Fix "fall through" comments
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828 static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844 static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847 static void dwarf2_mark (struct dwarf2_cu *);
1848
1849 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 /* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866 class dwarf2_queue_guard
1867 {
1868 public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896 };
1897
1898 /* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901 struct file_and_directory
1902 {
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915 };
1916
1917 static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920 static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924 enum class rcuh_kind { COMPILE, TYPE };
1925
1926 static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933 static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938 static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946 static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951 static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954 static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957 static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962 static void free_dwo_file (struct dwo_file *);
1963
1964 /* A unique_ptr helper to free a dwo_file. */
1965
1966 struct dwo_file_deleter
1967 {
1968 void operator() (struct dwo_file *df) const
1969 {
1970 free_dwo_file (df);
1971 }
1972 };
1973
1974 /* A unique pointer to a dwo_file. */
1975
1976 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1977
1978 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1979
1980 static void check_producer (struct dwarf2_cu *cu);
1981
1982 static void free_line_header_voidp (void *arg);
1983 \f
1984 /* Various complaints about symbol reading that don't abort the process. */
1985
1986 static void
1987 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1988 {
1989 complaint (&symfile_complaints,
1990 _("statement list doesn't fit in .debug_line section"));
1991 }
1992
1993 static void
1994 dwarf2_debug_line_missing_file_complaint (void)
1995 {
1996 complaint (&symfile_complaints,
1997 _(".debug_line section has line data without a file"));
1998 }
1999
2000 static void
2001 dwarf2_debug_line_missing_end_sequence_complaint (void)
2002 {
2003 complaint (&symfile_complaints,
2004 _(".debug_line section has line "
2005 "program sequence without an end"));
2006 }
2007
2008 static void
2009 dwarf2_complex_location_expr_complaint (void)
2010 {
2011 complaint (&symfile_complaints, _("location expression too complex"));
2012 }
2013
2014 static void
2015 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2016 int arg3)
2017 {
2018 complaint (&symfile_complaints,
2019 _("const value length mismatch for '%s', got %d, expected %d"),
2020 arg1, arg2, arg3);
2021 }
2022
2023 static void
2024 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2025 {
2026 complaint (&symfile_complaints,
2027 _("debug info runs off end of %s section"
2028 " [in module %s]"),
2029 get_section_name (section),
2030 get_section_file_name (section));
2031 }
2032
2033 static void
2034 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2035 {
2036 complaint (&symfile_complaints,
2037 _("macro debug info contains a "
2038 "malformed macro definition:\n`%s'"),
2039 arg1);
2040 }
2041
2042 static void
2043 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2044 {
2045 complaint (&symfile_complaints,
2046 _("invalid attribute class or form for '%s' in '%s'"),
2047 arg1, arg2);
2048 }
2049
2050 /* Hash function for line_header_hash. */
2051
2052 static hashval_t
2053 line_header_hash (const struct line_header *ofs)
2054 {
2055 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2056 }
2057
2058 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2059
2060 static hashval_t
2061 line_header_hash_voidp (const void *item)
2062 {
2063 const struct line_header *ofs = (const struct line_header *) item;
2064
2065 return line_header_hash (ofs);
2066 }
2067
2068 /* Equality function for line_header_hash. */
2069
2070 static int
2071 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2072 {
2073 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2074 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2075
2076 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2077 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2078 }
2079
2080 \f
2081
2082 /* Read the given attribute value as an address, taking the attribute's
2083 form into account. */
2084
2085 static CORE_ADDR
2086 attr_value_as_address (struct attribute *attr)
2087 {
2088 CORE_ADDR addr;
2089
2090 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2091 {
2092 /* Aside from a few clearly defined exceptions, attributes that
2093 contain an address must always be in DW_FORM_addr form.
2094 Unfortunately, some compilers happen to be violating this
2095 requirement by encoding addresses using other forms, such
2096 as DW_FORM_data4 for example. For those broken compilers,
2097 we try to do our best, without any guarantee of success,
2098 to interpret the address correctly. It would also be nice
2099 to generate a complaint, but that would require us to maintain
2100 a list of legitimate cases where a non-address form is allowed,
2101 as well as update callers to pass in at least the CU's DWARF
2102 version. This is more overhead than what we're willing to
2103 expand for a pretty rare case. */
2104 addr = DW_UNSND (attr);
2105 }
2106 else
2107 addr = DW_ADDR (attr);
2108
2109 return addr;
2110 }
2111
2112 /* See declaration. */
2113
2114 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2115 const dwarf2_debug_sections *names)
2116 : objfile (objfile_)
2117 {
2118 if (names == NULL)
2119 names = &dwarf2_elf_names;
2120
2121 bfd *obfd = objfile->obfd;
2122
2123 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2124 locate_sections (obfd, sec, *names);
2125 }
2126
2127 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2128
2129 dwarf2_per_objfile::~dwarf2_per_objfile ()
2130 {
2131 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2132 free_cached_comp_units ();
2133
2134 if (quick_file_names_table)
2135 htab_delete (quick_file_names_table);
2136
2137 if (line_header_hash)
2138 htab_delete (line_header_hash);
2139
2140 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2141 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2142
2143 for (signatured_type *sig_type : all_type_units)
2144 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2145
2146 VEC_free (dwarf2_section_info_def, types);
2147
2148 if (dwo_files != NULL)
2149 free_dwo_files (dwo_files, objfile);
2150 if (dwp_file != NULL)
2151 gdb_bfd_unref (dwp_file->dbfd);
2152
2153 if (dwz_file != NULL && dwz_file->dwz_bfd)
2154 gdb_bfd_unref (dwz_file->dwz_bfd);
2155
2156 if (index_table != NULL)
2157 index_table->~mapped_index ();
2158
2159 /* Everything else should be on the objfile obstack. */
2160 }
2161
2162 /* See declaration. */
2163
2164 void
2165 dwarf2_per_objfile::free_cached_comp_units ()
2166 {
2167 dwarf2_per_cu_data *per_cu = read_in_chain;
2168 dwarf2_per_cu_data **last_chain = &read_in_chain;
2169 while (per_cu != NULL)
2170 {
2171 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2172
2173 delete per_cu->cu;
2174 *last_chain = next_cu;
2175 per_cu = next_cu;
2176 }
2177 }
2178
2179 /* A helper class that calls free_cached_comp_units on
2180 destruction. */
2181
2182 class free_cached_comp_units
2183 {
2184 public:
2185
2186 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2187 : m_per_objfile (per_objfile)
2188 {
2189 }
2190
2191 ~free_cached_comp_units ()
2192 {
2193 m_per_objfile->free_cached_comp_units ();
2194 }
2195
2196 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2197
2198 private:
2199
2200 dwarf2_per_objfile *m_per_objfile;
2201 };
2202
2203 /* Try to locate the sections we need for DWARF 2 debugging
2204 information and return true if we have enough to do something.
2205 NAMES points to the dwarf2 section names, or is NULL if the standard
2206 ELF names are used. */
2207
2208 int
2209 dwarf2_has_info (struct objfile *objfile,
2210 const struct dwarf2_debug_sections *names)
2211 {
2212 if (objfile->flags & OBJF_READNEVER)
2213 return 0;
2214
2215 struct dwarf2_per_objfile *dwarf2_per_objfile
2216 = get_dwarf2_per_objfile (objfile);
2217
2218 if (dwarf2_per_objfile == NULL)
2219 {
2220 /* Initialize per-objfile state. */
2221 dwarf2_per_objfile
2222 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2223 names);
2224 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2225 }
2226 return (!dwarf2_per_objfile->info.is_virtual
2227 && dwarf2_per_objfile->info.s.section != NULL
2228 && !dwarf2_per_objfile->abbrev.is_virtual
2229 && dwarf2_per_objfile->abbrev.s.section != NULL);
2230 }
2231
2232 /* Return the containing section of virtual section SECTION. */
2233
2234 static struct dwarf2_section_info *
2235 get_containing_section (const struct dwarf2_section_info *section)
2236 {
2237 gdb_assert (section->is_virtual);
2238 return section->s.containing_section;
2239 }
2240
2241 /* Return the bfd owner of SECTION. */
2242
2243 static struct bfd *
2244 get_section_bfd_owner (const struct dwarf2_section_info *section)
2245 {
2246 if (section->is_virtual)
2247 {
2248 section = get_containing_section (section);
2249 gdb_assert (!section->is_virtual);
2250 }
2251 return section->s.section->owner;
2252 }
2253
2254 /* Return the bfd section of SECTION.
2255 Returns NULL if the section is not present. */
2256
2257 static asection *
2258 get_section_bfd_section (const struct dwarf2_section_info *section)
2259 {
2260 if (section->is_virtual)
2261 {
2262 section = get_containing_section (section);
2263 gdb_assert (!section->is_virtual);
2264 }
2265 return section->s.section;
2266 }
2267
2268 /* Return the name of SECTION. */
2269
2270 static const char *
2271 get_section_name (const struct dwarf2_section_info *section)
2272 {
2273 asection *sectp = get_section_bfd_section (section);
2274
2275 gdb_assert (sectp != NULL);
2276 return bfd_section_name (get_section_bfd_owner (section), sectp);
2277 }
2278
2279 /* Return the name of the file SECTION is in. */
2280
2281 static const char *
2282 get_section_file_name (const struct dwarf2_section_info *section)
2283 {
2284 bfd *abfd = get_section_bfd_owner (section);
2285
2286 return bfd_get_filename (abfd);
2287 }
2288
2289 /* Return the id of SECTION.
2290 Returns 0 if SECTION doesn't exist. */
2291
2292 static int
2293 get_section_id (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 if (sectp == NULL)
2298 return 0;
2299 return sectp->id;
2300 }
2301
2302 /* Return the flags of SECTION.
2303 SECTION (or containing section if this is a virtual section) must exist. */
2304
2305 static int
2306 get_section_flags (const struct dwarf2_section_info *section)
2307 {
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 gdb_assert (sectp != NULL);
2311 return bfd_get_section_flags (sectp->owner, sectp);
2312 }
2313
2314 /* When loading sections, we look either for uncompressed section or for
2315 compressed section names. */
2316
2317 static int
2318 section_is_p (const char *section_name,
2319 const struct dwarf2_section_names *names)
2320 {
2321 if (names->normal != NULL
2322 && strcmp (section_name, names->normal) == 0)
2323 return 1;
2324 if (names->compressed != NULL
2325 && strcmp (section_name, names->compressed) == 0)
2326 return 1;
2327 return 0;
2328 }
2329
2330 /* See declaration. */
2331
2332 void
2333 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2334 const dwarf2_debug_sections &names)
2335 {
2336 flagword aflag = bfd_get_section_flags (abfd, sectp);
2337
2338 if ((aflag & SEC_HAS_CONTENTS) == 0)
2339 {
2340 }
2341 else if (section_is_p (sectp->name, &names.info))
2342 {
2343 this->info.s.section = sectp;
2344 this->info.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.abbrev))
2347 {
2348 this->abbrev.s.section = sectp;
2349 this->abbrev.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.line))
2352 {
2353 this->line.s.section = sectp;
2354 this->line.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loc))
2357 {
2358 this->loc.s.section = sectp;
2359 this->loc.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.loclists))
2362 {
2363 this->loclists.s.section = sectp;
2364 this->loclists.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macinfo))
2367 {
2368 this->macinfo.s.section = sectp;
2369 this->macinfo.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.macro))
2372 {
2373 this->macro.s.section = sectp;
2374 this->macro.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.str))
2377 {
2378 this->str.s.section = sectp;
2379 this->str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.line_str))
2382 {
2383 this->line_str.s.section = sectp;
2384 this->line_str.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.addr))
2387 {
2388 this->addr.s.section = sectp;
2389 this->addr.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.frame))
2392 {
2393 this->frame.s.section = sectp;
2394 this->frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.eh_frame))
2397 {
2398 this->eh_frame.s.section = sectp;
2399 this->eh_frame.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.ranges))
2402 {
2403 this->ranges.s.section = sectp;
2404 this->ranges.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.rnglists))
2407 {
2408 this->rnglists.s.section = sectp;
2409 this->rnglists.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.types))
2412 {
2413 struct dwarf2_section_info type_section;
2414
2415 memset (&type_section, 0, sizeof (type_section));
2416 type_section.s.section = sectp;
2417 type_section.size = bfd_get_section_size (sectp);
2418
2419 VEC_safe_push (dwarf2_section_info_def, this->types,
2420 &type_section);
2421 }
2422 else if (section_is_p (sectp->name, &names.gdb_index))
2423 {
2424 this->gdb_index.s.section = sectp;
2425 this->gdb_index.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.debug_names))
2428 {
2429 this->debug_names.s.section = sectp;
2430 this->debug_names.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_aranges))
2433 {
2434 this->debug_aranges.s.section = sectp;
2435 this->debug_aranges.size = bfd_get_section_size (sectp);
2436 }
2437
2438 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2439 && bfd_section_vma (abfd, sectp) == 0)
2440 this->has_section_at_zero = true;
2441 }
2442
2443 /* A helper function that decides whether a section is empty,
2444 or not present. */
2445
2446 static int
2447 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2448 {
2449 if (section->is_virtual)
2450 return section->size == 0;
2451 return section->s.section == NULL || section->size == 0;
2452 }
2453
2454 /* See dwarf2read.h. */
2455
2456 void
2457 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2458 {
2459 asection *sectp;
2460 bfd *abfd;
2461 gdb_byte *buf, *retbuf;
2462
2463 if (info->readin)
2464 return;
2465 info->buffer = NULL;
2466 info->readin = 1;
2467
2468 if (dwarf2_section_empty_p (info))
2469 return;
2470
2471 sectp = get_section_bfd_section (info);
2472
2473 /* If this is a virtual section we need to read in the real one first. */
2474 if (info->is_virtual)
2475 {
2476 struct dwarf2_section_info *containing_section =
2477 get_containing_section (info);
2478
2479 gdb_assert (sectp != NULL);
2480 if ((sectp->flags & SEC_RELOC) != 0)
2481 {
2482 error (_("Dwarf Error: DWP format V2 with relocations is not"
2483 " supported in section %s [in module %s]"),
2484 get_section_name (info), get_section_file_name (info));
2485 }
2486 dwarf2_read_section (objfile, containing_section);
2487 /* Other code should have already caught virtual sections that don't
2488 fit. */
2489 gdb_assert (info->virtual_offset + info->size
2490 <= containing_section->size);
2491 /* If the real section is empty or there was a problem reading the
2492 section we shouldn't get here. */
2493 gdb_assert (containing_section->buffer != NULL);
2494 info->buffer = containing_section->buffer + info->virtual_offset;
2495 return;
2496 }
2497
2498 /* If the section has relocations, we must read it ourselves.
2499 Otherwise we attach it to the BFD. */
2500 if ((sectp->flags & SEC_RELOC) == 0)
2501 {
2502 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2503 return;
2504 }
2505
2506 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2507 info->buffer = buf;
2508
2509 /* When debugging .o files, we may need to apply relocations; see
2510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2511 We never compress sections in .o files, so we only need to
2512 try this when the section is not compressed. */
2513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2514 if (retbuf != NULL)
2515 {
2516 info->buffer = retbuf;
2517 return;
2518 }
2519
2520 abfd = get_section_bfd_owner (info);
2521 gdb_assert (abfd != NULL);
2522
2523 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2524 || bfd_bread (buf, info->size, abfd) != info->size)
2525 {
2526 error (_("Dwarf Error: Can't read DWARF data"
2527 " in section %s [in module %s]"),
2528 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2529 }
2530 }
2531
2532 /* A helper function that returns the size of a section in a safe way.
2533 If you are positive that the section has been read before using the
2534 size, then it is safe to refer to the dwarf2_section_info object's
2535 "size" field directly. In other cases, you must call this
2536 function, because for compressed sections the size field is not set
2537 correctly until the section has been read. */
2538
2539 static bfd_size_type
2540 dwarf2_section_size (struct objfile *objfile,
2541 struct dwarf2_section_info *info)
2542 {
2543 if (!info->readin)
2544 dwarf2_read_section (objfile, info);
2545 return info->size;
2546 }
2547
2548 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2549 SECTION_NAME. */
2550
2551 void
2552 dwarf2_get_section_info (struct objfile *objfile,
2553 enum dwarf2_section_enum sect,
2554 asection **sectp, const gdb_byte **bufp,
2555 bfd_size_type *sizep)
2556 {
2557 struct dwarf2_per_objfile *data
2558 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2559 dwarf2_objfile_data_key);
2560 struct dwarf2_section_info *info;
2561
2562 /* We may see an objfile without any DWARF, in which case we just
2563 return nothing. */
2564 if (data == NULL)
2565 {
2566 *sectp = NULL;
2567 *bufp = NULL;
2568 *sizep = 0;
2569 return;
2570 }
2571 switch (sect)
2572 {
2573 case DWARF2_DEBUG_FRAME:
2574 info = &data->frame;
2575 break;
2576 case DWARF2_EH_FRAME:
2577 info = &data->eh_frame;
2578 break;
2579 default:
2580 gdb_assert_not_reached ("unexpected section");
2581 }
2582
2583 dwarf2_read_section (objfile, info);
2584
2585 *sectp = get_section_bfd_section (info);
2586 *bufp = info->buffer;
2587 *sizep = info->size;
2588 }
2589
2590 /* A helper function to find the sections for a .dwz file. */
2591
2592 static void
2593 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2594 {
2595 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2596
2597 /* Note that we only support the standard ELF names, because .dwz
2598 is ELF-only (at the time of writing). */
2599 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2600 {
2601 dwz_file->abbrev.s.section = sectp;
2602 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2603 }
2604 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2605 {
2606 dwz_file->info.s.section = sectp;
2607 dwz_file->info.size = bfd_get_section_size (sectp);
2608 }
2609 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2610 {
2611 dwz_file->str.s.section = sectp;
2612 dwz_file->str.size = bfd_get_section_size (sectp);
2613 }
2614 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2615 {
2616 dwz_file->line.s.section = sectp;
2617 dwz_file->line.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2620 {
2621 dwz_file->macro.s.section = sectp;
2622 dwz_file->macro.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2625 {
2626 dwz_file->gdb_index.s.section = sectp;
2627 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2630 {
2631 dwz_file->debug_names.s.section = sectp;
2632 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2633 }
2634 }
2635
2636 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2637 there is no .gnu_debugaltlink section in the file. Error if there
2638 is such a section but the file cannot be found. */
2639
2640 static struct dwz_file *
2641 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2642 {
2643 const char *filename;
2644 struct dwz_file *result;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file;
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2697 struct dwz_file);
2698 result->dwz_bfd = dwz_bfd.release ();
2699
2700 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2703 dwarf2_per_objfile->dwz_file = result;
2704 return result;
2705 }
2706 \f
2707 /* DWARF quick_symbols_functions support. */
2708
2709 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2710 unique line tables, so we maintain a separate table of all .debug_line
2711 derived entries to support the sharing.
2712 All the quick functions need is the list of file names. We discard the
2713 line_header when we're done and don't need to record it here. */
2714 struct quick_file_names
2715 {
2716 /* The data used to construct the hash key. */
2717 struct stmt_list_hash hash;
2718
2719 /* The number of entries in file_names, real_names. */
2720 unsigned int num_file_names;
2721
2722 /* The file names from the line table, after being run through
2723 file_full_name. */
2724 const char **file_names;
2725
2726 /* The file names from the line table after being run through
2727 gdb_realpath. These are computed lazily. */
2728 const char **real_names;
2729 };
2730
2731 /* When using the index (and thus not using psymtabs), each CU has an
2732 object of this type. This is used to hold information needed by
2733 the various "quick" methods. */
2734 struct dwarf2_per_cu_quick_data
2735 {
2736 /* The file table. This can be NULL if there was no file table
2737 or it's currently not read in.
2738 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2739 struct quick_file_names *file_names;
2740
2741 /* The corresponding symbol table. This is NULL if symbols for this
2742 CU have not yet been read. */
2743 struct compunit_symtab *compunit_symtab;
2744
2745 /* A temporary mark bit used when iterating over all CUs in
2746 expand_symtabs_matching. */
2747 unsigned int mark : 1;
2748
2749 /* True if we've tried to read the file table and found there isn't one.
2750 There will be no point in trying to read it again next time. */
2751 unsigned int no_file_data : 1;
2752 };
2753
2754 /* Utility hash function for a stmt_list_hash. */
2755
2756 static hashval_t
2757 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2758 {
2759 hashval_t v = 0;
2760
2761 if (stmt_list_hash->dwo_unit != NULL)
2762 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2763 v += to_underlying (stmt_list_hash->line_sect_off);
2764 return v;
2765 }
2766
2767 /* Utility equality function for a stmt_list_hash. */
2768
2769 static int
2770 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2771 const struct stmt_list_hash *rhs)
2772 {
2773 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2774 return 0;
2775 if (lhs->dwo_unit != NULL
2776 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2777 return 0;
2778
2779 return lhs->line_sect_off == rhs->line_sect_off;
2780 }
2781
2782 /* Hash function for a quick_file_names. */
2783
2784 static hashval_t
2785 hash_file_name_entry (const void *e)
2786 {
2787 const struct quick_file_names *file_data
2788 = (const struct quick_file_names *) e;
2789
2790 return hash_stmt_list_entry (&file_data->hash);
2791 }
2792
2793 /* Equality function for a quick_file_names. */
2794
2795 static int
2796 eq_file_name_entry (const void *a, const void *b)
2797 {
2798 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2799 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2800
2801 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2802 }
2803
2804 /* Delete function for a quick_file_names. */
2805
2806 static void
2807 delete_file_name_entry (void *e)
2808 {
2809 struct quick_file_names *file_data = (struct quick_file_names *) e;
2810 int i;
2811
2812 for (i = 0; i < file_data->num_file_names; ++i)
2813 {
2814 xfree ((void*) file_data->file_names[i]);
2815 if (file_data->real_names)
2816 xfree ((void*) file_data->real_names[i]);
2817 }
2818
2819 /* The space for the struct itself lives on objfile_obstack,
2820 so we don't free it here. */
2821 }
2822
2823 /* Create a quick_file_names hash table. */
2824
2825 static htab_t
2826 create_quick_file_names_table (unsigned int nr_initial_entries)
2827 {
2828 return htab_create_alloc (nr_initial_entries,
2829 hash_file_name_entry, eq_file_name_entry,
2830 delete_file_name_entry, xcalloc, xfree);
2831 }
2832
2833 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2834 have to be created afterwards. You should call age_cached_comp_units after
2835 processing PER_CU->CU. dw2_setup must have been already called. */
2836
2837 static void
2838 load_cu (struct dwarf2_per_cu_data *per_cu)
2839 {
2840 if (per_cu->is_debug_types)
2841 load_full_type_unit (per_cu);
2842 else
2843 load_full_comp_unit (per_cu, language_minimal);
2844
2845 if (per_cu->cu == NULL)
2846 return; /* Dummy CU. */
2847
2848 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2849 }
2850
2851 /* Read in the symbols for PER_CU. */
2852
2853 static void
2854 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2855 {
2856 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2857
2858 /* Skip type_unit_groups, reading the type units they contain
2859 is handled elsewhere. */
2860 if (IS_TYPE_UNIT_GROUP (per_cu))
2861 return;
2862
2863 /* The destructor of dwarf2_queue_guard frees any entries left on
2864 the queue. After this point we're guaranteed to leave this function
2865 with the dwarf queue empty. */
2866 dwarf2_queue_guard q_guard;
2867
2868 if (dwarf2_per_objfile->using_index
2869 ? per_cu->v.quick->compunit_symtab == NULL
2870 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2871 {
2872 queue_comp_unit (per_cu, language_minimal);
2873 load_cu (per_cu);
2874
2875 /* If we just loaded a CU from a DWO, and we're working with an index
2876 that may badly handle TUs, load all the TUs in that DWO as well.
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2878 if (!per_cu->is_debug_types
2879 && per_cu->cu != NULL
2880 && per_cu->cu->dwo_unit != NULL
2881 && dwarf2_per_objfile->index_table != NULL
2882 && dwarf2_per_objfile->index_table->version <= 7
2883 /* DWP files aren't supported yet. */
2884 && get_dwp_file (dwarf2_per_objfile) == NULL)
2885 queue_and_load_all_dwo_tus (per_cu);
2886 }
2887
2888 process_queue (dwarf2_per_objfile);
2889
2890 /* Age the cache, releasing compilation units that have not
2891 been used recently. */
2892 age_cached_comp_units (dwarf2_per_objfile);
2893 }
2894
2895 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2896 the objfile from which this CU came. Returns the resulting symbol
2897 table. */
2898
2899 static struct compunit_symtab *
2900 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901 {
2902 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2903
2904 gdb_assert (dwarf2_per_objfile->using_index);
2905 if (!per_cu->v.quick->compunit_symtab)
2906 {
2907 free_cached_comp_units freer (dwarf2_per_objfile);
2908 scoped_restore decrementer = increment_reading_symtab ();
2909 dw2_do_instantiate_symtab (per_cu);
2910 process_cu_includes (dwarf2_per_objfile);
2911 }
2912
2913 return per_cu->v.quick->compunit_symtab;
2914 }
2915
2916 /* See declaration. */
2917
2918 dwarf2_per_cu_data *
2919 dwarf2_per_objfile::get_cutu (int index)
2920 {
2921 if (index >= this->all_comp_units.size ())
2922 {
2923 index -= this->all_comp_units.size ();
2924 gdb_assert (index < this->all_type_units.size ());
2925 return &this->all_type_units[index]->per_cu;
2926 }
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 dwarf2_per_cu_data *
2934 dwarf2_per_objfile::get_cu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2937
2938 return this->all_comp_units[index];
2939 }
2940
2941 /* See declaration. */
2942
2943 signatured_type *
2944 dwarf2_per_objfile::get_tu (int index)
2945 {
2946 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2947
2948 return this->all_type_units[index];
2949 }
2950
2951 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2952 objfile_obstack, and constructed with the specified field
2953 values. */
2954
2955 static dwarf2_per_cu_data *
2956 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2957 struct dwarf2_section_info *section,
2958 int is_dwz,
2959 sect_offset sect_off, ULONGEST length)
2960 {
2961 struct objfile *objfile = dwarf2_per_objfile->objfile;
2962 dwarf2_per_cu_data *the_cu
2963 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_data);
2965 the_cu->sect_off = sect_off;
2966 the_cu->length = length;
2967 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2968 the_cu->section = section;
2969 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_quick_data);
2971 the_cu->is_dwz = is_dwz;
2972 return the_cu;
2973 }
2974
2975 /* A helper for create_cus_from_index that handles a given list of
2976 CUs. */
2977
2978 static void
2979 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2980 const gdb_byte *cu_list, offset_type n_elements,
2981 struct dwarf2_section_info *section,
2982 int is_dwz)
2983 {
2984 for (offset_type i = 0; i < n_elements; i += 2)
2985 {
2986 gdb_static_assert (sizeof (ULONGEST) >= 8);
2987
2988 sect_offset sect_off
2989 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2990 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2991 cu_list += 2 * 8;
2992
2993 dwarf2_per_cu_data *per_cu
2994 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2995 sect_off, length);
2996 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2997 }
2998 }
2999
3000 /* Read the CU list from the mapped index, and use it to create all
3001 the CU objects for this objfile. */
3002
3003 static void
3004 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3005 const gdb_byte *cu_list, offset_type cu_list_elements,
3006 const gdb_byte *dwz_list, offset_type dwz_elements)
3007 {
3008 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3009 dwarf2_per_objfile->all_comp_units.reserve
3010 ((cu_list_elements + dwz_elements) / 2);
3011
3012 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3013 &dwarf2_per_objfile->info, 0);
3014
3015 if (dwz_elements == 0)
3016 return;
3017
3018 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3019 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3020 &dwz->info, 1);
3021 }
3022
3023 /* Create the signatured type hash table from the index. */
3024
3025 static void
3026 create_signatured_type_table_from_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 struct dwarf2_section_info *section,
3029 const gdb_byte *bytes,
3030 offset_type elements)
3031 {
3032 struct objfile *objfile = dwarf2_per_objfile->objfile;
3033
3034 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3035 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3036
3037 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3038
3039 for (offset_type i = 0; i < elements; i += 3)
3040 {
3041 struct signatured_type *sig_type;
3042 ULONGEST signature;
3043 void **slot;
3044 cu_offset type_offset_in_tu;
3045
3046 gdb_static_assert (sizeof (ULONGEST) >= 8);
3047 sect_offset sect_off
3048 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3049 type_offset_in_tu
3050 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3051 BFD_ENDIAN_LITTLE);
3052 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3053 bytes += 3 * 8;
3054
3055 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3056 struct signatured_type);
3057 sig_type->signature = signature;
3058 sig_type->type_offset_in_tu = type_offset_in_tu;
3059 sig_type->per_cu.is_debug_types = 1;
3060 sig_type->per_cu.section = section;
3061 sig_type->per_cu.sect_off = sect_off;
3062 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3063 sig_type->per_cu.v.quick
3064 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3065 struct dwarf2_per_cu_quick_data);
3066
3067 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3068 *slot = sig_type;
3069
3070 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3071 }
3072
3073 dwarf2_per_objfile->signatured_types = sig_types_hash;
3074 }
3075
3076 /* Create the signatured type hash table from .debug_names. */
3077
3078 static void
3079 create_signatured_type_table_from_debug_names
3080 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3081 const mapped_debug_names &map,
3082 struct dwarf2_section_info *section,
3083 struct dwarf2_section_info *abbrev_section)
3084 {
3085 struct objfile *objfile = dwarf2_per_objfile->objfile;
3086
3087 dwarf2_read_section (objfile, section);
3088 dwarf2_read_section (objfile, abbrev_section);
3089
3090 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3091 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3092
3093 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3094
3095 for (uint32_t i = 0; i < map.tu_count; ++i)
3096 {
3097 struct signatured_type *sig_type;
3098 void **slot;
3099
3100 sect_offset sect_off
3101 = (sect_offset) (extract_unsigned_integer
3102 (map.tu_table_reordered + i * map.offset_size,
3103 map.offset_size,
3104 map.dwarf5_byte_order));
3105
3106 comp_unit_head cu_header;
3107 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3108 abbrev_section,
3109 section->buffer + to_underlying (sect_off),
3110 rcuh_kind::TYPE);
3111
3112 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3113 struct signatured_type);
3114 sig_type->signature = cu_header.signature;
3115 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3116 sig_type->per_cu.is_debug_types = 1;
3117 sig_type->per_cu.section = section;
3118 sig_type->per_cu.sect_off = sect_off;
3119 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3120 sig_type->per_cu.v.quick
3121 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3122 struct dwarf2_per_cu_quick_data);
3123
3124 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3125 *slot = sig_type;
3126
3127 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3128 }
3129
3130 dwarf2_per_objfile->signatured_types = sig_types_hash;
3131 }
3132
3133 /* Read the address map data from the mapped index, and use it to
3134 populate the objfile's psymtabs_addrmap. */
3135
3136 static void
3137 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3138 struct mapped_index *index)
3139 {
3140 struct objfile *objfile = dwarf2_per_objfile->objfile;
3141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3142 const gdb_byte *iter, *end;
3143 struct addrmap *mutable_map;
3144 CORE_ADDR baseaddr;
3145
3146 auto_obstack temp_obstack;
3147
3148 mutable_map = addrmap_create_mutable (&temp_obstack);
3149
3150 iter = index->address_table.data ();
3151 end = iter + index->address_table.size ();
3152
3153 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3154
3155 while (iter < end)
3156 {
3157 ULONGEST hi, lo, cu_index;
3158 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3159 iter += 8;
3160 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3161 iter += 8;
3162 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 iter += 4;
3164
3165 if (lo > hi)
3166 {
3167 complaint (&symfile_complaints,
3168 _(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (&symfile_complaints,
3176 _(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3178 continue;
3179 }
3180
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3185 }
3186
3187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3188 &objfile->objfile_obstack);
3189 }
3190
3191 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3193
3194 static void
3195 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3197 {
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3203
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3206
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3212 {
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3216 {
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3220 return;
3221 }
3222 }
3223
3224 dwarf2_read_section (objfile, section);
3225
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3227
3228 const gdb_byte *addr = section->buffer;
3229
3230 while (addr < section->buffer + section->size)
3231 {
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3234
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3236 &bytes_read);
3237 addr += bytes_read;
3238
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3243 {
3244 warning (_("Section .debug_aranges in %s entry at offset %zu "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile), entry_addr - section->buffer,
3248 plongest (bytes_read + entry_length),
3249 pulongest (section->size));
3250 return;
3251 }
3252
3253 /* The version number. */
3254 const uint16_t version = read_2_bytes (abfd, addr);
3255 addr += 2;
3256 if (version != 2)
3257 {
3258 warning (_("Section .debug_aranges in %s entry at offset %zu "
3259 "has unsupported version %d, ignoring .debug_aranges."),
3260 objfile_name (objfile), entry_addr - section->buffer,
3261 version);
3262 return;
3263 }
3264
3265 const uint64_t debug_info_offset
3266 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3267 addr += offset_size;
3268 const auto per_cu_it
3269 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3270 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %zu "
3273 "debug_info_offset %s does not exists, "
3274 "ignoring .debug_aranges."),
3275 objfile_name (objfile), entry_addr - section->buffer,
3276 pulongest (debug_info_offset));
3277 return;
3278 }
3279 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3280
3281 const uint8_t address_size = *addr++;
3282 if (address_size < 1 || address_size > 8)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %zu "
3285 "address_size %u is invalid, ignoring .debug_aranges."),
3286 objfile_name (objfile), entry_addr - section->buffer,
3287 address_size);
3288 return;
3289 }
3290
3291 const uint8_t segment_selector_size = *addr++;
3292 if (segment_selector_size != 0)
3293 {
3294 warning (_("Section .debug_aranges in %s entry at offset %zu "
3295 "segment_selector_size %u is not supported, "
3296 "ignoring .debug_aranges."),
3297 objfile_name (objfile), entry_addr - section->buffer,
3298 segment_selector_size);
3299 return;
3300 }
3301
3302 /* Must pad to an alignment boundary that is twice the address
3303 size. It is undocumented by the DWARF standard but GCC does
3304 use it. */
3305 for (size_t padding = ((-(addr - section->buffer))
3306 & (2 * address_size - 1));
3307 padding > 0; padding--)
3308 if (*addr++ != 0)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "padding is not zero, ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer);
3313 return;
3314 }
3315
3316 for (;;)
3317 {
3318 if (addr + 2 * address_size > entry_end)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %zu "
3321 "address list is not properly terminated, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer);
3324 return;
3325 }
3326 ULONGEST start = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 ULONGEST length = extract_unsigned_integer (addr, address_size,
3330 dwarf5_byte_order);
3331 addr += address_size;
3332 if (start == 0 && length == 0)
3333 break;
3334 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3335 {
3336 /* Symbol was eliminated due to a COMDAT group. */
3337 continue;
3338 }
3339 ULONGEST end = start + length;
3340 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3341 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3342 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3343 }
3344 }
3345
3346 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3347 &objfile->objfile_obstack);
3348 }
3349
3350 /* Find a slot in the mapped index INDEX for the object named NAME.
3351 If NAME is found, set *VEC_OUT to point to the CU vector in the
3352 constant pool and return true. If NAME cannot be found, return
3353 false. */
3354
3355 static bool
3356 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3357 offset_type **vec_out)
3358 {
3359 offset_type hash;
3360 offset_type slot, step;
3361 int (*cmp) (const char *, const char *);
3362
3363 gdb::unique_xmalloc_ptr<char> without_params;
3364 if (current_language->la_language == language_cplus
3365 || current_language->la_language == language_fortran
3366 || current_language->la_language == language_d)
3367 {
3368 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3369 not contain any. */
3370
3371 if (strchr (name, '(') != NULL)
3372 {
3373 without_params = cp_remove_params (name);
3374
3375 if (without_params != NULL)
3376 name = without_params.get ();
3377 }
3378 }
3379
3380 /* Index version 4 did not support case insensitive searches. But the
3381 indices for case insensitive languages are built in lowercase, therefore
3382 simulate our NAME being searched is also lowercased. */
3383 hash = mapped_index_string_hash ((index->version == 4
3384 && case_sensitivity == case_sensitive_off
3385 ? 5 : index->version),
3386 name);
3387
3388 slot = hash & (index->symbol_table.size () - 1);
3389 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3390 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3391
3392 for (;;)
3393 {
3394 const char *str;
3395
3396 const auto &bucket = index->symbol_table[slot];
3397 if (bucket.name == 0 && bucket.vec == 0)
3398 return false;
3399
3400 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3401 if (!cmp (name, str))
3402 {
3403 *vec_out = (offset_type *) (index->constant_pool
3404 + MAYBE_SWAP (bucket.vec));
3405 return true;
3406 }
3407
3408 slot = (slot + step) & (index->symbol_table.size () - 1);
3409 }
3410 }
3411
3412 /* A helper function that reads the .gdb_index from SECTION and fills
3413 in MAP. FILENAME is the name of the file containing the section;
3414 it is used for error reporting. DEPRECATED_OK is true if it is
3415 ok to use deprecated sections.
3416
3417 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3418 out parameters that are filled in with information about the CU and
3419 TU lists in the section.
3420
3421 Returns 1 if all went well, 0 otherwise. */
3422
3423 static bool
3424 read_index_from_section (struct objfile *objfile,
3425 const char *filename,
3426 bool deprecated_ok,
3427 struct dwarf2_section_info *section,
3428 struct mapped_index *map,
3429 const gdb_byte **cu_list,
3430 offset_type *cu_list_elements,
3431 const gdb_byte **types_list,
3432 offset_type *types_list_elements)
3433 {
3434 const gdb_byte *addr;
3435 offset_type version;
3436 offset_type *metadata;
3437 int i;
3438
3439 if (dwarf2_section_empty_p (section))
3440 return 0;
3441
3442 /* Older elfutils strip versions could keep the section in the main
3443 executable while splitting it for the separate debug info file. */
3444 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3445 return 0;
3446
3447 dwarf2_read_section (objfile, section);
3448
3449 addr = section->buffer;
3450 /* Version check. */
3451 version = MAYBE_SWAP (*(offset_type *) addr);
3452 /* Versions earlier than 3 emitted every copy of a psymbol. This
3453 causes the index to behave very poorly for certain requests. Version 3
3454 contained incomplete addrmap. So, it seems better to just ignore such
3455 indices. */
3456 if (version < 4)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("Skipping obsolete .gdb_index section in %s."),
3462 filename);
3463 warning_printed = 1;
3464 }
3465 return 0;
3466 }
3467 /* Index version 4 uses a different hash function than index version
3468 5 and later.
3469
3470 Versions earlier than 6 did not emit psymbols for inlined
3471 functions. Using these files will cause GDB not to be able to
3472 set breakpoints on inlined functions by name, so we ignore these
3473 indices unless the user has done
3474 "set use-deprecated-index-sections on". */
3475 if (version < 6 && !deprecated_ok)
3476 {
3477 static int warning_printed = 0;
3478 if (!warning_printed)
3479 {
3480 warning (_("\
3481 Skipping deprecated .gdb_index section in %s.\n\
3482 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3483 to use the section anyway."),
3484 filename);
3485 warning_printed = 1;
3486 }
3487 return 0;
3488 }
3489 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3490 of the TU (for symbols coming from TUs),
3491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3492 Plus gold-generated indices can have duplicate entries for global symbols,
3493 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3494 These are just performance bugs, and we can't distinguish gdb-generated
3495 indices from gold-generated ones, so issue no warning here. */
3496
3497 /* Indexes with higher version than the one supported by GDB may be no
3498 longer backward compatible. */
3499 if (version > 8)
3500 return 0;
3501
3502 map->version = version;
3503 map->total_size = section->size;
3504
3505 metadata = (offset_type *) (addr + sizeof (offset_type));
3506
3507 i = 0;
3508 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3509 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3510 / 8);
3511 ++i;
3512
3513 *types_list = addr + MAYBE_SWAP (metadata[i]);
3514 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3515 - MAYBE_SWAP (metadata[i]))
3516 / 8);
3517 ++i;
3518
3519 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3520 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 map->address_table
3522 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3523 ++i;
3524
3525 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3526 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3527 map->symbol_table
3528 = gdb::array_view<mapped_index::symbol_table_slot>
3529 ((mapped_index::symbol_table_slot *) symbol_table,
3530 (mapped_index::symbol_table_slot *) symbol_table_end);
3531
3532 ++i;
3533 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3534
3535 return 1;
3536 }
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3543 {
3544 struct mapped_index local_map, *map;
3545 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3546 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3547 struct dwz_file *dwz;
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549
3550 if (!read_index_from_section (objfile, objfile_name (objfile),
3551 use_deprecated_index_sections,
3552 &dwarf2_per_objfile->gdb_index, &local_map,
3553 &cu_list, &cu_list_elements,
3554 &types_list, &types_list_elements))
3555 return 0;
3556
3557 /* Don't use the index if it's empty. */
3558 if (local_map.symbol_table.empty ())
3559 return 0;
3560
3561 /* If there is a .dwz file, read it so we can get its CU list as
3562 well. */
3563 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3564 if (dwz != NULL)
3565 {
3566 struct mapped_index dwz_map;
3567 const gdb_byte *dwz_types_ignore;
3568 offset_type dwz_types_elements_ignore;
3569
3570 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3571 1,
3572 &dwz->gdb_index, &dwz_map,
3573 &dwz_list, &dwz_list_elements,
3574 &dwz_types_ignore,
3575 &dwz_types_elements_ignore))
3576 {
3577 warning (_("could not read '.gdb_index' section from %s; skipping"),
3578 bfd_get_filename (dwz->dwz_bfd));
3579 return 0;
3580 }
3581 }
3582
3583 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3584 dwz_list, dwz_list_elements);
3585
3586 if (types_list_elements)
3587 {
3588 struct dwarf2_section_info *section;
3589
3590 /* We can only handle a single .debug_types when we have an
3591 index. */
3592 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3593 return 0;
3594
3595 section = VEC_index (dwarf2_section_info_def,
3596 dwarf2_per_objfile->types, 0);
3597
3598 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3599 types_list, types_list_elements);
3600 }
3601
3602 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3603
3604 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3605 map = new (map) mapped_index ();
3606 *map = local_map;
3607
3608 dwarf2_per_objfile->index_table = map;
3609 dwarf2_per_objfile->using_index = 1;
3610 dwarf2_per_objfile->quick_file_names_table =
3611 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3612
3613 return 1;
3614 }
3615
3616 /* die_reader_func for dw2_get_file_names. */
3617
3618 static void
3619 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3620 const gdb_byte *info_ptr,
3621 struct die_info *comp_unit_die,
3622 int has_children,
3623 void *data)
3624 {
3625 struct dwarf2_cu *cu = reader->cu;
3626 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = cu->per_cu->dwarf2_per_objfile;
3629 struct objfile *objfile = dwarf2_per_objfile->objfile;
3630 struct dwarf2_per_cu_data *lh_cu;
3631 struct attribute *attr;
3632 int i;
3633 void **slot;
3634 struct quick_file_names *qfn;
3635
3636 gdb_assert (! this_cu->is_debug_types);
3637
3638 /* Our callers never want to match partial units -- instead they
3639 will match the enclosing full CU. */
3640 if (comp_unit_die->tag == DW_TAG_partial_unit)
3641 {
3642 this_cu->v.quick->no_file_data = 1;
3643 return;
3644 }
3645
3646 lh_cu = this_cu;
3647 slot = NULL;
3648
3649 line_header_up lh;
3650 sect_offset line_offset {};
3651
3652 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3653 if (attr)
3654 {
3655 struct quick_file_names find_entry;
3656
3657 line_offset = (sect_offset) DW_UNSND (attr);
3658
3659 /* We may have already read in this line header (TU line header sharing).
3660 If we have we're done. */
3661 find_entry.hash.dwo_unit = cu->dwo_unit;
3662 find_entry.hash.line_sect_off = line_offset;
3663 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3664 &find_entry, INSERT);
3665 if (*slot != NULL)
3666 {
3667 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3668 return;
3669 }
3670
3671 lh = dwarf_decode_line_header (line_offset, cu);
3672 }
3673 if (lh == NULL)
3674 {
3675 lh_cu->v.quick->no_file_data = 1;
3676 return;
3677 }
3678
3679 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3680 qfn->hash.dwo_unit = cu->dwo_unit;
3681 qfn->hash.line_sect_off = line_offset;
3682 gdb_assert (slot != NULL);
3683 *slot = qfn;
3684
3685 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3686
3687 qfn->num_file_names = lh->file_names.size ();
3688 qfn->file_names =
3689 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3690 for (i = 0; i < lh->file_names.size (); ++i)
3691 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3692 qfn->real_names = NULL;
3693
3694 lh_cu->v.quick->file_names = qfn;
3695 }
3696
3697 /* A helper for the "quick" functions which attempts to read the line
3698 table for THIS_CU. */
3699
3700 static struct quick_file_names *
3701 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3702 {
3703 /* This should never be called for TUs. */
3704 gdb_assert (! this_cu->is_debug_types);
3705 /* Nor type unit groups. */
3706 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3707
3708 if (this_cu->v.quick->file_names != NULL)
3709 return this_cu->v.quick->file_names;
3710 /* If we know there is no line data, no point in looking again. */
3711 if (this_cu->v.quick->no_file_data)
3712 return NULL;
3713
3714 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3715
3716 if (this_cu->v.quick->no_file_data)
3717 return NULL;
3718 return this_cu->v.quick->file_names;
3719 }
3720
3721 /* A helper for the "quick" functions which computes and caches the
3722 real path for a given file name from the line table. */
3723
3724 static const char *
3725 dw2_get_real_path (struct objfile *objfile,
3726 struct quick_file_names *qfn, int index)
3727 {
3728 if (qfn->real_names == NULL)
3729 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3730 qfn->num_file_names, const char *);
3731
3732 if (qfn->real_names[index] == NULL)
3733 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3734
3735 return qfn->real_names[index];
3736 }
3737
3738 static struct symtab *
3739 dw2_find_last_source_symtab (struct objfile *objfile)
3740 {
3741 struct dwarf2_per_objfile *dwarf2_per_objfile
3742 = get_dwarf2_per_objfile (objfile);
3743 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3744 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3745
3746 if (cust == NULL)
3747 return NULL;
3748
3749 return compunit_primary_filetab (cust);
3750 }
3751
3752 /* Traversal function for dw2_forget_cached_source_info. */
3753
3754 static int
3755 dw2_free_cached_file_names (void **slot, void *info)
3756 {
3757 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3758
3759 if (file_data->real_names)
3760 {
3761 int i;
3762
3763 for (i = 0; i < file_data->num_file_names; ++i)
3764 {
3765 xfree ((void*) file_data->real_names[i]);
3766 file_data->real_names[i] = NULL;
3767 }
3768 }
3769
3770 return 1;
3771 }
3772
3773 static void
3774 dw2_forget_cached_source_info (struct objfile *objfile)
3775 {
3776 struct dwarf2_per_objfile *dwarf2_per_objfile
3777 = get_dwarf2_per_objfile (objfile);
3778
3779 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3780 dw2_free_cached_file_names, NULL);
3781 }
3782
3783 /* Helper function for dw2_map_symtabs_matching_filename that expands
3784 the symtabs and calls the iterator. */
3785
3786 static int
3787 dw2_map_expand_apply (struct objfile *objfile,
3788 struct dwarf2_per_cu_data *per_cu,
3789 const char *name, const char *real_path,
3790 gdb::function_view<bool (symtab *)> callback)
3791 {
3792 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3793
3794 /* Don't visit already-expanded CUs. */
3795 if (per_cu->v.quick->compunit_symtab)
3796 return 0;
3797
3798 /* This may expand more than one symtab, and we want to iterate over
3799 all of them. */
3800 dw2_instantiate_symtab (per_cu);
3801
3802 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3803 last_made, callback);
3804 }
3805
3806 /* Implementation of the map_symtabs_matching_filename method. */
3807
3808 static bool
3809 dw2_map_symtabs_matching_filename
3810 (struct objfile *objfile, const char *name, const char *real_path,
3811 gdb::function_view<bool (symtab *)> callback)
3812 {
3813 const char *name_basename = lbasename (name);
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3821 {
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 quick_file_names *file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (int j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_name = file_data->file_names[j];
3833 const char *this_real_name;
3834
3835 if (compare_filenames_for_search (this_name, name))
3836 {
3837 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3838 callback))
3839 return true;
3840 continue;
3841 }
3842
3843 /* Before we invoke realpath, which can get expensive when many
3844 files are involved, do a quick comparison of the basenames. */
3845 if (! basenames_may_differ
3846 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (compare_filenames_for_search (this_real_name, name))
3851 {
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3853 callback))
3854 return true;
3855 continue;
3856 }
3857
3858 if (real_path != NULL)
3859 {
3860 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3861 gdb_assert (IS_ABSOLUTE_PATH (name));
3862 if (this_real_name != NULL
3863 && FILENAME_CMP (real_path, this_real_name) == 0)
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870 }
3871 }
3872 }
3873
3874 return false;
3875 }
3876
3877 /* Struct used to manage iterating over all CUs looking for a symbol. */
3878
3879 struct dw2_symtab_iterator
3880 {
3881 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3882 struct dwarf2_per_objfile *dwarf2_per_objfile;
3883 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3884 int want_specific_block;
3885 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3886 Unused if !WANT_SPECIFIC_BLOCK. */
3887 int block_index;
3888 /* The kind of symbol we're looking for. */
3889 domain_enum domain;
3890 /* The list of CUs from the index entry of the symbol,
3891 or NULL if not found. */
3892 offset_type *vec;
3893 /* The next element in VEC to look at. */
3894 int next;
3895 /* The number of elements in VEC, or zero if there is no match. */
3896 int length;
3897 /* Have we seen a global version of the symbol?
3898 If so we can ignore all further global instances.
3899 This is to work around gold/15646, inefficient gold-generated
3900 indices. */
3901 int global_seen;
3902 };
3903
3904 /* Initialize the index symtab iterator ITER.
3905 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3906 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3907
3908 static void
3909 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3910 struct dwarf2_per_objfile *dwarf2_per_objfile,
3911 int want_specific_block,
3912 int block_index,
3913 domain_enum domain,
3914 const char *name)
3915 {
3916 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3917 iter->want_specific_block = want_specific_block;
3918 iter->block_index = block_index;
3919 iter->domain = domain;
3920 iter->next = 0;
3921 iter->global_seen = 0;
3922
3923 mapped_index *index = dwarf2_per_objfile->index_table;
3924
3925 /* index is NULL if OBJF_READNOW. */
3926 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3927 iter->length = MAYBE_SWAP (*iter->vec);
3928 else
3929 {
3930 iter->vec = NULL;
3931 iter->length = 0;
3932 }
3933 }
3934
3935 /* Return the next matching CU or NULL if there are no more. */
3936
3937 static struct dwarf2_per_cu_data *
3938 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3939 {
3940 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3941
3942 for ( ; iter->next < iter->length; ++iter->next)
3943 {
3944 offset_type cu_index_and_attrs =
3945 MAYBE_SWAP (iter->vec[iter->next + 1]);
3946 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3947 int want_static = iter->block_index != GLOBAL_BLOCK;
3948 /* This value is only valid for index versions >= 7. */
3949 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3950 gdb_index_symbol_kind symbol_kind =
3951 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3952 /* Only check the symbol attributes if they're present.
3953 Indices prior to version 7 don't record them,
3954 and indices >= 7 may elide them for certain symbols
3955 (gold does this). */
3956 int attrs_valid =
3957 (dwarf2_per_objfile->index_table->version >= 7
3958 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3959
3960 /* Don't crash on bad data. */
3961 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3962 + dwarf2_per_objfile->all_type_units.size ()))
3963 {
3964 complaint (&symfile_complaints,
3965 _(".gdb_index entry has bad CU index"
3966 " [in module %s]"),
3967 objfile_name (dwarf2_per_objfile->objfile));
3968 continue;
3969 }
3970
3971 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3972
3973 /* Skip if already read in. */
3974 if (per_cu->v.quick->compunit_symtab)
3975 continue;
3976
3977 /* Check static vs global. */
3978 if (attrs_valid)
3979 {
3980 if (iter->want_specific_block
3981 && want_static != is_static)
3982 continue;
3983 /* Work around gold/15646. */
3984 if (!is_static && iter->global_seen)
3985 continue;
3986 if (!is_static)
3987 iter->global_seen = 1;
3988 }
3989
3990 /* Only check the symbol's kind if it has one. */
3991 if (attrs_valid)
3992 {
3993 switch (iter->domain)
3994 {
3995 case VAR_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3998 /* Some types are also in VAR_DOMAIN. */
3999 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case STRUCT_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4004 continue;
4005 break;
4006 case LABEL_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4008 continue;
4009 break;
4010 default:
4011 break;
4012 }
4013 }
4014
4015 ++iter->next;
4016 return per_cu;
4017 }
4018
4019 return NULL;
4020 }
4021
4022 static struct compunit_symtab *
4023 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4024 const char *name, domain_enum domain)
4025 {
4026 struct compunit_symtab *stab_best = NULL;
4027 struct dwarf2_per_objfile *dwarf2_per_objfile
4028 = get_dwarf2_per_objfile (objfile);
4029
4030 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4031
4032 struct dw2_symtab_iterator iter;
4033 struct dwarf2_per_cu_data *per_cu;
4034
4035 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4036
4037 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4038 {
4039 struct symbol *sym, *with_opaque = NULL;
4040 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4041 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4042 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4043
4044 sym = block_find_symbol (block, name, domain,
4045 block_find_non_opaque_type_preferred,
4046 &with_opaque);
4047
4048 /* Some caution must be observed with overloaded functions
4049 and methods, since the index will not contain any overload
4050 information (but NAME might contain it). */
4051
4052 if (sym != NULL
4053 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4054 return stab;
4055 if (with_opaque != NULL
4056 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4057 stab_best = stab;
4058
4059 /* Keep looking through other CUs. */
4060 }
4061
4062 return stab_best;
4063 }
4064
4065 static void
4066 dw2_print_stats (struct objfile *objfile)
4067 {
4068 struct dwarf2_per_objfile *dwarf2_per_objfile
4069 = get_dwarf2_per_objfile (objfile);
4070 int total = (dwarf2_per_objfile->all_comp_units.size ()
4071 + dwarf2_per_objfile->all_type_units.size ());
4072 int count = 0;
4073
4074 for (int i = 0; i < total; ++i)
4075 {
4076 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4077
4078 if (!per_cu->v.quick->compunit_symtab)
4079 ++count;
4080 }
4081 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4083 }
4084
4085 /* This dumps minimal information about the index.
4086 It is called via "mt print objfiles".
4087 One use is to verify .gdb_index has been loaded by the
4088 gdb.dwarf2/gdb-index.exp testcase. */
4089
4090 static void
4091 dw2_dump (struct objfile *objfile)
4092 {
4093 struct dwarf2_per_objfile *dwarf2_per_objfile
4094 = get_dwarf2_per_objfile (objfile);
4095
4096 gdb_assert (dwarf2_per_objfile->using_index);
4097 printf_filtered (".gdb_index:");
4098 if (dwarf2_per_objfile->index_table != NULL)
4099 {
4100 printf_filtered (" version %d\n",
4101 dwarf2_per_objfile->index_table->version);
4102 }
4103 else
4104 printf_filtered (" faked for \"readnow\"\n");
4105 printf_filtered ("\n");
4106 }
4107
4108 static void
4109 dw2_relocate (struct objfile *objfile,
4110 const struct section_offsets *new_offsets,
4111 const struct section_offsets *delta)
4112 {
4113 /* There's nothing to relocate here. */
4114 }
4115
4116 static void
4117 dw2_expand_symtabs_for_function (struct objfile *objfile,
4118 const char *func_name)
4119 {
4120 struct dwarf2_per_objfile *dwarf2_per_objfile
4121 = get_dwarf2_per_objfile (objfile);
4122
4123 struct dw2_symtab_iterator iter;
4124 struct dwarf2_per_cu_data *per_cu;
4125
4126 /* Note: It doesn't matter what we pass for block_index here. */
4127 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4128 func_name);
4129
4130 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4131 dw2_instantiate_symtab (per_cu);
4132
4133 }
4134
4135 static void
4136 dw2_expand_all_symtabs (struct objfile *objfile)
4137 {
4138 struct dwarf2_per_objfile *dwarf2_per_objfile
4139 = get_dwarf2_per_objfile (objfile);
4140 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4141 + dwarf2_per_objfile->all_type_units.size ());
4142
4143 for (int i = 0; i < total_units; ++i)
4144 {
4145 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4146
4147 dw2_instantiate_symtab (per_cu);
4148 }
4149 }
4150
4151 static void
4152 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4153 const char *fullname)
4154 {
4155 struct dwarf2_per_objfile *dwarf2_per_objfile
4156 = get_dwarf2_per_objfile (objfile);
4157
4158 /* We don't need to consider type units here.
4159 This is only called for examining code, e.g. expand_line_sal.
4160 There can be an order of magnitude (or more) more type units
4161 than comp units, and we avoid them if we can. */
4162
4163 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4164 {
4165 /* We only need to look at symtabs not already expanded. */
4166 if (per_cu->v.quick->compunit_symtab)
4167 continue;
4168
4169 quick_file_names *file_data = dw2_get_file_names (per_cu);
4170 if (file_data == NULL)
4171 continue;
4172
4173 for (int j = 0; j < file_data->num_file_names; ++j)
4174 {
4175 const char *this_fullname = file_data->file_names[j];
4176
4177 if (filename_cmp (this_fullname, fullname) == 0)
4178 {
4179 dw2_instantiate_symtab (per_cu);
4180 break;
4181 }
4182 }
4183 }
4184 }
4185
4186 static void
4187 dw2_map_matching_symbols (struct objfile *objfile,
4188 const char * name, domain_enum domain,
4189 int global,
4190 int (*callback) (struct block *,
4191 struct symbol *, void *),
4192 void *data, symbol_name_match_type match,
4193 symbol_compare_ftype *ordered_compare)
4194 {
4195 /* Currently unimplemented; used for Ada. The function can be called if the
4196 current language is Ada for a non-Ada objfile using GNU index. As Ada
4197 does not look for non-Ada symbols this function should just return. */
4198 }
4199
4200 /* Symbol name matcher for .gdb_index names.
4201
4202 Symbol names in .gdb_index have a few particularities:
4203
4204 - There's no indication of which is the language of each symbol.
4205
4206 Since each language has its own symbol name matching algorithm,
4207 and we don't know which language is the right one, we must match
4208 each symbol against all languages. This would be a potential
4209 performance problem if it were not mitigated by the
4210 mapped_index::name_components lookup table, which significantly
4211 reduces the number of times we need to call into this matcher,
4212 making it a non-issue.
4213
4214 - Symbol names in the index have no overload (parameter)
4215 information. I.e., in C++, "foo(int)" and "foo(long)" both
4216 appear as "foo" in the index, for example.
4217
4218 This means that the lookup names passed to the symbol name
4219 matcher functions must have no parameter information either
4220 because (e.g.) symbol search name "foo" does not match
4221 lookup-name "foo(int)" [while swapping search name for lookup
4222 name would match].
4223 */
4224 class gdb_index_symbol_name_matcher
4225 {
4226 public:
4227 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4228 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4229
4230 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4231 Returns true if any matcher matches. */
4232 bool matches (const char *symbol_name);
4233
4234 private:
4235 /* A reference to the lookup name we're matching against. */
4236 const lookup_name_info &m_lookup_name;
4237
4238 /* A vector holding all the different symbol name matchers, for all
4239 languages. */
4240 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4241 };
4242
4243 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4244 (const lookup_name_info &lookup_name)
4245 : m_lookup_name (lookup_name)
4246 {
4247 /* Prepare the vector of comparison functions upfront, to avoid
4248 doing the same work for each symbol. Care is taken to avoid
4249 matching with the same matcher more than once if/when multiple
4250 languages use the same matcher function. */
4251 auto &matchers = m_symbol_name_matcher_funcs;
4252 matchers.reserve (nr_languages);
4253
4254 matchers.push_back (default_symbol_name_matcher);
4255
4256 for (int i = 0; i < nr_languages; i++)
4257 {
4258 const language_defn *lang = language_def ((enum language) i);
4259 symbol_name_matcher_ftype *name_matcher
4260 = get_symbol_name_matcher (lang, m_lookup_name);
4261
4262 /* Don't insert the same comparison routine more than once.
4263 Note that we do this linear walk instead of a seemingly
4264 cheaper sorted insert, or use a std::set or something like
4265 that, because relative order of function addresses is not
4266 stable. This is not a problem in practice because the number
4267 of supported languages is low, and the cost here is tiny
4268 compared to the number of searches we'll do afterwards using
4269 this object. */
4270 if (name_matcher != default_symbol_name_matcher
4271 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4272 == matchers.end ()))
4273 matchers.push_back (name_matcher);
4274 }
4275 }
4276
4277 bool
4278 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4279 {
4280 for (auto matches_name : m_symbol_name_matcher_funcs)
4281 if (matches_name (symbol_name, m_lookup_name, NULL))
4282 return true;
4283
4284 return false;
4285 }
4286
4287 /* Starting from a search name, return the string that finds the upper
4288 bound of all strings that start with SEARCH_NAME in a sorted name
4289 list. Returns the empty string to indicate that the upper bound is
4290 the end of the list. */
4291
4292 static std::string
4293 make_sort_after_prefix_name (const char *search_name)
4294 {
4295 /* When looking to complete "func", we find the upper bound of all
4296 symbols that start with "func" by looking for where we'd insert
4297 the closest string that would follow "func" in lexicographical
4298 order. Usually, that's "func"-with-last-character-incremented,
4299 i.e. "fund". Mind non-ASCII characters, though. Usually those
4300 will be UTF-8 multi-byte sequences, but we can't be certain.
4301 Especially mind the 0xff character, which is a valid character in
4302 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4303 rule out compilers allowing it in identifiers. Note that
4304 conveniently, strcmp/strcasecmp are specified to compare
4305 characters interpreted as unsigned char. So what we do is treat
4306 the whole string as a base 256 number composed of a sequence of
4307 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4308 to 0, and carries 1 to the following more-significant position.
4309 If the very first character in SEARCH_NAME ends up incremented
4310 and carries/overflows, then the upper bound is the end of the
4311 list. The string after the empty string is also the empty
4312 string.
4313
4314 Some examples of this operation:
4315
4316 SEARCH_NAME => "+1" RESULT
4317
4318 "abc" => "abd"
4319 "ab\xff" => "ac"
4320 "\xff" "a" "\xff" => "\xff" "b"
4321 "\xff" => ""
4322 "\xff\xff" => ""
4323 "" => ""
4324
4325 Then, with these symbols for example:
4326
4327 func
4328 func1
4329 fund
4330
4331 completing "func" looks for symbols between "func" and
4332 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4333 which finds "func" and "func1", but not "fund".
4334
4335 And with:
4336
4337 funcÿ (Latin1 'ÿ' [0xff])
4338 funcÿ1
4339 fund
4340
4341 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4342 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4343
4344 And with:
4345
4346 ÿÿ (Latin1 'ÿ' [0xff])
4347 ÿÿ1
4348
4349 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4350 the end of the list.
4351 */
4352 std::string after = search_name;
4353 while (!after.empty () && (unsigned char) after.back () == 0xff)
4354 after.pop_back ();
4355 if (!after.empty ())
4356 after.back () = (unsigned char) after.back () + 1;
4357 return after;
4358 }
4359
4360 /* See declaration. */
4361
4362 std::pair<std::vector<name_component>::const_iterator,
4363 std::vector<name_component>::const_iterator>
4364 mapped_index_base::find_name_components_bounds
4365 (const lookup_name_info &lookup_name_without_params) const
4366 {
4367 auto *name_cmp
4368 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4369
4370 const char *cplus
4371 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4372
4373 /* Comparison function object for lower_bound that matches against a
4374 given symbol name. */
4375 auto lookup_compare_lower = [&] (const name_component &elem,
4376 const char *name)
4377 {
4378 const char *elem_qualified = this->symbol_name_at (elem.idx);
4379 const char *elem_name = elem_qualified + elem.name_offset;
4380 return name_cmp (elem_name, name) < 0;
4381 };
4382
4383 /* Comparison function object for upper_bound that matches against a
4384 given symbol name. */
4385 auto lookup_compare_upper = [&] (const char *name,
4386 const name_component &elem)
4387 {
4388 const char *elem_qualified = this->symbol_name_at (elem.idx);
4389 const char *elem_name = elem_qualified + elem.name_offset;
4390 return name_cmp (name, elem_name) < 0;
4391 };
4392
4393 auto begin = this->name_components.begin ();
4394 auto end = this->name_components.end ();
4395
4396 /* Find the lower bound. */
4397 auto lower = [&] ()
4398 {
4399 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4400 return begin;
4401 else
4402 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4403 } ();
4404
4405 /* Find the upper bound. */
4406 auto upper = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode ())
4409 {
4410 /* In completion mode, we want UPPER to point past all
4411 symbols names that have the same prefix. I.e., with
4412 these symbols, and completing "func":
4413
4414 function << lower bound
4415 function1
4416 other_function << upper bound
4417
4418 We find the upper bound by looking for the insertion
4419 point of "func"-with-last-character-incremented,
4420 i.e. "fund". */
4421 std::string after = make_sort_after_prefix_name (cplus);
4422 if (after.empty ())
4423 return end;
4424 return std::lower_bound (lower, end, after.c_str (),
4425 lookup_compare_lower);
4426 }
4427 else
4428 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4429 } ();
4430
4431 return {lower, upper};
4432 }
4433
4434 /* See declaration. */
4435
4436 void
4437 mapped_index_base::build_name_components ()
4438 {
4439 if (!this->name_components.empty ())
4440 return;
4441
4442 this->name_components_casing = case_sensitivity;
4443 auto *name_cmp
4444 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4445
4446 /* The code below only knows how to break apart components of C++
4447 symbol names (and other languages that use '::' as
4448 namespace/module separator). If we add support for wild matching
4449 to some language that uses some other operator (E.g., Ada, Go and
4450 D use '.'), then we'll need to try splitting the symbol name
4451 according to that language too. Note that Ada does support wild
4452 matching, but doesn't currently support .gdb_index. */
4453 auto count = this->symbol_name_count ();
4454 for (offset_type idx = 0; idx < count; idx++)
4455 {
4456 if (this->symbol_name_slot_invalid (idx))
4457 continue;
4458
4459 const char *name = this->symbol_name_at (idx);
4460
4461 /* Add each name component to the name component table. */
4462 unsigned int previous_len = 0;
4463 for (unsigned int current_len = cp_find_first_component (name);
4464 name[current_len] != '\0';
4465 current_len += cp_find_first_component (name + current_len))
4466 {
4467 gdb_assert (name[current_len] == ':');
4468 this->name_components.push_back ({previous_len, idx});
4469 /* Skip the '::'. */
4470 current_len += 2;
4471 previous_len = current_len;
4472 }
4473 this->name_components.push_back ({previous_len, idx});
4474 }
4475
4476 /* Sort name_components elements by name. */
4477 auto name_comp_compare = [&] (const name_component &left,
4478 const name_component &right)
4479 {
4480 const char *left_qualified = this->symbol_name_at (left.idx);
4481 const char *right_qualified = this->symbol_name_at (right.idx);
4482
4483 const char *left_name = left_qualified + left.name_offset;
4484 const char *right_name = right_qualified + right.name_offset;
4485
4486 return name_cmp (left_name, right_name) < 0;
4487 };
4488
4489 std::sort (this->name_components.begin (),
4490 this->name_components.end (),
4491 name_comp_compare);
4492 }
4493
4494 /* Helper for dw2_expand_symtabs_matching that works with a
4495 mapped_index_base instead of the containing objfile. This is split
4496 to a separate function in order to be able to unit test the
4497 name_components matching using a mock mapped_index_base. For each
4498 symbol name that matches, calls MATCH_CALLBACK, passing it the
4499 symbol's index in the mapped_index_base symbol table. */
4500
4501 static void
4502 dw2_expand_symtabs_matching_symbol
4503 (mapped_index_base &index,
4504 const lookup_name_info &lookup_name_in,
4505 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4506 enum search_domain kind,
4507 gdb::function_view<void (offset_type)> match_callback)
4508 {
4509 lookup_name_info lookup_name_without_params
4510 = lookup_name_in.make_ignore_params ();
4511 gdb_index_symbol_name_matcher lookup_name_matcher
4512 (lookup_name_without_params);
4513
4514 /* Build the symbol name component sorted vector, if we haven't
4515 yet. */
4516 index.build_name_components ();
4517
4518 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4519
4520 /* Now for each symbol name in range, check to see if we have a name
4521 match, and if so, call the MATCH_CALLBACK callback. */
4522
4523 /* The same symbol may appear more than once in the range though.
4524 E.g., if we're looking for symbols that complete "w", and we have
4525 a symbol named "w1::w2", we'll find the two name components for
4526 that same symbol in the range. To be sure we only call the
4527 callback once per symbol, we first collect the symbol name
4528 indexes that matched in a temporary vector and ignore
4529 duplicates. */
4530 std::vector<offset_type> matches;
4531 matches.reserve (std::distance (bounds.first, bounds.second));
4532
4533 for (; bounds.first != bounds.second; ++bounds.first)
4534 {
4535 const char *qualified = index.symbol_name_at (bounds.first->idx);
4536
4537 if (!lookup_name_matcher.matches (qualified)
4538 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4539 continue;
4540
4541 matches.push_back (bounds.first->idx);
4542 }
4543
4544 std::sort (matches.begin (), matches.end ());
4545
4546 /* Finally call the callback, once per match. */
4547 ULONGEST prev = -1;
4548 for (offset_type idx : matches)
4549 {
4550 if (prev != idx)
4551 {
4552 match_callback (idx);
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560 }
4561
4562 #if GDB_SELF_TEST
4563
4564 namespace selftests { namespace dw2_expand_symtabs_matching {
4565
4566 /* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570 class mock_mapped_index : public mapped_index_base
4571 {
4572 public:
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
4575 {}
4576
4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4578
4579 /* Return the number of names in the symbol table. */
4580 size_t symbol_name_count () const override
4581 {
4582 return m_symbol_table.size ();
4583 }
4584
4585 /* Get the name of the symbol at IDX in the symbol table. */
4586 const char *symbol_name_at (offset_type idx) const override
4587 {
4588 return m_symbol_table[idx];
4589 }
4590
4591 private:
4592 gdb::array_view<const char *> m_symbol_table;
4593 };
4594
4595 /* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598 static const char *
4599 string_or_null (const char *str)
4600 {
4601 return str != NULL ? str : "<null>";
4602 }
4603
4604 /* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611 static bool
4612 check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617 {
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
4641 const char *matched_name = mock_index.symbol_name_at (idx);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
4647 });
4648
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651 if (expected_str != NULL)
4652 mismatch (expected_str, NULL);
4653
4654 return matched;
4655 }
4656
4657 /* The symbols added to the mock mapped_index for testing (in
4658 canonical form). */
4659 static const char *test_symbols[] = {
4660 "function",
4661 "std::bar",
4662 "std::zfunction",
4663 "std::zfunction2",
4664 "w1::w2",
4665 "ns::foo<char*>",
4666 "ns::foo<int>",
4667 "ns::foo<long>",
4668 "ns2::tmpl<int>::foo2",
4669 "(anonymous namespace)::A::B::C",
4670
4671 /* These are used to check that the increment-last-char in the
4672 matching algorithm for completion doesn't match "t1_fund" when
4673 completing "t1_func". */
4674 "t1_func",
4675 "t1_func1",
4676 "t1_fund",
4677 "t1_fund1",
4678
4679 /* A UTF-8 name with multi-byte sequences to make sure that
4680 cp-name-parser understands this as a single identifier ("função"
4681 is "function" in PT). */
4682 u8"u8função",
4683
4684 /* \377 (0xff) is Latin1 'ÿ'. */
4685 "yfunc\377",
4686
4687 /* \377 (0xff) is Latin1 'ÿ'. */
4688 "\377",
4689 "\377\377123",
4690
4691 /* A name with all sorts of complications. Starts with "z" to make
4692 it easier for the completion tests below. */
4693 #define Z_SYM_NAME \
4694 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4695 "::tuple<(anonymous namespace)::ui*, " \
4696 "std::default_delete<(anonymous namespace)::ui>, void>"
4697
4698 Z_SYM_NAME
4699 };
4700
4701 /* Returns true if the mapped_index_base::find_name_component_bounds
4702 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4703 in completion mode. */
4704
4705 static bool
4706 check_find_bounds_finds (mapped_index_base &index,
4707 const char *search_name,
4708 gdb::array_view<const char *> expected_syms)
4709 {
4710 lookup_name_info lookup_name (search_name,
4711 symbol_name_match_type::FULL, true);
4712
4713 auto bounds = index.find_name_components_bounds (lookup_name);
4714
4715 size_t distance = std::distance (bounds.first, bounds.second);
4716 if (distance != expected_syms.size ())
4717 return false;
4718
4719 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4720 {
4721 auto nc_elem = bounds.first + exp_elem;
4722 const char *qualified = index.symbol_name_at (nc_elem->idx);
4723 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4724 return false;
4725 }
4726
4727 return true;
4728 }
4729
4730 /* Test the lower-level mapped_index::find_name_component_bounds
4731 method. */
4732
4733 static void
4734 test_mapped_index_find_name_component_bounds ()
4735 {
4736 mock_mapped_index mock_index (test_symbols);
4737
4738 mock_index.build_name_components ();
4739
4740 /* Test the lower-level mapped_index::find_name_component_bounds
4741 method in completion mode. */
4742 {
4743 static const char *expected_syms[] = {
4744 "t1_func",
4745 "t1_func1",
4746 };
4747
4748 SELF_CHECK (check_find_bounds_finds (mock_index,
4749 "t1_func", expected_syms));
4750 }
4751
4752 /* Check that the increment-last-char in the name matching algorithm
4753 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4754 {
4755 static const char *expected_syms1[] = {
4756 "\377",
4757 "\377\377123",
4758 };
4759 SELF_CHECK (check_find_bounds_finds (mock_index,
4760 "\377", expected_syms1));
4761
4762 static const char *expected_syms2[] = {
4763 "\377\377123",
4764 };
4765 SELF_CHECK (check_find_bounds_finds (mock_index,
4766 "\377\377", expected_syms2));
4767 }
4768 }
4769
4770 /* Test dw2_expand_symtabs_matching_symbol. */
4771
4772 static void
4773 test_dw2_expand_symtabs_matching_symbol ()
4774 {
4775 mock_mapped_index mock_index (test_symbols);
4776
4777 /* We let all tests run until the end even if some fails, for debug
4778 convenience. */
4779 bool any_mismatch = false;
4780
4781 /* Create the expected symbols list (an initializer_list). Needed
4782 because lists have commas, and we need to pass them to CHECK,
4783 which is a macro. */
4784 #define EXPECT(...) { __VA_ARGS__ }
4785
4786 /* Wrapper for check_match that passes down the current
4787 __FILE__/__LINE__. */
4788 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4789 any_mismatch |= !check_match (__FILE__, __LINE__, \
4790 mock_index, \
4791 NAME, MATCH_TYPE, COMPLETION_MODE, \
4792 EXPECTED_LIST)
4793
4794 /* Identity checks. */
4795 for (const char *sym : test_symbols)
4796 {
4797 /* Should be able to match all existing symbols. */
4798 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4799 EXPECT (sym));
4800
4801 /* Should be able to match all existing symbols with
4802 parameters. */
4803 std::string with_params = std::string (sym) + "(int)";
4804 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4805 EXPECT (sym));
4806
4807 /* Should be able to match all existing symbols with
4808 parameters and qualifiers. */
4809 with_params = std::string (sym) + " ( int ) const";
4810 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4811 EXPECT (sym));
4812
4813 /* This should really find sym, but cp-name-parser.y doesn't
4814 know about lvalue/rvalue qualifiers yet. */
4815 with_params = std::string (sym) + " ( int ) &&";
4816 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4817 {});
4818 }
4819
4820 /* Check that the name matching algorithm for completion doesn't get
4821 confused with Latin1 'ÿ' / 0xff. */
4822 {
4823 static const char str[] = "\377";
4824 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4825 EXPECT ("\377", "\377\377123"));
4826 }
4827
4828 /* Check that the increment-last-char in the matching algorithm for
4829 completion doesn't match "t1_fund" when completing "t1_func". */
4830 {
4831 static const char str[] = "t1_func";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("t1_func", "t1_func1"));
4834 }
4835
4836 /* Check that completion mode works at each prefix of the expected
4837 symbol name. */
4838 {
4839 static const char str[] = "function(int)";
4840 size_t len = strlen (str);
4841 std::string lookup;
4842
4843 for (size_t i = 1; i < len; i++)
4844 {
4845 lookup.assign (str, i);
4846 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4847 EXPECT ("function"));
4848 }
4849 }
4850
4851 /* While "w" is a prefix of both components, the match function
4852 should still only be called once. */
4853 {
4854 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4855 EXPECT ("w1::w2"));
4856 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4857 EXPECT ("w1::w2"));
4858 }
4859
4860 /* Same, with a "complicated" symbol. */
4861 {
4862 static const char str[] = Z_SYM_NAME;
4863 size_t len = strlen (str);
4864 std::string lookup;
4865
4866 for (size_t i = 1; i < len; i++)
4867 {
4868 lookup.assign (str, i);
4869 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4870 EXPECT (Z_SYM_NAME));
4871 }
4872 }
4873
4874 /* In FULL mode, an incomplete symbol doesn't match. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4877 {});
4878 }
4879
4880 /* A complete symbol with parameters matches any overload, since the
4881 index has no overload info. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 }
4890
4891 /* Check that whitespace is ignored appropriately. A symbol with a
4892 template argument list. */
4893 {
4894 static const char expected[] = "ns::foo<int>";
4895 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4896 EXPECT (expected));
4897 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4898 EXPECT (expected));
4899 }
4900
4901 /* Check that whitespace is ignored appropriately. A symbol with a
4902 template argument list that includes a pointer. */
4903 {
4904 static const char expected[] = "ns::foo<char*>";
4905 /* Try both completion and non-completion modes. */
4906 static const bool completion_mode[2] = {false, true};
4907 for (size_t i = 0; i < 2; i++)
4908 {
4909 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4910 completion_mode[i], EXPECT (expected));
4911 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4912 completion_mode[i], EXPECT (expected));
4913
4914 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4915 completion_mode[i], EXPECT (expected));
4916 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4917 completion_mode[i], EXPECT (expected));
4918 }
4919 }
4920
4921 {
4922 /* Check method qualifiers are ignored. */
4923 static const char expected[] = "ns::foo<char*>";
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) const",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 CHECK_MATCH ("foo < char * > ( int ) &&",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 }
4933
4934 /* Test lookup names that don't match anything. */
4935 {
4936 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4937 {});
4938
4939 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4940 {});
4941 }
4942
4943 /* Some wild matching tests, exercising "(anonymous namespace)",
4944 which should not be confused with a parameter list. */
4945 {
4946 static const char *syms[] = {
4947 "A::B::C",
4948 "B::C",
4949 "C",
4950 "A :: B :: C ( int )",
4951 "B :: C ( int )",
4952 "C ( int )",
4953 };
4954
4955 for (const char *s : syms)
4956 {
4957 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4958 EXPECT ("(anonymous namespace)::A::B::C"));
4959 }
4960 }
4961
4962 {
4963 static const char expected[] = "ns2::tmpl<int>::foo2";
4964 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 }
4969
4970 SELF_CHECK (!any_mismatch);
4971
4972 #undef EXPECT
4973 #undef CHECK_MATCH
4974 }
4975
4976 static void
4977 run_test ()
4978 {
4979 test_mapped_index_find_name_component_bounds ();
4980 test_dw2_expand_symtabs_matching_symbol ();
4981 }
4982
4983 }} // namespace selftests::dw2_expand_symtabs_matching
4984
4985 #endif /* GDB_SELF_TEST */
4986
4987 /* If FILE_MATCHER is NULL or if PER_CU has
4988 dwarf2_per_cu_quick_data::MARK set (see
4989 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4990 EXPANSION_NOTIFY on it. */
4991
4992 static void
4993 dw2_expand_symtabs_matching_one
4994 (struct dwarf2_per_cu_data *per_cu,
4995 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4996 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4997 {
4998 if (file_matcher == NULL || per_cu->v.quick->mark)
4999 {
5000 bool symtab_was_null
5001 = (per_cu->v.quick->compunit_symtab == NULL);
5002
5003 dw2_instantiate_symtab (per_cu);
5004
5005 if (expansion_notify != NULL
5006 && symtab_was_null
5007 && per_cu->v.quick->compunit_symtab != NULL)
5008 expansion_notify (per_cu->v.quick->compunit_symtab);
5009 }
5010 }
5011
5012 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5013 matched, to expand corresponding CUs that were marked. IDX is the
5014 index of the symbol name that matched. */
5015
5016 static void
5017 dw2_expand_marked_cus
5018 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5019 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5020 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5021 search_domain kind)
5022 {
5023 offset_type *vec, vec_len, vec_idx;
5024 bool global_seen = false;
5025 mapped_index &index = *dwarf2_per_objfile->index_table;
5026
5027 vec = (offset_type *) (index.constant_pool
5028 + MAYBE_SWAP (index.symbol_table[idx].vec));
5029 vec_len = MAYBE_SWAP (vec[0]);
5030 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5031 {
5032 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5033 /* This value is only valid for index versions >= 7. */
5034 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5035 gdb_index_symbol_kind symbol_kind =
5036 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5037 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5038 /* Only check the symbol attributes if they're present.
