf_unfiltered (gdb_stdlog,
7448 "Expanding one or more symtabs of objfile %s ...\n",
7449 objfile_name (dwarf2_per_objfile->objfile));
7450 }
7451
7452 /* The queue starts out with one item, but following a DIE reference
7453 may load a new CU, adding it to the end of the queue. */
7454 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7455 {
7456 if (dwarf2_per_objfile->using_index
7457 ? !item->per_cu->v.quick->compunit_symtab
7458 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7459 {
7460 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7461 unsigned int debug_print_threshold;
7462 char buf[100];
7463
7464 if (per_cu->is_debug_types)
7465 {
7466 struct signatured_type *sig_type =
7467 (struct signatured_type *) per_cu;
7468
7469 sprintf (buf, "TU %s at offset 0x%x",
7470 hex_string (sig_type->signature),
7471 per_cu->offset.sect_off);
7472 /* There can be 100s of TUs.
7473 Only print them in verbose mode. */
7474 debug_print_threshold = 2;
7475 }
7476 else
7477 {
7478 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7479 debug_print_threshold = 1;
7480 }
7481
7482 if (dwarf2_read_debug >= debug_print_threshold)
7483 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7484
7485 if (per_cu->is_debug_types)
7486 process_full_type_unit (per_cu, item->pretend_language);
7487 else
7488 process_full_comp_unit (per_cu, item->pretend_language);
7489
7490 if (dwarf2_read_debug >= debug_print_threshold)
7491 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7492 }
7493
7494 item->per_cu->queued = 0;
7495 next_item = item->next;
7496 xfree (item);
7497 }
7498
7499 dwarf2_queue_tail = NULL;
7500
7501 if (dwarf2_read_debug)
7502 {
7503 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7504 objfile_name (dwarf2_per_objfile->objfile));
7505 }
7506 }
7507
7508 /* Free all allocated queue entries. This function only releases anything if
7509 an error was thrown; if the queue was processed then it would have been
7510 freed as we went along. */
7511
7512 static void
7513 dwarf2_release_queue (void *dummy)
7514 {
7515 struct dwarf2_queue_item *item, *last;
7516
7517 item = dwarf2_queue;
7518 while (item)
7519 {
7520 /* Anything still marked queued is likely to be in an
7521 inconsistent state, so discard it. */
7522 if (item->per_cu->queued)
7523 {
7524 if (item->per_cu->cu != NULL)
7525 free_one_cached_comp_unit (item->per_cu);
7526 item->per_cu->queued = 0;
7527 }
7528
7529 last = item;
7530 item = item->next;
7531 xfree (last);
7532 }
7533
7534 dwarf2_queue = dwarf2_queue_tail = NULL;
7535 }
7536
7537 /* Read in full symbols for PST, and anything it depends on. */
7538
7539 static void
7540 psymtab_to_symtab_1 (struct partial_symtab *pst)
7541 {
7542 struct dwarf2_per_cu_data *per_cu;
7543 int i;
7544
7545 if (pst->readin)
7546 return;
7547
7548 for (i = 0; i < pst->number_of_dependencies; i++)
7549 if (!pst->dependencies[i]->readin
7550 && pst->dependencies[i]->user == NULL)
7551 {
7552 /* Inform about additional files that need to be read in. */
7553 if (info_verbose)
7554 {
7555 /* FIXME: i18n: Need to make this a single string. */
7556 fputs_filtered (" ", gdb_stdout);
7557 wrap_here ("");
7558 fputs_filtered ("and ", gdb_stdout);
7559 wrap_here ("");
7560 printf_filtered ("%s...", pst->dependencies[i]->filename);
7561 wrap_here (""); /* Flush output. */
7562 gdb_flush (gdb_stdout);
7563 }
7564 psymtab_to_symtab_1 (pst->dependencies[i]);
7565 }
7566
7567 per_cu = pst->read_symtab_private;
7568
7569 if (per_cu == NULL)
7570 {
7571 /* It's an include file, no symbols to read for it.
7572 Everything is in the parent symtab. */
7573 pst->readin = 1;
7574 return;
7575 }
7576
7577 dw2_do_instantiate_symtab (per_cu);
7578 }
7579
7580 /* Trivial hash function for die_info: the hash value of a DIE
7581 is its offset in .debug_info for this objfile. */
7582
7583 static hashval_t
7584 die_hash (const void *item)
7585 {
7586 const struct die_info *die = item;
7587
7588 return die->offset.sect_off;
7589 }
7590
7591 /* Trivial comparison function for die_info structures: two DIEs
7592 are equal if they have the same offset. */
7593
7594 static int
7595 die_eq (const void *item_lhs, const void *item_rhs)
7596 {
7597 const struct die_info *die_lhs = item_lhs;
7598 const struct die_info *die_rhs = item_rhs;
7599
7600 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7601 }
7602
7603 /* die_reader_func for load_full_comp_unit.
7604 This is identical to read_signatured_type_reader,
7605 but is kept separate for now. */
7606
7607 static void
7608 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7609 const gdb_byte *info_ptr,
7610 struct die_info *comp_unit_die,
7611 int has_children,
7612 void *data)
7613 {
7614 struct dwarf2_cu *cu = reader->cu;
7615 enum language *language_ptr = data;
7616
7617 gdb_assert (cu->die_hash == NULL);
7618 cu->die_hash =
7619 htab_create_alloc_ex (cu->header.length / 12,
7620 die_hash,
7621 die_eq,
7622 NULL,
7623 &cu->comp_unit_obstack,
7624 hashtab_obstack_allocate,
7625 dummy_obstack_deallocate);
7626
7627 if (has_children)
7628 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7629 &info_ptr, comp_unit_die);
7630 cu->dies = comp_unit_die;
7631 /* comp_unit_die is not stored in die_hash, no need. */
7632
7633 /* We try not to read any attributes in this function, because not
7634 all CUs needed for references have been loaded yet, and symbol
7635 table processing isn't initialized. But we have to set the CU language,
7636 or we won't be able to build types correctly.
7637 Similarly, if we do not read the producer, we can not apply
7638 producer-specific interpretation. */
7639 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7640 }
7641
7642 /* Load the DIEs associated with PER_CU into memory. */
7643
7644 static void
7645 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7646 enum language pretend_language)
7647 {
7648 gdb_assert (! this_cu->is_debug_types);
7649
7650 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7651 load_full_comp_unit_reader, &pretend_language);
7652 }
7653
7654 /* Add a DIE to the delayed physname list. */
7655
7656 static void
7657 add_to_method_list (struct type *type, int fnfield_index, int index,
7658 const char *name, struct die_info *die,
7659 struct dwarf2_cu *cu)
7660 {
7661 struct delayed_method_info mi;
7662 mi.type = type;
7663 mi.fnfield_index = fnfield_index;
7664 mi.index = index;
7665 mi.name = name;
7666 mi.die = die;
7667 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7668 }
7669
7670 /* A cleanup for freeing the delayed method list. */
7671
7672 static void
7673 free_delayed_list (void *ptr)
7674 {
7675 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7676 if (cu->method_list != NULL)
7677 {
7678 VEC_free (delayed_method_info, cu->method_list);
7679 cu->method_list = NULL;
7680 }
7681 }
7682
7683 /* Compute the physnames of any methods on the CU's method list.
7684
7685 The computation of method physnames is delayed in order to avoid the
7686 (bad) condition that one of the method's formal parameters is of an as yet
7687 incomplete type. */
7688
7689 static void
7690 compute_delayed_physnames (struct dwarf2_cu *cu)
7691 {
7692 int i;
7693 struct delayed_method_info *mi;
7694 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7695 {
7696 const char *physname;
7697 struct fn_fieldlist *fn_flp
7698 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7699 physname = dwarf2_physname (mi->name, mi->die, cu);
7700 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7701 }
7702 }
7703
7704 /* Go objects should be embedded in a DW_TAG_module DIE,
7705 and it's not clear if/how imported objects will appear.
7706 To keep Go support simple until that's worked out,
7707 go back through what we've read and create something usable.
7708 We could do this while processing each DIE, and feels kinda cleaner,
7709 but that way is more invasive.
7710 This is to, for example, allow the user to type "p var" or "b main"
7711 without having to specify the package name, and allow lookups
7712 of module.object to work in contexts that use the expression
7713 parser. */
7714
7715 static void
7716 fixup_go_packaging (struct dwarf2_cu *cu)
7717 {
7718 char *package_name = NULL;
7719 struct pending *list;
7720 int i;
7721
7722 for (list = global_symbols; list != NULL; list = list->next)
7723 {
7724 for (i = 0; i < list->nsyms; ++i)
7725 {
7726 struct symbol *sym = list->symbol[i];
7727
7728 if (SYMBOL_LANGUAGE (sym) == language_go
7729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7730 {
7731 char *this_package_name = go_symbol_package_name (sym);
7732
7733 if (this_package_name == NULL)
7734 continue;
7735 if (package_name == NULL)
7736 package_name = this_package_name;
7737 else
7738 {
7739 if (strcmp (package_name, this_package_name) != 0)
7740 complaint (&symfile_complaints,
7741 _("Symtab %s has objects from two different Go packages: %s and %s"),
7742 (SYMBOL_SYMTAB (sym)
7743 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7744 : objfile_name (cu->objfile)),
7745 this_package_name, package_name);
7746 xfree (this_package_name);
7747 }
7748 }
7749 }
7750 }
7751
7752 if (package_name != NULL)
7753 {
7754 struct objfile *objfile = cu->objfile;
7755 const char *saved_package_name
7756 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7757 package_name,
7758 strlen (package_name));
7759 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7760 saved_package_name, objfile);
7761 struct symbol *sym;
7762
7763 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7764
7765 sym = allocate_symbol (objfile);
7766 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7767 SYMBOL_SET_NAMES (sym, saved_package_name,
7768 strlen (saved_package_name), 0, objfile);
7769 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7770 e.g., "main" finds the "main" module and not C's main(). */
7771 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7772 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7773 SYMBOL_TYPE (sym) = type;
7774
7775 add_symbol_to_list (sym, &global_symbols);
7776
7777 xfree (package_name);
7778 }
7779 }
7780
7781 /* Return the symtab for PER_CU. This works properly regardless of
7782 whether we're using the index or psymtabs. */
7783
7784 static struct compunit_symtab *
7785 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7786 {
7787 return (dwarf2_per_objfile->using_index
7788 ? per_cu->v.quick->compunit_symtab
7789 : per_cu->v.psymtab->compunit_symtab);
7790 }
7791
7792 /* A helper function for computing the list of all symbol tables
7793 included by PER_CU. */
7794
7795 static void
7796 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7797 htab_t all_children, htab_t all_type_symtabs,
7798 struct dwarf2_per_cu_data *per_cu,
7799 struct compunit_symtab *immediate_parent)
7800 {
7801 void **slot;
7802 int ix;
7803 struct compunit_symtab *cust;
7804 struct dwarf2_per_cu_data *iter;
7805
7806 slot = htab_find_slot (all_children, per_cu, INSERT);
7807 if (*slot != NULL)
7808 {
7809 /* This inclusion and its children have been processed. */
7810 return;
7811 }
7812
7813 *slot = per_cu;
7814 /* Only add a CU if it has a symbol table. */
7815 cust = get_compunit_symtab (per_cu);
7816 if (cust != NULL)
7817 {
7818 /* If this is a type unit only add its symbol table if we haven't
7819 seen it yet (type unit per_cu's can share symtabs). */
7820 if (per_cu->is_debug_types)
7821 {
7822 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7823 if (*slot == NULL)
7824 {
7825 *slot = cust;
7826 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7827 if (cust->user == NULL)
7828 cust->user = immediate_parent;
7829 }
7830 }
7831 else
7832 {
7833 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7834 if (cust->user == NULL)
7835 cust->user = immediate_parent;
7836 }
7837 }
7838
7839 for (ix = 0;
7840 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7841 ++ix)
7842 {
7843 recursively_compute_inclusions (result, all_children,
7844 all_type_symtabs, iter, cust);
7845 }
7846 }
7847
7848 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7849 PER_CU. */
7850
7851 static void
7852 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7853 {
7854 gdb_assert (! per_cu->is_debug_types);
7855
7856 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7857 {
7858 int ix, len;
7859 struct dwarf2_per_cu_data *per_cu_iter;
7860 struct compunit_symtab *compunit_symtab_iter;
7861 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7862 htab_t all_children, all_type_symtabs;
7863 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7864
7865 /* If we don't have a symtab, we can just skip this case. */
7866 if (cust == NULL)
7867 return;
7868
7869 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7870 NULL, xcalloc, xfree);
7871 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7872 NULL, xcalloc, xfree);
7873
7874 for (ix = 0;
7875 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7876 ix, per_cu_iter);
7877 ++ix)
7878 {
7879 recursively_compute_inclusions (&result_symtabs, all_children,
7880 all_type_symtabs, per_cu_iter,
7881 cust);
7882 }
7883
7884 /* Now we have a transitive closure of all the included symtabs. */
7885 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7886 cust->includes
7887 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7888 (len + 1) * sizeof (struct symtab *));
7889 for (ix = 0;
7890 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7891 compunit_symtab_iter);
7892 ++ix)
7893 cust->includes[ix] = compunit_symtab_iter;
7894 cust->includes[len] = NULL;
7895
7896 VEC_free (compunit_symtab_ptr, result_symtabs);
7897 htab_delete (all_children);
7898 htab_delete (all_type_symtabs);
7899 }
7900 }
7901
7902 /* Compute the 'includes' field for the symtabs of all the CUs we just
7903 read. */
7904
7905 static void
7906 process_cu_includes (void)
7907 {
7908 int ix;
7909 struct dwarf2_per_cu_data *iter;
7910
7911 for (ix = 0;
7912 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7913 ix, iter);
7914 ++ix)
7915 {
7916 if (! iter->is_debug_types)
7917 compute_compunit_symtab_includes (iter);
7918 }
7919
7920 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7921 }
7922
7923 /* Generate full symbol information for PER_CU, whose DIEs have
7924 already been loaded into memory. */
7925
7926 static void
7927 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7928 enum language pretend_language)
7929 {
7930 struct dwarf2_cu *cu = per_cu->cu;
7931 struct objfile *objfile = per_cu->objfile;
7932 CORE_ADDR lowpc, highpc;
7933 struct compunit_symtab *cust;
7934 struct cleanup *back_to, *delayed_list_cleanup;
7935 CORE_ADDR baseaddr;
7936 struct block *static_block;
7937
7938 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7939
7940 buildsym_init ();
7941 back_to = make_cleanup (really_free_pendings, NULL);
7942 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7943
7944 cu->list_in_scope = &file_symbols;
7945
7946 cu->language = pretend_language;
7947 cu->language_defn = language_def (cu->language);
7948
7949 /* Do line number decoding in read_file_scope () */
7950 process_die (cu->dies, cu);
7951
7952 /* For now fudge the Go package. */
7953 if (cu->language == language_go)
7954 fixup_go_packaging (cu);
7955
7956 /* Now that we have processed all the DIEs in the CU, all the types
7957 should be complete, and it should now be safe to compute all of the
7958 physnames. */
7959 compute_delayed_physnames (cu);
7960 do_cleanups (delayed_list_cleanup);
7961
7962 /* Some compilers don't define a DW_AT_high_pc attribute for the
7963 compilation unit. If the DW_AT_high_pc is missing, synthesize
7964 it, by scanning the DIE's below the compilation unit. */
7965 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7966
7967 static_block
7968 = end_symtab_get_static_block (highpc + baseaddr, 0, 1);
7969
7970 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7971 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7972 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7973 addrmap to help ensure it has an accurate map of pc values belonging to
7974 this comp unit. */
7975 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7976
7977 cust = end_symtab_from_static_block (static_block,
7978 SECT_OFF_TEXT (objfile), 0);
7979
7980 if (cust != NULL)
7981 {
7982 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7983
7984 /* Set symtab language to language from DW_AT_language. If the
7985 compilation is from a C file generated by language preprocessors, do
7986 not set the language if it was already deduced by start_subfile. */
7987 if (!(cu->language == language_c
7988 && COMPUNIT_FILETABS (cust)->language != language_c))
7989 COMPUNIT_FILETABS (cust)->language = cu->language;
7990
7991 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7992 produce DW_AT_location with location lists but it can be possibly
7993 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7994 there were bugs in prologue debug info, fixed later in GCC-4.5
7995 by "unwind info for epilogues" patch (which is not directly related).
7996
7997 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7998 needed, it would be wrong due to missing DW_AT_producer there.
7999
8000 Still one can confuse GDB by using non-standard GCC compilation
8001 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8002 */
8003 if (cu->has_loclist && gcc_4_minor >= 5)
8004 cust->locations_valid = 1;
8005
8006 if (gcc_4_minor >= 5)
8007 cust->epilogue_unwind_valid = 1;
8008
8009 cust->call_site_htab = cu->call_site_htab;
8010 }
8011
8012 if (dwarf2_per_objfile->using_index)
8013 per_cu->v.quick->compunit_symtab = cust;
8014 else
8015 {
8016 struct partial_symtab *pst = per_cu->v.psymtab;
8017 pst->compunit_symtab = cust;
8018 pst->readin = 1;
8019 }
8020
8021 /* Push it for inclusion processing later. */
8022 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8023
8024 do_cleanups (back_to);
8025 }
8026
8027 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8028 already been loaded into memory. */
8029
8030 static void
8031 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8032 enum language pretend_language)
8033 {
8034 struct dwarf2_cu *cu = per_cu->cu;
8035 struct objfile *objfile = per_cu->objfile;
8036 struct compunit_symtab *cust;
8037 struct cleanup *back_to, *delayed_list_cleanup;
8038 struct signatured_type *sig_type;
8039
8040 gdb_assert (per_cu->is_debug_types);
8041 sig_type = (struct signatured_type *) per_cu;
8042
8043 buildsym_init ();
8044 back_to = make_cleanup (really_free_pendings, NULL);
8045 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8046
8047 cu->list_in_scope = &file_symbols;
8048
8049 cu->language = pretend_language;
8050 cu->language_defn = language_def (cu->language);
8051
8052 /* The symbol tables are set up in read_type_unit_scope. */
8053 process_die (cu->dies, cu);
8054
8055 /* For now fudge the Go package. */
8056 if (cu->language == language_go)
8057 fixup_go_packaging (cu);
8058
8059 /* Now that we have processed all the DIEs in the CU, all the types
8060 should be complete, and it should now be safe to compute all of the
8061 physnames. */
8062 compute_delayed_physnames (cu);
8063 do_cleanups (delayed_list_cleanup);
8064
8065 /* TUs share symbol tables.
8066 If this is the first TU to use this symtab, complete the construction
8067 of it with end_expandable_symtab. Otherwise, complete the addition of
8068 this TU's symbols to the existing symtab. */
8069 if (sig_type->type_unit_group->compunit_symtab == NULL)
8070 {
8071 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8072 sig_type->type_unit_group->compunit_symtab = cust;
8073
8074 if (cust != NULL)
8075 {
8076 /* Set symtab language to language from DW_AT_language. If the
8077 compilation is from a C file generated by language preprocessors,
8078 do not set the language if it was already deduced by
8079 start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_c))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8083 }
8084 }
8085 else
8086 {
8087 augment_type_symtab (sig_type->type_unit_group->compunit_symtab);
8088 cust = sig_type->type_unit_group->compunit_symtab;
8089 }
8090
8091 if (dwarf2_per_objfile->using_index)
8092 per_cu->v.quick->compunit_symtab = cust;
8093 else
8094 {
8095 struct partial_symtab *pst = per_cu->v.psymtab;
8096 pst->compunit_symtab = cust;
8097 pst->readin = 1;
8098 }
8099
8100 do_cleanups (back_to);
8101 }
8102
8103 /* Process an imported unit DIE. */
8104
8105 static void
8106 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8107 {
8108 struct attribute *attr;
8109
8110 /* For now we don't handle imported units in type units. */
8111 if (cu->per_cu->is_debug_types)
8112 {
8113 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8114 " supported in type units [in module %s]"),
8115 objfile_name (cu->objfile));
8116 }
8117
8118 attr = dwarf2_attr (die, DW_AT_import, cu);
8119 if (attr != NULL)
8120 {
8121 struct dwarf2_per_cu_data *per_cu;
8122 struct symtab *imported_symtab;
8123 sect_offset offset;
8124 int is_dwz;
8125
8126 offset = dwarf2_get_ref_die_offset (attr);
8127 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8128 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8129
8130 /* If necessary, add it to the queue and load its DIEs. */
8131 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8132 load_full_comp_unit (per_cu, cu->language);
8133
8134 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8135 per_cu);
8136 }
8137 }
8138
8139 /* Reset the in_process bit of a die. */
8140
8141 static void
8142 reset_die_in_process (void *arg)
8143 {
8144 struct die_info *die = arg;
8145
8146 die->in_process = 0;
8147 }
8148
8149 /* Process a die and its children. */
8150
8151 static void
8152 process_die (struct die_info *die, struct dwarf2_cu *cu)
8153 {
8154 struct cleanup *in_process;
8155
8156 /* We should only be processing those not already in process. */
8157 gdb_assert (!die->in_process);
8158
8159 die->in_process = 1;
8160 in_process = make_cleanup (reset_die_in_process,die);
8161
8162 switch (die->tag)
8163 {
8164 case DW_TAG_padding:
8165 break;
8166 case DW_TAG_compile_unit:
8167 case DW_TAG_partial_unit:
8168 read_file_scope (die, cu);
8169 break;
8170 case DW_TAG_type_unit:
8171 read_type_unit_scope (die, cu);
8172 break;
8173 case DW_TAG_subprogram:
8174 case DW_TAG_inlined_subroutine:
8175 read_func_scope (die, cu);
8176 break;
8177 case DW_TAG_lexical_block:
8178 case DW_TAG_try_block:
8179 case DW_TAG_catch_block:
8180 read_lexical_block_scope (die, cu);
8181 break;
8182 case DW_TAG_GNU_call_site:
8183 read_call_site_scope (die, cu);
8184 break;
8185 case DW_TAG_class_type:
8186 case DW_TAG_interface_type:
8187 case DW_TAG_structure_type:
8188 case DW_TAG_union_type:
8189 process_structure_scope (die, cu);
8190 break;
8191 case DW_TAG_enumeration_type:
8192 process_enumeration_scope (die, cu);
8193 break;
8194
8195 /* These dies have a type, but processing them does not create
8196 a symbol or recurse to process the children. Therefore we can
8197 read them on-demand through read_type_die. */
8198 case DW_TAG_subroutine_type:
8199 case DW_TAG_set_type:
8200 case DW_TAG_array_type:
8201 case DW_TAG_pointer_type:
8202 case DW_TAG_ptr_to_member_type:
8203 case DW_TAG_reference_type:
8204 case DW_TAG_string_type:
8205 break;
8206
8207 case DW_TAG_base_type:
8208 case DW_TAG_subrange_type:
8209 case DW_TAG_typedef:
8210 /* Add a typedef symbol for the type definition, if it has a
8211 DW_AT_name. */
8212 new_symbol (die, read_type_die (die, cu), cu);
8213 break;
8214 case DW_TAG_common_block:
8215 read_common_block (die, cu);
8216 break;
8217 case DW_TAG_common_inclusion:
8218 break;
8219 case DW_TAG_namespace:
8220 cu->processing_has_namespace_info = 1;
8221 read_namespace (die, cu);
8222 break;
8223 case DW_TAG_module:
8224 cu->processing_has_namespace_info = 1;
8225 read_module (die, cu);
8226 break;
8227 case DW_TAG_imported_declaration:
8228 cu->processing_has_namespace_info = 1;
8229 if (read_namespace_alias (die, cu))
8230 break;
8231 /* The declaration is not a global namespace alias: fall through. */
8232 case DW_TAG_imported_module:
8233 cu->processing_has_namespace_info = 1;
8234 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8235 || cu->language != language_fortran))
8236 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8237 dwarf_tag_name (die->tag));
8238 read_import_statement (die, cu);
8239 break;
8240
8241 case DW_TAG_imported_unit:
8242 process_imported_unit_die (die, cu);
8243 break;
8244
8245 default:
8246 new_symbol (die, NULL, cu);
8247 break;
8248 }
8249
8250 do_cleanups (in_process);
8251 }
8252 \f
8253 /* DWARF name computation. */
8254
8255 /* A helper function for dwarf2_compute_name which determines whether DIE
8256 needs to have the name of the scope prepended to the name listed in the
8257 die. */
8258
8259 static int
8260 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8261 {
8262 struct attribute *attr;
8263
8264 switch (die->tag)
8265 {
8266 case DW_TAG_namespace:
8267 case DW_TAG_typedef:
8268 case DW_TAG_class_type:
8269 case DW_TAG_interface_type:
8270 case DW_TAG_structure_type:
8271 case DW_TAG_union_type:
8272 case DW_TAG_enumeration_type:
8273 case DW_TAG_enumerator:
8274 case DW_TAG_subprogram:
8275 case DW_TAG_member:
8276 case DW_TAG_imported_declaration:
8277 return 1;
8278
8279 case DW_TAG_variable:
8280 case DW_TAG_constant:
8281 /* We only need to prefix "globally" visible variables. These include
8282 any variable marked with DW_AT_external or any variable that
8283 lives in a namespace. [Variables in anonymous namespaces
8284 require prefixing, but they are not DW_AT_external.] */
8285
8286 if (dwarf2_attr (die, DW_AT_specification, cu))
8287 {
8288 struct dwarf2_cu *spec_cu = cu;
8289
8290 return die_needs_namespace (die_specification (die, &spec_cu),
8291 spec_cu);
8292 }
8293
8294 attr = dwarf2_attr (die, DW_AT_external, cu);
8295 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8296 && die->parent->tag != DW_TAG_module)
8297 return 0;
8298 /* A variable in a lexical block of some kind does not need a
8299 namespace, even though in C++ such variables may be external
8300 and have a mangled name. */
8301 if (die->parent->tag == DW_TAG_lexical_block
8302 || die->parent->tag == DW_TAG_try_block
8303 || die->parent->tag == DW_TAG_catch_block
8304 || die->parent->tag == DW_TAG_subprogram)
8305 return 0;
8306 return 1;
8307
8308 default:
8309 return 0;
8310 }
8311 }
8312
8313 /* Retrieve the last character from a mem_file. */
8314
8315 static void
8316 do_ui_file_peek_last (void *object, const char *buffer, long length)
8317 {
8318 char *last_char_p = (char *) object;
8319
8320 if (length > 0)
8321 *last_char_p = buffer[length - 1];
8322 }
8323
8324 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8325 compute the physname for the object, which include a method's:
8326 - formal parameters (C++/Java),
8327 - receiver type (Go),
8328 - return type (Java).
8329
8330 The term "physname" is a bit confusing.
8331 For C++, for example, it is the demangled name.
8332 For Go, for example, it's the mangled name.
8333
8334 For Ada, return the DIE's linkage name rather than the fully qualified
8335 name. PHYSNAME is ignored..
8336
8337 The result is allocated on the objfile_obstack and canonicalized. */
8338
8339 static const char *
8340 dwarf2_compute_name (const char *name,
8341 struct die_info *die, struct dwarf2_cu *cu,
8342 int physname)
8343 {
8344 struct objfile *objfile = cu->objfile;
8345
8346 if (name == NULL)
8347 name = dwarf2_name (die, cu);
8348
8349 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8350 compute it by typename_concat inside GDB. */
8351 if (cu->language == language_ada
8352 || (cu->language == language_fortran && physname))
8353 {
8354 /* For Ada unit, we prefer the linkage name over the name, as
8355 the former contains the exported name, which the user expects
8356 to be able to reference. Ideally, we want the user to be able
8357 to reference this entity using either natural or linkage name,
8358 but we haven't started looking at this enhancement yet. */
8359 struct attribute *attr;
8360
8361 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8362 if (attr == NULL)
8363 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8364 if (attr && DW_STRING (attr))
8365 return DW_STRING (attr);
8366 }
8367
8368 /* These are the only languages we know how to qualify names in. */
8369 if (name != NULL
8370 && (cu->language == language_cplus || cu->language == language_java
8371 || cu->language == language_fortran))
8372 {
8373 if (die_needs_namespace (die, cu))
8374 {
8375 long length;
8376 const char *prefix;
8377 struct ui_file *buf;
8378 char *intermediate_name;
8379 const char *canonical_name = NULL;
8380
8381 prefix = determine_prefix (die, cu);
8382 buf = mem_fileopen ();
8383 if (*prefix != '\0')
8384 {
8385 char *prefixed_name = typename_concat (NULL, prefix, name,
8386 physname, cu);
8387
8388 fputs_unfiltered (prefixed_name, buf);
8389 xfree (prefixed_name);
8390 }
8391 else
8392 fputs_unfiltered (name, buf);
8393
8394 /* Template parameters may be specified in the DIE's DW_AT_name, or
8395 as children with DW_TAG_template_type_param or
8396 DW_TAG_value_type_param. If the latter, add them to the name
8397 here. If the name already has template parameters, then
8398 skip this step; some versions of GCC emit both, and
8399 it is more efficient to use the pre-computed name.
8400
8401 Something to keep in mind about this process: it is very
8402 unlikely, or in some cases downright impossible, to produce
8403 something that will match the mangled name of a function.
8404 If the definition of the function has the same debug info,
8405 we should be able to match up with it anyway. But fallbacks
8406 using the minimal symbol, for instance to find a method
8407 implemented in a stripped copy of libstdc++, will not work.
8408 If we do not have debug info for the definition, we will have to
8409 match them up some other way.
8410
8411 When we do name matching there is a related problem with function
8412 templates; two instantiated function templates are allowed to
8413 differ only by their return types, which we do not add here. */
8414
8415 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8416 {
8417 struct attribute *attr;
8418 struct die_info *child;
8419 int first = 1;
8420
8421 die->building_fullname = 1;
8422
8423 for (child = die->child; child != NULL; child = child->sibling)
8424 {
8425 struct type *type;
8426 LONGEST value;
8427 const gdb_byte *bytes;
8428 struct dwarf2_locexpr_baton *baton;
8429 struct value *v;
8430
8431 if (child->tag != DW_TAG_template_type_param
8432 && child->tag != DW_TAG_template_value_param)
8433 continue;
8434
8435 if (first)
8436 {
8437 fputs_unfiltered ("<", buf);
8438 first = 0;
8439 }
8440 else
8441 fputs_unfiltered (", ", buf);
8442
8443 attr = dwarf2_attr (child, DW_AT_type, cu);
8444 if (attr == NULL)
8445 {
8446 complaint (&symfile_complaints,
8447 _("template parameter missing DW_AT_type"));
8448 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8449 continue;
8450 }
8451 type = die_type (child, cu);
8452
8453 if (child->tag == DW_TAG_template_type_param)
8454 {
8455 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8456 continue;
8457 }
8458
8459 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8460 if (attr == NULL)
8461 {
8462 complaint (&symfile_complaints,
8463 _("template parameter missing "
8464 "DW_AT_const_value"));
8465 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8466 continue;
8467 }
8468
8469 dwarf2_const_value_attr (attr, type, name,
8470 &cu->comp_unit_obstack, cu,
8471 &value, &bytes, &baton);
8472
8473 if (TYPE_NOSIGN (type))
8474 /* GDB prints characters as NUMBER 'CHAR'. If that's
8475 changed, this can use value_print instead. */
8476 c_printchar (value, type, buf);
8477 else
8478 {
8479 struct value_print_options opts;
8480
8481 if (baton != NULL)
8482 v = dwarf2_evaluate_loc_desc (type, NULL,
8483 baton->data,
8484 baton->size,
8485 baton->per_cu);
8486 else if (bytes != NULL)
8487 {
8488 v = allocate_value (type);
8489 memcpy (value_contents_writeable (v), bytes,
8490 TYPE_LENGTH (type));
8491 }
8492 else
8493 v = value_from_longest (type, value);
8494
8495 /* Specify decimal so that we do not depend on
8496 the radix. */
8497 get_formatted_print_options (&opts, 'd');
8498 opts.raw = 1;
8499 value_print (v, buf, &opts);
8500 release_value (v);
8501 value_free (v);
8502 }
8503 }
8504
8505 die->building_fullname = 0;
8506
8507 if (!first)
8508 {
8509 /* Close the argument list, with a space if necessary
8510 (nested templates). */
8511 char last_char = '\0';
8512 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8513 if (last_char == '>')
8514 fputs_unfiltered (" >", buf);
8515 else
8516 fputs_unfiltered (">", buf);
8517 }
8518 }
8519
8520 /* For Java and C++ methods, append formal parameter type
8521 information, if PHYSNAME. */
8522
8523 if (physname && die->tag == DW_TAG_subprogram
8524 && (cu->language == language_cplus
8525 || cu->language == language_java))
8526 {
8527 struct type *type = read_type_die (die, cu);
8528
8529 c_type_print_args (type, buf, 1, cu->language,
8530 &type_print_raw_options);
8531
8532 if (cu->language == language_java)
8533 {
8534 /* For java, we must append the return type to method
8535 names. */
8536 if (die->tag == DW_TAG_subprogram)
8537 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8538 0, 0, &type_print_raw_options);
8539 }
8540 else if (cu->language == language_cplus)
8541 {
8542 /* Assume that an artificial first parameter is
8543 "this", but do not crash if it is not. RealView
8544 marks unnamed (and thus unused) parameters as
8545 artificial; there is no way to differentiate
8546 the two cases. */
8547 if (TYPE_NFIELDS (type) > 0
8548 && TYPE_FIELD_ARTIFICIAL (type, 0)
8549 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8550 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8551 0))))
8552 fputs_unfiltered (" const", buf);
8553 }
8554 }
8555
8556 intermediate_name = ui_file_xstrdup (buf, &length);
8557 ui_file_delete (buf);
8558
8559 if (cu->language == language_cplus)
8560 canonical_name
8561 = dwarf2_canonicalize_name (intermediate_name, cu,
8562 &objfile->per_bfd->storage_obstack);
8563
8564 /* If we only computed INTERMEDIATE_NAME, or if
8565 INTERMEDIATE_NAME is already canonical, then we need to
8566 copy it to the appropriate obstack. */
8567 if (canonical_name == NULL || canonical_name == intermediate_name)
8568 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8569 intermediate_name,
8570 strlen (intermediate_name));
8571 else
8572 name = canonical_name;
8573
8574 xfree (intermediate_name);
8575 }
8576 }
8577
8578 return name;
8579 }
8580
8581 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8582 If scope qualifiers are appropriate they will be added. The result
8583 will be allocated on the storage_obstack, or NULL if the DIE does
8584 not have a name. NAME may either be from a previous call to
8585 dwarf2_name or NULL.
8586
8587 The output string will be canonicalized (if C++/Java). */
8588
8589 static const char *
8590 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8591 {
8592 return dwarf2_compute_name (name, die, cu, 0);
8593 }
8594
8595 /* Construct a physname for the given DIE in CU. NAME may either be
8596 from a previous call to dwarf2_name or NULL. The result will be
8597 allocated on the objfile_objstack or NULL if the DIE does not have a
8598 name.
8599
8600 The output string will be canonicalized (if C++/Java). */
8601
8602 static const char *
8603 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8604 {
8605 struct objfile *objfile = cu->objfile;
8606 struct attribute *attr;
8607 const char *retval, *mangled = NULL, *canon = NULL;
8608 struct cleanup *back_to;
8609 int need_copy = 1;
8610
8611 /* In this case dwarf2_compute_name is just a shortcut not building anything
8612 on its own. */
8613 if (!die_needs_namespace (die, cu))
8614 return dwarf2_compute_name (name, die, cu, 1);
8615
8616 back_to = make_cleanup (null_cleanup, NULL);
8617
8618 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8619 if (!attr)
8620 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8621
8622 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8623 has computed. */
8624 if (attr && DW_STRING (attr))
8625 {
8626 char *demangled;
8627
8628 mangled = DW_STRING (attr);
8629
8630 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8631 type. It is easier for GDB users to search for such functions as
8632 `name(params)' than `long name(params)'. In such case the minimal
8633 symbol names do not match the full symbol names but for template
8634 functions there is never a need to look up their definition from their
8635 declaration so the only disadvantage remains the minimal symbol
8636 variant `long name(params)' does not have the proper inferior type.
8637 */
8638
8639 if (cu->language == language_go)
8640 {
8641 /* This is a lie, but we already lie to the caller new_symbol_full.
8642 new_symbol_full assumes we return the mangled name.
8643 This just undoes that lie until things are cleaned up. */
8644 demangled = NULL;
8645 }
8646 else
8647 {
8648 demangled = gdb_demangle (mangled,
8649 (DMGL_PARAMS | DMGL_ANSI
8650 | (cu->language == language_java
8651 ? DMGL_JAVA | DMGL_RET_POSTFIX
8652 : DMGL_RET_DROP)));
8653 }
8654 if (demangled)
8655 {
8656 make_cleanup (xfree, demangled);
8657 canon = demangled;
8658 }
8659 else
8660 {
8661 canon = mangled;
8662 need_copy = 0;
8663 }
8664 }
8665
8666 if (canon == NULL || check_physname)
8667 {
8668 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8669
8670 if (canon != NULL && strcmp (physname, canon) != 0)
8671 {
8672 /* It may not mean a bug in GDB. The compiler could also
8673 compute DW_AT_linkage_name incorrectly. But in such case
8674 GDB would need to be bug-to-bug compatible. */
8675
8676 complaint (&symfile_complaints,
8677 _("Computed physname <%s> does not match demangled <%s> "
8678 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8679 physname, canon, mangled, die->offset.sect_off,
8680 objfile_name (objfile));
8681
8682 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8683 is available here - over computed PHYSNAME. It is safer
8684 against both buggy GDB and buggy compilers. */
8685
8686 retval = canon;
8687 }
8688 else
8689 {
8690 retval = physname;
8691 need_copy = 0;
8692 }
8693 }
8694 else
8695 retval = canon;
8696
8697 if (need_copy)
8698 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8699 retval, strlen (retval));
8700
8701 do_cleanups (back_to);
8702 return retval;
8703 }
8704
8705 /* Inspect DIE in CU for a namespace alias. If one exists, record
8706 a new symbol for it.
8707
8708 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8709
8710 static int
8711 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8712 {
8713 struct attribute *attr;
8714
8715 /* If the die does not have a name, this is not a namespace
8716 alias. */
8717 attr = dwarf2_attr (die, DW_AT_name, cu);
8718 if (attr != NULL)
8719 {
8720 int num;
8721 struct die_info *d = die;
8722 struct dwarf2_cu *imported_cu = cu;
8723
8724 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8725 keep inspecting DIEs until we hit the underlying import. */
8726 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8727 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8728 {
8729 attr = dwarf2_attr (d, DW_AT_import, cu);
8730 if (attr == NULL)
8731 break;
8732
8733 d = follow_die_ref (d, attr, &imported_cu);
8734 if (d->tag != DW_TAG_imported_declaration)
8735 break;
8736 }
8737
8738 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8739 {
8740 complaint (&symfile_complaints,
8741 _("DIE at 0x%x has too many recursively imported "
8742 "declarations"), d->offset.sect_off);
8743 return 0;
8744 }
8745
8746 if (attr != NULL)
8747 {
8748 struct type *type;
8749 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8750
8751 type = get_die_type_at_offset (offset, cu->per_cu);
8752 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8753 {
8754 /* This declaration is a global namespace alias. Add
8755 a symbol for it whose type is the aliased namespace. */
8756 new_symbol (die, type, cu);
8757 return 1;
8758 }
8759 }
8760 }
8761
8762 return 0;
8763 }
8764
8765 /* Read the import statement specified by the given die and record it. */
8766
8767 static void
8768 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8769 {
8770 struct objfile *objfile = cu->objfile;
8771 struct attribute *import_attr;
8772 struct die_info *imported_die, *child_die;
8773 struct dwarf2_cu *imported_cu;
8774 const char *imported_name;
8775 const char *imported_name_prefix;
8776 const char *canonical_name;
8777 const char *import_alias;
8778 const char *imported_declaration = NULL;
8779 const char *import_prefix;
8780 VEC (const_char_ptr) *excludes = NULL;
8781 struct cleanup *cleanups;
8782
8783 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8784 if (import_attr == NULL)
8785 {
8786 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8787 dwarf_tag_name (die->tag));
8788 return;
8789 }
8790
8791 imported_cu = cu;
8792 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8793 imported_name = dwarf2_name (imported_die, imported_cu);
8794 if (imported_name == NULL)
8795 {
8796 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8797
8798 The import in the following code:
8799 namespace A
8800 {
8801 typedef int B;
8802 }
8803
8804 int main ()
8805 {
8806 using A::B;
8807 B b;
8808 return b;
8809 }
8810
8811 ...
8812 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8813 <52> DW_AT_decl_file : 1
8814 <53> DW_AT_decl_line : 6
8815 <54> DW_AT_import : <0x75>
8816 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8817 <59> DW_AT_name : B
8818 <5b> DW_AT_decl_file : 1
8819 <5c> DW_AT_decl_line : 2
8820 <5d> DW_AT_type : <0x6e>
8821 ...
8822 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8823 <76> DW_AT_byte_size : 4
8824 <77> DW_AT_encoding : 5 (signed)
8825
8826 imports the wrong die ( 0x75 instead of 0x58 ).
8827 This case will be ignored until the gcc bug is fixed. */
8828 return;
8829 }
8830
8831 /* Figure out the local name after import. */
8832 import_alias = dwarf2_name (die, cu);
8833
8834 /* Figure out where the statement is being imported to. */
8835 import_prefix = determine_prefix (die, cu);
8836
8837 /* Figure out what the scope of the imported die is and prepend it
8838 to the name of the imported die. */
8839 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8840
8841 if (imported_die->tag != DW_TAG_namespace
8842 && imported_die->tag != DW_TAG_module)
8843 {
8844 imported_declaration = imported_name;
8845 canonical_name = imported_name_prefix;
8846 }
8847 else if (strlen (imported_name_prefix) > 0)
8848 canonical_name = obconcat (&objfile->objfile_obstack,
8849 imported_name_prefix, "::", imported_name,
8850 (char *) NULL);
8851 else
8852 canonical_name = imported_name;
8853
8854 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8855
8856 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8857 for (child_die = die->child; child_die && child_die->tag;
8858 child_die = sibling_die (child_die))
8859 {
8860 /* DWARF-4: A Fortran use statement with a “rename list” may be
8861 represented by an imported module entry with an import attribute
8862 referring to the module and owned entries corresponding to those
8863 entities that are renamed as part of being imported. */
8864
8865 if (child_die->tag != DW_TAG_imported_declaration)
8866 {
8867 complaint (&symfile_complaints,
8868 _("child DW_TAG_imported_declaration expected "
8869 "- DIE at 0x%x [in module %s]"),
8870 child_die->offset.sect_off, objfile_name (objfile));
8871 continue;
8872 }
8873
8874 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8875 if (import_attr == NULL)
8876 {
8877 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8878 dwarf_tag_name (child_die->tag));
8879 continue;
8880 }
8881
8882 imported_cu = cu;
8883 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8884 &imported_cu);
8885 imported_name = dwarf2_name (imported_die, imported_cu);
8886 if (imported_name == NULL)
8887 {
8888 complaint (&symfile_complaints,
8889 _("child DW_TAG_imported_declaration has unknown "
8890 "imported name - DIE at 0x%x [in module %s]"),
8891 child_die->offset.sect_off, objfile_name (objfile));
8892 continue;
8893 }
8894
8895 VEC_safe_push (const_char_ptr, excludes, imported_name);
8896
8897 process_die (child_die, cu);
8898 }
8899
8900 cp_add_using_directive (import_prefix,
8901 canonical_name,
8902 import_alias,
8903 imported_declaration,
8904 excludes,
8905 0,
8906 &objfile->objfile_obstack);
8907
8908 do_cleanups (cleanups);
8909 }
8910
8911 /* Cleanup function for handle_DW_AT_stmt_list. */
8912
8913 static void
8914 free_cu_line_header (void *arg)
8915 {
8916 struct dwarf2_cu *cu = arg;
8917
8918 free_line_header (cu->line_header);
8919 cu->line_header = NULL;
8920 }
8921
8922 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8923 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8924 this, it was first present in GCC release 4.3.0. */
8925
8926 static int
8927 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8928 {
8929 if (!cu->checked_producer)
8930 check_producer (cu);
8931
8932 return cu->producer_is_gcc_lt_4_3;
8933 }
8934
8935 static void
8936 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8937 const char **name, const char **comp_dir)
8938 {
8939 struct attribute *attr;
8940
8941 *name = NULL;
8942 *comp_dir = NULL;
8943
8944 /* Find the filename. Do not use dwarf2_name here, since the filename
8945 is not a source language identifier. */
8946 attr = dwarf2_attr (die, DW_AT_name, cu);
8947 if (attr)
8948 {
8949 *name = DW_STRING (attr);
8950 }
8951
8952 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8953 if (attr)
8954 *comp_dir = DW_STRING (attr);
8955 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8956 && IS_ABSOLUTE_PATH (*name))
8957 {
8958 char *d = ldirname (*name);
8959
8960 *comp_dir = d;
8961 if (d != NULL)
8962 make_cleanup (xfree, d);
8963 }
8964 if (*comp_dir != NULL)
8965 {
8966 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8967 directory, get rid of it. */
8968 char *cp = strchr (*comp_dir, ':');
8969
8970 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8971 *comp_dir = cp + 1;
8972 }
8973
8974 if (*name == NULL)
8975 *name = "<unknown>";
8976 }
8977
8978 /* Handle DW_AT_stmt_list for a compilation unit.
8979 DIE is the DW_TAG_compile_unit die for CU.
8980 COMP_DIR is the compilation directory. LOWPC is passed to
8981 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8982
8983 static void
8984 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8985 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8986 {
8987 struct attribute *attr;
8988
8989 gdb_assert (! cu->per_cu->is_debug_types);
8990
8991 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8992 if (attr)
8993 {
8994 unsigned int line_offset = DW_UNSND (attr);
8995 struct line_header *line_header
8996 = dwarf_decode_line_header (line_offset, cu);
8997
8998 if (line_header)
8999 {
9000 cu->line_header = line_header;
9001 make_cleanup (free_cu_line_header, cu);
9002 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
9003 }
9004 }
9005 }
9006
9007 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9008
9009 static void
9010 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9011 {
9012 struct objfile *objfile = dwarf2_per_objfile->objfile;
9013 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9014 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9015 CORE_ADDR highpc = ((CORE_ADDR) 0);
9016 struct attribute *attr;
9017 const char *name = NULL;
9018 const char *comp_dir = NULL;
9019 struct die_info *child_die;
9020 bfd *abfd = objfile->obfd;
9021 CORE_ADDR baseaddr;
9022
9023 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9024
9025 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9026
9027 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9028 from finish_block. */
9029 if (lowpc == ((CORE_ADDR) -1))
9030 lowpc = highpc;
9031 lowpc += baseaddr;
9032 highpc += baseaddr;
9033
9034 find_file_and_directory (die, cu, &name, &comp_dir);
9035
9036 prepare_one_comp_unit (cu, die, cu->language);
9037
9038 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9039 standardised yet. As a workaround for the language detection we fall
9040 back to the DW_AT_producer string. */
9041 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9042 cu->language = language_opencl;
9043
9044 /* Similar hack for Go. */
9045 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9046 set_cu_language (DW_LANG_Go, cu);
9047
9048 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9049
9050 /* Decode line number information if present. We do this before
9051 processing child DIEs, so that the line header table is available
9052 for DW_AT_decl_file. */
9053 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9054
9055 /* Process all dies in compilation unit. */
9056 if (die->child != NULL)
9057 {
9058 child_die = die->child;
9059 while (child_die && child_die->tag)
9060 {
9061 process_die (child_die, cu);
9062 child_die = sibling_die (child_die);
9063 }
9064 }
9065
9066 /* Decode macro information, if present. Dwarf 2 macro information
9067 refers to information in the line number info statement program
9068 header, so we can only read it if we've read the header
9069 successfully. */
9070 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9071 if (attr && cu->line_header)
9072 {
9073 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9074 complaint (&symfile_complaints,
9075 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9076
9077 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9078 }
9079 else
9080 {
9081 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9082 if (attr && cu->line_header)
9083 {
9084 unsigned int macro_offset = DW_UNSND (attr);
9085
9086 dwarf_decode_macros (cu, macro_offset, 0);
9087 }
9088 }
9089
9090 do_cleanups (back_to);
9091 }
9092
9093 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9094 Create the set of symtabs used by this TU, or if this TU is sharing
9095 symtabs with another TU and the symtabs have already been created
9096 then restore those symtabs in the line header.
9097 We don't need the pc/line-number mapping for type units. */
9098
9099 static void
9100 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9101 {
9102 struct objfile *objfile = dwarf2_per_objfile->objfile;
9103 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9104 struct type_unit_group *tu_group;
9105 int first_time;
9106 struct line_header *lh;
9107 struct attribute *attr;
9108 unsigned int i, line_offset;
9109 struct signatured_type *sig_type;
9110
9111 gdb_assert (per_cu->is_debug_types);
9112 sig_type = (struct signatured_type *) per_cu;
9113
9114 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9115
9116 /* If we're using .gdb_index (includes -readnow) then
9117 per_cu->type_unit_group may not have been set up yet. */
9118 if (sig_type->type_unit_group == NULL)
9119 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9120 tu_group = sig_type->type_unit_group;
9121
9122 /* If we've already processed this stmt_list there's no real need to
9123 do it again, we could fake it and just recreate the part we need
9124 (file name,index -> symtab mapping). If data shows this optimization
9125 is useful we can do it then. */
9126 first_time = tu_group->compunit_symtab == NULL;
9127
9128 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9129 debug info. */
9130 lh = NULL;
9131 if (attr != NULL)
9132 {
9133 line_offset = DW_UNSND (attr);
9134 lh = dwarf_decode_line_header (line_offset, cu);
9135 }
9136 if (lh == NULL)
9137 {
9138 if (first_time)
9139 dwarf2_start_symtab (cu, "", NULL, 0);
9140 else
9141 {
9142 gdb_assert (tu_group->symtabs == NULL);
9143 restart_symtab (0);
9144 }
9145 /* Note: The compunit symtab will get allocated at the end. */
9146 return;
9147 }
9148
9149 cu->line_header = lh;
9150 make_cleanup (free_cu_line_header, cu);
9151
9152 if (first_time)
9153 {
9154 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9155
9156 tu_group->num_symtabs = lh->num_file_names;
9157 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9158
9159 for (i = 0; i < lh->num_file_names; ++i)
9160 {
9161 const char *dir = NULL;
9162 struct file_entry *fe = &lh->file_names[i];
9163
9164 if (fe->dir_index)
9165 dir = lh->include_dirs[fe->dir_index - 1];
9166 dwarf2_start_subfile (fe->name, dir);
9167
9168 if (current_subfile->symtab == NULL)
9169 {
9170 /* NOTE: start_subfile will recognize when it's been passed
9171 a file it has already seen. So we can't assume there's a
9172 simple mapping from lh->file_names to subfiles, plus
9173 lh->file_names may contain dups. */
9174 current_subfile->symtab
9175 = allocate_symtab (cust, current_subfile->name);
9176 }
9177
9178 fe->symtab = current_subfile->symtab;
9179 tu_group->symtabs[i] = fe->symtab;
9180 }
9181 }
9182 else
9183 {
9184 restart_symtab (0);
9185
9186 for (i = 0; i < lh->num_file_names; ++i)
9187 {
9188 struct file_entry *fe = &lh->file_names[i];
9189
9190 fe->symtab = tu_group->symtabs[i];
9191 }
9192 }
9193
9194 /* The main symtab is allocated last. Type units don't have DW_AT_name
9195 so they don't have a "real" (so to speak) symtab anyway.
9196 There is later code that will assign the main symtab to all symbols
9197 that don't have one. We need to handle the case of a symbol with a
9198 missing symtab (DW_AT_decl_file) anyway. */
9199 }
9200
9201 /* Process DW_TAG_type_unit.
9202 For TUs we want to skip the first top level sibling if it's not the
9203 actual type being defined by this TU. In this case the first top
9204 level sibling is there to provide context only. */
9205
9206 static void
9207 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9208 {
9209 struct die_info *child_die;
9210
9211 prepare_one_comp_unit (cu, die, language_minimal);
9212
9213 /* Initialize (or reinitialize) the machinery for building symtabs.
9214 We do this before processing child DIEs, so that the line header table
9215 is available for DW_AT_decl_file. */
9216 setup_type_unit_groups (die, cu);
9217
9218 if (die->child != NULL)
9219 {
9220 child_die = die->child;
9221 while (child_die && child_die->tag)
9222 {
9223 process_die (child_die, cu);
9224 child_die = sibling_die (child_die);
9225 }
9226 }
9227 }
9228 \f
9229 /* DWO/DWP files.
9230
9231 http://gcc.gnu.org/wiki/DebugFission
9232 http://gcc.gnu.org/wiki/DebugFissionDWP
9233
9234 To simplify handling of both DWO files ("object" files with the DWARF info)
9235 and DWP files (a file with the DWOs packaged up into one file), we treat
9236 DWP files as having a collection of virtual DWO files. */
9237
9238 static hashval_t
9239 hash_dwo_file (const void *item)
9240 {
9241 const struct dwo_file *dwo_file = item;
9242 hashval_t hash;
9243
9244 hash = htab_hash_string (dwo_file->dwo_name);
9245 if (dwo_file->comp_dir != NULL)
9246 hash += htab_hash_string (dwo_file->comp_dir);
9247 return hash;
9248 }
9249
9250 static int
9251 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9252 {
9253 const struct dwo_file *lhs = item_lhs;
9254 const struct dwo_file *rhs = item_rhs;
9255
9256 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9257 return 0;
9258 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9259 return lhs->comp_dir == rhs->comp_dir;
9260 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9261 }
9262
9263 /* Allocate a hash table for DWO files. */
9264
9265 static htab_t
9266 allocate_dwo_file_hash_table (void)
9267 {
9268 struct objfile *objfile = dwarf2_per_objfile->objfile;
9269
9270 return htab_create_alloc_ex (41,
9271 hash_dwo_file,
9272 eq_dwo_file,
9273 NULL,
9274 &objfile->objfile_obstack,
9275 hashtab_obstack_allocate,
9276 dummy_obstack_deallocate);
9277 }
9278
9279 /* Lookup DWO file DWO_NAME. */
9280
9281 static void **
9282 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9283 {
9284 struct dwo_file find_entry;
9285 void **slot;
9286
9287 if (dwarf2_per_objfile->dwo_files == NULL)
9288 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9289
9290 memset (&find_entry, 0, sizeof (find_entry));
9291 find_entry.dwo_name = dwo_name;
9292 find_entry.comp_dir = comp_dir;
9293 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9294
9295 return slot;
9296 }
9297
9298 static hashval_t
9299 hash_dwo_unit (const void *item)
9300 {
9301 const struct dwo_unit *dwo_unit = item;
9302
9303 /* This drops the top 32 bits of the id, but is ok for a hash. */
9304 return dwo_unit->signature;
9305 }
9306
9307 static int
9308 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9309 {
9310 const struct dwo_unit *lhs = item_lhs;
9311 const struct dwo_unit *rhs = item_rhs;
9312
9313 /* The signature is assumed to be unique within the DWO file.
9314 So while object file CU dwo_id's always have the value zero,
9315 that's OK, assuming each object file DWO file has only one CU,
9316 and that's the rule for now. */
9317 return lhs->signature == rhs->signature;
9318 }
9319
9320 /* Allocate a hash table for DWO CUs,TUs.
9321 There is one of these tables for each of CUs,TUs for each DWO file. */
9322
9323 static htab_t
9324 allocate_dwo_unit_table (struct objfile *objfile)
9325 {
9326 /* Start out with a pretty small number.
9327 Generally DWO files contain only one CU and maybe some TUs. */
9328 return htab_create_alloc_ex (3,
9329 hash_dwo_unit,
9330 eq_dwo_unit,
9331 NULL,
9332 &objfile->objfile_obstack,
9333 hashtab_obstack_allocate,
9334 dummy_obstack_deallocate);
9335 }
9336
9337 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9338
9339 struct create_dwo_cu_data
9340 {
9341 struct dwo_file *dwo_file;
9342 struct dwo_unit dwo_unit;
9343 };
9344
9345 /* die_reader_func for create_dwo_cu. */
9346
9347 static void
9348 create_dwo_cu_reader (const struct die_reader_specs *reader,
9349 const gdb_byte *info_ptr,
9350 struct die_info *comp_unit_die,
9351 int has_children,
9352 void *datap)
9353 {
9354 struct dwarf2_cu *cu = reader->cu;
9355 struct objfile *objfile = dwarf2_per_objfile->objfile;
9356 sect_offset offset = cu->per_cu->offset;
9357 struct dwarf2_section_info *section = cu->per_cu->section;
9358 struct create_dwo_cu_data *data = datap;
9359 struct dwo_file *dwo_file = data->dwo_file;
9360 struct dwo_unit *dwo_unit = &data->dwo_unit;
9361 struct attribute *attr;
9362
9363 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9364 if (attr == NULL)
9365 {
9366 complaint (&symfile_complaints,
9367 _("Dwarf Error: debug entry at offset 0x%x is missing"
9368 " its dwo_id [in module %s]"),
9369 offset.sect_off, dwo_file->dwo_name);
9370 return;
9371 }
9372
9373 dwo_unit->dwo_file = dwo_file;
9374 dwo_unit->signature = DW_UNSND (attr);
9375 dwo_unit->section = section;
9376 dwo_unit->offset = offset;
9377 dwo_unit->length = cu->per_cu->length;
9378
9379 if (dwarf2_read_debug)
9380 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9381 offset.sect_off, hex_string (dwo_unit->signature));
9382 }
9383
9384 /* Create the dwo_unit for the lone CU in DWO_FILE.
