* xcoffread.c (xcoff_sym_fns): Update.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
209 unsigned char using_index;
210
211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
212 struct mapped_index *index_table;
213
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
233 };
234
235 static struct dwarf2_per_objfile *dwarf2_per_objfile;
236
237 /* names of the debugging sections */
238
239 /* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242 #define INFO_SECTION "debug_info"
243 #define ABBREV_SECTION "debug_abbrev"
244 #define LINE_SECTION "debug_line"
245 #define LOC_SECTION "debug_loc"
246 #define MACINFO_SECTION "debug_macinfo"
247 #define STR_SECTION "debug_str"
248 #define RANGES_SECTION "debug_ranges"
249 #define TYPES_SECTION "debug_types"
250 #define FRAME_SECTION "debug_frame"
251 #define EH_FRAME_SECTION "eh_frame"
252 #define GDB_INDEX_SECTION "gdb_index"
253
254 /* local data types */
255
256 /* We hold several abbreviation tables in memory at the same time. */
257 #ifndef ABBREV_HASH_SIZE
258 #define ABBREV_HASH_SIZE 121
259 #endif
260
261 /* The data in a compilation unit header, after target2host
262 translation, looks like this. */
263 struct comp_unit_head
264 {
265 unsigned int length;
266 short version;
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
269 unsigned int abbrev_offset;
270
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
273
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
276
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
280
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
284 };
285
286 /* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288 struct delayed_method_info
289 {
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304 };
305
306 typedef struct delayed_method_info delayed_method_info;
307 DEF_VEC_O (delayed_method_info);
308
309 /* Internal state when decoding a particular compilation unit. */
310 struct dwarf2_cu
311 {
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
315 /* The header of the compilation unit. */
316 struct comp_unit_head header;
317
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
330 const char *producer;
331
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
368 /* A hash table of die offsets for following references. */
369 htab_t die_hash;
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
406 struct dwarf2_per_cu_data
407 {
408 /* The start offset and length of this compilation unit. 2**29-1
409 bytes should suffice to store the length of any compilation unit
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
413 unsigned int offset;
414 unsigned int length : 29;
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
418 unsigned int queued : 1;
419
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
432 struct dwarf2_cu *cu;
433
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465 };
466
467 /* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
472
473 struct die_reader_specs
474 {
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484 };
485
486 /* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489 struct line_header
490 {
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
495 unsigned char maximum_ops_per_instruction;
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
519 {
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
524 int included_p; /* Non-zero if referenced by the Line Number Program. */
525 struct symtab *symtab; /* The associated symbol table, if any. */
526 } *file_names;
527
528 /* The start and end of the statement program following this
529 header. These point into dwarf2_per_objfile->line_buffer. */
530 gdb_byte *statement_program_start, *statement_program_end;
531 };
532
533 /* When we construct a partial symbol table entry we only
534 need this much information. */
535 struct partial_die_info
536 {
537 /* Offset of this DIE. */
538 unsigned int offset;
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
564 /* The name of this DIE. Normally the value of DW_AT_name, but
565 sometimes a default name for unnamed DIEs. */
566 char *name;
567
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
582
583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
584 DW_AT_sibling, if any. */
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
587 gdb_byte *sibling;
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
597 };
598
599 /* This data structure holds the information of an abbrev. */
600 struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610 struct attr_abbrev
611 {
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
614 };
615
616 /* Attributes have a name and a value. */
617 struct attribute
618 {
619 ENUM_BITFIELD(dwarf_attribute) name : 16;
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
631 ULONGEST unsnd;
632 LONGEST snd;
633 CORE_ADDR addr;
634 struct signatured_type *signatured_type;
635 }
636 u;
637 };
638
639 /* This data structure holds a complete die structure. */
640 struct die_info
641 {
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
655 /* Offset in .debug_info or .debug_types section. */
656 unsigned int offset;
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
661 together via their SIBLING fields. */
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
665
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
670 };
671
672 struct function_range
673 {
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678 };
679
680 /* Get at parts of an attribute structure. */
681
682 #define DW_STRING(attr) ((attr)->u.str)
683 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
684 #define DW_UNSND(attr) ((attr)->u.unsnd)
685 #define DW_BLOCK(attr) ((attr)->u.blk)
686 #define DW_SND(attr) ((attr)->u.snd)
687 #define DW_ADDR(attr) ((attr)->u.addr)
688 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
689
690 /* Blocks are a bunch of untyped bytes. */
691 struct dwarf_block
692 {
693 unsigned int size;
694 gdb_byte *data;
695 };
696
697 #ifndef ATTR_ALLOC_CHUNK
698 #define ATTR_ALLOC_CHUNK 4
699 #endif
700
701 /* Allocate fields for structs, unions and enums in this size. */
702 #ifndef DW_FIELD_ALLOC_CHUNK
703 #define DW_FIELD_ALLOC_CHUNK 4
704 #endif
705
706 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709 static int bits_per_byte = 8;
710
711 /* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714 struct field_info
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
724 *fields, *baseclasses;
725
726 /* Number of fields (including baseclasses). */
727 int nfields;
728
729 /* Number of baseclasses. */
730 int nbaseclasses;
731
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
734
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
743
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
754
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
767 };
768
769 /* One item on the queue of compilation units to read in full symbols
770 for. */
771 struct dwarf2_queue_item
772 {
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775 };
776
777 /* The current queue. */
778 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
780 /* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785 static int dwarf2_max_cache_age = 5;
786 static void
787 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789 {
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
792 value);
793 }
794
795
796 /* Various complaints about symbol reading that don't abort the process. */
797
798 static void
799 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
800 {
801 complaint (&symfile_complaints,
802 _("statement list doesn't fit in .debug_line section"));
803 }
804
805 static void
806 dwarf2_debug_line_missing_file_complaint (void)
807 {
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810 }
811
812 static void
813 dwarf2_debug_line_missing_end_sequence_complaint (void)
814 {
815 complaint (&symfile_complaints,
816 _(".debug_line section has line "
817 "program sequence without an end"));
818 }
819
820 static void
821 dwarf2_complex_location_expr_complaint (void)
822 {
823 complaint (&symfile_complaints, _("location expression too complex"));
824 }
825
826 static void
827 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
829 {
830 complaint (&symfile_complaints,
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
833 }
834
835 static void
836 dwarf2_macros_too_long_complaint (void)
837 {
838 complaint (&symfile_complaints,
839 _("macro info runs off end of `.debug_macinfo' section"));
840 }
841
842 static void
843 dwarf2_macro_malformed_definition_complaint (const char *arg1)
844 {
845 complaint (&symfile_complaints,
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
848 arg1);
849 }
850
851 static void
852 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
853 {
854 complaint (&symfile_complaints,
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
857 }
858
859 /* local function prototypes */
860
861 static void dwarf2_locate_sections (bfd *, asection *, void *);
862
863 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
866 static void dwarf2_build_psymtabs_hard (struct objfile *);
867
868 static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
870 int, struct dwarf2_cu *);
871
872 static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
874
875 static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
877 int need_pc, struct dwarf2_cu *cu);
878
879 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
883 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
885
886 static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
888 int need_pc, struct dwarf2_cu *cu);
889
890 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
893
894 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
895
896 static void psymtab_to_symtab_1 (struct partial_symtab *);
897
898 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
899
900 static void dwarf2_free_abbrev_table (void *);
901
902 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
903 struct dwarf2_cu *);
904
905 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
906 struct dwarf2_cu *);
907
908 static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
911
912 static gdb_byte *read_partial_die (struct partial_die_info *,
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
917
918 static struct partial_die_info *find_partial_die (unsigned int,
919 struct dwarf2_cu *);
920
921 static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
924 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
926
927 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
929
930 static unsigned int read_1_byte (bfd *, gdb_byte *);
931
932 static int read_1_signed_byte (bfd *, gdb_byte *);
933
934 static unsigned int read_2_bytes (bfd *, gdb_byte *);
935
936 static unsigned int read_4_bytes (bfd *, gdb_byte *);
937
938 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
939
940 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
941 unsigned int *);
942
943 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945 static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
948
949 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
950 unsigned int *);
951
952 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
953
954 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
955
956 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
957
958 static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
961
962 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
965
966 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
967
968 static void set_cu_language (unsigned int, struct dwarf2_cu *);
969
970 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
972
973 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
977 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
980 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
981
982 static struct die_info *die_specification (struct die_info *die,
983 struct dwarf2_cu **);
984
985 static void free_line_header (struct line_header *lh);
986
987 static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
990 static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
992 bfd *abfd, struct dwarf2_cu *cu));
993
994 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
995 struct dwarf2_cu *, struct partial_symtab *);
996
997 static void dwarf2_start_subfile (char *, const char *, const char *);
998
999 static struct symbol *new_symbol (struct die_info *, struct type *,
1000 struct dwarf2_cu *);
1001
1002 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
1005 static void dwarf2_const_value (struct attribute *, struct symbol *,
1006 struct dwarf2_cu *);
1007
1008 static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
1015
1016 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1017
1018 static int need_gnat_info (struct dwarf2_cu *);
1019
1020 static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
1022
1023 static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
1026 static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
1028
1029 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
1031
1032 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1033
1034 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
1036 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1037
1038 static char *typename_concat (struct obstack *obs, const char *prefix,
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
1041
1042 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1047
1048 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1049
1050 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
1053 static int dwarf2_get_pc_bounds (struct die_info *,
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
1056
1057 static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
1061 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
1064 static void dwarf2_add_field (struct field_info *, struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void dwarf2_attach_fields_to_type (struct field_info *,
1068 struct type *, struct dwarf2_cu *);
1069
1070 static void dwarf2_add_member_fn (struct field_info *,
1071 struct die_info *, struct type *,
1072 struct dwarf2_cu *);
1073
1074 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1075 struct type *,
1076 struct dwarf2_cu *);
1077
1078 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1081
1082 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1083
1084 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
1086 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
1088 static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
1091 static const char *namespace_name (struct die_info *die,
1092 int *is_anonymous, struct dwarf2_cu *);
1093
1094 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1095
1096 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1097
1098 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1099 struct dwarf2_cu *);
1100
1101 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1102
1103 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
1108 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
1110 gdb_byte **new_info_ptr,
1111 struct die_info *parent);
1112
1113 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
1115 gdb_byte **new_info_ptr,
1116 struct die_info *parent);
1117
1118 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
1122 static void process_die (struct die_info *, struct dwarf2_cu *);
1123
1124 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
1127 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1128
1129 static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static struct die_info *dwarf2_extension (struct die_info *die,
1134 struct dwarf2_cu **);
1135
1136 static char *dwarf_tag_name (unsigned int);
1137
1138 static char *dwarf_attr_name (unsigned int);
1139
1140 static char *dwarf_form_name (unsigned int);
1141
1142 static char *dwarf_bool_name (unsigned int);
1143
1144 static char *dwarf_type_encoding_name (unsigned int);
1145
1146 #if 0
1147 static char *dwarf_cfi_name (unsigned int);
1148 #endif
1149
1150 static struct die_info *sibling_die (struct die_info *);
1151
1152 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154 static void dump_die_for_error (struct die_info *);
1155
1156 static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
1158
1159 /*static*/ void dump_die (struct die_info *, int max_level);
1160
1161 static void store_in_ref_table (struct die_info *,
1162 struct dwarf2_cu *);
1163
1164 static int is_ref_attr (struct attribute *);
1165
1166 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1167
1168 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1169
1170 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
1174 static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
1176 struct dwarf2_cu **);
1177
1178 static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182 static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185 static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
1188 /* memory allocation interface */
1189
1190 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1191
1192 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1193
1194 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1195
1196 static void initialize_cu_func_list (struct dwarf2_cu *);
1197
1198 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
1200
1201 static void dwarf_decode_macros (struct line_header *, unsigned int,
1202 char *, bfd *, struct dwarf2_cu *);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (unsigned int offset, struct objfile *objfile);
1230
1231 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234 static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
1239
1240 static void free_one_comp_unit (void *);
1241
1242 static void free_cached_comp_units (void *);
1243
1244 static void age_cached_comp_units (void);
1245
1246 static void free_one_cached_comp_unit (void *);
1247
1248 static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1250
1251 static void create_all_comp_units (struct objfile *);
1252
1253 static int create_debug_types_hash_table (struct objfile *objfile);
1254
1255 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
1257
1258 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260 static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
1263 static void dwarf2_mark (struct dwarf2_cu *);
1264
1265 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
1267 static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
1270 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1271
1272 static void dwarf2_release_queue (void *dummy);
1273
1274 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277 static void process_queue (struct objfile *objfile);
1278
1279 static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283 static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292 static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
1295 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1296
1297 #if WORDS_BIGENDIAN
1298
1299 /* Convert VALUE between big- and little-endian. */
1300 static offset_type
1301 byte_swap (offset_type value)
1302 {
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310 }
1311
1312 #define MAYBE_SWAP(V) byte_swap (V)
1313
1314 #else
1315 #define MAYBE_SWAP(V) (V)
1316 #endif /* WORDS_BIGENDIAN */
1317
1318 /* The suffix for an index file. */
1319 #define INDEX_SUFFIX ".gdb-index"
1320
1321 static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
1324 /* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327 int
1328 dwarf2_has_info (struct objfile *objfile)
1329 {
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1336
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
1340
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
1346 }
1347
1348 /* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351 static int
1352 section_is_p (const char *section_name, const char *name)
1353 {
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1366 {
1367 if (section_is_p (sectp->name, INFO_SECTION))
1368 {
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1371 }
1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
1373 {
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1376 }
1377 else if (section_is_p (sectp->name, LINE_SECTION))
1378 {
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, LOC_SECTION))
1383 {
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
1388 {
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, STR_SECTION))
1393 {
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, FRAME_SECTION))
1398 {
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1403 {
1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1405
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1410 }
1411 }
1412 else if (section_is_p (sectp->name, RANGES_SECTION))
1413 {
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1416 }
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
1427
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
1431 }
1432
1433 /* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1435
1436 static void
1437 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439 {
1440 bfd *abfd = objfile->obfd;
1441 #ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445 #else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
1506 do_cleanups (cleanup);
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509 #endif
1510 }
1511
1512 /* A helper function that decides whether a section is empty. */
1513
1514 static int
1515 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1516 {
1517 return info->asection == NULL || info->size == 0;
1518 }
1519
1520 /* Read the contents of the section SECTP from object file specified by
1521 OBJFILE, store info about the section into INFO.
1522 If the section is compressed, uncompress it before returning. */
1523
1524 static void
1525 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1526 {
1527 bfd *abfd = objfile->obfd;
1528 asection *sectp = info->asection;
1529 gdb_byte *buf, *retbuf;
1530 unsigned char header[4];
1531
1532 if (info->readin)
1533 return;
1534 info->buffer = NULL;
1535 info->was_mmapped = 0;
1536 info->readin = 1;
1537
1538 if (dwarf2_section_empty_p (info))
1539 return;
1540
1541 /* Check if the file has a 4-byte header indicating compression. */
1542 if (info->size > sizeof (header)
1543 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1544 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1545 {
1546 /* Upon decompression, update the buffer and its size. */
1547 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1548 {
1549 zlib_decompress_section (objfile, sectp, &info->buffer,
1550 &info->size);
1551 return;
1552 }
1553 }
1554
1555 #ifdef HAVE_MMAP
1556 if (pagesize == 0)
1557 pagesize = getpagesize ();
1558
1559 /* Only try to mmap sections which are large enough: we don't want to
1560 waste space due to fragmentation. Also, only try mmap for sections
1561 without relocations. */
1562
1563 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1564 {
1565 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1566 size_t map_length = info->size + sectp->filepos - pg_offset;
1567 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1568 MAP_PRIVATE, pg_offset);
1569
1570 if (retbuf != MAP_FAILED)
1571 {
1572 info->was_mmapped = 1;
1573 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1574 #if HAVE_POSIX_MADVISE
1575 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1576 #endif
1577 return;
1578 }
1579 }
1580 #endif
1581
1582 /* If we get here, we are a normal, not-compressed section. */
1583 info->buffer = buf
1584 = obstack_alloc (&objfile->objfile_obstack, info->size);
1585
1586 /* When debugging .o files, we may need to apply relocations; see
1587 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1588 We never compress sections in .o files, so we only need to
1589 try this when the section is not compressed. */
1590 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1591 if (retbuf != NULL)
1592 {
1593 info->buffer = retbuf;
1594 return;
1595 }
1596
1597 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1598 || bfd_bread (buf, info->size, abfd) != info->size)
1599 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1600 bfd_get_filename (abfd));
1601 }
1602
1603 /* A helper function that returns the size of a section in a safe way.
1604 If you are positive that the section has been read before using the
1605 size, then it is safe to refer to the dwarf2_section_info object's
1606 "size" field directly. In other cases, you must call this
1607 function, because for compressed sections the size field is not set
1608 correctly until the section has been read. */
1609
1610 static bfd_size_type
1611 dwarf2_section_size (struct objfile *objfile,
1612 struct dwarf2_section_info *info)
1613 {
1614 if (!info->readin)
1615 dwarf2_read_section (objfile, info);
1616 return info->size;
1617 }
1618
1619 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1620 SECTION_NAME. */
1621
1622 void
1623 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1624 asection **sectp, gdb_byte **bufp,
1625 bfd_size_type *sizep)
1626 {
1627 struct dwarf2_per_objfile *data
1628 = objfile_data (objfile, dwarf2_objfile_data_key);
1629 struct dwarf2_section_info *info;
1630
1631 /* We may see an objfile without any DWARF, in which case we just
1632 return nothing. */
1633 if (data == NULL)
1634 {
1635 *sectp = NULL;
1636 *bufp = NULL;
1637 *sizep = 0;
1638 return;
1639 }
1640 if (section_is_p (section_name, EH_FRAME_SECTION))
1641 info = &data->eh_frame;
1642 else if (section_is_p (section_name, FRAME_SECTION))
1643 info = &data->frame;
1644 else
1645 gdb_assert_not_reached ("unexpected section");
1646
1647 dwarf2_read_section (objfile, info);
1648
1649 *sectp = info->asection;
1650 *bufp = info->buffer;
1651 *sizep = info->size;
1652 }
1653
1654 \f
1655 /* DWARF quick_symbols_functions support. */
1656
1657 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1658 unique line tables, so we maintain a separate table of all .debug_line
1659 derived entries to support the sharing.
1660 All the quick functions need is the list of file names. We discard the
1661 line_header when we're done and don't need to record it here. */
1662 struct quick_file_names
1663 {
1664 /* The offset in .debug_line of the line table. We hash on this. */
1665 unsigned int offset;
1666
1667 /* The number of entries in file_names, real_names. */
1668 unsigned int num_file_names;
1669
1670 /* The file names from the line table, after being run through
1671 file_full_name. */
1672 const char **file_names;
1673
1674 /* The file names from the line table after being run through
1675 gdb_realpath. These are computed lazily. */
1676 const char **real_names;
1677 };
1678
1679 /* When using the index (and thus not using psymtabs), each CU has an
1680 object of this type. This is used to hold information needed by
1681 the various "quick" methods. */
1682 struct dwarf2_per_cu_quick_data
1683 {
1684 /* The file table. This can be NULL if there was no file table
1685 or it's currently not read in.
1686 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1687 struct quick_file_names *file_names;
1688
1689 /* The corresponding symbol table. This is NULL if symbols for this
1690 CU have not yet been read. */
1691 struct symtab *symtab;
1692
1693 /* A temporary mark bit used when iterating over all CUs in
1694 expand_symtabs_matching. */
1695 unsigned int mark : 1;
1696
1697 /* True if we've tried to read the file table and found there isn't one.
1698 There will be no point in trying to read it again next time. */
1699 unsigned int no_file_data : 1;
1700 };
1701
1702 /* Hash function for a quick_file_names. */
1703
1704 static hashval_t
1705 hash_file_name_entry (const void *e)
1706 {
1707 const struct quick_file_names *file_data = e;
1708
1709 return file_data->offset;
1710 }
1711
1712 /* Equality function for a quick_file_names. */
1713
1714 static int
1715 eq_file_name_entry (const void *a, const void *b)
1716 {
1717 const struct quick_file_names *ea = a;
1718 const struct quick_file_names *eb = b;
1719
1720 return ea->offset == eb->offset;
1721 }
1722
1723 /* Delete function for a quick_file_names. */
1724
1725 static void
1726 delete_file_name_entry (void *e)
1727 {
1728 struct quick_file_names *file_data = e;
1729 int i;
1730
1731 for (i = 0; i < file_data->num_file_names; ++i)
1732 {
1733 xfree ((void*) file_data->file_names[i]);
1734 if (file_data->real_names)
1735 xfree ((void*) file_data->real_names[i]);
1736 }
1737
1738 /* The space for the struct itself lives on objfile_obstack,
1739 so we don't free it here. */
1740 }
1741
1742 /* Create a quick_file_names hash table. */
1743
1744 static htab_t
1745 create_quick_file_names_table (unsigned int nr_initial_entries)
1746 {
1747 return htab_create_alloc (nr_initial_entries,
1748 hash_file_name_entry, eq_file_name_entry,
1749 delete_file_name_entry, xcalloc, xfree);
1750 }
1751
1752 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1753 this CU came. */
1754
1755 static void
1756 dw2_do_instantiate_symtab (struct objfile *objfile,
1757 struct dwarf2_per_cu_data *per_cu)
1758 {
1759 struct cleanup *back_to;
1760
1761 back_to = make_cleanup (dwarf2_release_queue, NULL);
1762
1763 queue_comp_unit (per_cu, objfile);
1764
1765 if (per_cu->from_debug_types)
1766 read_signatured_type_at_offset (objfile, per_cu->offset);
1767 else
1768 load_full_comp_unit (per_cu, objfile);
1769
1770 process_queue (objfile);
1771
1772 /* Age the cache, releasing compilation units that have not
1773 been used recently. */
1774 age_cached_comp_units ();
1775
1776 do_cleanups (back_to);
1777 }
1778
1779 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1780 the objfile from which this CU came. Returns the resulting symbol
1781 table. */
1782
1783 static struct symtab *
1784 dw2_instantiate_symtab (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *per_cu)
1786 {
1787 if (!per_cu->v.quick->symtab)
1788 {
1789 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1790 increment_reading_symtab ();
1791 dw2_do_instantiate_symtab (objfile, per_cu);
1792 do_cleanups (back_to);
1793 }
1794 return per_cu->v.quick->symtab;
1795 }
1796
1797 /* Return the CU given its index. */
1798
1799 static struct dwarf2_per_cu_data *
1800 dw2_get_cu (int index)
1801 {
1802 if (index >= dwarf2_per_objfile->n_comp_units)
1803 {
1804 index -= dwarf2_per_objfile->n_comp_units;
1805 return dwarf2_per_objfile->type_comp_units[index];
1806 }
1807 return dwarf2_per_objfile->all_comp_units[index];
1808 }
1809
1810 /* A helper function that knows how to read a 64-bit value in a way
1811 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1812 otherwise. */
1813
1814 static int
1815 extract_cu_value (const char *bytes, ULONGEST *result)
1816 {
1817 if (sizeof (ULONGEST) < 8)
1818 {
1819 int i;
1820
1821 /* Ignore the upper 4 bytes if they are all zero. */
1822 for (i = 0; i < 4; ++i)
1823 if (bytes[i + 4] != 0)
1824 return 0;
1825
1826 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1827 }
1828 else
1829 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1830 return 1;
1831 }
1832
1833 /* Read the CU list from the mapped index, and use it to create all
1834 the CU objects for this objfile. Return 0 if something went wrong,
1835 1 if everything went ok. */
1836
1837 static int
1838 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1839 offset_type cu_list_elements)
1840 {
1841 offset_type i;
1842
1843 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1844 dwarf2_per_objfile->all_comp_units
1845 = obstack_alloc (&objfile->objfile_obstack,
1846 dwarf2_per_objfile->n_comp_units
1847 * sizeof (struct dwarf2_per_cu_data *));
1848
1849 for (i = 0; i < cu_list_elements; i += 2)
1850 {
1851 struct dwarf2_per_cu_data *the_cu;
1852 ULONGEST offset, length;
1853
1854 if (!extract_cu_value (cu_list, &offset)
1855 || !extract_cu_value (cu_list + 8, &length))
1856 return 0;
1857 cu_list += 2 * 8;
1858
1859 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1860 struct dwarf2_per_cu_data);
1861 the_cu->offset = offset;
1862 the_cu->length = length;
1863 the_cu->objfile = objfile;
1864 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1865 struct dwarf2_per_cu_quick_data);
1866 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1867 }
1868
1869 return 1;
1870 }
1871
1872 /* Create the signatured type hash table from the index. */
1873
1874 static int
1875 create_signatured_type_table_from_index (struct objfile *objfile,
1876 const gdb_byte *bytes,
1877 offset_type elements)
1878 {
1879 offset_type i;
1880 htab_t sig_types_hash;
1881
1882 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1883 dwarf2_per_objfile->type_comp_units
1884 = obstack_alloc (&objfile->objfile_obstack,
1885 dwarf2_per_objfile->n_type_comp_units
1886 * sizeof (struct dwarf2_per_cu_data *));
1887
1888 sig_types_hash = allocate_signatured_type_table (objfile);
1889
1890 for (i = 0; i < elements; i += 3)
1891 {
1892 struct signatured_type *type_sig;
1893 ULONGEST offset, type_offset, signature;
1894 void **slot;
1895
1896 if (!extract_cu_value (bytes, &offset)
1897 || !extract_cu_value (bytes + 8, &type_offset))
1898 return 0;
1899 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1900 bytes += 3 * 8;
1901
1902 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1903 struct signatured_type);
1904 type_sig->signature = signature;
1905 type_sig->offset = offset;
1906 type_sig->type_offset = type_offset;
1907 type_sig->per_cu.from_debug_types = 1;
1908 type_sig->per_cu.offset = offset;
1909 type_sig->per_cu.objfile = objfile;
1910 type_sig->per_cu.v.quick
1911 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1912 struct dwarf2_per_cu_quick_data);
1913
1914 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1915 *slot = type_sig;
1916
1917 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1918 }
1919
1920 dwarf2_per_objfile->signatured_types = sig_types_hash;
1921
1922 return 1;
1923 }
1924
1925 /* Read the address map data from the mapped index, and use it to
1926 populate the objfile's psymtabs_addrmap. */
1927
1928 static void
1929 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1930 {
1931 const gdb_byte *iter, *end;
1932 struct obstack temp_obstack;
1933 struct addrmap *mutable_map;
1934 struct cleanup *cleanup;
1935 CORE_ADDR baseaddr;
1936
1937 obstack_init (&temp_obstack);
1938 cleanup = make_cleanup_obstack_free (&temp_obstack);
1939 mutable_map = addrmap_create_mutable (&temp_obstack);
1940
1941 iter = index->address_table;
1942 end = iter + index->address_table_size;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 while (iter < end)
1947 {
1948 ULONGEST hi, lo, cu_index;
1949 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1950 iter += 8;
1951 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1952 iter += 8;
1953 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1954 iter += 4;
1955
1956 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1957 dw2_get_cu (cu_index));
1958 }
1959
1960 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1961 &objfile->objfile_obstack);
1962 do_cleanups (cleanup);
1963 }
1964
1965 /* The hash function for strings in the mapped index. This is the
1966 same as the hashtab.c hash function, but we keep a separate copy to
1967 maintain control over the implementation. This is necessary
1968 because the hash function is tied to the format of the mapped index
1969 file. */
1970
1971 static hashval_t
1972 mapped_index_string_hash (const void *p)
1973 {
1974 const unsigned char *str = (const unsigned char *) p;
1975 hashval_t r = 0;
1976 unsigned char c;
1977
1978 while ((c = *str++) != 0)
1979 r = r * 67 + c - 113;
1980
1981 return r;
1982 }
1983
1984 /* Find a slot in the mapped index INDEX for the object named NAME.
1985 If NAME is found, set *VEC_OUT to point to the CU vector in the
1986 constant pool and return 1. If NAME cannot be found, return 0. */
1987
1988 static int
1989 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1990 offset_type **vec_out)
1991 {
1992 offset_type hash = mapped_index_string_hash (name);
1993 offset_type slot, step;
1994
1995 slot = hash & (index->symbol_table_slots - 1);
1996 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1997
1998 for (;;)
1999 {
2000 /* Convert a slot number to an offset into the table. */
2001 offset_type i = 2 * slot;
2002 const char *str;
2003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2004 return 0;
2005
2006 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2007 if (!strcmp (name, str))
2008 {
2009 *vec_out = (offset_type *) (index->constant_pool
2010 + MAYBE_SWAP (index->symbol_table[i + 1]));
2011 return 1;
2012 }
2013
2014 slot = (slot + step) & (index->symbol_table_slots - 1);
2015 }
2016 }
2017
2018 /* Read the index file. If everything went ok, initialize the "quick"
2019 elements of all the CUs and return 1. Otherwise, return 0. */
2020
2021 static int
2022 dwarf2_read_index (struct objfile *objfile)
2023 {
2024 char *addr;
2025 struct mapped_index *map;
2026 offset_type *metadata;
2027 const gdb_byte *cu_list;
2028 const gdb_byte *types_list = NULL;
2029 offset_type version, cu_list_elements;
2030 offset_type types_list_elements = 0;
2031 int i;
2032
2033 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2034 return 0;
2035
2036 /* Older elfutils strip versions could keep the section in the main
2037 executable while splitting it for the separate debug info file. */
2038 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2039 & SEC_HAS_CONTENTS) == 0)
2040 return 0;
2041
2042 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2043
2044 addr = dwarf2_per_objfile->gdb_index.buffer;
2045 /* Version check. */
2046 version = MAYBE_SWAP (*(offset_type *) addr);
2047 /* Versions earlier than 3 emitted every copy of a psymbol. This
2048 causes the index to behave very poorly for certain requests. Version 4
2049 contained incomplete addrmap. So, it seems better to just ignore such
2050 indices. */
2051 if (version < 4)
2052 return 0;
2053 /* Indexes with higher version than the one supported by GDB may be no
2054 longer backward compatible. */
2055 if (version > 4)
2056 return 0;
2057
2058 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2059 map->total_size = dwarf2_per_objfile->gdb_index.size;
2060
2061 metadata = (offset_type *) (addr + sizeof (offset_type));
2062
2063 i = 0;
2064 cu_list = addr + MAYBE_SWAP (metadata[i]);
2065 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2066 / 8);
2067 ++i;
2068
2069 types_list = addr + MAYBE_SWAP (metadata[i]);
2070 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2071 - MAYBE_SWAP (metadata[i]))
2072 / 8);
2073 ++i;
2074
2075 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2076 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2077 - MAYBE_SWAP (metadata[i]));
2078 ++i;
2079
2080 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2081 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2082 - MAYBE_SWAP (metadata[i]))
2083 / (2 * sizeof (offset_type)));
2084 ++i;
2085
2086 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2087
2088 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2089 return 0;
2090
2091 if (types_list_elements
2092 && !create_signatured_type_table_from_index (objfile, types_list,
2093 types_list_elements))
2094 return 0;
2095
2096 create_addrmap_from_index (objfile, map);
2097
2098 dwarf2_per_objfile->index_table = map;
2099 dwarf2_per_objfile->using_index = 1;
2100 dwarf2_per_objfile->quick_file_names_table =
2101 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2102
2103 return 1;
2104 }
2105
2106 /* A helper for the "quick" functions which sets the global
2107 dwarf2_per_objfile according to OBJFILE. */
2108
2109 static void
2110 dw2_setup (struct objfile *objfile)
2111 {
2112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2113 gdb_assert (dwarf2_per_objfile);
2114 }
2115
2116 /* A helper for the "quick" functions which attempts to read the line
2117 table for THIS_CU. */
2118
2119 static struct quick_file_names *
2120 dw2_get_file_names (struct objfile *objfile,
2121 struct dwarf2_per_cu_data *this_cu)
2122 {
2123 bfd *abfd = objfile->obfd;
2124 struct line_header *lh;
2125 struct attribute *attr;
2126 struct cleanup *cleanups;
2127 struct die_info *comp_unit_die;
2128 struct dwarf2_section_info* sec;
2129 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2130 int has_children, i;
2131 struct dwarf2_cu cu;
2132 unsigned int bytes_read, buffer_size;
2133 struct die_reader_specs reader_specs;
2134 char *name, *comp_dir;
2135 void **slot;
2136 struct quick_file_names *qfn;
2137 unsigned int line_offset;
2138
2139 if (this_cu->v.quick->file_names != NULL)
2140 return this_cu->v.quick->file_names;
2141 /* If we know there is no line data, no point in looking again. */
2142 if (this_cu->v.quick->no_file_data)
2143 return NULL;
2144
2145 init_one_comp_unit (&cu, objfile);
2146 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2147
2148 if (this_cu->from_debug_types)
2149 sec = &dwarf2_per_objfile->types;
2150 else
2151 sec = &dwarf2_per_objfile->info;
2152 dwarf2_read_section (objfile, sec);
2153 buffer_size = sec->size;
2154 buffer = sec->buffer;
2155 info_ptr = buffer + this_cu->offset;
2156 beg_of_comp_unit = info_ptr;
2157
2158 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2159 buffer, buffer_size,
2160 abfd);
2161
2162 /* Complete the cu_header. */
2163 cu.header.offset = beg_of_comp_unit - buffer;
2164 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2165
2166 this_cu->cu = &cu;
2167 cu.per_cu = this_cu;
2168
2169 dwarf2_read_abbrevs (abfd, &cu);
2170 make_cleanup (dwarf2_free_abbrev_table, &cu);
2171
2172 if (this_cu->from_debug_types)
2173 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2174 init_cu_die_reader (&reader_specs, &cu);
2175 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2176 &has_children);
2177
2178 lh = NULL;
2179 slot = NULL;
2180 line_offset = 0;
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2182 if (attr)
2183 {
2184 struct quick_file_names find_entry;
2185
2186 line_offset = DW_UNSND (attr);
2187
2188 /* We may have already read in this line header (TU line header sharing).
2189 If we have we're done. */
2190 find_entry.offset = line_offset;
2191 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2192 &find_entry, INSERT);
2193 if (*slot != NULL)
2194 {
2195 do_cleanups (cleanups);
2196 this_cu->v.quick->file_names = *slot;
2197 return *slot;
2198 }
2199
2200 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2201 }
2202 if (lh == NULL)
2203 {
2204 do_cleanups (cleanups);
2205 this_cu->v.quick->no_file_data = 1;
2206 return NULL;
2207 }
2208
2209 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2210 qfn->offset = line_offset;
2211 gdb_assert (slot != NULL);
2212 *slot = qfn;
2213
2214 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2215
2216 qfn->num_file_names = lh->num_file_names;
2217 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2218 lh->num_file_names * sizeof (char *));
2219 for (i = 0; i < lh->num_file_names; ++i)
2220 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2221 qfn->real_names = NULL;
2222
2223 free_line_header (lh);
2224 do_cleanups (cleanups);
2225
2226 this_cu->v.quick->file_names = qfn;
2227 return qfn;
2228 }
2229
2230 /* A helper for the "quick" functions which computes and caches the
2231 real path for a given file name from the line table. */
2232
2233 static const char *
2234 dw2_get_real_path (struct objfile *objfile,
2235 struct quick_file_names *qfn, int index)
2236 {
2237 if (qfn->real_names == NULL)
2238 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2239 qfn->num_file_names, sizeof (char *));
2240
2241 if (qfn->real_names[index] == NULL)
2242 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2243
2244 return qfn->real_names[index];
2245 }
2246
2247 static struct symtab *
2248 dw2_find_last_source_symtab (struct objfile *objfile)
2249 {
2250 int index;
2251
2252 dw2_setup (objfile);
2253 index = dwarf2_per_objfile->n_comp_units - 1;
2254 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2255 }
2256
2257 /* Traversal function for dw2_forget_cached_source_info. */
2258
2259 static int
2260 dw2_free_cached_file_names (void **slot, void *info)
2261 {
2262 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2263
2264 if (file_data->real_names)
2265 {
2266 int i;
2267
2268 for (i = 0; i < file_data->num_file_names; ++i)
2269 {
2270 xfree ((void*) file_data->real_names[i]);
2271 file_data->real_names[i] = NULL;
2272 }
2273 }
2274
2275 return 1;
2276 }
2277
2278 static void
2279 dw2_forget_cached_source_info (struct objfile *objfile)
2280 {
2281 dw2_setup (objfile);
2282
2283 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2284 dw2_free_cached_file_names, NULL);
2285 }
2286
2287 static int
2288 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2289 const char *full_path, const char *real_path,
2290 struct symtab **result)
2291 {
2292 int i;
2293 int check_basename = lbasename (name) == name;
2294 struct dwarf2_per_cu_data *base_cu = NULL;
2295
2296 dw2_setup (objfile);
2297
2298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2299 + dwarf2_per_objfile->n_type_comp_units); ++i)
2300 {
2301 int j;
2302 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2303 struct quick_file_names *file_data;
2304
2305 if (per_cu->v.quick->symtab)
2306 continue;
2307
2308 file_data = dw2_get_file_names (objfile, per_cu);
2309 if (file_data == NULL)
2310 continue;
2311
2312 for (j = 0; j < file_data->num_file_names; ++j)
2313 {
2314 const char *this_name = file_data->file_names[j];
2315
2316 if (FILENAME_CMP (name, this_name) == 0)
2317 {
2318 *result = dw2_instantiate_symtab (objfile, per_cu);
2319 return 1;
2320 }
2321
2322 if (check_basename && ! base_cu
2323 && FILENAME_CMP (lbasename (this_name), name) == 0)
2324 base_cu = per_cu;
2325
2326 if (full_path != NULL)
2327 {
2328 const char *this_real_name = dw2_get_real_path (objfile,
2329 file_data, j);
2330
2331 if (this_real_name != NULL
2332 && FILENAME_CMP (full_path, this_real_name) == 0)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, per_cu);
2335 return 1;
2336 }
2337 }
2338
2339 if (real_path != NULL)
2340 {
2341 const char *this_real_name = dw2_get_real_path (objfile,
2342 file_data, j);
2343
2344 if (this_real_name != NULL
2345 && FILENAME_CMP (real_path, this_real_name) == 0)
2346 {
2347 *result = dw2_instantiate_symtab (objfile, per_cu);
2348 return 1;
2349 }
2350 }
2351 }
2352 }
2353
2354 if (base_cu)
2355 {
2356 *result = dw2_instantiate_symtab (objfile, base_cu);
2357 return 1;
2358 }
2359
2360 return 0;
2361 }
2362
2363 static struct symtab *
2364 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2365 const char *name, domain_enum domain)
2366 {
2367 /* We do all the work in the pre_expand_symtabs_matching hook
2368 instead. */
2369 return NULL;
2370 }
2371
2372 /* A helper function that expands all symtabs that hold an object
2373 named NAME. */
2374
2375 static void
2376 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2377 {
2378 dw2_setup (objfile);
2379
2380 /* index_table is NULL if OBJF_READNOW. */
2381 if (dwarf2_per_objfile->index_table)
2382 {
2383 offset_type *vec;
2384
2385 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2386 name, &vec))
2387 {
2388 offset_type i, len = MAYBE_SWAP (*vec);
2389 for (i = 0; i < len; ++i)
2390 {
2391 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2393
2394 dw2_instantiate_symtab (objfile, per_cu);
2395 }
2396 }
2397 }
2398 }
2399
2400 static void
2401 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2402 int kind, const char *name,
2403 domain_enum domain)
2404 {
2405 dw2_do_expand_symtabs_matching (objfile, name);
2406 }
2407
2408 static void
2409 dw2_print_stats (struct objfile *objfile)
2410 {
2411 int i, count;
2412
2413 dw2_setup (objfile);
2414 count = 0;
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_comp_units); ++i)
2417 {
2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2419
2420 if (!per_cu->v.quick->symtab)
2421 ++count;
2422 }
2423 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2424 }
2425
2426 static void
2427 dw2_dump (struct objfile *objfile)
2428 {
2429 /* Nothing worth printing. */
2430 }
2431
2432 static void
2433 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2434 struct section_offsets *delta)
2435 {
2436 /* There's nothing to relocate here. */
2437 }
2438
2439 static void
2440 dw2_expand_symtabs_for_function (struct objfile *objfile,
2441 const char *func_name)
2442 {
2443 dw2_do_expand_symtabs_matching (objfile, func_name);
2444 }
2445
2446 static void
2447 dw2_expand_all_symtabs (struct objfile *objfile)
2448 {
2449 int i;
2450
2451 dw2_setup (objfile);
2452
2453 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2454 + dwarf2_per_objfile->n_type_comp_units); ++i)
2455 {
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457
2458 dw2_instantiate_symtab (objfile, per_cu);
2459 }
2460 }
2461
2462 static void
2463 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2464 const char *filename)
2465 {
2466 int i;
2467
2468 dw2_setup (objfile);
2469
2470 /* We don't need to consider type units here.
2471 This is only called for examining code, e.g. expand_line_sal.
2472 There can be an order of magnitude (or more) more type units
2473 than comp units, and we avoid them if we can. */
2474
2475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2476 {
2477 int j;
2478 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2479 struct quick_file_names *file_data;
2480
2481 if (per_cu->v.quick->symtab)
2482 continue;
2483
2484 file_data = dw2_get_file_names (objfile, per_cu);
2485 if (file_data == NULL)
2486 continue;
2487
2488 for (j = 0; j < file_data->num_file_names; ++j)
2489 {
2490 const char *this_name = file_data->file_names[j];
2491 if (FILENAME_CMP (this_name, filename) == 0)
2492 {
2493 dw2_instantiate_symtab (objfile, per_cu);
2494 break;
2495 }
2496 }
2497 }
2498 }
2499
2500 static const char *
2501 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2502 {
2503 struct dwarf2_per_cu_data *per_cu;
2504 offset_type *vec;
2505 struct quick_file_names *file_data;
2506
2507 dw2_setup (objfile);
2508
2509 /* index_table is NULL if OBJF_READNOW. */
2510 if (!dwarf2_per_objfile->index_table)
2511 return NULL;
2512
2513 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2514 name, &vec))
2515 return NULL;
2516
2517 /* Note that this just looks at the very first one named NAME -- but
2518 actually we are looking for a function. find_main_filename
2519 should be rewritten so that it doesn't require a custom hook. It
2520 could just use the ordinary symbol tables. */
2521 /* vec[0] is the length, which must always be >0. */
2522 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2523
2524 file_data = dw2_get_file_names (objfile, per_cu);
2525 if (file_data == NULL)
2526 return NULL;
2527
2528 return file_data->file_names[file_data->num_file_names - 1];
2529 }
2530
2531 static void
2532 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2533 struct objfile *objfile, int global,
2534 int (*callback) (struct block *,
2535 struct symbol *, void *),
2536 void *data, symbol_compare_ftype *match,
2537 symbol_compare_ftype *ordered_compare)
2538 {
2539 /* Currently unimplemented; used for Ada. The function can be called if the
2540 current language is Ada for a non-Ada objfile using GNU index. As Ada
2541 does not look for non-Ada symbols this function should just return. */
2542 }
2543
2544 static void
2545 dw2_expand_symtabs_matching (struct objfile *objfile,
2546 int (*file_matcher) (const char *, void *),
2547 int (*name_matcher) (const char *, void *),
2548 domain_enum kind,
2549 void *data)
2550 {
2551 int i;
2552 offset_type iter;
2553 struct mapped_index *index;
2554
2555 dw2_setup (objfile);
2556
2557 /* index_table is NULL if OBJF_READNOW. */
2558 if (!dwarf2_per_objfile->index_table)
2559 return;
2560 index = dwarf2_per_objfile->index_table;
2561
2562 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2563 + dwarf2_per_objfile->n_type_comp_units); ++i)
2564 {
2565 int j;
2566 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2567 struct quick_file_names *file_data;
2568
2569 per_cu->v.quick->mark = 0;
2570 if (per_cu->v.quick->symtab)
2571 continue;
2572
2573 file_data = dw2_get_file_names (objfile, per_cu);
2574 if (file_data == NULL)
2575 continue;
2576
2577 for (j = 0; j < file_data->num_file_names; ++j)
2578 {
2579 if (file_matcher (file_data->file_names[j], data))
2580 {
2581 per_cu->v.quick->mark = 1;
2582 break;
2583 }
2584 }
2585 }
2586
2587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2588 {
2589 offset_type idx = 2 * iter;
2590 const char *name;
2591 offset_type *vec, vec_len, vec_idx;
2592
2593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2594 continue;
2595
2596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2597
2598 if (! (*name_matcher) (name, data))
2599 continue;
2600
2601 /* The name was matched, now expand corresponding CUs that were
2602 marked. */
2603 vec = (offset_type *) (index->constant_pool
2604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2605 vec_len = MAYBE_SWAP (vec[0]);
2606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2607 {
2608 struct dwarf2_per_cu_data *per_cu;
2609
2610 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2611 if (per_cu->v.quick->mark)
2612 dw2_instantiate_symtab (objfile, per_cu);
2613 }
2614 }
2615 }
2616
2617 static struct symtab *
2618 dw2_find_pc_sect_symtab (struct objfile *objfile,
2619 struct minimal_symbol *msymbol,
2620 CORE_ADDR pc,
2621 struct obj_section *section,
2622 int warn_if_readin)
2623 {
2624 struct dwarf2_per_cu_data *data;
2625
2626 dw2_setup (objfile);
2627
2628 if (!objfile->psymtabs_addrmap)
2629 return NULL;
2630
2631 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2632 if (!data)
2633 return NULL;
2634
2635 if (warn_if_readin && data->v.quick->symtab)
2636 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2637 paddress (get_objfile_arch (objfile), pc));
2638
2639 return dw2_instantiate_symtab (objfile, data);
2640 }
2641
2642 static void
2643 dw2_map_symbol_names (struct objfile *objfile,
2644 void (*fun) (const char *, void *),
2645 void *data)
2646 {
2647 offset_type iter;
2648 struct mapped_index *index;
2649
2650 dw2_setup (objfile);
2651
2652 /* index_table is NULL if OBJF_READNOW. */
2653 if (!dwarf2_per_objfile->index_table)
2654 return;
2655 index = dwarf2_per_objfile->index_table;
2656
2657 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2658 {
2659 offset_type idx = 2 * iter;
2660 const char *name;
2661 offset_type *vec, vec_len, vec_idx;
2662
2663 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2664 continue;
2665
2666 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2667
2668 (*fun) (name, data);
2669 }
2670 }
2671
2672 static void
2673 dw2_map_symbol_filenames (struct objfile *objfile,
2674 void (*fun) (const char *, const char *, void *),
2675 void *data)
2676 {
2677 int i;
2678
2679 dw2_setup (objfile);
2680
2681 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2682 + dwarf2_per_objfile->n_type_comp_units); ++i)
2683 {
2684 int j;
2685 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2686 struct quick_file_names *file_data;
2687
2688 if (per_cu->v.quick->symtab)
2689 continue;
2690
2691 file_data = dw2_get_file_names (objfile, per_cu);
2692 if (file_data == NULL)
2693 continue;
2694
2695 for (j = 0; j < file_data->num_file_names; ++j)
2696 {
2697 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2698 j);
2699 (*fun) (file_data->file_names[j], this_real_name, data);
2700 }
2701 }
2702 }
2703
2704 static int
2705 dw2_has_symbols (struct objfile *objfile)
2706 {
2707 return 1;
2708 }
2709
2710 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2711 {
2712 dw2_has_symbols,
2713 dw2_find_last_source_symtab,
2714 dw2_forget_cached_source_info,
2715 dw2_lookup_symtab,
2716 dw2_lookup_symbol,
2717 dw2_pre_expand_symtabs_matching,
2718 dw2_print_stats,
2719 dw2_dump,
2720 dw2_relocate,
2721 dw2_expand_symtabs_for_function,
2722 dw2_expand_all_symtabs,
2723 dw2_expand_symtabs_with_filename,
2724 dw2_find_symbol_file,
2725 dw2_map_matching_symbols,
2726 dw2_expand_symtabs_matching,
2727 dw2_find_pc_sect_symtab,
2728 dw2_map_symbol_names,
2729 dw2_map_symbol_filenames
2730 };
2731
2732 /* Initialize for reading DWARF for this objfile. Return 0 if this
2733 file will use psymtabs, or 1 if using the GNU index. */
2734
2735 int
2736 dwarf2_initialize_objfile (struct objfile *objfile)
2737 {
2738 /* If we're about to read full symbols, don't bother with the
2739 indices. In this case we also don't care if some other debug
2740 format is making psymtabs, because they are all about to be
2741 expanded anyway. */
2742 if ((objfile->flags & OBJF_READNOW))
2743 {
2744 int i;
2745
2746 dwarf2_per_objfile->using_index = 1;
2747 create_all_comp_units (objfile);
2748 create_debug_types_hash_table (objfile);
2749 dwarf2_per_objfile->quick_file_names_table =
2750 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2751
2752 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2753 + dwarf2_per_objfile->n_type_comp_units); ++i)
2754 {
2755 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2756
2757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2758 struct dwarf2_per_cu_quick_data);
2759 }
2760
2761 /* Return 1 so that gdb sees the "quick" functions. However,
2762 these functions will be no-ops because we will have expanded
2763 all symtabs. */
2764 return 1;
2765 }
2766
2767 if (dwarf2_read_index (objfile))
2768 return 1;
2769
2770 return 0;
2771 }
2772
2773 \f
2774
2775 /* Build a partial symbol table. */
2776
2777 void
2778 dwarf2_build_psymtabs (struct objfile *objfile)
2779 {
2780 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2781 {
2782 init_psymbol_list (objfile, 1024);
2783 }
2784
2785 dwarf2_build_psymtabs_hard (objfile);
2786 }
2787
2788 /* Return TRUE if OFFSET is within CU_HEADER. */
2789
2790 static inline int
2791 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2792 {
2793 unsigned int bottom = cu_header->offset;
2794 unsigned int top = (cu_header->offset
2795 + cu_header->length
2796 + cu_header->initial_length_size);
2797
2798 return (offset >= bottom && offset < top);
2799 }
2800
2801 /* Read in the comp unit header information from the debug_info at info_ptr.
2802 NOTE: This leaves members offset, first_die_offset to be filled in
2803 by the caller. */
2804
2805 static gdb_byte *
2806 read_comp_unit_head (struct comp_unit_head *cu_header,
2807 gdb_byte *info_ptr, bfd *abfd)
2808 {
2809 int signed_addr;
2810 unsigned int bytes_read;
2811
2812 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2813 cu_header->initial_length_size = bytes_read;
2814 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2815 info_ptr += bytes_read;
2816 cu_header->version = read_2_bytes (abfd, info_ptr);
2817 info_ptr += 2;
2818 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2819 &bytes_read);
2820 info_ptr += bytes_read;
2821 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2822 info_ptr += 1;
2823 signed_addr = bfd_get_sign_extend_vma (abfd);
2824 if (signed_addr < 0)
2825 internal_error (__FILE__, __LINE__,
2826 _("read_comp_unit_head: dwarf from non elf file"));
2827 cu_header->signed_addr_p = signed_addr;
2828
2829 return info_ptr;
2830 }
2831
2832 static gdb_byte *
2833 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2834 gdb_byte *buffer, unsigned int buffer_size,
2835 bfd *abfd)
2836 {
2837 gdb_byte *beg_of_comp_unit = info_ptr;
2838
2839 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2840
2841 if (header->version != 2 && header->version != 3 && header->version != 4)
2842 error (_("Dwarf Error: wrong version in compilation unit header "
2843 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2844 bfd_get_filename (abfd));
2845
2846 if (header->abbrev_offset
2847 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2848 &dwarf2_per_objfile->abbrev))
2849 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2850 "(offset 0x%lx + 6) [in module %s]"),
2851 (long) header->abbrev_offset,
2852 (long) (beg_of_comp_unit - buffer),
2853 bfd_get_filename (abfd));
2854
2855 if (beg_of_comp_unit + header->length + header->initial_length_size
2856 > buffer + buffer_size)
2857 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2858 "(offset 0x%lx + 0) [in module %s]"),
2859 (long) header->length,
2860 (long) (beg_of_comp_unit - buffer),
2861 bfd_get_filename (abfd));
2862
2863 return info_ptr;
2864 }
2865
2866 /* Read in the types comp unit header information from .debug_types entry at
2867 types_ptr. The result is a pointer to one past the end of the header. */
2868
2869 static gdb_byte *
2870 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2871 ULONGEST *signature,
2872 gdb_byte *types_ptr, bfd *abfd)
2873 {
2874 gdb_byte *initial_types_ptr = types_ptr;
2875
2876 dwarf2_read_section (dwarf2_per_objfile->objfile,
2877 &dwarf2_per_objfile->types);
2878 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2879
2880 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2881
2882 *signature = read_8_bytes (abfd, types_ptr);
2883 types_ptr += 8;
2884 types_ptr += cu_header->offset_size;
2885 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2886
2887 return types_ptr;
2888 }
2889
2890 /* Allocate a new partial symtab for file named NAME and mark this new
2891 partial symtab as being an include of PST. */
2892
2893 static void
2894 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2895 struct objfile *objfile)
2896 {
2897 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2898
2899 subpst->section_offsets = pst->section_offsets;
2900 subpst->textlow = 0;
2901 subpst->texthigh = 0;
2902
2903 subpst->dependencies = (struct partial_symtab **)
2904 obstack_alloc (&objfile->objfile_obstack,
2905 sizeof (struct partial_symtab *));
2906 subpst->dependencies[0] = pst;
2907 subpst->number_of_dependencies = 1;
2908
2909 subpst->globals_offset = 0;
2910 subpst->n_global_syms = 0;
2911 subpst->statics_offset = 0;
2912 subpst->n_static_syms = 0;
2913 subpst->symtab = NULL;
2914 subpst->read_symtab = pst->read_symtab;
2915 subpst->readin = 0;
2916
2917 /* No private part is necessary for include psymtabs. This property
2918 can be used to differentiate between such include psymtabs and
2919 the regular ones. */
2920 subpst->read_symtab_private = NULL;
2921 }
2922
2923 /* Read the Line Number Program data and extract the list of files
2924 included by the source file represented by PST. Build an include
2925 partial symtab for each of these included files. */
2926
2927 static void
2928 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2929 struct die_info *die,
2930 struct partial_symtab *pst)
2931 {
2932 struct objfile *objfile = cu->objfile;
2933 bfd *abfd = objfile->obfd;
2934 struct line_header *lh = NULL;
2935 struct attribute *attr;
2936
2937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2938 if (attr)
2939 {
2940 unsigned int line_offset = DW_UNSND (attr);
2941
2942 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2943 }
2944 if (lh == NULL)
2945 return; /* No linetable, so no includes. */
2946
2947 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2948 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2949
2950 free_line_header (lh);
2951 }
2952
2953 static hashval_t
2954 hash_type_signature (const void *item)
2955 {
2956 const struct signatured_type *type_sig = item;
2957
2958 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2959 return type_sig->signature;
2960 }
2961
2962 static int
2963 eq_type_signature (const void *item_lhs, const void *item_rhs)
2964 {
2965 const struct signatured_type *lhs = item_lhs;
2966 const struct signatured_type *rhs = item_rhs;
2967
2968 return lhs->signature == rhs->signature;
2969 }
2970
2971 /* Allocate a hash table for signatured types. */
2972
2973 static htab_t
2974 allocate_signatured_type_table (struct objfile *objfile)
2975 {
2976 return htab_create_alloc_ex (41,
2977 hash_type_signature,
2978 eq_type_signature,
2979 NULL,
2980 &objfile->objfile_obstack,
2981 hashtab_obstack_allocate,
2982 dummy_obstack_deallocate);
2983 }
2984
2985 /* A helper function to add a signatured type CU to a list. */
2986
2987 static int
2988 add_signatured_type_cu_to_list (void **slot, void *datum)
2989 {
2990 struct signatured_type *sigt = *slot;
2991 struct dwarf2_per_cu_data ***datap = datum;
2992
2993 **datap = &sigt->per_cu;
2994 ++*datap;
2995
2996 return 1;
2997 }
2998
2999 /* Create the hash table of all entries in the .debug_types section.