5039 Indices prior to version 7 don't record them,
5040 and indices >= 7 may elide them for certain symbols
5041 (gold does this). */
5042 int attrs_valid =
5043 (index.version >= 7
5044 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5045
5046 /* Work around gold/15646. */
5047 if (attrs_valid)
5048 {
5049 if (!is_static && global_seen)
5050 continue;
5051 if (!is_static)
5052 global_seen = true;
5053 }
5054
5055 /* Only check the symbol's kind if it has one. */
5056 if (attrs_valid)
5057 {
5058 switch (kind)
5059 {
5060 case VARIABLES_DOMAIN:
5061 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5062 continue;
5063 break;
5064 case FUNCTIONS_DOMAIN:
5065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5066 continue;
5067 break;
5068 case TYPES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 continue;
5071 break;
5072 default:
5073 break;
5074 }
5075 }
5076
5077 /* Don't crash on bad data. */
5078 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5079 + dwarf2_per_objfile->all_type_units.size ()))
5080 {
5081 complaint (&symfile_complaints,
5082 _(".gdb_index entry has bad CU index"
5083 " [in module %s]"),
5084 objfile_name (dwarf2_per_objfile->objfile));
5085 continue;
5086 }
5087
5088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5089 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5090 expansion_notify);
5091 }
5092 }
5093
5094 /* If FILE_MATCHER is non-NULL, set all the
5095 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5096 that match FILE_MATCHER. */
5097
5098 static void
5099 dw_expand_symtabs_matching_file_matcher
5100 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5101 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5102 {
5103 if (file_matcher == NULL)
5104 return;
5105
5106 objfile *const objfile = dwarf2_per_objfile->objfile;
5107
5108 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5109 htab_eq_pointer,
5110 NULL, xcalloc, xfree));
5111 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5112 htab_eq_pointer,
5113 NULL, xcalloc, xfree));
5114
5115 /* The rule is CUs specify all the files, including those used by
5116 any TU, so there's no need to scan TUs here. */
5117
5118 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5119 {
5120 QUIT;
5121
5122 per_cu->v.quick->mark = 0;
5123
5124 /* We only need to look at symtabs not already expanded. */
5125 if (per_cu->v.quick->compunit_symtab)
5126 continue;
5127
5128 quick_file_names *file_data = dw2_get_file_names (per_cu);
5129 if (file_data == NULL)
5130 continue;
5131
5132 if (htab_find (visited_not_found.get (), file_data) != NULL)
5133 continue;
5134 else if (htab_find (visited_found.get (), file_data) != NULL)
5135 {
5136 per_cu->v.quick->mark = 1;
5137 continue;
5138 }
5139
5140 for (int j = 0; j < file_data->num_file_names; ++j)
5141 {
5142 const char *this_real_name;
5143
5144 if (file_matcher (file_data->file_names[j], false))
5145 {
5146 per_cu->v.quick->mark = 1;
5147 break;
5148 }
5149
5150 /* Before we invoke realpath, which can get expensive when many
5151 files are involved, do a quick comparison of the basenames. */
5152 if (!basenames_may_differ
5153 && !file_matcher (lbasename (file_data->file_names[j]),
5154 true))
5155 continue;
5156
5157 this_real_name = dw2_get_real_path (objfile, file_data, j);
5158 if (file_matcher (this_real_name, false))
5159 {
5160 per_cu->v.quick->mark = 1;
5161 break;
5162 }
5163 }
5164
5165 void **slot = htab_find_slot (per_cu->v.quick->mark
5166 ? visited_found.get ()
5167 : visited_not_found.get (),
5168 file_data, INSERT);
5169 *slot = file_data;
5170 }
5171 }
5172
5173 static void
5174 dw2_expand_symtabs_matching
5175 (struct objfile *objfile,
5176 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5177 const lookup_name_info &lookup_name,
5178 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5179 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5180 enum search_domain kind)
5181 {
5182 struct dwarf2_per_objfile *dwarf2_per_objfile
5183 = get_dwarf2_per_objfile (objfile);
5184
5185 /* index_table is NULL if OBJF_READNOW. */
5186 if (!dwarf2_per_objfile->index_table)
5187 return;
5188
5189 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5190
5191 mapped_index &index = *dwarf2_per_objfile->index_table;
5192
5193 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5194 symbol_matcher,
5195 kind, [&] (offset_type idx)
5196 {
5197 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5198 expansion_notify, kind);
5199 });
5200 }
5201
5202 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5203 symtab. */
5204
5205 static struct compunit_symtab *
5206 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5207 CORE_ADDR pc)
5208 {
5209 int i;
5210
5211 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5212 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5213 return cust;
5214
5215 if (cust->includes == NULL)
5216 return NULL;
5217
5218 for (i = 0; cust->includes[i]; ++i)
5219 {
5220 struct compunit_symtab *s = cust->includes[i];
5221
5222 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5223 if (s != NULL)
5224 return s;
5225 }
5226
5227 return NULL;
5228 }
5229
5230 static struct compunit_symtab *
5231 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5232 struct bound_minimal_symbol msymbol,
5233 CORE_ADDR pc,
5234 struct obj_section *section,
5235 int warn_if_readin)
5236 {
5237 struct dwarf2_per_cu_data *data;
5238 struct compunit_symtab *result;
5239
5240 if (!objfile->psymtabs_addrmap)
5241 return NULL;
5242
5243 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5244 pc);
5245 if (!data)
5246 return NULL;
5247
5248 if (warn_if_readin && data->v.quick->compunit_symtab)
5249 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5250 paddress (get_objfile_arch (objfile), pc));
5251
5252 result
5253 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5254 pc);
5255 gdb_assert (result != NULL);
5256 return result;
5257 }
5258
5259 static void
5260 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5261 void *data, int need_fullname)
5262 {
5263 struct dwarf2_per_objfile *dwarf2_per_objfile
5264 = get_dwarf2_per_objfile (objfile);
5265
5266 if (!dwarf2_per_objfile->filenames_cache)
5267 {
5268 dwarf2_per_objfile->filenames_cache.emplace ();
5269
5270 htab_up visited (htab_create_alloc (10,
5271 htab_hash_pointer, htab_eq_pointer,
5272 NULL, xcalloc, xfree));
5273
5274 /* The rule is CUs specify all the files, including those used
5275 by any TU, so there's no need to scan TUs here. We can
5276 ignore file names coming from already-expanded CUs. */
5277
5278 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5279 {
5280 if (per_cu->v.quick->compunit_symtab)
5281 {
5282 void **slot = htab_find_slot (visited.get (),
5283 per_cu->v.quick->file_names,
5284 INSERT);
5285
5286 *slot = per_cu->v.quick->file_names;
5287 }
5288 }
5289
5290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5291 {
5292 /* We only need to look at symtabs not already expanded. */
5293 if (per_cu->v.quick->compunit_symtab)
5294 continue;
5295
5296 quick_file_names *file_data = dw2_get_file_names (per_cu);
5297 if (file_data == NULL)
5298 continue;
5299
5300 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5301 if (*slot)
5302 {
5303 /* Already visited. */
5304 continue;
5305 }
5306 *slot = file_data;
5307
5308 for (int j = 0; j < file_data->num_file_names; ++j)
5309 {
5310 const char *filename = file_data->file_names[j];
5311 dwarf2_per_objfile->filenames_cache->seen (filename);
5312 }
5313 }
5314 }
5315
5316 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5317 {
5318 gdb::unique_xmalloc_ptr<char> this_real_name;
5319
5320 if (need_fullname)
5321 this_real_name = gdb_realpath (filename);
5322 (*fun) (filename, this_real_name.get (), data);
5323 });
5324 }
5325
5326 static int
5327 dw2_has_symbols (struct objfile *objfile)
5328 {
5329 return 1;
5330 }
5331
5332 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5333 {
5334 dw2_has_symbols,
5335 dw2_find_last_source_symtab,
5336 dw2_forget_cached_source_info,
5337 dw2_map_symtabs_matching_filename,
5338 dw2_lookup_symbol,
5339 dw2_print_stats,
5340 dw2_dump,
5341 dw2_relocate,
5342 dw2_expand_symtabs_for_function,
5343 dw2_expand_all_symtabs,
5344 dw2_expand_symtabs_with_fullname,
5345 dw2_map_matching_symbols,
5346 dw2_expand_symtabs_matching,
5347 dw2_find_pc_sect_compunit_symtab,
5348 NULL,
5349 dw2_map_symbol_filenames
5350 };
5351
5352 /* DWARF-5 debug_names reader. */
5353
5354 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5355 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5356
5357 /* A helper function that reads the .debug_names section in SECTION
5358 and fills in MAP. FILENAME is the name of the file containing the
5359 section; it is used for error reporting.
5360
5361 Returns true if all went well, false otherwise. */
5362
5363 static bool
5364 read_debug_names_from_section (struct objfile *objfile,
5365 const char *filename,
5366 struct dwarf2_section_info *section,
5367 mapped_debug_names &map)
5368 {
5369 if (dwarf2_section_empty_p (section))
5370 return false;
5371
5372 /* Older elfutils strip versions could keep the section in the main
5373 executable while splitting it for the separate debug info file. */
5374 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5375 return false;
5376
5377 dwarf2_read_section (objfile, section);
5378
5379 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5380
5381 const gdb_byte *addr = section->buffer;
5382
5383 bfd *const abfd = get_section_bfd_owner (section);
5384
5385 unsigned int bytes_read;
5386 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5387 addr += bytes_read;
5388
5389 map.dwarf5_is_dwarf64 = bytes_read != 4;
5390 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5391 if (bytes_read + length != section->size)
5392 {
5393 /* There may be multiple per-CU indices. */
5394 warning (_("Section .debug_names in %s length %s does not match "
5395 "section length %s, ignoring .debug_names."),
5396 filename, plongest (bytes_read + length),
5397 pulongest (section->size));
5398 return false;
5399 }
5400
5401 /* The version number. */
5402 uint16_t version = read_2_bytes (abfd, addr);
5403 addr += 2;
5404 if (version != 5)
5405 {
5406 warning (_("Section .debug_names in %s has unsupported version %d, "
5407 "ignoring .debug_names."),
5408 filename, version);
5409 return false;
5410 }
5411
5412 /* Padding. */
5413 uint16_t padding = read_2_bytes (abfd, addr);
5414 addr += 2;
5415 if (padding != 0)
5416 {
5417 warning (_("Section .debug_names in %s has unsupported padding %d, "
5418 "ignoring .debug_names."),
5419 filename, padding);
5420 return false;
5421 }
5422
5423 /* comp_unit_count - The number of CUs in the CU list. */
5424 map.cu_count = read_4_bytes (abfd, addr);
5425 addr += 4;
5426
5427 /* local_type_unit_count - The number of TUs in the local TU
5428 list. */
5429 map.tu_count = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* foreign_type_unit_count - The number of TUs in the foreign TU
5433 list. */
5434 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436 if (foreign_tu_count != 0)
5437 {
5438 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5439 "ignoring .debug_names."),
5440 filename, static_cast<unsigned long> (foreign_tu_count));
5441 return false;
5442 }
5443
5444 /* bucket_count - The number of hash buckets in the hash lookup
5445 table. */
5446 map.bucket_count = read_4_bytes (abfd, addr);
5447 addr += 4;
5448
5449 /* name_count - The number of unique names in the index. */
5450 map.name_count = read_4_bytes (abfd, addr);
5451 addr += 4;
5452
5453 /* abbrev_table_size - The size in bytes of the abbreviations
5454 table. */
5455 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* augmentation_string_size - The size in bytes of the augmentation
5459 string. This value is rounded up to a multiple of 4. */
5460 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5461 addr += 4;
5462 map.augmentation_is_gdb = ((augmentation_string_size
5463 == sizeof (dwarf5_augmentation))
5464 && memcmp (addr, dwarf5_augmentation,
5465 sizeof (dwarf5_augmentation)) == 0);
5466 augmentation_string_size += (-augmentation_string_size) & 3;
5467 addr += augmentation_string_size;
5468
5469 /* List of CUs */
5470 map.cu_table_reordered = addr;
5471 addr += map.cu_count * map.offset_size;
5472
5473 /* List of Local TUs */
5474 map.tu_table_reordered = addr;
5475 addr += map.tu_count * map.offset_size;
5476
5477 /* Hash Lookup Table */
5478 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.bucket_count * 4;
5480 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5481 addr += map.name_count * 4;
5482
5483 /* Name Table */
5484 map.name_table_string_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486 map.name_table_entry_offs_reordered = addr;
5487 addr += map.name_count * map.offset_size;
5488
5489 const gdb_byte *abbrev_table_start = addr;
5490 for (;;)
5491 {
5492 unsigned int bytes_read;
5493 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5494 addr += bytes_read;
5495 if (index_num == 0)
5496 break;
5497
5498 const auto insertpair
5499 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5500 if (!insertpair.second)
5501 {
5502 warning (_("Section .debug_names in %s has duplicate index %s, "
5503 "ignoring .debug_names."),
5504 filename, pulongest (index_num));
5505 return false;
5506 }
5507 mapped_debug_names::index_val &indexval = insertpair.first->second;
5508 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 addr += bytes_read;
5510
5511 for (;;)
5512 {
5513 mapped_debug_names::index_val::attr attr;
5514 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518 if (attr.form == DW_FORM_implicit_const)
5519 {
5520 attr.implicit_const = read_signed_leb128 (abfd, addr,
5521 &bytes_read);
5522 addr += bytes_read;
5523 }
5524 if (attr.dw_idx == 0 && attr.form == 0)
5525 break;
5526 indexval.attr_vec.push_back (std::move (attr));
5527 }
5528 }
5529 if (addr != abbrev_table_start + abbrev_table_size)
5530 {
5531 warning (_("Section .debug_names in %s has abbreviation_table "
5532 "of size %zu vs. written as %u, ignoring .debug_names."),
5533 filename, addr - abbrev_table_start, abbrev_table_size);
5534 return false;
5535 }
5536 map.entry_pool = addr;
5537
5538 return true;
5539 }
5540
5541 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5542 list. */
5543
5544 static void
5545 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5546 const mapped_debug_names &map,
5547 dwarf2_section_info &section,
5548 bool is_dwz)
5549 {
5550 sect_offset sect_off_prev;
5551 for (uint32_t i = 0; i <= map.cu_count; ++i)
5552 {
5553 sect_offset sect_off_next;
5554 if (i < map.cu_count)
5555 {
5556 sect_off_next
5557 = (sect_offset) (extract_unsigned_integer
5558 (map.cu_table_reordered + i * map.offset_size,
5559 map.offset_size,
5560 map.dwarf5_byte_order));
5561 }
5562 else
5563 sect_off_next = (sect_offset) section.size;
5564 if (i >= 1)
5565 {
5566 const ULONGEST length = sect_off_next - sect_off_prev;
5567 dwarf2_per_cu_data *per_cu
5568 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5569 sect_off_prev, length);
5570 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5571 }
5572 sect_off_prev = sect_off_next;
5573 }
5574 }
5575
5576 /* Read the CU list from the mapped index, and use it to create all
5577 the CU objects for this dwarf2_per_objfile. */
5578
5579 static void
5580 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5581 const mapped_debug_names &map,
5582 const mapped_debug_names &dwz_map)
5583 {
5584 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5585 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5586
5587 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5588 dwarf2_per_objfile->info,
5589 false /* is_dwz */);
5590
5591 if (dwz_map.cu_count == 0)
5592 return;
5593
5594 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5596 true /* is_dwz */);
5597 }
5598
5599 /* Read .debug_names. If everything went ok, initialize the "quick"
5600 elements of all the CUs and return true. Otherwise, return false. */
5601
5602 static bool
5603 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5604 {
5605 mapped_debug_names local_map (dwarf2_per_objfile);
5606 mapped_debug_names dwz_map (dwarf2_per_objfile);
5607 struct objfile *objfile = dwarf2_per_objfile->objfile;
5608
5609 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5610 &dwarf2_per_objfile->debug_names,
5611 local_map))
5612 return false;
5613
5614 /* Don't use the index if it's empty. */
5615 if (local_map.name_count == 0)
5616 return false;
5617
5618 /* If there is a .dwz file, read it so we can get its CU list as
5619 well. */
5620 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5621 if (dwz != NULL)
5622 {
5623 if (!read_debug_names_from_section (objfile,
5624 bfd_get_filename (dwz->dwz_bfd),
5625 &dwz->debug_names, dwz_map))
5626 {
5627 warning (_("could not read '.debug_names' section from %s; skipping"),
5628 bfd_get_filename (dwz->dwz_bfd));
5629 return false;
5630 }
5631 }
5632
5633 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5634
5635 if (local_map.tu_count != 0)
5636 {
5637 /* We can only handle a single .debug_types when we have an
5638 index. */
5639 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5640 return false;
5641
5642 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5643 dwarf2_per_objfile->types, 0);
5644
5645 create_signatured_type_table_from_debug_names
5646 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5647 }
5648
5649 create_addrmap_from_aranges (dwarf2_per_objfile,
5650 &dwarf2_per_objfile->debug_aranges);
5651
5652 dwarf2_per_objfile->debug_names_table.reset
5653 (new mapped_debug_names (dwarf2_per_objfile));
5654 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5655 dwarf2_per_objfile->using_index = 1;
5656 dwarf2_per_objfile->quick_file_names_table =
5657 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5658
5659 return true;
5660 }
5661
5662 /* Type used to manage iterating over all CUs looking for a symbol for
5663 .debug_names. */
5664
5665 class dw2_debug_names_iterator
5666 {
5667 public:
5668 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5669 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5670 dw2_debug_names_iterator (const mapped_debug_names &map,
5671 bool want_specific_block,
5672 block_enum block_index, domain_enum domain,
5673 const char *name)
5674 : m_map (map), m_want_specific_block (want_specific_block),
5675 m_block_index (block_index), m_domain (domain),
5676 m_addr (find_vec_in_debug_names (map, name))
5677 {}
5678
5679 dw2_debug_names_iterator (const mapped_debug_names &map,
5680 search_domain search, uint32_t namei)
5681 : m_map (map),
5682 m_search (search),
5683 m_addr (find_vec_in_debug_names (map, namei))
5684 {}
5685
5686 /* Return the next matching CU or NULL if there are no more. */
5687 dwarf2_per_cu_data *next ();
5688
5689 private:
5690 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5691 const char *name);
5692 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5693 uint32_t namei);
5694
5695 /* The internalized form of .debug_names. */
5696 const mapped_debug_names &m_map;
5697
5698 /* If true, only look for symbols that match BLOCK_INDEX. */
5699 const bool m_want_specific_block = false;
5700
5701 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5702 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5703 value. */
5704 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5705
5706 /* The kind of symbol we're looking for. */
5707 const domain_enum m_domain = UNDEF_DOMAIN;
5708 const search_domain m_search = ALL_DOMAIN;
5709
5710 /* The list of CUs from the index entry of the symbol, or NULL if
5711 not found. */
5712 const gdb_byte *m_addr;
5713 };
5714
5715 const char *
5716 mapped_debug_names::namei_to_name (uint32_t namei) const
5717 {
5718 const ULONGEST namei_string_offs
5719 = extract_unsigned_integer ((name_table_string_offs_reordered
5720 + namei * offset_size),
5721 offset_size,
5722 dwarf5_byte_order);
5723 return read_indirect_string_at_offset
5724 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5725 }
5726
5727 /* Find a slot in .debug_names for the object named NAME. If NAME is
5728 found, return pointer to its pool data. If NAME cannot be found,
5729 return NULL. */
5730
5731 const gdb_byte *
5732 dw2_debug_names_iterator::find_vec_in_debug_names
5733 (const mapped_debug_names &map, const char *name)
5734 {
5735 int (*cmp) (const char *, const char *);
5736
5737 if (current_language->la_language == language_cplus
5738 || current_language->la_language == language_fortran
5739 || current_language->la_language == language_d)
5740 {
5741 /* NAME is already canonical. Drop any qualifiers as
5742 .debug_names does not contain any. */
5743
5744 if (strchr (name, '(') != NULL)
5745 {
5746 gdb::unique_xmalloc_ptr<char> without_params
5747 = cp_remove_params (name);
5748
5749 if (without_params != NULL)
5750 {
5751 name = without_params.get();
5752 }
5753 }
5754 }
5755
5756 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5757
5758 const uint32_t full_hash = dwarf5_djb_hash (name);
5759 uint32_t namei
5760 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5761 (map.bucket_table_reordered
5762 + (full_hash % map.bucket_count)), 4,
5763 map.dwarf5_byte_order);
5764 if (namei == 0)
5765 return NULL;
5766 --namei;
5767 if (namei >= map.name_count)
5768 {
5769 complaint (&symfile_complaints,
5770 _("Wrong .debug_names with name index %u but name_count=%u "
5771 "[in module %s]"),
5772 namei, map.name_count,
5773 objfile_name (map.dwarf2_per_objfile->objfile));
5774 return NULL;
5775 }
5776
5777 for (;;)
5778 {
5779 const uint32_t namei_full_hash
5780 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5781 (map.hash_table_reordered + namei), 4,
5782 map.dwarf5_byte_order);
5783 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5784 return NULL;
5785
5786 if (full_hash == namei_full_hash)
5787 {
5788 const char *const namei_string = map.namei_to_name (namei);
5789
5790 #if 0 /* An expensive sanity check. */
5791 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5792 {
5793 complaint (&symfile_complaints,
5794 _("Wrong .debug_names hash for string at index %u "
5795 "[in module %s]"),
5796 namei, objfile_name (dwarf2_per_objfile->objfile));
5797 return NULL;
5798 }
5799 #endif
5800
5801 if (cmp (namei_string, name) == 0)
5802 {
5803 const ULONGEST namei_entry_offs
5804 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5805 + namei * map.offset_size),
5806 map.offset_size, map.dwarf5_byte_order);
5807 return map.entry_pool + namei_entry_offs;
5808 }
5809 }
5810
5811 ++namei;
5812 if (namei >= map.name_count)
5813 return NULL;
5814 }
5815 }
5816
5817 const gdb_byte *
5818 dw2_debug_names_iterator::find_vec_in_debug_names
5819 (const mapped_debug_names &map, uint32_t namei)
5820 {
5821 if (namei >= map.name_count)
5822 {
5823 complaint (&symfile_complaints,
5824 _("Wrong .debug_names with name index %u but name_count=%u "
5825 "[in module %s]"),
5826 namei, map.name_count,
5827 objfile_name (map.dwarf2_per_objfile->objfile));
5828 return NULL;
5829 }
5830
5831 const ULONGEST namei_entry_offs
5832 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5833 + namei * map.offset_size),
5834 map.offset_size, map.dwarf5_byte_order);
5835 return map.entry_pool + namei_entry_offs;
5836 }
5837
5838 /* See dw2_debug_names_iterator. */
5839
5840 dwarf2_per_cu_data *
5841 dw2_debug_names_iterator::next ()
5842 {
5843 if (m_addr == NULL)
5844 return NULL;
5845
5846 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 bfd *const abfd = objfile->obfd;
5849
5850 again:
5851
5852 unsigned int bytes_read;
5853 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5854 m_addr += bytes_read;
5855 if (abbrev == 0)
5856 return NULL;
5857
5858 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5859 if (indexval_it == m_map.abbrev_map.cend ())
5860 {
5861 complaint (&symfile_complaints,
5862 _("Wrong .debug_names undefined abbrev code %s "
5863 "[in module %s]"),
5864 pulongest (abbrev), objfile_name (objfile));
5865 return NULL;
5866 }
5867 const mapped_debug_names::index_val &indexval = indexval_it->second;
5868 bool have_is_static = false;
5869 bool is_static;
5870 dwarf2_per_cu_data *per_cu = NULL;
5871 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5872 {
5873 ULONGEST ull;
5874 switch (attr.form)
5875 {
5876 case DW_FORM_implicit_const:
5877 ull = attr.implicit_const;
5878 break;
5879 case DW_FORM_flag_present:
5880 ull = 1;
5881 break;
5882 case DW_FORM_udata:
5883 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5884 m_addr += bytes_read;
5885 break;
5886 default:
5887 complaint (&symfile_complaints,
5888 _("Unsupported .debug_names form %s [in module %s]"),
5889 dwarf_form_name (attr.form),
5890 objfile_name (objfile));
5891 return NULL;
5892 }
5893 switch (attr.dw_idx)
5894 {
5895 case DW_IDX_compile_unit:
5896 /* Don't crash on bad data. */
5897 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5898 {
5899 complaint (&symfile_complaints,
5900 _(".debug_names entry has bad CU index %s"
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
5907 break;
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5911 {
5912 complaint (&symfile_complaints,
5913 _(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_relocate,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* See symfile.h. */
6174
6175 bool
6176 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6177 {
6178 struct dwarf2_per_objfile *dwarf2_per_objfile
6179 = get_dwarf2_per_objfile (objfile);
6180
6181 /* If we're about to read full symbols, don't bother with the
6182 indices. In this case we also don't care if some other debug
6183 format is making psymtabs, because they are all about to be
6184 expanded anyway. */
6185 if ((objfile->flags & OBJF_READNOW))
6186 {
6187 dwarf2_per_objfile->using_index = 1;
6188 create_all_comp_units (dwarf2_per_objfile);
6189 create_all_type_units (dwarf2_per_objfile);
6190 dwarf2_per_objfile->quick_file_names_table
6191 = create_quick_file_names_table
6192 (dwarf2_per_objfile->all_comp_units.size ());
6193
6194 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6195 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6196 {
6197 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6198
6199 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6200 struct dwarf2_per_cu_quick_data);
6201 }
6202
6203 /* Return 1 so that gdb sees the "quick" functions. However,
6204 these functions will be no-ops because we will have expanded
6205 all symtabs. */
6206 *index_kind = dw_index_kind::GDB_INDEX;
6207 return true;
6208 }
6209
6210 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6211 {
6212 *index_kind = dw_index_kind::DEBUG_NAMES;
6213 return true;
6214 }
6215
6216 if (dwarf2_read_index (dwarf2_per_objfile))
6217 {
6218 *index_kind = dw_index_kind::GDB_INDEX;
6219 return true;
6220 }
6221
6222 return false;
6223 }
6224
6225 \f
6226
6227 /* Build a partial symbol table. */
6228
6229 void
6230 dwarf2_build_psymtabs (struct objfile *objfile)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 if (objfile->global_psymbols.capacity () == 0
6236 && objfile->static_psymbols.capacity () == 0)
6237 init_psymbol_list (objfile, 1024);
6238
6239 TRY
6240 {
6241 /* This isn't really ideal: all the data we allocate on the
6242 objfile's obstack is still uselessly kept around. However,
6243 freeing it seems unsafe. */
6244 psymtab_discarder psymtabs (objfile);
6245 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6246 psymtabs.keep ();
6247 }
6248 CATCH (except, RETURN_MASK_ERROR)
6249 {
6250 exception_print (gdb_stderr, except);
6251 }
6252 END_CATCH
6253 }
6254
6255 /* Return the total length of the CU described by HEADER. */
6256
6257 static unsigned int
6258 get_cu_length (const struct comp_unit_head *header)
6259 {
6260 return header->initial_length_size + header->length;
6261 }
6262
6263 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6264
6265 static inline bool
6266 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6267 {
6268 sect_offset bottom = cu_header->sect_off;
6269 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6270
6271 return sect_off >= bottom && sect_off < top;
6272 }
6273
6274 /* Find the base address of the compilation unit for range lists and
6275 location lists. It will normally be specified by DW_AT_low_pc.
6276 In DWARF-3 draft 4, the base address could be overridden by
6277 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6278 compilation units with discontinuous ranges. */
6279
6280 static void
6281 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6282 {
6283 struct attribute *attr;
6284
6285 cu->base_known = 0;
6286 cu->base_address = 0;
6287
6288 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6289 if (attr)
6290 {
6291 cu->base_address = attr_value_as_address (attr);
6292 cu->base_known = 1;
6293 }
6294 else
6295 {
6296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6297 if (attr)
6298 {
6299 cu->base_address = attr_value_as_address (attr);
6300 cu->base_known = 1;
6301 }
6302 }
6303 }
6304
6305 /* Read in the comp unit header information from the debug_info at info_ptr.
6306 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6307 NOTE: This leaves members offset, first_die_offset to be filled in
6308 by the caller. */
6309
6310 static const gdb_byte *
6311 read_comp_unit_head (struct comp_unit_head *cu_header,
6312 const gdb_byte *info_ptr,
6313 struct dwarf2_section_info *section,
6314 rcuh_kind section_kind)
6315 {
6316 int signed_addr;
6317 unsigned int bytes_read;
6318 const char *filename = get_section_file_name (section);
6319 bfd *abfd = get_section_bfd_owner (section);
6320
6321 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6322 cu_header->initial_length_size = bytes_read;
6323 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6324 info_ptr += bytes_read;
6325 cu_header->version = read_2_bytes (abfd, info_ptr);
6326 info_ptr += 2;
6327 if (cu_header->version < 5)
6328 switch (section_kind)
6329 {
6330 case rcuh_kind::COMPILE:
6331 cu_header->unit_type = DW_UT_compile;
6332 break;
6333 case rcuh_kind::TYPE:
6334 cu_header->unit_type = DW_UT_type;
6335 break;
6336 default:
6337 internal_error (__FILE__, __LINE__,
6338 _("read_comp_unit_head: invalid section_kind"));
6339 }
6340 else
6341 {
6342 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6343 (read_1_byte (abfd, info_ptr));
6344 info_ptr += 1;
6345 switch (cu_header->unit_type)
6346 {
6347 case DW_UT_compile:
6348 if (section_kind != rcuh_kind::COMPILE)
6349 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6350 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6351 filename);
6352 break;
6353 case DW_UT_type:
6354 section_kind = rcuh_kind::TYPE;
6355 break;
6356 default:
6357 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6358 "(is %d, should be %d or %d) [in module %s]"),
6359 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6360 }
6361
6362 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6363 info_ptr += 1;
6364 }
6365 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6366 cu_header,
6367 &bytes_read);
6368 info_ptr += bytes_read;
6369 if (cu_header->version < 5)
6370 {
6371 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6372 info_ptr += 1;
6373 }
6374 signed_addr = bfd_get_sign_extend_vma (abfd);
6375 if (signed_addr < 0)
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: dwarf from non elf file"));
6378 cu_header->signed_addr_p = signed_addr;
6379
6380 if (section_kind == rcuh_kind::TYPE)
6381 {
6382 LONGEST type_offset;
6383
6384 cu_header->signature = read_8_bytes (abfd, info_ptr);
6385 info_ptr += 8;
6386
6387 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6388 info_ptr += bytes_read;
6389 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6390 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6391 error (_("Dwarf Error: Too big type_offset in compilation unit "
6392 "header (is %s) [in module %s]"), plongest (type_offset),
6393 filename);
6394 }
6395
6396 return info_ptr;
6397 }
6398
6399 /* Helper function that returns the proper abbrev section for
6400 THIS_CU. */
6401
6402 static struct dwarf2_section_info *
6403 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6404 {
6405 struct dwarf2_section_info *abbrev;
6406 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6407
6408 if (this_cu->is_dwz)
6409 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6410 else
6411 abbrev = &dwarf2_per_objfile->abbrev;
6412
6413 return abbrev;
6414 }
6415
6416 /* Subroutine of read_and_check_comp_unit_head and
6417 read_and_check_type_unit_head to simplify them.
6418 Perform various error checking on the header. */
6419
6420 static void
6421 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6422 struct comp_unit_head *header,
6423 struct dwarf2_section_info *section,
6424 struct dwarf2_section_info *abbrev_section)
6425 {
6426 const char *filename = get_section_file_name (section);
6427
6428 if (header->version < 2 || header->version > 5)
6429 error (_("Dwarf Error: wrong version in compilation unit header "
6430 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6431 filename);
6432
6433 if (to_underlying (header->abbrev_sect_off)
6434 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6435 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6436 "(offset %s + 6) [in module %s]"),
6437 sect_offset_str (header->abbrev_sect_off),
6438 sect_offset_str (header->sect_off),
6439 filename);
6440
6441 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6442 avoid potential 32-bit overflow. */
6443 if (((ULONGEST) header->sect_off + get_cu_length (header))
6444 > section->size)
6445 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6446 "(offset %s + 0) [in module %s]"),
6447 header->length, sect_offset_str (header->sect_off),
6448 filename);
6449 }
6450
6451 /* Read in a CU/TU header and perform some basic error checking.
6452 The contents of the header are stored in HEADER.
6453 The result is a pointer to the start of the first DIE. */
6454
6455 static const gdb_byte *
6456 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6457 struct comp_unit_head *header,
6458 struct dwarf2_section_info *section,
6459 struct dwarf2_section_info *abbrev_section,
6460 const gdb_byte *info_ptr,
6461 rcuh_kind section_kind)
6462 {
6463 const gdb_byte *beg_of_comp_unit = info_ptr;
6464
6465 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6466
6467 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6468
6469 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6470
6471 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6472 abbrev_section);
6473
6474 return info_ptr;
6475 }
6476
6477 /* Fetch the abbreviation table offset from a comp or type unit header. */
6478
6479 static sect_offset
6480 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6481 struct dwarf2_section_info *section,
6482 sect_offset sect_off)
6483 {
6484 bfd *abfd = get_section_bfd_owner (section);
6485 const gdb_byte *info_ptr;
6486 unsigned int initial_length_size, offset_size;
6487 uint16_t version;
6488
6489 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6490 info_ptr = section->buffer + to_underlying (sect_off);
6491 read_initial_length (abfd, info_ptr, &initial_length_size);
6492 offset_size = initial_length_size == 4 ? 4 : 8;
6493 info_ptr += initial_length_size;
6494
6495 version = read_2_bytes (abfd, info_ptr);
6496 info_ptr += 2;
6497 if (version >= 5)
6498 {
6499 /* Skip unit type and address size. */
6500 info_ptr += 2;
6501 }
6502
6503 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6504 }
6505
6506 /* Allocate a new partial symtab for file named NAME and mark this new
6507 partial symtab as being an include of PST. */
6508
6509 static void
6510 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6511 struct objfile *objfile)
6512 {
6513 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6514
6515 if (!IS_ABSOLUTE_PATH (subpst->filename))
6516 {
6517 /* It shares objfile->objfile_obstack. */
6518 subpst->dirname = pst->dirname;
6519 }
6520
6521 subpst->textlow = 0;
6522 subpst->texthigh = 0;
6523
6524 subpst->dependencies
6525 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6526 subpst->dependencies[0] = pst;
6527 subpst->number_of_dependencies = 1;
6528
6529 subpst->globals_offset = 0;
6530 subpst->n_global_syms = 0;
6531 subpst->statics_offset = 0;
6532 subpst->n_static_syms = 0;
6533 subpst->compunit_symtab = NULL;
6534 subpst->read_symtab = pst->read_symtab;
6535 subpst->readin = 0;
6536
6537 /* No private part is necessary for include psymtabs. This property
6538 can be used to differentiate between such include psymtabs and
6539 the regular ones. */
6540 subpst->read_symtab_private = NULL;
6541 }
6542
6543 /* Read the Line Number Program data and extract the list of files
6544 included by the source file represented by PST. Build an include
6545 partial symtab for each of these included files. */
6546
6547 static void
6548 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6549 struct die_info *die,
6550 struct partial_symtab *pst)
6551 {
6552 line_header_up lh;
6553 struct attribute *attr;
6554
6555 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6556 if (attr)
6557 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6558 if (lh == NULL)
6559 return; /* No linetable, so no includes. */
6560
6561 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6562 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6563 }
6564
6565 static hashval_t
6566 hash_signatured_type (const void *item)
6567 {
6568 const struct signatured_type *sig_type
6569 = (const struct signatured_type *) item;
6570
6571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6572 return sig_type->signature;
6573 }
6574
6575 static int
6576 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6577 {
6578 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6579 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6580
6581 return lhs->signature == rhs->signature;
6582 }
6583
6584 /* Allocate a hash table for signatured types. */
6585
6586 static htab_t
6587 allocate_signatured_type_table (struct objfile *objfile)
6588 {
6589 return htab_create_alloc_ex (41,
6590 hash_signatured_type,
6591 eq_signatured_type,
6592 NULL,
6593 &objfile->objfile_obstack,
6594 hashtab_obstack_allocate,
6595 dummy_obstack_deallocate);
6596 }
6597
6598 /* A helper function to add a signatured type CU to a table. */
6599
6600 static int
6601 add_signatured_type_cu_to_table (void **slot, void *datum)
6602 {
6603 struct signatured_type *sigt = (struct signatured_type *) *slot;
6604 std::vector<signatured_type *> *all_type_units
6605 = (std::vector<signatured_type *> *) datum;
6606
6607 all_type_units->push_back (sigt);
6608
6609 return 1;
6610 }
6611
6612 /* A helper for create_debug_types_hash_table. Read types from SECTION
6613 and fill them into TYPES_HTAB. It will process only type units,
6614 therefore DW_UT_type. */
6615
6616 static void
6617 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6618 struct dwo_file *dwo_file,
6619 dwarf2_section_info *section, htab_t &types_htab,
6620 rcuh_kind section_kind)
6621 {
6622 struct objfile *objfile = dwarf2_per_objfile->objfile;
6623 struct dwarf2_section_info *abbrev_section;
6624 bfd *abfd;
6625 const gdb_byte *info_ptr, *end_ptr;
6626
6627 abbrev_section = (dwo_file != NULL
6628 ? &dwo_file->sections.abbrev
6629 : &dwarf2_per_objfile->abbrev);
6630
6631 if (dwarf_read_debug)
6632 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6633 get_section_name (section),
6634 get_section_file_name (abbrev_section));
6635
6636 dwarf2_read_section (objfile, section);
6637 info_ptr = section->buffer;
6638
6639 if (info_ptr == NULL)
6640 return;
6641
6642 /* We can't set abfd until now because the section may be empty or
6643 not present, in which case the bfd is unknown. */
6644 abfd = get_section_bfd_owner (section);
6645
6646 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6647 because we don't need to read any dies: the signature is in the
6648 header. */
6649
6650 end_ptr = info_ptr + section->size;
6651 while (info_ptr < end_ptr)
6652 {
6653 struct signatured_type *sig_type;
6654 struct dwo_unit *dwo_tu;
6655 void **slot;
6656 const gdb_byte *ptr = info_ptr;
6657 struct comp_unit_head header;
6658 unsigned int length;
6659
6660 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6661
6662 /* Initialize it due to a false compiler warning. */
6663 header.signature = -1;
6664 header.type_cu_offset_in_tu = (cu_offset) -1;
6665
6666 /* We need to read the type's signature in order to build the hash
6667 table, but we don't need anything else just yet. */
6668
6669 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6670 abbrev_section, ptr, section_kind);
6671
6672 length = get_cu_length (&header);
6673
6674 /* Skip dummy type units. */
6675 if (ptr >= info_ptr + length
6676 || peek_abbrev_code (abfd, ptr) == 0
6677 || header.unit_type != DW_UT_type)
6678 {
6679 info_ptr += length;
6680 continue;
6681 }
6682
6683 if (types_htab == NULL)
6684 {
6685 if (dwo_file)
6686 types_htab = allocate_dwo_unit_table (objfile);
6687 else
6688 types_htab = allocate_signatured_type_table (objfile);
6689 }
6690
6691 if (dwo_file)
6692 {
6693 sig_type = NULL;
6694 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6695 struct dwo_unit);
6696 dwo_tu->dwo_file = dwo_file;
6697 dwo_tu->signature = header.signature;
6698 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6699 dwo_tu->section = section;
6700 dwo_tu->sect_off = sect_off;
6701 dwo_tu->length = length;
6702 }
6703 else
6704 {
6705 /* N.B.: type_offset is not usable if this type uses a DWO file.
6706 The real type_offset is in the DWO file. */
6707 dwo_tu = NULL;
6708 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6709 struct signatured_type);
6710 sig_type->signature = header.signature;
6711 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6712 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6713 sig_type->per_cu.is_debug_types = 1;
6714 sig_type->per_cu.section = section;
6715 sig_type->per_cu.sect_off = sect_off;
6716 sig_type->per_cu.length = length;
6717 }
6718
6719 slot = htab_find_slot (types_htab,
6720 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6721 INSERT);
6722 gdb_assert (slot != NULL);
6723 if (*slot != NULL)
6724 {
6725 sect_offset dup_sect_off;
6726
6727 if (dwo_file)
6728 {
6729 const struct dwo_unit *dup_tu
6730 = (const struct dwo_unit *) *slot;
6731
6732 dup_sect_off = dup_tu->sect_off;
6733 }
6734 else
6735 {
6736 const struct signatured_type *dup_tu
6737 = (const struct signatured_type *) *slot;
6738
6739 dup_sect_off = dup_tu->per_cu.sect_off;
6740 }
6741
6742 complaint (&symfile_complaints,
6743 _("debug type entry at offset %s is duplicate to"
6744 " the entry at offset %s, signature %s"),
6745 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6746 hex_string (header.signature));
6747 }
6748 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6749
6750 if (dwarf_read_debug > 1)
6751 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6752 sect_offset_str (sect_off),
6753 hex_string (header.signature));
6754
6755 info_ptr += length;
6756 }
6757 }
6758
6759 /* Create the hash table of all entries in the .debug_types
6760 (or .debug_types.dwo) section(s).
6761 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6762 otherwise it is NULL.
6763
6764 The result is a pointer to the hash table or NULL if there are no types.
6765
6766 Note: This function processes DWO files only, not DWP files. */
6767
6768 static void
6769 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6770 struct dwo_file *dwo_file,
6771 VEC (dwarf2_section_info_def) *types,
6772 htab_t &types_htab)
6773 {
6774 int ix;
6775 struct dwarf2_section_info *section;
6776
6777 if (VEC_empty (dwarf2_section_info_def, types))
6778 return;
6779
6780 for (ix = 0;
6781 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6782 ++ix)
6783 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6784 types_htab, rcuh_kind::TYPE);
6785 }
6786
6787 /* Create the hash table of all entries in the .debug_types section,
6788 and initialize all_type_units.
6789 The result is zero if there is an error (e.g. missing .debug_types section),
6790 otherwise non-zero. */
6791
6792 static int
6793 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6794 {
6795 htab_t types_htab = NULL;
6796
6797 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6798 &dwarf2_per_objfile->info, types_htab,
6799 rcuh_kind::COMPILE);
6800 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6801 dwarf2_per_objfile->types, types_htab);
6802 if (types_htab == NULL)
6803 {
6804 dwarf2_per_objfile->signatured_types = NULL;
6805 return 0;
6806 }
6807
6808 dwarf2_per_objfile->signatured_types = types_htab;
6809
6810 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6811 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6812
6813 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6814 &dwarf2_per_objfile->all_type_units);
6815
6816 return 1;
6817 }
6818
6819 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6820 If SLOT is non-NULL, it is the entry to use in the hash table.
6821 Otherwise we find one. */
6822
6823 static struct signatured_type *
6824 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6825 void **slot)
6826 {
6827 struct objfile *objfile = dwarf2_per_objfile->objfile;
6828
6829 if (dwarf2_per_objfile->all_type_units.size ()
6830 == dwarf2_per_objfile->all_type_units.capacity ())
6831 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6832
6833 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6834 struct signatured_type);
6835
6836 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6837 sig_type->signature = sig;
6838 sig_type->per_cu.is_debug_types = 1;
6839 if (dwarf2_per_objfile->using_index)
6840 {
6841 sig_type->per_cu.v.quick =
6842 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6843 struct dwarf2_per_cu_quick_data);
6844 }
6845
6846 if (slot == NULL)
6847 {
6848 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6849 sig_type, INSERT);
6850 }
6851 gdb_assert (*slot == NULL);
6852 *slot = sig_type;
6853 /* The rest of sig_type must be filled in by the caller. */
6854 return sig_type;
6855 }
6856
6857 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6858 Fill in SIG_ENTRY with DWO_ENTRY. */
6859
6860 static void
6861 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct signatured_type *sig_entry,
6863 struct dwo_unit *dwo_entry)
6864 {
6865 /* Make sure we're not clobbering something we don't expect to. */
6866 gdb_assert (! sig_entry->per_cu.queued);
6867 gdb_assert (sig_entry->per_cu.cu == NULL);
6868 if (dwarf2_per_objfile->using_index)
6869 {
6870 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6871 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6872 }
6873 else
6874 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6875 gdb_assert (sig_entry->signature == dwo_entry->signature);
6876 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6877 gdb_assert (sig_entry->type_unit_group == NULL);
6878 gdb_assert (sig_entry->dwo_unit == NULL);
6879
6880 sig_entry->per_cu.section = dwo_entry->section;
6881 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6882 sig_entry->per_cu.length = dwo_entry->length;
6883 sig_entry->per_cu.reading_dwo_directly = 1;
6884 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6885 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6886 sig_entry->dwo_unit = dwo_entry;
6887 }
6888
6889 /* Subroutine of lookup_signatured_type.
6890 If we haven't read the TU yet, create the signatured_type data structure
6891 for a TU to be read in directly from a DWO file, bypassing the stub.
6892 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6893 using .gdb_index, then when reading a CU we want to stay in the DWO file
6894 containing that CU. Otherwise we could end up reading several other DWO
6895 files (due to comdat folding) to process the transitive closure of all the
6896 mentioned TUs, and that can be slow. The current DWO file will have every
6897 type signature that it needs.
6898 We only do this for .gdb_index because in the psymtab case we already have
6899 to read all the DWOs to build the type unit groups. */
6900
6901 static struct signatured_type *
6902 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6903 {
6904 struct dwarf2_per_objfile *dwarf2_per_objfile
6905 = cu->per_cu->dwarf2_per_objfile;
6906 struct objfile *objfile = dwarf2_per_objfile->objfile;
6907 struct dwo_file *dwo_file;
6908 struct dwo_unit find_dwo_entry, *dwo_entry;
6909 struct signatured_type find_sig_entry, *sig_entry;
6910 void **slot;
6911
6912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6913
6914 /* If TU skeletons have been removed then we may not have read in any
6915 TUs yet. */
6916 if (dwarf2_per_objfile->signatured_types == NULL)
6917 {
6918 dwarf2_per_objfile->signatured_types
6919 = allocate_signatured_type_table (objfile);
6920 }
6921
6922 /* We only ever need to read in one copy of a signatured type.
6923 Use the global signatured_types array to do our own comdat-folding
6924 of types. If this is the first time we're reading this TU, and
6925 the TU has an entry in .gdb_index, replace the recorded data from
6926 .gdb_index with this TU. */
6927
6928 find_sig_entry.signature = sig;
6929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6930 &find_sig_entry, INSERT);
6931 sig_entry = (struct signatured_type *) *slot;
6932
6933 /* We can get here with the TU already read, *or* in the process of being
6934 read. Don't reassign the global entry to point to this DWO if that's
6935 the case. Also note that if the TU is already being read, it may not
6936 have come from a DWO, the program may be a mix of Fission-compiled
6937 code and non-Fission-compiled code. */
6938
6939 /* Have we already tried to read this TU?
6940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6941 needn't exist in the global table yet). */
6942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6943 return sig_entry;
6944
6945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6946 dwo_unit of the TU itself. */
6947 dwo_file = cu->dwo_unit->dwo_file;
6948
6949 /* Ok, this is the first time we're reading this TU. */
6950 if (dwo_file->tus == NULL)
6951 return NULL;
6952 find_dwo_entry.signature = sig;
6953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6954 if (dwo_entry == NULL)
6955 return NULL;
6956
6957 /* If the global table doesn't have an entry for this TU, add one. */
6958 if (sig_entry == NULL)
6959 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6960
6961 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6962 sig_entry->per_cu.tu_read = 1;
6963 return sig_entry;
6964 }
6965
6966 /* Subroutine of lookup_signatured_type.
6967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6968 then try the DWP file. If the TU stub (skeleton) has been removed then
6969 it won't be in .gdb_index. */
6970
6971 static struct signatured_type *
6972 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6973 {
6974 struct dwarf2_per_objfile *dwarf2_per_objfile
6975 = cu->per_cu->dwarf2_per_objfile;
6976 struct objfile *objfile = dwarf2_per_objfile->objfile;
6977 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6978 struct dwo_unit *dwo_entry;
6979 struct signatured_type find_sig_entry, *sig_entry;
6980 void **slot;
6981
6982 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6983 gdb_assert (dwp_file != NULL);
6984
6985 /* If TU skeletons have been removed then we may not have read in any
6986 TUs yet. */
6987 if (dwarf2_per_objfile->signatured_types == NULL)
6988 {
6989 dwarf2_per_objfile->signatured_types
6990 = allocate_signatured_type_table (objfile);
6991 }
6992
6993 find_sig_entry.signature = sig;
6994 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6995 &find_sig_entry, INSERT);
6996 sig_entry = (struct signatured_type *) *slot;
6997
6998 /* Have we already tried to read this TU?
6999 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7000 needn't exist in the global table yet). */
7001 if (sig_entry != NULL)
7002 return sig_entry;
7003
7004 if (dwp_file->tus == NULL)
7005 return NULL;
7006 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7007 sig, 1 /* is_debug_types */);
7008 if (dwo_entry == NULL)
7009 return NULL;
7010
7011 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7012 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7013
7014 return sig_entry;
7015 }
7016
7017 /* Lookup a signature based type for DW_FORM_ref_sig8.
7018 Returns NULL if signature SIG is not present in the table.
7019 It is up to the caller to complain about this. */
7020
7021 static struct signatured_type *
7022 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7023 {
7024 struct dwarf2_per_objfile *dwarf2_per_objfile
7025 = cu->per_cu->dwarf2_per_objfile;
7026
7027 if (cu->dwo_unit
7028 && dwarf2_per_objfile->using_index)
7029 {
7030 /* We're in a DWO/DWP file, and we're using .gdb_index.
7031 These cases require special processing. */
7032 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7033 return lookup_dwo_signatured_type (cu, sig);
7034 else
7035 return lookup_dwp_signatured_type (cu, sig);
7036 }
7037 else
7038 {
7039 struct signatured_type find_entry, *entry;
7040
7041 if (dwarf2_per_objfile->signatured_types == NULL)
7042 return NULL;
7043 find_entry.signature = sig;
7044 entry = ((struct signatured_type *)
7045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7046 return entry;
7047 }
7048 }
7049 \f
7050 /* Low level DIE reading support. */
7051
7052 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7053
7054 static void
7055 init_cu_die_reader (struct die_reader_specs *reader,
7056 struct dwarf2_cu *cu,
7057 struct dwarf2_section_info *section,
7058 struct dwo_file *dwo_file,
7059 struct abbrev_table *abbrev_table)
7060 {
7061 gdb_assert (section->readin && section->buffer != NULL);
7062 reader->abfd = get_section_bfd_owner (section);
7063 reader->cu = cu;
7064 reader->dwo_file = dwo_file;
7065 reader->die_section = section;
7066 reader->buffer = section->buffer;
7067 reader->buffer_end = section->buffer + section->size;
7068 reader->comp_dir = NULL;
7069 reader->abbrev_table = abbrev_table;
7070 }
7071
7072 /* Subroutine of init_cutu_and_read_dies to simplify it.
7073 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7074 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7075 already.
7076
7077 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7078 from it to the DIE in the DWO. If NULL we are skipping the stub.
7079 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7080 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7081 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7082 STUB_COMP_DIR may be non-NULL.
7083 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7084 are filled in with the info of the DIE from the DWO file.
7085 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7086 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7087 kept around for at least as long as *RESULT_READER.
7088
7089 The result is non-zero if a valid (non-dummy) DIE was found. */
7090
7091 static int
7092 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7093 struct dwo_unit *dwo_unit,
7094 struct die_info *stub_comp_unit_die,
7095 const char *stub_comp_dir,
7096 struct die_reader_specs *result_reader,
7097 const gdb_byte **result_info_ptr,
7098 struct die_info **result_comp_unit_die,
7099 int *result_has_children,
7100 abbrev_table_up *result_dwo_abbrev_table)
7101 {
7102 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7103 struct objfile *objfile = dwarf2_per_objfile->objfile;
7104 struct dwarf2_cu *cu = this_cu->cu;
7105 bfd *abfd;
7106 const gdb_byte *begin_info_ptr, *info_ptr;
7107 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7108 int i,num_extra_attrs;
7109 struct dwarf2_section_info *dwo_abbrev_section;
7110 struct attribute *attr;
7111 struct die_info *comp_unit_die;
7112
7113 /* At most one of these may be provided. */
7114 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7115
7116 /* These attributes aren't processed until later:
7117 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7118 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7119 referenced later. However, these attributes are found in the stub
7120 which we won't have later. In order to not impose this complication
7121 on the rest of the code, we read them here and copy them to the
7122 DWO CU/TU die. */
7123
7124 stmt_list = NULL;
7125 low_pc = NULL;
7126 high_pc = NULL;
7127 ranges = NULL;
7128 comp_dir = NULL;
7129
7130 if (stub_comp_unit_die != NULL)
7131 {
7132 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7133 DWO file. */
7134 if (! this_cu->is_debug_types)
7135 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7136 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7137 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7138 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7139 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7140
7141 /* There should be a DW_AT_addr_base attribute here (if needed).
7142 We need the value before we can process DW_FORM_GNU_addr_index. */
7143 cu->addr_base = 0;
7144 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7145 if (attr)
7146 cu->addr_base = DW_UNSND (attr);
7147
7148 /* There should be a DW_AT_ranges_base attribute here (if needed).
7149 We need the value before we can process DW_AT_ranges. */
7150 cu->ranges_base = 0;
7151 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7152 if (attr)
7153 cu->ranges_base = DW_UNSND (attr);
7154 }
7155 else if (stub_comp_dir != NULL)
7156 {
7157 /* Reconstruct the comp_dir attribute to simplify the code below. */
7158 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7159 comp_dir->name = DW_AT_comp_dir;
7160 comp_dir->form = DW_FORM_string;
7161 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7162 DW_STRING (comp_dir) = stub_comp_dir;
7163 }
7164
7165 /* Set up for reading the DWO CU/TU. */
7166 cu->dwo_unit = dwo_unit;
7167 dwarf2_section_info *section = dwo_unit->section;
7168 dwarf2_read_section (objfile, section);
7169 abfd = get_section_bfd_owner (section);
7170 begin_info_ptr = info_ptr = (section->buffer
7171 + to_underlying (dwo_unit->sect_off));
7172 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7173
7174 if (this_cu->is_debug_types)
7175 {
7176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7177
7178 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7179 &cu->header, section,
7180 dwo_abbrev_section,
7181 info_ptr, rcuh_kind::TYPE);
7182 /* This is not an assert because it can be caused by bad debug info. */
7183 if (sig_type->signature != cu->header.signature)
7184 {
7185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7186 " TU at offset %s [in module %s]"),
7187 hex_string (sig_type->signature),
7188 hex_string (cu->header.signature),
7189 sect_offset_str (dwo_unit->sect_off),
7190 bfd_get_filename (abfd));
7191 }
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 nor the type's offset in the TU until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7197
7198 /* Establish the type offset that can be used to lookup the type.
7199 For DWO files, we don't know it until now. */
7200 sig_type->type_offset_in_section
7201 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7202 }
7203 else
7204 {
7205 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7206 &cu->header, section,
7207 dwo_abbrev_section,
7208 info_ptr, rcuh_kind::COMPILE);
7209 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7210 /* For DWOs coming from DWP files, we don't know the CU length
7211 until now. */
7212 dwo_unit->length = get_cu_length (&cu->header);
7213 }
7214
7215 *result_dwo_abbrev_table
7216 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7217 cu->header.abbrev_sect_off);
7218 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7219 result_dwo_abbrev_table->get ());
7220
7221 /* Read in the die, but leave space to copy over the attributes
7222 from the stub. This has the benefit of simplifying the rest of
7223 the code - all the work to maintain the illusion of a single
7224 DW_TAG_{compile,type}_unit DIE is done here. */
7225 num_extra_attrs = ((stmt_list != NULL)
7226 + (low_pc != NULL)
7227 + (high_pc != NULL)
7228 + (ranges != NULL)
7229 + (comp_dir != NULL));
7230 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7231 result_has_children, num_extra_attrs);
7232
7233 /* Copy over the attributes from the stub to the DIE we just read in. */
7234 comp_unit_die = *result_comp_unit_die;
7235 i = comp_unit_die->num_attrs;
7236 if (stmt_list != NULL)
7237 comp_unit_die->attrs[i++] = *stmt_list;
7238 if (low_pc != NULL)
7239 comp_unit_die->attrs[i++] = *low_pc;
7240 if (high_pc != NULL)
7241 comp_unit_die->attrs[i++] = *high_pc;
7242 if (ranges != NULL)
7243 comp_unit_die->attrs[i++] = *ranges;
7244 if (comp_dir != NULL)
7245 comp_unit_die->attrs[i++] = *comp_dir;
7246 comp_unit_die->num_attrs += num_extra_attrs;
7247
7248 if (dwarf_die_debug)
7249 {
7250 fprintf_unfiltered (gdb_stdlog,
7251 "Read die from %s@0x%x of %s:\n",
7252 get_section_name (section),
7253 (unsigned) (begin_info_ptr - section->buffer),
7254 bfd_get_filename (abfd));
7255 dump_die (comp_unit_die, dwarf_die_debug);
7256 }
7257
7258 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7259 TUs by skipping the stub and going directly to the entry in the DWO file.
7260 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7261 to get it via circuitous means. Blech. */
7262 if (comp_dir != NULL)
7263 result_reader->comp_dir = DW_STRING (comp_dir);
7264
7265 /* Skip dummy compilation units. */
7266 if (info_ptr >= begin_info_ptr + dwo_unit->length
7267 || peek_abbrev_code (abfd, info_ptr) == 0)
7268 return 0;
7269
7270 *result_info_ptr = info_ptr;
7271 return 1;
7272 }
7273
7274 /* Subroutine of init_cutu_and_read_dies to simplify it.
7275 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7276 Returns NULL if the specified DWO unit cannot be found. */
7277
7278 static struct dwo_unit *
7279 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7280 struct die_info *comp_unit_die)
7281 {
7282 struct dwarf2_cu *cu = this_cu->cu;
7283 ULONGEST signature;
7284 struct dwo_unit *dwo_unit;
7285 const char *comp_dir, *dwo_name;
7286
7287 gdb_assert (cu != NULL);
7288
7289 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7290 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7291 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7292
7293 if (this_cu->is_debug_types)
7294 {
7295 struct signatured_type *sig_type;
7296
7297 /* Since this_cu is the first member of struct signatured_type,
7298 we can go from a pointer to one to a pointer to the other. */
7299 sig_type = (struct signatured_type *) this_cu;
7300 signature = sig_type->signature;
7301 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7302 }
7303 else
7304 {
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7308 if (! attr)
7309 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7310 " [in module %s]"),
7311 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7312 signature = DW_UNSND (attr);
7313 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7314 signature);
7315 }
7316
7317 return dwo_unit;
7318 }
7319
7320 /* Subroutine of init_cutu_and_read_dies to simplify it.
7321 See it for a description of the parameters.
7322 Read a TU directly from a DWO file, bypassing the stub. */
7323
7324 static void
7325 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7326 int use_existing_cu, int keep,
7327 die_reader_func_ftype *die_reader_func,
7328 void *data)
7329 {
7330 std::unique_ptr<dwarf2_cu> new_cu;
7331 struct signatured_type *sig_type;
7332 struct die_reader_specs reader;
7333 const gdb_byte *info_ptr;
7334 struct die_info *comp_unit_die;
7335 int has_children;
7336 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7337
7338 /* Verify we can do the following downcast, and that we have the
7339 data we need. */
7340 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7341 sig_type = (struct signatured_type *) this_cu;
7342 gdb_assert (sig_type->dwo_unit != NULL);
7343
7344 if (use_existing_cu && this_cu->cu != NULL)
7345 {
7346 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7347 /* There's no need to do the rereading_dwo_cu handling that
7348 init_cutu_and_read_dies does since we don't read the stub. */
7349 }
7350 else
7351 {
7352 /* If !use_existing_cu, this_cu->cu must be NULL. */
7353 gdb_assert (this_cu->cu == NULL);
7354 new_cu.reset (new dwarf2_cu (this_cu));
7355 }
7356
7357 /* A future optimization, if needed, would be to use an existing
7358 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7359 could share abbrev tables. */
7360
7361 /* The abbreviation table used by READER, this must live at least as long as
7362 READER. */
7363 abbrev_table_up dwo_abbrev_table;
7364
7365 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7366 NULL /* stub_comp_unit_die */,
7367 sig_type->dwo_unit->dwo_file->comp_dir,
7368 &reader, &info_ptr,
7369 &comp_unit_die, &has_children,
7370 &dwo_abbrev_table) == 0)
7371 {
7372 /* Dummy die. */
7373 return;
7374 }
7375
7376 /* All the "real" work is done here. */
7377 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7378
7379 /* This duplicates the code in init_cutu_and_read_dies,
7380 but the alternative is making the latter more complex.
7381 This function is only for the special case of using DWO files directly:
7382 no point in overly complicating the general case just to handle this. */
7383 if (new_cu != NULL && keep)
7384 {
7385 /* Link this CU into read_in_chain. */
7386 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7387 dwarf2_per_objfile->read_in_chain = this_cu;
7388 /* The chain owns it now. */
7389 new_cu.release ();
7390 }
7391 }
7392
7393 /* Initialize a CU (or TU) and read its DIEs.
7394 If the CU defers to a DWO file, read the DWO file as well.
7395
7396 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7397 Otherwise the table specified in the comp unit header is read in and used.
7398 This is an optimization for when we already have the abbrev table.
7399
7400 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7401 Otherwise, a new CU is allocated with xmalloc.
7402
7403 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7404 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7405
7406 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7407 linker) then DIE_READER_FUNC will not get called. */
7408
7409 static void
7410 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7411 struct abbrev_table *abbrev_table,
7412 int use_existing_cu, int keep,
7413 die_reader_func_ftype *die_reader_func,
7414 void *data)
7415 {
7416 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7417 struct objfile *objfile = dwarf2_per_objfile->objfile;
7418 struct dwarf2_section_info *section = this_cu->section;
7419 bfd *abfd = get_section_bfd_owner (section);
7420 struct dwarf2_cu *cu;
7421 const gdb_byte *begin_info_ptr, *info_ptr;
7422 struct die_reader_specs reader;
7423 struct die_info *comp_unit_die;
7424 int has_children;
7425 struct attribute *attr;
7426 struct signatured_type *sig_type = NULL;
7427 struct dwarf2_section_info *abbrev_section;
7428 /* Non-zero if CU currently points to a DWO file and we need to
7429 reread it. When this happens we need to reread the skeleton die
7430 before we can reread the DWO file (this only applies to CUs, not TUs). */
7431 int rereading_dwo_cu = 0;
7432
7433 if (dwarf_die_debug)
7434 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7435 this_cu->is_debug_types ? "type" : "comp",
7436 sect_offset_str (this_cu->sect_off));
7437
7438 if (use_existing_cu)
7439 gdb_assert (keep);
7440
7441 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7442 file (instead of going through the stub), short-circuit all of this. */
7443 if (this_cu->reading_dwo_directly)
7444 {
7445 /* Narrow down the scope of possibilities to have to understand. */
7446 gdb_assert (this_cu->is_debug_types);
7447 gdb_assert (abbrev_table == NULL);
7448 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7449 die_reader_func, data);
7450 return;
7451 }
7452
7453 /* This is cheap if the section is already read in. */
7454 dwarf2_read_section (objfile, section);
7455
7456 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7457
7458 abbrev_section = get_abbrev_section_for_cu (this_cu);
7459
7460 std::unique_ptr<dwarf2_cu> new_cu;
7461 if (use_existing_cu && this_cu->cu != NULL)
7462 {
7463 cu = this_cu->cu;
7464 /* If this CU is from a DWO file we need to start over, we need to
7465 refetch the attributes from the skeleton CU.
7466 This could be optimized by retrieving those attributes from when we
7467 were here the first time: the previous comp_unit_die was stored in
7468 comp_unit_obstack. But there's no data yet that we need this
7469 optimization. */
7470 if (cu->dwo_unit != NULL)
7471 rereading_dwo_cu = 1;
7472 }
7473 else
7474 {
7475 /* If !use_existing_cu, this_cu->cu must be NULL. */
7476 gdb_assert (this_cu->cu == NULL);
7477 new_cu.reset (new dwarf2_cu (this_cu));
7478 cu = new_cu.get ();
7479 }
7480
7481 /* Get the header. */
7482 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7483 {
7484 /* We already have the header, there's no need to read it in again. */
7485 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7486 }
7487 else
7488 {
7489 if (this_cu->is_debug_types)
7490 {
7491 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7492 &cu->header, section,
7493 abbrev_section, info_ptr,
7494 rcuh_kind::TYPE);
7495
7496 /* Since per_cu is the first member of struct signatured_type,
7497 we can go from a pointer to one to a pointer to the other. */
7498 sig_type = (struct signatured_type *) this_cu;
7499 gdb_assert (sig_type->signature == cu->header.signature);
7500 gdb_assert (sig_type->type_offset_in_tu
7501 == cu->header.type_cu_offset_in_tu);
7502 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7503
7504 /* LENGTH has not been set yet for type units if we're
7505 using .gdb_index. */
7506 this_cu->length = get_cu_length (&cu->header);
7507
7508 /* Establish the type offset that can be used to lookup the type. */
7509 sig_type->type_offset_in_section =
7510 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7511
7512 this_cu->dwarf_version = cu->header.version;
7513 }
7514 else
7515 {
7516 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7517 &cu->header, section,
7518 abbrev_section,
7519 info_ptr,
7520 rcuh_kind::COMPILE);
7521
7522 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7524 this_cu->dwarf_version = cu->header.version;
7525 }
7526 }
7527
7528 /* Skip dummy compilation units. */
7529 if (info_ptr >= begin_info_ptr + this_cu->length
7530 || peek_abbrev_code (abfd, info_ptr) == 0)
7531 return;
7532
7533 /* If we don't have them yet, read the abbrevs for this compilation unit.
7534 And if we need to read them now, make sure they're freed when we're
7535 done (own the table through ABBREV_TABLE_HOLDER). */
7536 abbrev_table_up abbrev_table_holder;
7537 if (abbrev_table != NULL)
7538 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7539 else
7540 {
7541 abbrev_table_holder
7542 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7543 cu->header.abbrev_sect_off);
7544 abbrev_table = abbrev_table_holder.get ();
7545 }
7546
7547 /* Read the top level CU/TU die. */
7548 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7549 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7550
7551 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7552 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7553 table from the DWO file and pass the ownership over to us. It will be
7554 referenced from READER, so we must make sure to free it after we're done
7555 with READER.
7556
7557 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7558 DWO CU, that this test will fail (the attribute will not be present). */
7559 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7560 abbrev_table_up dwo_abbrev_table;
7561 if (attr)
7562 {
7563 struct dwo_unit *dwo_unit;
7564 struct die_info *dwo_comp_unit_die;
7565
7566 if (has_children)
7567 {
7568 complaint (&symfile_complaints,
7569 _("compilation unit with DW_AT_GNU_dwo_name"
7570 " has children (offset %s) [in module %s]"),
7571 sect_offset_str (this_cu->sect_off),
7572 bfd_get_filename (abfd));
7573 }
7574 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7575 if (dwo_unit != NULL)
7576 {
7577 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7578 comp_unit_die, NULL,
7579 &reader, &info_ptr,
7580 &dwo_comp_unit_die, &has_children,
7581 &dwo_abbrev_table) == 0)
7582 {
7583 /* Dummy die. */
7584 return;
7585 }
7586 comp_unit_die = dwo_comp_unit_die;
7587 }
7588 else
7589 {
7590 /* Yikes, we couldn't find the rest of the DIE, we only have
7591 the stub. A complaint has already been logged. There's
7592 not much more we can do except pass on the stub DIE to
7593 die_reader_func. We don't want to throw an error on bad
7594 debug info. */
7595 }
7596 }
7597
7598 /* All of the above is setup for this call. Yikes. */
7599 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7600
7601 /* Done, clean up. */
7602 if (new_cu != NULL && keep)
7603 {
7604 /* Link this CU into read_in_chain. */
7605 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7606 dwarf2_per_objfile->read_in_chain = this_cu;
7607 /* The chain owns it now. */
7608 new_cu.release ();
7609 }
7610 }
7611
7612 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7613 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7614 to have already done the lookup to find the DWO file).
7615
7616 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7617 THIS_CU->is_debug_types, but nothing else.
7618
7619 We fill in THIS_CU->length.
7620
7621 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7622 linker) then DIE_READER_FUNC will not get called.
7623
7624 THIS_CU->cu is always freed when done.
7625 This is done in order to not leave THIS_CU->cu in a state where we have
7626 to care whether it refers to the "main" CU or the DWO CU. */
7627
7628 static void
7629 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7630 struct dwo_file *dwo_file,
7631 die_reader_func_ftype *die_reader_func,
7632 void *data)
7633 {
7634 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7635 struct objfile *objfile = dwarf2_per_objfile->objfile;
7636 struct dwarf2_section_info *section = this_cu->section;
7637 bfd *abfd = get_section_bfd_owner (section);
7638 struct dwarf2_section_info *abbrev_section;
7639 const gdb_byte *begin_info_ptr, *info_ptr;
7640 struct die_reader_specs reader;
7641 struct die_info *comp_unit_die;
7642 int has_children;
7643
7644 if (dwarf_die_debug)
7645 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7646 this_cu->is_debug_types ? "type" : "comp",
7647 sect_offset_str (this_cu->sect_off));
7648
7649 gdb_assert (this_cu->cu == NULL);
7650
7651 abbrev_section = (dwo_file != NULL
7652 ? &dwo_file->sections.abbrev
7653 : get_abbrev_section_for_cu (this_cu));
7654
7655 /* This is cheap if the section is already read in. */
7656 dwarf2_read_section (objfile, section);
7657
7658 struct dwarf2_cu cu (this_cu);
7659
7660 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7661 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7662 &cu.header, section,
7663 abbrev_section, info_ptr,
7664 (this_cu->is_debug_types
7665 ? rcuh_kind::TYPE
7666 : rcuh_kind::COMPILE));
7667
7668 this_cu->length = get_cu_length (&cu.header);
7669
7670 /* Skip dummy compilation units. */
7671 if (info_ptr >= begin_info_ptr + this_cu->length
7672 || peek_abbrev_code (abfd, info_ptr) == 0)
7673 return;
7674
7675 abbrev_table_up abbrev_table
7676 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7677 cu.header.abbrev_sect_off);
7678
7679 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7680 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7681
7682 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7683 }
7684
7685 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7686 does not lookup the specified DWO file.
7687 This cannot be used to read DWO files.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU.
7692 We can revisit this if the data shows there's a performance issue. */
7693
7694 static void
7695 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7700 }
7701 \f
7702 /* Type Unit Groups.
7703
7704 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7705 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7706 so that all types coming from the same compilation (.o file) are grouped
7707 together. A future step could be to put the types in the same symtab as
7708 the CU the types ultimately came from. */
7709
7710 static hashval_t
7711 hash_type_unit_group (const void *item)
7712 {
7713 const struct type_unit_group *tu_group
7714 = (const struct type_unit_group *) item;
7715
7716 return hash_stmt_list_entry (&tu_group->hash);
7717 }
7718
7719 static int
7720 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7721 {
7722 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7723 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7724
7725 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7726 }
7727
7728 /* Allocate a hash table for type unit groups. */
7729
7730 static htab_t
7731 allocate_type_unit_groups_table (struct objfile *objfile)
7732 {
7733 return htab_create_alloc_ex (3,
7734 hash_type_unit_group,
7735 eq_type_unit_group,
7736 NULL,
7737 &objfile->objfile_obstack,
7738 hashtab_obstack_allocate,
7739 dummy_obstack_deallocate);
7740 }
7741
7742 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7743 partial symtabs. We combine several TUs per psymtab to not let the size
7744 of any one psymtab grow too big. */
7745 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7746 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7747
7748 /* Helper routine for get_type_unit_group.
7749 Create the type_unit_group object used to hold one or more TUs. */
7750
7751 static struct type_unit_group *
7752 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7753 {
7754 struct dwarf2_per_objfile *dwarf2_per_objfile
7755 = cu->per_cu->dwarf2_per_objfile;
7756 struct objfile *objfile = dwarf2_per_objfile->objfile;
7757 struct dwarf2_per_cu_data *per_cu;
7758 struct type_unit_group *tu_group;
7759
7760 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7761 struct type_unit_group);
7762 per_cu = &tu_group->per_cu;
7763 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7764
7765 if (dwarf2_per_objfile->using_index)
7766 {
7767 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7768 struct dwarf2_per_cu_quick_data);
7769 }
7770 else
7771 {
7772 unsigned int line_offset = to_underlying (line_offset_struct);
7773 struct partial_symtab *pst;
7774 char *name;
7775
7776 /* Give the symtab a useful name for debug purposes. */
7777 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7778 name = xstrprintf ("<type_units_%d>",
7779 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7780 else
7781 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7782
7783 pst = create_partial_symtab (per_cu, name);
7784 pst->anonymous = 1;
7785
7786 xfree (name);
7787 }
7788
7789 tu_group->hash.dwo_unit = cu->dwo_unit;
7790 tu_group->hash.line_sect_off = line_offset_struct;
7791
7792 return tu_group;
7793 }
7794
7795 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7796 STMT_LIST is a DW_AT_stmt_list attribute. */
7797
7798 static struct type_unit_group *
7799 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7800 {
7801 struct dwarf2_per_objfile *dwarf2_per_objfile
7802 = cu->per_cu->dwarf2_per_objfile;
7803 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7804 struct type_unit_group *tu_group;
7805 void **slot;
7806 unsigned int line_offset;
7807 struct type_unit_group type_unit_group_for_lookup;
7808
7809 if (dwarf2_per_objfile->type_unit_groups == NULL)
7810 {
7811 dwarf2_per_objfile->type_unit_groups =
7812 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7813 }
7814
7815 /* Do we need to create a new group, or can we use an existing one? */
7816
7817 if (stmt_list)
7818 {
7819 line_offset = DW_UNSND (stmt_list);
7820 ++tu_stats->nr_symtab_sharers;
7821 }
7822 else
7823 {
7824 /* Ugh, no stmt_list. Rare, but we have to handle it.
7825 We can do various things here like create one group per TU or
7826 spread them over multiple groups to split up the expansion work.
7827 To avoid worst case scenarios (too many groups or too large groups)
7828 we, umm, group them in bunches. */
7829 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7830 | (tu_stats->nr_stmt_less_type_units
7831 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7832 ++tu_stats->nr_stmt_less_type_units;
7833 }
7834
7835 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7836 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7837 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7838 &type_unit_group_for_lookup, INSERT);
7839 if (*slot != NULL)
7840 {
7841 tu_group = (struct type_unit_group *) *slot;
7842 gdb_assert (tu_group != NULL);
7843 }
7844 else
7845 {
7846 sect_offset line_offset_struct = (sect_offset) line_offset;
7847 tu_group = create_type_unit_group (cu, line_offset_struct);
7848 *slot = tu_group;
7849 ++tu_stats->nr_symtabs;
7850 }
7851
7852 return tu_group;
7853 }
7854 \f
7855 /* Partial symbol tables. */
7856
7857 /* Create a psymtab named NAME and assign it to PER_CU.
7858
7859 The caller must fill in the following details:
7860 dirname, textlow, texthigh. */
7861
7862 static struct partial_symtab *
7863 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7864 {
7865 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7866 struct partial_symtab *pst;
7867
7868 pst = start_psymtab_common (objfile, name, 0,
7869 objfile->global_psymbols,
7870 objfile->static_psymbols);
7871
7872 pst->psymtabs_addrmap_supported = 1;
7873
7874 /* This is the glue that links PST into GDB's symbol API. */
7875 pst->read_symtab_private = per_cu;
7876 pst->read_symtab = dwarf2_read_symtab;
7877 per_cu->v.psymtab = pst;
7878
7879 return pst;
7880 }
7881
7882 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7883 type. */
7884
7885 struct process_psymtab_comp_unit_data
7886 {
7887 /* True if we are reading a DW_TAG_partial_unit. */
7888
7889 int want_partial_unit;
7890
7891 /* The "pretend" language that is used if the CU doesn't declare a
7892 language. */
7893
7894 enum language pretend_language;
7895 };
7896
7897 /* die_reader_func for process_psymtab_comp_unit. */
7898
7899 static void
7900 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7901 const gdb_byte *info_ptr,
7902 struct die_info *comp_unit_die,
7903 int has_children,
7904 void *data)
7905 {
7906 struct dwarf2_cu *cu = reader->cu;
7907 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7909 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7910 CORE_ADDR baseaddr;
7911 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7912 struct partial_symtab *pst;
7913 enum pc_bounds_kind cu_bounds_kind;
7914 const char *filename;
7915 struct process_psymtab_comp_unit_data *info
7916 = (struct process_psymtab_comp_unit_data *) data;
7917
7918 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7919 return;
7920
7921 gdb_assert (! per_cu->is_debug_types);
7922
7923 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7924
7925 cu->list_in_scope = &file_symbols;
7926
7927 /* Allocate a new partial symbol table structure. */
7928 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7929 if (filename == NULL)
7930 filename = "";
7931
7932 pst = create_partial_symtab (per_cu, filename);
7933
7934 /* This must be done before calling dwarf2_build_include_psymtabs. */
7935 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7936
7937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7938
7939 dwarf2_find_base_address (comp_unit_die, cu);
7940
7941 /* Possibly set the default values of LOWPC and HIGHPC from
7942 `DW_AT_ranges'. */
7943 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7944 &best_highpc, cu, pst);
7945 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7946 /* Store the contiguous range if it is not empty; it can be empty for
7947 CUs with no code. */
7948 addrmap_set_empty (objfile->psymtabs_addrmap,
7949 gdbarch_adjust_dwarf2_addr (gdbarch,
7950 best_lowpc + baseaddr),
7951 gdbarch_adjust_dwarf2_addr (gdbarch,
7952 best_highpc + baseaddr) - 1,
7953 pst);
7954
7955 /* Check if comp unit has_children.
7956 If so, read the rest of the partial symbols from this comp unit.
7957 If not, there's no more debug_info for this comp unit. */
7958 if (has_children)
7959 {
7960 struct partial_die_info *first_die;
7961 CORE_ADDR lowpc, highpc;
7962
7963 lowpc = ((CORE_ADDR) -1);
7964 highpc = ((CORE_ADDR) 0);
7965
7966 first_die = load_partial_dies (reader, info_ptr, 1);
7967
7968 scan_partial_symbols (first_die, &lowpc, &highpc,
7969 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7970
7971 /* If we didn't find a lowpc, set it to highpc to avoid
7972 complaints from `maint check'. */
7973 if (lowpc == ((CORE_ADDR) -1))
7974 lowpc = highpc;
7975
7976 /* If the compilation unit didn't have an explicit address range,
7977 then use the information extracted from its child dies. */
7978 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7979 {
7980 best_lowpc = lowpc;
7981 best_highpc = highpc;
7982 }
7983 }
7984 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7985 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7986
7987 end_psymtab_common (objfile, pst);
7988
7989 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7990 {
7991 int i;
7992 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7993 struct dwarf2_per_cu_data *iter;
7994
7995 /* Fill in 'dependencies' here; we fill in 'users' in a
7996 post-pass. */
7997 pst->number_of_dependencies = len;
7998 pst->dependencies =
7999 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8000 for (i = 0;
8001 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8002 i, iter);
8003 ++i)
8004 pst->dependencies[i] = iter->v.psymtab;
8005
8006 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8007 }
8008
8009 /* Get the list of files included in the current compilation unit,
8010 and build a psymtab for each of them. */
8011 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8012
8013 if (dwarf_read_debug)
8014 {
8015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8016
8017 fprintf_unfiltered (gdb_stdlog,
8018 "Psymtab for %s unit @%s: %s - %s"
8019 ", %d global, %d static syms\n",
8020 per_cu->is_debug_types ? "type" : "comp",
8021 sect_offset_str (per_cu->sect_off),
8022 paddress (gdbarch, pst->textlow),
8023 paddress (gdbarch, pst->texthigh),
8024 pst->n_global_syms, pst->n_static_syms);
8025 }
8026 }
8027
8028 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8029 Process compilation unit THIS_CU for a psymtab. */
8030
8031 static void
8032 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8033 int want_partial_unit,
8034 enum language pretend_language)
8035 {
8036 /* If this compilation unit was already read in, free the
8037 cached copy in order to read it in again. This is
8038 necessary because we skipped some symbols when we first
8039 read in the compilation unit (see load_partial_dies).
8040 This problem could be avoided, but the benefit is unclear. */
8041 if (this_cu->cu != NULL)
8042 free_one_cached_comp_unit (this_cu);
8043
8044 if (this_cu->is_debug_types)
8045 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8046 NULL);
8047 else
8048 {
8049 process_psymtab_comp_unit_data info;
8050 info.want_partial_unit = want_partial_unit;
8051 info.pretend_language = pretend_language;
8052 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8053 process_psymtab_comp_unit_reader, &info);
8054 }
8055
8056 /* Age out any secondary CUs. */
8057 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8058 }
8059
8060 /* Reader function for build_type_psymtabs. */
8061
8062 static void
8063 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8064 const gdb_byte *info_ptr,
8065 struct die_info *type_unit_die,
8066 int has_children,
8067 void *data)
8068 {
8069 struct dwarf2_per_objfile *dwarf2_per_objfile
8070 = reader->cu->per_cu->dwarf2_per_objfile;
8071 struct objfile *objfile = dwarf2_per_objfile->objfile;
8072 struct dwarf2_cu *cu = reader->cu;
8073 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8074 struct signatured_type *sig_type;
8075 struct type_unit_group *tu_group;
8076 struct attribute *attr;
8077 struct partial_die_info *first_die;
8078 CORE_ADDR lowpc, highpc;
8079 struct partial_symtab *pst;
8080
8081 gdb_assert (data == NULL);
8082 gdb_assert (per_cu->is_debug_types);
8083 sig_type = (struct signatured_type *) per_cu;
8084
8085 if (! has_children)
8086 return;
8087
8088 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8089 tu_group = get_type_unit_group (cu, attr);
8090
8091 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8092
8093 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8094 cu->list_in_scope = &file_symbols;
8095 pst = create_partial_symtab (per_cu, "");
8096 pst->anonymous = 1;
8097
8098 first_die = load_partial_dies (reader, info_ptr, 1);
8099
8100 lowpc = (CORE_ADDR) -1;
8101 highpc = (CORE_ADDR) 0;
8102 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8103
8104 end_psymtab_common (objfile, pst);
8105 }
8106
8107 /* Struct used to sort TUs by their abbreviation table offset. */
8108
8109 struct tu_abbrev_offset
8110 {
8111 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8112 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8113 {}
8114
8115 signatured_type *sig_type;
8116 sect_offset abbrev_offset;
8117 };
8118
8119 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8120
8121 static bool
8122 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8123 const struct tu_abbrev_offset &b)
8124 {
8125 return a.abbrev_offset < b.abbrev_offset;
8126 }
8127
8128 /* Efficiently read all the type units.
8129 This does the bulk of the work for build_type_psymtabs.
8130
8131 The efficiency is because we sort TUs by the abbrev table they use and
8132 only read each abbrev table once. In one program there are 200K TUs
8133 sharing 8K abbrev tables.
8134
8135 The main purpose of this function is to support building the
8136 dwarf2_per_objfile->type_unit_groups table.
8137 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8138 can collapse the search space by grouping them by stmt_list.
8139 The savings can be significant, in the same program from above the 200K TUs
8140 share 8K stmt_list tables.
8141
8142 FUNC is expected to call get_type_unit_group, which will create the
8143 struct type_unit_group if necessary and add it to
8144 dwarf2_per_objfile->type_unit_groups. */
8145
8146 static void
8147 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8148 {
8149 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8150 abbrev_table_up abbrev_table;
8151 sect_offset abbrev_offset;
8152
8153 /* It's up to the caller to not call us multiple times. */
8154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8155
8156 if (dwarf2_per_objfile->all_type_units.empty ())
8157 return;
8158
8159 /* TUs typically share abbrev tables, and there can be way more TUs than
8160 abbrev tables. Sort by abbrev table to reduce the number of times we
8161 read each abbrev table in.
8162 Alternatives are to punt or to maintain a cache of abbrev tables.
8163 This is simpler and efficient enough for now.
8164
8165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8166 symtab to use). Typically TUs with the same abbrev offset have the same
8167 stmt_list value too so in practice this should work well.
8168
8169 The basic algorithm here is:
8170
8171 sort TUs by abbrev table
8172 for each TU with same abbrev table:
8173 read abbrev table if first user
8174 read TU top level DIE
8175 [IWBN if DWO skeletons had DW_AT_stmt_list]
8176 call FUNC */
8177
8178 if (dwarf_read_debug)
8179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8180
8181 /* Sort in a separate table to maintain the order of all_type_units
8182 for .gdb_index: TU indices directly index all_type_units. */
8183 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8184 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8185
8186 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8187 sorted_by_abbrev.emplace_back
8188 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8189 sig_type->per_cu.section,
8190 sig_type->per_cu.sect_off));
8191
8192 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8193 sort_tu_by_abbrev_offset);
8194
8195 abbrev_offset = (sect_offset) ~(unsigned) 0;
8196
8197 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8198 {
8199 /* Switch to the next abbrev table if necessary. */
8200 if (abbrev_table == NULL
8201 || tu.abbrev_offset != abbrev_offset)
8202 {
8203 abbrev_offset = tu.abbrev_offset;
8204 abbrev_table =
8205 abbrev_table_read_table (dwarf2_per_objfile,
8206 &dwarf2_per_objfile->abbrev,
8207 abbrev_offset);
8208 ++tu_stats->nr_uniq_abbrev_tables;
8209 }
8210
8211 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8212 0, 0, build_type_psymtabs_reader, NULL);
8213 }
8214 }
8215
8216 /* Print collected type unit statistics. */
8217
8218 static void
8219 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8220 {
8221 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8222
8223 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8224 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8225 dwarf2_per_objfile->all_type_units.size ());
8226 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8227 tu_stats->nr_uniq_abbrev_tables);
8228 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8229 tu_stats->nr_symtabs);
8230 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8231 tu_stats->nr_symtab_sharers);
8232 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8233 tu_stats->nr_stmt_less_type_units);
8234 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8235 tu_stats->nr_all_type_units_reallocs);
8236 }
8237
8238 /* Traversal function for build_type_psymtabs. */
8239
8240 static int
8241 build_type_psymtab_dependencies (void **slot, void *info)
8242 {
8243 struct dwarf2_per_objfile *dwarf2_per_objfile
8244 = (struct dwarf2_per_objfile *) info;
8245 struct objfile *objfile = dwarf2_per_objfile->objfile;
8246 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8247 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8248 struct partial_symtab *pst = per_cu->v.psymtab;
8249 int len = VEC_length (sig_type_ptr, tu_group->tus);
8250 struct signatured_type *iter;
8251 int i;
8252
8253 gdb_assert (len > 0);
8254 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8255
8256 pst->number_of_dependencies = len;
8257 pst->dependencies =
8258 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8259 for (i = 0;
8260 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8261 ++i)
8262 {
8263 gdb_assert (iter->per_cu.is_debug_types);
8264 pst->dependencies[i] = iter->per_cu.v.psymtab;
8265 iter->type_unit_group = tu_group;
8266 }
8267
8268 VEC_free (sig_type_ptr, tu_group->tus);
8269
8270 return 1;
8271 }
8272
8273 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8274 Build partial symbol tables for the .debug_types comp-units. */
8275
8276 static void
8277 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8278 {
8279 if (! create_all_type_units (dwarf2_per_objfile))
8280 return;
8281
8282 build_type_psymtabs_1 (dwarf2_per_objfile);
8283 }
8284
8285 /* Traversal function for process_skeletonless_type_unit.
8286 Read a TU in a DWO file and build partial symbols for it. */
8287
8288 static int
8289 process_skeletonless_type_unit (void **slot, void *info)
8290 {
8291 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8292 struct dwarf2_per_objfile *dwarf2_per_objfile
8293 = (struct dwarf2_per_objfile *) info;
8294 struct signatured_type find_entry, *entry;
8295
8296 /* If this TU doesn't exist in the global table, add it and read it in. */
8297
8298 if (dwarf2_per_objfile->signatured_types == NULL)
8299 {
8300 dwarf2_per_objfile->signatured_types
8301 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8302 }
8303
8304 find_entry.signature = dwo_unit->signature;
8305 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8306 INSERT);
8307 /* If we've already seen this type there's nothing to do. What's happening
8308 is we're doing our own version of comdat-folding here. */
8309 if (*slot != NULL)
8310 return 1;
8311
8312 /* This does the job that create_all_type_units would have done for
8313 this TU. */
8314 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8315 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8316 *slot = entry;
8317
8318 /* This does the job that build_type_psymtabs_1 would have done. */
8319 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8320 build_type_psymtabs_reader, NULL);
8321
8322 return 1;
8323 }
8324
8325 /* Traversal function for process_skeletonless_type_units. */
8326
8327 static int
8328 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8329 {
8330 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8331
8332 if (dwo_file->tus != NULL)
8333 {
8334 htab_traverse_noresize (dwo_file->tus,
8335 process_skeletonless_type_unit, info);
8336 }
8337
8338 return 1;
8339 }
8340
8341 /* Scan all TUs of DWO files, verifying we've processed them.