9385 Note: This function processes DWO files only, not DWP files. */
9386
9387 static struct dwo_unit *
9388 create_dwo_cu (struct dwo_file *dwo_file)
9389 {
9390 struct objfile *objfile = dwarf2_per_objfile->objfile;
9391 struct dwarf2_section_info *section = &dwo_file->sections.info;
9392 bfd *abfd;
9393 htab_t cu_htab;
9394 const gdb_byte *info_ptr, *end_ptr;
9395 struct create_dwo_cu_data create_dwo_cu_data;
9396 struct dwo_unit *dwo_unit;
9397
9398 dwarf2_read_section (objfile, section);
9399 info_ptr = section->buffer;
9400
9401 if (info_ptr == NULL)
9402 return NULL;
9403
9404 /* We can't set abfd until now because the section may be empty or
9405 not present, in which case section->asection will be NULL. */
9406 abfd = get_section_bfd_owner (section);
9407
9408 if (dwarf2_read_debug)
9409 {
9410 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9411 get_section_name (section),
9412 get_section_file_name (section));
9413 }
9414
9415 create_dwo_cu_data.dwo_file = dwo_file;
9416 dwo_unit = NULL;
9417
9418 end_ptr = info_ptr + section->size;
9419 while (info_ptr < end_ptr)
9420 {
9421 struct dwarf2_per_cu_data per_cu;
9422
9423 memset (&create_dwo_cu_data.dwo_unit, 0,
9424 sizeof (create_dwo_cu_data.dwo_unit));
9425 memset (&per_cu, 0, sizeof (per_cu));
9426 per_cu.objfile = objfile;
9427 per_cu.is_debug_types = 0;
9428 per_cu.offset.sect_off = info_ptr - section->buffer;
9429 per_cu.section = section;
9430
9431 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9432 create_dwo_cu_reader,
9433 &create_dwo_cu_data);
9434
9435 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9436 {
9437 /* If we've already found one, complain. We only support one
9438 because having more than one requires hacking the dwo_name of
9439 each to match, which is highly unlikely to happen. */
9440 if (dwo_unit != NULL)
9441 {
9442 complaint (&symfile_complaints,
9443 _("Multiple CUs in DWO file %s [in module %s]"),
9444 dwo_file->dwo_name, objfile_name (objfile));
9445 break;
9446 }
9447
9448 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9449 *dwo_unit = create_dwo_cu_data.dwo_unit;
9450 }
9451
9452 info_ptr += per_cu.length;
9453 }
9454
9455 return dwo_unit;
9456 }
9457
9458 /* DWP file .debug_{cu,tu}_index section format:
9459 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9460
9461 DWP Version 1:
9462
9463 Both index sections have the same format, and serve to map a 64-bit
9464 signature to a set of section numbers. Each section begins with a header,
9465 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9466 indexes, and a pool of 32-bit section numbers. The index sections will be
9467 aligned at 8-byte boundaries in the file.
9468
9469 The index section header consists of:
9470
9471 V, 32 bit version number
9472 -, 32 bits unused
9473 N, 32 bit number of compilation units or type units in the index
9474 M, 32 bit number of slots in the hash table
9475
9476 Numbers are recorded using the byte order of the application binary.
9477
9478 The hash table begins at offset 16 in the section, and consists of an array
9479 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9480 order of the application binary). Unused slots in the hash table are 0.
9481 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9482
9483 The parallel table begins immediately after the hash table
9484 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9485 array of 32-bit indexes (using the byte order of the application binary),
9486 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9487 table contains a 32-bit index into the pool of section numbers. For unused
9488 hash table slots, the corresponding entry in the parallel table will be 0.
9489
9490 The pool of section numbers begins immediately following the hash table
9491 (at offset 16 + 12 * M from the beginning of the section). The pool of
9492 section numbers consists of an array of 32-bit words (using the byte order
9493 of the application binary). Each item in the array is indexed starting
9494 from 0. The hash table entry provides the index of the first section
9495 number in the set. Additional section numbers in the set follow, and the
9496 set is terminated by a 0 entry (section number 0 is not used in ELF).
9497
9498 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9499 section must be the first entry in the set, and the .debug_abbrev.dwo must
9500 be the second entry. Other members of the set may follow in any order.
9501
9502 ---
9503
9504 DWP Version 2:
9505
9506 DWP Version 2 combines all the .debug_info, etc. sections into one,
9507 and the entries in the index tables are now offsets into these sections.
9508 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9509 section.
9510
9511 Index Section Contents:
9512 Header
9513 Hash Table of Signatures dwp_hash_table.hash_table
9514 Parallel Table of Indices dwp_hash_table.unit_table
9515 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9516 Table of Section Sizes dwp_hash_table.v2.sizes
9517
9518 The index section header consists of:
9519
9520 V, 32 bit version number
9521 L, 32 bit number of columns in the table of section offsets
9522 N, 32 bit number of compilation units or type units in the index
9523 M, 32 bit number of slots in the hash table
9524
9525 Numbers are recorded using the byte order of the application binary.
9526
9527 The hash table has the same format as version 1.
9528 The parallel table of indices has the same format as version 1,
9529 except that the entries are origin-1 indices into the table of sections
9530 offsets and the table of section sizes.
9531
9532 The table of offsets begins immediately following the parallel table
9533 (at offset 16 + 12 * M from the beginning of the section). The table is
9534 a two-dimensional array of 32-bit words (using the byte order of the
9535 application binary), with L columns and N+1 rows, in row-major order.
9536 Each row in the array is indexed starting from 0. The first row provides
9537 a key to the remaining rows: each column in this row provides an identifier
9538 for a debug section, and the offsets in the same column of subsequent rows
9539 refer to that section. The section identifiers are:
9540
9541 DW_SECT_INFO 1 .debug_info.dwo
9542 DW_SECT_TYPES 2 .debug_types.dwo
9543 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9544 DW_SECT_LINE 4 .debug_line.dwo
9545 DW_SECT_LOC 5 .debug_loc.dwo
9546 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9547 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9548 DW_SECT_MACRO 8 .debug_macro.dwo
9549
9550 The offsets provided by the CU and TU index sections are the base offsets
9551 for the contributions made by each CU or TU to the corresponding section
9552 in the package file. Each CU and TU header contains an abbrev_offset
9553 field, used to find the abbreviations table for that CU or TU within the
9554 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9555 be interpreted as relative to the base offset given in the index section.
9556 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9557 should be interpreted as relative to the base offset for .debug_line.dwo,
9558 and offsets into other debug sections obtained from DWARF attributes should
9559 also be interpreted as relative to the corresponding base offset.
9560
9561 The table of sizes begins immediately following the table of offsets.
9562 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9563 with L columns and N rows, in row-major order. Each row in the array is
9564 indexed starting from 1 (row 0 is shared by the two tables).
9565
9566 ---
9567
9568 Hash table lookup is handled the same in version 1 and 2:
9569
9570 We assume that N and M will not exceed 2^32 - 1.
9571 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9572
9573 Given a 64-bit compilation unit signature or a type signature S, an entry
9574 in the hash table is located as follows:
9575
9576 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9577 the low-order k bits all set to 1.
9578
9579 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9580
9581 3) If the hash table entry at index H matches the signature, use that
9582 entry. If the hash table entry at index H is unused (all zeroes),
9583 terminate the search: the signature is not present in the table.
9584
9585 4) Let H = (H + H') modulo M. Repeat at Step 3.
9586
9587 Because M > N and H' and M are relatively prime, the search is guaranteed
9588 to stop at an unused slot or find the match. */
9589
9590 /* Create a hash table to map DWO IDs to their CU/TU entry in
9591 .debug_{info,types}.dwo in DWP_FILE.
9592 Returns NULL if there isn't one.
9593 Note: This function processes DWP files only, not DWO files. */
9594
9595 static struct dwp_hash_table *
9596 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9597 {
9598 struct objfile *objfile = dwarf2_per_objfile->objfile;
9599 bfd *dbfd = dwp_file->dbfd;
9600 const gdb_byte *index_ptr, *index_end;
9601 struct dwarf2_section_info *index;
9602 uint32_t version, nr_columns, nr_units, nr_slots;
9603 struct dwp_hash_table *htab;
9604
9605 if (is_debug_types)
9606 index = &dwp_file->sections.tu_index;
9607 else
9608 index = &dwp_file->sections.cu_index;
9609
9610 if (dwarf2_section_empty_p (index))
9611 return NULL;
9612 dwarf2_read_section (objfile, index);
9613
9614 index_ptr = index->buffer;
9615 index_end = index_ptr + index->size;
9616
9617 version = read_4_bytes (dbfd, index_ptr);
9618 index_ptr += 4;
9619 if (version == 2)
9620 nr_columns = read_4_bytes (dbfd, index_ptr);
9621 else
9622 nr_columns = 0;
9623 index_ptr += 4;
9624 nr_units = read_4_bytes (dbfd, index_ptr);
9625 index_ptr += 4;
9626 nr_slots = read_4_bytes (dbfd, index_ptr);
9627 index_ptr += 4;
9628
9629 if (version != 1 && version != 2)
9630 {
9631 error (_("Dwarf Error: unsupported DWP file version (%s)"
9632 " [in module %s]"),
9633 pulongest (version), dwp_file->name);
9634 }
9635 if (nr_slots != (nr_slots & -nr_slots))
9636 {
9637 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9638 " is not power of 2 [in module %s]"),
9639 pulongest (nr_slots), dwp_file->name);
9640 }
9641
9642 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9643 htab->version = version;
9644 htab->nr_columns = nr_columns;
9645 htab->nr_units = nr_units;
9646 htab->nr_slots = nr_slots;
9647 htab->hash_table = index_ptr;
9648 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9649
9650 /* Exit early if the table is empty. */
9651 if (nr_slots == 0 || nr_units == 0
9652 || (version == 2 && nr_columns == 0))
9653 {
9654 /* All must be zero. */
9655 if (nr_slots != 0 || nr_units != 0
9656 || (version == 2 && nr_columns != 0))
9657 {
9658 complaint (&symfile_complaints,
9659 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9660 " all zero [in modules %s]"),
9661 dwp_file->name);
9662 }
9663 return htab;
9664 }
9665
9666 if (version == 1)
9667 {
9668 htab->section_pool.v1.indices =
9669 htab->unit_table + sizeof (uint32_t) * nr_slots;
9670 /* It's harder to decide whether the section is too small in v1.
9671 V1 is deprecated anyway so we punt. */
9672 }
9673 else
9674 {
9675 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9676 int *ids = htab->section_pool.v2.section_ids;
9677 /* Reverse map for error checking. */
9678 int ids_seen[DW_SECT_MAX + 1];
9679 int i;
9680
9681 if (nr_columns < 2)
9682 {
9683 error (_("Dwarf Error: bad DWP hash table, too few columns"
9684 " in section table [in module %s]"),
9685 dwp_file->name);
9686 }
9687 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9688 {
9689 error (_("Dwarf Error: bad DWP hash table, too many columns"
9690 " in section table [in module %s]"),
9691 dwp_file->name);
9692 }
9693 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9694 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9695 for (i = 0; i < nr_columns; ++i)
9696 {
9697 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9698
9699 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9700 {
9701 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9702 " in section table [in module %s]"),
9703 id, dwp_file->name);
9704 }
9705 if (ids_seen[id] != -1)
9706 {
9707 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9708 " id %d in section table [in module %s]"),
9709 id, dwp_file->name);
9710 }
9711 ids_seen[id] = i;
9712 ids[i] = id;
9713 }
9714 /* Must have exactly one info or types section. */
9715 if (((ids_seen[DW_SECT_INFO] != -1)
9716 + (ids_seen[DW_SECT_TYPES] != -1))
9717 != 1)
9718 {
9719 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9720 " DWO info/types section [in module %s]"),
9721 dwp_file->name);
9722 }
9723 /* Must have an abbrev section. */
9724 if (ids_seen[DW_SECT_ABBREV] == -1)
9725 {
9726 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9727 " section [in module %s]"),
9728 dwp_file->name);
9729 }
9730 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9731 htab->section_pool.v2.sizes =
9732 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9733 * nr_units * nr_columns);
9734 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9735 * nr_units * nr_columns))
9736 > index_end)
9737 {
9738 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9739 " [in module %s]"),
9740 dwp_file->name);
9741 }
9742 }
9743
9744 return htab;
9745 }
9746
9747 /* Update SECTIONS with the data from SECTP.
9748
9749 This function is like the other "locate" section routines that are
9750 passed to bfd_map_over_sections, but in this context the sections to
9751 read comes from the DWP V1 hash table, not the full ELF section table.
9752
9753 The result is non-zero for success, or zero if an error was found. */
9754
9755 static int
9756 locate_v1_virtual_dwo_sections (asection *sectp,
9757 struct virtual_v1_dwo_sections *sections)
9758 {
9759 const struct dwop_section_names *names = &dwop_section_names;
9760
9761 if (section_is_p (sectp->name, &names->abbrev_dwo))
9762 {
9763 /* There can be only one. */
9764 if (sections->abbrev.s.asection != NULL)
9765 return 0;
9766 sections->abbrev.s.asection = sectp;
9767 sections->abbrev.size = bfd_get_section_size (sectp);
9768 }
9769 else if (section_is_p (sectp->name, &names->info_dwo)
9770 || section_is_p (sectp->name, &names->types_dwo))
9771 {
9772 /* There can be only one. */
9773 if (sections->info_or_types.s.asection != NULL)
9774 return 0;
9775 sections->info_or_types.s.asection = sectp;
9776 sections->info_or_types.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->line_dwo))
9779 {
9780 /* There can be only one. */
9781 if (sections->line.s.asection != NULL)
9782 return 0;
9783 sections->line.s.asection = sectp;
9784 sections->line.size = bfd_get_section_size (sectp);
9785 }
9786 else if (section_is_p (sectp->name, &names->loc_dwo))
9787 {
9788 /* There can be only one. */
9789 if (sections->loc.s.asection != NULL)
9790 return 0;
9791 sections->loc.s.asection = sectp;
9792 sections->loc.size = bfd_get_section_size (sectp);
9793 }
9794 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9795 {
9796 /* There can be only one. */
9797 if (sections->macinfo.s.asection != NULL)
9798 return 0;
9799 sections->macinfo.s.asection = sectp;
9800 sections->macinfo.size = bfd_get_section_size (sectp);
9801 }
9802 else if (section_is_p (sectp->name, &names->macro_dwo))
9803 {
9804 /* There can be only one. */
9805 if (sections->macro.s.asection != NULL)
9806 return 0;
9807 sections->macro.s.asection = sectp;
9808 sections->macro.size = bfd_get_section_size (sectp);
9809 }
9810 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9811 {
9812 /* There can be only one. */
9813 if (sections->str_offsets.s.asection != NULL)
9814 return 0;
9815 sections->str_offsets.s.asection = sectp;
9816 sections->str_offsets.size = bfd_get_section_size (sectp);
9817 }
9818 else
9819 {
9820 /* No other kind of section is valid. */
9821 return 0;
9822 }
9823
9824 return 1;
9825 }
9826
9827 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9828 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9829 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9830 This is for DWP version 1 files. */
9831
9832 static struct dwo_unit *
9833 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9834 uint32_t unit_index,
9835 const char *comp_dir,
9836 ULONGEST signature, int is_debug_types)
9837 {
9838 struct objfile *objfile = dwarf2_per_objfile->objfile;
9839 const struct dwp_hash_table *dwp_htab =
9840 is_debug_types ? dwp_file->tus : dwp_file->cus;
9841 bfd *dbfd = dwp_file->dbfd;
9842 const char *kind = is_debug_types ? "TU" : "CU";
9843 struct dwo_file *dwo_file;
9844 struct dwo_unit *dwo_unit;
9845 struct virtual_v1_dwo_sections sections;
9846 void **dwo_file_slot;
9847 char *virtual_dwo_name;
9848 struct dwarf2_section_info *cutu;
9849 struct cleanup *cleanups;
9850 int i;
9851
9852 gdb_assert (dwp_file->version == 1);
9853
9854 if (dwarf2_read_debug)
9855 {
9856 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9857 kind,
9858 pulongest (unit_index), hex_string (signature),
9859 dwp_file->name);
9860 }
9861
9862 /* Fetch the sections of this DWO unit.
9863 Put a limit on the number of sections we look for so that bad data
9864 doesn't cause us to loop forever. */
9865
9866 #define MAX_NR_V1_DWO_SECTIONS \
9867 (1 /* .debug_info or .debug_types */ \
9868 + 1 /* .debug_abbrev */ \
9869 + 1 /* .debug_line */ \
9870 + 1 /* .debug_loc */ \
9871 + 1 /* .debug_str_offsets */ \
9872 + 1 /* .debug_macro or .debug_macinfo */ \
9873 + 1 /* trailing zero */)
9874
9875 memset (&sections, 0, sizeof (sections));
9876 cleanups = make_cleanup (null_cleanup, 0);
9877
9878 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9879 {
9880 asection *sectp;
9881 uint32_t section_nr =
9882 read_4_bytes (dbfd,
9883 dwp_htab->section_pool.v1.indices
9884 + (unit_index + i) * sizeof (uint32_t));
9885
9886 if (section_nr == 0)
9887 break;
9888 if (section_nr >= dwp_file->num_sections)
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, section number too large"
9891 " [in module %s]"),
9892 dwp_file->name);
9893 }
9894
9895 sectp = dwp_file->elf_sections[section_nr];
9896 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9897 {
9898 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9899 " [in module %s]"),
9900 dwp_file->name);
9901 }
9902 }
9903
9904 if (i < 2
9905 || dwarf2_section_empty_p (&sections.info_or_types)
9906 || dwarf2_section_empty_p (&sections.abbrev))
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912 if (i == MAX_NR_V1_DWO_SECTIONS)
9913 {
9914 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9915 " [in module %s]"),
9916 dwp_file->name);
9917 }
9918
9919 /* It's easier for the rest of the code if we fake a struct dwo_file and
9920 have dwo_unit "live" in that. At least for now.
9921
9922 The DWP file can be made up of a random collection of CUs and TUs.
9923 However, for each CU + set of TUs that came from the same original DWO
9924 file, we can combine them back into a virtual DWO file to save space
9925 (fewer struct dwo_file objects to allocate). Remember that for really
9926 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9927
9928 virtual_dwo_name =
9929 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9930 get_section_id (&sections.abbrev),
9931 get_section_id (&sections.line),
9932 get_section_id (&sections.loc),
9933 get_section_id (&sections.str_offsets));
9934 make_cleanup (xfree, virtual_dwo_name);
9935 /* Can we use an existing virtual DWO file? */
9936 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9937 /* Create one if necessary. */
9938 if (*dwo_file_slot == NULL)
9939 {
9940 if (dwarf2_read_debug)
9941 {
9942 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9943 virtual_dwo_name);
9944 }
9945 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9946 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9947 virtual_dwo_name,
9948 strlen (virtual_dwo_name));
9949 dwo_file->comp_dir = comp_dir;
9950 dwo_file->sections.abbrev = sections.abbrev;
9951 dwo_file->sections.line = sections.line;
9952 dwo_file->sections.loc = sections.loc;
9953 dwo_file->sections.macinfo = sections.macinfo;
9954 dwo_file->sections.macro = sections.macro;
9955 dwo_file->sections.str_offsets = sections.str_offsets;
9956 /* The "str" section is global to the entire DWP file. */
9957 dwo_file->sections.str = dwp_file->sections.str;
9958 /* The info or types section is assigned below to dwo_unit,
9959 there's no need to record it in dwo_file.
9960 Also, we can't simply record type sections in dwo_file because
9961 we record a pointer into the vector in dwo_unit. As we collect more
9962 types we'll grow the vector and eventually have to reallocate space
9963 for it, invalidating all copies of pointers into the previous
9964 contents. */
9965 *dwo_file_slot = dwo_file;
9966 }
9967 else
9968 {
9969 if (dwarf2_read_debug)
9970 {
9971 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9972 virtual_dwo_name);
9973 }
9974 dwo_file = *dwo_file_slot;
9975 }
9976 do_cleanups (cleanups);
9977
9978 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9979 dwo_unit->dwo_file = dwo_file;
9980 dwo_unit->signature = signature;
9981 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9982 sizeof (struct dwarf2_section_info));
9983 *dwo_unit->section = sections.info_or_types;
9984 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9985
9986 return dwo_unit;
9987 }
9988
9989 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9990 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9991 piece within that section used by a TU/CU, return a virtual section
9992 of just that piece. */
9993
9994 static struct dwarf2_section_info
9995 create_dwp_v2_section (struct dwarf2_section_info *section,
9996 bfd_size_type offset, bfd_size_type size)
9997 {
9998 struct dwarf2_section_info result;
9999 asection *sectp;
10000
10001 gdb_assert (section != NULL);
10002 gdb_assert (!section->is_virtual);
10003
10004 memset (&result, 0, sizeof (result));
10005 result.s.containing_section = section;
10006 result.is_virtual = 1;
10007
10008 if (size == 0)
10009 return result;
10010
10011 sectp = get_section_bfd_section (section);
10012
10013 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10014 bounds of the real section. This is a pretty-rare event, so just
10015 flag an error (easier) instead of a warning and trying to cope. */
10016 if (sectp == NULL
10017 || offset + size > bfd_get_section_size (sectp))
10018 {
10019 bfd *abfd = sectp->owner;
10020
10021 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10022 " in section %s [in module %s]"),
10023 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10024 objfile_name (dwarf2_per_objfile->objfile));
10025 }
10026
10027 result.virtual_offset = offset;
10028 result.size = size;
10029 return result;
10030 }
10031
10032 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10033 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10034 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10035 This is for DWP version 2 files. */
10036
10037 static struct dwo_unit *
10038 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10039 uint32_t unit_index,
10040 const char *comp_dir,
10041 ULONGEST signature, int is_debug_types)
10042 {
10043 struct objfile *objfile = dwarf2_per_objfile->objfile;
10044 const struct dwp_hash_table *dwp_htab =
10045 is_debug_types ? dwp_file->tus : dwp_file->cus;
10046 bfd *dbfd = dwp_file->dbfd;
10047 const char *kind = is_debug_types ? "TU" : "CU";
10048 struct dwo_file *dwo_file;
10049 struct dwo_unit *dwo_unit;
10050 struct virtual_v2_dwo_sections sections;
10051 void **dwo_file_slot;
10052 char *virtual_dwo_name;
10053 struct dwarf2_section_info *cutu;
10054 struct cleanup *cleanups;
10055 int i;
10056
10057 gdb_assert (dwp_file->version == 2);
10058
10059 if (dwarf2_read_debug)
10060 {
10061 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10062 kind,
10063 pulongest (unit_index), hex_string (signature),
10064 dwp_file->name);
10065 }
10066
10067 /* Fetch the section offsets of this DWO unit. */
10068
10069 memset (&sections, 0, sizeof (sections));
10070 cleanups = make_cleanup (null_cleanup, 0);
10071
10072 for (i = 0; i < dwp_htab->nr_columns; ++i)
10073 {
10074 uint32_t offset = read_4_bytes (dbfd,
10075 dwp_htab->section_pool.v2.offsets
10076 + (((unit_index - 1) * dwp_htab->nr_columns
10077 + i)
10078 * sizeof (uint32_t)));
10079 uint32_t size = read_4_bytes (dbfd,
10080 dwp_htab->section_pool.v2.sizes
10081 + (((unit_index - 1) * dwp_htab->nr_columns
10082 + i)
10083 * sizeof (uint32_t)));
10084
10085 switch (dwp_htab->section_pool.v2.section_ids[i])
10086 {
10087 case DW_SECT_INFO:
10088 case DW_SECT_TYPES:
10089 sections.info_or_types_offset = offset;
10090 sections.info_or_types_size = size;
10091 break;
10092 case DW_SECT_ABBREV:
10093 sections.abbrev_offset = offset;
10094 sections.abbrev_size = size;
10095 break;
10096 case DW_SECT_LINE:
10097 sections.line_offset = offset;
10098 sections.line_size = size;
10099 break;
10100 case DW_SECT_LOC:
10101 sections.loc_offset = offset;
10102 sections.loc_size = size;
10103 break;
10104 case DW_SECT_STR_OFFSETS:
10105 sections.str_offsets_offset = offset;
10106 sections.str_offsets_size = size;
10107 break;
10108 case DW_SECT_MACINFO:
10109 sections.macinfo_offset = offset;
10110 sections.macinfo_size = size;
10111 break;
10112 case DW_SECT_MACRO:
10113 sections.macro_offset = offset;
10114 sections.macro_size = size;
10115 break;
10116 }
10117 }
10118
10119 /* It's easier for the rest of the code if we fake a struct dwo_file and
10120 have dwo_unit "live" in that. At least for now.
10121
10122 The DWP file can be made up of a random collection of CUs and TUs.
10123 However, for each CU + set of TUs that came from the same original DWO
10124 file, we can combine them back into a virtual DWO file to save space
10125 (fewer struct dwo_file objects to allocate). Remember that for really
10126 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10127
10128 virtual_dwo_name =
10129 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10130 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10131 (long) (sections.line_size ? sections.line_offset : 0),
10132 (long) (sections.loc_size ? sections.loc_offset : 0),
10133 (long) (sections.str_offsets_size
10134 ? sections.str_offsets_offset : 0));
10135 make_cleanup (xfree, virtual_dwo_name);
10136 /* Can we use an existing virtual DWO file? */
10137 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10138 /* Create one if necessary. */
10139 if (*dwo_file_slot == NULL)
10140 {
10141 if (dwarf2_read_debug)
10142 {
10143 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10144 virtual_dwo_name);
10145 }
10146 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10147 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10148 virtual_dwo_name,
10149 strlen (virtual_dwo_name));
10150 dwo_file->comp_dir = comp_dir;
10151 dwo_file->sections.abbrev =
10152 create_dwp_v2_section (&dwp_file->sections.abbrev,
10153 sections.abbrev_offset, sections.abbrev_size);
10154 dwo_file->sections.line =
10155 create_dwp_v2_section (&dwp_file->sections.line,
10156 sections.line_offset, sections.line_size);
10157 dwo_file->sections.loc =
10158 create_dwp_v2_section (&dwp_file->sections.loc,
10159 sections.loc_offset, sections.loc_size);
10160 dwo_file->sections.macinfo =
10161 create_dwp_v2_section (&dwp_file->sections.macinfo,
10162 sections.macinfo_offset, sections.macinfo_size);
10163 dwo_file->sections.macro =
10164 create_dwp_v2_section (&dwp_file->sections.macro,
10165 sections.macro_offset, sections.macro_size);
10166 dwo_file->sections.str_offsets =
10167 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10168 sections.str_offsets_offset,
10169 sections.str_offsets_size);
10170 /* The "str" section is global to the entire DWP file. */
10171 dwo_file->sections.str = dwp_file->sections.str;
10172 /* The info or types section is assigned below to dwo_unit,
10173 there's no need to record it in dwo_file.
10174 Also, we can't simply record type sections in dwo_file because
10175 we record a pointer into the vector in dwo_unit. As we collect more
10176 types we'll grow the vector and eventually have to reallocate space
10177 for it, invalidating all copies of pointers into the previous
10178 contents. */
10179 *dwo_file_slot = dwo_file;
10180 }
10181 else
10182 {
10183 if (dwarf2_read_debug)
10184 {
10185 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10186 virtual_dwo_name);
10187 }
10188 dwo_file = *dwo_file_slot;
10189 }
10190 do_cleanups (cleanups);
10191
10192 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10193 dwo_unit->dwo_file = dwo_file;
10194 dwo_unit->signature = signature;
10195 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10196 sizeof (struct dwarf2_section_info));
10197 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10198 ? &dwp_file->sections.types
10199 : &dwp_file->sections.info,
10200 sections.info_or_types_offset,
10201 sections.info_or_types_size);
10202 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10203
10204 return dwo_unit;
10205 }
10206
10207 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10208 Returns NULL if the signature isn't found. */
10209
10210 static struct dwo_unit *
10211 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10212 ULONGEST signature, int is_debug_types)
10213 {
10214 const struct dwp_hash_table *dwp_htab =
10215 is_debug_types ? dwp_file->tus : dwp_file->cus;
10216 bfd *dbfd = dwp_file->dbfd;
10217 uint32_t mask = dwp_htab->nr_slots - 1;
10218 uint32_t hash = signature & mask;
10219 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10220 unsigned int i;
10221 void **slot;
10222 struct dwo_unit find_dwo_cu, *dwo_cu;
10223
10224 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10225 find_dwo_cu.signature = signature;
10226 slot = htab_find_slot (is_debug_types
10227 ? dwp_file->loaded_tus
10228 : dwp_file->loaded_cus,
10229 &find_dwo_cu, INSERT);
10230
10231 if (*slot != NULL)
10232 return *slot;
10233
10234 /* Use a for loop so that we don't loop forever on bad debug info. */
10235 for (i = 0; i < dwp_htab->nr_slots; ++i)
10236 {
10237 ULONGEST signature_in_table;
10238
10239 signature_in_table =
10240 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10241 if (signature_in_table == signature)
10242 {
10243 uint32_t unit_index =
10244 read_4_bytes (dbfd,
10245 dwp_htab->unit_table + hash * sizeof (uint32_t));
10246
10247 if (dwp_file->version == 1)
10248 {
10249 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10250 comp_dir, signature,
10251 is_debug_types);
10252 }
10253 else
10254 {
10255 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10256 comp_dir, signature,
10257 is_debug_types);
10258 }
10259 return *slot;
10260 }
10261 if (signature_in_table == 0)
10262 return NULL;
10263 hash = (hash + hash2) & mask;
10264 }
10265
10266 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10267 " [in module %s]"),
10268 dwp_file->name);
10269 }
10270
10271 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10272 Open the file specified by FILE_NAME and hand it off to BFD for
10273 preliminary analysis. Return a newly initialized bfd *, which
10274 includes a canonicalized copy of FILE_NAME.
10275 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10276 SEARCH_CWD is true if the current directory is to be searched.
10277 It will be searched before debug-file-directory.
10278 If successful, the file is added to the bfd include table of the
10279 objfile's bfd (see gdb_bfd_record_inclusion).
10280 If unable to find/open the file, return NULL.
10281 NOTE: This function is derived from symfile_bfd_open. */
10282
10283 static bfd *
10284 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10285 {
10286 bfd *sym_bfd;
10287 int desc, flags;
10288 char *absolute_name;
10289 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10290 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10291 to debug_file_directory. */
10292 char *search_path;
10293 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10294
10295 if (search_cwd)
10296 {
10297 if (*debug_file_directory != '\0')
10298 search_path = concat (".", dirname_separator_string,
10299 debug_file_directory, NULL);
10300 else
10301 search_path = xstrdup (".");
10302 }
10303 else
10304 search_path = xstrdup (debug_file_directory);
10305
10306 flags = OPF_RETURN_REALPATH;
10307 if (is_dwp)
10308 flags |= OPF_SEARCH_IN_PATH;
10309 desc = openp (search_path, flags, file_name,
10310 O_RDONLY | O_BINARY, &absolute_name);
10311 xfree (search_path);
10312 if (desc < 0)
10313 return NULL;
10314
10315 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10316 xfree (absolute_name);
10317 if (sym_bfd == NULL)
10318 return NULL;
10319 bfd_set_cacheable (sym_bfd, 1);
10320
10321 if (!bfd_check_format (sym_bfd, bfd_object))
10322 {
10323 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10324 return NULL;
10325 }
10326
10327 /* Success. Record the bfd as having been included by the objfile's bfd.
10328 This is important because things like demangled_names_hash lives in the
10329 objfile's per_bfd space and may have references to things like symbol
10330 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10331 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10332
10333 return sym_bfd;
10334 }
10335
10336 /* Try to open DWO file FILE_NAME.
10337 COMP_DIR is the DW_AT_comp_dir attribute.
10338 The result is the bfd handle of the file.
10339 If there is a problem finding or opening the file, return NULL.
10340 Upon success, the canonicalized path of the file is stored in the bfd,
10341 same as symfile_bfd_open. */
10342
10343 static bfd *
10344 open_dwo_file (const char *file_name, const char *comp_dir)
10345 {
10346 bfd *abfd;
10347
10348 if (IS_ABSOLUTE_PATH (file_name))
10349 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10350
10351 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10352
10353 if (comp_dir != NULL)
10354 {
10355 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10356
10357 /* NOTE: If comp_dir is a relative path, this will also try the
10358 search path, which seems useful. */
10359 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10360 xfree (path_to_try);
10361 if (abfd != NULL)
10362 return abfd;
10363 }
10364
10365 /* That didn't work, try debug-file-directory, which, despite its name,
10366 is a list of paths. */
10367
10368 if (*debug_file_directory == '\0')
10369 return NULL;
10370
10371 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10372 }
10373
10374 /* This function is mapped across the sections and remembers the offset and
10375 size of each of the DWO debugging sections we are interested in. */
10376
10377 static void
10378 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10379 {
10380 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10381 const struct dwop_section_names *names = &dwop_section_names;
10382
10383 if (section_is_p (sectp->name, &names->abbrev_dwo))
10384 {
10385 dwo_sections->abbrev.s.asection = sectp;
10386 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10387 }
10388 else if (section_is_p (sectp->name, &names->info_dwo))
10389 {
10390 dwo_sections->info.s.asection = sectp;
10391 dwo_sections->info.size = bfd_get_section_size (sectp);
10392 }
10393 else if (section_is_p (sectp->name, &names->line_dwo))
10394 {
10395 dwo_sections->line.s.asection = sectp;
10396 dwo_sections->line.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->loc_dwo))
10399 {
10400 dwo_sections->loc.s.asection = sectp;
10401 dwo_sections->loc.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10404 {
10405 dwo_sections->macinfo.s.asection = sectp;
10406 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10407 }
10408 else if (section_is_p (sectp->name, &names->macro_dwo))
10409 {
10410 dwo_sections->macro.s.asection = sectp;
10411 dwo_sections->macro.size = bfd_get_section_size (sectp);
10412 }
10413 else if (section_is_p (sectp->name, &names->str_dwo))
10414 {
10415 dwo_sections->str.s.asection = sectp;
10416 dwo_sections->str.size = bfd_get_section_size (sectp);
10417 }
10418 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10419 {
10420 dwo_sections->str_offsets.s.asection = sectp;
10421 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10422 }
10423 else if (section_is_p (sectp->name, &names->types_dwo))
10424 {
10425 struct dwarf2_section_info type_section;
10426
10427 memset (&type_section, 0, sizeof (type_section));
10428 type_section.s.asection = sectp;
10429 type_section.size = bfd_get_section_size (sectp);
10430 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10431 &type_section);
10432 }
10433 }
10434
10435 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10436 by PER_CU. This is for the non-DWP case.
10437 The result is NULL if DWO_NAME can't be found. */
10438
10439 static struct dwo_file *
10440 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10441 const char *dwo_name, const char *comp_dir)
10442 {
10443 struct objfile *objfile = dwarf2_per_objfile->objfile;
10444 struct dwo_file *dwo_file;
10445 bfd *dbfd;
10446 struct cleanup *cleanups;
10447
10448 dbfd = open_dwo_file (dwo_name, comp_dir);
10449 if (dbfd == NULL)
10450 {
10451 if (dwarf2_read_debug)
10452 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10453 return NULL;
10454 }
10455 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10456 dwo_file->dwo_name = dwo_name;
10457 dwo_file->comp_dir = comp_dir;
10458 dwo_file->dbfd = dbfd;
10459
10460 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10461
10462 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10463
10464 dwo_file->cu = create_dwo_cu (dwo_file);
10465
10466 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10467 dwo_file->sections.types);
10468
10469 discard_cleanups (cleanups);
10470
10471 if (dwarf2_read_debug)
10472 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10473
10474 return dwo_file;
10475 }
10476
10477 /* This function is mapped across the sections and remembers the offset and
10478 size of each of the DWP debugging sections common to version 1 and 2 that
10479 we are interested in. */
10480
10481 static void
10482 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10483 void *dwp_file_ptr)
10484 {
10485 struct dwp_file *dwp_file = dwp_file_ptr;
10486 const struct dwop_section_names *names = &dwop_section_names;
10487 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10488
10489 /* Record the ELF section number for later lookup: this is what the
10490 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10491 gdb_assert (elf_section_nr < dwp_file->num_sections);
10492 dwp_file->elf_sections[elf_section_nr] = sectp;
10493
10494 /* Look for specific sections that we need. */
10495 if (section_is_p (sectp->name, &names->str_dwo))
10496 {
10497 dwp_file->sections.str.s.asection = sectp;
10498 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10499 }
10500 else if (section_is_p (sectp->name, &names->cu_index))
10501 {
10502 dwp_file->sections.cu_index.s.asection = sectp;
10503 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10504 }
10505 else if (section_is_p (sectp->name, &names->tu_index))
10506 {
10507 dwp_file->sections.tu_index.s.asection = sectp;
10508 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10509 }
10510 }
10511
10512 /* This function is mapped across the sections and remembers the offset and
10513 size of each of the DWP version 2 debugging sections that we are interested
10514 in. This is split into a separate function because we don't know if we
10515 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10516
10517 static void
10518 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10519 {
10520 struct dwp_file *dwp_file = dwp_file_ptr;
10521 const struct dwop_section_names *names = &dwop_section_names;
10522 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10523
10524 /* Record the ELF section number for later lookup: this is what the
10525 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10526 gdb_assert (elf_section_nr < dwp_file->num_sections);
10527 dwp_file->elf_sections[elf_section_nr] = sectp;
10528
10529 /* Look for specific sections that we need. */
10530 if (section_is_p (sectp->name, &names->abbrev_dwo))
10531 {
10532 dwp_file->sections.abbrev.s.asection = sectp;
10533 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10534 }
10535 else if (section_is_p (sectp->name, &names->info_dwo))
10536 {
10537 dwp_file->sections.info.s.asection = sectp;
10538 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10539 }
10540 else if (section_is_p (sectp->name, &names->line_dwo))
10541 {
10542 dwp_file->sections.line.s.asection = sectp;
10543 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10544 }
10545 else if (section_is_p (sectp->name, &names->loc_dwo))
10546 {
10547 dwp_file->sections.loc.s.asection = sectp;
10548 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10551 {
10552 dwp_file->sections.macinfo.s.asection = sectp;
10553 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->macro_dwo))
10556 {
10557 dwp_file->sections.macro.s.asection = sectp;
10558 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10561 {
10562 dwp_file->sections.str_offsets.s.asection = sectp;
10563 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->types_dwo))
10566 {
10567 dwp_file->sections.types.s.asection = sectp;
10568 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10569 }
10570 }
10571
10572 /* Hash function for dwp_file loaded CUs/TUs. */
10573
10574 static hashval_t
10575 hash_dwp_loaded_cutus (const void *item)
10576 {
10577 const struct dwo_unit *dwo_unit = item;
10578
10579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10580 return dwo_unit->signature;
10581 }
10582
10583 /* Equality function for dwp_file loaded CUs/TUs. */
10584
10585 static int
10586 eq_dwp_loaded_cutus (const void *a, const void *b)
10587 {
10588 const struct dwo_unit *dua = a;
10589 const struct dwo_unit *dub = b;
10590
10591 return dua->signature == dub->signature;
10592 }
10593
10594 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10595
10596 static htab_t
10597 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10598 {
10599 return htab_create_alloc_ex (3,
10600 hash_dwp_loaded_cutus,
10601 eq_dwp_loaded_cutus,
10602 NULL,
10603 &objfile->objfile_obstack,
10604 hashtab_obstack_allocate,
10605 dummy_obstack_deallocate);
10606 }
10607
10608 /* Try to open DWP file FILE_NAME.
10609 The result is the bfd handle of the file.
10610 If there is a problem finding or opening the file, return NULL.
10611 Upon success, the canonicalized path of the file is stored in the bfd,
10612 same as symfile_bfd_open. */
10613
10614 static bfd *
10615 open_dwp_file (const char *file_name)
10616 {
10617 bfd *abfd;
10618
10619 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10620 if (abfd != NULL)
10621 return abfd;
10622
10623 /* Work around upstream bug 15652.
10624 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10625 [Whether that's a "bug" is debatable, but it is getting in our way.]
10626 We have no real idea where the dwp file is, because gdb's realpath-ing
10627 of the executable's path may have discarded the needed info.
10628 [IWBN if the dwp file name was recorded in the executable, akin to
10629 .gnu_debuglink, but that doesn't exist yet.]
10630 Strip the directory from FILE_NAME and search again. */
10631 if (*debug_file_directory != '\0')
10632 {
10633 /* Don't implicitly search the current directory here.
10634 If the user wants to search "." to handle this case,
10635 it must be added to debug-file-directory. */
10636 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10637 0 /*search_cwd*/);
10638 }
10639
10640 return NULL;
10641 }
10642
10643 /* Initialize the use of the DWP file for the current objfile.
10644 By convention the name of the DWP file is ${objfile}.dwp.
10645 The result is NULL if it can't be found. */
10646
10647 static struct dwp_file *
10648 open_and_init_dwp_file (void)
10649 {
10650 struct objfile *objfile = dwarf2_per_objfile->objfile;
10651 struct dwp_file *dwp_file;
10652 char *dwp_name;
10653 bfd *dbfd;
10654 struct cleanup *cleanups;
10655
10656 /* Try to find first .dwp for the binary file before any symbolic links
10657 resolving. */
10658 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10659 cleanups = make_cleanup (xfree, dwp_name);
10660
10661 dbfd = open_dwp_file (dwp_name);
10662 if (dbfd == NULL
10663 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10664 {
10665 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10666 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10667 make_cleanup (xfree, dwp_name);
10668 dbfd = open_dwp_file (dwp_name);
10669 }
10670
10671 if (dbfd == NULL)
10672 {
10673 if (dwarf2_read_debug)
10674 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10675 do_cleanups (cleanups);
10676 return NULL;
10677 }
10678 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10679 dwp_file->name = bfd_get_filename (dbfd);
10680 dwp_file->dbfd = dbfd;
10681 do_cleanups (cleanups);
10682
10683 /* +1: section 0 is unused */
10684 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10685 dwp_file->elf_sections =
10686 OBSTACK_CALLOC (&objfile->objfile_obstack,
10687 dwp_file->num_sections, asection *);
10688
10689 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10690
10691 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10692
10693 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10694
10695 /* The DWP file version is stored in the hash table. Oh well. */
10696 if (dwp_file->cus->version != dwp_file->tus->version)
10697 {
10698 /* Technically speaking, we should try to limp along, but this is
10699 pretty bizarre. We use pulongest here because that's the established
10700 portability solution (e.g, we cannot use %u for uint32_t). */
10701 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10702 " TU version %s [in DWP file %s]"),
10703 pulongest (dwp_file->cus->version),
10704 pulongest (dwp_file->tus->version), dwp_name);
10705 }
10706 dwp_file->version = dwp_file->cus->version;
10707
10708 if (dwp_file->version == 2)
10709 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10710
10711 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10712 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10713
10714 if (dwarf2_read_debug)
10715 {
10716 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10717 fprintf_unfiltered (gdb_stdlog,
10718 " %s CUs, %s TUs\n",
10719 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10720 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10721 }
10722
10723 return dwp_file;
10724 }
10725
10726 /* Wrapper around open_and_init_dwp_file, only open it once. */
10727
10728 static struct dwp_file *
10729 get_dwp_file (void)
10730 {
10731 if (! dwarf2_per_objfile->dwp_checked)
10732 {
10733 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10734 dwarf2_per_objfile->dwp_checked = 1;
10735 }
10736 return dwarf2_per_objfile->dwp_file;
10737 }
10738
10739 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10740 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10741 or in the DWP file for the objfile, referenced by THIS_UNIT.
10742 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10743 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10744
10745 This is called, for example, when wanting to read a variable with a
10746 complex location. Therefore we don't want to do file i/o for every call.
10747 Therefore we don't want to look for a DWO file on every call.
10748 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10749 then we check if we've already seen DWO_NAME, and only THEN do we check
10750 for a DWO file.
10751
10752 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10753 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10754
10755 static struct dwo_unit *
10756 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10757 const char *dwo_name, const char *comp_dir,
10758 ULONGEST signature, int is_debug_types)
10759 {
10760 struct objfile *objfile = dwarf2_per_objfile->objfile;
10761 const char *kind = is_debug_types ? "TU" : "CU";
10762 void **dwo_file_slot;
10763 struct dwo_file *dwo_file;
10764 struct dwp_file *dwp_file;
10765
10766 /* First see if there's a DWP file.
10767 If we have a DWP file but didn't find the DWO inside it, don't
10768 look for the original DWO file. It makes gdb behave differently
10769 depending on whether one is debugging in the build tree. */
10770
10771 dwp_file = get_dwp_file ();
10772 if (dwp_file != NULL)
10773 {
10774 const struct dwp_hash_table *dwp_htab =
10775 is_debug_types ? dwp_file->tus : dwp_file->cus;
10776
10777 if (dwp_htab != NULL)
10778 {
10779 struct dwo_unit *dwo_cutu =
10780 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10781 signature, is_debug_types);
10782
10783 if (dwo_cutu != NULL)
10784 {
10785 if (dwarf2_read_debug)
10786 {
10787 fprintf_unfiltered (gdb_stdlog,
10788 "Virtual DWO %s %s found: @%s\n",
10789 kind, hex_string (signature),
10790 host_address_to_string (dwo_cutu));
10791 }
10792 return dwo_cutu;
10793 }
10794 }
10795 }
10796 else
10797 {
10798 /* No DWP file, look for the DWO file. */
10799
10800 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10801 if (*dwo_file_slot == NULL)
10802 {
10803 /* Read in the file and build a table of the CUs/TUs it contains. */
10804 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10805 }
10806 /* NOTE: This will be NULL if unable to open the file. */
10807 dwo_file = *dwo_file_slot;
10808
10809 if (dwo_file != NULL)
10810 {
10811 struct dwo_unit *dwo_cutu = NULL;
10812
10813 if (is_debug_types && dwo_file->tus)
10814 {
10815 struct dwo_unit find_dwo_cutu;
10816
10817 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10818 find_dwo_cutu.signature = signature;
10819 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10820 }
10821 else if (!is_debug_types && dwo_file->cu)
10822 {
10823 if (signature == dwo_file->cu->signature)
10824 dwo_cutu = dwo_file->cu;
10825 }
10826
10827 if (dwo_cutu != NULL)
10828 {
10829 if (dwarf2_read_debug)
10830 {
10831 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10832 kind, dwo_name, hex_string (signature),
10833 host_address_to_string (dwo_cutu));
10834 }
10835 return dwo_cutu;
10836 }
10837 }
10838 }
10839
10840 /* We didn't find it. This could mean a dwo_id mismatch, or
10841 someone deleted the DWO/DWP file, or the search path isn't set up
10842 correctly to find the file. */
10843
10844 if (dwarf2_read_debug)
10845 {
10846 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10847 kind, dwo_name, hex_string (signature));
10848 }
10849
10850 /* This is a warning and not a complaint because it can be caused by
10851 pilot error (e.g., user accidentally deleting the DWO). */
10852 {
10853 /* Print the name of the DWP file if we looked there, helps the user
10854 better diagnose the problem. */
10855 char *dwp_text = NULL;
10856 struct cleanup *cleanups;
10857
10858 if (dwp_file != NULL)
10859 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10860 cleanups = make_cleanup (xfree, dwp_text);
10861
10862 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10863 " [in module %s]"),
10864 kind, dwo_name, hex_string (signature),
10865 dwp_text != NULL ? dwp_text : "",
10866 this_unit->is_debug_types ? "TU" : "CU",
10867 this_unit->offset.sect_off, objfile_name (objfile));
10868
10869 do_cleanups (cleanups);
10870 }
10871 return NULL;
10872 }
10873
10874 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10875 See lookup_dwo_cutu_unit for details. */
10876
10877 static struct dwo_unit *
10878 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10879 const char *dwo_name, const char *comp_dir,
10880 ULONGEST signature)
10881 {
10882 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10883 }
10884
10885 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10886 See lookup_dwo_cutu_unit for details. */
10887
10888 static struct dwo_unit *
10889 lookup_dwo_type_unit (struct signatured_type *this_tu,
10890 const char *dwo_name, const char *comp_dir)
10891 {
10892 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10893 }
10894
10895 /* Traversal function for queue_and_load_all_dwo_tus. */
10896
10897 static int
10898 queue_and_load_dwo_tu (void **slot, void *info)
10899 {
10900 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10901 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10902 ULONGEST signature = dwo_unit->signature;
10903 struct signatured_type *sig_type =
10904 lookup_dwo_signatured_type (per_cu->cu, signature);
10905
10906 if (sig_type != NULL)
10907 {
10908 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10909
10910 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10911 a real dependency of PER_CU on SIG_TYPE. That is detected later
10912 while processing PER_CU. */
10913 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10914 load_full_type_unit (sig_cu);
10915 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10916 }
10917
10918 return 1;
10919 }
10920
10921 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10922 The DWO may have the only definition of the type, though it may not be
10923 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10924 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10925
10926 static void
10927 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10928 {
10929 struct dwo_unit *dwo_unit;
10930 struct dwo_file *dwo_file;
10931
10932 gdb_assert (!per_cu->is_debug_types);
10933 gdb_assert (get_dwp_file () == NULL);
10934 gdb_assert (per_cu->cu != NULL);
10935
10936 dwo_unit = per_cu->cu->dwo_unit;
10937 gdb_assert (dwo_unit != NULL);
10938
10939 dwo_file = dwo_unit->dwo_file;
10940 if (dwo_file->tus != NULL)
10941 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10942 }
10943
10944 /* Free all resources associated with DWO_FILE.
10945 Close the DWO file and munmap the sections.
10946 All memory should be on the objfile obstack. */
10947
10948 static void
10949 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10950 {
10951 int ix;
10952 struct dwarf2_section_info *section;
10953
10954 /* Note: dbfd is NULL for virtual DWO files. */
10955 gdb_bfd_unref (dwo_file->dbfd);
10956
10957 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10958 }
10959
10960 /* Wrapper for free_dwo_file for use in cleanups. */
10961
10962 static void
10963 free_dwo_file_cleanup (void *arg)
10964 {
10965 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10966 struct objfile *objfile = dwarf2_per_objfile->objfile;
10967
10968 free_dwo_file (dwo_file, objfile);
10969 }
10970
10971 /* Traversal function for free_dwo_files. */
10972
10973 static int
10974 free_dwo_file_from_slot (void **slot, void *info)
10975 {
10976 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10977 struct objfile *objfile = (struct objfile *) info;
10978
10979 free_dwo_file (dwo_file, objfile);
10980
10981 return 1;
10982 }
10983
10984 /* Free all resources associated with DWO_FILES. */
10985
10986 static void
10987 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10988 {
10989 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10990 }
10991 \f
10992 /* Read in various DIEs. */
10993
10994 /* qsort helper for inherit_abstract_dies. */
10995
10996 static int
10997 unsigned_int_compar (const void *ap, const void *bp)
10998 {
10999 unsigned int a = *(unsigned int *) ap;
11000 unsigned int b = *(unsigned int *) bp;
11001
11002 return (a > b) - (b > a);
11003 }
11004
11005 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11006 Inherit only the children of the DW_AT_abstract_origin DIE not being
11007 already referenced by DW_AT_abstract_origin from the children of the
11008 current DIE. */
11009
11010 static void
11011 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11012 {
11013 struct die_info *child_die;
11014 unsigned die_children_count;
11015 /* CU offsets which were referenced by children of the current DIE. */
11016 sect_offset *offsets;
11017 sect_offset *offsets_end, *offsetp;
11018 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11019 struct die_info *origin_die;
11020 /* Iterator of the ORIGIN_DIE children. */
11021 struct die_info *origin_child_die;
11022 struct cleanup *cleanups;
11023 struct attribute *attr;
11024 struct dwarf2_cu *origin_cu;
11025 struct pending **origin_previous_list_in_scope;
11026
11027 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11028 if (!attr)
11029 return;
11030
11031 /* Note that following die references may follow to a die in a
11032 different cu. */
11033
11034 origin_cu = cu;
11035 origin_die = follow_die_ref (die, attr, &origin_cu);
11036
11037 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11038 symbols in. */
11039 origin_previous_list_in_scope = origin_cu->list_in_scope;
11040 origin_cu->list_in_scope = cu->list_in_scope;
11041
11042 if (die->tag != origin_die->tag
11043 && !(die->tag == DW_TAG_inlined_subroutine
11044 && origin_die->tag == DW_TAG_subprogram))
11045 complaint (&symfile_complaints,
11046 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11047 die->offset.sect_off, origin_die->offset.sect_off);
11048
11049 child_die = die->child;
11050 die_children_count = 0;
11051 while (child_die && child_die->tag)
11052 {
11053 child_die = sibling_die (child_die);
11054 die_children_count++;
11055 }
11056 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11057 cleanups = make_cleanup (xfree, offsets);
11058
11059 offsets_end = offsets;
11060 child_die = die->child;
11061 while (child_die && child_die->tag)
11062 {
11063 /* For each CHILD_DIE, find the corresponding child of
11064 ORIGIN_DIE. If there is more than one layer of
11065 DW_AT_abstract_origin, follow them all; there shouldn't be,
11066 but GCC versions at least through 4.4 generate this (GCC PR
11067 40573). */
11068 struct die_info *child_origin_die = child_die;
11069 struct dwarf2_cu *child_origin_cu = cu;
11070
11071 while (1)
11072 {
11073 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11074 child_origin_cu);
11075 if (attr == NULL)
11076 break;
11077 child_origin_die = follow_die_ref (child_origin_die, attr,
11078 &child_origin_cu);
11079 }
11080
11081 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11082 counterpart may exist. */
11083 if (child_origin_die != child_die)
11084 {
11085 if (child_die->tag != child_origin_die->tag
11086 && !(child_die->tag == DW_TAG_inlined_subroutine
11087 && child_origin_die->tag == DW_TAG_subprogram))
11088 complaint (&symfile_complaints,
11089 _("Child DIE 0x%x and its abstract origin 0x%x have "
11090 "different tags"), child_die->offset.sect_off,
11091 child_origin_die->offset.sect_off);
11092 if (child_origin_die->parent != origin_die)
11093 complaint (&symfile_complaints,
11094 _("Child DIE 0x%x and its abstract origin 0x%x have "
11095 "different parents"), child_die->offset.sect_off,
11096 child_origin_die->offset.sect_off);
11097 else
11098 *offsets_end++ = child_origin_die->offset;
11099 }
11100 child_die = sibling_die (child_die);
11101 }
11102 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11103 unsigned_int_compar);
11104 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11105 if (offsetp[-1].sect_off == offsetp->sect_off)
11106 complaint (&symfile_complaints,
11107 _("Multiple children of DIE 0x%x refer "
11108 "to DIE 0x%x as their abstract origin"),
11109 die->offset.sect_off, offsetp->sect_off);
11110
11111 offsetp = offsets;
11112 origin_child_die = origin_die->child;
11113 while (origin_child_die && origin_child_die->tag)
11114 {
11115 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11116 while (offsetp < offsets_end
11117 && offsetp->sect_off < origin_child_die->offset.sect_off)
11118 offsetp++;
11119 if (offsetp >= offsets_end
11120 || offsetp->sect_off > origin_child_die->offset.sect_off)
11121 {
11122 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11123 Check whether we're already processing ORIGIN_CHILD_DIE.
11124 This can happen with mutually referenced abstract_origins.
11125 PR 16581. */
11126 if (!origin_child_die->in_process)
11127 process_die (origin_child_die, origin_cu);
11128 }
11129 origin_child_die = sibling_die (origin_child_die);
11130 }
11131 origin_cu->list_in_scope = origin_previous_list_in_scope;
11132
11133 do_cleanups (cleanups);
11134 }
11135
11136 static void
11137 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11138 {
11139 struct objfile *objfile = cu->objfile;
11140 struct context_stack *new;
11141 CORE_ADDR lowpc;
11142 CORE_ADDR highpc;
11143 struct die_info *child_die;
11144 struct attribute *attr, *call_line, *call_file;
11145 const char *name;
11146 CORE_ADDR baseaddr;
11147 struct block *block;
11148 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11149 VEC (symbolp) *template_args = NULL;
11150 struct template_symbol *templ_func = NULL;
11151
11152 if (inlined_func)
11153 {
11154 /* If we do not have call site information, we can't show the
11155 caller of this inlined function. That's too confusing, so
11156 only use the scope for local variables. */
11157 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11158 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11159 if (call_line == NULL || call_file == NULL)
11160 {
11161 read_lexical_block_scope (die, cu);
11162 return;
11163 }
11164 }
11165
11166 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11167
11168 name = dwarf2_name (die, cu);
11169
11170 /* Ignore functions with missing or empty names. These are actually
11171 illegal according to the DWARF standard. */
11172 if (name == NULL)
11173 {
11174 complaint (&symfile_complaints,
11175 _("missing name for subprogram DIE at %d"),
11176 die->offset.sect_off);
11177 return;
11178 }
11179
11180 /* Ignore functions with missing or invalid low and high pc attributes. */
11181 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11182 {
11183 attr = dwarf2_attr (die, DW_AT_external, cu);
11184 if (!attr || !DW_UNSND (attr))
11185 complaint (&symfile_complaints,
11186 _("cannot get low and high bounds "
11187 "for subprogram DIE at %d"),
11188 die->offset.sect_off);
11189 return;
11190 }
11191
11192 lowpc += baseaddr;
11193 highpc += baseaddr;
11194
11195 /* If we have any template arguments, then we must allocate a
11196 different sort of symbol. */
11197 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11198 {
11199 if (child_die->tag == DW_TAG_template_type_param
11200 || child_die->tag == DW_TAG_template_value_param)
11201 {
11202 templ_func = allocate_template_symbol (objfile);
11203 templ_func->base.is_cplus_template_function = 1;
11204 break;
11205 }
11206 }
11207
11208 new = push_context (0, lowpc);
11209 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11210 (struct symbol *) templ_func);
11211
11212 /* If there is a location expression for DW_AT_frame_base, record
11213 it. */
11214 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11215 if (attr)
11216 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11217
11218 cu->list_in_scope = &local_symbols;
11219
11220 if (die->child != NULL)
11221 {
11222 child_die = die->child;
11223 while (child_die && child_die->tag)
11224 {
11225 if (child_die->tag == DW_TAG_template_type_param
11226 || child_die->tag == DW_TAG_template_value_param)
11227 {
11228 struct symbol *arg = new_symbol (child_die, NULL, cu);
11229
11230 if (arg != NULL)
11231 VEC_safe_push (symbolp, template_args, arg);
11232 }
11233 else
11234 process_die (child_die, cu);
11235 child_die = sibling_die (child_die);
11236 }
11237 }
11238
11239 inherit_abstract_dies (die, cu);
11240
11241 /* If we have a DW_AT_specification, we might need to import using
11242 directives from the context of the specification DIE. See the
11243 comment in determine_prefix. */
11244 if (cu->language == language_cplus
11245 && dwarf2_attr (die, DW_AT_specification, cu))
11246 {
11247 struct dwarf2_cu *spec_cu = cu;
11248 struct die_info *spec_die = die_specification (die, &spec_cu);
11249
11250 while (spec_die)
11251 {
11252 child_die = spec_die->child;
11253 while (child_die && child_die->tag)
11254 {
11255 if (child_die->tag == DW_TAG_imported_module)
11256 process_die (child_die, spec_cu);
11257 child_die = sibling_die (child_die);
11258 }
11259
11260 /* In some cases, GCC generates specification DIEs that
11261 themselves contain DW_AT_specification attributes. */
11262 spec_die = die_specification (spec_die, &spec_cu);
11263 }
11264 }
11265
11266 new = pop_context ();
11267 /* Make a block for the local symbols within. */
11268 block = finish_block (new->name, &local_symbols, new->old_blocks,
11269 lowpc, highpc);
11270
11271 /* For C++, set the block's scope. */
11272 if ((cu->language == language_cplus || cu->language == language_fortran)
11273 && cu->processing_has_namespace_info)
11274 block_set_scope (block, determine_prefix (die, cu),
11275 &objfile->objfile_obstack);
11276
11277 /* If we have address ranges, record them. */
11278 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11279
11280 /* Attach template arguments to function. */
11281 if (! VEC_empty (symbolp, template_args))
11282 {
11283 gdb_assert (templ_func != NULL);
11284
11285 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11286 templ_func->template_arguments
11287 = obstack_alloc (&objfile->objfile_obstack,
11288 (templ_func->n_template_arguments
11289 * sizeof (struct symbol *)));
11290 memcpy (templ_func->template_arguments,
11291 VEC_address (symbolp, template_args),
11292 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11293 VEC_free (symbolp, template_args);
11294 }
11295
11296 /* In C++, we can have functions nested inside functions (e.g., when
11297 a function declares a class that has methods). This means that
11298 when we finish processing a function scope, we may need to go
11299 back to building a containing block's symbol lists. */
11300 local_symbols = new->locals;
11301 using_directives = new->using_directives;
11302
11303 /* If we've finished processing a top-level function, subsequent
11304 symbols go in the file symbol list. */
11305 if (outermost_context_p ())
11306 cu->list_in_scope = &file_symbols;
11307 }
11308
11309 /* Process all the DIES contained within a lexical block scope. Start
11310 a new scope, process the dies, and then close the scope. */
11311
11312 static void
11313 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11314 {
11315 struct objfile *objfile = cu->objfile;
11316 struct context_stack *new;
11317 CORE_ADDR lowpc, highpc;
11318 struct die_info *child_die;
11319 CORE_ADDR baseaddr;
11320
11321 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11322
11323 /* Ignore blocks with missing or invalid low and high pc attributes. */
11324 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11325 as multiple lexical blocks? Handling children in a sane way would
11326 be nasty. Might be easier to properly extend generic blocks to
11327 describe ranges. */
11328 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11329 return;
11330 lowpc += baseaddr;
11331 highpc += baseaddr;
11332
11333 push_context (0, lowpc);
11334 if (die->child != NULL)
11335 {
11336 child_die = die->child;
11337 while (child_die && child_die->tag)
11338 {
11339 process_die (child_die, cu);
11340 child_die = sibling_die (child_die);
11341 }
11342 }
11343 new = pop_context ();
11344
11345 if (local_symbols != NULL || using_directives != NULL)
11346 {
11347 struct block *block
11348 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11349 highpc);
11350
11351 /* Note that recording ranges after traversing children, as we
11352 do here, means that recording a parent's ranges entails
11353 walking across all its children's ranges as they appear in
11354 the address map, which is quadratic behavior.
