Eliminate make_cleanup_obstack_free, introduce auto_obstack
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77
78 #include <fcntl.h>
79 #include <sys/types.h>
80 #include <algorithm>
81 #include <unordered_set>
82 #include <unordered_map>
83
84 typedef struct symbol *symbolp;
85 DEF_VEC_P (symbolp);
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 static unsigned int dwarf_line_debug = 0;
97
98 /* When non-zero, cross-check physname against demangler. */
99 static int check_physname = 0;
100
101 /* When non-zero, do not reject deprecated .gdb_index sections. */
102 static int use_deprecated_index_sections = 0;
103
104 static const struct objfile_data *dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
129 struct dwarf2_section_info
130 {
131 union
132 {
133 /* If this is a real section, the bfd section. */
134 asection *section;
135 /* If this is a virtual section, pointer to the containing ("real")
136 section. */
137 struct dwarf2_section_info *containing_section;
138 } s;
139 /* Pointer to section data, only valid if readin. */
140 const gdb_byte *buffer;
141 /* The size of the section, real or virtual. */
142 bfd_size_type size;
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
146 /* True if we have tried to read this section. */
147 char readin;
148 /* True if this is a virtual section, False otherwise.
149 This specifies which of s.section and s.containing_section to use. */
150 char is_virtual;
151 };
152
153 typedef struct dwarf2_section_info dwarf2_section_info_def;
154 DEF_VEC_O (dwarf2_section_info_def);
155
156 /* All offsets in the index are of this type. It must be
157 architecture-independent. */
158 typedef uint32_t offset_type;
159
160 DEF_VEC_I (offset_type);
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure only legit values are used. */
170 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
178 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index
187 {
188 /* Index data format version. */
189 int version;
190
191 /* The total length of the buffer. */
192 off_t total_size;
193
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
196
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
199
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
202
203 /* Size in slots, each slot is 2 offset_types. */
204 offset_type symbol_table_slots;
205
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208 };
209
210 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211 DEF_VEC_P (dwarf2_per_cu_ptr);
212
213 struct tu_stats
214 {
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220 };
221
222 /* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
225 struct dwarf2_per_objfile
226 {
227 struct dwarf2_section_info info;
228 struct dwarf2_section_info abbrev;
229 struct dwarf2_section_info line;
230 struct dwarf2_section_info loc;
231 struct dwarf2_section_info loclists;
232 struct dwarf2_section_info macinfo;
233 struct dwarf2_section_info macro;
234 struct dwarf2_section_info str;
235 struct dwarf2_section_info line_str;
236 struct dwarf2_section_info ranges;
237 struct dwarf2_section_info rnglists;
238 struct dwarf2_section_info addr;
239 struct dwarf2_section_info frame;
240 struct dwarf2_section_info eh_frame;
241 struct dwarf2_section_info gdb_index;
242
243 VEC (dwarf2_section_info_def) *types;
244
245 /* Back link. */
246 struct objfile *objfile;
247
248 /* Table of all the compilation units. This is used to locate
249 the target compilation unit of a particular reference. */
250 struct dwarf2_per_cu_data **all_comp_units;
251
252 /* The number of compilation units in ALL_COMP_UNITS. */
253 int n_comp_units;
254
255 /* The number of .debug_types-related CUs. */
256 int n_type_units;
257
258 /* The number of elements allocated in all_type_units.
259 If there are skeleton-less TUs, we add them to all_type_units lazily. */
260 int n_allocated_type_units;
261
262 /* The .debug_types-related CUs (TUs).
263 This is stored in malloc space because we may realloc it. */
264 struct signatured_type **all_type_units;
265
266 /* Table of struct type_unit_group objects.
267 The hash key is the DW_AT_stmt_list value. */
268 htab_t type_unit_groups;
269
270 /* A table mapping .debug_types signatures to its signatured_type entry.
271 This is NULL if the .debug_types section hasn't been read in yet. */
272 htab_t signatured_types;
273
274 /* Type unit statistics, to see how well the scaling improvements
275 are doing. */
276 struct tu_stats tu_stats;
277
278 /* A chain of compilation units that are currently read in, so that
279 they can be freed later. */
280 struct dwarf2_per_cu_data *read_in_chain;
281
282 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
283 This is NULL if the table hasn't been allocated yet. */
284 htab_t dwo_files;
285
286 /* Non-zero if we've check for whether there is a DWP file. */
287 int dwp_checked;
288
289 /* The DWP file if there is one, or NULL. */
290 struct dwp_file *dwp_file;
291
292 /* The shared '.dwz' file, if one exists. This is used when the
293 original data was compressed using 'dwz -m'. */
294 struct dwz_file *dwz_file;
295
296 /* A flag indicating wether this objfile has a section loaded at a
297 VMA of 0. */
298 int has_section_at_zero;
299
300 /* True if we are using the mapped index,
301 or we are faking it for OBJF_READNOW's sake. */
302 unsigned char using_index;
303
304 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
305 struct mapped_index *index_table;
306
307 /* When using index_table, this keeps track of all quick_file_names entries.
308 TUs typically share line table entries with a CU, so we maintain a
309 separate table of all line table entries to support the sharing.
310 Note that while there can be way more TUs than CUs, we've already
311 sorted all the TUs into "type unit groups", grouped by their
312 DW_AT_stmt_list value. Therefore the only sharing done here is with a
313 CU and its associated TU group if there is one. */
314 htab_t quick_file_names_table;
315
316 /* Set during partial symbol reading, to prevent queueing of full
317 symbols. */
318 int reading_partial_symbols;
319
320 /* Table mapping type DIEs to their struct type *.
321 This is NULL if not allocated yet.
322 The mapping is done via (CU/TU + DIE offset) -> type. */
323 htab_t die_type_hash;
324
325 /* The CUs we recently read. */
326 VEC (dwarf2_per_cu_ptr) *just_read_cus;
327
328 /* Table containing line_header indexed by offset and offset_in_dwz. */
329 htab_t line_header_hash;
330 };
331
332 static struct dwarf2_per_objfile *dwarf2_per_objfile;
333
334 /* Default names of the debugging sections. */
335
336 /* Note that if the debugging section has been compressed, it might
337 have a name like .zdebug_info. */
338
339 static const struct dwarf2_debug_sections dwarf2_elf_names =
340 {
341 { ".debug_info", ".zdebug_info" },
342 { ".debug_abbrev", ".zdebug_abbrev" },
343 { ".debug_line", ".zdebug_line" },
344 { ".debug_loc", ".zdebug_loc" },
345 { ".debug_loclists", ".zdebug_loclists" },
346 { ".debug_macinfo", ".zdebug_macinfo" },
347 { ".debug_macro", ".zdebug_macro" },
348 { ".debug_str", ".zdebug_str" },
349 { ".debug_line_str", ".zdebug_line_str" },
350 { ".debug_ranges", ".zdebug_ranges" },
351 { ".debug_rnglists", ".zdebug_rnglists" },
352 { ".debug_types", ".zdebug_types" },
353 { ".debug_addr", ".zdebug_addr" },
354 { ".debug_frame", ".zdebug_frame" },
355 { ".eh_frame", NULL },
356 { ".gdb_index", ".zgdb_index" },
357 23
358 };
359
360 /* List of DWO/DWP sections. */
361
362 static const struct dwop_section_names
363 {
364 struct dwarf2_section_names abbrev_dwo;
365 struct dwarf2_section_names info_dwo;
366 struct dwarf2_section_names line_dwo;
367 struct dwarf2_section_names loc_dwo;
368 struct dwarf2_section_names loclists_dwo;
369 struct dwarf2_section_names macinfo_dwo;
370 struct dwarf2_section_names macro_dwo;
371 struct dwarf2_section_names str_dwo;
372 struct dwarf2_section_names str_offsets_dwo;
373 struct dwarf2_section_names types_dwo;
374 struct dwarf2_section_names cu_index;
375 struct dwarf2_section_names tu_index;
376 }
377 dwop_section_names =
378 {
379 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
380 { ".debug_info.dwo", ".zdebug_info.dwo" },
381 { ".debug_line.dwo", ".zdebug_line.dwo" },
382 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
383 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
384 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
385 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
386 { ".debug_str.dwo", ".zdebug_str.dwo" },
387 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
388 { ".debug_types.dwo", ".zdebug_types.dwo" },
389 { ".debug_cu_index", ".zdebug_cu_index" },
390 { ".debug_tu_index", ".zdebug_tu_index" },
391 };
392
393 /* local data types */
394
395 /* The data in a compilation unit header, after target2host
396 translation, looks like this. */
397 struct comp_unit_head
398 {
399 unsigned int length;
400 short version;
401 unsigned char addr_size;
402 unsigned char signed_addr_p;
403 sect_offset abbrev_sect_off;
404
405 /* Size of file offsets; either 4 or 8. */
406 unsigned int offset_size;
407
408 /* Size of the length field; either 4 or 12. */
409 unsigned int initial_length_size;
410
411 enum dwarf_unit_type unit_type;
412
413 /* Offset to the first byte of this compilation unit header in the
414 .debug_info section, for resolving relative reference dies. */
415 sect_offset sect_off;
416
417 /* Offset to first die in this cu from the start of the cu.
418 This will be the first byte following the compilation unit header. */
419 cu_offset first_die_cu_offset;
420
421 /* 64-bit signature of this type unit - it is valid only for
422 UNIT_TYPE DW_UT_type. */
423 ULONGEST signature;
424
425 /* For types, offset in the type's DIE of the type defined by this TU. */
426 cu_offset type_cu_offset_in_tu;
427 };
428
429 /* Type used for delaying computation of method physnames.
430 See comments for compute_delayed_physnames. */
431 struct delayed_method_info
432 {
433 /* The type to which the method is attached, i.e., its parent class. */
434 struct type *type;
435
436 /* The index of the method in the type's function fieldlists. */
437 int fnfield_index;
438
439 /* The index of the method in the fieldlist. */
440 int index;
441
442 /* The name of the DIE. */
443 const char *name;
444
445 /* The DIE associated with this method. */
446 struct die_info *die;
447 };
448
449 typedef struct delayed_method_info delayed_method_info;
450 DEF_VEC_O (delayed_method_info);
451
452 /* Internal state when decoding a particular compilation unit. */
453 struct dwarf2_cu
454 {
455 /* The objfile containing this compilation unit. */
456 struct objfile *objfile;
457
458 /* The header of the compilation unit. */
459 struct comp_unit_head header;
460
461 /* Base address of this compilation unit. */
462 CORE_ADDR base_address;
463
464 /* Non-zero if base_address has been set. */
465 int base_known;
466
467 /* The language we are debugging. */
468 enum language language;
469 const struct language_defn *language_defn;
470
471 const char *producer;
472
473 /* The generic symbol table building routines have separate lists for
474 file scope symbols and all all other scopes (local scopes). So
475 we need to select the right one to pass to add_symbol_to_list().
476 We do it by keeping a pointer to the correct list in list_in_scope.
477
478 FIXME: The original dwarf code just treated the file scope as the
479 first local scope, and all other local scopes as nested local
480 scopes, and worked fine. Check to see if we really need to
481 distinguish these in buildsym.c. */
482 struct pending **list_in_scope;
483
484 /* The abbrev table for this CU.
485 Normally this points to the abbrev table in the objfile.
486 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
487 struct abbrev_table *abbrev_table;
488
489 /* Hash table holding all the loaded partial DIEs
490 with partial_die->offset.SECT_OFF as hash. */
491 htab_t partial_dies;
492
493 /* Storage for things with the same lifetime as this read-in compilation
494 unit, including partial DIEs. */
495 struct obstack comp_unit_obstack;
496
497 /* When multiple dwarf2_cu structures are living in memory, this field
498 chains them all together, so that they can be released efficiently.