8342 This is needed in case a TU was emitted without its skeleton.
8343 Note: This can't be done until we know what all the DWO files are. */
8344
8345 static void
8346 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8347 {
8348 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8349 if (get_dwp_file (dwarf2_per_objfile) == NULL
8350 && dwarf2_per_objfile->dwo_files != NULL)
8351 {
8352 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8353 process_dwo_file_for_skeletonless_type_units,
8354 dwarf2_per_objfile);
8355 }
8356 }
8357
8358 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8359
8360 static void
8361 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8362 {
8363 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8364 {
8365 struct partial_symtab *pst = per_cu->v.psymtab;
8366
8367 if (pst == NULL)
8368 continue;
8369
8370 for (int j = 0; j < pst->number_of_dependencies; ++j)
8371 {
8372 /* Set the 'user' field only if it is not already set. */
8373 if (pst->dependencies[j]->user == NULL)
8374 pst->dependencies[j]->user = pst;
8375 }
8376 }
8377 }
8378
8379 /* Build the partial symbol table by doing a quick pass through the
8380 .debug_info and .debug_abbrev sections. */
8381
8382 static void
8383 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8384 {
8385 struct objfile *objfile = dwarf2_per_objfile->objfile;
8386
8387 if (dwarf_read_debug)
8388 {
8389 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8390 objfile_name (objfile));
8391 }
8392
8393 dwarf2_per_objfile->reading_partial_symbols = 1;
8394
8395 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8396
8397 /* Any cached compilation units will be linked by the per-objfile
8398 read_in_chain. Make sure to free them when we're done. */
8399 free_cached_comp_units freer (dwarf2_per_objfile);
8400
8401 build_type_psymtabs (dwarf2_per_objfile);
8402
8403 create_all_comp_units (dwarf2_per_objfile);
8404
8405 /* Create a temporary address map on a temporary obstack. We later
8406 copy this to the final obstack. */
8407 auto_obstack temp_obstack;
8408
8409 scoped_restore save_psymtabs_addrmap
8410 = make_scoped_restore (&objfile->psymtabs_addrmap,
8411 addrmap_create_mutable (&temp_obstack));
8412
8413 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8414 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8415
8416 /* This has to wait until we read the CUs, we need the list of DWOs. */
8417 process_skeletonless_type_units (dwarf2_per_objfile);
8418
8419 /* Now that all TUs have been processed we can fill in the dependencies. */
8420 if (dwarf2_per_objfile->type_unit_groups != NULL)
8421 {
8422 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8423 build_type_psymtab_dependencies, dwarf2_per_objfile);
8424 }
8425
8426 if (dwarf_read_debug)
8427 print_tu_stats (dwarf2_per_objfile);
8428
8429 set_partial_user (dwarf2_per_objfile);
8430
8431 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8432 &objfile->objfile_obstack);
8433 /* At this point we want to keep the address map. */
8434 save_psymtabs_addrmap.release ();
8435
8436 if (dwarf_read_debug)
8437 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8438 objfile_name (objfile));
8439 }
8440
8441 /* die_reader_func for load_partial_comp_unit. */
8442
8443 static void
8444 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8445 const gdb_byte *info_ptr,
8446 struct die_info *comp_unit_die,
8447 int has_children,
8448 void *data)
8449 {
8450 struct dwarf2_cu *cu = reader->cu;
8451
8452 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8453
8454 /* Check if comp unit has_children.
8455 If so, read the rest of the partial symbols from this comp unit.
8456 If not, there's no more debug_info for this comp unit. */
8457 if (has_children)
8458 load_partial_dies (reader, info_ptr, 0);
8459 }
8460
8461 /* Load the partial DIEs for a secondary CU into memory.
8462 This is also used when rereading a primary CU with load_all_dies. */
8463
8464 static void
8465 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8466 {
8467 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8468 load_partial_comp_unit_reader, NULL);
8469 }
8470
8471 static void
8472 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8473 struct dwarf2_section_info *section,
8474 struct dwarf2_section_info *abbrev_section,
8475 unsigned int is_dwz)
8476 {
8477 const gdb_byte *info_ptr;
8478 struct objfile *objfile = dwarf2_per_objfile->objfile;
8479
8480 if (dwarf_read_debug)
8481 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8482 get_section_name (section),
8483 get_section_file_name (section));
8484
8485 dwarf2_read_section (objfile, section);
8486
8487 info_ptr = section->buffer;
8488
8489 while (info_ptr < section->buffer + section->size)
8490 {
8491 struct dwarf2_per_cu_data *this_cu;
8492
8493 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8494
8495 comp_unit_head cu_header;
8496 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8497 abbrev_section, info_ptr,
8498 rcuh_kind::COMPILE);
8499
8500 /* Save the compilation unit for later lookup. */
8501 if (cu_header.unit_type != DW_UT_type)
8502 {
8503 this_cu = XOBNEW (&objfile->objfile_obstack,
8504 struct dwarf2_per_cu_data);
8505 memset (this_cu, 0, sizeof (*this_cu));
8506 }
8507 else
8508 {
8509 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8510 struct signatured_type);
8511 memset (sig_type, 0, sizeof (*sig_type));
8512 sig_type->signature = cu_header.signature;
8513 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8514 this_cu = &sig_type->per_cu;
8515 }
8516 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8517 this_cu->sect_off = sect_off;
8518 this_cu->length = cu_header.length + cu_header.initial_length_size;
8519 this_cu->is_dwz = is_dwz;
8520 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8521 this_cu->section = section;
8522
8523 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8524
8525 info_ptr = info_ptr + this_cu->length;
8526 }
8527 }
8528
8529 /* Create a list of all compilation units in OBJFILE.
8530 This is only done for -readnow and building partial symtabs. */
8531
8532 static void
8533 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8534 {
8535 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8536 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8537 &dwarf2_per_objfile->abbrev, 0);
8538
8539 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8540 if (dwz != NULL)
8541 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8542 1);
8543 }
8544
8545 /* Process all loaded DIEs for compilation unit CU, starting at
8546 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8547 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8548 DW_AT_ranges). See the comments of add_partial_subprogram on how
8549 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8550
8551 static void
8552 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8553 CORE_ADDR *highpc, int set_addrmap,
8554 struct dwarf2_cu *cu)
8555 {
8556 struct partial_die_info *pdi;
8557
8558 /* Now, march along the PDI's, descending into ones which have
8559 interesting children but skipping the children of the other ones,
8560 until we reach the end of the compilation unit. */
8561
8562 pdi = first_die;
8563
8564 while (pdi != NULL)
8565 {
8566 pdi->fixup (cu);
8567
8568 /* Anonymous namespaces or modules have no name but have interesting
8569 children, so we need to look at them. Ditto for anonymous
8570 enums. */
8571
8572 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8573 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8574 || pdi->tag == DW_TAG_imported_unit
8575 || pdi->tag == DW_TAG_inlined_subroutine)
8576 {
8577 switch (pdi->tag)
8578 {
8579 case DW_TAG_subprogram:
8580 case DW_TAG_inlined_subroutine:
8581 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8582 break;
8583 case DW_TAG_constant:
8584 case DW_TAG_variable:
8585 case DW_TAG_typedef:
8586 case DW_TAG_union_type:
8587 if (!pdi->is_declaration)
8588 {
8589 add_partial_symbol (pdi, cu);
8590 }
8591 break;
8592 case DW_TAG_class_type:
8593 case DW_TAG_interface_type:
8594 case DW_TAG_structure_type:
8595 if (!pdi->is_declaration)
8596 {
8597 add_partial_symbol (pdi, cu);
8598 }
8599 if ((cu->language == language_rust
8600 || cu->language == language_cplus) && pdi->has_children)
8601 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8602 set_addrmap, cu);
8603 break;
8604 case DW_TAG_enumeration_type:
8605 if (!pdi->is_declaration)
8606 add_partial_enumeration (pdi, cu);
8607 break;
8608 case DW_TAG_base_type:
8609 case DW_TAG_subrange_type:
8610 /* File scope base type definitions are added to the partial
8611 symbol table. */
8612 add_partial_symbol (pdi, cu);
8613 break;
8614 case DW_TAG_namespace:
8615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8616 break;
8617 case DW_TAG_module:
8618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8619 break;
8620 case DW_TAG_imported_unit:
8621 {
8622 struct dwarf2_per_cu_data *per_cu;
8623
8624 /* For now we don't handle imported units in type units. */
8625 if (cu->per_cu->is_debug_types)
8626 {
8627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8628 " supported in type units [in module %s]"),
8629 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8630 }
8631
8632 per_cu = dwarf2_find_containing_comp_unit
8633 (pdi->d.sect_off, pdi->is_dwz,
8634 cu->per_cu->dwarf2_per_objfile);
8635
8636 /* Go read the partial unit, if needed. */
8637 if (per_cu->v.psymtab == NULL)
8638 process_psymtab_comp_unit (per_cu, 1, cu->language);
8639
8640 VEC_safe_push (dwarf2_per_cu_ptr,
8641 cu->per_cu->imported_symtabs, per_cu);
8642 }
8643 break;
8644 case DW_TAG_imported_declaration:
8645 add_partial_symbol (pdi, cu);
8646 break;
8647 default:
8648 break;
8649 }
8650 }
8651
8652 /* If the die has a sibling, skip to the sibling. */
8653
8654 pdi = pdi->die_sibling;
8655 }
8656 }
8657
8658 /* Functions used to compute the fully scoped name of a partial DIE.
8659
8660 Normally, this is simple. For C++, the parent DIE's fully scoped
8661 name is concatenated with "::" and the partial DIE's name.
8662 Enumerators are an exception; they use the scope of their parent
8663 enumeration type, i.e. the name of the enumeration type is not
8664 prepended to the enumerator.
8665
8666 There are two complexities. One is DW_AT_specification; in this
8667 case "parent" means the parent of the target of the specification,
8668 instead of the direct parent of the DIE. The other is compilers
8669 which do not emit DW_TAG_namespace; in this case we try to guess
8670 the fully qualified name of structure types from their members'
8671 linkage names. This must be done using the DIE's children rather
8672 than the children of any DW_AT_specification target. We only need
8673 to do this for structures at the top level, i.e. if the target of
8674 any DW_AT_specification (if any; otherwise the DIE itself) does not
8675 have a parent. */
8676
8677 /* Compute the scope prefix associated with PDI's parent, in
8678 compilation unit CU. The result will be allocated on CU's
8679 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8680 field. NULL is returned if no prefix is necessary. */
8681 static const char *
8682 partial_die_parent_scope (struct partial_die_info *pdi,
8683 struct dwarf2_cu *cu)
8684 {
8685 const char *grandparent_scope;
8686 struct partial_die_info *parent, *real_pdi;
8687
8688 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8689 then this means the parent of the specification DIE. */
8690
8691 real_pdi = pdi;
8692 while (real_pdi->has_specification)
8693 real_pdi = find_partial_die (real_pdi->spec_offset,
8694 real_pdi->spec_is_dwz, cu);
8695
8696 parent = real_pdi->die_parent;
8697 if (parent == NULL)
8698 return NULL;
8699
8700 if (parent->scope_set)
8701 return parent->scope;
8702
8703 parent->fixup (cu);
8704
8705 grandparent_scope = partial_die_parent_scope (parent, cu);
8706
8707 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8708 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8709 Work around this problem here. */
8710 if (cu->language == language_cplus
8711 && parent->tag == DW_TAG_namespace
8712 && strcmp (parent->name, "::") == 0
8713 && grandparent_scope == NULL)
8714 {
8715 parent->scope = NULL;
8716 parent->scope_set = 1;
8717 return NULL;
8718 }
8719
8720 if (pdi->tag == DW_TAG_enumerator)
8721 /* Enumerators should not get the name of the enumeration as a prefix. */
8722 parent->scope = grandparent_scope;
8723 else if (parent->tag == DW_TAG_namespace
8724 || parent->tag == DW_TAG_module
8725 || parent->tag == DW_TAG_structure_type
8726 || parent->tag == DW_TAG_class_type
8727 || parent->tag == DW_TAG_interface_type
8728 || parent->tag == DW_TAG_union_type
8729 || parent->tag == DW_TAG_enumeration_type)
8730 {
8731 if (grandparent_scope == NULL)
8732 parent->scope = parent->name;
8733 else
8734 parent->scope = typename_concat (&cu->comp_unit_obstack,
8735 grandparent_scope,
8736 parent->name, 0, cu);
8737 }
8738 else
8739 {
8740 /* FIXME drow/2004-04-01: What should we be doing with
8741 function-local names? For partial symbols, we should probably be
8742 ignoring them. */
8743 complaint (&symfile_complaints,
8744 _("unhandled containing DIE tag %d for DIE at %s"),
8745 parent->tag, sect_offset_str (pdi->sect_off));
8746 parent->scope = grandparent_scope;
8747 }
8748
8749 parent->scope_set = 1;
8750 return parent->scope;
8751 }
8752
8753 /* Return the fully scoped name associated with PDI, from compilation unit
8754 CU. The result will be allocated with malloc. */
8755
8756 static char *
8757 partial_die_full_name (struct partial_die_info *pdi,
8758 struct dwarf2_cu *cu)
8759 {
8760 const char *parent_scope;
8761
8762 /* If this is a template instantiation, we can not work out the
8763 template arguments from partial DIEs. So, unfortunately, we have
8764 to go through the full DIEs. At least any work we do building
8765 types here will be reused if full symbols are loaded later. */
8766 if (pdi->has_template_arguments)
8767 {
8768 pdi->fixup (cu);
8769
8770 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8771 {
8772 struct die_info *die;
8773 struct attribute attr;
8774 struct dwarf2_cu *ref_cu = cu;
8775
8776 /* DW_FORM_ref_addr is using section offset. */
8777 attr.name = (enum dwarf_attribute) 0;
8778 attr.form = DW_FORM_ref_addr;
8779 attr.u.unsnd = to_underlying (pdi->sect_off);
8780 die = follow_die_ref (NULL, &attr, &ref_cu);
8781
8782 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8783 }
8784 }
8785
8786 parent_scope = partial_die_parent_scope (pdi, cu);
8787 if (parent_scope == NULL)
8788 return NULL;
8789 else
8790 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8791 }
8792
8793 static void
8794 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8795 {
8796 struct dwarf2_per_objfile *dwarf2_per_objfile
8797 = cu->per_cu->dwarf2_per_objfile;
8798 struct objfile *objfile = dwarf2_per_objfile->objfile;
8799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8800 CORE_ADDR addr = 0;
8801 const char *actual_name = NULL;
8802 CORE_ADDR baseaddr;
8803 char *built_actual_name;
8804
8805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8806
8807 built_actual_name = partial_die_full_name (pdi, cu);
8808 if (built_actual_name != NULL)
8809 actual_name = built_actual_name;
8810
8811 if (actual_name == NULL)
8812 actual_name = pdi->name;
8813
8814 switch (pdi->tag)
8815 {
8816 case DW_TAG_inlined_subroutine:
8817 case DW_TAG_subprogram:
8818 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8819 if (pdi->is_external || cu->language == language_ada)
8820 {
8821 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8822 of the global scope. But in Ada, we want to be able to access
8823 nested procedures globally. So all Ada subprograms are stored
8824 in the global scope. */
8825 add_psymbol_to_list (actual_name, strlen (actual_name),
8826 built_actual_name != NULL,
8827 VAR_DOMAIN, LOC_BLOCK,
8828 &objfile->global_psymbols,
8829 addr, cu->language, objfile);
8830 }
8831 else
8832 {
8833 add_psymbol_to_list (actual_name, strlen (actual_name),
8834 built_actual_name != NULL,
8835 VAR_DOMAIN, LOC_BLOCK,
8836 &objfile->static_psymbols,
8837 addr, cu->language, objfile);
8838 }
8839
8840 if (pdi->main_subprogram && actual_name != NULL)
8841 set_objfile_main_name (objfile, actual_name, cu->language);
8842 break;
8843 case DW_TAG_constant:
8844 {
8845 std::vector<partial_symbol *> *list;
8846
8847 if (pdi->is_external)
8848 list = &objfile->global_psymbols;
8849 else
8850 list = &objfile->static_psymbols;
8851 add_psymbol_to_list (actual_name, strlen (actual_name),
8852 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8853 list, 0, cu->language, objfile);
8854 }
8855 break;
8856 case DW_TAG_variable:
8857 if (pdi->d.locdesc)
8858 addr = decode_locdesc (pdi->d.locdesc, cu);
8859
8860 if (pdi->d.locdesc
8861 && addr == 0
8862 && !dwarf2_per_objfile->has_section_at_zero)
8863 {
8864 /* A global or static variable may also have been stripped
8865 out by the linker if unused, in which case its address
8866 will be nullified; do not add such variables into partial
8867 symbol table then. */
8868 }
8869 else if (pdi->is_external)
8870 {
8871 /* Global Variable.
8872 Don't enter into the minimal symbol tables as there is
8873 a minimal symbol table entry from the ELF symbols already.
8874 Enter into partial symbol table if it has a location
8875 descriptor or a type.
8876 If the location descriptor is missing, new_symbol will create
8877 a LOC_UNRESOLVED symbol, the address of the variable will then
8878 be determined from the minimal symbol table whenever the variable
8879 is referenced.
8880 The address for the partial symbol table entry is not
8881 used by GDB, but it comes in handy for debugging partial symbol
8882 table building. */
8883
8884 if (pdi->d.locdesc || pdi->has_type)
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL,
8887 VAR_DOMAIN, LOC_STATIC,
8888 &objfile->global_psymbols,
8889 addr + baseaddr,
8890 cu->language, objfile);
8891 }
8892 else
8893 {
8894 int has_loc = pdi->d.locdesc != NULL;
8895
8896 /* Static Variable. Skip symbols whose value we cannot know (those
8897 without location descriptors or constant values). */
8898 if (!has_loc && !pdi->has_const_value)
8899 {
8900 xfree (built_actual_name);
8901 return;
8902 }
8903
8904 add_psymbol_to_list (actual_name, strlen (actual_name),
8905 built_actual_name != NULL,
8906 VAR_DOMAIN, LOC_STATIC,
8907 &objfile->static_psymbols,
8908 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8909 cu->language, objfile);
8910 }
8911 break;
8912 case DW_TAG_typedef:
8913 case DW_TAG_base_type:
8914 case DW_TAG_subrange_type:
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 VAR_DOMAIN, LOC_TYPEDEF,
8918 &objfile->static_psymbols,
8919 0, cu->language, objfile);
8920 break;
8921 case DW_TAG_imported_declaration:
8922 case DW_TAG_namespace:
8923 add_psymbol_to_list (actual_name, strlen (actual_name),
8924 built_actual_name != NULL,
8925 VAR_DOMAIN, LOC_TYPEDEF,
8926 &objfile->global_psymbols,
8927 0, cu->language, objfile);
8928 break;
8929 case DW_TAG_module:
8930 add_psymbol_to_list (actual_name, strlen (actual_name),
8931 built_actual_name != NULL,
8932 MODULE_DOMAIN, LOC_TYPEDEF,
8933 &objfile->global_psymbols,
8934 0, cu->language, objfile);
8935 break;
8936 case DW_TAG_class_type:
8937 case DW_TAG_interface_type:
8938 case DW_TAG_structure_type:
8939 case DW_TAG_union_type:
8940 case DW_TAG_enumeration_type:
8941 /* Skip external references. The DWARF standard says in the section
8942 about "Structure, Union, and Class Type Entries": "An incomplete
8943 structure, union or class type is represented by a structure,
8944 union or class entry that does not have a byte size attribute
8945 and that has a DW_AT_declaration attribute." */
8946 if (!pdi->has_byte_size && pdi->is_declaration)
8947 {
8948 xfree (built_actual_name);
8949 return;
8950 }
8951
8952 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8953 static vs. global. */
8954 add_psymbol_to_list (actual_name, strlen (actual_name),
8955 built_actual_name != NULL,
8956 STRUCT_DOMAIN, LOC_TYPEDEF,
8957 cu->language == language_cplus
8958 ? &objfile->global_psymbols
8959 : &objfile->static_psymbols,
8960 0, cu->language, objfile);
8961
8962 break;
8963 case DW_TAG_enumerator:
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_CONST,
8967 cu->language == language_cplus
8968 ? &objfile->global_psymbols
8969 : &objfile->static_psymbols,
8970 0, cu->language, objfile);
8971 break;
8972 default:
8973 break;
8974 }
8975
8976 xfree (built_actual_name);
8977 }
8978
8979 /* Read a partial die corresponding to a namespace; also, add a symbol
8980 corresponding to that namespace to the symbol table. NAMESPACE is
8981 the name of the enclosing namespace. */
8982
8983 static void
8984 add_partial_namespace (struct partial_die_info *pdi,
8985 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8986 int set_addrmap, struct dwarf2_cu *cu)
8987 {
8988 /* Add a symbol for the namespace. */
8989
8990 add_partial_symbol (pdi, cu);
8991
8992 /* Now scan partial symbols in that namespace. */
8993
8994 if (pdi->has_children)
8995 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8996 }
8997
8998 /* Read a partial die corresponding to a Fortran module. */
8999
9000 static void
9001 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9002 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9003 {
9004 /* Add a symbol for the namespace. */
9005
9006 add_partial_symbol (pdi, cu);
9007
9008 /* Now scan partial symbols in that module. */
9009
9010 if (pdi->has_children)
9011 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9012 }
9013
9014 /* Read a partial die corresponding to a subprogram or an inlined
9015 subprogram and create a partial symbol for that subprogram.
9016 When the CU language allows it, this routine also defines a partial
9017 symbol for each nested subprogram that this subprogram contains.
9018 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9019 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9020
9021 PDI may also be a lexical block, in which case we simply search
9022 recursively for subprograms defined inside that lexical block.
9023 Again, this is only performed when the CU language allows this
9024 type of definitions. */
9025
9026 static void
9027 add_partial_subprogram (struct partial_die_info *pdi,
9028 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9029 int set_addrmap, struct dwarf2_cu *cu)
9030 {
9031 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9032 {
9033 if (pdi->has_pc_info)
9034 {
9035 if (pdi->lowpc < *lowpc)
9036 *lowpc = pdi->lowpc;
9037 if (pdi->highpc > *highpc)
9038 *highpc = pdi->highpc;
9039 if (set_addrmap)
9040 {
9041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9043 CORE_ADDR baseaddr;
9044 CORE_ADDR highpc;
9045 CORE_ADDR lowpc;
9046
9047 baseaddr = ANOFFSET (objfile->section_offsets,
9048 SECT_OFF_TEXT (objfile));
9049 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9050 pdi->lowpc + baseaddr);
9051 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9052 pdi->highpc + baseaddr);
9053 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9054 cu->per_cu->v.psymtab);
9055 }
9056 }
9057
9058 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9059 {
9060 if (!pdi->is_declaration)
9061 /* Ignore subprogram DIEs that do not have a name, they are
9062 illegal. Do not emit a complaint at this point, we will
9063 do so when we convert this psymtab into a symtab. */
9064 if (pdi->name)
9065 add_partial_symbol (pdi, cu);
9066 }
9067 }
9068
9069 if (! pdi->has_children)
9070 return;
9071
9072 if (cu->language == language_ada)
9073 {
9074 pdi = pdi->die_child;
9075 while (pdi != NULL)
9076 {
9077 pdi->fixup (cu);
9078 if (pdi->tag == DW_TAG_subprogram
9079 || pdi->tag == DW_TAG_inlined_subroutine
9080 || pdi->tag == DW_TAG_lexical_block)
9081 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9082 pdi = pdi->die_sibling;
9083 }
9084 }
9085 }
9086
9087 /* Read a partial die corresponding to an enumeration type. */
9088
9089 static void
9090 add_partial_enumeration (struct partial_die_info *enum_pdi,
9091 struct dwarf2_cu *cu)
9092 {
9093 struct partial_die_info *pdi;
9094
9095 if (enum_pdi->name != NULL)
9096 add_partial_symbol (enum_pdi, cu);
9097
9098 pdi = enum_pdi->die_child;
9099 while (pdi)
9100 {
9101 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9102 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9103 else
9104 add_partial_symbol (pdi, cu);
9105 pdi = pdi->die_sibling;
9106 }
9107 }
9108
9109 /* Return the initial uleb128 in the die at INFO_PTR. */
9110
9111 static unsigned int
9112 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9113 {
9114 unsigned int bytes_read;
9115
9116 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9117 }
9118
9119 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9120 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9121
9122 Return the corresponding abbrev, or NULL if the number is zero (indicating
9123 an empty DIE). In either case *BYTES_READ will be set to the length of
9124 the initial number. */
9125
9126 static struct abbrev_info *
9127 peek_die_abbrev (const die_reader_specs &reader,
9128 const gdb_byte *info_ptr, unsigned int *bytes_read)
9129 {
9130 dwarf2_cu *cu = reader.cu;
9131 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9132 unsigned int abbrev_number
9133 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9134
9135 if (abbrev_number == 0)
9136 return NULL;
9137
9138 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9139 if (!abbrev)
9140 {
9141 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9142 " at offset %s [in module %s]"),
9143 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9144 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9145 }
9146
9147 return abbrev;
9148 }
9149
9150 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9151 Returns a pointer to the end of a series of DIEs, terminated by an empty
9152 DIE. Any children of the skipped DIEs will also be skipped. */
9153
9154 static const gdb_byte *
9155 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9156 {
9157 while (1)
9158 {
9159 unsigned int bytes_read;
9160 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9161
9162 if (abbrev == NULL)
9163 return info_ptr + bytes_read;
9164 else
9165 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9166 }
9167 }
9168
9169 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9170 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9171 abbrev corresponding to that skipped uleb128 should be passed in
9172 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9173 children. */
9174
9175 static const gdb_byte *
9176 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9177 struct abbrev_info *abbrev)
9178 {
9179 unsigned int bytes_read;
9180 struct attribute attr;
9181 bfd *abfd = reader->abfd;
9182 struct dwarf2_cu *cu = reader->cu;
9183 const gdb_byte *buffer = reader->buffer;
9184 const gdb_byte *buffer_end = reader->buffer_end;
9185 unsigned int form, i;
9186
9187 for (i = 0; i < abbrev->num_attrs; i++)
9188 {
9189 /* The only abbrev we care about is DW_AT_sibling. */
9190 if (abbrev->attrs[i].name == DW_AT_sibling)
9191 {
9192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9193 if (attr.form == DW_FORM_ref_addr)
9194 complaint (&symfile_complaints,
9195 _("ignoring absolute DW_AT_sibling"));
9196 else
9197 {
9198 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9199 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9200
9201 if (sibling_ptr < info_ptr)
9202 complaint (&symfile_complaints,
9203 _("DW_AT_sibling points backwards"));
9204 else if (sibling_ptr > reader->buffer_end)
9205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9206 else
9207 return sibling_ptr;
9208 }
9209 }
9210
9211 /* If it isn't DW_AT_sibling, skip this attribute. */
9212 form = abbrev->attrs[i].form;
9213 skip_attribute:
9214 switch (form)
9215 {
9216 case DW_FORM_ref_addr:
9217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9218 and later it is offset sized. */
9219 if (cu->header.version == 2)
9220 info_ptr += cu->header.addr_size;
9221 else
9222 info_ptr += cu->header.offset_size;
9223 break;
9224 case DW_FORM_GNU_ref_alt:
9225 info_ptr += cu->header.offset_size;
9226 break;
9227 case DW_FORM_addr:
9228 info_ptr += cu->header.addr_size;
9229 break;
9230 case DW_FORM_data1:
9231 case DW_FORM_ref1:
9232 case DW_FORM_flag:
9233 info_ptr += 1;
9234 break;
9235 case DW_FORM_flag_present:
9236 case DW_FORM_implicit_const:
9237 break;
9238 case DW_FORM_data2:
9239 case DW_FORM_ref2:
9240 info_ptr += 2;
9241 break;
9242 case DW_FORM_data4:
9243 case DW_FORM_ref4:
9244 info_ptr += 4;
9245 break;
9246 case DW_FORM_data8:
9247 case DW_FORM_ref8:
9248 case DW_FORM_ref_sig8:
9249 info_ptr += 8;
9250 break;
9251 case DW_FORM_data16:
9252 info_ptr += 16;
9253 break;
9254 case DW_FORM_string:
9255 read_direct_string (abfd, info_ptr, &bytes_read);
9256 info_ptr += bytes_read;
9257 break;
9258 case DW_FORM_sec_offset:
9259 case DW_FORM_strp:
9260 case DW_FORM_GNU_strp_alt:
9261 info_ptr += cu->header.offset_size;
9262 break;
9263 case DW_FORM_exprloc:
9264 case DW_FORM_block:
9265 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 break;
9268 case DW_FORM_block1:
9269 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9270 break;
9271 case DW_FORM_block2:
9272 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9273 break;
9274 case DW_FORM_block4:
9275 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9276 break;
9277 case DW_FORM_sdata:
9278 case DW_FORM_udata:
9279 case DW_FORM_ref_udata:
9280 case DW_FORM_GNU_addr_index:
9281 case DW_FORM_GNU_str_index:
9282 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9283 break;
9284 case DW_FORM_indirect:
9285 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9286 info_ptr += bytes_read;
9287 /* We need to continue parsing from here, so just go back to
9288 the top. */
9289 goto skip_attribute;
9290
9291 default:
9292 error (_("Dwarf Error: Cannot handle %s "
9293 "in DWARF reader [in module %s]"),
9294 dwarf_form_name (form),
9295 bfd_get_filename (abfd));
9296 }
9297 }
9298
9299 if (abbrev->has_children)
9300 return skip_children (reader, info_ptr);
9301 else
9302 return info_ptr;
9303 }
9304
9305 /* Locate ORIG_PDI's sibling.
9306 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9307
9308 static const gdb_byte *
9309 locate_pdi_sibling (const struct die_reader_specs *reader,
9310 struct partial_die_info *orig_pdi,
9311 const gdb_byte *info_ptr)
9312 {
9313 /* Do we know the sibling already? */
9314
9315 if (orig_pdi->sibling)
9316 return orig_pdi->sibling;
9317
9318 /* Are there any children to deal with? */
9319
9320 if (!orig_pdi->has_children)
9321 return info_ptr;
9322
9323 /* Skip the children the long way. */
9324
9325 return skip_children (reader, info_ptr);
9326 }
9327
9328 /* Expand this partial symbol table into a full symbol table. SELF is
9329 not NULL. */
9330
9331 static void
9332 dwarf2_read_symtab (struct partial_symtab *self,
9333 struct objfile *objfile)
9334 {
9335 struct dwarf2_per_objfile *dwarf2_per_objfile
9336 = get_dwarf2_per_objfile (objfile);
9337
9338 if (self->readin)
9339 {
9340 warning (_("bug: psymtab for %s is already read in."),
9341 self->filename);
9342 }
9343 else
9344 {
9345 if (info_verbose)
9346 {
9347 printf_filtered (_("Reading in symbols for %s..."),
9348 self->filename);
9349 gdb_flush (gdb_stdout);
9350 }
9351
9352 /* If this psymtab is constructed from a debug-only objfile, the
9353 has_section_at_zero flag will not necessarily be correct. We
9354 can get the correct value for this flag by looking at the data
9355 associated with the (presumably stripped) associated objfile. */
9356 if (objfile->separate_debug_objfile_backlink)
9357 {
9358 struct dwarf2_per_objfile *dpo_backlink
9359 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9360
9361 dwarf2_per_objfile->has_section_at_zero
9362 = dpo_backlink->has_section_at_zero;
9363 }
9364
9365 dwarf2_per_objfile->reading_partial_symbols = 0;
9366
9367 psymtab_to_symtab_1 (self);
9368
9369 /* Finish up the debug error message. */
9370 if (info_verbose)
9371 printf_filtered (_("done.\n"));
9372 }
9373
9374 process_cu_includes (dwarf2_per_objfile);
9375 }
9376 \f
9377 /* Reading in full CUs. */
9378
9379 /* Add PER_CU to the queue. */
9380
9381 static void
9382 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9383 enum language pretend_language)
9384 {
9385 struct dwarf2_queue_item *item;
9386
9387 per_cu->queued = 1;
9388 item = XNEW (struct dwarf2_queue_item);
9389 item->per_cu = per_cu;
9390 item->pretend_language = pretend_language;
9391 item->next = NULL;
9392
9393 if (dwarf2_queue == NULL)
9394 dwarf2_queue = item;
9395 else
9396 dwarf2_queue_tail->next = item;
9397
9398 dwarf2_queue_tail = item;
9399 }
9400
9401 /* If PER_CU is not yet queued, add it to the queue.
9402 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9403 dependency.
9404 The result is non-zero if PER_CU was queued, otherwise the result is zero
9405 meaning either PER_CU is already queued or it is already loaded.
9406
9407 N.B. There is an invariant here that if a CU is queued then it is loaded.
9408 The caller is required to load PER_CU if we return non-zero. */
9409
9410 static int
9411 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9412 struct dwarf2_per_cu_data *per_cu,
9413 enum language pretend_language)
9414 {
9415 /* We may arrive here during partial symbol reading, if we need full
9416 DIEs to process an unusual case (e.g. template arguments). Do
9417 not queue PER_CU, just tell our caller to load its DIEs. */
9418 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9419 {
9420 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9421 return 1;
9422 return 0;
9423 }
9424
9425 /* Mark the dependence relation so that we don't flush PER_CU
9426 too early. */
9427 if (dependent_cu != NULL)
9428 dwarf2_add_dependence (dependent_cu, per_cu);
9429
9430 /* If it's already on the queue, we have nothing to do. */
9431 if (per_cu->queued)
9432 return 0;
9433
9434 /* If the compilation unit is already loaded, just mark it as
9435 used. */
9436 if (per_cu->cu != NULL)
9437 {
9438 per_cu->cu->last_used = 0;
9439 return 0;
9440 }
9441
9442 /* Add it to the queue. */
9443 queue_comp_unit (per_cu, pretend_language);
9444
9445 return 1;
9446 }
9447
9448 /* Process the queue. */
9449
9450 static void
9451 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9452 {
9453 struct dwarf2_queue_item *item, *next_item;
9454
9455 if (dwarf_read_debug)
9456 {
9457 fprintf_unfiltered (gdb_stdlog,
9458 "Expanding one or more symtabs of objfile %s ...\n",
9459 objfile_name (dwarf2_per_objfile->objfile));
9460 }
9461
9462 /* The queue starts out with one item, but following a DIE reference
9463 may load a new CU, adding it to the end of the queue. */
9464 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9465 {
9466 if ((dwarf2_per_objfile->using_index
9467 ? !item->per_cu->v.quick->compunit_symtab
9468 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9469 /* Skip dummy CUs. */
9470 && item->per_cu->cu != NULL)
9471 {
9472 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9473 unsigned int debug_print_threshold;
9474 char buf[100];
9475
9476 if (per_cu->is_debug_types)
9477 {
9478 struct signatured_type *sig_type =
9479 (struct signatured_type *) per_cu;
9480
9481 sprintf (buf, "TU %s at offset %s",
9482 hex_string (sig_type->signature),
9483 sect_offset_str (per_cu->sect_off));
9484 /* There can be 100s of TUs.
9485 Only print them in verbose mode. */
9486 debug_print_threshold = 2;
9487 }
9488 else
9489 {
9490 sprintf (buf, "CU at offset %s",
9491 sect_offset_str (per_cu->sect_off));
9492 debug_print_threshold = 1;
9493 }
9494
9495 if (dwarf_read_debug >= debug_print_threshold)
9496 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9497
9498 if (per_cu->is_debug_types)
9499 process_full_type_unit (per_cu, item->pretend_language);
9500 else
9501 process_full_comp_unit (per_cu, item->pretend_language);
9502
9503 if (dwarf_read_debug >= debug_print_threshold)
9504 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9505 }
9506
9507 item->per_cu->queued = 0;
9508 next_item = item->next;
9509 xfree (item);
9510 }
9511
9512 dwarf2_queue_tail = NULL;
9513
9514 if (dwarf_read_debug)
9515 {
9516 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9517 objfile_name (dwarf2_per_objfile->objfile));
9518 }
9519 }
9520
9521 /* Read in full symbols for PST, and anything it depends on. */
9522
9523 static void
9524 psymtab_to_symtab_1 (struct partial_symtab *pst)
9525 {
9526 struct dwarf2_per_cu_data *per_cu;
9527 int i;
9528
9529 if (pst->readin)
9530 return;
9531
9532 for (i = 0; i < pst->number_of_dependencies; i++)
9533 if (!pst->dependencies[i]->readin
9534 && pst->dependencies[i]->user == NULL)
9535 {
9536 /* Inform about additional files that need to be read in. */
9537 if (info_verbose)
9538 {
9539 /* FIXME: i18n: Need to make this a single string. */
9540 fputs_filtered (" ", gdb_stdout);
9541 wrap_here ("");
9542 fputs_filtered ("and ", gdb_stdout);
9543 wrap_here ("");
9544 printf_filtered ("%s...", pst->dependencies[i]->filename);
9545 wrap_here (""); /* Flush output. */
9546 gdb_flush (gdb_stdout);
9547 }
9548 psymtab_to_symtab_1 (pst->dependencies[i]);
9549 }
9550
9551 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9552
9553 if (per_cu == NULL)
9554 {
9555 /* It's an include file, no symbols to read for it.
9556 Everything is in the parent symtab. */
9557 pst->readin = 1;
9558 return;
9559 }
9560
9561 dw2_do_instantiate_symtab (per_cu);
9562 }
9563
9564 /* Trivial hash function for die_info: the hash value of a DIE
9565 is its offset in .debug_info for this objfile. */
9566
9567 static hashval_t
9568 die_hash (const void *item)
9569 {
9570 const struct die_info *die = (const struct die_info *) item;
9571
9572 return to_underlying (die->sect_off);
9573 }
9574
9575 /* Trivial comparison function for die_info structures: two DIEs
9576 are equal if they have the same offset. */
9577
9578 static int
9579 die_eq (const void *item_lhs, const void *item_rhs)
9580 {
9581 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9582 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9583
9584 return die_lhs->sect_off == die_rhs->sect_off;
9585 }
9586
9587 /* die_reader_func for load_full_comp_unit.
9588 This is identical to read_signatured_type_reader,
9589 but is kept separate for now. */
9590
9591 static void
9592 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9593 const gdb_byte *info_ptr,
9594 struct die_info *comp_unit_die,
9595 int has_children,
9596 void *data)
9597 {
9598 struct dwarf2_cu *cu = reader->cu;
9599 enum language *language_ptr = (enum language *) data;
9600
9601 gdb_assert (cu->die_hash == NULL);
9602 cu->die_hash =
9603 htab_create_alloc_ex (cu->header.length / 12,
9604 die_hash,
9605 die_eq,
9606 NULL,
9607 &cu->comp_unit_obstack,
9608 hashtab_obstack_allocate,
9609 dummy_obstack_deallocate);
9610
9611 if (has_children)
9612 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9613 &info_ptr, comp_unit_die);
9614 cu->dies = comp_unit_die;
9615 /* comp_unit_die is not stored in die_hash, no need. */
9616
9617 /* We try not to read any attributes in this function, because not
9618 all CUs needed for references have been loaded yet, and symbol
9619 table processing isn't initialized. But we have to set the CU language,
9620 or we won't be able to build types correctly.
9621 Similarly, if we do not read the producer, we can not apply
9622 producer-specific interpretation. */
9623 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9624 }
9625
9626 /* Load the DIEs associated with PER_CU into memory. */
9627
9628 static void
9629 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9630 enum language pretend_language)
9631 {
9632 gdb_assert (! this_cu->is_debug_types);
9633
9634 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9635 load_full_comp_unit_reader, &pretend_language);
9636 }
9637
9638 /* Add a DIE to the delayed physname list. */
9639
9640 static void
9641 add_to_method_list (struct type *type, int fnfield_index, int index,
9642 const char *name, struct die_info *die,
9643 struct dwarf2_cu *cu)
9644 {
9645 struct delayed_method_info mi;
9646 mi.type = type;
9647 mi.fnfield_index = fnfield_index;
9648 mi.index = index;
9649 mi.name = name;
9650 mi.die = die;
9651 cu->method_list.push_back (mi);
9652 }
9653
9654 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9655 "const" / "volatile". If so, decrements LEN by the length of the
9656 modifier and return true. Otherwise return false. */
9657
9658 template<size_t N>
9659 static bool
9660 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9661 {
9662 size_t mod_len = sizeof (mod) - 1;
9663 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9664 {
9665 len -= mod_len;
9666 return true;
9667 }
9668 return false;
9669 }
9670
9671 /* Compute the physnames of any methods on the CU's method list.
9672
9673 The computation of method physnames is delayed in order to avoid the
9674 (bad) condition that one of the method's formal parameters is of an as yet
9675 incomplete type. */
9676
9677 static void
9678 compute_delayed_physnames (struct dwarf2_cu *cu)
9679 {
9680 /* Only C++ delays computing physnames. */
9681 if (cu->method_list.empty ())
9682 return;
9683 gdb_assert (cu->language == language_cplus);
9684
9685 for (struct delayed_method_info &mi : cu->method_list)
9686 {
9687 const char *physname;
9688 struct fn_fieldlist *fn_flp
9689 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9690 physname = dwarf2_physname (mi.name, mi.die, cu);
9691 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9692 = physname ? physname : "";
9693
9694 /* Since there's no tag to indicate whether a method is a
9695 const/volatile overload, extract that information out of the
9696 demangled name. */
9697 if (physname != NULL)
9698 {
9699 size_t len = strlen (physname);
9700
9701 while (1)
9702 {
9703 if (physname[len] == ')') /* shortcut */
9704 break;
9705 else if (check_modifier (physname, len, " const"))
9706 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9707 else if (check_modifier (physname, len, " volatile"))
9708 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9709 else
9710 break;
9711 }
9712 }
9713 }
9714
9715 /* The list is no longer needed. */
9716 cu->method_list.clear ();
9717 }
9718
9719 /* Go objects should be embedded in a DW_TAG_module DIE,
9720 and it's not clear if/how imported objects will appear.
9721 To keep Go support simple until that's worked out,
9722 go back through what we've read and create something usable.
9723 We could do this while processing each DIE, and feels kinda cleaner,
9724 but that way is more invasive.
9725 This is to, for example, allow the user to type "p var" or "b main"
9726 without having to specify the package name, and allow lookups
9727 of module.object to work in contexts that use the expression
9728 parser. */
9729
9730 static void
9731 fixup_go_packaging (struct dwarf2_cu *cu)
9732 {
9733 char *package_name = NULL;
9734 struct pending *list;
9735 int i;
9736
9737 for (list = global_symbols; list != NULL; list = list->next)
9738 {
9739 for (i = 0; i < list->nsyms; ++i)
9740 {
9741 struct symbol *sym = list->symbol[i];
9742
9743 if (SYMBOL_LANGUAGE (sym) == language_go
9744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9745 {
9746 char *this_package_name = go_symbol_package_name (sym);
9747
9748 if (this_package_name == NULL)
9749 continue;
9750 if (package_name == NULL)
9751 package_name = this_package_name;
9752 else
9753 {
9754 struct objfile *objfile
9755 = cu->per_cu->dwarf2_per_objfile->objfile;
9756 if (strcmp (package_name, this_package_name) != 0)
9757 complaint (&symfile_complaints,
9758 _("Symtab %s has objects from two different Go packages: %s and %s"),
9759 (symbol_symtab (sym) != NULL
9760 ? symtab_to_filename_for_display
9761 (symbol_symtab (sym))
9762 : objfile_name (objfile)),
9763 this_package_name, package_name);
9764 xfree (this_package_name);
9765 }
9766 }
9767 }
9768 }
9769
9770 if (package_name != NULL)
9771 {
9772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9773 const char *saved_package_name
9774 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9775 package_name,
9776 strlen (package_name));
9777 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9778 saved_package_name);
9779 struct symbol *sym;
9780
9781 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9782
9783 sym = allocate_symbol (objfile);
9784 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9785 SYMBOL_SET_NAMES (sym, saved_package_name,
9786 strlen (saved_package_name), 0, objfile);
9787 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9788 e.g., "main" finds the "main" module and not C's main(). */
9789 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9790 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9791 SYMBOL_TYPE (sym) = type;
9792
9793 add_symbol_to_list (sym, &global_symbols);
9794
9795 xfree (package_name);
9796 }
9797 }
9798
9799 /* Allocate a fully-qualified name consisting of the two parts on the
9800 obstack. */
9801
9802 static const char *
9803 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9804 {
9805 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9806 }
9807
9808 /* A helper that allocates a struct discriminant_info to attach to a
9809 union type. */
9810
9811 static struct discriminant_info *
9812 alloc_discriminant_info (struct type *type, int discriminant_index,
9813 int default_index)
9814 {
9815 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9816 gdb_assert (discriminant_index == -1
9817 || (discriminant_index >= 0
9818 && discriminant_index < TYPE_NFIELDS (type)));
9819 gdb_assert (default_index == -1
9820 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9821
9822 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9823
9824 struct discriminant_info *disc
9825 = ((struct discriminant_info *)
9826 TYPE_ZALLOC (type,
9827 offsetof (struct discriminant_info, discriminants)
9828 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9829 disc->default_index = default_index;
9830 disc->discriminant_index = discriminant_index;
9831
9832 struct dynamic_prop prop;
9833 prop.kind = PROP_UNDEFINED;
9834 prop.data.baton = disc;
9835
9836 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9837
9838 return disc;
9839 }
9840
9841 /* Some versions of rustc emitted enums in an unusual way.
9842
9843 Ordinary enums were emitted as unions. The first element of each
9844 structure in the union was named "RUST$ENUM$DISR". This element
9845 held the discriminant.
9846
9847 These versions of Rust also implemented the "non-zero"
9848 optimization. When the enum had two values, and one is empty and
9849 the other holds a pointer that cannot be zero, the pointer is used
9850 as the discriminant, with a zero value meaning the empty variant.
9851 Here, the union's first member is of the form
9852 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9853 where the fieldnos are the indices of the fields that should be
9854 traversed in order to find the field (which may be several fields deep)
9855 and the variantname is the name of the variant of the case when the
9856 field is zero.
9857
9858 This function recognizes whether TYPE is of one of these forms,
9859 and, if so, smashes it to be a variant type. */
9860
9861 static void
9862 quirk_rust_enum (struct type *type, struct objfile *objfile)
9863 {
9864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9865
9866 /* We don't need to deal with empty enums. */
9867 if (TYPE_NFIELDS (type) == 0)
9868 return;
9869
9870 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9871 if (TYPE_NFIELDS (type) == 1
9872 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9873 {
9874 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9875
9876 /* Decode the field name to find the offset of the
9877 discriminant. */
9878 ULONGEST bit_offset = 0;
9879 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9880 while (name[0] >= '0' && name[0] <= '9')
9881 {
9882 char *tail;
9883 unsigned long index = strtoul (name, &tail, 10);
9884 name = tail;
9885 if (*name != '$'
9886 || index >= TYPE_NFIELDS (field_type)
9887 || (TYPE_FIELD_LOC_KIND (field_type, index)
9888 != FIELD_LOC_KIND_BITPOS))
9889 {
9890 complaint (&symfile_complaints,
9891 _("Could not parse Rust enum encoding string \"%s\""
9892 "[in module %s]"),
9893 TYPE_FIELD_NAME (type, 0),
9894 objfile_name (objfile));
9895 return;
9896 }
9897 ++name;
9898
9899 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9900 field_type = TYPE_FIELD_TYPE (field_type, index);
9901 }
9902
9903 /* Make a union to hold the variants. */
9904 struct type *union_type = alloc_type (objfile);
9905 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9906 TYPE_NFIELDS (union_type) = 3;
9907 TYPE_FIELDS (union_type)
9908 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9909 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9910 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9911
9912 /* Put the discriminant must at index 0. */
9913 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9914 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9915 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9916 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9917
9918 /* The order of fields doesn't really matter, so put the real
9919 field at index 1 and the data-less field at index 2. */
9920 struct discriminant_info *disc
9921 = alloc_discriminant_info (union_type, 0, 1);
9922 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9923 TYPE_FIELD_NAME (union_type, 1)
9924 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9925 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9926 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9927 TYPE_FIELD_NAME (union_type, 1));
9928
9929 const char *dataless_name
9930 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9931 name);
9932 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9933 dataless_name);
9934 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9935 /* NAME points into the original discriminant name, which
9936 already has the correct lifetime. */
9937 TYPE_FIELD_NAME (union_type, 2) = name;
9938 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9939 disc->discriminants[2] = 0;
9940
9941 /* Smash this type to be a structure type. We have to do this
9942 because the type has already been recorded. */
9943 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9944 TYPE_NFIELDS (type) = 1;
9945 TYPE_FIELDS (type)
9946 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9947
9948 /* Install the variant part. */
9949 TYPE_FIELD_TYPE (type, 0) = union_type;
9950 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9951 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9952 }
9953 else if (TYPE_NFIELDS (type) == 1)
9954 {
9955 /* We assume that a union with a single field is a univariant
9956 enum. */
9957 /* Smash this type to be a structure type. We have to do this
9958 because the type has already been recorded. */
9959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9960
9961 /* Make a union to hold the variants. */
9962 struct type *union_type = alloc_type (objfile);
9963 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9964 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9965 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9966 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9967 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9968
9969 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9970 const char *variant_name
9971 = rust_last_path_segment (TYPE_NAME (field_type));
9972 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9973 TYPE_NAME (field_type)
9974 = rust_fully_qualify (&objfile->objfile_obstack,
9975 TYPE_NAME (type), variant_name);
9976
9977 /* Install the union in the outer struct type. */
9978 TYPE_NFIELDS (type) = 1;
9979 TYPE_FIELDS (type)
9980 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9981 TYPE_FIELD_TYPE (type, 0) = union_type;
9982 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9983 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9984
9985 alloc_discriminant_info (union_type, -1, 0);
9986 }
9987 else
9988 {
9989 struct type *disr_type = nullptr;
9990 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9991 {
9992 disr_type = TYPE_FIELD_TYPE (type, i);
9993
9994 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9995 {
9996 /* All fields of a true enum will be structs. */
9997 return;
9998 }
9999 else if (TYPE_NFIELDS (disr_type) == 0)
10000 {
10001 /* Could be data-less variant, so keep going. */
10002 disr_type = nullptr;
10003 }
10004 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10005 "RUST$ENUM$DISR") != 0)
10006 {
10007 /* Not a Rust enum. */
10008 return;
10009 }
10010 else
10011 {
10012 /* Found one. */
10013 break;
10014 }
10015 }
10016
10017 /* If we got here without a discriminant, then it's probably
10018 just a union. */
10019 if (disr_type == nullptr)
10020 return;
10021
10022 /* Smash this type to be a structure type. We have to do this
10023 because the type has already been recorded. */
10024 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10025
10026 /* Make a union to hold the variants. */
10027 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10028 struct type *union_type = alloc_type (objfile);
10029 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10030 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10031 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10032 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10033 TYPE_FIELDS (union_type)
10034 = (struct field *) TYPE_ZALLOC (union_type,
10035 (TYPE_NFIELDS (union_type)
10036 * sizeof (struct field)));
10037
10038 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10039 TYPE_NFIELDS (type) * sizeof (struct field));
10040
10041 /* Install the discriminant at index 0 in the union. */
10042 TYPE_FIELD (union_type, 0) = *disr_field;
10043 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10044 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10045
10046 /* Install the union in the outer struct type. */
10047 TYPE_FIELD_TYPE (type, 0) = union_type;
10048 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10049 TYPE_NFIELDS (type) = 1;
10050
10051 /* Set the size and offset of the union type. */
10052 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10053
10054 /* We need a way to find the correct discriminant given a
10055 variant name. For convenience we build a map here. */
10056 struct type *enum_type = FIELD_TYPE (*disr_field);
10057 std::unordered_map<std::string, ULONGEST> discriminant_map;
10058 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10059 {
10060 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10061 {
10062 const char *name
10063 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10064 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10065 }
10066 }
10067
10068 int n_fields = TYPE_NFIELDS (union_type);
10069 struct discriminant_info *disc
10070 = alloc_discriminant_info (union_type, 0, -1);
10071 /* Skip the discriminant here. */
10072 for (int i = 1; i < n_fields; ++i)
10073 {
10074 /* Find the final word in the name of this variant's type.
10075 That name can be used to look up the correct
10076 discriminant. */
10077 const char *variant_name
10078 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10079 i)));
10080
10081 auto iter = discriminant_map.find (variant_name);
10082 if (iter != discriminant_map.end ())
10083 disc->discriminants[i] = iter->second;
10084
10085 /* Remove the discriminant field, if it exists. */
10086 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10087 if (TYPE_NFIELDS (sub_type) > 0)
10088 {
10089 --TYPE_NFIELDS (sub_type);
10090 ++TYPE_FIELDS (sub_type);
10091 }
10092 TYPE_FIELD_NAME (union_type, i) = variant_name;
10093 TYPE_NAME (sub_type)
10094 = rust_fully_qualify (&objfile->objfile_obstack,
10095 TYPE_NAME (type), variant_name);
10096 }
10097 }
10098 }
10099
10100 /* Rewrite some Rust unions to be structures with variants parts. */
10101
10102 static void
10103 rust_union_quirks (struct dwarf2_cu *cu)
10104 {
10105 gdb_assert (cu->language == language_rust);
10106 for (struct type *type : cu->rust_unions)
10107 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10108 }
10109
10110 /* Return the symtab for PER_CU. This works properly regardless of
10111 whether we're using the index or psymtabs. */
10112
10113 static struct compunit_symtab *
10114 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10115 {
10116 return (per_cu->dwarf2_per_objfile->using_index
10117 ? per_cu->v.quick->compunit_symtab
10118 : per_cu->v.psymtab->compunit_symtab);
10119 }
10120
10121 /* A helper function for computing the list of all symbol tables
10122 included by PER_CU. */
10123
10124 static void
10125 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10126 htab_t all_children, htab_t all_type_symtabs,
10127 struct dwarf2_per_cu_data *per_cu,
10128 struct compunit_symtab *immediate_parent)
10129 {
10130 void **slot;
10131 int ix;
10132 struct compunit_symtab *cust;
10133 struct dwarf2_per_cu_data *iter;
10134
10135 slot = htab_find_slot (all_children, per_cu, INSERT);
10136 if (*slot != NULL)
10137 {
10138 /* This inclusion and its children have been processed. */
10139 return;
10140 }
10141
10142 *slot = per_cu;
10143 /* Only add a CU if it has a symbol table. */
10144 cust = get_compunit_symtab (per_cu);
10145 if (cust != NULL)
10146 {
10147 /* If this is a type unit only add its symbol table if we haven't
10148 seen it yet (type unit per_cu's can share symtabs). */
10149 if (per_cu->is_debug_types)
10150 {
10151 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10152 if (*slot == NULL)
10153 {
10154 *slot = cust;
10155 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10156 if (cust->user == NULL)
10157 cust->user = immediate_parent;
10158 }
10159 }
10160 else
10161 {
10162 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10163 if (cust->user == NULL)
10164 cust->user = immediate_parent;
10165 }
10166 }
10167
10168 for (ix = 0;
10169 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10170 ++ix)
10171 {
10172 recursively_compute_inclusions (result, all_children,
10173 all_type_symtabs, iter, cust);
10174 }
10175 }
10176
10177 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10178 PER_CU. */
10179
10180 static void
10181 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10182 {
10183 gdb_assert (! per_cu->is_debug_types);
10184
10185 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10186 {
10187 int ix, len;
10188 struct dwarf2_per_cu_data *per_cu_iter;
10189 struct compunit_symtab *compunit_symtab_iter;
10190 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10191 htab_t all_children, all_type_symtabs;
10192 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10193
10194 /* If we don't have a symtab, we can just skip this case. */
10195 if (cust == NULL)
10196 return;
10197
10198 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10199 NULL, xcalloc, xfree);
10200 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10201 NULL, xcalloc, xfree);
10202
10203 for (ix = 0;
10204 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10205 ix, per_cu_iter);
10206 ++ix)
10207 {
10208 recursively_compute_inclusions (&result_symtabs, all_children,
10209 all_type_symtabs, per_cu_iter,
10210 cust);
10211 }
10212
10213 /* Now we have a transitive closure of all the included symtabs. */
10214 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10215 cust->includes
10216 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10217 struct compunit_symtab *, len + 1);
10218 for (ix = 0;
10219 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10220 compunit_symtab_iter);
10221 ++ix)
10222 cust->includes[ix] = compunit_symtab_iter;
10223 cust->includes[len] = NULL;
10224
10225 VEC_free (compunit_symtab_ptr, result_symtabs);
10226 htab_delete (all_children);
10227 htab_delete (all_type_symtabs);
10228 }
10229 }
10230
10231 /* Compute the 'includes' field for the symtabs of all the CUs we just
10232 read. */
10233
10234 static void
10235 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10236 {
10237 int ix;
10238 struct dwarf2_per_cu_data *iter;
10239
10240 for (ix = 0;
10241 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10242 ix, iter);
10243 ++ix)
10244 {
10245 if (! iter->is_debug_types)
10246 compute_compunit_symtab_includes (iter);
10247 }
10248
10249 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10250 }
10251
10252 /* Generate full symbol information for PER_CU, whose DIEs have
10253 already been loaded into memory. */
10254
10255 static void
10256 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10257 enum language pretend_language)
10258 {
10259 struct dwarf2_cu *cu = per_cu->cu;
10260 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10261 struct objfile *objfile = dwarf2_per_objfile->objfile;
10262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10263 CORE_ADDR lowpc, highpc;
10264 struct compunit_symtab *cust;
10265 CORE_ADDR baseaddr;
10266 struct block *static_block;
10267 CORE_ADDR addr;
10268
10269 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10270
10271 buildsym_init ();
10272 scoped_free_pendings free_pending;
10273
10274 /* Clear the list here in case something was left over. */
10275 cu->method_list.clear ();
10276
10277 cu->list_in_scope = &file_symbols;
10278
10279 cu->language = pretend_language;
10280 cu->language_defn = language_def (cu->language);
10281
10282 /* Do line number decoding in read_file_scope () */
10283 process_die (cu->dies, cu);
10284
10285 /* For now fudge the Go package. */
10286 if (cu->language == language_go)
10287 fixup_go_packaging (cu);
10288
10289 /* Now that we have processed all the DIEs in the CU, all the types
10290 should be complete, and it should now be safe to compute all of the
10291 physnames. */
10292 compute_delayed_physnames (cu);
10293
10294 if (cu->language == language_rust)
10295 rust_union_quirks (cu);
10296
10297 /* Some compilers don't define a DW_AT_high_pc attribute for the
10298 compilation unit. If the DW_AT_high_pc is missing, synthesize
10299 it, by scanning the DIE's below the compilation unit. */
10300 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10301
10302 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10303 static_block = end_symtab_get_static_block (addr, 0, 1);
10304
10305 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10306 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10307 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10308 addrmap to help ensure it has an accurate map of pc values belonging to
10309 this comp unit. */
10310 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10311
10312 cust = end_symtab_from_static_block (static_block,
10313 SECT_OFF_TEXT (objfile), 0);
10314
10315 if (cust != NULL)
10316 {
10317 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10318
10319 /* Set symtab language to language from DW_AT_language. If the
10320 compilation is from a C file generated by language preprocessors, do
10321 not set the language if it was already deduced by start_subfile. */
10322 if (!(cu->language == language_c
10323 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10324 COMPUNIT_FILETABS (cust)->language = cu->language;
10325
10326 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10327 produce DW_AT_location with location lists but it can be possibly
10328 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10329 there were bugs in prologue debug info, fixed later in GCC-4.5
10330 by "unwind info for epilogues" patch (which is not directly related).
10331
10332 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10333 needed, it would be wrong due to missing DW_AT_producer there.
10334
10335 Still one can confuse GDB by using non-standard GCC compilation
10336 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10337 */
10338 if (cu->has_loclist && gcc_4_minor >= 5)
10339 cust->locations_valid = 1;
10340
10341 if (gcc_4_minor >= 5)
10342 cust->epilogue_unwind_valid = 1;
10343
10344 cust->call_site_htab = cu->call_site_htab;
10345 }
10346
10347 if (dwarf2_per_objfile->using_index)
10348 per_cu->v.quick->compunit_symtab = cust;
10349 else
10350 {
10351 struct partial_symtab *pst = per_cu->v.psymtab;
10352 pst->compunit_symtab = cust;
10353 pst->readin = 1;
10354 }
10355
10356 /* Push it for inclusion processing later. */
10357 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10358 }
10359
10360 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10361 already been loaded into memory. */
10362
10363 static void
10364 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10365 enum language pretend_language)
10366 {
10367 struct dwarf2_cu *cu = per_cu->cu;
10368 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10369 struct objfile *objfile = dwarf2_per_objfile->objfile;
10370 struct compunit_symtab *cust;
10371 struct signatured_type *sig_type;
10372
10373 gdb_assert (per_cu->is_debug_types);
10374 sig_type = (struct signatured_type *) per_cu;
10375
10376 buildsym_init ();
10377 scoped_free_pendings free_pending;
10378
10379 /* Clear the list here in case something was left over. */
10380 cu->method_list.clear ();
10381
10382 cu->list_in_scope = &file_symbols;
10383
10384 cu->language = pretend_language;
10385 cu->language_defn = language_def (cu->language);
10386
10387 /* The symbol tables are set up in read_type_unit_scope. */
10388 process_die (cu->dies, cu);
10389
10390 /* For now fudge the Go package. */
10391 if (cu->language == language_go)
10392 fixup_go_packaging (cu);
10393
10394 /* Now that we have processed all the DIEs in the CU, all the types
10395 should be complete, and it should now be safe to compute all of the
10396 physnames. */
10397 compute_delayed_physnames (cu);
10398
10399 if (cu->language == language_rust)
10400 rust_union_quirks (cu);
10401
10402 /* TUs share symbol tables.
10403 If this is the first TU to use this symtab, complete the construction
10404 of it with end_expandable_symtab. Otherwise, complete the addition of
10405 this TU's symbols to the existing symtab. */
10406 if (sig_type->type_unit_group->compunit_symtab == NULL)
10407 {
10408 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10409 sig_type->type_unit_group->compunit_symtab = cust;
10410
10411 if (cust != NULL)
10412 {
10413 /* Set symtab language to language from DW_AT_language. If the
10414 compilation is from a C file generated by language preprocessors,
10415 do not set the language if it was already deduced by
10416 start_subfile. */
10417 if (!(cu->language == language_c
10418 && COMPUNIT_FILETABS (cust)->language != language_c))
10419 COMPUNIT_FILETABS (cust)->language = cu->language;
10420 }
10421 }
10422 else
10423 {
10424 augment_type_symtab ();
10425 cust = sig_type->type_unit_group->compunit_symtab;
10426 }
10427
10428 if (dwarf2_per_objfile->using_index)
10429 per_cu->v.quick->compunit_symtab = cust;
10430 else
10431 {
10432 struct partial_symtab *pst = per_cu->v.psymtab;
10433 pst->compunit_symtab = cust;
10434 pst->readin = 1;
10435 }
10436 }
10437
10438 /* Process an imported unit DIE. */
10439
10440 static void
10441 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10442 {
10443 struct attribute *attr;
10444
10445 /* For now we don't handle imported units in type units. */
10446 if (cu->per_cu->is_debug_types)
10447 {
10448 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10449 " supported in type units [in module %s]"),
10450 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10451 }
10452
10453 attr = dwarf2_attr (die, DW_AT_import, cu);
10454 if (attr != NULL)
10455 {
10456 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10457 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10458 dwarf2_per_cu_data *per_cu
10459 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10460 cu->per_cu->dwarf2_per_objfile);
10461
10462 /* If necessary, add it to the queue and load its DIEs. */
10463 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10464 load_full_comp_unit (per_cu, cu->language);
10465
10466 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10467 per_cu);
10468 }
10469 }
10470
10471 /* RAII object that represents a process_die scope: i.e.,
10472 starts/finishes processing a DIE. */
10473 class process_die_scope
10474 {
10475 public:
10476 process_die_scope (die_info *die, dwarf2_cu *cu)
10477 : m_die (die), m_cu (cu)
10478 {
10479 /* We should only be processing DIEs not already in process. */
10480 gdb_assert (!m_die->in_process);
10481 m_die->in_process = true;
10482 }
10483
10484 ~process_die_scope ()
10485 {
10486 m_die->in_process = false;
10487
10488 /* If we're done processing the DIE for the CU that owns the line
10489 header, we don't need the line header anymore. */
10490 if (m_cu->line_header_die_owner == m_die)
10491 {
10492 delete m_cu->line_header;
10493 m_cu->line_header = NULL;
10494 m_cu->line_header_die_owner = NULL;
10495 }
10496 }
10497
10498 private:
10499 die_info *m_die;
10500 dwarf2_cu *m_cu;
10501 };
10502
10503 /* Process a die and its children. */
10504
10505 static void
10506 process_die (struct die_info *die, struct dwarf2_cu *cu)
10507 {
10508 process_die_scope scope (die, cu);
10509
10510 switch (die->tag)
10511 {
10512 case DW_TAG_padding:
10513 break;
10514 case DW_TAG_compile_unit:
10515 case DW_TAG_partial_unit:
10516 read_file_scope (die, cu);
10517 break;
10518 case DW_TAG_type_unit:
10519 read_type_unit_scope (die, cu);
10520 break;
10521 case DW_TAG_subprogram:
10522 case DW_TAG_inlined_subroutine:
10523 read_func_scope (die, cu);
10524 break;
10525 case DW_TAG_lexical_block:
10526 case DW_TAG_try_block:
10527 case DW_TAG_catch_block:
10528 read_lexical_block_scope (die, cu);
10529 break;
10530 case DW_TAG_call_site:
10531 case DW_TAG_GNU_call_site:
10532 read_call_site_scope (die, cu);
10533 break;
10534 case DW_TAG_class_type:
10535 case DW_TAG_interface_type:
10536 case DW_TAG_structure_type:
10537 case DW_TAG_union_type:
10538 process_structure_scope (die, cu);
10539 break;
10540 case DW_TAG_enumeration_type:
10541 process_enumeration_scope (die, cu);
10542 break;
10543
10544 /* These dies have a type, but processing them does not create
10545 a symbol or recurse to process the children. Therefore we can
10546 read them on-demand through read_type_die. */
10547 case DW_TAG_subroutine_type:
10548 case DW_TAG_set_type:
10549 case DW_TAG_array_type:
10550 case DW_TAG_pointer_type:
10551 case DW_TAG_ptr_to_member_type:
10552 case DW_TAG_reference_type:
10553 case DW_TAG_rvalue_reference_type:
10554 case DW_TAG_string_type:
10555 break;
10556
10557 case DW_TAG_base_type:
10558 case DW_TAG_subrange_type:
10559 case DW_TAG_typedef:
10560 /* Add a typedef symbol for the type definition, if it has a
10561 DW_AT_name. */
10562 new_symbol (die, read_type_die (die, cu), cu);
10563 break;
10564 case DW_TAG_common_block:
10565 read_common_block (die, cu);
10566 break;
10567 case DW_TAG_common_inclusion:
10568 break;
10569 case DW_TAG_namespace:
10570 cu->processing_has_namespace_info = 1;
10571 read_namespace (die, cu);
10572 break;
10573 case DW_TAG_module:
10574 cu->processing_has_namespace_info = 1;
10575 read_module (die, cu);
10576 break;
10577 case DW_TAG_imported_declaration:
10578 cu->processing_has_namespace_info = 1;
10579 if (read_namespace_alias (die, cu))
10580 break;
10581 /* The declaration is not a global namespace alias. */
10582 /* Fall through. */
10583 case DW_TAG_imported_module:
10584 cu->processing_has_namespace_info = 1;
10585 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10586 || cu->language != language_fortran))
10587 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10588 dwarf_tag_name (die->tag));
10589 read_import_statement (die, cu);
10590 break;
10591
10592 case DW_TAG_imported_unit:
10593 process_imported_unit_die (die, cu);
10594 break;
10595
10596 case DW_TAG_variable:
10597 read_variable (die, cu);
10598 break;
10599
10600 default:
10601 new_symbol (die, NULL, cu);
10602 break;
10603 }
10604 }
10605 \f
10606 /* DWARF name computation. */
10607
10608 /* A helper function for dwarf2_compute_name which determines whether DIE
10609 needs to have the name of the scope prepended to the name listed in the
10610 die. */
10611
10612 static int
10613 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10614 {
10615 struct attribute *attr;
10616
10617 switch (die->tag)
10618 {
10619 case DW_TAG_namespace:
10620 case DW_TAG_typedef:
10621 case DW_TAG_class_type:
10622 case DW_TAG_interface_type:
10623 case DW_TAG_structure_type:
10624 case DW_TAG_union_type:
10625 case DW_TAG_enumeration_type:
10626 case DW_TAG_enumerator:
10627 case DW_TAG_subprogram:
10628 case DW_TAG_inlined_subroutine:
10629 case DW_TAG_member:
10630 case DW_TAG_imported_declaration:
10631 return 1;
10632
10633 case DW_TAG_variable:
10634 case DW_TAG_constant:
10635 /* We only need to prefix "globally" visible variables. These include
10636 any variable marked with DW_AT_external or any variable that
10637 lives in a namespace. [Variables in anonymous namespaces
10638 require prefixing, but they are not DW_AT_external.] */
10639
10640 if (dwarf2_attr (die, DW_AT_specification, cu))
10641 {
10642 struct dwarf2_cu *spec_cu = cu;
10643
10644 return die_needs_namespace (die_specification (die, &spec_cu),
10645 spec_cu);
10646 }
10647
10648 attr = dwarf2_attr (die, DW_AT_external, cu);
10649 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10650 && die->parent->tag != DW_TAG_module)
10651 return 0;
10652 /* A variable in a lexical block of some kind does not need a
10653 namespace, even though in C++ such variables may be external
10654 and have a mangled name. */
10655 if (die->parent->tag == DW_TAG_lexical_block
10656 || die->parent->tag == DW_TAG_try_block
10657 || die->parent->tag == DW_TAG_catch_block
10658 || die->parent->tag == DW_TAG_subprogram)
10659 return 0;
10660 return 1;
10661
10662 default:
10663 return 0;
10664 }
10665 }
10666
10667 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10668 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10669 defined for the given DIE. */
10670
10671 static struct attribute *
10672 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10673 {
10674 struct attribute *attr;
10675
10676 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10677 if (attr == NULL)
10678 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10679
10680 return attr;
10681 }
10682
10683 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10684 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10685 defined for the given DIE. */
10686
10687 static const char *
10688 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10689 {
10690 const char *linkage_name;
10691
10692 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10693 if (linkage_name == NULL)
10694 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10695
10696 return linkage_name;
10697 }
10698
10699 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10700 compute the physname for the object, which include a method's:
10701 - formal parameters (C++),
10702 - receiver type (Go),
10703
10704 The term "physname" is a bit confusing.
10705 For C++, for example, it is the demangled name.
10706 For Go, for example, it's the mangled name.
10707
10708 For Ada, return the DIE's linkage name rather than the fully qualified
10709 name. PHYSNAME is ignored..
10710
10711 The result is allocated on the objfile_obstack and canonicalized. */
10712
10713 static const char *
10714 dwarf2_compute_name (const char *name,
10715 struct die_info *die, struct dwarf2_cu *cu,
10716 int physname)
10717 {
10718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10719
10720 if (name == NULL)
10721 name = dwarf2_name (die, cu);
10722
10723 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10724 but otherwise compute it by typename_concat inside GDB.
10725 FIXME: Actually this is not really true, or at least not always true.
10726 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10727 Fortran names because there is no mangling standard. So new_symbol
10728 will set the demangled name to the result of dwarf2_full_name, and it is
10729 the demangled name that GDB uses if it exists. */
10730 if (cu->language == language_ada
10731 || (cu->language == language_fortran && physname))
10732 {
10733 /* For Ada unit, we prefer the linkage name over the name, as
10734 the former contains the exported name, which the user expects
10735 to be able to reference. Ideally, we want the user to be able
10736 to reference this entity using either natural or linkage name,
10737 but we haven't started looking at this enhancement yet. */
10738 const char *linkage_name = dw2_linkage_name (die, cu);
10739
10740 if (linkage_name != NULL)
10741 return linkage_name;
10742 }
10743
10744 /* These are the only languages we know how to qualify names in. */
10745 if (name != NULL
10746 && (cu->language == language_cplus
10747 || cu->language == language_fortran || cu->language == language_d
10748 || cu->language == language_rust))
10749 {
10750 if (die_needs_namespace (die, cu))
10751 {
10752 const char *prefix;
10753 const char *canonical_name = NULL;
10754
10755 string_file buf;
10756
10757 prefix = determine_prefix (die, cu);
10758 if (*prefix != '\0')
10759 {
10760 char *prefixed_name = typename_concat (NULL, prefix, name,
10761 physname, cu);
10762
10763 buf.puts (prefixed_name);
10764 xfree (prefixed_name);
10765 }
10766 else
10767 buf.puts (name);
10768
10769 /* Template parameters may be specified in the DIE's DW_AT_name, or
10770 as children with DW_TAG_template_type_param or
10771 DW_TAG_value_type_param. If the latter, add them to the name
10772 here. If the name already has template parameters, then
10773 skip this step; some versions of GCC emit both, and
10774 it is more efficient to use the pre-computed name.
10775
10776 Something to keep in mind about this process: it is very
10777 unlikely, or in some cases downright impossible, to produce
10778 something that will match the mangled name of a function.
10779 If the definition of the function has the same debug info,
10780 we should be able to match up with it anyway. But fallbacks
10781 using the minimal symbol, for instance to find a method
10782 implemented in a stripped copy of libstdc++, will not work.
10783 If we do not have debug info for the definition, we will have to
10784 match them up some other way.
10785
10786 When we do name matching there is a related problem with function
10787 templates; two instantiated function templates are allowed to
10788 differ only by their return types, which we do not add here. */
10789
10790 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10791 {
10792 struct attribute *attr;
10793 struct die_info *child;
10794 int first = 1;
10795
10796 die->building_fullname = 1;
10797
10798 for (child = die->child; child != NULL; child = child->sibling)
10799 {
10800 struct type *type;
10801 LONGEST value;
10802 const gdb_byte *bytes;
10803 struct dwarf2_locexpr_baton *baton;
10804 struct value *v;
10805
10806 if (child->tag != DW_TAG_template_type_param
10807 && child->tag != DW_TAG_template_value_param)
10808 continue;
10809
10810 if (first)
10811 {
10812 buf.puts ("<");
10813 first = 0;
10814 }
10815 else
10816 buf.puts (", ");
10817
10818 attr = dwarf2_attr (child, DW_AT_type, cu);
10819 if (attr == NULL)
10820 {
10821 complaint (&symfile_complaints,
10822 _("template parameter missing DW_AT_type"));
10823 buf.puts ("UNKNOWN_TYPE");
10824 continue;
10825 }
10826 type = die_type (child, cu);
10827
10828 if (child->tag == DW_TAG_template_type_param)
10829 {
10830 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10831 continue;
10832 }
10833
10834 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10835 if (attr == NULL)
10836 {
10837 complaint (&symfile_complaints,
10838 _("template parameter missing "
10839 "DW_AT_const_value"));
10840 buf.puts ("UNKNOWN_VALUE");
10841 continue;
10842 }
10843
10844 dwarf2_const_value_attr (attr, type, name,
10845 &cu->comp_unit_obstack, cu,
10846 &value, &bytes, &baton);
10847
10848 if (TYPE_NOSIGN (type))
10849 /* GDB prints characters as NUMBER 'CHAR'. If that's
10850 changed, this can use value_print instead. */
10851 c_printchar (value, type, &buf);
10852 else
10853 {
10854 struct value_print_options opts;
10855
10856 if (baton != NULL)
10857 v = dwarf2_evaluate_loc_desc (type, NULL,
10858 baton->data,
10859 baton->size,
10860 baton->per_cu);
10861 else if (bytes != NULL)
10862 {
10863 v = allocate_value (type);
10864 memcpy (value_contents_writeable (v), bytes,
10865 TYPE_LENGTH (type));
10866 }
10867 else
10868 v = value_from_longest (type, value);
10869
10870 /* Specify decimal so that we do not depend on
10871 the radix. */
10872 get_formatted_print_options (&opts, 'd');
10873 opts.raw = 1;
10874 value_print (v, &buf, &opts);
10875 release_value (v);
10876 }
10877 }
10878
10879 die->building_fullname = 0;
10880
10881 if (!first)
10882 {
10883 /* Close the argument list, with a space if necessary
10884 (nested templates). */
10885 if (!buf.empty () && buf.string ().back () == '>')
10886 buf.puts (" >");
10887 else
10888 buf.puts (">");
10889 }
10890 }
10891
10892 /* For C++ methods, append formal parameter type
10893 information, if PHYSNAME. */
10894
10895 if (physname && die->tag == DW_TAG_subprogram
10896 && cu->language == language_cplus)
10897 {
10898 struct type *type = read_type_die (die, cu);
10899
10900 c_type_print_args (type, &buf, 1, cu->language,
10901 &type_print_raw_options);
10902
10903 if (cu->language == language_cplus)
10904 {
10905 /* Assume that an artificial first parameter is
10906 "this", but do not crash if it is not. RealView
10907 marks unnamed (and thus unused) parameters as
10908 artificial; there is no way to differentiate
10909 the two cases. */
10910 if (TYPE_NFIELDS (type) > 0
10911 && TYPE_FIELD_ARTIFICIAL (type, 0)
10912 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10913 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10914 0))))
10915 buf.puts (" const");
10916 }
10917 }
10918
10919 const std::string &intermediate_name = buf.string ();
10920
10921 if (cu->language == language_cplus)
10922 canonical_name
10923 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10924 &objfile->per_bfd->storage_obstack);
10925
10926 /* If we only computed INTERMEDIATE_NAME, or if
10927 INTERMEDIATE_NAME is already canonical, then we need to
10928 copy it to the appropriate obstack. */
10929 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10930 name = ((const char *)
10931 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10932 intermediate_name.c_str (),
10933 intermediate_name.length ()));
10934 else
10935 name = canonical_name;
10936 }
10937 }
10938
10939 return name;
10940 }
10941
10942 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10943 If scope qualifiers are appropriate they will be added. The result
10944 will be allocated on the storage_obstack, or NULL if the DIE does
10945 not have a name. NAME may either be from a previous call to
10946 dwarf2_name or NULL.
10947
10948 The output string will be canonicalized (if C++). */
10949
10950 static const char *
10951 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10952 {
10953 return dwarf2_compute_name (name, die, cu, 0);
10954 }
10955
10956 /* Construct a physname for the given DIE in CU. NAME may either be
10957 from a previous call to dwarf2_name or NULL. The result will be
10958 allocated on the objfile_objstack or NULL if the DIE does not have a
10959 name.
10960
10961 The output string will be canonicalized (if C++). */
10962
10963 static const char *
10964 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10965 {
10966 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10967 const char *retval, *mangled = NULL, *canon = NULL;
10968 int need_copy = 1;
10969
10970 /* In this case dwarf2_compute_name is just a shortcut not building anything
10971 on its own. */
10972 if (!die_needs_namespace (die, cu))
10973 return dwarf2_compute_name (name, die, cu, 1);
10974
10975 mangled = dw2_linkage_name (die, cu);
10976
10977 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10978 See https://github.com/rust-lang/rust/issues/32925. */
10979 if (cu->language == language_rust && mangled != NULL
10980 && strchr (mangled, '{') != NULL)
10981 mangled = NULL;
10982
10983 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10984 has computed. */
10985 gdb::unique_xmalloc_ptr<char> demangled;
10986 if (mangled != NULL)
10987 {
10988
10989 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10990 {
10991 /* Do nothing (do not demangle the symbol name). */
10992 }
10993 else if (cu->language == language_go)
10994 {
10995 /* This is a lie, but we already lie to the caller new_symbol.
10996 new_symbol assumes we return the mangled name.
10997 This just undoes that lie until things are cleaned up. */
10998 }
10999 else
11000 {
11001 /* Use DMGL_RET_DROP for C++ template functions to suppress
11002 their return type. It is easier for GDB users to search
11003 for such functions as `name(params)' than `long name(params)'.
11004 In such case the minimal symbol names do not match the full
11005 symbol names but for template functions there is never a need
11006 to look up their definition from their declaration so
11007 the only disadvantage remains the minimal symbol variant
11008 `long name(params)' does not have the proper inferior type. */
11009 demangled.reset (gdb_demangle (mangled,
11010 (DMGL_PARAMS | DMGL_ANSI
11011 | DMGL_RET_DROP)));
11012 }
11013 if (demangled)
11014 canon = demangled.get ();
11015 else
11016 {
11017 canon = mangled;
11018 need_copy = 0;
11019 }
11020 }
11021
11022 if (canon == NULL || check_physname)
11023 {
11024 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11025
11026 if (canon != NULL && strcmp (physname, canon) != 0)
11027 {
11028 /* It may not mean a bug in GDB. The compiler could also
11029 compute DW_AT_linkage_name incorrectly. But in such case
11030 GDB would need to be bug-to-bug compatible. */
11031
11032 complaint (&symfile_complaints,
11033 _("Computed physname <%s> does not match demangled <%s> "
11034 "(from linkage <%s>) - DIE at %s [in module %s]"),
11035 physname, canon, mangled, sect_offset_str (die->sect_off),
11036 objfile_name (objfile));
11037
11038 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11039 is available here - over computed PHYSNAME. It is safer
11040 against both buggy GDB and buggy compilers. */
11041
11042 retval = canon;
11043 }
11044 else
11045 {
11046 retval = physname;
11047 need_copy = 0;
11048 }
11049 }
11050 else
11051 retval = canon;
11052
11053 if (need_copy)
11054 retval = ((const char *)
11055 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11056 retval, strlen (retval)));
11057
11058 return retval;
11059 }
11060
11061 /* Inspect DIE in CU for a namespace alias. If one exists, record
11062 a new symbol for it.
11063
11064 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11065
11066 static int
11067 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11068 {
11069 struct attribute *attr;
11070
11071 /* If the die does not have a name, this is not a namespace
11072 alias. */
11073 attr = dwarf2_attr (die, DW_AT_name, cu);
11074 if (attr != NULL)
11075 {
11076 int num;
11077 struct die_info *d = die;
11078 struct dwarf2_cu *imported_cu = cu;
11079
11080 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11081 keep inspecting DIEs until we hit the underlying import. */
11082 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11083 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11084 {
11085 attr = dwarf2_attr (d, DW_AT_import, cu);
11086 if (attr == NULL)
11087 break;
11088
11089 d = follow_die_ref (d, attr, &imported_cu);
11090 if (d->tag != DW_TAG_imported_declaration)
11091 break;
11092 }
11093
11094 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11095 {
11096 complaint (&symfile_complaints,
11097 _("DIE at %s has too many recursively imported "
11098 "declarations"), sect_offset_str (d->sect_off));
11099 return 0;
11100 }
11101
11102 if (attr != NULL)
11103 {
11104 struct type *type;
11105 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11106
11107 type = get_die_type_at_offset (sect_off, cu->per_cu);
11108 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11109 {
11110 /* This declaration is a global namespace alias. Add
11111 a symbol for it whose type is the aliased namespace. */
11112 new_symbol (die, type, cu);
11113 return 1;
11114 }
11115 }
11116 }
11117
11118 return 0;
11119 }
11120
11121 /* Return the using directives repository (global or local?) to use in the
11122 current context for LANGUAGE.
11123
11124 For Ada, imported declarations can materialize renamings, which *may* be
11125 global. However it is impossible (for now?) in DWARF to distinguish
11126 "external" imported declarations and "static" ones. As all imported
11127 declarations seem to be static in all other languages, make them all CU-wide
11128 global only in Ada. */
11129
11130 static struct using_direct **
11131 using_directives (enum language language)
11132 {
11133 if (language == language_ada && context_stack_depth == 0)
11134 return &global_using_directives;
11135 else
11136 return &local_using_directives;
11137 }
11138
11139 /* Read the import statement specified by the given die and record it. */
11140
11141 static void
11142 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11143 {
11144 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11145 struct attribute *import_attr;
11146 struct die_info *imported_die, *child_die;
11147 struct dwarf2_cu *imported_cu;
11148 const char *imported_name;
11149 const char *imported_name_prefix;
11150 const char *canonical_name;
11151 const char *import_alias;
11152 const char *imported_declaration = NULL;
11153 const char *import_prefix;
11154 std::vector<const char *> excludes;
11155
11156 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11157 if (import_attr == NULL)
11158 {
11159 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11160 dwarf_tag_name (die->tag));
11161 return;
11162 }
11163
11164 imported_cu = cu;
11165 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11166 imported_name = dwarf2_name (imported_die, imported_cu);
11167 if (imported_name == NULL)
11168 {
11169 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11170
11171 The import in the following code:
11172 namespace A
11173 {
11174 typedef int B;
11175 }
11176
11177 int main ()
11178 {
11179 using A::B;
11180 B b;
11181 return b;
11182 }
11183
11184 ...
11185 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11186 <52> DW_AT_decl_file : 1
11187 <53> DW_AT_decl_line : 6
11188 <54> DW_AT_import : <0x75>
11189 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11190 <59> DW_AT_name : B
11191 <5b> DW_AT_decl_file : 1
11192 <5c> DW_AT_decl_line : 2
11193 <5d> DW_AT_type : <0x6e>
11194 ...
11195 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11196 <76> DW_AT_byte_size : 4
11197 <77> DW_AT_encoding : 5 (signed)
11198
11199 imports the wrong die ( 0x75 instead of 0x58 ).