11355
11356 It would be nicer to record the parent's ranges before
11357 traversing its children, simply overriding whatever you find
11358 there. But since we don't even decide whether to create a
11359 block until after we've traversed its children, that's hard
11360 to do. */
11361 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11362 }
11363 local_symbols = new->locals;
11364 using_directives = new->using_directives;
11365 }
11366
11367 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11368
11369 static void
11370 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11371 {
11372 struct objfile *objfile = cu->objfile;
11373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11374 CORE_ADDR pc, baseaddr;
11375 struct attribute *attr;
11376 struct call_site *call_site, call_site_local;
11377 void **slot;
11378 int nparams;
11379 struct die_info *child_die;
11380
11381 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11382
11383 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11384 if (!attr)
11385 {
11386 complaint (&symfile_complaints,
11387 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11388 "DIE 0x%x [in module %s]"),
11389 die->offset.sect_off, objfile_name (objfile));
11390 return;
11391 }
11392 pc = attr_value_as_address (attr) + baseaddr;
11393
11394 if (cu->call_site_htab == NULL)
11395 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11396 NULL, &objfile->objfile_obstack,
11397 hashtab_obstack_allocate, NULL);
11398 call_site_local.pc = pc;
11399 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11400 if (*slot != NULL)
11401 {
11402 complaint (&symfile_complaints,
11403 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11404 "DIE 0x%x [in module %s]"),
11405 paddress (gdbarch, pc), die->offset.sect_off,
11406 objfile_name (objfile));
11407 return;
11408 }
11409
11410 /* Count parameters at the caller. */
11411
11412 nparams = 0;
11413 for (child_die = die->child; child_die && child_die->tag;
11414 child_die = sibling_die (child_die))
11415 {
11416 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11417 {
11418 complaint (&symfile_complaints,
11419 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11420 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11421 child_die->tag, child_die->offset.sect_off,
11422 objfile_name (objfile));
11423 continue;
11424 }
11425
11426 nparams++;
11427 }
11428
11429 call_site = obstack_alloc (&objfile->objfile_obstack,
11430 (sizeof (*call_site)
11431 + (sizeof (*call_site->parameter)
11432 * (nparams - 1))));
11433 *slot = call_site;
11434 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11435 call_site->pc = pc;
11436
11437 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11438 {
11439 struct die_info *func_die;
11440
11441 /* Skip also over DW_TAG_inlined_subroutine. */
11442 for (func_die = die->parent;
11443 func_die && func_die->tag != DW_TAG_subprogram
11444 && func_die->tag != DW_TAG_subroutine_type;
11445 func_die = func_die->parent);
11446
11447 /* DW_AT_GNU_all_call_sites is a superset
11448 of DW_AT_GNU_all_tail_call_sites. */
11449 if (func_die
11450 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11451 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11452 {
11453 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11454 not complete. But keep CALL_SITE for look ups via call_site_htab,
11455 both the initial caller containing the real return address PC and
11456 the final callee containing the current PC of a chain of tail
11457 calls do not need to have the tail call list complete. But any
11458 function candidate for a virtual tail call frame searched via
11459 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11460 determined unambiguously. */
11461 }
11462 else
11463 {
11464 struct type *func_type = NULL;
11465
11466 if (func_die)
11467 func_type = get_die_type (func_die, cu);
11468 if (func_type != NULL)
11469 {
11470 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11471
11472 /* Enlist this call site to the function. */
11473 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11474 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11475 }
11476 else
11477 complaint (&symfile_complaints,
11478 _("Cannot find function owning DW_TAG_GNU_call_site "
11479 "DIE 0x%x [in module %s]"),
11480 die->offset.sect_off, objfile_name (objfile));
11481 }
11482 }
11483
11484 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11485 if (attr == NULL)
11486 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11487 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11488 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11489 /* Keep NULL DWARF_BLOCK. */;
11490 else if (attr_form_is_block (attr))
11491 {
11492 struct dwarf2_locexpr_baton *dlbaton;
11493
11494 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11495 dlbaton->data = DW_BLOCK (attr)->data;
11496 dlbaton->size = DW_BLOCK (attr)->size;
11497 dlbaton->per_cu = cu->per_cu;
11498
11499 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11500 }
11501 else if (attr_form_is_ref (attr))
11502 {
11503 struct dwarf2_cu *target_cu = cu;
11504 struct die_info *target_die;
11505
11506 target_die = follow_die_ref (die, attr, &target_cu);
11507 gdb_assert (target_cu->objfile == objfile);
11508 if (die_is_declaration (target_die, target_cu))
11509 {
11510 const char *target_physname = NULL;
11511 struct attribute *target_attr;
11512
11513 /* Prefer the mangled name; otherwise compute the demangled one. */
11514 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11515 if (target_attr == NULL)
11516 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11517 target_cu);
11518 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11519 target_physname = DW_STRING (target_attr);
11520 else
11521 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11522 if (target_physname == NULL)
11523 complaint (&symfile_complaints,
11524 _("DW_AT_GNU_call_site_target target DIE has invalid "
11525 "physname, for referencing DIE 0x%x [in module %s]"),
11526 die->offset.sect_off, objfile_name (objfile));
11527 else
11528 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11529 }
11530 else
11531 {
11532 CORE_ADDR lowpc;
11533
11534 /* DW_AT_entry_pc should be preferred. */
11535 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11536 complaint (&symfile_complaints,
11537 _("DW_AT_GNU_call_site_target target DIE has invalid "
11538 "low pc, for referencing DIE 0x%x [in module %s]"),
11539 die->offset.sect_off, objfile_name (objfile));
11540 else
11541 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11542 }
11543 }
11544 else
11545 complaint (&symfile_complaints,
11546 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11547 "block nor reference, for DIE 0x%x [in module %s]"),
11548 die->offset.sect_off, objfile_name (objfile));
11549
11550 call_site->per_cu = cu->per_cu;
11551
11552 for (child_die = die->child;
11553 child_die && child_die->tag;
11554 child_die = sibling_die (child_die))
11555 {
11556 struct call_site_parameter *parameter;
11557 struct attribute *loc, *origin;
11558
11559 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11560 {
11561 /* Already printed the complaint above. */
11562 continue;
11563 }
11564
11565 gdb_assert (call_site->parameter_count < nparams);
11566 parameter = &call_site->parameter[call_site->parameter_count];
11567
11568 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11569 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11570 register is contained in DW_AT_GNU_call_site_value. */
11571
11572 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11573 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11574 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11575 {
11576 sect_offset offset;
11577
11578 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11579 offset = dwarf2_get_ref_die_offset (origin);
11580 if (!offset_in_cu_p (&cu->header, offset))
11581 {
11582 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11583 binding can be done only inside one CU. Such referenced DIE
11584 therefore cannot be even moved to DW_TAG_partial_unit. */
11585 complaint (&symfile_complaints,
11586 _("DW_AT_abstract_origin offset is not in CU for "
11587 "DW_TAG_GNU_call_site child DIE 0x%x "
11588 "[in module %s]"),
11589 child_die->offset.sect_off, objfile_name (objfile));
11590 continue;
11591 }
11592 parameter->u.param_offset.cu_off = (offset.sect_off
11593 - cu->header.offset.sect_off);
11594 }
11595 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11596 {
11597 complaint (&symfile_complaints,
11598 _("No DW_FORM_block* DW_AT_location for "
11599 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11600 child_die->offset.sect_off, objfile_name (objfile));
11601 continue;
11602 }
11603 else
11604 {
11605 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11606 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11607 if (parameter->u.dwarf_reg != -1)
11608 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11609 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11610 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11611 &parameter->u.fb_offset))
11612 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11613 else
11614 {
11615 complaint (&symfile_complaints,
11616 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11617 "for DW_FORM_block* DW_AT_location is supported for "
11618 "DW_TAG_GNU_call_site child DIE 0x%x "
11619 "[in module %s]"),
11620 child_die->offset.sect_off, objfile_name (objfile));
11621 continue;
11622 }
11623 }
11624
11625 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11626 if (!attr_form_is_block (attr))
11627 {
11628 complaint (&symfile_complaints,
11629 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11630 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11631 child_die->offset.sect_off, objfile_name (objfile));
11632 continue;
11633 }
11634 parameter->value = DW_BLOCK (attr)->data;
11635 parameter->value_size = DW_BLOCK (attr)->size;
11636
11637 /* Parameters are not pre-cleared by memset above. */
11638 parameter->data_value = NULL;
11639 parameter->data_value_size = 0;
11640 call_site->parameter_count++;
11641
11642 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11643 if (attr)
11644 {
11645 if (!attr_form_is_block (attr))
11646 complaint (&symfile_complaints,
11647 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11648 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11649 child_die->offset.sect_off, objfile_name (objfile));
11650 else
11651 {
11652 parameter->data_value = DW_BLOCK (attr)->data;
11653 parameter->data_value_size = DW_BLOCK (attr)->size;
11654 }
11655 }
11656 }
11657 }
11658
11659 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11660 Return 1 if the attributes are present and valid, otherwise, return 0.
11661 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11662
11663 static int
11664 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11665 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11666 struct partial_symtab *ranges_pst)
11667 {
11668 struct objfile *objfile = cu->objfile;
11669 struct comp_unit_head *cu_header = &cu->header;
11670 bfd *obfd = objfile->obfd;
11671 unsigned int addr_size = cu_header->addr_size;
11672 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11673 /* Base address selection entry. */
11674 CORE_ADDR base;
11675 int found_base;
11676 unsigned int dummy;
11677 const gdb_byte *buffer;
11678 CORE_ADDR marker;
11679 int low_set;
11680 CORE_ADDR low = 0;
11681 CORE_ADDR high = 0;
11682 CORE_ADDR baseaddr;
11683
11684 found_base = cu->base_known;
11685 base = cu->base_address;
11686
11687 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11688 if (offset >= dwarf2_per_objfile->ranges.size)
11689 {
11690 complaint (&symfile_complaints,
11691 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11692 offset);
11693 return 0;
11694 }
11695 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11696
11697 /* Read in the largest possible address. */
11698 marker = read_address (obfd, buffer, cu, &dummy);
11699 if ((marker & mask) == mask)
11700 {
11701 /* If we found the largest possible address, then
11702 read the base address. */
11703 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11704 buffer += 2 * addr_size;
11705 offset += 2 * addr_size;
11706 found_base = 1;
11707 }
11708
11709 low_set = 0;
11710
11711 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11712
11713 while (1)
11714 {
11715 CORE_ADDR range_beginning, range_end;
11716
11717 range_beginning = read_address (obfd, buffer, cu, &dummy);
11718 buffer += addr_size;
11719 range_end = read_address (obfd, buffer, cu, &dummy);
11720 buffer += addr_size;
11721 offset += 2 * addr_size;
11722
11723 /* An end of list marker is a pair of zero addresses. */
11724 if (range_beginning == 0 && range_end == 0)
11725 /* Found the end of list entry. */
11726 break;
11727
11728 /* Each base address selection entry is a pair of 2 values.
11729 The first is the largest possible address, the second is
11730 the base address. Check for a base address here. */
11731 if ((range_beginning & mask) == mask)
11732 {
11733 /* If we found the largest possible address, then
11734 read the base address. */
11735 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11736 found_base = 1;
11737 continue;
11738 }
11739
11740 if (!found_base)
11741 {
11742 /* We have no valid base address for the ranges
11743 data. */
11744 complaint (&symfile_complaints,
11745 _("Invalid .debug_ranges data (no base address)"));
11746 return 0;
11747 }
11748
11749 if (range_beginning > range_end)
11750 {
11751 /* Inverted range entries are invalid. */
11752 complaint (&symfile_complaints,
11753 _("Invalid .debug_ranges data (inverted range)"));
11754 return 0;
11755 }
11756
11757 /* Empty range entries have no effect. */
11758 if (range_beginning == range_end)
11759 continue;
11760
11761 range_beginning += base;
11762 range_end += base;
11763
11764 /* A not-uncommon case of bad debug info.
11765 Don't pollute the addrmap with bad data. */
11766 if (range_beginning + baseaddr == 0
11767 && !dwarf2_per_objfile->has_section_at_zero)
11768 {
11769 complaint (&symfile_complaints,
11770 _(".debug_ranges entry has start address of zero"
11771 " [in module %s]"), objfile_name (objfile));
11772 continue;
11773 }
11774
11775 if (ranges_pst != NULL)
11776 addrmap_set_empty (objfile->psymtabs_addrmap,
11777 range_beginning + baseaddr,
11778 range_end - 1 + baseaddr,
11779 ranges_pst);
11780
11781 /* FIXME: This is recording everything as a low-high
11782 segment of consecutive addresses. We should have a
11783 data structure for discontiguous block ranges
11784 instead. */
11785 if (! low_set)
11786 {
11787 low = range_beginning;
11788 high = range_end;
11789 low_set = 1;
11790 }
11791 else
11792 {
11793 if (range_beginning < low)
11794 low = range_beginning;
11795 if (range_end > high)
11796 high = range_end;
11797 }
11798 }
11799
11800 if (! low_set)
11801 /* If the first entry is an end-of-list marker, the range
11802 describes an empty scope, i.e. no instructions. */
11803 return 0;
11804
11805 if (low_return)
11806 *low_return = low;
11807 if (high_return)
11808 *high_return = high;
11809 return 1;
11810 }
11811
11812 /* Get low and high pc attributes from a die. Return 1 if the attributes
11813 are present and valid, otherwise, return 0. Return -1 if the range is
11814 discontinuous, i.e. derived from DW_AT_ranges information. */
11815
11816 static int
11817 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11818 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11819 struct partial_symtab *pst)
11820 {
11821 struct attribute *attr;
11822 struct attribute *attr_high;
11823 CORE_ADDR low = 0;
11824 CORE_ADDR high = 0;
11825 int ret = 0;
11826
11827 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11828 if (attr_high)
11829 {
11830 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11831 if (attr)
11832 {
11833 low = attr_value_as_address (attr);
11834 high = attr_value_as_address (attr_high);
11835 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11836 high += low;
11837 }
11838 else
11839 /* Found high w/o low attribute. */
11840 return 0;
11841
11842 /* Found consecutive range of addresses. */
11843 ret = 1;
11844 }
11845 else
11846 {
11847 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11848 if (attr != NULL)
11849 {
11850 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11851 We take advantage of the fact that DW_AT_ranges does not appear
11852 in DW_TAG_compile_unit of DWO files. */
11853 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11854 unsigned int ranges_offset = (DW_UNSND (attr)
11855 + (need_ranges_base
11856 ? cu->ranges_base
11857 : 0));
11858
11859 /* Value of the DW_AT_ranges attribute is the offset in the
11860 .debug_ranges section. */
11861 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11862 return 0;
11863 /* Found discontinuous range of addresses. */
11864 ret = -1;
11865 }
11866 }
11867
11868 /* read_partial_die has also the strict LOW < HIGH requirement. */
11869 if (high <= low)
11870 return 0;
11871
11872 /* When using the GNU linker, .gnu.linkonce. sections are used to
11873 eliminate duplicate copies of functions and vtables and such.
11874 The linker will arbitrarily choose one and discard the others.
11875 The AT_*_pc values for such functions refer to local labels in
11876 these sections. If the section from that file was discarded, the
11877 labels are not in the output, so the relocs get a value of 0.
11878 If this is a discarded function, mark the pc bounds as invalid,
11879 so that GDB will ignore it. */
11880 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11881 return 0;
11882
11883 *lowpc = low;
11884 if (highpc)
11885 *highpc = high;
11886 return ret;
11887 }
11888
11889 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11890 its low and high PC addresses. Do nothing if these addresses could not
11891 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11892 and HIGHPC to the high address if greater than HIGHPC. */
11893
11894 static void
11895 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11896 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11897 struct dwarf2_cu *cu)
11898 {
11899 CORE_ADDR low, high;
11900 struct die_info *child = die->child;
11901
11902 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11903 {
11904 *lowpc = min (*lowpc, low);
11905 *highpc = max (*highpc, high);
11906 }
11907
11908 /* If the language does not allow nested subprograms (either inside
11909 subprograms or lexical blocks), we're done. */
11910 if (cu->language != language_ada)
11911 return;
11912
11913 /* Check all the children of the given DIE. If it contains nested
11914 subprograms, then check their pc bounds. Likewise, we need to
11915 check lexical blocks as well, as they may also contain subprogram
11916 definitions. */
11917 while (child && child->tag)
11918 {
11919 if (child->tag == DW_TAG_subprogram
11920 || child->tag == DW_TAG_lexical_block)
11921 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11922 child = sibling_die (child);
11923 }
11924 }
11925
11926 /* Get the low and high pc's represented by the scope DIE, and store
11927 them in *LOWPC and *HIGHPC. If the correct values can't be
11928 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11929
11930 static void
11931 get_scope_pc_bounds (struct die_info *die,
11932 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11933 struct dwarf2_cu *cu)
11934 {
11935 CORE_ADDR best_low = (CORE_ADDR) -1;
11936 CORE_ADDR best_high = (CORE_ADDR) 0;
11937 CORE_ADDR current_low, current_high;
11938
11939 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11940 {
11941 best_low = current_low;
11942 best_high = current_high;
11943 }
11944 else
11945 {
11946 struct die_info *child = die->child;
11947
11948 while (child && child->tag)
11949 {
11950 switch (child->tag) {
11951 case DW_TAG_subprogram:
11952 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11953 break;
11954 case DW_TAG_namespace:
11955 case DW_TAG_module:
11956 /* FIXME: carlton/2004-01-16: Should we do this for
11957 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11958 that current GCC's always emit the DIEs corresponding
11959 to definitions of methods of classes as children of a
11960 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11961 the DIEs giving the declarations, which could be
11962 anywhere). But I don't see any reason why the
11963 standards says that they have to be there. */
11964 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11965
11966 if (current_low != ((CORE_ADDR) -1))
11967 {
11968 best_low = min (best_low, current_low);
11969 best_high = max (best_high, current_high);
11970 }
11971 break;
11972 default:
11973 /* Ignore. */
11974 break;
11975 }
11976
11977 child = sibling_die (child);
11978 }
11979 }
11980
11981 *lowpc = best_low;
11982 *highpc = best_high;
11983 }
11984
11985 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11986 in DIE. */
11987
11988 static void
11989 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11990 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11991 {
11992 struct objfile *objfile = cu->objfile;
11993 struct attribute *attr;
11994 struct attribute *attr_high;
11995
11996 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11997 if (attr_high)
11998 {
11999 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12000 if (attr)
12001 {
12002 CORE_ADDR low = attr_value_as_address (attr);
12003 CORE_ADDR high = attr_value_as_address (attr_high);
12004
12005 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12006 high += low;
12007
12008 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12009 }
12010 }
12011
12012 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12013 if (attr)
12014 {
12015 bfd *obfd = objfile->obfd;
12016 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12017 We take advantage of the fact that DW_AT_ranges does not appear
12018 in DW_TAG_compile_unit of DWO files. */
12019 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12020
12021 /* The value of the DW_AT_ranges attribute is the offset of the
12022 address range list in the .debug_ranges section. */
12023 unsigned long offset = (DW_UNSND (attr)
12024 + (need_ranges_base ? cu->ranges_base : 0));
12025 const gdb_byte *buffer;
12026
12027 /* For some target architectures, but not others, the
12028 read_address function sign-extends the addresses it returns.
12029 To recognize base address selection entries, we need a
12030 mask. */
12031 unsigned int addr_size = cu->header.addr_size;
12032 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12033
12034 /* The base address, to which the next pair is relative. Note
12035 that this 'base' is a DWARF concept: most entries in a range
12036 list are relative, to reduce the number of relocs against the
12037 debugging information. This is separate from this function's
12038 'baseaddr' argument, which GDB uses to relocate debugging
12039 information from a shared library based on the address at
12040 which the library was loaded. */
12041 CORE_ADDR base = cu->base_address;
12042 int base_known = cu->base_known;
12043
12044 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12045 if (offset >= dwarf2_per_objfile->ranges.size)
12046 {
12047 complaint (&symfile_complaints,
12048 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12049 offset);
12050 return;
12051 }
12052 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12053
12054 for (;;)
12055 {
12056 unsigned int bytes_read;
12057 CORE_ADDR start, end;
12058
12059 start = read_address (obfd, buffer, cu, &bytes_read);
12060 buffer += bytes_read;
12061 end = read_address (obfd, buffer, cu, &bytes_read);
12062 buffer += bytes_read;
12063
12064 /* Did we find the end of the range list? */
12065 if (start == 0 && end == 0)
12066 break;
12067
12068 /* Did we find a base address selection entry? */
12069 else if ((start & base_select_mask) == base_select_mask)
12070 {
12071 base = end;
12072 base_known = 1;
12073 }
12074
12075 /* We found an ordinary address range. */
12076 else
12077 {
12078 if (!base_known)
12079 {
12080 complaint (&symfile_complaints,
12081 _("Invalid .debug_ranges data "
12082 "(no base address)"));
12083 return;
12084 }
12085
12086 if (start > end)
12087 {
12088 /* Inverted range entries are invalid. */
12089 complaint (&symfile_complaints,
12090 _("Invalid .debug_ranges data "
12091 "(inverted range)"));
12092 return;
12093 }
12094
12095 /* Empty range entries have no effect. */
12096 if (start == end)
12097 continue;
12098
12099 start += base + baseaddr;
12100 end += base + baseaddr;
12101
12102 /* A not-uncommon case of bad debug info.
12103 Don't pollute the addrmap with bad data. */
12104 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12105 {
12106 complaint (&symfile_complaints,
12107 _(".debug_ranges entry has start address of zero"
12108 " [in module %s]"), objfile_name (objfile));
12109 continue;
12110 }
12111
12112 record_block_range (block, start, end - 1);
12113 }
12114 }
12115 }
12116 }
12117
12118 /* Check whether the producer field indicates either of GCC < 4.6, or the
12119 Intel C/C++ compiler, and cache the result in CU. */
12120
12121 static void
12122 check_producer (struct dwarf2_cu *cu)
12123 {
12124 const char *cs;
12125 int major, minor, release;
12126
12127 if (cu->producer == NULL)
12128 {
12129 /* For unknown compilers expect their behavior is DWARF version
12130 compliant.
12131
12132 GCC started to support .debug_types sections by -gdwarf-4 since
12133 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12134 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12135 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12136 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12137 }
12138 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12139 {
12140 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12141
12142 cs = &cu->producer[strlen ("GNU ")];
12143 while (*cs && !isdigit (*cs))
12144 cs++;
12145 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12146 {
12147 /* Not recognized as GCC. */
12148 }
12149 else
12150 {
12151 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12152 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12153 }
12154 }
12155 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12156 cu->producer_is_icc = 1;
12157 else
12158 {
12159 /* For other non-GCC compilers, expect their behavior is DWARF version
12160 compliant. */
12161 }
12162
12163 cu->checked_producer = 1;
12164 }
12165
12166 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12167 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12168 during 4.6.0 experimental. */
12169
12170 static int
12171 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12172 {
12173 if (!cu->checked_producer)
12174 check_producer (cu);
12175
12176 return cu->producer_is_gxx_lt_4_6;
12177 }
12178
12179 /* Return the default accessibility type if it is not overriden by
12180 DW_AT_accessibility. */
12181
12182 static enum dwarf_access_attribute
12183 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12184 {
12185 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12186 {
12187 /* The default DWARF 2 accessibility for members is public, the default
12188 accessibility for inheritance is private. */
12189
12190 if (die->tag != DW_TAG_inheritance)
12191 return DW_ACCESS_public;
12192 else
12193 return DW_ACCESS_private;
12194 }
12195 else
12196 {
12197 /* DWARF 3+ defines the default accessibility a different way. The same
12198 rules apply now for DW_TAG_inheritance as for the members and it only
12199 depends on the container kind. */
12200
12201 if (die->parent->tag == DW_TAG_class_type)
12202 return DW_ACCESS_private;
12203 else
12204 return DW_ACCESS_public;
12205 }
12206 }
12207
12208 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12209 offset. If the attribute was not found return 0, otherwise return
12210 1. If it was found but could not properly be handled, set *OFFSET
12211 to 0. */
12212
12213 static int
12214 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12215 LONGEST *offset)
12216 {
12217 struct attribute *attr;
12218
12219 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12220 if (attr != NULL)
12221 {
12222 *offset = 0;
12223
12224 /* Note that we do not check for a section offset first here.
12225 This is because DW_AT_data_member_location is new in DWARF 4,
12226 so if we see it, we can assume that a constant form is really
12227 a constant and not a section offset. */
12228 if (attr_form_is_constant (attr))
12229 *offset = dwarf2_get_attr_constant_value (attr, 0);
12230 else if (attr_form_is_section_offset (attr))
12231 dwarf2_complex_location_expr_complaint ();
12232 else if (attr_form_is_block (attr))
12233 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12234 else
12235 dwarf2_complex_location_expr_complaint ();
12236
12237 return 1;
12238 }
12239
12240 return 0;
12241 }
12242
12243 /* Add an aggregate field to the field list. */
12244
12245 static void
12246 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12247 struct dwarf2_cu *cu)
12248 {
12249 struct objfile *objfile = cu->objfile;
12250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12251 struct nextfield *new_field;
12252 struct attribute *attr;
12253 struct field *fp;
12254 const char *fieldname = "";
12255
12256 /* Allocate a new field list entry and link it in. */
12257 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12258 make_cleanup (xfree, new_field);
12259 memset (new_field, 0, sizeof (struct nextfield));
12260
12261 if (die->tag == DW_TAG_inheritance)
12262 {
12263 new_field->next = fip->baseclasses;
12264 fip->baseclasses = new_field;
12265 }
12266 else
12267 {
12268 new_field->next = fip->fields;
12269 fip->fields = new_field;
12270 }
12271 fip->nfields++;
12272
12273 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12274 if (attr)
12275 new_field->accessibility = DW_UNSND (attr);
12276 else
12277 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12278 if (new_field->accessibility != DW_ACCESS_public)
12279 fip->non_public_fields = 1;
12280
12281 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12282 if (attr)
12283 new_field->virtuality = DW_UNSND (attr);
12284 else
12285 new_field->virtuality = DW_VIRTUALITY_none;
12286
12287 fp = &new_field->field;
12288
12289 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12290 {
12291 LONGEST offset;
12292
12293 /* Data member other than a C++ static data member. */
12294
12295 /* Get type of field. */
12296 fp->type = die_type (die, cu);
12297
12298 SET_FIELD_BITPOS (*fp, 0);
12299
12300 /* Get bit size of field (zero if none). */
12301 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12302 if (attr)
12303 {
12304 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12305 }
12306 else
12307 {
12308 FIELD_BITSIZE (*fp) = 0;
12309 }
12310
12311 /* Get bit offset of field. */
12312 if (handle_data_member_location (die, cu, &offset))
12313 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12314 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12315 if (attr)
12316 {
12317 if (gdbarch_bits_big_endian (gdbarch))
12318 {
12319 /* For big endian bits, the DW_AT_bit_offset gives the
12320 additional bit offset from the MSB of the containing
12321 anonymous object to the MSB of the field. We don't
12322 have to do anything special since we don't need to
12323 know the size of the anonymous object. */
12324 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12325 }
12326 else
12327 {
12328 /* For little endian bits, compute the bit offset to the
12329 MSB of the anonymous object, subtract off the number of
12330 bits from the MSB of the field to the MSB of the
12331 object, and then subtract off the number of bits of
12332 the field itself. The result is the bit offset of
12333 the LSB of the field. */
12334 int anonymous_size;
12335 int bit_offset = DW_UNSND (attr);
12336
12337 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12338 if (attr)
12339 {
12340 /* The size of the anonymous object containing
12341 the bit field is explicit, so use the
12342 indicated size (in bytes). */
12343 anonymous_size = DW_UNSND (attr);
12344 }
12345 else
12346 {
12347 /* The size of the anonymous object containing
12348 the bit field must be inferred from the type
12349 attribute of the data member containing the
12350 bit field. */
12351 anonymous_size = TYPE_LENGTH (fp->type);
12352 }
12353 SET_FIELD_BITPOS (*fp,
12354 (FIELD_BITPOS (*fp)
12355 + anonymous_size * bits_per_byte
12356 - bit_offset - FIELD_BITSIZE (*fp)));
12357 }
12358 }
12359
12360 /* Get name of field. */
12361 fieldname = dwarf2_name (die, cu);
12362 if (fieldname == NULL)
12363 fieldname = "";
12364
12365 /* The name is already allocated along with this objfile, so we don't
12366 need to duplicate it for the type. */
12367 fp->name = fieldname;
12368
12369 /* Change accessibility for artificial fields (e.g. virtual table
12370 pointer or virtual base class pointer) to private. */
12371 if (dwarf2_attr (die, DW_AT_artificial, cu))
12372 {
12373 FIELD_ARTIFICIAL (*fp) = 1;
12374 new_field->accessibility = DW_ACCESS_private;
12375 fip->non_public_fields = 1;
12376 }
12377 }
12378 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12379 {
12380 /* C++ static member. */
12381
12382 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12383 is a declaration, but all versions of G++ as of this writing
12384 (so through at least 3.2.1) incorrectly generate
12385 DW_TAG_variable tags. */
12386
12387 const char *physname;
12388
12389 /* Get name of field. */
12390 fieldname = dwarf2_name (die, cu);
12391 if (fieldname == NULL)
12392 return;
12393
12394 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12395 if (attr
12396 /* Only create a symbol if this is an external value.
12397 new_symbol checks this and puts the value in the global symbol
12398 table, which we want. If it is not external, new_symbol
12399 will try to put the value in cu->list_in_scope which is wrong. */
12400 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12401 {
12402 /* A static const member, not much different than an enum as far as
12403 we're concerned, except that we can support more types. */
12404 new_symbol (die, NULL, cu);
12405 }
12406
12407 /* Get physical name. */
12408 physname = dwarf2_physname (fieldname, die, cu);
12409
12410 /* The name is already allocated along with this objfile, so we don't
12411 need to duplicate it for the type. */
12412 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12413 FIELD_TYPE (*fp) = die_type (die, cu);
12414 FIELD_NAME (*fp) = fieldname;
12415 }
12416 else if (die->tag == DW_TAG_inheritance)
12417 {
12418 LONGEST offset;
12419
12420 /* C++ base class field. */
12421 if (handle_data_member_location (die, cu, &offset))
12422 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12423 FIELD_BITSIZE (*fp) = 0;
12424 FIELD_TYPE (*fp) = die_type (die, cu);
12425 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12426 fip->nbaseclasses++;
12427 }
12428 }
12429
12430 /* Add a typedef defined in the scope of the FIP's class. */
12431
12432 static void
12433 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12434 struct dwarf2_cu *cu)
12435 {
12436 struct objfile *objfile = cu->objfile;
12437 struct typedef_field_list *new_field;
12438 struct attribute *attr;
12439 struct typedef_field *fp;
12440 char *fieldname = "";
12441
12442 /* Allocate a new field list entry and link it in. */
12443 new_field = xzalloc (sizeof (*new_field));
12444 make_cleanup (xfree, new_field);
12445
12446 gdb_assert (die->tag == DW_TAG_typedef);
12447
12448 fp = &new_field->field;
12449
12450 /* Get name of field. */
12451 fp->name = dwarf2_name (die, cu);
12452 if (fp->name == NULL)
12453 return;
12454
12455 fp->type = read_type_die (die, cu);
12456
12457 new_field->next = fip->typedef_field_list;
12458 fip->typedef_field_list = new_field;
12459 fip->typedef_field_list_count++;
12460 }
12461
12462 /* Create the vector of fields, and attach it to the type. */
12463
12464 static void
12465 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12466 struct dwarf2_cu *cu)
12467 {
12468 int nfields = fip->nfields;
12469
12470 /* Record the field count, allocate space for the array of fields,
12471 and create blank accessibility bitfields if necessary. */
12472 TYPE_NFIELDS (type) = nfields;
12473 TYPE_FIELDS (type) = (struct field *)
12474 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12475 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12476
12477 if (fip->non_public_fields && cu->language != language_ada)
12478 {
12479 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12480
12481 TYPE_FIELD_PRIVATE_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12484
12485 TYPE_FIELD_PROTECTED_BITS (type) =
12486 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12487 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12488
12489 TYPE_FIELD_IGNORE_BITS (type) =
12490 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12491 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12492 }
12493
12494 /* If the type has baseclasses, allocate and clear a bit vector for
12495 TYPE_FIELD_VIRTUAL_BITS. */
12496 if (fip->nbaseclasses && cu->language != language_ada)
12497 {
12498 int num_bytes = B_BYTES (fip->nbaseclasses);
12499 unsigned char *pointer;
12500
12501 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12502 pointer = TYPE_ALLOC (type, num_bytes);
12503 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12504 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12505 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12506 }
12507
12508 /* Copy the saved-up fields into the field vector. Start from the head of
12509 the list, adding to the tail of the field array, so that they end up in
12510 the same order in the array in which they were added to the list. */
12511 while (nfields-- > 0)
12512 {
12513 struct nextfield *fieldp;
12514
12515 if (fip->fields)
12516 {
12517 fieldp = fip->fields;
12518 fip->fields = fieldp->next;
12519 }
12520 else
12521 {
12522 fieldp = fip->baseclasses;
12523 fip->baseclasses = fieldp->next;
12524 }
12525
12526 TYPE_FIELD (type, nfields) = fieldp->field;
12527 switch (fieldp->accessibility)
12528 {
12529 case DW_ACCESS_private:
12530 if (cu->language != language_ada)
12531 SET_TYPE_FIELD_PRIVATE (type, nfields);
12532 break;
12533
12534 case DW_ACCESS_protected:
12535 if (cu->language != language_ada)
12536 SET_TYPE_FIELD_PROTECTED (type, nfields);
12537 break;
12538
12539 case DW_ACCESS_public:
12540 break;
12541
12542 default:
12543 /* Unknown accessibility. Complain and treat it as public. */
12544 {
12545 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12546 fieldp->accessibility);
12547 }
12548 break;
12549 }
12550 if (nfields < fip->nbaseclasses)
12551 {
12552 switch (fieldp->virtuality)
12553 {
12554 case DW_VIRTUALITY_virtual:
12555 case DW_VIRTUALITY_pure_virtual:
12556 if (cu->language == language_ada)
12557 error (_("unexpected virtuality in component of Ada type"));
12558 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12559 break;
12560 }
12561 }
12562 }
12563 }
12564
12565 /* Return true if this member function is a constructor, false
12566 otherwise. */
12567
12568 static int
12569 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12570 {
12571 const char *fieldname;
12572 const char *typename;
12573 int len;
12574
12575 if (die->parent == NULL)
12576 return 0;
12577
12578 if (die->parent->tag != DW_TAG_structure_type
12579 && die->parent->tag != DW_TAG_union_type
12580 && die->parent->tag != DW_TAG_class_type)
12581 return 0;
12582
12583 fieldname = dwarf2_name (die, cu);
12584 typename = dwarf2_name (die->parent, cu);
12585 if (fieldname == NULL || typename == NULL)
12586 return 0;
12587
12588 len = strlen (fieldname);
12589 return (strncmp (fieldname, typename, len) == 0
12590 && (typename[len] == '\0' || typename[len] == '<'));
12591 }
12592
12593 /* Add a member function to the proper fieldlist. */
12594
12595 static void
12596 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12597 struct type *type, struct dwarf2_cu *cu)
12598 {
12599 struct objfile *objfile = cu->objfile;
12600 struct attribute *attr;
12601 struct fnfieldlist *flp;
12602 int i;
12603 struct fn_field *fnp;
12604 const char *fieldname;
12605 struct nextfnfield *new_fnfield;
12606 struct type *this_type;
12607 enum dwarf_access_attribute accessibility;
12608
12609 if (cu->language == language_ada)
12610 error (_("unexpected member function in Ada type"));
12611
12612 /* Get name of member function. */
12613 fieldname = dwarf2_name (die, cu);
12614 if (fieldname == NULL)
12615 return;
12616
12617 /* Look up member function name in fieldlist. */
12618 for (i = 0; i < fip->nfnfields; i++)
12619 {
12620 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12621 break;
12622 }
12623
12624 /* Create new list element if necessary. */
12625 if (i < fip->nfnfields)
12626 flp = &fip->fnfieldlists[i];
12627 else
12628 {
12629 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12630 {
12631 fip->fnfieldlists = (struct fnfieldlist *)
12632 xrealloc (fip->fnfieldlists,
12633 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12634 * sizeof (struct fnfieldlist));
12635 if (fip->nfnfields == 0)
12636 make_cleanup (free_current_contents, &fip->fnfieldlists);
12637 }
12638 flp = &fip->fnfieldlists[fip->nfnfields];
12639 flp->name = fieldname;
12640 flp->length = 0;
12641 flp->head = NULL;
12642 i = fip->nfnfields++;
12643 }
12644
12645 /* Create a new member function field and chain it to the field list
12646 entry. */
12647 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12648 make_cleanup (xfree, new_fnfield);
12649 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12650 new_fnfield->next = flp->head;
12651 flp->head = new_fnfield;
12652 flp->length++;
12653
12654 /* Fill in the member function field info. */
12655 fnp = &new_fnfield->fnfield;
12656
12657 /* Delay processing of the physname until later. */
12658 if (cu->language == language_cplus || cu->language == language_java)
12659 {
12660 add_to_method_list (type, i, flp->length - 1, fieldname,
12661 die, cu);
12662 }
12663 else
12664 {
12665 const char *physname = dwarf2_physname (fieldname, die, cu);
12666 fnp->physname = physname ? physname : "";
12667 }
12668
12669 fnp->type = alloc_type (objfile);
12670 this_type = read_type_die (die, cu);
12671 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12672 {
12673 int nparams = TYPE_NFIELDS (this_type);
12674
12675 /* TYPE is the domain of this method, and THIS_TYPE is the type
12676 of the method itself (TYPE_CODE_METHOD). */
12677 smash_to_method_type (fnp->type, type,
12678 TYPE_TARGET_TYPE (this_type),
12679 TYPE_FIELDS (this_type),
12680 TYPE_NFIELDS (this_type),
12681 TYPE_VARARGS (this_type));
12682
12683 /* Handle static member functions.
12684 Dwarf2 has no clean way to discern C++ static and non-static
12685 member functions. G++ helps GDB by marking the first
12686 parameter for non-static member functions (which is the this
12687 pointer) as artificial. We obtain this information from
12688 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12689 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12690 fnp->voffset = VOFFSET_STATIC;
12691 }
12692 else
12693 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12694 dwarf2_full_name (fieldname, die, cu));
12695
12696 /* Get fcontext from DW_AT_containing_type if present. */
12697 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12698 fnp->fcontext = die_containing_type (die, cu);
12699
12700 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12701 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12702
12703 /* Get accessibility. */
12704 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12705 if (attr)
12706 accessibility = DW_UNSND (attr);
12707 else
12708 accessibility = dwarf2_default_access_attribute (die, cu);
12709 switch (accessibility)
12710 {
12711 case DW_ACCESS_private:
12712 fnp->is_private = 1;
12713 break;
12714 case DW_ACCESS_protected:
12715 fnp->is_protected = 1;
12716 break;
12717 }
12718
12719 /* Check for artificial methods. */
12720 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12721 if (attr && DW_UNSND (attr) != 0)
12722 fnp->is_artificial = 1;
12723
12724 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12725
12726 /* Get index in virtual function table if it is a virtual member
12727 function. For older versions of GCC, this is an offset in the
12728 appropriate virtual table, as specified by DW_AT_containing_type.
12729 For everyone else, it is an expression to be evaluated relative
12730 to the object address. */
12731
12732 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12733 if (attr)
12734 {
12735 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12736 {
12737 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12738 {
12739 /* Old-style GCC. */
12740 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12741 }
12742 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12743 || (DW_BLOCK (attr)->size > 1
12744 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12745 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12746 {
12747 struct dwarf_block blk;
12748 int offset;
12749
12750 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12751 ? 1 : 2);
12752 blk.size = DW_BLOCK (attr)->size - offset;
12753 blk.data = DW_BLOCK (attr)->data + offset;
12754 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12755 if ((fnp->voffset % cu->header.addr_size) != 0)
12756 dwarf2_complex_location_expr_complaint ();
12757 else
12758 fnp->voffset /= cu->header.addr_size;
12759 fnp->voffset += 2;
12760 }
12761 else
12762 dwarf2_complex_location_expr_complaint ();
12763
12764 if (!fnp->fcontext)
12765 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12766 }
12767 else if (attr_form_is_section_offset (attr))
12768 {
12769 dwarf2_complex_location_expr_complaint ();
12770 }
12771 else
12772 {
12773 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12774 fieldname);
12775 }
12776 }
12777 else
12778 {
12779 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12780 if (attr && DW_UNSND (attr))
12781 {
12782 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12783 complaint (&symfile_complaints,
12784 _("Member function \"%s\" (offset %d) is virtual "
12785 "but the vtable offset is not specified"),
12786 fieldname, die->offset.sect_off);
12787 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12788 TYPE_CPLUS_DYNAMIC (type) = 1;
12789 }
12790 }
12791 }
12792
12793 /* Create the vector of member function fields, and attach it to the type. */
12794
12795 static void
12796 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12797 struct dwarf2_cu *cu)
12798 {
12799 struct fnfieldlist *flp;
12800 int i;
12801
12802 if (cu->language == language_ada)
12803 error (_("unexpected member functions in Ada type"));
12804
12805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12806 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12807 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12808
12809 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12810 {
12811 struct nextfnfield *nfp = flp->head;
12812 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12813 int k;
12814
12815 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12816 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12817 fn_flp->fn_fields = (struct fn_field *)
12818 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12819 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12820 fn_flp->fn_fields[k] = nfp->fnfield;
12821 }
12822
12823 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12824 }
12825
12826 /* Returns non-zero if NAME is the name of a vtable member in CU's
12827 language, zero otherwise. */
12828 static int
12829 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12830 {
12831 static const char vptr[] = "_vptr";
12832 static const char vtable[] = "vtable";
12833
12834 /* Look for the C++ and Java forms of the vtable. */
12835 if ((cu->language == language_java
12836 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12837 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12838 && is_cplus_marker (name[sizeof (vptr) - 1])))
12839 return 1;
12840
12841 return 0;
12842 }
12843
12844 /* GCC outputs unnamed structures that are really pointers to member
12845 functions, with the ABI-specified layout. If TYPE describes
12846 such a structure, smash it into a member function type.
12847
12848 GCC shouldn't do this; it should just output pointer to member DIEs.
12849 This is GCC PR debug/28767. */
12850
12851 static void
12852 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12853 {
12854 struct type *pfn_type, *domain_type, *new_type;
12855
12856 /* Check for a structure with no name and two children. */
12857 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12858 return;
12859
12860 /* Check for __pfn and __delta members. */
12861 if (TYPE_FIELD_NAME (type, 0) == NULL
12862 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12863 || TYPE_FIELD_NAME (type, 1) == NULL
12864 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12865 return;
12866
12867 /* Find the type of the method. */
12868 pfn_type = TYPE_FIELD_TYPE (type, 0);
12869 if (pfn_type == NULL
12870 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12871 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12872 return;
12873
12874 /* Look for the "this" argument. */
12875 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12876 if (TYPE_NFIELDS (pfn_type) == 0
12877 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12878 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12879 return;
12880
12881 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12882 new_type = alloc_type (objfile);
12883 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12884 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12885 TYPE_VARARGS (pfn_type));
12886 smash_to_methodptr_type (type, new_type);
12887 }
12888
12889 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12890 (icc). */
12891
12892 static int
12893 producer_is_icc (struct dwarf2_cu *cu)
12894 {
12895 if (!cu->checked_producer)
12896 check_producer (cu);
12897
12898 return cu->producer_is_icc;
12899 }
12900
12901 /* Called when we find the DIE that starts a structure or union scope
12902 (definition) to create a type for the structure or union. Fill in
12903 the type's name and general properties; the members will not be
12904 processed until process_structure_scope. A symbol table entry for
12905 the type will also not be done until process_structure_scope (assuming
12906 the type has a name).
12907
12908 NOTE: we need to call these functions regardless of whether or not the
12909 DIE has a DW_AT_name attribute, since it might be an anonymous
12910 structure or union. This gets the type entered into our set of
12911 user defined types. */
12912
12913 static struct type *
12914 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12915 {
12916 struct objfile *objfile = cu->objfile;
12917 struct type *type;
12918 struct attribute *attr;
12919 const char *name;
12920
12921 /* If the definition of this type lives in .debug_types, read that type.
12922 Don't follow DW_AT_specification though, that will take us back up
12923 the chain and we want to go down. */
12924 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12925 if (attr)
12926 {
12927 type = get_DW_AT_signature_type (die, attr, cu);
12928
12929 /* The type's CU may not be the same as CU.
12930 Ensure TYPE is recorded with CU in die_type_hash. */
12931 return set_die_type (die, type, cu);
12932 }
12933
12934 type = alloc_type (objfile);
12935 INIT_CPLUS_SPECIFIC (type);
12936
12937 name = dwarf2_name (die, cu);
12938 if (name != NULL)
12939 {
12940 if (cu->language == language_cplus
12941 || cu->language == language_java)
12942 {
12943 const char *full_name = dwarf2_full_name (name, die, cu);
12944
12945 /* dwarf2_full_name might have already finished building the DIE's
12946 type. If so, there is no need to continue. */
12947 if (get_die_type (die, cu) != NULL)
12948 return get_die_type (die, cu);
12949
12950 TYPE_TAG_NAME (type) = full_name;
12951 if (die->tag == DW_TAG_structure_type
12952 || die->tag == DW_TAG_class_type)
12953 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12954 }
12955 else
12956 {
12957 /* The name is already allocated along with this objfile, so
12958 we don't need to duplicate it for the type. */
12959 TYPE_TAG_NAME (type) = name;
12960 if (die->tag == DW_TAG_class_type)
12961 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12962 }
12963 }
12964
12965 if (die->tag == DW_TAG_structure_type)
12966 {
12967 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12968 }
12969 else if (die->tag == DW_TAG_union_type)
12970 {
12971 TYPE_CODE (type) = TYPE_CODE_UNION;
12972 }
12973 else
12974 {
12975 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12976 }
12977
12978 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12979 TYPE_DECLARED_CLASS (type) = 1;
12980
12981 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12982 if (attr)
12983 {
12984 TYPE_LENGTH (type) = DW_UNSND (attr);
12985 }
12986 else
12987 {
12988 TYPE_LENGTH (type) = 0;
12989 }
12990
12991 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12992 {
12993 /* ICC does not output the required DW_AT_declaration
12994 on incomplete types, but gives them a size of zero. */
12995 TYPE_STUB (type) = 1;
12996 }
12997 else
12998 TYPE_STUB_SUPPORTED (type) = 1;
12999
13000 if (die_is_declaration (die, cu))
13001 TYPE_STUB (type) = 1;
13002 else if (attr == NULL && die->child == NULL
13003 && producer_is_realview (cu->producer))
13004 /* RealView does not output the required DW_AT_declaration
13005 on incomplete types. */
13006 TYPE_STUB (type) = 1;
13007
13008 /* We need to add the type field to the die immediately so we don't
13009 infinitely recurse when dealing with pointers to the structure
13010 type within the structure itself. */
13011 set_die_type (die, type, cu);
13012
13013 /* set_die_type should be already done. */
13014 set_descriptive_type (type, die, cu);
13015
13016 return type;
13017 }
13018
13019 /* Finish creating a structure or union type, including filling in
13020 its members and creating a symbol for it. */
13021
13022 static void
13023 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13024 {
13025 struct objfile *objfile = cu->objfile;
13026 struct die_info *child_die;
13027 struct type *type;
13028
13029 type = get_die_type (die, cu);
13030 if (type == NULL)
13031 type = read_structure_type (die, cu);
13032
13033 if (die->child != NULL && ! die_is_declaration (die, cu))
13034 {
13035 struct field_info fi;
13036 VEC (symbolp) *template_args = NULL;
13037 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13038
13039 memset (&fi, 0, sizeof (struct field_info));
13040
13041 child_die = die->child;
13042
13043 while (child_die && child_die->tag)
13044 {
13045 if (child_die->tag == DW_TAG_member
13046 || child_die->tag == DW_TAG_variable)
13047 {
13048 /* NOTE: carlton/2002-11-05: A C++ static data member
13049 should be a DW_TAG_member that is a declaration, but
13050 all versions of G++ as of this writing (so through at
13051 least 3.2.1) incorrectly generate DW_TAG_variable
13052 tags for them instead. */
13053 dwarf2_add_field (&fi, child_die, cu);
13054 }
13055 else if (child_die->tag == DW_TAG_subprogram)
13056 {
13057 /* C++ member function. */
13058 dwarf2_add_member_fn (&fi, child_die, type, cu);
13059 }
13060 else if (child_die->tag == DW_TAG_inheritance)
13061 {
13062 /* C++ base class field. */
13063 dwarf2_add_field (&fi, child_die, cu);
13064 }
13065 else if (child_die->tag == DW_TAG_typedef)
13066 dwarf2_add_typedef (&fi, child_die, cu);
13067 else if (child_die->tag == DW_TAG_template_type_param
13068 || child_die->tag == DW_TAG_template_value_param)
13069 {
13070 struct symbol *arg = new_symbol (child_die, NULL, cu);
13071
13072 if (arg != NULL)
13073 VEC_safe_push (symbolp, template_args, arg);
13074 }
13075
13076 child_die = sibling_die (child_die);
13077 }
13078
13079 /* Attach template arguments to type. */
13080 if (! VEC_empty (symbolp, template_args))
13081 {
13082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13083 TYPE_N_TEMPLATE_ARGUMENTS (type)
13084 = VEC_length (symbolp, template_args);
13085 TYPE_TEMPLATE_ARGUMENTS (type)
13086 = obstack_alloc (&objfile->objfile_obstack,
13087 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13088 * sizeof (struct symbol *)));
13089 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13090 VEC_address (symbolp, template_args),
13091 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13092 * sizeof (struct symbol *)));
13093 VEC_free (symbolp, template_args);
13094 }
13095
13096 /* Attach fields and member functions to the type. */
13097 if (fi.nfields)
13098 dwarf2_attach_fields_to_type (&fi, type, cu);
13099 if (fi.nfnfields)
13100 {
13101 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13102
13103 /* Get the type which refers to the base class (possibly this
13104 class itself) which contains the vtable pointer for the current
13105 class from the DW_AT_containing_type attribute. This use of
13106 DW_AT_containing_type is a GNU extension. */
13107
13108 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13109 {
13110 struct type *t = die_containing_type (die, cu);
13111
13112 TYPE_VPTR_BASETYPE (type) = t;
13113 if (type == t)
13114 {
13115 int i;
13116
13117 /* Our own class provides vtbl ptr. */
13118 for (i = TYPE_NFIELDS (t) - 1;
13119 i >= TYPE_N_BASECLASSES (t);
13120 --i)
13121 {
13122 const char *fieldname = TYPE_FIELD_NAME (t, i);
13123
13124 if (is_vtable_name (fieldname, cu))
13125 {
13126 TYPE_VPTR_FIELDNO (type) = i;
13127 break;
13128 }
13129 }
13130
13131 /* Complain if virtual function table field not found. */
13132 if (i < TYPE_N_BASECLASSES (t))
13133 complaint (&symfile_complaints,
13134 _("virtual function table pointer "
13135 "not found when defining class '%s'"),
13136 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13137 "");
13138 }
13139 else
13140 {
13141 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13142 }
13143 }
13144 else if (cu->producer
13145 && strncmp (cu->producer,
13146 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13147 {
13148 /* The IBM XLC compiler does not provide direct indication
13149 of the containing type, but the vtable pointer is
13150 always named __vfp. */
13151
13152 int i;
13153
13154 for (i = TYPE_NFIELDS (type) - 1;
13155 i >= TYPE_N_BASECLASSES (type);
13156 --i)
13157 {
13158 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13159 {
13160 TYPE_VPTR_FIELDNO (type) = i;
13161 TYPE_VPTR_BASETYPE (type) = type;
13162 break;
13163 }
13164 }
13165 }
13166 }
13167
13168 /* Copy fi.typedef_field_list linked list elements content into the
13169 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13170 if (fi.typedef_field_list)
13171 {
13172 int i = fi.typedef_field_list_count;
13173
13174 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13175 TYPE_TYPEDEF_FIELD_ARRAY (type)
13176 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13177 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13178
13179 /* Reverse the list order to keep the debug info elements order. */
13180 while (--i >= 0)
13181 {
13182 struct typedef_field *dest, *src;
13183
13184 dest = &TYPE_TYPEDEF_FIELD (type, i);
13185 src = &fi.typedef_field_list->field;
13186 fi.typedef_field_list = fi.typedef_field_list->next;
13187 *dest = *src;
13188 }
13189 }
13190
13191 do_cleanups (back_to);
13192
13193 if (HAVE_CPLUS_STRUCT (type))
13194 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13195 }
13196
13197 quirk_gcc_member_function_pointer (type, objfile);
13198
13199 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13200 snapshots) has been known to create a die giving a declaration
13201 for a class that has, as a child, a die giving a definition for a
13202 nested class. So we have to process our children even if the
13203 current die is a declaration. Normally, of course, a declaration
13204 won't have any children at all. */
13205
13206 child_die = die->child;
13207
13208 while (child_die != NULL && child_die->tag)
13209 {
13210 if (child_die->tag == DW_TAG_member
13211 || child_die->tag == DW_TAG_variable
13212 || child_die->tag == DW_TAG_inheritance
13213 || child_die->tag == DW_TAG_template_value_param
13214 || child_die->tag == DW_TAG_template_type_param)
13215 {
13216 /* Do nothing. */
13217 }
13218 else
13219 process_die (child_die, cu);
13220
13221 child_die = sibling_die (child_die);
13222 }
13223
13224 /* Do not consider external references. According to the DWARF standard,
13225 these DIEs are identified by the fact that they have no byte_size
13226 attribute, and a declaration attribute. */
13227 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13228 || !die_is_declaration (die, cu))
13229 new_symbol (die, type, cu);
13230 }
13231
13232 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13233 update TYPE using some information only available in DIE's children. */
13234
13235 static void
13236 update_enumeration_type_from_children (struct die_info *die,
13237 struct type *type,
13238 struct dwarf2_cu *cu)
13239 {
13240 struct obstack obstack;
13241 struct die_info *child_die;
13242 int unsigned_enum = 1;
13243 int flag_enum = 1;
13244 ULONGEST mask = 0;
13245 struct cleanup *old_chain;
13246
13247 obstack_init (&obstack);
13248 old_chain = make_cleanup_obstack_free (&obstack);
13249
13250 for (child_die = die->child;
13251 child_die != NULL && child_die->tag;
13252 child_die = sibling_die (child_die))
13253 {
13254 struct attribute *attr;
13255 LONGEST value;
13256 const gdb_byte *bytes;
13257 struct dwarf2_locexpr_baton *baton;
13258 const char *name;
13259
13260 if (child_die->tag != DW_TAG_enumerator)
13261 continue;
13262
13263 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13264 if (attr == NULL)
13265 continue;
13266
13267 name = dwarf2_name (child_die, cu);
13268 if (name == NULL)
13269 name = "<anonymous enumerator>";
13270
13271 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13272 &value, &bytes, &baton);
13273 if (value < 0)
13274 {
13275 unsigned_enum = 0;
13276 flag_enum = 0;
13277 }
13278 else if ((mask & value) != 0)
13279 flag_enum = 0;
13280 else
13281 mask |= value;
13282
13283 /* If we already know that the enum type is neither unsigned, nor
13284 a flag type, no need to look at the rest of the enumerates. */
13285 if (!unsigned_enum && !flag_enum)
13286 break;
13287 }
13288
13289 if (unsigned_enum)
13290 TYPE_UNSIGNED (type) = 1;
13291 if (flag_enum)
13292 TYPE_FLAG_ENUM (type) = 1;
13293
13294 do_cleanups (old_chain);
13295 }
13296
13297 /* Given a DW_AT_enumeration_type die, set its type. We do not
13298 complete the type's fields yet, or create any symbols. */
13299
13300 static struct type *
13301 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13302 {
13303 struct objfile *objfile = cu->objfile;
13304 struct type *type;
13305 struct attribute *attr;
13306 const char *name;
13307
13308 /* If the definition of this type lives in .debug_types, read that type.
13309 Don't follow DW_AT_specification though, that will take us back up
13310 the chain and we want to go down. */
13311 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13312 if (attr)
13313 {
13314 type = get_DW_AT_signature_type (die, attr, cu);
13315
13316 /* The type's CU may not be the same as CU.