499 We will probably also want a generation counter so that most-recently-used
500 compilation units are cached... */
501 struct dwarf2_per_cu_data *read_in_chain;
502
503 /* Backlink to our per_cu entry. */
504 struct dwarf2_per_cu_data *per_cu;
505
506 /* How many compilation units ago was this CU last referenced? */
507 int last_used;
508
509 /* A hash table of DIE cu_offset for following references with
510 die_info->offset.sect_off as hash. */
511 htab_t die_hash;
512
513 /* Full DIEs if read in. */
514 struct die_info *dies;
515
516 /* A set of pointers to dwarf2_per_cu_data objects for compilation
517 units referenced by this one. Only set during full symbol processing;
518 partial symbol tables do not have dependencies. */
519 htab_t dependencies;
520
521 /* Header data from the line table, during full symbol processing. */
522 struct line_header *line_header;
523
524 /* A list of methods which need to have physnames computed
525 after all type information has been read. */
526 VEC (delayed_method_info) *method_list;
527
528 /* To be copied to symtab->call_site_htab. */
529 htab_t call_site_htab;
530
531 /* Non-NULL if this CU came from a DWO file.
532 There is an invariant here that is important to remember:
533 Except for attributes copied from the top level DIE in the "main"
534 (or "stub") file in preparation for reading the DWO file
535 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
536 Either there isn't a DWO file (in which case this is NULL and the point
537 is moot), or there is and either we're not going to read it (in which
538 case this is NULL) or there is and we are reading it (in which case this
539 is non-NULL). */
540 struct dwo_unit *dwo_unit;
541
542 /* The DW_AT_addr_base attribute if present, zero otherwise
543 (zero is a valid value though).
544 Note this value comes from the Fission stub CU/TU's DIE. */
545 ULONGEST addr_base;
546
547 /* The DW_AT_ranges_base attribute if present, zero otherwise
548 (zero is a valid value though).
549 Note this value comes from the Fission stub CU/TU's DIE.
550 Also note that the value is zero in the non-DWO case so this value can
551 be used without needing to know whether DWO files are in use or not.
552 N.B. This does not apply to DW_AT_ranges appearing in
553 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
554 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
555 DW_AT_ranges_base *would* have to be applied, and we'd have to care
556 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
557 ULONGEST ranges_base;
558
559 /* Mark used when releasing cached dies. */
560 unsigned int mark : 1;
561
562 /* This CU references .debug_loc. See the symtab->locations_valid field.
563 This test is imperfect as there may exist optimized debug code not using
564 any location list and still facing inlining issues if handled as
565 unoptimized code. For a future better test see GCC PR other/32998. */
566 unsigned int has_loclist : 1;
567
568 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
569 if all the producer_is_* fields are valid. This information is cached
570 because profiling CU expansion showed excessive time spent in
571 producer_is_gxx_lt_4_6. */
572 unsigned int checked_producer : 1;
573 unsigned int producer_is_gxx_lt_4_6 : 1;
574 unsigned int producer_is_gcc_lt_4_3 : 1;
575 unsigned int producer_is_icc : 1;
576
577 /* When set, the file that we're processing is known to have
578 debugging info for C++ namespaces. GCC 3.3.x did not produce
579 this information, but later versions do. */
580
581 unsigned int processing_has_namespace_info : 1;
582 };
583
584 /* Persistent data held for a compilation unit, even when not
585 processing it. We put a pointer to this structure in the
586 read_symtab_private field of the psymtab. */
587
588 struct dwarf2_per_cu_data
589 {
590 /* The start offset and length of this compilation unit.
591 NOTE: Unlike comp_unit_head.length, this length includes
592 initial_length_size.
593 If the DIE refers to a DWO file, this is always of the original die,
594 not the DWO file. */
595 sect_offset sect_off;
596 unsigned int length;
597
598 /* DWARF standard version this data has been read from (such as 4 or 5). */
599 short dwarf_version;
600
601 /* Flag indicating this compilation unit will be read in before
602 any of the current compilation units are processed. */
603 unsigned int queued : 1;
604
605 /* This flag will be set when reading partial DIEs if we need to load
606 absolutely all DIEs for this compilation unit, instead of just the ones
607 we think are interesting. It gets set if we look for a DIE in the
608 hash table and don't find it. */
609 unsigned int load_all_dies : 1;
610
611 /* Non-zero if this CU is from .debug_types.
612 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
613 this is non-zero. */
614 unsigned int is_debug_types : 1;
615
616 /* Non-zero if this CU is from the .dwz file. */
617 unsigned int is_dwz : 1;
618
619 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
620 This flag is only valid if is_debug_types is true.
621 We can't read a CU directly from a DWO file: There are required
622 attributes in the stub. */
623 unsigned int reading_dwo_directly : 1;
624
625 /* Non-zero if the TU has been read.
626 This is used to assist the "Stay in DWO Optimization" for Fission:
627 When reading a DWO, it's faster to read TUs from the DWO instead of
628 fetching them from random other DWOs (due to comdat folding).
629 If the TU has already been read, the optimization is unnecessary
630 (and unwise - we don't want to change where gdb thinks the TU lives
631 "midflight").
632 This flag is only valid if is_debug_types is true. */
633 unsigned int tu_read : 1;
634
635 /* The section this CU/TU lives in.
636 If the DIE refers to a DWO file, this is always the original die,
637 not the DWO file. */
638 struct dwarf2_section_info *section;
639
640 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
641 of the CU cache it gets reset to NULL again. This is left as NULL for
642 dummy CUs (a CU header, but nothing else). */
643 struct dwarf2_cu *cu;
644
645 /* The corresponding objfile.
646 Normally we can get the objfile from dwarf2_per_objfile.
647 However we can enter this file with just a "per_cu" handle. */
648 struct objfile *objfile;
649
650 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
651 is active. Otherwise, the 'psymtab' field is active. */
652 union
653 {
654 /* The partial symbol table associated with this compilation unit,
655 or NULL for unread partial units. */
656 struct partial_symtab *psymtab;
657
658 /* Data needed by the "quick" functions. */
659 struct dwarf2_per_cu_quick_data *quick;
660 } v;
661
662 /* The CUs we import using DW_TAG_imported_unit. This is filled in
663 while reading psymtabs, used to compute the psymtab dependencies,
664 and then cleared. Then it is filled in again while reading full
665 symbols, and only deleted when the objfile is destroyed.
666
667 This is also used to work around a difference between the way gold
668 generates .gdb_index version <=7 and the way gdb does. Arguably this
669 is a gold bug. For symbols coming from TUs, gold records in the index
670 the CU that includes the TU instead of the TU itself. This breaks
671 dw2_lookup_symbol: It assumes that if the index says symbol X lives
672 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
673 will find X. Alas TUs live in their own symtab, so after expanding CU Y
674 we need to look in TU Z to find X. Fortunately, this is akin to
675 DW_TAG_imported_unit, so we just use the same mechanism: For
676 .gdb_index version <=7 this also records the TUs that the CU referred
677 to. Concurrently with this change gdb was modified to emit version 8
678 indices so we only pay a price for gold generated indices.
679 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
680 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
681 };
682
683 /* Entry in the signatured_types hash table. */
684
685 struct signatured_type
686 {
687 /* The "per_cu" object of this type.
688 This struct is used iff per_cu.is_debug_types.
689 N.B.: This is the first member so that it's easy to convert pointers
690 between them. */
691 struct dwarf2_per_cu_data per_cu;
692
693 /* The type's signature. */
694 ULONGEST signature;
695
696 /* Offset in the TU of the type's DIE, as read from the TU header.
697 If this TU is a DWO stub and the definition lives in a DWO file
698 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
699 cu_offset type_offset_in_tu;
700
701 /* Offset in the section of the type's DIE.
702 If the definition lives in a DWO file, this is the offset in the
703 .debug_types.dwo section.
704 The value is zero until the actual value is known.
705 Zero is otherwise not a valid section offset. */
706 sect_offset type_offset_in_section;
707
708 /* Type units are grouped by their DW_AT_stmt_list entry so that they
709 can share them. This points to the containing symtab. */
710 struct type_unit_group *type_unit_group;
711
712 /* The type.
713 The first time we encounter this type we fully read it in and install it
714 in the symbol tables. Subsequent times we only need the type. */
715 struct type *type;
716
717 /* Containing DWO unit.
718 This field is valid iff per_cu.reading_dwo_directly. */
719 struct dwo_unit *dwo_unit;
720 };
721
722 typedef struct signatured_type *sig_type_ptr;
723 DEF_VEC_P (sig_type_ptr);
724
725 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
726 This includes type_unit_group and quick_file_names. */
727
728 struct stmt_list_hash
729 {
730 /* The DWO unit this table is from or NULL if there is none. */
731 struct dwo_unit *dwo_unit;
732
733 /* Offset in .debug_line or .debug_line.dwo. */
734 sect_offset line_sect_off;
735 };
736
737 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
738 an object of this type. */
739
740 struct type_unit_group
741 {
742 /* dwarf2read.c's main "handle" on a TU symtab.
743 To simplify things we create an artificial CU that "includes" all the
744 type units using this stmt_list so that the rest of the code still has
745 a "per_cu" handle on the symtab.
746 This PER_CU is recognized by having no section. */
747 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
748 struct dwarf2_per_cu_data per_cu;
749
750 /* The TUs that share this DW_AT_stmt_list entry.
751 This is added to while parsing type units to build partial symtabs,
752 and is deleted afterwards and not used again. */
753 VEC (sig_type_ptr) *tus;
754
755 /* The compunit symtab.
756 Type units in a group needn't all be defined in the same source file,
757 so we create an essentially anonymous symtab as the compunit symtab. */
758 struct compunit_symtab *compunit_symtab;
759
760 /* The data used to construct the hash key. */
761 struct stmt_list_hash hash;
762
763 /* The number of symtabs from the line header.
764 The value here must match line_header.num_file_names. */
765 unsigned int num_symtabs;
766
767 /* The symbol tables for this TU (obtained from the files listed in
768 DW_AT_stmt_list).
769 WARNING: The order of entries here must match the order of entries
770 in the line header. After the first TU using this type_unit_group, the
771 line header for the subsequent TUs is recreated from this. This is done
772 because we need to use the same symtabs for each TU using the same
773 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
774 there's no guarantee the line header doesn't have duplicate entries. */
775 struct symtab **symtabs;
776 };
777
778 /* These sections are what may appear in a (real or virtual) DWO file. */
779
780 struct dwo_sections
781 {
782 struct dwarf2_section_info abbrev;
783 struct dwarf2_section_info line;
784 struct dwarf2_section_info loc;
785 struct dwarf2_section_info loclists;
786 struct dwarf2_section_info macinfo;
787 struct dwarf2_section_info macro;
788 struct dwarf2_section_info str;
789 struct dwarf2_section_info str_offsets;
790 /* In the case of a virtual DWO file, these two are unused. */
791 struct dwarf2_section_info info;
792 VEC (dwarf2_section_info_def) *types;
793 };
794
795 /* CUs/TUs in DWP/DWO files. */
796
797 struct dwo_unit
798 {
799 /* Backlink to the containing struct dwo_file. */
800 struct dwo_file *dwo_file;
801
802 /* The "id" that distinguishes this CU/TU.
803 .debug_info calls this "dwo_id", .debug_types calls this "signature".
804 Since signatures came first, we stick with it for consistency. */
805 ULONGEST signature;
806
807 /* The section this CU/TU lives in, in the DWO file. */
808 struct dwarf2_section_info *section;
809
810 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
811 sect_offset sect_off;
812 unsigned int length;
813
814 /* For types, offset in the type's DIE of the type defined by this TU. */
815 cu_offset type_offset_in_tu;
816 };
817
818 /* include/dwarf2.h defines the DWP section codes.
819 It defines a max value but it doesn't define a min value, which we
820 use for error checking, so provide one. */
821
822 enum dwp_v2_section_ids
823 {
824 DW_SECT_MIN = 1
825 };
826
827 /* Data for one DWO file.
828
829 This includes virtual DWO files (a virtual DWO file is a DWO file as it
830 appears in a DWP file). DWP files don't really have DWO files per se -
831 comdat folding of types "loses" the DWO file they came from, and from
832 a high level view DWP files appear to contain a mass of random types.
833 However, to maintain consistency with the non-DWP case we pretend DWP
834 files contain virtual DWO files, and we assign each TU with one virtual
835 DWO file (generally based on the line and abbrev section offsets -
836 a heuristic that seems to work in practice). */
837
838 struct dwo_file
839 {
840 /* The DW_AT_GNU_dwo_name attribute.
841 For virtual DWO files the name is constructed from the section offsets
842 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
843 from related CU+TUs. */
844 const char *dwo_name;
845
846 /* The DW_AT_comp_dir attribute. */
847 const char *comp_dir;
848
849 /* The bfd, when the file is open. Otherwise this is NULL.