11200 This case will be ignored until the gcc bug is fixed. */
11201 return;
11202 }
11203
11204 /* Figure out the local name after import. */
11205 import_alias = dwarf2_name (die, cu);
11206
11207 /* Figure out where the statement is being imported to. */
11208 import_prefix = determine_prefix (die, cu);
11209
11210 /* Figure out what the scope of the imported die is and prepend it
11211 to the name of the imported die. */
11212 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11213
11214 if (imported_die->tag != DW_TAG_namespace
11215 && imported_die->tag != DW_TAG_module)
11216 {
11217 imported_declaration = imported_name;
11218 canonical_name = imported_name_prefix;
11219 }
11220 else if (strlen (imported_name_prefix) > 0)
11221 canonical_name = obconcat (&objfile->objfile_obstack,
11222 imported_name_prefix,
11223 (cu->language == language_d ? "." : "::"),
11224 imported_name, (char *) NULL);
11225 else
11226 canonical_name = imported_name;
11227
11228 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11229 for (child_die = die->child; child_die && child_die->tag;
11230 child_die = sibling_die (child_die))
11231 {
11232 /* DWARF-4: A Fortran use statement with a “rename list” may be
11233 represented by an imported module entry with an import attribute
11234 referring to the module and owned entries corresponding to those
11235 entities that are renamed as part of being imported. */
11236
11237 if (child_die->tag != DW_TAG_imported_declaration)
11238 {
11239 complaint (&symfile_complaints,
11240 _("child DW_TAG_imported_declaration expected "
11241 "- DIE at %s [in module %s]"),
11242 sect_offset_str (child_die->sect_off),
11243 objfile_name (objfile));
11244 continue;
11245 }
11246
11247 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11248 if (import_attr == NULL)
11249 {
11250 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11251 dwarf_tag_name (child_die->tag));
11252 continue;
11253 }
11254
11255 imported_cu = cu;
11256 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11257 &imported_cu);
11258 imported_name = dwarf2_name (imported_die, imported_cu);
11259 if (imported_name == NULL)
11260 {
11261 complaint (&symfile_complaints,
11262 _("child DW_TAG_imported_declaration has unknown "
11263 "imported name - DIE at %s [in module %s]"),
11264 sect_offset_str (child_die->sect_off),
11265 objfile_name (objfile));
11266 continue;
11267 }
11268
11269 excludes.push_back (imported_name);
11270
11271 process_die (child_die, cu);
11272 }
11273
11274 add_using_directive (using_directives (cu->language),
11275 import_prefix,
11276 canonical_name,
11277 import_alias,
11278 imported_declaration,
11279 excludes,
11280 0,
11281 &objfile->objfile_obstack);
11282 }
11283
11284 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11285 types, but gives them a size of zero. Starting with version 14,
11286 ICC is compatible with GCC. */
11287
11288 static int
11289 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11290 {
11291 if (!cu->checked_producer)
11292 check_producer (cu);
11293
11294 return cu->producer_is_icc_lt_14;
11295 }
11296
11297 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11298 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11299 this, it was first present in GCC release 4.3.0. */
11300
11301 static int
11302 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11303 {
11304 if (!cu->checked_producer)
11305 check_producer (cu);
11306
11307 return cu->producer_is_gcc_lt_4_3;
11308 }
11309
11310 static file_and_directory
11311 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11312 {
11313 file_and_directory res;
11314
11315 /* Find the filename. Do not use dwarf2_name here, since the filename
11316 is not a source language identifier. */
11317 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11318 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11319
11320 if (res.comp_dir == NULL
11321 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11322 && IS_ABSOLUTE_PATH (res.name))
11323 {
11324 res.comp_dir_storage = ldirname (res.name);
11325 if (!res.comp_dir_storage.empty ())
11326 res.comp_dir = res.comp_dir_storage.c_str ();
11327 }
11328 if (res.comp_dir != NULL)
11329 {
11330 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11331 directory, get rid of it. */
11332 const char *cp = strchr (res.comp_dir, ':');
11333
11334 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11335 res.comp_dir = cp + 1;
11336 }
11337
11338 if (res.name == NULL)
11339 res.name = "<unknown>";
11340
11341 return res;
11342 }
11343
11344 /* Handle DW_AT_stmt_list for a compilation unit.
11345 DIE is the DW_TAG_compile_unit die for CU.
11346 COMP_DIR is the compilation directory. LOWPC is passed to
11347 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11348
11349 static void
11350 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11351 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11352 {
11353 struct dwarf2_per_objfile *dwarf2_per_objfile
11354 = cu->per_cu->dwarf2_per_objfile;
11355 struct objfile *objfile = dwarf2_per_objfile->objfile;
11356 struct attribute *attr;
11357 struct line_header line_header_local;
11358 hashval_t line_header_local_hash;
11359 void **slot;
11360 int decode_mapping;
11361
11362 gdb_assert (! cu->per_cu->is_debug_types);
11363
11364 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11365 if (attr == NULL)
11366 return;
11367
11368 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11369
11370 /* The line header hash table is only created if needed (it exists to
11371 prevent redundant reading of the line table for partial_units).
11372 If we're given a partial_unit, we'll need it. If we're given a
11373 compile_unit, then use the line header hash table if it's already
11374 created, but don't create one just yet. */
11375
11376 if (dwarf2_per_objfile->line_header_hash == NULL
11377 && die->tag == DW_TAG_partial_unit)
11378 {
11379 dwarf2_per_objfile->line_header_hash
11380 = htab_create_alloc_ex (127, line_header_hash_voidp,
11381 line_header_eq_voidp,
11382 free_line_header_voidp,
11383 &objfile->objfile_obstack,
11384 hashtab_obstack_allocate,
11385 dummy_obstack_deallocate);
11386 }
11387
11388 line_header_local.sect_off = line_offset;
11389 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11390 line_header_local_hash = line_header_hash (&line_header_local);
11391 if (dwarf2_per_objfile->line_header_hash != NULL)
11392 {
11393 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11394 &line_header_local,
11395 line_header_local_hash, NO_INSERT);
11396
11397 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11398 is not present in *SLOT (since if there is something in *SLOT then
11399 it will be for a partial_unit). */
11400 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11401 {
11402 gdb_assert (*slot != NULL);
11403 cu->line_header = (struct line_header *) *slot;
11404 return;
11405 }
11406 }
11407
11408 /* dwarf_decode_line_header does not yet provide sufficient information.
11409 We always have to call also dwarf_decode_lines for it. */
11410 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11411 if (lh == NULL)
11412 return;
11413
11414 cu->line_header = lh.release ();
11415 cu->line_header_die_owner = die;
11416
11417 if (dwarf2_per_objfile->line_header_hash == NULL)
11418 slot = NULL;
11419 else
11420 {
11421 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11422 &line_header_local,
11423 line_header_local_hash, INSERT);
11424 gdb_assert (slot != NULL);
11425 }
11426 if (slot != NULL && *slot == NULL)
11427 {
11428 /* This newly decoded line number information unit will be owned
11429 by line_header_hash hash table. */
11430 *slot = cu->line_header;
11431 cu->line_header_die_owner = NULL;
11432 }
11433 else
11434 {
11435 /* We cannot free any current entry in (*slot) as that struct line_header
11436 may be already used by multiple CUs. Create only temporary decoded
11437 line_header for this CU - it may happen at most once for each line
11438 number information unit. And if we're not using line_header_hash
11439 then this is what we want as well. */
11440 gdb_assert (die->tag != DW_TAG_partial_unit);
11441 }
11442 decode_mapping = (die->tag != DW_TAG_partial_unit);
11443 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11444 decode_mapping);
11445
11446 }
11447
11448 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11449
11450 static void
11451 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11452 {
11453 struct dwarf2_per_objfile *dwarf2_per_objfile
11454 = cu->per_cu->dwarf2_per_objfile;
11455 struct objfile *objfile = dwarf2_per_objfile->objfile;
11456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11457 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11458 CORE_ADDR highpc = ((CORE_ADDR) 0);
11459 struct attribute *attr;
11460 struct die_info *child_die;
11461 CORE_ADDR baseaddr;
11462
11463 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11464
11465 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11466
11467 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11468 from finish_block. */
11469 if (lowpc == ((CORE_ADDR) -1))
11470 lowpc = highpc;
11471 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11472
11473 file_and_directory fnd = find_file_and_directory (die, cu);
11474
11475 prepare_one_comp_unit (cu, die, cu->language);
11476
11477 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11478 standardised yet. As a workaround for the language detection we fall
11479 back to the DW_AT_producer string. */
11480 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11481 cu->language = language_opencl;
11482
11483 /* Similar hack for Go. */
11484 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11485 set_cu_language (DW_LANG_Go, cu);
11486
11487 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11488
11489 /* Decode line number information if present. We do this before
11490 processing child DIEs, so that the line header table is available
11491 for DW_AT_decl_file. */
11492 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11493
11494 /* Process all dies in compilation unit. */
11495 if (die->child != NULL)
11496 {
11497 child_die = die->child;
11498 while (child_die && child_die->tag)
11499 {
11500 process_die (child_die, cu);
11501 child_die = sibling_die (child_die);
11502 }
11503 }
11504
11505 /* Decode macro information, if present. Dwarf 2 macro information
11506 refers to information in the line number info statement program
11507 header, so we can only read it if we've read the header
11508 successfully. */
11509 attr = dwarf2_attr (die, DW_AT_macros, cu);
11510 if (attr == NULL)
11511 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11512 if (attr && cu->line_header)
11513 {
11514 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11515 complaint (&symfile_complaints,
11516 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11517
11518 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11519 }
11520 else
11521 {
11522 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11523 if (attr && cu->line_header)
11524 {
11525 unsigned int macro_offset = DW_UNSND (attr);
11526
11527 dwarf_decode_macros (cu, macro_offset, 0);
11528 }
11529 }
11530 }
11531
11532 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11533 Create the set of symtabs used by this TU, or if this TU is sharing
11534 symtabs with another TU and the symtabs have already been created
11535 then restore those symtabs in the line header.
11536 We don't need the pc/line-number mapping for type units. */
11537
11538 static void
11539 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11540 {
11541 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11542 struct type_unit_group *tu_group;
11543 int first_time;
11544 struct attribute *attr;
11545 unsigned int i;
11546 struct signatured_type *sig_type;
11547
11548 gdb_assert (per_cu->is_debug_types);
11549 sig_type = (struct signatured_type *) per_cu;
11550
11551 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11552
11553 /* If we're using .gdb_index (includes -readnow) then
11554 per_cu->type_unit_group may not have been set up yet. */
11555 if (sig_type->type_unit_group == NULL)
11556 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11557 tu_group = sig_type->type_unit_group;
11558
11559 /* If we've already processed this stmt_list there's no real need to
11560 do it again, we could fake it and just recreate the part we need
11561 (file name,index -> symtab mapping). If data shows this optimization
11562 is useful we can do it then. */
11563 first_time = tu_group->compunit_symtab == NULL;
11564
11565 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11566 debug info. */
11567 line_header_up lh;
11568 if (attr != NULL)
11569 {
11570 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11571 lh = dwarf_decode_line_header (line_offset, cu);
11572 }
11573 if (lh == NULL)
11574 {
11575 if (first_time)
11576 dwarf2_start_symtab (cu, "", NULL, 0);
11577 else
11578 {
11579 gdb_assert (tu_group->symtabs == NULL);
11580 restart_symtab (tu_group->compunit_symtab, "", 0);
11581 }
11582 return;
11583 }
11584
11585 cu->line_header = lh.release ();
11586 cu->line_header_die_owner = die;
11587
11588 if (first_time)
11589 {
11590 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11591
11592 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11593 still initializing it, and our caller (a few levels up)
11594 process_full_type_unit still needs to know if this is the first
11595 time. */
11596
11597 tu_group->num_symtabs = cu->line_header->file_names.size ();
11598 tu_group->symtabs = XNEWVEC (struct symtab *,
11599 cu->line_header->file_names.size ());
11600
11601 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11602 {
11603 file_entry &fe = cu->line_header->file_names[i];
11604
11605 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11606
11607 if (current_subfile->symtab == NULL)
11608 {
11609 /* NOTE: start_subfile will recognize when it's been
11610 passed a file it has already seen. So we can't
11611 assume there's a simple mapping from
11612 cu->line_header->file_names to subfiles, plus
11613 cu->line_header->file_names may contain dups. */
11614 current_subfile->symtab
11615 = allocate_symtab (cust, current_subfile->name);
11616 }
11617
11618 fe.symtab = current_subfile->symtab;
11619 tu_group->symtabs[i] = fe.symtab;
11620 }
11621 }
11622 else
11623 {
11624 restart_symtab (tu_group->compunit_symtab, "", 0);
11625
11626 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11627 {
11628 file_entry &fe = cu->line_header->file_names[i];
11629
11630 fe.symtab = tu_group->symtabs[i];
11631 }
11632 }
11633
11634 /* The main symtab is allocated last. Type units don't have DW_AT_name
11635 so they don't have a "real" (so to speak) symtab anyway.
11636 There is later code that will assign the main symtab to all symbols
11637 that don't have one. We need to handle the case of a symbol with a
11638 missing symtab (DW_AT_decl_file) anyway. */
11639 }
11640
11641 /* Process DW_TAG_type_unit.
11642 For TUs we want to skip the first top level sibling if it's not the
11643 actual type being defined by this TU. In this case the first top
11644 level sibling is there to provide context only. */
11645
11646 static void
11647 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11648 {
11649 struct die_info *child_die;
11650
11651 prepare_one_comp_unit (cu, die, language_minimal);
11652
11653 /* Initialize (or reinitialize) the machinery for building symtabs.
11654 We do this before processing child DIEs, so that the line header table
11655 is available for DW_AT_decl_file. */
11656 setup_type_unit_groups (die, cu);
11657
11658 if (die->child != NULL)
11659 {
11660 child_die = die->child;
11661 while (child_die && child_die->tag)
11662 {
11663 process_die (child_die, cu);
11664 child_die = sibling_die (child_die);
11665 }
11666 }
11667 }
11668 \f
11669 /* DWO/DWP files.
11670
11671 http://gcc.gnu.org/wiki/DebugFission
11672 http://gcc.gnu.org/wiki/DebugFissionDWP
11673
11674 To simplify handling of both DWO files ("object" files with the DWARF info)
11675 and DWP files (a file with the DWOs packaged up into one file), we treat
11676 DWP files as having a collection of virtual DWO files. */
11677
11678 static hashval_t
11679 hash_dwo_file (const void *item)
11680 {
11681 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11682 hashval_t hash;
11683
11684 hash = htab_hash_string (dwo_file->dwo_name);
11685 if (dwo_file->comp_dir != NULL)
11686 hash += htab_hash_string (dwo_file->comp_dir);
11687 return hash;
11688 }
11689
11690 static int
11691 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11692 {
11693 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11694 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11695
11696 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11697 return 0;
11698 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11699 return lhs->comp_dir == rhs->comp_dir;
11700 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11701 }
11702
11703 /* Allocate a hash table for DWO files. */
11704
11705 static htab_t
11706 allocate_dwo_file_hash_table (struct objfile *objfile)
11707 {
11708 return htab_create_alloc_ex (41,
11709 hash_dwo_file,
11710 eq_dwo_file,
11711 NULL,
11712 &objfile->objfile_obstack,
11713 hashtab_obstack_allocate,
11714 dummy_obstack_deallocate);
11715 }
11716
11717 /* Lookup DWO file DWO_NAME. */
11718
11719 static void **
11720 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11721 const char *dwo_name,
11722 const char *comp_dir)
11723 {
11724 struct dwo_file find_entry;
11725 void **slot;
11726
11727 if (dwarf2_per_objfile->dwo_files == NULL)
11728 dwarf2_per_objfile->dwo_files
11729 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11730
11731 memset (&find_entry, 0, sizeof (find_entry));
11732 find_entry.dwo_name = dwo_name;
11733 find_entry.comp_dir = comp_dir;
11734 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11735
11736 return slot;
11737 }
11738
11739 static hashval_t
11740 hash_dwo_unit (const void *item)
11741 {
11742 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11743
11744 /* This drops the top 32 bits of the id, but is ok for a hash. */
11745 return dwo_unit->signature;
11746 }
11747
11748 static int
11749 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11750 {
11751 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11752 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11753
11754 /* The signature is assumed to be unique within the DWO file.
11755 So while object file CU dwo_id's always have the value zero,
11756 that's OK, assuming each object file DWO file has only one CU,
11757 and that's the rule for now. */
11758 return lhs->signature == rhs->signature;
11759 }
11760
11761 /* Allocate a hash table for DWO CUs,TUs.
11762 There is one of these tables for each of CUs,TUs for each DWO file. */
11763
11764 static htab_t
11765 allocate_dwo_unit_table (struct objfile *objfile)
11766 {
11767 /* Start out with a pretty small number.
11768 Generally DWO files contain only one CU and maybe some TUs. */
11769 return htab_create_alloc_ex (3,
11770 hash_dwo_unit,
11771 eq_dwo_unit,
11772 NULL,
11773 &objfile->objfile_obstack,
11774 hashtab_obstack_allocate,
11775 dummy_obstack_deallocate);
11776 }
11777
11778 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11779
11780 struct create_dwo_cu_data
11781 {
11782 struct dwo_file *dwo_file;
11783 struct dwo_unit dwo_unit;
11784 };
11785
11786 /* die_reader_func for create_dwo_cu. */
11787
11788 static void
11789 create_dwo_cu_reader (const struct die_reader_specs *reader,
11790 const gdb_byte *info_ptr,
11791 struct die_info *comp_unit_die,
11792 int has_children,
11793 void *datap)
11794 {
11795 struct dwarf2_cu *cu = reader->cu;
11796 sect_offset sect_off = cu->per_cu->sect_off;
11797 struct dwarf2_section_info *section = cu->per_cu->section;
11798 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11799 struct dwo_file *dwo_file = data->dwo_file;
11800 struct dwo_unit *dwo_unit = &data->dwo_unit;
11801 struct attribute *attr;
11802
11803 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11804 if (attr == NULL)
11805 {
11806 complaint (&symfile_complaints,
11807 _("Dwarf Error: debug entry at offset %s is missing"
11808 " its dwo_id [in module %s]"),
11809 sect_offset_str (sect_off), dwo_file->dwo_name);
11810 return;
11811 }
11812
11813 dwo_unit->dwo_file = dwo_file;
11814 dwo_unit->signature = DW_UNSND (attr);
11815 dwo_unit->section = section;
11816 dwo_unit->sect_off = sect_off;
11817 dwo_unit->length = cu->per_cu->length;
11818
11819 if (dwarf_read_debug)
11820 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11821 sect_offset_str (sect_off),
11822 hex_string (dwo_unit->signature));
11823 }
11824
11825 /* Create the dwo_units for the CUs in a DWO_FILE.
11826 Note: This function processes DWO files only, not DWP files. */
11827
11828 static void
11829 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11830 struct dwo_file &dwo_file, dwarf2_section_info &section,
11831 htab_t &cus_htab)
11832 {
11833 struct objfile *objfile = dwarf2_per_objfile->objfile;
11834 const gdb_byte *info_ptr, *end_ptr;
11835
11836 dwarf2_read_section (objfile, &section);
11837 info_ptr = section.buffer;
11838
11839 if (info_ptr == NULL)
11840 return;
11841
11842 if (dwarf_read_debug)
11843 {
11844 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11845 get_section_name (&section),
11846 get_section_file_name (&section));
11847 }
11848
11849 end_ptr = info_ptr + section.size;
11850 while (info_ptr < end_ptr)
11851 {
11852 struct dwarf2_per_cu_data per_cu;
11853 struct create_dwo_cu_data create_dwo_cu_data;
11854 struct dwo_unit *dwo_unit;
11855 void **slot;
11856 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11857
11858 memset (&create_dwo_cu_data.dwo_unit, 0,
11859 sizeof (create_dwo_cu_data.dwo_unit));
11860 memset (&per_cu, 0, sizeof (per_cu));
11861 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11862 per_cu.is_debug_types = 0;
11863 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11864 per_cu.section = &section;
11865 create_dwo_cu_data.dwo_file = &dwo_file;
11866
11867 init_cutu_and_read_dies_no_follow (
11868 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11869 info_ptr += per_cu.length;
11870
11871 // If the unit could not be parsed, skip it.
11872 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11873 continue;
11874
11875 if (cus_htab == NULL)
11876 cus_htab = allocate_dwo_unit_table (objfile);
11877
11878 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11879 *dwo_unit = create_dwo_cu_data.dwo_unit;
11880 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11881 gdb_assert (slot != NULL);
11882 if (*slot != NULL)
11883 {
11884 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11885 sect_offset dup_sect_off = dup_cu->sect_off;
11886
11887 complaint (&symfile_complaints,
11888 _("debug cu entry at offset %s is duplicate to"
11889 " the entry at offset %s, signature %s"),
11890 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11891 hex_string (dwo_unit->signature));
11892 }
11893 *slot = (void *)dwo_unit;
11894 }
11895 }
11896
11897 /* DWP file .debug_{cu,tu}_index section format:
11898 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11899
11900 DWP Version 1:
11901
11902 Both index sections have the same format, and serve to map a 64-bit
11903 signature to a set of section numbers. Each section begins with a header,
11904 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11905 indexes, and a pool of 32-bit section numbers. The index sections will be
11906 aligned at 8-byte boundaries in the file.
11907
11908 The index section header consists of:
11909
11910 V, 32 bit version number
11911 -, 32 bits unused
11912 N, 32 bit number of compilation units or type units in the index
11913 M, 32 bit number of slots in the hash table
11914
11915 Numbers are recorded using the byte order of the application binary.
11916
11917 The hash table begins at offset 16 in the section, and consists of an array
11918 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11919 order of the application binary). Unused slots in the hash table are 0.
11920 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11921
11922 The parallel table begins immediately after the hash table
11923 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11924 array of 32-bit indexes (using the byte order of the application binary),
11925 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11926 table contains a 32-bit index into the pool of section numbers. For unused
11927 hash table slots, the corresponding entry in the parallel table will be 0.
11928
11929 The pool of section numbers begins immediately following the hash table
11930 (at offset 16 + 12 * M from the beginning of the section). The pool of
11931 section numbers consists of an array of 32-bit words (using the byte order
11932 of the application binary). Each item in the array is indexed starting
11933 from 0. The hash table entry provides the index of the first section
11934 number in the set. Additional section numbers in the set follow, and the
11935 set is terminated by a 0 entry (section number 0 is not used in ELF).
11936
11937 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11938 section must be the first entry in the set, and the .debug_abbrev.dwo must
11939 be the second entry. Other members of the set may follow in any order.
11940
11941 ---
11942
11943 DWP Version 2:
11944
11945 DWP Version 2 combines all the .debug_info, etc. sections into one,
11946 and the entries in the index tables are now offsets into these sections.
11947 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11948 section.
11949
11950 Index Section Contents:
11951 Header
11952 Hash Table of Signatures dwp_hash_table.hash_table
11953 Parallel Table of Indices dwp_hash_table.unit_table
11954 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11955 Table of Section Sizes dwp_hash_table.v2.sizes
11956
11957 The index section header consists of:
11958
11959 V, 32 bit version number
11960 L, 32 bit number of columns in the table of section offsets
11961 N, 32 bit number of compilation units or type units in the index
11962 M, 32 bit number of slots in the hash table
11963
11964 Numbers are recorded using the byte order of the application binary.
11965
11966 The hash table has the same format as version 1.
11967 The parallel table of indices has the same format as version 1,
11968 except that the entries are origin-1 indices into the table of sections
11969 offsets and the table of section sizes.
11970
11971 The table of offsets begins immediately following the parallel table
11972 (at offset 16 + 12 * M from the beginning of the section). The table is
11973 a two-dimensional array of 32-bit words (using the byte order of the
11974 application binary), with L columns and N+1 rows, in row-major order.
11975 Each row in the array is indexed starting from 0. The first row provides
11976 a key to the remaining rows: each column in this row provides an identifier
11977 for a debug section, and the offsets in the same column of subsequent rows
11978 refer to that section. The section identifiers are:
11979
11980 DW_SECT_INFO 1 .debug_info.dwo
11981 DW_SECT_TYPES 2 .debug_types.dwo
11982 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11983 DW_SECT_LINE 4 .debug_line.dwo
11984 DW_SECT_LOC 5 .debug_loc.dwo
11985 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11986 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11987 DW_SECT_MACRO 8 .debug_macro.dwo
11988
11989 The offsets provided by the CU and TU index sections are the base offsets
11990 for the contributions made by each CU or TU to the corresponding section
11991 in the package file. Each CU and TU header contains an abbrev_offset
11992 field, used to find the abbreviations table for that CU or TU within the
11993 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11994 be interpreted as relative to the base offset given in the index section.
11995 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11996 should be interpreted as relative to the base offset for .debug_line.dwo,
11997 and offsets into other debug sections obtained from DWARF attributes should
11998 also be interpreted as relative to the corresponding base offset.
11999
12000 The table of sizes begins immediately following the table of offsets.
12001 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12002 with L columns and N rows, in row-major order. Each row in the array is
12003 indexed starting from 1 (row 0 is shared by the two tables).
12004
12005 ---
12006
12007 Hash table lookup is handled the same in version 1 and 2:
12008
12009 We assume that N and M will not exceed 2^32 - 1.
12010 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12011
12012 Given a 64-bit compilation unit signature or a type signature S, an entry
12013 in the hash table is located as follows:
12014
12015 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12016 the low-order k bits all set to 1.
12017
12018 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12019
12020 3) If the hash table entry at index H matches the signature, use that
12021 entry. If the hash table entry at index H is unused (all zeroes),
12022 terminate the search: the signature is not present in the table.
12023
12024 4) Let H = (H + H') modulo M. Repeat at Step 3.
12025
12026 Because M > N and H' and M are relatively prime, the search is guaranteed
12027 to stop at an unused slot or find the match. */
12028
12029 /* Create a hash table to map DWO IDs to their CU/TU entry in
12030 .debug_{info,types}.dwo in DWP_FILE.
12031 Returns NULL if there isn't one.
12032 Note: This function processes DWP files only, not DWO files. */
12033
12034 static struct dwp_hash_table *
12035 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12036 struct dwp_file *dwp_file, int is_debug_types)
12037 {
12038 struct objfile *objfile = dwarf2_per_objfile->objfile;
12039 bfd *dbfd = dwp_file->dbfd;
12040 const gdb_byte *index_ptr, *index_end;
12041 struct dwarf2_section_info *index;
12042 uint32_t version, nr_columns, nr_units, nr_slots;
12043 struct dwp_hash_table *htab;
12044
12045 if (is_debug_types)
12046 index = &dwp_file->sections.tu_index;
12047 else
12048 index = &dwp_file->sections.cu_index;
12049
12050 if (dwarf2_section_empty_p (index))
12051 return NULL;
12052 dwarf2_read_section (objfile, index);
12053
12054 index_ptr = index->buffer;
12055 index_end = index_ptr + index->size;
12056
12057 version = read_4_bytes (dbfd, index_ptr);
12058 index_ptr += 4;
12059 if (version == 2)
12060 nr_columns = read_4_bytes (dbfd, index_ptr);
12061 else
12062 nr_columns = 0;
12063 index_ptr += 4;
12064 nr_units = read_4_bytes (dbfd, index_ptr);
12065 index_ptr += 4;
12066 nr_slots = read_4_bytes (dbfd, index_ptr);
12067 index_ptr += 4;
12068
12069 if (version != 1 && version != 2)
12070 {
12071 error (_("Dwarf Error: unsupported DWP file version (%s)"
12072 " [in module %s]"),
12073 pulongest (version), dwp_file->name);
12074 }
12075 if (nr_slots != (nr_slots & -nr_slots))
12076 {
12077 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12078 " is not power of 2 [in module %s]"),
12079 pulongest (nr_slots), dwp_file->name);
12080 }
12081
12082 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12083 htab->version = version;
12084 htab->nr_columns = nr_columns;
12085 htab->nr_units = nr_units;
12086 htab->nr_slots = nr_slots;
12087 htab->hash_table = index_ptr;
12088 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12089
12090 /* Exit early if the table is empty. */
12091 if (nr_slots == 0 || nr_units == 0
12092 || (version == 2 && nr_columns == 0))
12093 {
12094 /* All must be zero. */
12095 if (nr_slots != 0 || nr_units != 0
12096 || (version == 2 && nr_columns != 0))
12097 {
12098 complaint (&symfile_complaints,
12099 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12100 " all zero [in modules %s]"),
12101 dwp_file->name);
12102 }
12103 return htab;
12104 }
12105
12106 if (version == 1)
12107 {
12108 htab->section_pool.v1.indices =
12109 htab->unit_table + sizeof (uint32_t) * nr_slots;
12110 /* It's harder to decide whether the section is too small in v1.
12111 V1 is deprecated anyway so we punt. */
12112 }
12113 else
12114 {
12115 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12116 int *ids = htab->section_pool.v2.section_ids;
12117 /* Reverse map for error checking. */
12118 int ids_seen[DW_SECT_MAX + 1];
12119 int i;
12120
12121 if (nr_columns < 2)
12122 {
12123 error (_("Dwarf Error: bad DWP hash table, too few columns"
12124 " in section table [in module %s]"),
12125 dwp_file->name);
12126 }
12127 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12128 {
12129 error (_("Dwarf Error: bad DWP hash table, too many columns"
12130 " in section table [in module %s]"),
12131 dwp_file->name);
12132 }
12133 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12134 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12135 for (i = 0; i < nr_columns; ++i)
12136 {
12137 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12138
12139 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12140 {
12141 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12142 " in section table [in module %s]"),
12143 id, dwp_file->name);
12144 }
12145 if (ids_seen[id] != -1)
12146 {
12147 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12148 " id %d in section table [in module %s]"),
12149 id, dwp_file->name);
12150 }
12151 ids_seen[id] = i;
12152 ids[i] = id;
12153 }
12154 /* Must have exactly one info or types section. */
12155 if (((ids_seen[DW_SECT_INFO] != -1)
12156 + (ids_seen[DW_SECT_TYPES] != -1))
12157 != 1)
12158 {
12159 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12160 " DWO info/types section [in module %s]"),
12161 dwp_file->name);
12162 }
12163 /* Must have an abbrev section. */
12164 if (ids_seen[DW_SECT_ABBREV] == -1)
12165 {
12166 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12167 " section [in module %s]"),
12168 dwp_file->name);
12169 }
12170 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12171 htab->section_pool.v2.sizes =
12172 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12173 * nr_units * nr_columns);
12174 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12175 * nr_units * nr_columns))
12176 > index_end)
12177 {
12178 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12179 " [in module %s]"),
12180 dwp_file->name);
12181 }
12182 }
12183
12184 return htab;
12185 }
12186
12187 /* Update SECTIONS with the data from SECTP.
12188
12189 This function is like the other "locate" section routines that are
12190 passed to bfd_map_over_sections, but in this context the sections to
12191 read comes from the DWP V1 hash table, not the full ELF section table.
12192
12193 The result is non-zero for success, or zero if an error was found. */
12194
12195 static int
12196 locate_v1_virtual_dwo_sections (asection *sectp,
12197 struct virtual_v1_dwo_sections *sections)
12198 {
12199 const struct dwop_section_names *names = &dwop_section_names;
12200
12201 if (section_is_p (sectp->name, &names->abbrev_dwo))
12202 {
12203 /* There can be only one. */
12204 if (sections->abbrev.s.section != NULL)
12205 return 0;
12206 sections->abbrev.s.section = sectp;
12207 sections->abbrev.size = bfd_get_section_size (sectp);
12208 }
12209 else if (section_is_p (sectp->name, &names->info_dwo)
12210 || section_is_p (sectp->name, &names->types_dwo))
12211 {
12212 /* There can be only one. */
12213 if (sections->info_or_types.s.section != NULL)
12214 return 0;
12215 sections->info_or_types.s.section = sectp;
12216 sections->info_or_types.size = bfd_get_section_size (sectp);
12217 }
12218 else if (section_is_p (sectp->name, &names->line_dwo))
12219 {
12220 /* There can be only one. */
12221 if (sections->line.s.section != NULL)
12222 return 0;
12223 sections->line.s.section = sectp;
12224 sections->line.size = bfd_get_section_size (sectp);
12225 }
12226 else if (section_is_p (sectp->name, &names->loc_dwo))
12227 {
12228 /* There can be only one. */
12229 if (sections->loc.s.section != NULL)
12230 return 0;
12231 sections->loc.s.section = sectp;
12232 sections->loc.size = bfd_get_section_size (sectp);
12233 }
12234 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12235 {
12236 /* There can be only one. */
12237 if (sections->macinfo.s.section != NULL)
12238 return 0;
12239 sections->macinfo.s.section = sectp;
12240 sections->macinfo.size = bfd_get_section_size (sectp);
12241 }
12242 else if (section_is_p (sectp->name, &names->macro_dwo))
12243 {
12244 /* There can be only one. */
12245 if (sections->macro.s.section != NULL)
12246 return 0;
12247 sections->macro.s.section = sectp;
12248 sections->macro.size = bfd_get_section_size (sectp);
12249 }
12250 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12251 {
12252 /* There can be only one. */
12253 if (sections->str_offsets.s.section != NULL)
12254 return 0;
12255 sections->str_offsets.s.section = sectp;
12256 sections->str_offsets.size = bfd_get_section_size (sectp);
12257 }
12258 else
12259 {
12260 /* No other kind of section is valid. */
12261 return 0;
12262 }
12263
12264 return 1;
12265 }
12266
12267 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12268 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12269 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12270 This is for DWP version 1 files. */
12271
12272 static struct dwo_unit *
12273 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12274 struct dwp_file *dwp_file,
12275 uint32_t unit_index,
12276 const char *comp_dir,
12277 ULONGEST signature, int is_debug_types)
12278 {
12279 struct objfile *objfile = dwarf2_per_objfile->objfile;
12280 const struct dwp_hash_table *dwp_htab =
12281 is_debug_types ? dwp_file->tus : dwp_file->cus;
12282 bfd *dbfd = dwp_file->dbfd;
12283 const char *kind = is_debug_types ? "TU" : "CU";
12284 struct dwo_file *dwo_file;
12285 struct dwo_unit *dwo_unit;
12286 struct virtual_v1_dwo_sections sections;
12287 void **dwo_file_slot;
12288 int i;
12289
12290 gdb_assert (dwp_file->version == 1);
12291
12292 if (dwarf_read_debug)
12293 {
12294 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12295 kind,
12296 pulongest (unit_index), hex_string (signature),
12297 dwp_file->name);
12298 }
12299
12300 /* Fetch the sections of this DWO unit.
12301 Put a limit on the number of sections we look for so that bad data
12302 doesn't cause us to loop forever. */
12303
12304 #define MAX_NR_V1_DWO_SECTIONS \
12305 (1 /* .debug_info or .debug_types */ \
12306 + 1 /* .debug_abbrev */ \
12307 + 1 /* .debug_line */ \
12308 + 1 /* .debug_loc */ \
12309 + 1 /* .debug_str_offsets */ \
12310 + 1 /* .debug_macro or .debug_macinfo */ \
12311 + 1 /* trailing zero */)
12312
12313 memset (&sections, 0, sizeof (sections));
12314
12315 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12316 {
12317 asection *sectp;
12318 uint32_t section_nr =
12319 read_4_bytes (dbfd,
12320 dwp_htab->section_pool.v1.indices
12321 + (unit_index + i) * sizeof (uint32_t));
12322
12323 if (section_nr == 0)
12324 break;
12325 if (section_nr >= dwp_file->num_sections)
12326 {
12327 error (_("Dwarf Error: bad DWP hash table, section number too large"
12328 " [in module %s]"),
12329 dwp_file->name);
12330 }
12331
12332 sectp = dwp_file->elf_sections[section_nr];
12333 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12334 {
12335 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12336 " [in module %s]"),
12337 dwp_file->name);
12338 }
12339 }
12340
12341 if (i < 2
12342 || dwarf2_section_empty_p (&sections.info_or_types)
12343 || dwarf2_section_empty_p (&sections.abbrev))
12344 {
12345 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12346 " [in module %s]"),
12347 dwp_file->name);
12348 }
12349 if (i == MAX_NR_V1_DWO_SECTIONS)
12350 {
12351 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12352 " [in module %s]"),
12353 dwp_file->name);
12354 }
12355
12356 /* It's easier for the rest of the code if we fake a struct dwo_file and
12357 have dwo_unit "live" in that. At least for now.
12358
12359 The DWP file can be made up of a random collection of CUs and TUs.
12360 However, for each CU + set of TUs that came from the same original DWO
12361 file, we can combine them back into a virtual DWO file to save space
12362 (fewer struct dwo_file objects to allocate). Remember that for really
12363 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12364
12365 std::string virtual_dwo_name =
12366 string_printf ("virtual-dwo/%d-%d-%d-%d",
12367 get_section_id (&sections.abbrev),
12368 get_section_id (&sections.line),
12369 get_section_id (&sections.loc),
12370 get_section_id (&sections.str_offsets));
12371 /* Can we use an existing virtual DWO file? */
12372 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12373 virtual_dwo_name.c_str (),
12374 comp_dir);
12375 /* Create one if necessary. */
12376 if (*dwo_file_slot == NULL)
12377 {
12378 if (dwarf_read_debug)
12379 {
12380 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12381 virtual_dwo_name.c_str ());
12382 }
12383 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12384 dwo_file->dwo_name
12385 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12386 virtual_dwo_name.c_str (),
12387 virtual_dwo_name.size ());
12388 dwo_file->comp_dir = comp_dir;
12389 dwo_file->sections.abbrev = sections.abbrev;
12390 dwo_file->sections.line = sections.line;
12391 dwo_file->sections.loc = sections.loc;
12392 dwo_file->sections.macinfo = sections.macinfo;
12393 dwo_file->sections.macro = sections.macro;
12394 dwo_file->sections.str_offsets = sections.str_offsets;
12395 /* The "str" section is global to the entire DWP file. */
12396 dwo_file->sections.str = dwp_file->sections.str;
12397 /* The info or types section is assigned below to dwo_unit,
12398 there's no need to record it in dwo_file.
12399 Also, we can't simply record type sections in dwo_file because
12400 we record a pointer into the vector in dwo_unit. As we collect more
12401 types we'll grow the vector and eventually have to reallocate space
12402 for it, invalidating all copies of pointers into the previous
12403 contents. */
12404 *dwo_file_slot = dwo_file;
12405 }
12406 else
12407 {
12408 if (dwarf_read_debug)
12409 {
12410 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12411 virtual_dwo_name.c_str ());
12412 }
12413 dwo_file = (struct dwo_file *) *dwo_file_slot;
12414 }
12415
12416 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12417 dwo_unit->dwo_file = dwo_file;
12418 dwo_unit->signature = signature;
12419 dwo_unit->section =
12420 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12421 *dwo_unit->section = sections.info_or_types;
12422 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12423
12424 return dwo_unit;
12425 }
12426
12427 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12428 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12429 piece within that section used by a TU/CU, return a virtual section
12430 of just that piece. */
12431
12432 static struct dwarf2_section_info
12433 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12434 struct dwarf2_section_info *section,
12435 bfd_size_type offset, bfd_size_type size)
12436 {
12437 struct dwarf2_section_info result;
12438 asection *sectp;
12439
12440 gdb_assert (section != NULL);
12441 gdb_assert (!section->is_virtual);
12442
12443 memset (&result, 0, sizeof (result));
12444 result.s.containing_section = section;
12445 result.is_virtual = 1;
12446
12447 if (size == 0)
12448 return result;
12449
12450 sectp = get_section_bfd_section (section);
12451
12452 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12453 bounds of the real section. This is a pretty-rare event, so just
12454 flag an error (easier) instead of a warning and trying to cope. */
12455 if (sectp == NULL
12456 || offset + size > bfd_get_section_size (sectp))
12457 {
12458 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12459 " in section %s [in module %s]"),
12460 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12461 objfile_name (dwarf2_per_objfile->objfile));
12462 }
12463
12464 result.virtual_offset = offset;
12465 result.size = size;
12466 return result;
12467 }
12468
12469 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12470 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12471 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12472 This is for DWP version 2 files. */
12473
12474 static struct dwo_unit *
12475 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12476 struct dwp_file *dwp_file,
12477 uint32_t unit_index,
12478 const char *comp_dir,
12479 ULONGEST signature, int is_debug_types)
12480 {
12481 struct objfile *objfile = dwarf2_per_objfile->objfile;
12482 const struct dwp_hash_table *dwp_htab =
12483 is_debug_types ? dwp_file->tus : dwp_file->cus;
12484 bfd *dbfd = dwp_file->dbfd;
12485 const char *kind = is_debug_types ? "TU" : "CU";
12486 struct dwo_file *dwo_file;
12487 struct dwo_unit *dwo_unit;
12488 struct virtual_v2_dwo_sections sections;
12489 void **dwo_file_slot;
12490 int i;
12491
12492 gdb_assert (dwp_file->version == 2);
12493
12494 if (dwarf_read_debug)
12495 {
12496 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12497 kind,
12498 pulongest (unit_index), hex_string (signature),
12499 dwp_file->name);
12500 }
12501
12502 /* Fetch the section offsets of this DWO unit. */
12503
12504 memset (&sections, 0, sizeof (sections));
12505
12506 for (i = 0; i < dwp_htab->nr_columns; ++i)
12507 {
12508 uint32_t offset = read_4_bytes (dbfd,
12509 dwp_htab->section_pool.v2.offsets
12510 + (((unit_index - 1) * dwp_htab->nr_columns
12511 + i)
12512 * sizeof (uint32_t)));
12513 uint32_t size = read_4_bytes (dbfd,
12514 dwp_htab->section_pool.v2.sizes
12515 + (((unit_index - 1) * dwp_htab->nr_columns
12516 + i)
12517 * sizeof (uint32_t)));
12518
12519 switch (dwp_htab->section_pool.v2.section_ids[i])
12520 {
12521 case DW_SECT_INFO:
12522 case DW_SECT_TYPES:
12523 sections.info_or_types_offset = offset;
12524 sections.info_or_types_size = size;
12525 break;
12526 case DW_SECT_ABBREV:
12527 sections.abbrev_offset = offset;
12528 sections.abbrev_size = size;
12529 break;
12530 case DW_SECT_LINE:
12531 sections.line_offset = offset;
12532 sections.line_size = size;
12533 break;
12534 case DW_SECT_LOC:
12535 sections.loc_offset = offset;
12536 sections.loc_size = size;
12537 break;
12538 case DW_SECT_STR_OFFSETS:
12539 sections.str_offsets_offset = offset;
12540 sections.str_offsets_size = size;
12541 break;
12542 case DW_SECT_MACINFO:
12543 sections.macinfo_offset = offset;
12544 sections.macinfo_size = size;
12545 break;
12546 case DW_SECT_MACRO:
12547 sections.macro_offset = offset;
12548 sections.macro_size = size;
12549 break;
12550 }
12551 }
12552
12553 /* It's easier for the rest of the code if we fake a struct dwo_file and
12554 have dwo_unit "live" in that. At least for now.
12555
12556 The DWP file can be made up of a random collection of CUs and TUs.
12557 However, for each CU + set of TUs that came from the same original DWO
12558 file, we can combine them back into a virtual DWO file to save space
12559 (fewer struct dwo_file objects to allocate). Remember that for really
12560 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12561
12562 std::string virtual_dwo_name =
12563 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12564 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12565 (long) (sections.line_size ? sections.line_offset : 0),
12566 (long) (sections.loc_size ? sections.loc_offset : 0),
12567 (long) (sections.str_offsets_size
12568 ? sections.str_offsets_offset : 0));
12569 /* Can we use an existing virtual DWO file? */
12570 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12571 virtual_dwo_name.c_str (),
12572 comp_dir);
12573 /* Create one if necessary. */
12574 if (*dwo_file_slot == NULL)
12575 {
12576 if (dwarf_read_debug)
12577 {
12578 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12579 virtual_dwo_name.c_str ());
12580 }
12581 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12582 dwo_file->dwo_name
12583 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12584 virtual_dwo_name.c_str (),
12585 virtual_dwo_name.size ());
12586 dwo_file->comp_dir = comp_dir;
12587 dwo_file->sections.abbrev =
12588 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12589 sections.abbrev_offset, sections.abbrev_size);
12590 dwo_file->sections.line =
12591 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12592 sections.line_offset, sections.line_size);
12593 dwo_file->sections.loc =
12594 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12595 sections.loc_offset, sections.loc_size);
12596 dwo_file->sections.macinfo =
12597 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12598 sections.macinfo_offset, sections.macinfo_size);
12599 dwo_file->sections.macro =
12600 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12601 sections.macro_offset, sections.macro_size);
12602 dwo_file->sections.str_offsets =
12603 create_dwp_v2_section (dwarf2_per_objfile,
12604 &dwp_file->sections.str_offsets,
12605 sections.str_offsets_offset,
12606 sections.str_offsets_size);
12607 /* The "str" section is global to the entire DWP file. */
12608 dwo_file->sections.str = dwp_file->sections.str;
12609 /* The info or types section is assigned below to dwo_unit,
12610 there's no need to record it in dwo_file.
12611 Also, we can't simply record type sections in dwo_file because
12612 we record a pointer into the vector in dwo_unit. As we collect more
12613 types we'll grow the vector and eventually have to reallocate space
12614 for it, invalidating all copies of pointers into the previous
12615 contents. */
12616 *dwo_file_slot = dwo_file;
12617 }
12618 else
12619 {
12620 if (dwarf_read_debug)
12621 {
12622 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12623 virtual_dwo_name.c_str ());
12624 }
12625 dwo_file = (struct dwo_file *) *dwo_file_slot;
12626 }
12627
12628 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12629 dwo_unit->dwo_file = dwo_file;
12630 dwo_unit->signature = signature;
12631 dwo_unit->section =
12632 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12633 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12634 is_debug_types
12635 ? &dwp_file->sections.types
12636 : &dwp_file->sections.info,
12637 sections.info_or_types_offset,
12638 sections.info_or_types_size);
12639 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12640
12641 return dwo_unit;
12642 }
12643
12644 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12645 Returns NULL if the signature isn't found. */
12646
12647 static struct dwo_unit *
12648 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12649 struct dwp_file *dwp_file, const char *comp_dir,
12650 ULONGEST signature, int is_debug_types)
12651 {
12652 const struct dwp_hash_table *dwp_htab =
12653 is_debug_types ? dwp_file->tus : dwp_file->cus;
12654 bfd *dbfd = dwp_file->dbfd;
12655 uint32_t mask = dwp_htab->nr_slots - 1;
12656 uint32_t hash = signature & mask;
12657 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12658 unsigned int i;
12659 void **slot;
12660 struct dwo_unit find_dwo_cu;
12661
12662 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12663 find_dwo_cu.signature = signature;
12664 slot = htab_find_slot (is_debug_types
12665 ? dwp_file->loaded_tus
12666 : dwp_file->loaded_cus,
12667 &find_dwo_cu, INSERT);
12668
12669 if (*slot != NULL)
12670 return (struct dwo_unit *) *slot;
12671
12672 /* Use a for loop so that we don't loop forever on bad debug info. */
12673 for (i = 0; i < dwp_htab->nr_slots; ++i)
12674 {
12675 ULONGEST signature_in_table;
12676
12677 signature_in_table =
12678 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12679 if (signature_in_table == signature)
12680 {
12681 uint32_t unit_index =
12682 read_4_bytes (dbfd,
12683 dwp_htab->unit_table + hash * sizeof (uint32_t));
12684
12685 if (dwp_file->version == 1)
12686 {
12687 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12688 dwp_file, unit_index,
12689 comp_dir, signature,
12690 is_debug_types);
12691 }
12692 else
12693 {
12694 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12695 dwp_file, unit_index,
12696 comp_dir, signature,
12697 is_debug_types);
12698 }
12699 return (struct dwo_unit *) *slot;
12700 }
12701 if (signature_in_table == 0)
12702 return NULL;
12703 hash = (hash + hash2) & mask;
12704 }
12705
12706 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12707 " [in module %s]"),
12708 dwp_file->name);
12709 }
12710
12711 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12712 Open the file specified by FILE_NAME and hand it off to BFD for
12713 preliminary analysis. Return a newly initialized bfd *, which
12714 includes a canonicalized copy of FILE_NAME.
12715 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12716 SEARCH_CWD is true if the current directory is to be searched.
12717 It will be searched before debug-file-directory.
12718 If successful, the file is added to the bfd include table of the
12719 objfile's bfd (see gdb_bfd_record_inclusion).
12720 If unable to find/open the file, return NULL.
12721 NOTE: This function is derived from symfile_bfd_open. */
12722
12723 static gdb_bfd_ref_ptr
12724 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12725 const char *file_name, int is_dwp, int search_cwd)
12726 {
12727 int desc;
12728 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12729 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12730 to debug_file_directory. */
12731 const char *search_path;
12732 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12733
12734 gdb::unique_xmalloc_ptr<char> search_path_holder;
12735 if (search_cwd)
12736 {
12737 if (*debug_file_directory != '\0')
12738 {
12739 search_path_holder.reset (concat (".", dirname_separator_string,
12740 debug_file_directory,
12741 (char *) NULL));
12742 search_path = search_path_holder.get ();
12743 }
12744 else
12745 search_path = ".";
12746 }
12747 else
12748 search_path = debug_file_directory;
12749
12750 openp_flags flags = OPF_RETURN_REALPATH;
12751 if (is_dwp)
12752 flags |= OPF_SEARCH_IN_PATH;
12753
12754 gdb::unique_xmalloc_ptr<char> absolute_name;
12755 desc = openp (search_path, flags, file_name,
12756 O_RDONLY | O_BINARY, &absolute_name);
12757 if (desc < 0)
12758 return NULL;
12759
12760 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12761 gnutarget, desc));
12762 if (sym_bfd == NULL)
12763 return NULL;
12764 bfd_set_cacheable (sym_bfd.get (), 1);
12765
12766 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12767 return NULL;
12768
12769 /* Success. Record the bfd as having been included by the objfile's bfd.
12770 This is important because things like demangled_names_hash lives in the
12771 objfile's per_bfd space and may have references to things like symbol
12772 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12773 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12774
12775 return sym_bfd;
12776 }
12777
12778 /* Try to open DWO file FILE_NAME.
12779 COMP_DIR is the DW_AT_comp_dir attribute.
12780 The result is the bfd handle of the file.
12781 If there is a problem finding or opening the file, return NULL.
12782 Upon success, the canonicalized path of the file is stored in the bfd,
12783 same as symfile_bfd_open. */
12784
12785 static gdb_bfd_ref_ptr
12786 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12787 const char *file_name, const char *comp_dir)
12788 {
12789 if (IS_ABSOLUTE_PATH (file_name))
12790 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12791 0 /*is_dwp*/, 0 /*search_cwd*/);
12792
12793 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12794
12795 if (comp_dir != NULL)
12796 {
12797 char *path_to_try = concat (comp_dir, SLASH_STRING,
12798 file_name, (char *) NULL);
12799
12800 /* NOTE: If comp_dir is a relative path, this will also try the
12801 search path, which seems useful. */
12802 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12803 path_to_try,
12804 0 /*is_dwp*/,
12805 1 /*search_cwd*/));
12806 xfree (path_to_try);
12807 if (abfd != NULL)
12808 return abfd;
12809 }
12810
12811 /* That didn't work, try debug-file-directory, which, despite its name,
12812 is a list of paths. */
12813
12814 if (*debug_file_directory == '\0')
12815 return NULL;
12816
12817 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12818 0 /*is_dwp*/, 1 /*search_cwd*/);
12819 }
12820
12821 /* This function is mapped across the sections and remembers the offset and
12822 size of each of the DWO debugging sections we are interested in. */
12823
12824 static void
12825 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12826 {
12827 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12828 const struct dwop_section_names *names = &dwop_section_names;
12829
12830 if (section_is_p (sectp->name, &names->abbrev_dwo))
12831 {
12832 dwo_sections->abbrev.s.section = sectp;
12833 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12834 }
12835 else if (section_is_p (sectp->name, &names->info_dwo))
12836 {
12837 dwo_sections->info.s.section = sectp;
12838 dwo_sections->info.size = bfd_get_section_size (sectp);
12839 }
12840 else if (section_is_p (sectp->name, &names->line_dwo))
12841 {
12842 dwo_sections->line.s.section = sectp;
12843 dwo_sections->line.size = bfd_get_section_size (sectp);
12844 }
12845 else if (section_is_p (sectp->name, &names->loc_dwo))
12846 {
12847 dwo_sections->loc.s.section = sectp;
12848 dwo_sections->loc.size = bfd_get_section_size (sectp);
12849 }
12850 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12851 {
12852 dwo_sections->macinfo.s.section = sectp;
12853 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12854 }
12855 else if (section_is_p (sectp->name, &names->macro_dwo))
12856 {
12857 dwo_sections->macro.s.section = sectp;
12858 dwo_sections->macro.size = bfd_get_section_size (sectp);
12859 }
12860 else if (section_is_p (sectp->name, &names->str_dwo))
12861 {
12862 dwo_sections->str.s.section = sectp;
12863 dwo_sections->str.size = bfd_get_section_size (sectp);
12864 }
12865 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12866 {
12867 dwo_sections->str_offsets.s.section = sectp;
12868 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12869 }
12870 else if (section_is_p (sectp->name, &names->types_dwo))
12871 {
12872 struct dwarf2_section_info type_section;
12873
12874 memset (&type_section, 0, sizeof (type_section));
12875 type_section.s.section = sectp;
12876 type_section.size = bfd_get_section_size (sectp);
12877 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12878 &type_section);
12879 }
12880 }
12881
12882 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12883 by PER_CU. This is for the non-DWP case.
12884 The result is NULL if DWO_NAME can't be found. */
12885
12886 static struct dwo_file *
12887 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12888 const char *dwo_name, const char *comp_dir)
12889 {
12890 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12891 struct objfile *objfile = dwarf2_per_objfile->objfile;
12892
12893 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12894 if (dbfd == NULL)
12895 {
12896 if (dwarf_read_debug)
12897 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12898 return NULL;
12899 }
12900
12901 /* We use a unique pointer here, despite the obstack allocation,
12902 because a dwo_file needs some cleanup if it is abandoned. */
12903 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12904 struct dwo_file));
12905 dwo_file->dwo_name = dwo_name;
12906 dwo_file->comp_dir = comp_dir;
12907 dwo_file->dbfd = dbfd.release ();
12908
12909 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12910 &dwo_file->sections);
12911
12912 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12913 dwo_file->cus);
12914
12915 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12916 dwo_file->sections.types, dwo_file->tus);
12917
12918 if (dwarf_read_debug)
12919 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12920
12921 return dwo_file.release ();
12922 }
12923
12924 /* This function is mapped across the sections and remembers the offset and
12925 size of each of the DWP debugging sections common to version 1 and 2 that
12926 we are interested in. */
12927
12928 static void
12929 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12930 void *dwp_file_ptr)
12931 {
12932 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12933 const struct dwop_section_names *names = &dwop_section_names;
12934 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12935
12936 /* Record the ELF section number for later lookup: this is what the
12937 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12938 gdb_assert (elf_section_nr < dwp_file->num_sections);
12939 dwp_file->elf_sections[elf_section_nr] = sectp;
12940
12941 /* Look for specific sections that we need. */
12942 if (section_is_p (sectp->name, &names->str_dwo))
12943 {
12944 dwp_file->sections.str.s.section = sectp;
12945 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12946 }
12947 else if (section_is_p (sectp->name, &names->cu_index))
12948 {
12949 dwp_file->sections.cu_index.s.section = sectp;
12950 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12951 }
12952 else if (section_is_p (sectp->name, &names->tu_index))
12953 {
12954 dwp_file->sections.tu_index.s.section = sectp;
12955 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12956 }
12957 }
12958
12959 /* This function is mapped across the sections and remembers the offset and
12960 size of each of the DWP version 2 debugging sections that we are interested
12961 in. This is split into a separate function because we don't know if we
12962 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12963
12964 static void
12965 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12966 {
12967 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12968 const struct dwop_section_names *names = &dwop_section_names;
12969 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12970
12971 /* Record the ELF section number for later lookup: this is what the
12972 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12973 gdb_assert (elf_section_nr < dwp_file->num_sections);
12974 dwp_file->elf_sections[elf_section_nr] = sectp;
12975
12976 /* Look for specific sections that we need. */
12977 if (section_is_p (sectp->name, &names->abbrev_dwo))
12978 {
12979 dwp_file->sections.abbrev.s.section = sectp;
12980 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12981 }
12982 else if (section_is_p (sectp->name, &names->info_dwo))
12983 {
12984 dwp_file->sections.info.s.section = sectp;
12985 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12986 }
12987 else if (section_is_p (sectp->name, &names->line_dwo))
12988 {
12989 dwp_file->sections.line.s.section = sectp;
12990 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12991 }
12992 else if (section_is_p (sectp->name, &names->loc_dwo))
12993 {
12994 dwp_file->sections.loc.s.section = sectp;
12995 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12996 }
12997 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12998 {
12999 dwp_file->sections.macinfo.s.section = sectp;
13000 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13001 }
13002 else if (section_is_p (sectp->name, &names->macro_dwo))
13003 {
13004 dwp_file->sections.macro.s.section = sectp;
13005 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13006 }
13007 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13008 {
13009 dwp_file->sections.str_offsets.s.section = sectp;
13010 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13011 }
13012 else if (section_is_p (sectp->name, &names->types_dwo))
13013 {
13014 dwp_file->sections.types.s.section = sectp;
13015 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13016 }
13017 }
13018
13019 /* Hash function for dwp_file loaded CUs/TUs. */
13020
13021 static hashval_t
13022 hash_dwp_loaded_cutus (const void *item)
13023 {
13024 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13025
13026 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13027 return dwo_unit->signature;
13028 }
13029
13030 /* Equality function for dwp_file loaded CUs/TUs. */
13031
13032 static int
13033 eq_dwp_loaded_cutus (const void *a, const void *b)
13034 {
13035 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13036 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13037
13038 return dua->signature == dub->signature;
13039 }
13040
13041 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13042
13043 static htab_t
13044 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13045 {
13046 return htab_create_alloc_ex (3,
13047 hash_dwp_loaded_cutus,
13048 eq_dwp_loaded_cutus,
13049 NULL,
13050 &objfile->objfile_obstack,
13051 hashtab_obstack_allocate,
13052 dummy_obstack_deallocate);
13053 }
13054
13055 /* Try to open DWP file FILE_NAME.
13056 The result is the bfd handle of the file.
13057 If there is a problem finding or opening the file, return NULL.
13058 Upon success, the canonicalized path of the file is stored in the bfd,
13059 same as symfile_bfd_open. */
13060
13061 static gdb_bfd_ref_ptr
13062 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13063 const char *file_name)
13064 {
13065 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13066 1 /*is_dwp*/,
13067 1 /*search_cwd*/));
13068 if (abfd != NULL)
13069 return abfd;
13070
13071 /* Work around upstream bug 15652.
13072 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13073 [Whether that's a "bug" is debatable, but it is getting in our way.]
13074 We have no real idea where the dwp file is, because gdb's realpath-ing
13075 of the executable's path may have discarded the needed info.
13076 [IWBN if the dwp file name was recorded in the executable, akin to
13077 .gnu_debuglink, but that doesn't exist yet.]
13078 Strip the directory from FILE_NAME and search again. */
13079 if (*debug_file_directory != '\0')
13080 {
13081 /* Don't implicitly search the current directory here.
13082 If the user wants to search "." to handle this case,
13083 it must be added to debug-file-directory. */
13084 return try_open_dwop_file (dwarf2_per_objfile,
13085 lbasename (file_name), 1 /*is_dwp*/,
13086 0 /*search_cwd*/);
13087 }
13088
13089 return NULL;
13090 }
13091
13092 /* Initialize the use of the DWP file for the current objfile.
13093 By convention the name of the DWP file is ${objfile}.dwp.
13094 The result is NULL if it can't be found. */
13095
13096 static struct dwp_file *
13097 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13098 {
13099 struct objfile *objfile = dwarf2_per_objfile->objfile;
13100 struct dwp_file *dwp_file;
13101
13102 /* Try to find first .dwp for the binary file before any symbolic links
13103 resolving. */
13104
13105 /* If the objfile is a debug file, find the name of the real binary
13106 file and get the name of dwp file from there. */
13107 std::string dwp_name;
13108 if (objfile->separate_debug_objfile_backlink != NULL)
13109 {
13110 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13111 const char *backlink_basename = lbasename (backlink->original_name);
13112
13113 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13114 }
13115 else
13116 dwp_name = objfile->original_name;
13117
13118 dwp_name += ".dwp";
13119
13120 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13121 if (dbfd == NULL
13122 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13123 {
13124 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13125 dwp_name = objfile_name (objfile);
13126 dwp_name += ".dwp";
13127 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13128 }
13129
13130 if (dbfd == NULL)
13131 {
13132 if (dwarf_read_debug)
13133 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13134 return NULL;
13135 }
13136 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13137 dwp_file->name = bfd_get_filename (dbfd.get ());
13138 dwp_file->dbfd = dbfd.release ();
13139
13140 /* +1: section 0 is unused */
13141 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13142 dwp_file->elf_sections =
13143 OBSTACK_CALLOC (&objfile->objfile_obstack,
13144 dwp_file->num_sections, asection *);
13145
13146 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13147 dwp_file);
13148
13149 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13150
13151 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13152
13153 /* The DWP file version is stored in the hash table. Oh well. */
13154 if (dwp_file->cus && dwp_file->tus
13155 && dwp_file->cus->version != dwp_file->tus->version)
13156 {
13157 /* Technically speaking, we should try to limp along, but this is
13158 pretty bizarre. We use pulongest here because that's the established
13159 portability solution (e.g, we cannot use %u for uint32_t). */
13160 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13161 " TU version %s [in DWP file %s]"),
13162 pulongest (dwp_file->cus->version),
13163 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13164 }
13165
13166 if (dwp_file->cus)
13167 dwp_file->version = dwp_file->cus->version;
13168 else if (dwp_file->tus)
13169 dwp_file->version = dwp_file->tus->version;
13170 else
13171 dwp_file->version = 2;
13172
13173 if (dwp_file->version == 2)
13174 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13175 dwp_file);
13176
13177 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13178 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13179
13180 if (dwarf_read_debug)
13181 {
13182 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13183 fprintf_unfiltered (gdb_stdlog,
13184 " %s CUs, %s TUs\n",
13185 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13186 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13187 }
13188
13189 return dwp_file;
13190 }
13191
13192 /* Wrapper around open_and_init_dwp_file, only open it once. */
13193
13194 static struct dwp_file *
13195 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13196 {
13197 if (! dwarf2_per_objfile->dwp_checked)
13198 {
13199 dwarf2_per_objfile->dwp_file
13200 = open_and_init_dwp_file (dwarf2_per_objfile);
13201 dwarf2_per_objfile->dwp_checked = 1;
13202 }
13203 return dwarf2_per_objfile->dwp_file;
13204 }
13205
13206 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13207 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13208 or in the DWP file for the objfile, referenced by THIS_UNIT.
13209 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13210 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13211
13212 This is called, for example, when wanting to read a variable with a
13213 complex location. Therefore we don't want to do file i/o for every call.
13214 Therefore we don't want to look for a DWO file on every call.
13215 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13216 then we check if we've already seen DWO_NAME, and only THEN do we check
13217 for a DWO file.
13218
13219 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13220 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13221
13222 static struct dwo_unit *
13223 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13224 const char *dwo_name, const char *comp_dir,
13225 ULONGEST signature, int is_debug_types)
13226 {
13227 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13228 struct objfile *objfile = dwarf2_per_objfile->objfile;
13229 const char *kind = is_debug_types ? "TU" : "CU";
13230 void **dwo_file_slot;
13231 struct dwo_file *dwo_file;
13232 struct dwp_file *dwp_file;
13233
13234 /* First see if there's a DWP file.
13235 If we have a DWP file but didn't find the DWO inside it, don't
13236 look for the original DWO file. It makes gdb behave differently
13237 depending on whether one is debugging in the build tree. */
13238
13239 dwp_file = get_dwp_file (dwarf2_per_objfile);
13240 if (dwp_file != NULL)
13241 {
13242 const struct dwp_hash_table *dwp_htab =
13243 is_debug_types ? dwp_file->tus : dwp_file->cus;
13244
13245 if (dwp_htab != NULL)
13246 {
13247 struct dwo_unit *dwo_cutu =
13248 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13249 signature, is_debug_types);
13250
13251 if (dwo_cutu != NULL)
13252 {
13253 if (dwarf_read_debug)
13254 {
13255 fprintf_unfiltered (gdb_stdlog,
13256 "Virtual DWO %s %s found: @%s\n",
13257 kind, hex_string (signature),
13258 host_address_to_string (dwo_cutu));
13259 }
13260 return dwo_cutu;
13261 }
13262 }
13263 }
13264 else
13265 {
13266 /* No DWP file, look for the DWO file. */
13267
13268 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13269 dwo_name, comp_dir);
13270 if (*dwo_file_slot == NULL)
13271 {
13272 /* Read in the file and build a table of the CUs/TUs it contains. */
13273 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13274 }
13275 /* NOTE: This will be NULL if unable to open the file. */
13276 dwo_file = (struct dwo_file *) *dwo_file_slot;
13277
13278 if (dwo_file != NULL)
13279 {
13280 struct dwo_unit *dwo_cutu = NULL;
13281
13282 if (is_debug_types && dwo_file->tus)
13283 {
13284 struct dwo_unit find_dwo_cutu;
13285
13286 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13287 find_dwo_cutu.signature = signature;
13288 dwo_cutu
13289 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13290 }
13291 else if (!is_debug_types && dwo_file->cus)
13292 {
13293 struct dwo_unit find_dwo_cutu;
13294
13295 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13296 find_dwo_cutu.signature = signature;
13297 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13298 &find_dwo_cutu);
13299 }
13300
13301 if (dwo_cutu != NULL)
13302 {
13303 if (dwarf_read_debug)
13304 {
13305 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13306 kind, dwo_name, hex_string (signature),
13307 host_address_to_string (dwo_cutu));
13308 }
13309 return dwo_cutu;
13310 }
13311 }
13312 }
13313
13314 /* We didn't find it. This could mean a dwo_id mismatch, or
13315 someone deleted the DWO/DWP file, or the search path isn't set up
13316 correctly to find the file. */
13317
13318 if (dwarf_read_debug)
13319 {
13320 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13321 kind, dwo_name, hex_string (signature));
13322 }
13323
13324 /* This is a warning and not a complaint because it can be caused by
13325 pilot error (e.g., user accidentally deleting the DWO). */
13326 {
13327 /* Print the name of the DWP file if we looked there, helps the user
13328 better diagnose the problem. */
13329 std::string dwp_text;
13330
13331 if (dwp_file != NULL)
13332 dwp_text = string_printf (" [in DWP file %s]",
13333 lbasename (dwp_file->name));
13334
13335 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13336 " [in module %s]"),
13337 kind, dwo_name, hex_string (signature),
13338 dwp_text.c_str (),
13339 this_unit->is_debug_types ? "TU" : "CU",
13340 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13341 }
13342 return NULL;
13343 }
13344
13345 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13346 See lookup_dwo_cutu_unit for details. */
13347
13348 static struct dwo_unit *
13349 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13350 const char *dwo_name, const char *comp_dir,
13351 ULONGEST signature)
13352 {
13353 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13354 }
13355
13356 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13357 See lookup_dwo_cutu_unit for details. */
13358
13359 static struct dwo_unit *
13360 lookup_dwo_type_unit (struct signatured_type *this_tu,
13361 const char *dwo_name, const char *comp_dir)
13362 {
13363 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13364 }
13365
13366 /* Traversal function for queue_and_load_all_dwo_tus. */
13367
13368 static int
13369 queue_and_load_dwo_tu (void **slot, void *info)
13370 {
13371 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13372 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13373 ULONGEST signature = dwo_unit->signature;
13374 struct signatured_type *sig_type =
13375 lookup_dwo_signatured_type (per_cu->cu, signature);
13376
13377 if (sig_type != NULL)
13378 {
13379 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13380
13381 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13382 a real dependency of PER_CU on SIG_TYPE. That is detected later
13383 while processing PER_CU. */
13384 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13385 load_full_type_unit (sig_cu);
13386 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13387 }
13388
13389 return 1;
13390 }
13391
13392 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13393 The DWO may have the only definition of the type, though it may not be
13394 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13395 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13396
13397 static void
13398 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13399 {
13400 struct dwo_unit *dwo_unit;
13401 struct dwo_file *dwo_file;
13402
13403 gdb_assert (!per_cu->is_debug_types);
13404 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13405 gdb_assert (per_cu->cu != NULL);
13406
13407 dwo_unit = per_cu->cu->dwo_unit;
13408 gdb_assert (dwo_unit != NULL);
13409
13410 dwo_file = dwo_unit->dwo_file;
13411 if (dwo_file->tus != NULL)
13412 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13413 }
13414
13415 /* Free all resources associated with DWO_FILE.
13416 Close the DWO file and munmap the sections. */
13417
13418 static void
13419 free_dwo_file (struct dwo_file *dwo_file)
13420 {
13421 /* Note: dbfd is NULL for virtual DWO files. */
13422 gdb_bfd_unref (dwo_file->dbfd);
13423
13424 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13425 }
13426
13427 /* Traversal function for free_dwo_files. */
13428
13429 static int
13430 free_dwo_file_from_slot (void **slot, void *info)
13431 {
13432 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13433
13434 free_dwo_file (dwo_file);
13435
13436 return 1;
13437 }
13438
13439 /* Free all resources associated with DWO_FILES. */
13440
13441 static void
13442 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13443 {
13444 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13445 }
13446 \f
13447 /* Read in various DIEs. */
13448
13449 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13450 Inherit only the children of the DW_AT_abstract_origin DIE not being
13451 already referenced by DW_AT_abstract_origin from the children of the
13452 current DIE. */
13453
13454 static void
13455 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13456 {
13457 struct die_info *child_die;
13458 sect_offset *offsetp;
13459 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13460 struct die_info *origin_die;
13461 /* Iterator of the ORIGIN_DIE children. */
13462 struct die_info *origin_child_die;
13463 struct attribute *attr;
13464 struct dwarf2_cu *origin_cu;
13465 struct pending **origin_previous_list_in_scope;
13466
13467 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13468 if (!attr)
13469 return;
13470
13471 /* Note that following die references may follow to a die in a
13472 different cu. */
13473
13474 origin_cu = cu;
13475 origin_die = follow_die_ref (die, attr, &origin_cu);
13476
13477 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13478 symbols in. */
13479 origin_previous_list_in_scope = origin_cu->list_in_scope;
13480 origin_cu->list_in_scope = cu->list_in_scope;
13481
13482 if (die->tag != origin_die->tag
13483 && !(die->tag == DW_TAG_inlined_subroutine
13484 && origin_die->tag == DW_TAG_subprogram))
13485 complaint (&symfile_complaints,
13486 _("DIE %s and its abstract origin %s have different tags"),
13487 sect_offset_str (die->sect_off),
13488 sect_offset_str (origin_die->sect_off));
13489
13490 std::vector<sect_offset> offsets;
13491
13492 for (child_die = die->child;
13493 child_die && child_die->tag;
13494 child_die = sibling_die (child_die))
13495 {
13496 struct die_info *child_origin_die;
13497 struct dwarf2_cu *child_origin_cu;
13498
13499 /* We are trying to process concrete instance entries:
13500 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13501 it's not relevant to our analysis here. i.e. detecting DIEs that are
13502 present in the abstract instance but not referenced in the concrete
13503 one. */
13504 if (child_die->tag == DW_TAG_call_site
13505 || child_die->tag == DW_TAG_GNU_call_site)
13506 continue;
13507
13508 /* For each CHILD_DIE, find the corresponding child of
13509 ORIGIN_DIE. If there is more than one layer of
13510 DW_AT_abstract_origin, follow them all; there shouldn't be,
13511 but GCC versions at least through 4.4 generate this (GCC PR
13512 40573). */
13513 child_origin_die = child_die;
13514 child_origin_cu = cu;
13515 while (1)
13516 {
13517 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13518 child_origin_cu);
13519 if (attr == NULL)
13520 break;
13521 child_origin_die = follow_die_ref (child_origin_die, attr,
13522 &child_origin_cu);
13523 }
13524
13525 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13526 counterpart may exist. */
13527 if (child_origin_die != child_die)
13528 {
13529 if (child_die->tag != child_origin_die->tag
13530 && !(child_die->tag == DW_TAG_inlined_subroutine
13531 && child_origin_die->tag == DW_TAG_subprogram))
13532 complaint (&symfile_complaints,
13533 _("Child DIE %s and its abstract origin %s have "
13534 "different tags"),
13535 sect_offset_str (child_die->sect_off),
13536 sect_offset_str (child_origin_die->sect_off));
13537 if (child_origin_die->parent != origin_die)
13538 complaint (&symfile_complaints,
13539 _("Child DIE %s and its abstract origin %s have "
13540 "different parents"),
13541 sect_offset_str (child_die->sect_off),
13542 sect_offset_str (child_origin_die->sect_off));
13543 else
13544 offsets.push_back (child_origin_die->sect_off);
13545 }
13546 }
13547 std::sort (offsets.begin (), offsets.end ());
13548 sect_offset *offsets_end = offsets.data () + offsets.size ();
13549 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13550 if (offsetp[-1] == *offsetp)
13551 complaint (&symfile_complaints,
13552 _("Multiple children of DIE %s refer "
13553 "to DIE %s as their abstract origin"),
13554 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13555
13556 offsetp = offsets.data ();
13557 origin_child_die = origin_die->child;
13558 while (origin_child_die && origin_child_die->tag)
13559 {
13560 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13561 while (offsetp < offsets_end
13562 && *offsetp < origin_child_die->sect_off)
13563 offsetp++;
13564 if (offsetp >= offsets_end
13565 || *offsetp > origin_child_die->sect_off)
13566 {
13567 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13568 Check whether we're already processing ORIGIN_CHILD_DIE.
13569 This can happen with mutually referenced abstract_origins.
13570 PR 16581. */
13571 if (!origin_child_die->in_process)
13572 process_die (origin_child_die, origin_cu);
13573 }
13574 origin_child_die = sibling_die (origin_child_die);
13575 }
13576 origin_cu->list_in_scope = origin_previous_list_in_scope;
13577 }
13578
13579 static void
13580 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13581 {
13582 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13583 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13584 struct context_stack *newobj;
13585 CORE_ADDR lowpc;
13586 CORE_ADDR highpc;
13587 struct die_info *child_die;
13588 struct attribute *attr, *call_line, *call_file;
13589 const char *name;
13590 CORE_ADDR baseaddr;
13591 struct block *block;
13592 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13593 std::vector<struct symbol *> template_args;
13594 struct template_symbol *templ_func = NULL;
13595
13596 if (inlined_func)
13597 {
13598 /* If we do not have call site information, we can't show the
13599 caller of this inlined function. That's too confusing, so
13600 only use the scope for local variables. */
13601 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13602 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13603 if (call_line == NULL || call_file == NULL)
13604 {
13605 read_lexical_block_scope (die, cu);
13606 return;
13607 }
13608 }
13609
13610 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13611
13612 name = dwarf2_name (die, cu);
13613
13614 /* Ignore functions with missing or empty names. These are actually
13615 illegal according to the DWARF standard. */
13616 if (name == NULL)
13617 {
13618 complaint (&symfile_complaints,
13619 _("missing name for subprogram DIE at %s"),
13620 sect_offset_str (die->sect_off));
13621 return;
13622 }
13623
13624 /* Ignore functions with missing or invalid low and high pc attributes. */
13625 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13626 <= PC_BOUNDS_INVALID)
13627 {
13628 attr = dwarf2_attr (die, DW_AT_external, cu);
13629 if (!attr || !DW_UNSND (attr))
13630 complaint (&symfile_complaints,
13631 _("cannot get low and high bounds "
13632 "for subprogram DIE at %s"),
13633 sect_offset_str (die->sect_off));
13634 return;
13635 }
13636
13637 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13638 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13639
13640 /* If we have any template arguments, then we must allocate a
13641 different sort of symbol. */
13642 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13643 {
13644 if (child_die->tag == DW_TAG_template_type_param
13645 || child_die->tag == DW_TAG_template_value_param)
13646 {
13647 templ_func = allocate_template_symbol (objfile);
13648 templ_func->subclass = SYMBOL_TEMPLATE;
13649 break;
13650 }
13651 }
13652
13653 newobj = push_context (0, lowpc);
13654 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13655 (struct symbol *) templ_func);
13656
13657 /* If there is a location expression for DW_AT_frame_base, record
13658 it. */
13659 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13660 if (attr)
13661 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13662
13663 /* If there is a location for the static link, record it. */
13664 newobj->static_link = NULL;
13665 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13666 if (attr)
13667 {
13668 newobj->static_link
13669 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13670 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13671 }
13672
13673 cu->list_in_scope = &local_symbols;
13674
13675 if (die->child != NULL)
13676 {
13677 child_die = die->child;
13678 while (child_die && child_die->tag)
13679 {
13680 if (child_die->tag == DW_TAG_template_type_param
13681 || child_die->tag == DW_TAG_template_value_param)
13682 {
13683 struct symbol *arg = new_symbol (child_die, NULL, cu);
13684
13685 if (arg != NULL)
13686 template_args.push_back (arg);
13687 }
13688 else
13689 process_die (child_die, cu);
13690 child_die = sibling_die (child_die);
13691 }
13692 }
13693
13694 inherit_abstract_dies (die, cu);
13695
13696 /* If we have a DW_AT_specification, we might need to import using
13697 directives from the context of the specification DIE. See the
13698 comment in determine_prefix. */
13699 if (cu->language == language_cplus
13700 && dwarf2_attr (die, DW_AT_specification, cu))
13701 {
13702 struct dwarf2_cu *spec_cu = cu;
13703 struct die_info *spec_die = die_specification (die, &spec_cu);
13704
13705 while (spec_die)
13706 {
13707 child_die = spec_die->child;
13708 while (child_die && child_die->tag)
13709 {
13710 if (child_die->tag == DW_TAG_imported_module)
13711 process_die (child_die, spec_cu);
13712 child_die = sibling_die (child_die);
13713 }
13714
13715 /* In some cases, GCC generates specification DIEs that
13716 themselves contain DW_AT_specification attributes. */
13717 spec_die = die_specification (spec_die, &spec_cu);
13718 }
13719 }
13720
13721 newobj = pop_context ();
13722 /* Make a block for the local symbols within. */
13723 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13724 newobj->static_link, lowpc, highpc);
13725
13726 /* For C++, set the block's scope. */
13727 if ((cu->language == language_cplus
13728 || cu->language == language_fortran
13729 || cu->language == language_d
13730 || cu->language == language_rust)
13731 && cu->processing_has_namespace_info)
13732 block_set_scope (block, determine_prefix (die, cu),
13733 &objfile->objfile_obstack);
13734
13735 /* If we have address ranges, record them. */
13736 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13737
13738 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13739
13740 /* Attach template arguments to function. */
13741 if (!template_args.empty ())
13742 {
13743 gdb_assert (templ_func != NULL);
13744
13745 templ_func->n_template_arguments = template_args.size ();
13746 templ_func->template_arguments
13747 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13748 templ_func->n_template_arguments);
13749 memcpy (templ_func->template_arguments,
13750 template_args.data (),
13751 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13752 }
13753
13754 /* In C++, we can have functions nested inside functions (e.g., when
13755 a function declares a class that has methods). This means that
13756 when we finish processing a function scope, we may need to go
13757 back to building a containing block's symbol lists. */
13758 local_symbols = newobj->locals;
13759 local_using_directives = newobj->local_using_directives;
13760
13761 /* If we've finished processing a top-level function, subsequent
13762 symbols go in the file symbol list. */
13763 if (outermost_context_p ())
13764 cu->list_in_scope = &file_symbols;
13765 }
13766
13767 /* Process all the DIES contained within a lexical block scope. Start
13768 a new scope, process the dies, and then close the scope. */
13769
13770 static void
13771 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13772 {
13773 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13774 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13775 struct context_stack *newobj;
13776 CORE_ADDR lowpc, highpc;
13777 struct die_info *child_die;
13778 CORE_ADDR baseaddr;
13779
13780 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13781
13782 /* Ignore blocks with missing or invalid low and high pc attributes. */
13783 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13784 as multiple lexical blocks? Handling children in a sane way would
13785 be nasty. Might be easier to properly extend generic blocks to
13786 describe ranges. */
13787 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13788 {
13789 case PC_BOUNDS_NOT_PRESENT:
13790 /* DW_TAG_lexical_block has no attributes, process its children as if
13791 there was no wrapping by that DW_TAG_lexical_block.
13792 GCC does no longer produces such DWARF since GCC r224161. */
13793 for (child_die = die->child;
13794 child_die != NULL && child_die->tag;
13795 child_die = sibling_die (child_die))
13796 process_die (child_die, cu);
13797 return;
13798 case PC_BOUNDS_INVALID:
13799 return;
13800 }
13801 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13802 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13803
13804 push_context (0, lowpc);
13805 if (die->child != NULL)
13806 {
13807 child_die = die->child;
13808 while (child_die && child_die->tag)
13809 {
13810 process_die (child_die, cu);
13811 child_die = sibling_die (child_die);
13812 }
13813 }
13814 inherit_abstract_dies (die, cu);
13815 newobj = pop_context ();
13816
13817 if (local_symbols != NULL || local_using_directives != NULL)
13818 {
13819 struct block *block
13820 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13821 newobj->start_addr, highpc);
13822
13823 /* Note that recording ranges after traversing children, as we
13824 do here, means that recording a parent's ranges entails
13825 walking across all its children's ranges as they appear in
13826 the address map, which is quadratic behavior.