13317 Ensure TYPE is recorded with CU in die_type_hash. */
13318 return set_die_type (die, type, cu);
13319 }
13320
13321 type = alloc_type (objfile);
13322
13323 TYPE_CODE (type) = TYPE_CODE_ENUM;
13324 name = dwarf2_full_name (NULL, die, cu);
13325 if (name != NULL)
13326 TYPE_TAG_NAME (type) = name;
13327
13328 attr = dwarf2_attr (die, DW_AT_type, cu);
13329 if (attr != NULL)
13330 {
13331 struct type *underlying_type = die_type (die, cu);
13332
13333 TYPE_TARGET_TYPE (type) = underlying_type;
13334 }
13335
13336 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13337 if (attr)
13338 {
13339 TYPE_LENGTH (type) = DW_UNSND (attr);
13340 }
13341 else
13342 {
13343 TYPE_LENGTH (type) = 0;
13344 }
13345
13346 /* The enumeration DIE can be incomplete. In Ada, any type can be
13347 declared as private in the package spec, and then defined only
13348 inside the package body. Such types are known as Taft Amendment
13349 Types. When another package uses such a type, an incomplete DIE
13350 may be generated by the compiler. */
13351 if (die_is_declaration (die, cu))
13352 TYPE_STUB (type) = 1;
13353
13354 /* Finish the creation of this type by using the enum's children.
13355 We must call this even when the underlying type has been provided
13356 so that we can determine if we're looking at a "flag" enum. */
13357 update_enumeration_type_from_children (die, type, cu);
13358
13359 /* If this type has an underlying type that is not a stub, then we
13360 may use its attributes. We always use the "unsigned" attribute
13361 in this situation, because ordinarily we guess whether the type
13362 is unsigned -- but the guess can be wrong and the underlying type
13363 can tell us the reality. However, we defer to a local size
13364 attribute if one exists, because this lets the compiler override
13365 the underlying type if needed. */
13366 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13367 {
13368 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13369 if (TYPE_LENGTH (type) == 0)
13370 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13371 }
13372
13373 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13374
13375 return set_die_type (die, type, cu);
13376 }
13377
13378 /* Given a pointer to a die which begins an enumeration, process all
13379 the dies that define the members of the enumeration, and create the
13380 symbol for the enumeration type.
13381
13382 NOTE: We reverse the order of the element list. */
13383
13384 static void
13385 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13386 {
13387 struct type *this_type;
13388
13389 this_type = get_die_type (die, cu);
13390 if (this_type == NULL)
13391 this_type = read_enumeration_type (die, cu);
13392
13393 if (die->child != NULL)
13394 {
13395 struct die_info *child_die;
13396 struct symbol *sym;
13397 struct field *fields = NULL;
13398 int num_fields = 0;
13399 const char *name;
13400
13401 child_die = die->child;
13402 while (child_die && child_die->tag)
13403 {
13404 if (child_die->tag != DW_TAG_enumerator)
13405 {
13406 process_die (child_die, cu);
13407 }
13408 else
13409 {
13410 name = dwarf2_name (child_die, cu);
13411 if (name)
13412 {
13413 sym = new_symbol (child_die, this_type, cu);
13414
13415 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13416 {
13417 fields = (struct field *)
13418 xrealloc (fields,
13419 (num_fields + DW_FIELD_ALLOC_CHUNK)
13420 * sizeof (struct field));
13421 }
13422
13423 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13424 FIELD_TYPE (fields[num_fields]) = NULL;
13425 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13426 FIELD_BITSIZE (fields[num_fields]) = 0;
13427
13428 num_fields++;
13429 }
13430 }
13431
13432 child_die = sibling_die (child_die);
13433 }
13434
13435 if (num_fields)
13436 {
13437 TYPE_NFIELDS (this_type) = num_fields;
13438 TYPE_FIELDS (this_type) = (struct field *)
13439 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13440 memcpy (TYPE_FIELDS (this_type), fields,
13441 sizeof (struct field) * num_fields);
13442 xfree (fields);
13443 }
13444 }
13445
13446 /* If we are reading an enum from a .debug_types unit, and the enum
13447 is a declaration, and the enum is not the signatured type in the
13448 unit, then we do not want to add a symbol for it. Adding a
13449 symbol would in some cases obscure the true definition of the
13450 enum, giving users an incomplete type when the definition is
13451 actually available. Note that we do not want to do this for all
13452 enums which are just declarations, because C++0x allows forward
13453 enum declarations. */
13454 if (cu->per_cu->is_debug_types
13455 && die_is_declaration (die, cu))
13456 {
13457 struct signatured_type *sig_type;
13458
13459 sig_type = (struct signatured_type *) cu->per_cu;
13460 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13461 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13462 return;
13463 }
13464
13465 new_symbol (die, this_type, cu);
13466 }
13467
13468 /* Extract all information from a DW_TAG_array_type DIE and put it in
13469 the DIE's type field. For now, this only handles one dimensional
13470 arrays. */
13471
13472 static struct type *
13473 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13474 {
13475 struct objfile *objfile = cu->objfile;
13476 struct die_info *child_die;
13477 struct type *type;
13478 struct type *element_type, *range_type, *index_type;
13479 struct type **range_types = NULL;
13480 struct attribute *attr;
13481 int ndim = 0;
13482 struct cleanup *back_to;
13483 const char *name;
13484 unsigned int bit_stride = 0;
13485
13486 element_type = die_type (die, cu);
13487
13488 /* The die_type call above may have already set the type for this DIE. */
13489 type = get_die_type (die, cu);
13490 if (type)
13491 return type;
13492
13493 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13494 if (attr != NULL)
13495 bit_stride = DW_UNSND (attr) * 8;
13496
13497 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13498 if (attr != NULL)
13499 bit_stride = DW_UNSND (attr);
13500
13501 /* Irix 6.2 native cc creates array types without children for
13502 arrays with unspecified length. */
13503 if (die->child == NULL)
13504 {
13505 index_type = objfile_type (objfile)->builtin_int;
13506 range_type = create_static_range_type (NULL, index_type, 0, -1);
13507 type = create_array_type_with_stride (NULL, element_type, range_type,
13508 bit_stride);
13509 return set_die_type (die, type, cu);
13510 }
13511
13512 back_to = make_cleanup (null_cleanup, NULL);
13513 child_die = die->child;
13514 while (child_die && child_die->tag)
13515 {
13516 if (child_die->tag == DW_TAG_subrange_type)
13517 {
13518 struct type *child_type = read_type_die (child_die, cu);
13519
13520 if (child_type != NULL)
13521 {
13522 /* The range type was succesfully read. Save it for the
13523 array type creation. */
13524 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13525 {
13526 range_types = (struct type **)
13527 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13528 * sizeof (struct type *));
13529 if (ndim == 0)
13530 make_cleanup (free_current_contents, &range_types);
13531 }
13532 range_types[ndim++] = child_type;
13533 }
13534 }
13535 child_die = sibling_die (child_die);
13536 }
13537
13538 /* Dwarf2 dimensions are output from left to right, create the
13539 necessary array types in backwards order. */
13540
13541 type = element_type;
13542
13543 if (read_array_order (die, cu) == DW_ORD_col_major)
13544 {
13545 int i = 0;
13546
13547 while (i < ndim)
13548 type = create_array_type_with_stride (NULL, type, range_types[i++],
13549 bit_stride);
13550 }
13551 else
13552 {
13553 while (ndim-- > 0)
13554 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13555 bit_stride);
13556 }
13557
13558 /* Understand Dwarf2 support for vector types (like they occur on
13559 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13560 array type. This is not part of the Dwarf2/3 standard yet, but a
13561 custom vendor extension. The main difference between a regular
13562 array and the vector variant is that vectors are passed by value
13563 to functions. */
13564 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13565 if (attr)
13566 make_vector_type (type);
13567
13568 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13569 implementation may choose to implement triple vectors using this
13570 attribute. */
13571 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13572 if (attr)
13573 {
13574 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13575 TYPE_LENGTH (type) = DW_UNSND (attr);
13576 else
13577 complaint (&symfile_complaints,
13578 _("DW_AT_byte_size for array type smaller "
13579 "than the total size of elements"));
13580 }
13581
13582 name = dwarf2_name (die, cu);
13583 if (name)
13584 TYPE_NAME (type) = name;
13585
13586 /* Install the type in the die. */
13587 set_die_type (die, type, cu);
13588
13589 /* set_die_type should be already done. */
13590 set_descriptive_type (type, die, cu);
13591
13592 do_cleanups (back_to);
13593
13594 return type;
13595 }
13596
13597 static enum dwarf_array_dim_ordering
13598 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13599 {
13600 struct attribute *attr;
13601
13602 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13603
13604 if (attr) return DW_SND (attr);
13605
13606 /* GNU F77 is a special case, as at 08/2004 array type info is the
13607 opposite order to the dwarf2 specification, but data is still
13608 laid out as per normal fortran.
13609
13610 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13611 version checking. */
13612
13613 if (cu->language == language_fortran
13614 && cu->producer && strstr (cu->producer, "GNU F77"))
13615 {
13616 return DW_ORD_row_major;
13617 }
13618
13619 switch (cu->language_defn->la_array_ordering)
13620 {
13621 case array_column_major:
13622 return DW_ORD_col_major;
13623 case array_row_major:
13624 default:
13625 return DW_ORD_row_major;
13626 };
13627 }
13628
13629 /* Extract all information from a DW_TAG_set_type DIE and put it in
13630 the DIE's type field. */
13631
13632 static struct type *
13633 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13634 {
13635 struct type *domain_type, *set_type;
13636 struct attribute *attr;
13637
13638 domain_type = die_type (die, cu);
13639
13640 /* The die_type call above may have already set the type for this DIE. */
13641 set_type = get_die_type (die, cu);
13642 if (set_type)
13643 return set_type;
13644
13645 set_type = create_set_type (NULL, domain_type);
13646
13647 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13648 if (attr)
13649 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13650
13651 return set_die_type (die, set_type, cu);
13652 }
13653
13654 /* A helper for read_common_block that creates a locexpr baton.
13655 SYM is the symbol which we are marking as computed.
13656 COMMON_DIE is the DIE for the common block.
13657 COMMON_LOC is the location expression attribute for the common
13658 block itself.
13659 MEMBER_LOC is the location expression attribute for the particular
13660 member of the common block that we are processing.
13661 CU is the CU from which the above come. */
13662
13663 static void
13664 mark_common_block_symbol_computed (struct symbol *sym,
13665 struct die_info *common_die,
13666 struct attribute *common_loc,
13667 struct attribute *member_loc,
13668 struct dwarf2_cu *cu)
13669 {
13670 struct objfile *objfile = dwarf2_per_objfile->objfile;
13671 struct dwarf2_locexpr_baton *baton;
13672 gdb_byte *ptr;
13673 unsigned int cu_off;
13674 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13675 LONGEST offset = 0;
13676
13677 gdb_assert (common_loc && member_loc);
13678 gdb_assert (attr_form_is_block (common_loc));
13679 gdb_assert (attr_form_is_block (member_loc)
13680 || attr_form_is_constant (member_loc));
13681
13682 baton = obstack_alloc (&objfile->objfile_obstack,
13683 sizeof (struct dwarf2_locexpr_baton));
13684 baton->per_cu = cu->per_cu;
13685 gdb_assert (baton->per_cu);
13686
13687 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13688
13689 if (attr_form_is_constant (member_loc))
13690 {
13691 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13692 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13693 }
13694 else
13695 baton->size += DW_BLOCK (member_loc)->size;
13696
13697 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13698 baton->data = ptr;
13699
13700 *ptr++ = DW_OP_call4;
13701 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13702 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13703 ptr += 4;
13704
13705 if (attr_form_is_constant (member_loc))
13706 {
13707 *ptr++ = DW_OP_addr;
13708 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13709 ptr += cu->header.addr_size;
13710 }
13711 else
13712 {
13713 /* We have to copy the data here, because DW_OP_call4 will only
13714 use a DW_AT_location attribute. */
13715 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13716 ptr += DW_BLOCK (member_loc)->size;
13717 }
13718
13719 *ptr++ = DW_OP_plus;
13720 gdb_assert (ptr - baton->data == baton->size);
13721
13722 SYMBOL_LOCATION_BATON (sym) = baton;
13723 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13724 }
13725
13726 /* Create appropriate locally-scoped variables for all the
13727 DW_TAG_common_block entries. Also create a struct common_block
13728 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13729 is used to sepate the common blocks name namespace from regular
13730 variable names. */
13731
13732 static void
13733 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13734 {
13735 struct attribute *attr;
13736
13737 attr = dwarf2_attr (die, DW_AT_location, cu);
13738 if (attr)
13739 {
13740 /* Support the .debug_loc offsets. */
13741 if (attr_form_is_block (attr))
13742 {
13743 /* Ok. */
13744 }
13745 else if (attr_form_is_section_offset (attr))
13746 {
13747 dwarf2_complex_location_expr_complaint ();
13748 attr = NULL;
13749 }
13750 else
13751 {
13752 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13753 "common block member");
13754 attr = NULL;
13755 }
13756 }
13757
13758 if (die->child != NULL)
13759 {
13760 struct objfile *objfile = cu->objfile;
13761 struct die_info *child_die;
13762 size_t n_entries = 0, size;
13763 struct common_block *common_block;
13764 struct symbol *sym;
13765
13766 for (child_die = die->child;
13767 child_die && child_die->tag;
13768 child_die = sibling_die (child_die))
13769 ++n_entries;
13770
13771 size = (sizeof (struct common_block)
13772 + (n_entries - 1) * sizeof (struct symbol *));
13773 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13774 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13775 common_block->n_entries = 0;
13776
13777 for (child_die = die->child;
13778 child_die && child_die->tag;
13779 child_die = sibling_die (child_die))
13780 {
13781 /* Create the symbol in the DW_TAG_common_block block in the current
13782 symbol scope. */
13783 sym = new_symbol (child_die, NULL, cu);
13784 if (sym != NULL)
13785 {
13786 struct attribute *member_loc;
13787
13788 common_block->contents[common_block->n_entries++] = sym;
13789
13790 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13791 cu);
13792 if (member_loc)
13793 {
13794 /* GDB has handled this for a long time, but it is
13795 not specified by DWARF. It seems to have been
13796 emitted by gfortran at least as recently as:
13797 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13798 complaint (&symfile_complaints,
13799 _("Variable in common block has "
13800 "DW_AT_data_member_location "
13801 "- DIE at 0x%x [in module %s]"),
13802 child_die->offset.sect_off,
13803 objfile_name (cu->objfile));
13804
13805 if (attr_form_is_section_offset (member_loc))
13806 dwarf2_complex_location_expr_complaint ();
13807 else if (attr_form_is_constant (member_loc)
13808 || attr_form_is_block (member_loc))
13809 {
13810 if (attr)
13811 mark_common_block_symbol_computed (sym, die, attr,
13812 member_loc, cu);
13813 }
13814 else
13815 dwarf2_complex_location_expr_complaint ();
13816 }
13817 }
13818 }
13819
13820 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13821 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13822 }
13823 }
13824
13825 /* Create a type for a C++ namespace. */
13826
13827 static struct type *
13828 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13829 {
13830 struct objfile *objfile = cu->objfile;
13831 const char *previous_prefix, *name;
13832 int is_anonymous;
13833 struct type *type;
13834
13835 /* For extensions, reuse the type of the original namespace. */
13836 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13837 {
13838 struct die_info *ext_die;
13839 struct dwarf2_cu *ext_cu = cu;
13840
13841 ext_die = dwarf2_extension (die, &ext_cu);
13842 type = read_type_die (ext_die, ext_cu);
13843
13844 /* EXT_CU may not be the same as CU.
13845 Ensure TYPE is recorded with CU in die_type_hash. */
13846 return set_die_type (die, type, cu);
13847 }
13848
13849 name = namespace_name (die, &is_anonymous, cu);
13850
13851 /* Now build the name of the current namespace. */
13852
13853 previous_prefix = determine_prefix (die, cu);
13854 if (previous_prefix[0] != '\0')
13855 name = typename_concat (&objfile->objfile_obstack,
13856 previous_prefix, name, 0, cu);
13857
13858 /* Create the type. */
13859 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13860 objfile);
13861 TYPE_NAME (type) = name;
13862 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13863
13864 return set_die_type (die, type, cu);
13865 }
13866
13867 /* Read a C++ namespace. */
13868
13869 static void
13870 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13871 {
13872 struct objfile *objfile = cu->objfile;
13873 int is_anonymous;
13874
13875 /* Add a symbol associated to this if we haven't seen the namespace
13876 before. Also, add a using directive if it's an anonymous
13877 namespace. */
13878
13879 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13880 {
13881 struct type *type;
13882
13883 type = read_type_die (die, cu);
13884 new_symbol (die, type, cu);
13885
13886 namespace_name (die, &is_anonymous, cu);
13887 if (is_anonymous)
13888 {
13889 const char *previous_prefix = determine_prefix (die, cu);
13890
13891 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13892 NULL, NULL, 0, &objfile->objfile_obstack);
13893 }
13894 }
13895
13896 if (die->child != NULL)
13897 {
13898 struct die_info *child_die = die->child;
13899
13900 while (child_die && child_die->tag)
13901 {
13902 process_die (child_die, cu);
13903 child_die = sibling_die (child_die);
13904 }
13905 }
13906 }
13907
13908 /* Read a Fortran module as type. This DIE can be only a declaration used for
13909 imported module. Still we need that type as local Fortran "use ... only"
13910 declaration imports depend on the created type in determine_prefix. */
13911
13912 static struct type *
13913 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13914 {
13915 struct objfile *objfile = cu->objfile;
13916 const char *module_name;
13917 struct type *type;
13918
13919 module_name = dwarf2_name (die, cu);
13920 if (!module_name)
13921 complaint (&symfile_complaints,
13922 _("DW_TAG_module has no name, offset 0x%x"),
13923 die->offset.sect_off);
13924 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13925
13926 /* determine_prefix uses TYPE_TAG_NAME. */
13927 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13928
13929 return set_die_type (die, type, cu);
13930 }
13931
13932 /* Read a Fortran module. */
13933
13934 static void
13935 read_module (struct die_info *die, struct dwarf2_cu *cu)
13936 {
13937 struct die_info *child_die = die->child;
13938 struct type *type;
13939
13940 type = read_type_die (die, cu);
13941 new_symbol (die, type, cu);
13942
13943 while (child_die && child_die->tag)
13944 {
13945 process_die (child_die, cu);
13946 child_die = sibling_die (child_die);
13947 }
13948 }
13949
13950 /* Return the name of the namespace represented by DIE. Set
13951 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13952 namespace. */
13953
13954 static const char *
13955 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13956 {
13957 struct die_info *current_die;
13958 const char *name = NULL;
13959
13960 /* Loop through the extensions until we find a name. */
13961
13962 for (current_die = die;
13963 current_die != NULL;
13964 current_die = dwarf2_extension (die, &cu))
13965 {
13966 name = dwarf2_name (current_die, cu);
13967 if (name != NULL)
13968 break;
13969 }
13970
13971 /* Is it an anonymous namespace? */
13972
13973 *is_anonymous = (name == NULL);
13974 if (*is_anonymous)
13975 name = CP_ANONYMOUS_NAMESPACE_STR;
13976
13977 return name;
13978 }
13979
13980 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13981 the user defined type vector. */
13982
13983 static struct type *
13984 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13985 {
13986 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13987 struct comp_unit_head *cu_header = &cu->header;
13988 struct type *type;
13989 struct attribute *attr_byte_size;
13990 struct attribute *attr_address_class;
13991 int byte_size, addr_class;
13992 struct type *target_type;
13993
13994 target_type = die_type (die, cu);
13995
13996 /* The die_type call above may have already set the type for this DIE. */
13997 type = get_die_type (die, cu);
13998 if (type)
13999 return type;
14000
14001 type = lookup_pointer_type (target_type);
14002
14003 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14004 if (attr_byte_size)
14005 byte_size = DW_UNSND (attr_byte_size);
14006 else
14007 byte_size = cu_header->addr_size;
14008
14009 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14010 if (attr_address_class)
14011 addr_class = DW_UNSND (attr_address_class);
14012 else
14013 addr_class = DW_ADDR_none;
14014
14015 /* If the pointer size or address class is different than the
14016 default, create a type variant marked as such and set the
14017 length accordingly. */
14018 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14019 {
14020 if (gdbarch_address_class_type_flags_p (gdbarch))
14021 {
14022 int type_flags;
14023
14024 type_flags = gdbarch_address_class_type_flags
14025 (gdbarch, byte_size, addr_class);
14026 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14027 == 0);
14028 type = make_type_with_address_space (type, type_flags);
14029 }
14030 else if (TYPE_LENGTH (type) != byte_size)
14031 {
14032 complaint (&symfile_complaints,
14033 _("invalid pointer size %d"), byte_size);
14034 }
14035 else
14036 {
14037 /* Should we also complain about unhandled address classes? */
14038 }
14039 }
14040
14041 TYPE_LENGTH (type) = byte_size;
14042 return set_die_type (die, type, cu);
14043 }
14044
14045 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14046 the user defined type vector. */
14047
14048 static struct type *
14049 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14050 {
14051 struct type *type;
14052 struct type *to_type;
14053 struct type *domain;
14054
14055 to_type = die_type (die, cu);
14056 domain = die_containing_type (die, cu);
14057
14058 /* The calls above may have already set the type for this DIE. */
14059 type = get_die_type (die, cu);
14060 if (type)
14061 return type;
14062
14063 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14064 type = lookup_methodptr_type (to_type);
14065 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14066 {
14067 struct type *new_type = alloc_type (cu->objfile);
14068
14069 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14070 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14071 TYPE_VARARGS (to_type));
14072 type = lookup_methodptr_type (new_type);
14073 }
14074 else
14075 type = lookup_memberptr_type (to_type, domain);
14076
14077 return set_die_type (die, type, cu);
14078 }
14079
14080 /* Extract all information from a DW_TAG_reference_type DIE and add to
14081 the user defined type vector. */
14082
14083 static struct type *
14084 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14085 {
14086 struct comp_unit_head *cu_header = &cu->header;
14087 struct type *type, *target_type;
14088 struct attribute *attr;
14089
14090 target_type = die_type (die, cu);
14091
14092 /* The die_type call above may have already set the type for this DIE. */
14093 type = get_die_type (die, cu);
14094 if (type)
14095 return type;
14096
14097 type = lookup_reference_type (target_type);
14098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14099 if (attr)
14100 {
14101 TYPE_LENGTH (type) = DW_UNSND (attr);
14102 }
14103 else
14104 {
14105 TYPE_LENGTH (type) = cu_header->addr_size;
14106 }
14107 return set_die_type (die, type, cu);
14108 }
14109
14110 /* Add the given cv-qualifiers to the element type of the array. GCC
14111 outputs DWARF type qualifiers that apply to an array, not the
14112 element type. But GDB relies on the array element type to carry
14113 the cv-qualifiers. This mimics section 6.7.3 of the C99
14114 specification. */
14115
14116 static struct type *
14117 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14118 struct type *base_type, int cnst, int voltl)
14119 {
14120 struct type *el_type, *inner_array;
14121
14122 base_type = copy_type (base_type);
14123 inner_array = base_type;
14124
14125 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14126 {
14127 TYPE_TARGET_TYPE (inner_array) =
14128 copy_type (TYPE_TARGET_TYPE (inner_array));
14129 inner_array = TYPE_TARGET_TYPE (inner_array);
14130 }
14131
14132 el_type = TYPE_TARGET_TYPE (inner_array);
14133 cnst |= TYPE_CONST (el_type);
14134 voltl |= TYPE_VOLATILE (el_type);
14135 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14136
14137 return set_die_type (die, base_type, cu);
14138 }
14139
14140 static struct type *
14141 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14142 {
14143 struct type *base_type, *cv_type;
14144
14145 base_type = die_type (die, cu);
14146
14147 /* The die_type call above may have already set the type for this DIE. */
14148 cv_type = get_die_type (die, cu);
14149 if (cv_type)
14150 return cv_type;
14151
14152 /* In case the const qualifier is applied to an array type, the element type
14153 is so qualified, not the array type (section 6.7.3 of C99). */
14154 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14155 return add_array_cv_type (die, cu, base_type, 1, 0);
14156
14157 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14158 return set_die_type (die, cv_type, cu);
14159 }
14160
14161 static struct type *
14162 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14163 {
14164 struct type *base_type, *cv_type;
14165
14166 base_type = die_type (die, cu);
14167
14168 /* The die_type call above may have already set the type for this DIE. */
14169 cv_type = get_die_type (die, cu);
14170 if (cv_type)
14171 return cv_type;
14172
14173 /* In case the volatile qualifier is applied to an array type, the
14174 element type is so qualified, not the array type (section 6.7.3
14175 of C99). */
14176 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14177 return add_array_cv_type (die, cu, base_type, 0, 1);
14178
14179 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14180 return set_die_type (die, cv_type, cu);
14181 }
14182
14183 /* Handle DW_TAG_restrict_type. */
14184
14185 static struct type *
14186 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14187 {
14188 struct type *base_type, *cv_type;
14189
14190 base_type = die_type (die, cu);
14191
14192 /* The die_type call above may have already set the type for this DIE. */
14193 cv_type = get_die_type (die, cu);
14194 if (cv_type)
14195 return cv_type;
14196
14197 cv_type = make_restrict_type (base_type);
14198 return set_die_type (die, cv_type, cu);
14199 }
14200
14201 /* Extract all information from a DW_TAG_string_type DIE and add to
14202 the user defined type vector. It isn't really a user defined type,
14203 but it behaves like one, with other DIE's using an AT_user_def_type
14204 attribute to reference it. */
14205
14206 static struct type *
14207 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14208 {
14209 struct objfile *objfile = cu->objfile;
14210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14211 struct type *type, *range_type, *index_type, *char_type;
14212 struct attribute *attr;
14213 unsigned int length;
14214
14215 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14216 if (attr)
14217 {
14218 length = DW_UNSND (attr);
14219 }
14220 else
14221 {
14222 /* Check for the DW_AT_byte_size attribute. */
14223 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14224 if (attr)
14225 {
14226 length = DW_UNSND (attr);
14227 }
14228 else
14229 {
14230 length = 1;
14231 }
14232 }
14233
14234 index_type = objfile_type (objfile)->builtin_int;
14235 range_type = create_static_range_type (NULL, index_type, 1, length);
14236 char_type = language_string_char_type (cu->language_defn, gdbarch);
14237 type = create_string_type (NULL, char_type, range_type);
14238
14239 return set_die_type (die, type, cu);
14240 }
14241
14242 /* Assuming that DIE corresponds to a function, returns nonzero
14243 if the function is prototyped. */
14244
14245 static int
14246 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14247 {
14248 struct attribute *attr;
14249
14250 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14251 if (attr && (DW_UNSND (attr) != 0))
14252 return 1;
14253
14254 /* The DWARF standard implies that the DW_AT_prototyped attribute
14255 is only meaninful for C, but the concept also extends to other
14256 languages that allow unprototyped functions (Eg: Objective C).
14257 For all other languages, assume that functions are always
14258 prototyped. */
14259 if (cu->language != language_c
14260 && cu->language != language_objc
14261 && cu->language != language_opencl)
14262 return 1;
14263
14264 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14265 prototyped and unprototyped functions; default to prototyped,
14266 since that is more common in modern code (and RealView warns
14267 about unprototyped functions). */
14268 if (producer_is_realview (cu->producer))
14269 return 1;
14270
14271 return 0;
14272 }
14273
14274 /* Handle DIES due to C code like:
14275
14276 struct foo
14277 {
14278 int (*funcp)(int a, long l);
14279 int b;
14280 };
14281
14282 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14283
14284 static struct type *
14285 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14286 {
14287 struct objfile *objfile = cu->objfile;
14288 struct type *type; /* Type that this function returns. */
14289 struct type *ftype; /* Function that returns above type. */
14290 struct attribute *attr;
14291
14292 type = die_type (die, cu);
14293
14294 /* The die_type call above may have already set the type for this DIE. */
14295 ftype = get_die_type (die, cu);
14296 if (ftype)
14297 return ftype;
14298
14299 ftype = lookup_function_type (type);
14300
14301 if (prototyped_function_p (die, cu))
14302 TYPE_PROTOTYPED (ftype) = 1;
14303
14304 /* Store the calling convention in the type if it's available in
14305 the subroutine die. Otherwise set the calling convention to
14306 the default value DW_CC_normal. */
14307 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14308 if (attr)
14309 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14310 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14311 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14312 else
14313 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14314
14315 /* We need to add the subroutine type to the die immediately so
14316 we don't infinitely recurse when dealing with parameters
14317 declared as the same subroutine type. */
14318 set_die_type (die, ftype, cu);
14319
14320 if (die->child != NULL)
14321 {
14322 struct type *void_type = objfile_type (objfile)->builtin_void;
14323 struct die_info *child_die;
14324 int nparams, iparams;
14325
14326 /* Count the number of parameters.
14327 FIXME: GDB currently ignores vararg functions, but knows about
14328 vararg member functions. */
14329 nparams = 0;
14330 child_die = die->child;
14331 while (child_die && child_die->tag)
14332 {
14333 if (child_die->tag == DW_TAG_formal_parameter)
14334 nparams++;
14335 else if (child_die->tag == DW_TAG_unspecified_parameters)
14336 TYPE_VARARGS (ftype) = 1;
14337 child_die = sibling_die (child_die);
14338 }
14339
14340 /* Allocate storage for parameters and fill them in. */
14341 TYPE_NFIELDS (ftype) = nparams;
14342 TYPE_FIELDS (ftype) = (struct field *)
14343 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14344
14345 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14346 even if we error out during the parameters reading below. */
14347 for (iparams = 0; iparams < nparams; iparams++)
14348 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14349
14350 iparams = 0;
14351 child_die = die->child;
14352 while (child_die && child_die->tag)
14353 {
14354 if (child_die->tag == DW_TAG_formal_parameter)
14355 {
14356 struct type *arg_type;
14357
14358 /* DWARF version 2 has no clean way to discern C++
14359 static and non-static member functions. G++ helps
14360 GDB by marking the first parameter for non-static
14361 member functions (which is the this pointer) as
14362 artificial. We pass this information to
14363 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14364
14365 DWARF version 3 added DW_AT_object_pointer, which GCC
14366 4.5 does not yet generate. */
14367 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14368 if (attr)
14369 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14370 else
14371 {
14372 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14373
14374 /* GCC/43521: In java, the formal parameter
14375 "this" is sometimes not marked with DW_AT_artificial. */
14376 if (cu->language == language_java)
14377 {
14378 const char *name = dwarf2_name (child_die, cu);
14379
14380 if (name && !strcmp (name, "this"))
14381 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14382 }
14383 }
14384 arg_type = die_type (child_die, cu);
14385
14386 /* RealView does not mark THIS as const, which the testsuite
14387 expects. GCC marks THIS as const in method definitions,
14388 but not in the class specifications (GCC PR 43053). */
14389 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14390 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14391 {
14392 int is_this = 0;
14393 struct dwarf2_cu *arg_cu = cu;
14394 const char *name = dwarf2_name (child_die, cu);
14395
14396 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14397 if (attr)
14398 {
14399 /* If the compiler emits this, use it. */
14400 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14401 is_this = 1;
14402 }
14403 else if (name && strcmp (name, "this") == 0)
14404 /* Function definitions will have the argument names. */
14405 is_this = 1;
14406 else if (name == NULL && iparams == 0)
14407 /* Declarations may not have the names, so like
14408 elsewhere in GDB, assume an artificial first
14409 argument is "this". */
14410 is_this = 1;
14411
14412 if (is_this)
14413 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14414 arg_type, 0);
14415 }
14416
14417 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14418 iparams++;
14419 }
14420 child_die = sibling_die (child_die);
14421 }
14422 }
14423
14424 return ftype;
14425 }
14426
14427 static struct type *
14428 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14429 {
14430 struct objfile *objfile = cu->objfile;
14431 const char *name = NULL;
14432 struct type *this_type, *target_type;
14433
14434 name = dwarf2_full_name (NULL, die, cu);
14435 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14436 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14437 TYPE_NAME (this_type) = name;
14438 set_die_type (die, this_type, cu);
14439 target_type = die_type (die, cu);
14440 if (target_type != this_type)
14441 TYPE_TARGET_TYPE (this_type) = target_type;
14442 else
14443 {
14444 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14445 spec and cause infinite loops in GDB. */
14446 complaint (&symfile_complaints,
14447 _("Self-referential DW_TAG_typedef "
14448 "- DIE at 0x%x [in module %s]"),
14449 die->offset.sect_off, objfile_name (objfile));
14450 TYPE_TARGET_TYPE (this_type) = NULL;
14451 }
14452 return this_type;
14453 }
14454
14455 /* Find a representation of a given base type and install
14456 it in the TYPE field of the die. */
14457
14458 static struct type *
14459 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14460 {
14461 struct objfile *objfile = cu->objfile;
14462 struct type *type;
14463 struct attribute *attr;
14464 int encoding = 0, size = 0;
14465 const char *name;
14466 enum type_code code = TYPE_CODE_INT;
14467 int type_flags = 0;
14468 struct type *target_type = NULL;
14469
14470 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14471 if (attr)
14472 {
14473 encoding = DW_UNSND (attr);
14474 }
14475 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14476 if (attr)
14477 {
14478 size = DW_UNSND (attr);
14479 }
14480 name = dwarf2_name (die, cu);
14481 if (!name)
14482 {
14483 complaint (&symfile_complaints,
14484 _("DW_AT_name missing from DW_TAG_base_type"));
14485 }
14486
14487 switch (encoding)
14488 {
14489 case DW_ATE_address:
14490 /* Turn DW_ATE_address into a void * pointer. */
14491 code = TYPE_CODE_PTR;
14492 type_flags |= TYPE_FLAG_UNSIGNED;
14493 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14494 break;
14495 case DW_ATE_boolean:
14496 code = TYPE_CODE_BOOL;
14497 type_flags |= TYPE_FLAG_UNSIGNED;
14498 break;
14499 case DW_ATE_complex_float:
14500 code = TYPE_CODE_COMPLEX;
14501 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14502 break;
14503 case DW_ATE_decimal_float:
14504 code = TYPE_CODE_DECFLOAT;
14505 break;
14506 case DW_ATE_float:
14507 code = TYPE_CODE_FLT;
14508 break;
14509 case DW_ATE_signed:
14510 break;
14511 case DW_ATE_unsigned:
14512 type_flags |= TYPE_FLAG_UNSIGNED;
14513 if (cu->language == language_fortran
14514 && name
14515 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14516 code = TYPE_CODE_CHAR;
14517 break;
14518 case DW_ATE_signed_char:
14519 if (cu->language == language_ada || cu->language == language_m2
14520 || cu->language == language_pascal
14521 || cu->language == language_fortran)
14522 code = TYPE_CODE_CHAR;
14523 break;
14524 case DW_ATE_unsigned_char:
14525 if (cu->language == language_ada || cu->language == language_m2
14526 || cu->language == language_pascal
14527 || cu->language == language_fortran)
14528 code = TYPE_CODE_CHAR;
14529 type_flags |= TYPE_FLAG_UNSIGNED;
14530 break;
14531 case DW_ATE_UTF:
14532 /* We just treat this as an integer and then recognize the
14533 type by name elsewhere. */
14534 break;
14535
14536 default:
14537 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14538 dwarf_type_encoding_name (encoding));
14539 break;
14540 }
14541
14542 type = init_type (code, size, type_flags, NULL, objfile);
14543 TYPE_NAME (type) = name;
14544 TYPE_TARGET_TYPE (type) = target_type;
14545
14546 if (name && strcmp (name, "char") == 0)
14547 TYPE_NOSIGN (type) = 1;
14548
14549 return set_die_type (die, type, cu);
14550 }
14551
14552 /* Parse dwarf attribute if it's a block, reference or constant and put the
14553 resulting value of the attribute into struct bound_prop.
14554 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14555
14556 static int
14557 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14558 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14559 {
14560 struct dwarf2_property_baton *baton;
14561 struct obstack *obstack = &cu->objfile->objfile_obstack;
14562
14563 if (attr == NULL || prop == NULL)
14564 return 0;
14565
14566 if (attr_form_is_block (attr))
14567 {
14568 baton = obstack_alloc (obstack, sizeof (*baton));
14569 baton->referenced_type = NULL;
14570 baton->locexpr.per_cu = cu->per_cu;
14571 baton->locexpr.size = DW_BLOCK (attr)->size;
14572 baton->locexpr.data = DW_BLOCK (attr)->data;
14573 prop->data.baton = baton;
14574 prop->kind = PROP_LOCEXPR;
14575 gdb_assert (prop->data.baton != NULL);
14576 }
14577 else if (attr_form_is_ref (attr))
14578 {
14579 struct dwarf2_cu *target_cu = cu;
14580 struct die_info *target_die;
14581 struct attribute *target_attr;
14582
14583 target_die = follow_die_ref (die, attr, &target_cu);
14584 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14585 if (target_attr == NULL)
14586 return 0;
14587
14588 if (attr_form_is_section_offset (target_attr))
14589 {
14590 baton = obstack_alloc (obstack, sizeof (*baton));
14591 baton->referenced_type = die_type (target_die, target_cu);
14592 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14593 prop->data.baton = baton;
14594 prop->kind = PROP_LOCLIST;
14595 gdb_assert (prop->data.baton != NULL);
14596 }
14597 else if (attr_form_is_block (target_attr))
14598 {
14599 baton = obstack_alloc (obstack, sizeof (*baton));
14600 baton->referenced_type = die_type (target_die, target_cu);
14601 baton->locexpr.per_cu = cu->per_cu;
14602 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14603 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14604 prop->data.baton = baton;
14605 prop->kind = PROP_LOCEXPR;
14606 gdb_assert (prop->data.baton != NULL);
14607 }
14608 else
14609 {
14610 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14611 "dynamic property");
14612 return 0;
14613 }
14614 }
14615 else if (attr_form_is_constant (attr))
14616 {
14617 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14618 prop->kind = PROP_CONST;
14619 }
14620 else
14621 {
14622 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14623 dwarf2_name (die, cu));
14624 return 0;
14625 }
14626
14627 return 1;
14628 }
14629
14630 /* Read the given DW_AT_subrange DIE. */
14631
14632 static struct type *
14633 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14634 {
14635 struct type *base_type, *orig_base_type;
14636 struct type *range_type;
14637 struct attribute *attr;
14638 struct dynamic_prop low, high;
14639 int low_default_is_valid;
14640 int high_bound_is_count = 0;
14641 const char *name;
14642 LONGEST negative_mask;
14643
14644 orig_base_type = die_type (die, cu);
14645 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14646 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14647 creating the range type, but we use the result of check_typedef
14648 when examining properties of the type. */
14649 base_type = check_typedef (orig_base_type);
14650
14651 /* The die_type call above may have already set the type for this DIE. */
14652 range_type = get_die_type (die, cu);
14653 if (range_type)
14654 return range_type;
14655
14656 low.kind = PROP_CONST;
14657 high.kind = PROP_CONST;
14658 high.data.const_val = 0;
14659
14660 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14661 omitting DW_AT_lower_bound. */
14662 switch (cu->language)
14663 {
14664 case language_c:
14665 case language_cplus:
14666 low.data.const_val = 0;
14667 low_default_is_valid = 1;
14668 break;
14669 case language_fortran:
14670 low.data.const_val = 1;
14671 low_default_is_valid = 1;
14672 break;
14673 case language_d:
14674 case language_java:
14675 case language_objc:
14676 low.data.const_val = 0;
14677 low_default_is_valid = (cu->header.version >= 4);
14678 break;
14679 case language_ada:
14680 case language_m2:
14681 case language_pascal:
14682 low.data.const_val = 1;
14683 low_default_is_valid = (cu->header.version >= 4);
14684 break;
14685 default:
14686 low.data.const_val = 0;
14687 low_default_is_valid = 0;
14688 break;
14689 }
14690
14691 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14692 if (attr)
14693 attr_to_dynamic_prop (attr, die, cu, &low);
14694 else if (!low_default_is_valid)
14695 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14696 "- DIE at 0x%x [in module %s]"),
14697 die->offset.sect_off, objfile_name (cu->objfile));
14698
14699 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14700 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14701 {
14702 attr = dwarf2_attr (die, DW_AT_count, cu);
14703 if (attr_to_dynamic_prop (attr, die, cu, &high))
14704 {
14705 /* If bounds are constant do the final calculation here. */
14706 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14707 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14708 else
14709 high_bound_is_count = 1;
14710 }
14711 }
14712
14713 /* Dwarf-2 specifications explicitly allows to create subrange types
14714 without specifying a base type.
14715 In that case, the base type must be set to the type of
14716 the lower bound, upper bound or count, in that order, if any of these
14717 three attributes references an object that has a type.
14718 If no base type is found, the Dwarf-2 specifications say that
14719 a signed integer type of size equal to the size of an address should
14720 be used.
14721 For the following C code: `extern char gdb_int [];'
14722 GCC produces an empty range DIE.
14723 FIXME: muller/2010-05-28: Possible references to object for low bound,
14724 high bound or count are not yet handled by this code. */
14725 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14726 {
14727 struct objfile *objfile = cu->objfile;
14728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14729 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14730 struct type *int_type = objfile_type (objfile)->builtin_int;
14731
14732 /* Test "int", "long int", and "long long int" objfile types,
14733 and select the first one having a size above or equal to the
14734 architecture address size. */
14735 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14736 base_type = int_type;
14737 else
14738 {
14739 int_type = objfile_type (objfile)->builtin_long;
14740 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14741 base_type = int_type;
14742 else
14743 {
14744 int_type = objfile_type (objfile)->builtin_long_long;
14745 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14746 base_type = int_type;
14747 }
14748 }
14749 }
14750
14751 /* Normally, the DWARF producers are expected to use a signed
14752 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14753 But this is unfortunately not always the case, as witnessed
14754 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14755 is used instead. To work around that ambiguity, we treat
14756 the bounds as signed, and thus sign-extend their values, when
14757 the base type is signed. */
14758 negative_mask =
14759 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14760 if (low.kind == PROP_CONST
14761 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14762 low.data.const_val |= negative_mask;
14763 if (high.kind == PROP_CONST
14764 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14765 high.data.const_val |= negative_mask;
14766
14767 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14768
14769 if (high_bound_is_count)
14770 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14771
14772 /* Ada expects an empty array on no boundary attributes. */
14773 if (attr == NULL && cu->language != language_ada)
14774 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14775
14776 name = dwarf2_name (die, cu);
14777 if (name)
14778 TYPE_NAME (range_type) = name;
14779
14780 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14781 if (attr)
14782 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14783
14784 set_die_type (die, range_type, cu);
14785
14786 /* set_die_type should be already done. */
14787 set_descriptive_type (range_type, die, cu);
14788
14789 return range_type;
14790 }
14791
14792 static struct type *
14793 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14794 {
14795 struct type *type;
14796
14797 /* For now, we only support the C meaning of an unspecified type: void. */
14798
14799 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14800 TYPE_NAME (type) = dwarf2_name (die, cu);
14801
14802 return set_die_type (die, type, cu);
14803 }
14804
14805 /* Read a single die and all its descendents. Set the die's sibling
14806 field to NULL; set other fields in the die correctly, and set all
14807 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14808 location of the info_ptr after reading all of those dies. PARENT
14809 is the parent of the die in question. */
14810
14811 static struct die_info *
14812 read_die_and_children (const struct die_reader_specs *reader,
14813 const gdb_byte *info_ptr,
14814 const gdb_byte **new_info_ptr,
14815 struct die_info *parent)
14816 {
14817 struct die_info *die;
14818 const gdb_byte *cur_ptr;
14819 int has_children;
14820
14821 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14822 if (die == NULL)
14823 {
14824 *new_info_ptr = cur_ptr;
14825 return NULL;
14826 }
14827 store_in_ref_table (die, reader->cu);
14828
14829 if (has_children)
14830 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14831 else
14832 {
14833 die->child = NULL;
14834 *new_info_ptr = cur_ptr;
14835 }
14836
14837 die->sibling = NULL;
14838 die->parent = parent;
14839 return die;
14840 }
14841
14842 /* Read a die, all of its descendents, and all of its siblings; set
14843 all of the fields of all of the dies correctly. Arguments are as
14844 in read_die_and_children. */
14845
14846 static struct die_info *
14847 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14848 const gdb_byte *info_ptr,
14849 const gdb_byte **new_info_ptr,
14850 struct die_info *parent)
14851 {
14852 struct die_info *first_die, *last_sibling;
14853 const gdb_byte *cur_ptr;
14854
14855 cur_ptr = info_ptr;
14856 first_die = last_sibling = NULL;
14857
14858 while (1)
14859 {
14860 struct die_info *die
14861 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14862
14863 if (die == NULL)
14864 {
14865 *new_info_ptr = cur_ptr;
14866 return first_die;
14867 }
14868
14869 if (!first_die)
14870 first_die = die;
14871 else
14872 last_sibling->sibling = die;
14873
14874 last_sibling = die;
14875 }
14876 }
14877
14878 /* Read a die, all of its descendents, and all of its siblings; set
14879 all of the fields of all of the dies correctly. Arguments are as
14880 in read_die_and_children.
14881 This the main entry point for reading a DIE and all its children. */
14882
14883 static struct die_info *
14884 read_die_and_siblings (const struct die_reader_specs *reader,
14885 const gdb_byte *info_ptr,
14886 const gdb_byte **new_info_ptr,
14887 struct die_info *parent)
14888 {
14889 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14890 new_info_ptr, parent);
14891
14892 if (dwarf2_die_debug)
14893 {
14894 fprintf_unfiltered (gdb_stdlog,
14895 "Read die from %s@0x%x of %s:\n",
14896 get_section_name (reader->die_section),
14897 (unsigned) (info_ptr - reader->die_section->buffer),
14898 bfd_get_filename (reader->abfd));
14899 dump_die (die, dwarf2_die_debug);
14900 }
14901
14902 return die;
14903 }
14904
14905 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14906 attributes.
14907 The caller is responsible for filling in the extra attributes
14908 and updating (*DIEP)->num_attrs.
14909 Set DIEP to point to a newly allocated die with its information,
14910 except for its child, sibling, and parent fields.
14911 Set HAS_CHILDREN to tell whether the die has children or not. */
14912
14913 static const gdb_byte *
14914 read_full_die_1 (const struct die_reader_specs *reader,
14915 struct die_info **diep, const gdb_byte *info_ptr,
14916 int *has_children, int num_extra_attrs)
14917 {
14918 unsigned int abbrev_number, bytes_read, i;
14919 sect_offset offset;
14920 struct abbrev_info *abbrev;
14921 struct die_info *die;
14922 struct dwarf2_cu *cu = reader->cu;
14923 bfd *abfd = reader->abfd;
14924
14925 offset.sect_off = info_ptr - reader->buffer;
14926 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14927 info_ptr += bytes_read;
14928 if (!abbrev_number)
14929 {
14930 *diep = NULL;
14931 *has_children = 0;
14932 return info_ptr;
14933 }
14934
14935 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14936 if (!abbrev)
14937 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14938 abbrev_number,
14939 bfd_get_filename (abfd));
14940
14941 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14942 die->offset = offset;
14943 die->tag = abbrev->tag;
14944 die->abbrev = abbrev_number;
14945
14946 /* Make the result usable.
14947 The caller needs to update num_attrs after adding the extra
14948 attributes. */
14949 die->num_attrs = abbrev->num_attrs;
14950
14951 for (i = 0; i < abbrev->num_attrs; ++i)
14952 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14953 info_ptr);
14954
14955 *diep = die;
14956 *has_children = abbrev->has_children;
14957 return info_ptr;
14958 }
14959
14960 /* Read a die and all its attributes.
14961 Set DIEP to point to a newly allocated die with its information,
14962 except for its child, sibling, and parent fields.
14963 Set HAS_CHILDREN to tell whether the die has children or not. */
14964
14965 static const gdb_byte *
14966 read_full_die (const struct die_reader_specs *reader,
14967 struct die_info **diep, const gdb_byte *info_ptr,
14968 int *has_children)
14969 {
14970 const gdb_byte *result;
14971
14972 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14973
14974 if (dwarf2_die_debug)
14975 {
14976 fprintf_unfiltered (gdb_stdlog,
14977 "Read die from %s@0x%x of %s:\n",
14978 get_section_name (reader->die_section),
14979 (unsigned) (info_ptr - reader->die_section->buffer),
14980 bfd_get_filename (reader->abfd));
14981 dump_die (*diep, dwarf2_die_debug);
14982 }
14983
14984 return result;
14985 }
14986 \f
14987 /* Abbreviation tables.
14988
14989 In DWARF version 2, the description of the debugging information is
14990 stored in a separate .debug_abbrev section. Before we read any
14991 dies from a section we read in all abbreviations and install them
14992 in a hash table. */
14993
14994 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14995
14996 static struct abbrev_info *
14997 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14998 {
14999 struct abbrev_info *abbrev;
15000
15001 abbrev = (struct abbrev_info *)
15002 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15003 memset (abbrev, 0, sizeof (struct abbrev_info));
15004 return abbrev;
15005 }
15006
15007 /* Add an abbreviation to the table. */
15008
15009 static void
15010 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15011 unsigned int abbrev_number,
15012 struct abbrev_info *abbrev)
15013 {
15014 unsigned int hash_number;
15015
15016 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15017 abbrev->next = abbrev_table->abbrevs[hash_number];
15018 abbrev_table->abbrevs[hash_number] = abbrev;
15019 }
15020
15021 /* Look up an abbrev in the table.
15022 Returns NULL if the abbrev is not found. */
15023
15024 static struct abbrev_info *
15025 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15026 unsigned int abbrev_number)
15027 {
15028 unsigned int hash_number;
15029 struct abbrev_info *abbrev;
15030
15031 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15032 abbrev = abbrev_table->abbrevs[hash_number];
15033
15034 while (abbrev)
15035 {
15036 if (abbrev->number == abbrev_number)
15037 return abbrev;
15038 abbrev = abbrev->next;
15039 }
15040 return NULL;
15041 }
15042
15043 /* Read in an abbrev table. */
15044
15045 static struct abbrev_table *
15046 abbrev_table_read_table (struct dwarf2_section_info *section,
15047 sect_offset offset)
15048 {
15049 struct objfile *objfile = dwarf2_per_objfile->objfile;
15050 bfd *abfd = get_section_bfd_owner (section);
15051 struct abbrev_table *abbrev_table;
15052 const gdb_byte *abbrev_ptr;
15053 struct abbrev_info *cur_abbrev;
15054 unsigned int abbrev_number, bytes_read, abbrev_name;
15055 unsigned int abbrev_form;
15056 struct attr_abbrev *cur_attrs;
15057 unsigned int allocated_attrs;
15058
15059 abbrev_table = XNEW (struct abbrev_table);
15060 abbrev_table->offset = offset;
15061 obstack_init (&abbrev_table->abbrev_obstack);
15062 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15063 (ABBREV_HASH_SIZE
15064 * sizeof (struct abbrev_info *)));
15065 memset (abbrev_table->abbrevs, 0,
15066 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15067
15068 dwarf2_read_section (objfile, section);
15069 abbrev_ptr = section->buffer + offset.sect_off;
15070 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15071 abbrev_ptr += bytes_read;
15072
15073 allocated_attrs = ATTR_ALLOC_CHUNK;
15074 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15075
15076 /* Loop until we reach an abbrev number of 0. */
15077 while (abbrev_number)
15078 {
15079 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15080
15081 /* read in abbrev header */
15082 cur_abbrev->number = abbrev_number;
15083 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15084 abbrev_ptr += bytes_read;
15085 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15086 abbrev_ptr += 1;
15087
15088 /* now read in declarations */
15089 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15090 abbrev_ptr += bytes_read;
15091 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15092 abbrev_ptr += bytes_read;
15093 while (abbrev_name)
15094 {
15095 if (cur_abbrev->num_attrs == allocated_attrs)
15096 {
15097 allocated_attrs += ATTR_ALLOC_CHUNK;
15098 cur_attrs
15099 = xrealloc (cur_attrs, (allocated_attrs
15100 * sizeof (struct attr_abbrev)));
15101 }
15102
15103 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15104 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15105 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15106 abbrev_ptr += bytes_read;
15107 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15108 abbrev_ptr += bytes_read;
15109 }
15110
15111 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15112 (cur_abbrev->num_attrs
15113 * sizeof (struct attr_abbrev)));
15114 memcpy (cur_abbrev->attrs, cur_attrs,
15115 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15116
15117 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15118
15119 /* Get next abbreviation.
15120 Under Irix6 the abbreviations for a compilation unit are not
15121 always properly terminated with an abbrev number of 0.
15122 Exit loop if we encounter an abbreviation which we have
15123 already read (which means we are about to read the abbreviations
15124 for the next compile unit) or if the end of the abbreviation
15125 table is reached. */
15126 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15127 break;
15128 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15129 abbrev_ptr += bytes_read;
15130 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15131 break;
15132 }
15133
15134 xfree (cur_attrs);
15135 return abbrev_table;
15136 }
15137
15138 /* Free the resources held by ABBREV_TABLE. */
15139
15140 static void
15141 abbrev_table_free (struct abbrev_table *abbrev_table)
15142 {
15143 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15144 xfree (abbrev_table);
15145 }
15146
15147 /* Same as abbrev_table_free but as a cleanup.
15148 We pass in a pointer to the pointer to the table so that we can
15149 set the pointer to NULL when we're done. It also simplifies
15150 build_type_psymtabs_1. */
15151
15152 static void
15153 abbrev_table_free_cleanup (void *table_ptr)
15154 {
15155 struct abbrev_table **abbrev_table_ptr = table_ptr;
15156
15157 if (*abbrev_table_ptr != NULL)
15158 abbrev_table_free (*abbrev_table_ptr);
15159 *abbrev_table_ptr = NULL;
15160 }
15161
15162 /* Read the abbrev table for CU from ABBREV_SECTION. */
15163
15164 static void
15165 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15166 struct dwarf2_section_info *abbrev_section)
15167 {
15168 cu->abbrev_table =
15169 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15170 }
15171
15172 /* Release the memory used by the abbrev table for a compilation unit. */
15173
15174 static void
15175 dwarf2_free_abbrev_table (void *ptr_to_cu)
15176 {
15177 struct dwarf2_cu *cu = ptr_to_cu;
15178
15179 if (cu->abbrev_table != NULL)
15180 abbrev_table_free (cu->abbrev_table);
15181 /* Set this to NULL so that we SEGV if we try to read it later,
15182 and also because free_comp_unit verifies this is NULL. */
15183 cu->abbrev_table = NULL;
15184 }
15185 \f
15186 /* Returns nonzero if TAG represents a type that we might generate a partial
15187 symbol for. */
15188
15189 static int
15190 is_type_tag_for_partial (int tag)
15191 {
15192 switch (tag)
15193 {
15194 #if 0
15195 /* Some types that would be reasonable to generate partial symbols for,
15196 that we don't at present. */
15197 case DW_TAG_array_type:
15198 case DW_TAG_file_type:
15199 case DW_TAG_ptr_to_member_type:
15200 case DW_TAG_set_type:
15201 case DW_TAG_string_type:
15202 case DW_TAG_subroutine_type:
15203 #endif
15204 case DW_TAG_base_type:
15205 case DW_TAG_class_type:
15206 case DW_TAG_interface_type:
15207 case DW_TAG_enumeration_type:
15208 case DW_TAG_structure_type:
15209 case DW_TAG_subrange_type:
15210 case DW_TAG_typedef:
15211 case DW_TAG_union_type:
15212 return 1;
15213 default:
15214 return 0;
15215 }
15216 }
15217
15218 /* Load all DIEs that are interesting for partial symbols into memory. */
15219
15220 static struct partial_die_info *
15221 load_partial_dies (const struct die_reader_specs *reader,
15222 const gdb_byte *info_ptr, int building_psymtab)
15223 {
15224 struct dwarf2_cu *cu = reader->cu;
15225 struct objfile *objfile = cu->objfile;
15226 struct partial_die_info *part_die;
15227 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15228 struct abbrev_info *abbrev;
15229 unsigned int bytes_read;
15230 unsigned int load_all = 0;
15231 int nesting_level = 1;
15232
15233 parent_die = NULL;
15234 last_die = NULL;
15235
15236 gdb_assert (cu->per_cu != NULL);
15237 if (cu->per_cu->load_all_dies)
15238 load_all = 1;
15239
15240 cu->partial_dies
15241 = htab_create_alloc_ex (cu->header.length / 12,
15242 partial_die_hash,
15243 partial_die_eq,
15244 NULL,
15245 &cu->comp_unit_obstack,
15246 hashtab_obstack_allocate,
15247 dummy_obstack_deallocate);
15248
15249 part_die = obstack_alloc (&cu->comp_unit_obstack,
15250 sizeof (struct partial_die_info));
15251
15252 while (1)
15253 {
15254 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15255
15256 /* A NULL abbrev means the end of a series of children. */
15257 if (abbrev == NULL)
15258 {
15259 if (--nesting_level == 0)
15260 {
15261 /* PART_DIE was probably the last thing allocated on the
15262 comp_unit_obstack, so we could call obstack_free
15263 here. We don't do that because the waste is small,
15264 and will be cleaned up when we're done with this
15265 compilation unit. This way, we're also more robust
15266 against other users of the comp_unit_obstack. */
15267 return first_die;
15268 }
15269 info_ptr += bytes_read;
15270 last_die = parent_die;
15271 parent_die = parent_die->die_parent;
15272 continue;
15273 }
15274
15275 /* Check for template arguments. We never save these; if
15276 they're seen, we just mark the parent, and go on our way. */
15277 if (parent_die != NULL
15278 && cu->language == language_cplus
15279 && (abbrev->tag == DW_TAG_template_type_param
15280 || abbrev->tag == DW_TAG_template_value_param))
15281 {
15282 parent_die->has_template_arguments = 1;
15283
15284 if (!load_all)
15285 {
15286 /* We don't need a partial DIE for the template argument. */
15287 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15288 continue;
15289 }
15290 }
15291
15292 /* We only recurse into c++ subprograms looking for template arguments.