3000 The result is zero if there is an error (e.g. missing .debug_types section),
3001 otherwise non-zero. */
3002
3003 static int
3004 create_debug_types_hash_table (struct objfile *objfile)
3005 {
3006 gdb_byte *info_ptr;
3007 htab_t types_htab;
3008 struct dwarf2_per_cu_data **iter;
3009
3010 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
3011 info_ptr = dwarf2_per_objfile->types.buffer;
3012
3013 if (info_ptr == NULL)
3014 {
3015 dwarf2_per_objfile->signatured_types = NULL;
3016 return 0;
3017 }
3018
3019 types_htab = allocate_signatured_type_table (objfile);
3020
3021 if (dwarf2_die_debug)
3022 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3023
3024 while (info_ptr < dwarf2_per_objfile->types.buffer
3025 + dwarf2_per_objfile->types.size)
3026 {
3027 unsigned int offset;
3028 unsigned int offset_size;
3029 unsigned int type_offset;
3030 unsigned int length, initial_length_size;
3031 unsigned short version;
3032 ULONGEST signature;
3033 struct signatured_type *type_sig;
3034 void **slot;
3035 gdb_byte *ptr = info_ptr;
3036
3037 offset = ptr - dwarf2_per_objfile->types.buffer;
3038
3039 /* We need to read the type's signature in order to build the hash
3040 table, but we don't need to read anything else just yet. */
3041
3042 /* Sanity check to ensure entire cu is present. */
3043 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3044 if (ptr + length + initial_length_size
3045 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3046 {
3047 complaint (&symfile_complaints,
3048 _("debug type entry runs off end "
3049 "of `.debug_types' section, ignored"));
3050 break;
3051 }
3052
3053 offset_size = initial_length_size == 4 ? 4 : 8;
3054 ptr += initial_length_size;
3055 version = bfd_get_16 (objfile->obfd, ptr);
3056 ptr += 2;
3057 ptr += offset_size; /* abbrev offset */
3058 ptr += 1; /* address size */
3059 signature = bfd_get_64 (objfile->obfd, ptr);
3060 ptr += 8;
3061 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3062
3063 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3064 memset (type_sig, 0, sizeof (*type_sig));
3065 type_sig->signature = signature;
3066 type_sig->offset = offset;
3067 type_sig->type_offset = type_offset;
3068 type_sig->per_cu.objfile = objfile;
3069 type_sig->per_cu.from_debug_types = 1;
3070
3071 slot = htab_find_slot (types_htab, type_sig, INSERT);
3072 gdb_assert (slot != NULL);
3073 *slot = type_sig;
3074
3075 if (dwarf2_die_debug)
3076 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3077 offset, phex (signature, sizeof (signature)));
3078
3079 info_ptr = info_ptr + initial_length_size + length;
3080 }
3081
3082 dwarf2_per_objfile->signatured_types = types_htab;
3083
3084 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3085 dwarf2_per_objfile->type_comp_units
3086 = obstack_alloc (&objfile->objfile_obstack,
3087 dwarf2_per_objfile->n_type_comp_units
3088 * sizeof (struct dwarf2_per_cu_data *));
3089 iter = &dwarf2_per_objfile->type_comp_units[0];
3090 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3091 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3092 == dwarf2_per_objfile->n_type_comp_units);
3093
3094 return 1;
3095 }
3096
3097 /* Lookup a signature based type.
3098 Returns NULL if SIG is not present in the table. */
3099
3100 static struct signatured_type *
3101 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3102 {
3103 struct signatured_type find_entry, *entry;
3104
3105 if (dwarf2_per_objfile->signatured_types == NULL)
3106 {
3107 complaint (&symfile_complaints,
3108 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3109 return 0;
3110 }
3111
3112 find_entry.signature = sig;
3113 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3114 return entry;
3115 }
3116
3117 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3118
3119 static void
3120 init_cu_die_reader (struct die_reader_specs *reader,
3121 struct dwarf2_cu *cu)
3122 {
3123 reader->abfd = cu->objfile->obfd;
3124 reader->cu = cu;
3125 if (cu->per_cu->from_debug_types)
3126 {
3127 gdb_assert (dwarf2_per_objfile->types.readin);
3128 reader->buffer = dwarf2_per_objfile->types.buffer;
3129 }
3130 else
3131 {
3132 gdb_assert (dwarf2_per_objfile->info.readin);
3133 reader->buffer = dwarf2_per_objfile->info.buffer;
3134 }
3135 }
3136
3137 /* Find the base address of the compilation unit for range lists and
3138 location lists. It will normally be specified by DW_AT_low_pc.
3139 In DWARF-3 draft 4, the base address could be overridden by
3140 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3141 compilation units with discontinuous ranges. */
3142
3143 static void
3144 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3145 {
3146 struct attribute *attr;
3147
3148 cu->base_known = 0;
3149 cu->base_address = 0;
3150
3151 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3152 if (attr)
3153 {
3154 cu->base_address = DW_ADDR (attr);
3155 cu->base_known = 1;
3156 }
3157 else
3158 {
3159 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3160 if (attr)
3161 {
3162 cu->base_address = DW_ADDR (attr);
3163 cu->base_known = 1;
3164 }
3165 }
3166 }
3167
3168 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3169 to combine the common parts.
3170 Process a compilation unit for a psymtab.
3171 BUFFER is a pointer to the beginning of the dwarf section buffer,
3172 either .debug_info or debug_types.
3173 INFO_PTR is a pointer to the start of the CU.
3174 Returns a pointer to the next CU. */
3175
3176 static gdb_byte *
3177 process_psymtab_comp_unit (struct objfile *objfile,
3178 struct dwarf2_per_cu_data *this_cu,
3179 gdb_byte *buffer, gdb_byte *info_ptr,
3180 unsigned int buffer_size)
3181 {
3182 bfd *abfd = objfile->obfd;
3183 gdb_byte *beg_of_comp_unit = info_ptr;
3184 struct die_info *comp_unit_die;
3185 struct partial_symtab *pst;
3186 CORE_ADDR baseaddr;
3187 struct cleanup *back_to_inner;
3188 struct dwarf2_cu cu;
3189 int has_children, has_pc_info;
3190 struct attribute *attr;
3191 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3192 struct die_reader_specs reader_specs;
3193 const char *filename;
3194
3195 init_one_comp_unit (&cu, objfile);
3196 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3197
3198 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3199 buffer, buffer_size,
3200 abfd);
3201
3202 /* Complete the cu_header. */
3203 cu.header.offset = beg_of_comp_unit - buffer;
3204 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3205
3206 cu.list_in_scope = &file_symbols;
3207
3208 /* If this compilation unit was already read in, free the
3209 cached copy in order to read it in again. This is
3210 necessary because we skipped some symbols when we first
3211 read in the compilation unit (see load_partial_dies).
3212 This problem could be avoided, but the benefit is
3213 unclear. */
3214 if (this_cu->cu != NULL)
3215 free_one_cached_comp_unit (this_cu->cu);
3216
3217 /* Note that this is a pointer to our stack frame, being
3218 added to a global data structure. It will be cleaned up
3219 in free_stack_comp_unit when we finish with this
3220 compilation unit. */
3221 this_cu->cu = &cu;
3222 cu.per_cu = this_cu;
3223
3224 /* Read the abbrevs for this compilation unit into a table. */
3225 dwarf2_read_abbrevs (abfd, &cu);
3226 make_cleanup (dwarf2_free_abbrev_table, &cu);
3227
3228 /* Read the compilation unit die. */
3229 if (this_cu->from_debug_types)
3230 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3231 init_cu_die_reader (&reader_specs, &cu);
3232 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3233 &has_children);
3234
3235 if (this_cu->from_debug_types)
3236 {
3237 /* offset,length haven't been set yet for type units. */
3238 this_cu->offset = cu.header.offset;
3239 this_cu->length = cu.header.length + cu.header.initial_length_size;
3240 }
3241 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3242 {
3243 info_ptr = (beg_of_comp_unit + cu.header.length
3244 + cu.header.initial_length_size);
3245 do_cleanups (back_to_inner);
3246 return info_ptr;
3247 }
3248
3249 prepare_one_comp_unit (&cu, comp_unit_die);
3250
3251 /* Allocate a new partial symbol table structure. */
3252 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3253 if (attr == NULL || !DW_STRING (attr))
3254 filename = "";
3255 else
3256 filename = DW_STRING (attr);
3257 pst = start_psymtab_common (objfile, objfile->section_offsets,
3258 filename,
3259 /* TEXTLOW and TEXTHIGH are set below. */
3260 0,
3261 objfile->global_psymbols.next,
3262 objfile->static_psymbols.next);
3263
3264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3265 if (attr != NULL)
3266 pst->dirname = DW_STRING (attr);
3267
3268 pst->read_symtab_private = this_cu;
3269
3270 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3271
3272 /* Store the function that reads in the rest of the symbol table. */
3273 pst->read_symtab = dwarf2_psymtab_to_symtab;
3274
3275 this_cu->v.psymtab = pst;
3276
3277 dwarf2_find_base_address (comp_unit_die, &cu);
3278
3279 /* Possibly set the default values of LOWPC and HIGHPC from
3280 `DW_AT_ranges'. */
3281 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3282 &best_highpc, &cu, pst);
3283 if (has_pc_info == 1 && best_lowpc < best_highpc)
3284 /* Store the contiguous range if it is not empty; it can be empty for
3285 CUs with no code. */
3286 addrmap_set_empty (objfile->psymtabs_addrmap,
3287 best_lowpc + baseaddr,
3288 best_highpc + baseaddr - 1, pst);
3289
3290 /* Check if comp unit has_children.
3291 If so, read the rest of the partial symbols from this comp unit.
3292 If not, there's no more debug_info for this comp unit. */
3293 if (has_children)
3294 {
3295 struct partial_die_info *first_die;
3296 CORE_ADDR lowpc, highpc;
3297
3298 lowpc = ((CORE_ADDR) -1);
3299 highpc = ((CORE_ADDR) 0);
3300
3301 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3302
3303 scan_partial_symbols (first_die, &lowpc, &highpc,
3304 ! has_pc_info, &cu);
3305
3306 /* If we didn't find a lowpc, set it to highpc to avoid
3307 complaints from `maint check'. */
3308 if (lowpc == ((CORE_ADDR) -1))
3309 lowpc = highpc;
3310
3311 /* If the compilation unit didn't have an explicit address range,
3312 then use the information extracted from its child dies. */
3313 if (! has_pc_info)
3314 {
3315 best_lowpc = lowpc;
3316 best_highpc = highpc;
3317 }
3318 }
3319 pst->textlow = best_lowpc + baseaddr;
3320 pst->texthigh = best_highpc + baseaddr;
3321
3322 pst->n_global_syms = objfile->global_psymbols.next -
3323 (objfile->global_psymbols.list + pst->globals_offset);
3324 pst->n_static_syms = objfile->static_psymbols.next -
3325 (objfile->static_psymbols.list + pst->statics_offset);
3326 sort_pst_symbols (pst);
3327
3328 info_ptr = (beg_of_comp_unit + cu.header.length
3329 + cu.header.initial_length_size);
3330
3331 if (this_cu->from_debug_types)
3332 {
3333 /* It's not clear we want to do anything with stmt lists here.
3334 Waiting to see what gcc ultimately does. */
3335 }
3336 else
3337 {
3338 /* Get the list of files included in the current compilation unit,
3339 and build a psymtab for each of them. */
3340 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3341 }
3342
3343 do_cleanups (back_to_inner);
3344
3345 return info_ptr;
3346 }
3347
3348 /* Traversal function for htab_traverse_noresize.
3349 Process one .debug_types comp-unit. */
3350
3351 static int
3352 process_type_comp_unit (void **slot, void *info)
3353 {
3354 struct signatured_type *entry = (struct signatured_type *) *slot;
3355 struct objfile *objfile = (struct objfile *) info;
3356 struct dwarf2_per_cu_data *this_cu;
3357
3358 this_cu = &entry->per_cu;
3359
3360 gdb_assert (dwarf2_per_objfile->types.readin);
3361 process_psymtab_comp_unit (objfile, this_cu,
3362 dwarf2_per_objfile->types.buffer,
3363 dwarf2_per_objfile->types.buffer + entry->offset,
3364 dwarf2_per_objfile->types.size);
3365
3366 return 1;
3367 }
3368
3369 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3370 Build partial symbol tables for the .debug_types comp-units. */
3371
3372 static void
3373 build_type_psymtabs (struct objfile *objfile)
3374 {
3375 if (! create_debug_types_hash_table (objfile))
3376 return;
3377
3378 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3379 process_type_comp_unit, objfile);
3380 }
3381
3382 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3383
3384 static void
3385 psymtabs_addrmap_cleanup (void *o)
3386 {
3387 struct objfile *objfile = o;
3388
3389 objfile->psymtabs_addrmap = NULL;
3390 }
3391
3392 /* Build the partial symbol table by doing a quick pass through the
3393 .debug_info and .debug_abbrev sections. */
3394
3395 static void
3396 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3397 {
3398 gdb_byte *info_ptr;
3399 struct cleanup *back_to, *addrmap_cleanup;
3400 struct obstack temp_obstack;
3401
3402 dwarf2_per_objfile->reading_partial_symbols = 1;
3403
3404 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3405 info_ptr = dwarf2_per_objfile->info.buffer;
3406
3407 /* Any cached compilation units will be linked by the per-objfile
3408 read_in_chain. Make sure to free them when we're done. */
3409 back_to = make_cleanup (free_cached_comp_units, NULL);
3410
3411 build_type_psymtabs (objfile);
3412
3413 create_all_comp_units (objfile);
3414
3415 /* Create a temporary address map on a temporary obstack. We later
3416 copy this to the final obstack. */
3417 obstack_init (&temp_obstack);
3418 make_cleanup_obstack_free (&temp_obstack);
3419 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3420 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3421
3422 /* Since the objects we're extracting from .debug_info vary in
3423 length, only the individual functions to extract them (like
3424 read_comp_unit_head and load_partial_die) can really know whether
3425 the buffer is large enough to hold another complete object.
3426
3427 At the moment, they don't actually check that. If .debug_info
3428 holds just one extra byte after the last compilation unit's dies,
3429 then read_comp_unit_head will happily read off the end of the
3430 buffer. read_partial_die is similarly casual. Those functions
3431 should be fixed.
3432
3433 For this loop condition, simply checking whether there's any data
3434 left at all should be sufficient. */
3435
3436 while (info_ptr < (dwarf2_per_objfile->info.buffer
3437 + dwarf2_per_objfile->info.size))
3438 {
3439 struct dwarf2_per_cu_data *this_cu;
3440
3441 this_cu = dwarf2_find_comp_unit (info_ptr
3442 - dwarf2_per_objfile->info.buffer,
3443 objfile);
3444
3445 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3446 dwarf2_per_objfile->info.buffer,
3447 info_ptr,
3448 dwarf2_per_objfile->info.size);
3449 }
3450
3451 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3452 &objfile->objfile_obstack);
3453 discard_cleanups (addrmap_cleanup);
3454
3455 do_cleanups (back_to);
3456 }
3457
3458 /* Load the partial DIEs for a secondary CU into memory. */
3459
3460 static void
3461 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3462 struct objfile *objfile)
3463 {
3464 bfd *abfd = objfile->obfd;
3465 gdb_byte *info_ptr, *beg_of_comp_unit;
3466 struct die_info *comp_unit_die;
3467 struct dwarf2_cu *cu;
3468 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3469 int has_children;
3470 struct die_reader_specs reader_specs;
3471 int read_cu = 0;
3472
3473 gdb_assert (! this_cu->from_debug_types);
3474
3475 gdb_assert (dwarf2_per_objfile->info.readin);
3476 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3477 beg_of_comp_unit = info_ptr;
3478
3479 if (this_cu->cu == NULL)
3480 {
3481 cu = xmalloc (sizeof (*cu));
3482 init_one_comp_unit (cu, objfile);
3483
3484 read_cu = 1;
3485
3486 /* If an error occurs while loading, release our storage. */
3487 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3488
3489 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3490 dwarf2_per_objfile->info.buffer,
3491 dwarf2_per_objfile->info.size,
3492 abfd);
3493
3494 /* Complete the cu_header. */
3495 cu->header.offset = this_cu->offset;
3496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3497
3498 /* Link this compilation unit into the compilation unit tree. */
3499 this_cu->cu = cu;
3500 cu->per_cu = this_cu;
3501
3502 /* Link this CU into read_in_chain. */
3503 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3504 dwarf2_per_objfile->read_in_chain = this_cu;
3505 }
3506 else
3507 {
3508 cu = this_cu->cu;
3509 info_ptr += cu->header.first_die_offset;
3510 }
3511
3512 /* Read the abbrevs for this compilation unit into a table. */
3513 gdb_assert (cu->dwarf2_abbrevs == NULL);
3514 dwarf2_read_abbrevs (abfd, cu);
3515 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3516
3517 /* Read the compilation unit die. */
3518 init_cu_die_reader (&reader_specs, cu);
3519 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3520 &has_children);
3521
3522 prepare_one_comp_unit (cu, comp_unit_die);
3523
3524 /* Check if comp unit has_children.
3525 If so, read the rest of the partial symbols from this comp unit.
3526 If not, there's no more debug_info for this comp unit. */
3527 if (has_children)
3528 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3529
3530 do_cleanups (free_abbrevs_cleanup);
3531
3532 if (read_cu)
3533 {
3534 /* We've successfully allocated this compilation unit. Let our
3535 caller clean it up when finished with it. */
3536 discard_cleanups (free_cu_cleanup);
3537 }
3538 }
3539
3540 /* Create a list of all compilation units in OBJFILE. We do this only
3541 if an inter-comp-unit reference is found; presumably if there is one,
3542 there will be many, and one will occur early in the .debug_info section.
3543 So there's no point in building this list incrementally. */
3544
3545 static void
3546 create_all_comp_units (struct objfile *objfile)
3547 {
3548 int n_allocated;
3549 int n_comp_units;
3550 struct dwarf2_per_cu_data **all_comp_units;
3551 gdb_byte *info_ptr;
3552
3553 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3554 info_ptr = dwarf2_per_objfile->info.buffer;
3555
3556 n_comp_units = 0;
3557 n_allocated = 10;
3558 all_comp_units = xmalloc (n_allocated
3559 * sizeof (struct dwarf2_per_cu_data *));
3560
3561 while (info_ptr < dwarf2_per_objfile->info.buffer
3562 + dwarf2_per_objfile->info.size)
3563 {
3564 unsigned int length, initial_length_size;
3565 struct dwarf2_per_cu_data *this_cu;
3566 unsigned int offset;
3567
3568 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3569
3570 /* Read just enough information to find out where the next
3571 compilation unit is. */
3572 length = read_initial_length (objfile->obfd, info_ptr,
3573 &initial_length_size);
3574
3575 /* Save the compilation unit for later lookup. */
3576 this_cu = obstack_alloc (&objfile->objfile_obstack,
3577 sizeof (struct dwarf2_per_cu_data));
3578 memset (this_cu, 0, sizeof (*this_cu));
3579 this_cu->offset = offset;
3580 this_cu->length = length + initial_length_size;
3581 this_cu->objfile = objfile;
3582
3583 if (n_comp_units == n_allocated)
3584 {
3585 n_allocated *= 2;
3586 all_comp_units = xrealloc (all_comp_units,
3587 n_allocated
3588 * sizeof (struct dwarf2_per_cu_data *));
3589 }
3590 all_comp_units[n_comp_units++] = this_cu;
3591
3592 info_ptr = info_ptr + this_cu->length;
3593 }
3594
3595 dwarf2_per_objfile->all_comp_units
3596 = obstack_alloc (&objfile->objfile_obstack,
3597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3600 xfree (all_comp_units);
3601 dwarf2_per_objfile->n_comp_units = n_comp_units;
3602 }
3603
3604 /* Process all loaded DIEs for compilation unit CU, starting at
3605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3607 DW_AT_ranges). If NEED_PC is set, then this function will set
3608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3609 and record the covered ranges in the addrmap. */
3610
3611 static void
3612 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3614 {
3615 struct partial_die_info *pdi;
3616
3617 /* Now, march along the PDI's, descending into ones which have
3618 interesting children but skipping the children of the other ones,
3619 until we reach the end of the compilation unit. */
3620
3621 pdi = first_die;
3622
3623 while (pdi != NULL)
3624 {
3625 fixup_partial_die (pdi, cu);
3626
3627 /* Anonymous namespaces or modules have no name but have interesting
3628 children, so we need to look at them. Ditto for anonymous
3629 enums. */
3630
3631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3633 {
3634 switch (pdi->tag)
3635 {
3636 case DW_TAG_subprogram:
3637 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3638 break;
3639 case DW_TAG_constant:
3640 case DW_TAG_variable:
3641 case DW_TAG_typedef:
3642 case DW_TAG_union_type:
3643 if (!pdi->is_declaration)
3644 {
3645 add_partial_symbol (pdi, cu);
3646 }
3647 break;
3648 case DW_TAG_class_type:
3649 case DW_TAG_interface_type:
3650 case DW_TAG_structure_type:
3651 if (!pdi->is_declaration)
3652 {
3653 add_partial_symbol (pdi, cu);
3654 }
3655 break;
3656 case DW_TAG_enumeration_type:
3657 if (!pdi->is_declaration)
3658 add_partial_enumeration (pdi, cu);
3659 break;
3660 case DW_TAG_base_type:
3661 case DW_TAG_subrange_type:
3662 /* File scope base type definitions are added to the partial
3663 symbol table. */
3664 add_partial_symbol (pdi, cu);
3665 break;
3666 case DW_TAG_namespace:
3667 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3668 break;
3669 case DW_TAG_module:
3670 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 /* If the die has a sibling, skip to the sibling. */
3678
3679 pdi = pdi->die_sibling;
3680 }
3681 }
3682
3683 /* Functions used to compute the fully scoped name of a partial DIE.
3684
3685 Normally, this is simple. For C++, the parent DIE's fully scoped
3686 name is concatenated with "::" and the partial DIE's name. For
3687 Java, the same thing occurs except that "." is used instead of "::".
3688 Enumerators are an exception; they use the scope of their parent
3689 enumeration type, i.e. the name of the enumeration type is not
3690 prepended to the enumerator.
3691
3692 There are two complexities. One is DW_AT_specification; in this
3693 case "parent" means the parent of the target of the specification,
3694 instead of the direct parent of the DIE. The other is compilers
3695 which do not emit DW_TAG_namespace; in this case we try to guess
3696 the fully qualified name of structure types from their members'
3697 linkage names. This must be done using the DIE's children rather
3698 than the children of any DW_AT_specification target. We only need
3699 to do this for structures at the top level, i.e. if the target of
3700 any DW_AT_specification (if any; otherwise the DIE itself) does not
3701 have a parent. */
3702
3703 /* Compute the scope prefix associated with PDI's parent, in
3704 compilation unit CU. The result will be allocated on CU's
3705 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3706 field. NULL is returned if no prefix is necessary. */
3707 static char *
3708 partial_die_parent_scope (struct partial_die_info *pdi,
3709 struct dwarf2_cu *cu)
3710 {
3711 char *grandparent_scope;
3712 struct partial_die_info *parent, *real_pdi;
3713
3714 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3715 then this means the parent of the specification DIE. */
3716
3717 real_pdi = pdi;
3718 while (real_pdi->has_specification)
3719 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3720
3721 parent = real_pdi->die_parent;
3722 if (parent == NULL)
3723 return NULL;
3724
3725 if (parent->scope_set)
3726 return parent->scope;
3727
3728 fixup_partial_die (parent, cu);
3729
3730 grandparent_scope = partial_die_parent_scope (parent, cu);
3731
3732 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3733 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3734 Work around this problem here. */
3735 if (cu->language == language_cplus
3736 && parent->tag == DW_TAG_namespace
3737 && strcmp (parent->name, "::") == 0
3738 && grandparent_scope == NULL)
3739 {
3740 parent->scope = NULL;
3741 parent->scope_set = 1;
3742 return NULL;
3743 }
3744
3745 if (parent->tag == DW_TAG_namespace
3746 || parent->tag == DW_TAG_module
3747 || parent->tag == DW_TAG_structure_type
3748 || parent->tag == DW_TAG_class_type
3749 || parent->tag == DW_TAG_interface_type
3750 || parent->tag == DW_TAG_union_type
3751 || parent->tag == DW_TAG_enumeration_type)
3752 {
3753 if (grandparent_scope == NULL)
3754 parent->scope = parent->name;
3755 else
3756 parent->scope = typename_concat (&cu->comp_unit_obstack,
3757 grandparent_scope,
3758 parent->name, 0, cu);
3759 }
3760 else if (parent->tag == DW_TAG_enumerator)
3761 /* Enumerators should not get the name of the enumeration as a prefix. */
3762 parent->scope = grandparent_scope;
3763 else
3764 {
3765 /* FIXME drow/2004-04-01: What should we be doing with
3766 function-local names? For partial symbols, we should probably be
3767 ignoring them. */
3768 complaint (&symfile_complaints,
3769 _("unhandled containing DIE tag %d for DIE at %d"),
3770 parent->tag, pdi->offset);
3771 parent->scope = grandparent_scope;
3772 }
3773
3774 parent->scope_set = 1;
3775 return parent->scope;
3776 }
3777
3778 /* Return the fully scoped name associated with PDI, from compilation unit
3779 CU. The result will be allocated with malloc. */
3780 static char *
3781 partial_die_full_name (struct partial_die_info *pdi,
3782 struct dwarf2_cu *cu)
3783 {
3784 char *parent_scope;
3785
3786 /* If this is a template instantiation, we can not work out the
3787 template arguments from partial DIEs. So, unfortunately, we have
3788 to go through the full DIEs. At least any work we do building
3789 types here will be reused if full symbols are loaded later. */
3790 if (pdi->has_template_arguments)
3791 {
3792 fixup_partial_die (pdi, cu);
3793
3794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3795 {
3796 struct die_info *die;
3797 struct attribute attr;
3798 struct dwarf2_cu *ref_cu = cu;
3799
3800 attr.name = 0;
3801 attr.form = DW_FORM_ref_addr;
3802 attr.u.addr = pdi->offset;
3803 die = follow_die_ref (NULL, &attr, &ref_cu);
3804
3805 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3806 }
3807 }
3808
3809 parent_scope = partial_die_parent_scope (pdi, cu);
3810 if (parent_scope == NULL)
3811 return NULL;
3812 else
3813 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3814 }
3815
3816 static void
3817 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3818 {
3819 struct objfile *objfile = cu->objfile;
3820 CORE_ADDR addr = 0;
3821 char *actual_name = NULL;
3822 const struct partial_symbol *psym = NULL;
3823 CORE_ADDR baseaddr;
3824 int built_actual_name = 0;
3825
3826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3827
3828 actual_name = partial_die_full_name (pdi, cu);
3829 if (actual_name)
3830 built_actual_name = 1;
3831
3832 if (actual_name == NULL)
3833 actual_name = pdi->name;
3834
3835 switch (pdi->tag)
3836 {
3837 case DW_TAG_subprogram:
3838 if (pdi->is_external || cu->language == language_ada)
3839 {
3840 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3841 of the global scope. But in Ada, we want to be able to access
3842 nested procedures globally. So all Ada subprograms are stored
3843 in the global scope. */
3844 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3845 mst_text, objfile); */
3846 add_psymbol_to_list (actual_name, strlen (actual_name),
3847 built_actual_name,
3848 VAR_DOMAIN, LOC_BLOCK,
3849 &objfile->global_psymbols,
3850 0, pdi->lowpc + baseaddr,
3851 cu->language, objfile);
3852 }
3853 else
3854 {
3855 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3856 mst_file_text, objfile); */
3857 add_psymbol_to_list (actual_name, strlen (actual_name),
3858 built_actual_name,
3859 VAR_DOMAIN, LOC_BLOCK,
3860 &objfile->static_psymbols,
3861 0, pdi->lowpc + baseaddr,
3862 cu->language, objfile);
3863 }
3864 break;
3865 case DW_TAG_constant:
3866 {
3867 struct psymbol_allocation_list *list;
3868
3869 if (pdi->is_external)
3870 list = &objfile->global_psymbols;
3871 else
3872 list = &objfile->static_psymbols;
3873 add_psymbol_to_list (actual_name, strlen (actual_name),
3874 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3875 list, 0, 0, cu->language, objfile);
3876 }
3877 break;
3878 case DW_TAG_variable:
3879 if (pdi->locdesc)
3880 addr = decode_locdesc (pdi->locdesc, cu);
3881
3882 if (pdi->locdesc
3883 && addr == 0
3884 && !dwarf2_per_objfile->has_section_at_zero)
3885 {
3886 /* A global or static variable may also have been stripped
3887 out by the linker if unused, in which case its address
3888 will be nullified; do not add such variables into partial
3889 symbol table then. */
3890 }
3891 else if (pdi->is_external)
3892 {
3893 /* Global Variable.
3894 Don't enter into the minimal symbol tables as there is
3895 a minimal symbol table entry from the ELF symbols already.
3896 Enter into partial symbol table if it has a location
3897 descriptor or a type.
3898 If the location descriptor is missing, new_symbol will create
3899 a LOC_UNRESOLVED symbol, the address of the variable will then
3900 be determined from the minimal symbol table whenever the variable
3901 is referenced.
3902 The address for the partial symbol table entry is not
3903 used by GDB, but it comes in handy for debugging partial symbol
3904 table building. */
3905
3906 if (pdi->locdesc || pdi->has_type)
3907 add_psymbol_to_list (actual_name, strlen (actual_name),
3908 built_actual_name,
3909 VAR_DOMAIN, LOC_STATIC,
3910 &objfile->global_psymbols,
3911 0, addr + baseaddr,
3912 cu->language, objfile);
3913 }
3914 else
3915 {
3916 /* Static Variable. Skip symbols without location descriptors. */
3917 if (pdi->locdesc == NULL)
3918 {
3919 if (built_actual_name)
3920 xfree (actual_name);
3921 return;
3922 }
3923 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
3924 mst_file_data, objfile); */
3925 add_psymbol_to_list (actual_name, strlen (actual_name),
3926 built_actual_name,
3927 VAR_DOMAIN, LOC_STATIC,
3928 &objfile->static_psymbols,
3929 0, addr + baseaddr,
3930 cu->language, objfile);
3931 }
3932 break;
3933 case DW_TAG_typedef:
3934 case DW_TAG_base_type:
3935 case DW_TAG_subrange_type:
3936 add_psymbol_to_list (actual_name, strlen (actual_name),
3937 built_actual_name,
3938 VAR_DOMAIN, LOC_TYPEDEF,
3939 &objfile->static_psymbols,
3940 0, (CORE_ADDR) 0, cu->language, objfile);
3941 break;
3942 case DW_TAG_namespace:
3943 add_psymbol_to_list (actual_name, strlen (actual_name),
3944 built_actual_name,
3945 VAR_DOMAIN, LOC_TYPEDEF,
3946 &objfile->global_psymbols,
3947 0, (CORE_ADDR) 0, cu->language, objfile);
3948 break;
3949 case DW_TAG_class_type:
3950 case DW_TAG_interface_type:
3951 case DW_TAG_structure_type:
3952 case DW_TAG_union_type:
3953 case DW_TAG_enumeration_type:
3954 /* Skip external references. The DWARF standard says in the section
3955 about "Structure, Union, and Class Type Entries": "An incomplete
3956 structure, union or class type is represented by a structure,
3957 union or class entry that does not have a byte size attribute
3958 and that has a DW_AT_declaration attribute." */
3959 if (!pdi->has_byte_size && pdi->is_declaration)
3960 {
3961 if (built_actual_name)
3962 xfree (actual_name);
3963 return;
3964 }
3965
3966 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3967 static vs. global. */
3968 add_psymbol_to_list (actual_name, strlen (actual_name),
3969 built_actual_name,
3970 STRUCT_DOMAIN, LOC_TYPEDEF,
3971 (cu->language == language_cplus
3972 || cu->language == language_java)
3973 ? &objfile->global_psymbols
3974 : &objfile->static_psymbols,
3975 0, (CORE_ADDR) 0, cu->language, objfile);
3976
3977 break;
3978 case DW_TAG_enumerator:
3979 add_psymbol_to_list (actual_name, strlen (actual_name),
3980 built_actual_name,
3981 VAR_DOMAIN, LOC_CONST,
3982 (cu->language == language_cplus
3983 || cu->language == language_java)
3984 ? &objfile->global_psymbols
3985 : &objfile->static_psymbols,
3986 0, (CORE_ADDR) 0, cu->language, objfile);
3987 break;
3988 default:
3989 break;
3990 }
3991
3992 if (built_actual_name)
3993 xfree (actual_name);
3994 }
3995
3996 /* Read a partial die corresponding to a namespace; also, add a symbol
3997 corresponding to that namespace to the symbol table. NAMESPACE is
3998 the name of the enclosing namespace. */
3999
4000 static void
4001 add_partial_namespace (struct partial_die_info *pdi,
4002 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4003 int need_pc, struct dwarf2_cu *cu)
4004 {
4005 /* Add a symbol for the namespace. */
4006
4007 add_partial_symbol (pdi, cu);
4008
4009 /* Now scan partial symbols in that namespace. */
4010
4011 if (pdi->has_children)
4012 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4013 }
4014
4015 /* Read a partial die corresponding to a Fortran module. */
4016
4017 static void
4018 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4019 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4020 {
4021 /* Now scan partial symbols in that module. */
4022
4023 if (pdi->has_children)
4024 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4025 }
4026
4027 /* Read a partial die corresponding to a subprogram and create a partial
4028 symbol for that subprogram. When the CU language allows it, this
4029 routine also defines a partial symbol for each nested subprogram
4030 that this subprogram contains.
4031
4032 DIE my also be a lexical block, in which case we simply search
4033 recursively for suprograms defined inside that lexical block.
4034 Again, this is only performed when the CU language allows this
4035 type of definitions. */
4036
4037 static void
4038 add_partial_subprogram (struct partial_die_info *pdi,
4039 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4040 int need_pc, struct dwarf2_cu *cu)
4041 {
4042 if (pdi->tag == DW_TAG_subprogram)
4043 {
4044 if (pdi->has_pc_info)
4045 {
4046 if (pdi->lowpc < *lowpc)
4047 *lowpc = pdi->lowpc;
4048 if (pdi->highpc > *highpc)
4049 *highpc = pdi->highpc;
4050 if (need_pc)
4051 {
4052 CORE_ADDR baseaddr;
4053 struct objfile *objfile = cu->objfile;
4054
4055 baseaddr = ANOFFSET (objfile->section_offsets,
4056 SECT_OFF_TEXT (objfile));
4057 addrmap_set_empty (objfile->psymtabs_addrmap,
4058 pdi->lowpc + baseaddr,
4059 pdi->highpc - 1 + baseaddr,
4060 cu->per_cu->v.psymtab);
4061 }
4062 if (!pdi->is_declaration)
4063 /* Ignore subprogram DIEs that do not have a name, they are
4064 illegal. Do not emit a complaint at this point, we will
4065 do so when we convert this psymtab into a symtab. */
4066 if (pdi->name)
4067 add_partial_symbol (pdi, cu);
4068 }
4069 }
4070
4071 if (! pdi->has_children)
4072 return;
4073
4074 if (cu->language == language_ada)
4075 {
4076 pdi = pdi->die_child;
4077 while (pdi != NULL)
4078 {
4079 fixup_partial_die (pdi, cu);
4080 if (pdi->tag == DW_TAG_subprogram
4081 || pdi->tag == DW_TAG_lexical_block)
4082 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4083 pdi = pdi->die_sibling;
4084 }
4085 }
4086 }
4087
4088 /* Read a partial die corresponding to an enumeration type. */
4089
4090 static void
4091 add_partial_enumeration (struct partial_die_info *enum_pdi,
4092 struct dwarf2_cu *cu)
4093 {
4094 struct partial_die_info *pdi;
4095
4096 if (enum_pdi->name != NULL)
4097 add_partial_symbol (enum_pdi, cu);
4098
4099 pdi = enum_pdi->die_child;
4100 while (pdi)
4101 {
4102 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4103 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4104 else
4105 add_partial_symbol (pdi, cu);
4106 pdi = pdi->die_sibling;
4107 }
4108 }
4109
4110 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4111 Return the corresponding abbrev, or NULL if the number is zero (indicating
4112 an empty DIE). In either case *BYTES_READ will be set to the length of
4113 the initial number. */
4114
4115 static struct abbrev_info *
4116 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4117 struct dwarf2_cu *cu)
4118 {
4119 bfd *abfd = cu->objfile->obfd;
4120 unsigned int abbrev_number;
4121 struct abbrev_info *abbrev;
4122
4123 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4124
4125 if (abbrev_number == 0)
4126 return NULL;
4127
4128 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4129 if (!abbrev)
4130 {
4131 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4132 abbrev_number, bfd_get_filename (abfd));
4133 }
4134
4135 return abbrev;
4136 }
4137
4138 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4139 Returns a pointer to the end of a series of DIEs, terminated by an empty
4140 DIE. Any children of the skipped DIEs will also be skipped. */
4141
4142 static gdb_byte *
4143 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4144 {
4145 struct abbrev_info *abbrev;
4146 unsigned int bytes_read;
4147
4148 while (1)
4149 {
4150 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4151 if (abbrev == NULL)
4152 return info_ptr + bytes_read;
4153 else
4154 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4155 }
4156 }
4157
4158 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4159 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4160 abbrev corresponding to that skipped uleb128 should be passed in
4161 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4162 children. */
4163
4164 static gdb_byte *
4165 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4166 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4167 {
4168 unsigned int bytes_read;
4169 struct attribute attr;
4170 bfd *abfd = cu->objfile->obfd;
4171 unsigned int form, i;
4172
4173 for (i = 0; i < abbrev->num_attrs; i++)
4174 {
4175 /* The only abbrev we care about is DW_AT_sibling. */
4176 if (abbrev->attrs[i].name == DW_AT_sibling)
4177 {
4178 read_attribute (&attr, &abbrev->attrs[i],
4179 abfd, info_ptr, cu);
4180 if (attr.form == DW_FORM_ref_addr)
4181 complaint (&symfile_complaints,
4182 _("ignoring absolute DW_AT_sibling"));
4183 else
4184 return buffer + dwarf2_get_ref_die_offset (&attr);
4185 }
4186
4187 /* If it isn't DW_AT_sibling, skip this attribute. */
4188 form = abbrev->attrs[i].form;
4189 skip_attribute:
4190 switch (form)
4191 {
4192 case DW_FORM_ref_addr:
4193 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4194 and later it is offset sized. */
4195 if (cu->header.version == 2)
4196 info_ptr += cu->header.addr_size;
4197 else
4198 info_ptr += cu->header.offset_size;
4199 break;
4200 case DW_FORM_addr:
4201 info_ptr += cu->header.addr_size;
4202 break;
4203 case DW_FORM_data1:
4204 case DW_FORM_ref1:
4205 case DW_FORM_flag:
4206 info_ptr += 1;
4207 break;
4208 case DW_FORM_flag_present:
4209 break;
4210 case DW_FORM_data2:
4211 case DW_FORM_ref2:
4212 info_ptr += 2;
4213 break;
4214 case DW_FORM_data4:
4215 case DW_FORM_ref4:
4216 info_ptr += 4;
4217 break;
4218 case DW_FORM_data8:
4219 case DW_FORM_ref8:
4220 case DW_FORM_sig8:
4221 info_ptr += 8;
4222 break;
4223 case DW_FORM_string:
4224 read_direct_string (abfd, info_ptr, &bytes_read);
4225 info_ptr += bytes_read;
4226 break;
4227 case DW_FORM_sec_offset:
4228 case DW_FORM_strp:
4229 info_ptr += cu->header.offset_size;
4230 break;
4231 case DW_FORM_exprloc:
4232 case DW_FORM_block:
4233 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4234 info_ptr += bytes_read;
4235 break;
4236 case DW_FORM_block1:
4237 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4238 break;
4239 case DW_FORM_block2:
4240 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4241 break;
4242 case DW_FORM_block4:
4243 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4244 break;
4245 case DW_FORM_sdata:
4246 case DW_FORM_udata:
4247 case DW_FORM_ref_udata:
4248 info_ptr = skip_leb128 (abfd, info_ptr);
4249 break;
4250 case DW_FORM_indirect:
4251 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4252 info_ptr += bytes_read;
4253 /* We need to continue parsing from here, so just go back to
4254 the top. */
4255 goto skip_attribute;
4256
4257 default:
4258 error (_("Dwarf Error: Cannot handle %s "
4259 "in DWARF reader [in module %s]"),
4260 dwarf_form_name (form),
4261 bfd_get_filename (abfd));
4262 }
4263 }
4264
4265 if (abbrev->has_children)
4266 return skip_children (buffer, info_ptr, cu);
4267 else
4268 return info_ptr;
4269 }
4270
4271 /* Locate ORIG_PDI's sibling.
4272 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4273 in BUFFER. */
4274
4275 static gdb_byte *
4276 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4277 gdb_byte *buffer, gdb_byte *info_ptr,
4278 bfd *abfd, struct dwarf2_cu *cu)
4279 {
4280 /* Do we know the sibling already? */
4281
4282 if (orig_pdi->sibling)
4283 return orig_pdi->sibling;
4284
4285 /* Are there any children to deal with? */
4286
4287 if (!orig_pdi->has_children)
4288 return info_ptr;
4289
4290 /* Skip the children the long way. */
4291
4292 return skip_children (buffer, info_ptr, cu);
4293 }
4294
4295 /* Expand this partial symbol table into a full symbol table. */
4296
4297 static void
4298 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4299 {
4300 if (pst != NULL)
4301 {
4302 if (pst->readin)
4303 {
4304 warning (_("bug: psymtab for %s is already read in."),
4305 pst->filename);
4306 }
4307 else
4308 {
4309 if (info_verbose)
4310 {
4311 printf_filtered (_("Reading in symbols for %s..."),
4312 pst->filename);
4313 gdb_flush (gdb_stdout);
4314 }
4315
4316 /* Restore our global data. */
4317 dwarf2_per_objfile = objfile_data (pst->objfile,
4318 dwarf2_objfile_data_key);
4319
4320 /* If this psymtab is constructed from a debug-only objfile, the
4321 has_section_at_zero flag will not necessarily be correct. We
4322 can get the correct value for this flag by looking at the data
4323 associated with the (presumably stripped) associated objfile. */
4324 if (pst->objfile->separate_debug_objfile_backlink)
4325 {
4326 struct dwarf2_per_objfile *dpo_backlink
4327 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4328 dwarf2_objfile_data_key);
4329
4330 dwarf2_per_objfile->has_section_at_zero
4331 = dpo_backlink->has_section_at_zero;
4332 }
4333
4334 dwarf2_per_objfile->reading_partial_symbols = 0;
4335
4336 psymtab_to_symtab_1 (pst);
4337
4338 /* Finish up the debug error message. */
4339 if (info_verbose)
4340 printf_filtered (_("done.\n"));
4341 }
4342 }
4343 }
4344
4345 /* Add PER_CU to the queue. */
4346
4347 static void
4348 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4349 {
4350 struct dwarf2_queue_item *item;
4351
4352 per_cu->queued = 1;
4353 item = xmalloc (sizeof (*item));
4354 item->per_cu = per_cu;
4355 item->next = NULL;
4356
4357 if (dwarf2_queue == NULL)
4358 dwarf2_queue = item;
4359 else
4360 dwarf2_queue_tail->next = item;
4361
4362 dwarf2_queue_tail = item;
4363 }
4364
4365 /* Process the queue. */
4366
4367 static void
4368 process_queue (struct objfile *objfile)
4369 {
4370 struct dwarf2_queue_item *item, *next_item;
4371
4372 /* The queue starts out with one item, but following a DIE reference
4373 may load a new CU, adding it to the end of the queue. */
4374 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4375 {
4376 if (dwarf2_per_objfile->using_index
4377 ? !item->per_cu->v.quick->symtab
4378 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4379 process_full_comp_unit (item->per_cu);
4380
4381 item->per_cu->queued = 0;
4382 next_item = item->next;
4383 xfree (item);
4384 }
4385
4386 dwarf2_queue_tail = NULL;
4387 }
4388
4389 /* Free all allocated queue entries. This function only releases anything if
4390 an error was thrown; if the queue was processed then it would have been
4391 freed as we went along. */
4392
4393 static void
4394 dwarf2_release_queue (void *dummy)
4395 {
4396 struct dwarf2_queue_item *item, *last;
4397
4398 item = dwarf2_queue;
4399 while (item)
4400 {
4401 /* Anything still marked queued is likely to be in an
4402 inconsistent state, so discard it. */
4403 if (item->per_cu->queued)
4404 {
4405 if (item->per_cu->cu != NULL)
4406 free_one_cached_comp_unit (item->per_cu->cu);
4407 item->per_cu->queued = 0;
4408 }
4409
4410 last = item;
4411 item = item->next;
4412 xfree (last);
4413 }
4414
4415 dwarf2_queue = dwarf2_queue_tail = NULL;
4416 }
4417
4418 /* Read in full symbols for PST, and anything it depends on. */
4419
4420 static void
4421 psymtab_to_symtab_1 (struct partial_symtab *pst)
4422 {
4423 struct dwarf2_per_cu_data *per_cu;
4424 struct cleanup *back_to;
4425 int i;
4426
4427 for (i = 0; i < pst->number_of_dependencies; i++)
4428 if (!pst->dependencies[i]->readin)
4429 {
4430 /* Inform about additional files that need to be read in. */
4431 if (info_verbose)
4432 {
4433 /* FIXME: i18n: Need to make this a single string. */
4434 fputs_filtered (" ", gdb_stdout);
4435 wrap_here ("");
4436 fputs_filtered ("and ", gdb_stdout);
4437 wrap_here ("");
4438 printf_filtered ("%s...", pst->dependencies[i]->filename);
4439 wrap_here (""); /* Flush output. */
4440 gdb_flush (gdb_stdout);
4441 }
4442 psymtab_to_symtab_1 (pst->dependencies[i]);
4443 }
4444
4445 per_cu = pst->read_symtab_private;
4446
4447 if (per_cu == NULL)
4448 {
4449 /* It's an include file, no symbols to read for it.
4450 Everything is in the parent symtab. */
4451 pst->readin = 1;
4452 return;
4453 }
4454
4455 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4456 }
4457
4458 /* Load the DIEs associated with PER_CU into memory. */
4459
4460 static void
4461 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4462 struct objfile *objfile)
4463 {
4464 bfd *abfd = objfile->obfd;
4465 struct dwarf2_cu *cu;
4466 unsigned int offset;
4467 gdb_byte *info_ptr, *beg_of_comp_unit;
4468 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4469 struct attribute *attr;
4470 int read_cu = 0;
4471
4472 gdb_assert (! per_cu->from_debug_types);
4473
4474 /* Set local variables from the partial symbol table info. */
4475 offset = per_cu->offset;
4476
4477 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4478 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4479 beg_of_comp_unit = info_ptr;
4480
4481 if (per_cu->cu == NULL)
4482 {
4483 cu = xmalloc (sizeof (*cu));
4484 init_one_comp_unit (cu, objfile);
4485
4486 read_cu = 1;
4487
4488 /* If an error occurs while loading, release our storage. */
4489 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4490
4491 /* Read in the comp_unit header. */
4492 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4493
4494 /* Complete the cu_header. */
4495 cu->header.offset = offset;
4496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4497
4498 /* Read the abbrevs for this compilation unit. */
4499 dwarf2_read_abbrevs (abfd, cu);
4500 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4501
4502 /* Link this compilation unit into the compilation unit tree. */
4503 per_cu->cu = cu;
4504 cu->per_cu = per_cu;
4505
4506 /* Link this CU into read_in_chain. */
4507 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4508 dwarf2_per_objfile->read_in_chain = per_cu;
4509 }
4510 else
4511 {
4512 cu = per_cu->cu;
4513 info_ptr += cu->header.first_die_offset;
4514 }
4515
4516 cu->dies = read_comp_unit (info_ptr, cu);
4517
4518 /* We try not to read any attributes in this function, because not
4519 all objfiles needed for references have been loaded yet, and symbol
4520 table processing isn't initialized. But we have to set the CU language,
4521 or we won't be able to build types correctly. */
4522 prepare_one_comp_unit (cu, cu->dies);
4523
4524 /* Similarly, if we do not read the producer, we can not apply
4525 producer-specific interpretation. */
4526 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4527 if (attr)
4528 cu->producer = DW_STRING (attr);
4529
4530 if (read_cu)
4531 {
4532 do_cleanups (free_abbrevs_cleanup);
4533
4534 /* We've successfully allocated this compilation unit. Let our
4535 caller clean it up when finished with it. */
4536 discard_cleanups (free_cu_cleanup);
4537 }
4538 }
4539
4540 /* Add a DIE to the delayed physname list. */
4541
4542 static void
4543 add_to_method_list (struct type *type, int fnfield_index, int index,
4544 const char *name, struct die_info *die,
4545 struct dwarf2_cu *cu)
4546 {
4547 struct delayed_method_info mi;
4548 mi.type = type;
4549 mi.fnfield_index = fnfield_index;
4550 mi.index = index;
4551 mi.name = name;
4552 mi.die = die;
4553 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4554 }
4555
4556 /* A cleanup for freeing the delayed method list. */
4557
4558 static void
4559 free_delayed_list (void *ptr)
4560 {
4561 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4562 if (cu->method_list != NULL)
4563 {
4564 VEC_free (delayed_method_info, cu->method_list);
4565 cu->method_list = NULL;
4566 }
4567 }
4568
4569 /* Compute the physnames of any methods on the CU's method list.
4570
4571 The computation of method physnames is delayed in order to avoid the
4572 (bad) condition that one of the method's formal parameters is of an as yet
4573 incomplete type. */
4574
4575 static void
4576 compute_delayed_physnames (struct dwarf2_cu *cu)
4577 {
4578 int i;
4579 struct delayed_method_info *mi;
4580 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4581 {
4582 char *physname;
4583 struct fn_fieldlist *fn_flp
4584 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4585 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4586 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4587 }
4588 }
4589
4590 /* Generate full symbol information for PST and CU, whose DIEs have
4591 already been loaded into memory. */
4592
4593 static void
4594 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4595 {
4596 struct dwarf2_cu *cu = per_cu->cu;
4597 struct objfile *objfile = per_cu->objfile;
4598 CORE_ADDR lowpc, highpc;
4599 struct symtab *symtab;
4600 struct cleanup *back_to, *delayed_list_cleanup;
4601 CORE_ADDR baseaddr;
4602
4603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4604
4605 buildsym_init ();
4606 back_to = make_cleanup (really_free_pendings, NULL);
4607 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4608
4609 cu->list_in_scope = &file_symbols;
4610
4611 dwarf2_find_base_address (cu->dies, cu);
4612
4613 /* Do line number decoding in read_file_scope () */
4614 process_die (cu->dies, cu);
4615
4616 /* Now that we have processed all the DIEs in the CU, all the types
4617 should be complete, and it should now be safe to compute all of the
4618 physnames. */
4619 compute_delayed_physnames (cu);
4620 do_cleanups (delayed_list_cleanup);
4621
4622 /* Some compilers don't define a DW_AT_high_pc attribute for the
4623 compilation unit. If the DW_AT_high_pc is missing, synthesize
4624 it, by scanning the DIE's below the compilation unit. */
4625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4626
4627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4628
4629 /* Set symtab language to language from DW_AT_language.
4630 If the compilation is from a C file generated by language preprocessors,
4631 do not set the language if it was already deduced by start_subfile. */
4632 if (symtab != NULL
4633 && !(cu->language == language_c && symtab->language != language_c))
4634 {
4635 symtab->language = cu->language;
4636 }
4637
4638 if (dwarf2_per_objfile->using_index)
4639 per_cu->v.quick->symtab = symtab;
4640 else
4641 {
4642 struct partial_symtab *pst = per_cu->v.psymtab;
4643 pst->symtab = symtab;
4644 pst->readin = 1;
4645 }
4646
4647 do_cleanups (back_to);
4648 }
4649
4650 /* Process a die and its children. */
4651
4652 static void
4653 process_die (struct die_info *die, struct dwarf2_cu *cu)
4654 {
4655 switch (die->tag)
4656 {
4657 case DW_TAG_padding:
4658 break;
4659 case DW_TAG_compile_unit:
4660 read_file_scope (die, cu);
4661 break;
4662 case DW_TAG_type_unit:
4663 read_type_unit_scope (die, cu);
4664 break;
4665 case DW_TAG_subprogram:
4666 case DW_TAG_inlined_subroutine:
4667 read_func_scope (die, cu);
4668 break;
4669 case DW_TAG_lexical_block:
4670 case DW_TAG_try_block:
4671 case DW_TAG_catch_block:
4672 read_lexical_block_scope (die, cu);
4673 break;
4674 case DW_TAG_class_type:
4675 case DW_TAG_interface_type:
4676 case DW_TAG_structure_type:
4677 case DW_TAG_union_type:
4678 process_structure_scope (die, cu);
4679 break;
4680 case DW_TAG_enumeration_type:
4681 process_enumeration_scope (die, cu);
4682 break;
4683
4684 /* These dies have a type, but processing them does not create
4685 a symbol or recurse to process the children. Therefore we can
4686 read them on-demand through read_type_die. */
4687 case DW_TAG_subroutine_type:
4688 case DW_TAG_set_type:
4689 case DW_TAG_array_type:
4690 case DW_TAG_pointer_type:
4691 case DW_TAG_ptr_to_member_type:
4692 case DW_TAG_reference_type:
4693 case DW_TAG_string_type:
4694 break;
4695
4696 case DW_TAG_base_type:
4697 case DW_TAG_subrange_type:
4698 case DW_TAG_typedef:
4699 /* Add a typedef symbol for the type definition, if it has a
4700 DW_AT_name. */
4701 new_symbol (die, read_type_die (die, cu), cu);
4702 break;
4703 case DW_TAG_common_block:
4704 read_common_block (die, cu);
4705 break;
4706 case DW_TAG_common_inclusion:
4707 break;
4708 case DW_TAG_namespace:
4709 processing_has_namespace_info = 1;
4710 read_namespace (die, cu);
4711 break;
4712 case DW_TAG_module:
4713 processing_has_namespace_info = 1;
4714 read_module (die, cu);
4715 break;
4716 case DW_TAG_imported_declaration:
4717 case DW_TAG_imported_module:
4718 processing_has_namespace_info = 1;
4719 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4720 || cu->language != language_fortran))
4721 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4722 dwarf_tag_name (die->tag));
4723 read_import_statement (die, cu);
4724 break;
4725 default:
4726 new_symbol (die, NULL, cu);
4727 break;
4728 }
4729 }
4730
4731 /* A helper function for dwarf2_compute_name which determines whether DIE
4732 needs to have the name of the scope prepended to the name listed in the
4733 die. */
4734
4735 static int
4736 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4737 {
4738 struct attribute *attr;
4739
4740 switch (die->tag)
4741 {
4742 case DW_TAG_namespace:
4743 case DW_TAG_typedef:
4744 case DW_TAG_class_type:
4745 case DW_TAG_interface_type:
4746 case DW_TAG_structure_type:
4747 case DW_TAG_union_type:
4748 case DW_TAG_enumeration_type:
4749 case DW_TAG_enumerator:
4750 case DW_TAG_subprogram:
4751 case DW_TAG_member:
4752 return 1;
4753
4754 case DW_TAG_variable:
4755 case DW_TAG_constant:
4756 /* We only need to prefix "globally" visible variables. These include
4757 any variable marked with DW_AT_external or any variable that
4758 lives in a namespace. [Variables in anonymous namespaces
4759 require prefixing, but they are not DW_AT_external.] */
4760
4761 if (dwarf2_attr (die, DW_AT_specification, cu))
4762 {
4763 struct dwarf2_cu *spec_cu = cu;
4764
4765 return die_needs_namespace (die_specification (die, &spec_cu),
4766 spec_cu);
4767 }
4768
4769 attr = dwarf2_attr (die, DW_AT_external, cu);
4770 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4771 && die->parent->tag != DW_TAG_module)
4772 return 0;
4773 /* A variable in a lexical block of some kind does not need a
4774 namespace, even though in C++ such variables may be external
4775 and have a mangled name. */
4776 if (die->parent->tag == DW_TAG_lexical_block
4777 || die->parent->tag == DW_TAG_try_block
4778 || die->parent->tag == DW_TAG_catch_block
4779 || die->parent->tag == DW_TAG_subprogram)
4780 return 0;
4781 return 1;
4782
4783 default:
4784 return 0;
4785 }
4786 }
4787
4788 /* Retrieve the last character from a mem_file. */
4789
4790 static void
4791 do_ui_file_peek_last (void *object, const char *buffer, long length)
4792 {
4793 char *last_char_p = (char *) object;
4794
4795 if (length > 0)
4796 *last_char_p = buffer[length - 1];
4797 }
4798
4799 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4800 compute the physname for the object, which include a method's
4801 formal parameters (C++/Java) and return type (Java).
4802
4803 For Ada, return the DIE's linkage name rather than the fully qualified
4804 name. PHYSNAME is ignored..
4805
4806 The result is allocated on the objfile_obstack and canonicalized. */
4807
4808 static const char *
4809 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4810 int physname)
4811 {
4812 if (name == NULL)
4813 name = dwarf2_name (die, cu);
4814
4815 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4816 compute it by typename_concat inside GDB. */
4817 if (cu->language == language_ada
4818 || (cu->language == language_fortran && physname))
4819 {
4820 /* For Ada unit, we prefer the linkage name over the name, as
4821 the former contains the exported name, which the user expects
4822 to be able to reference. Ideally, we want the user to be able
4823 to reference this entity using either natural or linkage name,
4824 but we haven't started looking at this enhancement yet. */
4825 struct attribute *attr;
4826
4827 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4828 if (attr == NULL)
4829 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4830 if (attr && DW_STRING (attr))
4831 return DW_STRING (attr);
4832 }
4833
4834 /* These are the only languages we know how to qualify names in. */
4835 if (name != NULL
4836 && (cu->language == language_cplus || cu->language == language_java
4837 || cu->language == language_fortran))
4838 {
4839 if (die_needs_namespace (die, cu))
4840 {
4841 long length;
4842 char *prefix;
4843 struct ui_file *buf;
4844
4845 prefix = determine_prefix (die, cu);
4846 buf = mem_fileopen ();
4847 if (*prefix != '\0')
4848 {
4849 char *prefixed_name = typename_concat (NULL, prefix, name,
4850 physname, cu);
4851
4852 fputs_unfiltered (prefixed_name, buf);
4853 xfree (prefixed_name);
4854 }
4855 else
4856 fputs_unfiltered (name, buf);
4857
4858 /* Template parameters may be specified in the DIE's DW_AT_name, or
4859 as children with DW_TAG_template_type_param or
4860 DW_TAG_value_type_param. If the latter, add them to the name
4861 here. If the name already has template parameters, then
4862 skip this step; some versions of GCC emit both, and
4863 it is more efficient to use the pre-computed name.