13827
13828 It would be nicer to record the parent's ranges before
13829 traversing its children, simply overriding whatever you find
13830 there. But since we don't even decide whether to create a
13831 block until after we've traversed its children, that's hard
13832 to do. */
13833 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13834 }
13835 local_symbols = newobj->locals;
13836 local_using_directives = newobj->local_using_directives;
13837 }
13838
13839 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13840
13841 static void
13842 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13843 {
13844 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13846 CORE_ADDR pc, baseaddr;
13847 struct attribute *attr;
13848 struct call_site *call_site, call_site_local;
13849 void **slot;
13850 int nparams;
13851 struct die_info *child_die;
13852
13853 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13854
13855 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13856 if (attr == NULL)
13857 {
13858 /* This was a pre-DWARF-5 GNU extension alias
13859 for DW_AT_call_return_pc. */
13860 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13861 }
13862 if (!attr)
13863 {
13864 complaint (&symfile_complaints,
13865 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13866 "DIE %s [in module %s]"),
13867 sect_offset_str (die->sect_off), objfile_name (objfile));
13868 return;
13869 }
13870 pc = attr_value_as_address (attr) + baseaddr;
13871 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13872
13873 if (cu->call_site_htab == NULL)
13874 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13875 NULL, &objfile->objfile_obstack,
13876 hashtab_obstack_allocate, NULL);
13877 call_site_local.pc = pc;
13878 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13879 if (*slot != NULL)
13880 {
13881 complaint (&symfile_complaints,
13882 _("Duplicate PC %s for DW_TAG_call_site "
13883 "DIE %s [in module %s]"),
13884 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13885 objfile_name (objfile));
13886 return;
13887 }
13888
13889 /* Count parameters at the caller. */
13890
13891 nparams = 0;
13892 for (child_die = die->child; child_die && child_die->tag;
13893 child_die = sibling_die (child_die))
13894 {
13895 if (child_die->tag != DW_TAG_call_site_parameter
13896 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13897 {
13898 complaint (&symfile_complaints,
13899 _("Tag %d is not DW_TAG_call_site_parameter in "
13900 "DW_TAG_call_site child DIE %s [in module %s]"),
13901 child_die->tag, sect_offset_str (child_die->sect_off),
13902 objfile_name (objfile));
13903 continue;
13904 }
13905
13906 nparams++;
13907 }
13908
13909 call_site
13910 = ((struct call_site *)
13911 obstack_alloc (&objfile->objfile_obstack,
13912 sizeof (*call_site)
13913 + (sizeof (*call_site->parameter) * (nparams - 1))));
13914 *slot = call_site;
13915 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13916 call_site->pc = pc;
13917
13918 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13919 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13920 {
13921 struct die_info *func_die;
13922
13923 /* Skip also over DW_TAG_inlined_subroutine. */
13924 for (func_die = die->parent;
13925 func_die && func_die->tag != DW_TAG_subprogram
13926 && func_die->tag != DW_TAG_subroutine_type;
13927 func_die = func_die->parent);
13928
13929 /* DW_AT_call_all_calls is a superset
13930 of DW_AT_call_all_tail_calls. */
13931 if (func_die
13932 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13933 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13934 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13935 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13936 {
13937 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13938 not complete. But keep CALL_SITE for look ups via call_site_htab,
13939 both the initial caller containing the real return address PC and
13940 the final callee containing the current PC of a chain of tail
13941 calls do not need to have the tail call list complete. But any
13942 function candidate for a virtual tail call frame searched via
13943 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13944 determined unambiguously. */
13945 }
13946 else
13947 {
13948 struct type *func_type = NULL;
13949
13950 if (func_die)
13951 func_type = get_die_type (func_die, cu);
13952 if (func_type != NULL)
13953 {
13954 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13955
13956 /* Enlist this call site to the function. */
13957 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13958 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13959 }
13960 else
13961 complaint (&symfile_complaints,
13962 _("Cannot find function owning DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 sect_offset_str (die->sect_off), objfile_name (objfile));
13965 }
13966 }
13967
13968 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13969 if (attr == NULL)
13970 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13971 if (attr == NULL)
13972 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13973 if (attr == NULL)
13974 {
13975 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13976 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13977 }
13978 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13979 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13980 /* Keep NULL DWARF_BLOCK. */;
13981 else if (attr_form_is_block (attr))
13982 {
13983 struct dwarf2_locexpr_baton *dlbaton;
13984
13985 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13986 dlbaton->data = DW_BLOCK (attr)->data;
13987 dlbaton->size = DW_BLOCK (attr)->size;
13988 dlbaton->per_cu = cu->per_cu;
13989
13990 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13991 }
13992 else if (attr_form_is_ref (attr))
13993 {
13994 struct dwarf2_cu *target_cu = cu;
13995 struct die_info *target_die;
13996
13997 target_die = follow_die_ref (die, attr, &target_cu);
13998 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13999 if (die_is_declaration (target_die, target_cu))
14000 {
14001 const char *target_physname;
14002
14003 /* Prefer the mangled name; otherwise compute the demangled one. */
14004 target_physname = dw2_linkage_name (target_die, target_cu);
14005 if (target_physname == NULL)
14006 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14007 if (target_physname == NULL)
14008 complaint (&symfile_complaints,
14009 _("DW_AT_call_target target DIE has invalid "
14010 "physname, for referencing DIE %s [in module %s]"),
14011 sect_offset_str (die->sect_off), objfile_name (objfile));
14012 else
14013 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14014 }
14015 else
14016 {
14017 CORE_ADDR lowpc;
14018
14019 /* DW_AT_entry_pc should be preferred. */
14020 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14021 <= PC_BOUNDS_INVALID)
14022 complaint (&symfile_complaints,
14023 _("DW_AT_call_target target DIE has invalid "
14024 "low pc, for referencing DIE %s [in module %s]"),
14025 sect_offset_str (die->sect_off), objfile_name (objfile));
14026 else
14027 {
14028 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14029 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14030 }
14031 }
14032 }
14033 else
14034 complaint (&symfile_complaints,
14035 _("DW_TAG_call_site DW_AT_call_target is neither "
14036 "block nor reference, for DIE %s [in module %s]"),
14037 sect_offset_str (die->sect_off), objfile_name (objfile));
14038
14039 call_site->per_cu = cu->per_cu;
14040
14041 for (child_die = die->child;
14042 child_die && child_die->tag;
14043 child_die = sibling_die (child_die))
14044 {
14045 struct call_site_parameter *parameter;
14046 struct attribute *loc, *origin;
14047
14048 if (child_die->tag != DW_TAG_call_site_parameter
14049 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14050 {
14051 /* Already printed the complaint above. */
14052 continue;
14053 }
14054
14055 gdb_assert (call_site->parameter_count < nparams);
14056 parameter = &call_site->parameter[call_site->parameter_count];
14057
14058 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14059 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14060 register is contained in DW_AT_call_value. */
14061
14062 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14063 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14064 if (origin == NULL)
14065 {
14066 /* This was a pre-DWARF-5 GNU extension alias
14067 for DW_AT_call_parameter. */
14068 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14069 }
14070 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14071 {
14072 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14073
14074 sect_offset sect_off
14075 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14076 if (!offset_in_cu_p (&cu->header, sect_off))
14077 {
14078 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14079 binding can be done only inside one CU. Such referenced DIE
14080 therefore cannot be even moved to DW_TAG_partial_unit. */
14081 complaint (&symfile_complaints,
14082 _("DW_AT_call_parameter offset is not in CU for "
14083 "DW_TAG_call_site child DIE %s [in module %s]"),
14084 sect_offset_str (child_die->sect_off),
14085 objfile_name (objfile));
14086 continue;
14087 }
14088 parameter->u.param_cu_off
14089 = (cu_offset) (sect_off - cu->header.sect_off);
14090 }
14091 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14092 {
14093 complaint (&symfile_complaints,
14094 _("No DW_FORM_block* DW_AT_location for "
14095 "DW_TAG_call_site child DIE %s [in module %s]"),
14096 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14097 continue;
14098 }
14099 else
14100 {
14101 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14102 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14103 if (parameter->u.dwarf_reg != -1)
14104 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14105 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14106 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14107 &parameter->u.fb_offset))
14108 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14109 else
14110 {
14111 complaint (&symfile_complaints,
14112 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14113 "for DW_FORM_block* DW_AT_location is supported for "
14114 "DW_TAG_call_site child DIE %s "
14115 "[in module %s]"),
14116 sect_offset_str (child_die->sect_off),
14117 objfile_name (objfile));
14118 continue;
14119 }
14120 }
14121
14122 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14123 if (attr == NULL)
14124 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14125 if (!attr_form_is_block (attr))
14126 {
14127 complaint (&symfile_complaints,
14128 _("No DW_FORM_block* DW_AT_call_value for "
14129 "DW_TAG_call_site child DIE %s [in module %s]"),
14130 sect_offset_str (child_die->sect_off),
14131 objfile_name (objfile));
14132 continue;
14133 }
14134 parameter->value = DW_BLOCK (attr)->data;
14135 parameter->value_size = DW_BLOCK (attr)->size;
14136
14137 /* Parameters are not pre-cleared by memset above. */
14138 parameter->data_value = NULL;
14139 parameter->data_value_size = 0;
14140 call_site->parameter_count++;
14141
14142 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14143 if (attr == NULL)
14144 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14145 if (attr)
14146 {
14147 if (!attr_form_is_block (attr))
14148 complaint (&symfile_complaints,
14149 _("No DW_FORM_block* DW_AT_call_data_value for "
14150 "DW_TAG_call_site child DIE %s [in module %s]"),
14151 sect_offset_str (child_die->sect_off),
14152 objfile_name (objfile));
14153 else
14154 {
14155 parameter->data_value = DW_BLOCK (attr)->data;
14156 parameter->data_value_size = DW_BLOCK (attr)->size;
14157 }
14158 }
14159 }
14160 }
14161
14162 /* Helper function for read_variable. If DIE represents a virtual
14163 table, then return the type of the concrete object that is
14164 associated with the virtual table. Otherwise, return NULL. */
14165
14166 static struct type *
14167 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14168 {
14169 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14170 if (attr == NULL)
14171 return NULL;
14172
14173 /* Find the type DIE. */
14174 struct die_info *type_die = NULL;
14175 struct dwarf2_cu *type_cu = cu;
14176
14177 if (attr_form_is_ref (attr))
14178 type_die = follow_die_ref (die, attr, &type_cu);
14179 if (type_die == NULL)
14180 return NULL;
14181
14182 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14183 return NULL;
14184 return die_containing_type (type_die, type_cu);
14185 }
14186
14187 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14188
14189 static void
14190 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14191 {
14192 struct rust_vtable_symbol *storage = NULL;
14193
14194 if (cu->language == language_rust)
14195 {
14196 struct type *containing_type = rust_containing_type (die, cu);
14197
14198 if (containing_type != NULL)
14199 {
14200 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14201
14202 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14203 struct rust_vtable_symbol);
14204 initialize_objfile_symbol (storage);
14205 storage->concrete_type = containing_type;
14206 storage->subclass = SYMBOL_RUST_VTABLE;
14207 }
14208 }
14209
14210 new_symbol (die, NULL, cu, storage);
14211 }
14212
14213 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14214 reading .debug_rnglists.
14215 Callback's type should be:
14216 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14217 Return true if the attributes are present and valid, otherwise,
14218 return false. */
14219
14220 template <typename Callback>
14221 static bool
14222 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14223 Callback &&callback)
14224 {
14225 struct dwarf2_per_objfile *dwarf2_per_objfile
14226 = cu->per_cu->dwarf2_per_objfile;
14227 struct objfile *objfile = dwarf2_per_objfile->objfile;
14228 bfd *obfd = objfile->obfd;
14229 /* Base address selection entry. */
14230 CORE_ADDR base;
14231 int found_base;
14232 const gdb_byte *buffer;
14233 CORE_ADDR baseaddr;
14234 bool overflow = false;
14235
14236 found_base = cu->base_known;
14237 base = cu->base_address;
14238
14239 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14240 if (offset >= dwarf2_per_objfile->rnglists.size)
14241 {
14242 complaint (&symfile_complaints,
14243 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14244 offset);
14245 return false;
14246 }
14247 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14248
14249 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14250
14251 while (1)
14252 {
14253 /* Initialize it due to a false compiler warning. */
14254 CORE_ADDR range_beginning = 0, range_end = 0;
14255 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14256 + dwarf2_per_objfile->rnglists.size);
14257 unsigned int bytes_read;
14258
14259 if (buffer == buf_end)
14260 {
14261 overflow = true;
14262 break;
14263 }
14264 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14265 switch (rlet)
14266 {
14267 case DW_RLE_end_of_list:
14268 break;
14269 case DW_RLE_base_address:
14270 if (buffer + cu->header.addr_size > buf_end)
14271 {
14272 overflow = true;
14273 break;
14274 }
14275 base = read_address (obfd, buffer, cu, &bytes_read);
14276 found_base = 1;
14277 buffer += bytes_read;
14278 break;
14279 case DW_RLE_start_length:
14280 if (buffer + cu->header.addr_size > buf_end)
14281 {
14282 overflow = true;
14283 break;
14284 }
14285 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14286 buffer += bytes_read;
14287 range_end = (range_beginning
14288 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14289 buffer += bytes_read;
14290 if (buffer > buf_end)
14291 {
14292 overflow = true;
14293 break;
14294 }
14295 break;
14296 case DW_RLE_offset_pair:
14297 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14298 buffer += bytes_read;
14299 if (buffer > buf_end)
14300 {
14301 overflow = true;
14302 break;
14303 }
14304 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14305 buffer += bytes_read;
14306 if (buffer > buf_end)
14307 {
14308 overflow = true;
14309 break;
14310 }
14311 break;
14312 case DW_RLE_start_end:
14313 if (buffer + 2 * cu->header.addr_size > buf_end)
14314 {
14315 overflow = true;
14316 break;
14317 }
14318 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14319 buffer += bytes_read;
14320 range_end = read_address (obfd, buffer, cu, &bytes_read);
14321 buffer += bytes_read;
14322 break;
14323 default:
14324 complaint (&symfile_complaints,
14325 _("Invalid .debug_rnglists data (no base address)"));
14326 return false;
14327 }
14328 if (rlet == DW_RLE_end_of_list || overflow)
14329 break;
14330 if (rlet == DW_RLE_base_address)
14331 continue;
14332
14333 if (!found_base)
14334 {
14335 /* We have no valid base address for the ranges
14336 data. */
14337 complaint (&symfile_complaints,
14338 _("Invalid .debug_rnglists data (no base address)"));
14339 return false;
14340 }
14341
14342 if (range_beginning > range_end)
14343 {
14344 /* Inverted range entries are invalid. */
14345 complaint (&symfile_complaints,
14346 _("Invalid .debug_rnglists data (inverted range)"));
14347 return false;
14348 }
14349
14350 /* Empty range entries have no effect. */
14351 if (range_beginning == range_end)
14352 continue;
14353
14354 range_beginning += base;
14355 range_end += base;
14356
14357 /* A not-uncommon case of bad debug info.
14358 Don't pollute the addrmap with bad data. */
14359 if (range_beginning + baseaddr == 0
14360 && !dwarf2_per_objfile->has_section_at_zero)
14361 {
14362 complaint (&symfile_complaints,
14363 _(".debug_rnglists entry has start address of zero"
14364 " [in module %s]"), objfile_name (objfile));
14365 continue;
14366 }
14367
14368 callback (range_beginning, range_end);
14369 }
14370
14371 if (overflow)
14372 {
14373 complaint (&symfile_complaints,
14374 _("Offset %d is not terminated "
14375 "for DW_AT_ranges attribute"),
14376 offset);
14377 return false;
14378 }
14379
14380 return true;
14381 }
14382
14383 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14384 Callback's type should be:
14385 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14386 Return 1 if the attributes are present and valid, otherwise, return 0. */
14387
14388 template <typename Callback>
14389 static int
14390 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14391 Callback &&callback)
14392 {
14393 struct dwarf2_per_objfile *dwarf2_per_objfile
14394 = cu->per_cu->dwarf2_per_objfile;
14395 struct objfile *objfile = dwarf2_per_objfile->objfile;
14396 struct comp_unit_head *cu_header = &cu->header;
14397 bfd *obfd = objfile->obfd;
14398 unsigned int addr_size = cu_header->addr_size;
14399 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14400 /* Base address selection entry. */
14401 CORE_ADDR base;
14402 int found_base;
14403 unsigned int dummy;
14404 const gdb_byte *buffer;
14405 CORE_ADDR baseaddr;
14406
14407 if (cu_header->version >= 5)
14408 return dwarf2_rnglists_process (offset, cu, callback);
14409
14410 found_base = cu->base_known;
14411 base = cu->base_address;
14412
14413 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14414 if (offset >= dwarf2_per_objfile->ranges.size)
14415 {
14416 complaint (&symfile_complaints,
14417 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14418 offset);
14419 return 0;
14420 }
14421 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14422
14423 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14424
14425 while (1)
14426 {
14427 CORE_ADDR range_beginning, range_end;
14428
14429 range_beginning = read_address (obfd, buffer, cu, &dummy);
14430 buffer += addr_size;
14431 range_end = read_address (obfd, buffer, cu, &dummy);
14432 buffer += addr_size;
14433 offset += 2 * addr_size;
14434
14435 /* An end of list marker is a pair of zero addresses. */
14436 if (range_beginning == 0 && range_end == 0)
14437 /* Found the end of list entry. */
14438 break;
14439
14440 /* Each base address selection entry is a pair of 2 values.
14441 The first is the largest possible address, the second is
14442 the base address. Check for a base address here. */
14443 if ((range_beginning & mask) == mask)
14444 {
14445 /* If we found the largest possible address, then we already
14446 have the base address in range_end. */
14447 base = range_end;
14448 found_base = 1;
14449 continue;
14450 }
14451
14452 if (!found_base)
14453 {
14454 /* We have no valid base address for the ranges
14455 data. */
14456 complaint (&symfile_complaints,
14457 _("Invalid .debug_ranges data (no base address)"));
14458 return 0;
14459 }
14460
14461 if (range_beginning > range_end)
14462 {
14463 /* Inverted range entries are invalid. */
14464 complaint (&symfile_complaints,
14465 _("Invalid .debug_ranges data (inverted range)"));
14466 return 0;
14467 }
14468
14469 /* Empty range entries have no effect. */
14470 if (range_beginning == range_end)
14471 continue;
14472
14473 range_beginning += base;
14474 range_end += base;
14475
14476 /* A not-uncommon case of bad debug info.
14477 Don't pollute the addrmap with bad data. */
14478 if (range_beginning + baseaddr == 0
14479 && !dwarf2_per_objfile->has_section_at_zero)
14480 {
14481 complaint (&symfile_complaints,
14482 _(".debug_ranges entry has start address of zero"
14483 " [in module %s]"), objfile_name (objfile));
14484 continue;
14485 }
14486
14487 callback (range_beginning, range_end);
14488 }
14489
14490 return 1;
14491 }
14492
14493 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14494 Return 1 if the attributes are present and valid, otherwise, return 0.
14495 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14496
14497 static int
14498 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14499 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14500 struct partial_symtab *ranges_pst)
14501 {
14502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14504 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14505 SECT_OFF_TEXT (objfile));
14506 int low_set = 0;
14507 CORE_ADDR low = 0;
14508 CORE_ADDR high = 0;
14509 int retval;
14510
14511 retval = dwarf2_ranges_process (offset, cu,
14512 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14513 {
14514 if (ranges_pst != NULL)
14515 {
14516 CORE_ADDR lowpc;
14517 CORE_ADDR highpc;
14518
14519 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14520 range_beginning + baseaddr);
14521 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14522 range_end + baseaddr);
14523 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14524 ranges_pst);
14525 }
14526
14527 /* FIXME: This is recording everything as a low-high
14528 segment of consecutive addresses. We should have a
14529 data structure for discontiguous block ranges
14530 instead. */
14531 if (! low_set)
14532 {
14533 low = range_beginning;
14534 high = range_end;
14535 low_set = 1;
14536 }
14537 else
14538 {
14539 if (range_beginning < low)
14540 low = range_beginning;
14541 if (range_end > high)
14542 high = range_end;
14543 }
14544 });
14545 if (!retval)
14546 return 0;
14547
14548 if (! low_set)
14549 /* If the first entry is an end-of-list marker, the range
14550 describes an empty scope, i.e. no instructions. */
14551 return 0;
14552
14553 if (low_return)
14554 *low_return = low;
14555 if (high_return)
14556 *high_return = high;
14557 return 1;
14558 }
14559
14560 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14561 definition for the return value. *LOWPC and *HIGHPC are set iff
14562 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14563
14564 static enum pc_bounds_kind
14565 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14566 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14567 struct partial_symtab *pst)
14568 {
14569 struct dwarf2_per_objfile *dwarf2_per_objfile
14570 = cu->per_cu->dwarf2_per_objfile;
14571 struct attribute *attr;
14572 struct attribute *attr_high;
14573 CORE_ADDR low = 0;
14574 CORE_ADDR high = 0;
14575 enum pc_bounds_kind ret;
14576
14577 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14578 if (attr_high)
14579 {
14580 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14581 if (attr)
14582 {
14583 low = attr_value_as_address (attr);
14584 high = attr_value_as_address (attr_high);
14585 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14586 high += low;
14587 }
14588 else
14589 /* Found high w/o low attribute. */
14590 return PC_BOUNDS_INVALID;
14591
14592 /* Found consecutive range of addresses. */
14593 ret = PC_BOUNDS_HIGH_LOW;
14594 }
14595 else
14596 {
14597 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14598 if (attr != NULL)
14599 {
14600 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14601 We take advantage of the fact that DW_AT_ranges does not appear
14602 in DW_TAG_compile_unit of DWO files. */
14603 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14604 unsigned int ranges_offset = (DW_UNSND (attr)
14605 + (need_ranges_base
14606 ? cu->ranges_base
14607 : 0));
14608
14609 /* Value of the DW_AT_ranges attribute is the offset in the
14610 .debug_ranges section. */
14611 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14612 return PC_BOUNDS_INVALID;
14613 /* Found discontinuous range of addresses. */
14614 ret = PC_BOUNDS_RANGES;
14615 }
14616 else
14617 return PC_BOUNDS_NOT_PRESENT;
14618 }
14619
14620 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14621 if (high <= low)
14622 return PC_BOUNDS_INVALID;
14623
14624 /* When using the GNU linker, .gnu.linkonce. sections are used to
14625 eliminate duplicate copies of functions and vtables and such.
14626 The linker will arbitrarily choose one and discard the others.
14627 The AT_*_pc values for such functions refer to local labels in
14628 these sections. If the section from that file was discarded, the
14629 labels are not in the output, so the relocs get a value of 0.
14630 If this is a discarded function, mark the pc bounds as invalid,
14631 so that GDB will ignore it. */
14632 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14633 return PC_BOUNDS_INVALID;
14634
14635 *lowpc = low;
14636 if (highpc)
14637 *highpc = high;
14638 return ret;
14639 }
14640
14641 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14642 its low and high PC addresses. Do nothing if these addresses could not
14643 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14644 and HIGHPC to the high address if greater than HIGHPC. */
14645
14646 static void
14647 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14648 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14649 struct dwarf2_cu *cu)
14650 {
14651 CORE_ADDR low, high;
14652 struct die_info *child = die->child;
14653
14654 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14655 {
14656 *lowpc = std::min (*lowpc, low);
14657 *highpc = std::max (*highpc, high);
14658 }
14659
14660 /* If the language does not allow nested subprograms (either inside
14661 subprograms or lexical blocks), we're done. */
14662 if (cu->language != language_ada)
14663 return;
14664
14665 /* Check all the children of the given DIE. If it contains nested
14666 subprograms, then check their pc bounds. Likewise, we need to
14667 check lexical blocks as well, as they may also contain subprogram
14668 definitions. */
14669 while (child && child->tag)
14670 {
14671 if (child->tag == DW_TAG_subprogram
14672 || child->tag == DW_TAG_lexical_block)
14673 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14674 child = sibling_die (child);
14675 }
14676 }
14677
14678 /* Get the low and high pc's represented by the scope DIE, and store
14679 them in *LOWPC and *HIGHPC. If the correct values can't be
14680 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14681
14682 static void
14683 get_scope_pc_bounds (struct die_info *die,
14684 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14685 struct dwarf2_cu *cu)
14686 {
14687 CORE_ADDR best_low = (CORE_ADDR) -1;
14688 CORE_ADDR best_high = (CORE_ADDR) 0;
14689 CORE_ADDR current_low, current_high;
14690
14691 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14692 >= PC_BOUNDS_RANGES)
14693 {
14694 best_low = current_low;
14695 best_high = current_high;
14696 }
14697 else
14698 {
14699 struct die_info *child = die->child;
14700
14701 while (child && child->tag)
14702 {
14703 switch (child->tag) {
14704 case DW_TAG_subprogram:
14705 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14706 break;
14707 case DW_TAG_namespace:
14708 case DW_TAG_module:
14709 /* FIXME: carlton/2004-01-16: Should we do this for
14710 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14711 that current GCC's always emit the DIEs corresponding
14712 to definitions of methods of classes as children of a
14713 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14714 the DIEs giving the declarations, which could be
14715 anywhere). But I don't see any reason why the
14716 standards says that they have to be there. */
14717 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14718
14719 if (current_low != ((CORE_ADDR) -1))
14720 {
14721 best_low = std::min (best_low, current_low);
14722 best_high = std::max (best_high, current_high);
14723 }
14724 break;
14725 default:
14726 /* Ignore. */
14727 break;
14728 }
14729
14730 child = sibling_die (child);
14731 }
14732 }
14733
14734 *lowpc = best_low;
14735 *highpc = best_high;
14736 }
14737
14738 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14739 in DIE. */
14740
14741 static void
14742 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14743 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14744 {
14745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14746 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14747 struct attribute *attr;
14748 struct attribute *attr_high;
14749
14750 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14751 if (attr_high)
14752 {
14753 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14754 if (attr)
14755 {
14756 CORE_ADDR low = attr_value_as_address (attr);
14757 CORE_ADDR high = attr_value_as_address (attr_high);
14758
14759 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14760 high += low;
14761
14762 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14763 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14764 record_block_range (block, low, high - 1);
14765 }
14766 }
14767
14768 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14769 if (attr)
14770 {
14771 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14772 We take advantage of the fact that DW_AT_ranges does not appear
14773 in DW_TAG_compile_unit of DWO files. */
14774 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14775
14776 /* The value of the DW_AT_ranges attribute is the offset of the
14777 address range list in the .debug_ranges section. */
14778 unsigned long offset = (DW_UNSND (attr)
14779 + (need_ranges_base ? cu->ranges_base : 0));
14780
14781 dwarf2_ranges_process (offset, cu,
14782 [&] (CORE_ADDR start, CORE_ADDR end)
14783 {
14784 start += baseaddr;
14785 end += baseaddr;
14786 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14787 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14788 record_block_range (block, start, end - 1);
14789 });
14790 }
14791 }
14792
14793 /* Check whether the producer field indicates either of GCC < 4.6, or the
14794 Intel C/C++ compiler, and cache the result in CU. */
14795
14796 static void
14797 check_producer (struct dwarf2_cu *cu)
14798 {
14799 int major, minor;
14800
14801 if (cu->producer == NULL)
14802 {
14803 /* For unknown compilers expect their behavior is DWARF version
14804 compliant.
14805
14806 GCC started to support .debug_types sections by -gdwarf-4 since
14807 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14808 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14809 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14810 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14811 }
14812 else if (producer_is_gcc (cu->producer, &major, &minor))
14813 {
14814 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14815 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14816 }
14817 else if (producer_is_icc (cu->producer, &major, &minor))
14818 cu->producer_is_icc_lt_14 = major < 14;
14819 else
14820 {
14821 /* For other non-GCC compilers, expect their behavior is DWARF version
14822 compliant. */
14823 }
14824
14825 cu->checked_producer = 1;
14826 }
14827
14828 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14829 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14830 during 4.6.0 experimental. */
14831
14832 static int
14833 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14834 {
14835 if (!cu->checked_producer)
14836 check_producer (cu);
14837
14838 return cu->producer_is_gxx_lt_4_6;
14839 }
14840
14841 /* Return the default accessibility type if it is not overriden by
14842 DW_AT_accessibility. */
14843
14844 static enum dwarf_access_attribute
14845 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14846 {
14847 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14848 {
14849 /* The default DWARF 2 accessibility for members is public, the default
14850 accessibility for inheritance is private. */
14851
14852 if (die->tag != DW_TAG_inheritance)
14853 return DW_ACCESS_public;
14854 else
14855 return DW_ACCESS_private;
14856 }
14857 else
14858 {
14859 /* DWARF 3+ defines the default accessibility a different way. The same
14860 rules apply now for DW_TAG_inheritance as for the members and it only
14861 depends on the container kind. */
14862
14863 if (die->parent->tag == DW_TAG_class_type)
14864 return DW_ACCESS_private;
14865 else
14866 return DW_ACCESS_public;
14867 }
14868 }
14869
14870 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14871 offset. If the attribute was not found return 0, otherwise return
14872 1. If it was found but could not properly be handled, set *OFFSET
14873 to 0. */
14874
14875 static int
14876 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14877 LONGEST *offset)
14878 {
14879 struct attribute *attr;
14880
14881 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14882 if (attr != NULL)
14883 {
14884 *offset = 0;
14885
14886 /* Note that we do not check for a section offset first here.
14887 This is because DW_AT_data_member_location is new in DWARF 4,
14888 so if we see it, we can assume that a constant form is really
14889 a constant and not a section offset. */
14890 if (attr_form_is_constant (attr))
14891 *offset = dwarf2_get_attr_constant_value (attr, 0);
14892 else if (attr_form_is_section_offset (attr))
14893 dwarf2_complex_location_expr_complaint ();
14894 else if (attr_form_is_block (attr))
14895 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14896 else
14897 dwarf2_complex_location_expr_complaint ();
14898
14899 return 1;
14900 }
14901
14902 return 0;
14903 }
14904
14905 /* Add an aggregate field to the field list. */
14906
14907 static void
14908 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14909 struct dwarf2_cu *cu)
14910 {
14911 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14912 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14913 struct nextfield *new_field;
14914 struct attribute *attr;
14915 struct field *fp;
14916 const char *fieldname = "";
14917
14918 if (die->tag == DW_TAG_inheritance)
14919 {
14920 fip->baseclasses.emplace_back ();
14921 new_field = &fip->baseclasses.back ();
14922 }
14923 else
14924 {
14925 fip->fields.emplace_back ();
14926 new_field = &fip->fields.back ();
14927 }
14928
14929 fip->nfields++;
14930
14931 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14932 if (attr)
14933 new_field->accessibility = DW_UNSND (attr);
14934 else
14935 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14936 if (new_field->accessibility != DW_ACCESS_public)
14937 fip->non_public_fields = 1;
14938
14939 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14940 if (attr)
14941 new_field->virtuality = DW_UNSND (attr);
14942 else
14943 new_field->virtuality = DW_VIRTUALITY_none;
14944
14945 fp = &new_field->field;
14946
14947 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14948 {
14949 LONGEST offset;
14950
14951 /* Data member other than a C++ static data member. */
14952
14953 /* Get type of field. */
14954 fp->type = die_type (die, cu);
14955
14956 SET_FIELD_BITPOS (*fp, 0);
14957
14958 /* Get bit size of field (zero if none). */
14959 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14960 if (attr)
14961 {
14962 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14963 }
14964 else
14965 {
14966 FIELD_BITSIZE (*fp) = 0;
14967 }
14968
14969 /* Get bit offset of field. */
14970 if (handle_data_member_location (die, cu, &offset))
14971 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14972 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14973 if (attr)
14974 {
14975 if (gdbarch_bits_big_endian (gdbarch))
14976 {
14977 /* For big endian bits, the DW_AT_bit_offset gives the
14978 additional bit offset from the MSB of the containing
14979 anonymous object to the MSB of the field. We don't
14980 have to do anything special since we don't need to
14981 know the size of the anonymous object. */
14982 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14983 }
14984 else
14985 {
14986 /* For little endian bits, compute the bit offset to the
14987 MSB of the anonymous object, subtract off the number of
14988 bits from the MSB of the field to the MSB of the
14989 object, and then subtract off the number of bits of
14990 the field itself. The result is the bit offset of
14991 the LSB of the field. */
14992 int anonymous_size;
14993 int bit_offset = DW_UNSND (attr);
14994
14995 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14996 if (attr)
14997 {
14998 /* The size of the anonymous object containing
14999 the bit field is explicit, so use the
15000 indicated size (in bytes). */
15001 anonymous_size = DW_UNSND (attr);
15002 }
15003 else
15004 {
15005 /* The size of the anonymous object containing
15006 the bit field must be inferred from the type
15007 attribute of the data member containing the
15008 bit field. */
15009 anonymous_size = TYPE_LENGTH (fp->type);
15010 }
15011 SET_FIELD_BITPOS (*fp,
15012 (FIELD_BITPOS (*fp)
15013 + anonymous_size * bits_per_byte
15014 - bit_offset - FIELD_BITSIZE (*fp)));
15015 }
15016 }
15017 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15018 if (attr != NULL)
15019 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15020 + dwarf2_get_attr_constant_value (attr, 0)));
15021
15022 /* Get name of field. */
15023 fieldname = dwarf2_name (die, cu);
15024 if (fieldname == NULL)
15025 fieldname = "";
15026
15027 /* The name is already allocated along with this objfile, so we don't
15028 need to duplicate it for the type. */
15029 fp->name = fieldname;
15030
15031 /* Change accessibility for artificial fields (e.g. virtual table
15032 pointer or virtual base class pointer) to private. */
15033 if (dwarf2_attr (die, DW_AT_artificial, cu))
15034 {
15035 FIELD_ARTIFICIAL (*fp) = 1;
15036 new_field->accessibility = DW_ACCESS_private;
15037 fip->non_public_fields = 1;
15038 }
15039 }
15040 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15041 {
15042 /* C++ static member. */
15043
15044 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15045 is a declaration, but all versions of G++ as of this writing
15046 (so through at least 3.2.1) incorrectly generate
15047 DW_TAG_variable tags. */
15048
15049 const char *physname;
15050
15051 /* Get name of field. */
15052 fieldname = dwarf2_name (die, cu);
15053 if (fieldname == NULL)
15054 return;
15055
15056 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15057 if (attr
15058 /* Only create a symbol if this is an external value.
15059 new_symbol checks this and puts the value in the global symbol
15060 table, which we want. If it is not external, new_symbol
15061 will try to put the value in cu->list_in_scope which is wrong. */
15062 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15063 {
15064 /* A static const member, not much different than an enum as far as
15065 we're concerned, except that we can support more types. */
15066 new_symbol (die, NULL, cu);
15067 }
15068
15069 /* Get physical name. */
15070 physname = dwarf2_physname (fieldname, die, cu);
15071
15072 /* The name is already allocated along with this objfile, so we don't
15073 need to duplicate it for the type. */
15074 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15075 FIELD_TYPE (*fp) = die_type (die, cu);
15076 FIELD_NAME (*fp) = fieldname;
15077 }
15078 else if (die->tag == DW_TAG_inheritance)
15079 {
15080 LONGEST offset;
15081
15082 /* C++ base class field. */
15083 if (handle_data_member_location (die, cu, &offset))
15084 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15085 FIELD_BITSIZE (*fp) = 0;
15086 FIELD_TYPE (*fp) = die_type (die, cu);
15087 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15088 }
15089 else if (die->tag == DW_TAG_variant_part)
15090 {
15091 /* process_structure_scope will treat this DIE as a union. */
15092 process_structure_scope (die, cu);
15093
15094 /* The variant part is relative to the start of the enclosing
15095 structure. */
15096 SET_FIELD_BITPOS (*fp, 0);
15097 fp->type = get_die_type (die, cu);
15098 fp->artificial = 1;
15099 fp->name = "<<variant>>";
15100 }
15101 else
15102 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15103 }
15104
15105 /* Can the type given by DIE define another type? */
15106
15107 static bool
15108 type_can_define_types (const struct die_info *die)
15109 {
15110 switch (die->tag)
15111 {
15112 case DW_TAG_typedef:
15113 case DW_TAG_class_type:
15114 case DW_TAG_structure_type:
15115 case DW_TAG_union_type:
15116 case DW_TAG_enumeration_type:
15117 return true;
15118
15119 default:
15120 return false;
15121 }
15122 }
15123
15124 /* Add a type definition defined in the scope of the FIP's class. */
15125
15126 static void
15127 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15128 struct dwarf2_cu *cu)
15129 {
15130 struct decl_field fp;
15131 memset (&fp, 0, sizeof (fp));
15132
15133 gdb_assert (type_can_define_types (die));
15134
15135 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15136 fp.name = dwarf2_name (die, cu);
15137 fp.type = read_type_die (die, cu);
15138
15139 /* Save accessibility. */
15140 enum dwarf_access_attribute accessibility;
15141 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15142 if (attr != NULL)
15143 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15144 else
15145 accessibility = dwarf2_default_access_attribute (die, cu);
15146 switch (accessibility)
15147 {
15148 case DW_ACCESS_public:
15149 /* The assumed value if neither private nor protected. */
15150 break;
15151 case DW_ACCESS_private:
15152 fp.is_private = 1;
15153 break;
15154 case DW_ACCESS_protected:
15155 fp.is_protected = 1;
15156 break;
15157 default:
15158 complaint (&symfile_complaints,
15159 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15160 }
15161
15162 if (die->tag == DW_TAG_typedef)
15163 fip->typedef_field_list.push_back (fp);
15164 else
15165 fip->nested_types_list.push_back (fp);
15166 }
15167
15168 /* Create the vector of fields, and attach it to the type. */
15169
15170 static void
15171 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15172 struct dwarf2_cu *cu)
15173 {
15174 int nfields = fip->nfields;
15175
15176 /* Record the field count, allocate space for the array of fields,
15177 and create blank accessibility bitfields if necessary. */
15178 TYPE_NFIELDS (type) = nfields;
15179 TYPE_FIELDS (type) = (struct field *)
15180 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15181
15182 if (fip->non_public_fields && cu->language != language_ada)
15183 {
15184 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15185
15186 TYPE_FIELD_PRIVATE_BITS (type) =
15187 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15188 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15189
15190 TYPE_FIELD_PROTECTED_BITS (type) =
15191 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15192 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15193
15194 TYPE_FIELD_IGNORE_BITS (type) =
15195 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15196 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15197 }
15198
15199 /* If the type has baseclasses, allocate and clear a bit vector for
15200 TYPE_FIELD_VIRTUAL_BITS. */
15201 if (!fip->baseclasses.empty () && cu->language != language_ada)
15202 {
15203 int num_bytes = B_BYTES (fip->baseclasses.size ());
15204 unsigned char *pointer;
15205
15206 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15207 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15208 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15209 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15210 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15211 }
15212
15213 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15214 {
15215 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15216
15217 for (int index = 0; index < nfields; ++index)
15218 {
15219 struct nextfield &field = fip->fields[index];
15220
15221 if (field.variant.is_discriminant)
15222 di->discriminant_index = index;
15223 else if (field.variant.default_branch)
15224 di->default_index = index;
15225 else
15226 di->discriminants[index] = field.variant.discriminant_value;
15227 }
15228 }
15229
15230 /* Copy the saved-up fields into the field vector. */
15231 for (int i = 0; i < nfields; ++i)
15232 {
15233 struct nextfield &field
15234 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15235 : fip->fields[i - fip->baseclasses.size ()]);
15236
15237 TYPE_FIELD (type, i) = field.field;
15238 switch (field.accessibility)
15239 {
15240 case DW_ACCESS_private:
15241 if (cu->language != language_ada)
15242 SET_TYPE_FIELD_PRIVATE (type, i);
15243 break;
15244
15245 case DW_ACCESS_protected:
15246 if (cu->language != language_ada)
15247 SET_TYPE_FIELD_PROTECTED (type, i);
15248 break;
15249
15250 case DW_ACCESS_public:
15251 break;
15252
15253 default:
15254 /* Unknown accessibility. Complain and treat it as public. */
15255 {
15256 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15257 field.accessibility);
15258 }
15259 break;
15260 }
15261 if (i < fip->baseclasses.size ())
15262 {
15263 switch (field.virtuality)
15264 {
15265 case DW_VIRTUALITY_virtual:
15266 case DW_VIRTUALITY_pure_virtual:
15267 if (cu->language == language_ada)
15268 error (_("unexpected virtuality in component of Ada type"));
15269 SET_TYPE_FIELD_VIRTUAL (type, i);
15270 break;
15271 }
15272 }
15273 }
15274 }
15275
15276 /* Return true if this member function is a constructor, false
15277 otherwise. */
15278
15279 static int
15280 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15281 {
15282 const char *fieldname;
15283 const char *type_name;
15284 int len;
15285
15286 if (die->parent == NULL)
15287 return 0;
15288
15289 if (die->parent->tag != DW_TAG_structure_type
15290 && die->parent->tag != DW_TAG_union_type
15291 && die->parent->tag != DW_TAG_class_type)
15292 return 0;
15293
15294 fieldname = dwarf2_name (die, cu);
15295 type_name = dwarf2_name (die->parent, cu);
15296 if (fieldname == NULL || type_name == NULL)
15297 return 0;
15298
15299 len = strlen (fieldname);
15300 return (strncmp (fieldname, type_name, len) == 0
15301 && (type_name[len] == '\0' || type_name[len] == '<'));
15302 }
15303
15304 /* Add a member function to the proper fieldlist. */
15305
15306 static void
15307 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15308 struct type *type, struct dwarf2_cu *cu)
15309 {
15310 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15311 struct attribute *attr;
15312 int i;
15313 struct fnfieldlist *flp = nullptr;
15314 struct fn_field *fnp;
15315 const char *fieldname;
15316 struct type *this_type;
15317 enum dwarf_access_attribute accessibility;
15318
15319 if (cu->language == language_ada)
15320 error (_("unexpected member function in Ada type"));
15321
15322 /* Get name of member function. */
15323 fieldname = dwarf2_name (die, cu);
15324 if (fieldname == NULL)
15325 return;
15326
15327 /* Look up member function name in fieldlist. */
15328 for (i = 0; i < fip->fnfieldlists.size (); i++)
15329 {
15330 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15331 {
15332 flp = &fip->fnfieldlists[i];
15333 break;
15334 }
15335 }
15336
15337 /* Create a new fnfieldlist if necessary. */
15338 if (flp == nullptr)
15339 {
15340 fip->fnfieldlists.emplace_back ();
15341 flp = &fip->fnfieldlists.back ();
15342 flp->name = fieldname;
15343 i = fip->fnfieldlists.size () - 1;
15344 }
15345
15346 /* Create a new member function field and add it to the vector of
15347 fnfieldlists. */
15348 flp->fnfields.emplace_back ();
15349 fnp = &flp->fnfields.back ();
15350
15351 /* Delay processing of the physname until later. */
15352 if (cu->language == language_cplus)
15353 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15354 die, cu);
15355 else
15356 {
15357 const char *physname = dwarf2_physname (fieldname, die, cu);
15358 fnp->physname = physname ? physname : "";
15359 }
15360
15361 fnp->type = alloc_type (objfile);
15362 this_type = read_type_die (die, cu);
15363 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15364 {
15365 int nparams = TYPE_NFIELDS (this_type);
15366
15367 /* TYPE is the domain of this method, and THIS_TYPE is the type
15368 of the method itself (TYPE_CODE_METHOD). */
15369 smash_to_method_type (fnp->type, type,
15370 TYPE_TARGET_TYPE (this_type),
15371 TYPE_FIELDS (this_type),
15372 TYPE_NFIELDS (this_type),
15373 TYPE_VARARGS (this_type));
15374
15375 /* Handle static member functions.
15376 Dwarf2 has no clean way to discern C++ static and non-static
15377 member functions. G++ helps GDB by marking the first
15378 parameter for non-static member functions (which is the this
15379 pointer) as artificial. We obtain this information from
15380 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15381 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15382 fnp->voffset = VOFFSET_STATIC;
15383 }
15384 else
15385 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15386 dwarf2_full_name (fieldname, die, cu));
15387
15388 /* Get fcontext from DW_AT_containing_type if present. */
15389 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15390 fnp->fcontext = die_containing_type (die, cu);
15391
15392 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15393 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15394
15395 /* Get accessibility. */
15396 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15397 if (attr)
15398 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15399 else
15400 accessibility = dwarf2_default_access_attribute (die, cu);
15401 switch (accessibility)
15402 {
15403 case DW_ACCESS_private:
15404 fnp->is_private = 1;
15405 break;
15406 case DW_ACCESS_protected:
15407 fnp->is_protected = 1;
15408 break;
15409 }
15410
15411 /* Check for artificial methods. */
15412 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15413 if (attr && DW_UNSND (attr) != 0)
15414 fnp->is_artificial = 1;
15415
15416 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15417
15418 /* Get index in virtual function table if it is a virtual member
15419 function. For older versions of GCC, this is an offset in the
15420 appropriate virtual table, as specified by DW_AT_containing_type.
15421 For everyone else, it is an expression to be evaluated relative
15422 to the object address. */
15423
15424 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15425 if (attr)
15426 {
15427 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15428 {
15429 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15430 {
15431 /* Old-style GCC. */
15432 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15433 }
15434 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15435 || (DW_BLOCK (attr)->size > 1
15436 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15437 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15438 {
15439 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15440 if ((fnp->voffset % cu->header.addr_size) != 0)
15441 dwarf2_complex_location_expr_complaint ();
15442 else
15443 fnp->voffset /= cu->header.addr_size;
15444 fnp->voffset += 2;
15445 }
15446 else
15447 dwarf2_complex_location_expr_complaint ();
15448
15449 if (!fnp->fcontext)
15450 {
15451 /* If there is no `this' field and no DW_AT_containing_type,
15452 we cannot actually find a base class context for the
15453 vtable! */
15454 if (TYPE_NFIELDS (this_type) == 0
15455 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15456 {
15457 complaint (&symfile_complaints,
15458 _("cannot determine context for virtual member "
15459 "function \"%s\" (offset %s)"),
15460 fieldname, sect_offset_str (die->sect_off));
15461 }
15462 else
15463 {
15464 fnp->fcontext
15465 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15466 }
15467 }
15468 }
15469 else if (attr_form_is_section_offset (attr))
15470 {
15471 dwarf2_complex_location_expr_complaint ();
15472 }
15473 else
15474 {
15475 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15476 fieldname);
15477 }
15478 }
15479 else
15480 {
15481 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15482 if (attr && DW_UNSND (attr))
15483 {
15484 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15485 complaint (&symfile_complaints,
15486 _("Member function \"%s\" (offset %s) is virtual "
15487 "but the vtable offset is not specified"),
15488 fieldname, sect_offset_str (die->sect_off));
15489 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15490 TYPE_CPLUS_DYNAMIC (type) = 1;
15491 }
15492 }
15493 }
15494
15495 /* Create the vector of member function fields, and attach it to the type. */
15496
15497 static void
15498 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15499 struct dwarf2_cu *cu)
15500 {
15501 if (cu->language == language_ada)
15502 error (_("unexpected member functions in Ada type"));
15503
15504 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15505 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15506 TYPE_ALLOC (type,
15507 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15508
15509 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15510 {
15511 struct fnfieldlist &nf = fip->fnfieldlists[i];
15512 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15513
15514 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15515 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15516 fn_flp->fn_fields = (struct fn_field *)
15517 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15518
15519 for (int k = 0; k < nf.fnfields.size (); ++k)
15520 fn_flp->fn_fields[k] = nf.fnfields[k];
15521 }
15522
15523 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15524 }
15525
15526 /* Returns non-zero if NAME is the name of a vtable member in CU's
15527 language, zero otherwise. */
15528 static int
15529 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15530 {
15531 static const char vptr[] = "_vptr";
15532
15533 /* Look for the C++ form of the vtable. */
15534 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15535 return 1;
15536
15537 return 0;
15538 }
15539
15540 /* GCC outputs unnamed structures that are really pointers to member
15541 functions, with the ABI-specified layout. If TYPE describes
15542 such a structure, smash it into a member function type.
15543
15544 GCC shouldn't do this; it should just output pointer to member DIEs.
15545 This is GCC PR debug/28767. */
15546
15547 static void
15548 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15549 {
15550 struct type *pfn_type, *self_type, *new_type;
15551
15552 /* Check for a structure with no name and two children. */
15553 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15554 return;
15555
15556 /* Check for __pfn and __delta members. */
15557 if (TYPE_FIELD_NAME (type, 0) == NULL
15558 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15559 || TYPE_FIELD_NAME (type, 1) == NULL
15560 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15561 return;
15562
15563 /* Find the type of the method. */
15564 pfn_type = TYPE_FIELD_TYPE (type, 0);
15565 if (pfn_type == NULL
15566 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15567 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15568 return;
15569
15570 /* Look for the "this" argument. */
15571 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15572 if (TYPE_NFIELDS (pfn_type) == 0
15573 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15574 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15575 return;
15576
15577 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15578 new_type = alloc_type (objfile);
15579 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15580 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15581 TYPE_VARARGS (pfn_type));
15582 smash_to_methodptr_type (type, new_type);
15583 }
15584
15585 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15586 appropriate error checking and issuing complaints if there is a
15587 problem. */
15588
15589 static ULONGEST
15590 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15591 {
15592 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15593
15594 if (attr == nullptr)
15595 return 0;
15596
15597 if (!attr_form_is_constant (attr))
15598 {
15599 complaint (&symfile_complaints,
15600 _("DW_AT_alignment must have constant form"
15601 " - DIE at %s [in module %s]"),
15602 sect_offset_str (die->sect_off),
15603 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15604 return 0;
15605 }
15606
15607 ULONGEST align;
15608 if (attr->form == DW_FORM_sdata)
15609 {
15610 LONGEST val = DW_SND (attr);
15611 if (val < 0)
15612 {
15613 complaint (&symfile_complaints,
15614 _("DW_AT_alignment value must not be negative"
15615 " - DIE at %s [in module %s]"),
15616 sect_offset_str (die->sect_off),
15617 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15618 return 0;
15619 }
15620 align = val;
15621 }
15622 else
15623 align = DW_UNSND (attr);
15624
15625 if (align == 0)
15626 {
15627 complaint (&symfile_complaints,
15628 _("DW_AT_alignment value must not be zero"
15629 " - DIE at %s [in module %s]"),
15630 sect_offset_str (die->sect_off),
15631 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15632 return 0;
15633 }
15634 if ((align & (align - 1)) != 0)
15635 {
15636 complaint (&symfile_complaints,
15637 _("DW_AT_alignment value must be a power of 2"
15638 " - DIE at %s [in module %s]"),
15639 sect_offset_str (die->sect_off),
15640 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15641 return 0;
15642 }
15643
15644 return align;
15645 }
15646
15647 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15648 the alignment for TYPE. */
15649
15650 static void
15651 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15652 struct type *type)
15653 {
15654 if (!set_type_align (type, get_alignment (cu, die)))
15655 complaint (&symfile_complaints,
15656 _("DW_AT_alignment value too large"
15657 " - DIE at %s [in module %s]"),
15658 sect_offset_str (die->sect_off),
15659 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15660 }
15661
15662 /* Called when we find the DIE that starts a structure or union scope
15663 (definition) to create a type for the structure or union. Fill in
15664 the type's name and general properties; the members will not be
15665 processed until process_structure_scope. A symbol table entry for
15666 the type will also not be done until process_structure_scope (assuming
15667 the type has a name).
15668
15669 NOTE: we need to call these functions regardless of whether or not the
15670 DIE has a DW_AT_name attribute, since it might be an anonymous
15671 structure or union. This gets the type entered into our set of
15672 user defined types. */
15673
15674 static struct type *
15675 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15676 {
15677 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15678 struct type *type;
15679 struct attribute *attr;
15680 const char *name;
15681
15682 /* If the definition of this type lives in .debug_types, read that type.
15683 Don't follow DW_AT_specification though, that will take us back up
15684 the chain and we want to go down. */
15685 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15686 if (attr)
15687 {
15688 type = get_DW_AT_signature_type (die, attr, cu);
15689
15690 /* The type's CU may not be the same as CU.
15691 Ensure TYPE is recorded with CU in die_type_hash. */
15692 return set_die_type (die, type, cu);
15693 }
15694
15695 type = alloc_type (objfile);
15696 INIT_CPLUS_SPECIFIC (type);
15697
15698 name = dwarf2_name (die, cu);
15699 if (name != NULL)
15700 {
15701 if (cu->language == language_cplus
15702 || cu->language == language_d
15703 || cu->language == language_rust)
15704 {
15705 const char *full_name = dwarf2_full_name (name, die, cu);
15706
15707 /* dwarf2_full_name might have already finished building the DIE's
15708 type. If so, there is no need to continue. */
15709 if (get_die_type (die, cu) != NULL)
15710 return get_die_type (die, cu);
15711
15712 TYPE_TAG_NAME (type) = full_name;
15713 if (die->tag == DW_TAG_structure_type
15714 || die->tag == DW_TAG_class_type)
15715 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15716 }
15717 else
15718 {
15719 /* The name is already allocated along with this objfile, so
15720 we don't need to duplicate it for the type. */
15721 TYPE_TAG_NAME (type) = name;
15722 if (die->tag == DW_TAG_class_type)
15723 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15724 }
15725 }
15726
15727 if (die->tag == DW_TAG_structure_type)
15728 {
15729 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15730 }
15731 else if (die->tag == DW_TAG_union_type)
15732 {
15733 TYPE_CODE (type) = TYPE_CODE_UNION;
15734 }
15735 else if (die->tag == DW_TAG_variant_part)
15736 {
15737 TYPE_CODE (type) = TYPE_CODE_UNION;
15738 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15739 }
15740 else
15741 {
15742 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15743 }
15744
15745 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15746 TYPE_DECLARED_CLASS (type) = 1;
15747
15748 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15749 if (attr)
15750 {
15751 if (attr_form_is_constant (attr))
15752 TYPE_LENGTH (type) = DW_UNSND (attr);
15753 else
15754 {
15755 /* For the moment, dynamic type sizes are not supported
15756 by GDB's struct type. The actual size is determined
15757 on-demand when resolving the type of a given object,
15758 so set the type's length to zero for now. Otherwise,
15759 we record an expression as the length, and that expression
15760 could lead to a very large value, which could eventually
15761 lead to us trying to allocate that much memory when creating
15762 a value of that type. */
15763 TYPE_LENGTH (type) = 0;
15764 }
15765 }
15766 else
15767 {
15768 TYPE_LENGTH (type) = 0;
15769 }
15770
15771 maybe_set_alignment (cu, die, type);
15772
15773 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15774 {
15775 /* ICC<14 does not output the required DW_AT_declaration on
15776 incomplete types, but gives them a size of zero. */
15777 TYPE_STUB (type) = 1;
15778 }
15779 else
15780 TYPE_STUB_SUPPORTED (type) = 1;
15781
15782 if (die_is_declaration (die, cu))
15783 TYPE_STUB (type) = 1;
15784 else if (attr == NULL && die->child == NULL
15785 && producer_is_realview (cu->producer))
15786 /* RealView does not output the required DW_AT_declaration
15787 on incomplete types. */
15788 TYPE_STUB (type) = 1;
15789
15790 /* We need to add the type field to the die immediately so we don't
15791 infinitely recurse when dealing with pointers to the structure
15792 type within the structure itself. */
15793 set_die_type (die, type, cu);
15794
15795 /* set_die_type should be already done. */
15796 set_descriptive_type (type, die, cu);
15797
15798 return type;
15799 }
15800
15801 /* A helper for process_structure_scope that handles a single member
15802 DIE. */
15803
15804 static void
15805 handle_struct_member_die (struct die_info *child_die, struct type *type,
15806 struct field_info *fi,
15807 std::vector<struct symbol *> *template_args,
15808 struct dwarf2_cu *cu)
15809 {
15810 if (child_die->tag == DW_TAG_member
15811 || child_die->tag == DW_TAG_variable
15812 || child_die->tag == DW_TAG_variant_part)
15813 {
15814 /* NOTE: carlton/2002-11-05: A C++ static data member
15815 should be a DW_TAG_member that is a declaration, but
15816 all versions of G++ as of this writing (so through at
15817 least 3.2.1) incorrectly generate DW_TAG_variable
15818 tags for them instead. */
15819 dwarf2_add_field (fi, child_die, cu);
15820 }
15821 else if (child_die->tag == DW_TAG_subprogram)
15822 {
15823 /* Rust doesn't have member functions in the C++ sense.
15824 However, it does emit ordinary functions as children
15825 of a struct DIE. */
15826 if (cu->language == language_rust)
15827 read_func_scope (child_die, cu);
15828 else
15829 {
15830 /* C++ member function. */
15831 dwarf2_add_member_fn (fi, child_die, type, cu);
15832 }
15833 }
15834 else if (child_die->tag == DW_TAG_inheritance)
15835 {
15836 /* C++ base class field. */
15837 dwarf2_add_field (fi, child_die, cu);
15838 }
15839 else if (type_can_define_types (child_die))
15840 dwarf2_add_type_defn (fi, child_die, cu);
15841 else if (child_die->tag == DW_TAG_template_type_param
15842 || child_die->tag == DW_TAG_template_value_param)
15843 {
15844 struct symbol *arg = new_symbol (child_die, NULL, cu);
15845
15846 if (arg != NULL)
15847 template_args->push_back (arg);
15848 }
15849 else if (child_die->tag == DW_TAG_variant)
15850 {
15851 /* In a variant we want to get the discriminant and also add a
15852 field for our sole member child. */
15853 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15854
15855 for (struct die_info *variant_child = child_die->child;
15856 variant_child != NULL;
15857 variant_child = sibling_die (variant_child))
15858 {
15859 if (variant_child->tag == DW_TAG_member)
15860 {
15861 handle_struct_member_die (variant_child, type, fi,
15862 template_args, cu);
15863 /* Only handle the one. */
15864 break;
15865 }
15866 }
15867
15868 /* We don't handle this but we might as well report it if we see
15869 it. */
15870 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15871 complaint (&symfile_complaints,
15872 _("DW_AT_discr_list is not supported yet"
15873 " - DIE at %s [in module %s]"),
15874 sect_offset_str (child_die->sect_off),
15875 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15876
15877 /* The first field was just added, so we can stash the
15878 discriminant there. */
15879 gdb_assert (!fi->fields.empty ());
15880 if (discr == NULL)
15881 fi->fields.back ().variant.default_branch = true;
15882 else
15883 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15884 }
15885 }
15886
15887 /* Finish creating a structure or union type, including filling in
15888 its members and creating a symbol for it. */
15889
15890 static void
15891 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15892 {
15893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15894 struct die_info *child_die;
15895 struct type *type;
15896
15897 type = get_die_type (die, cu);
15898 if (type == NULL)
15899 type = read_structure_type (die, cu);
15900
15901 /* When reading a DW_TAG_variant_part, we need to notice when we
15902 read the discriminant member, so we can record it later in the
15903 discriminant_info. */
15904 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15905 sect_offset discr_offset;
15906
15907 if (is_variant_part)
15908 {
15909 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15910 if (discr == NULL)
15911 {
15912 /* Maybe it's a univariant form, an extension we support.
15913 In this case arrange not to check the offset. */
15914 is_variant_part = false;
15915 }
15916 else if (attr_form_is_ref (discr))
15917 {
15918 struct dwarf2_cu *target_cu = cu;
15919 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15920
15921 discr_offset = target_die->sect_off;
15922 }
15923 else
15924 {
15925 complaint (&symfile_complaints,
15926 _("DW_AT_discr does not have DIE reference form"
15927 " - DIE at %s [in module %s]"),
15928 sect_offset_str (die->sect_off),
15929 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15930 is_variant_part = false;
15931 }
15932 }
15933
15934 if (die->child != NULL && ! die_is_declaration (die, cu))
15935 {
15936 struct field_info fi;
15937 std::vector<struct symbol *> template_args;
15938
15939 child_die = die->child;
15940
15941 while (child_die && child_die->tag)
15942 {
15943 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15944
15945 if (is_variant_part && discr_offset == child_die->sect_off)
15946 fi.fields.back ().variant.is_discriminant = true;
15947
15948 child_die = sibling_die (child_die);
15949 }
15950
15951 /* Attach template arguments to type. */
15952 if (!template_args.empty ())
15953 {
15954 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15955 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15956 TYPE_TEMPLATE_ARGUMENTS (type)
15957 = XOBNEWVEC (&objfile->objfile_obstack,
15958 struct symbol *,
15959 TYPE_N_TEMPLATE_ARGUMENTS (type));
15960 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15961 template_args.data (),
15962 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15963 * sizeof (struct symbol *)));
15964 }
15965
15966 /* Attach fields and member functions to the type. */
15967 if (fi.nfields)
15968 dwarf2_attach_fields_to_type (&fi, type, cu);
15969 if (!fi.fnfieldlists.empty ())
15970 {
15971 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15972
15973 /* Get the type which refers to the base class (possibly this
15974 class itself) which contains the vtable pointer for the current
15975 class from the DW_AT_containing_type attribute. This use of
15976 DW_AT_containing_type is a GNU extension. */
15977
15978 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15979 {
15980 struct type *t = die_containing_type (die, cu);
15981
15982 set_type_vptr_basetype (type, t);
15983 if (type == t)
15984 {
15985 int i;
15986
15987 /* Our own class provides vtbl ptr. */
15988 for (i = TYPE_NFIELDS (t) - 1;
15989 i >= TYPE_N_BASECLASSES (t);
15990 --i)
15991 {
15992 const char *fieldname = TYPE_FIELD_NAME (t, i);
15993
15994 if (is_vtable_name (fieldname, cu))
15995 {
15996 set_type_vptr_fieldno (type, i);
15997 break;
15998 }
15999 }
16000
16001 /* Complain if virtual function table field not found. */
16002 if (i < TYPE_N_BASECLASSES (t))
16003 complaint (&symfile_complaints,
16004 _("virtual function table pointer "
16005 "not found when defining class '%s'"),
16006 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16007 "");
16008 }
16009 else
16010 {
16011 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16012 }
16013 }
16014 else if (cu->producer
16015 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16016 {
16017 /* The IBM XLC compiler does not provide direct indication
16018 of the containing type, but the vtable pointer is
16019 always named __vfp. */
16020
16021 int i;
16022
16023 for (i = TYPE_NFIELDS (type) - 1;
16024 i >= TYPE_N_BASECLASSES (type);
16025 --i)
16026 {
16027 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16028 {
16029 set_type_vptr_fieldno (type, i);
16030 set_type_vptr_basetype (type, type);
16031 break;
16032 }
16033 }
16034 }
16035 }
16036
16037 /* Copy fi.typedef_field_list linked list elements content into the
16038 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16039 if (!fi.typedef_field_list.empty ())
16040 {
16041 int count = fi.typedef_field_list.size ();
16042
16043 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16044 TYPE_TYPEDEF_FIELD_ARRAY (type)
16045 = ((struct decl_field *)
16046 TYPE_ALLOC (type,
16047 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16048 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16049
16050 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16051 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16052 }
16053
16054 /* Copy fi.nested_types_list linked list elements content into the
16055 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16056 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16057 {
16058 int count = fi.nested_types_list.size ();
16059
16060 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16061 TYPE_NESTED_TYPES_ARRAY (type)
16062 = ((struct decl_field *)
16063 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16064 TYPE_NESTED_TYPES_COUNT (type) = count;
16065
16066 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16067 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16068 }
16069 }
16070
16071 quirk_gcc_member_function_pointer (type, objfile);
16072 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16073 cu->rust_unions.push_back (type);
16074
16075 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16076 snapshots) has been known to create a die giving a declaration
16077 for a class that has, as a child, a die giving a definition for a
16078 nested class. So we have to process our children even if the
16079 current die is a declaration. Normally, of course, a declaration
16080 won't have any children at all. */
16081
16082 child_die = die->child;
16083
16084 while (child_die != NULL && child_die->tag)
16085 {
16086 if (child_die->tag == DW_TAG_member
16087 || child_die->tag == DW_TAG_variable
16088 || child_die->tag == DW_TAG_inheritance
16089 || child_die->tag == DW_TAG_template_value_param
16090 || child_die->tag == DW_TAG_template_type_param)
16091 {
16092 /* Do nothing. */
16093 }
16094 else
16095 process_die (child_die, cu);
16096
16097 child_die = sibling_die (child_die);
16098 }
16099
16100 /* Do not consider external references. According to the DWARF standard,
16101 these DIEs are identified by the fact that they have no byte_size
16102 attribute, and a declaration attribute. */
16103 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16104 || !die_is_declaration (die, cu))
16105 new_symbol (die, type, cu);
16106 }
16107
16108 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16109 update TYPE using some information only available in DIE's children. */
16110
16111 static void
16112 update_enumeration_type_from_children (struct die_info *die,
16113 struct type *type,
16114 struct dwarf2_cu *cu)
16115 {
16116 struct die_info *child_die;
16117 int unsigned_enum = 1;
16118 int flag_enum = 1;
16119 ULONGEST mask = 0;
16120
16121 auto_obstack obstack;
16122
16123 for (child_die = die->child;
16124 child_die != NULL && child_die->tag;
16125 child_die = sibling_die (child_die))
16126 {
16127 struct attribute *attr;
16128 LONGEST value;
16129 const gdb_byte *bytes;
16130 struct dwarf2_locexpr_baton *baton;
16131 const char *name;
16132
16133 if (child_die->tag != DW_TAG_enumerator)
16134 continue;
16135
16136 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16137 if (attr == NULL)
16138 continue;
16139
16140 name = dwarf2_name (child_die, cu);
16141 if (name == NULL)
16142 name = "<anonymous enumerator>";
16143
16144 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16145 &value, &bytes, &baton);
16146 if (value < 0)
16147 {
16148 unsigned_enum = 0;
16149 flag_enum = 0;
16150 }
16151 else if ((mask & value) != 0)
16152 flag_enum = 0;
16153 else
16154 mask |= value;
16155
16156 /* If we already know that the enum type is neither unsigned, nor
16157 a flag type, no need to look at the rest of the enumerates. */
16158 if (!unsigned_enum && !flag_enum)
16159 break;
16160 }
16161
16162 if (unsigned_enum)
16163 TYPE_UNSIGNED (type) = 1;
16164 if (flag_enum)
16165 TYPE_FLAG_ENUM (type) = 1;
16166 }
16167
16168 /* Given a DW_AT_enumeration_type die, set its type. We do not
16169 complete the type's fields yet, or create any symbols. */
16170
16171 static struct type *
16172 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16173 {
16174 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16175 struct type *type;
16176 struct attribute *attr;
16177 const char *name;
16178
16179 /* If the definition of this type lives in .debug_types, read that type.
16180 Don't follow DW_AT_specification though, that will take us back up
16181 the chain and we want to go down. */
16182 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16183 if (attr)
16184 {
16185 type = get_DW_AT_signature_type (die, attr, cu);
16186
16187 /* The type's CU may not be the same as CU.
16188 Ensure TYPE is recorded with CU in die_type_hash. */
16189 return set_die_type (die, type, cu);
16190 }
16191
16192 type = alloc_type (objfile);
16193
16194 TYPE_CODE (type) = TYPE_CODE_ENUM;
16195 name = dwarf2_full_name (NULL, die, cu);
16196 if (name != NULL)
16197 TYPE_TAG_NAME (type) = name;
16198
16199 attr = dwarf2_attr (die, DW_AT_type, cu);
16200 if (attr != NULL)
16201 {
16202 struct type *underlying_type = die_type (die, cu);
16203
16204 TYPE_TARGET_TYPE (type) = underlying_type;
16205 }
16206
16207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16208 if (attr)
16209 {
16210 TYPE_LENGTH (type) = DW_UNSND (attr);
16211 }
16212 else
16213 {
16214 TYPE_LENGTH (type) = 0;
16215 }
16216
16217 maybe_set_alignment (cu, die, type);
16218
16219 /* The enumeration DIE can be incomplete. In Ada, any type can be
16220 declared as private in the package spec, and then defined only
16221 inside the package body. Such types are known as Taft Amendment
16222 Types. When another package uses such a type, an incomplete DIE
16223 may be generated by the compiler. */
16224 if (die_is_declaration (die, cu))
16225 TYPE_STUB (type) = 1;
16226
16227 /* Finish the creation of this type by using the enum's children.
16228 We must call this even when the underlying type has been provided
16229 so that we can determine if we're looking at a "flag" enum. */
16230 update_enumeration_type_from_children (die, type, cu);
16231
16232 /* If this type has an underlying type that is not a stub, then we
16233 may use its attributes. We always use the "unsigned" attribute
16234 in this situation, because ordinarily we guess whether the type
16235 is unsigned -- but the guess can be wrong and the underlying type
16236 can tell us the reality. However, we defer to a local size
16237 attribute if one exists, because this lets the compiler override
16238 the underlying type if needed. */
16239 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16240 {
16241 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16242 if (TYPE_LENGTH (type) == 0)
16243 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16244 if (TYPE_RAW_ALIGN (type) == 0
16245 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16246 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16247 }
16248
16249 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16250
16251 return set_die_type (die, type, cu);
16252 }
16253
16254 /* Given a pointer to a die which begins an enumeration, process all
16255 the dies that define the members of the enumeration, and create the
16256 symbol for the enumeration type.
16257
16258 NOTE: We reverse the order of the element list. */
16259
16260 static void
16261 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16262 {
16263 struct type *this_type;
16264
16265 this_type = get_die_type (die, cu);
16266 if (this_type == NULL)
16267 this_type = read_enumeration_type (die, cu);
16268
16269 if (die->child != NULL)
16270 {
16271 struct die_info *child_die;
16272 struct symbol *sym;
16273 struct field *fields = NULL;
16274 int num_fields = 0;
16275 const char *name;
16276
16277 child_die = die->child;
16278 while (child_die && child_die->tag)
16279 {
16280 if (child_die->tag != DW_TAG_enumerator)
16281 {
16282 process_die (child_die, cu);
16283 }
16284 else
16285 {
16286 name = dwarf2_name (child_die, cu);
16287 if (name)
16288 {
16289 sym = new_symbol (child_die, this_type, cu);
16290
16291 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16292 {
16293 fields = (struct field *)
16294 xrealloc (fields,
16295 (num_fields + DW_FIELD_ALLOC_CHUNK)
16296 * sizeof (struct field));
16297 }
16298
16299 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16300 FIELD_TYPE (fields[num_fields]) = NULL;
16301 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16302 FIELD_BITSIZE (fields[num_fields]) = 0;
16303
16304 num_fields++;
16305 }
16306 }
16307
16308 child_die = sibling_die (child_die);
16309 }
16310
16311 if (num_fields)
16312 {
16313 TYPE_NFIELDS (this_type) = num_fields;
16314 TYPE_FIELDS (this_type) = (struct field *)
16315 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16316 memcpy (TYPE_FIELDS (this_type), fields,
16317 sizeof (struct field) * num_fields);
16318 xfree (fields);
16319 }
16320 }
16321
16322 /* If we are reading an enum from a .debug_types unit, and the enum
16323 is a declaration, and the enum is not the signatured type in the
16324 unit, then we do not want to add a symbol for it. Adding a
16325 symbol would in some cases obscure the true definition of the
16326 enum, giving users an incomplete type when the definition is
16327 actually available. Note that we do not want to do this for all
16328 enums which are just declarations, because C++0x allows forward
16329 enum declarations. */
16330 if (cu->per_cu->is_debug_types
16331 && die_is_declaration (die, cu))
16332 {
16333 struct signatured_type *sig_type;
16334
16335 sig_type = (struct signatured_type *) cu->per_cu;
16336 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16337 if (sig_type->type_offset_in_section != die->sect_off)
16338 return;
16339 }
16340
16341 new_symbol (die, this_type, cu);
16342 }
16343
16344 /* Extract all information from a DW_TAG_array_type DIE and put it in
16345 the DIE's type field. For now, this only handles one dimensional
16346 arrays. */
16347
16348 static struct type *
16349 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16350 {
16351 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16352 struct die_info *child_die;
16353 struct type *type;
16354 struct type *element_type, *range_type, *index_type;
16355 struct attribute *attr;
16356 const char *name;
16357 struct dynamic_prop *byte_stride_prop = NULL;
16358 unsigned int bit_stride = 0;
16359
16360 element_type = die_type (die, cu);
16361
16362 /* The die_type call above may have already set the type for this DIE. */
16363 type = get_die_type (die, cu);
16364 if (type)
16365 return type;
16366
16367 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16368 if (attr != NULL)
16369 {
16370 int stride_ok;
16371
16372 byte_stride_prop
16373 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16374 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16375 if (!stride_ok)
16376 {
16377 complaint (&symfile_complaints,
16378 _("unable to read array DW_AT_byte_stride "
16379 " - DIE at %s [in module %s]"),
16380 sect_offset_str (die->sect_off),
16381 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16382 /* Ignore this attribute. We will likely not be able to print
16383 arrays of this type correctly, but there is little we can do
16384 to help if we cannot read the attribute's value. */
16385 byte_stride_prop = NULL;
16386 }
16387 }
16388
16389 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16390 if (attr != NULL)
16391 bit_stride = DW_UNSND (attr);
16392
16393 /* Irix 6.2 native cc creates array types without children for
16394 arrays with unspecified length. */
16395 if (die->child == NULL)
16396 {
16397 index_type = objfile_type (objfile)->builtin_int;
16398 range_type = create_static_range_type (NULL, index_type, 0, -1);
16399 type = create_array_type_with_stride (NULL, element_type, range_type,
16400 byte_stride_prop, bit_stride);
16401 return set_die_type (die, type, cu);
16402 }
16403
16404 std::vector<struct type *> range_types;
16405 child_die = die->child;
16406 while (child_die && child_die->tag)
16407 {
16408 if (child_die->tag == DW_TAG_subrange_type)
16409 {
16410 struct type *child_type = read_type_die (child_die, cu);
16411
16412 if (child_type != NULL)
16413 {
16414 /* The range type was succesfully read. Save it for the
16415 array type creation. */
16416 range_types.push_back (child_type);
16417 }
16418 }
16419 child_die = sibling_die (child_die);
16420 }
16421
16422 /* Dwarf2 dimensions are output from left to right, create the
16423 necessary array types in backwards order. */
16424
16425 type = element_type;
16426
16427 if (read_array_order (die, cu) == DW_ORD_col_major)
16428 {
16429 int i = 0;
16430
16431 while (i < range_types.size ())
16432 type = create_array_type_with_stride (NULL, type, range_types[i++],
16433 byte_stride_prop, bit_stride);
16434 }
16435 else
16436 {
16437 size_t ndim = range_types.size ();
16438 while (ndim-- > 0)
16439 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16440 byte_stride_prop, bit_stride);
16441 }
16442
16443 /* Understand Dwarf2 support for vector types (like they occur on
16444 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16445 array type. This is not part of the Dwarf2/3 standard yet, but a
16446 custom vendor extension. The main difference between a regular
16447 array and the vector variant is that vectors are passed by value
16448 to functions. */
16449 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16450 if (attr)
16451 make_vector_type (type);
16452
16453 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16454 implementation may choose to implement triple vectors using this
16455 attribute. */
16456 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16457 if (attr)
16458 {
16459 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16460 TYPE_LENGTH (type) = DW_UNSND (attr);
16461 else
16462 complaint (&symfile_complaints,
16463 _("DW_AT_byte_size for array type smaller "
16464 "than the total size of elements"));
16465 }
16466
16467 name = dwarf2_name (die, cu);
16468 if (name)
16469 TYPE_NAME (type) = name;
16470
16471 maybe_set_alignment (cu, die, type);
16472
16473 /* Install the type in the die. */
16474 set_die_type (die, type, cu);
16475
16476 /* set_die_type should be already done. */
16477 set_descriptive_type (type, die, cu);
16478
16479 return type;
16480 }
16481
16482 static enum dwarf_array_dim_ordering
16483 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16484 {
16485 struct attribute *attr;
16486
16487 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16488
16489 if (attr)
16490 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16491
16492 /* GNU F77 is a special case, as at 08/2004 array type info is the
16493 opposite order to the dwarf2 specification, but data is still
16494 laid out as per normal fortran.
16495
16496 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16497 version checking. */
16498
16499 if (cu->language == language_fortran
16500 && cu->producer && strstr (cu->producer, "GNU F77"))
16501 {
16502 return DW_ORD_row_major;
16503 }
16504
16505 switch (cu->language_defn->la_array_ordering)
16506 {
16507 case array_column_major:
16508 return DW_ORD_col_major;
16509 case array_row_major:
16510 default:
16511 return DW_ORD_row_major;
16512 };
16513 }
16514
16515 /* Extract all information from a DW_TAG_set_type DIE and put it in
16516 the DIE's type field. */
16517
16518 static struct type *
16519 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16520 {
16521 struct type *domain_type, *set_type;
16522 struct attribute *attr;
16523
16524 domain_type = die_type (die, cu);
16525
16526 /* The die_type call above may have already set the type for this DIE. */
16527 set_type = get_die_type (die, cu);
16528 if (set_type)
16529 return set_type;
16530
16531 set_type = create_set_type (NULL, domain_type);
16532
16533 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16534 if (attr)
16535 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16536
16537 maybe_set_alignment (cu, die, set_type);
16538
16539 return set_die_type (die, set_type, cu);
16540 }
16541
16542 /* A helper for read_common_block that creates a locexpr baton.
16543 SYM is the symbol which we are marking as computed.
16544 COMMON_DIE is the DIE for the common block.
16545 COMMON_LOC is the location expression attribute for the common
16546 block itself.
16547 MEMBER_LOC is the location expression attribute for the particular
16548 member of the common block that we are processing.
16549 CU is the CU from which the above come. */
16550
16551 static void
16552 mark_common_block_symbol_computed (struct symbol *sym,
16553 struct die_info *common_die,
16554 struct attribute *common_loc,
16555 struct attribute *member_loc,
16556 struct dwarf2_cu *cu)
16557 {
16558 struct dwarf2_per_objfile *dwarf2_per_objfile
16559 = cu->per_cu->dwarf2_per_objfile;
16560 struct objfile *objfile = dwarf2_per_objfile->objfile;
16561 struct dwarf2_locexpr_baton *baton;
16562 gdb_byte *ptr;
16563 unsigned int cu_off;
16564 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16565 LONGEST offset = 0;
16566
16567 gdb_assert (common_loc && member_loc);
16568 gdb_assert (attr_form_is_block (common_loc));
16569 gdb_assert (attr_form_is_block (member_loc)
16570 || attr_form_is_constant (member_loc));
16571
16572 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16573 baton->per_cu = cu->per_cu;
16574 gdb_assert (baton->per_cu);
16575
16576 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16577
16578 if (attr_form_is_constant (member_loc))
16579 {
16580 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16581 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16582 }
16583 else
16584 baton->size += DW_BLOCK (member_loc)->size;
16585
16586 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16587 baton->data = ptr;
16588
16589 *ptr++ = DW_OP_call4;
16590 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16591 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16592 ptr += 4;
16593
16594 if (attr_form_is_constant (member_loc))
16595 {
16596 *ptr++ = DW_OP_addr;
16597 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16598 ptr += cu->header.addr_size;
16599 }
16600 else
16601 {
16602 /* We have to copy the data here, because DW_OP_call4 will only
16603 use a DW_AT_location attribute. */
16604 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16605 ptr += DW_BLOCK (member_loc)->size;
16606 }
16607
16608 *ptr++ = DW_OP_plus;
16609 gdb_assert (ptr - baton->data == baton->size);
16610
16611 SYMBOL_LOCATION_BATON (sym) = baton;
16612 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16613 }
16614
16615 /* Create appropriate locally-scoped variables for all the
16616 DW_TAG_common_block entries. Also create a struct common_block
16617 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16618 is used to sepate the common blocks name namespace from regular
16619 variable names. */
16620
16621 static void
16622 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16623 {
16624 struct attribute *attr;
16625
16626 attr = dwarf2_attr (die, DW_AT_location, cu);
16627 if (attr)
16628 {
16629 /* Support the .debug_loc offsets. */
16630 if (attr_form_is_block (attr))
16631 {
16632 /* Ok. */
16633 }
16634 else if (attr_form_is_section_offset (attr))
16635 {
16636 dwarf2_complex_location_expr_complaint ();
16637 attr = NULL;
16638 }
16639 else
16640 {
16641 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16642 "common block member");
16643 attr = NULL;
16644 }
16645 }
16646
16647 if (die->child != NULL)
16648 {
16649 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16650 struct die_info *child_die;
16651 size_t n_entries = 0, size;
16652 struct common_block *common_block;
16653 struct symbol *sym;
16654
16655 for (child_die = die->child;
16656 child_die && child_die->tag;
16657 child_die = sibling_die (child_die))
16658 ++n_entries;
16659
16660 size = (sizeof (struct common_block)
16661 + (n_entries - 1) * sizeof (struct symbol *));
16662 common_block
16663 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16664 size);
16665 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16666 common_block->n_entries = 0;
16667
16668 for (child_die = die->child;
16669 child_die && child_die->tag;
16670 child_die = sibling_die (child_die))
16671 {
16672 /* Create the symbol in the DW_TAG_common_block block in the current
16673 symbol scope. */
16674 sym = new_symbol (child_die, NULL, cu);
16675 if (sym != NULL)
16676 {
16677 struct attribute *member_loc;
16678
16679 common_block->contents[common_block->n_entries++] = sym;
16680
16681 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16682 cu);
16683 if (member_loc)
16684 {
16685 /* GDB has handled this for a long time, but it is
16686 not specified by DWARF. It seems to have been
16687 emitted by gfortran at least as recently as:
16688 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16689 complaint (&symfile_complaints,
16690 _("Variable in common block has "
16691 "DW_AT_data_member_location "
16692 "- DIE at %s [in module %s]"),
16693 sect_offset_str (child_die->sect_off),
16694 objfile_name (objfile));
16695
16696 if (attr_form_is_section_offset (member_loc))
16697 dwarf2_complex_location_expr_complaint ();
16698 else if (attr_form_is_constant (member_loc)
16699 || attr_form_is_block (member_loc))
16700 {
16701 if (attr)
16702 mark_common_block_symbol_computed (sym, die, attr,
16703 member_loc, cu);
16704 }
16705 else
16706 dwarf2_complex_location_expr_complaint ();
16707 }
16708 }
16709 }
16710
16711 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16712 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16713 }
16714 }
16715
16716 /* Create a type for a C++ namespace. */
16717
16718 static struct type *
16719 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16720 {
16721 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16722 const char *previous_prefix, *name;
16723 int is_anonymous;
16724 struct type *type;
16725
16726 /* For extensions, reuse the type of the original namespace. */
16727 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16728 {
16729 struct die_info *ext_die;
16730 struct dwarf2_cu *ext_cu = cu;
16731
16732 ext_die = dwarf2_extension (die, &ext_cu);
16733 type = read_type_die (ext_die, ext_cu);
16734
16735 /* EXT_CU may not be the same as CU.
16736 Ensure TYPE is recorded with CU in die_type_hash. */
16737 return set_die_type (die, type, cu);
16738 }
16739
16740 name = namespace_name (die, &is_anonymous, cu);
16741
16742 /* Now build the name of the current namespace. */
16743
16744 previous_prefix = determine_prefix (die, cu);
16745 if (previous_prefix[0] != '\0')
16746 name = typename_concat (&objfile->objfile_obstack,
16747 previous_prefix, name, 0, cu);
16748
16749 /* Create the type. */
16750 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16751 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16752
16753 return set_die_type (die, type, cu);
16754 }
16755
16756 /* Read a namespace scope. */
16757
16758 static void
16759 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16760 {
16761 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16762 int is_anonymous;
16763
16764 /* Add a symbol associated to this if we haven't seen the namespace
16765 before. Also, add a using directive if it's an anonymous
16766 namespace. */
16767
16768 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16769 {
16770 struct type *type;
16771
16772 type = read_type_die (die, cu);
16773 new_symbol (die, type, cu);
16774
16775 namespace_name (die, &is_anonymous, cu);
16776 if (is_anonymous)
16777 {
16778 const char *previous_prefix = determine_prefix (die, cu);
16779
16780 std::vector<const char *> excludes;
16781 add_using_directive (using_directives (cu->language),
16782 previous_prefix, TYPE_NAME (type), NULL,
16783 NULL, excludes, 0, &objfile->objfile_obstack);
16784 }
16785 }
16786
16787 if (die->child != NULL)
16788 {
16789 struct die_info *child_die = die->child;
16790
16791 while (child_die && child_die->tag)
16792 {
16793 process_die (child_die, cu);
16794 child_die = sibling_die (child_die);
16795 }
16796 }
16797 }
16798
16799 /* Read a Fortran module as type. This DIE can be only a declaration used for
16800 imported module. Still we need that type as local Fortran "use ... only"
16801 declaration imports depend on the created type in determine_prefix. */
16802
16803 static struct type *
16804 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16805 {
16806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16807 const char *module_name;
16808 struct type *type;
16809
16810 module_name = dwarf2_name (die, cu);
16811 if (!module_name)
16812 complaint (&symfile_complaints,
16813 _("DW_TAG_module has no name, offset %s"),
16814 sect_offset_str (die->sect_off));
16815 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16816
16817 /* determine_prefix uses TYPE_TAG_NAME. */
16818 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16819
16820 return set_die_type (die, type, cu);
16821 }
16822
16823 /* Read a Fortran module. */
16824
16825 static void
16826 read_module (struct die_info *die, struct dwarf2_cu *cu)
16827 {
16828 struct die_info *child_die = die->child;
16829 struct type *type;
16830
16831 type = read_type_die (die, cu);
16832 new_symbol (die, type, cu);
16833
16834 while (child_die && child_die->tag)
16835 {
16836 process_die (child_die, cu);
16837 child_die = sibling_die (child_die);
16838 }
16839 }
16840
16841 /* Return the name of the namespace represented by DIE. Set
16842 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16843 namespace. */
16844
16845 static const char *
16846 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16847 {
16848 struct die_info *current_die;
16849 const char *name = NULL;
16850
16851 /* Loop through the extensions until we find a name. */
16852
16853 for (current_die = die;
16854 current_die != NULL;
16855 current_die = dwarf2_extension (die, &cu))
16856 {
16857 /* We don't use dwarf2_name here so that we can detect the absence
16858 of a name -> anonymous namespace. */
16859 name = dwarf2_string_attr (die, DW_AT_name, cu);
16860
16861 if (name != NULL)
16862 break;
16863 }
16864
16865 /* Is it an anonymous namespace? */
16866
16867 *is_anonymous = (name == NULL);
16868 if (*is_anonymous)
16869 name = CP_ANONYMOUS_NAMESPACE_STR;
16870
16871 return name;
16872 }
16873
16874 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16875 the user defined type vector. */
16876
16877 static struct type *
16878 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16879 {
16880 struct gdbarch *gdbarch
16881 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16882 struct comp_unit_head *cu_header = &cu->header;
16883 struct type *type;
16884 struct attribute *attr_byte_size;
16885 struct attribute *attr_address_class;
16886 int byte_size, addr_class;
16887 struct type *target_type;
16888
16889 target_type = die_type (die, cu);
16890
16891 /* The die_type call above may have already set the type for this DIE. */
16892 type = get_die_type (die, cu);
16893 if (type)
16894 return type;
16895
16896 type = lookup_pointer_type (target_type);
16897
16898 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16899 if (attr_byte_size)
16900 byte_size = DW_UNSND (attr_byte_size);
16901 else
16902 byte_size = cu_header->addr_size;
16903
16904 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16905 if (attr_address_class)
16906 addr_class = DW_UNSND (attr_address_class);
16907 else
16908 addr_class = DW_ADDR_none;
16909
16910 ULONGEST alignment = get_alignment (cu, die);
16911
16912 /* If the pointer size, alignment, or address class is different
16913 than the default, create a type variant marked as such and set
16914 the length accordingly. */
16915 if (TYPE_LENGTH (type) != byte_size
16916 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16917 && alignment != TYPE_RAW_ALIGN (type))
16918 || addr_class != DW_ADDR_none)
16919 {
16920 if (gdbarch_address_class_type_flags_p (gdbarch))
16921 {
16922 int type_flags;
16923
16924 type_flags = gdbarch_address_class_type_flags
16925 (gdbarch, byte_size, addr_class);
16926 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16927 == 0);
16928 type = make_type_with_address_space (type, type_flags);
16929 }
16930 else if (TYPE_LENGTH (type) != byte_size)
16931 {
16932 complaint (&symfile_complaints,
16933 _("invalid pointer size %d"), byte_size);
16934 }
16935 else if (TYPE_RAW_ALIGN (type) != alignment)
16936 {
16937 complaint (&symfile_complaints,
16938 _("Invalid DW_AT_alignment"
16939 " - DIE at %s [in module %s]"),
16940 sect_offset_str (die->sect_off),
16941 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16942 }
16943 else
16944 {
16945 /* Should we also complain about unhandled address classes? */
16946 }
16947 }
16948
16949 TYPE_LENGTH (type) = byte_size;
16950 set_type_align (type, alignment);
16951 return set_die_type (die, type, cu);
16952 }
16953
16954 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16955 the user defined type vector. */
16956
16957 static struct type *
16958 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16959 {
16960 struct type *type;
16961 struct type *to_type;
16962 struct type *domain;
16963
16964 to_type = die_type (die, cu);
16965 domain = die_containing_type (die, cu);
16966
16967 /* The calls above may have already set the type for this DIE. */
16968 type = get_die_type (die, cu);
16969 if (type)
16970 return type;
16971
16972 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16973 type = lookup_methodptr_type (to_type);
16974 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16975 {
16976 struct type *new_type
16977 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16978
16979 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16980 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16981 TYPE_VARARGS (to_type));
16982 type = lookup_methodptr_type (new_type);
16983 }
16984 else
16985 type = lookup_memberptr_type (to_type, domain);
16986
16987 return set_die_type (die, type, cu);
16988 }
16989
16990 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16991 the user defined type vector. */
16992
16993 static struct type *
16994 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16995 enum type_code refcode)
16996 {
16997 struct comp_unit_head *cu_header = &cu->header;
16998 struct type *type, *target_type;
16999 struct attribute *attr;
17000
17001 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17002
17003 target_type = die_type (die, cu);
17004
17005 /* The die_type call above may have already set the type for this DIE. */
17006 type = get_die_type (die, cu);
17007 if (type)
17008 return type;
17009
17010 type = lookup_reference_type (target_type, refcode);
17011 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17012 if (attr)
17013 {
17014 TYPE_LENGTH (type) = DW_UNSND (attr);
17015 }
17016 else
17017 {
17018 TYPE_LENGTH (type) = cu_header->addr_size;
17019 }
17020 maybe_set_alignment (cu, die, type);
17021 return set_die_type (die, type, cu);
17022 }
17023
17024 /* Add the given cv-qualifiers to the element type of the array. GCC
17025 outputs DWARF type qualifiers that apply to an array, not the
17026 element type. But GDB relies on the array element type to carry
17027 the cv-qualifiers. This mimics section 6.7.3 of the C99
17028 specification. */
17029
17030 static struct type *
17031 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17032 struct type *base_type, int cnst, int voltl)
17033 {
17034 struct type *el_type, *inner_array;
17035
17036 base_type = copy_type (base_type);
17037 inner_array = base_type;
17038
17039 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17040 {
17041 TYPE_TARGET_TYPE (inner_array) =
17042 copy_type (TYPE_TARGET_TYPE (inner_array));
17043 inner_array = TYPE_TARGET_TYPE (inner_array);
17044 }
17045
17046 el_type = TYPE_TARGET_TYPE (inner_array);
17047 cnst |= TYPE_CONST (el_type);
17048 voltl |= TYPE_VOLATILE (el_type);
17049 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17050
17051 return set_die_type (die, base_type, cu);
17052 }
17053
17054 static struct type *
17055 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17056 {
17057 struct type *base_type, *cv_type;
17058
17059 base_type = die_type (die, cu);
17060
17061 /* The die_type call above may have already set the type for this DIE. */
17062 cv_type = get_die_type (die, cu);
17063 if (cv_type)
17064 return cv_type;
17065
17066 /* In case the const qualifier is applied to an array type, the element type
17067 is so qualified, not the array type (section 6.7.3 of C99). */
17068 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17069 return add_array_cv_type (die, cu, base_type, 1, 0);
17070
17071 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17072 return set_die_type (die, cv_type, cu);
17073 }
17074
17075 static struct type *
17076 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17077 {
17078 struct type *base_type, *cv_type;
17079
17080 base_type = die_type (die, cu);
17081
17082 /* The die_type call above may have already set the type for this DIE. */
17083 cv_type = get_die_type (die, cu);
17084 if (cv_type)
17085 return cv_type;
17086
17087 /* In case the volatile qualifier is applied to an array type, the
17088 element type is so qualified, not the array type (section 6.7.3
17089 of C99). */
17090 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17091 return add_array_cv_type (die, cu, base_type, 0, 1);
17092
17093 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17094 return set_die_type (die, cv_type, cu);
17095 }
17096
17097 /* Handle DW_TAG_restrict_type. */
17098
17099 static struct type *
17100 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17101 {
17102 struct type *base_type, *cv_type;
17103
17104 base_type = die_type (die, cu);
17105
17106 /* The die_type call above may have already set the type for this DIE. */
17107 cv_type = get_die_type (die, cu);
17108 if (cv_type)
17109 return cv_type;
17110
17111 cv_type = make_restrict_type (base_type);
17112 return set_die_type (die, cv_type, cu);
17113 }
17114
17115 /* Handle DW_TAG_atomic_type. */
17116
17117 static struct type *
17118 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17119 {
17120 struct type *base_type, *cv_type;
17121
17122 base_type = die_type (die, cu);
17123
17124 /* The die_type call above may have already set the type for this DIE. */
17125 cv_type = get_die_type (die, cu);
17126 if (cv_type)
17127 return cv_type;
17128
17129 cv_type = make_atomic_type (base_type);
17130 return set_die_type (die, cv_type, cu);
17131 }
17132
17133 /* Extract all information from a DW_TAG_string_type DIE and add to
17134 the user defined type vector. It isn't really a user defined type,
17135 but it behaves like one, with other DIE's using an AT_user_def_type
17136 attribute to reference it. */
17137
17138 static struct type *
17139 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17140 {
17141 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17143 struct type *type, *range_type, *index_type, *char_type;
17144 struct attribute *attr;
17145 unsigned int length;
17146
17147 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17148 if (attr)
17149 {
17150 length = DW_UNSND (attr);
17151 }
17152 else
17153 {
17154 /* Check for the DW_AT_byte_size attribute. */
17155 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17156 if (attr)
17157 {
17158 length = DW_UNSND (attr);
17159 }
17160 else
17161 {
17162 length = 1;
17163 }
17164 }
17165
17166 index_type = objfile_type (objfile)->builtin_int;
17167 range_type = create_static_range_type (NULL, index_type, 1, length);
17168 char_type = language_string_char_type (cu->language_defn, gdbarch);
17169 type = create_string_type (NULL, char_type, range_type);
17170
17171 return set_die_type (die, type, cu);
17172 }
17173
17174 /* Assuming that DIE corresponds to a function, returns nonzero
17175 if the function is prototyped. */
17176
17177 static int
17178 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17179 {
17180 struct attribute *attr;
17181
17182 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17183 if (attr && (DW_UNSND (attr) != 0))
17184 return 1;
17185
17186 /* The DWARF standard implies that the DW_AT_prototyped attribute
17187 is only meaninful for C, but the concept also extends to other
17188 languages that allow unprototyped functions (Eg: Objective C).