15293 Skip their other children. */
15294 if (!load_all
15295 && cu->language == language_cplus
15296 && parent_die != NULL
15297 && parent_die->tag == DW_TAG_subprogram)
15298 {
15299 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15300 continue;
15301 }
15302
15303 /* Check whether this DIE is interesting enough to save. Normally
15304 we would not be interested in members here, but there may be
15305 later variables referencing them via DW_AT_specification (for
15306 static members). */
15307 if (!load_all
15308 && !is_type_tag_for_partial (abbrev->tag)
15309 && abbrev->tag != DW_TAG_constant
15310 && abbrev->tag != DW_TAG_enumerator
15311 && abbrev->tag != DW_TAG_subprogram
15312 && abbrev->tag != DW_TAG_lexical_block
15313 && abbrev->tag != DW_TAG_variable
15314 && abbrev->tag != DW_TAG_namespace
15315 && abbrev->tag != DW_TAG_module
15316 && abbrev->tag != DW_TAG_member
15317 && abbrev->tag != DW_TAG_imported_unit
15318 && abbrev->tag != DW_TAG_imported_declaration)
15319 {
15320 /* Otherwise we skip to the next sibling, if any. */
15321 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15322 continue;
15323 }
15324
15325 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15326 info_ptr);
15327
15328 /* This two-pass algorithm for processing partial symbols has a
15329 high cost in cache pressure. Thus, handle some simple cases
15330 here which cover the majority of C partial symbols. DIEs
15331 which neither have specification tags in them, nor could have
15332 specification tags elsewhere pointing at them, can simply be
15333 processed and discarded.
15334
15335 This segment is also optional; scan_partial_symbols and
15336 add_partial_symbol will handle these DIEs if we chain
15337 them in normally. When compilers which do not emit large
15338 quantities of duplicate debug information are more common,
15339 this code can probably be removed. */
15340
15341 /* Any complete simple types at the top level (pretty much all
15342 of them, for a language without namespaces), can be processed
15343 directly. */
15344 if (parent_die == NULL
15345 && part_die->has_specification == 0
15346 && part_die->is_declaration == 0
15347 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15348 || part_die->tag == DW_TAG_base_type
15349 || part_die->tag == DW_TAG_subrange_type))
15350 {
15351 if (building_psymtab && part_die->name != NULL)
15352 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15353 VAR_DOMAIN, LOC_TYPEDEF,
15354 &objfile->static_psymbols,
15355 0, (CORE_ADDR) 0, cu->language, objfile);
15356 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15357 continue;
15358 }
15359
15360 /* The exception for DW_TAG_typedef with has_children above is
15361 a workaround of GCC PR debug/47510. In the case of this complaint
15362 type_name_no_tag_or_error will error on such types later.
15363
15364 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15365 it could not find the child DIEs referenced later, this is checked
15366 above. In correct DWARF DW_TAG_typedef should have no children. */
15367
15368 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15369 complaint (&symfile_complaints,
15370 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15371 "- DIE at 0x%x [in module %s]"),
15372 part_die->offset.sect_off, objfile_name (objfile));
15373
15374 /* If we're at the second level, and we're an enumerator, and
15375 our parent has no specification (meaning possibly lives in a
15376 namespace elsewhere), then we can add the partial symbol now
15377 instead of queueing it. */
15378 if (part_die->tag == DW_TAG_enumerator
15379 && parent_die != NULL
15380 && parent_die->die_parent == NULL
15381 && parent_die->tag == DW_TAG_enumeration_type
15382 && parent_die->has_specification == 0)
15383 {
15384 if (part_die->name == NULL)
15385 complaint (&symfile_complaints,
15386 _("malformed enumerator DIE ignored"));
15387 else if (building_psymtab)
15388 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15389 VAR_DOMAIN, LOC_CONST,
15390 (cu->language == language_cplus
15391 || cu->language == language_java)
15392 ? &objfile->global_psymbols
15393 : &objfile->static_psymbols,
15394 0, (CORE_ADDR) 0, cu->language, objfile);
15395
15396 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15397 continue;
15398 }
15399
15400 /* We'll save this DIE so link it in. */
15401 part_die->die_parent = parent_die;
15402 part_die->die_sibling = NULL;
15403 part_die->die_child = NULL;
15404
15405 if (last_die && last_die == parent_die)
15406 last_die->die_child = part_die;
15407 else if (last_die)
15408 last_die->die_sibling = part_die;
15409
15410 last_die = part_die;
15411
15412 if (first_die == NULL)
15413 first_die = part_die;
15414
15415 /* Maybe add the DIE to the hash table. Not all DIEs that we
15416 find interesting need to be in the hash table, because we
15417 also have the parent/sibling/child chains; only those that we
15418 might refer to by offset later during partial symbol reading.
15419
15420 For now this means things that might have be the target of a
15421 DW_AT_specification, DW_AT_abstract_origin, or
15422 DW_AT_extension. DW_AT_extension will refer only to
15423 namespaces; DW_AT_abstract_origin refers to functions (and
15424 many things under the function DIE, but we do not recurse
15425 into function DIEs during partial symbol reading) and
15426 possibly variables as well; DW_AT_specification refers to
15427 declarations. Declarations ought to have the DW_AT_declaration
15428 flag. It happens that GCC forgets to put it in sometimes, but
15429 only for functions, not for types.
15430
15431 Adding more things than necessary to the hash table is harmless
15432 except for the performance cost. Adding too few will result in
15433 wasted time in find_partial_die, when we reread the compilation
15434 unit with load_all_dies set. */
15435
15436 if (load_all
15437 || abbrev->tag == DW_TAG_constant
15438 || abbrev->tag == DW_TAG_subprogram
15439 || abbrev->tag == DW_TAG_variable
15440 || abbrev->tag == DW_TAG_namespace
15441 || part_die->is_declaration)
15442 {
15443 void **slot;
15444
15445 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15446 part_die->offset.sect_off, INSERT);
15447 *slot = part_die;
15448 }
15449
15450 part_die = obstack_alloc (&cu->comp_unit_obstack,
15451 sizeof (struct partial_die_info));
15452
15453 /* For some DIEs we want to follow their children (if any). For C
15454 we have no reason to follow the children of structures; for other
15455 languages we have to, so that we can get at method physnames
15456 to infer fully qualified class names, for DW_AT_specification,
15457 and for C++ template arguments. For C++, we also look one level
15458 inside functions to find template arguments (if the name of the
15459 function does not already contain the template arguments).
15460
15461 For Ada, we need to scan the children of subprograms and lexical
15462 blocks as well because Ada allows the definition of nested
15463 entities that could be interesting for the debugger, such as
15464 nested subprograms for instance. */
15465 if (last_die->has_children
15466 && (load_all
15467 || last_die->tag == DW_TAG_namespace
15468 || last_die->tag == DW_TAG_module
15469 || last_die->tag == DW_TAG_enumeration_type
15470 || (cu->language == language_cplus
15471 && last_die->tag == DW_TAG_subprogram
15472 && (last_die->name == NULL
15473 || strchr (last_die->name, '<') == NULL))
15474 || (cu->language != language_c
15475 && (last_die->tag == DW_TAG_class_type
15476 || last_die->tag == DW_TAG_interface_type
15477 || last_die->tag == DW_TAG_structure_type
15478 || last_die->tag == DW_TAG_union_type))
15479 || (cu->language == language_ada
15480 && (last_die->tag == DW_TAG_subprogram
15481 || last_die->tag == DW_TAG_lexical_block))))
15482 {
15483 nesting_level++;
15484 parent_die = last_die;
15485 continue;
15486 }
15487
15488 /* Otherwise we skip to the next sibling, if any. */
15489 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15490
15491 /* Back to the top, do it again. */
15492 }
15493 }
15494
15495 /* Read a minimal amount of information into the minimal die structure. */
15496
15497 static const gdb_byte *
15498 read_partial_die (const struct die_reader_specs *reader,
15499 struct partial_die_info *part_die,
15500 struct abbrev_info *abbrev, unsigned int abbrev_len,
15501 const gdb_byte *info_ptr)
15502 {
15503 struct dwarf2_cu *cu = reader->cu;
15504 struct objfile *objfile = cu->objfile;
15505 const gdb_byte *buffer = reader->buffer;
15506 unsigned int i;
15507 struct attribute attr;
15508 int has_low_pc_attr = 0;
15509 int has_high_pc_attr = 0;
15510 int high_pc_relative = 0;
15511
15512 memset (part_die, 0, sizeof (struct partial_die_info));
15513
15514 part_die->offset.sect_off = info_ptr - buffer;
15515
15516 info_ptr += abbrev_len;
15517
15518 if (abbrev == NULL)
15519 return info_ptr;
15520
15521 part_die->tag = abbrev->tag;
15522 part_die->has_children = abbrev->has_children;
15523
15524 for (i = 0; i < abbrev->num_attrs; ++i)
15525 {
15526 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15527
15528 /* Store the data if it is of an attribute we want to keep in a
15529 partial symbol table. */
15530 switch (attr.name)
15531 {
15532 case DW_AT_name:
15533 switch (part_die->tag)
15534 {
15535 case DW_TAG_compile_unit:
15536 case DW_TAG_partial_unit:
15537 case DW_TAG_type_unit:
15538 /* Compilation units have a DW_AT_name that is a filename, not
15539 a source language identifier. */
15540 case DW_TAG_enumeration_type:
15541 case DW_TAG_enumerator:
15542 /* These tags always have simple identifiers already; no need
15543 to canonicalize them. */
15544 part_die->name = DW_STRING (&attr);
15545 break;
15546 default:
15547 part_die->name
15548 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15549 &objfile->per_bfd->storage_obstack);
15550 break;
15551 }
15552 break;
15553 case DW_AT_linkage_name:
15554 case DW_AT_MIPS_linkage_name:
15555 /* Note that both forms of linkage name might appear. We
15556 assume they will be the same, and we only store the last
15557 one we see. */
15558 if (cu->language == language_ada)
15559 part_die->name = DW_STRING (&attr);
15560 part_die->linkage_name = DW_STRING (&attr);
15561 break;
15562 case DW_AT_low_pc:
15563 has_low_pc_attr = 1;
15564 part_die->lowpc = attr_value_as_address (&attr);
15565 break;
15566 case DW_AT_high_pc:
15567 has_high_pc_attr = 1;
15568 part_die->highpc = attr_value_as_address (&attr);
15569 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15570 high_pc_relative = 1;
15571 break;
15572 case DW_AT_location:
15573 /* Support the .debug_loc offsets. */
15574 if (attr_form_is_block (&attr))
15575 {
15576 part_die->d.locdesc = DW_BLOCK (&attr);
15577 }
15578 else if (attr_form_is_section_offset (&attr))
15579 {
15580 dwarf2_complex_location_expr_complaint ();
15581 }
15582 else
15583 {
15584 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15585 "partial symbol information");
15586 }
15587 break;
15588 case DW_AT_external:
15589 part_die->is_external = DW_UNSND (&attr);
15590 break;
15591 case DW_AT_declaration:
15592 part_die->is_declaration = DW_UNSND (&attr);
15593 break;
15594 case DW_AT_type:
15595 part_die->has_type = 1;
15596 break;
15597 case DW_AT_abstract_origin:
15598 case DW_AT_specification:
15599 case DW_AT_extension:
15600 part_die->has_specification = 1;
15601 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15602 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15603 || cu->per_cu->is_dwz);
15604 break;
15605 case DW_AT_sibling:
15606 /* Ignore absolute siblings, they might point outside of
15607 the current compile unit. */
15608 if (attr.form == DW_FORM_ref_addr)
15609 complaint (&symfile_complaints,
15610 _("ignoring absolute DW_AT_sibling"));
15611 else
15612 {
15613 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15614 const gdb_byte *sibling_ptr = buffer + off;
15615
15616 if (sibling_ptr < info_ptr)
15617 complaint (&symfile_complaints,
15618 _("DW_AT_sibling points backwards"));
15619 else if (sibling_ptr > reader->buffer_end)
15620 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15621 else
15622 part_die->sibling = sibling_ptr;
15623 }
15624 break;
15625 case DW_AT_byte_size:
15626 part_die->has_byte_size = 1;
15627 break;
15628 case DW_AT_calling_convention:
15629 /* DWARF doesn't provide a way to identify a program's source-level
15630 entry point. DW_AT_calling_convention attributes are only meant
15631 to describe functions' calling conventions.
15632
15633 However, because it's a necessary piece of information in
15634 Fortran, and because DW_CC_program is the only piece of debugging
15635 information whose definition refers to a 'main program' at all,
15636 several compilers have begun marking Fortran main programs with
15637 DW_CC_program --- even when those functions use the standard
15638 calling conventions.
15639
15640 So until DWARF specifies a way to provide this information and
15641 compilers pick up the new representation, we'll support this
15642 practice. */
15643 if (DW_UNSND (&attr) == DW_CC_program
15644 && cu->language == language_fortran)
15645 set_objfile_main_name (objfile, part_die->name, language_fortran);
15646 break;
15647 case DW_AT_inline:
15648 if (DW_UNSND (&attr) == DW_INL_inlined
15649 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15650 part_die->may_be_inlined = 1;
15651 break;
15652
15653 case DW_AT_import:
15654 if (part_die->tag == DW_TAG_imported_unit)
15655 {
15656 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15657 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15658 || cu->per_cu->is_dwz);
15659 }
15660 break;
15661
15662 default:
15663 break;
15664 }
15665 }
15666
15667 if (high_pc_relative)
15668 part_die->highpc += part_die->lowpc;
15669
15670 if (has_low_pc_attr && has_high_pc_attr)
15671 {
15672 /* When using the GNU linker, .gnu.linkonce. sections are used to
15673 eliminate duplicate copies of functions and vtables and such.
15674 The linker will arbitrarily choose one and discard the others.
15675 The AT_*_pc values for such functions refer to local labels in
15676 these sections. If the section from that file was discarded, the
15677 labels are not in the output, so the relocs get a value of 0.
15678 If this is a discarded function, mark the pc bounds as invalid,
15679 so that GDB will ignore it. */
15680 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15681 {
15682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15683
15684 complaint (&symfile_complaints,
15685 _("DW_AT_low_pc %s is zero "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch, part_die->lowpc),
15688 part_die->offset.sect_off, objfile_name (objfile));
15689 }
15690 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15691 else if (part_die->lowpc >= part_die->highpc)
15692 {
15693 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15694
15695 complaint (&symfile_complaints,
15696 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15697 "for DIE at 0x%x [in module %s]"),
15698 paddress (gdbarch, part_die->lowpc),
15699 paddress (gdbarch, part_die->highpc),
15700 part_die->offset.sect_off, objfile_name (objfile));
15701 }
15702 else
15703 part_die->has_pc_info = 1;
15704 }
15705
15706 return info_ptr;
15707 }
15708
15709 /* Find a cached partial DIE at OFFSET in CU. */
15710
15711 static struct partial_die_info *
15712 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15713 {
15714 struct partial_die_info *lookup_die = NULL;
15715 struct partial_die_info part_die;
15716
15717 part_die.offset = offset;
15718 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15719 offset.sect_off);
15720
15721 return lookup_die;
15722 }
15723
15724 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15725 except in the case of .debug_types DIEs which do not reference
15726 outside their CU (they do however referencing other types via
15727 DW_FORM_ref_sig8). */
15728
15729 static struct partial_die_info *
15730 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15731 {
15732 struct objfile *objfile = cu->objfile;
15733 struct dwarf2_per_cu_data *per_cu = NULL;
15734 struct partial_die_info *pd = NULL;
15735
15736 if (offset_in_dwz == cu->per_cu->is_dwz
15737 && offset_in_cu_p (&cu->header, offset))
15738 {
15739 pd = find_partial_die_in_comp_unit (offset, cu);
15740 if (pd != NULL)
15741 return pd;
15742 /* We missed recording what we needed.
15743 Load all dies and try again. */
15744 per_cu = cu->per_cu;
15745 }
15746 else
15747 {
15748 /* TUs don't reference other CUs/TUs (except via type signatures). */
15749 if (cu->per_cu->is_debug_types)
15750 {
15751 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15752 " external reference to offset 0x%lx [in module %s].\n"),
15753 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15754 bfd_get_filename (objfile->obfd));
15755 }
15756 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15757 objfile);
15758
15759 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15760 load_partial_comp_unit (per_cu);
15761
15762 per_cu->cu->last_used = 0;
15763 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15764 }
15765
15766 /* If we didn't find it, and not all dies have been loaded,
15767 load them all and try again. */
15768
15769 if (pd == NULL && per_cu->load_all_dies == 0)
15770 {
15771 per_cu->load_all_dies = 1;
15772
15773 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15774 THIS_CU->cu may already be in use. So we can't just free it and
15775 replace its DIEs with the ones we read in. Instead, we leave those
15776 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15777 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15778 set. */
15779 load_partial_comp_unit (per_cu);
15780
15781 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15782 }
15783
15784 if (pd == NULL)
15785 internal_error (__FILE__, __LINE__,
15786 _("could not find partial DIE 0x%x "
15787 "in cache [from module %s]\n"),
15788 offset.sect_off, bfd_get_filename (objfile->obfd));
15789 return pd;
15790 }
15791
15792 /* See if we can figure out if the class lives in a namespace. We do
15793 this by looking for a member function; its demangled name will
15794 contain namespace info, if there is any. */
15795
15796 static void
15797 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15798 struct dwarf2_cu *cu)
15799 {
15800 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15801 what template types look like, because the demangler
15802 frequently doesn't give the same name as the debug info. We
15803 could fix this by only using the demangled name to get the
15804 prefix (but see comment in read_structure_type). */
15805
15806 struct partial_die_info *real_pdi;
15807 struct partial_die_info *child_pdi;
15808
15809 /* If this DIE (this DIE's specification, if any) has a parent, then
15810 we should not do this. We'll prepend the parent's fully qualified
15811 name when we create the partial symbol. */
15812
15813 real_pdi = struct_pdi;
15814 while (real_pdi->has_specification)
15815 real_pdi = find_partial_die (real_pdi->spec_offset,
15816 real_pdi->spec_is_dwz, cu);
15817
15818 if (real_pdi->die_parent != NULL)
15819 return;
15820
15821 for (child_pdi = struct_pdi->die_child;
15822 child_pdi != NULL;
15823 child_pdi = child_pdi->die_sibling)
15824 {
15825 if (child_pdi->tag == DW_TAG_subprogram
15826 && child_pdi->linkage_name != NULL)
15827 {
15828 char *actual_class_name
15829 = language_class_name_from_physname (cu->language_defn,
15830 child_pdi->linkage_name);
15831 if (actual_class_name != NULL)
15832 {
15833 struct_pdi->name
15834 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15835 actual_class_name,
15836 strlen (actual_class_name));
15837 xfree (actual_class_name);
15838 }
15839 break;
15840 }
15841 }
15842 }
15843
15844 /* Adjust PART_DIE before generating a symbol for it. This function
15845 may set the is_external flag or change the DIE's name. */
15846
15847 static void
15848 fixup_partial_die (struct partial_die_info *part_die,
15849 struct dwarf2_cu *cu)
15850 {
15851 /* Once we've fixed up a die, there's no point in doing so again.
15852 This also avoids a memory leak if we were to call
15853 guess_partial_die_structure_name multiple times. */
15854 if (part_die->fixup_called)
15855 return;
15856
15857 /* If we found a reference attribute and the DIE has no name, try
15858 to find a name in the referred to DIE. */
15859
15860 if (part_die->name == NULL && part_die->has_specification)
15861 {
15862 struct partial_die_info *spec_die;
15863
15864 spec_die = find_partial_die (part_die->spec_offset,
15865 part_die->spec_is_dwz, cu);
15866
15867 fixup_partial_die (spec_die, cu);
15868
15869 if (spec_die->name)
15870 {
15871 part_die->name = spec_die->name;
15872
15873 /* Copy DW_AT_external attribute if it is set. */
15874 if (spec_die->is_external)
15875 part_die->is_external = spec_die->is_external;
15876 }
15877 }
15878
15879 /* Set default names for some unnamed DIEs. */
15880
15881 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15882 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15883
15884 /* If there is no parent die to provide a namespace, and there are
15885 children, see if we can determine the namespace from their linkage
15886 name. */
15887 if (cu->language == language_cplus
15888 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15889 && part_die->die_parent == NULL
15890 && part_die->has_children
15891 && (part_die->tag == DW_TAG_class_type
15892 || part_die->tag == DW_TAG_structure_type
15893 || part_die->tag == DW_TAG_union_type))
15894 guess_partial_die_structure_name (part_die, cu);
15895
15896 /* GCC might emit a nameless struct or union that has a linkage
15897 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15898 if (part_die->name == NULL
15899 && (part_die->tag == DW_TAG_class_type
15900 || part_die->tag == DW_TAG_interface_type
15901 || part_die->tag == DW_TAG_structure_type
15902 || part_die->tag == DW_TAG_union_type)
15903 && part_die->linkage_name != NULL)
15904 {
15905 char *demangled;
15906
15907 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15908 if (demangled)
15909 {
15910 const char *base;
15911
15912 /* Strip any leading namespaces/classes, keep only the base name.
15913 DW_AT_name for named DIEs does not contain the prefixes. */
15914 base = strrchr (demangled, ':');
15915 if (base && base > demangled && base[-1] == ':')
15916 base++;
15917 else
15918 base = demangled;
15919
15920 part_die->name
15921 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15922 base, strlen (base));
15923 xfree (demangled);
15924 }
15925 }
15926
15927 part_die->fixup_called = 1;
15928 }
15929
15930 /* Read an attribute value described by an attribute form. */
15931
15932 static const gdb_byte *
15933 read_attribute_value (const struct die_reader_specs *reader,
15934 struct attribute *attr, unsigned form,
15935 const gdb_byte *info_ptr)
15936 {
15937 struct dwarf2_cu *cu = reader->cu;
15938 bfd *abfd = reader->abfd;
15939 struct comp_unit_head *cu_header = &cu->header;
15940 unsigned int bytes_read;
15941 struct dwarf_block *blk;
15942
15943 attr->form = form;
15944 switch (form)
15945 {
15946 case DW_FORM_ref_addr:
15947 if (cu->header.version == 2)
15948 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15949 else
15950 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15951 &cu->header, &bytes_read);
15952 info_ptr += bytes_read;
15953 break;
15954 case DW_FORM_GNU_ref_alt:
15955 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15956 info_ptr += bytes_read;
15957 break;
15958 case DW_FORM_addr:
15959 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15960 info_ptr += bytes_read;
15961 break;
15962 case DW_FORM_block2:
15963 blk = dwarf_alloc_block (cu);
15964 blk->size = read_2_bytes (abfd, info_ptr);
15965 info_ptr += 2;
15966 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15967 info_ptr += blk->size;
15968 DW_BLOCK (attr) = blk;
15969 break;
15970 case DW_FORM_block4:
15971 blk = dwarf_alloc_block (cu);
15972 blk->size = read_4_bytes (abfd, info_ptr);
15973 info_ptr += 4;
15974 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15975 info_ptr += blk->size;
15976 DW_BLOCK (attr) = blk;
15977 break;
15978 case DW_FORM_data2:
15979 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15980 info_ptr += 2;
15981 break;
15982 case DW_FORM_data4:
15983 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15984 info_ptr += 4;
15985 break;
15986 case DW_FORM_data8:
15987 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15988 info_ptr += 8;
15989 break;
15990 case DW_FORM_sec_offset:
15991 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15992 info_ptr += bytes_read;
15993 break;
15994 case DW_FORM_string:
15995 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15996 DW_STRING_IS_CANONICAL (attr) = 0;
15997 info_ptr += bytes_read;
15998 break;
15999 case DW_FORM_strp:
16000 if (!cu->per_cu->is_dwz)
16001 {
16002 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16003 &bytes_read);
16004 DW_STRING_IS_CANONICAL (attr) = 0;
16005 info_ptr += bytes_read;
16006 break;
16007 }
16008 /* FALLTHROUGH */
16009 case DW_FORM_GNU_strp_alt:
16010 {
16011 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16012 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16013 &bytes_read);
16014
16015 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16016 DW_STRING_IS_CANONICAL (attr) = 0;
16017 info_ptr += bytes_read;
16018 }
16019 break;
16020 case DW_FORM_exprloc:
16021 case DW_FORM_block:
16022 blk = dwarf_alloc_block (cu);
16023 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16024 info_ptr += bytes_read;
16025 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16026 info_ptr += blk->size;
16027 DW_BLOCK (attr) = blk;
16028 break;
16029 case DW_FORM_block1:
16030 blk = dwarf_alloc_block (cu);
16031 blk->size = read_1_byte (abfd, info_ptr);
16032 info_ptr += 1;
16033 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16034 info_ptr += blk->size;
16035 DW_BLOCK (attr) = blk;
16036 break;
16037 case DW_FORM_data1:
16038 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16039 info_ptr += 1;
16040 break;
16041 case DW_FORM_flag:
16042 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16043 info_ptr += 1;
16044 break;
16045 case DW_FORM_flag_present:
16046 DW_UNSND (attr) = 1;
16047 break;
16048 case DW_FORM_sdata:
16049 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16050 info_ptr += bytes_read;
16051 break;
16052 case DW_FORM_udata:
16053 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16054 info_ptr += bytes_read;
16055 break;
16056 case DW_FORM_ref1:
16057 DW_UNSND (attr) = (cu->header.offset.sect_off
16058 + read_1_byte (abfd, info_ptr));
16059 info_ptr += 1;
16060 break;
16061 case DW_FORM_ref2:
16062 DW_UNSND (attr) = (cu->header.offset.sect_off
16063 + read_2_bytes (abfd, info_ptr));
16064 info_ptr += 2;
16065 break;
16066 case DW_FORM_ref4:
16067 DW_UNSND (attr) = (cu->header.offset.sect_off
16068 + read_4_bytes (abfd, info_ptr));
16069 info_ptr += 4;
16070 break;
16071 case DW_FORM_ref8:
16072 DW_UNSND (attr) = (cu->header.offset.sect_off
16073 + read_8_bytes (abfd, info_ptr));
16074 info_ptr += 8;
16075 break;
16076 case DW_FORM_ref_sig8:
16077 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16078 info_ptr += 8;
16079 break;
16080 case DW_FORM_ref_udata:
16081 DW_UNSND (attr) = (cu->header.offset.sect_off
16082 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16083 info_ptr += bytes_read;
16084 break;
16085 case DW_FORM_indirect:
16086 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16087 info_ptr += bytes_read;
16088 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16089 break;
16090 case DW_FORM_GNU_addr_index:
16091 if (reader->dwo_file == NULL)
16092 {
16093 /* For now flag a hard error.
16094 Later we can turn this into a complaint. */
16095 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16096 dwarf_form_name (form),
16097 bfd_get_filename (abfd));
16098 }
16099 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16100 info_ptr += bytes_read;
16101 break;
16102 case DW_FORM_GNU_str_index:
16103 if (reader->dwo_file == NULL)
16104 {
16105 /* For now flag a hard error.
16106 Later we can turn this into a complaint if warranted. */
16107 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16108 dwarf_form_name (form),
16109 bfd_get_filename (abfd));
16110 }
16111 {
16112 ULONGEST str_index =
16113 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16114
16115 DW_STRING (attr) = read_str_index (reader, str_index);
16116 DW_STRING_IS_CANONICAL (attr) = 0;
16117 info_ptr += bytes_read;
16118 }
16119 break;
16120 default:
16121 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16122 dwarf_form_name (form),
16123 bfd_get_filename (abfd));
16124 }
16125
16126 /* Super hack. */
16127 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16128 attr->form = DW_FORM_GNU_ref_alt;
16129
16130 /* We have seen instances where the compiler tried to emit a byte
16131 size attribute of -1 which ended up being encoded as an unsigned
16132 0xffffffff. Although 0xffffffff is technically a valid size value,
16133 an object of this size seems pretty unlikely so we can relatively
16134 safely treat these cases as if the size attribute was invalid and
16135 treat them as zero by default. */
16136 if (attr->name == DW_AT_byte_size
16137 && form == DW_FORM_data4
16138 && DW_UNSND (attr) >= 0xffffffff)
16139 {
16140 complaint
16141 (&symfile_complaints,
16142 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16143 hex_string (DW_UNSND (attr)));
16144 DW_UNSND (attr) = 0;
16145 }
16146
16147 return info_ptr;
16148 }
16149
16150 /* Read an attribute described by an abbreviated attribute. */
16151
16152 static const gdb_byte *
16153 read_attribute (const struct die_reader_specs *reader,
16154 struct attribute *attr, struct attr_abbrev *abbrev,
16155 const gdb_byte *info_ptr)
16156 {
16157 attr->name = abbrev->name;
16158 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16159 }
16160
16161 /* Read dwarf information from a buffer. */
16162
16163 static unsigned int
16164 read_1_byte (bfd *abfd, const gdb_byte *buf)
16165 {
16166 return bfd_get_8 (abfd, buf);
16167 }
16168
16169 static int
16170 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16171 {
16172 return bfd_get_signed_8 (abfd, buf);
16173 }
16174
16175 static unsigned int
16176 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16177 {
16178 return bfd_get_16 (abfd, buf);
16179 }
16180
16181 static int
16182 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16183 {
16184 return bfd_get_signed_16 (abfd, buf);
16185 }
16186
16187 static unsigned int
16188 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16189 {
16190 return bfd_get_32 (abfd, buf);
16191 }
16192
16193 static int
16194 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16195 {
16196 return bfd_get_signed_32 (abfd, buf);
16197 }
16198
16199 static ULONGEST
16200 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16201 {
16202 return bfd_get_64 (abfd, buf);
16203 }
16204
16205 static CORE_ADDR
16206 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16207 unsigned int *bytes_read)
16208 {
16209 struct comp_unit_head *cu_header = &cu->header;
16210 CORE_ADDR retval = 0;
16211
16212 if (cu_header->signed_addr_p)
16213 {
16214 switch (cu_header->addr_size)
16215 {
16216 case 2:
16217 retval = bfd_get_signed_16 (abfd, buf);
16218 break;
16219 case 4:
16220 retval = bfd_get_signed_32 (abfd, buf);
16221 break;
16222 case 8:
16223 retval = bfd_get_signed_64 (abfd, buf);
16224 break;
16225 default:
16226 internal_error (__FILE__, __LINE__,
16227 _("read_address: bad switch, signed [in module %s]"),
16228 bfd_get_filename (abfd));
16229 }
16230 }
16231 else
16232 {
16233 switch (cu_header->addr_size)
16234 {
16235 case 2:
16236 retval = bfd_get_16 (abfd, buf);
16237 break;
16238 case 4:
16239 retval = bfd_get_32 (abfd, buf);
16240 break;
16241 case 8:
16242 retval = bfd_get_64 (abfd, buf);
16243 break;
16244 default:
16245 internal_error (__FILE__, __LINE__,
16246 _("read_address: bad switch, "
16247 "unsigned [in module %s]"),
16248 bfd_get_filename (abfd));
16249 }
16250 }
16251
16252 *bytes_read = cu_header->addr_size;
16253 return retval;
16254 }
16255
16256 /* Read the initial length from a section. The (draft) DWARF 3
16257 specification allows the initial length to take up either 4 bytes
16258 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16259 bytes describe the length and all offsets will be 8 bytes in length
16260 instead of 4.
16261
16262 An older, non-standard 64-bit format is also handled by this
16263 function. The older format in question stores the initial length
16264 as an 8-byte quantity without an escape value. Lengths greater
16265 than 2^32 aren't very common which means that the initial 4 bytes
16266 is almost always zero. Since a length value of zero doesn't make
16267 sense for the 32-bit format, this initial zero can be considered to
16268 be an escape value which indicates the presence of the older 64-bit
16269 format. As written, the code can't detect (old format) lengths
16270 greater than 4GB. If it becomes necessary to handle lengths
16271 somewhat larger than 4GB, we could allow other small values (such
16272 as the non-sensical values of 1, 2, and 3) to also be used as
16273 escape values indicating the presence of the old format.
16274
16275 The value returned via bytes_read should be used to increment the
16276 relevant pointer after calling read_initial_length().
16277
16278 [ Note: read_initial_length() and read_offset() are based on the
16279 document entitled "DWARF Debugging Information Format", revision
16280 3, draft 8, dated November 19, 2001. This document was obtained
16281 from:
16282
16283 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16284
16285 This document is only a draft and is subject to change. (So beware.)
16286
16287 Details regarding the older, non-standard 64-bit format were
16288 determined empirically by examining 64-bit ELF files produced by
16289 the SGI toolchain on an IRIX 6.5 machine.
16290
16291 - Kevin, July 16, 2002
16292 ] */
16293
16294 static LONGEST
16295 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16296 {
16297 LONGEST length = bfd_get_32 (abfd, buf);
16298
16299 if (length == 0xffffffff)
16300 {
16301 length = bfd_get_64 (abfd, buf + 4);
16302 *bytes_read = 12;
16303 }
16304 else if (length == 0)
16305 {
16306 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16307 length = bfd_get_64 (abfd, buf);
16308 *bytes_read = 8;
16309 }
16310 else
16311 {
16312 *bytes_read = 4;
16313 }
16314
16315 return length;
16316 }
16317
16318 /* Cover function for read_initial_length.
16319 Returns the length of the object at BUF, and stores the size of the
16320 initial length in *BYTES_READ and stores the size that offsets will be in
16321 *OFFSET_SIZE.
16322 If the initial length size is not equivalent to that specified in
16323 CU_HEADER then issue a complaint.
16324 This is useful when reading non-comp-unit headers. */
16325
16326 static LONGEST
16327 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16328 const struct comp_unit_head *cu_header,
16329 unsigned int *bytes_read,
16330 unsigned int *offset_size)
16331 {
16332 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16333
16334 gdb_assert (cu_header->initial_length_size == 4
16335 || cu_header->initial_length_size == 8
16336 || cu_header->initial_length_size == 12);
16337
16338 if (cu_header->initial_length_size != *bytes_read)
16339 complaint (&symfile_complaints,
16340 _("intermixed 32-bit and 64-bit DWARF sections"));
16341
16342 *offset_size = (*bytes_read == 4) ? 4 : 8;
16343 return length;
16344 }
16345
16346 /* Read an offset from the data stream. The size of the offset is
16347 given by cu_header->offset_size. */
16348
16349 static LONGEST
16350 read_offset (bfd *abfd, const gdb_byte *buf,
16351 const struct comp_unit_head *cu_header,
16352 unsigned int *bytes_read)
16353 {
16354 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16355
16356 *bytes_read = cu_header->offset_size;
16357 return offset;
16358 }
16359
16360 /* Read an offset from the data stream. */
16361
16362 static LONGEST
16363 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16364 {
16365 LONGEST retval = 0;
16366
16367 switch (offset_size)
16368 {
16369 case 4:
16370 retval = bfd_get_32 (abfd, buf);
16371 break;
16372 case 8:
16373 retval = bfd_get_64 (abfd, buf);
16374 break;
16375 default:
16376 internal_error (__FILE__, __LINE__,
16377 _("read_offset_1: bad switch [in module %s]"),
16378 bfd_get_filename (abfd));
16379 }
16380
16381 return retval;
16382 }
16383
16384 static const gdb_byte *
16385 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16386 {
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the buffer, otherwise we have to copy the data to a buffer
16389 allocated on the temporary obstack. */
16390 gdb_assert (HOST_CHAR_BIT == 8);
16391 return buf;
16392 }
16393
16394 static const char *
16395 read_direct_string (bfd *abfd, const gdb_byte *buf,
16396 unsigned int *bytes_read_ptr)
16397 {
16398 /* If the size of a host char is 8 bits, we can return a pointer
16399 to the string, otherwise we have to copy the string to a buffer
16400 allocated on the temporary obstack. */
16401 gdb_assert (HOST_CHAR_BIT == 8);
16402 if (*buf == '\0')
16403 {
16404 *bytes_read_ptr = 1;
16405 return NULL;
16406 }
16407 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16408 return (const char *) buf;
16409 }
16410
16411 static const char *
16412 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16413 {
16414 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16415 if (dwarf2_per_objfile->str.buffer == NULL)
16416 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16417 bfd_get_filename (abfd));
16418 if (str_offset >= dwarf2_per_objfile->str.size)
16419 error (_("DW_FORM_strp pointing outside of "
16420 ".debug_str section [in module %s]"),
16421 bfd_get_filename (abfd));
16422 gdb_assert (HOST_CHAR_BIT == 8);
16423 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16424 return NULL;
16425 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16426 }
16427
16428 /* Read a string at offset STR_OFFSET in the .debug_str section from
16429 the .dwz file DWZ. Throw an error if the offset is too large. If
16430 the string consists of a single NUL byte, return NULL; otherwise
16431 return a pointer to the string. */
16432
16433 static const char *
16434 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16435 {
16436 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16437
16438 if (dwz->str.buffer == NULL)
16439 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16440 "section [in module %s]"),
16441 bfd_get_filename (dwz->dwz_bfd));
16442 if (str_offset >= dwz->str.size)
16443 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16444 ".debug_str section [in module %s]"),
16445 bfd_get_filename (dwz->dwz_bfd));
16446 gdb_assert (HOST_CHAR_BIT == 8);
16447 if (dwz->str.buffer[str_offset] == '\0')
16448 return NULL;
16449 return (const char *) (dwz->str.buffer + str_offset);
16450 }
16451
16452 static const char *
16453 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16454 const struct comp_unit_head *cu_header,
16455 unsigned int *bytes_read_ptr)
16456 {
16457 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16458
16459 return read_indirect_string_at_offset (abfd, str_offset);
16460 }
16461
16462 static ULONGEST
16463 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16464 unsigned int *bytes_read_ptr)
16465 {
16466 ULONGEST result;
16467 unsigned int num_read;
16468 int i, shift;
16469 unsigned char byte;
16470
16471 result = 0;
16472 shift = 0;
16473 num_read = 0;
16474 i = 0;
16475 while (1)
16476 {
16477 byte = bfd_get_8 (abfd, buf);
16478 buf++;
16479 num_read++;
16480 result |= ((ULONGEST) (byte & 127) << shift);
16481 if ((byte & 128) == 0)
16482 {
16483 break;
16484 }
16485 shift += 7;
16486 }
16487 *bytes_read_ptr = num_read;
16488 return result;
16489 }
16490
16491 static LONGEST
16492 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16493 unsigned int *bytes_read_ptr)
16494 {
16495 LONGEST result;
16496 int i, shift, num_read;
16497 unsigned char byte;
16498
16499 result = 0;
16500 shift = 0;
16501 num_read = 0;
16502 i = 0;
16503 while (1)
16504 {
16505 byte = bfd_get_8 (abfd, buf);
16506 buf++;
16507 num_read++;
16508 result |= ((LONGEST) (byte & 127) << shift);
16509 shift += 7;
16510 if ((byte & 128) == 0)
16511 {
16512 break;
16513 }
16514 }
16515 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16516 result |= -(((LONGEST) 1) << shift);
16517 *bytes_read_ptr = num_read;
16518 return result;
16519 }
16520
16521 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16522 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16523 ADDR_SIZE is the size of addresses from the CU header. */
16524
16525 static CORE_ADDR
16526 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16527 {
16528 struct objfile *objfile = dwarf2_per_objfile->objfile;
16529 bfd *abfd = objfile->obfd;
16530 const gdb_byte *info_ptr;
16531
16532 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16533 if (dwarf2_per_objfile->addr.buffer == NULL)
16534 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16535 objfile_name (objfile));
16536 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16537 error (_("DW_FORM_addr_index pointing outside of "
16538 ".debug_addr section [in module %s]"),
16539 objfile_name (objfile));
16540 info_ptr = (dwarf2_per_objfile->addr.buffer
16541 + addr_base + addr_index * addr_size);
16542 if (addr_size == 4)
16543 return bfd_get_32 (abfd, info_ptr);
16544 else
16545 return bfd_get_64 (abfd, info_ptr);
16546 }
16547
16548 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16549
16550 static CORE_ADDR
16551 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16552 {
16553 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16554 }
16555
16556 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16557
16558 static CORE_ADDR
16559 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16560 unsigned int *bytes_read)
16561 {
16562 bfd *abfd = cu->objfile->obfd;
16563 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16564
16565 return read_addr_index (cu, addr_index);
16566 }
16567
16568 /* Data structure to pass results from dwarf2_read_addr_index_reader
16569 back to dwarf2_read_addr_index. */
16570
16571 struct dwarf2_read_addr_index_data
16572 {
16573 ULONGEST addr_base;
16574 int addr_size;
16575 };
16576
16577 /* die_reader_func for dwarf2_read_addr_index. */
16578
16579 static void
16580 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16581 const gdb_byte *info_ptr,
16582 struct die_info *comp_unit_die,
16583 int has_children,
16584 void *data)
16585 {
16586 struct dwarf2_cu *cu = reader->cu;
16587 struct dwarf2_read_addr_index_data *aidata =
16588 (struct dwarf2_read_addr_index_data *) data;
16589
16590 aidata->addr_base = cu->addr_base;
16591 aidata->addr_size = cu->header.addr_size;
16592 }
16593
16594 /* Given an index in .debug_addr, fetch the value.
16595 NOTE: This can be called during dwarf expression evaluation,
16596 long after the debug information has been read, and thus per_cu->cu
16597 may no longer exist. */
16598
16599 CORE_ADDR
16600 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16601 unsigned int addr_index)
16602 {
16603 struct objfile *objfile = per_cu->objfile;
16604 struct dwarf2_cu *cu = per_cu->cu;
16605 ULONGEST addr_base;
16606 int addr_size;
16607
16608 /* This is intended to be called from outside this file. */
16609 dw2_setup (objfile);
16610
16611 /* We need addr_base and addr_size.
16612 If we don't have PER_CU->cu, we have to get it.
16613 Nasty, but the alternative is storing the needed info in PER_CU,
16614 which at this point doesn't seem justified: it's not clear how frequently
16615 it would get used and it would increase the size of every PER_CU.
16616 Entry points like dwarf2_per_cu_addr_size do a similar thing
16617 so we're not in uncharted territory here.
16618 Alas we need to be a bit more complicated as addr_base is contained
16619 in the DIE.
16620
16621 We don't need to read the entire CU(/TU).
16622 We just need the header and top level die.
16623
16624 IWBN to use the aging mechanism to let us lazily later discard the CU.
16625 For now we skip this optimization. */
16626
16627 if (cu != NULL)
16628 {
16629 addr_base = cu->addr_base;
16630 addr_size = cu->header.addr_size;
16631 }
16632 else
16633 {
16634 struct dwarf2_read_addr_index_data aidata;
16635
16636 /* Note: We can't use init_cutu_and_read_dies_simple here,
16637 we need addr_base. */
16638 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16639 dwarf2_read_addr_index_reader, &aidata);
16640 addr_base = aidata.addr_base;
16641 addr_size = aidata.addr_size;
16642 }
16643
16644 return read_addr_index_1 (addr_index, addr_base, addr_size);
16645 }
16646
16647 /* Given a DW_FORM_GNU_str_index, fetch the string.
16648 This is only used by the Fission support. */
16649
16650 static const char *
16651 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16652 {
16653 struct objfile *objfile = dwarf2_per_objfile->objfile;
16654 const char *objf_name = objfile_name (objfile);
16655 bfd *abfd = objfile->obfd;
16656 struct dwarf2_cu *cu = reader->cu;
16657 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16658 struct dwarf2_section_info *str_offsets_section =
16659 &reader->dwo_file->sections.str_offsets;
16660 const gdb_byte *info_ptr;
16661 ULONGEST str_offset;
16662 static const char form_name[] = "DW_FORM_GNU_str_index";
16663
16664 dwarf2_read_section (objfile, str_section);
16665 dwarf2_read_section (objfile, str_offsets_section);
16666 if (str_section->buffer == NULL)
16667 error (_("%s used without .debug_str.dwo section"
16668 " in CU at offset 0x%lx [in module %s]"),
16669 form_name, (long) cu->header.offset.sect_off, objf_name);
16670 if (str_offsets_section->buffer == NULL)
16671 error (_("%s used without .debug_str_offsets.dwo section"
16672 " in CU at offset 0x%lx [in module %s]"),
16673 form_name, (long) cu->header.offset.sect_off, objf_name);
16674 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16675 error (_("%s pointing outside of .debug_str_offsets.dwo"
16676 " section in CU at offset 0x%lx [in module %s]"),
16677 form_name, (long) cu->header.offset.sect_off, objf_name);
16678 info_ptr = (str_offsets_section->buffer
16679 + str_index * cu->header.offset_size);
16680 if (cu->header.offset_size == 4)
16681 str_offset = bfd_get_32 (abfd, info_ptr);
16682 else
16683 str_offset = bfd_get_64 (abfd, info_ptr);
16684 if (str_offset >= str_section->size)
16685 error (_("Offset from %s pointing outside of"
16686 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16687 form_name, (long) cu->header.offset.sect_off, objf_name);
16688 return (const char *) (str_section->buffer + str_offset);
16689 }
16690
16691 /* Return the length of an LEB128 number in BUF. */
16692
16693 static int
16694 leb128_size (const gdb_byte *buf)
16695 {
16696 const gdb_byte *begin = buf;
16697 gdb_byte byte;
16698
16699 while (1)
16700 {
16701 byte = *buf++;
16702 if ((byte & 128) == 0)
16703 return buf - begin;
16704 }
16705 }
16706
16707 static void
16708 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16709 {
16710 switch (lang)
16711 {
16712 case DW_LANG_C89:
16713 case DW_LANG_C99:
16714 case DW_LANG_C:
16715 case DW_LANG_UPC:
16716 cu->language = language_c;
16717 break;
16718 case DW_LANG_C_plus_plus:
16719 cu->language = language_cplus;
16720 break;
16721 case DW_LANG_D:
16722 cu->language = language_d;
16723 break;
16724 case DW_LANG_Fortran77:
16725 case DW_LANG_Fortran90:
16726 case DW_LANG_Fortran95:
16727 cu->language = language_fortran;
16728 break;
16729 case DW_LANG_Go:
16730 cu->language = language_go;
16731 break;
16732 case DW_LANG_Mips_Assembler:
16733 cu->language = language_asm;
16734 break;
16735 case DW_LANG_Java:
16736 cu->language = language_java;
16737 break;
16738 case DW_LANG_Ada83:
16739 case DW_LANG_Ada95:
16740 cu->language = language_ada;
16741 break;
16742 case DW_LANG_Modula2:
16743 cu->language = language_m2;
16744 break;
16745 case DW_LANG_Pascal83:
16746 cu->language = language_pascal;
16747 break;
16748 case DW_LANG_ObjC:
16749 cu->language = language_objc;
16750 break;
16751 case DW_LANG_Cobol74:
16752 case DW_LANG_Cobol85:
16753 default:
16754 cu->language = language_minimal;
16755 break;
16756 }
16757 cu->language_defn = language_def (cu->language);
16758 }
16759
16760 /* Return the named attribute or NULL if not there. */
16761
16762 static struct attribute *
16763 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16764 {
16765 for (;;)
16766 {
16767 unsigned int i;
16768 struct attribute *spec = NULL;
16769
16770 for (i = 0; i < die->num_attrs; ++i)
16771 {
16772 if (die->attrs[i].name == name)
16773 return &die->attrs[i];
16774 if (die->attrs[i].name == DW_AT_specification
16775 || die->attrs[i].name == DW_AT_abstract_origin)
16776 spec = &die->attrs[i];
16777 }
16778
16779 if (!spec)
16780 break;
16781
16782 die = follow_die_ref (die, spec, &cu);
16783 }
16784
16785 return NULL;
16786 }
16787
16788 /* Return the named attribute or NULL if not there,
16789 but do not follow DW_AT_specification, etc.
16790 This is for use in contexts where we're reading .debug_types dies.
16791 Following DW_AT_specification, DW_AT_abstract_origin will take us
16792 back up the chain, and we want to go down. */
16793
16794 static struct attribute *
16795 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16796 {
16797 unsigned int i;
16798
16799 for (i = 0; i < die->num_attrs; ++i)
16800 if (die->attrs[i].name == name)
16801 return &die->attrs[i];
16802
16803 return NULL;
16804 }
16805
16806 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16807 and holds a non-zero value. This function should only be used for
16808 DW_FORM_flag or DW_FORM_flag_present attributes. */
16809
16810 static int
16811 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16812 {
16813 struct attribute *attr = dwarf2_attr (die, name, cu);
16814
16815 return (attr && DW_UNSND (attr));
16816 }
16817
16818 static int
16819 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16820 {
16821 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16822 which value is non-zero. However, we have to be careful with
16823 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16824 (via dwarf2_flag_true_p) follows this attribute. So we may
16825 end up accidently finding a declaration attribute that belongs
16826 to a different DIE referenced by the specification attribute,
16827 even though the given DIE does not have a declaration attribute. */
16828 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16829 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16830 }
16831
16832 /* Return the die giving the specification for DIE, if there is
16833 one. *SPEC_CU is the CU containing DIE on input, and the CU
16834 containing the return value on output. If there is no
16835 specification, but there is an abstract origin, that is
16836 returned. */
16837
16838 static struct die_info *
16839 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16840 {
16841 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16842 *spec_cu);
16843
16844 if (spec_attr == NULL)
16845 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16846
16847 if (spec_attr == NULL)
16848 return NULL;
16849 else
16850 return follow_die_ref (die, spec_attr, spec_cu);
16851 }
16852
16853 /* Free the line_header structure *LH, and any arrays and strings it
16854 refers to.
16855 NOTE: This is also used as a "cleanup" function. */
16856
16857 static void
16858 free_line_header (struct line_header *lh)
16859 {
16860 if (lh->standard_opcode_lengths)
16861 xfree (lh->standard_opcode_lengths);
16862
16863 /* Remember that all the lh->file_names[i].name pointers are
16864 pointers into debug_line_buffer, and don't need to be freed. */
16865 if (lh->file_names)
16866 xfree (lh->file_names);
16867
16868 /* Similarly for the include directory names. */
16869 if (lh->include_dirs)
16870 xfree (lh->include_dirs);
16871
16872 xfree (lh);
16873 }
16874
16875 /* Add an entry to LH's include directory table. */
16876
16877 static void
16878 add_include_dir (struct line_header *lh, const char *include_dir)
16879 {
16880 /* Grow the array if necessary. */
16881 if (lh->include_dirs_size == 0)
16882 {
16883 lh->include_dirs_size = 1; /* for testing */
16884 lh->include_dirs = xmalloc (lh->include_dirs_size
16885 * sizeof (*lh->include_dirs));
16886 }
16887 else if (lh->num_include_dirs >= lh->include_dirs_size)
16888 {
16889 lh->include_dirs_size *= 2;
16890 lh->include_dirs = xrealloc (lh->include_dirs,
16891 (lh->include_dirs_size
16892 * sizeof (*lh->include_dirs)));
16893 }
16894
16895 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16896 }
16897
16898 /* Add an entry to LH's file name table. */
16899
16900 static void
16901 add_file_name (struct line_header *lh,
16902 const char *name,
16903 unsigned int dir_index,
16904 unsigned int mod_time,
16905 unsigned int length)
16906 {
16907 struct file_entry *fe;
16908
16909 /* Grow the array if necessary. */
16910 if (lh->file_names_size == 0)
16911 {
16912 lh->file_names_size = 1; /* for testing */
16913 lh->file_names = xmalloc (lh->file_names_size
16914 * sizeof (*lh->file_names));
16915 }
16916 else if (lh->num_file_names >= lh->file_names_size)
16917 {
16918 lh->file_names_size *= 2;
16919 lh->file_names = xrealloc (lh->file_names,
16920 (lh->file_names_size
16921 * sizeof (*lh->file_names)));
16922 }
16923
16924 fe = &lh->file_names[lh->num_file_names++];
16925 fe->name = name;
16926 fe->dir_index = dir_index;
16927 fe->mod_time = mod_time;
16928 fe->length = length;
16929 fe->included_p = 0;
16930 fe->symtab = NULL;
16931 }
16932
16933 /* A convenience function to find the proper .debug_line section for a
16934 CU. */
16935
16936 static struct dwarf2_section_info *
16937 get_debug_line_section (struct dwarf2_cu *cu)
16938 {
16939 struct dwarf2_section_info *section;
16940
16941 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16942 DWO file. */
16943 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16944 section = &cu->dwo_unit->dwo_file->sections.line;
16945 else if (cu->per_cu->is_dwz)
16946 {
16947 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16948
16949 section = &dwz->line;
16950 }
16951 else
16952 section = &dwarf2_per_objfile->line;
16953
16954 return section;
16955 }
16956
16957 /* Read the statement program header starting at OFFSET in
16958 .debug_line, or .debug_line.dwo. Return a pointer
16959 to a struct line_header, allocated using xmalloc.
16960
16961 NOTE: the strings in the include directory and file name tables of
16962 the returned object point into the dwarf line section buffer,
16963 and must not be freed. */
16964
16965 static struct line_header *
16966 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16967 {
16968 struct cleanup *back_to;
16969 struct line_header *lh;
16970 const gdb_byte *line_ptr;
16971 unsigned int bytes_read, offset_size;
16972 int i;
16973 const char *cur_dir, *cur_file;
16974 struct dwarf2_section_info *section;
16975 bfd *abfd;
16976
16977 section = get_debug_line_section (cu);
16978 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16979 if (section->buffer == NULL)
16980 {
16981 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16982 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16983 else
16984 complaint (&symfile_complaints, _("missing .debug_line section"));
16985 return 0;
16986 }
16987
16988 /* We can't do this until we know the section is non-empty.
16989 Only then do we know we have such a section. */
16990 abfd = get_section_bfd_owner (section);
16991
16992 /* Make sure that at least there's room for the total_length field.
16993 That could be 12 bytes long, but we're just going to fudge that. */
16994 if (offset + 4 >= section->size)
16995 {
16996 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16997 return 0;
16998 }
16999
17000 lh = xmalloc (sizeof (*lh));
17001 memset (lh, 0, sizeof (*lh));
17002 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17003 (void *) lh);
17004
17005 line_ptr = section->buffer + offset;
17006
17007 /* Read in the header. */
17008 lh->total_length =
17009 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17010 &bytes_read, &offset_size);
17011 line_ptr += bytes_read;
17012 if (line_ptr + lh->total_length > (section->buffer + section->size))
17013 {
17014 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17015 do_cleanups (back_to);
17016 return 0;
17017 }
17018 lh->statement_program_end = line_ptr + lh->total_length;
17019 lh->version = read_2_bytes (abfd, line_ptr);
17020 line_ptr += 2;
17021 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17022 line_ptr += offset_size;
17023 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17024 line_ptr += 1;
17025 if (lh->version >= 4)
17026 {
17027 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17028 line_ptr += 1;
17029 }
17030 else
17031 lh->maximum_ops_per_instruction = 1;
17032
17033 if (lh->maximum_ops_per_instruction == 0)
17034 {
17035 lh->maximum_ops_per_instruction = 1;
17036 complaint (&symfile_complaints,
17037 _("invalid maximum_ops_per_instruction "
17038 "in `.debug_line' section"));
17039 }
17040
17041 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17042 line_ptr += 1;
17043 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17044 line_ptr += 1;
17045 lh->line_range = read_1_byte (abfd, line_ptr);
17046 line_ptr += 1;
17047 lh->opcode_base = read_1_byte (abfd, line_ptr);
17048 line_ptr += 1;
17049 lh->standard_opcode_lengths
17050 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17051
17052 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17053 for (i = 1; i < lh->opcode_base; ++i)
17054 {
17055 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17056 line_ptr += 1;
17057 }
17058
17059 /* Read directory table. */
17060 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17061 {
17062 line_ptr += bytes_read;
17063 add_include_dir (lh, cur_dir);
17064 }
17065 line_ptr += bytes_read;
17066
17067 /* Read file name table. */
17068 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17069 {
17070 unsigned int dir_index, mod_time, length;
17071
17072 line_ptr += bytes_read;
17073 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17074 line_ptr += bytes_read;
17075 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17076 line_ptr += bytes_read;
17077 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17078 line_ptr += bytes_read;
17079
17080 add_file_name (lh, cur_file, dir_index, mod_time, length);
17081 }
17082 line_ptr += bytes_read;
17083 lh->statement_program_start = line_ptr;
17084
17085 if (line_ptr > (section->buffer + section->size))
17086 complaint (&symfile_complaints,
17087 _("line number info header doesn't "
17088 "fit in `.debug_line' section"));
17089
17090 discard_cleanups (back_to);
17091 return lh;
17092 }
17093
17094 /* Subroutine of dwarf_decode_lines to simplify it.
17095 Return the file name of the psymtab for included file FILE_INDEX
17096 in line header LH of PST.
17097 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17098 If space for the result is malloc'd, it will be freed by a cleanup.
17099 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17100
17101 The function creates dangling cleanup registration. */
17102
17103 static const char *
17104 psymtab_include_file_name (const struct line_header *lh, int file_index,
17105 const struct partial_symtab *pst,
17106 const char *comp_dir)
17107 {
17108 const struct file_entry fe = lh->file_names [file_index];
17109 const char *include_name = fe.name;
17110 const char *include_name_to_compare = include_name;
17111 const char *dir_name = NULL;
17112 const char *pst_filename;
17113 char *copied_name = NULL;
17114 int file_is_pst;
17115
17116 if (fe.dir_index)
17117 dir_name = lh->include_dirs[fe.dir_index - 1];
17118
17119 if (!IS_ABSOLUTE_PATH (include_name)
17120 && (dir_name != NULL || comp_dir != NULL))
17121 {
17122 /* Avoid creating a duplicate psymtab for PST.
17123 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17124 Before we do the comparison, however, we need to account
17125 for DIR_NAME and COMP_DIR.
17126 First prepend dir_name (if non-NULL). If we still don't
17127 have an absolute path prepend comp_dir (if non-NULL).
17128 However, the directory we record in the include-file's
17129 psymtab does not contain COMP_DIR (to match the
17130 corresponding symtab(s)).
17131
17132 Example:
17133
17134 bash$ cd /tmp
17135 bash$ gcc -g ./hello.c
17136 include_name = "hello.c"
17137 dir_name = "."
17138 DW_AT_comp_dir = comp_dir = "/tmp"
17139 DW_AT_name = "./hello.c"
17140
17141 */
17142
17143 if (dir_name != NULL)
17144 {
17145 char *tem = concat (dir_name, SLASH_STRING,
17146 include_name, (char *)NULL);
17147
17148 make_cleanup (xfree, tem);
17149 include_name = tem;
17150 include_name_to_compare = include_name;
17151 }
17152 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17153 {
17154 char *tem = concat (comp_dir, SLASH_STRING,
17155 include_name, (char *)NULL);
17156
17157 make_cleanup (xfree, tem);
17158 include_name_to_compare = tem;
17159 }
17160 }
17161
17162 pst_filename = pst->filename;
17163 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17164 {
17165 copied_name = concat (pst->dirname, SLASH_STRING,
17166 pst_filename, (char *)NULL);
17167 pst_filename = copied_name;
17168 }
17169
17170 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17171
17172 if (copied_name != NULL)
17173 xfree (copied_name);
17174
17175 if (file_is_pst)
17176 return NULL;
17177 return include_name;
17178 }
17179
17180 /* Ignore this record_line request. */
17181
17182 static void
17183 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17184 {
17185 return;
17186 }
17187
17188 /* Return non-zero if we should add LINE to the line number table.
17189 LINE is the line to add, LAST_LINE is the last line that was added,
17190 LAST_SUBFILE is the subfile for LAST_LINE.
17191 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17192 had a non-zero discriminator.
17193
17194 We have to be careful in the presence of discriminators.
17195 E.g., for this line:
17196
17197 for (i = 0; i < 100000; i++);
17198
17199 clang can emit four line number entries for that one line,
17200 each with a different discriminator.