850 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
851 bfd *dbfd;
852
853 /* The sections that make up this DWO file.
854 Remember that for virtual DWO files in DWP V2, these are virtual
855 sections (for lack of a better name). */
856 struct dwo_sections sections;
857
858 /* The CU in the file.
859 We only support one because having more than one requires hacking the
860 dwo_name of each to match, which is highly unlikely to happen.
861 Doing this means all TUs can share comp_dir: We also assume that
862 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
863 struct dwo_unit *cu;
864
865 /* Table of TUs in the file.
866 Each element is a struct dwo_unit. */
867 htab_t tus;
868 };
869
870 /* These sections are what may appear in a DWP file. */
871
872 struct dwp_sections
873 {
874 /* These are used by both DWP version 1 and 2. */
875 struct dwarf2_section_info str;
876 struct dwarf2_section_info cu_index;
877 struct dwarf2_section_info tu_index;
878
879 /* These are only used by DWP version 2 files.
880 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
881 sections are referenced by section number, and are not recorded here.
882 In DWP version 2 there is at most one copy of all these sections, each
883 section being (effectively) comprised of the concatenation of all of the
884 individual sections that exist in the version 1 format.
885 To keep the code simple we treat each of these concatenated pieces as a
886 section itself (a virtual section?). */
887 struct dwarf2_section_info abbrev;
888 struct dwarf2_section_info info;
889 struct dwarf2_section_info line;
890 struct dwarf2_section_info loc;
891 struct dwarf2_section_info macinfo;
892 struct dwarf2_section_info macro;
893 struct dwarf2_section_info str_offsets;
894 struct dwarf2_section_info types;
895 };
896
897 /* These sections are what may appear in a virtual DWO file in DWP version 1.
898 A virtual DWO file is a DWO file as it appears in a DWP file. */
899
900 struct virtual_v1_dwo_sections
901 {
902 struct dwarf2_section_info abbrev;
903 struct dwarf2_section_info line;
904 struct dwarf2_section_info loc;
905 struct dwarf2_section_info macinfo;
906 struct dwarf2_section_info macro;
907 struct dwarf2_section_info str_offsets;
908 /* Each DWP hash table entry records one CU or one TU.
909 That is recorded here, and copied to dwo_unit.section. */
910 struct dwarf2_section_info info_or_types;
911 };
912
913 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
914 In version 2, the sections of the DWO files are concatenated together
915 and stored in one section of that name. Thus each ELF section contains
916 several "virtual" sections. */
917
918 struct virtual_v2_dwo_sections
919 {
920 bfd_size_type abbrev_offset;
921 bfd_size_type abbrev_size;
922
923 bfd_size_type line_offset;
924 bfd_size_type line_size;
925
926 bfd_size_type loc_offset;
927 bfd_size_type loc_size;
928
929 bfd_size_type macinfo_offset;
930 bfd_size_type macinfo_size;
931
932 bfd_size_type macro_offset;
933 bfd_size_type macro_size;
934
935 bfd_size_type str_offsets_offset;
936 bfd_size_type str_offsets_size;
937
938 /* Each DWP hash table entry records one CU or one TU.
939 That is recorded here, and copied to dwo_unit.section. */
940 bfd_size_type info_or_types_offset;
941 bfd_size_type info_or_types_size;
942 };
943
944 /* Contents of DWP hash tables. */
945
946 struct dwp_hash_table
947 {
948 uint32_t version, nr_columns;
949 uint32_t nr_units, nr_slots;
950 const gdb_byte *hash_table, *unit_table;
951 union
952 {
953 struct
954 {
955 const gdb_byte *indices;
956 } v1;
957 struct
958 {
959 /* This is indexed by column number and gives the id of the section
960 in that column. */
961 #define MAX_NR_V2_DWO_SECTIONS \
962 (1 /* .debug_info or .debug_types */ \
963 + 1 /* .debug_abbrev */ \
964 + 1 /* .debug_line */ \
965 + 1 /* .debug_loc */ \
966 + 1 /* .debug_str_offsets */ \
967 + 1 /* .debug_macro or .debug_macinfo */)
968 int section_ids[MAX_NR_V2_DWO_SECTIONS];
969 const gdb_byte *offsets;
970 const gdb_byte *sizes;
971 } v2;
972 } section_pool;
973 };
974
975 /* Data for one DWP file. */
976
977 struct dwp_file
978 {
979 /* Name of the file. */
980 const char *name;
981
982 /* File format version. */
983 int version;
984
985 /* The bfd. */
986 bfd *dbfd;
987
988 /* Section info for this file. */
989 struct dwp_sections sections;
990
991 /* Table of CUs in the file. */
992 const struct dwp_hash_table *cus;
993
994 /* Table of TUs in the file. */
995 const struct dwp_hash_table *tus;
996
997 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
998 htab_t loaded_cus;
999 htab_t loaded_tus;
1000
1001 /* Table to map ELF section numbers to their sections.
1002 This is only needed for the DWP V1 file format. */
1003 unsigned int num_sections;
1004 asection **elf_sections;
1005 };
1006
1007 /* This represents a '.dwz' file. */
1008
1009 struct dwz_file
1010 {
1011 /* A dwz file can only contain a few sections. */
1012 struct dwarf2_section_info abbrev;
1013 struct dwarf2_section_info info;
1014 struct dwarf2_section_info str;
1015 struct dwarf2_section_info line;
1016 struct dwarf2_section_info macro;
1017 struct dwarf2_section_info gdb_index;
1018
1019 /* The dwz's BFD. */
1020 bfd *dwz_bfd;
1021 };
1022
1023 /* Struct used to pass misc. parameters to read_die_and_children, et
1024 al. which are used for both .debug_info and .debug_types dies.
1025 All parameters here are unchanging for the life of the call. This
1026 struct exists to abstract away the constant parameters of die reading. */
1027
1028 struct die_reader_specs
1029 {
1030 /* The bfd of die_section. */
1031 bfd* abfd;
1032
1033 /* The CU of the DIE we are parsing. */
1034 struct dwarf2_cu *cu;
1035
1036 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1037 struct dwo_file *dwo_file;
1038
1039 /* The section the die comes from.
1040 This is either .debug_info or .debug_types, or the .dwo variants. */
1041 struct dwarf2_section_info *die_section;
1042
1043 /* die_section->buffer. */
1044 const gdb_byte *buffer;
1045
1046 /* The end of the buffer. */
1047 const gdb_byte *buffer_end;
1048
1049 /* The value of the DW_AT_comp_dir attribute. */
1050 const char *comp_dir;
1051 };
1052
1053 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1054 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1055 const gdb_byte *info_ptr,
1056 struct die_info *comp_unit_die,
1057 int has_children,
1058 void *data);
1059
1060 /* A 1-based directory index. This is a strong typedef to prevent
1061 accidentally using a directory index as a 0-based index into an
1062 array/vector. */
1063 enum class dir_index : unsigned int {};
1064
1065 /* Likewise, a 1-based file name index. */
1066 enum class file_name_index : unsigned int {};
1067
1068 struct file_entry
1069 {
1070 file_entry () = default;
1071
1072 file_entry (const char *name_, dir_index d_index_,
1073 unsigned int mod_time_, unsigned int length_)
1074 : name (name_),
1075 d_index (d_index_),
1076 mod_time (mod_time_),
1077 length (length_)
1078 {}
1079
1080 /* Return the include directory at D_INDEX stored in LH. Returns
1081 NULL if D_INDEX is out of bounds. */
1082 const char *include_dir (const line_header *lh) const;
1083
1084 /* The file name. Note this is an observing pointer. The memory is
1085 owned by debug_line_buffer. */
1086 const char *name {};
1087
1088 /* The directory index (1-based). */
1089 dir_index d_index {};
1090
1091 unsigned int mod_time {};
1092
1093 unsigned int length {};
1094
1095 /* True if referenced by the Line Number Program. */
1096 bool included_p {};
1097
1098 /* The associated symbol table, if any. */
1099 struct symtab *symtab {};
1100 };
1101
1102 /* The line number information for a compilation unit (found in the
1103 .debug_line section) begins with a "statement program header",
1104 which contains the following information. */
1105 struct line_header
1106 {
1107 line_header ()
1108 : offset_in_dwz {}
1109 {}
1110
1111 /* Add an entry to the include directory table. */
1112 void add_include_dir (const char *include_dir);
1113
1114 /* Add an entry to the file name table. */
1115 void add_file_name (const char *name, dir_index d_index,
1116 unsigned int mod_time, unsigned int length);
1117
1118 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1119 is out of bounds. */
1120 const char *include_dir_at (dir_index index) const
1121 {
1122 /* Convert directory index number (1-based) to vector index
1123 (0-based). */
1124 size_t vec_index = to_underlying (index) - 1;
1125
1126 if (vec_index >= include_dirs.size ())
1127 return NULL;
1128 return include_dirs[vec_index];
1129 }
1130
1131 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1132 is out of bounds. */
1133 file_entry *file_name_at (file_name_index index)
1134 {
1135 /* Convert file name index number (1-based) to vector index
1136 (0-based). */
1137 size_t vec_index = to_underlying (index) - 1;
1138
1139 if (vec_index >= file_names.size ())
1140 return NULL;
1141 return &file_names[vec_index];
1142 }
1143
1144 /* Const version of the above. */
1145 const file_entry *file_name_at (unsigned int index) const
1146 {
1147 if (index >= file_names.size ())
1148 return NULL;
1149 return &file_names[index];
1150 }
1151
1152 /* Offset of line number information in .debug_line section. */
1153 sect_offset sect_off {};
1154
1155 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1156 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1157
1158 unsigned int total_length {};
1159 unsigned short version {};
1160 unsigned int header_length {};
1161 unsigned char minimum_instruction_length {};
1162 unsigned char maximum_ops_per_instruction {};
1163 unsigned char default_is_stmt {};
1164 int line_base {};
1165 unsigned char line_range {};
1166 unsigned char opcode_base {};
1167
1168 /* standard_opcode_lengths[i] is the number of operands for the
1169 standard opcode whose value is i. This means that
1170 standard_opcode_lengths[0] is unused, and the last meaningful
1171 element is standard_opcode_lengths[opcode_base - 1]. */
1172 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1173
1174 /* The include_directories table. Note these are observing
1175 pointers. The memory is owned by debug_line_buffer. */
1176 std::vector<const char *> include_dirs;
1177
1178 /* The file_names table. */
1179 std::vector<file_entry> file_names;
1180
1181 /* The start and end of the statement program following this
1182 header. These point into dwarf2_per_objfile->line_buffer. */
1183 const gdb_byte *statement_program_start {}, *statement_program_end {};
1184 };
1185
1186 typedef std::unique_ptr<line_header> line_header_up;
1187
1188 const char *
1189 file_entry::include_dir (const line_header *lh) const
1190 {
1191 return lh->include_dir_at (d_index);
1192 }
1193
1194 /* When we construct a partial symbol table entry we only
1195 need this much information. */
1196 struct partial_die_info
1197 {
1198 /* Offset of this DIE. */
1199 sect_offset sect_off;
1200
1201 /* DWARF-2 tag for this DIE. */
1202 ENUM_BITFIELD(dwarf_tag) tag : 16;
1203
1204 /* Assorted flags describing the data found in this DIE. */
1205 unsigned int has_children : 1;
1206 unsigned int is_external : 1;
1207 unsigned int is_declaration : 1;
1208 unsigned int has_type : 1;
1209 unsigned int has_specification : 1;
1210 unsigned int has_pc_info : 1;
1211 unsigned int may_be_inlined : 1;
1212
1213 /* This DIE has been marked DW_AT_main_subprogram. */
1214 unsigned int main_subprogram : 1;
1215
1216 /* Flag set if the SCOPE field of this structure has been
1217 computed. */
1218 unsigned int scope_set : 1;
1219
1220 /* Flag set if the DIE has a byte_size attribute. */
1221 unsigned int has_byte_size : 1;
1222
1223 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1224 unsigned int has_const_value : 1;
1225
1226 /* Flag set if any of the DIE's children are template arguments. */
1227 unsigned int has_template_arguments : 1;
1228
1229 /* Flag set if fixup_partial_die has been called on this die. */
1230 unsigned int fixup_called : 1;
1231
1232 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1233 unsigned int is_dwz : 1;
1234
1235 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1236 unsigned int spec_is_dwz : 1;
1237
1238 /* The name of this DIE. Normally the value of DW_AT_name, but
1239 sometimes a default name for unnamed DIEs. */
1240 const char *name;
1241
1242 /* The linkage name, if present. */
1243 const char *linkage_name;
1244
1245 /* The scope to prepend to our children. This is generally
1246 allocated on the comp_unit_obstack, so will disappear
1247 when this compilation unit leaves the cache. */
1248 const char *scope;
1249
1250 /* Some data associated with the partial DIE. The tag determines
1251 which field is live. */
1252 union
1253 {
1254 /* The location description associated with this DIE, if any. */
1255 struct dwarf_block *locdesc;
1256 /* The offset of an import, for DW_TAG_imported_unit. */
1257 sect_offset sect_off;
1258 } d;
1259
1260 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1261 CORE_ADDR lowpc;
1262 CORE_ADDR highpc;
1263
1264 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1265 DW_AT_sibling, if any. */
1266 /* NOTE: This member isn't strictly necessary, read_partial_die could
1267 return DW_AT_sibling values to its caller load_partial_dies. */
1268 const gdb_byte *sibling;
1269
1270 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1271 DW_AT_specification (or DW_AT_abstract_origin or
1272 DW_AT_extension). */
1273 sect_offset spec_offset;
1274
1275 /* Pointers to this DIE's parent, first child, and next sibling,
1276 if any. */
1277 struct partial_die_info *die_parent, *die_child, *die_sibling;
1278 };
1279
1280 /* This data structure holds the information of an abbrev. */
1281 struct abbrev_info
1282 {
1283 unsigned int number; /* number identifying abbrev */
1284 enum dwarf_tag tag; /* dwarf tag */
1285 unsigned short has_children; /* boolean */
1286 unsigned short num_attrs; /* number of attributes */
1287 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1288 struct abbrev_info *next; /* next in chain */
1289 };
1290
1291 struct attr_abbrev
1292 {
1293 ENUM_BITFIELD(dwarf_attribute) name : 16;
1294 ENUM_BITFIELD(dwarf_form) form : 16;
1295
1296 /* It is valid only if FORM is DW_FORM_implicit_const. */
1297 LONGEST implicit_const;
1298 };
1299
1300 /* Size of abbrev_table.abbrev_hash_table. */
1301 #define ABBREV_HASH_SIZE 121
1302
1303 /* Top level data structure to contain an abbreviation table. */
1304
1305 struct abbrev_table
1306 {
1307 /* Where the abbrev table came from.