17189 For all other languages, assume that functions are always
17190 prototyped. */
17191 if (cu->language != language_c
17192 && cu->language != language_objc
17193 && cu->language != language_opencl)
17194 return 1;
17195
17196 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17197 prototyped and unprototyped functions; default to prototyped,
17198 since that is more common in modern code (and RealView warns
17199 about unprototyped functions). */
17200 if (producer_is_realview (cu->producer))
17201 return 1;
17202
17203 return 0;
17204 }
17205
17206 /* Handle DIES due to C code like:
17207
17208 struct foo
17209 {
17210 int (*funcp)(int a, long l);
17211 int b;
17212 };
17213
17214 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17215
17216 static struct type *
17217 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17218 {
17219 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17220 struct type *type; /* Type that this function returns. */
17221 struct type *ftype; /* Function that returns above type. */
17222 struct attribute *attr;
17223
17224 type = die_type (die, cu);
17225
17226 /* The die_type call above may have already set the type for this DIE. */
17227 ftype = get_die_type (die, cu);
17228 if (ftype)
17229 return ftype;
17230
17231 ftype = lookup_function_type (type);
17232
17233 if (prototyped_function_p (die, cu))
17234 TYPE_PROTOTYPED (ftype) = 1;
17235
17236 /* Store the calling convention in the type if it's available in
17237 the subroutine die. Otherwise set the calling convention to
17238 the default value DW_CC_normal. */
17239 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17240 if (attr)
17241 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17242 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17243 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17244 else
17245 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17246
17247 /* Record whether the function returns normally to its caller or not
17248 if the DWARF producer set that information. */
17249 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17250 if (attr && (DW_UNSND (attr) != 0))
17251 TYPE_NO_RETURN (ftype) = 1;
17252
17253 /* We need to add the subroutine type to the die immediately so
17254 we don't infinitely recurse when dealing with parameters
17255 declared as the same subroutine type. */
17256 set_die_type (die, ftype, cu);
17257
17258 if (die->child != NULL)
17259 {
17260 struct type *void_type = objfile_type (objfile)->builtin_void;
17261 struct die_info *child_die;
17262 int nparams, iparams;
17263
17264 /* Count the number of parameters.
17265 FIXME: GDB currently ignores vararg functions, but knows about
17266 vararg member functions. */
17267 nparams = 0;
17268 child_die = die->child;
17269 while (child_die && child_die->tag)
17270 {
17271 if (child_die->tag == DW_TAG_formal_parameter)
17272 nparams++;
17273 else if (child_die->tag == DW_TAG_unspecified_parameters)
17274 TYPE_VARARGS (ftype) = 1;
17275 child_die = sibling_die (child_die);
17276 }
17277
17278 /* Allocate storage for parameters and fill them in. */
17279 TYPE_NFIELDS (ftype) = nparams;
17280 TYPE_FIELDS (ftype) = (struct field *)
17281 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17282
17283 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17284 even if we error out during the parameters reading below. */
17285 for (iparams = 0; iparams < nparams; iparams++)
17286 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17287
17288 iparams = 0;
17289 child_die = die->child;
17290 while (child_die && child_die->tag)
17291 {
17292 if (child_die->tag == DW_TAG_formal_parameter)
17293 {
17294 struct type *arg_type;
17295
17296 /* DWARF version 2 has no clean way to discern C++
17297 static and non-static member functions. G++ helps
17298 GDB by marking the first parameter for non-static
17299 member functions (which is the this pointer) as
17300 artificial. We pass this information to
17301 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17302
17303 DWARF version 3 added DW_AT_object_pointer, which GCC
17304 4.5 does not yet generate. */
17305 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17306 if (attr)
17307 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17308 else
17309 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17310 arg_type = die_type (child_die, cu);
17311
17312 /* RealView does not mark THIS as const, which the testsuite
17313 expects. GCC marks THIS as const in method definitions,
17314 but not in the class specifications (GCC PR 43053). */
17315 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17316 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17317 {
17318 int is_this = 0;
17319 struct dwarf2_cu *arg_cu = cu;
17320 const char *name = dwarf2_name (child_die, cu);
17321
17322 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17323 if (attr)
17324 {
17325 /* If the compiler emits this, use it. */
17326 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17327 is_this = 1;
17328 }
17329 else if (name && strcmp (name, "this") == 0)
17330 /* Function definitions will have the argument names. */
17331 is_this = 1;
17332 else if (name == NULL && iparams == 0)
17333 /* Declarations may not have the names, so like
17334 elsewhere in GDB, assume an artificial first
17335 argument is "this". */
17336 is_this = 1;
17337
17338 if (is_this)
17339 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17340 arg_type, 0);
17341 }
17342
17343 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17344 iparams++;
17345 }
17346 child_die = sibling_die (child_die);
17347 }
17348 }
17349
17350 return ftype;
17351 }
17352
17353 static struct type *
17354 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17355 {
17356 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17357 const char *name = NULL;
17358 struct type *this_type, *target_type;
17359
17360 name = dwarf2_full_name (NULL, die, cu);
17361 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17362 TYPE_TARGET_STUB (this_type) = 1;
17363 set_die_type (die, this_type, cu);
17364 target_type = die_type (die, cu);
17365 if (target_type != this_type)
17366 TYPE_TARGET_TYPE (this_type) = target_type;
17367 else
17368 {
17369 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17370 spec and cause infinite loops in GDB. */
17371 complaint (&symfile_complaints,
17372 _("Self-referential DW_TAG_typedef "
17373 "- DIE at %s [in module %s]"),
17374 sect_offset_str (die->sect_off), objfile_name (objfile));
17375 TYPE_TARGET_TYPE (this_type) = NULL;
17376 }
17377 return this_type;
17378 }
17379
17380 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17381 (which may be different from NAME) to the architecture back-end to allow
17382 it to guess the correct format if necessary. */
17383
17384 static struct type *
17385 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17386 const char *name_hint)
17387 {
17388 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17389 const struct floatformat **format;
17390 struct type *type;
17391
17392 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17393 if (format)
17394 type = init_float_type (objfile, bits, name, format);
17395 else
17396 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17397
17398 return type;
17399 }
17400
17401 /* Find a representation of a given base type and install
17402 it in the TYPE field of the die. */
17403
17404 static struct type *
17405 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17406 {
17407 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17408 struct type *type;
17409 struct attribute *attr;
17410 int encoding = 0, bits = 0;
17411 const char *name;
17412
17413 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17414 if (attr)
17415 {
17416 encoding = DW_UNSND (attr);
17417 }
17418 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17419 if (attr)
17420 {
17421 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17422 }
17423 name = dwarf2_name (die, cu);
17424 if (!name)
17425 {
17426 complaint (&symfile_complaints,
17427 _("DW_AT_name missing from DW_TAG_base_type"));
17428 }
17429
17430 switch (encoding)
17431 {
17432 case DW_ATE_address:
17433 /* Turn DW_ATE_address into a void * pointer. */
17434 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17435 type = init_pointer_type (objfile, bits, name, type);
17436 break;
17437 case DW_ATE_boolean:
17438 type = init_boolean_type (objfile, bits, 1, name);
17439 break;
17440 case DW_ATE_complex_float:
17441 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17442 type = init_complex_type (objfile, name, type);
17443 break;
17444 case DW_ATE_decimal_float:
17445 type = init_decfloat_type (objfile, bits, name);
17446 break;
17447 case DW_ATE_float:
17448 type = dwarf2_init_float_type (objfile, bits, name, name);
17449 break;
17450 case DW_ATE_signed:
17451 type = init_integer_type (objfile, bits, 0, name);
17452 break;
17453 case DW_ATE_unsigned:
17454 if (cu->language == language_fortran
17455 && name
17456 && startswith (name, "character("))
17457 type = init_character_type (objfile, bits, 1, name);
17458 else
17459 type = init_integer_type (objfile, bits, 1, name);
17460 break;
17461 case DW_ATE_signed_char:
17462 if (cu->language == language_ada || cu->language == language_m2
17463 || cu->language == language_pascal
17464 || cu->language == language_fortran)
17465 type = init_character_type (objfile, bits, 0, name);
17466 else
17467 type = init_integer_type (objfile, bits, 0, name);
17468 break;
17469 case DW_ATE_unsigned_char:
17470 if (cu->language == language_ada || cu->language == language_m2
17471 || cu->language == language_pascal
17472 || cu->language == language_fortran
17473 || cu->language == language_rust)
17474 type = init_character_type (objfile, bits, 1, name);
17475 else
17476 type = init_integer_type (objfile, bits, 1, name);
17477 break;
17478 case DW_ATE_UTF:
17479 {
17480 gdbarch *arch = get_objfile_arch (objfile);
17481
17482 if (bits == 16)
17483 type = builtin_type (arch)->builtin_char16;
17484 else if (bits == 32)
17485 type = builtin_type (arch)->builtin_char32;
17486 else
17487 {
17488 complaint (&symfile_complaints,
17489 _("unsupported DW_ATE_UTF bit size: '%d'"),
17490 bits);
17491 type = init_integer_type (objfile, bits, 1, name);
17492 }
17493 return set_die_type (die, type, cu);
17494 }
17495 break;
17496
17497 default:
17498 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17499 dwarf_type_encoding_name (encoding));
17500 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17501 break;
17502 }
17503
17504 if (name && strcmp (name, "char") == 0)
17505 TYPE_NOSIGN (type) = 1;
17506
17507 maybe_set_alignment (cu, die, type);
17508
17509 return set_die_type (die, type, cu);
17510 }
17511
17512 /* Parse dwarf attribute if it's a block, reference or constant and put the
17513 resulting value of the attribute into struct bound_prop.
17514 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17515
17516 static int
17517 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17518 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17519 {
17520 struct dwarf2_property_baton *baton;
17521 struct obstack *obstack
17522 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17523
17524 if (attr == NULL || prop == NULL)
17525 return 0;
17526
17527 if (attr_form_is_block (attr))
17528 {
17529 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17530 baton->referenced_type = NULL;
17531 baton->locexpr.per_cu = cu->per_cu;
17532 baton->locexpr.size = DW_BLOCK (attr)->size;
17533 baton->locexpr.data = DW_BLOCK (attr)->data;
17534 prop->data.baton = baton;
17535 prop->kind = PROP_LOCEXPR;
17536 gdb_assert (prop->data.baton != NULL);
17537 }
17538 else if (attr_form_is_ref (attr))
17539 {
17540 struct dwarf2_cu *target_cu = cu;
17541 struct die_info *target_die;
17542 struct attribute *target_attr;
17543
17544 target_die = follow_die_ref (die, attr, &target_cu);
17545 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17546 if (target_attr == NULL)
17547 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17548 target_cu);
17549 if (target_attr == NULL)
17550 return 0;
17551
17552 switch (target_attr->name)
17553 {
17554 case DW_AT_location:
17555 if (attr_form_is_section_offset (target_attr))
17556 {
17557 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17558 baton->referenced_type = die_type (target_die, target_cu);
17559 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17560 prop->data.baton = baton;
17561 prop->kind = PROP_LOCLIST;
17562 gdb_assert (prop->data.baton != NULL);
17563 }
17564 else if (attr_form_is_block (target_attr))
17565 {
17566 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17567 baton->referenced_type = die_type (target_die, target_cu);
17568 baton->locexpr.per_cu = cu->per_cu;
17569 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17570 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17571 prop->data.baton = baton;
17572 prop->kind = PROP_LOCEXPR;
17573 gdb_assert (prop->data.baton != NULL);
17574 }
17575 else
17576 {
17577 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17578 "dynamic property");
17579 return 0;
17580 }
17581 break;
17582 case DW_AT_data_member_location:
17583 {
17584 LONGEST offset;
17585
17586 if (!handle_data_member_location (target_die, target_cu,
17587 &offset))
17588 return 0;
17589
17590 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17591 baton->referenced_type = read_type_die (target_die->parent,
17592 target_cu);
17593 baton->offset_info.offset = offset;
17594 baton->offset_info.type = die_type (target_die, target_cu);
17595 prop->data.baton = baton;
17596 prop->kind = PROP_ADDR_OFFSET;
17597 break;
17598 }
17599 }
17600 }
17601 else if (attr_form_is_constant (attr))
17602 {
17603 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17604 prop->kind = PROP_CONST;
17605 }
17606 else
17607 {
17608 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17609 dwarf2_name (die, cu));
17610 return 0;
17611 }
17612
17613 return 1;
17614 }
17615
17616 /* Read the given DW_AT_subrange DIE. */
17617
17618 static struct type *
17619 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17620 {
17621 struct type *base_type, *orig_base_type;
17622 struct type *range_type;
17623 struct attribute *attr;
17624 struct dynamic_prop low, high;
17625 int low_default_is_valid;
17626 int high_bound_is_count = 0;
17627 const char *name;
17628 LONGEST negative_mask;
17629
17630 orig_base_type = die_type (die, cu);
17631 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17632 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17633 creating the range type, but we use the result of check_typedef
17634 when examining properties of the type. */
17635 base_type = check_typedef (orig_base_type);
17636
17637 /* The die_type call above may have already set the type for this DIE. */
17638 range_type = get_die_type (die, cu);
17639 if (range_type)
17640 return range_type;
17641
17642 low.kind = PROP_CONST;
17643 high.kind = PROP_CONST;
17644 high.data.const_val = 0;
17645
17646 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17647 omitting DW_AT_lower_bound. */
17648 switch (cu->language)
17649 {
17650 case language_c:
17651 case language_cplus:
17652 low.data.const_val = 0;
17653 low_default_is_valid = 1;
17654 break;
17655 case language_fortran:
17656 low.data.const_val = 1;
17657 low_default_is_valid = 1;
17658 break;
17659 case language_d:
17660 case language_objc:
17661 case language_rust:
17662 low.data.const_val = 0;
17663 low_default_is_valid = (cu->header.version >= 4);
17664 break;
17665 case language_ada:
17666 case language_m2:
17667 case language_pascal:
17668 low.data.const_val = 1;
17669 low_default_is_valid = (cu->header.version >= 4);
17670 break;
17671 default:
17672 low.data.const_val = 0;
17673 low_default_is_valid = 0;
17674 break;
17675 }
17676
17677 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17678 if (attr)
17679 attr_to_dynamic_prop (attr, die, cu, &low);
17680 else if (!low_default_is_valid)
17681 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17682 "- DIE at %s [in module %s]"),
17683 sect_offset_str (die->sect_off),
17684 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17685
17686 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17687 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17688 {
17689 attr = dwarf2_attr (die, DW_AT_count, cu);
17690 if (attr_to_dynamic_prop (attr, die, cu, &high))
17691 {
17692 /* If bounds are constant do the final calculation here. */
17693 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17694 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17695 else
17696 high_bound_is_count = 1;
17697 }
17698 }
17699
17700 /* Dwarf-2 specifications explicitly allows to create subrange types
17701 without specifying a base type.
17702 In that case, the base type must be set to the type of
17703 the lower bound, upper bound or count, in that order, if any of these
17704 three attributes references an object that has a type.
17705 If no base type is found, the Dwarf-2 specifications say that
17706 a signed integer type of size equal to the size of an address should
17707 be used.
17708 For the following C code: `extern char gdb_int [];'
17709 GCC produces an empty range DIE.
17710 FIXME: muller/2010-05-28: Possible references to object for low bound,
17711 high bound or count are not yet handled by this code. */
17712 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17713 {
17714 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17715 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17716 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17717 struct type *int_type = objfile_type (objfile)->builtin_int;
17718
17719 /* Test "int", "long int", and "long long int" objfile types,
17720 and select the first one having a size above or equal to the
17721 architecture address size. */
17722 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17723 base_type = int_type;
17724 else
17725 {
17726 int_type = objfile_type (objfile)->builtin_long;
17727 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17728 base_type = int_type;
17729 else
17730 {
17731 int_type = objfile_type (objfile)->builtin_long_long;
17732 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17733 base_type = int_type;
17734 }
17735 }
17736 }
17737
17738 /* Normally, the DWARF producers are expected to use a signed
17739 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17740 But this is unfortunately not always the case, as witnessed
17741 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17742 is used instead. To work around that ambiguity, we treat
17743 the bounds as signed, and thus sign-extend their values, when
17744 the base type is signed. */
17745 negative_mask =
17746 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17747 if (low.kind == PROP_CONST
17748 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17749 low.data.const_val |= negative_mask;
17750 if (high.kind == PROP_CONST
17751 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17752 high.data.const_val |= negative_mask;
17753
17754 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17755
17756 if (high_bound_is_count)
17757 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17758
17759 /* Ada expects an empty array on no boundary attributes. */
17760 if (attr == NULL && cu->language != language_ada)
17761 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17762
17763 name = dwarf2_name (die, cu);
17764 if (name)
17765 TYPE_NAME (range_type) = name;
17766
17767 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17768 if (attr)
17769 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17770
17771 maybe_set_alignment (cu, die, range_type);
17772
17773 set_die_type (die, range_type, cu);
17774
17775 /* set_die_type should be already done. */
17776 set_descriptive_type (range_type, die, cu);
17777
17778 return range_type;
17779 }
17780
17781 static struct type *
17782 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17783 {
17784 struct type *type;
17785
17786 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17787 NULL);
17788 TYPE_NAME (type) = dwarf2_name (die, cu);
17789
17790 /* In Ada, an unspecified type is typically used when the description
17791 of the type is defered to a different unit. When encountering
17792 such a type, we treat it as a stub, and try to resolve it later on,
17793 when needed. */
17794 if (cu->language == language_ada)
17795 TYPE_STUB (type) = 1;
17796
17797 return set_die_type (die, type, cu);
17798 }
17799
17800 /* Read a single die and all its descendents. Set the die's sibling
17801 field to NULL; set other fields in the die correctly, and set all
17802 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17803 location of the info_ptr after reading all of those dies. PARENT
17804 is the parent of the die in question. */
17805
17806 static struct die_info *
17807 read_die_and_children (const struct die_reader_specs *reader,
17808 const gdb_byte *info_ptr,
17809 const gdb_byte **new_info_ptr,
17810 struct die_info *parent)
17811 {
17812 struct die_info *die;
17813 const gdb_byte *cur_ptr;
17814 int has_children;
17815
17816 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17817 if (die == NULL)
17818 {
17819 *new_info_ptr = cur_ptr;
17820 return NULL;
17821 }
17822 store_in_ref_table (die, reader->cu);
17823
17824 if (has_children)
17825 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17826 else
17827 {
17828 die->child = NULL;
17829 *new_info_ptr = cur_ptr;
17830 }
17831
17832 die->sibling = NULL;
17833 die->parent = parent;
17834 return die;
17835 }
17836
17837 /* Read a die, all of its descendents, and all of its siblings; set
17838 all of the fields of all of the dies correctly. Arguments are as
17839 in read_die_and_children. */
17840
17841 static struct die_info *
17842 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17843 const gdb_byte *info_ptr,
17844 const gdb_byte **new_info_ptr,
17845 struct die_info *parent)
17846 {
17847 struct die_info *first_die, *last_sibling;
17848 const gdb_byte *cur_ptr;
17849
17850 cur_ptr = info_ptr;
17851 first_die = last_sibling = NULL;
17852
17853 while (1)
17854 {
17855 struct die_info *die
17856 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17857
17858 if (die == NULL)
17859 {
17860 *new_info_ptr = cur_ptr;
17861 return first_die;
17862 }
17863
17864 if (!first_die)
17865 first_die = die;
17866 else
17867 last_sibling->sibling = die;
17868
17869 last_sibling = die;
17870 }
17871 }
17872
17873 /* Read a die, all of its descendents, and all of its siblings; set
17874 all of the fields of all of the dies correctly. Arguments are as
17875 in read_die_and_children.
17876 This the main entry point for reading a DIE and all its children. */
17877
17878 static struct die_info *
17879 read_die_and_siblings (const struct die_reader_specs *reader,
17880 const gdb_byte *info_ptr,
17881 const gdb_byte **new_info_ptr,
17882 struct die_info *parent)
17883 {
17884 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17885 new_info_ptr, parent);
17886
17887 if (dwarf_die_debug)
17888 {
17889 fprintf_unfiltered (gdb_stdlog,
17890 "Read die from %s@0x%x of %s:\n",
17891 get_section_name (reader->die_section),
17892 (unsigned) (info_ptr - reader->die_section->buffer),
17893 bfd_get_filename (reader->abfd));
17894 dump_die (die, dwarf_die_debug);
17895 }
17896
17897 return die;
17898 }
17899
17900 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17901 attributes.
17902 The caller is responsible for filling in the extra attributes
17903 and updating (*DIEP)->num_attrs.
17904 Set DIEP to point to a newly allocated die with its information,
17905 except for its child, sibling, and parent fields.
17906 Set HAS_CHILDREN to tell whether the die has children or not. */
17907
17908 static const gdb_byte *
17909 read_full_die_1 (const struct die_reader_specs *reader,
17910 struct die_info **diep, const gdb_byte *info_ptr,
17911 int *has_children, int num_extra_attrs)
17912 {
17913 unsigned int abbrev_number, bytes_read, i;
17914 struct abbrev_info *abbrev;
17915 struct die_info *die;
17916 struct dwarf2_cu *cu = reader->cu;
17917 bfd *abfd = reader->abfd;
17918
17919 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17920 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17921 info_ptr += bytes_read;
17922 if (!abbrev_number)
17923 {
17924 *diep = NULL;
17925 *has_children = 0;
17926 return info_ptr;
17927 }
17928
17929 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17930 if (!abbrev)
17931 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17932 abbrev_number,
17933 bfd_get_filename (abfd));
17934
17935 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17936 die->sect_off = sect_off;
17937 die->tag = abbrev->tag;
17938 die->abbrev = abbrev_number;
17939
17940 /* Make the result usable.
17941 The caller needs to update num_attrs after adding the extra
17942 attributes. */
17943 die->num_attrs = abbrev->num_attrs;
17944
17945 for (i = 0; i < abbrev->num_attrs; ++i)
17946 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17947 info_ptr);
17948
17949 *diep = die;
17950 *has_children = abbrev->has_children;
17951 return info_ptr;
17952 }
17953
17954 /* Read a die and all its attributes.
17955 Set DIEP to point to a newly allocated die with its information,
17956 except for its child, sibling, and parent fields.
17957 Set HAS_CHILDREN to tell whether the die has children or not. */
17958
17959 static const gdb_byte *
17960 read_full_die (const struct die_reader_specs *reader,
17961 struct die_info **diep, const gdb_byte *info_ptr,
17962 int *has_children)
17963 {
17964 const gdb_byte *result;
17965
17966 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17967
17968 if (dwarf_die_debug)
17969 {
17970 fprintf_unfiltered (gdb_stdlog,
17971 "Read die from %s@0x%x of %s:\n",
17972 get_section_name (reader->die_section),
17973 (unsigned) (info_ptr - reader->die_section->buffer),
17974 bfd_get_filename (reader->abfd));
17975 dump_die (*diep, dwarf_die_debug);
17976 }
17977
17978 return result;
17979 }
17980 \f
17981 /* Abbreviation tables.
17982
17983 In DWARF version 2, the description of the debugging information is
17984 stored in a separate .debug_abbrev section. Before we read any
17985 dies from a section we read in all abbreviations and install them
17986 in a hash table. */
17987
17988 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17989
17990 struct abbrev_info *
17991 abbrev_table::alloc_abbrev ()
17992 {
17993 struct abbrev_info *abbrev;
17994
17995 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17996 memset (abbrev, 0, sizeof (struct abbrev_info));
17997
17998 return abbrev;
17999 }
18000
18001 /* Add an abbreviation to the table. */
18002
18003 void
18004 abbrev_table::add_abbrev (unsigned int abbrev_number,
18005 struct abbrev_info *abbrev)
18006 {
18007 unsigned int hash_number;
18008
18009 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18010 abbrev->next = m_abbrevs[hash_number];
18011 m_abbrevs[hash_number] = abbrev;
18012 }
18013
18014 /* Look up an abbrev in the table.
18015 Returns NULL if the abbrev is not found. */
18016
18017 struct abbrev_info *
18018 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18019 {
18020 unsigned int hash_number;
18021 struct abbrev_info *abbrev;
18022
18023 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18024 abbrev = m_abbrevs[hash_number];
18025
18026 while (abbrev)
18027 {
18028 if (abbrev->number == abbrev_number)
18029 return abbrev;
18030 abbrev = abbrev->next;
18031 }
18032 return NULL;
18033 }
18034
18035 /* Read in an abbrev table. */
18036
18037 static abbrev_table_up
18038 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18039 struct dwarf2_section_info *section,
18040 sect_offset sect_off)
18041 {
18042 struct objfile *objfile = dwarf2_per_objfile->objfile;
18043 bfd *abfd = get_section_bfd_owner (section);
18044 const gdb_byte *abbrev_ptr;
18045 struct abbrev_info *cur_abbrev;
18046 unsigned int abbrev_number, bytes_read, abbrev_name;
18047 unsigned int abbrev_form;
18048 struct attr_abbrev *cur_attrs;
18049 unsigned int allocated_attrs;
18050
18051 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18052
18053 dwarf2_read_section (objfile, section);
18054 abbrev_ptr = section->buffer + to_underlying (sect_off);
18055 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18056 abbrev_ptr += bytes_read;
18057
18058 allocated_attrs = ATTR_ALLOC_CHUNK;
18059 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18060
18061 /* Loop until we reach an abbrev number of 0. */
18062 while (abbrev_number)
18063 {
18064 cur_abbrev = abbrev_table->alloc_abbrev ();
18065
18066 /* read in abbrev header */
18067 cur_abbrev->number = abbrev_number;
18068 cur_abbrev->tag
18069 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18070 abbrev_ptr += bytes_read;
18071 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18072 abbrev_ptr += 1;
18073
18074 /* now read in declarations */
18075 for (;;)
18076 {
18077 LONGEST implicit_const;
18078
18079 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18080 abbrev_ptr += bytes_read;
18081 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18082 abbrev_ptr += bytes_read;
18083 if (abbrev_form == DW_FORM_implicit_const)
18084 {
18085 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18086 &bytes_read);
18087 abbrev_ptr += bytes_read;
18088 }
18089 else
18090 {
18091 /* Initialize it due to a false compiler warning. */
18092 implicit_const = -1;
18093 }
18094
18095 if (abbrev_name == 0)
18096 break;
18097
18098 if (cur_abbrev->num_attrs == allocated_attrs)
18099 {
18100 allocated_attrs += ATTR_ALLOC_CHUNK;
18101 cur_attrs
18102 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18103 }
18104
18105 cur_attrs[cur_abbrev->num_attrs].name
18106 = (enum dwarf_attribute) abbrev_name;
18107 cur_attrs[cur_abbrev->num_attrs].form
18108 = (enum dwarf_form) abbrev_form;
18109 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18110 ++cur_abbrev->num_attrs;
18111 }
18112
18113 cur_abbrev->attrs =
18114 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18115 cur_abbrev->num_attrs);
18116 memcpy (cur_abbrev->attrs, cur_attrs,
18117 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18118
18119 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18120
18121 /* Get next abbreviation.
18122 Under Irix6 the abbreviations for a compilation unit are not
18123 always properly terminated with an abbrev number of 0.
18124 Exit loop if we encounter an abbreviation which we have
18125 already read (which means we are about to read the abbreviations
18126 for the next compile unit) or if the end of the abbreviation
18127 table is reached. */
18128 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18129 break;
18130 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18131 abbrev_ptr += bytes_read;
18132 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18133 break;
18134 }
18135
18136 xfree (cur_attrs);
18137 return abbrev_table;
18138 }
18139
18140 /* Returns nonzero if TAG represents a type that we might generate a partial
18141 symbol for. */
18142
18143 static int
18144 is_type_tag_for_partial (int tag)
18145 {
18146 switch (tag)
18147 {
18148 #if 0
18149 /* Some types that would be reasonable to generate partial symbols for,
18150 that we don't at present. */
18151 case DW_TAG_array_type:
18152 case DW_TAG_file_type:
18153 case DW_TAG_ptr_to_member_type:
18154 case DW_TAG_set_type:
18155 case DW_TAG_string_type:
18156 case DW_TAG_subroutine_type:
18157 #endif
18158 case DW_TAG_base_type:
18159 case DW_TAG_class_type:
18160 case DW_TAG_interface_type:
18161 case DW_TAG_enumeration_type:
18162 case DW_TAG_structure_type:
18163 case DW_TAG_subrange_type:
18164 case DW_TAG_typedef:
18165 case DW_TAG_union_type:
18166 return 1;
18167 default:
18168 return 0;
18169 }
18170 }
18171
18172 /* Load all DIEs that are interesting for partial symbols into memory. */
18173
18174 static struct partial_die_info *
18175 load_partial_dies (const struct die_reader_specs *reader,
18176 const gdb_byte *info_ptr, int building_psymtab)
18177 {
18178 struct dwarf2_cu *cu = reader->cu;
18179 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18180 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18181 unsigned int bytes_read;
18182 unsigned int load_all = 0;
18183 int nesting_level = 1;
18184
18185 parent_die = NULL;
18186 last_die = NULL;
18187
18188 gdb_assert (cu->per_cu != NULL);
18189 if (cu->per_cu->load_all_dies)
18190 load_all = 1;
18191
18192 cu->partial_dies
18193 = htab_create_alloc_ex (cu->header.length / 12,
18194 partial_die_hash,
18195 partial_die_eq,
18196 NULL,
18197 &cu->comp_unit_obstack,
18198 hashtab_obstack_allocate,
18199 dummy_obstack_deallocate);
18200
18201 while (1)
18202 {
18203 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18204
18205 /* A NULL abbrev means the end of a series of children. */
18206 if (abbrev == NULL)
18207 {
18208 if (--nesting_level == 0)
18209 return first_die;
18210
18211 info_ptr += bytes_read;
18212 last_die = parent_die;
18213 parent_die = parent_die->die_parent;
18214 continue;
18215 }
18216
18217 /* Check for template arguments. We never save these; if
18218 they're seen, we just mark the parent, and go on our way. */
18219 if (parent_die != NULL
18220 && cu->language == language_cplus
18221 && (abbrev->tag == DW_TAG_template_type_param
18222 || abbrev->tag == DW_TAG_template_value_param))
18223 {
18224 parent_die->has_template_arguments = 1;
18225
18226 if (!load_all)
18227 {
18228 /* We don't need a partial DIE for the template argument. */
18229 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18230 continue;
18231 }
18232 }
18233
18234 /* We only recurse into c++ subprograms looking for template arguments.
18235 Skip their other children. */
18236 if (!load_all
18237 && cu->language == language_cplus
18238 && parent_die != NULL
18239 && parent_die->tag == DW_TAG_subprogram)
18240 {
18241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18242 continue;
18243 }
18244
18245 /* Check whether this DIE is interesting enough to save. Normally
18246 we would not be interested in members here, but there may be
18247 later variables referencing them via DW_AT_specification (for
18248 static members). */
18249 if (!load_all
18250 && !is_type_tag_for_partial (abbrev->tag)
18251 && abbrev->tag != DW_TAG_constant
18252 && abbrev->tag != DW_TAG_enumerator
18253 && abbrev->tag != DW_TAG_subprogram
18254 && abbrev->tag != DW_TAG_inlined_subroutine
18255 && abbrev->tag != DW_TAG_lexical_block
18256 && abbrev->tag != DW_TAG_variable
18257 && abbrev->tag != DW_TAG_namespace
18258 && abbrev->tag != DW_TAG_module
18259 && abbrev->tag != DW_TAG_member
18260 && abbrev->tag != DW_TAG_imported_unit
18261 && abbrev->tag != DW_TAG_imported_declaration)
18262 {
18263 /* Otherwise we skip to the next sibling, if any. */
18264 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18265 continue;
18266 }
18267
18268 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18269 abbrev);
18270
18271 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18272
18273 /* This two-pass algorithm for processing partial symbols has a
18274 high cost in cache pressure. Thus, handle some simple cases
18275 here which cover the majority of C partial symbols. DIEs
18276 which neither have specification tags in them, nor could have
18277 specification tags elsewhere pointing at them, can simply be
18278 processed and discarded.
18279
18280 This segment is also optional; scan_partial_symbols and
18281 add_partial_symbol will handle these DIEs if we chain
18282 them in normally. When compilers which do not emit large
18283 quantities of duplicate debug information are more common,
18284 this code can probably be removed. */
18285
18286 /* Any complete simple types at the top level (pretty much all
18287 of them, for a language without namespaces), can be processed
18288 directly. */
18289 if (parent_die == NULL
18290 && pdi.has_specification == 0
18291 && pdi.is_declaration == 0
18292 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18293 || pdi.tag == DW_TAG_base_type
18294 || pdi.tag == DW_TAG_subrange_type))
18295 {
18296 if (building_psymtab && pdi.name != NULL)
18297 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18298 VAR_DOMAIN, LOC_TYPEDEF,
18299 &objfile->static_psymbols,
18300 0, cu->language, objfile);
18301 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18302 continue;
18303 }
18304
18305 /* The exception for DW_TAG_typedef with has_children above is
18306 a workaround of GCC PR debug/47510. In the case of this complaint
18307 type_name_no_tag_or_error will error on such types later.
18308
18309 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18310 it could not find the child DIEs referenced later, this is checked
18311 above. In correct DWARF DW_TAG_typedef should have no children. */
18312
18313 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18314 complaint (&symfile_complaints,
18315 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18316 "- DIE at %s [in module %s]"),
18317 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18318
18319 /* If we're at the second level, and we're an enumerator, and
18320 our parent has no specification (meaning possibly lives in a
18321 namespace elsewhere), then we can add the partial symbol now
18322 instead of queueing it. */
18323 if (pdi.tag == DW_TAG_enumerator
18324 && parent_die != NULL
18325 && parent_die->die_parent == NULL
18326 && parent_die->tag == DW_TAG_enumeration_type
18327 && parent_die->has_specification == 0)
18328 {
18329 if (pdi.name == NULL)
18330 complaint (&symfile_complaints,
18331 _("malformed enumerator DIE ignored"));
18332 else if (building_psymtab)
18333 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18334 VAR_DOMAIN, LOC_CONST,
18335 cu->language == language_cplus
18336 ? &objfile->global_psymbols
18337 : &objfile->static_psymbols,
18338 0, cu->language, objfile);
18339
18340 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18341 continue;
18342 }
18343
18344 struct partial_die_info *part_die
18345 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18346
18347 /* We'll save this DIE so link it in. */
18348 part_die->die_parent = parent_die;
18349 part_die->die_sibling = NULL;
18350 part_die->die_child = NULL;
18351
18352 if (last_die && last_die == parent_die)
18353 last_die->die_child = part_die;
18354 else if (last_die)
18355 last_die->die_sibling = part_die;
18356
18357 last_die = part_die;
18358
18359 if (first_die == NULL)
18360 first_die = part_die;
18361
18362 /* Maybe add the DIE to the hash table. Not all DIEs that we
18363 find interesting need to be in the hash table, because we
18364 also have the parent/sibling/child chains; only those that we
18365 might refer to by offset later during partial symbol reading.
18366
18367 For now this means things that might have be the target of a
18368 DW_AT_specification, DW_AT_abstract_origin, or
18369 DW_AT_extension. DW_AT_extension will refer only to
18370 namespaces; DW_AT_abstract_origin refers to functions (and
18371 many things under the function DIE, but we do not recurse
18372 into function DIEs during partial symbol reading) and
18373 possibly variables as well; DW_AT_specification refers to
18374 declarations. Declarations ought to have the DW_AT_declaration
18375 flag. It happens that GCC forgets to put it in sometimes, but
18376 only for functions, not for types.
18377
18378 Adding more things than necessary to the hash table is harmless
18379 except for the performance cost. Adding too few will result in
18380 wasted time in find_partial_die, when we reread the compilation
18381 unit with load_all_dies set. */
18382
18383 if (load_all
18384 || abbrev->tag == DW_TAG_constant
18385 || abbrev->tag == DW_TAG_subprogram
18386 || abbrev->tag == DW_TAG_variable
18387 || abbrev->tag == DW_TAG_namespace
18388 || part_die->is_declaration)
18389 {
18390 void **slot;
18391
18392 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18393 to_underlying (part_die->sect_off),
18394 INSERT);
18395 *slot = part_die;
18396 }
18397
18398 /* For some DIEs we want to follow their children (if any). For C
18399 we have no reason to follow the children of structures; for other
18400 languages we have to, so that we can get at method physnames
18401 to infer fully qualified class names, for DW_AT_specification,
18402 and for C++ template arguments. For C++, we also look one level
18403 inside functions to find template arguments (if the name of the
18404 function does not already contain the template arguments).
18405
18406 For Ada, we need to scan the children of subprograms and lexical
18407 blocks as well because Ada allows the definition of nested
18408 entities that could be interesting for the debugger, such as
18409 nested subprograms for instance. */
18410 if (last_die->has_children
18411 && (load_all
18412 || last_die->tag == DW_TAG_namespace
18413 || last_die->tag == DW_TAG_module
18414 || last_die->tag == DW_TAG_enumeration_type
18415 || (cu->language == language_cplus
18416 && last_die->tag == DW_TAG_subprogram
18417 && (last_die->name == NULL
18418 || strchr (last_die->name, '<') == NULL))
18419 || (cu->language != language_c
18420 && (last_die->tag == DW_TAG_class_type
18421 || last_die->tag == DW_TAG_interface_type
18422 || last_die->tag == DW_TAG_structure_type
18423 || last_die->tag == DW_TAG_union_type))
18424 || (cu->language == language_ada
18425 && (last_die->tag == DW_TAG_subprogram
18426 || last_die->tag == DW_TAG_lexical_block))))
18427 {
18428 nesting_level++;
18429 parent_die = last_die;
18430 continue;
18431 }
18432
18433 /* Otherwise we skip to the next sibling, if any. */
18434 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18435
18436 /* Back to the top, do it again. */
18437 }
18438 }
18439
18440 partial_die_info::partial_die_info (sect_offset sect_off_,
18441 struct abbrev_info *abbrev)
18442 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18443 {
18444 }
18445
18446 /* Read a minimal amount of information into the minimal die structure.
18447 INFO_PTR should point just after the initial uleb128 of a DIE. */
18448
18449 const gdb_byte *
18450 partial_die_info::read (const struct die_reader_specs *reader,
18451 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18452 {
18453 struct dwarf2_cu *cu = reader->cu;
18454 struct dwarf2_per_objfile *dwarf2_per_objfile
18455 = cu->per_cu->dwarf2_per_objfile;
18456 unsigned int i;
18457 int has_low_pc_attr = 0;
18458 int has_high_pc_attr = 0;
18459 int high_pc_relative = 0;
18460
18461 for (i = 0; i < abbrev.num_attrs; ++i)
18462 {
18463 struct attribute attr;
18464
18465 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18466
18467 /* Store the data if it is of an attribute we want to keep in a
18468 partial symbol table. */
18469 switch (attr.name)
18470 {
18471 case DW_AT_name:
18472 switch (tag)
18473 {
18474 case DW_TAG_compile_unit:
18475 case DW_TAG_partial_unit:
18476 case DW_TAG_type_unit:
18477 /* Compilation units have a DW_AT_name that is a filename, not
18478 a source language identifier. */
18479 case DW_TAG_enumeration_type:
18480 case DW_TAG_enumerator:
18481 /* These tags always have simple identifiers already; no need
18482 to canonicalize them. */
18483 name = DW_STRING (&attr);
18484 break;
18485 default:
18486 {
18487 struct objfile *objfile = dwarf2_per_objfile->objfile;
18488
18489 name
18490 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18491 &objfile->per_bfd->storage_obstack);
18492 }
18493 break;
18494 }
18495 break;
18496 case DW_AT_linkage_name:
18497 case DW_AT_MIPS_linkage_name:
18498 /* Note that both forms of linkage name might appear. We
18499 assume they will be the same, and we only store the last
18500 one we see. */
18501 if (cu->language == language_ada)
18502 name = DW_STRING (&attr);
18503 linkage_name = DW_STRING (&attr);
18504 break;
18505 case DW_AT_low_pc:
18506 has_low_pc_attr = 1;
18507 lowpc = attr_value_as_address (&attr);
18508 break;
18509 case DW_AT_high_pc:
18510 has_high_pc_attr = 1;
18511 highpc = attr_value_as_address (&attr);
18512 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18513 high_pc_relative = 1;
18514 break;
18515 case DW_AT_location:
18516 /* Support the .debug_loc offsets. */
18517 if (attr_form_is_block (&attr))
18518 {
18519 d.locdesc = DW_BLOCK (&attr);
18520 }
18521 else if (attr_form_is_section_offset (&attr))
18522 {
18523 dwarf2_complex_location_expr_complaint ();
18524 }
18525 else
18526 {
18527 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18528 "partial symbol information");
18529 }
18530 break;
18531 case DW_AT_external:
18532 is_external = DW_UNSND (&attr);
18533 break;
18534 case DW_AT_declaration:
18535 is_declaration = DW_UNSND (&attr);
18536 break;
18537 case DW_AT_type:
18538 has_type = 1;
18539 break;
18540 case DW_AT_abstract_origin:
18541 case DW_AT_specification:
18542 case DW_AT_extension:
18543 has_specification = 1;
18544 spec_offset = dwarf2_get_ref_die_offset (&attr);
18545 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18546 || cu->per_cu->is_dwz);
18547 break;
18548 case DW_AT_sibling:
18549 /* Ignore absolute siblings, they might point outside of
18550 the current compile unit. */
18551 if (attr.form == DW_FORM_ref_addr)
18552 complaint (&symfile_complaints,
18553 _("ignoring absolute DW_AT_sibling"));
18554 else
18555 {
18556 const gdb_byte *buffer = reader->buffer;
18557 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18558 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18559
18560 if (sibling_ptr < info_ptr)
18561 complaint (&symfile_complaints,
18562 _("DW_AT_sibling points backwards"));
18563 else if (sibling_ptr > reader->buffer_end)
18564 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18565 else
18566 sibling = sibling_ptr;
18567 }
18568 break;
18569 case DW_AT_byte_size:
18570 has_byte_size = 1;
18571 break;
18572 case DW_AT_const_value:
18573 has_const_value = 1;
18574 break;
18575 case DW_AT_calling_convention:
18576 /* DWARF doesn't provide a way to identify a program's source-level
18577 entry point. DW_AT_calling_convention attributes are only meant
18578 to describe functions' calling conventions.
18579
18580 However, because it's a necessary piece of information in
18581 Fortran, and before DWARF 4 DW_CC_program was the only
18582 piece of debugging information whose definition refers to
18583 a 'main program' at all, several compilers marked Fortran
18584 main programs with DW_CC_program --- even when those
18585 functions use the standard calling conventions.
18586
18587 Although DWARF now specifies a way to provide this
18588 information, we support this practice for backward
18589 compatibility. */
18590 if (DW_UNSND (&attr) == DW_CC_program
18591 && cu->language == language_fortran)
18592 main_subprogram = 1;
18593 break;
18594 case DW_AT_inline:
18595 if (DW_UNSND (&attr) == DW_INL_inlined
18596 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18597 may_be_inlined = 1;
18598 break;
18599
18600 case DW_AT_import:
18601 if (tag == DW_TAG_imported_unit)
18602 {
18603 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18604 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18605 || cu->per_cu->is_dwz);
18606 }
18607 break;
18608
18609 case DW_AT_main_subprogram:
18610 main_subprogram = DW_UNSND (&attr);
18611 break;
18612
18613 default:
18614 break;
18615 }
18616 }
18617
18618 if (high_pc_relative)
18619 highpc += lowpc;
18620
18621 if (has_low_pc_attr && has_high_pc_attr)
18622 {
18623 /* When using the GNU linker, .gnu.linkonce. sections are used to
18624 eliminate duplicate copies of functions and vtables and such.
18625 The linker will arbitrarily choose one and discard the others.
18626 The AT_*_pc values for such functions refer to local labels in
18627 these sections. If the section from that file was discarded, the
18628 labels are not in the output, so the relocs get a value of 0.
18629 If this is a discarded function, mark the pc bounds as invalid,
18630 so that GDB will ignore it. */
18631 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18632 {
18633 struct objfile *objfile = dwarf2_per_objfile->objfile;
18634 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18635
18636 complaint (&symfile_complaints,
18637 _("DW_AT_low_pc %s is zero "
18638 "for DIE at %s [in module %s]"),
18639 paddress (gdbarch, lowpc),
18640 sect_offset_str (sect_off),
18641 objfile_name (objfile));
18642 }
18643 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18644 else if (lowpc >= highpc)
18645 {
18646 struct objfile *objfile = dwarf2_per_objfile->objfile;
18647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18648
18649 complaint (&symfile_complaints,
18650 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18651 "for DIE at %s [in module %s]"),
18652 paddress (gdbarch, lowpc),
18653 paddress (gdbarch, highpc),
18654 sect_offset_str (sect_off),
18655 objfile_name (objfile));
18656 }
18657 else
18658 has_pc_info = 1;
18659 }
18660
18661 return info_ptr;
18662 }
18663
18664 /* Find a cached partial DIE at OFFSET in CU. */
18665
18666 struct partial_die_info *
18667 dwarf2_cu::find_partial_die (sect_offset sect_off)
18668 {
18669 struct partial_die_info *lookup_die = NULL;
18670 struct partial_die_info part_die (sect_off);
18671
18672 lookup_die = ((struct partial_die_info *)
18673 htab_find_with_hash (partial_dies, &part_die,
18674 to_underlying (sect_off)));
18675
18676 return lookup_die;
18677 }
18678
18679 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18680 except in the case of .debug_types DIEs which do not reference
18681 outside their CU (they do however referencing other types via
18682 DW_FORM_ref_sig8). */
18683
18684 static struct partial_die_info *
18685 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18686 {
18687 struct dwarf2_per_objfile *dwarf2_per_objfile
18688 = cu->per_cu->dwarf2_per_objfile;
18689 struct objfile *objfile = dwarf2_per_objfile->objfile;
18690 struct dwarf2_per_cu_data *per_cu = NULL;
18691 struct partial_die_info *pd = NULL;
18692
18693 if (offset_in_dwz == cu->per_cu->is_dwz
18694 && offset_in_cu_p (&cu->header, sect_off))
18695 {
18696 pd = cu->find_partial_die (sect_off);
18697 if (pd != NULL)
18698 return pd;
18699 /* We missed recording what we needed.
18700 Load all dies and try again. */
18701 per_cu = cu->per_cu;
18702 }
18703 else
18704 {
18705 /* TUs don't reference other CUs/TUs (except via type signatures). */
18706 if (cu->per_cu->is_debug_types)
18707 {
18708 error (_("Dwarf Error: Type Unit at offset %s contains"
18709 " external reference to offset %s [in module %s].\n"),
18710 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18711 bfd_get_filename (objfile->obfd));
18712 }
18713 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18714 dwarf2_per_objfile);
18715
18716 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18717 load_partial_comp_unit (per_cu);
18718
18719 per_cu->cu->last_used = 0;
18720 pd = per_cu->cu->find_partial_die (sect_off);
18721 }
18722
18723 /* If we didn't find it, and not all dies have been loaded,
18724 load them all and try again. */
18725
18726 if (pd == NULL && per_cu->load_all_dies == 0)
18727 {
18728 per_cu->load_all_dies = 1;
18729
18730 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18731 THIS_CU->cu may already be in use. So we can't just free it and
18732 replace its DIEs with the ones we read in. Instead, we leave those
18733 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18734 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18735 set. */
18736 load_partial_comp_unit (per_cu);
18737
18738 pd = per_cu->cu->find_partial_die (sect_off);
18739 }
18740
18741 if (pd == NULL)
18742 internal_error (__FILE__, __LINE__,
18743 _("could not find partial DIE %s "
18744 "in cache [from module %s]\n"),
18745 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18746 return pd;
18747 }
18748
18749 /* See if we can figure out if the class lives in a namespace. We do
18750 this by looking for a member function; its demangled name will
18751 contain namespace info, if there is any. */
18752
18753 static void
18754 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18755 struct dwarf2_cu *cu)
18756 {
18757 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18758 what template types look like, because the demangler
18759 frequently doesn't give the same name as the debug info. We
18760 could fix this by only using the demangled name to get the
18761 prefix (but see comment in read_structure_type). */
18762
18763 struct partial_die_info *real_pdi;
18764 struct partial_die_info *child_pdi;
18765
18766 /* If this DIE (this DIE's specification, if any) has a parent, then
18767 we should not do this. We'll prepend the parent's fully qualified
18768 name when we create the partial symbol. */
18769
18770 real_pdi = struct_pdi;
18771 while (real_pdi->has_specification)
18772 real_pdi = find_partial_die (real_pdi->spec_offset,
18773 real_pdi->spec_is_dwz, cu);
18774
18775 if (real_pdi->die_parent != NULL)
18776 return;
18777
18778 for (child_pdi = struct_pdi->die_child;
18779 child_pdi != NULL;
18780 child_pdi = child_pdi->die_sibling)
18781 {
18782 if (child_pdi->tag == DW_TAG_subprogram
18783 && child_pdi->linkage_name != NULL)
18784 {
18785 char *actual_class_name
18786 = language_class_name_from_physname (cu->language_defn,
18787 child_pdi->linkage_name);
18788 if (actual_class_name != NULL)
18789 {
18790 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18791 struct_pdi->name
18792 = ((const char *)
18793 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18794 actual_class_name,
18795 strlen (actual_class_name)));
18796 xfree (actual_class_name);
18797 }
18798 break;
18799 }
18800 }
18801 }
18802
18803 void
18804 partial_die_info::fixup (struct dwarf2_cu *cu)
18805 {
18806 /* Once we've fixed up a die, there's no point in doing so again.
18807 This also avoids a memory leak if we were to call
18808 guess_partial_die_structure_name multiple times. */
18809 if (fixup_called)
18810 return;
18811
18812 /* If we found a reference attribute and the DIE has no name, try
18813 to find a name in the referred to DIE. */
18814
18815 if (name == NULL && has_specification)
18816 {
18817 struct partial_die_info *spec_die;
18818
18819 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18820
18821 spec_die->fixup (cu);
18822
18823 if (spec_die->name)
18824 {
18825 name = spec_die->name;
18826
18827 /* Copy DW_AT_external attribute if it is set. */
18828 if (spec_die->is_external)
18829 is_external = spec_die->is_external;
18830 }
18831 }
18832
18833 /* Set default names for some unnamed DIEs. */
18834
18835 if (name == NULL && tag == DW_TAG_namespace)
18836 name = CP_ANONYMOUS_NAMESPACE_STR;
18837
18838 /* If there is no parent die to provide a namespace, and there are
18839 children, see if we can determine the namespace from their linkage
18840 name. */
18841 if (cu->language == language_cplus
18842 && !VEC_empty (dwarf2_section_info_def,
18843 cu->per_cu->dwarf2_per_objfile->types)
18844 && die_parent == NULL
18845 && has_children
18846 && (tag == DW_TAG_class_type
18847 || tag == DW_TAG_structure_type
18848 || tag == DW_TAG_union_type))
18849 guess_partial_die_structure_name (this, cu);
18850
18851 /* GCC might emit a nameless struct or union that has a linkage
18852 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18853 if (name == NULL
18854 && (tag == DW_TAG_class_type
18855 || tag == DW_TAG_interface_type
18856 || tag == DW_TAG_structure_type
18857 || tag == DW_TAG_union_type)
18858 && linkage_name != NULL)
18859 {
18860 char *demangled;
18861
18862 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18863 if (demangled)
18864 {
18865 const char *base;
18866
18867 /* Strip any leading namespaces/classes, keep only the base name.
18868 DW_AT_name for named DIEs does not contain the prefixes. */
18869 base = strrchr (demangled, ':');
18870 if (base && base > demangled && base[-1] == ':')
18871 base++;
18872 else
18873 base = demangled;
18874
18875 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18876 name
18877 = ((const char *)
18878 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18879 base, strlen (base)));
18880 xfree (demangled);
18881 }
18882 }
18883
18884 fixup_called = 1;
18885 }
18886
18887 /* Read an attribute value described by an attribute form. */
18888
18889 static const gdb_byte *
18890 read_attribute_value (const struct die_reader_specs *reader,
18891 struct attribute *attr, unsigned form,
18892 LONGEST implicit_const, const gdb_byte *info_ptr)
18893 {
18894 struct dwarf2_cu *cu = reader->cu;
18895 struct dwarf2_per_objfile *dwarf2_per_objfile
18896 = cu->per_cu->dwarf2_per_objfile;
18897 struct objfile *objfile = dwarf2_per_objfile->objfile;
18898 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18899 bfd *abfd = reader->abfd;
18900 struct comp_unit_head *cu_header = &cu->header;
18901 unsigned int bytes_read;
18902 struct dwarf_block *blk;
18903
18904 attr->form = (enum dwarf_form) form;
18905 switch (form)
18906 {
18907 case DW_FORM_ref_addr:
18908 if (cu->header.version == 2)
18909 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18910 else
18911 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18912 &cu->header, &bytes_read);
18913 info_ptr += bytes_read;
18914 break;
18915 case DW_FORM_GNU_ref_alt:
18916 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18917 info_ptr += bytes_read;
18918 break;
18919 case DW_FORM_addr:
18920 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18921 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18922 info_ptr += bytes_read;
18923 break;
18924 case DW_FORM_block2:
18925 blk = dwarf_alloc_block (cu);
18926 blk->size = read_2_bytes (abfd, info_ptr);
18927 info_ptr += 2;
18928 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18929 info_ptr += blk->size;
18930 DW_BLOCK (attr) = blk;
18931 break;
18932 case DW_FORM_block4:
18933 blk = dwarf_alloc_block (cu);
18934 blk->size = read_4_bytes (abfd, info_ptr);
18935 info_ptr += 4;
18936 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18937 info_ptr += blk->size;
18938 DW_BLOCK (attr) = blk;
18939 break;
18940 case DW_FORM_data2:
18941 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18942 info_ptr += 2;
18943 break;
18944 case DW_FORM_data4:
18945 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18946 info_ptr += 4;
18947 break;
18948 case DW_FORM_data8:
18949 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18950 info_ptr += 8;
18951 break;
18952 case DW_FORM_data16:
18953 blk = dwarf_alloc_block (cu);
18954 blk->size = 16;
18955 blk->data = read_n_bytes (abfd, info_ptr, 16);
18956 info_ptr += 16;
18957 DW_BLOCK (attr) = blk;
18958 break;
18959 case DW_FORM_sec_offset:
18960 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18961 info_ptr += bytes_read;
18962 break;
18963 case DW_FORM_string:
18964 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18965 DW_STRING_IS_CANONICAL (attr) = 0;
18966 info_ptr += bytes_read;
18967 break;
18968 case DW_FORM_strp:
18969 if (!cu->per_cu->is_dwz)
18970 {
18971 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18972 abfd, info_ptr, cu_header,
18973 &bytes_read);
18974 DW_STRING_IS_CANONICAL (attr) = 0;
18975 info_ptr += bytes_read;
18976 break;
18977 }
18978 /* FALLTHROUGH */
18979 case DW_FORM_line_strp:
18980 if (!cu->per_cu->is_dwz)
18981 {
18982 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18983 abfd, info_ptr,
18984 cu_header, &bytes_read);
18985 DW_STRING_IS_CANONICAL (attr) = 0;
18986 info_ptr += bytes_read;
18987 break;
18988 }
18989 /* FALLTHROUGH */
18990 case DW_FORM_GNU_strp_alt:
18991 {
18992 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18993 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18994 &bytes_read);
18995
18996 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18997 dwz, str_offset);
18998 DW_STRING_IS_CANONICAL (attr) = 0;
18999 info_ptr += bytes_read;
19000 }
19001 break;
19002 case DW_FORM_exprloc:
19003 case DW_FORM_block:
19004 blk = dwarf_alloc_block (cu);
19005 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19006 info_ptr += bytes_read;
19007 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19008 info_ptr += blk->size;
19009 DW_BLOCK (attr) = blk;
19010 break;
19011 case DW_FORM_block1:
19012 blk = dwarf_alloc_block (cu);
19013 blk->size = read_1_byte (abfd, info_ptr);
19014 info_ptr += 1;
19015 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19016 info_ptr += blk->size;
19017 DW_BLOCK (attr) = blk;
19018 break;
19019 case DW_FORM_data1:
19020 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19021 info_ptr += 1;
19022 break;
19023 case DW_FORM_flag:
19024 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19025 info_ptr += 1;
19026 break;
19027 case DW_FORM_flag_present:
19028 DW_UNSND (attr) = 1;
19029 break;
19030 case DW_FORM_sdata:
19031 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19032 info_ptr += bytes_read;
19033 break;
19034 case DW_FORM_udata:
19035 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19036 info_ptr += bytes_read;
19037 break;
19038 case DW_FORM_ref1:
19039 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19040 + read_1_byte (abfd, info_ptr));
19041 info_ptr += 1;
19042 break;
19043 case DW_FORM_ref2:
19044 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19045 + read_2_bytes (abfd, info_ptr));
19046 info_ptr += 2;
19047 break;
19048 case DW_FORM_ref4:
19049 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19050 + read_4_bytes (abfd, info_ptr));
19051 info_ptr += 4;
19052 break;
19053 case DW_FORM_ref8:
19054 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19055 + read_8_bytes (abfd, info_ptr));
19056 info_ptr += 8;
19057 break;
19058 case DW_FORM_ref_sig8:
19059 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19060 info_ptr += 8;
19061 break;
19062 case DW_FORM_ref_udata:
19063 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19064 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19065 info_ptr += bytes_read;
19066 break;
19067 case DW_FORM_indirect:
19068 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19069 info_ptr += bytes_read;
19070 if (form == DW_FORM_implicit_const)
19071 {
19072 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19073 info_ptr += bytes_read;
19074 }
19075 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19076 info_ptr);
19077 break;
19078 case DW_FORM_implicit_const:
19079 DW_SND (attr) = implicit_const;
19080 break;
19081 case DW_FORM_GNU_addr_index:
19082 if (reader->dwo_file == NULL)
19083 {
19084 /* For now flag a hard error.
19085 Later we can turn this into a complaint. */
19086 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19087 dwarf_form_name (form),
19088 bfd_get_filename (abfd));
19089 }
19090 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19091 info_ptr += bytes_read;
19092 break;
19093 case DW_FORM_GNU_str_index:
19094 if (reader->dwo_file == NULL)
19095 {
19096 /* For now flag a hard error.
19097 Later we can turn this into a complaint if warranted. */
19098 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19099 dwarf_form_name (form),
19100 bfd_get_filename (abfd));
19101 }
19102 {
19103 ULONGEST str_index =
19104 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19105
19106 DW_STRING (attr) = read_str_index (reader, str_index);
19107 DW_STRING_IS_CANONICAL (attr) = 0;
19108 info_ptr += bytes_read;
19109 }
19110 break;
19111 default:
19112 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19113 dwarf_form_name (form),
19114 bfd_get_filename (abfd));
19115 }
19116
19117 /* Super hack. */
19118 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19119 attr->form = DW_FORM_GNU_ref_alt;
19120
19121 /* We have seen instances where the compiler tried to emit a byte
19122 size attribute of -1 which ended up being encoded as an unsigned
19123 0xffffffff. Although 0xffffffff is technically a valid size value,
19124 an object of this size seems pretty unlikely so we can relatively
19125 safely treat these cases as if the size attribute was invalid and
19126 treat them as zero by default. */
19127 if (attr->name == DW_AT_byte_size
19128 && form == DW_FORM_data4
19129 && DW_UNSND (attr) >= 0xffffffff)
19130 {
19131 complaint
19132 (&symfile_complaints,
19133 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19134 hex_string (DW_UNSND (attr)));
19135 DW_UNSND (attr) = 0;
19136 }
19137
19138 return info_ptr;
19139 }
19140
19141 /* Read an attribute described by an abbreviated attribute. */
19142
19143 static const gdb_byte *
19144 read_attribute (const struct die_reader_specs *reader,
19145 struct attribute *attr, struct attr_abbrev *abbrev,
19146 const gdb_byte *info_ptr)
19147 {
19148 attr->name = abbrev->name;
19149 return read_attribute_value (reader, attr, abbrev->form,
19150 abbrev->implicit_const, info_ptr);
19151 }
19152
19153 /* Read dwarf information from a buffer. */
19154
19155 static unsigned int
19156 read_1_byte (bfd *abfd, const gdb_byte *buf)
19157 {
19158 return bfd_get_8 (abfd, buf);
19159 }
19160
19161 static int
19162 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19163 {
19164 return bfd_get_signed_8 (abfd, buf);
19165 }
19166
19167 static unsigned int
19168 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19169 {
19170 return bfd_get_16 (abfd, buf);
19171 }
19172
19173 static int
19174 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19175 {
19176 return bfd_get_signed_16 (abfd, buf);
19177 }
19178
19179 static unsigned int
19180 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19181 {
19182 return bfd_get_32 (abfd, buf);
19183 }
19184
19185 static int
19186 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19187 {
19188 return bfd_get_signed_32 (abfd, buf);
19189 }
19190
19191 static ULONGEST
19192 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19193 {
19194 return bfd_get_64 (abfd, buf);
19195 }
19196
19197 static CORE_ADDR
19198 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19199 unsigned int *bytes_read)
19200 {
19201 struct comp_unit_head *cu_header = &cu->header;
19202 CORE_ADDR retval = 0;
19203
19204 if (cu_header->signed_addr_p)
19205 {
19206 switch (cu_header->addr_size)
19207 {
19208 case 2:
19209 retval = bfd_get_signed_16 (abfd, buf);
19210 break;
19211 case 4:
19212 retval = bfd_get_signed_32 (abfd, buf);
19213 break;
19214 case 8:
19215 retval = bfd_get_signed_64 (abfd, buf);
19216 break;
19217 default:
19218 internal_error (__FILE__, __LINE__,
19219 _("read_address: bad switch, signed [in module %s]"),
19220 bfd_get_filename (abfd));
19221 }
19222 }
19223 else
19224 {
19225 switch (cu_header->addr_size)
19226 {
19227 case 2:
19228 retval = bfd_get_16 (abfd, buf);
19229 break;
19230 case 4:
19231 retval = bfd_get_32 (abfd, buf);
19232 break;
19233 case 8:
19234 retval = bfd_get_64 (abfd, buf);
19235 break;
19236 default:
19237 internal_error (__FILE__, __LINE__,
19238 _("read_address: bad switch, "
19239 "unsigned [in module %s]"),
19240 bfd_get_filename (abfd));
19241 }
19242 }
19243
19244 *bytes_read = cu_header->addr_size;
19245 return retval;
19246 }
19247
19248 /* Read the initial length from a section. The (draft) DWARF 3
19249 specification allows the initial length to take up either 4 bytes
19250 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19251 bytes describe the length and all offsets will be 8 bytes in length
19252 instead of 4.
19253
19254 An older, non-standard 64-bit format is also handled by this
19255 function. The older format in question stores the initial length
19256 as an 8-byte quantity without an escape value. Lengths greater
19257 than 2^32 aren't very common which means that the initial 4 bytes
19258 is almost always zero. Since a length value of zero doesn't make
19259 sense for the 32-bit format, this initial zero can be considered to
19260 be an escape value which indicates the presence of the older 64-bit
19261 format. As written, the code can't detect (old format) lengths
19262 greater than 4GB. If it becomes necessary to handle lengths
19263 somewhat larger than 4GB, we could allow other small values (such
19264 as the non-sensical values of 1, 2, and 3) to also be used as
19265 escape values indicating the presence of the old format.
19266
19267 The value returned via bytes_read should be used to increment the
19268 relevant pointer after calling read_initial_length().
19269
19270 [ Note: read_initial_length() and read_offset() are based on the
19271 document entitled "DWARF Debugging Information Format", revision
19272 3, draft 8, dated November 19, 2001. This document was obtained
19273 from:
19274
19275 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19276
19277 This document is only a draft and is subject to change. (So beware.)
19278
19279 Details regarding the older, non-standard 64-bit format were
19280 determined empirically by examining 64-bit ELF files produced by
19281 the SGI toolchain on an IRIX 6.5 machine.
19282
19283 - Kevin, July 16, 2002
19284 ] */
19285
19286 static LONGEST
19287 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19288 {
19289 LONGEST length = bfd_get_32 (abfd, buf);
19290
19291 if (length == 0xffffffff)
19292 {
19293 length = bfd_get_64 (abfd, buf + 4);
19294 *bytes_read = 12;
19295 }
19296 else if (length == 0)
19297 {
19298 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19299 length = bfd_get_64 (abfd, buf);
19300 *bytes_read = 8;
19301 }
19302 else
19303 {
19304 *bytes_read = 4;
19305 }
19306
19307 return length;
19308 }
19309
19310 /* Cover function for read_initial_length.
19311 Returns the length of the object at BUF, and stores the size of the
19312 initial length in *BYTES_READ and stores the size that offsets will be in
19313 *OFFSET_SIZE.
19314 If the initial length size is not equivalent to that specified in
19315 CU_HEADER then issue a complaint.
19316 This is useful when reading non-comp-unit headers. */
19317
19318 static LONGEST
19319 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19320 const struct comp_unit_head *cu_header,
19321 unsigned int *bytes_read,
19322 unsigned int *offset_size)
19323 {
19324 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19325
19326 gdb_assert (cu_header->initial_length_size == 4
19327 || cu_header->initial_length_size == 8
19328 || cu_header->initial_length_size == 12);
19329
19330 if (cu_header->initial_length_size != *bytes_read)
19331 complaint (&symfile_complaints,
19332 _("intermixed 32-bit and 64-bit DWARF sections"));
19333
19334 *offset_size = (*bytes_read == 4) ? 4 : 8;
19335 return length;
19336 }
19337
19338 /* Read an offset from the data stream. The size of the offset is
19339 given by cu_header->offset_size. */
19340
19341 static LONGEST
19342 read_offset (bfd *abfd, const gdb_byte *buf,
19343 const struct comp_unit_head *cu_header,
19344 unsigned int *bytes_read)
19345 {
19346 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19347
19348 *bytes_read = cu_header->offset_size;
19349 return offset;
19350 }
19351
19352 /* Read an offset from the data stream. */
19353
19354 static LONGEST
19355 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19356 {
19357 LONGEST retval = 0;
19358
19359 switch (offset_size)
19360 {
19361 case 4:
19362 retval = bfd_get_32 (abfd, buf);
19363 break;
19364 case 8:
19365 retval = bfd_get_64 (abfd, buf);
19366 break;
19367 default:
19368 internal_error (__FILE__, __LINE__,
19369 _("read_offset_1: bad switch [in module %s]"),
19370 bfd_get_filename (abfd));
19371 }
19372
19373 return retval;
19374 }
19375
19376 static const gdb_byte *
19377 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19378 {
19379 /* If the size of a host char is 8 bits, we can return a pointer
19380 to the buffer, otherwise we have to copy the data to a buffer
19381 allocated on the temporary obstack. */
19382 gdb_assert (HOST_CHAR_BIT == 8);
19383 return buf;
19384 }
19385
19386 static const char *
19387 read_direct_string (bfd *abfd, const gdb_byte *buf,
19388 unsigned int *bytes_read_ptr)
19389 {
19390 /* If the size of a host char is 8 bits, we can return a pointer
19391 to the string, otherwise we have to copy the string to a buffer
19392 allocated on the temporary obstack. */
19393 gdb_assert (HOST_CHAR_BIT == 8);
19394 if (*buf == '\0')
19395 {
19396 *bytes_read_ptr = 1;
19397 return NULL;
19398 }
19399 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19400 return (const char *) buf;
19401 }
19402
19403 /* Return pointer to string at section SECT offset STR_OFFSET with error
19404 reporting strings FORM_NAME and SECT_NAME. */
19405
19406 static const char *
19407 read_indirect_string_at_offset_from (struct objfile *objfile,
19408 bfd *abfd, LONGEST str_offset,
19409 struct dwarf2_section_info *sect,
19410 const char *form_name,
19411 const char *sect_name)
19412 {
19413 dwarf2_read_section (objfile, sect);
19414 if (sect->buffer == NULL)
19415 error (_("%s used without %s section [in module %s]"),
19416 form_name, sect_name, bfd_get_filename (abfd));
19417 if (str_offset >= sect->size)
19418 error (_("%s pointing outside of %s section [in module %s]"),
19419 form_name, sect_name, bfd_get_filename (abfd));
19420 gdb_assert (HOST_CHAR_BIT == 8);
19421 if (sect->buffer[str_offset] == '\0')
19422 return NULL;
19423 return (const char *) (sect->buffer + str_offset);
19424 }
19425
19426 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19427
19428 static const char *
19429 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19430 bfd *abfd, LONGEST str_offset)
19431 {
19432 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19433 abfd, str_offset,
19434 &dwarf2_per_objfile->str,
19435 "DW_FORM_strp", ".debug_str");
19436 }
19437
19438 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19439
19440 static const char *
19441 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19442 bfd *abfd, LONGEST str_offset)
19443 {
19444 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19445 abfd, str_offset,
19446 &dwarf2_per_objfile->line_str,
19447 "DW_FORM_line_strp",
19448 ".debug_line_str");
19449 }
19450
19451 /* Read a string at offset STR_OFFSET in the .debug_str section from
19452 the .dwz file DWZ. Throw an error if the offset is too large. If
19453 the string consists of a single NUL byte, return NULL; otherwise
19454 return a pointer to the string. */
19455
19456 static const char *
19457 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19458 LONGEST str_offset)
19459 {
19460 dwarf2_read_section (objfile, &dwz->str);
19461
19462 if (dwz->str.buffer == NULL)
19463 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19464 "section [in module %s]"),
19465 bfd_get_filename (dwz->dwz_bfd));
19466 if (str_offset >= dwz->str.size)
19467 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19468 ".debug_str section [in module %s]"),
19469 bfd_get_filename (dwz->dwz_bfd));
19470 gdb_assert (HOST_CHAR_BIT == 8);
19471 if (dwz->str.buffer[str_offset] == '\0')
19472 return NULL;
19473 return (const char *) (dwz->str.buffer + str_offset);
19474 }
19475
19476 /* Return pointer to string at .debug_str offset as read from BUF.
19477 BUF is assumed to be in a compilation unit described by CU_HEADER.
19478 Return *BYTES_READ_PTR count of bytes read from BUF. */
19479
19480 static const char *
19481 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19482 const gdb_byte *buf,
19483 const struct comp_unit_head *cu_header,
19484 unsigned int *bytes_read_ptr)
19485 {
19486 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19487
19488 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19489 }
19490
19491 /* Return pointer to string at .debug_line_str offset as read from BUF.
19492 BUF is assumed to be in a compilation unit described by CU_HEADER.
19493 Return *BYTES_READ_PTR count of bytes read from BUF. */
19494
19495 static const char *
19496 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19497 bfd *abfd, const gdb_byte *buf,
19498 const struct comp_unit_head *cu_header,
19499 unsigned int *bytes_read_ptr)
19500 {
19501 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19502
19503 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19504 str_offset);
19505 }
19506
19507 ULONGEST
19508 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19509 unsigned int *bytes_read_ptr)
19510 {
19511 ULONGEST result;
19512 unsigned int num_read;
19513 int shift;
19514 unsigned char byte;
19515
19516 result = 0;
19517 shift = 0;
19518 num_read = 0;
19519 while (1)
19520 {
19521 byte = bfd_get_8 (abfd, buf);
19522 buf++;
19523 num_read++;
19524 result |= ((ULONGEST) (byte & 127) << shift);
19525 if ((byte & 128) == 0)
19526 {
19527 break;
19528 }
19529 shift += 7;
19530 }
19531 *bytes_read_ptr = num_read;
19532 return result;
19533 }
19534
19535 static LONGEST
19536 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19537 unsigned int *bytes_read_ptr)
19538 {
19539 LONGEST result;
19540 int shift, num_read;
19541 unsigned char byte;
19542
19543 result = 0;
19544 shift = 0;
19545 num_read = 0;
19546 while (1)
19547 {
19548 byte = bfd_get_8 (abfd, buf);
19549 buf++;
19550 num_read++;
19551 result |= ((LONGEST) (byte & 127) << shift);
19552 shift += 7;
19553 if ((byte & 128) == 0)
19554 {
19555 break;
19556 }
19557 }
19558 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19559 result |= -(((LONGEST) 1) << shift);
19560 *bytes_read_ptr = num_read;
19561 return result;
19562 }
19563
19564 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19565 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19566 ADDR_SIZE is the size of addresses from the CU header. */
19567
19568 static CORE_ADDR
19569 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19570 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19571 {
19572 struct objfile *objfile = dwarf2_per_objfile->objfile;
19573 bfd *abfd = objfile->obfd;
19574 const gdb_byte *info_ptr;
19575
19576 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19577 if (dwarf2_per_objfile->addr.buffer == NULL)
19578 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19579 objfile_name (objfile));
19580 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19581 error (_("DW_FORM_addr_index pointing outside of "
19582 ".debug_addr section [in module %s]"),
19583 objfile_name (objfile));
19584 info_ptr = (dwarf2_per_objfile->addr.buffer
19585 + addr_base + addr_index * addr_size);
19586 if (addr_size == 4)
19587 return bfd_get_32 (abfd, info_ptr);
19588 else
19589 return bfd_get_64 (abfd, info_ptr);
19590 }
19591
19592 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19593
19594 static CORE_ADDR
19595 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19596 {
19597 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19598 cu->addr_base, cu->header.addr_size);
19599 }
19600
19601 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19602
19603 static CORE_ADDR
19604 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19605 unsigned int *bytes_read)
19606 {
19607 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19608 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19609
19610 return read_addr_index (cu, addr_index);
19611 }
19612
19613 /* Data structure to pass results from dwarf2_read_addr_index_reader
19614 back to dwarf2_read_addr_index. */
19615
19616 struct dwarf2_read_addr_index_data
19617 {
19618 ULONGEST addr_base;
19619 int addr_size;
19620 };
19621
19622 /* die_reader_func for dwarf2_read_addr_index. */
19623
19624 static void
19625 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19626 const gdb_byte *info_ptr,
19627 struct die_info *comp_unit_die,
19628 int has_children,
19629 void *data)
19630 {
19631 struct dwarf2_cu *cu = reader->cu;
19632 struct dwarf2_read_addr_index_data *aidata =
19633 (struct dwarf2_read_addr_index_data *) data;
19634
19635 aidata->addr_base = cu->addr_base;
19636 aidata->addr_size = cu->header.addr_size;
19637 }
19638
19639 /* Given an index in .debug_addr, fetch the value.
19640 NOTE: This can be called during dwarf expression evaluation,
19641 long after the debug information has been read, and thus per_cu->cu
19642 may no longer exist. */
19643
19644 CORE_ADDR
19645 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19646 unsigned int addr_index)
19647 {
19648 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19649 struct dwarf2_cu *cu = per_cu->cu;
19650 ULONGEST addr_base;
19651 int addr_size;
19652
19653 /* We need addr_base and addr_size.
19654 If we don't have PER_CU->cu, we have to get it.
19655 Nasty, but the alternative is storing the needed info in PER_CU,
19656 which at this point doesn't seem justified: it's not clear how frequently
19657 it would get used and it would increase the size of every PER_CU.
19658 Entry points like dwarf2_per_cu_addr_size do a similar thing
19659 so we're not in uncharted territory here.
19660 Alas we need to be a bit more complicated as addr_base is contained
19661 in the DIE.
19662
19663 We don't need to read the entire CU(/TU).
19664 We just need the header and top level die.
19665
19666 IWBN to use the aging mechanism to let us lazily later discard the CU.
19667 For now we skip this optimization. */
19668
19669 if (cu != NULL)
19670 {
19671 addr_base = cu->addr_base;
19672 addr_size = cu->header.addr_size;
19673 }
19674 else
19675 {
19676 struct dwarf2_read_addr_index_data aidata;
19677
19678 /* Note: We can't use init_cutu_and_read_dies_simple here,
19679 we need addr_base. */
19680 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19681 dwarf2_read_addr_index_reader, &aidata);
19682 addr_base = aidata.addr_base;
19683 addr_size = aidata.addr_size;
19684 }
19685
19686 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19687 addr_size);
19688 }
19689
19690 /* Given a DW_FORM_GNU_str_index, fetch the string.
19691 This is only used by the Fission support. */
19692
19693 static const char *
19694 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19695 {
19696 struct dwarf2_cu *cu = reader->cu;
19697 struct dwarf2_per_objfile *dwarf2_per_objfile
19698 = cu->per_cu->dwarf2_per_objfile;
19699 struct objfile *objfile = dwarf2_per_objfile->objfile;
19700 const char *objf_name = objfile_name (objfile);
19701 bfd *abfd = objfile->obfd;
19702 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19703 struct dwarf2_section_info *str_offsets_section =
19704 &reader->dwo_file->sections.str_offsets;
19705 const gdb_byte *info_ptr;
19706 ULONGEST str_offset;
19707 static const char form_name[] = "DW_FORM_GNU_str_index";
19708
19709 dwarf2_read_section (objfile, str_section);
19710 dwarf2_read_section (objfile, str_offsets_section);
19711 if (str_section->buffer == NULL)
19712 error (_("%s used without .debug_str.dwo section"
19713 " in CU at offset %s [in module %s]"),
19714 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19715 if (str_offsets_section->buffer == NULL)
19716 error (_("%s used without .debug_str_offsets.dwo section"
19717 " in CU at offset %s [in module %s]"),
19718 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19719 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19720 error (_("%s pointing outside of .debug_str_offsets.dwo"
19721 " section in CU at offset %s [in module %s]"),
19722 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19723 info_ptr = (str_offsets_section->buffer
19724 + str_index * cu->header.offset_size);
19725 if (cu->header.offset_size == 4)
19726 str_offset = bfd_get_32 (abfd, info_ptr);
19727 else
19728 str_offset = bfd_get_64 (abfd, info_ptr);
19729 if (str_offset >= str_section->size)
19730 error (_("Offset from %s pointing outside of"
19731 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19732 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19733 return (const char *) (str_section->buffer + str_offset);
19734 }
19735
19736 /* Return the length of an LEB128 number in BUF. */
19737
19738 static int
19739 leb128_size (const gdb_byte *buf)
19740 {
19741 const gdb_byte *begin = buf;
19742 gdb_byte byte;
19743
19744 while (1)
19745 {
19746 byte = *buf++;
19747 if ((byte & 128) == 0)
19748 return buf - begin;
19749 }
19750 }
19751
19752 static void
19753 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19754 {
19755 switch (lang)
19756 {
19757 case DW_LANG_C89:
19758 case DW_LANG_C99:
19759 case DW_LANG_C11:
19760 case DW_LANG_C:
19761 case DW_LANG_UPC:
19762 cu->language = language_c;
19763 break;
19764 case DW_LANG_Java:
19765 case DW_LANG_C_plus_plus:
19766 case DW_LANG_C_plus_plus_11:
19767 case DW_LANG_C_plus_plus_14:
19768 cu->language = language_cplus;
19769 break;
19770 case DW_LANG_D:
19771 cu->language = language_d;
19772 break;
19773 case DW_LANG_Fortran77:
19774 case DW_LANG_Fortran90:
19775 case DW_LANG_Fortran95:
19776 case DW_LANG_Fortran03:
19777 case DW_LANG_Fortran08:
19778 cu->language = language_fortran;
19779 break;
19780 case DW_LANG_Go:
19781 cu->language = language_go;
19782 break;
19783 case DW_LANG_Mips_Assembler:
19784 cu->language = language_asm;
19785 break;
19786 case DW_LANG_Ada83:
19787 case DW_LANG_Ada95:
19788 cu->language = language_ada;
19789 break;
19790 case DW_LANG_Modula2:
19791 cu->language = language_m2;
19792 break;
19793 case DW_LANG_Pascal83:
19794 cu->language = language_pascal;
19795 break;
19796 case DW_LANG_ObjC:
19797 cu->language = language_objc;
19798 break;
19799 case DW_LANG_Rust:
19800 case DW_LANG_Rust_old:
19801 cu->language = language_rust;
19802 break;
19803 case DW_LANG_Cobol74:
19804 case DW_LANG_Cobol85:
19805 default:
19806 cu->language = language_minimal;
19807 break;
19808 }
19809 cu->language_defn = language_def (cu->language);
19810 }
19811
19812 /* Return the named attribute or NULL if not there. */
19813
19814 static struct attribute *
19815 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19816 {
19817 for (;;)
19818 {
19819 unsigned int i;
19820 struct attribute *spec = NULL;
19821
19822 for (i = 0; i < die->num_attrs; ++i)
19823 {
19824 if (die->attrs[i].name == name)
19825 return &die->attrs[i];
19826 if (die->attrs[i].name == DW_AT_specification
19827 || die->attrs[i].name == DW_AT_abstract_origin)
19828 spec = &die->attrs[i];
19829 }
19830
19831 if (!spec)
19832 break;
19833
19834 die = follow_die_ref (die, spec, &cu);
19835 }
19836
19837 return NULL;
19838 }
19839
19840 /* Return the named attribute or NULL if not there,
19841 but do not follow DW_AT_specification, etc.