17201 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17202
17203 However, we want gdb to coalesce all four entries into one.
17204 Otherwise the user could stepi into the middle of the line and
17205 gdb would get confused about whether the pc really was in the
17206 middle of the line.
17207
17208 Things are further complicated by the fact that two consecutive
17209 line number entries for the same line is a heuristic used by gcc
17210 to denote the end of the prologue. So we can't just discard duplicate
17211 entries, we have to be selective about it. The heuristic we use is
17212 that we only collapse consecutive entries for the same line if at least
17213 one of those entries has a non-zero discriminator. PR 17276.
17214
17215 Note: Addresses in the line number state machine can never go backwards
17216 within one sequence, thus this coalescing is ok. */
17217
17218 static int
17219 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17220 int line_has_non_zero_discriminator,
17221 struct subfile *last_subfile)
17222 {
17223 if (current_subfile != last_subfile)
17224 return 1;
17225 if (line != last_line)
17226 return 1;
17227 /* Same line for the same file that we've seen already.
17228 As a last check, for pr 17276, only record the line if the line
17229 has never had a non-zero discriminator. */
17230 if (!line_has_non_zero_discriminator)
17231 return 1;
17232 return 0;
17233 }
17234
17235 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17236 in the line table of subfile SUBFILE. */
17237
17238 static void
17239 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17240 unsigned int line, CORE_ADDR address,
17241 record_line_ftype p_record_line)
17242 {
17243 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17244
17245 (*p_record_line) (subfile, line, addr);
17246 }
17247
17248 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17249 Mark the end of a set of line number records.
17250 The arguments are the same as for dwarf_record_line.
17251 If SUBFILE is NULL the request is ignored. */
17252
17253 static void
17254 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17255 CORE_ADDR address, record_line_ftype p_record_line)
17256 {
17257 if (subfile != NULL)
17258 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17259 }
17260
17261 /* Subroutine of dwarf_decode_lines to simplify it.
17262 Process the line number information in LH. */
17263
17264 static void
17265 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17266 const int decode_for_pst_p, CORE_ADDR lowpc)
17267 {
17268 const gdb_byte *line_ptr, *extended_end;
17269 const gdb_byte *line_end;
17270 unsigned int bytes_read, extended_len;
17271 unsigned char op_code, extended_op;
17272 CORE_ADDR baseaddr;
17273 struct objfile *objfile = cu->objfile;
17274 bfd *abfd = objfile->obfd;
17275 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17276 struct subfile *last_subfile = NULL;
17277 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17278 = record_line;
17279
17280 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17281
17282 line_ptr = lh->statement_program_start;
17283 line_end = lh->statement_program_end;
17284
17285 /* Read the statement sequences until there's nothing left. */
17286 while (line_ptr < line_end)
17287 {
17288 /* state machine registers */
17289 CORE_ADDR address = 0;
17290 unsigned int file = 1;
17291 unsigned int line = 1;
17292 int is_stmt = lh->default_is_stmt;
17293 int end_sequence = 0;
17294 unsigned char op_index = 0;
17295 unsigned int discriminator = 0;
17296 /* The last line number that was recorded, used to coalesce
17297 consecutive entries for the same line. This can happen, for
17298 example, when discriminators are present. PR 17276. */
17299 unsigned int last_line = 0;
17300 int line_has_non_zero_discriminator = 0;
17301
17302 if (!decode_for_pst_p && lh->num_file_names >= file)
17303 {
17304 /* Start a subfile for the current file of the state machine. */
17305 /* lh->include_dirs and lh->file_names are 0-based, but the
17306 directory and file name numbers in the statement program
17307 are 1-based. */
17308 struct file_entry *fe = &lh->file_names[file - 1];
17309 const char *dir = NULL;
17310
17311 if (fe->dir_index)
17312 dir = lh->include_dirs[fe->dir_index - 1];
17313
17314 dwarf2_start_subfile (fe->name, dir);
17315 }
17316
17317 /* Decode the table. */
17318 while (!end_sequence)
17319 {
17320 op_code = read_1_byte (abfd, line_ptr);
17321 line_ptr += 1;
17322 if (line_ptr > line_end)
17323 {
17324 dwarf2_debug_line_missing_end_sequence_complaint ();
17325 break;
17326 }
17327
17328 if (op_code >= lh->opcode_base)
17329 {
17330 /* Special opcode. */
17331 unsigned char adj_opcode;
17332 int line_delta;
17333
17334 adj_opcode = op_code - lh->opcode_base;
17335 address += (((op_index + (adj_opcode / lh->line_range))
17336 / lh->maximum_ops_per_instruction)
17337 * lh->minimum_instruction_length);
17338 op_index = ((op_index + (adj_opcode / lh->line_range))
17339 % lh->maximum_ops_per_instruction);
17340 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17341 line += line_delta;
17342 if (line_delta != 0)
17343 line_has_non_zero_discriminator = discriminator != 0;
17344 if (lh->num_file_names < file || file == 0)
17345 dwarf2_debug_line_missing_file_complaint ();
17346 /* For now we ignore lines not starting on an
17347 instruction boundary. */
17348 else if (op_index == 0)
17349 {
17350 lh->file_names[file - 1].included_p = 1;
17351 if (!decode_for_pst_p && is_stmt)
17352 {
17353 if (last_subfile != current_subfile)
17354 {
17355 dwarf_finish_line (gdbarch, last_subfile,
17356 address, p_record_line);
17357 }
17358 if (dwarf_record_line_p (line, last_line,
17359 line_has_non_zero_discriminator,
17360 last_subfile))
17361 {
17362 dwarf_record_line (gdbarch, current_subfile,
17363 line, address, p_record_line);
17364 }
17365 last_subfile = current_subfile;
17366 last_line = line;
17367 }
17368 }
17369 discriminator = 0;
17370 }
17371 else switch (op_code)
17372 {
17373 case DW_LNS_extended_op:
17374 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17375 &bytes_read);
17376 line_ptr += bytes_read;
17377 extended_end = line_ptr + extended_len;
17378 extended_op = read_1_byte (abfd, line_ptr);
17379 line_ptr += 1;
17380 switch (extended_op)
17381 {
17382 case DW_LNE_end_sequence:
17383 p_record_line = record_line;
17384 end_sequence = 1;
17385 break;
17386 case DW_LNE_set_address:
17387 address = read_address (abfd, line_ptr, cu, &bytes_read);
17388
17389 /* If address < lowpc then it's not a usable value, it's
17390 outside the pc range of the CU. However, we restrict
17391 the test to only address values of zero to preserve
17392 GDB's previous behaviour which is to handle the specific
17393 case of a function being GC'd by the linker. */
17394 if (address == 0 && address < lowpc)
17395 {
17396 /* This line table is for a function which has been
17397 GCd by the linker. Ignore it. PR gdb/12528 */
17398
17399 long line_offset
17400 = line_ptr - get_debug_line_section (cu)->buffer;
17401
17402 complaint (&symfile_complaints,
17403 _(".debug_line address at offset 0x%lx is 0 "
17404 "[in module %s]"),
17405 line_offset, objfile_name (objfile));
17406 p_record_line = noop_record_line;
17407 /* Note: p_record_line is left as noop_record_line
17408 until we see DW_LNE_end_sequence. */
17409 }
17410
17411 op_index = 0;
17412 line_ptr += bytes_read;
17413 address += baseaddr;
17414 break;
17415 case DW_LNE_define_file:
17416 {
17417 const char *cur_file;
17418 unsigned int dir_index, mod_time, length;
17419
17420 cur_file = read_direct_string (abfd, line_ptr,
17421 &bytes_read);
17422 line_ptr += bytes_read;
17423 dir_index =
17424 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17425 line_ptr += bytes_read;
17426 mod_time =
17427 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17428 line_ptr += bytes_read;
17429 length =
17430 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17431 line_ptr += bytes_read;
17432 add_file_name (lh, cur_file, dir_index, mod_time, length);
17433 }
17434 break;
17435 case DW_LNE_set_discriminator:
17436 /* The discriminator is not interesting to the debugger;
17437 just ignore it. We still need to check its value though:
17438 if there are consecutive entries for the same
17439 (non-prologue) line we want to coalesce them.
17440 PR 17276. */
17441 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17442 &bytes_read);
17443 line_has_non_zero_discriminator |= discriminator != 0;
17444 line_ptr += bytes_read;
17445 break;
17446 default:
17447 complaint (&symfile_complaints,
17448 _("mangled .debug_line section"));
17449 return;
17450 }
17451 /* Make sure that we parsed the extended op correctly. If e.g.
17452 we expected a different address size than the producer used,
17453 we may have read the wrong number of bytes. */
17454 if (line_ptr != extended_end)
17455 {
17456 complaint (&symfile_complaints,
17457 _("mangled .debug_line section"));
17458 return;
17459 }
17460 break;
17461 case DW_LNS_copy:
17462 if (lh->num_file_names < file || file == 0)
17463 dwarf2_debug_line_missing_file_complaint ();
17464 else
17465 {
17466 lh->file_names[file - 1].included_p = 1;
17467 if (!decode_for_pst_p && is_stmt)
17468 {
17469 if (last_subfile != current_subfile)
17470 {
17471 dwarf_finish_line (gdbarch, last_subfile,
17472 address, p_record_line);
17473 }
17474 if (dwarf_record_line_p (line, last_line,
17475 line_has_non_zero_discriminator,
17476 last_subfile))
17477 {
17478 dwarf_record_line (gdbarch, current_subfile,
17479 line, address, p_record_line);
17480 }
17481 last_subfile = current_subfile;
17482 last_line = line;
17483 }
17484 }
17485 discriminator = 0;
17486 break;
17487 case DW_LNS_advance_pc:
17488 {
17489 CORE_ADDR adjust
17490 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17491
17492 address += (((op_index + adjust)
17493 / lh->maximum_ops_per_instruction)
17494 * lh->minimum_instruction_length);
17495 op_index = ((op_index + adjust)
17496 % lh->maximum_ops_per_instruction);
17497 line_ptr += bytes_read;
17498 }
17499 break;
17500 case DW_LNS_advance_line:
17501 {
17502 int line_delta
17503 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17504
17505 line += line_delta;
17506 if (line_delta != 0)
17507 line_has_non_zero_discriminator = discriminator != 0;
17508 line_ptr += bytes_read;
17509 }
17510 break;
17511 case DW_LNS_set_file:
17512 {
17513 /* The arrays lh->include_dirs and lh->file_names are
17514 0-based, but the directory and file name numbers in
17515 the statement program are 1-based. */
17516 struct file_entry *fe;
17517 const char *dir = NULL;
17518
17519 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17520 line_ptr += bytes_read;
17521 if (lh->num_file_names < file || file == 0)
17522 dwarf2_debug_line_missing_file_complaint ();
17523 else
17524 {
17525 fe = &lh->file_names[file - 1];
17526 if (fe->dir_index)
17527 dir = lh->include_dirs[fe->dir_index - 1];
17528 if (!decode_for_pst_p)
17529 {
17530 last_subfile = current_subfile;
17531 line_has_non_zero_discriminator = discriminator != 0;
17532 dwarf2_start_subfile (fe->name, dir);
17533 }
17534 }
17535 }
17536 break;
17537 case DW_LNS_set_column:
17538 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17539 line_ptr += bytes_read;
17540 break;
17541 case DW_LNS_negate_stmt:
17542 is_stmt = (!is_stmt);
17543 break;
17544 case DW_LNS_set_basic_block:
17545 break;
17546 /* Add to the address register of the state machine the
17547 address increment value corresponding to special opcode
17548 255. I.e., this value is scaled by the minimum
17549 instruction length since special opcode 255 would have
17550 scaled the increment. */
17551 case DW_LNS_const_add_pc:
17552 {
17553 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17554
17555 address += (((op_index + adjust)
17556 / lh->maximum_ops_per_instruction)
17557 * lh->minimum_instruction_length);
17558 op_index = ((op_index + adjust)
17559 % lh->maximum_ops_per_instruction);
17560 }
17561 break;
17562 case DW_LNS_fixed_advance_pc:
17563 address += read_2_bytes (abfd, line_ptr);
17564 op_index = 0;
17565 line_ptr += 2;
17566 break;
17567 default:
17568 {
17569 /* Unknown standard opcode, ignore it. */
17570 int i;
17571
17572 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17573 {
17574 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17575 line_ptr += bytes_read;
17576 }
17577 }
17578 }
17579 }
17580 if (lh->num_file_names < file || file == 0)
17581 dwarf2_debug_line_missing_file_complaint ();
17582 else
17583 {
17584 lh->file_names[file - 1].included_p = 1;
17585 if (!decode_for_pst_p)
17586 {
17587 dwarf_finish_line (gdbarch, current_subfile, address,
17588 p_record_line);
17589 }
17590 }
17591 }
17592 }
17593
17594 /* Decode the Line Number Program (LNP) for the given line_header
17595 structure and CU. The actual information extracted and the type
17596 of structures created from the LNP depends on the value of PST.
17597
17598 1. If PST is NULL, then this procedure uses the data from the program
17599 to create all necessary symbol tables, and their linetables.
17600
17601 2. If PST is not NULL, this procedure reads the program to determine
17602 the list of files included by the unit represented by PST, and
17603 builds all the associated partial symbol tables.
17604
17605 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17606 It is used for relative paths in the line table.
17607 NOTE: When processing partial symtabs (pst != NULL),
17608 comp_dir == pst->dirname.
17609
17610 NOTE: It is important that psymtabs have the same file name (via strcmp)
17611 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17612 symtab we don't use it in the name of the psymtabs we create.
17613 E.g. expand_line_sal requires this when finding psymtabs to expand.
17614 A good testcase for this is mb-inline.exp.
17615
17616 LOWPC is the lowest address in CU (or 0 if not known). */
17617
17618 static void
17619 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17620 struct dwarf2_cu *cu, struct partial_symtab *pst,
17621 CORE_ADDR lowpc)
17622 {
17623 struct objfile *objfile = cu->objfile;
17624 const int decode_for_pst_p = (pst != NULL);
17625
17626 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17627
17628 if (decode_for_pst_p)
17629 {
17630 int file_index;
17631
17632 /* Now that we're done scanning the Line Header Program, we can
17633 create the psymtab of each included file. */
17634 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17635 if (lh->file_names[file_index].included_p == 1)
17636 {
17637 const char *include_name =
17638 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17639 if (include_name != NULL)
17640 dwarf2_create_include_psymtab (include_name, pst, objfile);
17641 }
17642 }
17643 else
17644 {
17645 /* Make sure a symtab is created for every file, even files
17646 which contain only variables (i.e. no code with associated
17647 line numbers). */
17648 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17649 int i;
17650
17651 for (i = 0; i < lh->num_file_names; i++)
17652 {
17653 const char *dir = NULL;
17654 struct file_entry *fe;
17655
17656 fe = &lh->file_names[i];
17657 if (fe->dir_index)
17658 dir = lh->include_dirs[fe->dir_index - 1];
17659 dwarf2_start_subfile (fe->name, dir);
17660
17661 if (current_subfile->symtab == NULL)
17662 {
17663 current_subfile->symtab
17664 = allocate_symtab (cust, current_subfile->name);
17665 }
17666 fe->symtab = current_subfile->symtab;
17667 }
17668 }
17669 }
17670
17671 /* Start a subfile for DWARF. FILENAME is the name of the file and
17672 DIRNAME the name of the source directory which contains FILENAME
17673 or NULL if not known.
17674 This routine tries to keep line numbers from identical absolute and
17675 relative file names in a common subfile.
17676
17677 Using the `list' example from the GDB testsuite, which resides in
17678 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17679 of /srcdir/list0.c yields the following debugging information for list0.c:
17680
17681 DW_AT_name: /srcdir/list0.c
17682 DW_AT_comp_dir: /compdir
17683 files.files[0].name: list0.h
17684 files.files[0].dir: /srcdir
17685 files.files[1].name: list0.c
17686 files.files[1].dir: /srcdir
17687
17688 The line number information for list0.c has to end up in a single
17689 subfile, so that `break /srcdir/list0.c:1' works as expected.
17690 start_subfile will ensure that this happens provided that we pass the
17691 concatenation of files.files[1].dir and files.files[1].name as the
17692 subfile's name. */
17693
17694 static void
17695 dwarf2_start_subfile (const char *filename, const char *dirname)
17696 {
17697 char *copy = NULL;
17698
17699 /* In order not to lose the line information directory,
17700 we concatenate it to the filename when it makes sense.
17701 Note that the Dwarf3 standard says (speaking of filenames in line
17702 information): ``The directory index is ignored for file names
17703 that represent full path names''. Thus ignoring dirname in the
17704 `else' branch below isn't an issue. */
17705
17706 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17707 {
17708 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17709 filename = copy;
17710 }
17711
17712 start_subfile (filename);
17713
17714 if (copy != NULL)
17715 xfree (copy);
17716 }
17717
17718 /* Start a symtab for DWARF.
17719 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17720
17721 static struct compunit_symtab *
17722 dwarf2_start_symtab (struct dwarf2_cu *cu,
17723 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17724 {
17725 struct compunit_symtab *cust
17726 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17727
17728 record_debugformat ("DWARF 2");
17729 record_producer (cu->producer);
17730
17731 /* We assume that we're processing GCC output. */
17732 processing_gcc_compilation = 2;
17733
17734 cu->processing_has_namespace_info = 0;
17735
17736 return cust;
17737 }
17738
17739 static void
17740 var_decode_location (struct attribute *attr, struct symbol *sym,
17741 struct dwarf2_cu *cu)
17742 {
17743 struct objfile *objfile = cu->objfile;
17744 struct comp_unit_head *cu_header = &cu->header;
17745
17746 /* NOTE drow/2003-01-30: There used to be a comment and some special
17747 code here to turn a symbol with DW_AT_external and a
17748 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17749 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17750 with some versions of binutils) where shared libraries could have
17751 relocations against symbols in their debug information - the
17752 minimal symbol would have the right address, but the debug info
17753 would not. It's no longer necessary, because we will explicitly
17754 apply relocations when we read in the debug information now. */
17755
17756 /* A DW_AT_location attribute with no contents indicates that a
17757 variable has been optimized away. */
17758 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17759 {
17760 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17761 return;
17762 }
17763
17764 /* Handle one degenerate form of location expression specially, to
17765 preserve GDB's previous behavior when section offsets are
17766 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17767 then mark this symbol as LOC_STATIC. */
17768
17769 if (attr_form_is_block (attr)
17770 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17771 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17772 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17773 && (DW_BLOCK (attr)->size
17774 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17775 {
17776 unsigned int dummy;
17777
17778 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17779 SYMBOL_VALUE_ADDRESS (sym) =
17780 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17781 else
17782 SYMBOL_VALUE_ADDRESS (sym) =
17783 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17784 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17785 fixup_symbol_section (sym, objfile);
17786 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17787 SYMBOL_SECTION (sym));
17788 return;
17789 }
17790
17791 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17792 expression evaluator, and use LOC_COMPUTED only when necessary
17793 (i.e. when the value of a register or memory location is
17794 referenced, or a thread-local block, etc.). Then again, it might
17795 not be worthwhile. I'm assuming that it isn't unless performance
17796 or memory numbers show me otherwise. */
17797
17798 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17799
17800 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17801 cu->has_loclist = 1;
17802 }
17803
17804 /* Given a pointer to a DWARF information entry, figure out if we need
17805 to make a symbol table entry for it, and if so, create a new entry
17806 and return a pointer to it.
17807 If TYPE is NULL, determine symbol type from the die, otherwise
17808 used the passed type.
17809 If SPACE is not NULL, use it to hold the new symbol. If it is
17810 NULL, allocate a new symbol on the objfile's obstack. */
17811
17812 static struct symbol *
17813 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17814 struct symbol *space)
17815 {
17816 struct objfile *objfile = cu->objfile;
17817 struct symbol *sym = NULL;
17818 const char *name;
17819 struct attribute *attr = NULL;
17820 struct attribute *attr2 = NULL;
17821 CORE_ADDR baseaddr;
17822 struct pending **list_to_add = NULL;
17823
17824 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17825
17826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17827
17828 name = dwarf2_name (die, cu);
17829 if (name)
17830 {
17831 const char *linkagename;
17832 int suppress_add = 0;
17833
17834 if (space)
17835 sym = space;
17836 else
17837 sym = allocate_symbol (objfile);
17838 OBJSTAT (objfile, n_syms++);
17839
17840 /* Cache this symbol's name and the name's demangled form (if any). */
17841 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17842 linkagename = dwarf2_physname (name, die, cu);
17843 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17844
17845 /* Fortran does not have mangling standard and the mangling does differ
17846 between gfortran, iFort etc. */
17847 if (cu->language == language_fortran
17848 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17849 symbol_set_demangled_name (&(sym->ginfo),
17850 dwarf2_full_name (name, die, cu),
17851 NULL);
17852
17853 /* Default assumptions.
17854 Use the passed type or decode it from the die. */
17855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17856 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17857 if (type != NULL)
17858 SYMBOL_TYPE (sym) = type;
17859 else
17860 SYMBOL_TYPE (sym) = die_type (die, cu);
17861 attr = dwarf2_attr (die,
17862 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17863 cu);
17864 if (attr)
17865 {
17866 SYMBOL_LINE (sym) = DW_UNSND (attr);
17867 }
17868
17869 attr = dwarf2_attr (die,
17870 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17871 cu);
17872 if (attr)
17873 {
17874 int file_index = DW_UNSND (attr);
17875
17876 if (cu->line_header == NULL
17877 || file_index > cu->line_header->num_file_names)
17878 complaint (&symfile_complaints,
17879 _("file index out of range"));
17880 else if (file_index > 0)
17881 {
17882 struct file_entry *fe;
17883
17884 fe = &cu->line_header->file_names[file_index - 1];
17885 SYMBOL_SYMTAB (sym) = fe->symtab;
17886 }
17887 }
17888
17889 switch (die->tag)
17890 {
17891 case DW_TAG_label:
17892 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17893 if (attr)
17894 SYMBOL_VALUE_ADDRESS (sym)
17895 = attr_value_as_address (attr) + baseaddr;
17896 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17897 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17898 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17899 add_symbol_to_list (sym, cu->list_in_scope);
17900 break;
17901 case DW_TAG_subprogram:
17902 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17903 finish_block. */
17904 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17905 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17906 if ((attr2 && (DW_UNSND (attr2) != 0))
17907 || cu->language == language_ada)
17908 {
17909 /* Subprograms marked external are stored as a global symbol.
17910 Ada subprograms, whether marked external or not, are always
17911 stored as a global symbol, because we want to be able to
17912 access them globally. For instance, we want to be able
17913 to break on a nested subprogram without having to
17914 specify the context. */
17915 list_to_add = &global_symbols;
17916 }
17917 else
17918 {
17919 list_to_add = cu->list_in_scope;
17920 }
17921 break;
17922 case DW_TAG_inlined_subroutine:
17923 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17924 finish_block. */
17925 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17926 SYMBOL_INLINED (sym) = 1;
17927 list_to_add = cu->list_in_scope;
17928 break;
17929 case DW_TAG_template_value_param:
17930 suppress_add = 1;
17931 /* Fall through. */
17932 case DW_TAG_constant:
17933 case DW_TAG_variable:
17934 case DW_TAG_member:
17935 /* Compilation with minimal debug info may result in
17936 variables with missing type entries. Change the
17937 misleading `void' type to something sensible. */
17938 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17939 SYMBOL_TYPE (sym)
17940 = objfile_type (objfile)->nodebug_data_symbol;
17941
17942 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17943 /* In the case of DW_TAG_member, we should only be called for
17944 static const members. */
17945 if (die->tag == DW_TAG_member)
17946 {
17947 /* dwarf2_add_field uses die_is_declaration,
17948 so we do the same. */
17949 gdb_assert (die_is_declaration (die, cu));
17950 gdb_assert (attr);
17951 }
17952 if (attr)
17953 {
17954 dwarf2_const_value (attr, sym, cu);
17955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17956 if (!suppress_add)
17957 {
17958 if (attr2 && (DW_UNSND (attr2) != 0))
17959 list_to_add = &global_symbols;
17960 else
17961 list_to_add = cu->list_in_scope;
17962 }
17963 break;
17964 }
17965 attr = dwarf2_attr (die, DW_AT_location, cu);
17966 if (attr)
17967 {
17968 var_decode_location (attr, sym, cu);
17969 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17970
17971 /* Fortran explicitly imports any global symbols to the local
17972 scope by DW_TAG_common_block. */
17973 if (cu->language == language_fortran && die->parent
17974 && die->parent->tag == DW_TAG_common_block)
17975 attr2 = NULL;
17976
17977 if (SYMBOL_CLASS (sym) == LOC_STATIC
17978 && SYMBOL_VALUE_ADDRESS (sym) == 0
17979 && !dwarf2_per_objfile->has_section_at_zero)
17980 {
17981 /* When a static variable is eliminated by the linker,
17982 the corresponding debug information is not stripped
17983 out, but the variable address is set to null;
17984 do not add such variables into symbol table. */
17985 }
17986 else if (attr2 && (DW_UNSND (attr2) != 0))
17987 {
17988 /* Workaround gfortran PR debug/40040 - it uses
17989 DW_AT_location for variables in -fPIC libraries which may
17990 get overriden by other libraries/executable and get
17991 a different address. Resolve it by the minimal symbol
17992 which may come from inferior's executable using copy
17993 relocation. Make this workaround only for gfortran as for
17994 other compilers GDB cannot guess the minimal symbol
17995 Fortran mangling kind. */
17996 if (cu->language == language_fortran && die->parent
17997 && die->parent->tag == DW_TAG_module
17998 && cu->producer
17999 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18000 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18001
18002 /* A variable with DW_AT_external is never static,
18003 but it may be block-scoped. */
18004 list_to_add = (cu->list_in_scope == &file_symbols
18005 ? &global_symbols : cu->list_in_scope);
18006 }
18007 else
18008 list_to_add = cu->list_in_scope;
18009 }
18010 else
18011 {
18012 /* We do not know the address of this symbol.
18013 If it is an external symbol and we have type information
18014 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18015 The address of the variable will then be determined from
18016 the minimal symbol table whenever the variable is
18017 referenced. */
18018 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18019
18020 /* Fortran explicitly imports any global symbols to the local
18021 scope by DW_TAG_common_block. */
18022 if (cu->language == language_fortran && die->parent
18023 && die->parent->tag == DW_TAG_common_block)
18024 {
18025 /* SYMBOL_CLASS doesn't matter here because
18026 read_common_block is going to reset it. */
18027 if (!suppress_add)
18028 list_to_add = cu->list_in_scope;
18029 }
18030 else if (attr2 && (DW_UNSND (attr2) != 0)
18031 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18032 {
18033 /* A variable with DW_AT_external is never static, but it
18034 may be block-scoped. */
18035 list_to_add = (cu->list_in_scope == &file_symbols
18036 ? &global_symbols : cu->list_in_scope);
18037
18038 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18039 }
18040 else if (!die_is_declaration (die, cu))
18041 {
18042 /* Use the default LOC_OPTIMIZED_OUT class. */
18043 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18044 if (!suppress_add)
18045 list_to_add = cu->list_in_scope;
18046 }
18047 }
18048 break;
18049 case DW_TAG_formal_parameter:
18050 /* If we are inside a function, mark this as an argument. If
18051 not, we might be looking at an argument to an inlined function
18052 when we do not have enough information to show inlined frames;
18053 pretend it's a local variable in that case so that the user can
18054 still see it. */
18055 if (context_stack_depth > 0
18056 && context_stack[context_stack_depth - 1].name != NULL)
18057 SYMBOL_IS_ARGUMENT (sym) = 1;
18058 attr = dwarf2_attr (die, DW_AT_location, cu);
18059 if (attr)
18060 {
18061 var_decode_location (attr, sym, cu);
18062 }
18063 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18064 if (attr)
18065 {
18066 dwarf2_const_value (attr, sym, cu);
18067 }
18068
18069 list_to_add = cu->list_in_scope;
18070 break;
18071 case DW_TAG_unspecified_parameters:
18072 /* From varargs functions; gdb doesn't seem to have any
18073 interest in this information, so just ignore it for now.
18074 (FIXME?) */
18075 break;
18076 case DW_TAG_template_type_param:
18077 suppress_add = 1;
18078 /* Fall through. */
18079 case DW_TAG_class_type:
18080 case DW_TAG_interface_type:
18081 case DW_TAG_structure_type:
18082 case DW_TAG_union_type:
18083 case DW_TAG_set_type:
18084 case DW_TAG_enumeration_type:
18085 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18086 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18087
18088 {
18089 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18090 really ever be static objects: otherwise, if you try
18091 to, say, break of a class's method and you're in a file
18092 which doesn't mention that class, it won't work unless
18093 the check for all static symbols in lookup_symbol_aux
18094 saves you. See the OtherFileClass tests in
18095 gdb.c++/namespace.exp. */
18096
18097 if (!suppress_add)
18098 {
18099 list_to_add = (cu->list_in_scope == &file_symbols
18100 && (cu->language == language_cplus
18101 || cu->language == language_java)
18102 ? &global_symbols : cu->list_in_scope);
18103
18104 /* The semantics of C++ state that "struct foo {
18105 ... }" also defines a typedef for "foo". A Java
18106 class declaration also defines a typedef for the
18107 class. */
18108 if (cu->language == language_cplus
18109 || cu->language == language_java
18110 || cu->language == language_ada)
18111 {
18112 /* The symbol's name is already allocated along
18113 with this objfile, so we don't need to
18114 duplicate it for the type. */
18115 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18116 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18117 }
18118 }
18119 }
18120 break;
18121 case DW_TAG_typedef:
18122 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18123 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18124 list_to_add = cu->list_in_scope;
18125 break;
18126 case DW_TAG_base_type:
18127 case DW_TAG_subrange_type:
18128 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18130 list_to_add = cu->list_in_scope;
18131 break;
18132 case DW_TAG_enumerator:
18133 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18134 if (attr)
18135 {
18136 dwarf2_const_value (attr, sym, cu);
18137 }
18138 {
18139 /* NOTE: carlton/2003-11-10: See comment above in the
18140 DW_TAG_class_type, etc. block. */
18141
18142 list_to_add = (cu->list_in_scope == &file_symbols
18143 && (cu->language == language_cplus
18144 || cu->language == language_java)
18145 ? &global_symbols : cu->list_in_scope);
18146 }
18147 break;
18148 case DW_TAG_imported_declaration:
18149 case DW_TAG_namespace:
18150 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18151 list_to_add = &global_symbols;
18152 break;
18153 case DW_TAG_module:
18154 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18155 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18156 list_to_add = &global_symbols;
18157 break;
18158 case DW_TAG_common_block:
18159 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18160 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18161 add_symbol_to_list (sym, cu->list_in_scope);
18162 break;
18163 default:
18164 /* Not a tag we recognize. Hopefully we aren't processing
18165 trash data, but since we must specifically ignore things
18166 we don't recognize, there is nothing else we should do at
18167 this point. */
18168 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18169 dwarf_tag_name (die->tag));
18170 break;
18171 }
18172
18173 if (suppress_add)
18174 {
18175 sym->hash_next = objfile->template_symbols;
18176 objfile->template_symbols = sym;
18177 list_to_add = NULL;
18178 }
18179
18180 if (list_to_add != NULL)
18181 add_symbol_to_list (sym, list_to_add);
18182
18183 /* For the benefit of old versions of GCC, check for anonymous
18184 namespaces based on the demangled name. */
18185 if (!cu->processing_has_namespace_info
18186 && cu->language == language_cplus)
18187 cp_scan_for_anonymous_namespaces (sym, objfile);
18188 }
18189 return (sym);
18190 }
18191
18192 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18193
18194 static struct symbol *
18195 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18196 {
18197 return new_symbol_full (die, type, cu, NULL);
18198 }
18199
18200 /* Given an attr with a DW_FORM_dataN value in host byte order,
18201 zero-extend it as appropriate for the symbol's type. The DWARF
18202 standard (v4) is not entirely clear about the meaning of using
18203 DW_FORM_dataN for a constant with a signed type, where the type is
18204 wider than the data. The conclusion of a discussion on the DWARF
18205 list was that this is unspecified. We choose to always zero-extend
18206 because that is the interpretation long in use by GCC. */
18207
18208 static gdb_byte *
18209 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18210 struct dwarf2_cu *cu, LONGEST *value, int bits)
18211 {
18212 struct objfile *objfile = cu->objfile;
18213 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18214 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18215 LONGEST l = DW_UNSND (attr);
18216
18217 if (bits < sizeof (*value) * 8)
18218 {
18219 l &= ((LONGEST) 1 << bits) - 1;
18220 *value = l;
18221 }
18222 else if (bits == sizeof (*value) * 8)
18223 *value = l;
18224 else
18225 {
18226 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18227 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18228 return bytes;
18229 }
18230
18231 return NULL;
18232 }
18233
18234 /* Read a constant value from an attribute. Either set *VALUE, or if
18235 the value does not fit in *VALUE, set *BYTES - either already
18236 allocated on the objfile obstack, or newly allocated on OBSTACK,
18237 or, set *BATON, if we translated the constant to a location
18238 expression. */
18239
18240 static void
18241 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18242 const char *name, struct obstack *obstack,
18243 struct dwarf2_cu *cu,
18244 LONGEST *value, const gdb_byte **bytes,
18245 struct dwarf2_locexpr_baton **baton)
18246 {
18247 struct objfile *objfile = cu->objfile;
18248 struct comp_unit_head *cu_header = &cu->header;
18249 struct dwarf_block *blk;
18250 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18251 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18252
18253 *value = 0;
18254 *bytes = NULL;
18255 *baton = NULL;
18256
18257 switch (attr->form)
18258 {
18259 case DW_FORM_addr:
18260 case DW_FORM_GNU_addr_index:
18261 {
18262 gdb_byte *data;
18263
18264 if (TYPE_LENGTH (type) != cu_header->addr_size)
18265 dwarf2_const_value_length_mismatch_complaint (name,
18266 cu_header->addr_size,
18267 TYPE_LENGTH (type));
18268 /* Symbols of this form are reasonably rare, so we just
18269 piggyback on the existing location code rather than writing
18270 a new implementation of symbol_computed_ops. */
18271 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18272 (*baton)->per_cu = cu->per_cu;
18273 gdb_assert ((*baton)->per_cu);
18274
18275 (*baton)->size = 2 + cu_header->addr_size;
18276 data = obstack_alloc (obstack, (*baton)->size);
18277 (*baton)->data = data;
18278
18279 data[0] = DW_OP_addr;
18280 store_unsigned_integer (&data[1], cu_header->addr_size,
18281 byte_order, DW_ADDR (attr));
18282 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18283 }
18284 break;
18285 case DW_FORM_string:
18286 case DW_FORM_strp:
18287 case DW_FORM_GNU_str_index:
18288 case DW_FORM_GNU_strp_alt:
18289 /* DW_STRING is already allocated on the objfile obstack, point
18290 directly to it. */
18291 *bytes = (const gdb_byte *) DW_STRING (attr);
18292 break;
18293 case DW_FORM_block1:
18294 case DW_FORM_block2:
18295 case DW_FORM_block4:
18296 case DW_FORM_block:
18297 case DW_FORM_exprloc:
18298 blk = DW_BLOCK (attr);
18299 if (TYPE_LENGTH (type) != blk->size)
18300 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18301 TYPE_LENGTH (type));
18302 *bytes = blk->data;
18303 break;
18304
18305 /* The DW_AT_const_value attributes are supposed to carry the
18306 symbol's value "represented as it would be on the target
18307 architecture." By the time we get here, it's already been
18308 converted to host endianness, so we just need to sign- or
18309 zero-extend it as appropriate. */
18310 case DW_FORM_data1:
18311 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18312 break;
18313 case DW_FORM_data2:
18314 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18315 break;
18316 case DW_FORM_data4:
18317 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18318 break;
18319 case DW_FORM_data8:
18320 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18321 break;
18322
18323 case DW_FORM_sdata:
18324 *value = DW_SND (attr);
18325 break;
18326
18327 case DW_FORM_udata:
18328 *value = DW_UNSND (attr);
18329 break;
18330
18331 default:
18332 complaint (&symfile_complaints,
18333 _("unsupported const value attribute form: '%s'"),
18334 dwarf_form_name (attr->form));
18335 *value = 0;
18336 break;
18337 }
18338 }
18339
18340
18341 /* Copy constant value from an attribute to a symbol. */
18342
18343 static void
18344 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18345 struct dwarf2_cu *cu)
18346 {
18347 struct objfile *objfile = cu->objfile;
18348 struct comp_unit_head *cu_header = &cu->header;
18349 LONGEST value;
18350 const gdb_byte *bytes;
18351 struct dwarf2_locexpr_baton *baton;
18352
18353 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18354 SYMBOL_PRINT_NAME (sym),
18355 &objfile->objfile_obstack, cu,
18356 &value, &bytes, &baton);
18357
18358 if (baton != NULL)
18359 {
18360 SYMBOL_LOCATION_BATON (sym) = baton;
18361 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18362 }
18363 else if (bytes != NULL)
18364 {
18365 SYMBOL_VALUE_BYTES (sym) = bytes;
18366 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18367 }
18368 else
18369 {
18370 SYMBOL_VALUE (sym) = value;
18371 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18372 }
18373 }
18374
18375 /* Return the type of the die in question using its DW_AT_type attribute. */
18376
18377 static struct type *
18378 die_type (struct die_info *die, struct dwarf2_cu *cu)
18379 {
18380 struct attribute *type_attr;
18381
18382 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18383 if (!type_attr)
18384 {
18385 /* A missing DW_AT_type represents a void type. */
18386 return objfile_type (cu->objfile)->builtin_void;
18387 }
18388
18389 return lookup_die_type (die, type_attr, cu);
18390 }
18391
18392 /* True iff CU's producer generates GNAT Ada auxiliary information
18393 that allows to find parallel types through that information instead
18394 of having to do expensive parallel lookups by type name. */
18395
18396 static int
18397 need_gnat_info (struct dwarf2_cu *cu)
18398 {
18399 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18400 of GNAT produces this auxiliary information, without any indication
18401 that it is produced. Part of enhancing the FSF version of GNAT
18402 to produce that information will be to put in place an indicator
18403 that we can use in order to determine whether the descriptive type
18404 info is available or not. One suggestion that has been made is
18405 to use a new attribute, attached to the CU die. For now, assume
18406 that the descriptive type info is not available. */
18407 return 0;
18408 }
18409
18410 /* Return the auxiliary type of the die in question using its
18411 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18412 attribute is not present. */
18413
18414 static struct type *
18415 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18416 {
18417 struct attribute *type_attr;
18418
18419 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18420 if (!type_attr)
18421 return NULL;
18422
18423 return lookup_die_type (die, type_attr, cu);
18424 }
18425
18426 /* If DIE has a descriptive_type attribute, then set the TYPE's
18427 descriptive type accordingly. */
18428
18429 static void
18430 set_descriptive_type (struct type *type, struct die_info *die,
18431 struct dwarf2_cu *cu)
18432 {
18433 struct type *descriptive_type = die_descriptive_type (die, cu);
18434
18435 if (descriptive_type)
18436 {
18437 ALLOCATE_GNAT_AUX_TYPE (type);
18438 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18439 }
18440 }
18441
18442 /* Return the containing type of the die in question using its
18443 DW_AT_containing_type attribute. */
18444
18445 static struct type *
18446 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18447 {
18448 struct attribute *type_attr;
18449
18450 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18451 if (!type_attr)
18452 error (_("Dwarf Error: Problem turning containing type into gdb type "
18453 "[in module %s]"), objfile_name (cu->objfile));
18454
18455 return lookup_die_type (die, type_attr, cu);
18456 }
18457
18458 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18459
18460 static struct type *
18461 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18462 {
18463 struct objfile *objfile = dwarf2_per_objfile->objfile;
18464 char *message, *saved;
18465
18466 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18467 objfile_name (objfile),
18468 cu->header.offset.sect_off,
18469 die->offset.sect_off);
18470 saved = obstack_copy0 (&objfile->objfile_obstack,
18471 message, strlen (message));
18472 xfree (message);
18473
18474 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18475 }
18476
18477 /* Look up the type of DIE in CU using its type attribute ATTR.
18478 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18479 DW_AT_containing_type.
18480 If there is no type substitute an error marker. */
18481
18482 static struct type *
18483 lookup_die_type (struct die_info *die, const struct attribute *attr,
18484 struct dwarf2_cu *cu)
18485 {
18486 struct objfile *objfile = cu->objfile;
18487 struct type *this_type;
18488
18489 gdb_assert (attr->name == DW_AT_type
18490 || attr->name == DW_AT_GNAT_descriptive_type
18491 || attr->name == DW_AT_containing_type);
18492
18493 /* First see if we have it cached. */
18494
18495 if (attr->form == DW_FORM_GNU_ref_alt)
18496 {
18497 struct dwarf2_per_cu_data *per_cu;
18498 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18499
18500 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18501 this_type = get_die_type_at_offset (offset, per_cu);
18502 }
18503 else if (attr_form_is_ref (attr))
18504 {
18505 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18506
18507 this_type = get_die_type_at_offset (offset, cu->per_cu);
18508 }
18509 else if (attr->form == DW_FORM_ref_sig8)
18510 {
18511 ULONGEST signature = DW_SIGNATURE (attr);
18512
18513 return get_signatured_type (die, signature, cu);
18514 }
18515 else
18516 {
18517 complaint (&symfile_complaints,
18518 _("Dwarf Error: Bad type attribute %s in DIE"
18519 " at 0x%x [in module %s]"),
18520 dwarf_attr_name (attr->name), die->offset.sect_off,
18521 objfile_name (objfile));
18522 return build_error_marker_type (cu, die);
18523 }
18524
18525 /* If not cached we need to read it in. */
18526
18527 if (this_type == NULL)
18528 {
18529 struct die_info *type_die = NULL;
18530 struct dwarf2_cu *type_cu = cu;
18531
18532 if (attr_form_is_ref (attr))
18533 type_die = follow_die_ref (die, attr, &type_cu);
18534 if (type_die == NULL)
18535 return build_error_marker_type (cu, die);
18536 /* If we find the type now, it's probably because the type came
18537 from an inter-CU reference and the type's CU got expanded before
18538 ours. */
18539 this_type = read_type_die (type_die, type_cu);
18540 }
18541
18542 /* If we still don't have a type use an error marker. */
18543
18544 if (this_type == NULL)
18545 return build_error_marker_type (cu, die);
18546
18547 return this_type;
18548 }
18549
18550 /* Return the type in DIE, CU.
18551 Returns NULL for invalid types.
18552
18553 This first does a lookup in die_type_hash,
18554 and only reads the die in if necessary.
18555
18556 NOTE: This can be called when reading in partial or full symbols. */
18557
18558 static struct type *
18559 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18560 {
18561 struct type *this_type;
18562
18563 this_type = get_die_type (die, cu);
18564 if (this_type)
18565 return this_type;
18566
18567 return read_type_die_1 (die, cu);
18568 }
18569
18570 /* Read the type in DIE, CU.
18571 Returns NULL for invalid types. */
18572
18573 static struct type *
18574 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18575 {
18576 struct type *this_type = NULL;
18577
18578 switch (die->tag)
18579 {
18580 case DW_TAG_class_type:
18581 case DW_TAG_interface_type:
18582 case DW_TAG_structure_type:
18583 case DW_TAG_union_type:
18584 this_type = read_structure_type (die, cu);
18585 break;
18586 case DW_TAG_enumeration_type:
18587 this_type = read_enumeration_type (die, cu);
18588 break;
18589 case DW_TAG_subprogram:
18590 case DW_TAG_subroutine_type:
18591 case DW_TAG_inlined_subroutine:
18592 this_type = read_subroutine_type (die, cu);
18593 break;
18594 case DW_TAG_array_type:
18595 this_type = read_array_type (die, cu);
18596 break;
18597 case DW_TAG_set_type:
18598 this_type = read_set_type (die, cu);
18599 break;
18600 case DW_TAG_pointer_type:
18601 this_type = read_tag_pointer_type (die, cu);
18602 break;
18603 case DW_TAG_ptr_to_member_type:
18604 this_type = read_tag_ptr_to_member_type (die, cu);
18605 break;
18606 case DW_TAG_reference_type:
18607 this_type = read_tag_reference_type (die, cu);
18608 break;
18609 case DW_TAG_const_type:
18610 this_type = read_tag_const_type (die, cu);
18611 break;
18612 case DW_TAG_volatile_type:
18613 this_type = read_tag_volatile_type (die, cu);
18614 break;
18615 case DW_TAG_restrict_type:
18616 this_type = read_tag_restrict_type (die, cu);
18617 break;
18618 case DW_TAG_string_type:
18619 this_type = read_tag_string_type (die, cu);
18620 break;
18621 case DW_TAG_typedef:
18622 this_type = read_typedef (die, cu);
18623 break;
18624 case DW_TAG_subrange_type:
18625 this_type = read_subrange_type (die, cu);
18626 break;
18627 case DW_TAG_base_type:
18628 this_type = read_base_type (die, cu);
18629 break;
18630 case DW_TAG_unspecified_type:
18631 this_type = read_unspecified_type (die, cu);
18632 break;
18633 case DW_TAG_namespace:
18634 this_type = read_namespace_type (die, cu);
18635 break;
18636 case DW_TAG_module:
18637 this_type = read_module_type (die, cu);
18638 break;
18639 default:
18640 complaint (&symfile_complaints,
18641 _("unexpected tag in read_type_die: '%s'"),
18642 dwarf_tag_name (die->tag));
18643 break;
18644 }
18645
18646 return this_type;
18647 }
18648
18649 /* See if we can figure out if the class lives in a namespace. We do
18650 this by looking for a member function; its demangled name will
18651 contain namespace info, if there is any.
18652 Return the computed name or NULL.
18653 Space for the result is allocated on the objfile's obstack.
18654 This is the full-die version of guess_partial_die_structure_name.
18655 In this case we know DIE has no useful parent. */
18656
18657 static char *
18658 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18659 {
18660 struct die_info *spec_die;
18661 struct dwarf2_cu *spec_cu;
18662 struct die_info *child;
18663
18664 spec_cu = cu;
18665 spec_die = die_specification (die, &spec_cu);
18666 if (spec_die != NULL)
18667 {
18668 die = spec_die;
18669 cu = spec_cu;
18670 }
18671
18672 for (child = die->child;
18673 child != NULL;
18674 child = child->sibling)
18675 {
18676 if (child->tag == DW_TAG_subprogram)
18677 {
18678 struct attribute *attr;
18679
18680 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18681 if (attr == NULL)
18682 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18683 if (attr != NULL)
18684 {
18685 char *actual_name
18686 = language_class_name_from_physname (cu->language_defn,
18687 DW_STRING (attr));
18688 char *name = NULL;
18689
18690 if (actual_name != NULL)
18691 {
18692 const char *die_name = dwarf2_name (die, cu);
18693
18694 if (die_name != NULL
18695 && strcmp (die_name, actual_name) != 0)
18696 {
18697 /* Strip off the class name from the full name.
18698 We want the prefix. */
18699 int die_name_len = strlen (die_name);
18700 int actual_name_len = strlen (actual_name);
18701
18702 /* Test for '::' as a sanity check. */
18703 if (actual_name_len > die_name_len + 2
18704 && actual_name[actual_name_len
18705 - die_name_len - 1] == ':')
18706 name =
18707 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18708 actual_name,
18709 actual_name_len - die_name_len - 2);
18710 }
18711 }
18712 xfree (actual_name);
18713 return name;
18714 }
18715 }
18716 }
18717
18718 return NULL;
18719 }
18720
18721 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18722 prefix part in such case. See
18723 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18724
18725 static char *
18726 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18727 {
18728 struct attribute *attr;
18729 char *base;
18730
18731 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18732 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18733 return NULL;
18734
18735 attr = dwarf2_attr (die, DW_AT_name, cu);
18736 if (attr != NULL && DW_STRING (attr) != NULL)
18737 return NULL;
18738
18739 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18740 if (attr == NULL)
18741 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18742 if (attr == NULL || DW_STRING (attr) == NULL)
18743 return NULL;
18744
18745 /* dwarf2_name had to be already called. */
18746 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18747
18748 /* Strip the base name, keep any leading namespaces/classes. */
18749 base = strrchr (DW_STRING (attr), ':');
18750 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18751 return "";
18752
18753 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18754 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18755 }
18756
18757 /* Return the name of the namespace/class that DIE is defined within,
18758 or "" if we can't tell. The caller should not xfree the result.
18759
18760 For example, if we're within the method foo() in the following
18761 code:
18762
18763 namespace N {
18764 class C {
18765 void foo () {
18766 }
18767 };
18768 }
18769
18770 then determine_prefix on foo's die will return "N::C". */
18771
18772 static const char *
18773 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18774 {
18775 struct die_info *parent, *spec_die;
18776 struct dwarf2_cu *spec_cu;
18777 struct type *parent_type;
18778 char *retval;
18779
18780 if (cu->language != language_cplus && cu->language != language_java
18781 && cu->language != language_fortran)
18782 return "";
18783
18784 retval = anonymous_struct_prefix (die, cu);
18785 if (retval)
18786 return retval;
18787
18788 /* We have to be careful in the presence of DW_AT_specification.
18789 For example, with GCC 3.4, given the code
18790
18791 namespace N {
18792 void foo() {
18793 // Definition of N::foo.
18794 }
18795 }
18796
18797 then we'll have a tree of DIEs like this:
18798
18799 1: DW_TAG_compile_unit
18800 2: DW_TAG_namespace // N
18801 3: DW_TAG_subprogram // declaration of N::foo
18802 4: DW_TAG_subprogram // definition of N::foo
18803 DW_AT_specification // refers to die #3
18804
18805 Thus, when processing die #4, we have to pretend that we're in
18806 the context of its DW_AT_specification, namely the contex of die
18807 #3. */
18808 spec_cu = cu;
18809 spec_die = die_specification (die, &spec_cu);
18810 if (spec_die == NULL)
18811 parent = die->parent;
18812 else
18813 {
18814 parent = spec_die->parent;
18815 cu = spec_cu;
18816 }
18817
18818 if (parent == NULL)
18819 return "";
18820 else if (parent->building_fullname)
18821 {
18822 const char *name;
18823 const char *parent_name;
18824
18825 /* It has been seen on RealView 2.2 built binaries,
18826 DW_TAG_template_type_param types actually _defined_ as
18827 children of the parent class:
18828
18829 enum E {};
18830 template class <class Enum> Class{};
18831 Class<enum E> class_e;
18832
18833 1: DW_TAG_class_type (Class)
18834 2: DW_TAG_enumeration_type (E)
18835 3: DW_TAG_enumerator (enum1:0)
18836 3: DW_TAG_enumerator (enum2:1)
18837 ...
18838 2: DW_TAG_template_type_param
18839 DW_AT_type DW_FORM_ref_udata (E)
18840
18841 Besides being broken debug info, it can put GDB into an
18842 infinite loop. Consider:
18843
18844 When we're building the full name for Class<E>, we'll start
18845 at Class, and go look over its template type parameters,
18846 finding E. We'll then try to build the full name of E, and
18847 reach here. We're now trying to build the full name of E,
18848 and look over the parent DIE for containing scope. In the
18849 broken case, if we followed the parent DIE of E, we'd again
18850 find Class, and once again go look at its template type
18851 arguments, etc., etc. Simply don't consider such parent die
18852 as source-level parent of this die (it can't be, the language
18853 doesn't allow it), and break the loop here. */
18854 name = dwarf2_name (die, cu);
18855 parent_name = dwarf2_name (parent, cu);
18856 complaint (&symfile_complaints,
18857 _("template param type '%s' defined within parent '%s'"),
18858 name ? name : "<unknown>",
18859 parent_name ? parent_name : "<unknown>");
18860 return "";
18861 }
18862 else
18863 switch (parent->tag)
18864 {
18865 case DW_TAG_namespace:
18866 parent_type = read_type_die (parent, cu);
18867 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18868 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18869 Work around this problem here. */
18870 if (cu->language == language_cplus
18871 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18872 return "";
18873 /* We give a name to even anonymous namespaces. */
18874 return TYPE_TAG_NAME (parent_type);
18875 case DW_TAG_class_type:
18876 case DW_TAG_interface_type:
18877 case DW_TAG_structure_type:
18878 case DW_TAG_union_type:
18879 case DW_TAG_module:
18880 parent_type = read_type_die (parent, cu);
18881 if (TYPE_TAG_NAME (parent_type) != NULL)
18882 return TYPE_TAG_NAME (parent_type);
18883 else
18884 /* An anonymous structure is only allowed non-static data
18885 members; no typedefs, no member functions, et cetera.
18886 So it does not need a prefix. */
18887 return "";
18888 case DW_TAG_compile_unit:
18889 case DW_TAG_partial_unit:
18890 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18891 if (cu->language == language_cplus
18892 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18893 && die->child != NULL
18894 && (die->tag == DW_TAG_class_type
18895 || die->tag == DW_TAG_structure_type
18896 || die->tag == DW_TAG_union_type))
18897 {
18898 char *name = guess_full_die_structure_name (die, cu);
18899 if (name != NULL)
18900 return name;
18901 }
18902 return "";
18903 case DW_TAG_enumeration_type:
18904 parent_type = read_type_die (parent, cu);
18905 if (TYPE_DECLARED_CLASS (parent_type))
18906 {
18907 if (TYPE_TAG_NAME (parent_type) != NULL)
18908 return TYPE_TAG_NAME (parent_type);
18909 return "";
18910 }
18911 /* Fall through. */
18912 default:
18913 return determine_prefix (parent, cu);
18914 }
18915 }
18916
18917 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18918 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18919 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18920 an obconcat, otherwise allocate storage for the result. The CU argument is
18921 used to determine the language and hence, the appropriate separator. */
18922
18923 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18924
18925 static char *
18926 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18927 int physname, struct dwarf2_cu *cu)
18928 {
18929 const char *lead = "";
18930 const char *sep;
18931
18932 if (suffix == NULL || suffix[0] == '\0'
18933 || prefix == NULL || prefix[0] == '\0')
18934 sep = "";
18935 else if (cu->language == language_java)
18936 sep = ".";
18937 else if (cu->language == language_fortran && physname)
18938 {
18939 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18940 DW_AT_MIPS_linkage_name is preferred and used instead. */
18941
18942 lead = "__";
18943 sep = "_MOD_";
18944 }
18945 else
18946 sep = "::";
18947
18948 if (prefix == NULL)
18949 prefix = "";
18950 if (suffix == NULL)
18951 suffix = "";
18952
18953 if (obs == NULL)
18954 {
18955 char *retval
18956 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18957
18958 strcpy (retval, lead);
18959 strcat (retval, prefix);
18960 strcat (retval, sep);
18961 strcat (retval, suffix);
18962 return retval;
18963 }
18964 else
18965 {
18966 /* We have an obstack. */
18967 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18968 }
18969 }
18970
18971 /* Return sibling of die, NULL if no sibling. */
18972
18973 static struct die_info *
18974 sibling_die (struct die_info *die)
18975 {
18976 return die->sibling;
18977 }
18978
18979 /* Get name of a die, return NULL if not found. */
18980
18981 static const char *
18982 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18983 struct obstack *obstack)
18984 {
18985 if (name && cu->language == language_cplus)
18986 {
18987 char *canon_name = cp_canonicalize_string (name);
18988
18989 if (canon_name != NULL)
18990 {
18991 if (strcmp (canon_name, name) != 0)
18992 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18993 xfree (canon_name);
18994 }
18995 }
18996
18997 return name;
18998 }
18999
19000 /* Get name of a die, return NULL if not found. */
19001
19002 static const char *
19003 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19004 {
19005 struct attribute *attr;
19006
19007 attr = dwarf2_attr (die, DW_AT_name, cu);
19008 if ((!attr || !DW_STRING (attr))
19009 && die->tag != DW_TAG_class_type
19010 && die->tag != DW_TAG_interface_type
19011 && die->tag != DW_TAG_structure_type
19012 && die->tag != DW_TAG_union_type)
19013 return NULL;
19014
19015 switch (die->tag)
19016 {
19017 case DW_TAG_compile_unit:
19018 case DW_TAG_partial_unit:
19019 /* Compilation units have a DW_AT_name that is a filename, not
19020 a source language identifier. */
19021 case DW_TAG_enumeration_type:
19022 case DW_TAG_enumerator:
19023 /* These tags always have simple identifiers already; no need
19024 to canonicalize them. */
19025 return DW_STRING (attr);
19026
19027 case DW_TAG_subprogram:
19028 /* Java constructors will all be named "<init>", so return
19029 the class name when we see this special case. */
19030 if (cu->language == language_java
19031 && DW_STRING (attr) != NULL
19032 && strcmp (DW_STRING (attr), "<init>") == 0)
19033 {
19034 struct dwarf2_cu *spec_cu = cu;
19035 struct die_info *spec_die;
19036
19037 /* GCJ will output '<init>' for Java constructor names.
19038 For this special case, return the name of the parent class. */
19039
19040 /* GCJ may output subprogram DIEs with AT_specification set.
19041 If so, use the name of the specified DIE. */
19042 spec_die = die_specification (die, &spec_cu);
19043 if (spec_die != NULL)
19044 return dwarf2_name (spec_die, spec_cu);
19045
19046 do
19047 {
19048 die = die->parent;
19049 if (die->tag == DW_TAG_class_type)
19050 return dwarf2_name (die, cu);
19051 }
19052 while (die->tag != DW_TAG_compile_unit
19053 && die->tag != DW_TAG_partial_unit);
19054 }
19055 break;
19056
19057 case DW_TAG_class_type:
19058 case DW_TAG_interface_type:
19059 case DW_TAG_structure_type:
19060 case DW_TAG_union_type:
19061 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19062 structures or unions. These were of the form "._%d" in GCC 4.1,
19063 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19064 and GCC 4.4. We work around this problem by ignoring these. */
19065 if (attr && DW_STRING (attr)
19066 && (strncmp (DW_STRING (attr), "._", 2) == 0
19067 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19068 return NULL;
19069
19070 /* GCC might emit a nameless typedef that has a linkage name. See
19071 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19072 if (!attr || DW_STRING (attr) == NULL)
19073 {
19074 char *demangled = NULL;
19075
19076 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19077 if (attr == NULL)
19078 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19079
19080 if (attr == NULL || DW_STRING (attr) == NULL)
19081 return NULL;
19082
19083 /* Avoid demangling DW_STRING (attr) the second time on a second
19084 call for the same DIE. */
19085 if (!DW_STRING_IS_CANONICAL (attr))
19086 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19087
19088 if (demangled)
19089 {
19090 char *base;
19091
19092 /* FIXME: we already did this for the partial symbol... */
19093 DW_STRING (attr)
19094 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19095 demangled, strlen (demangled));
19096 DW_STRING_IS_CANONICAL (attr) = 1;
19097 xfree (demangled);
19098
19099 /* Strip any leading namespaces/classes, keep only the base name.