4864
4865 Something to keep in mind about this process: it is very
4866 unlikely, or in some cases downright impossible, to produce
4867 something that will match the mangled name of a function.
4868 If the definition of the function has the same debug info,
4869 we should be able to match up with it anyway. But fallbacks
4870 using the minimal symbol, for instance to find a method
4871 implemented in a stripped copy of libstdc++, will not work.
4872 If we do not have debug info for the definition, we will have to
4873 match them up some other way.
4874
4875 When we do name matching there is a related problem with function
4876 templates; two instantiated function templates are allowed to
4877 differ only by their return types, which we do not add here. */
4878
4879 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4880 {
4881 struct attribute *attr;
4882 struct die_info *child;
4883 int first = 1;
4884
4885 die->building_fullname = 1;
4886
4887 for (child = die->child; child != NULL; child = child->sibling)
4888 {
4889 struct type *type;
4890 long value;
4891 gdb_byte *bytes;
4892 struct dwarf2_locexpr_baton *baton;
4893 struct value *v;
4894
4895 if (child->tag != DW_TAG_template_type_param
4896 && child->tag != DW_TAG_template_value_param)
4897 continue;
4898
4899 if (first)
4900 {
4901 fputs_unfiltered ("<", buf);
4902 first = 0;
4903 }
4904 else
4905 fputs_unfiltered (", ", buf);
4906
4907 attr = dwarf2_attr (child, DW_AT_type, cu);
4908 if (attr == NULL)
4909 {
4910 complaint (&symfile_complaints,
4911 _("template parameter missing DW_AT_type"));
4912 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4913 continue;
4914 }
4915 type = die_type (child, cu);
4916
4917 if (child->tag == DW_TAG_template_type_param)
4918 {
4919 c_print_type (type, "", buf, -1, 0);
4920 continue;
4921 }
4922
4923 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4924 if (attr == NULL)
4925 {
4926 complaint (&symfile_complaints,
4927 _("template parameter missing "
4928 "DW_AT_const_value"));
4929 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4930 continue;
4931 }
4932
4933 dwarf2_const_value_attr (attr, type, name,
4934 &cu->comp_unit_obstack, cu,
4935 &value, &bytes, &baton);
4936
4937 if (TYPE_NOSIGN (type))
4938 /* GDB prints characters as NUMBER 'CHAR'. If that's
4939 changed, this can use value_print instead. */
4940 c_printchar (value, type, buf);
4941 else
4942 {
4943 struct value_print_options opts;
4944
4945 if (baton != NULL)
4946 v = dwarf2_evaluate_loc_desc (type, NULL,
4947 baton->data,
4948 baton->size,
4949 baton->per_cu);
4950 else if (bytes != NULL)
4951 {
4952 v = allocate_value (type);
4953 memcpy (value_contents_writeable (v), bytes,
4954 TYPE_LENGTH (type));
4955 }
4956 else
4957 v = value_from_longest (type, value);
4958
4959 /* Specify decimal so that we do not depend on
4960 the radix. */
4961 get_formatted_print_options (&opts, 'd');
4962 opts.raw = 1;
4963 value_print (v, buf, &opts);
4964 release_value (v);
4965 value_free (v);
4966 }
4967 }
4968
4969 die->building_fullname = 0;
4970
4971 if (!first)
4972 {
4973 /* Close the argument list, with a space if necessary
4974 (nested templates). */
4975 char last_char = '\0';
4976 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4977 if (last_char == '>')
4978 fputs_unfiltered (" >", buf);
4979 else
4980 fputs_unfiltered (">", buf);
4981 }
4982 }
4983
4984 /* For Java and C++ methods, append formal parameter type
4985 information, if PHYSNAME. */
4986
4987 if (physname && die->tag == DW_TAG_subprogram
4988 && (cu->language == language_cplus
4989 || cu->language == language_java))
4990 {
4991 struct type *type = read_type_die (die, cu);
4992
4993 c_type_print_args (type, buf, 0, cu->language);
4994
4995 if (cu->language == language_java)
4996 {
4997 /* For java, we must append the return type to method
4998 names. */
4999 if (die->tag == DW_TAG_subprogram)
5000 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5001 0, 0);
5002 }
5003 else if (cu->language == language_cplus)
5004 {
5005 /* Assume that an artificial first parameter is
5006 "this", but do not crash if it is not. RealView
5007 marks unnamed (and thus unused) parameters as
5008 artificial; there is no way to differentiate
5009 the two cases. */
5010 if (TYPE_NFIELDS (type) > 0
5011 && TYPE_FIELD_ARTIFICIAL (type, 0)
5012 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5013 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5014 0))))
5015 fputs_unfiltered (" const", buf);
5016 }
5017 }
5018
5019 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5020 &length);
5021 ui_file_delete (buf);
5022
5023 if (cu->language == language_cplus)
5024 {
5025 char *cname
5026 = dwarf2_canonicalize_name (name, cu,
5027 &cu->objfile->objfile_obstack);
5028
5029 if (cname != NULL)
5030 name = cname;
5031 }
5032 }
5033 }
5034
5035 return name;
5036 }
5037
5038 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5039 If scope qualifiers are appropriate they will be added. The result
5040 will be allocated on the objfile_obstack, or NULL if the DIE does
5041 not have a name. NAME may either be from a previous call to
5042 dwarf2_name or NULL.
5043
5044 The output string will be canonicalized (if C++/Java). */
5045
5046 static const char *
5047 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5048 {
5049 return dwarf2_compute_name (name, die, cu, 0);
5050 }
5051
5052 /* Construct a physname for the given DIE in CU. NAME may either be
5053 from a previous call to dwarf2_name or NULL. The result will be
5054 allocated on the objfile_objstack or NULL if the DIE does not have a
5055 name.
5056
5057 The output string will be canonicalized (if C++/Java). */
5058
5059 static const char *
5060 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5061 {
5062 return dwarf2_compute_name (name, die, cu, 1);
5063 }
5064
5065 /* Read the import statement specified by the given die and record it. */
5066
5067 static void
5068 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5069 {
5070 struct attribute *import_attr;
5071 struct die_info *imported_die;
5072 struct dwarf2_cu *imported_cu;
5073 const char *imported_name;
5074 const char *imported_name_prefix;
5075 const char *canonical_name;
5076 const char *import_alias;
5077 const char *imported_declaration = NULL;
5078 const char *import_prefix;
5079
5080 char *temp;
5081
5082 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5083 if (import_attr == NULL)
5084 {
5085 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5086 dwarf_tag_name (die->tag));
5087 return;
5088 }
5089
5090 imported_cu = cu;
5091 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5092 imported_name = dwarf2_name (imported_die, imported_cu);
5093 if (imported_name == NULL)
5094 {
5095 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5096
5097 The import in the following code:
5098 namespace A
5099 {
5100 typedef int B;
5101 }
5102
5103 int main ()
5104 {
5105 using A::B;
5106 B b;
5107 return b;
5108 }
5109
5110 ...
5111 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5112 <52> DW_AT_decl_file : 1
5113 <53> DW_AT_decl_line : 6
5114 <54> DW_AT_import : <0x75>
5115 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5116 <59> DW_AT_name : B
5117 <5b> DW_AT_decl_file : 1
5118 <5c> DW_AT_decl_line : 2
5119 <5d> DW_AT_type : <0x6e>
5120 ...
5121 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5122 <76> DW_AT_byte_size : 4
5123 <77> DW_AT_encoding : 5 (signed)
5124
5125 imports the wrong die ( 0x75 instead of 0x58 ).
5126 This case will be ignored until the gcc bug is fixed. */
5127 return;
5128 }
5129
5130 /* Figure out the local name after import. */
5131 import_alias = dwarf2_name (die, cu);
5132
5133 /* Figure out where the statement is being imported to. */
5134 import_prefix = determine_prefix (die, cu);
5135
5136 /* Figure out what the scope of the imported die is and prepend it
5137 to the name of the imported die. */
5138 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5139
5140 if (imported_die->tag != DW_TAG_namespace
5141 && imported_die->tag != DW_TAG_module)
5142 {
5143 imported_declaration = imported_name;
5144 canonical_name = imported_name_prefix;
5145 }
5146 else if (strlen (imported_name_prefix) > 0)
5147 {
5148 temp = alloca (strlen (imported_name_prefix)
5149 + 2 + strlen (imported_name) + 1);
5150 strcpy (temp, imported_name_prefix);
5151 strcat (temp, "::");
5152 strcat (temp, imported_name);
5153 canonical_name = temp;
5154 }
5155 else
5156 canonical_name = imported_name;
5157
5158 cp_add_using_directive (import_prefix,
5159 canonical_name,
5160 import_alias,
5161 imported_declaration,
5162 &cu->objfile->objfile_obstack);
5163 }
5164
5165 static void
5166 initialize_cu_func_list (struct dwarf2_cu *cu)
5167 {
5168 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5169 }
5170
5171 /* Cleanup function for read_file_scope. */
5172
5173 static void
5174 free_cu_line_header (void *arg)
5175 {
5176 struct dwarf2_cu *cu = arg;
5177
5178 free_line_header (cu->line_header);
5179 cu->line_header = NULL;
5180 }
5181
5182 static void
5183 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5184 char **name, char **comp_dir)
5185 {
5186 struct attribute *attr;
5187
5188 *name = NULL;
5189 *comp_dir = NULL;
5190
5191 /* Find the filename. Do not use dwarf2_name here, since the filename
5192 is not a source language identifier. */
5193 attr = dwarf2_attr (die, DW_AT_name, cu);
5194 if (attr)
5195 {
5196 *name = DW_STRING (attr);
5197 }
5198
5199 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5200 if (attr)
5201 *comp_dir = DW_STRING (attr);
5202 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5203 {
5204 *comp_dir = ldirname (*name);
5205 if (*comp_dir != NULL)
5206 make_cleanup (xfree, *comp_dir);
5207 }
5208 if (*comp_dir != NULL)
5209 {
5210 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5211 directory, get rid of it. */
5212 char *cp = strchr (*comp_dir, ':');
5213
5214 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5215 *comp_dir = cp + 1;
5216 }
5217
5218 if (*name == NULL)
5219 *name = "<unknown>";
5220 }
5221
5222 /* Process DW_TAG_compile_unit. */
5223
5224 static void
5225 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5226 {
5227 struct objfile *objfile = cu->objfile;
5228 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5229 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5230 CORE_ADDR highpc = ((CORE_ADDR) 0);
5231 struct attribute *attr;
5232 char *name = NULL;
5233 char *comp_dir = NULL;
5234 struct die_info *child_die;
5235 bfd *abfd = objfile->obfd;
5236 struct line_header *line_header = 0;
5237 CORE_ADDR baseaddr;
5238
5239 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5240
5241 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5242
5243 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5244 from finish_block. */
5245 if (lowpc == ((CORE_ADDR) -1))
5246 lowpc = highpc;
5247 lowpc += baseaddr;
5248 highpc += baseaddr;
5249
5250 find_file_and_directory (die, cu, &name, &comp_dir);
5251
5252 attr = dwarf2_attr (die, DW_AT_language, cu);
5253 if (attr)
5254 {
5255 set_cu_language (DW_UNSND (attr), cu);
5256 }
5257
5258 attr = dwarf2_attr (die, DW_AT_producer, cu);
5259 if (attr)
5260 cu->producer = DW_STRING (attr);
5261
5262 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5263 standardised yet. As a workaround for the language detection we fall
5264 back to the DW_AT_producer string. */
5265 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5266 cu->language = language_opencl;
5267
5268 /* We assume that we're processing GCC output. */
5269 processing_gcc_compilation = 2;
5270
5271 processing_has_namespace_info = 0;
5272
5273 start_symtab (name, comp_dir, lowpc);
5274 record_debugformat ("DWARF 2");
5275 record_producer (cu->producer);
5276
5277 initialize_cu_func_list (cu);
5278
5279 /* Decode line number information if present. We do this before
5280 processing child DIEs, so that the line header table is available
5281 for DW_AT_decl_file. */
5282 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5283 if (attr)
5284 {
5285 unsigned int line_offset = DW_UNSND (attr);
5286 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5287 if (line_header)
5288 {
5289 cu->line_header = line_header;
5290 make_cleanup (free_cu_line_header, cu);
5291 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5292 }
5293 }
5294
5295 /* Process all dies in compilation unit. */
5296 if (die->child != NULL)
5297 {
5298 child_die = die->child;
5299 while (child_die && child_die->tag)
5300 {
5301 process_die (child_die, cu);
5302 child_die = sibling_die (child_die);
5303 }
5304 }
5305
5306 /* Decode macro information, if present. Dwarf 2 macro information
5307 refers to information in the line number info statement program
5308 header, so we can only read it if we've read the header
5309 successfully. */
5310 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5311 if (attr && line_header)
5312 {
5313 unsigned int macro_offset = DW_UNSND (attr);
5314
5315 dwarf_decode_macros (line_header, macro_offset,
5316 comp_dir, abfd, cu);
5317 }
5318 do_cleanups (back_to);
5319 }
5320
5321 /* Process DW_TAG_type_unit.
5322 For TUs we want to skip the first top level sibling if it's not the
5323 actual type being defined by this TU. In this case the first top
5324 level sibling is there to provide context only. */
5325
5326 static void
5327 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5328 {
5329 struct objfile *objfile = cu->objfile;
5330 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5331 CORE_ADDR lowpc;
5332 struct attribute *attr;
5333 char *name = NULL;
5334 char *comp_dir = NULL;
5335 struct die_info *child_die;
5336 bfd *abfd = objfile->obfd;
5337
5338 /* start_symtab needs a low pc, but we don't really have one.
5339 Do what read_file_scope would do in the absence of such info. */
5340 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5341
5342 /* Find the filename. Do not use dwarf2_name here, since the filename
5343 is not a source language identifier. */
5344 attr = dwarf2_attr (die, DW_AT_name, cu);
5345 if (attr)
5346 name = DW_STRING (attr);
5347
5348 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5349 if (attr)
5350 comp_dir = DW_STRING (attr);
5351 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5352 {
5353 comp_dir = ldirname (name);
5354 if (comp_dir != NULL)
5355 make_cleanup (xfree, comp_dir);
5356 }
5357
5358 if (name == NULL)
5359 name = "<unknown>";
5360
5361 attr = dwarf2_attr (die, DW_AT_language, cu);
5362 if (attr)
5363 set_cu_language (DW_UNSND (attr), cu);
5364
5365 /* This isn't technically needed today. It is done for symmetry
5366 with read_file_scope. */
5367 attr = dwarf2_attr (die, DW_AT_producer, cu);
5368 if (attr)
5369 cu->producer = DW_STRING (attr);
5370
5371 /* We assume that we're processing GCC output. */
5372 processing_gcc_compilation = 2;
5373
5374 processing_has_namespace_info = 0;
5375
5376 start_symtab (name, comp_dir, lowpc);
5377 record_debugformat ("DWARF 2");
5378 record_producer (cu->producer);
5379
5380 /* Process the dies in the type unit. */
5381 if (die->child == NULL)
5382 {
5383 dump_die_for_error (die);
5384 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5385 bfd_get_filename (abfd));
5386 }
5387
5388 child_die = die->child;
5389
5390 while (child_die && child_die->tag)
5391 {
5392 process_die (child_die, cu);
5393
5394 child_die = sibling_die (child_die);
5395 }
5396
5397 do_cleanups (back_to);
5398 }
5399
5400 static void
5401 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5402 struct dwarf2_cu *cu)
5403 {
5404 struct function_range *thisfn;
5405
5406 thisfn = (struct function_range *)
5407 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5408 thisfn->name = name;
5409 thisfn->lowpc = lowpc;
5410 thisfn->highpc = highpc;
5411 thisfn->seen_line = 0;
5412 thisfn->next = NULL;
5413
5414 if (cu->last_fn == NULL)
5415 cu->first_fn = thisfn;
5416 else
5417 cu->last_fn->next = thisfn;
5418
5419 cu->last_fn = thisfn;
5420 }
5421
5422 /* qsort helper for inherit_abstract_dies. */
5423
5424 static int
5425 unsigned_int_compar (const void *ap, const void *bp)
5426 {
5427 unsigned int a = *(unsigned int *) ap;
5428 unsigned int b = *(unsigned int *) bp;
5429
5430 return (a > b) - (b > a);
5431 }
5432
5433 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5434 Inherit only the children of the DW_AT_abstract_origin DIE not being
5435 already referenced by DW_AT_abstract_origin from the children of the
5436 current DIE. */
5437
5438 static void
5439 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5440 {
5441 struct die_info *child_die;
5442 unsigned die_children_count;
5443 /* CU offsets which were referenced by children of the current DIE. */
5444 unsigned *offsets;
5445 unsigned *offsets_end, *offsetp;
5446 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5447 struct die_info *origin_die;
5448 /* Iterator of the ORIGIN_DIE children. */
5449 struct die_info *origin_child_die;
5450 struct cleanup *cleanups;
5451 struct attribute *attr;
5452 struct dwarf2_cu *origin_cu;
5453 struct pending **origin_previous_list_in_scope;
5454
5455 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5456 if (!attr)
5457 return;
5458
5459 /* Note that following die references may follow to a die in a
5460 different cu. */
5461
5462 origin_cu = cu;
5463 origin_die = follow_die_ref (die, attr, &origin_cu);
5464
5465 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5466 symbols in. */
5467 origin_previous_list_in_scope = origin_cu->list_in_scope;
5468 origin_cu->list_in_scope = cu->list_in_scope;
5469
5470 if (die->tag != origin_die->tag
5471 && !(die->tag == DW_TAG_inlined_subroutine
5472 && origin_die->tag == DW_TAG_subprogram))
5473 complaint (&symfile_complaints,
5474 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5475 die->offset, origin_die->offset);
5476
5477 child_die = die->child;
5478 die_children_count = 0;
5479 while (child_die && child_die->tag)
5480 {
5481 child_die = sibling_die (child_die);
5482 die_children_count++;
5483 }
5484 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5485 cleanups = make_cleanup (xfree, offsets);
5486
5487 offsets_end = offsets;
5488 child_die = die->child;
5489 while (child_die && child_die->tag)
5490 {
5491 /* For each CHILD_DIE, find the corresponding child of
5492 ORIGIN_DIE. If there is more than one layer of
5493 DW_AT_abstract_origin, follow them all; there shouldn't be,
5494 but GCC versions at least through 4.4 generate this (GCC PR
5495 40573). */
5496 struct die_info *child_origin_die = child_die;
5497 struct dwarf2_cu *child_origin_cu = cu;
5498
5499 while (1)
5500 {
5501 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5502 child_origin_cu);
5503 if (attr == NULL)
5504 break;
5505 child_origin_die = follow_die_ref (child_origin_die, attr,
5506 &child_origin_cu);
5507 }
5508
5509 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5510 counterpart may exist. */
5511 if (child_origin_die != child_die)
5512 {
5513 if (child_die->tag != child_origin_die->tag
5514 && !(child_die->tag == DW_TAG_inlined_subroutine
5515 && child_origin_die->tag == DW_TAG_subprogram))
5516 complaint (&symfile_complaints,
5517 _("Child DIE 0x%x and its abstract origin 0x%x have "
5518 "different tags"), child_die->offset,
5519 child_origin_die->offset);
5520 if (child_origin_die->parent != origin_die)
5521 complaint (&symfile_complaints,
5522 _("Child DIE 0x%x and its abstract origin 0x%x have "
5523 "different parents"), child_die->offset,
5524 child_origin_die->offset);
5525 else
5526 *offsets_end++ = child_origin_die->offset;
5527 }
5528 child_die = sibling_die (child_die);
5529 }
5530 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5531 unsigned_int_compar);
5532 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5533 if (offsetp[-1] == *offsetp)
5534 complaint (&symfile_complaints,
5535 _("Multiple children of DIE 0x%x refer "
5536 "to DIE 0x%x as their abstract origin"),
5537 die->offset, *offsetp);
5538
5539 offsetp = offsets;
5540 origin_child_die = origin_die->child;
5541 while (origin_child_die && origin_child_die->tag)
5542 {
5543 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5544 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5545 offsetp++;
5546 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5547 {
5548 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5549 process_die (origin_child_die, origin_cu);
5550 }
5551 origin_child_die = sibling_die (origin_child_die);
5552 }
5553 origin_cu->list_in_scope = origin_previous_list_in_scope;
5554
5555 do_cleanups (cleanups);
5556 }
5557
5558 static void
5559 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5560 {
5561 struct objfile *objfile = cu->objfile;
5562 struct context_stack *new;
5563 CORE_ADDR lowpc;
5564 CORE_ADDR highpc;
5565 struct die_info *child_die;
5566 struct attribute *attr, *call_line, *call_file;
5567 char *name;
5568 CORE_ADDR baseaddr;
5569 struct block *block;
5570 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5571 VEC (symbolp) *template_args = NULL;
5572 struct template_symbol *templ_func = NULL;
5573
5574 if (inlined_func)
5575 {
5576 /* If we do not have call site information, we can't show the
5577 caller of this inlined function. That's too confusing, so
5578 only use the scope for local variables. */
5579 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5580 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5581 if (call_line == NULL || call_file == NULL)
5582 {
5583 read_lexical_block_scope (die, cu);
5584 return;
5585 }
5586 }
5587
5588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5589
5590 name = dwarf2_name (die, cu);
5591
5592 /* Ignore functions with missing or empty names. These are actually
5593 illegal according to the DWARF standard. */
5594 if (name == NULL)
5595 {
5596 complaint (&symfile_complaints,
5597 _("missing name for subprogram DIE at %d"), die->offset);
5598 return;
5599 }
5600
5601 /* Ignore functions with missing or invalid low and high pc attributes. */
5602 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5603 {
5604 attr = dwarf2_attr (die, DW_AT_external, cu);
5605 if (!attr || !DW_UNSND (attr))
5606 complaint (&symfile_complaints,
5607 _("cannot get low and high bounds "
5608 "for subprogram DIE at %d"),
5609 die->offset);
5610 return;
5611 }
5612
5613 lowpc += baseaddr;
5614 highpc += baseaddr;
5615
5616 /* Record the function range for dwarf_decode_lines. */
5617 add_to_cu_func_list (name, lowpc, highpc, cu);
5618
5619 /* If we have any template arguments, then we must allocate a
5620 different sort of symbol. */
5621 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5622 {
5623 if (child_die->tag == DW_TAG_template_type_param
5624 || child_die->tag == DW_TAG_template_value_param)
5625 {
5626 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5627 struct template_symbol);
5628 templ_func->base.is_cplus_template_function = 1;
5629 break;
5630 }
5631 }
5632
5633 new = push_context (0, lowpc);
5634 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5635 (struct symbol *) templ_func);
5636
5637 /* If there is a location expression for DW_AT_frame_base, record
5638 it. */
5639 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5640 if (attr)
5641 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5642 expression is being recorded directly in the function's symbol
5643 and not in a separate frame-base object. I guess this hack is
5644 to avoid adding some sort of frame-base adjunct/annex to the
5645 function's symbol :-(. The problem with doing this is that it
5646 results in a function symbol with a location expression that
5647 has nothing to do with the location of the function, ouch! The
5648 relationship should be: a function's symbol has-a frame base; a
5649 frame-base has-a location expression. */
5650 dwarf2_symbol_mark_computed (attr, new->name, cu);
5651
5652 cu->list_in_scope = &local_symbols;
5653
5654 if (die->child != NULL)
5655 {
5656 child_die = die->child;
5657 while (child_die && child_die->tag)
5658 {
5659 if (child_die->tag == DW_TAG_template_type_param
5660 || child_die->tag == DW_TAG_template_value_param)
5661 {
5662 struct symbol *arg = new_symbol (child_die, NULL, cu);
5663
5664 if (arg != NULL)
5665 VEC_safe_push (symbolp, template_args, arg);
5666 }
5667 else
5668 process_die (child_die, cu);
5669 child_die = sibling_die (child_die);
5670 }
5671 }
5672
5673 inherit_abstract_dies (die, cu);
5674
5675 /* If we have a DW_AT_specification, we might need to import using
5676 directives from the context of the specification DIE. See the
5677 comment in determine_prefix. */
5678 if (cu->language == language_cplus
5679 && dwarf2_attr (die, DW_AT_specification, cu))
5680 {
5681 struct dwarf2_cu *spec_cu = cu;
5682 struct die_info *spec_die = die_specification (die, &spec_cu);
5683
5684 while (spec_die)
5685 {
5686 child_die = spec_die->child;
5687 while (child_die && child_die->tag)
5688 {
5689 if (child_die->tag == DW_TAG_imported_module)
5690 process_die (child_die, spec_cu);
5691 child_die = sibling_die (child_die);
5692 }
5693
5694 /* In some cases, GCC generates specification DIEs that
5695 themselves contain DW_AT_specification attributes. */
5696 spec_die = die_specification (spec_die, &spec_cu);
5697 }
5698 }
5699
5700 new = pop_context ();
5701 /* Make a block for the local symbols within. */
5702 block = finish_block (new->name, &local_symbols, new->old_blocks,
5703 lowpc, highpc, objfile);
5704
5705 /* For C++, set the block's scope. */
5706 if (cu->language == language_cplus || cu->language == language_fortran)
5707 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5708 determine_prefix (die, cu),
5709 processing_has_namespace_info);
5710
5711 /* If we have address ranges, record them. */
5712 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5713
5714 /* Attach template arguments to function. */
5715 if (! VEC_empty (symbolp, template_args))
5716 {
5717 gdb_assert (templ_func != NULL);
5718
5719 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5720 templ_func->template_arguments
5721 = obstack_alloc (&objfile->objfile_obstack,
5722 (templ_func->n_template_arguments
5723 * sizeof (struct symbol *)));
5724 memcpy (templ_func->template_arguments,
5725 VEC_address (symbolp, template_args),
5726 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5727 VEC_free (symbolp, template_args);
5728 }
5729
5730 /* In C++, we can have functions nested inside functions (e.g., when
5731 a function declares a class that has methods). This means that
5732 when we finish processing a function scope, we may need to go
5733 back to building a containing block's symbol lists. */
5734 local_symbols = new->locals;
5735 param_symbols = new->params;
5736 using_directives = new->using_directives;
5737
5738 /* If we've finished processing a top-level function, subsequent
5739 symbols go in the file symbol list. */
5740 if (outermost_context_p ())
5741 cu->list_in_scope = &file_symbols;
5742 }
5743
5744 /* Process all the DIES contained within a lexical block scope. Start
5745 a new scope, process the dies, and then close the scope. */
5746
5747 static void
5748 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5749 {
5750 struct objfile *objfile = cu->objfile;
5751 struct context_stack *new;
5752 CORE_ADDR lowpc, highpc;
5753 struct die_info *child_die;
5754 CORE_ADDR baseaddr;
5755
5756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5757
5758 /* Ignore blocks with missing or invalid low and high pc attributes. */
5759 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5760 as multiple lexical blocks? Handling children in a sane way would
5761 be nasty. Might be easier to properly extend generic blocks to
5762 describe ranges. */
5763 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5764 return;
5765 lowpc += baseaddr;
5766 highpc += baseaddr;
5767
5768 push_context (0, lowpc);
5769 if (die->child != NULL)
5770 {
5771 child_die = die->child;
5772 while (child_die && child_die->tag)
5773 {
5774 process_die (child_die, cu);
5775 child_die = sibling_die (child_die);
5776 }
5777 }
5778 new = pop_context ();
5779
5780 if (local_symbols != NULL || using_directives != NULL)
5781 {
5782 struct block *block
5783 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5784 highpc, objfile);
5785
5786 /* Note that recording ranges after traversing children, as we
5787 do here, means that recording a parent's ranges entails
5788 walking across all its children's ranges as they appear in
5789 the address map, which is quadratic behavior.
5790
5791 It would be nicer to record the parent's ranges before
5792 traversing its children, simply overriding whatever you find
5793 there. But since we don't even decide whether to create a
5794 block until after we've traversed its children, that's hard
5795 to do. */
5796 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5797 }
5798 local_symbols = new->locals;
5799 using_directives = new->using_directives;
5800 }
5801
5802 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5803 Return 1 if the attributes are present and valid, otherwise, return 0.
5804 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5805
5806 static int
5807 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5808 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5809 struct partial_symtab *ranges_pst)
5810 {
5811 struct objfile *objfile = cu->objfile;
5812 struct comp_unit_head *cu_header = &cu->header;
5813 bfd *obfd = objfile->obfd;
5814 unsigned int addr_size = cu_header->addr_size;
5815 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5816 /* Base address selection entry. */
5817 CORE_ADDR base;
5818 int found_base;
5819 unsigned int dummy;
5820 gdb_byte *buffer;
5821 CORE_ADDR marker;
5822 int low_set;
5823 CORE_ADDR low = 0;
5824 CORE_ADDR high = 0;
5825 CORE_ADDR baseaddr;
5826
5827 found_base = cu->base_known;
5828 base = cu->base_address;
5829
5830 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5831 if (offset >= dwarf2_per_objfile->ranges.size)
5832 {
5833 complaint (&symfile_complaints,
5834 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5835 offset);
5836 return 0;
5837 }
5838 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5839
5840 /* Read in the largest possible address. */
5841 marker = read_address (obfd, buffer, cu, &dummy);
5842 if ((marker & mask) == mask)
5843 {
5844 /* If we found the largest possible address, then
5845 read the base address. */
5846 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5847 buffer += 2 * addr_size;
5848 offset += 2 * addr_size;
5849 found_base = 1;
5850 }
5851
5852 low_set = 0;
5853
5854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5855
5856 while (1)
5857 {
5858 CORE_ADDR range_beginning, range_end;
5859
5860 range_beginning = read_address (obfd, buffer, cu, &dummy);
5861 buffer += addr_size;
5862 range_end = read_address (obfd, buffer, cu, &dummy);
5863 buffer += addr_size;
5864 offset += 2 * addr_size;
5865
5866 /* An end of list marker is a pair of zero addresses. */
5867 if (range_beginning == 0 && range_end == 0)
5868 /* Found the end of list entry. */
5869 break;
5870
5871 /* Each base address selection entry is a pair of 2 values.
5872 The first is the largest possible address, the second is
5873 the base address. Check for a base address here. */
5874 if ((range_beginning & mask) == mask)
5875 {
5876 /* If we found the largest possible address, then
5877 read the base address. */
5878 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5879 found_base = 1;
5880 continue;
5881 }
5882
5883 if (!found_base)
5884 {
5885 /* We have no valid base address for the ranges
5886 data. */
5887 complaint (&symfile_complaints,
5888 _("Invalid .debug_ranges data (no base address)"));
5889 return 0;
5890 }
5891
5892 if (range_beginning > range_end)
5893 {
5894 /* Inverted range entries are invalid. */
5895 complaint (&symfile_complaints,
5896 _("Invalid .debug_ranges data (inverted range)"));
5897 return 0;
5898 }
5899
5900 /* Empty range entries have no effect. */
5901 if (range_beginning == range_end)
5902 continue;
5903
5904 range_beginning += base;
5905 range_end += base;
5906
5907 if (ranges_pst != NULL)
5908 addrmap_set_empty (objfile->psymtabs_addrmap,
5909 range_beginning + baseaddr,
5910 range_end - 1 + baseaddr,
5911 ranges_pst);
5912
5913 /* FIXME: This is recording everything as a low-high
5914 segment of consecutive addresses. We should have a
5915 data structure for discontiguous block ranges
5916 instead. */
5917 if (! low_set)
5918 {
5919 low = range_beginning;
5920 high = range_end;
5921 low_set = 1;
5922 }
5923 else
5924 {
5925 if (range_beginning < low)
5926 low = range_beginning;
5927 if (range_end > high)
5928 high = range_end;
5929 }
5930 }
5931
5932 if (! low_set)
5933 /* If the first entry is an end-of-list marker, the range
5934 describes an empty scope, i.e. no instructions. */
5935 return 0;
5936
5937 if (low_return)
5938 *low_return = low;
5939 if (high_return)
5940 *high_return = high;
5941 return 1;
5942 }
5943
5944 /* Get low and high pc attributes from a die. Return 1 if the attributes
5945 are present and valid, otherwise, return 0. Return -1 if the range is
5946 discontinuous, i.e. derived from DW_AT_ranges information. */
5947 static int
5948 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5949 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5950 struct partial_symtab *pst)
5951 {
5952 struct attribute *attr;
5953 CORE_ADDR low = 0;
5954 CORE_ADDR high = 0;
5955 int ret = 0;
5956
5957 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5958 if (attr)
5959 {
5960 high = DW_ADDR (attr);
5961 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5962 if (attr)
5963 low = DW_ADDR (attr);
5964 else
5965 /* Found high w/o low attribute. */
5966 return 0;
5967
5968 /* Found consecutive range of addresses. */
5969 ret = 1;
5970 }
5971 else
5972 {
5973 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5974 if (attr != NULL)
5975 {
5976 /* Value of the DW_AT_ranges attribute is the offset in the
5977 .debug_ranges section. */
5978 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5979 return 0;
5980 /* Found discontinuous range of addresses. */
5981 ret = -1;
5982 }
5983 }
5984
5985 if (high < low)
5986 return 0;
5987
5988 /* When using the GNU linker, .gnu.linkonce. sections are used to
5989 eliminate duplicate copies of functions and vtables and such.
5990 The linker will arbitrarily choose one and discard the others.
5991 The AT_*_pc values for such functions refer to local labels in
5992 these sections. If the section from that file was discarded, the
5993 labels are not in the output, so the relocs get a value of 0.
5994 If this is a discarded function, mark the pc bounds as invalid,
5995 so that GDB will ignore it. */
5996 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5997 return 0;
5998
5999 *lowpc = low;
6000 *highpc = high;
6001 return ret;
6002 }
6003
6004 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6005 its low and high PC addresses. Do nothing if these addresses could not
6006 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6007 and HIGHPC to the high address if greater than HIGHPC. */
6008
6009 static void
6010 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6011 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6012 struct dwarf2_cu *cu)
6013 {
6014 CORE_ADDR low, high;
6015 struct die_info *child = die->child;
6016
6017 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6018 {
6019 *lowpc = min (*lowpc, low);
6020 *highpc = max (*highpc, high);
6021 }
6022
6023 /* If the language does not allow nested subprograms (either inside
6024 subprograms or lexical blocks), we're done. */
6025 if (cu->language != language_ada)
6026 return;
6027
6028 /* Check all the children of the given DIE. If it contains nested
6029 subprograms, then check their pc bounds. Likewise, we need to
6030 check lexical blocks as well, as they may also contain subprogram
6031 definitions. */
6032 while (child && child->tag)
6033 {
6034 if (child->tag == DW_TAG_subprogram
6035 || child->tag == DW_TAG_lexical_block)
6036 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6037 child = sibling_die (child);
6038 }
6039 }
6040
6041 /* Get the low and high pc's represented by the scope DIE, and store
6042 them in *LOWPC and *HIGHPC. If the correct values can't be
6043 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6044
6045 static void
6046 get_scope_pc_bounds (struct die_info *die,
6047 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6048 struct dwarf2_cu *cu)
6049 {
6050 CORE_ADDR best_low = (CORE_ADDR) -1;
6051 CORE_ADDR best_high = (CORE_ADDR) 0;
6052 CORE_ADDR current_low, current_high;
6053
6054 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6055 {
6056 best_low = current_low;
6057 best_high = current_high;
6058 }
6059 else
6060 {
6061 struct die_info *child = die->child;
6062
6063 while (child && child->tag)
6064 {
6065 switch (child->tag) {
6066 case DW_TAG_subprogram:
6067 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6068 break;
6069 case DW_TAG_namespace:
6070 case DW_TAG_module:
6071 /* FIXME: carlton/2004-01-16: Should we do this for
6072 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6073 that current GCC's always emit the DIEs corresponding
6074 to definitions of methods of classes as children of a
6075 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6076 the DIEs giving the declarations, which could be
6077 anywhere). But I don't see any reason why the
6078 standards says that they have to be there. */
6079 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6080
6081 if (current_low != ((CORE_ADDR) -1))
6082 {
6083 best_low = min (best_low, current_low);
6084 best_high = max (best_high, current_high);
6085 }
6086 break;
6087 default:
6088 /* Ignore. */
6089 break;
6090 }
6091
6092 child = sibling_die (child);
6093 }
6094 }
6095
6096 *lowpc = best_low;
6097 *highpc = best_high;
6098 }
6099
6100 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6101 in DIE. */
6102 static void
6103 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6104 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6105 {
6106 struct attribute *attr;
6107
6108 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6109 if (attr)
6110 {
6111 CORE_ADDR high = DW_ADDR (attr);
6112
6113 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6114 if (attr)
6115 {
6116 CORE_ADDR low = DW_ADDR (attr);
6117
6118 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6119 }
6120 }
6121
6122 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6123 if (attr)
6124 {
6125 bfd *obfd = cu->objfile->obfd;
6126
6127 /* The value of the DW_AT_ranges attribute is the offset of the
6128 address range list in the .debug_ranges section. */
6129 unsigned long offset = DW_UNSND (attr);
6130 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6131
6132 /* For some target architectures, but not others, the
6133 read_address function sign-extends the addresses it returns.
6134 To recognize base address selection entries, we need a
6135 mask. */
6136 unsigned int addr_size = cu->header.addr_size;
6137 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6138
6139 /* The base address, to which the next pair is relative. Note
6140 that this 'base' is a DWARF concept: most entries in a range
6141 list are relative, to reduce the number of relocs against the
6142 debugging information. This is separate from this function's
6143 'baseaddr' argument, which GDB uses to relocate debugging
6144 information from a shared library based on the address at
6145 which the library was loaded. */
6146 CORE_ADDR base = cu->base_address;
6147 int base_known = cu->base_known;
6148
6149 gdb_assert (dwarf2_per_objfile->ranges.readin);
6150 if (offset >= dwarf2_per_objfile->ranges.size)
6151 {
6152 complaint (&symfile_complaints,
6153 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6154 offset);
6155 return;
6156 }
6157
6158 for (;;)
6159 {
6160 unsigned int bytes_read;
6161 CORE_ADDR start, end;
6162
6163 start = read_address (obfd, buffer, cu, &bytes_read);
6164 buffer += bytes_read;
6165 end = read_address (obfd, buffer, cu, &bytes_read);
6166 buffer += bytes_read;
6167
6168 /* Did we find the end of the range list? */
6169 if (start == 0 && end == 0)
6170 break;
6171
6172 /* Did we find a base address selection entry? */
6173 else if ((start & base_select_mask) == base_select_mask)
6174 {
6175 base = end;
6176 base_known = 1;
6177 }
6178
6179 /* We found an ordinary address range. */
6180 else
6181 {
6182 if (!base_known)
6183 {
6184 complaint (&symfile_complaints,
6185 _("Invalid .debug_ranges data "
6186 "(no base address)"));
6187 return;
6188 }
6189
6190 if (start > end)
6191 {
6192 /* Inverted range entries are invalid. */
6193 complaint (&symfile_complaints,
6194 _("Invalid .debug_ranges data "
6195 "(inverted range)"));
6196 return;
6197 }
6198
6199 /* Empty range entries have no effect. */
6200 if (start == end)
6201 continue;
6202
6203 record_block_range (block,
6204 baseaddr + base + start,
6205 baseaddr + base + end - 1);
6206 }
6207 }
6208 }
6209 }
6210
6211 /* Add an aggregate field to the field list. */
6212
6213 static void
6214 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6215 struct dwarf2_cu *cu)
6216 {
6217 struct objfile *objfile = cu->objfile;
6218 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6219 struct nextfield *new_field;
6220 struct attribute *attr;
6221 struct field *fp;
6222 char *fieldname = "";
6223
6224 /* Allocate a new field list entry and link it in. */
6225 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6226 make_cleanup (xfree, new_field);
6227 memset (new_field, 0, sizeof (struct nextfield));
6228
6229 if (die->tag == DW_TAG_inheritance)
6230 {
6231 new_field->next = fip->baseclasses;
6232 fip->baseclasses = new_field;
6233 }
6234 else
6235 {
6236 new_field->next = fip->fields;
6237 fip->fields = new_field;
6238 }
6239 fip->nfields++;
6240
6241 /* Handle accessibility and virtuality of field.
6242 The default accessibility for members is public, the default
6243 accessibility for inheritance is private. */
6244 if (die->tag != DW_TAG_inheritance)
6245 new_field->accessibility = DW_ACCESS_public;
6246 else
6247 new_field->accessibility = DW_ACCESS_private;
6248 new_field->virtuality = DW_VIRTUALITY_none;
6249
6250 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6251 if (attr)
6252 new_field->accessibility = DW_UNSND (attr);
6253 if (new_field->accessibility != DW_ACCESS_public)
6254 fip->non_public_fields = 1;
6255 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6256 if (attr)
6257 new_field->virtuality = DW_UNSND (attr);
6258
6259 fp = &new_field->field;
6260
6261 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6262 {
6263 /* Data member other than a C++ static data member. */
6264
6265 /* Get type of field. */
6266 fp->type = die_type (die, cu);
6267
6268 SET_FIELD_BITPOS (*fp, 0);
6269
6270 /* Get bit size of field (zero if none). */
6271 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6272 if (attr)
6273 {
6274 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6275 }
6276 else
6277 {
6278 FIELD_BITSIZE (*fp) = 0;
6279 }
6280
6281 /* Get bit offset of field. */
6282 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6283 if (attr)
6284 {
6285 int byte_offset = 0;
6286
6287 if (attr_form_is_section_offset (attr))
6288 dwarf2_complex_location_expr_complaint ();
6289 else if (attr_form_is_constant (attr))
6290 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6291 else if (attr_form_is_block (attr))
6292 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6293 else
6294 dwarf2_complex_location_expr_complaint ();
6295
6296 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6297 }
6298 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6299 if (attr)
6300 {
6301 if (gdbarch_bits_big_endian (gdbarch))
6302 {
6303 /* For big endian bits, the DW_AT_bit_offset gives the
6304 additional bit offset from the MSB of the containing
6305 anonymous object to the MSB of the field. We don't
6306 have to do anything special since we don't need to
6307 know the size of the anonymous object. */
6308 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6309 }
6310 else
6311 {
6312 /* For little endian bits, compute the bit offset to the
6313 MSB of the anonymous object, subtract off the number of
6314 bits from the MSB of the field to the MSB of the
6315 object, and then subtract off the number of bits of
6316 the field itself. The result is the bit offset of
6317 the LSB of the field. */
6318 int anonymous_size;
6319 int bit_offset = DW_UNSND (attr);
6320
6321 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6322 if (attr)
6323 {
6324 /* The size of the anonymous object containing
6325 the bit field is explicit, so use the
6326 indicated size (in bytes). */
6327 anonymous_size = DW_UNSND (attr);
6328 }
6329 else
6330 {
6331 /* The size of the anonymous object containing
6332 the bit field must be inferred from the type
6333 attribute of the data member containing the
6334 bit field. */
6335 anonymous_size = TYPE_LENGTH (fp->type);
6336 }
6337 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6338 - bit_offset - FIELD_BITSIZE (*fp);
6339 }
6340 }
6341
6342 /* Get name of field. */
6343 fieldname = dwarf2_name (die, cu);
6344 if (fieldname == NULL)
6345 fieldname = "";
6346
6347 /* The name is already allocated along with this objfile, so we don't
6348 need to duplicate it for the type. */
6349 fp->name = fieldname;
6350
6351 /* Change accessibility for artificial fields (e.g. virtual table
6352 pointer or virtual base class pointer) to private. */
6353 if (dwarf2_attr (die, DW_AT_artificial, cu))
6354 {
6355 FIELD_ARTIFICIAL (*fp) = 1;
6356 new_field->accessibility = DW_ACCESS_private;
6357 fip->non_public_fields = 1;
6358 }
6359 }
6360 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6361 {
6362 /* C++ static member. */
6363
6364 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6365 is a declaration, but all versions of G++ as of this writing
6366 (so through at least 3.2.1) incorrectly generate
6367 DW_TAG_variable tags. */
6368
6369 char *physname;
6370
6371 /* Get name of field. */
6372 fieldname = dwarf2_name (die, cu);
6373 if (fieldname == NULL)
6374 return;
6375
6376 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6377 if (attr
6378 /* Only create a symbol if this is an external value.
6379 new_symbol checks this and puts the value in the global symbol
6380 table, which we want. If it is not external, new_symbol
6381 will try to put the value in cu->list_in_scope which is wrong. */
6382 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6383 {
6384 /* A static const member, not much different than an enum as far as
6385 we're concerned, except that we can support more types. */
6386 new_symbol (die, NULL, cu);
6387 }
6388
6389 /* Get physical name. */
6390 physname = (char *) dwarf2_physname (fieldname, die, cu);
6391
6392 /* The name is already allocated along with this objfile, so we don't
6393 need to duplicate it for the type. */
6394 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6395 FIELD_TYPE (*fp) = die_type (die, cu);
6396 FIELD_NAME (*fp) = fieldname;
6397 }
6398 else if (die->tag == DW_TAG_inheritance)
6399 {
6400 /* C++ base class field. */
6401 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6402 if (attr)
6403 {
6404 int byte_offset = 0;
6405
6406 if (attr_form_is_section_offset (attr))
6407 dwarf2_complex_location_expr_complaint ();
6408 else if (attr_form_is_constant (attr))
6409 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6410 else if (attr_form_is_block (attr))
6411 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6412 else
6413 dwarf2_complex_location_expr_complaint ();
6414
6415 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6416 }
6417 FIELD_BITSIZE (*fp) = 0;
6418 FIELD_TYPE (*fp) = die_type (die, cu);
6419 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6420 fip->nbaseclasses++;
6421 }
6422 }
6423
6424 /* Add a typedef defined in the scope of the FIP's class. */
6425
6426 static void
6427 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6428 struct dwarf2_cu *cu)
6429 {
6430 struct objfile *objfile = cu->objfile;
6431 struct typedef_field_list *new_field;
6432 struct attribute *attr;
6433 struct typedef_field *fp;
6434 char *fieldname = "";
6435
6436 /* Allocate a new field list entry and link it in. */
6437 new_field = xzalloc (sizeof (*new_field));
6438 make_cleanup (xfree, new_field);
6439
6440 gdb_assert (die->tag == DW_TAG_typedef);
6441
6442 fp = &new_field->field;
6443
6444 /* Get name of field. */
6445 fp->name = dwarf2_name (die, cu);
6446 if (fp->name == NULL)
6447 return;
6448
6449 fp->type = read_type_die (die, cu);
6450
6451 new_field->next = fip->typedef_field_list;
6452 fip->typedef_field_list = new_field;
6453 fip->typedef_field_list_count++;
6454 }
6455
6456 /* Create the vector of fields, and attach it to the type. */
6457
6458 static void
6459 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6460 struct dwarf2_cu *cu)
6461 {
6462 int nfields = fip->nfields;
6463
6464 /* Record the field count, allocate space for the array of fields,
6465 and create blank accessibility bitfields if necessary. */
6466 TYPE_NFIELDS (type) = nfields;
6467 TYPE_FIELDS (type) = (struct field *)
6468 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6469 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6470
6471 if (fip->non_public_fields && cu->language != language_ada)
6472 {
6473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6474
6475 TYPE_FIELD_PRIVATE_BITS (type) =
6476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6478
6479 TYPE_FIELD_PROTECTED_BITS (type) =
6480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6482
6483 TYPE_FIELD_IGNORE_BITS (type) =
6484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6486 }
6487
6488 /* If the type has baseclasses, allocate and clear a bit vector for
6489 TYPE_FIELD_VIRTUAL_BITS. */
6490 if (fip->nbaseclasses && cu->language != language_ada)
6491 {
6492 int num_bytes = B_BYTES (fip->nbaseclasses);
6493 unsigned char *pointer;
6494
6495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6496 pointer = TYPE_ALLOC (type, num_bytes);
6497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6499 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6500 }
6501
6502 /* Copy the saved-up fields into the field vector. Start from the head of
6503 the list, adding to the tail of the field array, so that they end up in
6504 the same order in the array in which they were added to the list. */
6505 while (nfields-- > 0)
6506 {
6507 struct nextfield *fieldp;
6508
6509 if (fip->fields)
6510 {
6511 fieldp = fip->fields;
6512 fip->fields = fieldp->next;
6513 }
6514 else
6515 {
6516 fieldp = fip->baseclasses;
6517 fip->baseclasses = fieldp->next;
6518 }
6519
6520 TYPE_FIELD (type, nfields) = fieldp->field;
6521 switch (fieldp->accessibility)
6522 {
6523 case DW_ACCESS_private:
6524 if (cu->language != language_ada)
6525 SET_TYPE_FIELD_PRIVATE (type, nfields);
6526 break;
6527
6528 case DW_ACCESS_protected:
6529 if (cu->language != language_ada)
6530 SET_TYPE_FIELD_PROTECTED (type, nfields);
6531 break;
6532
6533 case DW_ACCESS_public:
6534 break;
6535
6536 default:
6537 /* Unknown accessibility. Complain and treat it as public. */
6538 {
6539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6540 fieldp->accessibility);
6541 }
6542 break;
6543 }
6544 if (nfields < fip->nbaseclasses)
6545 {
6546 switch (fieldp->virtuality)
6547 {
6548 case DW_VIRTUALITY_virtual:
6549 case DW_VIRTUALITY_pure_virtual:
6550 if (cu->language == language_ada)
6551 error (_("unexpected virtuality in component of Ada type"));
6552 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6553 break;
6554 }
6555 }
6556 }
6557 }
6558
6559 /* Add a member function to the proper fieldlist. */
6560
6561 static void
6562 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6563 struct type *type, struct dwarf2_cu *cu)
6564 {
6565 struct objfile *objfile = cu->objfile;
6566 struct attribute *attr;
6567 struct fnfieldlist *flp;
6568 int i;
6569 struct fn_field *fnp;
6570 char *fieldname;
6571 struct nextfnfield *new_fnfield;
6572 struct type *this_type;
6573
6574 if (cu->language == language_ada)
6575 error (_("unexpected member function in Ada type"));
6576
6577 /* Get name of member function. */
6578 fieldname = dwarf2_name (die, cu);
6579 if (fieldname == NULL)
6580 return;
6581
6582 /* Look up member function name in fieldlist. */
6583 for (i = 0; i < fip->nfnfields; i++)
6584 {
6585 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6586 break;
6587 }
6588
6589 /* Create new list element if necessary. */
6590 if (i < fip->nfnfields)
6591 flp = &fip->fnfieldlists[i];
6592 else
6593 {
6594 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6595 {
6596 fip->fnfieldlists = (struct fnfieldlist *)
6597 xrealloc (fip->fnfieldlists,
6598 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6599 * sizeof (struct fnfieldlist));
6600 if (fip->nfnfields == 0)
6601 make_cleanup (free_current_contents, &fip->fnfieldlists);
6602 }
6603 flp = &fip->fnfieldlists[fip->nfnfields];
6604 flp->name = fieldname;
6605 flp->length = 0;
6606 flp->head = NULL;
6607 i = fip->nfnfields++;
6608 }
6609
6610 /* Create a new member function field and chain it to the field list
6611 entry. */
6612 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6613 make_cleanup (xfree, new_fnfield);
6614 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6615 new_fnfield->next = flp->head;
6616 flp->head = new_fnfield;
6617 flp->length++;
6618
6619 /* Fill in the member function field info. */
6620 fnp = &new_fnfield->fnfield;
6621
6622 /* Delay processing of the physname until later. */
6623 if (cu->language == language_cplus || cu->language == language_java)
6624 {
6625 add_to_method_list (type, i, flp->length - 1, fieldname,
6626 die, cu);
6627 }
6628 else
6629 {
6630 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6631 fnp->physname = physname ? physname : "";
6632 }
6633
6634 fnp->type = alloc_type (objfile);
6635 this_type = read_type_die (die, cu);
6636 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6637 {
6638 int nparams = TYPE_NFIELDS (this_type);
6639
6640 /* TYPE is the domain of this method, and THIS_TYPE is the type
6641 of the method itself (TYPE_CODE_METHOD). */
6642 smash_to_method_type (fnp->type, type,
6643 TYPE_TARGET_TYPE (this_type),
6644 TYPE_FIELDS (this_type),
6645 TYPE_NFIELDS (this_type),
6646 TYPE_VARARGS (this_type));
6647
6648 /* Handle static member functions.
6649 Dwarf2 has no clean way to discern C++ static and non-static
6650 member functions. G++ helps GDB by marking the first
6651 parameter for non-static member functions (which is the this
6652 pointer) as artificial. We obtain this information from
6653 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6654 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6655 fnp->voffset = VOFFSET_STATIC;
6656 }
6657 else
6658 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6659 dwarf2_full_name (fieldname, die, cu));
6660
6661 /* Get fcontext from DW_AT_containing_type if present. */
6662 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6663 fnp->fcontext = die_containing_type (die, cu);
6664
6665 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6666 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6667
6668 /* Get accessibility. */
6669 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6670 if (attr)
6671 {
6672 switch (DW_UNSND (attr))
6673 {
6674 case DW_ACCESS_private:
6675 fnp->is_private = 1;
6676 break;
6677 case DW_ACCESS_protected:
6678 fnp->is_protected = 1;
6679 break;
6680 }
6681 }
6682
6683 /* Check for artificial methods. */
6684 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6685 if (attr && DW_UNSND (attr) != 0)
6686 fnp->is_artificial = 1;
6687
6688 /* Get index in virtual function table if it is a virtual member
6689 function. For older versions of GCC, this is an offset in the
6690 appropriate virtual table, as specified by DW_AT_containing_type.
6691 For everyone else, it is an expression to be evaluated relative
6692 to the object address. */
6693
6694 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6695 if (attr)
6696 {
6697 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6698 {
6699 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6700 {
6701 /* Old-style GCC. */
6702 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6703 }
6704 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6705 || (DW_BLOCK (attr)->size > 1
6706 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6707 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6708 {
6709 struct dwarf_block blk;
6710 int offset;
6711
6712 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6713 ? 1 : 2);
6714 blk.size = DW_BLOCK (attr)->size - offset;
6715 blk.data = DW_BLOCK (attr)->data + offset;
6716 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6717 if ((fnp->voffset % cu->header.addr_size) != 0)
6718 dwarf2_complex_location_expr_complaint ();
6719 else
6720 fnp->voffset /= cu->header.addr_size;
6721 fnp->voffset += 2;
6722 }
6723 else
6724 dwarf2_complex_location_expr_complaint ();
6725
6726 if (!fnp->fcontext)
6727 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6728 }
6729 else if (attr_form_is_section_offset (attr))
6730 {
6731 dwarf2_complex_location_expr_complaint ();
6732 }
6733 else
6734 {
6735 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6736 fieldname);
6737 }
6738 }
6739 else
6740 {
6741 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6742 if (attr && DW_UNSND (attr))
6743 {
6744 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6745 complaint (&symfile_complaints,
6746 _("Member function \"%s\" (offset %d) is virtual "
6747 "but the vtable offset is not specified"),
6748 fieldname, die->offset);
6749 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6750 TYPE_CPLUS_DYNAMIC (type) = 1;
6751 }
6752 }
6753 }
6754
6755 /* Create the vector of member function fields, and attach it to the type. */
6756
6757 static void
6758 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6759 struct dwarf2_cu *cu)
6760 {
6761 struct fnfieldlist *flp;
6762 int total_length = 0;
6763 int i;
6764
6765 if (cu->language == language_ada)
6766 error (_("unexpected member functions in Ada type"));
6767
6768 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6769 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6770 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6771
6772 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6773 {
6774 struct nextfnfield *nfp = flp->head;
6775 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6776 int k;
6777
6778 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6779 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6780 fn_flp->fn_fields = (struct fn_field *)
6781 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6782 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6783 fn_flp->fn_fields[k] = nfp->fnfield;
6784
6785 total_length += flp->length;
6786 }
6787
6788 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6789 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6790 }
6791
6792 /* Returns non-zero if NAME is the name of a vtable member in CU's
6793 language, zero otherwise. */
6794 static int
6795 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6796 {
6797 static const char vptr[] = "_vptr";
6798 static const char vtable[] = "vtable";
6799
6800 /* Look for the C++ and Java forms of the vtable. */
6801 if ((cu->language == language_java
6802 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6803 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6804 && is_cplus_marker (name[sizeof (vptr) - 1])))
6805 return 1;
6806
6807 return 0;
6808 }
6809
6810 /* GCC outputs unnamed structures that are really pointers to member
6811 functions, with the ABI-specified layout. If TYPE describes
6812 such a structure, smash it into a member function type.