19842 This is for use in contexts where we're reading .debug_types dies.
19843 Following DW_AT_specification, DW_AT_abstract_origin will take us
19844 back up the chain, and we want to go down. */
19845
19846 static struct attribute *
19847 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19848 {
19849 unsigned int i;
19850
19851 for (i = 0; i < die->num_attrs; ++i)
19852 if (die->attrs[i].name == name)
19853 return &die->attrs[i];
19854
19855 return NULL;
19856 }
19857
19858 /* Return the string associated with a string-typed attribute, or NULL if it
19859 is either not found or is of an incorrect type. */
19860
19861 static const char *
19862 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19863 {
19864 struct attribute *attr;
19865 const char *str = NULL;
19866
19867 attr = dwarf2_attr (die, name, cu);
19868
19869 if (attr != NULL)
19870 {
19871 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19872 || attr->form == DW_FORM_string
19873 || attr->form == DW_FORM_GNU_str_index
19874 || attr->form == DW_FORM_GNU_strp_alt)
19875 str = DW_STRING (attr);
19876 else
19877 complaint (&symfile_complaints,
19878 _("string type expected for attribute %s for "
19879 "DIE at %s in module %s"),
19880 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19881 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19882 }
19883
19884 return str;
19885 }
19886
19887 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19888 and holds a non-zero value. This function should only be used for
19889 DW_FORM_flag or DW_FORM_flag_present attributes. */
19890
19891 static int
19892 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19893 {
19894 struct attribute *attr = dwarf2_attr (die, name, cu);
19895
19896 return (attr && DW_UNSND (attr));
19897 }
19898
19899 static int
19900 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19901 {
19902 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19903 which value is non-zero. However, we have to be careful with
19904 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19905 (via dwarf2_flag_true_p) follows this attribute. So we may
19906 end up accidently finding a declaration attribute that belongs
19907 to a different DIE referenced by the specification attribute,
19908 even though the given DIE does not have a declaration attribute. */
19909 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19910 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19911 }
19912
19913 /* Return the die giving the specification for DIE, if there is
19914 one. *SPEC_CU is the CU containing DIE on input, and the CU
19915 containing the return value on output. If there is no
19916 specification, but there is an abstract origin, that is
19917 returned. */
19918
19919 static struct die_info *
19920 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19921 {
19922 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19923 *spec_cu);
19924
19925 if (spec_attr == NULL)
19926 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19927
19928 if (spec_attr == NULL)
19929 return NULL;
19930 else
19931 return follow_die_ref (die, spec_attr, spec_cu);
19932 }
19933
19934 /* Stub for free_line_header to match void * callback types. */
19935
19936 static void
19937 free_line_header_voidp (void *arg)
19938 {
19939 struct line_header *lh = (struct line_header *) arg;
19940
19941 delete lh;
19942 }
19943
19944 void
19945 line_header::add_include_dir (const char *include_dir)
19946 {
19947 if (dwarf_line_debug >= 2)
19948 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19949 include_dirs.size () + 1, include_dir);
19950
19951 include_dirs.push_back (include_dir);
19952 }
19953
19954 void
19955 line_header::add_file_name (const char *name,
19956 dir_index d_index,
19957 unsigned int mod_time,
19958 unsigned int length)
19959 {
19960 if (dwarf_line_debug >= 2)
19961 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19962 (unsigned) file_names.size () + 1, name);
19963
19964 file_names.emplace_back (name, d_index, mod_time, length);
19965 }
19966
19967 /* A convenience function to find the proper .debug_line section for a CU. */
19968
19969 static struct dwarf2_section_info *
19970 get_debug_line_section (struct dwarf2_cu *cu)
19971 {
19972 struct dwarf2_section_info *section;
19973 struct dwarf2_per_objfile *dwarf2_per_objfile
19974 = cu->per_cu->dwarf2_per_objfile;
19975
19976 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19977 DWO file. */
19978 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19979 section = &cu->dwo_unit->dwo_file->sections.line;
19980 else if (cu->per_cu->is_dwz)
19981 {
19982 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19983
19984 section = &dwz->line;
19985 }
19986 else
19987 section = &dwarf2_per_objfile->line;
19988
19989 return section;
19990 }
19991
19992 /* Read directory or file name entry format, starting with byte of
19993 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19994 entries count and the entries themselves in the described entry
19995 format. */
19996
19997 static void
19998 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19999 bfd *abfd, const gdb_byte **bufp,
20000 struct line_header *lh,
20001 const struct comp_unit_head *cu_header,
20002 void (*callback) (struct line_header *lh,
20003 const char *name,
20004 dir_index d_index,
20005 unsigned int mod_time,
20006 unsigned int length))
20007 {
20008 gdb_byte format_count, formati;
20009 ULONGEST data_count, datai;
20010 const gdb_byte *buf = *bufp;
20011 const gdb_byte *format_header_data;
20012 unsigned int bytes_read;
20013
20014 format_count = read_1_byte (abfd, buf);
20015 buf += 1;
20016 format_header_data = buf;
20017 for (formati = 0; formati < format_count; formati++)
20018 {
20019 read_unsigned_leb128 (abfd, buf, &bytes_read);
20020 buf += bytes_read;
20021 read_unsigned_leb128 (abfd, buf, &bytes_read);
20022 buf += bytes_read;
20023 }
20024
20025 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20026 buf += bytes_read;
20027 for (datai = 0; datai < data_count; datai++)
20028 {
20029 const gdb_byte *format = format_header_data;
20030 struct file_entry fe;
20031
20032 for (formati = 0; formati < format_count; formati++)
20033 {
20034 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20035 format += bytes_read;
20036
20037 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20038 format += bytes_read;
20039
20040 gdb::optional<const char *> string;
20041 gdb::optional<unsigned int> uint;
20042
20043 switch (form)
20044 {
20045 case DW_FORM_string:
20046 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20047 buf += bytes_read;
20048 break;
20049
20050 case DW_FORM_line_strp:
20051 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20052 abfd, buf,
20053 cu_header,
20054 &bytes_read));
20055 buf += bytes_read;
20056 break;
20057
20058 case DW_FORM_data1:
20059 uint.emplace (read_1_byte (abfd, buf));
20060 buf += 1;
20061 break;
20062
20063 case DW_FORM_data2:
20064 uint.emplace (read_2_bytes (abfd, buf));
20065 buf += 2;
20066 break;
20067
20068 case DW_FORM_data4:
20069 uint.emplace (read_4_bytes (abfd, buf));
20070 buf += 4;
20071 break;
20072
20073 case DW_FORM_data8:
20074 uint.emplace (read_8_bytes (abfd, buf));
20075 buf += 8;
20076 break;
20077
20078 case DW_FORM_udata:
20079 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20080 buf += bytes_read;
20081 break;
20082
20083 case DW_FORM_block:
20084 /* It is valid only for DW_LNCT_timestamp which is ignored by
20085 current GDB. */
20086 break;
20087 }
20088
20089 switch (content_type)
20090 {
20091 case DW_LNCT_path:
20092 if (string.has_value ())
20093 fe.name = *string;
20094 break;
20095 case DW_LNCT_directory_index:
20096 if (uint.has_value ())
20097 fe.d_index = (dir_index) *uint;
20098 break;
20099 case DW_LNCT_timestamp:
20100 if (uint.has_value ())
20101 fe.mod_time = *uint;
20102 break;
20103 case DW_LNCT_size:
20104 if (uint.has_value ())
20105 fe.length = *uint;
20106 break;
20107 case DW_LNCT_MD5:
20108 break;
20109 default:
20110 complaint (&symfile_complaints,
20111 _("Unknown format content type %s"),
20112 pulongest (content_type));
20113 }
20114 }
20115
20116 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20117 }
20118
20119 *bufp = buf;
20120 }
20121
20122 /* Read the statement program header starting at OFFSET in
20123 .debug_line, or .debug_line.dwo. Return a pointer
20124 to a struct line_header, allocated using xmalloc.
20125 Returns NULL if there is a problem reading the header, e.g., if it
20126 has a version we don't understand.
20127
20128 NOTE: the strings in the include directory and file name tables of
20129 the returned object point into the dwarf line section buffer,
20130 and must not be freed. */
20131
20132 static line_header_up
20133 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20134 {
20135 const gdb_byte *line_ptr;
20136 unsigned int bytes_read, offset_size;
20137 int i;
20138 const char *cur_dir, *cur_file;
20139 struct dwarf2_section_info *section;
20140 bfd *abfd;
20141 struct dwarf2_per_objfile *dwarf2_per_objfile
20142 = cu->per_cu->dwarf2_per_objfile;
20143
20144 section = get_debug_line_section (cu);
20145 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20146 if (section->buffer == NULL)
20147 {
20148 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20149 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20150 else
20151 complaint (&symfile_complaints, _("missing .debug_line section"));
20152 return 0;
20153 }
20154
20155 /* We can't do this until we know the section is non-empty.
20156 Only then do we know we have such a section. */
20157 abfd = get_section_bfd_owner (section);
20158
20159 /* Make sure that at least there's room for the total_length field.
20160 That could be 12 bytes long, but we're just going to fudge that. */
20161 if (to_underlying (sect_off) + 4 >= section->size)
20162 {
20163 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20164 return 0;
20165 }
20166
20167 line_header_up lh (new line_header ());
20168
20169 lh->sect_off = sect_off;
20170 lh->offset_in_dwz = cu->per_cu->is_dwz;
20171
20172 line_ptr = section->buffer + to_underlying (sect_off);
20173
20174 /* Read in the header. */
20175 lh->total_length =
20176 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20177 &bytes_read, &offset_size);
20178 line_ptr += bytes_read;
20179 if (line_ptr + lh->total_length > (section->buffer + section->size))
20180 {
20181 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20182 return 0;
20183 }
20184 lh->statement_program_end = line_ptr + lh->total_length;
20185 lh->version = read_2_bytes (abfd, line_ptr);
20186 line_ptr += 2;
20187 if (lh->version > 5)
20188 {
20189 /* This is a version we don't understand. The format could have
20190 changed in ways we don't handle properly so just punt. */
20191 complaint (&symfile_complaints,
20192 _("unsupported version in .debug_line section"));
20193 return NULL;
20194 }
20195 if (lh->version >= 5)
20196 {
20197 gdb_byte segment_selector_size;
20198
20199 /* Skip address size. */
20200 read_1_byte (abfd, line_ptr);
20201 line_ptr += 1;
20202
20203 segment_selector_size = read_1_byte (abfd, line_ptr);
20204 line_ptr += 1;
20205 if (segment_selector_size != 0)
20206 {
20207 complaint (&symfile_complaints,
20208 _("unsupported segment selector size %u "
20209 "in .debug_line section"),
20210 segment_selector_size);
20211 return NULL;
20212 }
20213 }
20214 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20215 line_ptr += offset_size;
20216 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20217 line_ptr += 1;
20218 if (lh->version >= 4)
20219 {
20220 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20221 line_ptr += 1;
20222 }
20223 else
20224 lh->maximum_ops_per_instruction = 1;
20225
20226 if (lh->maximum_ops_per_instruction == 0)
20227 {
20228 lh->maximum_ops_per_instruction = 1;
20229 complaint (&symfile_complaints,
20230 _("invalid maximum_ops_per_instruction "
20231 "in `.debug_line' section"));
20232 }
20233
20234 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20235 line_ptr += 1;
20236 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20237 line_ptr += 1;
20238 lh->line_range = read_1_byte (abfd, line_ptr);
20239 line_ptr += 1;
20240 lh->opcode_base = read_1_byte (abfd, line_ptr);
20241 line_ptr += 1;
20242 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20243
20244 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20245 for (i = 1; i < lh->opcode_base; ++i)
20246 {
20247 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20248 line_ptr += 1;
20249 }
20250
20251 if (lh->version >= 5)
20252 {
20253 /* Read directory table. */
20254 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20255 &cu->header,
20256 [] (struct line_header *lh, const char *name,
20257 dir_index d_index, unsigned int mod_time,
20258 unsigned int length)
20259 {
20260 lh->add_include_dir (name);
20261 });
20262
20263 /* Read file name table. */
20264 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20265 &cu->header,
20266 [] (struct line_header *lh, const char *name,
20267 dir_index d_index, unsigned int mod_time,
20268 unsigned int length)
20269 {
20270 lh->add_file_name (name, d_index, mod_time, length);
20271 });
20272 }
20273 else
20274 {
20275 /* Read directory table. */
20276 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20277 {
20278 line_ptr += bytes_read;
20279 lh->add_include_dir (cur_dir);
20280 }
20281 line_ptr += bytes_read;
20282
20283 /* Read file name table. */
20284 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20285 {
20286 unsigned int mod_time, length;
20287 dir_index d_index;
20288
20289 line_ptr += bytes_read;
20290 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20291 line_ptr += bytes_read;
20292 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20293 line_ptr += bytes_read;
20294 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20295 line_ptr += bytes_read;
20296
20297 lh->add_file_name (cur_file, d_index, mod_time, length);
20298 }
20299 line_ptr += bytes_read;
20300 }
20301 lh->statement_program_start = line_ptr;
20302
20303 if (line_ptr > (section->buffer + section->size))
20304 complaint (&symfile_complaints,
20305 _("line number info header doesn't "
20306 "fit in `.debug_line' section"));
20307
20308 return lh;
20309 }
20310
20311 /* Subroutine of dwarf_decode_lines to simplify it.
20312 Return the file name of the psymtab for included file FILE_INDEX
20313 in line header LH of PST.
20314 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20315 If space for the result is malloc'd, *NAME_HOLDER will be set.
20316 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20317
20318 static const char *
20319 psymtab_include_file_name (const struct line_header *lh, int file_index,
20320 const struct partial_symtab *pst,
20321 const char *comp_dir,
20322 gdb::unique_xmalloc_ptr<char> *name_holder)
20323 {
20324 const file_entry &fe = lh->file_names[file_index];
20325 const char *include_name = fe.name;
20326 const char *include_name_to_compare = include_name;
20327 const char *pst_filename;
20328 int file_is_pst;
20329
20330 const char *dir_name = fe.include_dir (lh);
20331
20332 gdb::unique_xmalloc_ptr<char> hold_compare;
20333 if (!IS_ABSOLUTE_PATH (include_name)
20334 && (dir_name != NULL || comp_dir != NULL))
20335 {
20336 /* Avoid creating a duplicate psymtab for PST.
20337 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20338 Before we do the comparison, however, we need to account
20339 for DIR_NAME and COMP_DIR.
20340 First prepend dir_name (if non-NULL). If we still don't
20341 have an absolute path prepend comp_dir (if non-NULL).
20342 However, the directory we record in the include-file's
20343 psymtab does not contain COMP_DIR (to match the
20344 corresponding symtab(s)).
20345
20346 Example:
20347
20348 bash$ cd /tmp
20349 bash$ gcc -g ./hello.c
20350 include_name = "hello.c"
20351 dir_name = "."
20352 DW_AT_comp_dir = comp_dir = "/tmp"
20353 DW_AT_name = "./hello.c"
20354
20355 */
20356
20357 if (dir_name != NULL)
20358 {
20359 name_holder->reset (concat (dir_name, SLASH_STRING,
20360 include_name, (char *) NULL));
20361 include_name = name_holder->get ();
20362 include_name_to_compare = include_name;
20363 }
20364 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20365 {
20366 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20367 include_name, (char *) NULL));
20368 include_name_to_compare = hold_compare.get ();
20369 }
20370 }
20371
20372 pst_filename = pst->filename;
20373 gdb::unique_xmalloc_ptr<char> copied_name;
20374 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20375 {
20376 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20377 pst_filename, (char *) NULL));
20378 pst_filename = copied_name.get ();
20379 }
20380
20381 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20382
20383 if (file_is_pst)
20384 return NULL;
20385 return include_name;
20386 }
20387
20388 /* State machine to track the state of the line number program. */
20389
20390 class lnp_state_machine
20391 {
20392 public:
20393 /* Initialize a machine state for the start of a line number
20394 program. */
20395 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20396
20397 file_entry *current_file ()
20398 {
20399 /* lh->file_names is 0-based, but the file name numbers in the
20400 statement program are 1-based. */
20401 return m_line_header->file_name_at (m_file);
20402 }
20403
20404 /* Record the line in the state machine. END_SEQUENCE is true if
20405 we're processing the end of a sequence. */
20406 void record_line (bool end_sequence);
20407
20408 /* Check address and if invalid nop-out the rest of the lines in this
20409 sequence. */
20410 void check_line_address (struct dwarf2_cu *cu,
20411 const gdb_byte *line_ptr,
20412 CORE_ADDR lowpc, CORE_ADDR address);
20413
20414 void handle_set_discriminator (unsigned int discriminator)
20415 {
20416 m_discriminator = discriminator;
20417 m_line_has_non_zero_discriminator |= discriminator != 0;
20418 }
20419
20420 /* Handle DW_LNE_set_address. */
20421 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20422 {
20423 m_op_index = 0;
20424 address += baseaddr;
20425 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20426 }
20427
20428 /* Handle DW_LNS_advance_pc. */
20429 void handle_advance_pc (CORE_ADDR adjust);
20430
20431 /* Handle a special opcode. */
20432 void handle_special_opcode (unsigned char op_code);
20433
20434 /* Handle DW_LNS_advance_line. */
20435 void handle_advance_line (int line_delta)
20436 {
20437 advance_line (line_delta);
20438 }
20439
20440 /* Handle DW_LNS_set_file. */
20441 void handle_set_file (file_name_index file);
20442
20443 /* Handle DW_LNS_negate_stmt. */
20444 void handle_negate_stmt ()
20445 {
20446 m_is_stmt = !m_is_stmt;
20447 }
20448
20449 /* Handle DW_LNS_const_add_pc. */
20450 void handle_const_add_pc ();
20451
20452 /* Handle DW_LNS_fixed_advance_pc. */
20453 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20454 {
20455 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20456 m_op_index = 0;
20457 }
20458
20459 /* Handle DW_LNS_copy. */
20460 void handle_copy ()
20461 {
20462 record_line (false);
20463 m_discriminator = 0;
20464 }
20465
20466 /* Handle DW_LNE_end_sequence. */
20467 void handle_end_sequence ()
20468 {
20469 m_record_line_callback = ::record_line;
20470 }
20471
20472 private:
20473 /* Advance the line by LINE_DELTA. */
20474 void advance_line (int line_delta)
20475 {
20476 m_line += line_delta;
20477
20478 if (line_delta != 0)
20479 m_line_has_non_zero_discriminator = m_discriminator != 0;
20480 }
20481
20482 gdbarch *m_gdbarch;
20483
20484 /* True if we're recording lines.
20485 Otherwise we're building partial symtabs and are just interested in
20486 finding include files mentioned by the line number program. */
20487 bool m_record_lines_p;
20488
20489 /* The line number header. */
20490 line_header *m_line_header;
20491
20492 /* These are part of the standard DWARF line number state machine,
20493 and initialized according to the DWARF spec. */
20494
20495 unsigned char m_op_index = 0;
20496 /* The line table index (1-based) of the current file. */
20497 file_name_index m_file = (file_name_index) 1;
20498 unsigned int m_line = 1;
20499
20500 /* These are initialized in the constructor. */
20501
20502 CORE_ADDR m_address;
20503 bool m_is_stmt;
20504 unsigned int m_discriminator;
20505
20506 /* Additional bits of state we need to track. */
20507
20508 /* The last file that we called dwarf2_start_subfile for.
20509 This is only used for TLLs. */
20510 unsigned int m_last_file = 0;
20511 /* The last file a line number was recorded for. */
20512 struct subfile *m_last_subfile = NULL;
20513
20514 /* The function to call to record a line. */
20515 record_line_ftype *m_record_line_callback = NULL;
20516
20517 /* The last line number that was recorded, used to coalesce
20518 consecutive entries for the same line. This can happen, for
20519 example, when discriminators are present. PR 17276. */
20520 unsigned int m_last_line = 0;
20521 bool m_line_has_non_zero_discriminator = false;
20522 };
20523
20524 void
20525 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20526 {
20527 CORE_ADDR addr_adj = (((m_op_index + adjust)
20528 / m_line_header->maximum_ops_per_instruction)
20529 * m_line_header->minimum_instruction_length);
20530 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20531 m_op_index = ((m_op_index + adjust)
20532 % m_line_header->maximum_ops_per_instruction);
20533 }
20534
20535 void
20536 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20537 {
20538 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20539 CORE_ADDR addr_adj = (((m_op_index
20540 + (adj_opcode / m_line_header->line_range))
20541 / m_line_header->maximum_ops_per_instruction)
20542 * m_line_header->minimum_instruction_length);
20543 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20544 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20545 % m_line_header->maximum_ops_per_instruction);
20546
20547 int line_delta = (m_line_header->line_base
20548 + (adj_opcode % m_line_header->line_range));
20549 advance_line (line_delta);
20550 record_line (false);
20551 m_discriminator = 0;
20552 }
20553
20554 void
20555 lnp_state_machine::handle_set_file (file_name_index file)
20556 {
20557 m_file = file;
20558
20559 const file_entry *fe = current_file ();
20560 if (fe == NULL)
20561 dwarf2_debug_line_missing_file_complaint ();
20562 else if (m_record_lines_p)
20563 {
20564 const char *dir = fe->include_dir (m_line_header);
20565
20566 m_last_subfile = current_subfile;
20567 m_line_has_non_zero_discriminator = m_discriminator != 0;
20568 dwarf2_start_subfile (fe->name, dir);
20569 }
20570 }
20571
20572 void
20573 lnp_state_machine::handle_const_add_pc ()
20574 {
20575 CORE_ADDR adjust
20576 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20577
20578 CORE_ADDR addr_adj
20579 = (((m_op_index + adjust)
20580 / m_line_header->maximum_ops_per_instruction)
20581 * m_line_header->minimum_instruction_length);
20582
20583 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20584 m_op_index = ((m_op_index + adjust)
20585 % m_line_header->maximum_ops_per_instruction);
20586 }
20587
20588 /* Ignore this record_line request. */
20589
20590 static void
20591 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20592 {
20593 return;
20594 }
20595
20596 /* Return non-zero if we should add LINE to the line number table.
20597 LINE is the line to add, LAST_LINE is the last line that was added,
20598 LAST_SUBFILE is the subfile for LAST_LINE.
20599 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20600 had a non-zero discriminator.
20601
20602 We have to be careful in the presence of discriminators.
20603 E.g., for this line:
20604
20605 for (i = 0; i < 100000; i++);
20606
20607 clang can emit four line number entries for that one line,
20608 each with a different discriminator.
20609 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20610
20611 However, we want gdb to coalesce all four entries into one.
20612 Otherwise the user could stepi into the middle of the line and
20613 gdb would get confused about whether the pc really was in the
20614 middle of the line.
20615
20616 Things are further complicated by the fact that two consecutive
20617 line number entries for the same line is a heuristic used by gcc
20618 to denote the end of the prologue. So we can't just discard duplicate
20619 entries, we have to be selective about it. The heuristic we use is
20620 that we only collapse consecutive entries for the same line if at least
20621 one of those entries has a non-zero discriminator. PR 17276.
20622
20623 Note: Addresses in the line number state machine can never go backwards
20624 within one sequence, thus this coalescing is ok. */
20625
20626 static int
20627 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20628 int line_has_non_zero_discriminator,
20629 struct subfile *last_subfile)
20630 {
20631 if (current_subfile != last_subfile)
20632 return 1;
20633 if (line != last_line)
20634 return 1;
20635 /* Same line for the same file that we've seen already.
20636 As a last check, for pr 17276, only record the line if the line
20637 has never had a non-zero discriminator. */
20638 if (!line_has_non_zero_discriminator)
20639 return 1;
20640 return 0;
20641 }
20642
20643 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20644 in the line table of subfile SUBFILE. */
20645
20646 static void
20647 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20648 unsigned int line, CORE_ADDR address,
20649 record_line_ftype p_record_line)
20650 {
20651 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20652
20653 if (dwarf_line_debug)
20654 {
20655 fprintf_unfiltered (gdb_stdlog,
20656 "Recording line %u, file %s, address %s\n",
20657 line, lbasename (subfile->name),
20658 paddress (gdbarch, address));
20659 }
20660
20661 (*p_record_line) (subfile, line, addr);
20662 }
20663
20664 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20665 Mark the end of a set of line number records.
20666 The arguments are the same as for dwarf_record_line_1.
20667 If SUBFILE is NULL the request is ignored. */
20668
20669 static void
20670 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20671 CORE_ADDR address, record_line_ftype p_record_line)
20672 {
20673 if (subfile == NULL)
20674 return;
20675
20676 if (dwarf_line_debug)
20677 {
20678 fprintf_unfiltered (gdb_stdlog,
20679 "Finishing current line, file %s, address %s\n",
20680 lbasename (subfile->name),
20681 paddress (gdbarch, address));
20682 }
20683
20684 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20685 }
20686
20687 void
20688 lnp_state_machine::record_line (bool end_sequence)
20689 {
20690 if (dwarf_line_debug)
20691 {
20692 fprintf_unfiltered (gdb_stdlog,
20693 "Processing actual line %u: file %u,"
20694 " address %s, is_stmt %u, discrim %u\n",
20695 m_line, to_underlying (m_file),
20696 paddress (m_gdbarch, m_address),
20697 m_is_stmt, m_discriminator);
20698 }
20699
20700 file_entry *fe = current_file ();
20701
20702 if (fe == NULL)
20703 dwarf2_debug_line_missing_file_complaint ();
20704 /* For now we ignore lines not starting on an instruction boundary.
20705 But not when processing end_sequence for compatibility with the
20706 previous version of the code. */
20707 else if (m_op_index == 0 || end_sequence)
20708 {
20709 fe->included_p = 1;
20710 if (m_record_lines_p && m_is_stmt)
20711 {
20712 if (m_last_subfile != current_subfile || end_sequence)
20713 {
20714 dwarf_finish_line (m_gdbarch, m_last_subfile,
20715 m_address, m_record_line_callback);
20716 }
20717
20718 if (!end_sequence)
20719 {
20720 if (dwarf_record_line_p (m_line, m_last_line,
20721 m_line_has_non_zero_discriminator,
20722 m_last_subfile))
20723 {
20724 dwarf_record_line_1 (m_gdbarch, current_subfile,
20725 m_line, m_address,
20726 m_record_line_callback);
20727 }
20728 m_last_subfile = current_subfile;
20729 m_last_line = m_line;
20730 }
20731 }
20732 }
20733 }
20734
20735 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20736 bool record_lines_p)
20737 {
20738 m_gdbarch = arch;
20739 m_record_lines_p = record_lines_p;
20740 m_line_header = lh;
20741
20742 m_record_line_callback = ::record_line;
20743
20744 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20745 was a line entry for it so that the backend has a chance to adjust it
20746 and also record it in case it needs it. This is currently used by MIPS
20747 code, cf. `mips_adjust_dwarf2_line'. */
20748 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20749 m_is_stmt = lh->default_is_stmt;
20750 m_discriminator = 0;
20751 }
20752
20753 void
20754 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20755 const gdb_byte *line_ptr,
20756 CORE_ADDR lowpc, CORE_ADDR address)
20757 {
20758 /* If address < lowpc then it's not a usable value, it's outside the
20759 pc range of the CU. However, we restrict the test to only address
20760 values of zero to preserve GDB's previous behaviour which is to
20761 handle the specific case of a function being GC'd by the linker. */
20762
20763 if (address == 0 && address < lowpc)
20764 {
20765 /* This line table is for a function which has been
20766 GCd by the linker. Ignore it. PR gdb/12528 */
20767
20768 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20769 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20770
20771 complaint (&symfile_complaints,
20772 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20773 line_offset, objfile_name (objfile));
20774 m_record_line_callback = noop_record_line;
20775 /* Note: record_line_callback is left as noop_record_line until
20776 we see DW_LNE_end_sequence. */
20777 }
20778 }
20779
20780 /* Subroutine of dwarf_decode_lines to simplify it.
20781 Process the line number information in LH.
20782 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20783 program in order to set included_p for every referenced header. */
20784
20785 static void
20786 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20787 const int decode_for_pst_p, CORE_ADDR lowpc)
20788 {
20789 const gdb_byte *line_ptr, *extended_end;
20790 const gdb_byte *line_end;
20791 unsigned int bytes_read, extended_len;
20792 unsigned char op_code, extended_op;
20793 CORE_ADDR baseaddr;
20794 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20795 bfd *abfd = objfile->obfd;
20796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20797 /* True if we're recording line info (as opposed to building partial
20798 symtabs and just interested in finding include files mentioned by
20799 the line number program). */
20800 bool record_lines_p = !decode_for_pst_p;
20801
20802 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20803
20804 line_ptr = lh->statement_program_start;
20805 line_end = lh->statement_program_end;
20806
20807 /* Read the statement sequences until there's nothing left. */
20808 while (line_ptr < line_end)
20809 {
20810 /* The DWARF line number program state machine. Reset the state
20811 machine at the start of each sequence. */
20812 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20813 bool end_sequence = false;
20814
20815 if (record_lines_p)
20816 {
20817 /* Start a subfile for the current file of the state
20818 machine. */
20819 const file_entry *fe = state_machine.current_file ();
20820
20821 if (fe != NULL)
20822 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20823 }
20824
20825 /* Decode the table. */
20826 while (line_ptr < line_end && !end_sequence)
20827 {
20828 op_code = read_1_byte (abfd, line_ptr);
20829 line_ptr += 1;
20830
20831 if (op_code >= lh->opcode_base)
20832 {
20833 /* Special opcode. */
20834 state_machine.handle_special_opcode (op_code);
20835 }
20836 else switch (op_code)
20837 {
20838 case DW_LNS_extended_op:
20839 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20840 &bytes_read);
20841 line_ptr += bytes_read;
20842 extended_end = line_ptr + extended_len;
20843 extended_op = read_1_byte (abfd, line_ptr);
20844 line_ptr += 1;
20845 switch (extended_op)
20846 {
20847 case DW_LNE_end_sequence:
20848 state_machine.handle_end_sequence ();
20849 end_sequence = true;
20850 break;
20851 case DW_LNE_set_address:
20852 {
20853 CORE_ADDR address
20854 = read_address (abfd, line_ptr, cu, &bytes_read);
20855 line_ptr += bytes_read;
20856
20857 state_machine.check_line_address (cu, line_ptr,
20858 lowpc, address);
20859 state_machine.handle_set_address (baseaddr, address);
20860 }
20861 break;
20862 case DW_LNE_define_file:
20863 {
20864 const char *cur_file;
20865 unsigned int mod_time, length;
20866 dir_index dindex;
20867
20868 cur_file = read_direct_string (abfd, line_ptr,
20869 &bytes_read);
20870 line_ptr += bytes_read;
20871 dindex = (dir_index)
20872 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20873 line_ptr += bytes_read;
20874 mod_time =
20875 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20876 line_ptr += bytes_read;
20877 length =
20878 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20879 line_ptr += bytes_read;
20880 lh->add_file_name (cur_file, dindex, mod_time, length);
20881 }
20882 break;
20883 case DW_LNE_set_discriminator:
20884 {
20885 /* The discriminator is not interesting to the
20886 debugger; just ignore it. We still need to
20887 check its value though:
20888 if there are consecutive entries for the same
20889 (non-prologue) line we want to coalesce them.
20890 PR 17276. */
20891 unsigned int discr
20892 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20893 line_ptr += bytes_read;
20894
20895 state_machine.handle_set_discriminator (discr);
20896 }
20897 break;
20898 default:
20899 complaint (&symfile_complaints,
20900 _("mangled .debug_line section"));
20901 return;
20902 }
20903 /* Make sure that we parsed the extended op correctly. If e.g.
20904 we expected a different address size than the producer used,
20905 we may have read the wrong number of bytes. */
20906 if (line_ptr != extended_end)
20907 {
20908 complaint (&symfile_complaints,
20909 _("mangled .debug_line section"));
20910 return;
20911 }
20912 break;
20913 case DW_LNS_copy:
20914 state_machine.handle_copy ();
20915 break;
20916 case DW_LNS_advance_pc:
20917 {
20918 CORE_ADDR adjust
20919 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20920 line_ptr += bytes_read;
20921
20922 state_machine.handle_advance_pc (adjust);
20923 }
20924 break;
20925 case DW_LNS_advance_line:
20926 {
20927 int line_delta
20928 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20929 line_ptr += bytes_read;
20930
20931 state_machine.handle_advance_line (line_delta);
20932 }
20933 break;
20934 case DW_LNS_set_file:
20935 {
20936 file_name_index file
20937 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20938 &bytes_read);
20939 line_ptr += bytes_read;
20940
20941 state_machine.handle_set_file (file);
20942 }
20943 break;
20944 case DW_LNS_set_column:
20945 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20946 line_ptr += bytes_read;
20947 break;
20948 case DW_LNS_negate_stmt:
20949 state_machine.handle_negate_stmt ();
20950 break;
20951 case DW_LNS_set_basic_block:
20952 break;
20953 /* Add to the address register of the state machine the
20954 address increment value corresponding to special opcode
20955 255. I.e., this value is scaled by the minimum
20956 instruction length since special opcode 255 would have
20957 scaled the increment. */
20958 case DW_LNS_const_add_pc:
20959 state_machine.handle_const_add_pc ();
20960 break;
20961 case DW_LNS_fixed_advance_pc:
20962 {
20963 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20964 line_ptr += 2;
20965
20966 state_machine.handle_fixed_advance_pc (addr_adj);
20967 }
20968 break;
20969 default:
20970 {
20971 /* Unknown standard opcode, ignore it. */
20972 int i;
20973
20974 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20975 {
20976 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20977 line_ptr += bytes_read;
20978 }
20979 }
20980 }
20981 }
20982
20983 if (!end_sequence)
20984 dwarf2_debug_line_missing_end_sequence_complaint ();
20985
20986 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20987 in which case we still finish recording the last line). */
20988 state_machine.record_line (true);
20989 }
20990 }
20991
20992 /* Decode the Line Number Program (LNP) for the given line_header
20993 structure and CU. The actual information extracted and the type
20994 of structures created from the LNP depends on the value of PST.
20995
20996 1. If PST is NULL, then this procedure uses the data from the program
20997 to create all necessary symbol tables, and their linetables.
20998
20999 2. If PST is not NULL, this procedure reads the program to determine
21000 the list of files included by the unit represented by PST, and
21001 builds all the associated partial symbol tables.
21002
21003 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21004 It is used for relative paths in the line table.
21005 NOTE: When processing partial symtabs (pst != NULL),
21006 comp_dir == pst->dirname.
21007
21008 NOTE: It is important that psymtabs have the same file name (via strcmp)
21009 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21010 symtab we don't use it in the name of the psymtabs we create.
21011 E.g. expand_line_sal requires this when finding psymtabs to expand.
21012 A good testcase for this is mb-inline.exp.
21013
21014 LOWPC is the lowest address in CU (or 0 if not known).
21015
21016 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21017 for its PC<->lines mapping information. Otherwise only the filename
21018 table is read in. */
21019
21020 static void
21021 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21022 struct dwarf2_cu *cu, struct partial_symtab *pst,
21023 CORE_ADDR lowpc, int decode_mapping)
21024 {
21025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21026 const int decode_for_pst_p = (pst != NULL);
21027
21028 if (decode_mapping)
21029 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21030
21031 if (decode_for_pst_p)
21032 {
21033 int file_index;
21034
21035 /* Now that we're done scanning the Line Header Program, we can
21036 create the psymtab of each included file. */
21037 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21038 if (lh->file_names[file_index].included_p == 1)
21039 {
21040 gdb::unique_xmalloc_ptr<char> name_holder;
21041 const char *include_name =
21042 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21043 &name_holder);
21044 if (include_name != NULL)
21045 dwarf2_create_include_psymtab (include_name, pst, objfile);
21046 }
21047 }
21048 else
21049 {
21050 /* Make sure a symtab is created for every file, even files
21051 which contain only variables (i.e. no code with associated
21052 line numbers). */
21053 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21054 int i;
21055
21056 for (i = 0; i < lh->file_names.size (); i++)
21057 {
21058 file_entry &fe = lh->file_names[i];
21059
21060 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21061
21062 if (current_subfile->symtab == NULL)
21063 {
21064 current_subfile->symtab
21065 = allocate_symtab (cust, current_subfile->name);
21066 }
21067 fe.symtab = current_subfile->symtab;
21068 }
21069 }
21070 }
21071
21072 /* Start a subfile for DWARF. FILENAME is the name of the file and
21073 DIRNAME the name of the source directory which contains FILENAME
21074 or NULL if not known.
21075 This routine tries to keep line numbers from identical absolute and
21076 relative file names in a common subfile.
21077
21078 Using the `list' example from the GDB testsuite, which resides in
21079 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21080 of /srcdir/list0.c yields the following debugging information for list0.c:
21081
21082 DW_AT_name: /srcdir/list0.c
21083 DW_AT_comp_dir: /compdir
21084 files.files[0].name: list0.h
21085 files.files[0].dir: /srcdir
21086 files.files[1].name: list0.c
21087 files.files[1].dir: /srcdir
21088
21089 The line number information for list0.c has to end up in a single
21090 subfile, so that `break /srcdir/list0.c:1' works as expected.
21091 start_subfile will ensure that this happens provided that we pass the
21092 concatenation of files.files[1].dir and files.files[1].name as the
21093 subfile's name. */
21094
21095 static void
21096 dwarf2_start_subfile (const char *filename, const char *dirname)
21097 {
21098 char *copy = NULL;
21099
21100 /* In order not to lose the line information directory,
21101 we concatenate it to the filename when it makes sense.
21102 Note that the Dwarf3 standard says (speaking of filenames in line
21103 information): ``The directory index is ignored for file names
21104 that represent full path names''. Thus ignoring dirname in the
21105 `else' branch below isn't an issue. */
21106
21107 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21108 {
21109 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21110 filename = copy;
21111 }
21112
21113 start_subfile (filename);
21114
21115 if (copy != NULL)
21116 xfree (copy);
21117 }
21118
21119 /* Start a symtab for DWARF.
21120 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21121
21122 static struct compunit_symtab *
21123 dwarf2_start_symtab (struct dwarf2_cu *cu,
21124 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21125 {
21126 struct compunit_symtab *cust
21127 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21128 low_pc, cu->language);
21129
21130 record_debugformat ("DWARF 2");
21131 record_producer (cu->producer);
21132
21133 /* We assume that we're processing GCC output. */
21134 processing_gcc_compilation = 2;
21135
21136 cu->processing_has_namespace_info = 0;
21137
21138 return cust;
21139 }
21140
21141 static void
21142 var_decode_location (struct attribute *attr, struct symbol *sym,
21143 struct dwarf2_cu *cu)
21144 {
21145 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21146 struct comp_unit_head *cu_header = &cu->header;
21147
21148 /* NOTE drow/2003-01-30: There used to be a comment and some special
21149 code here to turn a symbol with DW_AT_external and a
21150 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21151 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21152 with some versions of binutils) where shared libraries could have
21153 relocations against symbols in their debug information - the
21154 minimal symbol would have the right address, but the debug info
21155 would not. It's no longer necessary, because we will explicitly
21156 apply relocations when we read in the debug information now. */
21157
21158 /* A DW_AT_location attribute with no contents indicates that a
21159 variable has been optimized away. */
21160 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21161 {
21162 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21163 return;
21164 }
21165
21166 /* Handle one degenerate form of location expression specially, to
21167 preserve GDB's previous behavior when section offsets are
21168 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21169 then mark this symbol as LOC_STATIC. */
21170
21171 if (attr_form_is_block (attr)
21172 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21173 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21174 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21175 && (DW_BLOCK (attr)->size
21176 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21177 {
21178 unsigned int dummy;
21179
21180 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21181 SYMBOL_VALUE_ADDRESS (sym) =
21182 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21183 else
21184 SYMBOL_VALUE_ADDRESS (sym) =
21185 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21186 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21187 fixup_symbol_section (sym, objfile);
21188 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21189 SYMBOL_SECTION (sym));
21190 return;
21191 }
21192
21193 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21194 expression evaluator, and use LOC_COMPUTED only when necessary
21195 (i.e. when the value of a register or memory location is
21196 referenced, or a thread-local block, etc.). Then again, it might
21197 not be worthwhile. I'm assuming that it isn't unless performance
21198 or memory numbers show me otherwise. */
21199
21200 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21201
21202 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21203 cu->has_loclist = 1;
21204 }
21205
21206 /* Given a pointer to a DWARF information entry, figure out if we need
21207 to make a symbol table entry for it, and if so, create a new entry
21208 and return a pointer to it.
21209 If TYPE is NULL, determine symbol type from the die, otherwise
21210 used the passed type.
21211 If SPACE is not NULL, use it to hold the new symbol. If it is
21212 NULL, allocate a new symbol on the objfile's obstack. */
21213
21214 static struct symbol *
21215 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21216 struct symbol *space)
21217 {
21218 struct dwarf2_per_objfile *dwarf2_per_objfile
21219 = cu->per_cu->dwarf2_per_objfile;
21220 struct objfile *objfile = dwarf2_per_objfile->objfile;
21221 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21222 struct symbol *sym = NULL;
21223 const char *name;
21224 struct attribute *attr = NULL;
21225 struct attribute *attr2 = NULL;
21226 CORE_ADDR baseaddr;
21227 struct pending **list_to_add = NULL;
21228
21229 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21230
21231 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21232
21233 name = dwarf2_name (die, cu);
21234 if (name)
21235 {
21236 const char *linkagename;
21237 int suppress_add = 0;
21238
21239 if (space)
21240 sym = space;
21241 else
21242 sym = allocate_symbol (objfile);
21243 OBJSTAT (objfile, n_syms++);
21244
21245 /* Cache this symbol's name and the name's demangled form (if any). */
21246 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21247 linkagename = dwarf2_physname (name, die, cu);
21248 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21249
21250 /* Fortran does not have mangling standard and the mangling does differ
21251 between gfortran, iFort etc. */
21252 if (cu->language == language_fortran
21253 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21254 symbol_set_demangled_name (&(sym->ginfo),
21255 dwarf2_full_name (name, die, cu),
21256 NULL);
21257
21258 /* Default assumptions.
21259 Use the passed type or decode it from the die. */
21260 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21261 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21262 if (type != NULL)
21263 SYMBOL_TYPE (sym) = type;
21264 else
21265 SYMBOL_TYPE (sym) = die_type (die, cu);
21266 attr = dwarf2_attr (die,
21267 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21268 cu);
21269 if (attr)
21270 {
21271 SYMBOL_LINE (sym) = DW_UNSND (attr);
21272 }
21273
21274 attr = dwarf2_attr (die,
21275 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21276 cu);
21277 if (attr)
21278 {
21279 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21280 struct file_entry *fe;
21281
21282 if (cu->line_header != NULL)
21283 fe = cu->line_header->file_name_at (file_index);
21284 else
21285 fe = NULL;
21286
21287 if (fe == NULL)
21288 complaint (&symfile_complaints,
21289 _("file index out of range"));
21290 else
21291 symbol_set_symtab (sym, fe->symtab);
21292 }
21293
21294 switch (die->tag)
21295 {
21296 case DW_TAG_label:
21297 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21298 if (attr)
21299 {
21300 CORE_ADDR addr;
21301
21302 addr = attr_value_as_address (attr);
21303 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21304 SYMBOL_VALUE_ADDRESS (sym) = addr;
21305 }
21306 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21307 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21308 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21309 add_symbol_to_list (sym, cu->list_in_scope);
21310 break;
21311 case DW_TAG_subprogram:
21312 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21313 finish_block. */
21314 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21315 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21316 if ((attr2 && (DW_UNSND (attr2) != 0))
21317 || cu->language == language_ada)
21318 {
21319 /* Subprograms marked external are stored as a global symbol.
21320 Ada subprograms, whether marked external or not, are always
21321 stored as a global symbol, because we want to be able to
21322 access them globally. For instance, we want to be able
21323 to break on a nested subprogram without having to
21324 specify the context. */
21325 list_to_add = &global_symbols;
21326 }
21327 else
21328 {
21329 list_to_add = cu->list_in_scope;
21330 }
21331 break;
21332 case DW_TAG_inlined_subroutine:
21333 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21334 finish_block. */
21335 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21336 SYMBOL_INLINED (sym) = 1;
21337 list_to_add = cu->list_in_scope;
21338 break;
21339 case DW_TAG_template_value_param:
21340 suppress_add = 1;
21341 /* Fall through. */
21342 case DW_TAG_constant:
21343 case DW_TAG_variable:
21344 case DW_TAG_member:
21345 /* Compilation with minimal debug info may result in
21346 variables with missing type entries. Change the
21347 misleading `void' type to something sensible. */
21348 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21349 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21350
21351 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21352 /* In the case of DW_TAG_member, we should only be called for
21353 static const members. */
21354 if (die->tag == DW_TAG_member)
21355 {
21356 /* dwarf2_add_field uses die_is_declaration,
21357 so we do the same. */
21358 gdb_assert (die_is_declaration (die, cu));
21359 gdb_assert (attr);
21360 }
21361 if (attr)
21362 {
21363 dwarf2_const_value (attr, sym, cu);
21364 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21365 if (!suppress_add)
21366 {
21367 if (attr2 && (DW_UNSND (attr2) != 0))
21368 list_to_add = &global_symbols;
21369 else
21370 list_to_add = cu->list_in_scope;
21371 }
21372 break;
21373 }
21374 attr = dwarf2_attr (die, DW_AT_location, cu);
21375 if (attr)
21376 {
21377 var_decode_location (attr, sym, cu);
21378 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21379
21380 /* Fortran explicitly imports any global symbols to the local
21381 scope by DW_TAG_common_block. */
21382 if (cu->language == language_fortran && die->parent
21383 && die->parent->tag == DW_TAG_common_block)
21384 attr2 = NULL;
21385
21386 if (SYMBOL_CLASS (sym) == LOC_STATIC
21387 && SYMBOL_VALUE_ADDRESS (sym) == 0
21388 && !dwarf2_per_objfile->has_section_at_zero)
21389 {
21390 /* When a static variable is eliminated by the linker,
21391 the corresponding debug information is not stripped
21392 out, but the variable address is set to null;
21393 do not add such variables into symbol table. */
21394 }
21395 else if (attr2 && (DW_UNSND (attr2) != 0))
21396 {
21397 /* Workaround gfortran PR debug/40040 - it uses
21398 DW_AT_location for variables in -fPIC libraries which may
21399 get overriden by other libraries/executable and get
21400 a different address. Resolve it by the minimal symbol
21401 which may come from inferior's executable using copy
21402 relocation. Make this workaround only for gfortran as for
21403 other compilers GDB cannot guess the minimal symbol
21404 Fortran mangling kind. */
21405 if (cu->language == language_fortran && die->parent
21406 && die->parent->tag == DW_TAG_module
21407 && cu->producer
21408 && startswith (cu->producer, "GNU Fortran"))
21409 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21410
21411 /* A variable with DW_AT_external is never static,
21412 but it may be block-scoped. */
21413 list_to_add = (cu->list_in_scope == &file_symbols
21414 ? &global_symbols : cu->list_in_scope);
21415 }
21416 else
21417 list_to_add = cu->list_in_scope;
21418 }
21419 else
21420 {
21421 /* We do not know the address of this symbol.
21422 If it is an external symbol and we have type information
21423 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21424 The address of the variable will then be determined from
21425 the minimal symbol table whenever the variable is
21426 referenced. */
21427 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21428
21429 /* Fortran explicitly imports any global symbols to the local
21430 scope by DW_TAG_common_block. */
21431 if (cu->language == language_fortran && die->parent
21432 && die->parent->tag == DW_TAG_common_block)
21433 {
21434 /* SYMBOL_CLASS doesn't matter here because
21435 read_common_block is going to reset it. */
21436 if (!suppress_add)
21437 list_to_add = cu->list_in_scope;
21438 }
21439 else if (attr2 && (DW_UNSND (attr2) != 0)
21440 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21441 {
21442 /* A variable with DW_AT_external is never static, but it
21443 may be block-scoped. */
21444 list_to_add = (cu->list_in_scope == &file_symbols
21445 ? &global_symbols : cu->list_in_scope);
21446
21447 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21448 }
21449 else if (!die_is_declaration (die, cu))
21450 {
21451 /* Use the default LOC_OPTIMIZED_OUT class. */
21452 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21453 if (!suppress_add)
21454 list_to_add = cu->list_in_scope;
21455 }
21456 }
21457 break;
21458 case DW_TAG_formal_parameter:
21459 /* If we are inside a function, mark this as an argument. If
21460 not, we might be looking at an argument to an inlined function
21461 when we do not have enough information to show inlined frames;
21462 pretend it's a local variable in that case so that the user can
21463 still see it. */
21464 if (context_stack_depth > 0
21465 && context_stack[context_stack_depth - 1].name != NULL)
21466 SYMBOL_IS_ARGUMENT (sym) = 1;
21467 attr = dwarf2_attr (die, DW_AT_location, cu);
21468 if (attr)
21469 {
21470 var_decode_location (attr, sym, cu);
21471 }
21472 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21473 if (attr)
21474 {
21475 dwarf2_const_value (attr, sym, cu);
21476 }
21477
21478 list_to_add = cu->list_in_scope;
21479 break;
21480 case DW_TAG_unspecified_parameters:
21481 /* From varargs functions; gdb doesn't seem to have any
21482 interest in this information, so just ignore it for now.
21483 (FIXME?) */
21484 break;
21485 case DW_TAG_template_type_param:
21486 suppress_add = 1;
21487 /* Fall through. */
21488 case DW_TAG_class_type:
21489 case DW_TAG_interface_type:
21490 case DW_TAG_structure_type:
21491 case DW_TAG_union_type:
21492 case DW_TAG_set_type:
21493 case DW_TAG_enumeration_type:
21494 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21495 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21496
21497 {
21498 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21499 really ever be static objects: otherwise, if you try
21500 to, say, break of a class's method and you're in a file
21501 which doesn't mention that class, it won't work unless
21502 the check for all static symbols in lookup_symbol_aux
21503 saves you. See the OtherFileClass tests in
21504 gdb.c++/namespace.exp. */
21505
21506 if (!suppress_add)
21507 {
21508 list_to_add = (cu->list_in_scope == &file_symbols
21509 && cu->language == language_cplus
21510 ? &global_symbols : cu->list_in_scope);
21511
21512 /* The semantics of C++ state that "struct foo {
21513 ... }" also defines a typedef for "foo". */
21514 if (cu->language == language_cplus
21515 || cu->language == language_ada
21516 || cu->language == language_d
21517 || cu->language == language_rust)
21518 {
21519 /* The symbol's name is already allocated along
21520 with this objfile, so we don't need to
21521 duplicate it for the type. */
21522 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21523 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21524 }
21525 }
21526 }
21527 break;
21528 case DW_TAG_typedef:
21529 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21530 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21531 list_to_add = cu->list_in_scope;
21532 break;
21533 case DW_TAG_base_type:
21534 case DW_TAG_subrange_type:
21535 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21536 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21537 list_to_add = cu->list_in_scope;
21538 break;
21539 case DW_TAG_enumerator:
21540 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21541 if (attr)
21542 {
21543 dwarf2_const_value (attr, sym, cu);
21544 }
21545 {
21546 /* NOTE: carlton/2003-11-10: See comment above in the
21547 DW_TAG_class_type, etc. block. */
21548
21549 list_to_add = (cu->list_in_scope == &file_symbols
21550 && cu->language == language_cplus
21551 ? &global_symbols : cu->list_in_scope);
21552 }
21553 break;
21554 case DW_TAG_imported_declaration:
21555 case DW_TAG_namespace:
21556 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21557 list_to_add = &global_symbols;
21558 break;
21559 case DW_TAG_module:
21560 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21561 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21562 list_to_add = &global_symbols;
21563 break;
21564 case DW_TAG_common_block:
21565 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21566 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21567 add_symbol_to_list (sym, cu->list_in_scope);
21568 break;
21569 default:
21570 /* Not a tag we recognize. Hopefully we aren't processing
21571 trash data, but since we must specifically ignore things
21572 we don't recognize, there is nothing else we should do at
21573 this point. */
21574 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21575 dwarf_tag_name (die->tag));
21576 break;
21577 }
21578
21579 if (suppress_add)
21580 {
21581 sym->hash_next = objfile->template_symbols;
21582 objfile->template_symbols = sym;
21583 list_to_add = NULL;
21584 }
21585
21586 if (list_to_add != NULL)
21587 add_symbol_to_list (sym, list_to_add);
21588
21589 /* For the benefit of old versions of GCC, check for anonymous
21590 namespaces based on the demangled name. */
21591 if (!cu->processing_has_namespace_info
21592 && cu->language == language_cplus)
21593 cp_scan_for_anonymous_namespaces (sym, objfile);
21594 }
21595 return (sym);
21596 }
21597
21598 /* Given an attr with a DW_FORM_dataN value in host byte order,
21599 zero-extend it as appropriate for the symbol's type. The DWARF
21600 standard (v4) is not entirely clear about the meaning of using
21601 DW_FORM_dataN for a constant with a signed type, where the type is
21602 wider than the data. The conclusion of a discussion on the DWARF
21603 list was that this is unspecified. We choose to always zero-extend
21604 because that is the interpretation long in use by GCC. */
21605
21606 static gdb_byte *
21607 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21608 struct dwarf2_cu *cu, LONGEST *value, int bits)
21609 {
21610 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21611 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21612 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21613 LONGEST l = DW_UNSND (attr);
21614
21615 if (bits < sizeof (*value) * 8)
21616 {
21617 l &= ((LONGEST) 1 << bits) - 1;
21618 *value = l;
21619 }
21620 else if (bits == sizeof (*value) * 8)
21621 *value = l;
21622 else
21623 {
21624 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21625 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21626 return bytes;
21627 }
21628
21629 return NULL;
21630 }
21631
21632 /* Read a constant value from an attribute. Either set *VALUE, or if
21633 the value does not fit in *VALUE, set *BYTES - either already
21634 allocated on the objfile obstack, or newly allocated on OBSTACK,
21635 or, set *BATON, if we translated the constant to a location
21636 expression. */
21637
21638 static void
21639 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21640 const char *name, struct obstack *obstack,
21641 struct dwarf2_cu *cu,
21642 LONGEST *value, const gdb_byte **bytes,
21643 struct dwarf2_locexpr_baton **baton)
21644 {
21645 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21646 struct comp_unit_head *cu_header = &cu->header;
21647 struct dwarf_block *blk;
21648 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21649 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21650
21651 *value = 0;
21652 *bytes = NULL;
21653 *baton = NULL;
21654
21655 switch (attr->form)
21656 {
21657 case DW_FORM_addr:
21658 case DW_FORM_GNU_addr_index:
21659 {
21660 gdb_byte *data;
21661
21662 if (TYPE_LENGTH (type) != cu_header->addr_size)
21663 dwarf2_const_value_length_mismatch_complaint (name,
21664 cu_header->addr_size,
21665 TYPE_LENGTH (type));
21666 /* Symbols of this form are reasonably rare, so we just
21667 piggyback on the existing location code rather than writing
21668 a new implementation of symbol_computed_ops. */
21669 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21670 (*baton)->per_cu = cu->per_cu;
21671 gdb_assert ((*baton)->per_cu);
21672
21673 (*baton)->size = 2 + cu_header->addr_size;
21674 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21675 (*baton)->data = data;
21676
21677 data[0] = DW_OP_addr;
21678 store_unsigned_integer (&data[1], cu_header->addr_size,
21679 byte_order, DW_ADDR (attr));
21680 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21681 }
21682 break;
21683 case DW_FORM_string:
21684 case DW_FORM_strp:
21685 case DW_FORM_GNU_str_index:
21686 case DW_FORM_GNU_strp_alt:
21687 /* DW_STRING is already allocated on the objfile obstack, point
21688 directly to it. */
21689 *bytes = (const gdb_byte *) DW_STRING (attr);
21690 break;
21691 case DW_FORM_block1:
21692 case DW_FORM_block2:
21693 case DW_FORM_block4:
21694 case DW_FORM_block:
21695 case DW_FORM_exprloc:
21696 case DW_FORM_data16:
21697 blk = DW_BLOCK (attr);
21698 if (TYPE_LENGTH (type) != blk->size)
21699 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21700 TYPE_LENGTH (type));
21701 *bytes = blk->data;
21702 break;
21703
21704 /* The DW_AT_const_value attributes are supposed to carry the
21705 symbol's value "represented as it would be on the target
21706 architecture." By the time we get here, it's already been
21707 converted to host endianness, so we just need to sign- or
21708 zero-extend it as appropriate. */
21709 case DW_FORM_data1:
21710 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21711 break;
21712 case DW_FORM_data2:
21713 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21714 break;
21715 case DW_FORM_data4:
21716 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21717 break;
21718 case DW_FORM_data8:
21719 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21720 break;
21721
21722 case DW_FORM_sdata:
21723 case DW_FORM_implicit_const:
21724 *value = DW_SND (attr);
21725 break;
21726
21727 case DW_FORM_udata:
21728 *value = DW_UNSND (attr);
21729 break;
21730
21731 default:
21732 complaint (&symfile_complaints,
21733 _("unsupported const value attribute form: '%s'"),
21734 dwarf_form_name (attr->form));
21735 *value = 0;
21736 break;
21737 }
21738 }
21739
21740
21741 /* Copy constant value from an attribute to a symbol. */
21742
21743 static void
21744 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21745 struct dwarf2_cu *cu)
21746 {
21747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21748 LONGEST value;
21749 const gdb_byte *bytes;
21750 struct dwarf2_locexpr_baton *baton;
21751
21752 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21753 SYMBOL_PRINT_NAME (sym),
21754 &objfile->objfile_obstack, cu,
21755 &value, &bytes, &baton);
21756
21757 if (baton != NULL)
21758 {
21759 SYMBOL_LOCATION_BATON (sym) = baton;
21760 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21761 }
21762 else if (bytes != NULL)
21763 {
21764 SYMBOL_VALUE_BYTES (sym) = bytes;
21765 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21766 }
21767 else
21768 {
21769 SYMBOL_VALUE (sym) = value;
21770 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21771 }
21772 }
21773
21774 /* Return the type of the die in question using its DW_AT_type attribute. */
21775
21776 static struct type *
21777 die_type (struct die_info *die, struct dwarf2_cu *cu)
21778 {
21779 struct attribute *type_attr;
21780
21781 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21782 if (!type_attr)
21783 {
21784 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21785 /* A missing DW_AT_type represents a void type. */
21786 return objfile_type (objfile)->builtin_void;
21787 }
21788
21789 return lookup_die_type (die, type_attr, cu);
21790 }
21791
21792 /* True iff CU's producer generates GNAT Ada auxiliary information
21793 that allows to find parallel types through that information instead
21794 of having to do expensive parallel lookups by type name. */
21795
21796 static int
21797 need_gnat_info (struct dwarf2_cu *cu)
21798 {
21799 /* Assume that the Ada compiler was GNAT, which always produces
21800 the auxiliary information. */
21801 return (cu->language == language_ada);
21802 }
21803
21804 /* Return the auxiliary type of the die in question using its
21805 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21806 attribute is not present. */
21807
21808 static struct type *
21809 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21810 {
21811 struct attribute *type_attr;
21812
21813 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21814 if (!type_attr)
21815 return NULL;
21816
21817 return lookup_die_type (die, type_attr, cu);
21818 }
21819
21820 /* If DIE has a descriptive_type attribute, then set the TYPE's
21821 descriptive type accordingly. */
21822
21823 static void
21824 set_descriptive_type (struct type *type, struct die_info *die,
21825 struct dwarf2_cu *cu)
21826 {
21827 struct type *descriptive_type = die_descriptive_type (die, cu);
21828
21829 if (descriptive_type)
21830 {
21831 ALLOCATE_GNAT_AUX_TYPE (type);
21832 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21833 }
21834 }
21835
21836 /* Return the containing type of the die in question using its
21837 DW_AT_containing_type attribute. */
21838
21839 static struct type *
21840 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21841 {
21842 struct attribute *type_attr;
21843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21844
21845 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21846 if (!type_attr)
21847 error (_("Dwarf Error: Problem turning containing type into gdb type "
21848 "[in module %s]"), objfile_name (objfile));
21849
21850 return lookup_die_type (die, type_attr, cu);
21851 }
21852
21853 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21854
21855 static struct type *
21856 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21857 {
21858 struct dwarf2_per_objfile *dwarf2_per_objfile
21859 = cu->per_cu->dwarf2_per_objfile;
21860 struct objfile *objfile = dwarf2_per_objfile->objfile;
21861 char *message, *saved;
21862
21863 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21864 objfile_name (objfile),
21865 sect_offset_str (cu->header.sect_off),
21866 sect_offset_str (die->sect_off));
21867 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21868 message, strlen (message));
21869 xfree (message);
21870
21871 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21872 }
21873
21874 /* Look up the type of DIE in CU using its type attribute ATTR.
21875 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21876 DW_AT_containing_type.
21877 If there is no type substitute an error marker. */
21878
21879 static struct type *
21880 lookup_die_type (struct die_info *die, const struct attribute *attr,
21881 struct dwarf2_cu *cu)
21882 {
21883 struct dwarf2_per_objfile *dwarf2_per_objfile
21884 = cu->per_cu->dwarf2_per_objfile;
21885 struct objfile *objfile = dwarf2_per_objfile->objfile;
21886 struct type *this_type;
21887
21888 gdb_assert (attr->name == DW_AT_type
21889 || attr->name == DW_AT_GNAT_descriptive_type
21890 || attr->name == DW_AT_containing_type);
21891
21892 /* First see if we have it cached. */
21893
21894 if (attr->form == DW_FORM_GNU_ref_alt)
21895 {
21896 struct dwarf2_per_cu_data *per_cu;
21897 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21898
21899 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21900 dwarf2_per_objfile);
21901 this_type = get_die_type_at_offset (sect_off, per_cu);
21902 }
21903 else if (attr_form_is_ref (attr))
21904 {
21905 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21906
21907 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21908 }
21909 else if (attr->form == DW_FORM_ref_sig8)
21910 {
21911 ULONGEST signature = DW_SIGNATURE (attr);
21912
21913 return get_signatured_type (die, signature, cu);
21914 }
21915 else
21916 {
21917 complaint (&symfile_complaints,
21918 _("Dwarf Error: Bad type attribute %s in DIE"
21919 " at %s [in module %s]"),
21920 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21921 objfile_name (objfile));
21922 return build_error_marker_type (cu, die);
21923 }
21924
21925 /* If not cached we need to read it in. */
21926
21927 if (this_type == NULL)
21928 {
21929 struct die_info *type_die = NULL;
21930 struct dwarf2_cu *type_cu = cu;
21931
21932 if (attr_form_is_ref (attr))
21933 type_die = follow_die_ref (die, attr, &type_cu);
21934 if (type_die == NULL)
21935 return build_error_marker_type (cu, die);
21936 /* If we find the type now, it's probably because the type came
21937 from an inter-CU reference and the type's CU got expanded before
21938 ours. */
21939 this_type = read_type_die (type_die, type_cu);
21940 }
21941
21942 /* If we still don't have a type use an error marker. */
21943
21944 if (this_type == NULL)
21945 return build_error_marker_type (cu, die);
21946
21947 return this_type;
21948 }
21949
21950 /* Return the type in DIE, CU.
21951 Returns NULL for invalid types.
21952
21953 This first does a lookup in die_type_hash,
21954 and only reads the die in if necessary.
21955
21956 NOTE: This can be called when reading in partial or full symbols. */
21957
21958 static struct type *
21959 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21960 {
21961 struct type *this_type;
21962
21963 this_type = get_die_type (die, cu);
21964 if (this_type)
21965 return this_type;
21966
21967 return read_type_die_1 (die, cu);
21968 }
21969
21970 /* Read the type in DIE, CU.
21971 Returns NULL for invalid types. */
21972
21973 static struct type *
21974 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21975 {
21976 struct type *this_type = NULL;
21977
21978 switch (die->tag)
21979 {
21980 case DW_TAG_class_type:
21981 case DW_TAG_interface_type:
21982 case DW_TAG_structure_type:
21983 case DW_TAG_union_type:
21984 this_type = read_structure_type (die, cu);
21985 break;
21986 case DW_TAG_enumeration_type:
21987 this_type = read_enumeration_type (die, cu);
21988 break;
21989 case DW_TAG_subprogram:
21990 case DW_TAG_subroutine_type:
21991 case DW_TAG_inlined_subroutine:
21992 this_type = read_subroutine_type (die, cu);
21993 break;
21994 case DW_TAG_array_type:
21995 this_type = read_array_type (die, cu);
21996 break;
21997 case DW_TAG_set_type:
21998 this_type = read_set_type (die, cu);
21999 break;
22000 case DW_TAG_pointer_type:
22001 this_type = read_tag_pointer_type (die, cu);
22002 break;
22003 case DW_TAG_ptr_to_member_type:
22004 this_type = read_tag_ptr_to_member_type (die, cu);
22005 break;
22006 case DW_TAG_reference_type:
22007 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22008 break;
22009 case DW_TAG_rvalue_reference_type:
22010 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22011 break;
22012 case DW_TAG_const_type:
22013 this_type = read_tag_const_type (die, cu);
22014 break;
22015 case DW_TAG_volatile_type:
22016 this_type = read_tag_volatile_type (die, cu);
22017 break;
22018 case DW_TAG_restrict_type:
22019 this_type = read_tag_restrict_type (die, cu);
22020 break;
22021 case DW_TAG_string_type:
22022 this_type = read_tag_string_type (die, cu);
22023 break;
22024 case DW_TAG_typedef:
22025 this_type = read_typedef (die, cu);
22026 break;
22027 case DW_TAG_subrange_type:
22028 this_type = read_subrange_type (die, cu);
22029 break;
22030 case DW_TAG_base_type:
22031 this_type = read_base_type (die, cu);
22032 break;
22033 case DW_TAG_unspecified_type:
22034 this_type = read_unspecified_type (die, cu);
22035 break;
22036 case DW_TAG_namespace:
22037 this_type = read_namespace_type (die, cu);
22038 break;
22039 case DW_TAG_module:
22040 this_type = read_module_type (die, cu);
22041 break;
22042 case DW_TAG_atomic_type:
22043 this_type = read_tag_atomic_type (die, cu);
22044 break;
22045 default:
22046 complaint (&symfile_complaints,
22047 _("unexpected tag in read_type_die: '%s'"),
22048 dwarf_tag_name (die->tag));
22049 break;
22050 }
22051
22052 return this_type;
22053 }
22054
22055 /* See if we can figure out if the class lives in a namespace. We do
22056 this by looking for a member function; its demangled name will
22057 contain namespace info, if there is any.
22058 Return the computed name or NULL.
22059 Space for the result is allocated on the objfile's obstack.
22060 This is the full-die version of guess_partial_die_structure_name.
22061 In this case we know DIE has no useful parent. */
22062
22063 static char *
22064 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22065 {
22066 struct die_info *spec_die;
22067 struct dwarf2_cu *spec_cu;
22068 struct die_info *child;
22069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22070
22071 spec_cu = cu;
22072 spec_die = die_specification (die, &spec_cu);
22073 if (spec_die != NULL)
22074 {
22075 die = spec_die;
22076 cu = spec_cu;
22077 }
22078
22079 for (child = die->child;
22080 child != NULL;
22081 child = child->sibling)
22082 {
22083 if (child->tag == DW_TAG_subprogram)
22084 {
22085 const char *linkage_name = dw2_linkage_name (child, cu);
22086
22087 if (linkage_name != NULL)
22088 {
22089 char *actual_name
22090 = language_class_name_from_physname (cu->language_defn,
22091 linkage_name);
22092 char *name = NULL;
22093
22094 if (actual_name != NULL)
22095 {
22096 const char *die_name = dwarf2_name (die, cu);
22097
22098 if (die_name != NULL
22099 && strcmp (die_name, actual_name) != 0)
22100 {
22101 /* Strip off the class name from the full name.
22102 We want the prefix. */
22103 int die_name_len = strlen (die_name);
22104 int actual_name_len = strlen (actual_name);
22105
22106 /* Test for '::' as a sanity check. */
22107 if (actual_name_len > die_name_len + 2
22108 && actual_name[actual_name_len
22109 - die_name_len - 1] == ':')
22110 name = (char *) obstack_copy0 (
22111 &objfile->per_bfd->storage_obstack,
22112 actual_name, actual_name_len - die_name_len - 2);
22113 }
22114 }
22115 xfree (actual_name);
22116 return name;
22117 }
22118 }
22119 }
22120
22121 return NULL;
22122 }
22123
22124 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22125 prefix part in such case. See
22126 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22127
22128 static const char *
22129 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22130 {
22131 struct attribute *attr;
22132 const char *base;
22133
22134 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22135 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22136 return NULL;
22137
22138 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22139 return NULL;
22140
22141 attr = dw2_linkage_name_attr (die, cu);
22142 if (attr == NULL || DW_STRING (attr) == NULL)
22143 return NULL;
22144
22145 /* dwarf2_name had to be already called. */
22146 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22147
22148 /* Strip the base name, keep any leading namespaces/classes. */
22149 base = strrchr (DW_STRING (attr), ':');
22150 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22151 return "";
22152
22153 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22154 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22155 DW_STRING (attr),
22156 &base[-1] - DW_STRING (attr));
22157 }
22158
22159 /* Return the name of the namespace/class that DIE is defined within,
22160 or "" if we can't tell. The caller should not xfree the result.
22161
22162 For example, if we're within the method foo() in the following
22163 code:
22164
22165 namespace N {
22166 class C {
22167 void foo () {
22168 }
22169 };
22170 }
22171
22172 then determine_prefix on foo's die will return "N::C". */
22173
22174 static const char *
22175 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22176 {
22177 struct dwarf2_per_objfile *dwarf2_per_objfile
22178 = cu->per_cu->dwarf2_per_objfile;
22179 struct die_info *parent, *spec_die;
22180 struct dwarf2_cu *spec_cu;
22181 struct type *parent_type;
22182 const char *retval;
22183
22184 if (cu->language != language_cplus
22185 && cu->language != language_fortran && cu->language != language_d
22186 && cu->language != language_rust)
22187 return "";
22188
22189 retval = anonymous_struct_prefix (die, cu);
22190 if (retval)
22191 return retval;
22192
22193 /* We have to be careful in the presence of DW_AT_specification.
22194 For example, with GCC 3.4, given the code
22195
22196 namespace N {
22197 void foo() {
22198 // Definition of N::foo.
22199 }
22200 }
22201
22202 then we'll have a tree of DIEs like this:
22203
22204 1: DW_TAG_compile_unit
22205 2: DW_TAG_namespace // N
22206 3: DW_TAG_subprogram // declaration of N::foo
22207 4: DW_TAG_subprogram // definition of N::foo
22208 DW_AT_specification // refers to die #3
22209
22210 Thus, when processing die #4, we have to pretend that we're in
22211 the context of its DW_AT_specification, namely the contex of die
22212 #3. */
22213 spec_cu = cu;
22214 spec_die = die_specification (die, &spec_cu);
22215 if (spec_die == NULL)
22216 parent = die->parent;
22217 else
22218 {
22219 parent = spec_die->parent;
22220 cu = spec_cu;
22221 }
22222
22223 if (parent == NULL)
22224 return "";
22225 else if (parent->building_fullname)
22226 {
22227 const char *name;
22228 const char *parent_name;
22229
22230 /* It has been seen on RealView 2.2 built binaries,
22231 DW_TAG_template_type_param types actually _defined_ as
22232 children of the parent class:
22233
22234 enum E {};
22235 template class <class Enum> Class{};
22236 Class<enum E> class_e;
22237
22238 1: DW_TAG_class_type (Class)
22239 2: DW_TAG_enumeration_type (E)
22240 3: DW_TAG_enumerator (enum1:0)
22241 3: DW_TAG_enumerator (enum2:1)
22242 ...
22243 2: DW_TAG_template_type_param
22244 DW_AT_type DW_FORM_ref_udata (E)
22245
22246 Besides being broken debug info, it can put GDB into an
22247 infinite loop. Consider:
22248
22249 When we're building the full name for Class<E>, we'll start
22250 at Class, and go look over its template type parameters,
22251 finding E. We'll then try to build the full name of E, and
22252 reach here. We're now trying to build the full name of E,
22253 and look over the parent DIE for containing scope. In the
22254 broken case, if we followed the parent DIE of E, we'd again
22255 find Class, and once again go look at its template type
22256 arguments, etc., etc. Simply don't consider such parent die
22257 as source-level parent of this die (it can't be, the language
22258 doesn't allow it), and break the loop here. */
22259 name = dwarf2_name (die, cu);
22260 parent_name = dwarf2_name (parent, cu);
22261 complaint (&symfile_complaints,
22262 _("template param type '%s' defined within parent '%s'"),
22263 name ? name : "<unknown>",
22264 parent_name ? parent_name : "<unknown>");
22265 return "";
22266 }
22267 else
22268 switch (parent->tag)
22269 {
22270 case DW_TAG_namespace:
22271 parent_type = read_type_die (parent, cu);
22272 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22273 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22274 Work around this problem here. */
22275 if (cu->language == language_cplus
22276 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22277 return "";
22278 /* We give a name to even anonymous namespaces. */
22279 return TYPE_TAG_NAME (parent_type);
22280 case DW_TAG_class_type:
22281 case DW_TAG_interface_type:
22282 case DW_TAG_structure_type:
22283 case DW_TAG_union_type:
22284 case DW_TAG_module:
22285 parent_type = read_type_die (parent, cu);
22286 if (TYPE_TAG_NAME (parent_type) != NULL)
22287 return TYPE_TAG_NAME (parent_type);
22288 else
22289 /* An anonymous structure is only allowed non-static data
22290 members; no typedefs, no member functions, et cetera.
22291 So it does not need a prefix. */
22292 return "";
22293 case DW_TAG_compile_unit:
22294 case DW_TAG_partial_unit:
22295 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22296 if (cu->language == language_cplus
22297 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22298 && die->child != NULL
22299 && (die->tag == DW_TAG_class_type
22300 || die->tag == DW_TAG_structure_type
22301 || die->tag == DW_TAG_union_type))
22302 {
22303 char *name = guess_full_die_structure_name (die, cu);
22304 if (name != NULL)
22305 return name;
22306 }
22307 return "";
22308 case DW_TAG_enumeration_type:
22309 parent_type = read_type_die (parent, cu);
22310 if (TYPE_DECLARED_CLASS (parent_type))
22311 {
22312 if (TYPE_TAG_NAME (parent_type) != NULL)
22313 return TYPE_TAG_NAME (parent_type);
22314 return "";
22315 }
22316 /* Fall through. */
22317 default:
22318 return determine_prefix (parent, cu);
22319 }
22320 }
22321
22322 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22323 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22324 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22325 an obconcat, otherwise allocate storage for the result. The CU argument is
22326 used to determine the language and hence, the appropriate separator. */
22327
22328 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22329
22330 static char *
22331 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22332 int physname, struct dwarf2_cu *cu)
22333 {
22334 const char *lead = "";
22335 const char *sep;
22336
22337 if (suffix == NULL || suffix[0] == '\0'
22338 || prefix == NULL || prefix[0] == '\0')
22339 sep = "";
22340 else if (cu->language == language_d)
22341 {
22342 /* For D, the 'main' function could be defined in any module, but it
22343 should never be prefixed. */
22344 if (strcmp (suffix, "D main") == 0)
22345 {
22346 prefix = "";
22347 sep = "";
22348 }
22349 else
22350 sep = ".";
22351 }
22352 else if (cu->language == language_fortran && physname)
22353 {
22354 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22355 DW_AT_MIPS_linkage_name is preferred and used instead. */
22356
22357 lead = "__";
22358 sep = "_MOD_";
22359 }
22360 else
22361 sep = "::";
22362
22363 if (prefix == NULL)
22364 prefix = "";
22365 if (suffix == NULL)
22366 suffix = "";
22367
22368 if (obs == NULL)
22369 {
22370 char *retval
22371 = ((char *)
22372 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22373
22374 strcpy (retval, lead);
22375 strcat (retval, prefix);
22376 strcat (retval, sep);
22377 strcat (retval, suffix);
22378 return retval;
22379 }
22380 else
22381 {
22382 /* We have an obstack. */
22383 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22384 }
22385 }
22386
22387 /* Return sibling of die, NULL if no sibling. */
22388
22389 static struct die_info *
22390 sibling_die (struct die_info *die)
22391 {
22392 return die->sibling;
22393 }
22394
22395 /* Get name of a die, return NULL if not found. */
22396
22397 static const char *
22398 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22399 struct obstack *obstack)
22400 {
22401 if (name && cu->language == language_cplus)
22402 {
22403 std::string canon_name = cp_canonicalize_string (name);
22404
22405 if (!canon_name.empty ())
22406 {
22407 if (canon_name != name)
22408 name = (const char *) obstack_copy0 (obstack,
22409 canon_name.c_str (),
22410 canon_name.length ());
22411 }
22412 }
22413
22414 return name;
22415 }
22416
22417 /* Get name of a die, return NULL if not found.
22418 Anonymous namespaces are converted to their magic string. */
22419
22420 static const char *
22421 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22422 {
22423 struct attribute *attr;
22424 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22425
22426 attr = dwarf2_attr (die, DW_AT_name, cu);
22427 if ((!attr || !DW_STRING (attr))
22428 && die->tag != DW_TAG_namespace
22429 && die->tag != DW_TAG_class_type
22430 && die->tag != DW_TAG_interface_type
22431 && die->tag != DW_TAG_structure_type
22432 && die->tag != DW_TAG_union_type)
22433 return NULL;
22434
22435 switch (die->tag)
22436 {
22437 case DW_TAG_compile_unit:
22438 case DW_TAG_partial_unit:
22439 /* Compilation units have a DW_AT_name that is a filename, not
22440 a source language identifier. */
22441 case DW_TAG_enumeration_type:
22442 case DW_TAG_enumerator:
22443 /* These tags always have simple identifiers already; no need
22444 to canonicalize them. */
22445 return DW_STRING (attr);
22446
22447 case DW_TAG_namespace:
22448 if (attr != NULL && DW_STRING (attr) != NULL)
22449 return DW_STRING (attr);
22450 return CP_ANONYMOUS_NAMESPACE_STR;
22451
22452 case DW_TAG_class_type:
22453 case DW_TAG_interface_type:
22454 case DW_TAG_structure_type:
22455 case DW_TAG_union_type:
22456 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22457 structures or unions. These were of the form "._%d" in GCC 4.1,
22458 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22459 and GCC 4.4. We work around this problem by ignoring these. */
22460 if (attr && DW_STRING (attr)
22461 && (startswith (DW_STRING (attr), "._")
22462 || startswith (DW_STRING (attr), "<anonymous")))
22463 return NULL;
22464
22465 /* GCC might emit a nameless typedef that has a linkage name. See
22466 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22467 if (!attr || DW_STRING (attr) == NULL)
22468 {
22469 char *demangled = NULL;
22470
22471 attr = dw2_linkage_name_attr (die, cu);
22472 if (attr == NULL || DW_STRING (attr) == NULL)
22473 return NULL;
22474
22475 /* Avoid demangling DW_STRING (attr) the second time on a second
22476 call for the same DIE. */
22477 if (!DW_STRING_IS_CANONICAL (attr))
22478 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22479
22480 if (demangled)
22481 {
22482 const char *base;
22483
22484 /* FIXME: we already did this for the partial symbol... */
22485 DW_STRING (attr)
22486 = ((const char *)
22487 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22488 demangled, strlen (demangled)));
22489 DW_STRING_IS_CANONICAL (attr) = 1;
22490 xfree (demangled);
22491
22492 /* Strip any leading namespaces/classes, keep only the base name.
22493 DW_AT_name for named DIEs does not contain the prefixes. */
22494 base = strrchr (DW_STRING (attr), ':');
22495 if (base && base > DW_STRING (attr) && base[-1] == ':')
22496 return &base[1];
22497 else
22498 return DW_STRING (attr);
22499 }
22500 }
22501 break;
22502
22503 default:
22504 break;
22505 }
22506
22507 if (!DW_STRING_IS_CANONICAL (attr))
22508 {
22509 DW_STRING (attr)
22510 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22511 &objfile->per_bfd->storage_obstack);
22512 DW_STRING_IS_CANONICAL (attr) = 1;
22513 }
22514 return DW_STRING (attr);
22515 }
22516
22517 /* Return the die that this die in an extension of, or NULL if there
22518 is none. *EXT_CU is the CU containing DIE on input, and the CU
22519 containing the return value on output. */
22520
22521 static struct die_info *
22522 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22523 {
22524 struct attribute *attr;
22525
22526 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22527 if (attr == NULL)
22528 return NULL;
22529
22530 return follow_die_ref (die, attr, ext_cu);
22531 }
22532
22533 /* Convert a DIE tag into its string name. */
22534
22535 static const char *
22536 dwarf_tag_name (unsigned tag)
22537 {
22538 const char *name = get_DW_TAG_name (tag);
22539
22540 if (name == NULL)
22541 return "DW_TAG_<unknown>";
22542
22543 return name;
22544 }
22545
22546 /* Convert a DWARF attribute code into its string name. */
22547
22548 static const char *
22549 dwarf_attr_name (unsigned attr)
22550 {
22551 const char *name;
22552
22553 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22554 if (attr == DW_AT_MIPS_fde)
22555 return "DW_AT_MIPS_fde";
22556 #else
22557 if (attr == DW_AT_HP_block_index)
22558 return "DW_AT_HP_block_index";
22559 #endif
22560
22561 name = get_DW_AT_name (attr);
22562
22563 if (name == NULL)
22564 return "DW_AT_<unknown>";
22565
22566 return name;
22567 }
22568
22569 /* Convert a DWARF value form code into its string name. */
22570
22571 static const char *
22572 dwarf_form_name (unsigned form)
22573 {
22574 const char *name = get_DW_FORM_name (form);
22575
22576 if (name == NULL)
22577 return "DW_FORM_<unknown>";
22578
22579 return name;
22580 }
22581
22582 static const char *
22583 dwarf_bool_name (unsigned mybool)
22584 {
22585 if (mybool)
22586 return "TRUE";
22587 else
22588 return "FALSE";
22589 }
22590
22591 /* Convert a DWARF type code into its string name. */
22592
22593 static const char *
22594 dwarf_type_encoding_name (unsigned enc)
22595 {
22596 const char *name = get_DW_ATE_name (enc);
22597
22598 if (name == NULL)
22599 return "DW_ATE_<unknown>";
22600
22601 return name;
22602 }
22603
22604 static void
22605 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22606 {
22607 unsigned int i;
22608
22609 print_spaces (indent, f);
22610 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22611 dwarf_tag_name (die->tag), die->abbrev,
22612 sect_offset_str (die->sect_off));
22613
22614 if (die->parent != NULL)
22615 {
22616 print_spaces (indent, f);
22617 fprintf_unfiltered (f, " parent at offset: %s\n",
22618 sect_offset_str (die->parent->sect_off));
22619 }
22620
22621 print_spaces (indent, f);
22622 fprintf_unfiltered (f, " has children: %s\n",
22623 dwarf_bool_name (die->child != NULL));
22624
22625 print_spaces (indent, f);
22626 fprintf_unfiltered (f, " attributes:\n");
22627
22628 for (i = 0; i < die->num_attrs; ++i)
22629 {
22630 print_spaces (indent, f);
22631 fprintf_unfiltered (f, " %s (%s) ",
22632 dwarf_attr_name (die->attrs[i].name),
22633 dwarf_form_name (die->attrs[i].form));
22634
22635 switch (die->attrs[i].form)
22636 {
22637 case DW_FORM_addr:
22638 case DW_FORM_GNU_addr_index:
22639 fprintf_unfiltered (f, "address: ");
22640 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22641 break;
22642 case DW_FORM_block2:
22643 case DW_FORM_block4:
22644 case DW_FORM_block:
22645 case DW_FORM_block1:
22646 fprintf_unfiltered (f, "block: size %s",
22647 pulongest (DW_BLOCK (&die->attrs[i])->size));
22648 break;
22649 case DW_FORM_exprloc:
22650 fprintf_unfiltered (f, "expression: size %s",
22651 pulongest (DW_BLOCK (&die->attrs[i])->size));
22652 break;
22653 case DW_FORM_data16:
22654 fprintf_unfiltered (f, "constant of 16 bytes");
22655 break;
22656 case DW_FORM_ref_addr:
22657 fprintf_unfiltered (f, "ref address: ");
22658 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22659 break;
22660 case DW_FORM_GNU_ref_alt:
22661 fprintf_unfiltered (f, "alt ref address: ");
22662 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22663 break;
22664 case DW_FORM_ref1:
22665 case DW_FORM_ref2:
22666 case DW_FORM_ref4:
22667 case DW_FORM_ref8:
22668 case DW_FORM_ref_udata:
22669 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22670 (long) (DW_UNSND (&die->attrs[i])));
22671 break;
22672 case DW_FORM_data1:
22673 case DW_FORM_data2:
22674 case DW_FORM_data4:
22675 case DW_FORM_data8:
22676 case DW_FORM_udata:
22677 case DW_FORM_sdata:
22678 fprintf_unfiltered (f, "constant: %s",
22679 pulongest (DW_UNSND (&die->attrs[i])));
22680 break;
22681 case DW_FORM_sec_offset:
22682 fprintf_unfiltered (f, "section offset: %s",
22683 pulongest (DW_UNSND (&die->attrs[i])));
22684 break;
22685 case DW_FORM_ref_sig8:
22686 fprintf_unfiltered (f, "signature: %s",
22687 hex_string (DW_SIGNATURE (&die->attrs[i])));
22688 break;
22689 case DW_FORM_string:
22690 case DW_FORM_strp:
22691 case DW_FORM_line_strp:
22692 case DW_FORM_GNU_str_index:
22693 case DW_FORM_GNU_strp_alt:
22694 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22695 DW_STRING (&die->attrs[i])
22696 ? DW_STRING (&die->attrs[i]) : "",
22697 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22698 break;
22699 case DW_FORM_flag:
22700 if (DW_UNSND (&die->attrs[i]))
22701 fprintf_unfiltered (f, "flag: TRUE");
22702 else
22703 fprintf_unfiltered (f, "flag: FALSE");
22704 break;
22705 case DW_FORM_flag_present:
22706 fprintf_unfiltered (f, "flag: TRUE");
22707 break;
22708 case DW_FORM_indirect:
22709 /* The reader will have reduced the indirect form to
22710 the "base form" so this form should not occur. */
22711 fprintf_unfiltered (f,
22712 "unexpected attribute form: DW_FORM_indirect");
22713 break;
22714 case DW_FORM_implicit_const:
22715 fprintf_unfiltered (f, "constant: %s",
22716 plongest (DW_SND (&die->attrs[i])));
22717 break;
22718 default:
22719 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22720 die->attrs[i].form);
22721 break;
22722 }
22723 fprintf_unfiltered (f, "\n");
22724 }
22725 }
22726
22727 static void
22728 dump_die_for_error (struct die_info *die)
22729 {
22730 dump_die_shallow (gdb_stderr, 0, die);
22731 }
22732
22733 static void
22734 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22735 {
22736 int indent = level * 4;
22737
22738 gdb_assert (die != NULL);
22739
22740 if (level >= max_level)
22741 return;
22742
22743 dump_die_shallow (f, indent, die);
22744
22745 if (die->child != NULL)
22746 {
22747 print_spaces (indent, f);
22748 fprintf_unfiltered (f, " Children:");
22749 if (level + 1 < max_level)
22750 {
22751 fprintf_unfiltered (f, "\n");
22752 dump_die_1 (f, level + 1, max_level, die->child);
22753 }
22754 else
22755 {
22756 fprintf_unfiltered (f,
22757 " [not printed, max nesting level reached]\n");
22758 }
22759 }
22760
22761 if (die->sibling != NULL && level > 0)
22762 {
22763 dump_die_1 (f, level, max_level, die->sibling);
22764 }
22765 }
22766
22767 /* This is called from the pdie macro in gdbinit.in.