19100 DW_AT_name for named DIEs does not contain the prefixes. */
19101 base = strrchr (DW_STRING (attr), ':');
19102 if (base && base > DW_STRING (attr) && base[-1] == ':')
19103 return &base[1];
19104 else
19105 return DW_STRING (attr);
19106 }
19107 }
19108 break;
19109
19110 default:
19111 break;
19112 }
19113
19114 if (!DW_STRING_IS_CANONICAL (attr))
19115 {
19116 DW_STRING (attr)
19117 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19118 &cu->objfile->per_bfd->storage_obstack);
19119 DW_STRING_IS_CANONICAL (attr) = 1;
19120 }
19121 return DW_STRING (attr);
19122 }
19123
19124 /* Return the die that this die in an extension of, or NULL if there
19125 is none. *EXT_CU is the CU containing DIE on input, and the CU
19126 containing the return value on output. */
19127
19128 static struct die_info *
19129 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19130 {
19131 struct attribute *attr;
19132
19133 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19134 if (attr == NULL)
19135 return NULL;
19136
19137 return follow_die_ref (die, attr, ext_cu);
19138 }
19139
19140 /* Convert a DIE tag into its string name. */
19141
19142 static const char *
19143 dwarf_tag_name (unsigned tag)
19144 {
19145 const char *name = get_DW_TAG_name (tag);
19146
19147 if (name == NULL)
19148 return "DW_TAG_<unknown>";
19149
19150 return name;
19151 }
19152
19153 /* Convert a DWARF attribute code into its string name. */
19154
19155 static const char *
19156 dwarf_attr_name (unsigned attr)
19157 {
19158 const char *name;
19159
19160 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19161 if (attr == DW_AT_MIPS_fde)
19162 return "DW_AT_MIPS_fde";
19163 #else
19164 if (attr == DW_AT_HP_block_index)
19165 return "DW_AT_HP_block_index";
19166 #endif
19167
19168 name = get_DW_AT_name (attr);
19169
19170 if (name == NULL)
19171 return "DW_AT_<unknown>";
19172
19173 return name;
19174 }
19175
19176 /* Convert a DWARF value form code into its string name. */
19177
19178 static const char *
19179 dwarf_form_name (unsigned form)
19180 {
19181 const char *name = get_DW_FORM_name (form);
19182
19183 if (name == NULL)
19184 return "DW_FORM_<unknown>";
19185
19186 return name;
19187 }
19188
19189 static char *
19190 dwarf_bool_name (unsigned mybool)
19191 {
19192 if (mybool)
19193 return "TRUE";
19194 else
19195 return "FALSE";
19196 }
19197
19198 /* Convert a DWARF type code into its string name. */
19199
19200 static const char *
19201 dwarf_type_encoding_name (unsigned enc)
19202 {
19203 const char *name = get_DW_ATE_name (enc);
19204
19205 if (name == NULL)
19206 return "DW_ATE_<unknown>";
19207
19208 return name;
19209 }
19210
19211 static void
19212 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19213 {
19214 unsigned int i;
19215
19216 print_spaces (indent, f);
19217 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19218 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19219
19220 if (die->parent != NULL)
19221 {
19222 print_spaces (indent, f);
19223 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19224 die->parent->offset.sect_off);
19225 }
19226
19227 print_spaces (indent, f);
19228 fprintf_unfiltered (f, " has children: %s\n",
19229 dwarf_bool_name (die->child != NULL));
19230
19231 print_spaces (indent, f);
19232 fprintf_unfiltered (f, " attributes:\n");
19233
19234 for (i = 0; i < die->num_attrs; ++i)
19235 {
19236 print_spaces (indent, f);
19237 fprintf_unfiltered (f, " %s (%s) ",
19238 dwarf_attr_name (die->attrs[i].name),
19239 dwarf_form_name (die->attrs[i].form));
19240
19241 switch (die->attrs[i].form)
19242 {
19243 case DW_FORM_addr:
19244 case DW_FORM_GNU_addr_index:
19245 fprintf_unfiltered (f, "address: ");
19246 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19247 break;
19248 case DW_FORM_block2:
19249 case DW_FORM_block4:
19250 case DW_FORM_block:
19251 case DW_FORM_block1:
19252 fprintf_unfiltered (f, "block: size %s",
19253 pulongest (DW_BLOCK (&die->attrs[i])->size));
19254 break;
19255 case DW_FORM_exprloc:
19256 fprintf_unfiltered (f, "expression: size %s",
19257 pulongest (DW_BLOCK (&die->attrs[i])->size));
19258 break;
19259 case DW_FORM_ref_addr:
19260 fprintf_unfiltered (f, "ref address: ");
19261 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19262 break;
19263 case DW_FORM_GNU_ref_alt:
19264 fprintf_unfiltered (f, "alt ref address: ");
19265 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19266 break;
19267 case DW_FORM_ref1:
19268 case DW_FORM_ref2:
19269 case DW_FORM_ref4:
19270 case DW_FORM_ref8:
19271 case DW_FORM_ref_udata:
19272 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19273 (long) (DW_UNSND (&die->attrs[i])));
19274 break;
19275 case DW_FORM_data1:
19276 case DW_FORM_data2:
19277 case DW_FORM_data4:
19278 case DW_FORM_data8:
19279 case DW_FORM_udata:
19280 case DW_FORM_sdata:
19281 fprintf_unfiltered (f, "constant: %s",
19282 pulongest (DW_UNSND (&die->attrs[i])));
19283 break;
19284 case DW_FORM_sec_offset:
19285 fprintf_unfiltered (f, "section offset: %s",
19286 pulongest (DW_UNSND (&die->attrs[i])));
19287 break;
19288 case DW_FORM_ref_sig8:
19289 fprintf_unfiltered (f, "signature: %s",
19290 hex_string (DW_SIGNATURE (&die->attrs[i])));
19291 break;
19292 case DW_FORM_string:
19293 case DW_FORM_strp:
19294 case DW_FORM_GNU_str_index:
19295 case DW_FORM_GNU_strp_alt:
19296 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19297 DW_STRING (&die->attrs[i])
19298 ? DW_STRING (&die->attrs[i]) : "",
19299 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19300 break;
19301 case DW_FORM_flag:
19302 if (DW_UNSND (&die->attrs[i]))
19303 fprintf_unfiltered (f, "flag: TRUE");
19304 else
19305 fprintf_unfiltered (f, "flag: FALSE");
19306 break;
19307 case DW_FORM_flag_present:
19308 fprintf_unfiltered (f, "flag: TRUE");
19309 break;
19310 case DW_FORM_indirect:
19311 /* The reader will have reduced the indirect form to
19312 the "base form" so this form should not occur. */
19313 fprintf_unfiltered (f,
19314 "unexpected attribute form: DW_FORM_indirect");
19315 break;
19316 default:
19317 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19318 die->attrs[i].form);
19319 break;
19320 }
19321 fprintf_unfiltered (f, "\n");
19322 }
19323 }
19324
19325 static void
19326 dump_die_for_error (struct die_info *die)
19327 {
19328 dump_die_shallow (gdb_stderr, 0, die);
19329 }
19330
19331 static void
19332 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19333 {
19334 int indent = level * 4;
19335
19336 gdb_assert (die != NULL);
19337
19338 if (level >= max_level)
19339 return;
19340
19341 dump_die_shallow (f, indent, die);
19342
19343 if (die->child != NULL)
19344 {
19345 print_spaces (indent, f);
19346 fprintf_unfiltered (f, " Children:");
19347 if (level + 1 < max_level)
19348 {
19349 fprintf_unfiltered (f, "\n");
19350 dump_die_1 (f, level + 1, max_level, die->child);
19351 }
19352 else
19353 {
19354 fprintf_unfiltered (f,
19355 " [not printed, max nesting level reached]\n");
19356 }
19357 }
19358
19359 if (die->sibling != NULL && level > 0)
19360 {
19361 dump_die_1 (f, level, max_level, die->sibling);
19362 }
19363 }
19364
19365 /* This is called from the pdie macro in gdbinit.in.
19366 It's not static so gcc will keep a copy callable from gdb. */
19367
19368 void
19369 dump_die (struct die_info *die, int max_level)
19370 {
19371 dump_die_1 (gdb_stdlog, 0, max_level, die);
19372 }
19373
19374 static void
19375 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19376 {
19377 void **slot;
19378
19379 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19380 INSERT);
19381
19382 *slot = die;
19383 }
19384
19385 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19386 required kind. */
19387
19388 static sect_offset
19389 dwarf2_get_ref_die_offset (const struct attribute *attr)
19390 {
19391 sect_offset retval = { DW_UNSND (attr) };
19392
19393 if (attr_form_is_ref (attr))
19394 return retval;
19395
19396 retval.sect_off = 0;
19397 complaint (&symfile_complaints,
19398 _("unsupported die ref attribute form: '%s'"),
19399 dwarf_form_name (attr->form));
19400 return retval;
19401 }
19402
19403 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19404 * the value held by the attribute is not constant. */
19405
19406 static LONGEST
19407 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19408 {
19409 if (attr->form == DW_FORM_sdata)
19410 return DW_SND (attr);
19411 else if (attr->form == DW_FORM_udata
19412 || attr->form == DW_FORM_data1
19413 || attr->form == DW_FORM_data2
19414 || attr->form == DW_FORM_data4
19415 || attr->form == DW_FORM_data8)
19416 return DW_UNSND (attr);
19417 else
19418 {
19419 complaint (&symfile_complaints,
19420 _("Attribute value is not a constant (%s)"),
19421 dwarf_form_name (attr->form));
19422 return default_value;
19423 }
19424 }
19425
19426 /* Follow reference or signature attribute ATTR of SRC_DIE.
19427 On entry *REF_CU is the CU of SRC_DIE.
19428 On exit *REF_CU is the CU of the result. */
19429
19430 static struct die_info *
19431 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19432 struct dwarf2_cu **ref_cu)
19433 {
19434 struct die_info *die;
19435
19436 if (attr_form_is_ref (attr))
19437 die = follow_die_ref (src_die, attr, ref_cu);
19438 else if (attr->form == DW_FORM_ref_sig8)
19439 die = follow_die_sig (src_die, attr, ref_cu);
19440 else
19441 {
19442 dump_die_for_error (src_die);
19443 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19444 objfile_name ((*ref_cu)->objfile));
19445 }
19446
19447 return die;
19448 }
19449
19450 /* Follow reference OFFSET.
19451 On entry *REF_CU is the CU of the source die referencing OFFSET.
19452 On exit *REF_CU is the CU of the result.
19453 Returns NULL if OFFSET is invalid. */
19454
19455 static struct die_info *
19456 follow_die_offset (sect_offset offset, int offset_in_dwz,
19457 struct dwarf2_cu **ref_cu)
19458 {
19459 struct die_info temp_die;
19460 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19461
19462 gdb_assert (cu->per_cu != NULL);
19463
19464 target_cu = cu;
19465
19466 if (cu->per_cu->is_debug_types)
19467 {
19468 /* .debug_types CUs cannot reference anything outside their CU.
19469 If they need to, they have to reference a signatured type via
19470 DW_FORM_ref_sig8. */
19471 if (! offset_in_cu_p (&cu->header, offset))
19472 return NULL;
19473 }
19474 else if (offset_in_dwz != cu->per_cu->is_dwz
19475 || ! offset_in_cu_p (&cu->header, offset))
19476 {
19477 struct dwarf2_per_cu_data *per_cu;
19478
19479 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19480 cu->objfile);
19481
19482 /* If necessary, add it to the queue and load its DIEs. */
19483 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19484 load_full_comp_unit (per_cu, cu->language);
19485
19486 target_cu = per_cu->cu;
19487 }
19488 else if (cu->dies == NULL)
19489 {
19490 /* We're loading full DIEs during partial symbol reading. */
19491 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19492 load_full_comp_unit (cu->per_cu, language_minimal);
19493 }
19494
19495 *ref_cu = target_cu;
19496 temp_die.offset = offset;
19497 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19498 }
19499
19500 /* Follow reference attribute ATTR of SRC_DIE.
19501 On entry *REF_CU is the CU of SRC_DIE.
19502 On exit *REF_CU is the CU of the result. */
19503
19504 static struct die_info *
19505 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19506 struct dwarf2_cu **ref_cu)
19507 {
19508 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19509 struct dwarf2_cu *cu = *ref_cu;
19510 struct die_info *die;
19511
19512 die = follow_die_offset (offset,
19513 (attr->form == DW_FORM_GNU_ref_alt
19514 || cu->per_cu->is_dwz),
19515 ref_cu);
19516 if (!die)
19517 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19518 "at 0x%x [in module %s]"),
19519 offset.sect_off, src_die->offset.sect_off,
19520 objfile_name (cu->objfile));
19521
19522 return die;
19523 }
19524
19525 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19526 Returned value is intended for DW_OP_call*. Returned
19527 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19528
19529 struct dwarf2_locexpr_baton
19530 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19531 struct dwarf2_per_cu_data *per_cu,
19532 CORE_ADDR (*get_frame_pc) (void *baton),
19533 void *baton)
19534 {
19535 struct dwarf2_cu *cu;
19536 struct die_info *die;
19537 struct attribute *attr;
19538 struct dwarf2_locexpr_baton retval;
19539
19540 dw2_setup (per_cu->objfile);
19541
19542 if (per_cu->cu == NULL)
19543 load_cu (per_cu);
19544 cu = per_cu->cu;
19545
19546 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19547 if (!die)
19548 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19549 offset.sect_off, objfile_name (per_cu->objfile));
19550
19551 attr = dwarf2_attr (die, DW_AT_location, cu);
19552 if (!attr)
19553 {
19554 /* DWARF: "If there is no such attribute, then there is no effect.".
19555 DATA is ignored if SIZE is 0. */
19556
19557 retval.data = NULL;
19558 retval.size = 0;
19559 }
19560 else if (attr_form_is_section_offset (attr))
19561 {
19562 struct dwarf2_loclist_baton loclist_baton;
19563 CORE_ADDR pc = (*get_frame_pc) (baton);
19564 size_t size;
19565
19566 fill_in_loclist_baton (cu, &loclist_baton, attr);
19567
19568 retval.data = dwarf2_find_location_expression (&loclist_baton,
19569 &size, pc);
19570 retval.size = size;
19571 }
19572 else
19573 {
19574 if (!attr_form_is_block (attr))
19575 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19576 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19577 offset.sect_off, objfile_name (per_cu->objfile));
19578
19579 retval.data = DW_BLOCK (attr)->data;
19580 retval.size = DW_BLOCK (attr)->size;
19581 }
19582 retval.per_cu = cu->per_cu;
19583
19584 age_cached_comp_units ();
19585
19586 return retval;
19587 }
19588
19589 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19590 offset. */
19591
19592 struct dwarf2_locexpr_baton
19593 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19594 struct dwarf2_per_cu_data *per_cu,
19595 CORE_ADDR (*get_frame_pc) (void *baton),
19596 void *baton)
19597 {
19598 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19599
19600 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19601 }
19602
19603 /* Write a constant of a given type as target-ordered bytes into
19604 OBSTACK. */
19605
19606 static const gdb_byte *
19607 write_constant_as_bytes (struct obstack *obstack,
19608 enum bfd_endian byte_order,
19609 struct type *type,
19610 ULONGEST value,
19611 LONGEST *len)
19612 {
19613 gdb_byte *result;
19614
19615 *len = TYPE_LENGTH (type);
19616 result = obstack_alloc (obstack, *len);
19617 store_unsigned_integer (result, *len, byte_order, value);
19618
19619 return result;
19620 }
19621
19622 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19623 pointer to the constant bytes and set LEN to the length of the
19624 data. If memory is needed, allocate it on OBSTACK. If the DIE
19625 does not have a DW_AT_const_value, return NULL. */
19626
19627 const gdb_byte *
19628 dwarf2_fetch_constant_bytes (sect_offset offset,
19629 struct dwarf2_per_cu_data *per_cu,
19630 struct obstack *obstack,
19631 LONGEST *len)
19632 {
19633 struct dwarf2_cu *cu;
19634 struct die_info *die;
19635 struct attribute *attr;
19636 const gdb_byte *result = NULL;
19637 struct type *type;
19638 LONGEST value;
19639 enum bfd_endian byte_order;
19640
19641 dw2_setup (per_cu->objfile);
19642
19643 if (per_cu->cu == NULL)
19644 load_cu (per_cu);
19645 cu = per_cu->cu;
19646
19647 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19648 if (!die)
19649 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19650 offset.sect_off, objfile_name (per_cu->objfile));
19651
19652
19653 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19654 if (attr == NULL)
19655 return NULL;
19656
19657 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19658 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19659
19660 switch (attr->form)
19661 {
19662 case DW_FORM_addr:
19663 case DW_FORM_GNU_addr_index:
19664 {
19665 gdb_byte *tem;
19666
19667 *len = cu->header.addr_size;
19668 tem = obstack_alloc (obstack, *len);
19669 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19670 result = tem;
19671 }
19672 break;
19673 case DW_FORM_string:
19674 case DW_FORM_strp:
19675 case DW_FORM_GNU_str_index:
19676 case DW_FORM_GNU_strp_alt:
19677 /* DW_STRING is already allocated on the objfile obstack, point
19678 directly to it. */
19679 result = (const gdb_byte *) DW_STRING (attr);
19680 *len = strlen (DW_STRING (attr));
19681 break;
19682 case DW_FORM_block1:
19683 case DW_FORM_block2:
19684 case DW_FORM_block4:
19685 case DW_FORM_block:
19686 case DW_FORM_exprloc:
19687 result = DW_BLOCK (attr)->data;
19688 *len = DW_BLOCK (attr)->size;
19689 break;
19690
19691 /* The DW_AT_const_value attributes are supposed to carry the
19692 symbol's value "represented as it would be on the target
19693 architecture." By the time we get here, it's already been
19694 converted to host endianness, so we just need to sign- or
19695 zero-extend it as appropriate. */
19696 case DW_FORM_data1:
19697 type = die_type (die, cu);
19698 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19699 if (result == NULL)
19700 result = write_constant_as_bytes (obstack, byte_order,
19701 type, value, len);
19702 break;
19703 case DW_FORM_data2:
19704 type = die_type (die, cu);
19705 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19706 if (result == NULL)
19707 result = write_constant_as_bytes (obstack, byte_order,
19708 type, value, len);
19709 break;
19710 case DW_FORM_data4:
19711 type = die_type (die, cu);
19712 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19713 if (result == NULL)
19714 result = write_constant_as_bytes (obstack, byte_order,
19715 type, value, len);
19716 break;
19717 case DW_FORM_data8:
19718 type = die_type (die, cu);
19719 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19720 if (result == NULL)
19721 result = write_constant_as_bytes (obstack, byte_order,
19722 type, value, len);
19723 break;
19724
19725 case DW_FORM_sdata:
19726 type = die_type (die, cu);
19727 result = write_constant_as_bytes (obstack, byte_order,
19728 type, DW_SND (attr), len);
19729 break;
19730
19731 case DW_FORM_udata:
19732 type = die_type (die, cu);
19733 result = write_constant_as_bytes (obstack, byte_order,
19734 type, DW_UNSND (attr), len);
19735 break;
19736
19737 default:
19738 complaint (&symfile_complaints,
19739 _("unsupported const value attribute form: '%s'"),
19740 dwarf_form_name (attr->form));
19741 break;
19742 }
19743
19744 return result;
19745 }
19746
19747 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19748 PER_CU. */
19749
19750 struct type *
19751 dwarf2_get_die_type (cu_offset die_offset,
19752 struct dwarf2_per_cu_data *per_cu)
19753 {
19754 sect_offset die_offset_sect;
19755
19756 dw2_setup (per_cu->objfile);
19757
19758 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19759 return get_die_type_at_offset (die_offset_sect, per_cu);
19760 }
19761
19762 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19763 On entry *REF_CU is the CU of SRC_DIE.
19764 On exit *REF_CU is the CU of the result.
19765 Returns NULL if the referenced DIE isn't found. */
19766
19767 static struct die_info *
19768 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19769 struct dwarf2_cu **ref_cu)
19770 {
19771 struct objfile *objfile = (*ref_cu)->objfile;
19772 struct die_info temp_die;
19773 struct dwarf2_cu *sig_cu;
19774 struct die_info *die;
19775
19776 /* While it might be nice to assert sig_type->type == NULL here,
19777 we can get here for DW_AT_imported_declaration where we need
19778 the DIE not the type. */
19779
19780 /* If necessary, add it to the queue and load its DIEs. */
19781
19782 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19783 read_signatured_type (sig_type);
19784
19785 sig_cu = sig_type->per_cu.cu;
19786 gdb_assert (sig_cu != NULL);
19787 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19788 temp_die.offset = sig_type->type_offset_in_section;
19789 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19790 temp_die.offset.sect_off);
19791 if (die)
19792 {
19793 /* For .gdb_index version 7 keep track of included TUs.
19794 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19795 if (dwarf2_per_objfile->index_table != NULL
19796 && dwarf2_per_objfile->index_table->version <= 7)
19797 {
19798 VEC_safe_push (dwarf2_per_cu_ptr,
19799 (*ref_cu)->per_cu->imported_symtabs,
19800 sig_cu->per_cu);
19801 }
19802
19803 *ref_cu = sig_cu;
19804 return die;
19805 }
19806
19807 return NULL;
19808 }
19809
19810 /* Follow signatured type referenced by ATTR in SRC_DIE.
19811 On entry *REF_CU is the CU of SRC_DIE.
19812 On exit *REF_CU is the CU of the result.
19813 The result is the DIE of the type.
19814 If the referenced type cannot be found an error is thrown. */
19815
19816 static struct die_info *
19817 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19818 struct dwarf2_cu **ref_cu)
19819 {
19820 ULONGEST signature = DW_SIGNATURE (attr);
19821 struct signatured_type *sig_type;
19822 struct die_info *die;
19823
19824 gdb_assert (attr->form == DW_FORM_ref_sig8);
19825
19826 sig_type = lookup_signatured_type (*ref_cu, signature);
19827 /* sig_type will be NULL if the signatured type is missing from
19828 the debug info. */
19829 if (sig_type == NULL)
19830 {
19831 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19832 " from DIE at 0x%x [in module %s]"),
19833 hex_string (signature), src_die->offset.sect_off,
19834 objfile_name ((*ref_cu)->objfile));
19835 }
19836
19837 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19838 if (die == NULL)
19839 {
19840 dump_die_for_error (src_die);
19841 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19842 " from DIE at 0x%x [in module %s]"),
19843 hex_string (signature), src_die->offset.sect_off,
19844 objfile_name ((*ref_cu)->objfile));
19845 }
19846
19847 return die;
19848 }
19849
19850 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19851 reading in and processing the type unit if necessary. */
19852
19853 static struct type *
19854 get_signatured_type (struct die_info *die, ULONGEST signature,
19855 struct dwarf2_cu *cu)
19856 {
19857 struct signatured_type *sig_type;
19858 struct dwarf2_cu *type_cu;
19859 struct die_info *type_die;
19860 struct type *type;
19861
19862 sig_type = lookup_signatured_type (cu, signature);
19863 /* sig_type will be NULL if the signatured type is missing from
19864 the debug info. */
19865 if (sig_type == NULL)
19866 {
19867 complaint (&symfile_complaints,
19868 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19869 " from DIE at 0x%x [in module %s]"),
19870 hex_string (signature), die->offset.sect_off,
19871 objfile_name (dwarf2_per_objfile->objfile));
19872 return build_error_marker_type (cu, die);
19873 }
19874
19875 /* If we already know the type we're done. */
19876 if (sig_type->type != NULL)
19877 return sig_type->type;
19878
19879 type_cu = cu;
19880 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19881 if (type_die != NULL)
19882 {
19883 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19884 is created. This is important, for example, because for c++ classes
19885 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19886 type = read_type_die (type_die, type_cu);
19887 if (type == NULL)
19888 {
19889 complaint (&symfile_complaints,
19890 _("Dwarf Error: Cannot build signatured type %s"
19891 " referenced from DIE at 0x%x [in module %s]"),
19892 hex_string (signature), die->offset.sect_off,
19893 objfile_name (dwarf2_per_objfile->objfile));
19894 type = build_error_marker_type (cu, die);
19895 }
19896 }
19897 else
19898 {
19899 complaint (&symfile_complaints,
19900 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19901 " from DIE at 0x%x [in module %s]"),
19902 hex_string (signature), die->offset.sect_off,
19903 objfile_name (dwarf2_per_objfile->objfile));
19904 type = build_error_marker_type (cu, die);
19905 }
19906 sig_type->type = type;
19907
19908 return type;
19909 }
19910
19911 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19912 reading in and processing the type unit if necessary. */
19913
19914 static struct type *
19915 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19916 struct dwarf2_cu *cu) /* ARI: editCase function */
19917 {
19918 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19919 if (attr_form_is_ref (attr))
19920 {
19921 struct dwarf2_cu *type_cu = cu;
19922 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19923
19924 return read_type_die (type_die, type_cu);
19925 }
19926 else if (attr->form == DW_FORM_ref_sig8)
19927 {
19928 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19929 }
19930 else
19931 {
19932 complaint (&symfile_complaints,
19933 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19934 " at 0x%x [in module %s]"),
19935 dwarf_form_name (attr->form), die->offset.sect_off,
19936 objfile_name (dwarf2_per_objfile->objfile));
19937 return build_error_marker_type (cu, die);
19938 }
19939 }
19940
19941 /* Load the DIEs associated with type unit PER_CU into memory. */
19942
19943 static void
19944 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19945 {
19946 struct signatured_type *sig_type;
19947
19948 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19949 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19950
19951 /* We have the per_cu, but we need the signatured_type.
19952 Fortunately this is an easy translation. */
19953 gdb_assert (per_cu->is_debug_types);
19954 sig_type = (struct signatured_type *) per_cu;
19955
19956 gdb_assert (per_cu->cu == NULL);
19957
19958 read_signatured_type (sig_type);
19959
19960 gdb_assert (per_cu->cu != NULL);
19961 }
19962
19963 /* die_reader_func for read_signatured_type.
19964 This is identical to load_full_comp_unit_reader,
19965 but is kept separate for now. */
19966
19967 static void
19968 read_signatured_type_reader (const struct die_reader_specs *reader,
19969 const gdb_byte *info_ptr,
19970 struct die_info *comp_unit_die,
19971 int has_children,
19972 void *data)
19973 {
19974 struct dwarf2_cu *cu = reader->cu;
19975
19976 gdb_assert (cu->die_hash == NULL);
19977 cu->die_hash =
19978 htab_create_alloc_ex (cu->header.length / 12,
19979 die_hash,
19980 die_eq,
19981 NULL,
19982 &cu->comp_unit_obstack,
19983 hashtab_obstack_allocate,
19984 dummy_obstack_deallocate);
19985
19986 if (has_children)
19987 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19988 &info_ptr, comp_unit_die);
19989 cu->dies = comp_unit_die;
19990 /* comp_unit_die is not stored in die_hash, no need. */
19991
19992 /* We try not to read any attributes in this function, because not
19993 all CUs needed for references have been loaded yet, and symbol
19994 table processing isn't initialized. But we have to set the CU language,
19995 or we won't be able to build types correctly.
19996 Similarly, if we do not read the producer, we can not apply
19997 producer-specific interpretation. */
19998 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19999 }
20000
20001 /* Read in a signatured type and build its CU and DIEs.
20002 If the type is a stub for the real type in a DWO file,
20003 read in the real type from the DWO file as well. */
20004
20005 static void
20006 read_signatured_type (struct signatured_type *sig_type)
20007 {
20008 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20009
20010 gdb_assert (per_cu->is_debug_types);
20011 gdb_assert (per_cu->cu == NULL);
20012
20013 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20014 read_signatured_type_reader, NULL);
20015 sig_type->per_cu.tu_read = 1;
20016 }
20017
20018 /* Decode simple location descriptions.
20019 Given a pointer to a dwarf block that defines a location, compute
20020 the location and return the value.
20021
20022 NOTE drow/2003-11-18: This function is called in two situations
20023 now: for the address of static or global variables (partial symbols
20024 only) and for offsets into structures which are expected to be
20025 (more or less) constant. The partial symbol case should go away,
20026 and only the constant case should remain. That will let this
20027 function complain more accurately. A few special modes are allowed
20028 without complaint for global variables (for instance, global
20029 register values and thread-local values).
20030
20031 A location description containing no operations indicates that the
20032 object is optimized out. The return value is 0 for that case.
20033 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20034 callers will only want a very basic result and this can become a
20035 complaint.
20036
20037 Note that stack[0] is unused except as a default error return. */
20038
20039 static CORE_ADDR
20040 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20041 {
20042 struct objfile *objfile = cu->objfile;
20043 size_t i;
20044 size_t size = blk->size;
20045 const gdb_byte *data = blk->data;
20046 CORE_ADDR stack[64];
20047 int stacki;
20048 unsigned int bytes_read, unsnd;
20049 gdb_byte op;
20050
20051 i = 0;
20052 stacki = 0;
20053 stack[stacki] = 0;
20054 stack[++stacki] = 0;
20055
20056 while (i < size)
20057 {
20058 op = data[i++];
20059 switch (op)
20060 {
20061 case DW_OP_lit0:
20062 case DW_OP_lit1:
20063 case DW_OP_lit2:
20064 case DW_OP_lit3:
20065 case DW_OP_lit4:
20066 case DW_OP_lit5:
20067 case DW_OP_lit6:
20068 case DW_OP_lit7:
20069 case DW_OP_lit8:
20070 case DW_OP_lit9:
20071 case DW_OP_lit10:
20072 case DW_OP_lit11:
20073 case DW_OP_lit12:
20074 case DW_OP_lit13:
20075 case DW_OP_lit14:
20076 case DW_OP_lit15:
20077 case DW_OP_lit16:
20078 case DW_OP_lit17:
20079 case DW_OP_lit18:
20080 case DW_OP_lit19:
20081 case DW_OP_lit20:
20082 case DW_OP_lit21:
20083 case DW_OP_lit22:
20084 case DW_OP_lit23:
20085 case DW_OP_lit24:
20086 case DW_OP_lit25:
20087 case DW_OP_lit26:
20088 case DW_OP_lit27:
20089 case DW_OP_lit28:
20090 case DW_OP_lit29:
20091 case DW_OP_lit30:
20092 case DW_OP_lit31:
20093 stack[++stacki] = op - DW_OP_lit0;
20094 break;
20095
20096 case DW_OP_reg0:
20097 case DW_OP_reg1:
20098 case DW_OP_reg2:
20099 case DW_OP_reg3:
20100 case DW_OP_reg4:
20101 case DW_OP_reg5:
20102 case DW_OP_reg6:
20103 case DW_OP_reg7:
20104 case DW_OP_reg8:
20105 case DW_OP_reg9:
20106 case DW_OP_reg10:
20107 case DW_OP_reg11:
20108 case DW_OP_reg12:
20109 case DW_OP_reg13:
20110 case DW_OP_reg14:
20111 case DW_OP_reg15:
20112 case DW_OP_reg16:
20113 case DW_OP_reg17:
20114 case DW_OP_reg18:
20115 case DW_OP_reg19:
20116 case DW_OP_reg20:
20117 case DW_OP_reg21:
20118 case DW_OP_reg22:
20119 case DW_OP_reg23:
20120 case DW_OP_reg24:
20121 case DW_OP_reg25:
20122 case DW_OP_reg26:
20123 case DW_OP_reg27:
20124 case DW_OP_reg28:
20125 case DW_OP_reg29:
20126 case DW_OP_reg30:
20127 case DW_OP_reg31:
20128 stack[++stacki] = op - DW_OP_reg0;
20129 if (i < size)
20130 dwarf2_complex_location_expr_complaint ();
20131 break;
20132
20133 case DW_OP_regx:
20134 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20135 i += bytes_read;
20136 stack[++stacki] = unsnd;
20137 if (i < size)
20138 dwarf2_complex_location_expr_complaint ();
20139 break;
20140
20141 case DW_OP_addr:
20142 stack[++stacki] = read_address (objfile->obfd, &data[i],
20143 cu, &bytes_read);
20144 i += bytes_read;
20145 break;
20146
20147 case DW_OP_const1u:
20148 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20149 i += 1;
20150 break;
20151
20152 case DW_OP_const1s:
20153 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20154 i += 1;
20155 break;
20156
20157 case DW_OP_const2u:
20158 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20159 i += 2;
20160 break;
20161
20162 case DW_OP_const2s:
20163 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20164 i += 2;
20165 break;
20166
20167 case DW_OP_const4u:
20168 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20169 i += 4;
20170 break;
20171
20172 case DW_OP_const4s:
20173 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20174 i += 4;
20175 break;
20176
20177 case DW_OP_const8u:
20178 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20179 i += 8;
20180 break;
20181
20182 case DW_OP_constu:
20183 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20184 &bytes_read);
20185 i += bytes_read;
20186 break;
20187
20188 case DW_OP_consts:
20189 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20190 i += bytes_read;
20191 break;
20192
20193 case DW_OP_dup:
20194 stack[stacki + 1] = stack[stacki];
20195 stacki++;
20196 break;
20197
20198 case DW_OP_plus:
20199 stack[stacki - 1] += stack[stacki];
20200 stacki--;
20201 break;
20202
20203 case DW_OP_plus_uconst:
20204 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20205 &bytes_read);
20206 i += bytes_read;
20207 break;
20208
20209 case DW_OP_minus:
20210 stack[stacki - 1] -= stack[stacki];
20211 stacki--;
20212 break;
20213
20214 case DW_OP_deref:
20215 /* If we're not the last op, then we definitely can't encode
20216 this using GDB's address_class enum. This is valid for partial
20217 global symbols, although the variable's address will be bogus
20218 in the psymtab. */
20219 if (i < size)
20220 dwarf2_complex_location_expr_complaint ();
20221 break;
20222
20223 case DW_OP_GNU_push_tls_address:
20224 /* The top of the stack has the offset from the beginning
20225 of the thread control block at which the variable is located. */
20226 /* Nothing should follow this operator, so the top of stack would
20227 be returned. */
20228 /* This is valid for partial global symbols, but the variable's
20229 address will be bogus in the psymtab. Make it always at least
20230 non-zero to not look as a variable garbage collected by linker
20231 which have DW_OP_addr 0. */
20232 if (i < size)
20233 dwarf2_complex_location_expr_complaint ();
20234 stack[stacki]++;
20235 break;
20236
20237 case DW_OP_GNU_uninit:
20238 break;
20239
20240 case DW_OP_GNU_addr_index:
20241 case DW_OP_GNU_const_index:
20242 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20243 &bytes_read);
20244 i += bytes_read;
20245 break;
20246
20247 default:
20248 {
20249 const char *name = get_DW_OP_name (op);
20250
20251 if (name)
20252 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20253 name);
20254 else
20255 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20256 op);
20257 }
20258
20259 return (stack[stacki]);
20260 }
20261
20262 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20263 outside of the allocated space. Also enforce minimum>0. */
20264 if (stacki >= ARRAY_SIZE (stack) - 1)
20265 {
20266 complaint (&symfile_complaints,
20267 _("location description stack overflow"));
20268 return 0;
20269 }
20270
20271 if (stacki <= 0)
20272 {
20273 complaint (&symfile_complaints,
20274 _("location description stack underflow"));
20275 return 0;
20276 }
20277 }
20278 return (stack[stacki]);
20279 }
20280
20281 /* memory allocation interface */
20282
20283 static struct dwarf_block *
20284 dwarf_alloc_block (struct dwarf2_cu *cu)
20285 {
20286 struct dwarf_block *blk;
20287
20288 blk = (struct dwarf_block *)
20289 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20290 return (blk);
20291 }
20292
20293 static struct die_info *
20294 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20295 {
20296 struct die_info *die;
20297 size_t size = sizeof (struct die_info);
20298
20299 if (num_attrs > 1)
20300 size += (num_attrs - 1) * sizeof (struct attribute);
20301
20302 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20303 memset (die, 0, sizeof (struct die_info));
20304 return (die);
20305 }
20306
20307 \f
20308 /* Macro support. */
20309
20310 /* Return file name relative to the compilation directory of file number I in
20311 *LH's file name table. The result is allocated using xmalloc; the caller is
20312 responsible for freeing it. */
20313
20314 static char *
20315 file_file_name (int file, struct line_header *lh)
20316 {
20317 /* Is the file number a valid index into the line header's file name
20318 table? Remember that file numbers start with one, not zero. */
20319 if (1 <= file && file <= lh->num_file_names)
20320 {
20321 struct file_entry *fe = &lh->file_names[file - 1];
20322
20323 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20324 return xstrdup (fe->name);
20325 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20326 fe->name, NULL);
20327 }
20328 else
20329 {
20330 /* The compiler produced a bogus file number. We can at least
20331 record the macro definitions made in the file, even if we
20332 won't be able to find the file by name. */
20333 char fake_name[80];
20334
20335 xsnprintf (fake_name, sizeof (fake_name),
20336 "<bad macro file number %d>", file);
20337
20338 complaint (&symfile_complaints,
20339 _("bad file number in macro information (%d)"),
20340 file);
20341
20342 return xstrdup (fake_name);
20343 }
20344 }
20345
20346 /* Return the full name of file number I in *LH's file name table.
20347 Use COMP_DIR as the name of the current directory of the
20348 compilation. The result is allocated using xmalloc; the caller is
20349 responsible for freeing it. */
20350 static char *
20351 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20352 {
20353 /* Is the file number a valid index into the line header's file name
20354 table? Remember that file numbers start with one, not zero. */
20355 if (1 <= file && file <= lh->num_file_names)
20356 {
20357 char *relative = file_file_name (file, lh);
20358
20359 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20360 return relative;
20361 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20362 }
20363 else
20364 return file_file_name (file, lh);
20365 }
20366
20367
20368 static struct macro_source_file *
20369 macro_start_file (int file, int line,
20370 struct macro_source_file *current_file,
20371 struct line_header *lh)
20372 {
20373 /* File name relative to the compilation directory of this source file. */
20374 char *file_name = file_file_name (file, lh);
20375
20376 if (! current_file)
20377 {
20378 /* Note: We don't create a macro table for this compilation unit
20379 at all until we actually get a filename. */
20380 struct macro_table *macro_table = get_macro_table ();
20381
20382 /* If we have no current file, then this must be the start_file
20383 directive for the compilation unit's main source file. */
20384 current_file = macro_set_main (macro_table, file_name);
20385 macro_define_special (macro_table);
20386 }
20387 else
20388 current_file = macro_include (current_file, line, file_name);
20389
20390 xfree (file_name);
20391
20392 return current_file;
20393 }
20394
20395
20396 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20397 followed by a null byte. */
20398 static char *
20399 copy_string (const char *buf, int len)
20400 {
20401 char *s = xmalloc (len + 1);
20402
20403 memcpy (s, buf, len);
20404 s[len] = '\0';
20405 return s;
20406 }
20407
20408
20409 static const char *
20410 consume_improper_spaces (const char *p, const char *body)
20411 {
20412 if (*p == ' ')
20413 {
20414 complaint (&symfile_complaints,
20415 _("macro definition contains spaces "
20416 "in formal argument list:\n`%s'"),
20417 body);
20418
20419 while (*p == ' ')
20420 p++;
20421 }
20422
20423 return p;
20424 }
20425
20426
20427 static void
20428 parse_macro_definition (struct macro_source_file *file, int line,
20429 const char *body)
20430 {
20431 const char *p;
20432
20433 /* The body string takes one of two forms. For object-like macro
20434 definitions, it should be:
20435
20436 <macro name> " " <definition>
20437
20438 For function-like macro definitions, it should be:
20439
20440 <macro name> "() " <definition>
20441 or
20442 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20443
20444 Spaces may appear only where explicitly indicated, and in the
20445 <definition>.
20446
20447 The Dwarf 2 spec says that an object-like macro's name is always
20448 followed by a space, but versions of GCC around March 2002 omit
20449 the space when the macro's definition is the empty string.
20450
20451 The Dwarf 2 spec says that there should be no spaces between the
20452 formal arguments in a function-like macro's formal argument list,
20453 but versions of GCC around March 2002 include spaces after the
20454 commas. */
20455
20456
20457 /* Find the extent of the macro name. The macro name is terminated
20458 by either a space or null character (for an object-like macro) or
20459 an opening paren (for a function-like macro). */
20460 for (p = body; *p; p++)
20461 if (*p == ' ' || *p == '(')
20462 break;
20463
20464 if (*p == ' ' || *p == '\0')
20465 {
20466 /* It's an object-like macro. */
20467 int name_len = p - body;
20468 char *name = copy_string (body, name_len);
20469 const char *replacement;
20470
20471 if (*p == ' ')
20472 replacement = body + name_len + 1;
20473 else
20474 {
20475 dwarf2_macro_malformed_definition_complaint (body);
20476 replacement = body + name_len;
20477 }
20478
20479 macro_define_object (file, line, name, replacement);
20480
20481 xfree (name);
20482 }
20483 else if (*p == '(')
20484 {
20485 /* It's a function-like macro. */
20486 char *name = copy_string (body, p - body);
20487 int argc = 0;
20488 int argv_size = 1;
20489 char **argv = xmalloc (argv_size * sizeof (*argv));
20490
20491 p++;
20492
20493 p = consume_improper_spaces (p, body);
20494
20495 /* Parse the formal argument list. */
20496 while (*p && *p != ')')
20497 {
20498 /* Find the extent of the current argument name. */
20499 const char *arg_start = p;
20500
20501 while (*p && *p != ',' && *p != ')' && *p != ' ')
20502 p++;
20503
20504 if (! *p || p == arg_start)
20505 dwarf2_macro_malformed_definition_complaint (body);
20506 else
20507 {
20508 /* Make sure argv has room for the new argument. */
20509 if (argc >= argv_size)
20510 {
20511 argv_size *= 2;
20512 argv = xrealloc (argv, argv_size * sizeof (*argv));
20513 }
20514
20515 argv[argc++] = copy_string (arg_start, p - arg_start);
20516 }
20517
20518 p = consume_improper_spaces (p, body);
20519
20520 /* Consume the comma, if present. */
20521 if (*p == ',')
20522 {
20523 p++;
20524
20525 p = consume_improper_spaces (p, body);
20526 }
20527 }
20528
20529 if (*p == ')')
20530 {
20531 p++;
20532
20533 if (*p == ' ')
20534 /* Perfectly formed definition, no complaints. */
20535 macro_define_function (file, line, name,
20536 argc, (const char **) argv,
20537 p + 1);
20538 else if (*p == '\0')
20539 {
20540 /* Complain, but do define it. */
20541 dwarf2_macro_malformed_definition_complaint (body);
20542 macro_define_function (file, line, name,
20543 argc, (const char **) argv,
20544 p);
20545 }
20546 else
20547 /* Just complain. */
20548 dwarf2_macro_malformed_definition_complaint (body);
20549 }
20550 else
20551 /* Just complain. */
20552 dwarf2_macro_malformed_definition_complaint (body);
20553
20554 xfree (name);
20555 {
20556 int i;
20557
20558 for (i = 0; i < argc; i++)
20559 xfree (argv[i]);
20560 }
20561 xfree (argv);
20562 }
20563 else
20564 dwarf2_macro_malformed_definition_complaint (body);
20565 }
20566
20567 /* Skip some bytes from BYTES according to the form given in FORM.
20568 Returns the new pointer. */
20569
20570 static const gdb_byte *
20571 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20572 enum dwarf_form form,
20573 unsigned int offset_size,
20574 struct dwarf2_section_info *section)
20575 {
20576 unsigned int bytes_read;
20577
20578 switch (form)
20579 {
20580 case DW_FORM_data1:
20581 case DW_FORM_flag:
20582 ++bytes;
20583 break;
20584
20585 case DW_FORM_data2:
20586 bytes += 2;
20587 break;
20588
20589 case DW_FORM_data4:
20590 bytes += 4;
20591 break;
20592
20593 case DW_FORM_data8:
20594 bytes += 8;
20595 break;
20596
20597 case DW_FORM_string:
20598 read_direct_string (abfd, bytes, &bytes_read);
20599 bytes += bytes_read;
20600 break;
20601
20602 case DW_FORM_sec_offset:
20603 case DW_FORM_strp:
20604 case DW_FORM_GNU_strp_alt:
20605 bytes += offset_size;
20606 break;
20607
20608 case DW_FORM_block:
20609 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20610 bytes += bytes_read;
20611 break;
20612
20613 case DW_FORM_block1:
20614 bytes += 1 + read_1_byte (abfd, bytes);
20615 break;
20616 case DW_FORM_block2:
20617 bytes += 2 + read_2_bytes (abfd, bytes);
20618 break;
20619 case DW_FORM_block4:
20620 bytes += 4 + read_4_bytes (abfd, bytes);
20621 break;
20622
20623 case DW_FORM_sdata:
20624 case DW_FORM_udata:
20625 case DW_FORM_GNU_addr_index:
20626 case DW_FORM_GNU_str_index:
20627 bytes = gdb_skip_leb128 (bytes, buffer_end);
20628 if (bytes == NULL)
20629 {
20630 dwarf2_section_buffer_overflow_complaint (section);
20631 return NULL;
20632 }
20633 break;
20634
20635 default:
20636 {
20637 complain:
20638 complaint (&symfile_complaints,
20639 _("invalid form 0x%x in `%s'"),
20640 form, get_section_name (section));
20641 return NULL;
20642 }
20643 }
20644
20645 return bytes;
20646 }
20647
20648 /* A helper for dwarf_decode_macros that handles skipping an unknown
20649 opcode. Returns an updated pointer to the macro data buffer; or,
20650 on error, issues a complaint and returns NULL. */
20651
20652 static const gdb_byte *
20653 skip_unknown_opcode (unsigned int opcode,
20654 const gdb_byte **opcode_definitions,
20655 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20656 bfd *abfd,
20657 unsigned int offset_size,
20658 struct dwarf2_section_info *section)
20659 {
20660 unsigned int bytes_read, i;
20661 unsigned long arg;
20662 const gdb_byte *defn;
20663
20664 if (opcode_definitions[opcode] == NULL)
20665 {
20666 complaint (&symfile_complaints,
20667 _("unrecognized DW_MACFINO opcode 0x%x"),
20668 opcode);
20669 return NULL;
20670 }
20671
20672 defn = opcode_definitions[opcode];
20673 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20674 defn += bytes_read;
20675
20676 for (i = 0; i < arg; ++i)
20677 {
20678 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20679 section);
20680 if (mac_ptr == NULL)
20681 {
20682 /* skip_form_bytes already issued the complaint. */
20683 return NULL;
20684 }
20685 }
20686
20687 return mac_ptr;
20688 }
20689
20690 /* A helper function which parses the header of a macro section.
20691 If the macro section is the extended (for now called "GNU") type,
20692 then this updates *OFFSET_SIZE. Returns a pointer to just after
20693 the header, or issues a complaint and returns NULL on error. */
20694
20695 static const gdb_byte *
20696 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20697 bfd *abfd,
20698 const gdb_byte *mac_ptr,
20699 unsigned int *offset_size,
20700 int section_is_gnu)
20701 {
20702 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20703
20704 if (section_is_gnu)
20705 {
20706 unsigned int version, flags;
20707
20708 version = read_2_bytes (abfd, mac_ptr);
20709 if (version != 4)
20710 {
20711 complaint (&symfile_complaints,
20712 _("unrecognized version `%d' in .debug_macro section"),
20713 version);
20714 return NULL;
20715 }
20716 mac_ptr += 2;
20717
20718 flags = read_1_byte (abfd, mac_ptr);
20719 ++mac_ptr;
20720 *offset_size = (flags & 1) ? 8 : 4;
20721
20722 if ((flags & 2) != 0)
20723 /* We don't need the line table offset. */
20724 mac_ptr += *offset_size;
20725
20726 /* Vendor opcode descriptions. */
20727 if ((flags & 4) != 0)
20728 {
20729 unsigned int i, count;
20730
20731 count = read_1_byte (abfd, mac_ptr);
20732 ++mac_ptr;
20733 for (i = 0; i < count; ++i)
20734 {
20735 unsigned int opcode, bytes_read;
20736 unsigned long arg;
20737
20738 opcode = read_1_byte (abfd, mac_ptr);
20739 ++mac_ptr;
20740 opcode_definitions[opcode] = mac_ptr;
20741 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20742 mac_ptr += bytes_read;
20743 mac_ptr += arg;
20744 }
20745 }
20746 }
20747
20748 return mac_ptr;
20749 }
20750
20751 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20752 including DW_MACRO_GNU_transparent_include. */
20753
20754 static void
20755 dwarf_decode_macro_bytes (bfd *abfd,
20756 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20757 struct macro_source_file *current_file,
20758 struct line_header *lh,
20759 struct dwarf2_section_info *section,
20760 int section_is_gnu, int section_is_dwz,
20761 unsigned int offset_size,
20762 htab_t include_hash)
20763 {
20764 struct objfile *objfile = dwarf2_per_objfile->objfile;
20765 enum dwarf_macro_record_type macinfo_type;
20766 int at_commandline;
20767 const gdb_byte *opcode_definitions[256];
20768
20769 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20770 &offset_size, section_is_gnu);
20771 if (mac_ptr == NULL)
20772 {
20773 /* We already issued a complaint. */
20774 return;
20775 }
20776
20777 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20778 GDB is still reading the definitions from command line. First
20779 DW_MACINFO_start_file will need to be ignored as it was already executed
20780 to create CURRENT_FILE for the main source holding also the command line
20781 definitions. On first met DW_MACINFO_start_file this flag is reset to
20782 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20783
20784 at_commandline = 1;
20785
20786 do
20787 {
20788 /* Do we at least have room for a macinfo type byte? */
20789 if (mac_ptr >= mac_end)
20790 {
20791 dwarf2_section_buffer_overflow_complaint (section);
20792 break;
20793 }
20794
20795 macinfo_type = read_1_byte (abfd, mac_ptr);
20796 mac_ptr++;
20797
20798 /* Note that we rely on the fact that the corresponding GNU and
20799 DWARF constants are the same. */
20800 switch (macinfo_type)
20801 {
20802 /* A zero macinfo type indicates the end of the macro
20803 information. */
20804 case 0:
20805 break;
20806
20807 case DW_MACRO_GNU_define:
20808 case DW_MACRO_GNU_undef:
20809 case DW_MACRO_GNU_define_indirect:
20810 case DW_MACRO_GNU_undef_indirect:
20811 case DW_MACRO_GNU_define_indirect_alt:
20812 case DW_MACRO_GNU_undef_indirect_alt:
20813 {
20814 unsigned int bytes_read;
20815 int line;
20816 const char *body;
20817 int is_define;
20818
20819 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20820 mac_ptr += bytes_read;
20821
20822 if (macinfo_type == DW_MACRO_GNU_define
20823 || macinfo_type == DW_MACRO_GNU_undef)
20824 {
20825 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20826 mac_ptr += bytes_read;
20827 }
20828 else
20829 {
20830 LONGEST str_offset;
20831
20832 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20833 mac_ptr += offset_size;
20834
20835 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20836 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20837 || section_is_dwz)
20838 {
20839 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20840
20841 body = read_indirect_string_from_dwz (dwz, str_offset);
20842 }
20843 else
20844 body = read_indirect_string_at_offset (abfd, str_offset);
20845 }
20846
20847 is_define = (macinfo_type == DW_MACRO_GNU_define
20848 || macinfo_type == DW_MACRO_GNU_define_indirect
20849 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20850 if (! current_file)
20851 {
20852 /* DWARF violation as no main source is present. */
20853 complaint (&symfile_complaints,
20854 _("debug info with no main source gives macro %s "
20855 "on line %d: %s"),
20856 is_define ? _("definition") : _("undefinition"),
20857 line, body);
20858 break;
20859 }
20860 if ((line == 0 && !at_commandline)
20861 || (line != 0 && at_commandline))
20862 complaint (&symfile_complaints,
20863 _("debug info gives %s macro %s with %s line %d: %s"),
20864 at_commandline ? _("command-line") : _("in-file"),
20865 is_define ? _("definition") : _("undefinition"),
20866 line == 0 ? _("zero") : _("non-zero"), line, body);
20867
20868 if (is_define)
20869 parse_macro_definition (current_file, line, body);
20870 else
20871 {
20872 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20873 || macinfo_type == DW_MACRO_GNU_undef_indirect
20874 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20875 macro_undef (current_file, line, body);
20876 }
20877 }
20878 break;
20879
20880 case DW_MACRO_GNU_start_file:
20881 {
20882 unsigned int bytes_read;
20883 int line, file;
20884
20885 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20886 mac_ptr += bytes_read;
20887 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20888 mac_ptr += bytes_read;
20889
20890 if ((line == 0 && !at_commandline)
20891 || (line != 0 && at_commandline))
20892 complaint (&symfile_complaints,
20893 _("debug info gives source %d included "
20894 "from %s at %s line %d"),
20895 file, at_commandline ? _("command-line") : _("file"),
20896 line == 0 ? _("zero") : _("non-zero"), line);
20897
20898 if (at_commandline)
20899 {
20900 /* This DW_MACRO_GNU_start_file was executed in the
20901 pass one. */
20902 at_commandline = 0;
20903 }
20904 else
20905 current_file = macro_start_file (file, line, current_file, lh);
20906 }
20907 break;
20908
20909 case DW_MACRO_GNU_end_file:
20910 if (! current_file)
20911 complaint (&symfile_complaints,
20912 _("macro debug info has an unmatched "
20913 "`close_file' directive"));
20914 else
20915 {
20916 current_file = current_file->included_by;
20917 if (! current_file)
20918 {
20919 enum dwarf_macro_record_type next_type;
20920
20921 /* GCC circa March 2002 doesn't produce the zero
20922 type byte marking the end of the compilation
20923 unit. Complain if it's not there, but exit no
20924 matter what. */
20925
20926 /* Do we at least have room for a macinfo type byte? */
20927 if (mac_ptr >= mac_end)
20928 {
20929 dwarf2_section_buffer_overflow_complaint (section);
20930 return;
20931 }
20932
20933 /* We don't increment mac_ptr here, so this is just
20934 a look-ahead. */
20935 next_type = read_1_byte (abfd, mac_ptr);
20936 if (next_type != 0)
20937 complaint (&symfile_complaints,
20938 _("no terminating 0-type entry for "
20939 "macros in `.debug_macinfo' section"));
20940
20941 return;
20942 }
20943 }
20944 break;
20945
20946 case DW_MACRO_GNU_transparent_include:
20947 case DW_MACRO_GNU_transparent_include_alt:
20948 {
20949 LONGEST offset;
20950 void **slot;
20951 bfd *include_bfd = abfd;
20952 struct dwarf2_section_info *include_section = section;
20953 struct dwarf2_section_info alt_section;
20954 const gdb_byte *include_mac_end = mac_end;
20955 int is_dwz = section_is_dwz;
20956 const gdb_byte *new_mac_ptr;
20957
20958 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20959 mac_ptr += offset_size;
20960
20961 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20962 {
20963 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20964
20965 dwarf2_read_section (objfile, &dwz->macro);
20966
20967 include_section = &dwz->macro;
20968 include_bfd = get_section_bfd_owner (include_section);
20969 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20970 is_dwz = 1;
20971 }
20972
20973 new_mac_ptr = include_section->buffer + offset;
20974 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20975
20976 if (*slot != NULL)
20977 {
20978 /* This has actually happened; see
20979 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20980 complaint (&symfile_complaints,
20981 _("recursive DW_MACRO_GNU_transparent_include in "
20982 ".debug_macro section"));
20983 }
20984 else
20985 {
20986 *slot = (void *) new_mac_ptr;
20987
20988 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20989 include_mac_end, current_file, lh,
20990 section, section_is_gnu, is_dwz,
20991 offset_size, include_hash);
20992
20993 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20994 }
20995 }
20996 break;
20997
20998 case DW_MACINFO_vendor_ext:
20999 if (!section_is_gnu)
21000 {
21001 unsigned int bytes_read;
21002 int constant;
21003
21004 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21005 mac_ptr += bytes_read;
21006 read_direct_string (abfd, mac_ptr, &bytes_read);
21007 mac_ptr += bytes_read;
21008
21009 /* We don't recognize any vendor extensions. */
21010 break;
21011 }
21012 /* FALLTHROUGH */
21013
21014 default:
21015 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21016 mac_ptr, mac_end, abfd, offset_size,
21017 section);
21018 if (mac_ptr == NULL)
21019 return;
21020 break;
21021 }
21022 } while (macinfo_type != 0);
21023 }
21024
21025 static void
21026 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21027 int section_is_gnu)
21028 {
21029 struct objfile *objfile = dwarf2_per_objfile->objfile;
21030 struct line_header *lh = cu->line_header;
21031 bfd *abfd;
21032 const gdb_byte *mac_ptr, *mac_end;
21033 struct macro_source_file *current_file = 0;
21034 enum dwarf_macro_record_type macinfo_type;
21035 unsigned int offset_size = cu->header.offset_size;
21036 const gdb_byte *opcode_definitions[256];
21037 struct cleanup *cleanup;
21038 htab_t include_hash;
21039 void **slot;
21040 struct dwarf2_section_info *section;
21041 const char *section_name;
21042
21043 if (cu->dwo_unit != NULL)
21044 {
21045 if (section_is_gnu)
21046 {
21047 section = &cu->dwo_unit->dwo_file->sections.macro;
21048 section_name = ".debug_macro.dwo";
21049 }
21050 else
21051 {
21052 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21053 section_name = ".debug_macinfo.dwo";
21054 }
21055 }
21056 else
21057 {
21058 if (section_is_gnu)
21059 {
21060 section = &dwarf2_per_objfile->macro;
21061 section_name = ".debug_macro";
21062 }
21063 else
21064 {
21065 section = &dwarf2_per_objfile->macinfo;
21066 section_name = ".debug_macinfo";
21067 }
21068 }
21069
21070 dwarf2_read_section (objfile, section);
21071 if (section->buffer == NULL)
21072 {
21073 complaint (&symfile_complaints, _("missing %s section"), section_name);
21074 return;
21075 }
21076 abfd = get_section_bfd_owner (section);
21077
21078 /* First pass: Find the name of the base filename.
21079 This filename is needed in order to process all macros whose definition
21080 (or undefinition) comes from the command line. These macros are defined
21081 before the first DW_MACINFO_start_file entry, and yet still need to be
21082 associated to the base file.