6813
6814 GCC shouldn't do this; it should just output pointer to member DIEs.
6815 This is GCC PR debug/28767. */
6816
6817 static void
6818 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6819 {
6820 struct type *pfn_type, *domain_type, *new_type;
6821
6822 /* Check for a structure with no name and two children. */
6823 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6824 return;
6825
6826 /* Check for __pfn and __delta members. */
6827 if (TYPE_FIELD_NAME (type, 0) == NULL
6828 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6829 || TYPE_FIELD_NAME (type, 1) == NULL
6830 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6831 return;
6832
6833 /* Find the type of the method. */
6834 pfn_type = TYPE_FIELD_TYPE (type, 0);
6835 if (pfn_type == NULL
6836 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6837 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6838 return;
6839
6840 /* Look for the "this" argument. */
6841 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6842 if (TYPE_NFIELDS (pfn_type) == 0
6843 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6844 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6845 return;
6846
6847 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6848 new_type = alloc_type (objfile);
6849 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6850 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6851 TYPE_VARARGS (pfn_type));
6852 smash_to_methodptr_type (type, new_type);
6853 }
6854
6855 /* Called when we find the DIE that starts a structure or union scope
6856 (definition) to create a type for the structure or union. Fill in
6857 the type's name and general properties; the members will not be
6858 processed until process_structure_type.
6859
6860 NOTE: we need to call these functions regardless of whether or not the
6861 DIE has a DW_AT_name attribute, since it might be an anonymous
6862 structure or union. This gets the type entered into our set of
6863 user defined types.
6864
6865 However, if the structure is incomplete (an opaque struct/union)
6866 then suppress creating a symbol table entry for it since gdb only
6867 wants to find the one with the complete definition. Note that if
6868 it is complete, we just call new_symbol, which does it's own
6869 checking about whether the struct/union is anonymous or not (and
6870 suppresses creating a symbol table entry itself). */
6871
6872 static struct type *
6873 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6874 {
6875 struct objfile *objfile = cu->objfile;
6876 struct type *type;
6877 struct attribute *attr;
6878 char *name;
6879
6880 /* If the definition of this type lives in .debug_types, read that type.
6881 Don't follow DW_AT_specification though, that will take us back up
6882 the chain and we want to go down. */
6883 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6884 if (attr)
6885 {
6886 struct dwarf2_cu *type_cu = cu;
6887 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6888
6889 /* We could just recurse on read_structure_type, but we need to call
6890 get_die_type to ensure only one type for this DIE is created.
6891 This is important, for example, because for c++ classes we need
6892 TYPE_NAME set which is only done by new_symbol. Blech. */
6893 type = read_type_die (type_die, type_cu);
6894
6895 /* TYPE_CU may not be the same as CU.
6896 Ensure TYPE is recorded in CU's type_hash table. */
6897 return set_die_type (die, type, cu);
6898 }
6899
6900 type = alloc_type (objfile);
6901 INIT_CPLUS_SPECIFIC (type);
6902
6903 name = dwarf2_name (die, cu);
6904 if (name != NULL)
6905 {
6906 if (cu->language == language_cplus
6907 || cu->language == language_java)
6908 {
6909 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6910
6911 /* dwarf2_full_name might have already finished building the DIE's
6912 type. If so, there is no need to continue. */
6913 if (get_die_type (die, cu) != NULL)
6914 return get_die_type (die, cu);
6915
6916 TYPE_TAG_NAME (type) = full_name;
6917 if (die->tag == DW_TAG_structure_type
6918 || die->tag == DW_TAG_class_type)
6919 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6920 }
6921 else
6922 {
6923 /* The name is already allocated along with this objfile, so
6924 we don't need to duplicate it for the type. */
6925 TYPE_TAG_NAME (type) = (char *) name;
6926 if (die->tag == DW_TAG_class_type)
6927 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6928 }
6929 }
6930
6931 if (die->tag == DW_TAG_structure_type)
6932 {
6933 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6934 }
6935 else if (die->tag == DW_TAG_union_type)
6936 {
6937 TYPE_CODE (type) = TYPE_CODE_UNION;
6938 }
6939 else
6940 {
6941 TYPE_CODE (type) = TYPE_CODE_CLASS;
6942 }
6943
6944 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6945 TYPE_DECLARED_CLASS (type) = 1;
6946
6947 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6948 if (attr)
6949 {
6950 TYPE_LENGTH (type) = DW_UNSND (attr);
6951 }
6952 else
6953 {
6954 TYPE_LENGTH (type) = 0;
6955 }
6956
6957 TYPE_STUB_SUPPORTED (type) = 1;
6958 if (die_is_declaration (die, cu))
6959 TYPE_STUB (type) = 1;
6960 else if (attr == NULL && die->child == NULL
6961 && producer_is_realview (cu->producer))
6962 /* RealView does not output the required DW_AT_declaration
6963 on incomplete types. */
6964 TYPE_STUB (type) = 1;
6965
6966 /* We need to add the type field to the die immediately so we don't
6967 infinitely recurse when dealing with pointers to the structure
6968 type within the structure itself. */
6969 set_die_type (die, type, cu);
6970
6971 /* set_die_type should be already done. */
6972 set_descriptive_type (type, die, cu);
6973
6974 return type;
6975 }
6976
6977 /* Finish creating a structure or union type, including filling in
6978 its members and creating a symbol for it. */
6979
6980 static void
6981 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6982 {
6983 struct objfile *objfile = cu->objfile;
6984 struct die_info *child_die = die->child;
6985 struct type *type;
6986
6987 type = get_die_type (die, cu);
6988 if (type == NULL)
6989 type = read_structure_type (die, cu);
6990
6991 if (die->child != NULL && ! die_is_declaration (die, cu))
6992 {
6993 struct field_info fi;
6994 struct die_info *child_die;
6995 VEC (symbolp) *template_args = NULL;
6996 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6997
6998 memset (&fi, 0, sizeof (struct field_info));
6999
7000 child_die = die->child;
7001
7002 while (child_die && child_die->tag)
7003 {
7004 if (child_die->tag == DW_TAG_member
7005 || child_die->tag == DW_TAG_variable)
7006 {
7007 /* NOTE: carlton/2002-11-05: A C++ static data member
7008 should be a DW_TAG_member that is a declaration, but
7009 all versions of G++ as of this writing (so through at
7010 least 3.2.1) incorrectly generate DW_TAG_variable
7011 tags for them instead. */
7012 dwarf2_add_field (&fi, child_die, cu);
7013 }
7014 else if (child_die->tag == DW_TAG_subprogram)
7015 {
7016 /* C++ member function. */
7017 dwarf2_add_member_fn (&fi, child_die, type, cu);
7018 }
7019 else if (child_die->tag == DW_TAG_inheritance)
7020 {
7021 /* C++ base class field. */
7022 dwarf2_add_field (&fi, child_die, cu);
7023 }
7024 else if (child_die->tag == DW_TAG_typedef)
7025 dwarf2_add_typedef (&fi, child_die, cu);
7026 else if (child_die->tag == DW_TAG_template_type_param
7027 || child_die->tag == DW_TAG_template_value_param)
7028 {
7029 struct symbol *arg = new_symbol (child_die, NULL, cu);
7030
7031 if (arg != NULL)
7032 VEC_safe_push (symbolp, template_args, arg);
7033 }
7034
7035 child_die = sibling_die (child_die);
7036 }
7037
7038 /* Attach template arguments to type. */
7039 if (! VEC_empty (symbolp, template_args))
7040 {
7041 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7042 TYPE_N_TEMPLATE_ARGUMENTS (type)
7043 = VEC_length (symbolp, template_args);
7044 TYPE_TEMPLATE_ARGUMENTS (type)
7045 = obstack_alloc (&objfile->objfile_obstack,
7046 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7047 * sizeof (struct symbol *)));
7048 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7049 VEC_address (symbolp, template_args),
7050 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7051 * sizeof (struct symbol *)));
7052 VEC_free (symbolp, template_args);
7053 }
7054
7055 /* Attach fields and member functions to the type. */
7056 if (fi.nfields)
7057 dwarf2_attach_fields_to_type (&fi, type, cu);
7058 if (fi.nfnfields)
7059 {
7060 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7061
7062 /* Get the type which refers to the base class (possibly this
7063 class itself) which contains the vtable pointer for the current
7064 class from the DW_AT_containing_type attribute. This use of
7065 DW_AT_containing_type is a GNU extension. */
7066
7067 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7068 {
7069 struct type *t = die_containing_type (die, cu);
7070
7071 TYPE_VPTR_BASETYPE (type) = t;
7072 if (type == t)
7073 {
7074 int i;
7075
7076 /* Our own class provides vtbl ptr. */
7077 for (i = TYPE_NFIELDS (t) - 1;
7078 i >= TYPE_N_BASECLASSES (t);
7079 --i)
7080 {
7081 char *fieldname = TYPE_FIELD_NAME (t, i);
7082
7083 if (is_vtable_name (fieldname, cu))
7084 {
7085 TYPE_VPTR_FIELDNO (type) = i;
7086 break;
7087 }
7088 }
7089
7090 /* Complain if virtual function table field not found. */
7091 if (i < TYPE_N_BASECLASSES (t))
7092 complaint (&symfile_complaints,
7093 _("virtual function table pointer "
7094 "not found when defining class '%s'"),
7095 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7096 "");
7097 }
7098 else
7099 {
7100 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7101 }
7102 }
7103 else if (cu->producer
7104 && strncmp (cu->producer,
7105 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7106 {
7107 /* The IBM XLC compiler does not provide direct indication
7108 of the containing type, but the vtable pointer is
7109 always named __vfp. */
7110
7111 int i;
7112
7113 for (i = TYPE_NFIELDS (type) - 1;
7114 i >= TYPE_N_BASECLASSES (type);
7115 --i)
7116 {
7117 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7118 {
7119 TYPE_VPTR_FIELDNO (type) = i;
7120 TYPE_VPTR_BASETYPE (type) = type;
7121 break;
7122 }
7123 }
7124 }
7125 }
7126
7127 /* Copy fi.typedef_field_list linked list elements content into the
7128 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7129 if (fi.typedef_field_list)
7130 {
7131 int i = fi.typedef_field_list_count;
7132
7133 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7134 TYPE_TYPEDEF_FIELD_ARRAY (type)
7135 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7136 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7137
7138 /* Reverse the list order to keep the debug info elements order. */
7139 while (--i >= 0)
7140 {
7141 struct typedef_field *dest, *src;
7142
7143 dest = &TYPE_TYPEDEF_FIELD (type, i);
7144 src = &fi.typedef_field_list->field;
7145 fi.typedef_field_list = fi.typedef_field_list->next;
7146 *dest = *src;
7147 }
7148 }
7149
7150 do_cleanups (back_to);
7151 }
7152
7153 quirk_gcc_member_function_pointer (type, cu->objfile);
7154
7155 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7156 snapshots) has been known to create a die giving a declaration
7157 for a class that has, as a child, a die giving a definition for a
7158 nested class. So we have to process our children even if the
7159 current die is a declaration. Normally, of course, a declaration
7160 won't have any children at all. */
7161
7162 while (child_die != NULL && child_die->tag)
7163 {
7164 if (child_die->tag == DW_TAG_member
7165 || child_die->tag == DW_TAG_variable
7166 || child_die->tag == DW_TAG_inheritance
7167 || child_die->tag == DW_TAG_template_value_param
7168 || child_die->tag == DW_TAG_template_type_param)
7169 {
7170 /* Do nothing. */
7171 }
7172 else
7173 process_die (child_die, cu);
7174
7175 child_die = sibling_die (child_die);
7176 }
7177
7178 /* Do not consider external references. According to the DWARF standard,
7179 these DIEs are identified by the fact that they have no byte_size
7180 attribute, and a declaration attribute. */
7181 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7182 || !die_is_declaration (die, cu))
7183 new_symbol (die, type, cu);
7184 }
7185
7186 /* Given a DW_AT_enumeration_type die, set its type. We do not
7187 complete the type's fields yet, or create any symbols. */
7188
7189 static struct type *
7190 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7191 {
7192 struct objfile *objfile = cu->objfile;
7193 struct type *type;
7194 struct attribute *attr;
7195 const char *name;
7196
7197 /* If the definition of this type lives in .debug_types, read that type.
7198 Don't follow DW_AT_specification though, that will take us back up
7199 the chain and we want to go down. */
7200 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7201 if (attr)
7202 {
7203 struct dwarf2_cu *type_cu = cu;
7204 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7205
7206 type = read_type_die (type_die, type_cu);
7207
7208 /* TYPE_CU may not be the same as CU.
7209 Ensure TYPE is recorded in CU's type_hash table. */
7210 return set_die_type (die, type, cu);
7211 }
7212
7213 type = alloc_type (objfile);
7214
7215 TYPE_CODE (type) = TYPE_CODE_ENUM;
7216 name = dwarf2_full_name (NULL, die, cu);
7217 if (name != NULL)
7218 TYPE_TAG_NAME (type) = (char *) name;
7219
7220 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7221 if (attr)
7222 {
7223 TYPE_LENGTH (type) = DW_UNSND (attr);
7224 }
7225 else
7226 {
7227 TYPE_LENGTH (type) = 0;
7228 }
7229
7230 /* The enumeration DIE can be incomplete. In Ada, any type can be
7231 declared as private in the package spec, and then defined only
7232 inside the package body. Such types are known as Taft Amendment
7233 Types. When another package uses such a type, an incomplete DIE
7234 may be generated by the compiler. */
7235 if (die_is_declaration (die, cu))
7236 TYPE_STUB (type) = 1;
7237
7238 return set_die_type (die, type, cu);
7239 }
7240
7241 /* Given a pointer to a die which begins an enumeration, process all
7242 the dies that define the members of the enumeration, and create the
7243 symbol for the enumeration type.
7244
7245 NOTE: We reverse the order of the element list. */
7246
7247 static void
7248 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7249 {
7250 struct type *this_type;
7251
7252 this_type = get_die_type (die, cu);
7253 if (this_type == NULL)
7254 this_type = read_enumeration_type (die, cu);
7255
7256 if (die->child != NULL)
7257 {
7258 struct die_info *child_die;
7259 struct symbol *sym;
7260 struct field *fields = NULL;
7261 int num_fields = 0;
7262 int unsigned_enum = 1;
7263 char *name;
7264
7265 child_die = die->child;
7266 while (child_die && child_die->tag)
7267 {
7268 if (child_die->tag != DW_TAG_enumerator)
7269 {
7270 process_die (child_die, cu);
7271 }
7272 else
7273 {
7274 name = dwarf2_name (child_die, cu);
7275 if (name)
7276 {
7277 sym = new_symbol (child_die, this_type, cu);
7278 if (SYMBOL_VALUE (sym) < 0)
7279 unsigned_enum = 0;
7280
7281 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7282 {
7283 fields = (struct field *)
7284 xrealloc (fields,
7285 (num_fields + DW_FIELD_ALLOC_CHUNK)
7286 * sizeof (struct field));
7287 }
7288
7289 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7290 FIELD_TYPE (fields[num_fields]) = NULL;
7291 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7292 FIELD_BITSIZE (fields[num_fields]) = 0;
7293
7294 num_fields++;
7295 }
7296 }
7297
7298 child_die = sibling_die (child_die);
7299 }
7300
7301 if (num_fields)
7302 {
7303 TYPE_NFIELDS (this_type) = num_fields;
7304 TYPE_FIELDS (this_type) = (struct field *)
7305 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7306 memcpy (TYPE_FIELDS (this_type), fields,
7307 sizeof (struct field) * num_fields);
7308 xfree (fields);
7309 }
7310 if (unsigned_enum)
7311 TYPE_UNSIGNED (this_type) = 1;
7312 }
7313
7314 new_symbol (die, this_type, cu);
7315 }
7316
7317 /* Extract all information from a DW_TAG_array_type DIE and put it in
7318 the DIE's type field. For now, this only handles one dimensional
7319 arrays. */
7320
7321 static struct type *
7322 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7323 {
7324 struct objfile *objfile = cu->objfile;
7325 struct die_info *child_die;
7326 struct type *type;
7327 struct type *element_type, *range_type, *index_type;
7328 struct type **range_types = NULL;
7329 struct attribute *attr;
7330 int ndim = 0;
7331 struct cleanup *back_to;
7332 char *name;
7333
7334 element_type = die_type (die, cu);
7335
7336 /* The die_type call above may have already set the type for this DIE. */
7337 type = get_die_type (die, cu);
7338 if (type)
7339 return type;
7340
7341 /* Irix 6.2 native cc creates array types without children for
7342 arrays with unspecified length. */
7343 if (die->child == NULL)
7344 {
7345 index_type = objfile_type (objfile)->builtin_int;
7346 range_type = create_range_type (NULL, index_type, 0, -1);
7347 type = create_array_type (NULL, element_type, range_type);
7348 return set_die_type (die, type, cu);
7349 }
7350
7351 back_to = make_cleanup (null_cleanup, NULL);
7352 child_die = die->child;
7353 while (child_die && child_die->tag)
7354 {
7355 if (child_die->tag == DW_TAG_subrange_type)
7356 {
7357 struct type *child_type = read_type_die (child_die, cu);
7358
7359 if (child_type != NULL)
7360 {
7361 /* The range type was succesfully read. Save it for the
7362 array type creation. */
7363 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7364 {
7365 range_types = (struct type **)
7366 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7367 * sizeof (struct type *));
7368 if (ndim == 0)
7369 make_cleanup (free_current_contents, &range_types);
7370 }
7371 range_types[ndim++] = child_type;
7372 }
7373 }
7374 child_die = sibling_die (child_die);
7375 }
7376
7377 /* Dwarf2 dimensions are output from left to right, create the
7378 necessary array types in backwards order. */
7379
7380 type = element_type;
7381
7382 if (read_array_order (die, cu) == DW_ORD_col_major)
7383 {
7384 int i = 0;
7385
7386 while (i < ndim)
7387 type = create_array_type (NULL, type, range_types[i++]);
7388 }
7389 else
7390 {
7391 while (ndim-- > 0)
7392 type = create_array_type (NULL, type, range_types[ndim]);
7393 }
7394
7395 /* Understand Dwarf2 support for vector types (like they occur on
7396 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7397 array type. This is not part of the Dwarf2/3 standard yet, but a
7398 custom vendor extension. The main difference between a regular
7399 array and the vector variant is that vectors are passed by value
7400 to functions. */
7401 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7402 if (attr)
7403 make_vector_type (type);
7404
7405 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7406 implementation may choose to implement triple vectors using this
7407 attribute. */
7408 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7409 if (attr)
7410 {
7411 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7412 TYPE_LENGTH (type) = DW_UNSND (attr);
7413 else
7414 complaint (&symfile_complaints,
7415 _("DW_AT_byte_size for array type smaller "
7416 "than the total size of elements"));
7417 }
7418
7419 name = dwarf2_name (die, cu);
7420 if (name)
7421 TYPE_NAME (type) = name;
7422
7423 /* Install the type in the die. */
7424 set_die_type (die, type, cu);
7425
7426 /* set_die_type should be already done. */
7427 set_descriptive_type (type, die, cu);
7428
7429 do_cleanups (back_to);
7430
7431 return type;
7432 }
7433
7434 static enum dwarf_array_dim_ordering
7435 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7436 {
7437 struct attribute *attr;
7438
7439 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7440
7441 if (attr) return DW_SND (attr);
7442
7443 /* GNU F77 is a special case, as at 08/2004 array type info is the
7444 opposite order to the dwarf2 specification, but data is still
7445 laid out as per normal fortran.
7446
7447 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7448 version checking. */
7449
7450 if (cu->language == language_fortran
7451 && cu->producer && strstr (cu->producer, "GNU F77"))
7452 {
7453 return DW_ORD_row_major;
7454 }
7455
7456 switch (cu->language_defn->la_array_ordering)
7457 {
7458 case array_column_major:
7459 return DW_ORD_col_major;
7460 case array_row_major:
7461 default:
7462 return DW_ORD_row_major;
7463 };
7464 }
7465
7466 /* Extract all information from a DW_TAG_set_type DIE and put it in
7467 the DIE's type field. */
7468
7469 static struct type *
7470 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7471 {
7472 struct type *domain_type, *set_type;
7473 struct attribute *attr;
7474
7475 domain_type = die_type (die, cu);
7476
7477 /* The die_type call above may have already set the type for this DIE. */
7478 set_type = get_die_type (die, cu);
7479 if (set_type)
7480 return set_type;
7481
7482 set_type = create_set_type (NULL, domain_type);
7483
7484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7485 if (attr)
7486 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7487
7488 return set_die_type (die, set_type, cu);
7489 }
7490
7491 /* First cut: install each common block member as a global variable. */
7492
7493 static void
7494 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7495 {
7496 struct die_info *child_die;
7497 struct attribute *attr;
7498 struct symbol *sym;
7499 CORE_ADDR base = (CORE_ADDR) 0;
7500
7501 attr = dwarf2_attr (die, DW_AT_location, cu);
7502 if (attr)
7503 {
7504 /* Support the .debug_loc offsets. */
7505 if (attr_form_is_block (attr))
7506 {
7507 base = decode_locdesc (DW_BLOCK (attr), cu);
7508 }
7509 else if (attr_form_is_section_offset (attr))
7510 {
7511 dwarf2_complex_location_expr_complaint ();
7512 }
7513 else
7514 {
7515 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7516 "common block member");
7517 }
7518 }
7519 if (die->child != NULL)
7520 {
7521 child_die = die->child;
7522 while (child_die && child_die->tag)
7523 {
7524 sym = new_symbol (child_die, NULL, cu);
7525 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7526 if (sym != NULL && attr != NULL)
7527 {
7528 CORE_ADDR byte_offset = 0;
7529
7530 if (attr_form_is_section_offset (attr))
7531 dwarf2_complex_location_expr_complaint ();
7532 else if (attr_form_is_constant (attr))
7533 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7534 else if (attr_form_is_block (attr))
7535 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7536 else
7537 dwarf2_complex_location_expr_complaint ();
7538
7539 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7540 add_symbol_to_list (sym, &global_symbols);
7541 }
7542 child_die = sibling_die (child_die);
7543 }
7544 }
7545 }
7546
7547 /* Create a type for a C++ namespace. */
7548
7549 static struct type *
7550 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7551 {
7552 struct objfile *objfile = cu->objfile;
7553 const char *previous_prefix, *name;
7554 int is_anonymous;
7555 struct type *type;
7556
7557 /* For extensions, reuse the type of the original namespace. */
7558 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7559 {
7560 struct die_info *ext_die;
7561 struct dwarf2_cu *ext_cu = cu;
7562
7563 ext_die = dwarf2_extension (die, &ext_cu);
7564 type = read_type_die (ext_die, ext_cu);
7565
7566 /* EXT_CU may not be the same as CU.
7567 Ensure TYPE is recorded in CU's type_hash table. */
7568 return set_die_type (die, type, cu);
7569 }
7570
7571 name = namespace_name (die, &is_anonymous, cu);
7572
7573 /* Now build the name of the current namespace. */
7574
7575 previous_prefix = determine_prefix (die, cu);
7576 if (previous_prefix[0] != '\0')
7577 name = typename_concat (&objfile->objfile_obstack,
7578 previous_prefix, name, 0, cu);
7579
7580 /* Create the type. */
7581 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7582 objfile);
7583 TYPE_NAME (type) = (char *) name;
7584 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7585
7586 return set_die_type (die, type, cu);
7587 }
7588
7589 /* Read a C++ namespace. */
7590
7591 static void
7592 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7593 {
7594 struct objfile *objfile = cu->objfile;
7595 int is_anonymous;
7596
7597 /* Add a symbol associated to this if we haven't seen the namespace
7598 before. Also, add a using directive if it's an anonymous
7599 namespace. */
7600
7601 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7602 {
7603 struct type *type;
7604
7605 type = read_type_die (die, cu);
7606 new_symbol (die, type, cu);
7607
7608 namespace_name (die, &is_anonymous, cu);
7609 if (is_anonymous)
7610 {
7611 const char *previous_prefix = determine_prefix (die, cu);
7612
7613 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7614 NULL, &objfile->objfile_obstack);
7615 }
7616 }
7617
7618 if (die->child != NULL)
7619 {
7620 struct die_info *child_die = die->child;
7621
7622 while (child_die && child_die->tag)
7623 {
7624 process_die (child_die, cu);
7625 child_die = sibling_die (child_die);
7626 }
7627 }
7628 }
7629
7630 /* Read a Fortran module as type. This DIE can be only a declaration used for
7631 imported module. Still we need that type as local Fortran "use ... only"
7632 declaration imports depend on the created type in determine_prefix. */
7633
7634 static struct type *
7635 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7636 {
7637 struct objfile *objfile = cu->objfile;
7638 char *module_name;
7639 struct type *type;
7640
7641 module_name = dwarf2_name (die, cu);
7642 if (!module_name)
7643 complaint (&symfile_complaints,
7644 _("DW_TAG_module has no name, offset 0x%x"),
7645 die->offset);
7646 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7647
7648 /* determine_prefix uses TYPE_TAG_NAME. */
7649 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7650
7651 return set_die_type (die, type, cu);
7652 }
7653
7654 /* Read a Fortran module. */
7655
7656 static void
7657 read_module (struct die_info *die, struct dwarf2_cu *cu)
7658 {
7659 struct die_info *child_die = die->child;
7660
7661 while (child_die && child_die->tag)
7662 {
7663 process_die (child_die, cu);
7664 child_die = sibling_die (child_die);
7665 }
7666 }
7667
7668 /* Return the name of the namespace represented by DIE. Set
7669 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7670 namespace. */
7671
7672 static const char *
7673 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7674 {
7675 struct die_info *current_die;
7676 const char *name = NULL;
7677
7678 /* Loop through the extensions until we find a name. */
7679
7680 for (current_die = die;
7681 current_die != NULL;
7682 current_die = dwarf2_extension (die, &cu))
7683 {
7684 name = dwarf2_name (current_die, cu);
7685 if (name != NULL)
7686 break;
7687 }
7688
7689 /* Is it an anonymous namespace? */
7690
7691 *is_anonymous = (name == NULL);
7692 if (*is_anonymous)
7693 name = "(anonymous namespace)";
7694
7695 return name;
7696 }
7697
7698 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7699 the user defined type vector. */
7700
7701 static struct type *
7702 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7703 {
7704 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7705 struct comp_unit_head *cu_header = &cu->header;
7706 struct type *type;
7707 struct attribute *attr_byte_size;
7708 struct attribute *attr_address_class;
7709 int byte_size, addr_class;
7710 struct type *target_type;
7711
7712 target_type = die_type (die, cu);
7713
7714 /* The die_type call above may have already set the type for this DIE. */
7715 type = get_die_type (die, cu);
7716 if (type)
7717 return type;
7718
7719 type = lookup_pointer_type (target_type);
7720
7721 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7722 if (attr_byte_size)
7723 byte_size = DW_UNSND (attr_byte_size);
7724 else
7725 byte_size = cu_header->addr_size;
7726
7727 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7728 if (attr_address_class)
7729 addr_class = DW_UNSND (attr_address_class);
7730 else
7731 addr_class = DW_ADDR_none;
7732
7733 /* If the pointer size or address class is different than the
7734 default, create a type variant marked as such and set the
7735 length accordingly. */
7736 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7737 {
7738 if (gdbarch_address_class_type_flags_p (gdbarch))
7739 {
7740 int type_flags;
7741
7742 type_flags = gdbarch_address_class_type_flags
7743 (gdbarch, byte_size, addr_class);
7744 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7745 == 0);
7746 type = make_type_with_address_space (type, type_flags);
7747 }
7748 else if (TYPE_LENGTH (type) != byte_size)
7749 {
7750 complaint (&symfile_complaints,
7751 _("invalid pointer size %d"), byte_size);
7752 }
7753 else
7754 {
7755 /* Should we also complain about unhandled address classes? */
7756 }
7757 }
7758
7759 TYPE_LENGTH (type) = byte_size;
7760 return set_die_type (die, type, cu);
7761 }
7762
7763 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7764 the user defined type vector. */
7765
7766 static struct type *
7767 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7768 {
7769 struct type *type;
7770 struct type *to_type;
7771 struct type *domain;
7772
7773 to_type = die_type (die, cu);
7774 domain = die_containing_type (die, cu);
7775
7776 /* The calls above may have already set the type for this DIE. */
7777 type = get_die_type (die, cu);
7778 if (type)
7779 return type;
7780
7781 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7782 type = lookup_methodptr_type (to_type);
7783 else
7784 type = lookup_memberptr_type (to_type, domain);
7785
7786 return set_die_type (die, type, cu);
7787 }
7788
7789 /* Extract all information from a DW_TAG_reference_type DIE and add to
7790 the user defined type vector. */
7791
7792 static struct type *
7793 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7794 {
7795 struct comp_unit_head *cu_header = &cu->header;
7796 struct type *type, *target_type;
7797 struct attribute *attr;
7798
7799 target_type = die_type (die, cu);
7800
7801 /* The die_type call above may have already set the type for this DIE. */
7802 type = get_die_type (die, cu);
7803 if (type)
7804 return type;
7805
7806 type = lookup_reference_type (target_type);
7807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7808 if (attr)
7809 {
7810 TYPE_LENGTH (type) = DW_UNSND (attr);
7811 }
7812 else
7813 {
7814 TYPE_LENGTH (type) = cu_header->addr_size;
7815 }
7816 return set_die_type (die, type, cu);
7817 }
7818
7819 static struct type *
7820 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7821 {
7822 struct type *base_type, *cv_type;
7823
7824 base_type = die_type (die, cu);
7825
7826 /* The die_type call above may have already set the type for this DIE. */
7827 cv_type = get_die_type (die, cu);
7828 if (cv_type)
7829 return cv_type;
7830
7831 /* In case the const qualifier is applied to an array type, the element type
7832 is so qualified, not the array type (section 6.7.3 of C99). */
7833 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7834 {
7835 struct type *el_type, *inner_array;
7836
7837 base_type = copy_type (base_type);
7838 inner_array = base_type;
7839
7840 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7841 {
7842 TYPE_TARGET_TYPE (inner_array) =
7843 copy_type (TYPE_TARGET_TYPE (inner_array));
7844 inner_array = TYPE_TARGET_TYPE (inner_array);
7845 }
7846
7847 el_type = TYPE_TARGET_TYPE (inner_array);
7848 TYPE_TARGET_TYPE (inner_array) =
7849 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7850
7851 return set_die_type (die, base_type, cu);
7852 }
7853
7854 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7855 return set_die_type (die, cv_type, cu);
7856 }
7857
7858 static struct type *
7859 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7860 {
7861 struct type *base_type, *cv_type;
7862
7863 base_type = die_type (die, cu);
7864
7865 /* The die_type call above may have already set the type for this DIE. */
7866 cv_type = get_die_type (die, cu);
7867 if (cv_type)
7868 return cv_type;
7869
7870 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7871 return set_die_type (die, cv_type, cu);
7872 }
7873
7874 /* Extract all information from a DW_TAG_string_type DIE and add to
7875 the user defined type vector. It isn't really a user defined type,
7876 but it behaves like one, with other DIE's using an AT_user_def_type
7877 attribute to reference it. */
7878
7879 static struct type *
7880 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7881 {
7882 struct objfile *objfile = cu->objfile;
7883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7884 struct type *type, *range_type, *index_type, *char_type;
7885 struct attribute *attr;
7886 unsigned int length;
7887
7888 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7889 if (attr)
7890 {
7891 length = DW_UNSND (attr);
7892 }
7893 else
7894 {
7895 /* Check for the DW_AT_byte_size attribute. */
7896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7897 if (attr)
7898 {
7899 length = DW_UNSND (attr);
7900 }
7901 else
7902 {
7903 length = 1;
7904 }
7905 }
7906
7907 index_type = objfile_type (objfile)->builtin_int;
7908 range_type = create_range_type (NULL, index_type, 1, length);
7909 char_type = language_string_char_type (cu->language_defn, gdbarch);
7910 type = create_string_type (NULL, char_type, range_type);
7911
7912 return set_die_type (die, type, cu);
7913 }
7914
7915 /* Handle DIES due to C code like:
7916
7917 struct foo
7918 {
7919 int (*funcp)(int a, long l);
7920 int b;
7921 };
7922
7923 ('funcp' generates a DW_TAG_subroutine_type DIE). */
7924
7925 static struct type *
7926 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7927 {
7928 struct type *type; /* Type that this function returns. */
7929 struct type *ftype; /* Function that returns above type. */
7930 struct attribute *attr;
7931
7932 type = die_type (die, cu);
7933
7934 /* The die_type call above may have already set the type for this DIE. */
7935 ftype = get_die_type (die, cu);
7936 if (ftype)
7937 return ftype;
7938
7939 ftype = lookup_function_type (type);
7940
7941 /* All functions in C++, Pascal and Java have prototypes. */
7942 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7943 if ((attr && (DW_UNSND (attr) != 0))
7944 || cu->language == language_cplus
7945 || cu->language == language_java
7946 || cu->language == language_pascal)
7947 TYPE_PROTOTYPED (ftype) = 1;
7948 else if (producer_is_realview (cu->producer))
7949 /* RealView does not emit DW_AT_prototyped. We can not
7950 distinguish prototyped and unprototyped functions; default to
7951 prototyped, since that is more common in modern code (and
7952 RealView warns about unprototyped functions). */
7953 TYPE_PROTOTYPED (ftype) = 1;
7954
7955 /* Store the calling convention in the type if it's available in
7956 the subroutine die. Otherwise set the calling convention to
7957 the default value DW_CC_normal. */
7958 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7959 if (attr)
7960 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
7961 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
7962 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
7963 else
7964 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
7965
7966 /* We need to add the subroutine type to the die immediately so
7967 we don't infinitely recurse when dealing with parameters
7968 declared as the same subroutine type. */
7969 set_die_type (die, ftype, cu);
7970
7971 if (die->child != NULL)
7972 {
7973 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7974 struct die_info *child_die;
7975 int nparams, iparams;
7976
7977 /* Count the number of parameters.
7978 FIXME: GDB currently ignores vararg functions, but knows about
7979 vararg member functions. */
7980 nparams = 0;
7981 child_die = die->child;
7982 while (child_die && child_die->tag)
7983 {
7984 if (child_die->tag == DW_TAG_formal_parameter)
7985 nparams++;
7986 else if (child_die->tag == DW_TAG_unspecified_parameters)
7987 TYPE_VARARGS (ftype) = 1;
7988 child_die = sibling_die (child_die);
7989 }
7990
7991 /* Allocate storage for parameters and fill them in. */
7992 TYPE_NFIELDS (ftype) = nparams;
7993 TYPE_FIELDS (ftype) = (struct field *)
7994 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7995
7996 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7997 even if we error out during the parameters reading below. */
7998 for (iparams = 0; iparams < nparams; iparams++)
7999 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8000
8001 iparams = 0;
8002 child_die = die->child;
8003 while (child_die && child_die->tag)
8004 {
8005 if (child_die->tag == DW_TAG_formal_parameter)
8006 {
8007 struct type *arg_type;
8008
8009 /* DWARF version 2 has no clean way to discern C++
8010 static and non-static member functions. G++ helps
8011 GDB by marking the first parameter for non-static
8012 member functions (which is the this pointer) as
8013 artificial. We pass this information to
8014 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8015
8016 DWARF version 3 added DW_AT_object_pointer, which GCC
8017 4.5 does not yet generate. */
8018 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8019 if (attr)
8020 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8021 else
8022 {
8023 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8024
8025 /* GCC/43521: In java, the formal parameter
8026 "this" is sometimes not marked with DW_AT_artificial. */
8027 if (cu->language == language_java)
8028 {
8029 const char *name = dwarf2_name (child_die, cu);
8030
8031 if (name && !strcmp (name, "this"))
8032 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8033 }
8034 }
8035 arg_type = die_type (child_die, cu);
8036
8037 /* RealView does not mark THIS as const, which the testsuite
8038 expects. GCC marks THIS as const in method definitions,
8039 but not in the class specifications (GCC PR 43053). */
8040 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8041 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8042 {
8043 int is_this = 0;
8044 struct dwarf2_cu *arg_cu = cu;
8045 const char *name = dwarf2_name (child_die, cu);
8046
8047 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8048 if (attr)
8049 {
8050 /* If the compiler emits this, use it. */
8051 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8052 is_this = 1;
8053 }
8054 else if (name && strcmp (name, "this") == 0)
8055 /* Function definitions will have the argument names. */
8056 is_this = 1;
8057 else if (name == NULL && iparams == 0)
8058 /* Declarations may not have the names, so like
8059 elsewhere in GDB, assume an artificial first
8060 argument is "this". */
8061 is_this = 1;
8062
8063 if (is_this)
8064 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8065 arg_type, 0);
8066 }
8067
8068 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8069 iparams++;
8070 }
8071 child_die = sibling_die (child_die);
8072 }
8073 }
8074
8075 return ftype;
8076 }
8077
8078 static struct type *
8079 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8080 {
8081 struct objfile *objfile = cu->objfile;
8082 const char *name = NULL;
8083 struct type *this_type;
8084
8085 name = dwarf2_full_name (NULL, die, cu);
8086 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8087 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8088 TYPE_NAME (this_type) = (char *) name;
8089 set_die_type (die, this_type, cu);
8090 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8091 return this_type;
8092 }
8093
8094 /* Find a representation of a given base type and install
8095 it in the TYPE field of the die. */
8096
8097 static struct type *
8098 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8099 {
8100 struct objfile *objfile = cu->objfile;
8101 struct type *type;
8102 struct attribute *attr;
8103 int encoding = 0, size = 0;
8104 char *name;
8105 enum type_code code = TYPE_CODE_INT;
8106 int type_flags = 0;
8107 struct type *target_type = NULL;
8108
8109 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8110 if (attr)
8111 {
8112 encoding = DW_UNSND (attr);
8113 }
8114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8115 if (attr)
8116 {
8117 size = DW_UNSND (attr);
8118 }
8119 name = dwarf2_name (die, cu);
8120 if (!name)
8121 {
8122 complaint (&symfile_complaints,
8123 _("DW_AT_name missing from DW_TAG_base_type"));
8124 }
8125
8126 switch (encoding)
8127 {
8128 case DW_ATE_address:
8129 /* Turn DW_ATE_address into a void * pointer. */
8130 code = TYPE_CODE_PTR;
8131 type_flags |= TYPE_FLAG_UNSIGNED;
8132 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8133 break;
8134 case DW_ATE_boolean:
8135 code = TYPE_CODE_BOOL;
8136 type_flags |= TYPE_FLAG_UNSIGNED;
8137 break;
8138 case DW_ATE_complex_float:
8139 code = TYPE_CODE_COMPLEX;
8140 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8141 break;
8142 case DW_ATE_decimal_float:
8143 code = TYPE_CODE_DECFLOAT;
8144 break;
8145 case DW_ATE_float:
8146 code = TYPE_CODE_FLT;
8147 break;
8148 case DW_ATE_signed:
8149 break;
8150 case DW_ATE_unsigned:
8151 type_flags |= TYPE_FLAG_UNSIGNED;
8152 break;
8153 case DW_ATE_signed_char:
8154 if (cu->language == language_ada || cu->language == language_m2
8155 || cu->language == language_pascal)
8156 code = TYPE_CODE_CHAR;
8157 break;
8158 case DW_ATE_unsigned_char:
8159 if (cu->language == language_ada || cu->language == language_m2
8160 || cu->language == language_pascal)
8161 code = TYPE_CODE_CHAR;
8162 type_flags |= TYPE_FLAG_UNSIGNED;
8163 break;
8164 case DW_ATE_UTF:
8165 /* We just treat this as an integer and then recognize the
8166 type by name elsewhere. */
8167 break;
8168
8169 default:
8170 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8171 dwarf_type_encoding_name (encoding));
8172 break;
8173 }
8174
8175 type = init_type (code, size, type_flags, NULL, objfile);
8176 TYPE_NAME (type) = name;
8177 TYPE_TARGET_TYPE (type) = target_type;
8178
8179 if (name && strcmp (name, "char") == 0)
8180 TYPE_NOSIGN (type) = 1;
8181
8182 return set_die_type (die, type, cu);
8183 }
8184
8185 /* Read the given DW_AT_subrange DIE. */
8186
8187 static struct type *
8188 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8189 {
8190 struct type *base_type;
8191 struct type *range_type;
8192 struct attribute *attr;
8193 LONGEST low = 0;
8194 LONGEST high = -1;
8195 char *name;
8196 LONGEST negative_mask;
8197
8198 base_type = die_type (die, cu);
8199 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8200 check_typedef (base_type);
8201
8202 /* The die_type call above may have already set the type for this DIE. */
8203 range_type = get_die_type (die, cu);
8204 if (range_type)
8205 return range_type;
8206
8207 if (cu->language == language_fortran)
8208 {
8209 /* FORTRAN implies a lower bound of 1, if not given. */
8210 low = 1;
8211 }
8212
8213 /* FIXME: For variable sized arrays either of these could be
8214 a variable rather than a constant value. We'll allow it,
8215 but we don't know how to handle it. */
8216 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8217 if (attr)
8218 low = dwarf2_get_attr_constant_value (attr, 0);
8219
8220 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8221 if (attr)
8222 {
8223 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8224 {
8225 /* GCC encodes arrays with unspecified or dynamic length
8226 with a DW_FORM_block1 attribute or a reference attribute.
8227 FIXME: GDB does not yet know how to handle dynamic
8228 arrays properly, treat them as arrays with unspecified
8229 length for now.
8230
8231 FIXME: jimb/2003-09-22: GDB does not really know
8232 how to handle arrays of unspecified length
8233 either; we just represent them as zero-length
8234 arrays. Choose an appropriate upper bound given
8235 the lower bound we've computed above. */
8236 high = low - 1;
8237 }
8238 else
8239 high = dwarf2_get_attr_constant_value (attr, 1);
8240 }
8241 else
8242 {
8243 attr = dwarf2_attr (die, DW_AT_count, cu);
8244 if (attr)
8245 {
8246 int count = dwarf2_get_attr_constant_value (attr, 1);
8247 high = low + count - 1;
8248 }
8249 else
8250 {
8251 /* Unspecified array length. */
8252 high = low - 1;
8253 }
8254 }
8255
8256 /* Dwarf-2 specifications explicitly allows to create subrange types
8257 without specifying a base type.
8258 In that case, the base type must be set to the type of
8259 the lower bound, upper bound or count, in that order, if any of these
8260 three attributes references an object that has a type.
8261 If no base type is found, the Dwarf-2 specifications say that
8262 a signed integer type of size equal to the size of an address should
8263 be used.
8264 For the following C code: `extern char gdb_int [];'
8265 GCC produces an empty range DIE.
8266 FIXME: muller/2010-05-28: Possible references to object for low bound,
8267 high bound or count are not yet handled by this code. */
8268 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8269 {
8270 struct objfile *objfile = cu->objfile;
8271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8272 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8273 struct type *int_type = objfile_type (objfile)->builtin_int;
8274
8275 /* Test "int", "long int", and "long long int" objfile types,
8276 and select the first one having a size above or equal to the
8277 architecture address size. */
8278 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8279 base_type = int_type;
8280 else
8281 {
8282 int_type = objfile_type (objfile)->builtin_long;
8283 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8284 base_type = int_type;
8285 else
8286 {
8287 int_type = objfile_type (objfile)->builtin_long_long;
8288 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8289 base_type = int_type;
8290 }
8291 }
8292 }
8293
8294 negative_mask =
8295 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8296 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8297 low |= negative_mask;
8298 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8299 high |= negative_mask;
8300
8301 range_type = create_range_type (NULL, base_type, low, high);
8302
8303 /* Mark arrays with dynamic length at least as an array of unspecified
8304 length. GDB could check the boundary but before it gets implemented at
8305 least allow accessing the array elements. */
8306 if (attr && attr->form == DW_FORM_block1)
8307 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8308
8309 /* Ada expects an empty array on no boundary attributes. */
8310 if (attr == NULL && cu->language != language_ada)
8311 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8312
8313 name = dwarf2_name (die, cu);
8314 if (name)
8315 TYPE_NAME (range_type) = name;
8316
8317 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8318 if (attr)
8319 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8320
8321 set_die_type (die, range_type, cu);
8322
8323 /* set_die_type should be already done. */
8324 set_descriptive_type (range_type, die, cu);
8325
8326 return range_type;
8327 }
8328
8329 static struct type *
8330 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8331 {
8332 struct type *type;
8333
8334 /* For now, we only support the C meaning of an unspecified type: void. */
8335
8336 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8337 TYPE_NAME (type) = dwarf2_name (die, cu);
8338
8339 return set_die_type (die, type, cu);
8340 }
8341
8342 /* Trivial hash function for die_info: the hash value of a DIE
8343 is its offset in .debug_info for this objfile. */
8344
8345 static hashval_t
8346 die_hash (const void *item)
8347 {
8348 const struct die_info *die = item;
8349
8350 return die->offset;
8351 }
8352
8353 /* Trivial comparison function for die_info structures: two DIEs
8354 are equal if they have the same offset. */
8355
8356 static int
8357 die_eq (const void *item_lhs, const void *item_rhs)
8358 {
8359 const struct die_info *die_lhs = item_lhs;
8360 const struct die_info *die_rhs = item_rhs;
8361
8362 return die_lhs->offset == die_rhs->offset;
8363 }
8364
8365 /* Read a whole compilation unit into a linked list of dies. */
8366
8367 static struct die_info *
8368 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8369 {
8370 struct die_reader_specs reader_specs;
8371 int read_abbrevs = 0;
8372 struct cleanup *back_to = NULL;
8373 struct die_info *die;
8374
8375 if (cu->dwarf2_abbrevs == NULL)
8376 {
8377 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8378 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8379 read_abbrevs = 1;
8380 }
8381
8382 gdb_assert (cu->die_hash == NULL);
8383 cu->die_hash
8384 = htab_create_alloc_ex (cu->header.length / 12,
8385 die_hash,
8386 die_eq,
8387 NULL,
8388 &cu->comp_unit_obstack,
8389 hashtab_obstack_allocate,
8390 dummy_obstack_deallocate);
8391
8392 init_cu_die_reader (&reader_specs, cu);
8393
8394 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8395
8396 if (read_abbrevs)
8397 do_cleanups (back_to);
8398
8399 return die;
8400 }
8401
8402 /* Main entry point for reading a DIE and all children.
8403 Read the DIE and dump it if requested. */
8404
8405 static struct die_info *
8406 read_die_and_children (const struct die_reader_specs *reader,
8407 gdb_byte *info_ptr,
8408 gdb_byte **new_info_ptr,
8409 struct die_info *parent)
8410 {
8411 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8412 new_info_ptr, parent);
8413
8414 if (dwarf2_die_debug)
8415 {
8416 fprintf_unfiltered (gdb_stdlog,
8417 "\nRead die from %s of %s:\n",
8418 reader->buffer == dwarf2_per_objfile->info.buffer
8419 ? ".debug_info"
8420 : reader->buffer == dwarf2_per_objfile->types.buffer
8421 ? ".debug_types"
8422 : "unknown section",
8423 reader->abfd->filename);
8424 dump_die (result, dwarf2_die_debug);
8425 }
8426
8427 return result;
8428 }
8429
8430 /* Read a single die and all its descendents. Set the die's sibling
8431 field to NULL; set other fields in the die correctly, and set all
8432 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8433 location of the info_ptr after reading all of those dies. PARENT
8434 is the parent of the die in question. */
8435
8436 static struct die_info *
8437 read_die_and_children_1 (const struct die_reader_specs *reader,
8438 gdb_byte *info_ptr,
8439 gdb_byte **new_info_ptr,
8440 struct die_info *parent)
8441 {
8442 struct die_info *die;
8443 gdb_byte *cur_ptr;
8444 int has_children;
8445
8446 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8447 if (die == NULL)
8448 {
8449 *new_info_ptr = cur_ptr;
8450 return NULL;
8451 }
8452 store_in_ref_table (die, reader->cu);
8453
8454 if (has_children)
8455 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8456 else
8457 {
8458 die->child = NULL;
8459 *new_info_ptr = cur_ptr;
8460 }
8461
8462 die->sibling = NULL;
8463 die->parent = parent;
8464 return die;
8465 }
8466
8467 /* Read a die, all of its descendents, and all of its siblings; set
8468 all of the fields of all of the dies correctly. Arguments are as
8469 in read_die_and_children. */
8470
8471 static struct die_info *
8472 read_die_and_siblings (const struct die_reader_specs *reader,
8473 gdb_byte *info_ptr,
8474 gdb_byte **new_info_ptr,
8475 struct die_info *parent)
8476 {
8477 struct die_info *first_die, *last_sibling;
8478 gdb_byte *cur_ptr;
8479
8480 cur_ptr = info_ptr;
8481 first_die = last_sibling = NULL;
8482
8483 while (1)
8484 {
8485 struct die_info *die
8486 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8487
8488 if (die == NULL)
8489 {
8490 *new_info_ptr = cur_ptr;
8491 return first_die;
8492 }
8493
8494 if (!first_die)
8495 first_die = die;
8496 else
8497 last_sibling->sibling = die;
8498
8499 last_sibling = die;
8500 }
8501 }
8502
8503 /* Read the die from the .debug_info section buffer. Set DIEP to
8504 point to a newly allocated die with its information, except for its
8505 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8506 whether the die has children or not. */
8507
8508 static gdb_byte *
8509 read_full_die (const struct die_reader_specs *reader,
8510 struct die_info **diep, gdb_byte *info_ptr,
8511 int *has_children)
8512 {
8513 unsigned int abbrev_number, bytes_read, i, offset;
8514 struct abbrev_info *abbrev;
8515 struct die_info *die;
8516 struct dwarf2_cu *cu = reader->cu;
8517 bfd *abfd = reader->abfd;
8518
8519 offset = info_ptr - reader->buffer;
8520 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8521 info_ptr += bytes_read;
8522 if (!abbrev_number)
8523 {
8524 *diep = NULL;
8525 *has_children = 0;
8526 return info_ptr;
8527 }
8528
8529 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8530 if (!abbrev)
8531 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8532 abbrev_number,
8533 bfd_get_filename (abfd));
8534
8535 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8536 die->offset = offset;
8537 die->tag = abbrev->tag;
8538 die->abbrev = abbrev_number;
8539
8540 die->num_attrs = abbrev->num_attrs;
8541
8542 for (i = 0; i < abbrev->num_attrs; ++i)
8543 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8544 abfd, info_ptr, cu);
8545
8546 *diep = die;
8547 *has_children = abbrev->has_children;
8548 return info_ptr;
8549 }
8550
8551 /* In DWARF version 2, the description of the debugging information is
8552 stored in a separate .debug_abbrev section. Before we read any
8553 dies from a section we read in all abbreviations and install them
8554 in a hash table. This function also sets flags in CU describing
8555 the data found in the abbrev table. */
8556
8557 static void
8558 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8559 {
8560 struct comp_unit_head *cu_header = &cu->header;
8561 gdb_byte *abbrev_ptr;
8562 struct abbrev_info *cur_abbrev;
8563 unsigned int abbrev_number, bytes_read, abbrev_name;
8564 unsigned int abbrev_form, hash_number;
8565 struct attr_abbrev *cur_attrs;
8566 unsigned int allocated_attrs;
8567
8568 /* Initialize dwarf2 abbrevs. */
8569 obstack_init (&cu->abbrev_obstack);
8570 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8571 (ABBREV_HASH_SIZE
8572 * sizeof (struct abbrev_info *)));
8573 memset (cu->dwarf2_abbrevs, 0,
8574 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8575
8576 dwarf2_read_section (dwarf2_per_objfile->objfile,
8577 &dwarf2_per_objfile->abbrev);
8578 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8579 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8580 abbrev_ptr += bytes_read;
8581
8582 allocated_attrs = ATTR_ALLOC_CHUNK;
8583 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8584
8585 /* Loop until we reach an abbrev number of 0. */
8586 while (abbrev_number)
8587 {
8588 cur_abbrev = dwarf_alloc_abbrev (cu);
8589
8590 /* read in abbrev header */
8591 cur_abbrev->number = abbrev_number;
8592 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8593 abbrev_ptr += bytes_read;
8594 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8595 abbrev_ptr += 1;
8596
8597 if (cur_abbrev->tag == DW_TAG_namespace)
8598 cu->has_namespace_info = 1;
8599
8600 /* now read in declarations */
8601 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8602 abbrev_ptr += bytes_read;
8603 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8604 abbrev_ptr += bytes_read;
8605 while (abbrev_name)
8606 {
8607 if (cur_abbrev->num_attrs == allocated_attrs)
8608 {
8609 allocated_attrs += ATTR_ALLOC_CHUNK;
8610 cur_attrs
8611 = xrealloc (cur_attrs, (allocated_attrs
8612 * sizeof (struct attr_abbrev)));
8613 }
8614
8615 /* Record whether this compilation unit might have
8616 inter-compilation-unit references. If we don't know what form
8617 this attribute will have, then it might potentially be a
8618 DW_FORM_ref_addr, so we conservatively expect inter-CU
8619 references. */
8620
8621 if (abbrev_form == DW_FORM_ref_addr
8622 || abbrev_form == DW_FORM_indirect)
8623 cu->has_form_ref_addr = 1;
8624
8625 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8626 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8627 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8628 abbrev_ptr += bytes_read;
8629 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8630 abbrev_ptr += bytes_read;
8631 }
8632
8633 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8634 (cur_abbrev->num_attrs
8635 * sizeof (struct attr_abbrev)));
8636 memcpy (cur_abbrev->attrs, cur_attrs,
8637 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8638
8639 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8640 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8641 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8642
8643 /* Get next abbreviation.
8644 Under Irix6 the abbreviations for a compilation unit are not
8645 always properly terminated with an abbrev number of 0.
8646 Exit loop if we encounter an abbreviation which we have
8647 already read (which means we are about to read the abbreviations
8648 for the next compile unit) or if the end of the abbreviation
8649 table is reached. */
8650 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8651 >= dwarf2_per_objfile->abbrev.size)
8652 break;
8653 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8654 abbrev_ptr += bytes_read;
8655 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8656 break;
8657 }
8658
8659 xfree (cur_attrs);
8660 }
8661
8662 /* Release the memory used by the abbrev table for a compilation unit. */
8663
8664 static void
8665 dwarf2_free_abbrev_table (void *ptr_to_cu)
8666 {
8667 struct dwarf2_cu *cu = ptr_to_cu;
8668
8669 obstack_free (&cu->abbrev_obstack, NULL);
8670 cu->dwarf2_abbrevs = NULL;
8671 }
8672
8673 /* Lookup an abbrev_info structure in the abbrev hash table. */
8674
8675 static struct abbrev_info *
8676 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8677 {
8678 unsigned int hash_number;
8679 struct abbrev_info *abbrev;
8680
8681 hash_number = number % ABBREV_HASH_SIZE;
8682 abbrev = cu->dwarf2_abbrevs[hash_number];
8683
8684 while (abbrev)
8685 {
8686 if (abbrev->number == number)
8687 return abbrev;
8688 else
8689 abbrev = abbrev->next;
8690 }
8691 return NULL;
8692 }
8693
8694 /* Returns nonzero if TAG represents a type that we might generate a partial
8695 symbol for. */
8696
8697 static int
8698 is_type_tag_for_partial (int tag)
8699 {
8700 switch (tag)
8701 {
8702 #if 0
8703 /* Some types that would be reasonable to generate partial symbols for,
8704 that we don't at present. */
8705 case DW_TAG_array_type:
8706 case DW_TAG_file_type:
8707 case DW_TAG_ptr_to_member_type:
8708 case DW_TAG_set_type:
8709 case DW_TAG_string_type:
8710 case DW_TAG_subroutine_type:
8711 #endif
8712 case DW_TAG_base_type:
8713 case DW_TAG_class_type:
8714 case DW_TAG_interface_type:
8715 case DW_TAG_enumeration_type:
8716 case DW_TAG_structure_type:
8717 case DW_TAG_subrange_type:
8718 case DW_TAG_typedef:
8719 case DW_TAG_union_type:
8720 return 1;
8721 default:
8722 return 0;
8723 }
8724 }
8725
8726 /* Load all DIEs that are interesting for partial symbols into memory. */
8727
8728 static struct partial_die_info *
8729 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8730 int building_psymtab, struct dwarf2_cu *cu)
8731 {
8732 struct partial_die_info *part_die;
8733 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8734 struct abbrev_info *abbrev;
8735 unsigned int bytes_read;
8736 unsigned int load_all = 0;
8737
8738 int nesting_level = 1;
8739
8740 parent_die = NULL;
8741 last_die = NULL;
8742
8743 if (cu->per_cu && cu->per_cu->load_all_dies)
8744 load_all = 1;
8745
8746 cu->partial_dies
8747 = htab_create_alloc_ex (cu->header.length / 12,
8748 partial_die_hash,
8749 partial_die_eq,
8750 NULL,
8751 &cu->comp_unit_obstack,
8752 hashtab_obstack_allocate,
8753 dummy_obstack_deallocate);
8754
8755 part_die = obstack_alloc (&cu->comp_unit_obstack,
8756 sizeof (struct partial_die_info));
8757
8758 while (1)
8759 {
8760 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8761
8762 /* A NULL abbrev means the end of a series of children. */
8763 if (abbrev == NULL)
8764 {
8765 if (--nesting_level == 0)
8766 {
8767 /* PART_DIE was probably the last thing allocated on the
8768 comp_unit_obstack, so we could call obstack_free
8769 here. We don't do that because the waste is small,
8770 and will be cleaned up when we're done with this
8771 compilation unit. This way, we're also more robust
8772 against other users of the comp_unit_obstack. */
8773 return first_die;
8774 }
8775 info_ptr += bytes_read;
8776 last_die = parent_die;
8777 parent_die = parent_die->die_parent;
8778 continue;
8779 }
8780
8781 /* Check for template arguments. We never save these; if
8782 they're seen, we just mark the parent, and go on our way. */
8783 if (parent_die != NULL
8784 && cu->language == language_cplus
8785 && (abbrev->tag == DW_TAG_template_type_param
8786 || abbrev->tag == DW_TAG_template_value_param))
8787 {
8788 parent_die->has_template_arguments = 1;
8789
8790 if (!load_all)
8791 {
8792 /* We don't need a partial DIE for the template argument. */
8793 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8794 cu);
8795 continue;
8796 }
8797 }
8798
8799 /* We only recurse into subprograms looking for template arguments.