22768 It's not static so gcc will keep a copy callable from gdb. */
22769
22770 void
22771 dump_die (struct die_info *die, int max_level)
22772 {
22773 dump_die_1 (gdb_stdlog, 0, max_level, die);
22774 }
22775
22776 static void
22777 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22778 {
22779 void **slot;
22780
22781 slot = htab_find_slot_with_hash (cu->die_hash, die,
22782 to_underlying (die->sect_off),
22783 INSERT);
22784
22785 *slot = die;
22786 }
22787
22788 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22789 required kind. */
22790
22791 static sect_offset
22792 dwarf2_get_ref_die_offset (const struct attribute *attr)
22793 {
22794 if (attr_form_is_ref (attr))
22795 return (sect_offset) DW_UNSND (attr);
22796
22797 complaint (&symfile_complaints,
22798 _("unsupported die ref attribute form: '%s'"),
22799 dwarf_form_name (attr->form));
22800 return {};
22801 }
22802
22803 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22804 * the value held by the attribute is not constant. */
22805
22806 static LONGEST
22807 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22808 {
22809 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22810 return DW_SND (attr);
22811 else if (attr->form == DW_FORM_udata
22812 || attr->form == DW_FORM_data1
22813 || attr->form == DW_FORM_data2
22814 || attr->form == DW_FORM_data4
22815 || attr->form == DW_FORM_data8)
22816 return DW_UNSND (attr);
22817 else
22818 {
22819 /* For DW_FORM_data16 see attr_form_is_constant. */
22820 complaint (&symfile_complaints,
22821 _("Attribute value is not a constant (%s)"),
22822 dwarf_form_name (attr->form));
22823 return default_value;
22824 }
22825 }
22826
22827 /* Follow reference or signature attribute ATTR of SRC_DIE.
22828 On entry *REF_CU is the CU of SRC_DIE.
22829 On exit *REF_CU is the CU of the result. */
22830
22831 static struct die_info *
22832 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22833 struct dwarf2_cu **ref_cu)
22834 {
22835 struct die_info *die;
22836
22837 if (attr_form_is_ref (attr))
22838 die = follow_die_ref (src_die, attr, ref_cu);
22839 else if (attr->form == DW_FORM_ref_sig8)
22840 die = follow_die_sig (src_die, attr, ref_cu);
22841 else
22842 {
22843 dump_die_for_error (src_die);
22844 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22845 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22846 }
22847
22848 return die;
22849 }
22850
22851 /* Follow reference OFFSET.
22852 On entry *REF_CU is the CU of the source die referencing OFFSET.
22853 On exit *REF_CU is the CU of the result.
22854 Returns NULL if OFFSET is invalid. */
22855
22856 static struct die_info *
22857 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22858 struct dwarf2_cu **ref_cu)
22859 {
22860 struct die_info temp_die;
22861 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22862 struct dwarf2_per_objfile *dwarf2_per_objfile
22863 = cu->per_cu->dwarf2_per_objfile;
22864
22865 gdb_assert (cu->per_cu != NULL);
22866
22867 target_cu = cu;
22868
22869 if (cu->per_cu->is_debug_types)
22870 {
22871 /* .debug_types CUs cannot reference anything outside their CU.
22872 If they need to, they have to reference a signatured type via
22873 DW_FORM_ref_sig8. */
22874 if (!offset_in_cu_p (&cu->header, sect_off))
22875 return NULL;
22876 }
22877 else if (offset_in_dwz != cu->per_cu->is_dwz
22878 || !offset_in_cu_p (&cu->header, sect_off))
22879 {
22880 struct dwarf2_per_cu_data *per_cu;
22881
22882 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22883 dwarf2_per_objfile);
22884
22885 /* If necessary, add it to the queue and load its DIEs. */
22886 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22887 load_full_comp_unit (per_cu, cu->language);
22888
22889 target_cu = per_cu->cu;
22890 }
22891 else if (cu->dies == NULL)
22892 {
22893 /* We're loading full DIEs during partial symbol reading. */
22894 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22895 load_full_comp_unit (cu->per_cu, language_minimal);
22896 }
22897
22898 *ref_cu = target_cu;
22899 temp_die.sect_off = sect_off;
22900 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22901 &temp_die,
22902 to_underlying (sect_off));
22903 }
22904
22905 /* Follow reference attribute ATTR of SRC_DIE.
22906 On entry *REF_CU is the CU of SRC_DIE.
22907 On exit *REF_CU is the CU of the result. */
22908
22909 static struct die_info *
22910 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22911 struct dwarf2_cu **ref_cu)
22912 {
22913 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22914 struct dwarf2_cu *cu = *ref_cu;
22915 struct die_info *die;
22916
22917 die = follow_die_offset (sect_off,
22918 (attr->form == DW_FORM_GNU_ref_alt
22919 || cu->per_cu->is_dwz),
22920 ref_cu);
22921 if (!die)
22922 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22923 "at %s [in module %s]"),
22924 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22925 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22926
22927 return die;
22928 }
22929
22930 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22931 Returned value is intended for DW_OP_call*. Returned
22932 dwarf2_locexpr_baton->data has lifetime of
22933 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22934
22935 struct dwarf2_locexpr_baton
22936 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22937 struct dwarf2_per_cu_data *per_cu,
22938 CORE_ADDR (*get_frame_pc) (void *baton),
22939 void *baton)
22940 {
22941 struct dwarf2_cu *cu;
22942 struct die_info *die;
22943 struct attribute *attr;
22944 struct dwarf2_locexpr_baton retval;
22945 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22946 struct objfile *objfile = dwarf2_per_objfile->objfile;
22947
22948 if (per_cu->cu == NULL)
22949 load_cu (per_cu);
22950 cu = per_cu->cu;
22951 if (cu == NULL)
22952 {
22953 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22954 Instead just throw an error, not much else we can do. */
22955 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22956 sect_offset_str (sect_off), objfile_name (objfile));
22957 }
22958
22959 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22960 if (!die)
22961 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22962 sect_offset_str (sect_off), objfile_name (objfile));
22963
22964 attr = dwarf2_attr (die, DW_AT_location, cu);
22965 if (!attr)
22966 {
22967 /* DWARF: "If there is no such attribute, then there is no effect.".
22968 DATA is ignored if SIZE is 0. */
22969
22970 retval.data = NULL;
22971 retval.size = 0;
22972 }
22973 else if (attr_form_is_section_offset (attr))
22974 {
22975 struct dwarf2_loclist_baton loclist_baton;
22976 CORE_ADDR pc = (*get_frame_pc) (baton);
22977 size_t size;
22978
22979 fill_in_loclist_baton (cu, &loclist_baton, attr);
22980
22981 retval.data = dwarf2_find_location_expression (&loclist_baton,
22982 &size, pc);
22983 retval.size = size;
22984 }
22985 else
22986 {
22987 if (!attr_form_is_block (attr))
22988 error (_("Dwarf Error: DIE at %s referenced in module %s "
22989 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22990 sect_offset_str (sect_off), objfile_name (objfile));
22991
22992 retval.data = DW_BLOCK (attr)->data;
22993 retval.size = DW_BLOCK (attr)->size;
22994 }
22995 retval.per_cu = cu->per_cu;
22996
22997 age_cached_comp_units (dwarf2_per_objfile);
22998
22999 return retval;
23000 }
23001
23002 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23003 offset. */
23004
23005 struct dwarf2_locexpr_baton
23006 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23007 struct dwarf2_per_cu_data *per_cu,
23008 CORE_ADDR (*get_frame_pc) (void *baton),
23009 void *baton)
23010 {
23011 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23012
23013 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23014 }
23015
23016 /* Write a constant of a given type as target-ordered bytes into
23017 OBSTACK. */
23018
23019 static const gdb_byte *
23020 write_constant_as_bytes (struct obstack *obstack,
23021 enum bfd_endian byte_order,
23022 struct type *type,
23023 ULONGEST value,
23024 LONGEST *len)
23025 {
23026 gdb_byte *result;
23027
23028 *len = TYPE_LENGTH (type);
23029 result = (gdb_byte *) obstack_alloc (obstack, *len);
23030 store_unsigned_integer (result, *len, byte_order, value);
23031
23032 return result;
23033 }
23034
23035 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23036 pointer to the constant bytes and set LEN to the length of the
23037 data. If memory is needed, allocate it on OBSTACK. If the DIE
23038 does not have a DW_AT_const_value, return NULL. */
23039
23040 const gdb_byte *
23041 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23042 struct dwarf2_per_cu_data *per_cu,
23043 struct obstack *obstack,
23044 LONGEST *len)
23045 {
23046 struct dwarf2_cu *cu;
23047 struct die_info *die;
23048 struct attribute *attr;
23049 const gdb_byte *result = NULL;
23050 struct type *type;
23051 LONGEST value;
23052 enum bfd_endian byte_order;
23053 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23054
23055 if (per_cu->cu == NULL)
23056 load_cu (per_cu);
23057 cu = per_cu->cu;
23058 if (cu == NULL)
23059 {
23060 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23061 Instead just throw an error, not much else we can do. */
23062 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23063 sect_offset_str (sect_off), objfile_name (objfile));
23064 }
23065
23066 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23067 if (!die)
23068 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23069 sect_offset_str (sect_off), objfile_name (objfile));
23070
23071 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23072 if (attr == NULL)
23073 return NULL;
23074
23075 byte_order = (bfd_big_endian (objfile->obfd)
23076 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23077
23078 switch (attr->form)
23079 {
23080 case DW_FORM_addr:
23081 case DW_FORM_GNU_addr_index:
23082 {
23083 gdb_byte *tem;
23084
23085 *len = cu->header.addr_size;
23086 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23087 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23088 result = tem;
23089 }
23090 break;
23091 case DW_FORM_string:
23092 case DW_FORM_strp:
23093 case DW_FORM_GNU_str_index:
23094 case DW_FORM_GNU_strp_alt:
23095 /* DW_STRING is already allocated on the objfile obstack, point
23096 directly to it. */
23097 result = (const gdb_byte *) DW_STRING (attr);
23098 *len = strlen (DW_STRING (attr));
23099 break;
23100 case DW_FORM_block1:
23101 case DW_FORM_block2:
23102 case DW_FORM_block4:
23103 case DW_FORM_block:
23104 case DW_FORM_exprloc:
23105 case DW_FORM_data16:
23106 result = DW_BLOCK (attr)->data;
23107 *len = DW_BLOCK (attr)->size;
23108 break;
23109
23110 /* The DW_AT_const_value attributes are supposed to carry the
23111 symbol's value "represented as it would be on the target
23112 architecture." By the time we get here, it's already been
23113 converted to host endianness, so we just need to sign- or
23114 zero-extend it as appropriate. */
23115 case DW_FORM_data1:
23116 type = die_type (die, cu);
23117 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23118 if (result == NULL)
23119 result = write_constant_as_bytes (obstack, byte_order,
23120 type, value, len);
23121 break;
23122 case DW_FORM_data2:
23123 type = die_type (die, cu);
23124 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23125 if (result == NULL)
23126 result = write_constant_as_bytes (obstack, byte_order,
23127 type, value, len);
23128 break;
23129 case DW_FORM_data4:
23130 type = die_type (die, cu);
23131 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23132 if (result == NULL)
23133 result = write_constant_as_bytes (obstack, byte_order,
23134 type, value, len);
23135 break;
23136 case DW_FORM_data8:
23137 type = die_type (die, cu);
23138 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23139 if (result == NULL)
23140 result = write_constant_as_bytes (obstack, byte_order,
23141 type, value, len);
23142 break;
23143
23144 case DW_FORM_sdata:
23145 case DW_FORM_implicit_const:
23146 type = die_type (die, cu);
23147 result = write_constant_as_bytes (obstack, byte_order,
23148 type, DW_SND (attr), len);
23149 break;
23150
23151 case DW_FORM_udata:
23152 type = die_type (die, cu);
23153 result = write_constant_as_bytes (obstack, byte_order,
23154 type, DW_UNSND (attr), len);
23155 break;
23156
23157 default:
23158 complaint (&symfile_complaints,
23159 _("unsupported const value attribute form: '%s'"),
23160 dwarf_form_name (attr->form));
23161 break;
23162 }
23163
23164 return result;
23165 }
23166
23167 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23168 valid type for this die is found. */
23169
23170 struct type *
23171 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23172 struct dwarf2_per_cu_data *per_cu)
23173 {
23174 struct dwarf2_cu *cu;
23175 struct die_info *die;
23176
23177 if (per_cu->cu == NULL)
23178 load_cu (per_cu);
23179 cu = per_cu->cu;
23180 if (!cu)
23181 return NULL;
23182
23183 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23184 if (!die)
23185 return NULL;
23186
23187 return die_type (die, cu);
23188 }
23189
23190 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23191 PER_CU. */
23192
23193 struct type *
23194 dwarf2_get_die_type (cu_offset die_offset,
23195 struct dwarf2_per_cu_data *per_cu)
23196 {
23197 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23198 return get_die_type_at_offset (die_offset_sect, per_cu);
23199 }
23200
23201 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23202 On entry *REF_CU is the CU of SRC_DIE.
23203 On exit *REF_CU is the CU of the result.
23204 Returns NULL if the referenced DIE isn't found. */
23205
23206 static struct die_info *
23207 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23208 struct dwarf2_cu **ref_cu)
23209 {
23210 struct die_info temp_die;
23211 struct dwarf2_cu *sig_cu;
23212 struct die_info *die;
23213
23214 /* While it might be nice to assert sig_type->type == NULL here,
23215 we can get here for DW_AT_imported_declaration where we need
23216 the DIE not the type. */
23217
23218 /* If necessary, add it to the queue and load its DIEs. */
23219
23220 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23221 read_signatured_type (sig_type);
23222
23223 sig_cu = sig_type->per_cu.cu;
23224 gdb_assert (sig_cu != NULL);
23225 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23226 temp_die.sect_off = sig_type->type_offset_in_section;
23227 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23228 to_underlying (temp_die.sect_off));
23229 if (die)
23230 {
23231 struct dwarf2_per_objfile *dwarf2_per_objfile
23232 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23233
23234 /* For .gdb_index version 7 keep track of included TUs.
23235 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23236 if (dwarf2_per_objfile->index_table != NULL
23237 && dwarf2_per_objfile->index_table->version <= 7)
23238 {
23239 VEC_safe_push (dwarf2_per_cu_ptr,
23240 (*ref_cu)->per_cu->imported_symtabs,
23241 sig_cu->per_cu);
23242 }
23243
23244 *ref_cu = sig_cu;
23245 return die;
23246 }
23247
23248 return NULL;
23249 }
23250
23251 /* Follow signatured type referenced by ATTR in SRC_DIE.
23252 On entry *REF_CU is the CU of SRC_DIE.
23253 On exit *REF_CU is the CU of the result.
23254 The result is the DIE of the type.
23255 If the referenced type cannot be found an error is thrown. */
23256
23257 static struct die_info *
23258 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23259 struct dwarf2_cu **ref_cu)
23260 {
23261 ULONGEST signature = DW_SIGNATURE (attr);
23262 struct signatured_type *sig_type;
23263 struct die_info *die;
23264
23265 gdb_assert (attr->form == DW_FORM_ref_sig8);
23266
23267 sig_type = lookup_signatured_type (*ref_cu, signature);
23268 /* sig_type will be NULL if the signatured type is missing from
23269 the debug info. */
23270 if (sig_type == NULL)
23271 {
23272 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23273 " from DIE at %s [in module %s]"),
23274 hex_string (signature), sect_offset_str (src_die->sect_off),
23275 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23276 }
23277
23278 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23279 if (die == NULL)
23280 {
23281 dump_die_for_error (src_die);
23282 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23283 " from DIE at %s [in module %s]"),
23284 hex_string (signature), sect_offset_str (src_die->sect_off),
23285 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23286 }
23287
23288 return die;
23289 }
23290
23291 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23292 reading in and processing the type unit if necessary. */
23293
23294 static struct type *
23295 get_signatured_type (struct die_info *die, ULONGEST signature,
23296 struct dwarf2_cu *cu)
23297 {
23298 struct dwarf2_per_objfile *dwarf2_per_objfile
23299 = cu->per_cu->dwarf2_per_objfile;
23300 struct signatured_type *sig_type;
23301 struct dwarf2_cu *type_cu;
23302 struct die_info *type_die;
23303 struct type *type;
23304
23305 sig_type = lookup_signatured_type (cu, signature);
23306 /* sig_type will be NULL if the signatured type is missing from
23307 the debug info. */
23308 if (sig_type == NULL)
23309 {
23310 complaint (&symfile_complaints,
23311 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23312 " from DIE at %s [in module %s]"),
23313 hex_string (signature), sect_offset_str (die->sect_off),
23314 objfile_name (dwarf2_per_objfile->objfile));
23315 return build_error_marker_type (cu, die);
23316 }
23317
23318 /* If we already know the type we're done. */
23319 if (sig_type->type != NULL)
23320 return sig_type->type;
23321
23322 type_cu = cu;
23323 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23324 if (type_die != NULL)
23325 {
23326 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23327 is created. This is important, for example, because for c++ classes
23328 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23329 type = read_type_die (type_die, type_cu);
23330 if (type == NULL)
23331 {
23332 complaint (&symfile_complaints,
23333 _("Dwarf Error: Cannot build signatured type %s"
23334 " referenced from DIE at %s [in module %s]"),
23335 hex_string (signature), sect_offset_str (die->sect_off),
23336 objfile_name (dwarf2_per_objfile->objfile));
23337 type = build_error_marker_type (cu, die);
23338 }
23339 }
23340 else
23341 {
23342 complaint (&symfile_complaints,
23343 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23344 " from DIE at %s [in module %s]"),
23345 hex_string (signature), sect_offset_str (die->sect_off),
23346 objfile_name (dwarf2_per_objfile->objfile));
23347 type = build_error_marker_type (cu, die);
23348 }
23349 sig_type->type = type;
23350
23351 return type;
23352 }
23353
23354 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23355 reading in and processing the type unit if necessary. */
23356
23357 static struct type *
23358 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23359 struct dwarf2_cu *cu) /* ARI: editCase function */
23360 {
23361 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23362 if (attr_form_is_ref (attr))
23363 {
23364 struct dwarf2_cu *type_cu = cu;
23365 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23366
23367 return read_type_die (type_die, type_cu);
23368 }
23369 else if (attr->form == DW_FORM_ref_sig8)
23370 {
23371 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23372 }
23373 else
23374 {
23375 struct dwarf2_per_objfile *dwarf2_per_objfile
23376 = cu->per_cu->dwarf2_per_objfile;
23377
23378 complaint (&symfile_complaints,
23379 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23380 " at %s [in module %s]"),
23381 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23382 objfile_name (dwarf2_per_objfile->objfile));
23383 return build_error_marker_type (cu, die);
23384 }
23385 }
23386
23387 /* Load the DIEs associated with type unit PER_CU into memory. */
23388
23389 static void
23390 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23391 {
23392 struct signatured_type *sig_type;
23393
23394 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23395 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23396
23397 /* We have the per_cu, but we need the signatured_type.
23398 Fortunately this is an easy translation. */
23399 gdb_assert (per_cu->is_debug_types);
23400 sig_type = (struct signatured_type *) per_cu;
23401
23402 gdb_assert (per_cu->cu == NULL);
23403
23404 read_signatured_type (sig_type);
23405
23406 gdb_assert (per_cu->cu != NULL);
23407 }
23408
23409 /* die_reader_func for read_signatured_type.
23410 This is identical to load_full_comp_unit_reader,
23411 but is kept separate for now. */
23412
23413 static void
23414 read_signatured_type_reader (const struct die_reader_specs *reader,
23415 const gdb_byte *info_ptr,
23416 struct die_info *comp_unit_die,
23417 int has_children,
23418 void *data)
23419 {
23420 struct dwarf2_cu *cu = reader->cu;
23421
23422 gdb_assert (cu->die_hash == NULL);
23423 cu->die_hash =
23424 htab_create_alloc_ex (cu->header.length / 12,
23425 die_hash,
23426 die_eq,
23427 NULL,
23428 &cu->comp_unit_obstack,
23429 hashtab_obstack_allocate,
23430 dummy_obstack_deallocate);
23431
23432 if (has_children)
23433 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23434 &info_ptr, comp_unit_die);
23435 cu->dies = comp_unit_die;
23436 /* comp_unit_die is not stored in die_hash, no need. */
23437
23438 /* We try not to read any attributes in this function, because not
23439 all CUs needed for references have been loaded yet, and symbol
23440 table processing isn't initialized. But we have to set the CU language,
23441 or we won't be able to build types correctly.
23442 Similarly, if we do not read the producer, we can not apply
23443 producer-specific interpretation. */
23444 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23445 }
23446
23447 /* Read in a signatured type and build its CU and DIEs.
23448 If the type is a stub for the real type in a DWO file,
23449 read in the real type from the DWO file as well. */
23450
23451 static void
23452 read_signatured_type (struct signatured_type *sig_type)
23453 {
23454 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23455
23456 gdb_assert (per_cu->is_debug_types);
23457 gdb_assert (per_cu->cu == NULL);
23458
23459 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23460 read_signatured_type_reader, NULL);
23461 sig_type->per_cu.tu_read = 1;
23462 }
23463
23464 /* Decode simple location descriptions.
23465 Given a pointer to a dwarf block that defines a location, compute
23466 the location and return the value.
23467
23468 NOTE drow/2003-11-18: This function is called in two situations
23469 now: for the address of static or global variables (partial symbols
23470 only) and for offsets into structures which are expected to be
23471 (more or less) constant. The partial symbol case should go away,
23472 and only the constant case should remain. That will let this
23473 function complain more accurately. A few special modes are allowed
23474 without complaint for global variables (for instance, global
23475 register values and thread-local values).
23476
23477 A location description containing no operations indicates that the
23478 object is optimized out. The return value is 0 for that case.
23479 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23480 callers will only want a very basic result and this can become a
23481 complaint.
23482
23483 Note that stack[0] is unused except as a default error return. */
23484
23485 static CORE_ADDR
23486 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23487 {
23488 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23489 size_t i;
23490 size_t size = blk->size;
23491 const gdb_byte *data = blk->data;
23492 CORE_ADDR stack[64];
23493 int stacki;
23494 unsigned int bytes_read, unsnd;
23495 gdb_byte op;
23496
23497 i = 0;
23498 stacki = 0;
23499 stack[stacki] = 0;
23500 stack[++stacki] = 0;
23501
23502 while (i < size)
23503 {
23504 op = data[i++];
23505 switch (op)
23506 {
23507 case DW_OP_lit0:
23508 case DW_OP_lit1:
23509 case DW_OP_lit2:
23510 case DW_OP_lit3:
23511 case DW_OP_lit4:
23512 case DW_OP_lit5:
23513 case DW_OP_lit6:
23514 case DW_OP_lit7:
23515 case DW_OP_lit8:
23516 case DW_OP_lit9:
23517 case DW_OP_lit10:
23518 case DW_OP_lit11:
23519 case DW_OP_lit12:
23520 case DW_OP_lit13:
23521 case DW_OP_lit14:
23522 case DW_OP_lit15:
23523 case DW_OP_lit16:
23524 case DW_OP_lit17:
23525 case DW_OP_lit18:
23526 case DW_OP_lit19:
23527 case DW_OP_lit20:
23528 case DW_OP_lit21:
23529 case DW_OP_lit22:
23530 case DW_OP_lit23:
23531 case DW_OP_lit24:
23532 case DW_OP_lit25:
23533 case DW_OP_lit26:
23534 case DW_OP_lit27:
23535 case DW_OP_lit28:
23536 case DW_OP_lit29:
23537 case DW_OP_lit30:
23538 case DW_OP_lit31:
23539 stack[++stacki] = op - DW_OP_lit0;
23540 break;
23541
23542 case DW_OP_reg0:
23543 case DW_OP_reg1:
23544 case DW_OP_reg2:
23545 case DW_OP_reg3:
23546 case DW_OP_reg4:
23547 case DW_OP_reg5:
23548 case DW_OP_reg6:
23549 case DW_OP_reg7:
23550 case DW_OP_reg8:
23551 case DW_OP_reg9:
23552 case DW_OP_reg10:
23553 case DW_OP_reg11:
23554 case DW_OP_reg12:
23555 case DW_OP_reg13:
23556 case DW_OP_reg14:
23557 case DW_OP_reg15:
23558 case DW_OP_reg16:
23559 case DW_OP_reg17:
23560 case DW_OP_reg18:
23561 case DW_OP_reg19:
23562 case DW_OP_reg20:
23563 case DW_OP_reg21:
23564 case DW_OP_reg22:
23565 case DW_OP_reg23:
23566 case DW_OP_reg24:
23567 case DW_OP_reg25:
23568 case DW_OP_reg26:
23569 case DW_OP_reg27:
23570 case DW_OP_reg28:
23571 case DW_OP_reg29:
23572 case DW_OP_reg30:
23573 case DW_OP_reg31:
23574 stack[++stacki] = op - DW_OP_reg0;
23575 if (i < size)
23576 dwarf2_complex_location_expr_complaint ();
23577 break;
23578
23579 case DW_OP_regx:
23580 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23581 i += bytes_read;
23582 stack[++stacki] = unsnd;
23583 if (i < size)
23584 dwarf2_complex_location_expr_complaint ();
23585 break;
23586
23587 case DW_OP_addr:
23588 stack[++stacki] = read_address (objfile->obfd, &data[i],
23589 cu, &bytes_read);
23590 i += bytes_read;
23591 break;
23592
23593 case DW_OP_const1u:
23594 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23595 i += 1;
23596 break;
23597
23598 case DW_OP_const1s:
23599 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23600 i += 1;
23601 break;
23602
23603 case DW_OP_const2u:
23604 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23605 i += 2;
23606 break;
23607
23608 case DW_OP_const2s:
23609 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23610 i += 2;
23611 break;
23612
23613 case DW_OP_const4u:
23614 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23615 i += 4;
23616 break;
23617
23618 case DW_OP_const4s:
23619 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23620 i += 4;
23621 break;
23622
23623 case DW_OP_const8u:
23624 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23625 i += 8;
23626 break;
23627
23628 case DW_OP_constu:
23629 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23630 &bytes_read);
23631 i += bytes_read;
23632 break;
23633
23634 case DW_OP_consts:
23635 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23636 i += bytes_read;
23637 break;
23638
23639 case DW_OP_dup:
23640 stack[stacki + 1] = stack[stacki];
23641 stacki++;
23642 break;
23643
23644 case DW_OP_plus:
23645 stack[stacki - 1] += stack[stacki];
23646 stacki--;
23647 break;
23648
23649 case DW_OP_plus_uconst:
23650 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23651 &bytes_read);
23652 i += bytes_read;
23653 break;
23654
23655 case DW_OP_minus:
23656 stack[stacki - 1] -= stack[stacki];
23657 stacki--;
23658 break;
23659
23660 case DW_OP_deref:
23661 /* If we're not the last op, then we definitely can't encode
23662 this using GDB's address_class enum. This is valid for partial
23663 global symbols, although the variable's address will be bogus
23664 in the psymtab. */
23665 if (i < size)
23666 dwarf2_complex_location_expr_complaint ();
23667 break;
23668
23669 case DW_OP_GNU_push_tls_address:
23670 case DW_OP_form_tls_address:
23671 /* The top of the stack has the offset from the beginning
23672 of the thread control block at which the variable is located. */
23673 /* Nothing should follow this operator, so the top of stack would
23674 be returned. */
23675 /* This is valid for partial global symbols, but the variable's
23676 address will be bogus in the psymtab. Make it always at least
23677 non-zero to not look as a variable garbage collected by linker
23678 which have DW_OP_addr 0. */
23679 if (i < size)
23680 dwarf2_complex_location_expr_complaint ();
23681 stack[stacki]++;
23682 break;
23683
23684 case DW_OP_GNU_uninit:
23685 break;
23686
23687 case DW_OP_GNU_addr_index:
23688 case DW_OP_GNU_const_index:
23689 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23690 &bytes_read);
23691 i += bytes_read;
23692 break;
23693
23694 default:
23695 {
23696 const char *name = get_DW_OP_name (op);
23697
23698 if (name)
23699 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23700 name);
23701 else
23702 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23703 op);
23704 }
23705
23706 return (stack[stacki]);
23707 }
23708
23709 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23710 outside of the allocated space. Also enforce minimum>0. */
23711 if (stacki >= ARRAY_SIZE (stack) - 1)
23712 {
23713 complaint (&symfile_complaints,
23714 _("location description stack overflow"));
23715 return 0;
23716 }
23717
23718 if (stacki <= 0)
23719 {
23720 complaint (&symfile_complaints,
23721 _("location description stack underflow"));
23722 return 0;
23723 }
23724 }
23725 return (stack[stacki]);
23726 }
23727
23728 /* memory allocation interface */
23729
23730 static struct dwarf_block *
23731 dwarf_alloc_block (struct dwarf2_cu *cu)
23732 {
23733 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23734 }
23735
23736 static struct die_info *
23737 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23738 {
23739 struct die_info *die;
23740 size_t size = sizeof (struct die_info);
23741
23742 if (num_attrs > 1)
23743 size += (num_attrs - 1) * sizeof (struct attribute);
23744
23745 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23746 memset (die, 0, sizeof (struct die_info));
23747 return (die);
23748 }
23749
23750 \f
23751 /* Macro support. */
23752
23753 /* Return file name relative to the compilation directory of file number I in
23754 *LH's file name table. The result is allocated using xmalloc; the caller is
23755 responsible for freeing it. */
23756
23757 static char *
23758 file_file_name (int file, struct line_header *lh)
23759 {
23760 /* Is the file number a valid index into the line header's file name
23761 table? Remember that file numbers start with one, not zero. */
23762 if (1 <= file && file <= lh->file_names.size ())
23763 {
23764 const file_entry &fe = lh->file_names[file - 1];
23765
23766 if (!IS_ABSOLUTE_PATH (fe.name))
23767 {
23768 const char *dir = fe.include_dir (lh);
23769 if (dir != NULL)
23770 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23771 }
23772 return xstrdup (fe.name);
23773 }
23774 else
23775 {
23776 /* The compiler produced a bogus file number. We can at least
23777 record the macro definitions made in the file, even if we
23778 won't be able to find the file by name. */
23779 char fake_name[80];
23780
23781 xsnprintf (fake_name, sizeof (fake_name),
23782 "<bad macro file number %d>", file);
23783
23784 complaint (&symfile_complaints,
23785 _("bad file number in macro information (%d)"),
23786 file);
23787
23788 return xstrdup (fake_name);
23789 }
23790 }
23791
23792 /* Return the full name of file number I in *LH's file name table.
23793 Use COMP_DIR as the name of the current directory of the
23794 compilation. The result is allocated using xmalloc; the caller is
23795 responsible for freeing it. */
23796 static char *
23797 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23798 {
23799 /* Is the file number a valid index into the line header's file name
23800 table? Remember that file numbers start with one, not zero. */
23801 if (1 <= file && file <= lh->file_names.size ())
23802 {
23803 char *relative = file_file_name (file, lh);
23804
23805 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23806 return relative;
23807 return reconcat (relative, comp_dir, SLASH_STRING,
23808 relative, (char *) NULL);
23809 }
23810 else
23811 return file_file_name (file, lh);
23812 }
23813
23814
23815 static struct macro_source_file *
23816 macro_start_file (int file, int line,
23817 struct macro_source_file *current_file,
23818 struct line_header *lh)
23819 {
23820 /* File name relative to the compilation directory of this source file. */
23821 char *file_name = file_file_name (file, lh);
23822
23823 if (! current_file)
23824 {
23825 /* Note: We don't create a macro table for this compilation unit
23826 at all until we actually get a filename. */
23827 struct macro_table *macro_table = get_macro_table ();
23828
23829 /* If we have no current file, then this must be the start_file
23830 directive for the compilation unit's main source file. */
23831 current_file = macro_set_main (macro_table, file_name);
23832 macro_define_special (macro_table);
23833 }
23834 else
23835 current_file = macro_include (current_file, line, file_name);
23836
23837 xfree (file_name);
23838
23839 return current_file;
23840 }
23841
23842 static const char *
23843 consume_improper_spaces (const char *p, const char *body)
23844 {
23845 if (*p == ' ')
23846 {
23847 complaint (&symfile_complaints,
23848 _("macro definition contains spaces "
23849 "in formal argument list:\n`%s'"),
23850 body);
23851
23852 while (*p == ' ')
23853 p++;
23854 }
23855
23856 return p;
23857 }
23858
23859
23860 static void
23861 parse_macro_definition (struct macro_source_file *file, int line,
23862 const char *body)
23863 {
23864 const char *p;
23865
23866 /* The body string takes one of two forms. For object-like macro
23867 definitions, it should be:
23868
23869 <macro name> " " <definition>
23870
23871 For function-like macro definitions, it should be:
23872
23873 <macro name> "() " <definition>
23874 or
23875 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23876
23877 Spaces may appear only where explicitly indicated, and in the
23878 <definition>.
23879
23880 The Dwarf 2 spec says that an object-like macro's name is always
23881 followed by a space, but versions of GCC around March 2002 omit
23882 the space when the macro's definition is the empty string.
23883
23884 The Dwarf 2 spec says that there should be no spaces between the
23885 formal arguments in a function-like macro's formal argument list,
23886 but versions of GCC around March 2002 include spaces after the
23887 commas. */
23888
23889
23890 /* Find the extent of the macro name. The macro name is terminated
23891 by either a space or null character (for an object-like macro) or
23892 an opening paren (for a function-like macro). */
23893 for (p = body; *p; p++)
23894 if (*p == ' ' || *p == '(')
23895 break;
23896
23897 if (*p == ' ' || *p == '\0')
23898 {
23899 /* It's an object-like macro. */
23900 int name_len = p - body;
23901 char *name = savestring (body, name_len);
23902 const char *replacement;
23903
23904 if (*p == ' ')
23905 replacement = body + name_len + 1;
23906 else
23907 {
23908 dwarf2_macro_malformed_definition_complaint (body);
23909 replacement = body + name_len;
23910 }
23911
23912 macro_define_object (file, line, name, replacement);
23913
23914 xfree (name);
23915 }
23916 else if (*p == '(')
23917 {
23918 /* It's a function-like macro. */
23919 char *name = savestring (body, p - body);
23920 int argc = 0;
23921 int argv_size = 1;
23922 char **argv = XNEWVEC (char *, argv_size);
23923
23924 p++;
23925
23926 p = consume_improper_spaces (p, body);
23927
23928 /* Parse the formal argument list. */
23929 while (*p && *p != ')')
23930 {
23931 /* Find the extent of the current argument name. */
23932 const char *arg_start = p;
23933
23934 while (*p && *p != ',' && *p != ')' && *p != ' ')
23935 p++;
23936
23937 if (! *p || p == arg_start)
23938 dwarf2_macro_malformed_definition_complaint (body);
23939 else
23940 {
23941 /* Make sure argv has room for the new argument. */
23942 if (argc >= argv_size)
23943 {
23944 argv_size *= 2;
23945 argv = XRESIZEVEC (char *, argv, argv_size);
23946 }
23947
23948 argv[argc++] = savestring (arg_start, p - arg_start);
23949 }
23950
23951 p = consume_improper_spaces (p, body);
23952
23953 /* Consume the comma, if present. */
23954 if (*p == ',')
23955 {
23956 p++;
23957
23958 p = consume_improper_spaces (p, body);
23959 }
23960 }
23961
23962 if (*p == ')')
23963 {
23964 p++;
23965
23966 if (*p == ' ')
23967 /* Perfectly formed definition, no complaints. */
23968 macro_define_function (file, line, name,
23969 argc, (const char **) argv,
23970 p + 1);
23971 else if (*p == '\0')
23972 {
23973 /* Complain, but do define it. */
23974 dwarf2_macro_malformed_definition_complaint (body);
23975 macro_define_function (file, line, name,
23976 argc, (const char **) argv,
23977 p);
23978 }
23979 else
23980 /* Just complain. */
23981 dwarf2_macro_malformed_definition_complaint (body);
23982 }
23983 else
23984 /* Just complain. */
23985 dwarf2_macro_malformed_definition_complaint (body);
23986
23987 xfree (name);
23988 {
23989 int i;
23990
23991 for (i = 0; i < argc; i++)
23992 xfree (argv[i]);
23993 }
23994 xfree (argv);
23995 }
23996 else
23997 dwarf2_macro_malformed_definition_complaint (body);
23998 }
23999
24000 /* Skip some bytes from BYTES according to the form given in FORM.
24001 Returns the new pointer. */
24002
24003 static const gdb_byte *
24004 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24005 enum dwarf_form form,
24006 unsigned int offset_size,
24007 struct dwarf2_section_info *section)
24008 {
24009 unsigned int bytes_read;
24010
24011 switch (form)
24012 {
24013 case DW_FORM_data1:
24014 case DW_FORM_flag:
24015 ++bytes;
24016 break;
24017
24018 case DW_FORM_data2:
24019 bytes += 2;
24020 break;
24021
24022 case DW_FORM_data4:
24023 bytes += 4;
24024 break;
24025
24026 case DW_FORM_data8:
24027 bytes += 8;
24028 break;
24029
24030 case DW_FORM_data16:
24031 bytes += 16;
24032 break;
24033
24034 case DW_FORM_string:
24035 read_direct_string (abfd, bytes, &bytes_read);
24036 bytes += bytes_read;
24037 break;
24038
24039 case DW_FORM_sec_offset:
24040 case DW_FORM_strp:
24041 case DW_FORM_GNU_strp_alt:
24042 bytes += offset_size;
24043 break;
24044
24045 case DW_FORM_block:
24046 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24047 bytes += bytes_read;
24048 break;
24049
24050 case DW_FORM_block1:
24051 bytes += 1 + read_1_byte (abfd, bytes);
24052 break;
24053 case DW_FORM_block2:
24054 bytes += 2 + read_2_bytes (abfd, bytes);
24055 break;
24056 case DW_FORM_block4:
24057 bytes += 4 + read_4_bytes (abfd, bytes);
24058 break;
24059
24060 case DW_FORM_sdata:
24061 case DW_FORM_udata:
24062 case DW_FORM_GNU_addr_index:
24063 case DW_FORM_GNU_str_index:
24064 bytes = gdb_skip_leb128 (bytes, buffer_end);
24065 if (bytes == NULL)
24066 {
24067 dwarf2_section_buffer_overflow_complaint (section);
24068 return NULL;
24069 }
24070 break;
24071
24072 case DW_FORM_implicit_const:
24073 break;
24074
24075 default:
24076 {
24077 complaint (&symfile_complaints,
24078 _("invalid form 0x%x in `%s'"),
24079 form, get_section_name (section));
24080 return NULL;
24081 }
24082 }
24083
24084 return bytes;
24085 }
24086
24087 /* A helper for dwarf_decode_macros that handles skipping an unknown
24088 opcode. Returns an updated pointer to the macro data buffer; or,
24089 on error, issues a complaint and returns NULL. */
24090
24091 static const gdb_byte *
24092 skip_unknown_opcode (unsigned int opcode,
24093 const gdb_byte **opcode_definitions,
24094 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24095 bfd *abfd,
24096 unsigned int offset_size,
24097 struct dwarf2_section_info *section)
24098 {
24099 unsigned int bytes_read, i;
24100 unsigned long arg;
24101 const gdb_byte *defn;
24102
24103 if (opcode_definitions[opcode] == NULL)
24104 {
24105 complaint (&symfile_complaints,
24106 _("unrecognized DW_MACFINO opcode 0x%x"),
24107 opcode);
24108 return NULL;
24109 }
24110
24111 defn = opcode_definitions[opcode];
24112 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24113 defn += bytes_read;
24114
24115 for (i = 0; i < arg; ++i)
24116 {
24117 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24118 (enum dwarf_form) defn[i], offset_size,
24119 section);
24120 if (mac_ptr == NULL)
24121 {
24122 /* skip_form_bytes already issued the complaint. */
24123 return NULL;
24124 }
24125 }
24126
24127 return mac_ptr;
24128 }
24129
24130 /* A helper function which parses the header of a macro section.
24131 If the macro section is the extended (for now called "GNU") type,
24132 then this updates *OFFSET_SIZE. Returns a pointer to just after
24133 the header, or issues a complaint and returns NULL on error. */
24134
24135 static const gdb_byte *
24136 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24137 bfd *abfd,
24138 const gdb_byte *mac_ptr,
24139 unsigned int *offset_size,
24140 int section_is_gnu)
24141 {
24142 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24143
24144 if (section_is_gnu)
24145 {
24146 unsigned int version, flags;
24147
24148 version = read_2_bytes (abfd, mac_ptr);
24149 if (version != 4 && version != 5)
24150 {
24151 complaint (&symfile_complaints,
24152 _("unrecognized version `%d' in .debug_macro section"),
24153 version);
24154 return NULL;
24155 }
24156 mac_ptr += 2;
24157
24158 flags = read_1_byte (abfd, mac_ptr);
24159 ++mac_ptr;
24160 *offset_size = (flags & 1) ? 8 : 4;
24161
24162 if ((flags & 2) != 0)
24163 /* We don't need the line table offset. */
24164 mac_ptr += *offset_size;
24165
24166 /* Vendor opcode descriptions. */
24167 if ((flags & 4) != 0)
24168 {
24169 unsigned int i, count;
24170
24171 count = read_1_byte (abfd, mac_ptr);
24172 ++mac_ptr;
24173 for (i = 0; i < count; ++i)
24174 {
24175 unsigned int opcode, bytes_read;
24176 unsigned long arg;
24177
24178 opcode = read_1_byte (abfd, mac_ptr);
24179 ++mac_ptr;
24180 opcode_definitions[opcode] = mac_ptr;
24181 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24182 mac_ptr += bytes_read;
24183 mac_ptr += arg;
24184 }
24185 }
24186 }
24187
24188 return mac_ptr;
24189 }
24190
24191 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24192 including DW_MACRO_import. */
24193
24194 static void
24195 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24196 bfd *abfd,
24197 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24198 struct macro_source_file *current_file,
24199 struct line_header *lh,
24200 struct dwarf2_section_info *section,
24201 int section_is_gnu, int section_is_dwz,
24202 unsigned int offset_size,
24203 htab_t include_hash)
24204 {
24205 struct objfile *objfile = dwarf2_per_objfile->objfile;
24206 enum dwarf_macro_record_type macinfo_type;
24207 int at_commandline;
24208 const gdb_byte *opcode_definitions[256];
24209
24210 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24211 &offset_size, section_is_gnu);
24212 if (mac_ptr == NULL)
24213 {
24214 /* We already issued a complaint. */
24215 return;
24216 }
24217
24218 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24219 GDB is still reading the definitions from command line. First
24220 DW_MACINFO_start_file will need to be ignored as it was already executed
24221 to create CURRENT_FILE for the main source holding also the command line
24222 definitions. On first met DW_MACINFO_start_file this flag is reset to
24223 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24224
24225 at_commandline = 1;
24226
24227 do
24228 {
24229 /* Do we at least have room for a macinfo type byte? */
24230 if (mac_ptr >= mac_end)
24231 {
24232 dwarf2_section_buffer_overflow_complaint (section);
24233 break;
24234 }
24235
24236 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24237 mac_ptr++;
24238
24239 /* Note that we rely on the fact that the corresponding GNU and
24240 DWARF constants are the same. */
24241 DIAGNOSTIC_PUSH
24242 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24243 switch (macinfo_type)
24244 {
24245 /* A zero macinfo type indicates the end of the macro
24246 information. */
24247 case 0:
24248 break;
24249
24250 case DW_MACRO_define:
24251 case DW_MACRO_undef:
24252 case DW_MACRO_define_strp:
24253 case DW_MACRO_undef_strp:
24254 case DW_MACRO_define_sup:
24255 case DW_MACRO_undef_sup:
24256 {
24257 unsigned int bytes_read;
24258 int line;
24259 const char *body;
24260 int is_define;
24261
24262 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24263 mac_ptr += bytes_read;
24264
24265 if (macinfo_type == DW_MACRO_define
24266 || macinfo_type == DW_MACRO_undef)
24267 {
24268 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24269 mac_ptr += bytes_read;
24270 }
24271 else
24272 {
24273 LONGEST str_offset;
24274
24275 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24276 mac_ptr += offset_size;
24277
24278 if (macinfo_type == DW_MACRO_define_sup
24279 || macinfo_type == DW_MACRO_undef_sup
24280 || section_is_dwz)
24281 {
24282 struct dwz_file *dwz
24283 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24284
24285 body = read_indirect_string_from_dwz (objfile,
24286 dwz, str_offset);
24287 }
24288 else
24289 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24290 abfd, str_offset);
24291 }
24292
24293 is_define = (macinfo_type == DW_MACRO_define
24294 || macinfo_type == DW_MACRO_define_strp
24295 || macinfo_type == DW_MACRO_define_sup);
24296 if (! current_file)
24297 {
24298 /* DWARF violation as no main source is present. */
24299 complaint (&symfile_complaints,
24300 _("debug info with no main source gives macro %s "
24301 "on line %d: %s"),
24302 is_define ? _("definition") : _("undefinition"),
24303 line, body);
24304 break;
24305 }
24306 if ((line == 0 && !at_commandline)
24307 || (line != 0 && at_commandline))
24308 complaint (&symfile_complaints,
24309 _("debug info gives %s macro %s with %s line %d: %s"),
24310 at_commandline ? _("command-line") : _("in-file"),
24311 is_define ? _("definition") : _("undefinition"),
24312 line == 0 ? _("zero") : _("non-zero"), line, body);
24313
24314 if (is_define)
24315 parse_macro_definition (current_file, line, body);
24316 else
24317 {
24318 gdb_assert (macinfo_type == DW_MACRO_undef
24319 || macinfo_type == DW_MACRO_undef_strp
24320 || macinfo_type == DW_MACRO_undef_sup);
24321 macro_undef (current_file, line, body);
24322 }
24323 }
24324 break;
24325
24326 case DW_MACRO_start_file:
24327 {
24328 unsigned int bytes_read;
24329 int line, file;
24330
24331 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24332 mac_ptr += bytes_read;
24333 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24334 mac_ptr += bytes_read;
24335
24336 if ((line == 0 && !at_commandline)
24337 || (line != 0 && at_commandline))
24338 complaint (&symfile_complaints,
24339 _("debug info gives source %d included "
24340 "from %s at %s line %d"),
24341 file, at_commandline ? _("command-line") : _("file"),
24342 line == 0 ? _("zero") : _("non-zero"), line);
24343
24344 if (at_commandline)
24345 {
24346 /* This DW_MACRO_start_file was executed in the
24347 pass one. */
24348 at_commandline = 0;
24349 }
24350 else
24351 current_file = macro_start_file (file, line, current_file, lh);
24352 }
24353 break;
24354
24355 case DW_MACRO_end_file:
24356 if (! current_file)
24357 complaint (&symfile_complaints,
24358 _("macro debug info has an unmatched "
24359 "`close_file' directive"));
24360 else
24361 {
24362 current_file = current_file->included_by;
24363 if (! current_file)
24364 {
24365 enum dwarf_macro_record_type next_type;
24366
24367 /* GCC circa March 2002 doesn't produce the zero
24368 type byte marking the end of the compilation
24369 unit. Complain if it's not there, but exit no
24370 matter what. */
24371
24372 /* Do we at least have room for a macinfo type byte? */
24373 if (mac_ptr >= mac_end)
24374 {
24375 dwarf2_section_buffer_overflow_complaint (section);
24376 return;
24377 }
24378
24379 /* We don't increment mac_ptr here, so this is just
24380 a look-ahead. */
24381 next_type
24382 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24383 mac_ptr);
24384 if (next_type != 0)
24385 complaint (&symfile_complaints,
24386 _("no terminating 0-type entry for "
24387 "macros in `.debug_macinfo' section"));
24388
24389 return;
24390 }
24391 }
24392 break;
24393
24394 case DW_MACRO_import:
24395 case DW_MACRO_import_sup:
24396 {
24397 LONGEST offset;
24398 void **slot;
24399 bfd *include_bfd = abfd;
24400 struct dwarf2_section_info *include_section = section;
24401 const gdb_byte *include_mac_end = mac_end;
24402 int is_dwz = section_is_dwz;
24403 const gdb_byte *new_mac_ptr;
24404
24405 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24406 mac_ptr += offset_size;
24407
24408 if (macinfo_type == DW_MACRO_import_sup)
24409 {
24410 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24411
24412 dwarf2_read_section (objfile, &dwz->macro);
24413
24414 include_section = &dwz->macro;
24415 include_bfd = get_section_bfd_owner (include_section);
24416 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24417 is_dwz = 1;
24418 }
24419
24420 new_mac_ptr = include_section->buffer + offset;
24421 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24422
24423 if (*slot != NULL)
24424 {
24425 /* This has actually happened; see
24426 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24427 complaint (&symfile_complaints,
24428 _("recursive DW_MACRO_import in "
24429 ".debug_macro section"));
24430 }
24431 else
24432 {
24433 *slot = (void *) new_mac_ptr;
24434
24435 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24436 include_bfd, new_mac_ptr,
24437 include_mac_end, current_file, lh,
24438 section, section_is_gnu, is_dwz,
24439 offset_size, include_hash);
24440
24441 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24442 }
24443 }
24444 break;
24445
24446 case DW_MACINFO_vendor_ext:
24447 if (!section_is_gnu)
24448 {
24449 unsigned int bytes_read;
24450
24451 /* This reads the constant, but since we don't recognize
24452 any vendor extensions, we ignore it. */
24453 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24454 mac_ptr += bytes_read;
24455 read_direct_string (abfd, mac_ptr, &bytes_read);
24456 mac_ptr += bytes_read;
24457
24458 /* We don't recognize any vendor extensions. */
24459 break;
24460 }
24461 /* FALLTHROUGH */
24462
24463 default:
24464 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24465 mac_ptr, mac_end, abfd, offset_size,
24466 section);
24467 if (mac_ptr == NULL)
24468 return;
24469 break;
24470 }
24471 DIAGNOSTIC_POP
24472 } while (macinfo_type != 0);
24473 }
24474
24475 static void
24476 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24477 int section_is_gnu)
24478 {
24479 struct dwarf2_per_objfile *dwarf2_per_objfile
24480 = cu->per_cu->dwarf2_per_objfile;
24481 struct objfile *objfile = dwarf2_per_objfile->objfile;
24482 struct line_header *lh = cu->line_header;
24483 bfd *abfd;
24484 const gdb_byte *mac_ptr, *mac_end;
24485 struct macro_source_file *current_file = 0;
24486 enum dwarf_macro_record_type macinfo_type;
24487 unsigned int offset_size = cu->header.offset_size;
24488 const gdb_byte *opcode_definitions[256];
24489 void **slot;
24490 struct dwarf2_section_info *section;
24491 const char *section_name;
24492
24493 if (cu->dwo_unit != NULL)
24494 {
24495 if (section_is_gnu)
24496 {
24497 section = &cu->dwo_unit->dwo_file->sections.macro;
24498 section_name = ".debug_macro.dwo";
24499 }
24500 else
24501 {
24502 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24503 section_name = ".debug_macinfo.dwo";
24504 }
24505 }
24506 else
24507 {
24508 if (section_is_gnu)
24509 {
24510 section = &dwarf2_per_objfile->macro;
24511 section_name = ".debug_macro";
24512 }
24513 else
24514 {
24515 section = &dwarf2_per_objfile->macinfo;
24516 section_name = ".debug_macinfo";
24517 }
24518 }
24519
24520 dwarf2_read_section (objfile, section);
24521 if (section->buffer == NULL)
24522 {
24523 complaint (&symfile_complaints, _("missing %s section"), section_name);
24524 return;
24525 }
24526 abfd = get_section_bfd_owner (section);
24527
24528 /* First pass: Find the name of the base filename.
24529 This filename is needed in order to process all macros whose definition
24530 (or undefinition) comes from the command line. These macros are defined
24531 before the first DW_MACINFO_start_file entry, and yet still need to be
24532 associated to the base file.
24533
24534 To determine the base file name, we scan the macro definitions until we
24535 reach the first DW_MACINFO_start_file entry. We then initialize
24536 CURRENT_FILE accordingly so that any macro definition found before the
24537 first DW_MACINFO_start_file can still be associated to the base file. */
24538
24539 mac_ptr = section->buffer + offset;
24540 mac_end = section->buffer + section->size;
24541
24542 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24543 &offset_size, section_is_gnu);
24544 if (mac_ptr == NULL)
24545 {
24546 /* We already issued a complaint. */
24547 return;
24548 }
24549
24550 do
24551 {
24552 /* Do we at least have room for a macinfo type byte? */
24553 if (mac_ptr >= mac_end)
24554 {
24555 /* Complaint is printed during the second pass as GDB will probably
24556 stop the first pass earlier upon finding
24557 DW_MACINFO_start_file. */
24558 break;
24559 }
24560
24561 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24562 mac_ptr++;
24563
24564 /* Note that we rely on the fact that the corresponding GNU and
24565 DWARF constants are the same. */
24566 DIAGNOSTIC_PUSH
24567 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24568 switch (macinfo_type)
24569 {
24570 /* A zero macinfo type indicates the end of the macro
24571 information. */
24572 case 0:
24573 break;
24574
24575 case DW_MACRO_define:
24576 case DW_MACRO_undef:
24577 /* Only skip the data by MAC_PTR. */
24578 {
24579 unsigned int bytes_read;
24580
24581 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24582 mac_ptr += bytes_read;
24583 read_direct_string (abfd, mac_ptr, &bytes_read);
24584 mac_ptr += bytes_read;
24585 }
24586 break;
24587
24588 case DW_MACRO_start_file:
24589 {
24590 unsigned int bytes_read;
24591 int line, file;
24592
24593 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24594 mac_ptr += bytes_read;
24595 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24596 mac_ptr += bytes_read;
24597
24598 current_file = macro_start_file (file, line, current_file, lh);
24599 }
24600 break;
24601
24602 case DW_MACRO_end_file:
24603 /* No data to skip by MAC_PTR. */
24604 break;
24605
24606 case DW_MACRO_define_strp:
24607 case DW_MACRO_undef_strp:
24608 case DW_MACRO_define_sup:
24609 case DW_MACRO_undef_sup:
24610 {
24611 unsigned int bytes_read;
24612
24613 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24614 mac_ptr += bytes_read;
24615 mac_ptr += offset_size;
24616 }
24617 break;
24618
24619 case DW_MACRO_import:
24620 case DW_MACRO_import_sup:
24621 /* Note that, according to the spec, a transparent include
24622 chain cannot call DW_MACRO_start_file. So, we can just
24623 skip this opcode. */
24624 mac_ptr += offset_size;
24625 break;
24626
24627 case DW_MACINFO_vendor_ext:
24628 /* Only skip the data by MAC_PTR. */
24629 if (!section_is_gnu)
24630 {
24631 unsigned int bytes_read;
24632
24633 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24634 mac_ptr += bytes_read;
24635 read_direct_string (abfd, mac_ptr, &bytes_read);
24636 mac_ptr += bytes_read;
24637 }
24638 /* FALLTHROUGH */
24639
24640 default:
24641 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24642 mac_ptr, mac_end, abfd, offset_size,
24643 section);
24644 if (mac_ptr == NULL)
24645 return;
24646 break;
24647 }
24648 DIAGNOSTIC_POP
24649 } while (macinfo_type != 0 && current_file == NULL);
24650
24651 /* Second pass: Process all entries.
24652
24653 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24654 command-line macro definitions/undefinitions. This flag is unset when we
24655 reach the first DW_MACINFO_start_file entry. */
24656
24657 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24658 htab_eq_pointer,
24659 NULL, xcalloc, xfree));
24660 mac_ptr = section->buffer + offset;
24661 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24662 *slot = (void *) mac_ptr;
24663 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24664 abfd, mac_ptr, mac_end,
24665 current_file, lh, section,
24666 section_is_gnu, 0, offset_size,
24667 include_hash.get ());
24668 }
24669
24670 /* Check if the attribute's form is a DW_FORM_block*
24671 if so return true else false. */
24672
24673 static int
24674 attr_form_is_block (const struct attribute *attr)
24675 {
24676 return (attr == NULL ? 0 :
24677 attr->form == DW_FORM_block1
24678 || attr->form == DW_FORM_block2
24679 || attr->form == DW_FORM_block4
24680 || attr->form == DW_FORM_block
24681 || attr->form == DW_FORM_exprloc);
24682 }
24683
24684 /* Return non-zero if ATTR's value is a section offset --- classes
24685 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24686 You may use DW_UNSND (attr) to retrieve such offsets.
24687
24688 Section 7.5.4, "Attribute Encodings", explains that no attribute
24689 may have a value that belongs to more than one of these classes; it
24690 would be ambiguous if we did, because we use the same forms for all
24691 of them. */
24692
24693 static int
24694 attr_form_is_section_offset (const struct attribute *attr)
24695 {
24696 return (attr->form == DW_FORM_data4
24697 || attr->form == DW_FORM_data8
24698 || attr->form == DW_FORM_sec_offset);
24699 }
24700
24701 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24702 zero otherwise. When this function returns true, you can apply
24703 dwarf2_get_attr_constant_value to it.
24704
24705 However, note that for some attributes you must check
24706 attr_form_is_section_offset before using this test. DW_FORM_data4
24707 and DW_FORM_data8 are members of both the constant class, and of
24708 the classes that contain offsets into other debug sections
24709 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24710 that, if an attribute's can be either a constant or one of the
24711 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24712 taken as section offsets, not constants.
24713
24714 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24715 cannot handle that. */
24716
24717 static int
24718 attr_form_is_constant (const struct attribute *attr)
24719 {
24720 switch (attr->form)
24721 {
24722 case DW_FORM_sdata:
24723 case DW_FORM_udata:
24724 case DW_FORM_data1:
24725 case DW_FORM_data2:
24726 case DW_FORM_data4:
24727 case DW_FORM_data8:
24728 case DW_FORM_implicit_const:
24729 return 1;
24730 default:
24731 return 0;
24732 }
24733 }
24734
24735
24736 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24737 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24738
24739 static int
24740 attr_form_is_ref (const struct attribute *attr)
24741 {
24742 switch (attr->form)
24743 {
24744 case DW_FORM_ref_addr:
24745 case DW_FORM_ref1:
24746 case DW_FORM_ref2:
24747 case DW_FORM_ref4:
24748 case DW_FORM_ref8:
24749 case DW_FORM_ref_udata:
24750 case DW_FORM_GNU_ref_alt:
24751 return 1;
24752 default:
24753 return 0;
24754 }
24755 }
24756
24757 /* Return the .debug_loc section to use for CU.
24758 For DWO files use .debug_loc.dwo. */
24759
24760 static struct dwarf2_section_info *
24761 cu_debug_loc_section (struct dwarf2_cu *cu)
24762 {
24763 struct dwarf2_per_objfile *dwarf2_per_objfile
24764 = cu->per_cu->dwarf2_per_objfile;
24765
24766 if (cu->dwo_unit)
24767 {
24768 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24769
24770 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24771 }
24772 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24773 : &dwarf2_per_objfile->loc);
24774 }
24775
24776 /* A helper function that fills in a dwarf2_loclist_baton. */
24777
24778 static void
24779 fill_in_loclist_baton (struct dwarf2_cu *cu,
24780 struct dwarf2_loclist_baton *baton,
24781 const struct attribute *attr)
24782 {
24783 struct dwarf2_per_objfile *dwarf2_per_objfile
24784 = cu->per_cu->dwarf2_per_objfile;
24785 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24786
24787 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24788
24789 baton->per_cu = cu->per_cu;
24790 gdb_assert (baton->per_cu);
24791 /* We don't know how long the location list is, but make sure we
24792 don't run off the edge of the section. */
24793 baton->size = section->size - DW_UNSND (attr);
24794 baton->data = section->buffer + DW_UNSND (attr);
24795 baton->base_address = cu->base_address;
24796 baton->from_dwo = cu->dwo_unit != NULL;
24797 }
24798
24799 static void
24800 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24801 struct dwarf2_cu *cu, int is_block)
24802 {
24803 struct dwarf2_per_objfile *dwarf2_per_objfile
24804 = cu->per_cu->dwarf2_per_objfile;
24805 struct objfile *objfile = dwarf2_per_objfile->objfile;
24806 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24807
24808 if (attr_form_is_section_offset (attr)
24809 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24810 the section. If so, fall through to the complaint in the
24811 other branch. */
24812 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24813 {
24814 struct dwarf2_loclist_baton *baton;
24815
24816 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24817
24818 fill_in_loclist_baton (cu, baton, attr);
24819
24820 if (cu->base_known == 0)
24821 complaint (&symfile_complaints,
24822 _("Location list used without "
24823 "specifying the CU base address."));
24824
24825 SYMBOL_ACLASS_INDEX (sym) = (is_block
24826 ? dwarf2_loclist_block_index
24827 : dwarf2_loclist_index);
24828 SYMBOL_LOCATION_BATON (sym) = baton;
24829 }
24830 else
24831 {
24832 struct dwarf2_locexpr_baton *baton;
24833
24834 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24835 baton->per_cu = cu->per_cu;
24836 gdb_assert (baton->per_cu);
24837
24838 if (attr_form_is_block (attr))
24839 {
24840 /* Note that we're just copying the block's data pointer
24841 here, not the actual data. We're still pointing into the
24842 info_buffer for SYM's objfile; right now we never release
24843 that buffer, but when we do clean up properly this may
24844 need to change. */
24845 baton->size = DW_BLOCK (attr)->size;
24846 baton->data = DW_BLOCK (attr)->data;
24847 }
24848 else
24849 {
24850 dwarf2_invalid_attrib_class_complaint ("location description",
24851 SYMBOL_NATURAL_NAME (sym));
24852 baton->size = 0;
24853 }
24854
24855 SYMBOL_ACLASS_INDEX (sym) = (is_block
24856 ? dwarf2_locexpr_block_index
24857 : dwarf2_locexpr_index);
24858 SYMBOL_LOCATION_BATON (sym) = baton;
24859 }
24860 }
24861
24862 /* Return the OBJFILE associated with the compilation unit CU. If CU
24863 came from a separate debuginfo file, then the master objfile is
24864 returned. */
24865
24866 struct objfile *
24867 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24868 {
24869 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24870
24871 /* Return the master objfile, so that we can report and look up the
24872 correct file containing this variable. */
24873 if (objfile->separate_debug_objfile_backlink)
24874 objfile = objfile->separate_debug_objfile_backlink;
24875
24876 return objfile;
24877 }
24878
24879 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24880 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24881 CU_HEADERP first. */
24882
24883 static const struct comp_unit_head *
24884 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24885 struct dwarf2_per_cu_data *per_cu)
24886 {
24887 const gdb_byte *info_ptr;
24888
24889 if (per_cu->cu)
24890 return &per_cu->cu->header;
24891
24892 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24893
24894 memset (cu_headerp, 0, sizeof (*cu_headerp));
24895 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24896 rcuh_kind::COMPILE);
24897
24898 return cu_headerp;
24899 }
24900
24901 /* Return the address size given in the compilation unit header for CU. */
24902
24903 int
24904 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24905 {
24906 struct comp_unit_head cu_header_local;
24907 const struct comp_unit_head *cu_headerp;
24908
24909 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24910
24911 return cu_headerp->addr_size;
24912 }
24913
24914 /* Return the offset size given in the compilation unit header for CU. */
24915
24916 int
24917 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24918 {
24919 struct comp_unit_head cu_header_local;
24920 const struct comp_unit_head *cu_headerp;
24921
24922 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24923
24924 return cu_headerp->offset_size;
24925 }
24926
24927 /* See its dwarf2loc.h declaration. */
24928
24929 int
24930 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24931 {
24932 struct comp_unit_head cu_header_local;
24933 const struct comp_unit_head *cu_headerp;
24934
24935 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24936
24937 if (cu_headerp->version == 2)
24938 return cu_headerp->addr_size;
24939 else
24940 return cu_headerp->offset_size;
24941 }
24942
24943 /* Return the text offset of the CU. The returned offset comes from
24944 this CU's objfile. If this objfile came from a separate debuginfo
24945 file, then the offset may be different from the corresponding
24946 offset in the parent objfile. */
24947
24948 CORE_ADDR
24949 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24950 {
24951 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24952
24953 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24954 }
24955
24956 /* Return DWARF version number of PER_CU. */
24957
24958 short
24959 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24960 {
24961 return per_cu->dwarf_version;
24962 }
24963
24964 /* Locate the .debug_info compilation unit from CU's objfile which contains
24965 the DIE at OFFSET. Raises an error on failure. */
24966
24967 static struct dwarf2_per_cu_data *
24968 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24969 unsigned int offset_in_dwz,
24970 struct dwarf2_per_objfile *dwarf2_per_objfile)
24971 {
24972 struct dwarf2_per_cu_data *this_cu;
24973 int low, high;
24974 const sect_offset *cu_off;
24975
24976 low = 0;
24977 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24978 while (high > low)
24979 {
24980 struct dwarf2_per_cu_data *mid_cu;
24981 int mid = low + (high - low) / 2;
24982
24983 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24984 cu_off = &mid_cu->sect_off;
24985 if (mid_cu->is_dwz > offset_in_dwz
24986 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24987 high = mid;
24988 else
24989 low = mid + 1;
24990 }
24991 gdb_assert (low == high);
24992 this_cu = dwarf2_per_objfile->all_comp_units[low];
24993 cu_off = &this_cu->sect_off;
24994 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24995 {
24996 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24997 error (_("Dwarf Error: could not find partial DIE containing "
24998 "offset %s [in module %s]"),
24999 sect_offset_str (sect_off),
25000 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25001
25002 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25003 <= sect_off);
25004 return dwarf2_per_objfile->all_comp_units[low-1];
25005 }
25006 else
25007 {
25008 this_cu = dwarf2_per_objfile->all_comp_units[low];
25009 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25010 && sect_off >= this_cu->sect_off + this_cu->length)
25011 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25012 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25013 return this_cu;
25014 }
25015 }
25016
25017 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25018
25019 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25020 : per_cu (per_cu_),
25021 mark (0),
25022 has_loclist (0),
25023 checked_producer (0),
25024 producer_is_gxx_lt_4_6 (0),
25025 producer_is_gcc_lt_4_3 (0),
25026 producer_is_icc_lt_14 (0),
25027 processing_has_namespace_info (0)
25028 {
25029 per_cu->cu = this;
25030 }
25031
25032 /* Destroy a dwarf2_cu. */
25033
25034 dwarf2_cu::~dwarf2_cu ()
25035 {
25036 per_cu->cu = NULL;
25037 }
25038
25039 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25040
25041 static void
25042 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25043 enum language pretend_language)
25044 {
25045 struct attribute *attr;
25046
25047 /* Set the language we're debugging. */
25048 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25049 if (attr)
25050 set_cu_language (DW_UNSND (attr), cu);
25051 else
25052 {
25053 cu->language = pretend_language;
25054 cu->language_defn = language_def (cu->language);
25055 }
25056
25057 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25058 }
25059
25060 /* Increase the age counter on each cached compilation unit, and free
25061 any that are too old. */
25062
25063 static void
25064 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25065 {
25066 struct dwarf2_per_cu_data *per_cu, **last_chain;
25067
25068 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25069 per_cu = dwarf2_per_objfile->read_in_chain;
25070 while (per_cu != NULL)
25071 {
25072 per_cu->cu->last_used ++;
25073 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25074 dwarf2_mark (per_cu->cu);
25075 per_cu = per_cu->cu->read_in_chain;
25076 }
25077
25078 per_cu = dwarf2_per_objfile->read_in_chain;
25079 last_chain = &dwarf2_per_objfile->read_in_chain;
25080 while (per_cu != NULL)
25081 {
25082 struct dwarf2_per_cu_data *next_cu;
25083
25084 next_cu = per_cu->cu->read_in_chain;
25085
25086 if (!per_cu->cu->mark)
25087 {
25088 delete per_cu->cu;
25089 *last_chain = next_cu;
25090 }
25091 else
25092 last_chain = &per_cu->cu->read_in_chain;
25093
25094 per_cu = next_cu;
25095 }
25096 }
25097
25098 /* Remove a single compilation unit from the cache. */
25099
25100 static void
25101 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25102 {
25103 struct dwarf2_per_cu_data *per_cu, **last_chain;
25104 struct dwarf2_per_objfile *dwarf2_per_objfile
25105 = target_per_cu->dwarf2_per_objfile;
25106
25107 per_cu = dwarf2_per_objfile->read_in_chain;
25108 last_chain = &dwarf2_per_objfile->read_in_chain;
25109 while (per_cu != NULL)
25110 {
25111 struct dwarf2_per_cu_data *next_cu;
25112
25113 next_cu = per_cu->cu->read_in_chain;
25114
25115 if (per_cu == target_per_cu)
25116 {
25117 delete per_cu->cu;
25118 per_cu->cu = NULL;
25119 *last_chain = next_cu;
25120 break;
25121 }
25122 else
25123 last_chain = &per_cu->cu->read_in_chain;
25124
25125 per_cu = next_cu;
25126 }
25127 }
25128
25129 /* Release all extra memory associated with OBJFILE. */
25130
25131 void
25132 dwarf2_free_objfile (struct objfile *objfile)
25133 {
25134 struct dwarf2_per_objfile *dwarf2_per_objfile
25135 = get_dwarf2_per_objfile (objfile);
25136
25137 delete dwarf2_per_objfile;
25138 }
25139
25140 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25141 We store these in a hash table separate from the DIEs, and preserve them
25142 when the DIEs are flushed out of cache.
25143
25144 The CU "per_cu" pointer is needed because offset alone is not enough to
25145 uniquely identify the type. A file may have multiple .debug_types sections,
25146 or the type may come from a DWO file. Furthermore, while it's more logical
25147 to use per_cu->section+offset, with Fission the section with the data is in
25148 the DWO file but we don't know that section at the point we need it.
25149 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25150 because we can enter the lookup routine, get_die_type_at_offset, from
25151 outside this file, and thus won't necessarily have PER_CU->cu.
25152 Fortunately, PER_CU is stable for the life of the objfile. */
25153
25154 struct dwarf2_per_cu_offset_and_type
25155 {
25156 const struct dwarf2_per_cu_data *per_cu;
25157 sect_offset sect_off;
25158 struct type *type;
25159 };
25160
25161 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25162
25163 static hashval_t
25164 per_cu_offset_and_type_hash (const void *item)
25165 {
25166 const struct dwarf2_per_cu_offset_and_type *ofs
25167 = (const struct dwarf2_per_cu_offset_and_type *) item;
25168
25169 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25170 }
25171
25172 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25173
25174 static int
25175 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25176 {
25177 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25178 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25179 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25180 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25181
25182 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25183 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25184 }
25185
25186 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25187 table if necessary. For convenience, return TYPE.
25188
25189 The DIEs reading must have careful ordering to:
25190 * Not cause infite loops trying to read in DIEs as a prerequisite for
25191 reading current DIE.
25192 * Not trying to dereference contents of still incompletely read in types
25193 while reading in other DIEs.
25194 * Enable referencing still incompletely read in types just by a pointer to
25195 the type without accessing its fields.
25196
25197 Therefore caller should follow these rules:
25198 * Try to fetch any prerequisite types we may need to build this DIE type
25199 before building the type and calling set_die_type.
25200 * After building type call set_die_type for current DIE as soon as
25201 possible before fetching more types to complete the current type.
25202 * Make the type as complete as possible before fetching more types. */
25203
25204 static struct type *
25205 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25206 {
25207 struct dwarf2_per_objfile *dwarf2_per_objfile
25208 = cu->per_cu->dwarf2_per_objfile;
25209 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25210 struct objfile *objfile = dwarf2_per_objfile->objfile;
25211 struct attribute *attr;
25212 struct dynamic_prop prop;
25213
25214 /* For Ada types, make sure that the gnat-specific data is always
25215 initialized (if not already set). There are a few types where
25216 we should not be doing so, because the type-specific area is
25217 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25218 where the type-specific area is used to store the floatformat).
25219 But this is not a problem, because the gnat-specific information
25220 is actually not needed for these types. */
25221 if (need_gnat_info (cu)
25222 && TYPE_CODE (type) != TYPE_CODE_FUNC
25223 && TYPE_CODE (type) != TYPE_CODE_FLT
25224 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25225 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25226 && TYPE_CODE (type) != TYPE_CODE_METHOD
25227 && !HAVE_GNAT_AUX_INFO (type))
25228 INIT_GNAT_SPECIFIC (type);
25229
25230 /* Read DW_AT_allocated and set in type. */
25231 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25232 if (attr_form_is_block (attr))
25233 {
25234 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25235 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25236 }
25237 else if (attr != NULL)
25238 {
25239 complaint (&symfile_complaints,
25240 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25241 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25242 sect_offset_str (die->sect_off));
25243 }
25244
25245 /* Read DW_AT_associated and set in type. */
25246 attr = dwarf2_attr (die, DW_AT_associated, cu);
25247 if (attr_form_is_block (attr))
25248 {
25249 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25250 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25251 }
25252 else if (attr != NULL)
25253 {
25254 complaint (&symfile_complaints,
25255 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25256 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25257 sect_offset_str (die->sect_off));
25258 }
25259
25260 /* Read DW_AT_data_location and set in type. */
25261 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25262 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25263 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25264
25265 if (dwarf2_per_objfile->die_type_hash == NULL)
25266 {
25267 dwarf2_per_objfile->die_type_hash =
25268 htab_create_alloc_ex (127,
25269 per_cu_offset_and_type_hash,
25270 per_cu_offset_and_type_eq,
25271 NULL,
25272 &objfile->objfile_obstack,
25273 hashtab_obstack_allocate,
25274 dummy_obstack_deallocate);
25275 }
25276
25277 ofs.per_cu = cu->per_cu;
25278 ofs.sect_off = die->sect_off;
25279 ofs.type = type;
25280 slot = (struct dwarf2_per_cu_offset_and_type **)
25281 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25282 if (*slot)
25283 complaint (&symfile_complaints,
25284 _("A problem internal to GDB: DIE %s has type already set"),
25285 sect_offset_str (die->sect_off));
25286 *slot = XOBNEW (&objfile->objfile_obstack,
25287 struct dwarf2_per_cu_offset_and_type);
25288 **slot = ofs;
25289 return type;
25290 }
25291
25292 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25293 or return NULL if the die does not have a saved type. */
25294
25295 static struct type *
25296 get_die_type_at_offset (sect_offset sect_off,
25297 struct dwarf2_per_cu_data *per_cu)
25298 {
25299 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25300 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25301
25302 if (dwarf2_per_objfile->die_type_hash == NULL)
25303 return NULL;
25304
25305 ofs.per_cu = per_cu;
25306 ofs.sect_off = sect_off;
25307 slot = ((struct dwarf2_per_cu_offset_and_type *)
25308 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25309 if (slot)
25310 return slot->type;
25311 else
25312 return NULL;
25313 }
25314
25315 /* Look up the type for DIE in CU in die_type_hash,
25316 or return NULL if DIE does not have a saved type. */
25317
25318 static struct type *
25319 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25320 {
25321 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25322 }
25323
25324 /* Add a dependence relationship from CU to REF_PER_CU. */
25325
25326 static void
25327 dwarf2_add_dependence (struct dwarf2_cu *cu,
25328 struct dwarf2_per_cu_data *ref_per_cu)
25329 {
25330 void **slot;
25331
25332 if (cu->dependencies == NULL)
25333 cu->dependencies
25334 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25335 NULL, &cu->comp_unit_obstack,
25336 hashtab_obstack_allocate,
25337 dummy_obstack_deallocate);
25338
25339 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25340 if (*slot == NULL)
25341 *slot = ref_per_cu;
25342 }
25343
25344 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25345 Set the mark field in every compilation unit in the
25346 cache that we must keep because we are keeping CU. */
25347
25348 static int
25349 dwarf2_mark_helper (void **slot, void *data)
25350 {
25351 struct dwarf2_per_cu_data *per_cu;
25352
25353 per_cu = (struct dwarf2_per_cu_data *) *slot;
25354
25355 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25356 reading of the chain. As such dependencies remain valid it is not much
25357 useful to track and undo them during QUIT cleanups. */
25358 if (per_cu->cu == NULL)
25359 return 1;
25360
25361 if (per_cu->cu->mark)
25362 return 1;
25363 per_cu->cu->mark = 1;
25364
25365 if (per_cu->cu->dependencies != NULL)
25366 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25367
25368 return 1;
25369 }
25370
25371 /* Set the mark field in CU and in every other compilation unit in the
25372 cache that we must keep because we are keeping CU. */
25373
25374 static void
25375 dwarf2_mark (struct dwarf2_cu *cu)
25376 {
25377 if (cu->mark)
25378 return;
25379 cu->mark = 1;
25380 if (cu->dependencies != NULL)
25381 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25382 }
25383
25384 static void
25385 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25386 {
25387 while (per_cu)
25388 {
25389 per_cu->cu->mark = 0;
25390 per_cu = per_cu->cu->read_in_chain;
25391 }
25392 }
25393
25394 /* Trivial hash function for partial_die_info: the hash value of a DIE
25395 is its offset in .debug_info for this objfile. */
25396
25397 static hashval_t
25398 partial_die_hash (const void *item)
25399 {
25400 const struct partial_die_info *part_die
25401 = (const struct partial_die_info *) item;
25402
25403 return to_underlying (part_die->sect_off);
25404 }
25405
25406 /* Trivial comparison function for partial_die_info structures: two DIEs
25407 are equal if they have the same offset. */
25408
25409 static int
25410 partial_die_eq (const void *item_lhs, const void *item_rhs)
25411 {
25412 const struct partial_die_info *part_die_lhs
25413 = (const struct partial_die_info *) item_lhs;
25414 const struct partial_die_info *part_die_rhs
25415 = (const struct partial_die_info *) item_rhs;
25416
25417 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25418 }
25419
25420 static struct cmd_list_element *set_dwarf_cmdlist;
25421 static struct cmd_list_element *show_dwarf_cmdlist;
25422
25423 static void
25424 set_dwarf_cmd (const char *args, int from_tty)
25425 {
25426 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25427 gdb_stdout);
25428 }
25429
25430 static void
25431 show_dwarf_cmd (const char *args, int from_tty)
25432 {
25433 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25434 }
25435
25436 int dwarf_always_disassemble;
25437
25438 static void
25439 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25440 struct cmd_list_element *c, const char *value)
25441 {
25442 fprintf_filtered (file,
25443 _("Whether to always disassemble "
25444 "DWARF expressions is %s.\n"),
25445 value);
25446 }
25447
25448 static void
25449 show_check_physname (struct ui_file *file, int from_tty,
25450 struct cmd_list_element *c, const char *value)
25451 {
25452 fprintf_filtered (file,
25453 _("Whether to check \"physname\" is %s.\n"),
25454 value);
25455 }
25456
25457 void
25458 _initialize_dwarf2_read (void)
25459 {
25460
25461 dwarf2_objfile_data_key = register_objfile_data ();
25462
25463 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25464 Set DWARF specific variables.\n\
25465 Configure DWARF variables such as the cache size"),
25466 &set_dwarf_cmdlist, "maintenance set dwarf ",
25467 0/*allow-unknown*/, &maintenance_set_cmdlist);
25468
25469 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25470 Show DWARF specific variables\n\
25471 Show DWARF variables such as the cache size"),
25472 &show_dwarf_cmdlist, "maintenance show dwarf ",
25473 0/*allow-unknown*/, &maintenance_show_cmdlist);
25474
25475 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25476 &dwarf_max_cache_age, _("\
25477 Set the upper bound on the age of cached DWARF compilation units."), _("\
25478 Show the upper bound on the age of cached DWARF compilation units."), _("\
25479 A higher limit means that cached compilation units will be stored\n\
25480 in memory longer, and more total memory will be used. Zero disables\n\
25481 caching, which can slow down startup."),
25482 NULL,
25483 show_dwarf_max_cache_age,
25484 &set_dwarf_cmdlist,
25485 &show_dwarf_cmdlist);
25486
25487 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25488 &dwarf_always_disassemble, _("\
25489 Set whether `info address' always disassembles DWARF expressions."), _("\
25490 Show whether `info address' always disassembles DWARF expressions."), _("\
25491 When enabled, DWARF expressions are always printed in an assembly-like\n\
25492 syntax. When disabled, expressions will be printed in a more\n\
25493 conversational style, when possible."),
25494 NULL,
25495 show_dwarf_always_disassemble,
25496 &set_dwarf_cmdlist,
25497 &show_dwarf_cmdlist);
25498
25499 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25500 Set debugging of the DWARF reader."), _("\
25501 Show debugging of the DWARF reader."), _("\
25502 When enabled (non-zero), debugging messages are printed during DWARF\n\
25503 reading and symtab expansion. A value of 1 (one) provides basic\n\
25504 information. A value greater than 1 provides more verbose information."),
25505 NULL,
25506 NULL,
25507 &setdebuglist, &showdebuglist);
25508
25509 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25510 Set debugging of the DWARF DIE reader."), _("\
25511 Show debugging of the DWARF DIE reader."), _("\
25512 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25513 The value is the maximum depth to print."),
25514 NULL,
25515 NULL,
25516 &setdebuglist, &showdebuglist);
25517
25518 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25519 Set debugging of the dwarf line reader."), _("\
25520 Show debugging of the dwarf line reader."), _("\
25521 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25522 A value of 1 (one) provides basic information.\n\
25523 A value greater than 1 provides more verbose information."),
25524 NULL,
25525 NULL,
25526 &setdebuglist, &showdebuglist);
25527
25528 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25529 Set cross-checking of \"physname\" code against demangler."), _("\
25530 Show cross-checking of \"physname\" code against demangler."), _("\
25531 When enabled, GDB's internal \"physname\" code is checked against\n\
25532 the demangler."),
25533 NULL, show_check_physname,
25534 &setdebuglist, &showdebuglist);
25535
25536 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25537 no_class, &use_deprecated_index_sections, _("\
25538 Set whether to use deprecated gdb_index sections."), _("\
25539 Show whether to use deprecated gdb_index sections."), _("\
25540 When enabled, deprecated .gdb_index sections are used anyway.\n\
25541 Normally they are ignored either because of a missing feature or\n\
25542 performance issue.\n\
25543 Warning: This option must be enabled before gdb reads the file."),
25544 NULL,
25545 NULL,
25546 &setlist, &showlist);
25547
25548 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25549 &dwarf2_locexpr_funcs);
25550 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25551 &dwarf2_loclist_funcs);
25552
25553 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25554 &dwarf2_block_frame_base_locexpr_funcs);
25555 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25556 &dwarf2_block_frame_base_loclist_funcs);
25557
25558 #if GDB_SELF_TEST
25559 selftests::register_test ("dw2_expand_symtabs_matching",
25560 selftests::dw2_expand_symtabs_matching::run_test);
25561 #endif
25562 }
This page took 0.812045 seconds and 4 git commands to generate.