1308 This is used as a sanity check when the table is used. */
1309 sect_offset sect_off;
1310
1311 /* Storage for the abbrev table. */
1312 struct obstack abbrev_obstack;
1313
1314 /* Hash table of abbrevs.
1315 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1316 It could be statically allocated, but the previous code didn't so we
1317 don't either. */
1318 struct abbrev_info **abbrevs;
1319 };
1320
1321 /* Attributes have a name and a value. */
1322 struct attribute
1323 {
1324 ENUM_BITFIELD(dwarf_attribute) name : 16;
1325 ENUM_BITFIELD(dwarf_form) form : 15;
1326
1327 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1328 field should be in u.str (existing only for DW_STRING) but it is kept
1329 here for better struct attribute alignment. */
1330 unsigned int string_is_canonical : 1;
1331
1332 union
1333 {
1334 const char *str;
1335 struct dwarf_block *blk;
1336 ULONGEST unsnd;
1337 LONGEST snd;
1338 CORE_ADDR addr;
1339 ULONGEST signature;
1340 }
1341 u;
1342 };
1343
1344 /* This data structure holds a complete die structure. */
1345 struct die_info
1346 {
1347 /* DWARF-2 tag for this DIE. */
1348 ENUM_BITFIELD(dwarf_tag) tag : 16;
1349
1350 /* Number of attributes */
1351 unsigned char num_attrs;
1352
1353 /* True if we're presently building the full type name for the
1354 type derived from this DIE. */
1355 unsigned char building_fullname : 1;
1356
1357 /* True if this die is in process. PR 16581. */
1358 unsigned char in_process : 1;
1359
1360 /* Abbrev number */
1361 unsigned int abbrev;
1362
1363 /* Offset in .debug_info or .debug_types section. */
1364 sect_offset sect_off;
1365
1366 /* The dies in a compilation unit form an n-ary tree. PARENT
1367 points to this die's parent; CHILD points to the first child of
1368 this node; and all the children of a given node are chained
1369 together via their SIBLING fields. */
1370 struct die_info *child; /* Its first child, if any. */
1371 struct die_info *sibling; /* Its next sibling, if any. */
1372 struct die_info *parent; /* Its parent, if any. */
1373
1374 /* An array of attributes, with NUM_ATTRS elements. There may be
1375 zero, but it's not common and zero-sized arrays are not
1376 sufficiently portable C. */
1377 struct attribute attrs[1];
1378 };
1379
1380 /* Get at parts of an attribute structure. */
1381
1382 #define DW_STRING(attr) ((attr)->u.str)
1383 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1384 #define DW_UNSND(attr) ((attr)->u.unsnd)
1385 #define DW_BLOCK(attr) ((attr)->u.blk)
1386 #define DW_SND(attr) ((attr)->u.snd)
1387 #define DW_ADDR(attr) ((attr)->u.addr)
1388 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1389
1390 /* Blocks are a bunch of untyped bytes. */
1391 struct dwarf_block
1392 {
1393 size_t size;
1394
1395 /* Valid only if SIZE is not zero. */
1396 const gdb_byte *data;
1397 };
1398
1399 #ifndef ATTR_ALLOC_CHUNK
1400 #define ATTR_ALLOC_CHUNK 4
1401 #endif
1402
1403 /* Allocate fields for structs, unions and enums in this size. */
1404 #ifndef DW_FIELD_ALLOC_CHUNK
1405 #define DW_FIELD_ALLOC_CHUNK 4
1406 #endif
1407
1408 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1409 but this would require a corresponding change in unpack_field_as_long
1410 and friends. */
1411 static int bits_per_byte = 8;
1412
1413 struct nextfield
1414 {
1415 struct nextfield *next;
1416 int accessibility;
1417 int virtuality;
1418 struct field field;
1419 };
1420
1421 struct nextfnfield
1422 {
1423 struct nextfnfield *next;
1424 struct fn_field fnfield;
1425 };
1426
1427 struct fnfieldlist
1428 {
1429 const char *name;
1430 int length;
1431 struct nextfnfield *head;
1432 };
1433
1434 struct typedef_field_list
1435 {
1436 struct typedef_field field;
1437 struct typedef_field_list *next;
1438 };
1439
1440 /* The routines that read and process dies for a C struct or C++ class
1441 pass lists of data member fields and lists of member function fields
1442 in an instance of a field_info structure, as defined below. */
1443 struct field_info
1444 {
1445 /* List of data member and baseclasses fields. */
1446 struct nextfield *fields, *baseclasses;
1447
1448 /* Number of fields (including baseclasses). */
1449 int nfields;
1450
1451 /* Number of baseclasses. */
1452 int nbaseclasses;
1453
1454 /* Set if the accesibility of one of the fields is not public. */
1455 int non_public_fields;
1456
1457 /* Member function fields array, entries are allocated in the order they
1458 are encountered in the object file. */
1459 struct nextfnfield *fnfields;
1460
1461 /* Member function fieldlist array, contains name of possibly overloaded
1462 member function, number of overloaded member functions and a pointer
1463 to the head of the member function field chain. */
1464 struct fnfieldlist *fnfieldlists;
1465
1466 /* Number of entries in the fnfieldlists array. */
1467 int nfnfields;
1468
1469 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1470 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1471 struct typedef_field_list *typedef_field_list;
1472 unsigned typedef_field_list_count;
1473 };
1474
1475 /* One item on the queue of compilation units to read in full symbols
1476 for. */
1477 struct dwarf2_queue_item
1478 {
1479 struct dwarf2_per_cu_data *per_cu;
1480 enum language pretend_language;
1481 struct dwarf2_queue_item *next;
1482 };
1483
1484 /* The current queue. */
1485 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1486
1487 /* Loaded secondary compilation units are kept in memory until they
1488 have not been referenced for the processing of this many
1489 compilation units. Set this to zero to disable caching. Cache
1490 sizes of up to at least twenty will improve startup time for
1491 typical inter-CU-reference binaries, at an obvious memory cost. */
1492 static int dwarf_max_cache_age = 5;
1493 static void
1494 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1495 struct cmd_list_element *c, const char *value)
1496 {
1497 fprintf_filtered (file, _("The upper bound on the age of cached "
1498 "DWARF compilation units is %s.\n"),
1499 value);
1500 }
1501 \f
1502 /* local function prototypes */
1503
1504 static const char *get_section_name (const struct dwarf2_section_info *);
1505
1506 static const char *get_section_file_name (const struct dwarf2_section_info *);
1507
1508 static void dwarf2_locate_sections (bfd *, asection *, void *);
1509
1510 static void dwarf2_find_base_address (struct die_info *die,
1511 struct dwarf2_cu *cu);
1512
1513 static struct partial_symtab *create_partial_symtab
1514 (struct dwarf2_per_cu_data *per_cu, const char *name);
1515
1516 static void dwarf2_build_psymtabs_hard (struct objfile *);
1517
1518 static void scan_partial_symbols (struct partial_die_info *,
1519 CORE_ADDR *, CORE_ADDR *,
1520 int, struct dwarf2_cu *);
1521
1522 static void add_partial_symbol (struct partial_die_info *,
1523 struct dwarf2_cu *);
1524
1525 static void add_partial_namespace (struct partial_die_info *pdi,
1526 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1527 int set_addrmap, struct dwarf2_cu *cu);
1528
1529 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1530 CORE_ADDR *highpc, int set_addrmap,
1531 struct dwarf2_cu *cu);
1532
1533 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1534 struct dwarf2_cu *cu);
1535
1536 static void add_partial_subprogram (struct partial_die_info *pdi,
1537 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1538 int need_pc, struct dwarf2_cu *cu);
1539
1540 static void dwarf2_read_symtab (struct partial_symtab *,
1541 struct objfile *);
1542
1543 static void psymtab_to_symtab_1 (struct partial_symtab *);
1544
1545 static struct abbrev_info *abbrev_table_lookup_abbrev
1546 (const struct abbrev_table *, unsigned int);
1547
1548 static struct abbrev_table *abbrev_table_read_table
1549 (struct dwarf2_section_info *, sect_offset);
1550
1551 static void abbrev_table_free (struct abbrev_table *);
1552
1553 static void abbrev_table_free_cleanup (void *);
1554
1555 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1556 struct dwarf2_section_info *);
1557
1558 static void dwarf2_free_abbrev_table (void *);
1559
1560 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1561
1562 static struct partial_die_info *load_partial_dies
1563 (const struct die_reader_specs *, const gdb_byte *, int);
1564
1565 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1566 struct partial_die_info *,
1567 struct abbrev_info *,
1568 unsigned int,
1569 const gdb_byte *);
1570
1571 static struct partial_die_info *find_partial_die (sect_offset, int,
1572 struct dwarf2_cu *);
1573
1574 static void fixup_partial_die (struct partial_die_info *,
1575 struct dwarf2_cu *);
1576
1577 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1578 struct attribute *, struct attr_abbrev *,
1579 const gdb_byte *);
1580
1581 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1582
1583 static int read_1_signed_byte (bfd *, const gdb_byte *);
1584
1585 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1586
1587 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1588
1589 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1590
1591 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1592 unsigned int *);
1593
1594 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1595
1596 static LONGEST read_checked_initial_length_and_offset
1597 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1598 unsigned int *, unsigned int *);
1599
1600 static LONGEST read_offset (bfd *, const gdb_byte *,
1601 const struct comp_unit_head *,
1602 unsigned int *);
1603
1604 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1605
1606 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1607 sect_offset);
1608
1609 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1610
1611 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1612
1613 static const char *read_indirect_string (bfd *, const gdb_byte *,
1614 const struct comp_unit_head *,
1615 unsigned int *);
1616
1617 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1618 const struct comp_unit_head *,
1619 unsigned int *);
1620
1621 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1622
1623 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1624
1625 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1626 const gdb_byte *,
1627 unsigned int *);
1628
1629 static const char *read_str_index (const struct die_reader_specs *reader,
1630 ULONGEST str_index);
1631
1632 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1633
1634 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1635 struct dwarf2_cu *);
1636
1637 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1638 unsigned int);
1639
1640 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1641 struct dwarf2_cu *cu);
1642
1643 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1644 struct dwarf2_cu *cu);
1645
1646 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1647
1648 static struct die_info *die_specification (struct die_info *die,
1649 struct dwarf2_cu **);
1650
1651 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1652 struct dwarf2_cu *cu);
1653
1654 static void dwarf_decode_lines (struct line_header *, const char *,
1655 struct dwarf2_cu *, struct partial_symtab *,
1656 CORE_ADDR, int decode_mapping);
1657
1658 static void dwarf2_start_subfile (const char *, const char *);
1659
1660 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1661 const char *, const char *,
1662 CORE_ADDR);
1663
1664 static struct symbol *new_symbol (struct die_info *, struct type *,
1665 struct dwarf2_cu *);
1666
1667 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1668 struct dwarf2_cu *, struct symbol *);
1669
1670 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1671 struct dwarf2_cu *);
1672
1673 static void dwarf2_const_value_attr (const struct attribute *attr,
1674 struct type *type,
1675 const char *name,
1676 struct obstack *obstack,
1677 struct dwarf2_cu *cu, LONGEST *value,
1678 const gdb_byte **bytes,
1679 struct dwarf2_locexpr_baton **baton);
1680
1681 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1682
1683 static int need_gnat_info (struct dwarf2_cu *);
1684
1685 static struct type *die_descriptive_type (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void set_descriptive_type (struct type *, struct die_info *,
1689 struct dwarf2_cu *);
1690
1691 static struct type *die_containing_type (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1695 struct dwarf2_cu *);
1696
1697 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1698
1699 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1700
1701 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1702
1703 static char *typename_concat (struct obstack *obs, const char *prefix,
1704 const char *suffix, int physname,
1705 struct dwarf2_cu *cu);
1706
1707 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1708
1709 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1710
1711 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1712
1713 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1714
1715 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1716
1717 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1718 struct dwarf2_cu *, struct partial_symtab *);
1719
1720 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1721 values. Keep the items ordered with increasing constraints compliance. */
1722 enum pc_bounds_kind
1723 {
1724 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1725 PC_BOUNDS_NOT_PRESENT,
1726
1727 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1728 were present but they do not form a valid range of PC addresses. */