8800 Skip their other children. */
8801 if (!load_all
8802 && cu->language == language_cplus
8803 && parent_die != NULL
8804 && parent_die->tag == DW_TAG_subprogram)
8805 {
8806 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8807 continue;
8808 }
8809
8810 /* Check whether this DIE is interesting enough to save. Normally
8811 we would not be interested in members here, but there may be
8812 later variables referencing them via DW_AT_specification (for
8813 static members). */
8814 if (!load_all
8815 && !is_type_tag_for_partial (abbrev->tag)
8816 && abbrev->tag != DW_TAG_constant
8817 && abbrev->tag != DW_TAG_enumerator
8818 && abbrev->tag != DW_TAG_subprogram
8819 && abbrev->tag != DW_TAG_lexical_block
8820 && abbrev->tag != DW_TAG_variable
8821 && abbrev->tag != DW_TAG_namespace
8822 && abbrev->tag != DW_TAG_module
8823 && abbrev->tag != DW_TAG_member)
8824 {
8825 /* Otherwise we skip to the next sibling, if any. */
8826 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8827 continue;
8828 }
8829
8830 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8831 buffer, info_ptr, cu);
8832
8833 /* This two-pass algorithm for processing partial symbols has a
8834 high cost in cache pressure. Thus, handle some simple cases
8835 here which cover the majority of C partial symbols. DIEs
8836 which neither have specification tags in them, nor could have
8837 specification tags elsewhere pointing at them, can simply be
8838 processed and discarded.
8839
8840 This segment is also optional; scan_partial_symbols and
8841 add_partial_symbol will handle these DIEs if we chain
8842 them in normally. When compilers which do not emit large
8843 quantities of duplicate debug information are more common,
8844 this code can probably be removed. */
8845
8846 /* Any complete simple types at the top level (pretty much all
8847 of them, for a language without namespaces), can be processed
8848 directly. */
8849 if (parent_die == NULL
8850 && part_die->has_specification == 0
8851 && part_die->is_declaration == 0
8852 && (part_die->tag == DW_TAG_typedef
8853 || part_die->tag == DW_TAG_base_type
8854 || part_die->tag == DW_TAG_subrange_type))
8855 {
8856 if (building_psymtab && part_die->name != NULL)
8857 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8858 VAR_DOMAIN, LOC_TYPEDEF,
8859 &cu->objfile->static_psymbols,
8860 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8861 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8862 continue;
8863 }
8864
8865 /* If we're at the second level, and we're an enumerator, and
8866 our parent has no specification (meaning possibly lives in a
8867 namespace elsewhere), then we can add the partial symbol now
8868 instead of queueing it. */
8869 if (part_die->tag == DW_TAG_enumerator
8870 && parent_die != NULL
8871 && parent_die->die_parent == NULL
8872 && parent_die->tag == DW_TAG_enumeration_type
8873 && parent_die->has_specification == 0)
8874 {
8875 if (part_die->name == NULL)
8876 complaint (&symfile_complaints,
8877 _("malformed enumerator DIE ignored"));
8878 else if (building_psymtab)
8879 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8880 VAR_DOMAIN, LOC_CONST,
8881 (cu->language == language_cplus
8882 || cu->language == language_java)
8883 ? &cu->objfile->global_psymbols
8884 : &cu->objfile->static_psymbols,
8885 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8886
8887 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8888 continue;
8889 }
8890
8891 /* We'll save this DIE so link it in. */
8892 part_die->die_parent = parent_die;
8893 part_die->die_sibling = NULL;
8894 part_die->die_child = NULL;
8895
8896 if (last_die && last_die == parent_die)
8897 last_die->die_child = part_die;
8898 else if (last_die)
8899 last_die->die_sibling = part_die;
8900
8901 last_die = part_die;
8902
8903 if (first_die == NULL)
8904 first_die = part_die;
8905
8906 /* Maybe add the DIE to the hash table. Not all DIEs that we
8907 find interesting need to be in the hash table, because we
8908 also have the parent/sibling/child chains; only those that we
8909 might refer to by offset later during partial symbol reading.
8910
8911 For now this means things that might have be the target of a
8912 DW_AT_specification, DW_AT_abstract_origin, or
8913 DW_AT_extension. DW_AT_extension will refer only to
8914 namespaces; DW_AT_abstract_origin refers to functions (and
8915 many things under the function DIE, but we do not recurse
8916 into function DIEs during partial symbol reading) and
8917 possibly variables as well; DW_AT_specification refers to
8918 declarations. Declarations ought to have the DW_AT_declaration
8919 flag. It happens that GCC forgets to put it in sometimes, but
8920 only for functions, not for types.
8921
8922 Adding more things than necessary to the hash table is harmless
8923 except for the performance cost. Adding too few will result in
8924 wasted time in find_partial_die, when we reread the compilation
8925 unit with load_all_dies set. */
8926
8927 if (load_all
8928 || abbrev->tag == DW_TAG_constant
8929 || abbrev->tag == DW_TAG_subprogram
8930 || abbrev->tag == DW_TAG_variable
8931 || abbrev->tag == DW_TAG_namespace
8932 || part_die->is_declaration)
8933 {
8934 void **slot;
8935
8936 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8937 part_die->offset, INSERT);
8938 *slot = part_die;
8939 }
8940
8941 part_die = obstack_alloc (&cu->comp_unit_obstack,
8942 sizeof (struct partial_die_info));
8943
8944 /* For some DIEs we want to follow their children (if any). For C
8945 we have no reason to follow the children of structures; for other
8946 languages we have to, so that we can get at method physnames
8947 to infer fully qualified class names, for DW_AT_specification,
8948 and for C++ template arguments. For C++, we also look one level
8949 inside functions to find template arguments (if the name of the
8950 function does not already contain the template arguments).
8951
8952 For Ada, we need to scan the children of subprograms and lexical
8953 blocks as well because Ada allows the definition of nested
8954 entities that could be interesting for the debugger, such as
8955 nested subprograms for instance. */
8956 if (last_die->has_children
8957 && (load_all
8958 || last_die->tag == DW_TAG_namespace
8959 || last_die->tag == DW_TAG_module
8960 || last_die->tag == DW_TAG_enumeration_type
8961 || (cu->language == language_cplus
8962 && last_die->tag == DW_TAG_subprogram
8963 && (last_die->name == NULL
8964 || strchr (last_die->name, '<') == NULL))
8965 || (cu->language != language_c
8966 && (last_die->tag == DW_TAG_class_type
8967 || last_die->tag == DW_TAG_interface_type
8968 || last_die->tag == DW_TAG_structure_type
8969 || last_die->tag == DW_TAG_union_type))
8970 || (cu->language == language_ada
8971 && (last_die->tag == DW_TAG_subprogram
8972 || last_die->tag == DW_TAG_lexical_block))))
8973 {
8974 nesting_level++;
8975 parent_die = last_die;
8976 continue;
8977 }
8978
8979 /* Otherwise we skip to the next sibling, if any. */
8980 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8981
8982 /* Back to the top, do it again. */
8983 }
8984 }
8985
8986 /* Read a minimal amount of information into the minimal die structure. */
8987
8988 static gdb_byte *
8989 read_partial_die (struct partial_die_info *part_die,
8990 struct abbrev_info *abbrev,
8991 unsigned int abbrev_len, bfd *abfd,
8992 gdb_byte *buffer, gdb_byte *info_ptr,
8993 struct dwarf2_cu *cu)
8994 {
8995 unsigned int i;
8996 struct attribute attr;
8997 int has_low_pc_attr = 0;
8998 int has_high_pc_attr = 0;
8999
9000 memset (part_die, 0, sizeof (struct partial_die_info));
9001
9002 part_die->offset = info_ptr - buffer;
9003
9004 info_ptr += abbrev_len;
9005
9006 if (abbrev == NULL)
9007 return info_ptr;
9008
9009 part_die->tag = abbrev->tag;
9010 part_die->has_children = abbrev->has_children;
9011
9012 for (i = 0; i < abbrev->num_attrs; ++i)
9013 {
9014 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9015
9016 /* Store the data if it is of an attribute we want to keep in a
9017 partial symbol table. */
9018 switch (attr.name)
9019 {
9020 case DW_AT_name:
9021 switch (part_die->tag)
9022 {
9023 case DW_TAG_compile_unit:
9024 case DW_TAG_type_unit:
9025 /* Compilation units have a DW_AT_name that is a filename, not
9026 a source language identifier. */
9027 case DW_TAG_enumeration_type:
9028 case DW_TAG_enumerator:
9029 /* These tags always have simple identifiers already; no need
9030 to canonicalize them. */
9031 part_die->name = DW_STRING (&attr);
9032 break;
9033 default:
9034 part_die->name
9035 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9036 &cu->objfile->objfile_obstack);
9037 break;
9038 }
9039 break;
9040 case DW_AT_linkage_name:
9041 case DW_AT_MIPS_linkage_name:
9042 /* Note that both forms of linkage name might appear. We
9043 assume they will be the same, and we only store the last
9044 one we see. */
9045 if (cu->language == language_ada)
9046 part_die->name = DW_STRING (&attr);
9047 part_die->linkage_name = DW_STRING (&attr);
9048 break;
9049 case DW_AT_low_pc:
9050 has_low_pc_attr = 1;
9051 part_die->lowpc = DW_ADDR (&attr);
9052 break;
9053 case DW_AT_high_pc:
9054 has_high_pc_attr = 1;
9055 part_die->highpc = DW_ADDR (&attr);
9056 break;
9057 case DW_AT_location:
9058 /* Support the .debug_loc offsets. */
9059 if (attr_form_is_block (&attr))
9060 {
9061 part_die->locdesc = DW_BLOCK (&attr);
9062 }
9063 else if (attr_form_is_section_offset (&attr))
9064 {
9065 dwarf2_complex_location_expr_complaint ();
9066 }
9067 else
9068 {
9069 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9070 "partial symbol information");
9071 }
9072 break;
9073 case DW_AT_external:
9074 part_die->is_external = DW_UNSND (&attr);
9075 break;
9076 case DW_AT_declaration:
9077 part_die->is_declaration = DW_UNSND (&attr);
9078 break;
9079 case DW_AT_type:
9080 part_die->has_type = 1;
9081 break;
9082 case DW_AT_abstract_origin:
9083 case DW_AT_specification:
9084 case DW_AT_extension:
9085 part_die->has_specification = 1;
9086 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9087 break;
9088 case DW_AT_sibling:
9089 /* Ignore absolute siblings, they might point outside of
9090 the current compile unit. */
9091 if (attr.form == DW_FORM_ref_addr)
9092 complaint (&symfile_complaints,
9093 _("ignoring absolute DW_AT_sibling"));
9094 else
9095 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9096 break;
9097 case DW_AT_byte_size:
9098 part_die->has_byte_size = 1;
9099 break;
9100 case DW_AT_calling_convention:
9101 /* DWARF doesn't provide a way to identify a program's source-level
9102 entry point. DW_AT_calling_convention attributes are only meant
9103 to describe functions' calling conventions.
9104
9105 However, because it's a necessary piece of information in
9106 Fortran, and because DW_CC_program is the only piece of debugging
9107 information whose definition refers to a 'main program' at all,
9108 several compilers have begun marking Fortran main programs with
9109 DW_CC_program --- even when those functions use the standard
9110 calling conventions.
9111
9112 So until DWARF specifies a way to provide this information and
9113 compilers pick up the new representation, we'll support this
9114 practice. */
9115 if (DW_UNSND (&attr) == DW_CC_program
9116 && cu->language == language_fortran)
9117 {
9118 set_main_name (part_die->name);
9119
9120 /* As this DIE has a static linkage the name would be difficult
9121 to look up later. */
9122 language_of_main = language_fortran;
9123 }
9124 break;
9125 default:
9126 break;
9127 }
9128 }
9129
9130 /* When using the GNU linker, .gnu.linkonce. sections are used to
9131 eliminate duplicate copies of functions and vtables and such.
9132 The linker will arbitrarily choose one and discard the others.
9133 The AT_*_pc values for such functions refer to local labels in
9134 these sections. If the section from that file was discarded, the
9135 labels are not in the output, so the relocs get a value of 0.
9136 If this is a discarded function, mark the pc bounds as invalid,
9137 so that GDB will ignore it. */
9138 if (has_low_pc_attr && has_high_pc_attr
9139 && part_die->lowpc < part_die->highpc
9140 && (part_die->lowpc != 0
9141 || dwarf2_per_objfile->has_section_at_zero))
9142 part_die->has_pc_info = 1;
9143
9144 return info_ptr;
9145 }
9146
9147 /* Find a cached partial DIE at OFFSET in CU. */
9148
9149 static struct partial_die_info *
9150 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9151 {
9152 struct partial_die_info *lookup_die = NULL;
9153 struct partial_die_info part_die;
9154
9155 part_die.offset = offset;
9156 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9157
9158 return lookup_die;
9159 }
9160
9161 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9162 except in the case of .debug_types DIEs which do not reference
9163 outside their CU (they do however referencing other types via
9164 DW_FORM_sig8). */
9165
9166 static struct partial_die_info *
9167 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9168 {
9169 struct dwarf2_per_cu_data *per_cu = NULL;
9170 struct partial_die_info *pd = NULL;
9171
9172 if (cu->per_cu->from_debug_types)
9173 {
9174 pd = find_partial_die_in_comp_unit (offset, cu);
9175 if (pd != NULL)
9176 return pd;
9177 goto not_found;
9178 }
9179
9180 if (offset_in_cu_p (&cu->header, offset))
9181 {
9182 pd = find_partial_die_in_comp_unit (offset, cu);
9183 if (pd != NULL)
9184 return pd;
9185 }
9186
9187 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9188
9189 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9190 load_partial_comp_unit (per_cu, cu->objfile);
9191
9192 per_cu->cu->last_used = 0;
9193 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9194
9195 if (pd == NULL && per_cu->load_all_dies == 0)
9196 {
9197 struct cleanup *back_to;
9198 struct partial_die_info comp_unit_die;
9199 struct abbrev_info *abbrev;
9200 unsigned int bytes_read;
9201 char *info_ptr;
9202
9203 per_cu->load_all_dies = 1;
9204
9205 /* Re-read the DIEs. */
9206 back_to = make_cleanup (null_cleanup, 0);
9207 if (per_cu->cu->dwarf2_abbrevs == NULL)
9208 {
9209 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9210 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9211 }
9212 info_ptr = (dwarf2_per_objfile->info.buffer
9213 + per_cu->cu->header.offset
9214 + per_cu->cu->header.first_die_offset);
9215 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9216 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9217 per_cu->cu->objfile->obfd,
9218 dwarf2_per_objfile->info.buffer, info_ptr,
9219 per_cu->cu);
9220 if (comp_unit_die.has_children)
9221 load_partial_dies (per_cu->cu->objfile->obfd,
9222 dwarf2_per_objfile->info.buffer, info_ptr,
9223 0, per_cu->cu);
9224 do_cleanups (back_to);
9225
9226 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9227 }
9228
9229 not_found:
9230
9231 if (pd == NULL)
9232 internal_error (__FILE__, __LINE__,
9233 _("could not find partial DIE 0x%x "
9234 "in cache [from module %s]\n"),
9235 offset, bfd_get_filename (cu->objfile->obfd));
9236 return pd;
9237 }
9238
9239 /* See if we can figure out if the class lives in a namespace. We do
9240 this by looking for a member function; its demangled name will
9241 contain namespace info, if there is any. */
9242
9243 static void
9244 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9245 struct dwarf2_cu *cu)
9246 {
9247 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9248 what template types look like, because the demangler
9249 frequently doesn't give the same name as the debug info. We
9250 could fix this by only using the demangled name to get the
9251 prefix (but see comment in read_structure_type). */
9252
9253 struct partial_die_info *real_pdi;
9254 struct partial_die_info *child_pdi;
9255
9256 /* If this DIE (this DIE's specification, if any) has a parent, then
9257 we should not do this. We'll prepend the parent's fully qualified
9258 name when we create the partial symbol. */
9259
9260 real_pdi = struct_pdi;
9261 while (real_pdi->has_specification)
9262 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9263
9264 if (real_pdi->die_parent != NULL)
9265 return;
9266
9267 for (child_pdi = struct_pdi->die_child;
9268 child_pdi != NULL;
9269 child_pdi = child_pdi->die_sibling)
9270 {
9271 if (child_pdi->tag == DW_TAG_subprogram
9272 && child_pdi->linkage_name != NULL)
9273 {
9274 char *actual_class_name
9275 = language_class_name_from_physname (cu->language_defn,
9276 child_pdi->linkage_name);
9277 if (actual_class_name != NULL)
9278 {
9279 struct_pdi->name
9280 = obsavestring (actual_class_name,
9281 strlen (actual_class_name),
9282 &cu->objfile->objfile_obstack);
9283 xfree (actual_class_name);
9284 }
9285 break;
9286 }
9287 }
9288 }
9289
9290 /* Adjust PART_DIE before generating a symbol for it. This function
9291 may set the is_external flag or change the DIE's name. */
9292
9293 static void
9294 fixup_partial_die (struct partial_die_info *part_die,
9295 struct dwarf2_cu *cu)
9296 {
9297 /* Once we've fixed up a die, there's no point in doing so again.
9298 This also avoids a memory leak if we were to call
9299 guess_partial_die_structure_name multiple times. */
9300 if (part_die->fixup_called)
9301 return;
9302
9303 /* If we found a reference attribute and the DIE has no name, try
9304 to find a name in the referred to DIE. */
9305
9306 if (part_die->name == NULL && part_die->has_specification)
9307 {
9308 struct partial_die_info *spec_die;
9309
9310 spec_die = find_partial_die (part_die->spec_offset, cu);
9311
9312 fixup_partial_die (spec_die, cu);
9313
9314 if (spec_die->name)
9315 {
9316 part_die->name = spec_die->name;
9317
9318 /* Copy DW_AT_external attribute if it is set. */
9319 if (spec_die->is_external)
9320 part_die->is_external = spec_die->is_external;
9321 }
9322 }
9323
9324 /* Set default names for some unnamed DIEs. */
9325
9326 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9327 part_die->name = "(anonymous namespace)";
9328
9329 /* If there is no parent die to provide a namespace, and there are
9330 children, see if we can determine the namespace from their linkage
9331 name.
9332 NOTE: We need to do this even if cu->has_namespace_info != 0.
9333 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9334 if (cu->language == language_cplus
9335 && dwarf2_per_objfile->types.asection != NULL
9336 && part_die->die_parent == NULL
9337 && part_die->has_children
9338 && (part_die->tag == DW_TAG_class_type
9339 || part_die->tag == DW_TAG_structure_type
9340 || part_die->tag == DW_TAG_union_type))
9341 guess_partial_die_structure_name (part_die, cu);
9342
9343 part_die->fixup_called = 1;
9344 }
9345
9346 /* Read an attribute value described by an attribute form. */
9347
9348 static gdb_byte *
9349 read_attribute_value (struct attribute *attr, unsigned form,
9350 bfd *abfd, gdb_byte *info_ptr,
9351 struct dwarf2_cu *cu)
9352 {
9353 struct comp_unit_head *cu_header = &cu->header;
9354 unsigned int bytes_read;
9355 struct dwarf_block *blk;
9356
9357 attr->form = form;
9358 switch (form)
9359 {
9360 case DW_FORM_ref_addr:
9361 if (cu->header.version == 2)
9362 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9363 else
9364 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9365 &cu->header, &bytes_read);
9366 info_ptr += bytes_read;
9367 break;
9368 case DW_FORM_addr:
9369 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9370 info_ptr += bytes_read;
9371 break;
9372 case DW_FORM_block2:
9373 blk = dwarf_alloc_block (cu);
9374 blk->size = read_2_bytes (abfd, info_ptr);
9375 info_ptr += 2;
9376 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9377 info_ptr += blk->size;
9378 DW_BLOCK (attr) = blk;
9379 break;
9380 case DW_FORM_block4:
9381 blk = dwarf_alloc_block (cu);
9382 blk->size = read_4_bytes (abfd, info_ptr);
9383 info_ptr += 4;
9384 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9385 info_ptr += blk->size;
9386 DW_BLOCK (attr) = blk;
9387 break;
9388 case DW_FORM_data2:
9389 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9390 info_ptr += 2;
9391 break;
9392 case DW_FORM_data4:
9393 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9394 info_ptr += 4;
9395 break;
9396 case DW_FORM_data8:
9397 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9398 info_ptr += 8;
9399 break;
9400 case DW_FORM_sec_offset:
9401 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9402 info_ptr += bytes_read;
9403 break;
9404 case DW_FORM_string:
9405 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9406 DW_STRING_IS_CANONICAL (attr) = 0;
9407 info_ptr += bytes_read;
9408 break;
9409 case DW_FORM_strp:
9410 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9411 &bytes_read);
9412 DW_STRING_IS_CANONICAL (attr) = 0;
9413 info_ptr += bytes_read;
9414 break;
9415 case DW_FORM_exprloc:
9416 case DW_FORM_block:
9417 blk = dwarf_alloc_block (cu);
9418 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9419 info_ptr += bytes_read;
9420 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9421 info_ptr += blk->size;
9422 DW_BLOCK (attr) = blk;
9423 break;
9424 case DW_FORM_block1:
9425 blk = dwarf_alloc_block (cu);
9426 blk->size = read_1_byte (abfd, info_ptr);
9427 info_ptr += 1;
9428 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9429 info_ptr += blk->size;
9430 DW_BLOCK (attr) = blk;
9431 break;
9432 case DW_FORM_data1:
9433 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9434 info_ptr += 1;
9435 break;
9436 case DW_FORM_flag:
9437 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9438 info_ptr += 1;
9439 break;
9440 case DW_FORM_flag_present:
9441 DW_UNSND (attr) = 1;
9442 break;
9443 case DW_FORM_sdata:
9444 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9445 info_ptr += bytes_read;
9446 break;
9447 case DW_FORM_udata:
9448 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9449 info_ptr += bytes_read;
9450 break;
9451 case DW_FORM_ref1:
9452 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9453 info_ptr += 1;
9454 break;
9455 case DW_FORM_ref2:
9456 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9457 info_ptr += 2;
9458 break;
9459 case DW_FORM_ref4:
9460 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9461 info_ptr += 4;
9462 break;
9463 case DW_FORM_ref8:
9464 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9465 info_ptr += 8;
9466 break;
9467 case DW_FORM_sig8:
9468 /* Convert the signature to something we can record in DW_UNSND
9469 for later lookup.
9470 NOTE: This is NULL if the type wasn't found. */
9471 DW_SIGNATURED_TYPE (attr) =
9472 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9473 info_ptr += 8;
9474 break;
9475 case DW_FORM_ref_udata:
9476 DW_ADDR (attr) = (cu->header.offset
9477 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9478 info_ptr += bytes_read;
9479 break;
9480 case DW_FORM_indirect:
9481 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9482 info_ptr += bytes_read;
9483 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9484 break;
9485 default:
9486 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9487 dwarf_form_name (form),
9488 bfd_get_filename (abfd));
9489 }
9490
9491 /* We have seen instances where the compiler tried to emit a byte
9492 size attribute of -1 which ended up being encoded as an unsigned
9493 0xffffffff. Although 0xffffffff is technically a valid size value,
9494 an object of this size seems pretty unlikely so we can relatively
9495 safely treat these cases as if the size attribute was invalid and
9496 treat them as zero by default. */
9497 if (attr->name == DW_AT_byte_size
9498 && form == DW_FORM_data4
9499 && DW_UNSND (attr) >= 0xffffffff)
9500 {
9501 complaint
9502 (&symfile_complaints,
9503 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9504 hex_string (DW_UNSND (attr)));
9505 DW_UNSND (attr) = 0;
9506 }
9507
9508 return info_ptr;
9509 }
9510
9511 /* Read an attribute described by an abbreviated attribute. */
9512
9513 static gdb_byte *
9514 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9515 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9516 {
9517 attr->name = abbrev->name;
9518 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9519 }
9520
9521 /* Read dwarf information from a buffer. */
9522
9523 static unsigned int
9524 read_1_byte (bfd *abfd, gdb_byte *buf)
9525 {
9526 return bfd_get_8 (abfd, buf);
9527 }
9528
9529 static int
9530 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9531 {
9532 return bfd_get_signed_8 (abfd, buf);
9533 }
9534
9535 static unsigned int
9536 read_2_bytes (bfd *abfd, gdb_byte *buf)
9537 {
9538 return bfd_get_16 (abfd, buf);
9539 }
9540
9541 static int
9542 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9543 {
9544 return bfd_get_signed_16 (abfd, buf);
9545 }
9546
9547 static unsigned int
9548 read_4_bytes (bfd *abfd, gdb_byte *buf)
9549 {
9550 return bfd_get_32 (abfd, buf);
9551 }
9552
9553 static int
9554 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9555 {
9556 return bfd_get_signed_32 (abfd, buf);
9557 }
9558
9559 static ULONGEST
9560 read_8_bytes (bfd *abfd, gdb_byte *buf)
9561 {
9562 return bfd_get_64 (abfd, buf);
9563 }
9564
9565 static CORE_ADDR
9566 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9567 unsigned int *bytes_read)
9568 {
9569 struct comp_unit_head *cu_header = &cu->header;
9570 CORE_ADDR retval = 0;
9571
9572 if (cu_header->signed_addr_p)
9573 {
9574 switch (cu_header->addr_size)
9575 {
9576 case 2:
9577 retval = bfd_get_signed_16 (abfd, buf);
9578 break;
9579 case 4:
9580 retval = bfd_get_signed_32 (abfd, buf);
9581 break;
9582 case 8:
9583 retval = bfd_get_signed_64 (abfd, buf);
9584 break;
9585 default:
9586 internal_error (__FILE__, __LINE__,
9587 _("read_address: bad switch, signed [in module %s]"),
9588 bfd_get_filename (abfd));
9589 }
9590 }
9591 else
9592 {
9593 switch (cu_header->addr_size)
9594 {
9595 case 2:
9596 retval = bfd_get_16 (abfd, buf);
9597 break;
9598 case 4:
9599 retval = bfd_get_32 (abfd, buf);
9600 break;
9601 case 8:
9602 retval = bfd_get_64 (abfd, buf);
9603 break;
9604 default:
9605 internal_error (__FILE__, __LINE__,
9606 _("read_address: bad switch, "
9607 "unsigned [in module %s]"),
9608 bfd_get_filename (abfd));
9609 }
9610 }
9611
9612 *bytes_read = cu_header->addr_size;
9613 return retval;
9614 }
9615
9616 /* Read the initial length from a section. The (draft) DWARF 3
9617 specification allows the initial length to take up either 4 bytes
9618 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9619 bytes describe the length and all offsets will be 8 bytes in length
9620 instead of 4.
9621
9622 An older, non-standard 64-bit format is also handled by this
9623 function. The older format in question stores the initial length
9624 as an 8-byte quantity without an escape value. Lengths greater
9625 than 2^32 aren't very common which means that the initial 4 bytes
9626 is almost always zero. Since a length value of zero doesn't make
9627 sense for the 32-bit format, this initial zero can be considered to
9628 be an escape value which indicates the presence of the older 64-bit
9629 format. As written, the code can't detect (old format) lengths
9630 greater than 4GB. If it becomes necessary to handle lengths
9631 somewhat larger than 4GB, we could allow other small values (such
9632 as the non-sensical values of 1, 2, and 3) to also be used as
9633 escape values indicating the presence of the old format.
9634
9635 The value returned via bytes_read should be used to increment the
9636 relevant pointer after calling read_initial_length().
9637
9638 [ Note: read_initial_length() and read_offset() are based on the
9639 document entitled "DWARF Debugging Information Format", revision
9640 3, draft 8, dated November 19, 2001. This document was obtained
9641 from:
9642
9643 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9644
9645 This document is only a draft and is subject to change. (So beware.)
9646
9647 Details regarding the older, non-standard 64-bit format were
9648 determined empirically by examining 64-bit ELF files produced by
9649 the SGI toolchain on an IRIX 6.5 machine.
9650
9651 - Kevin, July 16, 2002
9652 ] */
9653
9654 static LONGEST
9655 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9656 {
9657 LONGEST length = bfd_get_32 (abfd, buf);
9658
9659 if (length == 0xffffffff)
9660 {
9661 length = bfd_get_64 (abfd, buf + 4);
9662 *bytes_read = 12;
9663 }
9664 else if (length == 0)
9665 {
9666 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9667 length = bfd_get_64 (abfd, buf);
9668 *bytes_read = 8;
9669 }
9670 else
9671 {
9672 *bytes_read = 4;
9673 }
9674
9675 return length;
9676 }
9677
9678 /* Cover function for read_initial_length.
9679 Returns the length of the object at BUF, and stores the size of the
9680 initial length in *BYTES_READ and stores the size that offsets will be in
9681 *OFFSET_SIZE.
9682 If the initial length size is not equivalent to that specified in
9683 CU_HEADER then issue a complaint.
9684 This is useful when reading non-comp-unit headers. */
9685
9686 static LONGEST
9687 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9688 const struct comp_unit_head *cu_header,
9689 unsigned int *bytes_read,
9690 unsigned int *offset_size)
9691 {
9692 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9693
9694 gdb_assert (cu_header->initial_length_size == 4
9695 || cu_header->initial_length_size == 8
9696 || cu_header->initial_length_size == 12);
9697
9698 if (cu_header->initial_length_size != *bytes_read)
9699 complaint (&symfile_complaints,
9700 _("intermixed 32-bit and 64-bit DWARF sections"));
9701
9702 *offset_size = (*bytes_read == 4) ? 4 : 8;
9703 return length;
9704 }
9705
9706 /* Read an offset from the data stream. The size of the offset is
9707 given by cu_header->offset_size. */
9708
9709 static LONGEST
9710 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9711 unsigned int *bytes_read)
9712 {
9713 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9714
9715 *bytes_read = cu_header->offset_size;
9716 return offset;
9717 }
9718
9719 /* Read an offset from the data stream. */
9720
9721 static LONGEST
9722 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9723 {
9724 LONGEST retval = 0;
9725
9726 switch (offset_size)
9727 {
9728 case 4:
9729 retval = bfd_get_32 (abfd, buf);
9730 break;
9731 case 8:
9732 retval = bfd_get_64 (abfd, buf);
9733 break;
9734 default:
9735 internal_error (__FILE__, __LINE__,
9736 _("read_offset_1: bad switch [in module %s]"),
9737 bfd_get_filename (abfd));
9738 }
9739
9740 return retval;
9741 }
9742
9743 static gdb_byte *
9744 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9745 {
9746 /* If the size of a host char is 8 bits, we can return a pointer
9747 to the buffer, otherwise we have to copy the data to a buffer
9748 allocated on the temporary obstack. */
9749 gdb_assert (HOST_CHAR_BIT == 8);
9750 return buf;
9751 }
9752
9753 static char *
9754 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9755 {
9756 /* If the size of a host char is 8 bits, we can return a pointer
9757 to the string, otherwise we have to copy the string to a buffer
9758 allocated on the temporary obstack. */
9759 gdb_assert (HOST_CHAR_BIT == 8);
9760 if (*buf == '\0')
9761 {
9762 *bytes_read_ptr = 1;
9763 return NULL;
9764 }
9765 *bytes_read_ptr = strlen ((char *) buf) + 1;
9766 return (char *) buf;
9767 }
9768
9769 static char *
9770 read_indirect_string (bfd *abfd, gdb_byte *buf,
9771 const struct comp_unit_head *cu_header,
9772 unsigned int *bytes_read_ptr)
9773 {
9774 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9775
9776 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9777 if (dwarf2_per_objfile->str.buffer == NULL)
9778 {
9779 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9780 bfd_get_filename (abfd));
9781 return NULL;
9782 }
9783 if (str_offset >= dwarf2_per_objfile->str.size)
9784 {
9785 error (_("DW_FORM_strp pointing outside of "
9786 ".debug_str section [in module %s]"),
9787 bfd_get_filename (abfd));
9788 return NULL;
9789 }
9790 gdb_assert (HOST_CHAR_BIT == 8);
9791 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9792 return NULL;
9793 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9794 }
9795
9796 static unsigned long
9797 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9798 {
9799 unsigned long result;
9800 unsigned int num_read;
9801 int i, shift;
9802 unsigned char byte;
9803
9804 result = 0;
9805 shift = 0;
9806 num_read = 0;
9807 i = 0;
9808 while (1)
9809 {
9810 byte = bfd_get_8 (abfd, buf);
9811 buf++;
9812 num_read++;
9813 result |= ((unsigned long)(byte & 127) << shift);
9814 if ((byte & 128) == 0)
9815 {
9816 break;
9817 }
9818 shift += 7;
9819 }
9820 *bytes_read_ptr = num_read;
9821 return result;
9822 }
9823
9824 static long
9825 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9826 {
9827 long result;
9828 int i, shift, num_read;
9829 unsigned char byte;
9830
9831 result = 0;
9832 shift = 0;
9833 num_read = 0;
9834 i = 0;
9835 while (1)
9836 {
9837 byte = bfd_get_8 (abfd, buf);
9838 buf++;
9839 num_read++;
9840 result |= ((long)(byte & 127) << shift);
9841 shift += 7;
9842 if ((byte & 128) == 0)
9843 {
9844 break;
9845 }
9846 }
9847 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9848 result |= -(((long)1) << shift);
9849 *bytes_read_ptr = num_read;
9850 return result;
9851 }
9852
9853 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9854
9855 static gdb_byte *
9856 skip_leb128 (bfd *abfd, gdb_byte *buf)
9857 {
9858 int byte;
9859
9860 while (1)
9861 {
9862 byte = bfd_get_8 (abfd, buf);
9863 buf++;
9864 if ((byte & 128) == 0)
9865 return buf;
9866 }
9867 }
9868
9869 static void
9870 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9871 {
9872 switch (lang)
9873 {
9874 case DW_LANG_C89:
9875 case DW_LANG_C99:
9876 case DW_LANG_C:
9877 cu->language = language_c;
9878 break;
9879 case DW_LANG_C_plus_plus:
9880 cu->language = language_cplus;
9881 break;
9882 case DW_LANG_D:
9883 cu->language = language_d;
9884 break;
9885 case DW_LANG_Fortran77:
9886 case DW_LANG_Fortran90:
9887 case DW_LANG_Fortran95:
9888 cu->language = language_fortran;
9889 break;
9890 case DW_LANG_Mips_Assembler:
9891 cu->language = language_asm;
9892 break;
9893 case DW_LANG_Java:
9894 cu->language = language_java;
9895 break;
9896 case DW_LANG_Ada83:
9897 case DW_LANG_Ada95:
9898 cu->language = language_ada;
9899 break;
9900 case DW_LANG_Modula2:
9901 cu->language = language_m2;
9902 break;
9903 case DW_LANG_Pascal83:
9904 cu->language = language_pascal;
9905 break;
9906 case DW_LANG_ObjC:
9907 cu->language = language_objc;
9908 break;
9909 case DW_LANG_Cobol74:
9910 case DW_LANG_Cobol85:
9911 default:
9912 cu->language = language_minimal;
9913 break;
9914 }
9915 cu->language_defn = language_def (cu->language);
9916 }
9917
9918 /* Return the named attribute or NULL if not there. */
9919
9920 static struct attribute *
9921 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9922 {
9923 unsigned int i;
9924 struct attribute *spec = NULL;
9925
9926 for (i = 0; i < die->num_attrs; ++i)
9927 {
9928 if (die->attrs[i].name == name)
9929 return &die->attrs[i];
9930 if (die->attrs[i].name == DW_AT_specification
9931 || die->attrs[i].name == DW_AT_abstract_origin)
9932 spec = &die->attrs[i];
9933 }
9934
9935 if (spec)
9936 {
9937 die = follow_die_ref (die, spec, &cu);
9938 return dwarf2_attr (die, name, cu);
9939 }
9940
9941 return NULL;
9942 }
9943
9944 /* Return the named attribute or NULL if not there,
9945 but do not follow DW_AT_specification, etc.
9946 This is for use in contexts where we're reading .debug_types dies.
9947 Following DW_AT_specification, DW_AT_abstract_origin will take us
9948 back up the chain, and we want to go down. */
9949
9950 static struct attribute *
9951 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9952 struct dwarf2_cu *cu)
9953 {
9954 unsigned int i;
9955
9956 for (i = 0; i < die->num_attrs; ++i)
9957 if (die->attrs[i].name == name)
9958 return &die->attrs[i];
9959
9960 return NULL;
9961 }
9962
9963 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9964 and holds a non-zero value. This function should only be used for
9965 DW_FORM_flag or DW_FORM_flag_present attributes. */
9966
9967 static int
9968 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9969 {
9970 struct attribute *attr = dwarf2_attr (die, name, cu);
9971
9972 return (attr && DW_UNSND (attr));
9973 }
9974
9975 static int
9976 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9977 {
9978 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9979 which value is non-zero. However, we have to be careful with
9980 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9981 (via dwarf2_flag_true_p) follows this attribute. So we may
9982 end up accidently finding a declaration attribute that belongs
9983 to a different DIE referenced by the specification attribute,
9984 even though the given DIE does not have a declaration attribute. */
9985 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9986 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9987 }
9988
9989 /* Return the die giving the specification for DIE, if there is
9990 one. *SPEC_CU is the CU containing DIE on input, and the CU
9991 containing the return value on output. If there is no
9992 specification, but there is an abstract origin, that is
9993 returned. */
9994
9995 static struct die_info *
9996 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9997 {
9998 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9999 *spec_cu);
10000
10001 if (spec_attr == NULL)
10002 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10003
10004 if (spec_attr == NULL)
10005 return NULL;
10006 else
10007 return follow_die_ref (die, spec_attr, spec_cu);
10008 }
10009
10010 /* Free the line_header structure *LH, and any arrays and strings it
10011 refers to.
10012 NOTE: This is also used as a "cleanup" function. */
10013
10014 static void
10015 free_line_header (struct line_header *lh)
10016 {
10017 if (lh->standard_opcode_lengths)
10018 xfree (lh->standard_opcode_lengths);
10019
10020 /* Remember that all the lh->file_names[i].name pointers are
10021 pointers into debug_line_buffer, and don't need to be freed. */
10022 if (lh->file_names)
10023 xfree (lh->file_names);
10024
10025 /* Similarly for the include directory names. */
10026 if (lh->include_dirs)
10027 xfree (lh->include_dirs);
10028
10029 xfree (lh);
10030 }
10031
10032 /* Add an entry to LH's include directory table. */
10033
10034 static void
10035 add_include_dir (struct line_header *lh, char *include_dir)
10036 {
10037 /* Grow the array if necessary. */
10038 if (lh->include_dirs_size == 0)
10039 {
10040 lh->include_dirs_size = 1; /* for testing */
10041 lh->include_dirs = xmalloc (lh->include_dirs_size
10042 * sizeof (*lh->include_dirs));
10043 }
10044 else if (lh->num_include_dirs >= lh->include_dirs_size)
10045 {
10046 lh->include_dirs_size *= 2;
10047 lh->include_dirs = xrealloc (lh->include_dirs,
10048 (lh->include_dirs_size
10049 * sizeof (*lh->include_dirs)));
10050 }
10051
10052 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10053 }
10054
10055 /* Add an entry to LH's file name table. */
10056
10057 static void
10058 add_file_name (struct line_header *lh,
10059 char *name,
10060 unsigned int dir_index,
10061 unsigned int mod_time,
10062 unsigned int length)
10063 {
10064 struct file_entry *fe;
10065
10066 /* Grow the array if necessary. */
10067 if (lh->file_names_size == 0)
10068 {
10069 lh->file_names_size = 1; /* for testing */
10070 lh->file_names = xmalloc (lh->file_names_size
10071 * sizeof (*lh->file_names));
10072 }
10073 else if (lh->num_file_names >= lh->file_names_size)
10074 {
10075 lh->file_names_size *= 2;
10076 lh->file_names = xrealloc (lh->file_names,
10077 (lh->file_names_size
10078 * sizeof (*lh->file_names)));
10079 }
10080
10081 fe = &lh->file_names[lh->num_file_names++];
10082 fe->name = name;
10083 fe->dir_index = dir_index;
10084 fe->mod_time = mod_time;
10085 fe->length = length;
10086 fe->included_p = 0;
10087 fe->symtab = NULL;
10088 }
10089
10090 /* Read the statement program header starting at OFFSET in
10091 .debug_line, according to the endianness of ABFD. Return a pointer
10092 to a struct line_header, allocated using xmalloc.
10093
10094 NOTE: the strings in the include directory and file name tables of
10095 the returned object point into debug_line_buffer, and must not be
10096 freed. */
10097
10098 static struct line_header *
10099 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10100 struct dwarf2_cu *cu)
10101 {
10102 struct cleanup *back_to;
10103 struct line_header *lh;
10104 gdb_byte *line_ptr;
10105 unsigned int bytes_read, offset_size;
10106 int i;
10107 char *cur_dir, *cur_file;
10108
10109 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10110 if (dwarf2_per_objfile->line.buffer == NULL)
10111 {
10112 complaint (&symfile_complaints, _("missing .debug_line section"));
10113 return 0;
10114 }
10115
10116 /* Make sure that at least there's room for the total_length field.
10117 That could be 12 bytes long, but we're just going to fudge that. */
10118 if (offset + 4 >= dwarf2_per_objfile->line.size)
10119 {
10120 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10121 return 0;
10122 }
10123
10124 lh = xmalloc (sizeof (*lh));
10125 memset (lh, 0, sizeof (*lh));
10126 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10127 (void *) lh);
10128
10129 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10130
10131 /* Read in the header. */
10132 lh->total_length =
10133 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10134 &bytes_read, &offset_size);
10135 line_ptr += bytes_read;
10136 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10137 + dwarf2_per_objfile->line.size))
10138 {
10139 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10140 return 0;
10141 }
10142 lh->statement_program_end = line_ptr + lh->total_length;
10143 lh->version = read_2_bytes (abfd, line_ptr);
10144 line_ptr += 2;
10145 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10146 line_ptr += offset_size;
10147 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10148 line_ptr += 1;
10149 if (lh->version >= 4)
10150 {
10151 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10152 line_ptr += 1;
10153 }
10154 else
10155 lh->maximum_ops_per_instruction = 1;
10156
10157 if (lh->maximum_ops_per_instruction == 0)
10158 {
10159 lh->maximum_ops_per_instruction = 1;
10160 complaint (&symfile_complaints,
10161 _("invalid maximum_ops_per_instruction "
10162 "in `.debug_line' section"));
10163 }
10164
10165 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10166 line_ptr += 1;
10167 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10168 line_ptr += 1;
10169 lh->line_range = read_1_byte (abfd, line_ptr);
10170 line_ptr += 1;
10171 lh->opcode_base = read_1_byte (abfd, line_ptr);
10172 line_ptr += 1;
10173 lh->standard_opcode_lengths
10174 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10175
10176 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10177 for (i = 1; i < lh->opcode_base; ++i)
10178 {
10179 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10180 line_ptr += 1;
10181 }
10182
10183 /* Read directory table. */
10184 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10185 {
10186 line_ptr += bytes_read;
10187 add_include_dir (lh, cur_dir);
10188 }
10189 line_ptr += bytes_read;
10190
10191 /* Read file name table. */
10192 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10193 {
10194 unsigned int dir_index, mod_time, length;
10195
10196 line_ptr += bytes_read;
10197 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10198 line_ptr += bytes_read;
10199 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10200 line_ptr += bytes_read;
10201 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10202 line_ptr += bytes_read;
10203
10204 add_file_name (lh, cur_file, dir_index, mod_time, length);
10205 }
10206 line_ptr += bytes_read;
10207 lh->statement_program_start = line_ptr;
10208
10209 if (line_ptr > (dwarf2_per_objfile->line.buffer
10210 + dwarf2_per_objfile->line.size))
10211 complaint (&symfile_complaints,
10212 _("line number info header doesn't "
10213 "fit in `.debug_line' section"));
10214
10215 discard_cleanups (back_to);
10216 return lh;
10217 }
10218
10219 /* This function exists to work around a bug in certain compilers
10220 (particularly GCC 2.95), in which the first line number marker of a
10221 function does not show up until after the prologue, right before
10222 the second line number marker. This function shifts ADDRESS down
10223 to the beginning of the function if necessary, and is called on
10224 addresses passed to record_line. */
10225
10226 static CORE_ADDR
10227 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10228 {
10229 struct function_range *fn;
10230
10231 /* Find the function_range containing address. */
10232 if (!cu->first_fn)
10233 return address;
10234
10235 if (!cu->cached_fn)
10236 cu->cached_fn = cu->first_fn;
10237
10238 fn = cu->cached_fn;
10239 while (fn)
10240 if (fn->lowpc <= address && fn->highpc > address)
10241 goto found;
10242 else
10243 fn = fn->next;
10244
10245 fn = cu->first_fn;
10246 while (fn && fn != cu->cached_fn)
10247 if (fn->lowpc <= address && fn->highpc > address)
10248 goto found;
10249 else
10250 fn = fn->next;
10251
10252 return address;
10253
10254 found:
10255 if (fn->seen_line)
10256 return address;
10257 if (address != fn->lowpc)
10258 complaint (&symfile_complaints,
10259 _("misplaced first line number at 0x%lx for '%s'"),
10260 (unsigned long) address, fn->name);
10261 fn->seen_line = 1;
10262 return fn->lowpc;
10263 }
10264
10265 /* Subroutine of dwarf_decode_lines to simplify it.
10266 Return the file name of the psymtab for included file FILE_INDEX
10267 in line header LH of PST.
10268 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10269 If space for the result is malloc'd, it will be freed by a cleanup.
10270 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10271
10272 static char *
10273 psymtab_include_file_name (const struct line_header *lh, int file_index,
10274 const struct partial_symtab *pst,
10275 const char *comp_dir)
10276 {
10277 const struct file_entry fe = lh->file_names [file_index];
10278 char *include_name = fe.name;
10279 char *include_name_to_compare = include_name;
10280 char *dir_name = NULL;
10281 const char *pst_filename;
10282 char *copied_name = NULL;
10283 int file_is_pst;
10284
10285 if (fe.dir_index)
10286 dir_name = lh->include_dirs[fe.dir_index - 1];
10287
10288 if (!IS_ABSOLUTE_PATH (include_name)
10289 && (dir_name != NULL || comp_dir != NULL))
10290 {
10291 /* Avoid creating a duplicate psymtab for PST.
10292 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10293 Before we do the comparison, however, we need to account
10294 for DIR_NAME and COMP_DIR.
10295 First prepend dir_name (if non-NULL). If we still don't
10296 have an absolute path prepend comp_dir (if non-NULL).
10297 However, the directory we record in the include-file's
10298 psymtab does not contain COMP_DIR (to match the
10299 corresponding symtab(s)).
10300
10301 Example:
10302
10303 bash$ cd /tmp
10304 bash$ gcc -g ./hello.c
10305 include_name = "hello.c"
10306 dir_name = "."
10307 DW_AT_comp_dir = comp_dir = "/tmp"
10308 DW_AT_name = "./hello.c" */
10309
10310 if (dir_name != NULL)
10311 {
10312 include_name = concat (dir_name, SLASH_STRING,
10313 include_name, (char *)NULL);
10314 include_name_to_compare = include_name;
10315 make_cleanup (xfree, include_name);
10316 }
10317 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10318 {
10319 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10320 include_name, (char *)NULL);
10321 }
10322 }
10323
10324 pst_filename = pst->filename;
10325 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10326 {
10327 copied_name = concat (pst->dirname, SLASH_STRING,
10328 pst_filename, (char *)NULL);
10329 pst_filename = copied_name;
10330 }
10331
10332 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10333
10334 if (include_name_to_compare != include_name)
10335 xfree (include_name_to_compare);
10336 if (copied_name != NULL)
10337 xfree (copied_name);
10338
10339 if (file_is_pst)
10340 return NULL;
10341 return include_name;
10342 }
10343
10344 /* Decode the Line Number Program (LNP) for the given line_header
10345 structure and CU. The actual information extracted and the type
10346 of structures created from the LNP depends on the value of PST.
10347
10348 1. If PST is NULL, then this procedure uses the data from the program
10349 to create all necessary symbol tables, and their linetables.
10350
10351 2. If PST is not NULL, this procedure reads the program to determine
10352 the list of files included by the unit represented by PST, and
10353 builds all the associated partial symbol tables.
10354
10355 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10356 It is used for relative paths in the line table.
10357 NOTE: When processing partial symtabs (pst != NULL),
10358 comp_dir == pst->dirname.
10359
10360 NOTE: It is important that psymtabs have the same file name (via strcmp)
10361 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10362 symtab we don't use it in the name of the psymtabs we create.
10363 E.g. expand_line_sal requires this when finding psymtabs to expand.
10364 A good testcase for this is mb-inline.exp. */
10365
10366 static void
10367 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10368 struct dwarf2_cu *cu, struct partial_symtab *pst)
10369 {
10370 gdb_byte *line_ptr, *extended_end;
10371 gdb_byte *line_end;
10372 unsigned int bytes_read, extended_len;
10373 unsigned char op_code, extended_op, adj_opcode;
10374 CORE_ADDR baseaddr;
10375 struct objfile *objfile = cu->objfile;
10376 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10377 const int decode_for_pst_p = (pst != NULL);
10378 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10379
10380 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10381
10382 line_ptr = lh->statement_program_start;
10383 line_end = lh->statement_program_end;
10384
10385 /* Read the statement sequences until there's nothing left. */
10386 while (line_ptr < line_end)
10387 {
10388 /* state machine registers */
10389 CORE_ADDR address = 0;
10390 unsigned int file = 1;
10391 unsigned int line = 1;
10392 unsigned int column = 0;
10393 int is_stmt = lh->default_is_stmt;
10394 int basic_block = 0;
10395 int end_sequence = 0;
10396 CORE_ADDR addr;
10397 unsigned char op_index = 0;
10398
10399 if (!decode_for_pst_p && lh->num_file_names >= file)
10400 {
10401 /* Start a subfile for the current file of the state machine. */
10402 /* lh->include_dirs and lh->file_names are 0-based, but the
10403 directory and file name numbers in the statement program
10404 are 1-based. */
10405 struct file_entry *fe = &lh->file_names[file - 1];
10406 char *dir = NULL;
10407
10408 if (fe->dir_index)
10409 dir = lh->include_dirs[fe->dir_index - 1];
10410
10411 dwarf2_start_subfile (fe->name, dir, comp_dir);
10412 }
10413
10414 /* Decode the table. */
10415 while (!end_sequence)
10416 {
10417 op_code = read_1_byte (abfd, line_ptr);
10418 line_ptr += 1;
10419 if (line_ptr > line_end)
10420 {
10421 dwarf2_debug_line_missing_end_sequence_complaint ();
10422 break;
10423 }
10424
10425 if (op_code >= lh->opcode_base)
10426 {
10427 /* Special operand. */
10428 adj_opcode = op_code - lh->opcode_base;
10429 address += (((op_index + (adj_opcode / lh->line_range))
10430 / lh->maximum_ops_per_instruction)
10431 * lh->minimum_instruction_length);
10432 op_index = ((op_index + (adj_opcode / lh->line_range))
10433 % lh->maximum_ops_per_instruction);
10434 line += lh->line_base + (adj_opcode % lh->line_range);
10435 if (lh->num_file_names < file || file == 0)
10436 dwarf2_debug_line_missing_file_complaint ();
10437 /* For now we ignore lines not starting on an
10438 instruction boundary. */
10439 else if (op_index == 0)
10440 {
10441 lh->file_names[file - 1].included_p = 1;
10442 if (!decode_for_pst_p && is_stmt)
10443 {
10444 if (last_subfile != current_subfile)
10445 {
10446 addr = gdbarch_addr_bits_remove (gdbarch, address);
10447 if (last_subfile)
10448 record_line (last_subfile, 0, addr);
10449 last_subfile = current_subfile;
10450 }
10451 /* Append row to matrix using current values. */
10452 addr = check_cu_functions (address, cu);
10453 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10454 record_line (current_subfile, line, addr);
10455 }
10456 }
10457 basic_block = 0;
10458 }
10459 else switch (op_code)
10460 {
10461 case DW_LNS_extended_op:
10462 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10463 &bytes_read);
10464 line_ptr += bytes_read;
10465 extended_end = line_ptr + extended_len;
10466 extended_op = read_1_byte (abfd, line_ptr);
10467 line_ptr += 1;
10468 switch (extended_op)
10469 {
10470 case DW_LNE_end_sequence:
10471 end_sequence = 1;
10472 break;
10473 case DW_LNE_set_address:
10474 address = read_address (abfd, line_ptr, cu, &bytes_read);
10475 op_index = 0;
10476 line_ptr += bytes_read;
10477 address += baseaddr;
10478 break;
10479 case DW_LNE_define_file:
10480 {
10481 char *cur_file;
10482 unsigned int dir_index, mod_time, length;
10483
10484 cur_file = read_direct_string (abfd, line_ptr,
10485 &bytes_read);
10486 line_ptr += bytes_read;
10487 dir_index =
10488 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10489 line_ptr += bytes_read;
10490 mod_time =
10491 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10492 line_ptr += bytes_read;
10493 length =
10494 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10495 line_ptr += bytes_read;
10496 add_file_name (lh, cur_file, dir_index, mod_time, length);
10497 }
10498 break;
10499 case DW_LNE_set_discriminator:
10500 /* The discriminator is not interesting to the debugger;
10501 just ignore it. */
10502 line_ptr = extended_end;
10503 break;
10504 default:
10505 complaint (&symfile_complaints,
10506 _("mangled .debug_line section"));
10507 return;
10508 }
10509 /* Make sure that we parsed the extended op correctly. If e.g.
10510 we expected a different address size than the producer used,
10511 we may have read the wrong number of bytes. */
10512 if (line_ptr != extended_end)
10513 {
10514 complaint (&symfile_complaints,
10515 _("mangled .debug_line section"));
10516 return;
10517 }
10518 break;
10519 case DW_LNS_copy:
10520 if (lh->num_file_names < file || file == 0)
10521 dwarf2_debug_line_missing_file_complaint ();
10522 else
10523 {
10524 lh->file_names[file - 1].included_p = 1;
10525 if (!decode_for_pst_p && is_stmt)
10526 {
10527 if (last_subfile != current_subfile)
10528 {
10529 addr = gdbarch_addr_bits_remove (gdbarch, address);
10530 if (last_subfile)
10531 record_line (last_subfile, 0, addr);
10532 last_subfile = current_subfile;
10533 }
10534 addr = check_cu_functions (address, cu);
10535 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10536 record_line (current_subfile, line, addr);
10537 }
10538 }
10539 basic_block = 0;
10540 break;
10541 case DW_LNS_advance_pc:
10542 {
10543 CORE_ADDR adjust
10544 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10545
10546 address += (((op_index + adjust)
10547 / lh->maximum_ops_per_instruction)
10548 * lh->minimum_instruction_length);
10549 op_index = ((op_index + adjust)
10550 % lh->maximum_ops_per_instruction);
10551 line_ptr += bytes_read;
10552 }
10553 break;
10554 case DW_LNS_advance_line:
10555 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10556 line_ptr += bytes_read;
10557 break;
10558 case DW_LNS_set_file:
10559 {
10560 /* The arrays lh->include_dirs and lh->file_names are
10561 0-based, but the directory and file name numbers in
10562 the statement program are 1-based. */
10563 struct file_entry *fe;
10564 char *dir = NULL;
10565
10566 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10567 line_ptr += bytes_read;
10568 if (lh->num_file_names < file || file == 0)
10569 dwarf2_debug_line_missing_file_complaint ();
10570 else
10571 {
10572 fe = &lh->file_names[file - 1];
10573 if (fe->dir_index)
10574 dir = lh->include_dirs[fe->dir_index - 1];
10575 if (!decode_for_pst_p)
10576 {
10577 last_subfile = current_subfile;
10578 dwarf2_start_subfile (fe->name, dir, comp_dir);
10579 }
10580 }
10581 }
10582 break;
10583 case DW_LNS_set_column:
10584 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10585 line_ptr += bytes_read;
10586 break;
10587 case DW_LNS_negate_stmt:
10588 is_stmt = (!is_stmt);
10589 break;
10590 case DW_LNS_set_basic_block:
10591 basic_block = 1;
10592 break;
10593 /* Add to the address register of the state machine the
10594 address increment value corresponding to special opcode
10595 255. I.e., this value is scaled by the minimum
10596 instruction length since special opcode 255 would have
10597 scaled the increment. */
10598 case DW_LNS_const_add_pc:
10599 {
10600 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10601
10602 address += (((op_index + adjust)
10603 / lh->maximum_ops_per_instruction)
10604 * lh->minimum_instruction_length);
10605 op_index = ((op_index + adjust)
10606 % lh->maximum_ops_per_instruction);
10607 }
10608 break;
10609 case DW_LNS_fixed_advance_pc:
10610 address += read_2_bytes (abfd, line_ptr);
10611 op_index = 0;
10612 line_ptr += 2;
10613 break;
10614 default:
10615 {
10616 /* Unknown standard opcode, ignore it. */
10617 int i;
10618
10619 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10620 {
10621 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10622 line_ptr += bytes_read;
10623 }
10624 }
10625 }
10626 }
10627 if (lh->num_file_names < file || file == 0)
10628 dwarf2_debug_line_missing_file_complaint ();
10629 else
10630 {
10631 lh->file_names[file - 1].included_p = 1;
10632 if (!decode_for_pst_p)
10633 {
10634 addr = gdbarch_addr_bits_remove (gdbarch, address);
10635 record_line (current_subfile, 0, addr);
10636 }
10637 }
10638 }
10639
10640 if (decode_for_pst_p)
10641 {
10642 int file_index;
10643
10644 /* Now that we're done scanning the Line Header Program, we can
10645 create the psymtab of each included file. */
10646 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10647 if (lh->file_names[file_index].included_p == 1)
10648 {
10649 char *include_name =
10650 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10651 if (include_name != NULL)
10652 dwarf2_create_include_psymtab (include_name, pst, objfile);
10653 }
10654 }
10655 else
10656 {
10657 /* Make sure a symtab is created for every file, even files
10658 which contain only variables (i.e. no code with associated
10659 line numbers). */
10660
10661 int i;
10662 struct file_entry *fe;
10663
10664 for (i = 0; i < lh->num_file_names; i++)
10665 {
10666 char *dir = NULL;
10667
10668 fe = &lh->file_names[i];
10669 if (fe->dir_index)
10670 dir = lh->include_dirs[fe->dir_index - 1];
10671 dwarf2_start_subfile (fe->name, dir, comp_dir);
10672
10673 /* Skip the main file; we don't need it, and it must be
10674 allocated last, so that it will show up before the
10675 non-primary symtabs in the objfile's symtab list. */
10676 if (current_subfile == first_subfile)
10677 continue;
10678
10679 if (current_subfile->symtab == NULL)
10680 current_subfile->symtab = allocate_symtab (current_subfile->name,
10681 cu->objfile);
10682 fe->symtab = current_subfile->symtab;
10683 }
10684 }
10685 }
10686
10687 /* Start a subfile for DWARF. FILENAME is the name of the file and
10688 DIRNAME the name of the source directory which contains FILENAME
10689 or NULL if not known. COMP_DIR is the compilation directory for the
10690 linetable's compilation unit or NULL if not known.