21083
21084 To determine the base file name, we scan the macro definitions until we
21085 reach the first DW_MACINFO_start_file entry. We then initialize
21086 CURRENT_FILE accordingly so that any macro definition found before the
21087 first DW_MACINFO_start_file can still be associated to the base file. */
21088
21089 mac_ptr = section->buffer + offset;
21090 mac_end = section->buffer + section->size;
21091
21092 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21093 &offset_size, section_is_gnu);
21094 if (mac_ptr == NULL)
21095 {
21096 /* We already issued a complaint. */
21097 return;
21098 }
21099
21100 do
21101 {
21102 /* Do we at least have room for a macinfo type byte? */
21103 if (mac_ptr >= mac_end)
21104 {
21105 /* Complaint is printed during the second pass as GDB will probably
21106 stop the first pass earlier upon finding
21107 DW_MACINFO_start_file. */
21108 break;
21109 }
21110
21111 macinfo_type = read_1_byte (abfd, mac_ptr);
21112 mac_ptr++;
21113
21114 /* Note that we rely on the fact that the corresponding GNU and
21115 DWARF constants are the same. */
21116 switch (macinfo_type)
21117 {
21118 /* A zero macinfo type indicates the end of the macro
21119 information. */
21120 case 0:
21121 break;
21122
21123 case DW_MACRO_GNU_define:
21124 case DW_MACRO_GNU_undef:
21125 /* Only skip the data by MAC_PTR. */
21126 {
21127 unsigned int bytes_read;
21128
21129 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21130 mac_ptr += bytes_read;
21131 read_direct_string (abfd, mac_ptr, &bytes_read);
21132 mac_ptr += bytes_read;
21133 }
21134 break;
21135
21136 case DW_MACRO_GNU_start_file:
21137 {
21138 unsigned int bytes_read;
21139 int line, file;
21140
21141 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21142 mac_ptr += bytes_read;
21143 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21144 mac_ptr += bytes_read;
21145
21146 current_file = macro_start_file (file, line, current_file, lh);
21147 }
21148 break;
21149
21150 case DW_MACRO_GNU_end_file:
21151 /* No data to skip by MAC_PTR. */
21152 break;
21153
21154 case DW_MACRO_GNU_define_indirect:
21155 case DW_MACRO_GNU_undef_indirect:
21156 case DW_MACRO_GNU_define_indirect_alt:
21157 case DW_MACRO_GNU_undef_indirect_alt:
21158 {
21159 unsigned int bytes_read;
21160
21161 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21162 mac_ptr += bytes_read;
21163 mac_ptr += offset_size;
21164 }
21165 break;
21166
21167 case DW_MACRO_GNU_transparent_include:
21168 case DW_MACRO_GNU_transparent_include_alt:
21169 /* Note that, according to the spec, a transparent include
21170 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21171 skip this opcode. */
21172 mac_ptr += offset_size;
21173 break;
21174
21175 case DW_MACINFO_vendor_ext:
21176 /* Only skip the data by MAC_PTR. */
21177 if (!section_is_gnu)
21178 {
21179 unsigned int bytes_read;
21180
21181 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21182 mac_ptr += bytes_read;
21183 read_direct_string (abfd, mac_ptr, &bytes_read);
21184 mac_ptr += bytes_read;
21185 }
21186 /* FALLTHROUGH */
21187
21188 default:
21189 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21190 mac_ptr, mac_end, abfd, offset_size,
21191 section);
21192 if (mac_ptr == NULL)
21193 return;
21194 break;
21195 }
21196 } while (macinfo_type != 0 && current_file == NULL);
21197
21198 /* Second pass: Process all entries.
21199
21200 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21201 command-line macro definitions/undefinitions. This flag is unset when we
21202 reach the first DW_MACINFO_start_file entry. */
21203
21204 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21205 NULL, xcalloc, xfree);
21206 cleanup = make_cleanup_htab_delete (include_hash);
21207 mac_ptr = section->buffer + offset;
21208 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21209 *slot = (void *) mac_ptr;
21210 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21211 current_file, lh, section,
21212 section_is_gnu, 0, offset_size, include_hash);
21213 do_cleanups (cleanup);
21214 }
21215
21216 /* Check if the attribute's form is a DW_FORM_block*
21217 if so return true else false. */
21218
21219 static int
21220 attr_form_is_block (const struct attribute *attr)
21221 {
21222 return (attr == NULL ? 0 :
21223 attr->form == DW_FORM_block1
21224 || attr->form == DW_FORM_block2
21225 || attr->form == DW_FORM_block4
21226 || attr->form == DW_FORM_block
21227 || attr->form == DW_FORM_exprloc);
21228 }
21229
21230 /* Return non-zero if ATTR's value is a section offset --- classes
21231 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21232 You may use DW_UNSND (attr) to retrieve such offsets.
21233
21234 Section 7.5.4, "Attribute Encodings", explains that no attribute
21235 may have a value that belongs to more than one of these classes; it
21236 would be ambiguous if we did, because we use the same forms for all
21237 of them. */
21238
21239 static int
21240 attr_form_is_section_offset (const struct attribute *attr)
21241 {
21242 return (attr->form == DW_FORM_data4
21243 || attr->form == DW_FORM_data8
21244 || attr->form == DW_FORM_sec_offset);
21245 }
21246
21247 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21248 zero otherwise. When this function returns true, you can apply
21249 dwarf2_get_attr_constant_value to it.
21250
21251 However, note that for some attributes you must check
21252 attr_form_is_section_offset before using this test. DW_FORM_data4
21253 and DW_FORM_data8 are members of both the constant class, and of
21254 the classes that contain offsets into other debug sections
21255 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21256 that, if an attribute's can be either a constant or one of the
21257 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21258 taken as section offsets, not constants. */
21259
21260 static int
21261 attr_form_is_constant (const struct attribute *attr)
21262 {
21263 switch (attr->form)
21264 {
21265 case DW_FORM_sdata:
21266 case DW_FORM_udata:
21267 case DW_FORM_data1:
21268 case DW_FORM_data2:
21269 case DW_FORM_data4:
21270 case DW_FORM_data8:
21271 return 1;
21272 default:
21273 return 0;
21274 }
21275 }
21276
21277
21278 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21279 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21280
21281 static int
21282 attr_form_is_ref (const struct attribute *attr)
21283 {
21284 switch (attr->form)
21285 {
21286 case DW_FORM_ref_addr:
21287 case DW_FORM_ref1:
21288 case DW_FORM_ref2:
21289 case DW_FORM_ref4:
21290 case DW_FORM_ref8:
21291 case DW_FORM_ref_udata:
21292 case DW_FORM_GNU_ref_alt:
21293 return 1;
21294 default:
21295 return 0;
21296 }
21297 }
21298
21299 /* Return the .debug_loc section to use for CU.
21300 For DWO files use .debug_loc.dwo. */
21301
21302 static struct dwarf2_section_info *
21303 cu_debug_loc_section (struct dwarf2_cu *cu)
21304 {
21305 if (cu->dwo_unit)
21306 return &cu->dwo_unit->dwo_file->sections.loc;
21307 return &dwarf2_per_objfile->loc;
21308 }
21309
21310 /* A helper function that fills in a dwarf2_loclist_baton. */
21311
21312 static void
21313 fill_in_loclist_baton (struct dwarf2_cu *cu,
21314 struct dwarf2_loclist_baton *baton,
21315 const struct attribute *attr)
21316 {
21317 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21318
21319 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21320
21321 baton->per_cu = cu->per_cu;
21322 gdb_assert (baton->per_cu);
21323 /* We don't know how long the location list is, but make sure we
21324 don't run off the edge of the section. */
21325 baton->size = section->size - DW_UNSND (attr);
21326 baton->data = section->buffer + DW_UNSND (attr);
21327 baton->base_address = cu->base_address;
21328 baton->from_dwo = cu->dwo_unit != NULL;
21329 }
21330
21331 static void
21332 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21333 struct dwarf2_cu *cu, int is_block)
21334 {
21335 struct objfile *objfile = dwarf2_per_objfile->objfile;
21336 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21337
21338 if (attr_form_is_section_offset (attr)
21339 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21340 the section. If so, fall through to the complaint in the
21341 other branch. */
21342 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21343 {
21344 struct dwarf2_loclist_baton *baton;
21345
21346 baton = obstack_alloc (&objfile->objfile_obstack,
21347 sizeof (struct dwarf2_loclist_baton));
21348
21349 fill_in_loclist_baton (cu, baton, attr);
21350
21351 if (cu->base_known == 0)
21352 complaint (&symfile_complaints,
21353 _("Location list used without "
21354 "specifying the CU base address."));
21355
21356 SYMBOL_ACLASS_INDEX (sym) = (is_block
21357 ? dwarf2_loclist_block_index
21358 : dwarf2_loclist_index);
21359 SYMBOL_LOCATION_BATON (sym) = baton;
21360 }
21361 else
21362 {
21363 struct dwarf2_locexpr_baton *baton;
21364
21365 baton = obstack_alloc (&objfile->objfile_obstack,
21366 sizeof (struct dwarf2_locexpr_baton));
21367 baton->per_cu = cu->per_cu;
21368 gdb_assert (baton->per_cu);
21369
21370 if (attr_form_is_block (attr))
21371 {
21372 /* Note that we're just copying the block's data pointer
21373 here, not the actual data. We're still pointing into the
21374 info_buffer for SYM's objfile; right now we never release
21375 that buffer, but when we do clean up properly this may
21376 need to change. */
21377 baton->size = DW_BLOCK (attr)->size;
21378 baton->data = DW_BLOCK (attr)->data;
21379 }
21380 else
21381 {
21382 dwarf2_invalid_attrib_class_complaint ("location description",
21383 SYMBOL_NATURAL_NAME (sym));
21384 baton->size = 0;
21385 }
21386
21387 SYMBOL_ACLASS_INDEX (sym) = (is_block
21388 ? dwarf2_locexpr_block_index
21389 : dwarf2_locexpr_index);
21390 SYMBOL_LOCATION_BATON (sym) = baton;
21391 }
21392 }
21393
21394 /* Return the OBJFILE associated with the compilation unit CU. If CU
21395 came from a separate debuginfo file, then the master objfile is
21396 returned. */
21397
21398 struct objfile *
21399 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21400 {
21401 struct objfile *objfile = per_cu->objfile;
21402
21403 /* Return the master objfile, so that we can report and look up the
21404 correct file containing this variable. */
21405 if (objfile->separate_debug_objfile_backlink)
21406 objfile = objfile->separate_debug_objfile_backlink;
21407
21408 return objfile;
21409 }
21410
21411 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21412 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21413 CU_HEADERP first. */
21414
21415 static const struct comp_unit_head *
21416 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21417 struct dwarf2_per_cu_data *per_cu)
21418 {
21419 const gdb_byte *info_ptr;
21420
21421 if (per_cu->cu)
21422 return &per_cu->cu->header;
21423
21424 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21425
21426 memset (cu_headerp, 0, sizeof (*cu_headerp));
21427 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21428
21429 return cu_headerp;
21430 }
21431
21432 /* Return the address size given in the compilation unit header for CU. */
21433
21434 int
21435 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21436 {
21437 struct comp_unit_head cu_header_local;
21438 const struct comp_unit_head *cu_headerp;
21439
21440 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21441
21442 return cu_headerp->addr_size;
21443 }
21444
21445 /* Return the offset size given in the compilation unit header for CU. */
21446
21447 int
21448 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21449 {
21450 struct comp_unit_head cu_header_local;
21451 const struct comp_unit_head *cu_headerp;
21452
21453 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21454
21455 return cu_headerp->offset_size;
21456 }
21457
21458 /* See its dwarf2loc.h declaration. */
21459
21460 int
21461 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21462 {
21463 struct comp_unit_head cu_header_local;
21464 const struct comp_unit_head *cu_headerp;
21465
21466 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21467
21468 if (cu_headerp->version == 2)
21469 return cu_headerp->addr_size;
21470 else
21471 return cu_headerp->offset_size;
21472 }
21473
21474 /* Return the text offset of the CU. The returned offset comes from
21475 this CU's objfile. If this objfile came from a separate debuginfo
21476 file, then the offset may be different from the corresponding
21477 offset in the parent objfile. */
21478
21479 CORE_ADDR
21480 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21481 {
21482 struct objfile *objfile = per_cu->objfile;
21483
21484 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21485 }
21486
21487 /* Locate the .debug_info compilation unit from CU's objfile which contains
21488 the DIE at OFFSET. Raises an error on failure. */
21489
21490 static struct dwarf2_per_cu_data *
21491 dwarf2_find_containing_comp_unit (sect_offset offset,
21492 unsigned int offset_in_dwz,
21493 struct objfile *objfile)
21494 {
21495 struct dwarf2_per_cu_data *this_cu;
21496 int low, high;
21497 const sect_offset *cu_off;
21498
21499 low = 0;
21500 high = dwarf2_per_objfile->n_comp_units - 1;
21501 while (high > low)
21502 {
21503 struct dwarf2_per_cu_data *mid_cu;
21504 int mid = low + (high - low) / 2;
21505
21506 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21507 cu_off = &mid_cu->offset;
21508 if (mid_cu->is_dwz > offset_in_dwz
21509 || (mid_cu->is_dwz == offset_in_dwz
21510 && cu_off->sect_off >= offset.sect_off))
21511 high = mid;
21512 else
21513 low = mid + 1;
21514 }
21515 gdb_assert (low == high);
21516 this_cu = dwarf2_per_objfile->all_comp_units[low];
21517 cu_off = &this_cu->offset;
21518 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21519 {
21520 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21521 error (_("Dwarf Error: could not find partial DIE containing "
21522 "offset 0x%lx [in module %s]"),
21523 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21524
21525 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21526 <= offset.sect_off);
21527 return dwarf2_per_objfile->all_comp_units[low-1];
21528 }
21529 else
21530 {
21531 this_cu = dwarf2_per_objfile->all_comp_units[low];
21532 if (low == dwarf2_per_objfile->n_comp_units - 1
21533 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21534 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21535 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21536 return this_cu;
21537 }
21538 }
21539
21540 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21541
21542 static void
21543 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21544 {
21545 memset (cu, 0, sizeof (*cu));
21546 per_cu->cu = cu;
21547 cu->per_cu = per_cu;
21548 cu->objfile = per_cu->objfile;
21549 obstack_init (&cu->comp_unit_obstack);
21550 }
21551
21552 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21553
21554 static void
21555 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21556 enum language pretend_language)
21557 {
21558 struct attribute *attr;
21559
21560 /* Set the language we're debugging. */
21561 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21562 if (attr)
21563 set_cu_language (DW_UNSND (attr), cu);
21564 else
21565 {
21566 cu->language = pretend_language;
21567 cu->language_defn = language_def (cu->language);
21568 }
21569
21570 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21571 if (attr)
21572 cu->producer = DW_STRING (attr);
21573 }
21574
21575 /* Release one cached compilation unit, CU. We unlink it from the tree
21576 of compilation units, but we don't remove it from the read_in_chain;
21577 the caller is responsible for that.
21578 NOTE: DATA is a void * because this function is also used as a
21579 cleanup routine. */
21580
21581 static void
21582 free_heap_comp_unit (void *data)
21583 {
21584 struct dwarf2_cu *cu = data;
21585
21586 gdb_assert (cu->per_cu != NULL);
21587 cu->per_cu->cu = NULL;
21588 cu->per_cu = NULL;
21589
21590 obstack_free (&cu->comp_unit_obstack, NULL);
21591
21592 xfree (cu);
21593 }
21594
21595 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21596 when we're finished with it. We can't free the pointer itself, but be
21597 sure to unlink it from the cache. Also release any associated storage. */
21598
21599 static void
21600 free_stack_comp_unit (void *data)
21601 {
21602 struct dwarf2_cu *cu = data;
21603
21604 gdb_assert (cu->per_cu != NULL);
21605 cu->per_cu->cu = NULL;
21606 cu->per_cu = NULL;
21607
21608 obstack_free (&cu->comp_unit_obstack, NULL);
21609 cu->partial_dies = NULL;
21610 }
21611
21612 /* Free all cached compilation units. */
21613
21614 static void
21615 free_cached_comp_units (void *data)
21616 {
21617 struct dwarf2_per_cu_data *per_cu, **last_chain;
21618
21619 per_cu = dwarf2_per_objfile->read_in_chain;
21620 last_chain = &dwarf2_per_objfile->read_in_chain;
21621 while (per_cu != NULL)
21622 {
21623 struct dwarf2_per_cu_data *next_cu;
21624
21625 next_cu = per_cu->cu->read_in_chain;
21626
21627 free_heap_comp_unit (per_cu->cu);
21628 *last_chain = next_cu;
21629
21630 per_cu = next_cu;
21631 }
21632 }
21633
21634 /* Increase the age counter on each cached compilation unit, and free
21635 any that are too old. */
21636
21637 static void
21638 age_cached_comp_units (void)
21639 {
21640 struct dwarf2_per_cu_data *per_cu, **last_chain;
21641
21642 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21643 per_cu = dwarf2_per_objfile->read_in_chain;
21644 while (per_cu != NULL)
21645 {
21646 per_cu->cu->last_used ++;
21647 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21648 dwarf2_mark (per_cu->cu);
21649 per_cu = per_cu->cu->read_in_chain;
21650 }
21651
21652 per_cu = dwarf2_per_objfile->read_in_chain;
21653 last_chain = &dwarf2_per_objfile->read_in_chain;
21654 while (per_cu != NULL)
21655 {
21656 struct dwarf2_per_cu_data *next_cu;
21657
21658 next_cu = per_cu->cu->read_in_chain;
21659
21660 if (!per_cu->cu->mark)
21661 {
21662 free_heap_comp_unit (per_cu->cu);
21663 *last_chain = next_cu;
21664 }
21665 else
21666 last_chain = &per_cu->cu->read_in_chain;
21667
21668 per_cu = next_cu;
21669 }
21670 }
21671
21672 /* Remove a single compilation unit from the cache. */
21673
21674 static void
21675 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21676 {
21677 struct dwarf2_per_cu_data *per_cu, **last_chain;
21678
21679 per_cu = dwarf2_per_objfile->read_in_chain;
21680 last_chain = &dwarf2_per_objfile->read_in_chain;
21681 while (per_cu != NULL)
21682 {
21683 struct dwarf2_per_cu_data *next_cu;
21684
21685 next_cu = per_cu->cu->read_in_chain;
21686
21687 if (per_cu == target_per_cu)
21688 {
21689 free_heap_comp_unit (per_cu->cu);
21690 per_cu->cu = NULL;
21691 *last_chain = next_cu;
21692 break;
21693 }
21694 else
21695 last_chain = &per_cu->cu->read_in_chain;
21696
21697 per_cu = next_cu;
21698 }
21699 }
21700
21701 /* Release all extra memory associated with OBJFILE. */
21702
21703 void
21704 dwarf2_free_objfile (struct objfile *objfile)
21705 {
21706 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21707
21708 if (dwarf2_per_objfile == NULL)
21709 return;
21710
21711 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21712 free_cached_comp_units (NULL);
21713
21714 if (dwarf2_per_objfile->quick_file_names_table)
21715 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21716
21717 /* Everything else should be on the objfile obstack. */
21718 }
21719
21720 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21721 We store these in a hash table separate from the DIEs, and preserve them
21722 when the DIEs are flushed out of cache.
21723
21724 The CU "per_cu" pointer is needed because offset alone is not enough to
21725 uniquely identify the type. A file may have multiple .debug_types sections,
21726 or the type may come from a DWO file. Furthermore, while it's more logical
21727 to use per_cu->section+offset, with Fission the section with the data is in
21728 the DWO file but we don't know that section at the point we need it.
21729 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21730 because we can enter the lookup routine, get_die_type_at_offset, from
21731 outside this file, and thus won't necessarily have PER_CU->cu.
21732 Fortunately, PER_CU is stable for the life of the objfile. */
21733
21734 struct dwarf2_per_cu_offset_and_type
21735 {
21736 const struct dwarf2_per_cu_data *per_cu;
21737 sect_offset offset;
21738 struct type *type;
21739 };
21740
21741 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21742
21743 static hashval_t
21744 per_cu_offset_and_type_hash (const void *item)
21745 {
21746 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21747
21748 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21749 }
21750
21751 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21752
21753 static int
21754 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21755 {
21756 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21757 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21758
21759 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21760 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21761 }
21762
21763 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21764 table if necessary. For convenience, return TYPE.
21765
21766 The DIEs reading must have careful ordering to:
21767 * Not cause infite loops trying to read in DIEs as a prerequisite for
21768 reading current DIE.
21769 * Not trying to dereference contents of still incompletely read in types
21770 while reading in other DIEs.
21771 * Enable referencing still incompletely read in types just by a pointer to
21772 the type without accessing its fields.
21773
21774 Therefore caller should follow these rules:
21775 * Try to fetch any prerequisite types we may need to build this DIE type
21776 before building the type and calling set_die_type.
21777 * After building type call set_die_type for current DIE as soon as
21778 possible before fetching more types to complete the current type.
21779 * Make the type as complete as possible before fetching more types. */
21780
21781 static struct type *
21782 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21783 {
21784 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21785 struct objfile *objfile = cu->objfile;
21786 struct attribute *attr;
21787 struct dynamic_prop prop;
21788
21789 /* For Ada types, make sure that the gnat-specific data is always
21790 initialized (if not already set). There are a few types where
21791 we should not be doing so, because the type-specific area is
21792 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21793 where the type-specific area is used to store the floatformat).
21794 But this is not a problem, because the gnat-specific information
21795 is actually not needed for these types. */
21796 if (need_gnat_info (cu)
21797 && TYPE_CODE (type) != TYPE_CODE_FUNC
21798 && TYPE_CODE (type) != TYPE_CODE_FLT
21799 && !HAVE_GNAT_AUX_INFO (type))
21800 INIT_GNAT_SPECIFIC (type);
21801
21802 /* Read DW_AT_data_location and set in type. */
21803 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21804 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21805 {
21806 TYPE_DATA_LOCATION (type)
21807 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21808 *TYPE_DATA_LOCATION (type) = prop;
21809 }
21810
21811 if (dwarf2_per_objfile->die_type_hash == NULL)
21812 {
21813 dwarf2_per_objfile->die_type_hash =
21814 htab_create_alloc_ex (127,
21815 per_cu_offset_and_type_hash,
21816 per_cu_offset_and_type_eq,
21817 NULL,
21818 &objfile->objfile_obstack,
21819 hashtab_obstack_allocate,
21820 dummy_obstack_deallocate);
21821 }
21822
21823 ofs.per_cu = cu->per_cu;
21824 ofs.offset = die->offset;
21825 ofs.type = type;
21826 slot = (struct dwarf2_per_cu_offset_and_type **)
21827 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21828 if (*slot)
21829 complaint (&symfile_complaints,
21830 _("A problem internal to GDB: DIE 0x%x has type already set"),
21831 die->offset.sect_off);
21832 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21833 **slot = ofs;
21834 return type;
21835 }
21836
21837 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21838 or return NULL if the die does not have a saved type. */
21839
21840 static struct type *
21841 get_die_type_at_offset (sect_offset offset,
21842 struct dwarf2_per_cu_data *per_cu)
21843 {
21844 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21845
21846 if (dwarf2_per_objfile->die_type_hash == NULL)
21847 return NULL;
21848
21849 ofs.per_cu = per_cu;
21850 ofs.offset = offset;
21851 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21852 if (slot)
21853 return slot->type;
21854 else
21855 return NULL;
21856 }
21857
21858 /* Look up the type for DIE in CU in die_type_hash,
21859 or return NULL if DIE does not have a saved type. */
21860
21861 static struct type *
21862 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21863 {
21864 return get_die_type_at_offset (die->offset, cu->per_cu);
21865 }
21866
21867 /* Add a dependence relationship from CU to REF_PER_CU. */
21868
21869 static void
21870 dwarf2_add_dependence (struct dwarf2_cu *cu,
21871 struct dwarf2_per_cu_data *ref_per_cu)
21872 {
21873 void **slot;
21874
21875 if (cu->dependencies == NULL)
21876 cu->dependencies
21877 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21878 NULL, &cu->comp_unit_obstack,
21879 hashtab_obstack_allocate,
21880 dummy_obstack_deallocate);
21881
21882 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21883 if (*slot == NULL)
21884 *slot = ref_per_cu;
21885 }
21886
21887 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21888 Set the mark field in every compilation unit in the
21889 cache that we must keep because we are keeping CU. */
21890
21891 static int
21892 dwarf2_mark_helper (void **slot, void *data)
21893 {
21894 struct dwarf2_per_cu_data *per_cu;
21895
21896 per_cu = (struct dwarf2_per_cu_data *) *slot;
21897
21898 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21899 reading of the chain. As such dependencies remain valid it is not much
21900 useful to track and undo them during QUIT cleanups. */
21901 if (per_cu->cu == NULL)
21902 return 1;
21903
21904 if (per_cu->cu->mark)
21905 return 1;
21906 per_cu->cu->mark = 1;
21907
21908 if (per_cu->cu->dependencies != NULL)
21909 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21910
21911 return 1;
21912 }
21913
21914 /* Set the mark field in CU and in every other compilation unit in the
21915 cache that we must keep because we are keeping CU. */
21916
21917 static void
21918 dwarf2_mark (struct dwarf2_cu *cu)
21919 {
21920 if (cu->mark)
21921 return;
21922 cu->mark = 1;
21923 if (cu->dependencies != NULL)
21924 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21925 }
21926
21927 static void
21928 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21929 {
21930 while (per_cu)
21931 {
21932 per_cu->cu->mark = 0;
21933 per_cu = per_cu->cu->read_in_chain;
21934 }
21935 }
21936
21937 /* Trivial hash function for partial_die_info: the hash value of a DIE
21938 is its offset in .debug_info for this objfile. */
21939
21940 static hashval_t
21941 partial_die_hash (const void *item)
21942 {
21943 const struct partial_die_info *part_die = item;
21944
21945 return part_die->offset.sect_off;
21946 }
21947
21948 /* Trivial comparison function for partial_die_info structures: two DIEs
21949 are equal if they have the same offset. */
21950
21951 static int
21952 partial_die_eq (const void *item_lhs, const void *item_rhs)
21953 {
21954 const struct partial_die_info *part_die_lhs = item_lhs;
21955 const struct partial_die_info *part_die_rhs = item_rhs;
21956
21957 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21958 }
21959
21960 static struct cmd_list_element *set_dwarf2_cmdlist;
21961 static struct cmd_list_element *show_dwarf2_cmdlist;
21962
21963 static void
21964 set_dwarf2_cmd (char *args, int from_tty)
21965 {
21966 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21967 gdb_stdout);
21968 }
21969
21970 static void
21971 show_dwarf2_cmd (char *args, int from_tty)
21972 {
21973 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21974 }
21975
21976 /* Free data associated with OBJFILE, if necessary. */
21977
21978 static void
21979 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21980 {
21981 struct dwarf2_per_objfile *data = d;
21982 int ix;
21983
21984 /* Make sure we don't accidentally use dwarf2_per_objfile while
21985 cleaning up. */
21986 dwarf2_per_objfile = NULL;
21987
21988 for (ix = 0; ix < data->n_comp_units; ++ix)
21989 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21990
21991 for (ix = 0; ix < data->n_type_units; ++ix)
21992 VEC_free (dwarf2_per_cu_ptr,
21993 data->all_type_units[ix]->per_cu.imported_symtabs);
21994 xfree (data->all_type_units);
21995
21996 VEC_free (dwarf2_section_info_def, data->types);
21997
21998 if (data->dwo_files)
21999 free_dwo_files (data->dwo_files, objfile);
22000 if (data->dwp_file)
22001 gdb_bfd_unref (data->dwp_file->dbfd);
22002
22003 if (data->dwz_file && data->dwz_file->dwz_bfd)
22004 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22005 }
22006
22007 \f
22008 /* The "save gdb-index" command. */
22009
22010 /* The contents of the hash table we create when building the string
22011 table. */
22012 struct strtab_entry
22013 {
22014 offset_type offset;
22015 const char *str;
22016 };
22017
22018 /* Hash function for a strtab_entry.
22019
22020 Function is used only during write_hash_table so no index format backward
22021 compatibility is needed. */
22022
22023 static hashval_t
22024 hash_strtab_entry (const void *e)
22025 {
22026 const struct strtab_entry *entry = e;
22027 return mapped_index_string_hash (INT_MAX, entry->str);
22028 }
22029
22030 /* Equality function for a strtab_entry. */
22031
22032 static int
22033 eq_strtab_entry (const void *a, const void *b)
22034 {
22035 const struct strtab_entry *ea = a;
22036 const struct strtab_entry *eb = b;
22037 return !strcmp (ea->str, eb->str);
22038 }
22039
22040 /* Create a strtab_entry hash table. */
22041
22042 static htab_t
22043 create_strtab (void)
22044 {
22045 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22046 xfree, xcalloc, xfree);
22047 }
22048
22049 /* Add a string to the constant pool. Return the string's offset in
22050 host order. */
22051
22052 static offset_type
22053 add_string (htab_t table, struct obstack *cpool, const char *str)
22054 {
22055 void **slot;
22056 struct strtab_entry entry;
22057 struct strtab_entry *result;
22058
22059 entry.str = str;
22060 slot = htab_find_slot (table, &entry, INSERT);
22061 if (*slot)
22062 result = *slot;
22063 else
22064 {
22065 result = XNEW (struct strtab_entry);
22066 result->offset = obstack_object_size (cpool);
22067 result->str = str;
22068 obstack_grow_str0 (cpool, str);
22069 *slot = result;
22070 }
22071 return result->offset;
22072 }
22073
22074 /* An entry in the symbol table. */
22075 struct symtab_index_entry
22076 {
22077 /* The name of the symbol. */
22078 const char *name;
22079 /* The offset of the name in the constant pool. */
22080 offset_type index_offset;
22081 /* A sorted vector of the indices of all the CUs that hold an object
22082 of this name. */
22083 VEC (offset_type) *cu_indices;
22084 };
22085
22086 /* The symbol table. This is a power-of-2-sized hash table. */
22087 struct mapped_symtab
22088 {
22089 offset_type n_elements;
22090 offset_type size;
22091 struct symtab_index_entry **data;
22092 };
22093
22094 /* Hash function for a symtab_index_entry. */
22095
22096 static hashval_t
22097 hash_symtab_entry (const void *e)
22098 {
22099 const struct symtab_index_entry *entry = e;
22100 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22101 sizeof (offset_type) * VEC_length (offset_type,
22102 entry->cu_indices),
22103 0);
22104 }
22105
22106 /* Equality function for a symtab_index_entry. */
22107
22108 static int
22109 eq_symtab_entry (const void *a, const void *b)
22110 {
22111 const struct symtab_index_entry *ea = a;
22112 const struct symtab_index_entry *eb = b;
22113 int len = VEC_length (offset_type, ea->cu_indices);
22114 if (len != VEC_length (offset_type, eb->cu_indices))
22115 return 0;
22116 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22117 VEC_address (offset_type, eb->cu_indices),
22118 sizeof (offset_type) * len);
22119 }
22120
22121 /* Destroy a symtab_index_entry. */
22122
22123 static void
22124 delete_symtab_entry (void *p)
22125 {
22126 struct symtab_index_entry *entry = p;
22127 VEC_free (offset_type, entry->cu_indices);
22128 xfree (entry);
22129 }
22130
22131 /* Create a hash table holding symtab_index_entry objects. */
22132
22133 static htab_t
22134 create_symbol_hash_table (void)
22135 {
22136 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22137 delete_symtab_entry, xcalloc, xfree);
22138 }
22139
22140 /* Create a new mapped symtab object. */
22141
22142 static struct mapped_symtab *
22143 create_mapped_symtab (void)
22144 {
22145 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22146 symtab->n_elements = 0;
22147 symtab->size = 1024;
22148 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22149 return symtab;
22150 }
22151
22152 /* Destroy a mapped_symtab. */
22153
22154 static void
22155 cleanup_mapped_symtab (void *p)
22156 {
22157 struct mapped_symtab *symtab = p;
22158 /* The contents of the array are freed when the other hash table is
22159 destroyed. */
22160 xfree (symtab->data);
22161 xfree (symtab);
22162 }
22163
22164 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22165 the slot.
22166
22167 Function is used only during write_hash_table so no index format backward
22168 compatibility is needed. */
22169
22170 static struct symtab_index_entry **
22171 find_slot (struct mapped_symtab *symtab, const char *name)
22172 {
22173 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22174
22175 index = hash & (symtab->size - 1);
22176 step = ((hash * 17) & (symtab->size - 1)) | 1;
22177
22178 for (;;)
22179 {
22180 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22181 return &symtab->data[index];
22182 index = (index + step) & (symtab->size - 1);
22183 }
22184 }
22185
22186 /* Expand SYMTAB's hash table. */
22187
22188 static void
22189 hash_expand (struct mapped_symtab *symtab)
22190 {
22191 offset_type old_size = symtab->size;
22192 offset_type i;
22193 struct symtab_index_entry **old_entries = symtab->data;
22194
22195 symtab->size *= 2;
22196 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22197
22198 for (i = 0; i < old_size; ++i)
22199 {
22200 if (old_entries[i])
22201 {
22202 struct symtab_index_entry **slot = find_slot (symtab,
22203 old_entries[i]->name);
22204 *slot = old_entries[i];
22205 }
22206 }
22207
22208 xfree (old_entries);
22209 }
22210
22211 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22212 CU_INDEX is the index of the CU in which the symbol appears.
22213 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22214
22215 static void
22216 add_index_entry (struct mapped_symtab *symtab, const char *name,
22217 int is_static, gdb_index_symbol_kind kind,
22218 offset_type cu_index)
22219 {
22220 struct symtab_index_entry **slot;
22221 offset_type cu_index_and_attrs;
22222
22223 ++symtab->n_elements;
22224 if (4 * symtab->n_elements / 3 >= symtab->size)
22225 hash_expand (symtab);
22226
22227 slot = find_slot (symtab, name);
22228 if (!*slot)
22229 {
22230 *slot = XNEW (struct symtab_index_entry);
22231 (*slot)->name = name;
22232 /* index_offset is set later. */
22233 (*slot)->cu_indices = NULL;
22234 }
22235
22236 cu_index_and_attrs = 0;
22237 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22238 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22239 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22240
22241 /* We don't want to record an index value twice as we want to avoid the
22242 duplication.
22243 We process all global symbols and then all static symbols
22244 (which would allow us to avoid the duplication by only having to check
22245 the last entry pushed), but a symbol could have multiple kinds in one CU.
22246 To keep things simple we don't worry about the duplication here and
22247 sort and uniqufy the list after we've processed all symbols. */
22248 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22249 }
22250
22251 /* qsort helper routine for uniquify_cu_indices. */
22252
22253 static int
22254 offset_type_compare (const void *ap, const void *bp)
22255 {
22256 offset_type a = *(offset_type *) ap;
22257 offset_type b = *(offset_type *) bp;
22258
22259 return (a > b) - (b > a);
22260 }
22261
22262 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22263
22264 static void
22265 uniquify_cu_indices (struct mapped_symtab *symtab)
22266 {
22267 int i;
22268
22269 for (i = 0; i < symtab->size; ++i)
22270 {
22271 struct symtab_index_entry *entry = symtab->data[i];
22272
22273 if (entry
22274 && entry->cu_indices != NULL)
22275 {
22276 unsigned int next_to_insert, next_to_check;
22277 offset_type last_value;
22278
22279 qsort (VEC_address (offset_type, entry->cu_indices),
22280 VEC_length (offset_type, entry->cu_indices),
22281 sizeof (offset_type), offset_type_compare);
22282
22283 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22284 next_to_insert = 1;
22285 for (next_to_check = 1;
22286 next_to_check < VEC_length (offset_type, entry->cu_indices);
22287 ++next_to_check)
22288 {
22289 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22290 != last_value)
22291 {
22292 last_value = VEC_index (offset_type, entry->cu_indices,
22293 next_to_check);
22294 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22295 last_value);
22296 ++next_to_insert;
22297 }
22298 }
22299 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22300 }
22301 }
22302 }
22303
22304 /* Add a vector of indices to the constant pool. */
22305
22306 static offset_type
22307 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22308 struct symtab_index_entry *entry)
22309 {
22310 void **slot;
22311
22312 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22313 if (!*slot)
22314 {
22315 offset_type len = VEC_length (offset_type, entry->cu_indices);
22316 offset_type val = MAYBE_SWAP (len);
22317 offset_type iter;
22318 int i;
22319
22320 *slot = entry;
22321 entry->index_offset = obstack_object_size (cpool);
22322
22323 obstack_grow (cpool, &val, sizeof (val));
22324 for (i = 0;
22325 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22326 ++i)
22327 {
22328 val = MAYBE_SWAP (iter);
22329 obstack_grow (cpool, &val, sizeof (val));
22330 }
22331 }
22332 else
22333 {
22334 struct symtab_index_entry *old_entry = *slot;
22335 entry->index_offset = old_entry->index_offset;
22336 entry = old_entry;
22337 }
22338 return entry->index_offset;
22339 }
22340
22341 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22342 constant pool entries going into the obstack CPOOL. */
22343
22344 static void
22345 write_hash_table (struct mapped_symtab *symtab,
22346 struct obstack *output, struct obstack *cpool)
22347 {
22348 offset_type i;
22349 htab_t symbol_hash_table;
22350 htab_t str_table;
22351
22352 symbol_hash_table = create_symbol_hash_table ();
22353 str_table = create_strtab ();
22354
22355 /* We add all the index vectors to the constant pool first, to
22356 ensure alignment is ok. */
22357 for (i = 0; i < symtab->size; ++i)
22358 {
22359 if (symtab->data[i])
22360 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22361 }
22362
22363 /* Now write out the hash table. */
22364 for (i = 0; i < symtab->size; ++i)
22365 {
22366 offset_type str_off, vec_off;
22367
22368 if (symtab->data[i])
22369 {
22370 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22371 vec_off = symtab->data[i]->index_offset;
22372 }
22373 else
22374 {
22375 /* While 0 is a valid constant pool index, it is not valid
22376 to have 0 for both offsets. */
22377 str_off = 0;
22378 vec_off = 0;
22379 }
22380
22381 str_off = MAYBE_SWAP (str_off);
22382 vec_off = MAYBE_SWAP (vec_off);
22383
22384 obstack_grow (output, &str_off, sizeof (str_off));
22385 obstack_grow (output, &vec_off, sizeof (vec_off));
22386 }
22387
22388 htab_delete (str_table);
22389 htab_delete (symbol_hash_table);
22390 }
22391
22392 /* Struct to map psymtab to CU index in the index file. */
22393 struct psymtab_cu_index_map
22394 {
22395 struct partial_symtab *psymtab;
22396 unsigned int cu_index;
22397 };
22398
22399 static hashval_t
22400 hash_psymtab_cu_index (const void *item)
22401 {
22402 const struct psymtab_cu_index_map *map = item;
22403
22404 return htab_hash_pointer (map->psymtab);
22405 }
22406
22407 static int
22408 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22409 {
22410 const struct psymtab_cu_index_map *lhs = item_lhs;
22411 const struct psymtab_cu_index_map *rhs = item_rhs;
22412
22413 return lhs->psymtab == rhs->psymtab;
22414 }
22415
22416 /* Helper struct for building the address table. */
22417 struct addrmap_index_data
22418 {
22419 struct objfile *objfile;
22420 struct obstack *addr_obstack;
22421 htab_t cu_index_htab;
22422
22423 /* Non-zero if the previous_* fields are valid.
22424 We can't write an entry until we see the next entry (since it is only then
22425 that we know the end of the entry). */
22426 int previous_valid;
22427 /* Index of the CU in the table of all CUs in the index file. */
22428 unsigned int previous_cu_index;
22429 /* Start address of the CU. */
22430 CORE_ADDR previous_cu_start;
22431 };
22432
22433 /* Write an address entry to OBSTACK. */
22434
22435 static void
22436 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22437 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22438 {
22439 offset_type cu_index_to_write;
22440 gdb_byte addr[8];
22441 CORE_ADDR baseaddr;
22442
22443 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22444
22445 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22446 obstack_grow (obstack, addr, 8);
22447 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22448 obstack_grow (obstack, addr, 8);
22449 cu_index_to_write = MAYBE_SWAP (cu_index);
22450 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22451 }
22452
22453 /* Worker function for traversing an addrmap to build the address table. */
22454
22455 static int
22456 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22457 {
22458 struct addrmap_index_data *data = datap;
22459 struct partial_symtab *pst = obj;
22460
22461 if (data->previous_valid)
22462 add_address_entry (data->objfile, data->addr_obstack,
22463 data->previous_cu_start, start_addr,
22464 data->previous_cu_index);
22465
22466 data->previous_cu_start = start_addr;
22467 if (pst != NULL)
22468 {
22469 struct psymtab_cu_index_map find_map, *map;
22470 find_map.psymtab = pst;
22471 map = htab_find (data->cu_index_htab, &find_map);
22472 gdb_assert (map != NULL);
22473 data->previous_cu_index = map->cu_index;
22474 data->previous_valid = 1;
22475 }
22476 else
22477 data->previous_valid = 0;
22478
22479 return 0;
22480 }
22481
22482 /* Write OBJFILE's address map to OBSTACK.
22483 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22484 in the index file. */
22485
22486 static void
22487 write_address_map (struct objfile *objfile, struct obstack *obstack,
22488 htab_t cu_index_htab)
22489 {
22490 struct addrmap_index_data addrmap_index_data;
22491
22492 /* When writing the address table, we have to cope with the fact that
22493 the addrmap iterator only provides the start of a region; we have to
22494 wait until the next invocation to get the start of the next region. */
22495
22496 addrmap_index_data.objfile = objfile;
22497 addrmap_index_data.addr_obstack = obstack;
22498 addrmap_index_data.cu_index_htab = cu_index_htab;
22499 addrmap_index_data.previous_valid = 0;
22500
22501 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22502 &addrmap_index_data);
22503
22504 /* It's highly unlikely the last entry (end address = 0xff...ff)
22505 is valid, but we should still handle it.
22506 The end address is recorded as the start of the next region, but that
22507 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22508 anyway. */
22509 if (addrmap_index_data.previous_valid)
22510 add_address_entry (objfile, obstack,
22511 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22512 addrmap_index_data.previous_cu_index);
22513 }
22514
22515 /* Return the symbol kind of PSYM. */
22516
22517 static gdb_index_symbol_kind
22518 symbol_kind (struct partial_symbol *psym)
22519 {
22520 domain_enum domain = PSYMBOL_DOMAIN (psym);
22521 enum address_class aclass = PSYMBOL_CLASS (psym);
22522
22523 switch (domain)
22524 {
22525 case VAR_DOMAIN:
22526 switch (aclass)
22527 {
22528 case LOC_BLOCK:
22529 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22530 case LOC_TYPEDEF:
22531 return GDB_INDEX_SYMBOL_KIND_TYPE;
22532 case LOC_COMPUTED:
22533 case LOC_CONST_BYTES:
22534 case LOC_OPTIMIZED_OUT:
22535 case LOC_STATIC:
22536 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22537 case LOC_CONST:
22538 /* Note: It's currently impossible to recognize psyms as enum values
22539 short of reading the type info. For now punt. */
22540 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22541 default:
22542 /* There are other LOC_FOO values that one might want to classify
22543 as variables, but dwarf2read.c doesn't currently use them. */
22544 return GDB_INDEX_SYMBOL_KIND_OTHER;
22545 }
22546 case STRUCT_DOMAIN:
22547 return GDB_INDEX_SYMBOL_KIND_TYPE;
22548 default:
22549 return GDB_INDEX_SYMBOL_KIND_OTHER;
22550 }
22551 }
22552
22553 /* Add a list of partial symbols to SYMTAB. */
22554
22555 static void
22556 write_psymbols (struct mapped_symtab *symtab,
22557 htab_t psyms_seen,
22558 struct partial_symbol **psymp,
22559 int count,
22560 offset_type cu_index,
22561 int is_static)
22562 {
22563 for (; count-- > 0; ++psymp)
22564 {
22565 struct partial_symbol *psym = *psymp;
22566 void **slot;
22567
22568 if (SYMBOL_LANGUAGE (psym) == language_ada)
22569 error (_("Ada is not currently supported by the index"));
22570
22571 /* Only add a given psymbol once. */
22572 slot = htab_find_slot (psyms_seen, psym, INSERT);
22573 if (!*slot)
22574 {
22575 gdb_index_symbol_kind kind = symbol_kind (psym);
22576
22577 *slot = psym;
22578 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22579 is_static, kind, cu_index);
22580 }
22581 }
22582 }
22583
22584 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22585 exception if there is an error. */
22586
22587 static void
22588 write_obstack (FILE *file, struct obstack *obstack)
22589 {
22590 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22591 file)
22592 != obstack_object_size (obstack))
22593 error (_("couldn't data write to file"));
22594 }
22595
22596 /* Unlink a file if the argument is not NULL. */
22597
22598 static void
22599 unlink_if_set (void *p)
22600 {
22601 char **filename = p;
22602 if (*filename)
22603 unlink (*filename);
22604 }
22605
22606 /* A helper struct used when iterating over debug_types. */
22607 struct signatured_type_index_data
22608 {
22609 struct objfile *objfile;
22610 struct mapped_symtab *symtab;
22611 struct obstack *types_list;
22612 htab_t psyms_seen;
22613 int cu_index;
22614 };
22615
22616 /* A helper function that writes a single signatured_type to an
22617 obstack. */
22618
22619 static int
22620 write_one_signatured_type (void **slot, void *d)
22621 {
22622 struct signatured_type_index_data *info = d;
22623 struct signatured_type *entry = (struct signatured_type *) *slot;
22624 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22625 gdb_byte val[8];
22626
22627 write_psymbols (info->symtab,
22628 info->psyms_seen,
22629 info->objfile->global_psymbols.list
22630 + psymtab->globals_offset,
22631 psymtab->n_global_syms, info->cu_index,
22632 0);
22633 write_psymbols (info->symtab,
22634 info->psyms_seen,
22635 info->objfile->static_psymbols.list
22636 + psymtab->statics_offset,
22637 psymtab->n_static_syms, info->cu_index,
22638 1);
22639
22640 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22641 entry->per_cu.offset.sect_off);
22642 obstack_grow (info->types_list, val, 8);
22643 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22644 entry->type_offset_in_tu.cu_off);
22645 obstack_grow (info->types_list, val, 8);
22646 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22647 obstack_grow (info->types_list, val, 8);
22648
22649 ++info->cu_index;
22650
22651 return 1;
22652 }
22653
22654 /* Recurse into all "included" dependencies and write their symbols as
22655 if they appeared in this psymtab. */
22656
22657 static void
22658 recursively_write_psymbols (struct objfile *objfile,
22659 struct partial_symtab *psymtab,
22660 struct mapped_symtab *symtab,
22661 htab_t psyms_seen,
22662 offset_type cu_index)
22663 {
22664 int i;
22665
22666 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22667 if (psymtab->dependencies[i]->user != NULL)
22668 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22669 symtab, psyms_seen, cu_index);
22670
22671 write_psymbols (symtab,
22672 psyms_seen,
22673 objfile->global_psymbols.list + psymtab->globals_offset,
22674 psymtab->n_global_syms, cu_index,
22675 0);
22676 write_psymbols (symtab,
22677 psyms_seen,
22678 objfile->static_psymbols.list + psymtab->statics_offset,
22679 psymtab->n_static_syms, cu_index,
22680 1);
22681 }
22682
22683 /* Create an index file for OBJFILE in the directory DIR. */
22684
22685 static void
22686 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22687 {
22688 struct cleanup *cleanup;
22689 char *filename, *cleanup_filename;
22690 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22691 struct obstack cu_list, types_cu_list;
22692 int i;
22693 FILE *out_file;
22694 struct mapped_symtab *symtab;
22695 offset_type val, size_of_contents, total_len;
22696 struct stat st;
22697 htab_t psyms_seen;
22698 htab_t cu_index_htab;
22699 struct psymtab_cu_index_map *psymtab_cu_index_map;
22700
22701 if (dwarf2_per_objfile->using_index)
22702 error (_("Cannot use an index to create the index"));
22703
22704 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22705 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22706
22707 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22708 return;
22709
22710 if (stat (objfile_name (objfile), &st) < 0)
22711 perror_with_name (objfile_name (objfile));
22712
22713 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22714 INDEX_SUFFIX, (char *) NULL);
22715 cleanup = make_cleanup (xfree, filename);
22716
22717 out_file = gdb_fopen_cloexec (filename, "wb");
22718 if (!out_file)
22719 error (_("Can't open `%s' for writing"), filename);
22720
22721 cleanup_filename = filename;
22722 make_cleanup (unlink_if_set, &cleanup_filename);
22723
22724 symtab = create_mapped_symtab ();
22725 make_cleanup (cleanup_mapped_symtab, symtab);
22726
22727 obstack_init (&addr_obstack);
22728 make_cleanup_obstack_free (&addr_obstack);
22729
22730 obstack_init (&cu_list);
22731 make_cleanup_obstack_free (&cu_list);
22732
22733 obstack_init (&types_cu_list);
22734 make_cleanup_obstack_free (&types_cu_list);
22735
22736 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22737 NULL, xcalloc, xfree);
22738 make_cleanup_htab_delete (psyms_seen);
22739
22740 /* While we're scanning CU's create a table that maps a psymtab pointer
22741 (which is what addrmap records) to its index (which is what is recorded
22742 in the index file). This will later be needed to write the address
22743 table. */
22744 cu_index_htab = htab_create_alloc (100,
22745 hash_psymtab_cu_index,
22746 eq_psymtab_cu_index,
22747 NULL, xcalloc, xfree);
22748 make_cleanup_htab_delete (cu_index_htab);
22749 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22750 xmalloc (sizeof (struct psymtab_cu_index_map)
22751 * dwarf2_per_objfile->n_comp_units);
22752 make_cleanup (xfree, psymtab_cu_index_map);
22753
22754 /* The CU list is already sorted, so we don't need to do additional
22755 work here. Also, the debug_types entries do not appear in
22756 all_comp_units, but only in their own hash table. */
22757 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22758 {
22759 struct dwarf2_per_cu_data *per_cu
22760 = dwarf2_per_objfile->all_comp_units[i];
22761 struct partial_symtab *psymtab = per_cu->v.psymtab;
22762 gdb_byte val[8];
22763 struct psymtab_cu_index_map *map;
22764 void **slot;
22765
22766 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22767 It may be referenced from a local scope but in such case it does not
22768 need to be present in .gdb_index. */
22769 if (psymtab == NULL)
22770 continue;
22771
22772 if (psymtab->user == NULL)
22773 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22774
22775 map = &psymtab_cu_index_map[i];
22776 map->psymtab = psymtab;
22777 map->cu_index = i;
22778 slot = htab_find_slot (cu_index_htab, map, INSERT);
22779 gdb_assert (slot != NULL);
22780 gdb_assert (*slot == NULL);
22781 *slot = map;
22782
22783 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22784 per_cu->offset.sect_off);
22785 obstack_grow (&cu_list, val, 8);
22786 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22787 obstack_grow (&cu_list, val, 8);
22788 }
22789
22790 /* Dump the address map. */
22791 write_address_map (objfile, &addr_obstack, cu_index_htab);
22792
22793 /* Write out the .debug_type entries, if any. */
22794 if (dwarf2_per_objfile->signatured_types)
22795 {
22796 struct signatured_type_index_data sig_data;
22797
22798 sig_data.objfile = objfile;
22799 sig_data.symtab = symtab;
22800 sig_data.types_list = &types_cu_list;
22801 sig_data.psyms_seen = psyms_seen;
22802 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22803 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22804 write_one_signatured_type, &sig_data);
22805 }
22806
22807 /* Now that we've processed all symbols we can shrink their cu_indices
22808 lists. */
22809 uniquify_cu_indices (symtab);
22810
22811 obstack_init (&constant_pool);
22812 make_cleanup_obstack_free (&constant_pool);
22813 obstack_init (&symtab_obstack);
22814 make_cleanup_obstack_free (&symtab_obstack);
22815 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22816
22817 obstack_init (&contents);
22818 make_cleanup_obstack_free (&contents);
22819 size_of_contents = 6 * sizeof (offset_type);
22820 total_len = size_of_contents;
22821
22822 /* The version number. */
22823 val = MAYBE_SWAP (8);
22824 obstack_grow (&contents, &val, sizeof (val));
22825
22826 /* The offset of the CU list from the start of the file. */
22827 val = MAYBE_SWAP (total_len);
22828 obstack_grow (&contents, &val, sizeof (val));
22829 total_len += obstack_object_size (&cu_list);
22830
22831 /* The offset of the types CU list from the start of the file. */
22832 val = MAYBE_SWAP (total_len);
22833 obstack_grow (&contents, &val, sizeof (val));
22834 total_len += obstack_object_size (&types_cu_list);
22835
22836 /* The offset of the address table from the start of the file. */
22837 val = MAYBE_SWAP (total_len);
22838 obstack_grow (&contents, &val, sizeof (val));
22839 total_len += obstack_object_size (&addr_obstack);
22840
22841 /* The offset of the symbol table from the start of the file. */
22842 val = MAYBE_SWAP (total_len);
22843 obstack_grow (&contents, &val, sizeof (val));
22844 total_len += obstack_object_size (&symtab_obstack);
22845
22846 /* The offset of the constant pool from the start of the file. */
22847 val = MAYBE_SWAP (total_len);
22848 obstack_grow (&contents, &val, sizeof (val));
22849 total_len += obstack_object_size (&constant_pool);
22850
22851 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22852
22853 write_obstack (out_file, &contents);
22854 write_obstack (out_file, &cu_list);
22855 write_obstack (out_file, &types_cu_list);
22856 write_obstack (out_file, &addr_obstack);
22857 write_obstack (out_file, &symtab_obstack);
22858 write_obstack (out_file, &constant_pool);
22859
22860 fclose (out_file);
22861
22862 /* We want to keep the file, so we set cleanup_filename to NULL
22863 here. See unlink_if_set. */
22864 cleanup_filename = NULL;
22865
22866 do_cleanups (cleanup);
22867 }
22868
22869 /* Implementation of the `save gdb-index' command.
22870
22871 Note that the file format used by this command is documented in the
22872 GDB manual. Any changes here must be documented there. */
22873
22874 static void
22875 save_gdb_index_command (char *arg, int from_tty)
22876 {
22877 struct objfile *objfile;
22878
22879 if (!arg || !*arg)
22880 error (_("usage: save gdb-index DIRECTORY"));
22881
22882 ALL_OBJFILES (objfile)
22883 {
22884 struct stat st;
22885
22886 /* If the objfile does not correspond to an actual file, skip it. */
22887 if (stat (objfile_name (objfile), &st) < 0)
22888 continue;
22889
22890 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22891 if (dwarf2_per_objfile)
22892 {
22893 volatile struct gdb_exception except;
22894
22895 TRY_CATCH (except, RETURN_MASK_ERROR)
22896 {
22897 write_psymtabs_to_index (objfile, arg);
22898 }
22899 if (except.reason < 0)
22900 exception_fprintf (gdb_stderr, except,
22901 _("Error while writing index for `%s': "),
22902 objfile_name (objfile));
22903 }
22904 }
22905 }
22906
22907 \f
22908
22909 int dwarf2_always_disassemble;
22910
22911 static void
22912 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22913 struct cmd_list_element *c, const char *value)
22914 {
22915 fprintf_filtered (file,
22916 _("Whether to always disassemble "
22917 "DWARF expressions is %s.\n"),
22918 value);
22919 }
22920
22921 static void
22922 show_check_physname (struct ui_file *file, int from_tty,
22923 struct cmd_list_element *c, const char *value)
22924 {
22925 fprintf_filtered (file,
22926 _("Whether to check \"physname\" is %s.\n"),
22927 value);
22928 }
22929
22930 void _initialize_dwarf2_read (void);
22931
22932 void
22933 _initialize_dwarf2_read (void)
22934 {
22935 struct cmd_list_element *c;
22936
22937 dwarf2_objfile_data_key
22938 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22939
22940 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22941 Set DWARF 2 specific variables.\n\
22942 Configure DWARF 2 variables such as the cache size"),
22943 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22944 0/*allow-unknown*/, &maintenance_set_cmdlist);
22945
22946 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22947 Show DWARF 2 specific variables\n\
22948 Show DWARF 2 variables such as the cache size"),
22949 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22950 0/*allow-unknown*/, &maintenance_show_cmdlist);
22951
22952 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22953 &dwarf2_max_cache_age, _("\
22954 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22955 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22956 A higher limit means that cached compilation units will be stored\n\
22957 in memory longer, and more total memory will be used. Zero disables\n\
22958 caching, which can slow down startup."),
22959 NULL,
22960 show_dwarf2_max_cache_age,
22961 &set_dwarf2_cmdlist,
22962 &show_dwarf2_cmdlist);
22963
22964 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22965 &dwarf2_always_disassemble, _("\
22966 Set whether `info address' always disassembles DWARF expressions."), _("\
22967 Show whether `info address' always disassembles DWARF expressions."), _("\
22968 When enabled, DWARF expressions are always printed in an assembly-like\n\
22969 syntax. When disabled, expressions will be printed in a more\n\
22970 conversational style, when possible."),
22971 NULL,
22972 show_dwarf2_always_disassemble,
22973 &set_dwarf2_cmdlist,
22974 &show_dwarf2_cmdlist);
22975
22976 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22977 Set debugging of the dwarf2 reader."), _("\
22978 Show debugging of the dwarf2 reader."), _("\
22979 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22980 reading and symtab expansion. A value of 1 (one) provides basic\n\
22981 information. A value greater than 1 provides more verbose information."),
22982 NULL,
22983 NULL,
22984 &setdebuglist, &showdebuglist);
22985
22986 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22987 Set debugging of the dwarf2 DIE reader."), _("\
22988 Show debugging of the dwarf2 DIE reader."), _("\
22989 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22990 The value is the maximum depth to print."),
22991 NULL,
22992 NULL,
22993 &setdebuglist, &showdebuglist);
22994
22995 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22996 Set cross-checking of \"physname\" code against demangler."), _("\
22997 Show cross-checking of \"physname\" code against demangler."), _("\
22998 When enabled, GDB's internal \"physname\" code is checked against\n\
22999 the demangler."),
23000 NULL, show_check_physname,
23001 &setdebuglist, &showdebuglist);
23002
23003 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23004 no_class, &use_deprecated_index_sections, _("\
23005 Set whether to use deprecated gdb_index sections."), _("\
23006 Show whether to use deprecated gdb_index sections."), _("\
23007 When enabled, deprecated .gdb_index sections are used anyway.\n\
23008 Normally they are ignored either because of a missing feature or\n\
23009 performance issue.\n\
23010 Warning: This option must be enabled before gdb reads the file."),
23011 NULL,
23012 NULL,
23013 &setlist, &showlist);
23014
23015 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23016 _("\
23017 Save a gdb-index file.\n\
23018 Usage: save gdb-index DIRECTORY"),
23019 &save_cmdlist);
23020 set_cmd_completer (c, filename_completer);
23021
23022 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23023 &dwarf2_locexpr_funcs);
23024 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23025 &dwarf2_loclist_funcs);
23026
23027 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23028 &dwarf2_block_frame_base_locexpr_funcs);
23029 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23030 &dwarf2_block_frame_base_loclist_funcs);
23031 }
This page took 0.650118 seconds and 4 git commands to generate.