1729 PC_BOUNDS_INVALID,
1730
1731 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1732 PC_BOUNDS_RANGES,
1733
1734 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1735 PC_BOUNDS_HIGH_LOW,
1736 };
1737
1738 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1739 CORE_ADDR *, CORE_ADDR *,
1740 struct dwarf2_cu *,
1741 struct partial_symtab *);
1742
1743 static void get_scope_pc_bounds (struct die_info *,
1744 CORE_ADDR *, CORE_ADDR *,
1745 struct dwarf2_cu *);
1746
1747 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1748 CORE_ADDR, struct dwarf2_cu *);
1749
1750 static void dwarf2_add_field (struct field_info *, struct die_info *,
1751 struct dwarf2_cu *);
1752
1753 static void dwarf2_attach_fields_to_type (struct field_info *,
1754 struct type *, struct dwarf2_cu *);
1755
1756 static void dwarf2_add_member_fn (struct field_info *,
1757 struct die_info *, struct type *,
1758 struct dwarf2_cu *);
1759
1760 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1761 struct type *,
1762 struct dwarf2_cu *);
1763
1764 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1765
1766 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1767
1768 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1769
1770 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1771
1772 static struct using_direct **using_directives (enum language);
1773
1774 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1775
1776 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1777
1778 static struct type *read_module_type (struct die_info *die,
1779 struct dwarf2_cu *cu);
1780
1781 static const char *namespace_name (struct die_info *die,
1782 int *is_anonymous, struct dwarf2_cu *);
1783
1784 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1785
1786 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1787
1788 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1789 struct dwarf2_cu *);
1790
1791 static struct die_info *read_die_and_siblings_1
1792 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1793 struct die_info *);
1794
1795 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1796 const gdb_byte *info_ptr,
1797 const gdb_byte **new_info_ptr,
1798 struct die_info *parent);
1799
1800 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1801 struct die_info **, const gdb_byte *,
1802 int *, int);
1803
1804 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1805 struct die_info **, const gdb_byte *,
1806 int *);
1807
1808 static void process_die (struct die_info *, struct dwarf2_cu *);
1809
1810 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1811 struct obstack *);
1812
1813 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1814
1815 static const char *dwarf2_full_name (const char *name,
1816 struct die_info *die,
1817 struct dwarf2_cu *cu);
1818
1819 static const char *dwarf2_physname (const char *name, struct die_info *die,
1820 struct dwarf2_cu *cu);
1821
1822 static struct die_info *dwarf2_extension (struct die_info *die,
1823 struct dwarf2_cu **);
1824
1825 static const char *dwarf_tag_name (unsigned int);
1826
1827 static const char *dwarf_attr_name (unsigned int);
1828
1829 static const char *dwarf_form_name (unsigned int);
1830
1831 static const char *dwarf_bool_name (unsigned int);
1832
1833 static const char *dwarf_type_encoding_name (unsigned int);
1834
1835 static struct die_info *sibling_die (struct die_info *);
1836
1837 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1838
1839 static void dump_die_for_error (struct die_info *);
1840
1841 static void dump_die_1 (struct ui_file *, int level, int max_level,
1842 struct die_info *);
1843
1844 /*static*/ void dump_die (struct die_info *, int max_level);
1845
1846 static void store_in_ref_table (struct die_info *,
1847 struct dwarf2_cu *);
1848
1849 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1850
1851 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1852
1853 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1854 const struct attribute *,
1855 struct dwarf2_cu **);
1856
1857 static struct die_info *follow_die_ref (struct die_info *,
1858 const struct attribute *,
1859 struct dwarf2_cu **);
1860
1861 static struct die_info *follow_die_sig (struct die_info *,
1862 const struct attribute *,
1863 struct dwarf2_cu **);
1864
1865 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1866 struct dwarf2_cu *);
1867
1868 static struct type *get_DW_AT_signature_type (struct die_info *,
1869 const struct attribute *,
1870 struct dwarf2_cu *);
1871
1872 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1873
1874 static void read_signatured_type (struct signatured_type *);
1875
1876 static int attr_to_dynamic_prop (const struct attribute *attr,
1877 struct die_info *die, struct dwarf2_cu *cu,
1878 struct dynamic_prop *prop);
1879
1880 /* memory allocation interface */
1881
1882 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1883
1884 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1885
1886 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1887
1888 static int attr_form_is_block (const struct attribute *);
1889
1890 static int attr_form_is_section_offset (const struct attribute *);
1891
1892 static int attr_form_is_constant (const struct attribute *);
1893
1894 static int attr_form_is_ref (const struct attribute *);
1895
1896 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1897 struct dwarf2_loclist_baton *baton,
1898 const struct attribute *attr);
1899
1900 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1901 struct symbol *sym,
1902 struct dwarf2_cu *cu,
1903 int is_block);
1904
1905 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1906 const gdb_byte *info_ptr,
1907 struct abbrev_info *abbrev);
1908
1909 static void free_stack_comp_unit (void *);
1910
1911 static hashval_t partial_die_hash (const void *item);
1912
1913 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1914
1915 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1916 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1917
1918 static void init_one_comp_unit (struct dwarf2_cu *cu,
1919 struct dwarf2_per_cu_data *per_cu);
1920
1921 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1922 struct die_info *comp_unit_die,
1923 enum language pretend_language);
1924
1925 static void free_heap_comp_unit (void *);
1926
1927 static void free_cached_comp_units (void *);
1928
1929 static void age_cached_comp_units (void);
1930
1931 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1932
1933 static struct type *set_die_type (struct die_info *, struct type *,
1934 struct dwarf2_cu *);
1935
1936 static void create_all_comp_units (struct objfile *);
1937
1938 static int create_all_type_units (struct objfile *);
1939
1940 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1941 enum language);
1942
1943 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1944 enum language);
1945
1946 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1947 enum language);
1948
1949 static void dwarf2_add_dependence (struct dwarf2_cu *,
1950 struct dwarf2_per_cu_data *);
1951
1952 static void dwarf2_mark (struct dwarf2_cu *);
1953
1954 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1955
1956 static struct type *get_die_type_at_offset (sect_offset,
1957 struct dwarf2_per_cu_data *);
1958
1959 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1960
1961 static void dwarf2_release_queue (void *dummy);
1962
1963 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1964 enum language pretend_language);
1965
1966 static void process_queue (void);
1967
1968 /* The return type of find_file_and_directory. Note, the enclosed
1969 string pointers are only valid while this object is valid. */
1970
1971 struct file_and_directory
1972 {
1973 /* The filename. This is never NULL. */
1974 const char *name;
1975
1976 /* The compilation directory. NULL if not known. If we needed to
1977 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1978 points directly to the DW_AT_comp_dir string attribute owned by
1979 the obstack that owns the DIE. */
1980 const char *comp_dir;
1981
1982 /* If we needed to build a new string for comp_dir, this is what
1983 owns the storage. */
1984 std::string comp_dir_storage;
1985 };
1986
1987 static file_and_directory find_file_and_directory (struct die_info *die,
1988 struct dwarf2_cu *cu);
1989
1990 static char *file_full_name (int file, struct line_header *lh,
1991 const char *comp_dir);
1992
1993 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1994 enum class rcuh_kind { COMPILE, TYPE };
1995
1996 static const gdb_byte *read_and_check_comp_unit_head
1997 (struct comp_unit_head *header,
1998 struct dwarf2_section_info *section,
1999 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2000 rcuh_kind section_kind);
2001
2002 static void init_cutu_and_read_dies
2003 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2004 int use_existing_cu, int keep,
2005 die_reader_func_ftype *die_reader_func, void *data);
2006
2007 static void init_cutu_and_read_dies_simple
2008 (struct dwarf2_per_cu_data *this_cu,
2009 die_reader_func_ftype *die_reader_func, void *data);
2010
2011 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2012
2013 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2014
2015 static struct dwo_unit *lookup_dwo_unit_in_dwp
2016 (struct dwp_file *dwp_file, const char *comp_dir,
2017 ULONGEST signature, int is_debug_types);
2018
2019 static struct dwp_file *get_dwp_file (void);
2020
2021 static struct dwo_unit *lookup_dwo_comp_unit
2022 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2023
2024 static struct dwo_unit *lookup_dwo_type_unit
2025 (struct signatured_type *, const char *, const char *);
2026
2027 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2028
2029 static void free_dwo_file_cleanup (void *);
2030
2031 static void process_cu_includes (void);
2032
2033 static void check_producer (struct dwarf2_cu *cu);
2034
2035 static void free_line_header_voidp (void *arg);
2036 \f
2037 /* Various complaints about symbol reading that don't abort the process. */
2038
2039 static void
2040 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2041 {
2042 complaint (&symfile_complaints,
2043 _("statement list doesn't fit in .debug_line section"));
2044 }
2045
2046 static void
2047 dwarf2_debug_line_missing_file_complaint (void)
2048 {
2049 complaint (&symfile_complaints,
2050 _(".debug_line section has line data without a file"));
2051 }
2052
2053 static void
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 {
2056 complaint (&symfile_complaints,
2057 _(".debug_line section has line "
2058 "program sequence without an end"));
2059 }
2060
2061 static void
2062 dwarf2_complex_location_expr_complaint (void)
2063 {
2064 complaint (&symfile_complaints, _("location expression too complex"));
2065 }
2066
2067 static void
2068 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2069 int arg3)
2070 {
2071 complaint (&symfile_complaints,
2072 _("const value length mismatch for '%s', got %d, expected %d"),
2073 arg1, arg2, arg3);
2074 }
2075
2076 static void
2077 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2078 {
2079 complaint (&symfile_complaints,
2080 _("debug info runs off end of %s section"
2081 " [in module %s]"),
2082 get_section_name (section),
2083 get_section_file_name (section));
2084 }
2085
2086 static void
2087 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2088 {
2089 complaint (&symfile_complaints,
2090 _("macro debug info contains a "
2091 "malformed macro definition:\n`%s'"),
2092 arg1);
2093 }
2094
2095 static void
2096 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2097 {
2098 complaint (&symfile_complaints,
2099 _("invalid attribute class or form for '%s' in '%s'"),
2100 arg1, arg2);
2101 }
2102
2103 /* Hash function for line_header_hash. */
2104
2105 static hashval_t
2106 line_header_hash (const struct line_header *ofs)
2107 {
2108 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2109 }
2110
2111 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2112
2113 static hashval_t
2114 line_header_hash_voidp (const void *item)
2115 {
2116 const struct line_header *ofs = (const struct line_header *) item;
2117
2118 return line_header_hash (ofs);
2119 }
2120
2121 /* Equality function for line_header_hash. */
2122
2123 static int
2124 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2125 {
2126 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2127 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2128
2129 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2130 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2131 }
2132
2133 \f
2134 #if WORDS_BIGENDIAN
2135
2136 /* Convert VALUE between big- and little-endian. */
2137 static offset_type
2138 byte_swap (offset_type value)
2139 {
2140 offset_type result;
2141
2142 result = (value & 0xff) << 24;
2143 result |= (value & 0xff00) << 8;
2144 result |= (value & 0xff0000) >> 8;
2145 result |= (value & 0xff000000) >> 24;
2146 return result;
2147 }
2148
2149 #define MAYBE_SWAP(V) byte_swap (V)
2150
2151 #else
2152 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2153 #endif /* WORDS_BIGENDIAN */
2154
2155 /* Read the given attribute value as an address, taking the attribute's
2156 form into account. */
2157
2158 static CORE_ADDR
2159 attr_value_as_address (struct attribute *attr)
2160 {
2161 CORE_ADDR addr;
2162
2163 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2164 {
2165 /* Aside from a few clearly defined exceptions, attributes that
2166 contain an address must always be in DW_FORM_addr form.