10691 This routine tries to keep line numbers from identical absolute and
10692 relative file names in a common subfile.
10693
10694 Using the `list' example from the GDB testsuite, which resides in
10695 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10696 of /srcdir/list0.c yields the following debugging information for list0.c:
10697
10698 DW_AT_name: /srcdir/list0.c
10699 DW_AT_comp_dir: /compdir
10700 files.files[0].name: list0.h
10701 files.files[0].dir: /srcdir
10702 files.files[1].name: list0.c
10703 files.files[1].dir: /srcdir
10704
10705 The line number information for list0.c has to end up in a single
10706 subfile, so that `break /srcdir/list0.c:1' works as expected.
10707 start_subfile will ensure that this happens provided that we pass the
10708 concatenation of files.files[1].dir and files.files[1].name as the
10709 subfile's name. */
10710
10711 static void
10712 dwarf2_start_subfile (char *filename, const char *dirname,
10713 const char *comp_dir)
10714 {
10715 char *fullname;
10716
10717 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10718 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10719 second argument to start_subfile. To be consistent, we do the
10720 same here. In order not to lose the line information directory,
10721 we concatenate it to the filename when it makes sense.
10722 Note that the Dwarf3 standard says (speaking of filenames in line
10723 information): ``The directory index is ignored for file names
10724 that represent full path names''. Thus ignoring dirname in the
10725 `else' branch below isn't an issue. */
10726
10727 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10728 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10729 else
10730 fullname = filename;
10731
10732 start_subfile (fullname, comp_dir);
10733
10734 if (fullname != filename)
10735 xfree (fullname);
10736 }
10737
10738 static void
10739 var_decode_location (struct attribute *attr, struct symbol *sym,
10740 struct dwarf2_cu *cu)
10741 {
10742 struct objfile *objfile = cu->objfile;
10743 struct comp_unit_head *cu_header = &cu->header;
10744
10745 /* NOTE drow/2003-01-30: There used to be a comment and some special
10746 code here to turn a symbol with DW_AT_external and a
10747 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10748 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10749 with some versions of binutils) where shared libraries could have
10750 relocations against symbols in their debug information - the
10751 minimal symbol would have the right address, but the debug info
10752 would not. It's no longer necessary, because we will explicitly
10753 apply relocations when we read in the debug information now. */
10754
10755 /* A DW_AT_location attribute with no contents indicates that a
10756 variable has been optimized away. */
10757 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10758 {
10759 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10760 return;
10761 }
10762
10763 /* Handle one degenerate form of location expression specially, to
10764 preserve GDB's previous behavior when section offsets are
10765 specified. If this is just a DW_OP_addr then mark this symbol
10766 as LOC_STATIC. */
10767
10768 if (attr_form_is_block (attr)
10769 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10770 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10771 {
10772 unsigned int dummy;
10773
10774 SYMBOL_VALUE_ADDRESS (sym) =
10775 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10776 SYMBOL_CLASS (sym) = LOC_STATIC;
10777 fixup_symbol_section (sym, objfile);
10778 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10779 SYMBOL_SECTION (sym));
10780 return;
10781 }
10782
10783 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10784 expression evaluator, and use LOC_COMPUTED only when necessary
10785 (i.e. when the value of a register or memory location is
10786 referenced, or a thread-local block, etc.). Then again, it might
10787 not be worthwhile. I'm assuming that it isn't unless performance
10788 or memory numbers show me otherwise. */
10789
10790 dwarf2_symbol_mark_computed (attr, sym, cu);
10791 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10792 }
10793
10794 /* Given a pointer to a DWARF information entry, figure out if we need
10795 to make a symbol table entry for it, and if so, create a new entry
10796 and return a pointer to it.
10797 If TYPE is NULL, determine symbol type from the die, otherwise
10798 used the passed type.
10799 If SPACE is not NULL, use it to hold the new symbol. If it is
10800 NULL, allocate a new symbol on the objfile's obstack. */
10801
10802 static struct symbol *
10803 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10804 struct symbol *space)
10805 {
10806 struct objfile *objfile = cu->objfile;
10807 struct symbol *sym = NULL;
10808 char *name;
10809 struct attribute *attr = NULL;
10810 struct attribute *attr2 = NULL;
10811 CORE_ADDR baseaddr;
10812 struct pending **list_to_add = NULL;
10813
10814 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10815
10816 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10817
10818 name = dwarf2_name (die, cu);
10819 if (name)
10820 {
10821 const char *linkagename;
10822 int suppress_add = 0;
10823
10824 if (space)
10825 sym = space;
10826 else
10827 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10828 OBJSTAT (objfile, n_syms++);
10829
10830 /* Cache this symbol's name and the name's demangled form (if any). */
10831 SYMBOL_SET_LANGUAGE (sym, cu->language);
10832 linkagename = dwarf2_physname (name, die, cu);
10833 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10834
10835 /* Fortran does not have mangling standard and the mangling does differ
10836 between gfortran, iFort etc. */
10837 if (cu->language == language_fortran
10838 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10839 symbol_set_demangled_name (&(sym->ginfo),
10840 (char *) dwarf2_full_name (name, die, cu),
10841 NULL);
10842
10843 /* Default assumptions.
10844 Use the passed type or decode it from the die. */
10845 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10846 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10847 if (type != NULL)
10848 SYMBOL_TYPE (sym) = type;
10849 else
10850 SYMBOL_TYPE (sym) = die_type (die, cu);
10851 attr = dwarf2_attr (die,
10852 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10853 cu);
10854 if (attr)
10855 {
10856 SYMBOL_LINE (sym) = DW_UNSND (attr);
10857 }
10858
10859 attr = dwarf2_attr (die,
10860 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10861 cu);
10862 if (attr)
10863 {
10864 int file_index = DW_UNSND (attr);
10865
10866 if (cu->line_header == NULL
10867 || file_index > cu->line_header->num_file_names)
10868 complaint (&symfile_complaints,
10869 _("file index out of range"));
10870 else if (file_index > 0)
10871 {
10872 struct file_entry *fe;
10873
10874 fe = &cu->line_header->file_names[file_index - 1];
10875 SYMBOL_SYMTAB (sym) = fe->symtab;
10876 }
10877 }
10878
10879 switch (die->tag)
10880 {
10881 case DW_TAG_label:
10882 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10883 if (attr)
10884 {
10885 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10886 }
10887 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10888 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10889 SYMBOL_CLASS (sym) = LOC_LABEL;
10890 add_symbol_to_list (sym, cu->list_in_scope);
10891 break;
10892 case DW_TAG_subprogram:
10893 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10894 finish_block. */
10895 SYMBOL_CLASS (sym) = LOC_BLOCK;
10896 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10897 if ((attr2 && (DW_UNSND (attr2) != 0))
10898 || cu->language == language_ada)
10899 {
10900 /* Subprograms marked external are stored as a global symbol.
10901 Ada subprograms, whether marked external or not, are always
10902 stored as a global symbol, because we want to be able to
10903 access them globally. For instance, we want to be able
10904 to break on a nested subprogram without having to
10905 specify the context. */
10906 list_to_add = &global_symbols;
10907 }
10908 else
10909 {
10910 list_to_add = cu->list_in_scope;
10911 }
10912 break;
10913 case DW_TAG_inlined_subroutine:
10914 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10915 finish_block. */
10916 SYMBOL_CLASS (sym) = LOC_BLOCK;
10917 SYMBOL_INLINED (sym) = 1;
10918 /* Do not add the symbol to any lists. It will be found via
10919 BLOCK_FUNCTION from the blockvector. */
10920 break;
10921 case DW_TAG_template_value_param:
10922 suppress_add = 1;
10923 /* Fall through. */
10924 case DW_TAG_constant:
10925 case DW_TAG_variable:
10926 case DW_TAG_member:
10927 /* Compilation with minimal debug info may result in
10928 variables with missing type entries. Change the
10929 misleading `void' type to something sensible. */
10930 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10931 SYMBOL_TYPE (sym)
10932 = objfile_type (objfile)->nodebug_data_symbol;
10933
10934 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10935 /* In the case of DW_TAG_member, we should only be called for
10936 static const members. */
10937 if (die->tag == DW_TAG_member)
10938 {
10939 /* dwarf2_add_field uses die_is_declaration,
10940 so we do the same. */
10941 gdb_assert (die_is_declaration (die, cu));
10942 gdb_assert (attr);
10943 }
10944 if (attr)
10945 {
10946 dwarf2_const_value (attr, sym, cu);
10947 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10948 if (!suppress_add)
10949 {
10950 if (attr2 && (DW_UNSND (attr2) != 0))
10951 list_to_add = &global_symbols;
10952 else
10953 list_to_add = cu->list_in_scope;
10954 }
10955 break;
10956 }
10957 attr = dwarf2_attr (die, DW_AT_location, cu);
10958 if (attr)
10959 {
10960 var_decode_location (attr, sym, cu);
10961 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10962 if (SYMBOL_CLASS (sym) == LOC_STATIC
10963 && SYMBOL_VALUE_ADDRESS (sym) == 0
10964 && !dwarf2_per_objfile->has_section_at_zero)
10965 {
10966 /* When a static variable is eliminated by the linker,
10967 the corresponding debug information is not stripped
10968 out, but the variable address is set to null;
10969 do not add such variables into symbol table. */
10970 }
10971 else if (attr2 && (DW_UNSND (attr2) != 0))
10972 {
10973 /* Workaround gfortran PR debug/40040 - it uses
10974 DW_AT_location for variables in -fPIC libraries which may
10975 get overriden by other libraries/executable and get
10976 a different address. Resolve it by the minimal symbol
10977 which may come from inferior's executable using copy
10978 relocation. Make this workaround only for gfortran as for
10979 other compilers GDB cannot guess the minimal symbol
10980 Fortran mangling kind. */
10981 if (cu->language == language_fortran && die->parent
10982 && die->parent->tag == DW_TAG_module
10983 && cu->producer
10984 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10985 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10986
10987 /* A variable with DW_AT_external is never static,
10988 but it may be block-scoped. */
10989 list_to_add = (cu->list_in_scope == &file_symbols
10990 ? &global_symbols : cu->list_in_scope);
10991 }
10992 else
10993 list_to_add = cu->list_in_scope;
10994 }
10995 else
10996 {
10997 /* We do not know the address of this symbol.
10998 If it is an external symbol and we have type information
10999 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11000 The address of the variable will then be determined from
11001 the minimal symbol table whenever the variable is
11002 referenced. */
11003 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11004 if (attr2 && (DW_UNSND (attr2) != 0)
11005 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11006 {
11007 /* A variable with DW_AT_external is never static, but it
11008 may be block-scoped. */
11009 list_to_add = (cu->list_in_scope == &file_symbols
11010 ? &global_symbols : cu->list_in_scope);
11011
11012 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11013 }
11014 else if (!die_is_declaration (die, cu))
11015 {
11016 /* Use the default LOC_OPTIMIZED_OUT class. */
11017 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11018 if (!suppress_add)
11019 list_to_add = cu->list_in_scope;
11020 }
11021 }
11022 break;
11023 case DW_TAG_formal_parameter:
11024 /* If we are inside a function, mark this as an argument. If
11025 not, we might be looking at an argument to an inlined function
11026 when we do not have enough information to show inlined frames;
11027 pretend it's a local variable in that case so that the user can
11028 still see it. */
11029 if (context_stack_depth > 0
11030 && context_stack[context_stack_depth - 1].name != NULL)
11031 SYMBOL_IS_ARGUMENT (sym) = 1;
11032 attr = dwarf2_attr (die, DW_AT_location, cu);
11033 if (attr)
11034 {
11035 var_decode_location (attr, sym, cu);
11036 }
11037 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11038 if (attr)
11039 {
11040 dwarf2_const_value (attr, sym, cu);
11041 }
11042 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
11043 if (attr && DW_UNSND (attr))
11044 {
11045 struct type *ref_type;
11046
11047 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
11048 SYMBOL_TYPE (sym) = ref_type;
11049 }
11050
11051 list_to_add = cu->list_in_scope;
11052 break;
11053 case DW_TAG_unspecified_parameters:
11054 /* From varargs functions; gdb doesn't seem to have any
11055 interest in this information, so just ignore it for now.
11056 (FIXME?) */
11057 break;
11058 case DW_TAG_template_type_param:
11059 suppress_add = 1;
11060 /* Fall through. */
11061 case DW_TAG_class_type:
11062 case DW_TAG_interface_type:
11063 case DW_TAG_structure_type:
11064 case DW_TAG_union_type:
11065 case DW_TAG_set_type:
11066 case DW_TAG_enumeration_type:
11067 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11068 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11069
11070 {
11071 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11072 really ever be static objects: otherwise, if you try
11073 to, say, break of a class's method and you're in a file
11074 which doesn't mention that class, it won't work unless
11075 the check for all static symbols in lookup_symbol_aux
11076 saves you. See the OtherFileClass tests in
11077 gdb.c++/namespace.exp. */
11078
11079 if (!suppress_add)
11080 {
11081 list_to_add = (cu->list_in_scope == &file_symbols
11082 && (cu->language == language_cplus
11083 || cu->language == language_java)
11084 ? &global_symbols : cu->list_in_scope);
11085
11086 /* The semantics of C++ state that "struct foo {
11087 ... }" also defines a typedef for "foo". A Java
11088 class declaration also defines a typedef for the
11089 class. */
11090 if (cu->language == language_cplus
11091 || cu->language == language_java
11092 || cu->language == language_ada)
11093 {
11094 /* The symbol's name is already allocated along
11095 with this objfile, so we don't need to
11096 duplicate it for the type. */
11097 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11098 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11099 }
11100 }
11101 }
11102 break;
11103 case DW_TAG_typedef:
11104 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11105 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11106 list_to_add = cu->list_in_scope;
11107 break;
11108 case DW_TAG_base_type:
11109 case DW_TAG_subrange_type:
11110 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11112 list_to_add = cu->list_in_scope;
11113 break;
11114 case DW_TAG_enumerator:
11115 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11116 if (attr)
11117 {
11118 dwarf2_const_value (attr, sym, cu);
11119 }
11120 {
11121 /* NOTE: carlton/2003-11-10: See comment above in the
11122 DW_TAG_class_type, etc. block. */
11123
11124 list_to_add = (cu->list_in_scope == &file_symbols
11125 && (cu->language == language_cplus
11126 || cu->language == language_java)
11127 ? &global_symbols : cu->list_in_scope);
11128 }
11129 break;
11130 case DW_TAG_namespace:
11131 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11132 list_to_add = &global_symbols;
11133 break;
11134 default:
11135 /* Not a tag we recognize. Hopefully we aren't processing
11136 trash data, but since we must specifically ignore things
11137 we don't recognize, there is nothing else we should do at
11138 this point. */
11139 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11140 dwarf_tag_name (die->tag));
11141 break;
11142 }
11143
11144 if (suppress_add)
11145 {
11146 sym->hash_next = objfile->template_symbols;
11147 objfile->template_symbols = sym;
11148 list_to_add = NULL;
11149 }
11150
11151 if (list_to_add != NULL)
11152 add_symbol_to_list (sym, list_to_add);
11153
11154 /* For the benefit of old versions of GCC, check for anonymous
11155 namespaces based on the demangled name. */
11156 if (!processing_has_namespace_info
11157 && cu->language == language_cplus)
11158 cp_scan_for_anonymous_namespaces (sym);
11159 }
11160 return (sym);
11161 }
11162
11163 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11164
11165 static struct symbol *
11166 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11167 {
11168 return new_symbol_full (die, type, cu, NULL);
11169 }
11170
11171 /* Given an attr with a DW_FORM_dataN value in host byte order,
11172 zero-extend it as appropriate for the symbol's type. The DWARF
11173 standard (v4) is not entirely clear about the meaning of using
11174 DW_FORM_dataN for a constant with a signed type, where the type is
11175 wider than the data. The conclusion of a discussion on the DWARF
11176 list was that this is unspecified. We choose to always zero-extend
11177 because that is the interpretation long in use by GCC. */
11178
11179 static gdb_byte *
11180 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11181 const char *name, struct obstack *obstack,
11182 struct dwarf2_cu *cu, long *value, int bits)
11183 {
11184 struct objfile *objfile = cu->objfile;
11185 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11186 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11187 LONGEST l = DW_UNSND (attr);
11188
11189 if (bits < sizeof (*value) * 8)
11190 {
11191 l &= ((LONGEST) 1 << bits) - 1;
11192 *value = l;
11193 }
11194 else if (bits == sizeof (*value) * 8)
11195 *value = l;
11196 else
11197 {
11198 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11199 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11200 return bytes;
11201 }
11202
11203 return NULL;
11204 }
11205
11206 /* Read a constant value from an attribute. Either set *VALUE, or if
11207 the value does not fit in *VALUE, set *BYTES - either already
11208 allocated on the objfile obstack, or newly allocated on OBSTACK,
11209 or, set *BATON, if we translated the constant to a location
11210 expression. */
11211
11212 static void
11213 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11214 const char *name, struct obstack *obstack,
11215 struct dwarf2_cu *cu,
11216 long *value, gdb_byte **bytes,
11217 struct dwarf2_locexpr_baton **baton)
11218 {
11219 struct objfile *objfile = cu->objfile;
11220 struct comp_unit_head *cu_header = &cu->header;
11221 struct dwarf_block *blk;
11222 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11223 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11224
11225 *value = 0;
11226 *bytes = NULL;
11227 *baton = NULL;
11228
11229 switch (attr->form)
11230 {
11231 case DW_FORM_addr:
11232 {
11233 gdb_byte *data;
11234
11235 if (TYPE_LENGTH (type) != cu_header->addr_size)
11236 dwarf2_const_value_length_mismatch_complaint (name,
11237 cu_header->addr_size,
11238 TYPE_LENGTH (type));
11239 /* Symbols of this form are reasonably rare, so we just
11240 piggyback on the existing location code rather than writing
11241 a new implementation of symbol_computed_ops. */
11242 *baton = obstack_alloc (&objfile->objfile_obstack,
11243 sizeof (struct dwarf2_locexpr_baton));
11244 (*baton)->per_cu = cu->per_cu;
11245 gdb_assert ((*baton)->per_cu);
11246
11247 (*baton)->size = 2 + cu_header->addr_size;
11248 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11249 (*baton)->data = data;
11250
11251 data[0] = DW_OP_addr;
11252 store_unsigned_integer (&data[1], cu_header->addr_size,
11253 byte_order, DW_ADDR (attr));
11254 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11255 }
11256 break;
11257 case DW_FORM_string:
11258 case DW_FORM_strp:
11259 /* DW_STRING is already allocated on the objfile obstack, point
11260 directly to it. */
11261 *bytes = (gdb_byte *) DW_STRING (attr);
11262 break;
11263 case DW_FORM_block1:
11264 case DW_FORM_block2:
11265 case DW_FORM_block4:
11266 case DW_FORM_block:
11267 case DW_FORM_exprloc:
11268 blk = DW_BLOCK (attr);
11269 if (TYPE_LENGTH (type) != blk->size)
11270 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11271 TYPE_LENGTH (type));
11272 *bytes = blk->data;
11273 break;
11274
11275 /* The DW_AT_const_value attributes are supposed to carry the
11276 symbol's value "represented as it would be on the target
11277 architecture." By the time we get here, it's already been
11278 converted to host endianness, so we just need to sign- or
11279 zero-extend it as appropriate. */
11280 case DW_FORM_data1:
11281 *bytes = dwarf2_const_value_data (attr, type, name,
11282 obstack, cu, value, 8);
11283 break;
11284 case DW_FORM_data2:
11285 *bytes = dwarf2_const_value_data (attr, type, name,
11286 obstack, cu, value, 16);
11287 break;
11288 case DW_FORM_data4:
11289 *bytes = dwarf2_const_value_data (attr, type, name,
11290 obstack, cu, value, 32);
11291 break;
11292 case DW_FORM_data8:
11293 *bytes = dwarf2_const_value_data (attr, type, name,
11294 obstack, cu, value, 64);
11295 break;
11296
11297 case DW_FORM_sdata:
11298 *value = DW_SND (attr);
11299 break;
11300
11301 case DW_FORM_udata:
11302 *value = DW_UNSND (attr);
11303 break;
11304
11305 default:
11306 complaint (&symfile_complaints,
11307 _("unsupported const value attribute form: '%s'"),
11308 dwarf_form_name (attr->form));
11309 *value = 0;
11310 break;
11311 }
11312 }
11313
11314
11315 /* Copy constant value from an attribute to a symbol. */
11316
11317 static void
11318 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11319 struct dwarf2_cu *cu)
11320 {
11321 struct objfile *objfile = cu->objfile;
11322 struct comp_unit_head *cu_header = &cu->header;
11323 long value;
11324 gdb_byte *bytes;
11325 struct dwarf2_locexpr_baton *baton;
11326
11327 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11328 SYMBOL_PRINT_NAME (sym),
11329 &objfile->objfile_obstack, cu,
11330 &value, &bytes, &baton);
11331
11332 if (baton != NULL)
11333 {
11334 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11335 SYMBOL_LOCATION_BATON (sym) = baton;
11336 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11337 }
11338 else if (bytes != NULL)
11339 {
11340 SYMBOL_VALUE_BYTES (sym) = bytes;
11341 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11342 }
11343 else
11344 {
11345 SYMBOL_VALUE (sym) = value;
11346 SYMBOL_CLASS (sym) = LOC_CONST;
11347 }
11348 }
11349
11350 /* Return the type of the die in question using its DW_AT_type attribute. */
11351
11352 static struct type *
11353 die_type (struct die_info *die, struct dwarf2_cu *cu)
11354 {
11355 struct attribute *type_attr;
11356
11357 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11358 if (!type_attr)
11359 {
11360 /* A missing DW_AT_type represents a void type. */
11361 return objfile_type (cu->objfile)->builtin_void;
11362 }
11363
11364 return lookup_die_type (die, type_attr, cu);
11365 }
11366
11367 /* True iff CU's producer generates GNAT Ada auxiliary information
11368 that allows to find parallel types through that information instead
11369 of having to do expensive parallel lookups by type name. */
11370
11371 static int
11372 need_gnat_info (struct dwarf2_cu *cu)
11373 {
11374 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11375 of GNAT produces this auxiliary information, without any indication
11376 that it is produced. Part of enhancing the FSF version of GNAT
11377 to produce that information will be to put in place an indicator
11378 that we can use in order to determine whether the descriptive type
11379 info is available or not. One suggestion that has been made is
11380 to use a new attribute, attached to the CU die. For now, assume
11381 that the descriptive type info is not available. */
11382 return 0;
11383 }
11384
11385 /* Return the auxiliary type of the die in question using its
11386 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11387 attribute is not present. */
11388
11389 static struct type *
11390 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11391 {
11392 struct attribute *type_attr;
11393
11394 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11395 if (!type_attr)
11396 return NULL;
11397
11398 return lookup_die_type (die, type_attr, cu);
11399 }
11400
11401 /* If DIE has a descriptive_type attribute, then set the TYPE's
11402 descriptive type accordingly. */
11403
11404 static void
11405 set_descriptive_type (struct type *type, struct die_info *die,
11406 struct dwarf2_cu *cu)
11407 {
11408 struct type *descriptive_type = die_descriptive_type (die, cu);
11409
11410 if (descriptive_type)
11411 {
11412 ALLOCATE_GNAT_AUX_TYPE (type);
11413 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11414 }
11415 }
11416
11417 /* Return the containing type of the die in question using its
11418 DW_AT_containing_type attribute. */
11419
11420 static struct type *
11421 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11422 {
11423 struct attribute *type_attr;
11424
11425 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11426 if (!type_attr)
11427 error (_("Dwarf Error: Problem turning containing type into gdb type "
11428 "[in module %s]"), cu->objfile->name);
11429
11430 return lookup_die_type (die, type_attr, cu);
11431 }
11432
11433 /* Look up the type of DIE in CU using its type attribute ATTR.
11434 If there is no type substitute an error marker. */
11435
11436 static struct type *
11437 lookup_die_type (struct die_info *die, struct attribute *attr,
11438 struct dwarf2_cu *cu)
11439 {
11440 struct type *this_type;
11441
11442 /* First see if we have it cached. */
11443
11444 if (is_ref_attr (attr))
11445 {
11446 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11447
11448 this_type = get_die_type_at_offset (offset, cu->per_cu);
11449 }
11450 else if (attr->form == DW_FORM_sig8)
11451 {
11452 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11453 struct dwarf2_cu *sig_cu;
11454 unsigned int offset;
11455
11456 /* sig_type will be NULL if the signatured type is missing from
11457 the debug info. */
11458 if (sig_type == NULL)
11459 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11460 "at 0x%x [in module %s]"),
11461 die->offset, cu->objfile->name);
11462
11463 gdb_assert (sig_type->per_cu.from_debug_types);
11464 offset = sig_type->offset + sig_type->type_offset;
11465 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11466 }
11467 else
11468 {
11469 dump_die_for_error (die);
11470 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11471 dwarf_attr_name (attr->name), cu->objfile->name);
11472 }
11473
11474 /* If not cached we need to read it in. */
11475
11476 if (this_type == NULL)
11477 {
11478 struct die_info *type_die;
11479 struct dwarf2_cu *type_cu = cu;
11480
11481 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11482 /* If the type is cached, we should have found it above. */
11483 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11484 this_type = read_type_die_1 (type_die, type_cu);
11485 }
11486
11487 /* If we still don't have a type use an error marker. */
11488
11489 if (this_type == NULL)
11490 {
11491 char *message, *saved;
11492
11493 /* read_type_die already issued a complaint. */
11494 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11495 cu->objfile->name,
11496 cu->header.offset,
11497 die->offset);
11498 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11499 message, strlen (message));
11500 xfree (message);
11501
11502 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11503 }
11504
11505 return this_type;
11506 }
11507
11508 /* Return the type in DIE, CU.
11509 Returns NULL for invalid types.
11510
11511 This first does a lookup in the appropriate type_hash table,
11512 and only reads the die in if necessary.
11513
11514 NOTE: This can be called when reading in partial or full symbols. */
11515
11516 static struct type *
11517 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11518 {
11519 struct type *this_type;
11520
11521 this_type = get_die_type (die, cu);
11522 if (this_type)
11523 return this_type;
11524
11525 return read_type_die_1 (die, cu);
11526 }
11527
11528 /* Read the type in DIE, CU.
11529 Returns NULL for invalid types. */
11530
11531 static struct type *
11532 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11533 {
11534 struct type *this_type = NULL;
11535
11536 switch (die->tag)
11537 {
11538 case DW_TAG_class_type:
11539 case DW_TAG_interface_type:
11540 case DW_TAG_structure_type:
11541 case DW_TAG_union_type:
11542 this_type = read_structure_type (die, cu);
11543 break;
11544 case DW_TAG_enumeration_type:
11545 this_type = read_enumeration_type (die, cu);
11546 break;
11547 case DW_TAG_subprogram:
11548 case DW_TAG_subroutine_type:
11549 case DW_TAG_inlined_subroutine:
11550 this_type = read_subroutine_type (die, cu);
11551 break;
11552 case DW_TAG_array_type:
11553 this_type = read_array_type (die, cu);
11554 break;
11555 case DW_TAG_set_type:
11556 this_type = read_set_type (die, cu);
11557 break;
11558 case DW_TAG_pointer_type:
11559 this_type = read_tag_pointer_type (die, cu);
11560 break;
11561 case DW_TAG_ptr_to_member_type:
11562 this_type = read_tag_ptr_to_member_type (die, cu);
11563 break;
11564 case DW_TAG_reference_type:
11565 this_type = read_tag_reference_type (die, cu);
11566 break;
11567 case DW_TAG_const_type:
11568 this_type = read_tag_const_type (die, cu);
11569 break;
11570 case DW_TAG_volatile_type:
11571 this_type = read_tag_volatile_type (die, cu);
11572 break;
11573 case DW_TAG_string_type:
11574 this_type = read_tag_string_type (die, cu);
11575 break;
11576 case DW_TAG_typedef:
11577 this_type = read_typedef (die, cu);
11578 break;
11579 case DW_TAG_subrange_type:
11580 this_type = read_subrange_type (die, cu);
11581 break;
11582 case DW_TAG_base_type:
11583 this_type = read_base_type (die, cu);
11584 break;
11585 case DW_TAG_unspecified_type:
11586 this_type = read_unspecified_type (die, cu);
11587 break;
11588 case DW_TAG_namespace:
11589 this_type = read_namespace_type (die, cu);
11590 break;
11591 case DW_TAG_module:
11592 this_type = read_module_type (die, cu);
11593 break;
11594 default:
11595 complaint (&symfile_complaints,
11596 _("unexpected tag in read_type_die: '%s'"),
11597 dwarf_tag_name (die->tag));
11598 break;
11599 }
11600
11601 return this_type;
11602 }
11603
11604 /* See if we can figure out if the class lives in a namespace. We do
11605 this by looking for a member function; its demangled name will
11606 contain namespace info, if there is any.
11607 Return the computed name or NULL.
11608 Space for the result is allocated on the objfile's obstack.
11609 This is the full-die version of guess_partial_die_structure_name.
11610 In this case we know DIE has no useful parent. */
11611
11612 static char *
11613 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11614 {
11615 struct die_info *spec_die;
11616 struct dwarf2_cu *spec_cu;
11617 struct die_info *child;
11618
11619 spec_cu = cu;
11620 spec_die = die_specification (die, &spec_cu);
11621 if (spec_die != NULL)
11622 {
11623 die = spec_die;
11624 cu = spec_cu;
11625 }
11626
11627 for (child = die->child;
11628 child != NULL;
11629 child = child->sibling)
11630 {
11631 if (child->tag == DW_TAG_subprogram)
11632 {
11633 struct attribute *attr;
11634
11635 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11636 if (attr == NULL)
11637 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11638 if (attr != NULL)
11639 {
11640 char *actual_name
11641 = language_class_name_from_physname (cu->language_defn,
11642 DW_STRING (attr));
11643 char *name = NULL;
11644
11645 if (actual_name != NULL)
11646 {
11647 char *die_name = dwarf2_name (die, cu);
11648
11649 if (die_name != NULL
11650 && strcmp (die_name, actual_name) != 0)
11651 {
11652 /* Strip off the class name from the full name.
11653 We want the prefix. */
11654 int die_name_len = strlen (die_name);
11655 int actual_name_len = strlen (actual_name);
11656
11657 /* Test for '::' as a sanity check. */
11658 if (actual_name_len > die_name_len + 2
11659 && actual_name[actual_name_len
11660 - die_name_len - 1] == ':')
11661 name =
11662 obsavestring (actual_name,
11663 actual_name_len - die_name_len - 2,
11664 &cu->objfile->objfile_obstack);
11665 }
11666 }
11667 xfree (actual_name);
11668 return name;
11669 }
11670 }
11671 }
11672
11673 return NULL;
11674 }
11675
11676 /* Return the name of the namespace/class that DIE is defined within,
11677 or "" if we can't tell. The caller should not xfree the result.
11678
11679 For example, if we're within the method foo() in the following
11680 code:
11681
11682 namespace N {
11683 class C {
11684 void foo () {
11685 }
11686 };
11687 }
11688
11689 then determine_prefix on foo's die will return "N::C". */
11690
11691 static char *
11692 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11693 {
11694 struct die_info *parent, *spec_die;
11695 struct dwarf2_cu *spec_cu;
11696 struct type *parent_type;
11697
11698 if (cu->language != language_cplus && cu->language != language_java
11699 && cu->language != language_fortran)
11700 return "";
11701
11702 /* We have to be careful in the presence of DW_AT_specification.
11703 For example, with GCC 3.4, given the code
11704
11705 namespace N {
11706 void foo() {
11707 // Definition of N::foo.
11708 }
11709 }
11710
11711 then we'll have a tree of DIEs like this:
11712
11713 1: DW_TAG_compile_unit
11714 2: DW_TAG_namespace // N
11715 3: DW_TAG_subprogram // declaration of N::foo
11716 4: DW_TAG_subprogram // definition of N::foo
11717 DW_AT_specification // refers to die #3
11718
11719 Thus, when processing die #4, we have to pretend that we're in
11720 the context of its DW_AT_specification, namely the contex of die
11721 #3. */
11722 spec_cu = cu;
11723 spec_die = die_specification (die, &spec_cu);
11724 if (spec_die == NULL)
11725 parent = die->parent;
11726 else
11727 {
11728 parent = spec_die->parent;
11729 cu = spec_cu;
11730 }
11731
11732 if (parent == NULL)
11733 return "";
11734 else if (parent->building_fullname)
11735 {
11736 const char *name;
11737 const char *parent_name;
11738
11739 /* It has been seen on RealView 2.2 built binaries,
11740 DW_TAG_template_type_param types actually _defined_ as
11741 children of the parent class:
11742
11743 enum E {};
11744 template class <class Enum> Class{};
11745 Class<enum E> class_e;
11746
11747 1: DW_TAG_class_type (Class)
11748 2: DW_TAG_enumeration_type (E)
11749 3: DW_TAG_enumerator (enum1:0)
11750 3: DW_TAG_enumerator (enum2:1)
11751 ...
11752 2: DW_TAG_template_type_param
11753 DW_AT_type DW_FORM_ref_udata (E)
11754
11755 Besides being broken debug info, it can put GDB into an
11756 infinite loop. Consider:
11757
11758 When we're building the full name for Class<E>, we'll start
11759 at Class, and go look over its template type parameters,
11760 finding E. We'll then try to build the full name of E, and
11761 reach here. We're now trying to build the full name of E,
11762 and look over the parent DIE for containing scope. In the
11763 broken case, if we followed the parent DIE of E, we'd again
11764 find Class, and once again go look at its template type
11765 arguments, etc., etc. Simply don't consider such parent die
11766 as source-level parent of this die (it can't be, the language
11767 doesn't allow it), and break the loop here. */
11768 name = dwarf2_name (die, cu);
11769 parent_name = dwarf2_name (parent, cu);
11770 complaint (&symfile_complaints,
11771 _("template param type '%s' defined within parent '%s'"),
11772 name ? name : "<unknown>",
11773 parent_name ? parent_name : "<unknown>");
11774 return "";
11775 }
11776 else
11777 switch (parent->tag)
11778 {
11779 case DW_TAG_namespace:
11780 parent_type = read_type_die (parent, cu);
11781 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11782 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11783 Work around this problem here. */
11784 if (cu->language == language_cplus
11785 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11786 return "";
11787 /* We give a name to even anonymous namespaces. */
11788 return TYPE_TAG_NAME (parent_type);
11789 case DW_TAG_class_type:
11790 case DW_TAG_interface_type:
11791 case DW_TAG_structure_type:
11792 case DW_TAG_union_type:
11793 case DW_TAG_module:
11794 parent_type = read_type_die (parent, cu);
11795 if (TYPE_TAG_NAME (parent_type) != NULL)
11796 return TYPE_TAG_NAME (parent_type);
11797 else
11798 /* An anonymous structure is only allowed non-static data
11799 members; no typedefs, no member functions, et cetera.
11800 So it does not need a prefix. */
11801 return "";
11802 case DW_TAG_compile_unit:
11803 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11804 if (cu->language == language_cplus
11805 && dwarf2_per_objfile->types.asection != NULL
11806 && die->child != NULL
11807 && (die->tag == DW_TAG_class_type
11808 || die->tag == DW_TAG_structure_type
11809 || die->tag == DW_TAG_union_type))
11810 {
11811 char *name = guess_full_die_structure_name (die, cu);
11812 if (name != NULL)
11813 return name;
11814 }
11815 return "";
11816 default:
11817 return determine_prefix (parent, cu);
11818 }
11819 }
11820
11821 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11822 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11823 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11824 an obconcat, otherwise allocate storage for the result. The CU argument is
11825 used to determine the language and hence, the appropriate separator. */
11826
11827 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11828
11829 static char *
11830 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11831 int physname, struct dwarf2_cu *cu)
11832 {
11833 const char *lead = "";
11834 const char *sep;
11835
11836 if (suffix == NULL || suffix[0] == '\0'
11837 || prefix == NULL || prefix[0] == '\0')
11838 sep = "";
11839 else if (cu->language == language_java)
11840 sep = ".";
11841 else if (cu->language == language_fortran && physname)
11842 {
11843 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11844 DW_AT_MIPS_linkage_name is preferred and used instead. */
11845
11846 lead = "__";
11847 sep = "_MOD_";
11848 }
11849 else
11850 sep = "::";
11851
11852 if (prefix == NULL)
11853 prefix = "";
11854 if (suffix == NULL)
11855 suffix = "";
11856
11857 if (obs == NULL)
11858 {
11859 char *retval
11860 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11861
11862 strcpy (retval, lead);
11863 strcat (retval, prefix);
11864 strcat (retval, sep);
11865 strcat (retval, suffix);
11866 return retval;
11867 }
11868 else
11869 {
11870 /* We have an obstack. */
11871 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11872 }
11873 }
11874
11875 /* Return sibling of die, NULL if no sibling. */
11876
11877 static struct die_info *
11878 sibling_die (struct die_info *die)
11879 {
11880 return die->sibling;
11881 }
11882
11883 /* Get name of a die, return NULL if not found. */
11884
11885 static char *
11886 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11887 struct obstack *obstack)
11888 {
11889 if (name && cu->language == language_cplus)
11890 {
11891 char *canon_name = cp_canonicalize_string (name);
11892
11893 if (canon_name != NULL)
11894 {
11895 if (strcmp (canon_name, name) != 0)
11896 name = obsavestring (canon_name, strlen (canon_name),
11897 obstack);
11898 xfree (canon_name);
11899 }
11900 }
11901
11902 return name;
11903 }
11904
11905 /* Get name of a die, return NULL if not found. */
11906
11907 static char *
11908 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11909 {
11910 struct attribute *attr;
11911
11912 attr = dwarf2_attr (die, DW_AT_name, cu);
11913 if (!attr || !DW_STRING (attr))
11914 return NULL;
11915
11916 switch (die->tag)
11917 {
11918 case DW_TAG_compile_unit:
11919 /* Compilation units have a DW_AT_name that is a filename, not
11920 a source language identifier. */
11921 case DW_TAG_enumeration_type:
11922 case DW_TAG_enumerator:
11923 /* These tags always have simple identifiers already; no need
11924 to canonicalize them. */
11925 return DW_STRING (attr);
11926
11927 case DW_TAG_subprogram:
11928 /* Java constructors will all be named "<init>", so return
11929 the class name when we see this special case. */
11930 if (cu->language == language_java
11931 && DW_STRING (attr) != NULL
11932 && strcmp (DW_STRING (attr), "<init>") == 0)
11933 {
11934 struct dwarf2_cu *spec_cu = cu;
11935 struct die_info *spec_die;
11936
11937 /* GCJ will output '<init>' for Java constructor names.
11938 For this special case, return the name of the parent class. */
11939
11940 /* GCJ may output suprogram DIEs with AT_specification set.
11941 If so, use the name of the specified DIE. */
11942 spec_die = die_specification (die, &spec_cu);
11943 if (spec_die != NULL)
11944 return dwarf2_name (spec_die, spec_cu);
11945
11946 do
11947 {
11948 die = die->parent;
11949 if (die->tag == DW_TAG_class_type)
11950 return dwarf2_name (die, cu);
11951 }
11952 while (die->tag != DW_TAG_compile_unit);
11953 }
11954 break;
11955
11956 case DW_TAG_class_type:
11957 case DW_TAG_interface_type:
11958 case DW_TAG_structure_type:
11959 case DW_TAG_union_type:
11960 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11961 structures or unions. These were of the form "._%d" in GCC 4.1,
11962 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11963 and GCC 4.4. We work around this problem by ignoring these. */
11964 if (strncmp (DW_STRING (attr), "._", 2) == 0
11965 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11966 return NULL;
11967 break;
11968
11969 default:
11970 break;
11971 }
11972
11973 if (!DW_STRING_IS_CANONICAL (attr))
11974 {
11975 DW_STRING (attr)
11976 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11977 &cu->objfile->objfile_obstack);
11978 DW_STRING_IS_CANONICAL (attr) = 1;
11979 }
11980 return DW_STRING (attr);
11981 }
11982
11983 /* Return the die that this die in an extension of, or NULL if there
11984 is none. *EXT_CU is the CU containing DIE on input, and the CU
11985 containing the return value on output. */
11986
11987 static struct die_info *
11988 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11989 {
11990 struct attribute *attr;
11991
11992 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11993 if (attr == NULL)
11994 return NULL;
11995
11996 return follow_die_ref (die, attr, ext_cu);
11997 }
11998
11999 /* Convert a DIE tag into its string name. */
12000
12001 static char *
12002 dwarf_tag_name (unsigned tag)
12003 {
12004 switch (tag)
12005 {
12006 case DW_TAG_padding:
12007 return "DW_TAG_padding";
12008 case DW_TAG_array_type:
12009 return "DW_TAG_array_type";
12010 case DW_TAG_class_type:
12011 return "DW_TAG_class_type";
12012 case DW_TAG_entry_point:
12013 return "DW_TAG_entry_point";
12014 case DW_TAG_enumeration_type:
12015 return "DW_TAG_enumeration_type";
12016 case DW_TAG_formal_parameter:
12017 return "DW_TAG_formal_parameter";
12018 case DW_TAG_imported_declaration:
12019 return "DW_TAG_imported_declaration";
12020 case DW_TAG_label:
12021 return "DW_TAG_label";
12022 case DW_TAG_lexical_block:
12023 return "DW_TAG_lexical_block";
12024 case DW_TAG_member:
12025 return "DW_TAG_member";
12026 case DW_TAG_pointer_type:
12027 return "DW_TAG_pointer_type";
12028 case DW_TAG_reference_type:
12029 return "DW_TAG_reference_type";
12030 case DW_TAG_compile_unit:
12031 return "DW_TAG_compile_unit";
12032 case DW_TAG_string_type:
12033 return "DW_TAG_string_type";
12034 case DW_TAG_structure_type:
12035 return "DW_TAG_structure_type";
12036 case DW_TAG_subroutine_type:
12037 return "DW_TAG_subroutine_type";
12038 case DW_TAG_typedef:
12039 return "DW_TAG_typedef";
12040 case DW_TAG_union_type:
12041 return "DW_TAG_union_type";
12042 case DW_TAG_unspecified_parameters:
12043 return "DW_TAG_unspecified_parameters";
12044 case DW_TAG_variant:
12045 return "DW_TAG_variant";
12046 case DW_TAG_common_block:
12047 return "DW_TAG_common_block";
12048 case DW_TAG_common_inclusion:
12049 return "DW_TAG_common_inclusion";
12050 case DW_TAG_inheritance:
12051 return "DW_TAG_inheritance";
12052 case DW_TAG_inlined_subroutine:
12053 return "DW_TAG_inlined_subroutine";
12054 case DW_TAG_module:
12055 return "DW_TAG_module";
12056 case DW_TAG_ptr_to_member_type:
12057 return "DW_TAG_ptr_to_member_type";
12058 case DW_TAG_set_type:
12059 return "DW_TAG_set_type";
12060 case DW_TAG_subrange_type:
12061 return "DW_TAG_subrange_type";
12062 case DW_TAG_with_stmt:
12063 return "DW_TAG_with_stmt";
12064 case DW_TAG_access_declaration:
12065 return "DW_TAG_access_declaration";
12066 case DW_TAG_base_type:
12067 return "DW_TAG_base_type";
12068 case DW_TAG_catch_block:
12069 return "DW_TAG_catch_block";
12070 case DW_TAG_const_type:
12071 return "DW_TAG_const_type";
12072 case DW_TAG_constant:
12073 return "DW_TAG_constant";
12074 case DW_TAG_enumerator:
12075 return "DW_TAG_enumerator";
12076 case DW_TAG_file_type:
12077 return "DW_TAG_file_type";
12078 case DW_TAG_friend:
12079 return "DW_TAG_friend";
12080 case DW_TAG_namelist:
12081 return "DW_TAG_namelist";
12082 case DW_TAG_namelist_item:
12083 return "DW_TAG_namelist_item";
12084 case DW_TAG_packed_type:
12085 return "DW_TAG_packed_type";
12086 case DW_TAG_subprogram:
12087 return "DW_TAG_subprogram";
12088 case DW_TAG_template_type_param:
12089 return "DW_TAG_template_type_param";
12090 case DW_TAG_template_value_param:
12091 return "DW_TAG_template_value_param";
12092 case DW_TAG_thrown_type:
12093 return "DW_TAG_thrown_type";
12094 case DW_TAG_try_block:
12095 return "DW_TAG_try_block";
12096 case DW_TAG_variant_part:
12097 return "DW_TAG_variant_part";
12098 case DW_TAG_variable:
12099 return "DW_TAG_variable";
12100 case DW_TAG_volatile_type:
12101 return "DW_TAG_volatile_type";
12102 case DW_TAG_dwarf_procedure:
12103 return "DW_TAG_dwarf_procedure";
12104 case DW_TAG_restrict_type:
12105 return "DW_TAG_restrict_type";
12106 case DW_TAG_interface_type:
12107 return "DW_TAG_interface_type";
12108 case DW_TAG_namespace:
12109 return "DW_TAG_namespace";
12110 case DW_TAG_imported_module:
12111 return "DW_TAG_imported_module";
12112 case DW_TAG_unspecified_type:
12113 return "DW_TAG_unspecified_type";
12114 case DW_TAG_partial_unit:
12115 return "DW_TAG_partial_unit";
12116 case DW_TAG_imported_unit:
12117 return "DW_TAG_imported_unit";
12118 case DW_TAG_condition:
12119 return "DW_TAG_condition";
12120 case DW_TAG_shared_type:
12121 return "DW_TAG_shared_type";
12122 case DW_TAG_type_unit:
12123 return "DW_TAG_type_unit";
12124 case DW_TAG_MIPS_loop:
12125 return "DW_TAG_MIPS_loop";
12126 case DW_TAG_HP_array_descriptor:
12127 return "DW_TAG_HP_array_descriptor";
12128 case DW_TAG_format_label:
12129 return "DW_TAG_format_label";
12130 case DW_TAG_function_template:
12131 return "DW_TAG_function_template";
12132 case DW_TAG_class_template:
12133 return "DW_TAG_class_template";
12134 case DW_TAG_GNU_BINCL:
12135 return "DW_TAG_GNU_BINCL";
12136 case DW_TAG_GNU_EINCL:
12137 return "DW_TAG_GNU_EINCL";
12138 case DW_TAG_upc_shared_type:
12139 return "DW_TAG_upc_shared_type";
12140 case DW_TAG_upc_strict_type:
12141 return "DW_TAG_upc_strict_type";
12142 case DW_TAG_upc_relaxed_type:
12143 return "DW_TAG_upc_relaxed_type";
12144 case DW_TAG_PGI_kanji_type:
12145 return "DW_TAG_PGI_kanji_type";
12146 case DW_TAG_PGI_interface_block:
12147 return "DW_TAG_PGI_interface_block";
12148 default:
12149 return "DW_TAG_<unknown>";
12150 }
12151 }
12152
12153 /* Convert a DWARF attribute code into its string name. */
12154
12155 static char *
12156 dwarf_attr_name (unsigned attr)
12157 {
12158 switch (attr)
12159 {
12160 case DW_AT_sibling:
12161 return "DW_AT_sibling";
12162 case DW_AT_location:
12163 return "DW_AT_location";
12164 case DW_AT_name:
12165 return "DW_AT_name";
12166 case DW_AT_ordering:
12167 return "DW_AT_ordering";
12168 case DW_AT_subscr_data:
12169 return "DW_AT_subscr_data";
12170 case DW_AT_byte_size:
12171 return "DW_AT_byte_size";
12172 case DW_AT_bit_offset:
12173 return "DW_AT_bit_offset";
12174 case DW_AT_bit_size:
12175 return "DW_AT_bit_size";
12176 case DW_AT_element_list:
12177 return "DW_AT_element_list";
12178 case DW_AT_stmt_list:
12179 return "DW_AT_stmt_list";
12180 case DW_AT_low_pc:
12181 return "DW_AT_low_pc";
12182 case DW_AT_high_pc:
12183 return "DW_AT_high_pc";
12184 case DW_AT_language:
12185 return "DW_AT_language";
12186 case DW_AT_member:
12187 return "DW_AT_member";
12188 case DW_AT_discr:
12189 return "DW_AT_discr";
12190 case DW_AT_discr_value:
12191 return "DW_AT_discr_value";
12192 case DW_AT_visibility:
12193 return "DW_AT_visibility";
12194 case DW_AT_import:
12195 return "DW_AT_import";
12196 case DW_AT_string_length:
12197 return "DW_AT_string_length";
12198 case DW_AT_common_reference:
12199 return "DW_AT_common_reference";
12200 case DW_AT_comp_dir:
12201 return "DW_AT_comp_dir";
12202 case DW_AT_const_value:
12203 return "DW_AT_const_value";
12204 case DW_AT_containing_type:
12205 return "DW_AT_containing_type";
12206 case DW_AT_default_value:
12207 return "DW_AT_default_value";
12208 case DW_AT_inline:
12209 return "DW_AT_inline";
12210 case DW_AT_is_optional:
12211 return "DW_AT_is_optional";
12212 case DW_AT_lower_bound:
12213 return "DW_AT_lower_bound";
12214 case DW_AT_producer:
12215 return "DW_AT_producer";
12216 case DW_AT_prototyped:
12217 return "DW_AT_prototyped";
12218 case DW_AT_return_addr:
12219 return "DW_AT_return_addr";
12220 case DW_AT_start_scope:
12221 return "DW_AT_start_scope";
12222 case DW_AT_bit_stride:
12223 return "DW_AT_bit_stride";
12224 case DW_AT_upper_bound:
12225 return "DW_AT_upper_bound";
12226 case DW_AT_abstract_origin:
12227 return "DW_AT_abstract_origin";
12228 case DW_AT_accessibility:
12229 return "DW_AT_accessibility";
12230 case DW_AT_address_class:
12231 return "DW_AT_address_class";
12232 case DW_AT_artificial:
12233 return "DW_AT_artificial";
12234 case DW_AT_base_types:
12235 return "DW_AT_base_types";
12236 case DW_AT_calling_convention:
12237 return "DW_AT_calling_convention";
12238 case DW_AT_count:
12239 return "DW_AT_count";
12240 case DW_AT_data_member_location:
12241 return "DW_AT_data_member_location";
12242 case DW_AT_decl_column:
12243 return "DW_AT_decl_column";
12244 case DW_AT_decl_file:
12245 return "DW_AT_decl_file";
12246 case DW_AT_decl_line:
12247 return "DW_AT_decl_line";
12248 case DW_AT_declaration:
12249 return "DW_AT_declaration";
12250 case DW_AT_discr_list:
12251 return "DW_AT_discr_list";
12252 case DW_AT_encoding:
12253 return "DW_AT_encoding";
12254 case DW_AT_external:
12255 return "DW_AT_external";
12256 case DW_AT_frame_base:
12257 return "DW_AT_frame_base";
12258 case DW_AT_friend:
12259 return "DW_AT_friend";
12260 case DW_AT_identifier_case:
12261 return "DW_AT_identifier_case";
12262 case DW_AT_macro_info:
12263 return "DW_AT_macro_info";
12264 case DW_AT_namelist_items:
12265 return "DW_AT_namelist_items";
12266 case DW_AT_priority:
12267 return "DW_AT_priority";
12268 case DW_AT_segment:
12269 return "DW_AT_segment";
12270 case DW_AT_specification:
12271 return "DW_AT_specification";
12272 case DW_AT_static_link:
12273 return "DW_AT_static_link";
12274 case DW_AT_type:
12275 return "DW_AT_type";
12276 case DW_AT_use_location:
12277 return "DW_AT_use_location";
12278 case DW_AT_variable_parameter:
12279 return "DW_AT_variable_parameter";
12280 case DW_AT_virtuality:
12281 return "DW_AT_virtuality";
12282 case DW_AT_vtable_elem_location:
12283 return "DW_AT_vtable_elem_location";
12284 /* DWARF 3 values. */
12285 case DW_AT_allocated:
12286 return "DW_AT_allocated";
12287 case DW_AT_associated:
12288 return "DW_AT_associated";
12289 case DW_AT_data_location:
12290 return "DW_AT_data_location";
12291 case DW_AT_byte_stride:
12292 return "DW_AT_byte_stride";
12293 case DW_AT_entry_pc:
12294 return "DW_AT_entry_pc";
12295 case DW_AT_use_UTF8:
12296 return "DW_AT_use_UTF8";
12297 case DW_AT_extension:
12298 return "DW_AT_extension";
12299 case DW_AT_ranges:
12300 return "DW_AT_ranges";
12301 case DW_AT_trampoline:
12302 return "DW_AT_trampoline";
12303 case DW_AT_call_column:
12304 return "DW_AT_call_column";
12305 case DW_AT_call_file:
12306 return "DW_AT_call_file";
12307 case DW_AT_call_line:
12308 return "DW_AT_call_line";
12309 case DW_AT_description:
12310 return "DW_AT_description";
12311 case DW_AT_binary_scale:
12312 return "DW_AT_binary_scale";
12313 case DW_AT_decimal_scale:
12314 return "DW_AT_decimal_scale";
12315 case DW_AT_small:
12316 return "DW_AT_small";
12317 case DW_AT_decimal_sign:
12318 return "DW_AT_decimal_sign";
12319 case DW_AT_digit_count:
12320 return "DW_AT_digit_count";
12321 case DW_AT_picture_string:
12322 return "DW_AT_picture_string";
12323 case DW_AT_mutable:
12324 return "DW_AT_mutable";
12325 case DW_AT_threads_scaled:
12326 return "DW_AT_threads_scaled";
12327 case DW_AT_explicit:
12328 return "DW_AT_explicit";
12329 case DW_AT_object_pointer:
12330 return "DW_AT_object_pointer";
12331 case DW_AT_endianity:
12332 return "DW_AT_endianity";
12333 case DW_AT_elemental:
12334 return "DW_AT_elemental";
12335 case DW_AT_pure:
12336 return "DW_AT_pure";
12337 case DW_AT_recursive:
12338 return "DW_AT_recursive";
12339 /* DWARF 4 values. */
12340 case DW_AT_signature:
12341 return "DW_AT_signature";
12342 case DW_AT_linkage_name:
12343 return "DW_AT_linkage_name";
12344 /* SGI/MIPS extensions. */
12345 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12346 case DW_AT_MIPS_fde:
12347 return "DW_AT_MIPS_fde";
12348 #endif
12349 case DW_AT_MIPS_loop_begin:
12350 return "DW_AT_MIPS_loop_begin";
12351 case DW_AT_MIPS_tail_loop_begin:
12352 return "DW_AT_MIPS_tail_loop_begin";
12353 case DW_AT_MIPS_epilog_begin:
12354 return "DW_AT_MIPS_epilog_begin";
12355 case DW_AT_MIPS_loop_unroll_factor:
12356 return "DW_AT_MIPS_loop_unroll_factor";
12357 case DW_AT_MIPS_software_pipeline_depth:
12358 return "DW_AT_MIPS_software_pipeline_depth";
12359 case DW_AT_MIPS_linkage_name:
12360 return "DW_AT_MIPS_linkage_name";
12361 case DW_AT_MIPS_stride:
12362 return "DW_AT_MIPS_stride";
12363 case DW_AT_MIPS_abstract_name:
12364 return "DW_AT_MIPS_abstract_name";
12365 case DW_AT_MIPS_clone_origin:
12366 return "DW_AT_MIPS_clone_origin";
12367 case DW_AT_MIPS_has_inlines:
12368 return "DW_AT_MIPS_has_inlines";
12369 /* HP extensions. */
12370 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12371 case DW_AT_HP_block_index:
12372 return "DW_AT_HP_block_index";
12373 #endif
12374 case DW_AT_HP_unmodifiable:
12375 return "DW_AT_HP_unmodifiable";
12376 case DW_AT_HP_actuals_stmt_list:
12377 return "DW_AT_HP_actuals_stmt_list";
12378 case DW_AT_HP_proc_per_section:
12379 return "DW_AT_HP_proc_per_section";
12380 case DW_AT_HP_raw_data_ptr:
12381 return "DW_AT_HP_raw_data_ptr";
12382 case DW_AT_HP_pass_by_reference:
12383 return "DW_AT_HP_pass_by_reference";
12384 case DW_AT_HP_opt_level:
12385 return "DW_AT_HP_opt_level";
12386 case DW_AT_HP_prof_version_id:
12387 return "DW_AT_HP_prof_version_id";
12388 case DW_AT_HP_opt_flags:
12389 return "DW_AT_HP_opt_flags";
12390 case DW_AT_HP_cold_region_low_pc:
12391 return "DW_AT_HP_cold_region_low_pc";
12392 case DW_AT_HP_cold_region_high_pc:
12393 return "DW_AT_HP_cold_region_high_pc";
12394 case DW_AT_HP_all_variables_modifiable:
12395 return "DW_AT_HP_all_variables_modifiable";
12396 case DW_AT_HP_linkage_name:
12397 return "DW_AT_HP_linkage_name";
12398 case DW_AT_HP_prof_flags:
12399 return "DW_AT_HP_prof_flags";
12400 /* GNU extensions. */
12401 case DW_AT_sf_names:
12402 return "DW_AT_sf_names";
12403 case DW_AT_src_info:
12404 return "DW_AT_src_info";
12405 case DW_AT_mac_info:
12406 return "DW_AT_mac_info";
12407 case DW_AT_src_coords:
12408 return "DW_AT_src_coords";
12409 case DW_AT_body_begin:
12410 return "DW_AT_body_begin";
12411 case DW_AT_body_end:
12412 return "DW_AT_body_end";
12413 case DW_AT_GNU_vector:
12414 return "DW_AT_GNU_vector";
12415 case DW_AT_GNU_odr_signature:
12416 return "DW_AT_GNU_odr_signature";
12417 /* VMS extensions. */
12418 case DW_AT_VMS_rtnbeg_pd_address:
12419 return "DW_AT_VMS_rtnbeg_pd_address";
12420 /* UPC extension. */
12421 case DW_AT_upc_threads_scaled:
12422 return "DW_AT_upc_threads_scaled";
12423 /* PGI (STMicroelectronics) extensions. */
12424 case DW_AT_PGI_lbase:
12425 return "DW_AT_PGI_lbase";
12426 case DW_AT_PGI_soffset:
12427 return "DW_AT_PGI_soffset";
12428 case DW_AT_PGI_lstride:
12429 return "DW_AT_PGI_lstride";
12430 default:
12431 return "DW_AT_<unknown>";
12432 }
12433 }
12434
12435 /* Convert a DWARF value form code into its string name. */
12436
12437 static char *
12438 dwarf_form_name (unsigned form)
12439 {
12440 switch (form)
12441 {
12442 case DW_FORM_addr:
12443 return "DW_FORM_addr";
12444 case DW_FORM_block2:
12445 return "DW_FORM_block2";
12446 case DW_FORM_block4:
12447 return "DW_FORM_block4";
12448 case DW_FORM_data2:
12449 return "DW_FORM_data2";
12450 case DW_FORM_data4:
12451 return "DW_FORM_data4";
12452 case DW_FORM_data8:
12453 return "DW_FORM_data8";
12454 case DW_FORM_string:
12455 return "DW_FORM_string";
12456 case DW_FORM_block:
12457 return "DW_FORM_block";
12458 case DW_FORM_block1:
12459 return "DW_FORM_block1";
12460 case DW_FORM_data1:
12461 return "DW_FORM_data1";
12462 case DW_FORM_flag:
12463 return "DW_FORM_flag";
12464 case DW_FORM_sdata:
12465 return "DW_FORM_sdata";
12466 case DW_FORM_strp:
12467 return "DW_FORM_strp";
12468 case DW_FORM_udata:
12469 return "DW_FORM_udata";
12470 case DW_FORM_ref_addr:
12471 return "DW_FORM_ref_addr";
12472 case DW_FORM_ref1:
12473 return "DW_FORM_ref1";
12474 case DW_FORM_ref2:
12475 return "DW_FORM_ref2";
12476 case DW_FORM_ref4:
12477 return "DW_FORM_ref4";
12478 case DW_FORM_ref8:
12479 return "DW_FORM_ref8";
12480 case DW_FORM_ref_udata:
12481 return "DW_FORM_ref_udata";
12482 case DW_FORM_indirect:
12483 return "DW_FORM_indirect";
12484 case DW_FORM_sec_offset:
12485 return "DW_FORM_sec_offset";
12486 case DW_FORM_exprloc:
12487 return "DW_FORM_exprloc";
12488 case DW_FORM_flag_present:
12489 return "DW_FORM_flag_present";
12490 case DW_FORM_sig8:
12491 return "DW_FORM_sig8";
12492 default:
12493 return "DW_FORM_<unknown>";
12494 }
12495 }
12496
12497 /* Convert a DWARF stack opcode into its string name. */
12498
12499 const char *
12500 dwarf_stack_op_name (unsigned op)
12501 {
12502 switch (op)
12503 {
12504 case DW_OP_addr:
12505 return "DW_OP_addr";
12506 case DW_OP_deref:
12507 return "DW_OP_deref";
12508 case DW_OP_const1u:
12509 return "DW_OP_const1u";
12510 case DW_OP_const1s:
12511 return "DW_OP_const1s";
12512 case DW_OP_const2u:
12513 return "DW_OP_const2u";
12514 case DW_OP_const2s:
12515 return "DW_OP_const2s";
12516 case DW_OP_const4u:
12517 return "DW_OP_const4u";
12518 case DW_OP_const4s:
12519 return "DW_OP_const4s";
12520 case DW_OP_const8u:
12521 return "DW_OP_const8u";
12522 case DW_OP_const8s:
12523 return "DW_OP_const8s";
12524 case DW_OP_constu:
12525 return "DW_OP_constu";
12526 case DW_OP_consts:
12527 return "DW_OP_consts";
12528 case DW_OP_dup:
12529 return "DW_OP_dup";
12530 case DW_OP_drop:
12531 return "DW_OP_drop";
12532 case DW_OP_over:
12533 return "DW_OP_over";
12534 case DW_OP_pick:
12535 return "DW_OP_pick";
12536 case DW_OP_swap:
12537 return "DW_OP_swap";
12538 case DW_OP_rot:
12539 return "DW_OP_rot";
12540 case DW_OP_xderef:
12541 return "DW_OP_xderef";
12542 case DW_OP_abs:
12543 return "DW_OP_abs";
12544 case DW_OP_and:
12545 return "DW_OP_and";
12546 case DW_OP_div:
12547 return "DW_OP_div";
12548 case DW_OP_minus:
12549 return "DW_OP_minus";
12550 case DW_OP_mod:
12551 return "DW_OP_mod";
12552 case DW_OP_mul:
12553 return "DW_OP_mul";
12554 case DW_OP_neg:
12555 return "DW_OP_neg";
12556 case DW_OP_not:
12557 return "DW_OP_not";
12558 case DW_OP_or:
12559 return "DW_OP_or";
12560 case DW_OP_plus:
12561 return "DW_OP_plus";
12562 case DW_OP_plus_uconst:
12563 return "DW_OP_plus_uconst";
12564 case DW_OP_shl:
12565 return "DW_OP_shl";
12566 case DW_OP_shr:
12567 return "DW_OP_shr";
12568 case DW_OP_shra:
12569 return "DW_OP_shra";
12570 case DW_OP_xor:
12571 return "DW_OP_xor";
12572 case DW_OP_bra:
12573 return "DW_OP_bra";
12574 case DW_OP_eq:
12575 return "DW_OP_eq";
12576 case DW_OP_ge:
12577 return "DW_OP_ge";
12578 case DW_OP_gt:
12579 return "DW_OP_gt";
12580 case DW_OP_le:
12581 return "DW_OP_le";
12582 case DW_OP_lt:
12583 return "DW_OP_lt";
12584 case DW_OP_ne:
12585 return "DW_OP_ne";
12586 case DW_OP_skip:
12587 return "DW_OP_skip";
12588 case DW_OP_lit0:
12589 return "DW_OP_lit0";
12590 case DW_OP_lit1:
12591 return "DW_OP_lit1";
12592 case DW_OP_lit2:
12593 return "DW_OP_lit2";
12594 case DW_OP_lit3:
12595 return "DW_OP_lit3";
12596 case DW_OP_lit4:
12597 return "DW_OP_lit4";
12598 case DW_OP_lit5:
12599 return "DW_OP_lit5";
12600 case DW_OP_lit6:
12601 return "DW_OP_lit6";
12602 case DW_OP_lit7:
12603 return "DW_OP_lit7";
12604 case DW_OP_lit8:
12605 return "DW_OP_lit8";
12606 case DW_OP_lit9:
12607 return "DW_OP_lit9";
12608 case DW_OP_lit10:
12609 return "DW_OP_lit10";
12610 case DW_OP_lit11:
12611 return "DW_OP_lit11";
12612 case DW_OP_lit12:
12613 return "DW_OP_lit12";
12614 case DW_OP_lit13:
12615 return "DW_OP_lit13";
12616 case DW_OP_lit14:
12617 return "DW_OP_lit14";
12618 case DW_OP_lit15:
12619 return "DW_OP_lit15";
12620 case DW_OP_lit16:
12621 return "DW_OP_lit16";
12622 case DW_OP_lit17:
12623 return "DW_OP_lit17";
12624 case DW_OP_lit18:
12625 return "DW_OP_lit18";
12626 case DW_OP_lit19:
12627 return "DW_OP_lit19";
12628 case DW_OP_lit20:
12629 return "DW_OP_lit20";
12630 case DW_OP_lit21:
12631 return "DW_OP_lit21";
12632 case DW_OP_lit22:
12633 return "DW_OP_lit22";
12634 case DW_OP_lit23:
12635 return "DW_OP_lit23";
12636 case DW_OP_lit24:
12637 return "DW_OP_lit24";
12638 case DW_OP_lit25:
12639 return "DW_OP_lit25";
12640 case DW_OP_lit26:
12641 return "DW_OP_lit26";
12642 case DW_OP_lit27:
12643 return "DW_OP_lit27";
12644 case DW_OP_lit28:
12645 return "DW_OP_lit28";
12646 case DW_OP_lit29:
12647 return "DW_OP_lit29";
12648 case DW_OP_lit30:
12649 return "DW_OP_lit30";
12650 case DW_OP_lit31:
12651 return "DW_OP_lit31";
12652 case DW_OP_reg0:
12653 return "DW_OP_reg0";
12654 case DW_OP_reg1:
12655 return "DW_OP_reg1";
12656 case DW_OP_reg2:
12657 return "DW_OP_reg2";
12658 case DW_OP_reg3:
12659 return "DW_OP_reg3";
12660 case DW_OP_reg4:
12661 return "DW_OP_reg4";
12662 case DW_OP_reg5:
12663 return "DW_OP_reg5";
12664 case DW_OP_reg6:
12665 return "DW_OP_reg6";
12666 case DW_OP_reg7:
12667 return "DW_OP_reg7";
12668 case DW_OP_reg8:
12669 return "DW_OP_reg8";
12670 case DW_OP_reg9:
12671 return "DW_OP_reg9";
12672 case DW_OP_reg10:
12673 return "DW_OP_reg10";
12674 case DW_OP_reg11:
12675 return "DW_OP_reg11";
12676 case DW_OP_reg12:
12677 return "DW_OP_reg12";
12678 case DW_OP_reg13:
12679 return "DW_OP_reg13";
12680 case DW_OP_reg14:
12681 return "DW_OP_reg14";
12682 case DW_OP_reg15:
12683 return "DW_OP_reg15";
12684 case DW_OP_reg16:
12685 return "DW_OP_reg16";
12686 case DW_OP_reg17:
12687 return "DW_OP_reg17";
12688 case DW_OP_reg18:
12689 return "DW_OP_reg18";
12690 case DW_OP_reg19:
12691 return "DW_OP_reg19";
12692 case DW_OP_reg20:
12693 return "DW_OP_reg20";
12694 case DW_OP_reg21:
12695 return "DW_OP_reg21";
12696 case DW_OP_reg22:
12697 return "DW_OP_reg22";
12698 case DW_OP_reg23:
12699 return "DW_OP_reg23";
12700 case DW_OP_reg24:
12701 return "DW_OP_reg24";
12702 case DW_OP_reg25:
12703 return "DW_OP_reg25";
12704 case DW_OP_reg26:
12705 return "DW_OP_reg26";
12706 case DW_OP_reg27:
12707 return "DW_OP_reg27";
12708 case DW_OP_reg28:
12709 return "DW_OP_reg28";
12710 case DW_OP_reg29:
12711 return "DW_OP_reg29";
12712 case DW_OP_reg30:
12713 return "DW_OP_reg30";
12714 case DW_OP_reg31:
12715 return "DW_OP_reg31";
12716 case DW_OP_breg0:
12717 return "DW_OP_breg0";
12718 case DW_OP_breg1:
12719 return "DW_OP_breg1";
12720 case DW_OP_breg2:
12721 return "DW_OP_breg2";
12722 case DW_OP_breg3:
12723 return "DW_OP_breg3";
12724 case DW_OP_breg4:
12725 return "DW_OP_breg4";
12726 case DW_OP_breg5:
12727 return "DW_OP_breg5";
12728 case DW_OP_breg6:
12729 return "DW_OP_breg6";
12730 case DW_OP_breg7:
12731 return "DW_OP_breg7";
12732 case DW_OP_breg8:
12733 return "DW_OP_breg8";
12734 case DW_OP_breg9:
12735 return "DW_OP_breg9";
12736 case DW_OP_breg10:
12737 return "DW_OP_breg10";
12738 case DW_OP_breg11:
12739 return "DW_OP_breg11";
12740 case DW_OP_breg12:
12741 return "DW_OP_breg12";
12742 case DW_OP_breg13:
12743 return "DW_OP_breg13";
12744 case DW_OP_breg14:
12745 return "DW_OP_breg14";
12746 case DW_OP_breg15:
12747 return "DW_OP_breg15";
12748 case DW_OP_breg16:
12749 return "DW_OP_breg16";
12750 case DW_OP_breg17:
12751 return "DW_OP_breg17";
12752 case DW_OP_breg18:
12753 return "DW_OP_breg18";
12754 case DW_OP_breg19:
12755 return "DW_OP_breg19";
12756 case DW_OP_breg20:
12757 return "DW_OP_breg20";
12758 case DW_OP_breg21:
12759 return "DW_OP_breg21";
12760 case DW_OP_breg22:
12761 return "DW_OP_breg22";
12762 case DW_OP_breg23:
12763 return "DW_OP_breg23";
12764 case DW_OP_breg24:
12765 return "DW_OP_breg24";
12766 case DW_OP_breg25:
12767 return "DW_OP_breg25";
12768 case DW_OP_breg26:
12769 return "DW_OP_breg26";
12770 case DW_OP_breg27:
12771 return "DW_OP_breg27";
12772 case DW_OP_breg28:
12773 return "DW_OP_breg28";
12774 case DW_OP_breg29:
12775 return "DW_OP_breg29";
12776 case DW_OP_breg30:
12777 return "DW_OP_breg30";
12778 case DW_OP_breg31:
12779 return "DW_OP_breg31";
12780 case DW_OP_regx:
12781 return "DW_OP_regx";
12782 case DW_OP_fbreg:
12783 return "DW_OP_fbreg";
12784 case DW_OP_bregx:
12785 return "DW_OP_bregx";
12786 case DW_OP_piece:
12787 return "DW_OP_piece";
12788 case DW_OP_deref_size:
12789 return "DW_OP_deref_size";
12790 case DW_OP_xderef_size:
12791 return "DW_OP_xderef_size";
12792 case DW_OP_nop:
12793 return "DW_OP_nop";
12794 /* DWARF 3 extensions. */
12795 case DW_OP_push_object_address:
12796 return "DW_OP_push_object_address";
12797 case DW_OP_call2:
12798 return "DW_OP_call2";
12799 case DW_OP_call4:
12800 return "DW_OP_call4";
12801 case DW_OP_call_ref:
12802 return "DW_OP_call_ref";
12803 case DW_OP_form_tls_address:
12804 return "DW_OP_form_tls_address";
12805 case DW_OP_call_frame_cfa:
12806 return "DW_OP_call_frame_cfa";
12807 case DW_OP_bit_piece:
12808 return "DW_OP_bit_piece";
12809 /* DWARF 4 extensions. */
12810 case DW_OP_implicit_value:
12811 return "DW_OP_implicit_value";
12812 case DW_OP_stack_value:
12813 return "DW_OP_stack_value";
12814 /* GNU extensions. */
12815 case DW_OP_GNU_push_tls_address:
12816 return "DW_OP_GNU_push_tls_address";
12817 case DW_OP_GNU_uninit:
12818 return "DW_OP_GNU_uninit";
12819 case DW_OP_GNU_implicit_pointer:
12820 return "DW_OP_GNU_implicit_pointer";
12821 default:
12822 return NULL;
12823 }
12824 }
12825
12826 static char *
12827 dwarf_bool_name (unsigned mybool)
12828 {
12829 if (mybool)
12830 return "TRUE";
12831 else
12832 return "FALSE";
12833 }
12834
12835 /* Convert a DWARF type code into its string name. */
12836
12837 static char *
12838 dwarf_type_encoding_name (unsigned enc)
12839 {
12840 switch (enc)
12841 {
12842 case DW_ATE_void:
12843 return "DW_ATE_void";
12844 case DW_ATE_address:
12845 return "DW_ATE_address";
12846 case DW_ATE_boolean:
12847 return "DW_ATE_boolean";
12848 case DW_ATE_complex_float:
12849 return "DW_ATE_complex_float";
12850 case DW_ATE_float:
12851 return "DW_ATE_float";
12852 case DW_ATE_signed:
12853 return "DW_ATE_signed";
12854 case DW_ATE_signed_char:
12855 return "DW_ATE_signed_char";
12856 case DW_ATE_unsigned:
12857 return "DW_ATE_unsigned";
12858 case DW_ATE_unsigned_char:
12859 return "DW_ATE_unsigned_char";
12860 /* DWARF 3. */
12861 case DW_ATE_imaginary_float:
12862 return "DW_ATE_imaginary_float";
12863 case DW_ATE_packed_decimal:
12864 return "DW_ATE_packed_decimal";
12865 case DW_ATE_numeric_string:
12866 return "DW_ATE_numeric_string";
12867 case DW_ATE_edited:
12868 return "DW_ATE_edited";
12869 case DW_ATE_signed_fixed:
12870 return "DW_ATE_signed_fixed";
12871 case DW_ATE_unsigned_fixed:
12872 return "DW_ATE_unsigned_fixed";
12873 case DW_ATE_decimal_float:
12874 return "DW_ATE_decimal_float";
12875 /* DWARF 4. */
12876 case DW_ATE_UTF:
12877 return "DW_ATE_UTF";
12878 /* HP extensions. */
12879 case DW_ATE_HP_float80:
12880 return "DW_ATE_HP_float80";
12881 case DW_ATE_HP_complex_float80:
12882 return "DW_ATE_HP_complex_float80";
12883 case DW_ATE_HP_float128:
12884 return "DW_ATE_HP_float128";
12885 case DW_ATE_HP_complex_float128:
12886 return "DW_ATE_HP_complex_float128";
12887 case DW_ATE_HP_floathpintel:
12888 return "DW_ATE_HP_floathpintel";
12889 case DW_ATE_HP_imaginary_float80:
12890 return "DW_ATE_HP_imaginary_float80";
12891 case DW_ATE_HP_imaginary_float128:
12892 return "DW_ATE_HP_imaginary_float128";
12893 default:
12894 return "DW_ATE_<unknown>";
12895 }
12896 }
12897
12898 /* Convert a DWARF call frame info operation to its string name. */
12899
12900 #if 0
12901 static char *
12902 dwarf_cfi_name (unsigned cfi_opc)
12903 {
12904 switch (cfi_opc)
12905 {
12906 case DW_CFA_advance_loc:
12907 return "DW_CFA_advance_loc";
12908 case DW_CFA_offset:
12909 return "DW_CFA_offset";
12910 case DW_CFA_restore:
12911 return "DW_CFA_restore";
12912 case DW_CFA_nop:
12913 return "DW_CFA_nop";
12914 case DW_CFA_set_loc:
12915 return "DW_CFA_set_loc";
12916 case DW_CFA_advance_loc1:
12917 return "DW_CFA_advance_loc1";
12918 case DW_CFA_advance_loc2:
12919 return "DW_CFA_advance_loc2";
12920 case DW_CFA_advance_loc4:
12921 return "DW_CFA_advance_loc4";
12922 case DW_CFA_offset_extended:
12923 return "DW_CFA_offset_extended";
12924 case DW_CFA_restore_extended:
12925 return "DW_CFA_restore_extended";
12926 case DW_CFA_undefined:
12927 return "DW_CFA_undefined";
12928 case DW_CFA_same_value:
12929 return "DW_CFA_same_value";
12930 case DW_CFA_register:
12931 return "DW_CFA_register";
12932 case DW_CFA_remember_state:
12933 return "DW_CFA_remember_state";
12934 case DW_CFA_restore_state:
12935 return "DW_CFA_restore_state";
12936 case DW_CFA_def_cfa:
12937 return "DW_CFA_def_cfa";
12938 case DW_CFA_def_cfa_register:
12939 return "DW_CFA_def_cfa_register";
12940 case DW_CFA_def_cfa_offset:
12941 return "DW_CFA_def_cfa_offset";
12942 /* DWARF 3. */
12943 case DW_CFA_def_cfa_expression:
12944 return "DW_CFA_def_cfa_expression";
12945 case DW_CFA_expression:
12946 return "DW_CFA_expression";
12947 case DW_CFA_offset_extended_sf:
12948 return "DW_CFA_offset_extended_sf";
12949 case DW_CFA_def_cfa_sf:
12950 return "DW_CFA_def_cfa_sf";
12951 case DW_CFA_def_cfa_offset_sf:
12952 return "DW_CFA_def_cfa_offset_sf";
12953 case DW_CFA_val_offset:
12954 return "DW_CFA_val_offset";
12955 case DW_CFA_val_offset_sf:
12956 return "DW_CFA_val_offset_sf";
12957 case DW_CFA_val_expression:
12958 return "DW_CFA_val_expression";
12959 /* SGI/MIPS specific. */
12960 case DW_CFA_MIPS_advance_loc8:
12961 return "DW_CFA_MIPS_advance_loc8";
12962 /* GNU extensions. */
12963 case DW_CFA_GNU_window_save:
12964 return "DW_CFA_GNU_window_save";
12965 case DW_CFA_GNU_args_size:
12966 return "DW_CFA_GNU_args_size";
12967 case DW_CFA_GNU_negative_offset_extended:
12968 return "DW_CFA_GNU_negative_offset_extended";
12969 default:
12970 return "DW_CFA_<unknown>";
12971 }
12972 }
12973 #endif
12974
12975 static void
12976 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12977 {
12978 unsigned int i;
12979
12980 print_spaces (indent, f);
12981 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12982 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12983
12984 if (die->parent != NULL)
12985 {
12986 print_spaces (indent, f);
12987 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12988 die->parent->offset);
12989 }
12990
12991 print_spaces (indent, f);
12992 fprintf_unfiltered (f, " has children: %s\n",
12993 dwarf_bool_name (die->child != NULL));
12994
12995 print_spaces (indent, f);
12996 fprintf_unfiltered (f, " attributes:\n");
12997
12998 for (i = 0; i < die->num_attrs; ++i)
12999 {
13000 print_spaces (indent, f);
13001 fprintf_unfiltered (f, " %s (%s) ",
13002 dwarf_attr_name (die->attrs[i].name),
13003 dwarf_form_name (die->attrs[i].form));
13004
13005 switch (die->attrs[i].form)
13006 {
13007 case DW_FORM_ref_addr:
13008 case DW_FORM_addr:
13009 fprintf_unfiltered (f, "address: ");
13010 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13011 break;
13012 case DW_FORM_block2:
13013 case DW_FORM_block4:
13014 case DW_FORM_block:
13015 case DW_FORM_block1:
13016 fprintf_unfiltered (f, "block: size %d",
13017 DW_BLOCK (&die->attrs[i])->size);
13018 break;
13019 case DW_FORM_exprloc:
13020 fprintf_unfiltered (f, "expression: size %u",
13021 DW_BLOCK (&die->attrs[i])->size);
13022 break;
13023 case DW_FORM_ref1:
13024 case DW_FORM_ref2:
13025 case DW_FORM_ref4:
13026 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13027 (long) (DW_ADDR (&die->attrs[i])));
13028 break;
13029 case DW_FORM_data1:
13030 case DW_FORM_data2:
13031 case DW_FORM_data4:
13032 case DW_FORM_data8:
13033 case DW_FORM_udata:
13034 case DW_FORM_sdata:
13035 fprintf_unfiltered (f, "constant: %s",
13036 pulongest (DW_UNSND (&die->attrs[i])));
13037 break;
13038 case DW_FORM_sec_offset:
13039 fprintf_unfiltered (f, "section offset: %s",
13040 pulongest (DW_UNSND (&die->attrs[i])));
13041 break;
13042 case DW_FORM_sig8:
13043 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13044 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13045 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
13046 else
13047 fprintf_unfiltered (f, "signatured type, offset: unknown");
13048 break;
13049 case DW_FORM_string:
13050 case DW_FORM_strp:
13051 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13052 DW_STRING (&die->attrs[i])
13053 ? DW_STRING (&die->attrs[i]) : "",
13054 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13055 break;
13056 case DW_FORM_flag:
13057 if (DW_UNSND (&die->attrs[i]))
13058 fprintf_unfiltered (f, "flag: TRUE");
13059 else
13060 fprintf_unfiltered (f, "flag: FALSE");
13061 break;
13062 case DW_FORM_flag_present:
13063 fprintf_unfiltered (f, "flag: TRUE");
13064 break;
13065 case DW_FORM_indirect:
13066 /* The reader will have reduced the indirect form to
13067 the "base form" so this form should not occur. */
13068 fprintf_unfiltered (f,
13069 "unexpected attribute form: DW_FORM_indirect");
13070 break;
13071 default:
13072 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13073 die->attrs[i].form);
13074 break;
13075 }
13076 fprintf_unfiltered (f, "\n");
13077 }
13078 }
13079
13080 static void
13081 dump_die_for_error (struct die_info *die)
13082 {
13083 dump_die_shallow (gdb_stderr, 0, die);
13084 }
13085
13086 static void
13087 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13088 {
13089 int indent = level * 4;
13090
13091 gdb_assert (die != NULL);
13092
13093 if (level >= max_level)
13094 return;
13095
13096 dump_die_shallow (f, indent, die);
13097
13098 if (die->child != NULL)
13099 {
13100 print_spaces (indent, f);
13101 fprintf_unfiltered (f, " Children:");
13102 if (level + 1 < max_level)
13103 {
13104 fprintf_unfiltered (f, "\n");
13105 dump_die_1 (f, level + 1, max_level, die->child);
13106 }
13107 else
13108 {
13109 fprintf_unfiltered (f,
13110 " [not printed, max nesting level reached]\n");
13111 }
13112 }
13113
13114 if (die->sibling != NULL && level > 0)
13115 {
13116 dump_die_1 (f, level, max_level, die->sibling);
13117 }
13118 }
13119
13120 /* This is called from the pdie macro in gdbinit.in.
13121 It's not static so gcc will keep a copy callable from gdb. */
13122
13123 void
13124 dump_die (struct die_info *die, int max_level)
13125 {
13126 dump_die_1 (gdb_stdlog, 0, max_level, die);
13127 }
13128
13129 static void
13130 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13131 {
13132 void **slot;
13133
13134 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13135
13136 *slot = die;
13137 }
13138
13139 static int
13140 is_ref_attr (struct attribute *attr)
13141 {
13142 switch (attr->form)
13143 {
13144 case DW_FORM_ref_addr:
13145 case DW_FORM_ref1:
13146 case DW_FORM_ref2:
13147 case DW_FORM_ref4:
13148 case DW_FORM_ref8:
13149 case DW_FORM_ref_udata:
13150 return 1;
13151 default:
13152 return 0;
13153 }
13154 }
13155
13156 static unsigned int
13157 dwarf2_get_ref_die_offset (struct attribute *attr)
13158 {
13159 if (is_ref_attr (attr))
13160 return DW_ADDR (attr);
13161
13162 complaint (&symfile_complaints,
13163 _("unsupported die ref attribute form: '%s'"),
13164 dwarf_form_name (attr->form));
13165 return 0;
13166 }
13167
13168 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13169 * the value held by the attribute is not constant. */
13170
13171 static LONGEST
13172 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13173 {
13174 if (attr->form == DW_FORM_sdata)
13175 return DW_SND (attr);
13176 else if (attr->form == DW_FORM_udata
13177 || attr->form == DW_FORM_data1
13178 || attr->form == DW_FORM_data2
13179 || attr->form == DW_FORM_data4
13180 || attr->form == DW_FORM_data8)
13181 return DW_UNSND (attr);
13182 else
13183 {
13184 complaint (&symfile_complaints,
13185 _("Attribute value is not a constant (%s)"),
13186 dwarf_form_name (attr->form));
13187 return default_value;
13188 }
13189 }
13190
13191 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
13192 unit and add it to our queue.
13193 The result is non-zero if PER_CU was queued, otherwise the result is zero
13194 meaning either PER_CU is already queued or it is already loaded. */
13195
13196 static int
13197 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13198 struct dwarf2_per_cu_data *per_cu)
13199 {
13200 /* We may arrive here during partial symbol reading, if we need full
13201 DIEs to process an unusual case (e.g. template arguments). Do
13202 not queue PER_CU, just tell our caller to load its DIEs. */
13203 if (dwarf2_per_objfile->reading_partial_symbols)
13204 {
13205 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13206 return 1;
13207 return 0;
13208 }
13209
13210 /* Mark the dependence relation so that we don't flush PER_CU
13211 too early. */
13212 dwarf2_add_dependence (this_cu, per_cu);
13213
13214 /* If it's already on the queue, we have nothing to do. */
13215 if (per_cu->queued)
13216 return 0;
13217
13218 /* If the compilation unit is already loaded, just mark it as
13219 used. */
13220 if (per_cu->cu != NULL)
13221 {
13222 per_cu->cu->last_used = 0;
13223 return 0;
13224 }
13225
13226 /* Add it to the queue. */
13227 queue_comp_unit (per_cu, this_cu->objfile);
13228
13229 return 1;
13230 }
13231
13232 /* Follow reference or signature attribute ATTR of SRC_DIE.
13233 On entry *REF_CU is the CU of SRC_DIE.
13234 On exit *REF_CU is the CU of the result. */
13235
13236 static struct die_info *
13237 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13238 struct dwarf2_cu **ref_cu)
13239 {
13240 struct die_info *die;
13241
13242 if (is_ref_attr (attr))
13243 die = follow_die_ref (src_die, attr, ref_cu);
13244 else if (attr->form == DW_FORM_sig8)
13245 die = follow_die_sig (src_die, attr, ref_cu);
13246 else
13247 {
13248 dump_die_for_error (src_die);
13249 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13250 (*ref_cu)->objfile->name);
13251 }
13252
13253 return die;
13254 }
13255
13256 /* Follow reference OFFSET.
13257 On entry *REF_CU is the CU of the source die referencing OFFSET.
13258 On exit *REF_CU is the CU of the result.
13259 Returns NULL if OFFSET is invalid. */
13260
13261 static struct die_info *
13262 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13263 {
13264 struct die_info temp_die;
13265 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13266
13267 gdb_assert (cu->per_cu != NULL);
13268
13269 target_cu = cu;
13270
13271 if (cu->per_cu->from_debug_types)
13272 {
13273 /* .debug_types CUs cannot reference anything outside their CU.
13274 If they need to, they have to reference a signatured type via
13275 DW_FORM_sig8. */
13276 if (! offset_in_cu_p (&cu->header, offset))
13277 return NULL;
13278 }
13279 else if (! offset_in_cu_p (&cu->header, offset))
13280 {
13281 struct dwarf2_per_cu_data *per_cu;
13282
13283 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13284
13285 /* If necessary, add it to the queue and load its DIEs. */
13286 if (maybe_queue_comp_unit (cu, per_cu))
13287 load_full_comp_unit (per_cu, cu->objfile);
13288
13289 target_cu = per_cu->cu;
13290 }
13291 else if (cu->dies == NULL)
13292 {
13293 /* We're loading full DIEs during partial symbol reading. */
13294 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13295 load_full_comp_unit (cu->per_cu, cu->objfile);
13296 }
13297
13298 *ref_cu = target_cu;
13299 temp_die.offset = offset;
13300 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13301 }
13302
13303 /* Follow reference attribute ATTR of SRC_DIE.
13304 On entry *REF_CU is the CU of SRC_DIE.
13305 On exit *REF_CU is the CU of the result. */
13306
13307 static struct die_info *
13308 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13309 struct dwarf2_cu **ref_cu)
13310 {
13311 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13312 struct dwarf2_cu *cu = *ref_cu;
13313 struct die_info *die;
13314
13315 die = follow_die_offset (offset, ref_cu);
13316 if (!die)
13317 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13318 "at 0x%x [in module %s]"),
13319 offset, src_die->offset, cu->objfile->name);
13320
13321 return die;
13322 }
13323
13324 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13325 value is intended for DW_OP_call*. */
13326
13327 struct dwarf2_locexpr_baton
13328 dwarf2_fetch_die_location_block (unsigned int offset,
13329 struct dwarf2_per_cu_data *per_cu,
13330 CORE_ADDR (*get_frame_pc) (void *baton),
13331 void *baton)
13332 {
13333 struct dwarf2_cu *cu = per_cu->cu;
13334 struct die_info *die;
13335 struct attribute *attr;
13336 struct dwarf2_locexpr_baton retval;
13337
13338 dw2_setup (per_cu->objfile);
13339
13340 die = follow_die_offset (offset, &cu);
13341 if (!die)
13342 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13343 offset, per_cu->cu->objfile->name);
13344
13345 attr = dwarf2_attr (die, DW_AT_location, cu);
13346 if (!attr)
13347 {
13348 /* DWARF: "If there is no such attribute, then there is no effect.". */
13349
13350 retval.data = NULL;
13351 retval.size = 0;
13352 }
13353 else if (attr_form_is_section_offset (attr))
13354 {
13355 struct dwarf2_loclist_baton loclist_baton;
13356 CORE_ADDR pc = (*get_frame_pc) (baton);
13357 size_t size;
13358
13359 fill_in_loclist_baton (cu, &loclist_baton, attr);
13360
13361 retval.data = dwarf2_find_location_expression (&loclist_baton,
13362 &size, pc);
13363 retval.size = size;
13364 }
13365 else
13366 {
13367 if (!attr_form_is_block (attr))
13368 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13369 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13370 offset, per_cu->cu->objfile->name);
13371
13372 retval.data = DW_BLOCK (attr)->data;
13373 retval.size = DW_BLOCK (attr)->size;
13374 }
13375 retval.per_cu = cu->per_cu;
13376 return retval;
13377 }
13378
13379 /* Follow the signature attribute ATTR in SRC_DIE.
13380 On entry *REF_CU is the CU of SRC_DIE.
13381 On exit *REF_CU is the CU of the result. */
13382
13383 static struct die_info *
13384 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13385 struct dwarf2_cu **ref_cu)
13386 {
13387 struct objfile *objfile = (*ref_cu)->objfile;
13388 struct die_info temp_die;
13389 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13390 struct dwarf2_cu *sig_cu;
13391 struct die_info *die;
13392
13393 /* sig_type will be NULL if the signatured type is missing from
13394 the debug info. */
13395 if (sig_type == NULL)
13396 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13397 "at 0x%x [in module %s]"),
13398 src_die->offset, objfile->name);
13399
13400 /* If necessary, add it to the queue and load its DIEs. */
13401
13402 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13403 read_signatured_type (objfile, sig_type);
13404
13405 gdb_assert (sig_type->per_cu.cu != NULL);
13406
13407 sig_cu = sig_type->per_cu.cu;
13408 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13409 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13410 if (die)
13411 {
13412 *ref_cu = sig_cu;
13413 return die;
13414 }
13415
13416 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13417 "from DIE at 0x%x [in module %s]"),
13418 sig_type->type_offset, src_die->offset, objfile->name);
13419 }
13420
13421 /* Given an offset of a signatured type, return its signatured_type. */
13422
13423 static struct signatured_type *
13424 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13425 {
13426 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13427 unsigned int length, initial_length_size;
13428 unsigned int sig_offset;
13429 struct signatured_type find_entry, *type_sig;
13430
13431 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13432 sig_offset = (initial_length_size
13433 + 2 /*version*/
13434 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13435 + 1 /*address_size*/);
13436 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13437 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13438
13439 /* This is only used to lookup previously recorded types.
13440 If we didn't find it, it's our bug. */
13441 gdb_assert (type_sig != NULL);
13442 gdb_assert (offset == type_sig->offset);
13443
13444 return type_sig;
13445 }
13446
13447 /* Read in signatured type at OFFSET and build its CU and die(s). */
13448
13449 static void
13450 read_signatured_type_at_offset (struct objfile *objfile,
13451 unsigned int offset)
13452 {
13453 struct signatured_type *type_sig;
13454
13455 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13456
13457 /* We have the section offset, but we need the signature to do the
13458 hash table lookup. */
13459 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13460
13461 gdb_assert (type_sig->per_cu.cu == NULL);
13462
13463 read_signatured_type (objfile, type_sig);
13464
13465 gdb_assert (type_sig->per_cu.cu != NULL);
13466 }
13467
13468 /* Read in a signatured type and build its CU and DIEs. */
13469
13470 static void
13471 read_signatured_type (struct objfile *objfile,
13472 struct signatured_type *type_sig)
13473 {
13474 gdb_byte *types_ptr;
13475 struct die_reader_specs reader_specs;
13476 struct dwarf2_cu *cu;
13477 ULONGEST signature;
13478 struct cleanup *back_to, *free_cu_cleanup;
13479
13480 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13481 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13482
13483 gdb_assert (type_sig->per_cu.cu == NULL);
13484
13485 cu = xmalloc (sizeof (*cu));
13486 init_one_comp_unit (cu, objfile);
13487
13488 type_sig->per_cu.cu = cu;
13489 cu->per_cu = &type_sig->per_cu;
13490
13491 /* If an error occurs while loading, release our storage. */
13492 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13493
13494 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13495 types_ptr, objfile->obfd);
13496 gdb_assert (signature == type_sig->signature);
13497
13498 cu->die_hash
13499 = htab_create_alloc_ex (cu->header.length / 12,
13500 die_hash,
13501 die_eq,
13502 NULL,
13503 &cu->comp_unit_obstack,
13504 hashtab_obstack_allocate,
13505 dummy_obstack_deallocate);
13506
13507 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13508 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13509
13510 init_cu_die_reader (&reader_specs, cu);
13511
13512 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13513 NULL /*parent*/);
13514
13515 /* We try not to read any attributes in this function, because not
13516 all objfiles needed for references have been loaded yet, and symbol
13517 table processing isn't initialized. But we have to set the CU language,
13518 or we won't be able to build types correctly. */
13519 prepare_one_comp_unit (cu, cu->dies);
13520
13521 do_cleanups (back_to);
13522
13523 /* We've successfully allocated this compilation unit. Let our caller
13524 clean it up when finished with it. */
13525 discard_cleanups (free_cu_cleanup);
13526
13527 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13528 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13529 }
13530
13531 /* Decode simple location descriptions.
13532 Given a pointer to a dwarf block that defines a location, compute
13533 the location and return the value.
13534
13535 NOTE drow/2003-11-18: This function is called in two situations
13536 now: for the address of static or global variables (partial symbols
13537 only) and for offsets into structures which are expected to be
13538 (more or less) constant. The partial symbol case should go away,
13539 and only the constant case should remain. That will let this
13540 function complain more accurately. A few special modes are allowed
13541 without complaint for global variables (for instance, global
13542 register values and thread-local values).
13543
13544 A location description containing no operations indicates that the
13545 object is optimized out. The return value is 0 for that case.
13546 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13547 callers will only want a very basic result and this can become a
13548 complaint.
13549
13550 Note that stack[0] is unused except as a default error return. */
13551
13552 static CORE_ADDR
13553 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13554 {
13555 struct objfile *objfile = cu->objfile;
13556 int i;
13557 int size = blk->size;
13558 gdb_byte *data = blk->data;
13559 CORE_ADDR stack[64];
13560 int stacki;
13561 unsigned int bytes_read, unsnd;
13562 gdb_byte op;
13563
13564 i = 0;
13565 stacki = 0;
13566 stack[stacki] = 0;
13567 stack[++stacki] = 0;
13568
13569 while (i < size)
13570 {
13571 op = data[i++];
13572 switch (op)
13573 {
13574 case DW_OP_lit0:
13575 case DW_OP_lit1:
13576 case DW_OP_lit2:
13577 case DW_OP_lit3:
13578 case DW_OP_lit4:
13579 case DW_OP_lit5:
13580 case DW_OP_lit6:
13581 case DW_OP_lit7:
13582 case DW_OP_lit8:
13583 case DW_OP_lit9:
13584 case DW_OP_lit10:
13585 case DW_OP_lit11:
13586 case DW_OP_lit12:
13587 case DW_OP_lit13:
13588 case DW_OP_lit14:
13589 case DW_OP_lit15:
13590 case DW_OP_lit16:
13591 case DW_OP_lit17:
13592 case DW_OP_lit18:
13593 case DW_OP_lit19:
13594 case DW_OP_lit20:
13595 case DW_OP_lit21:
13596 case DW_OP_lit22:
13597 case DW_OP_lit23:
13598 case DW_OP_lit24:
13599 case DW_OP_lit25:
13600 case DW_OP_lit26:
13601 case DW_OP_lit27:
13602 case DW_OP_lit28:
13603 case DW_OP_lit29:
13604 case DW_OP_lit30:
13605 case DW_OP_lit31:
13606 stack[++stacki] = op - DW_OP_lit0;
13607 break;
13608
13609 case DW_OP_reg0:
13610 case DW_OP_reg1:
13611 case DW_OP_reg2:
13612 case DW_OP_reg3:
13613 case DW_OP_reg4:
13614 case DW_OP_reg5:
13615 case DW_OP_reg6:
13616 case DW_OP_reg7:
13617 case DW_OP_reg8:
13618 case DW_OP_reg9:
13619 case DW_OP_reg10:
13620 case DW_OP_reg11:
13621 case DW_OP_reg12:
13622 case DW_OP_reg13:
13623 case DW_OP_reg14:
13624 case DW_OP_reg15:
13625 case DW_OP_reg16:
13626 case DW_OP_reg17:
13627 case DW_OP_reg18:
13628 case DW_OP_reg19:
13629 case DW_OP_reg20:
13630 case DW_OP_reg21:
13631 case DW_OP_reg22:
13632 case DW_OP_reg23:
13633 case DW_OP_reg24:
13634 case DW_OP_reg25:
13635 case DW_OP_reg26:
13636 case DW_OP_reg27:
13637 case DW_OP_reg28:
13638 case DW_OP_reg29:
13639 case DW_OP_reg30:
13640 case DW_OP_reg31:
13641 stack[++stacki] = op - DW_OP_reg0;
13642 if (i < size)
13643 dwarf2_complex_location_expr_complaint ();
13644 break;
13645
13646 case DW_OP_regx:
13647 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13648 i += bytes_read;
13649 stack[++stacki] = unsnd;
13650 if (i < size)
13651 dwarf2_complex_location_expr_complaint ();
13652 break;
13653
13654 case DW_OP_addr:
13655 stack[++stacki] = read_address (objfile->obfd, &data[i],
13656 cu, &bytes_read);
13657 i += bytes_read;
13658 break;
13659
13660 case DW_OP_const1u:
13661 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13662 i += 1;
13663 break;
13664
13665 case DW_OP_const1s:
13666 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13667 i += 1;
13668 break;
13669
13670 case DW_OP_const2u:
13671 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13672 i += 2;
13673 break;
13674
13675 case DW_OP_const2s:
13676 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13677 i += 2;
13678 break;
13679
13680 case DW_OP_const4u:
13681 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13682 i += 4;
13683 break;
13684
13685 case DW_OP_const4s:
13686 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13687 i += 4;
13688 break;
13689
13690 case DW_OP_constu:
13691 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13692 &bytes_read);
13693 i += bytes_read;
13694 break;
13695
13696 case DW_OP_consts:
13697 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13698 i += bytes_read;
13699 break;
13700
13701 case DW_OP_dup:
13702 stack[stacki + 1] = stack[stacki];
13703 stacki++;
13704 break;
13705
13706 case DW_OP_plus:
13707 stack[stacki - 1] += stack[stacki];
13708 stacki--;
13709 break;
13710
13711 case DW_OP_plus_uconst:
13712 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13713 &bytes_read);
13714 i += bytes_read;
13715 break;
13716
13717 case DW_OP_minus:
13718 stack[stacki - 1] -= stack[stacki];
13719 stacki--;
13720 break;
13721
13722 case DW_OP_deref:
13723 /* If we're not the last op, then we definitely can't encode
13724 this using GDB's address_class enum. This is valid for partial
13725 global symbols, although the variable's address will be bogus
13726 in the psymtab. */
13727 if (i < size)
13728 dwarf2_complex_location_expr_complaint ();
13729 break;
13730
13731 case DW_OP_GNU_push_tls_address:
13732 /* The top of the stack has the offset from the beginning
13733 of the thread control block at which the variable is located. */
13734 /* Nothing should follow this operator, so the top of stack would
13735 be returned. */
13736 /* This is valid for partial global symbols, but the variable's
13737 address will be bogus in the psymtab. */
13738 if (i < size)
13739 dwarf2_complex_location_expr_complaint ();
13740 break;
13741
13742 case DW_OP_GNU_uninit:
13743 break;
13744
13745 default:
13746 {
13747 const char *name = dwarf_stack_op_name (op);
13748
13749 if (name)
13750 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13751 name);
13752 else
13753 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
13754 op);
13755 }
13756
13757 return (stack[stacki]);
13758 }
13759
13760 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13761 outside of the allocated space. Also enforce minimum>0. */
13762 if (stacki >= ARRAY_SIZE (stack) - 1)
13763 {
13764 complaint (&symfile_complaints,
13765 _("location description stack overflow"));
13766 return 0;
13767 }
13768
13769 if (stacki <= 0)
13770 {
13771 complaint (&symfile_complaints,
13772 _("location description stack underflow"));
13773 return 0;
13774 }
13775 }
13776 return (stack[stacki]);
13777 }
13778
13779 /* memory allocation interface */
13780
13781 static struct dwarf_block *
13782 dwarf_alloc_block (struct dwarf2_cu *cu)
13783 {
13784 struct dwarf_block *blk;
13785
13786 blk = (struct dwarf_block *)
13787 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13788 return (blk);
13789 }
13790
13791 static struct abbrev_info *
13792 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13793 {
13794 struct abbrev_info *abbrev;
13795
13796 abbrev = (struct abbrev_info *)
13797 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13798 memset (abbrev, 0, sizeof (struct abbrev_info));
13799 return (abbrev);
13800 }
13801
13802 static struct die_info *
13803 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13804 {
13805 struct die_info *die;
13806 size_t size = sizeof (struct die_info);
13807
13808 if (num_attrs > 1)
13809 size += (num_attrs - 1) * sizeof (struct attribute);
13810
13811 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13812 memset (die, 0, sizeof (struct die_info));
13813 return (die);
13814 }
13815
13816 \f
13817 /* Macro support. */
13818
13819 /* Return the full name of file number I in *LH's file name table.
13820 Use COMP_DIR as the name of the current directory of the
13821 compilation. The result is allocated using xmalloc; the caller is
13822 responsible for freeing it. */
13823 static char *
13824 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13825 {
13826 /* Is the file number a valid index into the line header's file name
13827 table? Remember that file numbers start with one, not zero. */
13828 if (1 <= file && file <= lh->num_file_names)
13829 {
13830 struct file_entry *fe = &lh->file_names[file - 1];
13831
13832 if (IS_ABSOLUTE_PATH (fe->name))
13833 return xstrdup (fe->name);
13834 else
13835 {
13836 const char *dir;
13837 int dir_len;
13838 char *full_name;
13839
13840 if (fe->dir_index)
13841 dir = lh->include_dirs[fe->dir_index - 1];
13842 else
13843 dir = comp_dir;
13844
13845 if (dir)
13846 {
13847 dir_len = strlen (dir);
13848 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13849 strcpy (full_name, dir);
13850 full_name[dir_len] = '/';
13851 strcpy (full_name + dir_len + 1, fe->name);
13852 return full_name;
13853 }
13854 else
13855 return xstrdup (fe->name);
13856 }
13857 }
13858 else
13859 {
13860 /* The compiler produced a bogus file number. We can at least
13861 record the macro definitions made in the file, even if we
13862 won't be able to find the file by name. */
13863 char fake_name[80];
13864
13865 sprintf (fake_name, "<bad macro file number %d>", file);
13866
13867 complaint (&symfile_complaints,
13868 _("bad file number in macro information (%d)"),
13869 file);
13870
13871 return xstrdup (fake_name);
13872 }
13873 }
13874
13875
13876 static struct macro_source_file *
13877 macro_start_file (int file, int line,
13878 struct macro_source_file *current_file,
13879 const char *comp_dir,
13880 struct line_header *lh, struct objfile *objfile)
13881 {
13882 /* The full name of this source file. */
13883 char *full_name = file_full_name (file, lh, comp_dir);
13884
13885 /* We don't create a macro table for this compilation unit
13886 at all until we actually get a filename. */
13887 if (! pending_macros)
13888 pending_macros = new_macro_table (&objfile->objfile_obstack,
13889 objfile->macro_cache);
13890
13891 if (! current_file)
13892 /* If we have no current file, then this must be the start_file
13893 directive for the compilation unit's main source file. */
13894 current_file = macro_set_main (pending_macros, full_name);
13895 else
13896 current_file = macro_include (current_file, line, full_name);
13897
13898 xfree (full_name);
13899
13900 return current_file;
13901 }
13902
13903
13904 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13905 followed by a null byte. */
13906 static char *
13907 copy_string (const char *buf, int len)
13908 {
13909 char *s = xmalloc (len + 1);
13910
13911 memcpy (s, buf, len);
13912 s[len] = '\0';
13913 return s;
13914 }
13915
13916
13917 static const char *
13918 consume_improper_spaces (const char *p, const char *body)
13919 {
13920 if (*p == ' ')
13921 {
13922 complaint (&symfile_complaints,
13923 _("macro definition contains spaces "
13924 "in formal argument list:\n`%s'"),
13925 body);
13926
13927 while (*p == ' ')
13928 p++;
13929 }
13930
13931 return p;
13932 }
13933
13934
13935 static void
13936 parse_macro_definition (struct macro_source_file *file, int line,
13937 const char *body)
13938 {
13939 const char *p;
13940
13941 /* The body string takes one of two forms. For object-like macro
13942 definitions, it should be:
13943
13944 <macro name> " " <definition>
13945
13946 For function-like macro definitions, it should be:
13947
13948 <macro name> "() " <definition>
13949 or
13950 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13951
13952 Spaces may appear only where explicitly indicated, and in the
13953 <definition>.
13954
13955 The Dwarf 2 spec says that an object-like macro's name is always
13956 followed by a space, but versions of GCC around March 2002 omit
13957 the space when the macro's definition is the empty string.
13958
13959 The Dwarf 2 spec says that there should be no spaces between the
13960 formal arguments in a function-like macro's formal argument list,
13961 but versions of GCC around March 2002 include spaces after the
13962 commas. */
13963
13964
13965 /* Find the extent of the macro name. The macro name is terminated
13966 by either a space or null character (for an object-like macro) or
13967 an opening paren (for a function-like macro). */
13968 for (p = body; *p; p++)
13969 if (*p == ' ' || *p == '(')
13970 break;
13971
13972 if (*p == ' ' || *p == '\0')
13973 {
13974 /* It's an object-like macro. */
13975 int name_len = p - body;
13976 char *name = copy_string (body, name_len);
13977 const char *replacement;
13978
13979 if (*p == ' ')
13980 replacement = body + name_len + 1;
13981 else
13982 {
13983 dwarf2_macro_malformed_definition_complaint (body);
13984 replacement = body + name_len;
13985 }
13986
13987 macro_define_object (file, line, name, replacement);
13988
13989 xfree (name);
13990 }
13991 else if (*p == '(')
13992 {
13993 /* It's a function-like macro. */
13994 char *name = copy_string (body, p - body);
13995 int argc = 0;
13996 int argv_size = 1;
13997 char **argv = xmalloc (argv_size * sizeof (*argv));
13998
13999 p++;
14000
14001 p = consume_improper_spaces (p, body);
14002
14003 /* Parse the formal argument list. */
14004 while (*p && *p != ')')
14005 {
14006 /* Find the extent of the current argument name. */
14007 const char *arg_start = p;
14008
14009 while (*p && *p != ',' && *p != ')' && *p != ' ')
14010 p++;
14011
14012 if (! *p || p == arg_start)
14013 dwarf2_macro_malformed_definition_complaint (body);
14014 else
14015 {
14016 /* Make sure argv has room for the new argument. */
14017 if (argc >= argv_size)
14018 {
14019 argv_size *= 2;
14020 argv = xrealloc (argv, argv_size * sizeof (*argv));
14021 }
14022
14023 argv[argc++] = copy_string (arg_start, p - arg_start);
14024 }
14025
14026 p = consume_improper_spaces (p, body);
14027
14028 /* Consume the comma, if present. */
14029 if (*p == ',')
14030 {
14031 p++;
14032
14033 p = consume_improper_spaces (p, body);
14034 }
14035 }
14036
14037 if (*p == ')')
14038 {
14039 p++;
14040
14041 if (*p == ' ')
14042 /* Perfectly formed definition, no complaints. */
14043 macro_define_function (file, line, name,
14044 argc, (const char **) argv,
14045 p + 1);
14046 else if (*p == '\0')
14047 {
14048 /* Complain, but do define it. */
14049 dwarf2_macro_malformed_definition_complaint (body);
14050 macro_define_function (file, line, name,
14051 argc, (const char **) argv,
14052 p);
14053 }
14054 else
14055 /* Just complain. */
14056 dwarf2_macro_malformed_definition_complaint (body);
14057 }
14058 else
14059 /* Just complain. */
14060 dwarf2_macro_malformed_definition_complaint (body);
14061
14062 xfree (name);
14063 {
14064 int i;
14065
14066 for (i = 0; i < argc; i++)
14067 xfree (argv[i]);
14068 }
14069 xfree (argv);
14070 }
14071 else
14072 dwarf2_macro_malformed_definition_complaint (body);
14073 }
14074
14075
14076 static void
14077 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14078 char *comp_dir, bfd *abfd,
14079 struct dwarf2_cu *cu)
14080 {
14081 gdb_byte *mac_ptr, *mac_end;
14082 struct macro_source_file *current_file = 0;
14083 enum dwarf_macinfo_record_type macinfo_type;
14084 int at_commandline;
14085
14086 dwarf2_read_section (dwarf2_per_objfile->objfile,
14087 &dwarf2_per_objfile->macinfo);
14088 if (dwarf2_per_objfile->macinfo.buffer == NULL)
14089 {
14090 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
14091 return;
14092 }
14093
14094 /* First pass: Find the name of the base filename.
14095 This filename is needed in order to process all macros whose definition
14096 (or undefinition) comes from the command line. These macros are defined
14097 before the first DW_MACINFO_start_file entry, and yet still need to be
14098 associated to the base file.