2167 Unfortunately, some compilers happen to be violating this
2168 requirement by encoding addresses using other forms, such
2169 as DW_FORM_data4 for example. For those broken compilers,
2170 we try to do our best, without any guarantee of success,
2171 to interpret the address correctly. It would also be nice
2172 to generate a complaint, but that would require us to maintain
2173 a list of legitimate cases where a non-address form is allowed,
2174 as well as update callers to pass in at least the CU's DWARF
2175 version. This is more overhead than what we're willing to
2176 expand for a pretty rare case. */
2177 addr = DW_UNSND (attr);
2178 }
2179 else
2180 addr = DW_ADDR (attr);
2181
2182 return addr;
2183 }
2184
2185 /* The suffix for an index file. */
2186 #define INDEX_SUFFIX ".gdb-index"
2187
2188 /* Try to locate the sections we need for DWARF 2 debugging
2189 information and return true if we have enough to do something.
2190 NAMES points to the dwarf2 section names, or is NULL if the standard
2191 ELF names are used. */
2192
2193 int
2194 dwarf2_has_info (struct objfile *objfile,
2195 const struct dwarf2_debug_sections *names)
2196 {
2197 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2198 objfile_data (objfile, dwarf2_objfile_data_key));
2199 if (!dwarf2_per_objfile)
2200 {
2201 /* Initialize per-objfile state. */
2202 struct dwarf2_per_objfile *data
2203 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2204
2205 memset (data, 0, sizeof (*data));
2206 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2207 dwarf2_per_objfile = data;
2208
2209 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2210 (void *) names);
2211 dwarf2_per_objfile->objfile = objfile;
2212 }
2213 return (!dwarf2_per_objfile->info.is_virtual
2214 && dwarf2_per_objfile->info.s.section != NULL
2215 && !dwarf2_per_objfile->abbrev.is_virtual
2216 && dwarf2_per_objfile->abbrev.s.section != NULL);
2217 }
2218
2219 /* Return the containing section of virtual section SECTION. */
2220
2221 static struct dwarf2_section_info *
2222 get_containing_section (const struct dwarf2_section_info *section)
2223 {
2224 gdb_assert (section->is_virtual);
2225 return section->s.containing_section;
2226 }
2227
2228 /* Return the bfd owner of SECTION. */
2229
2230 static struct bfd *
2231 get_section_bfd_owner (const struct dwarf2_section_info *section)
2232 {
2233 if (section->is_virtual)
2234 {
2235 section = get_containing_section (section);
2236 gdb_assert (!section->is_virtual);
2237 }
2238 return section->s.section->owner;
2239 }
2240
2241 /* Return the bfd section of SECTION.
2242 Returns NULL if the section is not present. */
2243
2244 static asection *
2245 get_section_bfd_section (const struct dwarf2_section_info *section)
2246 {
2247 if (section->is_virtual)
2248 {
2249 section = get_containing_section (section);
2250 gdb_assert (!section->is_virtual);
2251 }
2252 return section->s.section;
2253 }
2254
2255 /* Return the name of SECTION. */
2256
2257 static const char *
2258 get_section_name (const struct dwarf2_section_info *section)
2259 {
2260 asection *sectp = get_section_bfd_section (section);
2261
2262 gdb_assert (sectp != NULL);
2263 return bfd_section_name (get_section_bfd_owner (section), sectp);
2264 }
2265
2266 /* Return the name of the file SECTION is in. */
2267
2268 static const char *
2269 get_section_file_name (const struct dwarf2_section_info *section)
2270 {
2271 bfd *abfd = get_section_bfd_owner (section);
2272
2273 return bfd_get_filename (abfd);
2274 }
2275
2276 /* Return the id of SECTION.
2277 Returns 0 if SECTION doesn't exist. */
2278
2279 static int
2280 get_section_id (const struct dwarf2_section_info *section)
2281 {
2282 asection *sectp = get_section_bfd_section (section);
2283
2284 if (sectp == NULL)
2285 return 0;
2286 return sectp->id;
2287 }
2288
2289 /* Return the flags of SECTION.
2290 SECTION (or containing section if this is a virtual section) must exist. */
2291
2292 static int
2293 get_section_flags (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 gdb_assert (sectp != NULL);
2298 return bfd_get_section_flags (sectp->owner, sectp);
2299 }
2300
2301 /* When loading sections, we look either for uncompressed section or for
2302 compressed section names. */
2303
2304 static int
2305 section_is_p (const char *section_name,
2306 const struct dwarf2_section_names *names)
2307 {
2308 if (names->normal != NULL
2309 && strcmp (section_name, names->normal) == 0)
2310 return 1;
2311 if (names->compressed != NULL
2312 && strcmp (section_name, names->compressed) == 0)
2313 return 1;
2314 return 0;
2315 }
2316
2317 /* This function is mapped across the sections and remembers the
2318 offset and size of each of the debugging sections we are interested
2319 in. */
2320
2321 static void
2322 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2323 {
2324 const struct dwarf2_debug_sections *names;
2325 flagword aflag = bfd_get_section_flags (abfd, sectp);
2326
2327 if (vnames == NULL)
2328 names = &dwarf2_elf_names;
2329 else
2330 names = (const struct dwarf2_debug_sections *) vnames;
2331
2332 if ((aflag & SEC_HAS_CONTENTS) == 0)
2333 {
2334 }
2335 else if (section_is_p (sectp->name, &names->info))
2336 {
2337 dwarf2_per_objfile->info.s.section = sectp;
2338 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2339 }
2340 else if (section_is_p (sectp->name, &names->abbrev))
2341 {
2342 dwarf2_per_objfile->abbrev.s.section = sectp;
2343 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names->line))
2346 {
2347 dwarf2_per_objfile->line.s.section = sectp;
2348 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names->loc))
2351 {
2352 dwarf2_per_objfile->loc.s.section = sectp;
2353 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names->loclists))
2356 {
2357 dwarf2_per_objfile->loclists.s.section = sectp;
2358 dwarf2_per_objfile->loclists.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names->macinfo))
2361 {
2362 dwarf2_per_objfile->macinfo.s.section = sectp;
2363 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names->macro))
2366 {
2367 dwarf2_per_objfile->macro.s.section = sectp;
2368 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names->str))
2371 {
2372 dwarf2_per_objfile->str.s.section = sectp;
2373 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names->line_str))
2376 {
2377 dwarf2_per_objfile->line_str.s.section = sectp;
2378 dwarf2_per_objfile->line_str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names->addr))
2381 {
2382 dwarf2_per_objfile->addr.s.section = sectp;
2383 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names->frame))
2386 {
2387 dwarf2_per_objfile->frame.s.section = sectp;
2388 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names->eh_frame))
2391 {
2392 dwarf2_per_objfile->eh_frame.s.section = sectp;
2393 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names->ranges))
2396 {
2397 dwarf2_per_objfile->ranges.s.section = sectp;
2398 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names->rnglists))
2401 {
2402 dwarf2_per_objfile->rnglists.s.section = sectp;
2403 dwarf2_per_objfile->rnglists.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names->types))
2406 {
2407 struct dwarf2_section_info type_section;
2408
2409 memset (&type_section, 0, sizeof (type_section));
2410 type_section.s.section = sectp;
2411 type_section.size = bfd_get_section_size (sectp);
2412
2413 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2414 &type_section);
2415 }
2416 else if (section_is_p (sectp->name, &names->gdb_index))
2417 {
2418 dwarf2_per_objfile->gdb_index.s.section = sectp;
2419 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2420 }
2421
2422 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2423 && bfd_section_vma (abfd, sectp) == 0)
2424 dwarf2_per_objfile->has_section_at_zero = 1;
2425 }
2426
2427 /* A helper function that decides whether a section is empty,
2428 or not present. */
2429
2430 static int
2431 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2432 {
2433 if (section->is_virtual)
2434 return section->size == 0;
2435 return section->s.section == NULL || section->size == 0;
2436 }
2437
2438 /* Read the contents of the section INFO.
2439 OBJFILE is the main object file, but not necessarily the file where
2440 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2441 of the DWO file.
2442 If the section is compressed, uncompress it before returning. */
2443
2444 static void
2445 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2446 {
2447 asection *sectp;
2448 bfd *abfd;
2449 gdb_byte *buf, *retbuf;
2450
2451 if (info->readin)
2452 return;
2453 info->buffer = NULL;
2454 info->readin = 1;
2455
2456 if (dwarf2_section_empty_p (info))
2457 return;
2458
2459 sectp = get_section_bfd_section (info);
2460
2461 /* If this is a virtual section we need to read in the real one first. */
2462 if (info->is_virtual)
2463 {
2464 struct dwarf2_section_info *containing_section =
2465 get_containing_section (info);
2466
2467 gdb_assert (sectp != NULL);
2468 if ((sectp->flags & SEC_RELOC) != 0)
2469 {
2470 error (_("Dwarf Error: DWP format V2 with relocations is not"
2471 " supported in section %s [in module %s]"),
2472 get_section_name (info), get_section_file_name (info));
2473 }
2474 dwarf2_read_section (objfile, containing_section);
2475 /* Other code should have already caught virtual sections that don't
2476 fit. */
2477 gdb_assert (info->virtual_offset + info->size
2478 <= containing_section->size);
2479 /* If the real section is empty or there was a problem reading the
2480 section we shouldn't get here. */
2481 gdb_assert (containing_section->buffer != NULL);
2482 info->buffer = containing_section->buffer + info->virtual_offset;
2483 return;
2484 }
2485
2486 /* If the section has relocations, we must read it ourselves.
2487 Otherwise we attach it to the BFD. */
2488 if ((sectp->flags & SEC_RELOC) == 0)
2489 {
2490 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2491 return;
2492 }
2493
2494 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2495 info->buffer = buf;
2496
2497 /* When debugging .o files, we may need to apply relocations; see
2498 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2499 We never compress sections in .o files, so we only need to
2500 try this when the section is not compressed. */
2501 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2502 if (retbuf != NULL)
2503 {
2504 info->buffer = retbuf;
2505 return;
2506 }
2507
2508 abfd = get_section_bfd_owner (info);
2509 gdb_assert (abfd != NULL);
2510
2511 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2512 || bfd_bread (buf, info->size, abfd) != info->size)
2513 {
2514 error (_("Dwarf Error: Can't read DWARF data"
2515 " in section %s [in module %s]"),
2516 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2517 }
2518 }
2519
2520 /* A helper function that returns the size of a section in a safe way.
2521 If you are positive that the section has been read before using the
2522 size, then it is safe to refer to the dwarf2_section_info object's
2523 "size" field directly. In other cases, you must call this
2524 function, because for compressed sections the size field is not set
2525 correctly until the section has been read. */
2526
2527 static bfd_size_type
2528 dwarf2_section_size (struct objfile *objfile,
2529 struct dwarf2_section_info *info)
2530 {
2531 if (!info->readin)
2532 dwarf2_read_section (objfile, info);
2533 return info->size;
2534 }
2535
2536 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2537 SECTION_NAME. */
2538
2539 void
2540 dwarf2_get_section_info (struct objfile *objfile,
2541 enum dwarf2_section_enum sect,
2542 asection **sectp, const gdb_byte **bufp,
2543 bfd_size_type *sizep)
2544 {
2545 struct dwarf2_per_objfile *data
2546 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2547 dwarf2_objfile_data_key);
2548 struct dwarf2_section_info *info;
2549
2550 /* We may see an objfile without any DWARF, in which case we just
2551 return nothing. */
2552 if (data == NULL)
2553 {
2554 *sectp = NULL;
2555 *bufp = NULL;
2556 *sizep = 0;
2557 return;
2558 }
2559 switch (sect)
2560 {
2561 case DWARF2_DEBUG_FRAME:
2562 info = &data->frame;
2563 break;
2564 case DWARF2_EH_FRAME:
2565 info = &data->eh_frame;
2566 break;
2567 default:
2568 gdb_assert_not_reached ("unexpected section");
2569 }
2570
2571 dwarf2_read_section (objfile, info);
2572
2573 *sectp = get_section_bfd_section (info);
2574 *bufp = info->buffer;
2575 *sizep = info->size;
2576 }
2577
2578 /* A helper function to find the sections for a .dwz file. */
2579
2580 static void
2581 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2582 {
2583 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2584
2585 /* Note that we only support the standard ELF names, because .dwz
2586 is ELF-only (at the time of writing). */
2587 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2588 {
2589 dwz_file->abbrev.s.section = sectp;
2590 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2591 }
2592 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2593 {
2594 dwz_file->info.s.section = sectp;
2595 dwz_file->info.size = bfd_get_section_size (sectp);
2596 }
2597 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2598 {
2599 dwz_file->str.s.section = sectp;
2600 dwz_file->str.size = bfd_get_section_size (sectp);
2601 }
2602 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2603 {
2604 dwz_file->line.s.section = sectp;
2605 dwz_file->line.size = bfd_get_section_size (sectp);
2606 }
2607 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2608 {
2609 dwz_file->macro.s.section = sectp;
2610 dwz_file->macro.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2613 {
2614 dwz_file->gdb_index.s.section = sectp;
2615 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2616 }
2617 }
2618
2619 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2620 there is no .gnu_debugaltlink section in the file. Error if there
2621 is such a section but the file cannot be found. */
2622
2623 static struct dwz_file *
2624 dwarf2_get_dwz_file (void)
2625 {
2626 char *data;
2627 struct cleanup *cleanup;
2628 const char *filename;
2629 struct dwz_file *result;
2630 bfd_size_type buildid_len_arg;
2631 size_t buildid_len;
2632 bfd_byte *buildid;
2633
2634 if (dwarf2_per_objfile->dwz_file != NULL)
2635 return dwarf2_per_objfile->dwz_file;
2636
2637 bfd_set_error (bfd_error_no_error);
2638 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2639 &buildid_len_arg, &buildid);
2640 if (data == NULL)
2641 {
2642 if (bfd_get_error () == bfd_error_no_error)
2643 return NULL;
2644 error (_("could not read '.gnu_debugaltlink' section: %s"),
2645 bfd_errmsg (bfd_get_error ()));
2646 }
2647 cleanup = make_cleanup (xfree, data);
2648 make_cleanup (xfree, buildid);
2649
2650 buildid_len = (size_t) buildid_len_arg;
2651
2652 filename = (const char *) data;
2653
2654 std::string abs_storage;
2655 if (!IS_ABSOLUTE_PATH (filename))
2656 {
2657 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2658
2659 make_cleanup (xfree, abs);
2660 abs_storage = ldirname (abs) + SLASH_STRING + filename;
2661 filename = abs_storage.c_str ();
2662 }
2663
2664 /* First try the file name given in the section. If that doesn't
2665 work, try to use the build-id instead. */
2666 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2667 if (dwz_bfd != NULL)
2668 {
2669 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2670 dwz_bfd.release ();
2671 }
2672
2673 if (dwz_bfd == NULL)
2674 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2675
2676 if (dwz_bfd == NULL)
2677 error (_("could not find '.gnu_debugaltlink' file for %s"),
2678 objfile_name (dwarf2_per_objfile->objfile));
2679
2680 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2681 struct dwz_file);
2682 result->dwz_bfd = dwz_bfd.release ();
2683
2684 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2685
2686 do_cleanups (cleanup);
2687
2688 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2689 dwarf2_per_objfile->dwz_file = result;
2690 return result;
2691 }
2692 \f
2693 /* DWARF quick_symbols_functions support. */
2694
2695 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2696 unique line tables, so we maintain a separate table of all .debug_line
2697 derived entries to support the sharing.
2698 All the quick functions need is the list of file names. We discard the
2699 line_header when we're done and don't need to record it here. */
2700 struct quick_file_names
2701 {
2702 /* The data used to construct the hash key. */
2703 struct stmt_list_hash hash;
2704
2705 /* The number of entries in file_names, real_names. */
2706 unsigned int num_file_names;
2707
2708 /* The file names from the line table, after being run through
2709 file_full_name. */
2710 const char **file_names;
2711
2712 /* The file names from the line table after being run through
2713 gdb_realpath. These are computed lazily. */
2714 const char **real_names;
2715 };
2716
2717 /* When using the index (and thus not using psymtabs), each CU has an
2718 object of this type. This is used to hold information needed by
2719 the various "quick" methods. */
2720 struct dwarf2_per_cu_quick_data
2721 {
2722 /* The file table. This can be NULL if there was no file table
2723 or it's currently not read in.
2724 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2725 struct quick_file_names *file_names;
2726
2727 /* The corresponding symbol table. This is NULL if symbols for this
2728 CU have not yet been read. */
2729 struct compunit_symtab *compunit_symtab;
2730
2731 /* A temporary mark bit used when iterating over all CUs in
2732 expand_symtabs_matching. */
2733 unsigned int mark : 1;
2734
2735 /* True if we've tried to read the file table and found there isn't one.
2736 There will be no point in trying to read it again next time. */
2737 unsigned int no_file_data : 1;
2738 };
2739
2740 /* Utility hash function for a stmt_list_hash. */
2741
2742 static hashval_t
2743 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2744 {
2745 hashval_t v = 0;
2746
2747 if (stmt_list_hash->dwo_unit != NULL)
2748 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2749 v += to_underlying (stmt_list_hash->line_sect_off);
2750 return v;
2751 }
2752
2753 /* Utility equality function for a stmt_list_hash. */
2754
2755 static int
2756 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2757 const struct stmt_list_hash *rhs)
2758 {
2759 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2760 return 0;
2761 if (lhs->dwo_unit != NULL
2762 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2763 return 0;
2764
2765 return lhs->line_sect_off == rhs->line_sect_off;
2766 }
2767
2768 /* Hash function for a quick_file_names. */
2769
2770 static hashval_t
2771 hash_file_name_entry (const void *e)
2772 {
2773 const struct quick_file_names *file_data
2774 = (const struct quick_file_names *) e;
2775
2776 return hash_stmt_list_entry (&file_data->hash);
2777 }
2778
2779 /* Equality function for a quick_file_names. */
2780
2781 static int
2782 eq_file_name_entry (const void *a, const void *b)
2783 {
2784 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2785 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2786
2787 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2788 }
2789
2790 /* Delete function for a quick_file_names. */
2791
2792 static void
2793 delete_file_name_entry (void *e)
2794 {
2795 struct quick_file_names *file_data = (struct quick_file_names *) e;
2796 int i;
2797
2798 for (i = 0; i < file_data->num_file_names; ++i)
2799 {
2800 xfree ((void*) file_data->file_names[i]);
2801 if (file_data->real_names)
2802 xfree ((void*) file_data->real_names[i]);
2803 }
2804
2805 /* The space for the struct itself lives on objfile_obstack,
2806 so we don't free it here. */
2807 }
2808
2809 /* Create a quick_file_names hash table. */
2810
2811 static htab_t
2812 create_quick_file_names_table (unsigned int nr_initial_entries)
2813 {
2814 return htab_create_alloc (nr_initial_entries,
2815 hash_file_name_entry, eq_file_name_entry,
2816 delete_file_name_entry, xcalloc, xfree);
2817 }
2818
2819 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2820 have to be created afterwards. You should call age_cached_comp_units after
2821 processing PER_CU->CU. dw2_setup must have been already called. */
2822
2823 static void
2824 load_cu (struct dwarf2_per_cu_data *per_cu)
2825 {
2826 if (per_cu->is_debug_types)
2827 load_full_type_unit (per_cu);
2828 else
2829 load_full_comp_unit (per_cu, language_minimal);
2830
2831 if (per_cu->cu == NULL)
2832 return; /* Dummy CU. */
2833
2834 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2835 }
2836
2837 /* Read in the symbols for PER_CU. */
2838
2839 static void
2840 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2841 {
2842 struct cleanup *back_to;
2843
2844 /* Skip type_unit_groups, reading the type units they contain
2845 is handled elsewhere. */
2846 if (IS_TYPE_UNIT_GROUP (per_cu))
2847 return;
2848
2849 back_to = make_cleanup (dwarf2_release_queue, NULL);
2850
2851 if (dwarf2_per_objfile->using_index
2852 ? per_cu->v.quick->compunit_symtab == NULL
2853 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2854 {
2855 queue_comp_unit (per_cu, language_minimal);
2856 load_cu (per_cu);
2857
2858 /* If we just loaded a CU from a DWO, and we're working with an index
2859 that may badly handle TUs, load all the TUs in that DWO as well.
2860 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2861 if (!per_cu->is_debug_types
2862 && per_cu->cu != NULL
2863 && per_cu->cu->dwo_unit != NULL
2864 && dwarf2_per_objfile->index_table != NULL
2865 && dwarf2_per_objfile->index_table->version <= 7
2866 /* DWP files aren't supported yet. */
2867 && get_dwp_file () == NULL)
2868 queue_and_load_all_dwo_tus (per_cu);
2869 }
2870
2871 process_queue ();
2872
2873 /* Age the cache, releasing compilation units that have not
2874 been used recently. */
2875 age_cached_comp_units ();
2876
2877 do_cleanups (back_to);
2878 }
2879
2880 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2881 the objfile from which this CU came. Returns the resulting symbol
2882 table. */
2883
2884 static struct compunit_symtab *
2885 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2886 {
2887 gdb_assert (dwarf2_per_objfile->using_index);
2888 if (!per_cu->v.quick->compunit_symtab)
2889 {
2890 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2891 scoped_restore decrementer = increment_reading_symtab ();
2892 dw2_do_instantiate_symtab (per_cu);
2893 process_cu_includes ();
2894 do_cleanups (back_to);
2895 }
2896
2897 return per_cu->v.quick->compunit_symtab;
2898 }
2899
2900 /* Return the CU/TU given its index.
2901
2902 This is intended for loops like:
2903
2904 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2905 + dwarf2_per_objfile->n_type_units); ++i)
2906 {
2907 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2908
2909 ...;
2910 }
2911 */
2912
2913 static struct dwarf2_per_cu_data *
2914 dw2_get_cutu (int index)
2915 {
2916 if (index >= dwarf2_per_objfile->n_comp_units)
2917 {
2918 index -= dwarf2_per_objfile->n_comp_units;
2919 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2920 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2921 }
2922
2923 return dwarf2_per_objfile->all_comp_units[index];
2924 }
2925
2926 /* Return the CU given its index.