14099
14100 To determine the base file name, we scan the macro definitions until we
14101 reach the first DW_MACINFO_start_file entry. We then initialize
14102 CURRENT_FILE accordingly so that any macro definition found before the
14103 first DW_MACINFO_start_file can still be associated to the base file. */
14104
14105 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14106 mac_end = dwarf2_per_objfile->macinfo.buffer
14107 + dwarf2_per_objfile->macinfo.size;
14108
14109 do
14110 {
14111 /* Do we at least have room for a macinfo type byte? */
14112 if (mac_ptr >= mac_end)
14113 {
14114 /* Complaint is printed during the second pass as GDB will probably
14115 stop the first pass earlier upon finding
14116 DW_MACINFO_start_file. */
14117 break;
14118 }
14119
14120 macinfo_type = read_1_byte (abfd, mac_ptr);
14121 mac_ptr++;
14122
14123 switch (macinfo_type)
14124 {
14125 /* A zero macinfo type indicates the end of the macro
14126 information. */
14127 case 0:
14128 break;
14129
14130 case DW_MACINFO_define:
14131 case DW_MACINFO_undef:
14132 /* Only skip the data by MAC_PTR. */
14133 {
14134 unsigned int bytes_read;
14135
14136 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14137 mac_ptr += bytes_read;
14138 read_direct_string (abfd, mac_ptr, &bytes_read);
14139 mac_ptr += bytes_read;
14140 }
14141 break;
14142
14143 case DW_MACINFO_start_file:
14144 {
14145 unsigned int bytes_read;
14146 int line, file;
14147
14148 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14149 mac_ptr += bytes_read;
14150 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14151 mac_ptr += bytes_read;
14152
14153 current_file = macro_start_file (file, line, current_file,
14154 comp_dir, lh, cu->objfile);
14155 }
14156 break;
14157
14158 case DW_MACINFO_end_file:
14159 /* No data to skip by MAC_PTR. */
14160 break;
14161
14162 case DW_MACINFO_vendor_ext:
14163 /* Only skip the data by MAC_PTR. */
14164 {
14165 unsigned int bytes_read;
14166
14167 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14168 mac_ptr += bytes_read;
14169 read_direct_string (abfd, mac_ptr, &bytes_read);
14170 mac_ptr += bytes_read;
14171 }
14172 break;
14173
14174 default:
14175 break;
14176 }
14177 } while (macinfo_type != 0 && current_file == NULL);
14178
14179 /* Second pass: Process all entries.
14180
14181 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14182 command-line macro definitions/undefinitions. This flag is unset when we
14183 reach the first DW_MACINFO_start_file entry. */
14184
14185 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14186
14187 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14188 GDB is still reading the definitions from command line. First
14189 DW_MACINFO_start_file will need to be ignored as it was already executed
14190 to create CURRENT_FILE for the main source holding also the command line
14191 definitions. On first met DW_MACINFO_start_file this flag is reset to
14192 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14193
14194 at_commandline = 1;
14195
14196 do
14197 {
14198 /* Do we at least have room for a macinfo type byte? */
14199 if (mac_ptr >= mac_end)
14200 {
14201 dwarf2_macros_too_long_complaint ();
14202 break;
14203 }
14204
14205 macinfo_type = read_1_byte (abfd, mac_ptr);
14206 mac_ptr++;
14207
14208 switch (macinfo_type)
14209 {
14210 /* A zero macinfo type indicates the end of the macro
14211 information. */
14212 case 0:
14213 break;
14214
14215 case DW_MACINFO_define:
14216 case DW_MACINFO_undef:
14217 {
14218 unsigned int bytes_read;
14219 int line;
14220 char *body;
14221
14222 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14223 mac_ptr += bytes_read;
14224 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14225 mac_ptr += bytes_read;
14226
14227 if (! current_file)
14228 {
14229 /* DWARF violation as no main source is present. */
14230 complaint (&symfile_complaints,
14231 _("debug info with no main source gives macro %s "
14232 "on line %d: %s"),
14233 macinfo_type == DW_MACINFO_define ?
14234 _("definition") :
14235 macinfo_type == DW_MACINFO_undef ?
14236 _("undefinition") :
14237 _("something-or-other"), line, body);
14238 break;
14239 }
14240 if ((line == 0 && !at_commandline)
14241 || (line != 0 && at_commandline))
14242 complaint (&symfile_complaints,
14243 _("debug info gives %s macro %s with %s line %d: %s"),
14244 at_commandline ? _("command-line") : _("in-file"),
14245 macinfo_type == DW_MACINFO_define ?
14246 _("definition") :
14247 macinfo_type == DW_MACINFO_undef ?
14248 _("undefinition") :
14249 _("something-or-other"),
14250 line == 0 ? _("zero") : _("non-zero"), line, body);
14251
14252 if (macinfo_type == DW_MACINFO_define)
14253 parse_macro_definition (current_file, line, body);
14254 else if (macinfo_type == DW_MACINFO_undef)
14255 macro_undef (current_file, line, body);
14256 }
14257 break;
14258
14259 case DW_MACINFO_start_file:
14260 {
14261 unsigned int bytes_read;
14262 int line, file;
14263
14264 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14265 mac_ptr += bytes_read;
14266 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14267 mac_ptr += bytes_read;
14268
14269 if ((line == 0 && !at_commandline)
14270 || (line != 0 && at_commandline))
14271 complaint (&symfile_complaints,
14272 _("debug info gives source %d included "
14273 "from %s at %s line %d"),
14274 file, at_commandline ? _("command-line") : _("file"),
14275 line == 0 ? _("zero") : _("non-zero"), line);
14276
14277 if (at_commandline)
14278 {
14279 /* This DW_MACINFO_start_file was executed in the pass one. */
14280 at_commandline = 0;
14281 }
14282 else
14283 current_file = macro_start_file (file, line,
14284 current_file, comp_dir,
14285 lh, cu->objfile);
14286 }
14287 break;
14288
14289 case DW_MACINFO_end_file:
14290 if (! current_file)
14291 complaint (&symfile_complaints,
14292 _("macro debug info has an unmatched "
14293 "`close_file' directive"));
14294 else
14295 {
14296 current_file = current_file->included_by;
14297 if (! current_file)
14298 {
14299 enum dwarf_macinfo_record_type next_type;
14300
14301 /* GCC circa March 2002 doesn't produce the zero
14302 type byte marking the end of the compilation
14303 unit. Complain if it's not there, but exit no
14304 matter what. */
14305
14306 /* Do we at least have room for a macinfo type byte? */
14307 if (mac_ptr >= mac_end)
14308 {
14309 dwarf2_macros_too_long_complaint ();
14310 return;
14311 }
14312
14313 /* We don't increment mac_ptr here, so this is just
14314 a look-ahead. */
14315 next_type = read_1_byte (abfd, mac_ptr);
14316 if (next_type != 0)
14317 complaint (&symfile_complaints,
14318 _("no terminating 0-type entry for "
14319 "macros in `.debug_macinfo' section"));
14320
14321 return;
14322 }
14323 }
14324 break;
14325
14326 case DW_MACINFO_vendor_ext:
14327 {
14328 unsigned int bytes_read;
14329 int constant;
14330
14331 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14332 mac_ptr += bytes_read;
14333 read_direct_string (abfd, mac_ptr, &bytes_read);
14334 mac_ptr += bytes_read;
14335
14336 /* We don't recognize any vendor extensions. */
14337 }
14338 break;
14339 }
14340 } while (macinfo_type != 0);
14341 }
14342
14343 /* Check if the attribute's form is a DW_FORM_block*
14344 if so return true else false. */
14345 static int
14346 attr_form_is_block (struct attribute *attr)
14347 {
14348 return (attr == NULL ? 0 :
14349 attr->form == DW_FORM_block1
14350 || attr->form == DW_FORM_block2
14351 || attr->form == DW_FORM_block4
14352 || attr->form == DW_FORM_block
14353 || attr->form == DW_FORM_exprloc);
14354 }
14355
14356 /* Return non-zero if ATTR's value is a section offset --- classes
14357 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14358 You may use DW_UNSND (attr) to retrieve such offsets.
14359
14360 Section 7.5.4, "Attribute Encodings", explains that no attribute
14361 may have a value that belongs to more than one of these classes; it
14362 would be ambiguous if we did, because we use the same forms for all
14363 of them. */
14364 static int
14365 attr_form_is_section_offset (struct attribute *attr)
14366 {
14367 return (attr->form == DW_FORM_data4
14368 || attr->form == DW_FORM_data8
14369 || attr->form == DW_FORM_sec_offset);
14370 }
14371
14372
14373 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14374 zero otherwise. When this function returns true, you can apply
14375 dwarf2_get_attr_constant_value to it.
14376
14377 However, note that for some attributes you must check
14378 attr_form_is_section_offset before using this test. DW_FORM_data4
14379 and DW_FORM_data8 are members of both the constant class, and of
14380 the classes that contain offsets into other debug sections
14381 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14382 that, if an attribute's can be either a constant or one of the
14383 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14384 taken as section offsets, not constants. */
14385 static int
14386 attr_form_is_constant (struct attribute *attr)
14387 {
14388 switch (attr->form)
14389 {
14390 case DW_FORM_sdata:
14391 case DW_FORM_udata:
14392 case DW_FORM_data1:
14393 case DW_FORM_data2:
14394 case DW_FORM_data4:
14395 case DW_FORM_data8:
14396 return 1;
14397 default:
14398 return 0;
14399 }
14400 }
14401
14402 /* A helper function that fills in a dwarf2_loclist_baton. */
14403
14404 static void
14405 fill_in_loclist_baton (struct dwarf2_cu *cu,
14406 struct dwarf2_loclist_baton *baton,
14407 struct attribute *attr)
14408 {
14409 dwarf2_read_section (dwarf2_per_objfile->objfile,
14410 &dwarf2_per_objfile->loc);
14411
14412 baton->per_cu = cu->per_cu;
14413 gdb_assert (baton->per_cu);
14414 /* We don't know how long the location list is, but make sure we
14415 don't run off the edge of the section. */
14416 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14417 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14418 baton->base_address = cu->base_address;
14419 }
14420
14421 static void
14422 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14423 struct dwarf2_cu *cu)
14424 {
14425 if (attr_form_is_section_offset (attr)
14426 /* ".debug_loc" may not exist at all, or the offset may be outside
14427 the section. If so, fall through to the complaint in the
14428 other branch. */
14429 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
14430 &dwarf2_per_objfile->loc))
14431 {
14432 struct dwarf2_loclist_baton *baton;
14433
14434 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14435 sizeof (struct dwarf2_loclist_baton));
14436
14437 fill_in_loclist_baton (cu, baton, attr);
14438
14439 if (cu->base_known == 0)
14440 complaint (&symfile_complaints,
14441 _("Location list used without "
14442 "specifying the CU base address."));
14443
14444 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14445 SYMBOL_LOCATION_BATON (sym) = baton;
14446 }
14447 else
14448 {
14449 struct dwarf2_locexpr_baton *baton;
14450
14451 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14452 sizeof (struct dwarf2_locexpr_baton));
14453 baton->per_cu = cu->per_cu;
14454 gdb_assert (baton->per_cu);
14455
14456 if (attr_form_is_block (attr))
14457 {
14458 /* Note that we're just copying the block's data pointer
14459 here, not the actual data. We're still pointing into the
14460 info_buffer for SYM's objfile; right now we never release
14461 that buffer, but when we do clean up properly this may
14462 need to change. */
14463 baton->size = DW_BLOCK (attr)->size;
14464 baton->data = DW_BLOCK (attr)->data;
14465 }
14466 else
14467 {
14468 dwarf2_invalid_attrib_class_complaint ("location description",
14469 SYMBOL_NATURAL_NAME (sym));
14470 baton->size = 0;
14471 baton->data = NULL;
14472 }
14473
14474 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14475 SYMBOL_LOCATION_BATON (sym) = baton;
14476 }
14477 }
14478
14479 /* Return the OBJFILE associated with the compilation unit CU. If CU
14480 came from a separate debuginfo file, then the master objfile is
14481 returned. */
14482
14483 struct objfile *
14484 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14485 {
14486 struct objfile *objfile = per_cu->objfile;
14487
14488 /* Return the master objfile, so that we can report and look up the
14489 correct file containing this variable. */
14490 if (objfile->separate_debug_objfile_backlink)
14491 objfile = objfile->separate_debug_objfile_backlink;
14492
14493 return objfile;
14494 }
14495
14496 /* Return the address size given in the compilation unit header for CU. */
14497
14498 CORE_ADDR
14499 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14500 {
14501 if (per_cu->cu)
14502 return per_cu->cu->header.addr_size;
14503 else
14504 {
14505 /* If the CU is not currently read in, we re-read its header. */
14506 struct objfile *objfile = per_cu->objfile;
14507 struct dwarf2_per_objfile *per_objfile
14508 = objfile_data (objfile, dwarf2_objfile_data_key);
14509 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14510 struct comp_unit_head cu_header;
14511
14512 memset (&cu_header, 0, sizeof cu_header);
14513 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14514 return cu_header.addr_size;
14515 }
14516 }
14517
14518 /* Return the offset size given in the compilation unit header for CU. */
14519
14520 int
14521 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14522 {
14523 if (per_cu->cu)
14524 return per_cu->cu->header.offset_size;
14525 else
14526 {
14527 /* If the CU is not currently read in, we re-read its header. */
14528 struct objfile *objfile = per_cu->objfile;
14529 struct dwarf2_per_objfile *per_objfile
14530 = objfile_data (objfile, dwarf2_objfile_data_key);
14531 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14532 struct comp_unit_head cu_header;
14533
14534 memset (&cu_header, 0, sizeof cu_header);
14535 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14536 return cu_header.offset_size;
14537 }
14538 }
14539
14540 /* Return the text offset of the CU. The returned offset comes from
14541 this CU's objfile. If this objfile came from a separate debuginfo
14542 file, then the offset may be different from the corresponding
14543 offset in the parent objfile. */
14544
14545 CORE_ADDR
14546 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14547 {
14548 struct objfile *objfile = per_cu->objfile;
14549
14550 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14551 }
14552
14553 /* Locate the .debug_info compilation unit from CU's objfile which contains
14554 the DIE at OFFSET. Raises an error on failure. */
14555
14556 static struct dwarf2_per_cu_data *
14557 dwarf2_find_containing_comp_unit (unsigned int offset,
14558 struct objfile *objfile)
14559 {
14560 struct dwarf2_per_cu_data *this_cu;
14561 int low, high;
14562
14563 low = 0;
14564 high = dwarf2_per_objfile->n_comp_units - 1;
14565 while (high > low)
14566 {
14567 int mid = low + (high - low) / 2;
14568
14569 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14570 high = mid;
14571 else
14572 low = mid + 1;
14573 }
14574 gdb_assert (low == high);
14575 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14576 {
14577 if (low == 0)
14578 error (_("Dwarf Error: could not find partial DIE containing "
14579 "offset 0x%lx [in module %s]"),
14580 (long) offset, bfd_get_filename (objfile->obfd));
14581
14582 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14583 return dwarf2_per_objfile->all_comp_units[low-1];
14584 }
14585 else
14586 {
14587 this_cu = dwarf2_per_objfile->all_comp_units[low];
14588 if (low == dwarf2_per_objfile->n_comp_units - 1
14589 && offset >= this_cu->offset + this_cu->length)
14590 error (_("invalid dwarf2 offset %u"), offset);
14591 gdb_assert (offset < this_cu->offset + this_cu->length);
14592 return this_cu;
14593 }
14594 }
14595
14596 /* Locate the compilation unit from OBJFILE which is located at exactly
14597 OFFSET. Raises an error on failure. */
14598
14599 static struct dwarf2_per_cu_data *
14600 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14601 {
14602 struct dwarf2_per_cu_data *this_cu;
14603
14604 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14605 if (this_cu->offset != offset)
14606 error (_("no compilation unit with offset %u."), offset);
14607 return this_cu;
14608 }
14609
14610 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14611
14612 static void
14613 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14614 {
14615 memset (cu, 0, sizeof (*cu));
14616 cu->objfile = objfile;
14617 obstack_init (&cu->comp_unit_obstack);
14618 }
14619
14620 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14621
14622 static void
14623 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14624 {
14625 struct attribute *attr;
14626
14627 /* Set the language we're debugging. */
14628 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14629 if (attr)
14630 set_cu_language (DW_UNSND (attr), cu);
14631 else
14632 set_cu_language (language_minimal, cu);
14633 }
14634
14635 /* Release one cached compilation unit, CU. We unlink it from the tree
14636 of compilation units, but we don't remove it from the read_in_chain;
14637 the caller is responsible for that.
14638 NOTE: DATA is a void * because this function is also used as a
14639 cleanup routine. */
14640
14641 static void
14642 free_one_comp_unit (void *data)
14643 {
14644 struct dwarf2_cu *cu = data;
14645
14646 if (cu->per_cu != NULL)
14647 cu->per_cu->cu = NULL;
14648 cu->per_cu = NULL;
14649
14650 obstack_free (&cu->comp_unit_obstack, NULL);
14651
14652 xfree (cu);
14653 }
14654
14655 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14656 when we're finished with it. We can't free the pointer itself, but be
14657 sure to unlink it from the cache. Also release any associated storage
14658 and perform cache maintenance.
14659
14660 Only used during partial symbol parsing. */
14661
14662 static void
14663 free_stack_comp_unit (void *data)
14664 {
14665 struct dwarf2_cu *cu = data;
14666
14667 obstack_free (&cu->comp_unit_obstack, NULL);
14668 cu->partial_dies = NULL;
14669
14670 if (cu->per_cu != NULL)
14671 {
14672 /* This compilation unit is on the stack in our caller, so we
14673 should not xfree it. Just unlink it. */
14674 cu->per_cu->cu = NULL;
14675 cu->per_cu = NULL;
14676
14677 /* If we had a per-cu pointer, then we may have other compilation
14678 units loaded, so age them now. */
14679 age_cached_comp_units ();
14680 }
14681 }
14682
14683 /* Free all cached compilation units. */
14684
14685 static void
14686 free_cached_comp_units (void *data)
14687 {
14688 struct dwarf2_per_cu_data *per_cu, **last_chain;
14689
14690 per_cu = dwarf2_per_objfile->read_in_chain;
14691 last_chain = &dwarf2_per_objfile->read_in_chain;
14692 while (per_cu != NULL)
14693 {
14694 struct dwarf2_per_cu_data *next_cu;
14695
14696 next_cu = per_cu->cu->read_in_chain;
14697
14698 free_one_comp_unit (per_cu->cu);
14699 *last_chain = next_cu;
14700
14701 per_cu = next_cu;
14702 }
14703 }
14704
14705 /* Increase the age counter on each cached compilation unit, and free
14706 any that are too old. */
14707
14708 static void
14709 age_cached_comp_units (void)
14710 {
14711 struct dwarf2_per_cu_data *per_cu, **last_chain;
14712
14713 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14714 per_cu = dwarf2_per_objfile->read_in_chain;
14715 while (per_cu != NULL)
14716 {
14717 per_cu->cu->last_used ++;
14718 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14719 dwarf2_mark (per_cu->cu);
14720 per_cu = per_cu->cu->read_in_chain;
14721 }
14722
14723 per_cu = dwarf2_per_objfile->read_in_chain;
14724 last_chain = &dwarf2_per_objfile->read_in_chain;
14725 while (per_cu != NULL)
14726 {
14727 struct dwarf2_per_cu_data *next_cu;
14728
14729 next_cu = per_cu->cu->read_in_chain;
14730
14731 if (!per_cu->cu->mark)
14732 {
14733 free_one_comp_unit (per_cu->cu);
14734 *last_chain = next_cu;
14735 }
14736 else
14737 last_chain = &per_cu->cu->read_in_chain;
14738
14739 per_cu = next_cu;
14740 }
14741 }
14742
14743 /* Remove a single compilation unit from the cache. */
14744
14745 static void
14746 free_one_cached_comp_unit (void *target_cu)
14747 {
14748 struct dwarf2_per_cu_data *per_cu, **last_chain;
14749
14750 per_cu = dwarf2_per_objfile->read_in_chain;
14751 last_chain = &dwarf2_per_objfile->read_in_chain;
14752 while (per_cu != NULL)
14753 {
14754 struct dwarf2_per_cu_data *next_cu;
14755
14756 next_cu = per_cu->cu->read_in_chain;
14757
14758 if (per_cu->cu == target_cu)
14759 {
14760 free_one_comp_unit (per_cu->cu);
14761 *last_chain = next_cu;
14762 break;
14763 }
14764 else
14765 last_chain = &per_cu->cu->read_in_chain;
14766
14767 per_cu = next_cu;
14768 }
14769 }
14770
14771 /* Release all extra memory associated with OBJFILE. */
14772
14773 void
14774 dwarf2_free_objfile (struct objfile *objfile)
14775 {
14776 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14777
14778 if (dwarf2_per_objfile == NULL)
14779 return;
14780
14781 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14782 free_cached_comp_units (NULL);
14783
14784 if (dwarf2_per_objfile->quick_file_names_table)
14785 htab_delete (dwarf2_per_objfile->quick_file_names_table);
14786
14787 /* Everything else should be on the objfile obstack. */
14788 }
14789
14790 /* A pair of DIE offset and GDB type pointer. We store these
14791 in a hash table separate from the DIEs, and preserve them
14792 when the DIEs are flushed out of cache. */
14793
14794 struct dwarf2_offset_and_type
14795 {
14796 unsigned int offset;
14797 struct type *type;
14798 };
14799
14800 /* Hash function for a dwarf2_offset_and_type. */
14801
14802 static hashval_t
14803 offset_and_type_hash (const void *item)
14804 {
14805 const struct dwarf2_offset_and_type *ofs = item;
14806
14807 return ofs->offset;
14808 }
14809
14810 /* Equality function for a dwarf2_offset_and_type. */
14811
14812 static int
14813 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14814 {
14815 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14816 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14817
14818 return ofs_lhs->offset == ofs_rhs->offset;
14819 }
14820
14821 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14822 table if necessary. For convenience, return TYPE.
14823
14824 The DIEs reading must have careful ordering to:
14825 * Not cause infite loops trying to read in DIEs as a prerequisite for
14826 reading current DIE.
14827 * Not trying to dereference contents of still incompletely read in types
14828 while reading in other DIEs.
14829 * Enable referencing still incompletely read in types just by a pointer to
14830 the type without accessing its fields.
14831
14832 Therefore caller should follow these rules:
14833 * Try to fetch any prerequisite types we may need to build this DIE type
14834 before building the type and calling set_die_type.
14835 * After building type call set_die_type for current DIE as soon as
14836 possible before fetching more types to complete the current type.
14837 * Make the type as complete as possible before fetching more types. */
14838
14839 static struct type *
14840 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14841 {
14842 struct dwarf2_offset_and_type **slot, ofs;
14843 struct objfile *objfile = cu->objfile;
14844 htab_t *type_hash_ptr;
14845
14846 /* For Ada types, make sure that the gnat-specific data is always
14847 initialized (if not already set). There are a few types where
14848 we should not be doing so, because the type-specific area is
14849 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14850 where the type-specific area is used to store the floatformat).
14851 But this is not a problem, because the gnat-specific information
14852 is actually not needed for these types. */
14853 if (need_gnat_info (cu)
14854 && TYPE_CODE (type) != TYPE_CODE_FUNC
14855 && TYPE_CODE (type) != TYPE_CODE_FLT
14856 && !HAVE_GNAT_AUX_INFO (type))
14857 INIT_GNAT_SPECIFIC (type);
14858
14859 if (cu->per_cu->from_debug_types)
14860 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14861 else
14862 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14863
14864 if (*type_hash_ptr == NULL)
14865 {
14866 *type_hash_ptr
14867 = htab_create_alloc_ex (127,
14868 offset_and_type_hash,
14869 offset_and_type_eq,
14870 NULL,
14871 &objfile->objfile_obstack,
14872 hashtab_obstack_allocate,
14873 dummy_obstack_deallocate);
14874 }
14875
14876 ofs.offset = die->offset;
14877 ofs.type = type;
14878 slot = (struct dwarf2_offset_and_type **)
14879 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14880 if (*slot)
14881 complaint (&symfile_complaints,
14882 _("A problem internal to GDB: DIE 0x%x has type already set"),
14883 die->offset);
14884 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14885 **slot = ofs;
14886 return type;
14887 }
14888
14889 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14890 table, or return NULL if the die does not have a saved type. */
14891
14892 static struct type *
14893 get_die_type_at_offset (unsigned int offset,
14894 struct dwarf2_per_cu_data *per_cu)
14895 {
14896 struct dwarf2_offset_and_type *slot, ofs;
14897 htab_t type_hash;
14898
14899 if (per_cu->from_debug_types)
14900 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14901 else
14902 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14903 if (type_hash == NULL)
14904 return NULL;
14905
14906 ofs.offset = offset;
14907 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14908 if (slot)
14909 return slot->type;
14910 else
14911 return NULL;
14912 }
14913
14914 /* Look up the type for DIE in the appropriate type_hash table,
14915 or return NULL if DIE does not have a saved type. */
14916
14917 static struct type *
14918 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14919 {
14920 return get_die_type_at_offset (die->offset, cu->per_cu);
14921 }
14922
14923 /* Add a dependence relationship from CU to REF_PER_CU. */
14924
14925 static void
14926 dwarf2_add_dependence (struct dwarf2_cu *cu,
14927 struct dwarf2_per_cu_data *ref_per_cu)
14928 {
14929 void **slot;
14930
14931 if (cu->dependencies == NULL)
14932 cu->dependencies
14933 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14934 NULL, &cu->comp_unit_obstack,
14935 hashtab_obstack_allocate,
14936 dummy_obstack_deallocate);
14937
14938 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14939 if (*slot == NULL)
14940 *slot = ref_per_cu;
14941 }
14942
14943 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14944 Set the mark field in every compilation unit in the
14945 cache that we must keep because we are keeping CU. */
14946
14947 static int
14948 dwarf2_mark_helper (void **slot, void *data)
14949 {
14950 struct dwarf2_per_cu_data *per_cu;
14951
14952 per_cu = (struct dwarf2_per_cu_data *) *slot;
14953 if (per_cu->cu->mark)
14954 return 1;
14955 per_cu->cu->mark = 1;
14956
14957 if (per_cu->cu->dependencies != NULL)
14958 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14959
14960 return 1;
14961 }
14962
14963 /* Set the mark field in CU and in every other compilation unit in the
14964 cache that we must keep because we are keeping CU. */
14965
14966 static void
14967 dwarf2_mark (struct dwarf2_cu *cu)
14968 {
14969 if (cu->mark)
14970 return;
14971 cu->mark = 1;
14972 if (cu->dependencies != NULL)
14973 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14974 }
14975
14976 static void
14977 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14978 {
14979 while (per_cu)
14980 {
14981 per_cu->cu->mark = 0;
14982 per_cu = per_cu->cu->read_in_chain;
14983 }
14984 }
14985
14986 /* Trivial hash function for partial_die_info: the hash value of a DIE
14987 is its offset in .debug_info for this objfile. */
14988
14989 static hashval_t
14990 partial_die_hash (const void *item)
14991 {
14992 const struct partial_die_info *part_die = item;
14993
14994 return part_die->offset;
14995 }
14996
14997 /* Trivial comparison function for partial_die_info structures: two DIEs
14998 are equal if they have the same offset. */
14999
15000 static int
15001 partial_die_eq (const void *item_lhs, const void *item_rhs)
15002 {
15003 const struct partial_die_info *part_die_lhs = item_lhs;
15004 const struct partial_die_info *part_die_rhs = item_rhs;
15005
15006 return part_die_lhs->offset == part_die_rhs->offset;
15007 }
15008
15009 static struct cmd_list_element *set_dwarf2_cmdlist;
15010 static struct cmd_list_element *show_dwarf2_cmdlist;
15011
15012 static void
15013 set_dwarf2_cmd (char *args, int from_tty)
15014 {
15015 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15016 }
15017
15018 static void
15019 show_dwarf2_cmd (char *args, int from_tty)
15020 {
15021 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15022 }
15023
15024 /* If section described by INFO was mmapped, munmap it now. */
15025
15026 static void
15027 munmap_section_buffer (struct dwarf2_section_info *info)
15028 {
15029 if (info->was_mmapped)
15030 {
15031 #ifdef HAVE_MMAP
15032 intptr_t begin = (intptr_t) info->buffer;
15033 intptr_t map_begin = begin & ~(pagesize - 1);
15034 size_t map_length = info->size + begin - map_begin;
15035
15036 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
15037 #else
15038 /* Without HAVE_MMAP, we should never be here to begin with. */
15039 gdb_assert_not_reached ("no mmap support");
15040 #endif
15041 }
15042 }
15043
15044 /* munmap debug sections for OBJFILE, if necessary. */
15045
15046 static void
15047 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
15048 {
15049 struct dwarf2_per_objfile *data = d;
15050
15051 /* This is sorted according to the order they're defined in to make it easier
15052 to keep in sync. */
15053 munmap_section_buffer (&data->info);
15054 munmap_section_buffer (&data->abbrev);
15055 munmap_section_buffer (&data->line);
15056 munmap_section_buffer (&data->loc);
15057 munmap_section_buffer (&data->macinfo);
15058 munmap_section_buffer (&data->str);
15059 munmap_section_buffer (&data->ranges);
15060 munmap_section_buffer (&data->types);
15061 munmap_section_buffer (&data->frame);
15062 munmap_section_buffer (&data->eh_frame);
15063 munmap_section_buffer (&data->gdb_index);
15064 }
15065
15066 \f
15067 /* The "save gdb-index" command. */
15068
15069 /* The contents of the hash table we create when building the string
15070 table. */
15071 struct strtab_entry
15072 {
15073 offset_type offset;
15074 const char *str;
15075 };
15076
15077 /* Hash function for a strtab_entry. */
15078
15079 static hashval_t
15080 hash_strtab_entry (const void *e)
15081 {
15082 const struct strtab_entry *entry = e;
15083 return mapped_index_string_hash (entry->str);
15084 }
15085
15086 /* Equality function for a strtab_entry. */
15087
15088 static int
15089 eq_strtab_entry (const void *a, const void *b)
15090 {
15091 const struct strtab_entry *ea = a;
15092 const struct strtab_entry *eb = b;
15093 return !strcmp (ea->str, eb->str);
15094 }
15095
15096 /* Create a strtab_entry hash table. */
15097
15098 static htab_t
15099 create_strtab (void)
15100 {
15101 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15102 xfree, xcalloc, xfree);
15103 }
15104
15105 /* Add a string to the constant pool. Return the string's offset in
15106 host order. */
15107
15108 static offset_type
15109 add_string (htab_t table, struct obstack *cpool, const char *str)
15110 {
15111 void **slot;
15112 struct strtab_entry entry;
15113 struct strtab_entry *result;
15114
15115 entry.str = str;
15116 slot = htab_find_slot (table, &entry, INSERT);
15117 if (*slot)
15118 result = *slot;
15119 else
15120 {
15121 result = XNEW (struct strtab_entry);
15122 result->offset = obstack_object_size (cpool);
15123 result->str = str;
15124 obstack_grow_str0 (cpool, str);
15125 *slot = result;
15126 }
15127 return result->offset;
15128 }
15129
15130 /* An entry in the symbol table. */
15131 struct symtab_index_entry
15132 {
15133 /* The name of the symbol. */
15134 const char *name;
15135 /* The offset of the name in the constant pool. */
15136 offset_type index_offset;
15137 /* A sorted vector of the indices of all the CUs that hold an object
15138 of this name. */
15139 VEC (offset_type) *cu_indices;
15140 };
15141
15142 /* The symbol table. This is a power-of-2-sized hash table. */
15143 struct mapped_symtab
15144 {
15145 offset_type n_elements;
15146 offset_type size;
15147 struct symtab_index_entry **data;
15148 };
15149
15150 /* Hash function for a symtab_index_entry. */
15151
15152 static hashval_t
15153 hash_symtab_entry (const void *e)
15154 {
15155 const struct symtab_index_entry *entry = e;
15156 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15157 sizeof (offset_type) * VEC_length (offset_type,
15158 entry->cu_indices),
15159 0);
15160 }
15161
15162 /* Equality function for a symtab_index_entry. */
15163
15164 static int
15165 eq_symtab_entry (const void *a, const void *b)
15166 {
15167 const struct symtab_index_entry *ea = a;
15168 const struct symtab_index_entry *eb = b;
15169 int len = VEC_length (offset_type, ea->cu_indices);
15170 if (len != VEC_length (offset_type, eb->cu_indices))
15171 return 0;
15172 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15173 VEC_address (offset_type, eb->cu_indices),
15174 sizeof (offset_type) * len);
15175 }
15176
15177 /* Destroy a symtab_index_entry. */
15178
15179 static void
15180 delete_symtab_entry (void *p)
15181 {
15182 struct symtab_index_entry *entry = p;
15183 VEC_free (offset_type, entry->cu_indices);
15184 xfree (entry);
15185 }
15186
15187 /* Create a hash table holding symtab_index_entry objects. */
15188
15189 static htab_t
15190 create_symbol_hash_table (void)
15191 {
15192 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15193 delete_symtab_entry, xcalloc, xfree);
15194 }
15195
15196 /* Create a new mapped symtab object. */
15197
15198 static struct mapped_symtab *
15199 create_mapped_symtab (void)
15200 {
15201 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15202 symtab->n_elements = 0;
15203 symtab->size = 1024;
15204 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15205 return symtab;
15206 }
15207
15208 /* Destroy a mapped_symtab. */
15209
15210 static void
15211 cleanup_mapped_symtab (void *p)
15212 {
15213 struct mapped_symtab *symtab = p;
15214 /* The contents of the array are freed when the other hash table is
15215 destroyed. */
15216 xfree (symtab->data);
15217 xfree (symtab);
15218 }
15219
15220 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15221 the slot. */
15222
15223 static struct symtab_index_entry **
15224 find_slot (struct mapped_symtab *symtab, const char *name)
15225 {
15226 offset_type index, step, hash = mapped_index_string_hash (name);
15227
15228 index = hash & (symtab->size - 1);
15229 step = ((hash * 17) & (symtab->size - 1)) | 1;
15230
15231 for (;;)
15232 {
15233 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15234 return &symtab->data[index];
15235 index = (index + step) & (symtab->size - 1);
15236 }
15237 }
15238
15239 /* Expand SYMTAB's hash table. */
15240
15241 static void
15242 hash_expand (struct mapped_symtab *symtab)
15243 {
15244 offset_type old_size = symtab->size;
15245 offset_type i;
15246 struct symtab_index_entry **old_entries = symtab->data;
15247
15248 symtab->size *= 2;
15249 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15250
15251 for (i = 0; i < old_size; ++i)
15252 {
15253 if (old_entries[i])
15254 {
15255 struct symtab_index_entry **slot = find_slot (symtab,
15256 old_entries[i]->name);
15257 *slot = old_entries[i];
15258 }
15259 }
15260
15261 xfree (old_entries);
15262 }
15263
15264 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15265 is the index of the CU in which the symbol appears. */
15266
15267 static void
15268 add_index_entry (struct mapped_symtab *symtab, const char *name,
15269 offset_type cu_index)
15270 {
15271 struct symtab_index_entry **slot;
15272
15273 ++symtab->n_elements;
15274 if (4 * symtab->n_elements / 3 >= symtab->size)
15275 hash_expand (symtab);
15276
15277 slot = find_slot (symtab, name);
15278 if (!*slot)
15279 {
15280 *slot = XNEW (struct symtab_index_entry);
15281 (*slot)->name = name;
15282 (*slot)->cu_indices = NULL;
15283 }
15284 /* Don't push an index twice. Due to how we add entries we only
15285 have to check the last one. */
15286 if (VEC_empty (offset_type, (*slot)->cu_indices)
15287 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15288 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15289 }
15290
15291 /* Add a vector of indices to the constant pool. */
15292
15293 static offset_type
15294 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15295 struct symtab_index_entry *entry)
15296 {
15297 void **slot;
15298
15299 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15300 if (!*slot)
15301 {
15302 offset_type len = VEC_length (offset_type, entry->cu_indices);
15303 offset_type val = MAYBE_SWAP (len);
15304 offset_type iter;
15305 int i;
15306
15307 *slot = entry;
15308 entry->index_offset = obstack_object_size (cpool);
15309
15310 obstack_grow (cpool, &val, sizeof (val));
15311 for (i = 0;
15312 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15313 ++i)
15314 {
15315 val = MAYBE_SWAP (iter);
15316 obstack_grow (cpool, &val, sizeof (val));
15317 }
15318 }
15319 else
15320 {
15321 struct symtab_index_entry *old_entry = *slot;
15322 entry->index_offset = old_entry->index_offset;
15323 entry = old_entry;
15324 }
15325 return entry->index_offset;
15326 }
15327
15328 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15329 constant pool entries going into the obstack CPOOL. */
15330
15331 static void
15332 write_hash_table (struct mapped_symtab *symtab,
15333 struct obstack *output, struct obstack *cpool)
15334 {
15335 offset_type i;
15336 htab_t symbol_hash_table;
15337 htab_t str_table;
15338
15339 symbol_hash_table = create_symbol_hash_table ();
15340 str_table = create_strtab ();
15341
15342 /* We add all the index vectors to the constant pool first, to
15343 ensure alignment is ok. */
15344 for (i = 0; i < symtab->size; ++i)
15345 {
15346 if (symtab->data[i])
15347 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15348 }
15349
15350 /* Now write out the hash table. */
15351 for (i = 0; i < symtab->size; ++i)
15352 {
15353 offset_type str_off, vec_off;
15354
15355 if (symtab->data[i])
15356 {
15357 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15358 vec_off = symtab->data[i]->index_offset;
15359 }
15360 else
15361 {
15362 /* While 0 is a valid constant pool index, it is not valid
15363 to have 0 for both offsets. */
15364 str_off = 0;
15365 vec_off = 0;
15366 }
15367
15368 str_off = MAYBE_SWAP (str_off);
15369 vec_off = MAYBE_SWAP (vec_off);
15370
15371 obstack_grow (output, &str_off, sizeof (str_off));
15372 obstack_grow (output, &vec_off, sizeof (vec_off));
15373 }
15374
15375 htab_delete (str_table);
15376 htab_delete (symbol_hash_table);
15377 }
15378
15379 /* Struct to map psymtab to CU index in the index file. */
15380 struct psymtab_cu_index_map
15381 {
15382 struct partial_symtab *psymtab;
15383 unsigned int cu_index;
15384 };
15385
15386 static hashval_t
15387 hash_psymtab_cu_index (const void *item)
15388 {
15389 const struct psymtab_cu_index_map *map = item;
15390
15391 return htab_hash_pointer (map->psymtab);
15392 }
15393
15394 static int
15395 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15396 {
15397 const struct psymtab_cu_index_map *lhs = item_lhs;
15398 const struct psymtab_cu_index_map *rhs = item_rhs;
15399
15400 return lhs->psymtab == rhs->psymtab;
15401 }
15402
15403 /* Helper struct for building the address table. */
15404 struct addrmap_index_data
15405 {
15406 struct objfile *objfile;
15407 struct obstack *addr_obstack;
15408 htab_t cu_index_htab;
15409
15410 /* Non-zero if the previous_* fields are valid.
15411 We can't write an entry until we see the next entry (since it is only then
15412 that we know the end of the entry). */
15413 int previous_valid;
15414 /* Index of the CU in the table of all CUs in the index file. */
15415 unsigned int previous_cu_index;
15416 /* Start address of the CU. */
15417 CORE_ADDR previous_cu_start;
15418 };
15419
15420 /* Write an address entry to OBSTACK. */
15421
15422 static void
15423 add_address_entry (struct objfile *objfile, struct obstack *obstack,
15424 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
15425 {
15426 offset_type cu_index_to_write;
15427 char addr[8];
15428 CORE_ADDR baseaddr;
15429
15430 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15431
15432 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15433 obstack_grow (obstack, addr, 8);
15434 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15435 obstack_grow (obstack, addr, 8);
15436 cu_index_to_write = MAYBE_SWAP (cu_index);
15437 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15438 }
15439
15440 /* Worker function for traversing an addrmap to build the address table. */
15441
15442 static int
15443 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15444 {
15445 struct addrmap_index_data *data = datap;
15446 struct partial_symtab *pst = obj;
15447 offset_type cu_index;
15448 void **slot;
15449
15450 if (data->previous_valid)
15451 add_address_entry (data->objfile, data->addr_obstack,
15452 data->previous_cu_start, start_addr,
15453 data->previous_cu_index);
15454
15455 data->previous_cu_start = start_addr;
15456 if (pst != NULL)
15457 {
15458 struct psymtab_cu_index_map find_map, *map;
15459 find_map.psymtab = pst;
15460 map = htab_find (data->cu_index_htab, &find_map);
15461 gdb_assert (map != NULL);
15462 data->previous_cu_index = map->cu_index;
15463 data->previous_valid = 1;
15464 }
15465 else
15466 data->previous_valid = 0;
15467
15468 return 0;
15469 }
15470
15471 /* Write OBJFILE's address map to OBSTACK.
15472 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15473 in the index file. */
15474
15475 static void
15476 write_address_map (struct objfile *objfile, struct obstack *obstack,
15477 htab_t cu_index_htab)
15478 {
15479 struct addrmap_index_data addrmap_index_data;
15480
15481 /* When writing the address table, we have to cope with the fact that
15482 the addrmap iterator only provides the start of a region; we have to
15483 wait until the next invocation to get the start of the next region. */
15484
15485 addrmap_index_data.objfile = objfile;
15486 addrmap_index_data.addr_obstack = obstack;
15487 addrmap_index_data.cu_index_htab = cu_index_htab;
15488 addrmap_index_data.previous_valid = 0;
15489
15490 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15491 &addrmap_index_data);
15492
15493 /* It's highly unlikely the last entry (end address = 0xff...ff)
15494 is valid, but we should still handle it.
15495 The end address is recorded as the start of the next region, but that
15496 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15497 anyway. */
15498 if (addrmap_index_data.previous_valid)
15499 add_address_entry (objfile, obstack,
15500 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15501 addrmap_index_data.previous_cu_index);
15502 }
15503
15504 /* Add a list of partial symbols to SYMTAB. */
15505
15506 static void
15507 write_psymbols (struct mapped_symtab *symtab,
15508 htab_t psyms_seen,
15509 struct partial_symbol **psymp,
15510 int count,
15511 offset_type cu_index,
15512 int is_static)
15513 {
15514 for (; count-- > 0; ++psymp)
15515 {
15516 void **slot, *lookup;
15517
15518 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15519 error (_("Ada is not currently supported by the index"));
15520
15521 /* We only want to add a given psymbol once. However, we also
15522 want to account for whether it is global or static. So, we
15523 may add it twice, using slightly different values. */
15524 if (is_static)
15525 {
15526 uintptr_t val = 1 | (uintptr_t) *psymp;
15527
15528 lookup = (void *) val;
15529 }
15530 else
15531 lookup = *psymp;
15532
15533 /* Only add a given psymbol once. */
15534 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15535 if (!*slot)
15536 {
15537 *slot = lookup;
15538 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15539 }
15540 }
15541 }
15542
15543 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15544 exception if there is an error. */
15545
15546 static void
15547 write_obstack (FILE *file, struct obstack *obstack)
15548 {
15549 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15550 file)
15551 != obstack_object_size (obstack))
15552 error (_("couldn't data write to file"));
15553 }
15554
15555 /* Unlink a file if the argument is not NULL. */
15556
15557 static void
15558 unlink_if_set (void *p)
15559 {
15560 char **filename = p;
15561 if (*filename)
15562 unlink (*filename);
15563 }
15564
15565 /* A helper struct used when iterating over debug_types. */
15566 struct signatured_type_index_data
15567 {
15568 struct objfile *objfile;
15569 struct mapped_symtab *symtab;
15570 struct obstack *types_list;
15571 htab_t psyms_seen;
15572 int cu_index;
15573 };
15574
15575 /* A helper function that writes a single signatured_type to an
15576 obstack. */
15577
15578 static int
15579 write_one_signatured_type (void **slot, void *d)
15580 {
15581 struct signatured_type_index_data *info = d;
15582 struct signatured_type *entry = (struct signatured_type *) *slot;
15583 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15584 struct partial_symtab *psymtab = per_cu->v.psymtab;
15585 gdb_byte val[8];
15586
15587 write_psymbols (info->symtab,
15588 info->psyms_seen,
15589 info->objfile->global_psymbols.list
15590 + psymtab->globals_offset,
15591 psymtab->n_global_syms, info->cu_index,
15592 0);
15593 write_psymbols (info->symtab,
15594 info->psyms_seen,
15595 info->objfile->static_psymbols.list
15596 + psymtab->statics_offset,
15597 psymtab->n_static_syms, info->cu_index,
15598 1);
15599
15600 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15601 obstack_grow (info->types_list, val, 8);
15602 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15603 obstack_grow (info->types_list, val, 8);
15604 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15605 obstack_grow (info->types_list, val, 8);
15606
15607 ++info->cu_index;
15608
15609 return 1;
15610 }
15611
15612 /* A cleanup function for an htab_t. */
15613
15614 static void
15615 cleanup_htab (void *arg)
15616 {
15617 htab_delete (arg);
15618 }
15619
15620 /* Create an index file for OBJFILE in the directory DIR. */
15621
15622 static void
15623 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15624 {
15625 struct cleanup *cleanup;
15626 char *filename, *cleanup_filename;
15627 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15628 struct obstack cu_list, types_cu_list;
15629 int i;
15630 FILE *out_file;
15631 struct mapped_symtab *symtab;
15632 offset_type val, size_of_contents, total_len;
15633 struct stat st;
15634 char buf[8];
15635 htab_t psyms_seen;
15636 htab_t cu_index_htab;
15637 struct psymtab_cu_index_map *psymtab_cu_index_map;
15638
15639 if (!objfile->psymtabs)
15640 return;
15641 if (dwarf2_per_objfile->using_index)
15642 error (_("Cannot use an index to create the index"));
15643
15644 if (stat (objfile->name, &st) < 0)
15645 perror_with_name (objfile->name);
15646
15647 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15648 INDEX_SUFFIX, (char *) NULL);
15649 cleanup = make_cleanup (xfree, filename);
15650
15651 out_file = fopen (filename, "wb");
15652 if (!out_file)
15653 error (_("Can't open `%s' for writing"), filename);
15654
15655 cleanup_filename = filename;
15656 make_cleanup (unlink_if_set, &cleanup_filename);
15657
15658 symtab = create_mapped_symtab ();
15659 make_cleanup (cleanup_mapped_symtab, symtab);
15660
15661 obstack_init (&addr_obstack);
15662 make_cleanup_obstack_free (&addr_obstack);
15663
15664 obstack_init (&cu_list);
15665 make_cleanup_obstack_free (&cu_list);
15666
15667 obstack_init (&types_cu_list);
15668 make_cleanup_obstack_free (&types_cu_list);
15669
15670 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15671 NULL, xcalloc, xfree);
15672 make_cleanup (cleanup_htab, psyms_seen);
15673
15674 /* While we're scanning CU's create a table that maps a psymtab pointer
15675 (which is what addrmap records) to its index (which is what is recorded
15676 in the index file). This will later be needed to write the address
15677 table. */
15678 cu_index_htab = htab_create_alloc (100,
15679 hash_psymtab_cu_index,
15680 eq_psymtab_cu_index,
15681 NULL, xcalloc, xfree);
15682 make_cleanup (cleanup_htab, cu_index_htab);
15683 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15684 xmalloc (sizeof (struct psymtab_cu_index_map)
15685 * dwarf2_per_objfile->n_comp_units);
15686 make_cleanup (xfree, psymtab_cu_index_map);
15687
15688 /* The CU list is already sorted, so we don't need to do additional
15689 work here. Also, the debug_types entries do not appear in
15690 all_comp_units, but only in their own hash table. */
15691 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15692 {
15693 struct dwarf2_per_cu_data *per_cu
15694 = dwarf2_per_objfile->all_comp_units[i];
15695 struct partial_symtab *psymtab = per_cu->v.psymtab;
15696 gdb_byte val[8];
15697 struct psymtab_cu_index_map *map;
15698 void **slot;
15699
15700 write_psymbols (symtab,
15701 psyms_seen,
15702 objfile->global_psymbols.list + psymtab->globals_offset,
15703 psymtab->n_global_syms, i,
15704 0);
15705 write_psymbols (symtab,
15706 psyms_seen,
15707 objfile->static_psymbols.list + psymtab->statics_offset,
15708 psymtab->n_static_syms, i,
15709 1);
15710
15711 map = &psymtab_cu_index_map[i];
15712 map->psymtab = psymtab;
15713 map->cu_index = i;
15714 slot = htab_find_slot (cu_index_htab, map, INSERT);
15715 gdb_assert (slot != NULL);
15716 gdb_assert (*slot == NULL);
15717 *slot = map;
15718
15719 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15720 obstack_grow (&cu_list, val, 8);
15721 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15722 obstack_grow (&cu_list, val, 8);
15723 }
15724
15725 /* Dump the address map. */
15726 write_address_map (objfile, &addr_obstack, cu_index_htab);
15727
15728 /* Write out the .debug_type entries, if any. */
15729 if (dwarf2_per_objfile->signatured_types)
15730 {
15731 struct signatured_type_index_data sig_data;
15732
15733 sig_data.objfile = objfile;
15734 sig_data.symtab = symtab;
15735 sig_data.types_list = &types_cu_list;
15736 sig_data.psyms_seen = psyms_seen;
15737 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15738 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15739 write_one_signatured_type, &sig_data);
15740 }
15741
15742 obstack_init (&constant_pool);
15743 make_cleanup_obstack_free (&constant_pool);
15744 obstack_init (&symtab_obstack);
15745 make_cleanup_obstack_free (&symtab_obstack);
15746 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15747
15748 obstack_init (&contents);
15749 make_cleanup_obstack_free (&contents);
15750 size_of_contents = 6 * sizeof (offset_type);
15751 total_len = size_of_contents;
15752
15753 /* The version number. */
15754 val = MAYBE_SWAP (4);
15755 obstack_grow (&contents, &val, sizeof (val));
15756
15757 /* The offset of the CU list from the start of the file. */
15758 val = MAYBE_SWAP (total_len);
15759 obstack_grow (&contents, &val, sizeof (val));
15760 total_len += obstack_object_size (&cu_list);
15761
15762 /* The offset of the types CU list from the start of the file. */
15763 val = MAYBE_SWAP (total_len);
15764 obstack_grow (&contents, &val, sizeof (val));
15765 total_len += obstack_object_size (&types_cu_list);
15766
15767 /* The offset of the address table from the start of the file. */
15768 val = MAYBE_SWAP (total_len);
15769 obstack_grow (&contents, &val, sizeof (val));
15770 total_len += obstack_object_size (&addr_obstack);
15771
15772 /* The offset of the symbol table from the start of the file. */
15773 val = MAYBE_SWAP (total_len);
15774 obstack_grow (&contents, &val, sizeof (val));
15775 total_len += obstack_object_size (&symtab_obstack);
15776
15777 /* The offset of the constant pool from the start of the file. */
15778 val = MAYBE_SWAP (total_len);
15779 obstack_grow (&contents, &val, sizeof (val));
15780 total_len += obstack_object_size (&constant_pool);
15781
15782 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15783
15784 write_obstack (out_file, &contents);
15785 write_obstack (out_file, &cu_list);
15786 write_obstack (out_file, &types_cu_list);
15787 write_obstack (out_file, &addr_obstack);
15788 write_obstack (out_file, &symtab_obstack);
15789 write_obstack (out_file, &constant_pool);
15790
15791 fclose (out_file);
15792
15793 /* We want to keep the file, so we set cleanup_filename to NULL
15794 here. See unlink_if_set. */
15795 cleanup_filename = NULL;
15796
15797 do_cleanups (cleanup);
15798 }
15799
15800 /* The mapped index file format is designed to be directly mmap()able
15801 on any architecture. In most cases, a datum is represented using a
15802 little-endian 32-bit integer value, called an offset_type. Big
15803 endian machines must byte-swap the values before using them.
15804 Exceptions to this rule are noted. The data is laid out such that
15805 alignment is always respected.
15806
15807 A mapped index consists of several sections.
15808
15809 1. The file header. This is a sequence of values, of offset_type
15810 unless otherwise noted:
15811
15812 [0] The version number, currently 4. Versions 1, 2 and 3 are
15813 obsolete.
15814 [1] The offset, from the start of the file, of the CU list.
15815 [2] The offset, from the start of the file, of the types CU list.
15816 Note that this section can be empty, in which case this offset will
15817 be equal to the next offset.
15818 [3] The offset, from the start of the file, of the address section.
15819 [4] The offset, from the start of the file, of the symbol table.
15820 [5] The offset, from the start of the file, of the constant pool.
15821
15822 2. The CU list. This is a sequence of pairs of 64-bit
15823 little-endian values, sorted by the CU offset. The first element
15824 in each pair is the offset of a CU in the .debug_info section. The
15825 second element in each pair is the length of that CU. References
15826 to a CU elsewhere in the map are done using a CU index, which is
15827 just the 0-based index into this table. Note that if there are
15828 type CUs, then conceptually CUs and type CUs form a single list for
15829 the purposes of CU indices.
15830
15831 3. The types CU list. This is a sequence of triplets of 64-bit
15832 little-endian values. In a triplet, the first value is the CU
15833 offset, the second value is the type offset in the CU, and the
15834 third value is the type signature. The types CU list is not
15835 sorted.
15836
15837 4. The address section. The address section consists of a sequence
15838 of address entries. Each address entry has three elements.
15839 [0] The low address. This is a 64-bit little-endian value.
15840 [1] The high address. This is a 64-bit little-endian value.
15841 Like DW_AT_high_pc, the value is one byte beyond the end.
15842 [2] The CU index. This is an offset_type value.
15843
15844 5. The symbol table. This is a hash table. The size of the hash
15845 table is always a power of 2. The initial hash and the step are
15846 currently defined by the `find_slot' function.
15847
15848 Each slot in the hash table consists of a pair of offset_type
15849 values. The first value is the offset of the symbol's name in the
15850 constant pool. The second value is the offset of the CU vector in
15851 the constant pool.
15852
15853 If both values are 0, then this slot in the hash table is empty.
15854 This is ok because while 0 is a valid constant pool index, it
15855 cannot be a valid index for both a string and a CU vector.
15856
15857 A string in the constant pool is stored as a \0-terminated string,
15858 as you'd expect.
15859
15860 A CU vector in the constant pool is a sequence of offset_type
15861 values. The first value is the number of CU indices in the vector.
15862 Each subsequent value is the index of a CU in the CU list. This
15863 element in the hash table is used to indicate which CUs define the
15864 symbol.
15865
15866 6. The constant pool. This is simply a bunch of bytes. It is
15867 organized so that alignment is correct: CU vectors are stored
15868 first, followed by strings. */
15869
15870 static void
15871 save_gdb_index_command (char *arg, int from_tty)
15872 {
15873 struct objfile *objfile;
15874
15875 if (!arg || !*arg)
15876 error (_("usage: save gdb-index DIRECTORY"));
15877
15878 ALL_OBJFILES (objfile)
15879 {
15880 struct stat st;
15881
15882 /* If the objfile does not correspond to an actual file, skip it. */
15883 if (stat (objfile->name, &st) < 0)
15884 continue;
15885
15886 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15887 if (dwarf2_per_objfile)
15888 {
15889 volatile struct gdb_exception except;
15890
15891 TRY_CATCH (except, RETURN_MASK_ERROR)
15892 {
15893 write_psymtabs_to_index (objfile, arg);
15894 }
15895 if (except.reason < 0)
15896 exception_fprintf (gdb_stderr, except,
15897 _("Error while writing index for `%s': "),
15898 objfile->name);
15899 }
15900 }
15901 }
15902
15903 \f
15904
15905 int dwarf2_always_disassemble;
15906
15907 static void
15908 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15909 struct cmd_list_element *c, const char *value)
15910 {
15911 fprintf_filtered (file,
15912 _("Whether to always disassemble "
15913 "DWARF expressions is %s.\n"),
15914 value);
15915 }
15916
15917 void _initialize_dwarf2_read (void);
15918
15919 void
15920 _initialize_dwarf2_read (void)
15921 {
15922 struct cmd_list_element *c;
15923
15924 dwarf2_objfile_data_key
15925 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15926
15927 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15928 Set DWARF 2 specific variables.\n\
15929 Configure DWARF 2 variables such as the cache size"),
15930 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15931 0/*allow-unknown*/, &maintenance_set_cmdlist);
15932
15933 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15934 Show DWARF 2 specific variables\n\
15935 Show DWARF 2 variables such as the cache size"),
15936 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15937 0/*allow-unknown*/, &maintenance_show_cmdlist);
15938
15939 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15940 &dwarf2_max_cache_age, _("\
15941 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15942 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15943 A higher limit means that cached compilation units will be stored\n\
15944 in memory longer, and more total memory will be used. Zero disables\n\
15945 caching, which can slow down startup."),
15946 NULL,
15947 show_dwarf2_max_cache_age,
15948 &set_dwarf2_cmdlist,
15949 &show_dwarf2_cmdlist);
15950
15951 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15952 &dwarf2_always_disassemble, _("\
15953 Set whether `info address' always disassembles DWARF expressions."), _("\
15954 Show whether `info address' always disassembles DWARF expressions."), _("\
15955 When enabled, DWARF expressions are always printed in an assembly-like\n\
15956 syntax. When disabled, expressions will be printed in a more\n\
15957 conversational style, when possible."),
15958 NULL,
15959 show_dwarf2_always_disassemble,
15960 &set_dwarf2_cmdlist,
15961 &show_dwarf2_cmdlist);
15962
15963 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15964 Set debugging of the dwarf2 DIE reader."), _("\
15965 Show debugging of the dwarf2 DIE reader."), _("\
15966 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15967 The value is the maximum depth to print."),
15968 NULL,
15969 NULL,
15970 &setdebuglist, &showdebuglist);
15971
15972 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15973 _("\
15974 Save a gdb-index file.\n\
15975 Usage: save gdb-index DIRECTORY"),
15976 &save_cmdlist);
15977 set_cmd_completer (c, filename_completer);
15978 }
This page took 0.52285 seconds and 4 git commands to generate.