2927 This differs from dw2_get_cutu in that it's for when you know INDEX
2928 refers to a CU. */
2929
2930 static struct dwarf2_per_cu_data *
2931 dw2_get_cu (int index)
2932 {
2933 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2934
2935 return dwarf2_per_objfile->all_comp_units[index];
2936 }
2937
2938 /* A helper for create_cus_from_index that handles a given list of
2939 CUs. */
2940
2941 static void
2942 create_cus_from_index_list (struct objfile *objfile,
2943 const gdb_byte *cu_list, offset_type n_elements,
2944 struct dwarf2_section_info *section,
2945 int is_dwz,
2946 int base_offset)
2947 {
2948 offset_type i;
2949
2950 for (i = 0; i < n_elements; i += 2)
2951 {
2952 gdb_static_assert (sizeof (ULONGEST) >= 8);
2953
2954 sect_offset sect_off
2955 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2956 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2957 cu_list += 2 * 8;
2958
2959 dwarf2_per_cu_data *the_cu
2960 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2961 struct dwarf2_per_cu_data);
2962 the_cu->sect_off = sect_off;
2963 the_cu->length = length;
2964 the_cu->objfile = objfile;
2965 the_cu->section = section;
2966 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2967 struct dwarf2_per_cu_quick_data);
2968 the_cu->is_dwz = is_dwz;
2969 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2970 }
2971 }
2972
2973 /* Read the CU list from the mapped index, and use it to create all
2974 the CU objects for this objfile. */
2975
2976 static void
2977 create_cus_from_index (struct objfile *objfile,
2978 const gdb_byte *cu_list, offset_type cu_list_elements,
2979 const gdb_byte *dwz_list, offset_type dwz_elements)
2980 {
2981 struct dwz_file *dwz;
2982
2983 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2984 dwarf2_per_objfile->all_comp_units =
2985 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2986 dwarf2_per_objfile->n_comp_units);
2987
2988 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2989 &dwarf2_per_objfile->info, 0, 0);
2990
2991 if (dwz_elements == 0)
2992 return;
2993
2994 dwz = dwarf2_get_dwz_file ();
2995 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2996 cu_list_elements / 2);
2997 }
2998
2999 /* Create the signatured type hash table from the index. */
3000
3001 static void
3002 create_signatured_type_table_from_index (struct objfile *objfile,
3003 struct dwarf2_section_info *section,
3004 const gdb_byte *bytes,
3005 offset_type elements)
3006 {
3007 offset_type i;
3008 htab_t sig_types_hash;
3009
3010 dwarf2_per_objfile->n_type_units
3011 = dwarf2_per_objfile->n_allocated_type_units
3012 = elements / 3;
3013 dwarf2_per_objfile->all_type_units =
3014 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3015
3016 sig_types_hash = allocate_signatured_type_table (objfile);
3017
3018 for (i = 0; i < elements; i += 3)
3019 {
3020 struct signatured_type *sig_type;
3021 ULONGEST signature;
3022 void **slot;
3023 cu_offset type_offset_in_tu;
3024
3025 gdb_static_assert (sizeof (ULONGEST) >= 8);
3026 sect_offset sect_off
3027 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3028 type_offset_in_tu
3029 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3030 BFD_ENDIAN_LITTLE);
3031 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3032 bytes += 3 * 8;
3033
3034 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3035 struct signatured_type);
3036 sig_type->signature = signature;
3037 sig_type->type_offset_in_tu = type_offset_in_tu;
3038 sig_type->per_cu.is_debug_types = 1;
3039 sig_type->per_cu.section = section;
3040 sig_type->per_cu.sect_off = sect_off;
3041 sig_type->per_cu.objfile = objfile;
3042 sig_type->per_cu.v.quick
3043 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3044 struct dwarf2_per_cu_quick_data);
3045
3046 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3047 *slot = sig_type;
3048
3049 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3050 }
3051
3052 dwarf2_per_objfile->signatured_types = sig_types_hash;
3053 }
3054
3055 /* Read the address map data from the mapped index, and use it to
3056 populate the objfile's psymtabs_addrmap. */
3057
3058 static void
3059 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3060 {
3061 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3062 const gdb_byte *iter, *end;
3063 struct addrmap *mutable_map;
3064 CORE_ADDR baseaddr;
3065
3066 auto_obstack temp_obstack;
3067
3068 mutable_map = addrmap_create_mutable (&temp_obstack);
3069
3070 iter = index->address_table;
3071 end = iter + index->address_table_size;
3072
3073 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3074
3075 while (iter < end)
3076 {
3077 ULONGEST hi, lo, cu_index;
3078 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3079 iter += 8;
3080 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3081 iter += 8;
3082 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3083 iter += 4;
3084
3085 if (lo > hi)
3086 {
3087 complaint (&symfile_complaints,
3088 _(".gdb_index address table has invalid range (%s - %s)"),
3089 hex_string (lo), hex_string (hi));
3090 continue;
3091 }
3092
3093 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3094 {
3095 complaint (&symfile_complaints,
3096 _(".gdb_index address table has invalid CU number %u"),
3097 (unsigned) cu_index);
3098 continue;
3099 }
3100
3101 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3102 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3103 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3104 }
3105
3106 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3107 &objfile->objfile_obstack);
3108 }
3109
3110 /* The hash function for strings in the mapped index. This is the same as
3111 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3112 implementation. This is necessary because the hash function is tied to the
3113 format of the mapped index file. The hash values do not have to match with
3114 SYMBOL_HASH_NEXT.
3115
3116 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3117
3118 static hashval_t
3119 mapped_index_string_hash (int index_version, const void *p)
3120 {
3121 const unsigned char *str = (const unsigned char *) p;
3122 hashval_t r = 0;
3123 unsigned char c;
3124
3125 while ((c = *str++) != 0)
3126 {
3127 if (index_version >= 5)
3128 c = tolower (c);
3129 r = r * 67 + c - 113;
3130 }
3131
3132 return r;
3133 }
3134
3135 /* Find a slot in the mapped index INDEX for the object named NAME.
3136 If NAME is found, set *VEC_OUT to point to the CU vector in the
3137 constant pool and return 1. If NAME cannot be found, return 0. */
3138
3139 static int
3140 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3141 offset_type **vec_out)
3142 {
3143 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3144 offset_type hash;
3145 offset_type slot, step;
3146 int (*cmp) (const char *, const char *);
3147
3148 if (current_language->la_language == language_cplus
3149 || current_language->la_language == language_fortran
3150 || current_language->la_language == language_d)
3151 {
3152 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3153 not contain any. */
3154
3155 if (strchr (name, '(') != NULL)
3156 {
3157 char *without_params = cp_remove_params (name);
3158
3159 if (without_params != NULL)
3160 {
3161 make_cleanup (xfree, without_params);
3162 name = without_params;
3163 }
3164 }
3165 }
3166
3167 /* Index version 4 did not support case insensitive searches. But the
3168 indices for case insensitive languages are built in lowercase, therefore
3169 simulate our NAME being searched is also lowercased. */
3170 hash = mapped_index_string_hash ((index->version == 4
3171 && case_sensitivity == case_sensitive_off
3172 ? 5 : index->version),
3173 name);
3174
3175 slot = hash & (index->symbol_table_slots - 1);
3176 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3177 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3178
3179 for (;;)
3180 {
3181 /* Convert a slot number to an offset into the table. */
3182 offset_type i = 2 * slot;
3183 const char *str;
3184 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3185 {
3186 do_cleanups (back_to);
3187 return 0;
3188 }
3189
3190 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3191 if (!cmp (name, str))
3192 {
3193 *vec_out = (offset_type *) (index->constant_pool
3194 + MAYBE_SWAP (index->symbol_table[i + 1]));
3195 do_cleanups (back_to);
3196 return 1;
3197 }
3198
3199 slot = (slot + step) & (index->symbol_table_slots - 1);
3200 }
3201 }
3202
3203 /* A helper function that reads the .gdb_index from SECTION and fills
3204 in MAP. FILENAME is the name of the file containing the section;
3205 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3206 ok to use deprecated sections.
3207
3208 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3209 out parameters that are filled in with information about the CU and
3210 TU lists in the section.
3211
3212 Returns 1 if all went well, 0 otherwise. */
3213
3214 static int
3215 read_index_from_section (struct objfile *objfile,
3216 const char *filename,
3217 int deprecated_ok,
3218 struct dwarf2_section_info *section,
3219 struct mapped_index *map,
3220 const gdb_byte **cu_list,
3221 offset_type *cu_list_elements,
3222 const gdb_byte **types_list,
3223 offset_type *types_list_elements)
3224 {
3225 const gdb_byte *addr;
3226 offset_type version;
3227 offset_type *metadata;
3228 int i;
3229
3230 if (dwarf2_section_empty_p (section))
3231 return 0;
3232
3233 /* Older elfutils strip versions could keep the section in the main
3234 executable while splitting it for the separate debug info file. */
3235 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3236 return 0;
3237
3238 dwarf2_read_section (objfile, section);
3239
3240 addr = section->buffer;
3241 /* Version check. */
3242 version = MAYBE_SWAP (*(offset_type *) addr);
3243 /* Versions earlier than 3 emitted every copy of a psymbol. This
3244 causes the index to behave very poorly for certain requests. Version 3
3245 contained incomplete addrmap. So, it seems better to just ignore such
3246 indices. */
3247 if (version < 4)
3248 {
3249 static int warning_printed = 0;
3250 if (!warning_printed)
3251 {
3252 warning (_("Skipping obsolete .gdb_index section in %s."),
3253 filename);
3254 warning_printed = 1;
3255 }
3256 return 0;
3257 }
3258 /* Index version 4 uses a different hash function than index version
3259 5 and later.
3260
3261 Versions earlier than 6 did not emit psymbols for inlined
3262 functions. Using these files will cause GDB not to be able to
3263 set breakpoints on inlined functions by name, so we ignore these
3264 indices unless the user has done
3265 "set use-deprecated-index-sections on". */
3266 if (version < 6 && !deprecated_ok)
3267 {
3268 static int warning_printed = 0;
3269 if (!warning_printed)
3270 {
3271 warning (_("\
3272 Skipping deprecated .gdb_index section in %s.\n\
3273 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3274 to use the section anyway."),
3275 filename);
3276 warning_printed = 1;
3277 }
3278 return 0;
3279 }
3280 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3281 of the TU (for symbols coming from TUs),
3282 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3283 Plus gold-generated indices can have duplicate entries for global symbols,
3284 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3285 These are just performance bugs, and we can't distinguish gdb-generated
3286 indices from gold-generated ones, so issue no warning here. */
3287
3288 /* Indexes with higher version than the one supported by GDB may be no
3289 longer backward compatible. */
3290 if (version > 8)
3291 return 0;
3292
3293 map->version = version;
3294 map->total_size = section->size;
3295
3296 metadata = (offset_type *) (addr + sizeof (offset_type));
3297
3298 i = 0;
3299 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3300 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3301 / 8);
3302 ++i;
3303
3304 *types_list = addr + MAYBE_SWAP (metadata[i]);
3305 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3306 - MAYBE_SWAP (metadata[i]))
3307 / 8);
3308 ++i;
3309
3310 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3311 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3312 - MAYBE_SWAP (metadata[i]));
3313 ++i;
3314
3315 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3316 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3317 - MAYBE_SWAP (metadata[i]))
3318 / (2 * sizeof (offset_type)));
3319 ++i;
3320
3321 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3322
3323 return 1;
3324 }
3325
3326
3327 /* Read the index file. If everything went ok, initialize the "quick"
3328 elements of all the CUs and return 1. Otherwise, return 0. */
3329
3330 static int
3331 dwarf2_read_index (struct objfile *objfile)
3332 {
3333 struct mapped_index local_map, *map;
3334 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3335 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3336 struct dwz_file *dwz;
3337
3338 if (!read_index_from_section (objfile, objfile_name (objfile),
3339 use_deprecated_index_sections,
3340 &dwarf2_per_objfile->gdb_index, &local_map,
3341 &cu_list, &cu_list_elements,
3342 &types_list, &types_list_elements))
3343 return 0;
3344
3345 /* Don't use the index if it's empty. */
3346 if (local_map.symbol_table_slots == 0)
3347 return 0;
3348
3349 /* If there is a .dwz file, read it so we can get its CU list as
3350 well. */
3351 dwz = dwarf2_get_dwz_file ();
3352 if (dwz != NULL)
3353 {
3354 struct mapped_index dwz_map;
3355 const gdb_byte *dwz_types_ignore;
3356 offset_type dwz_types_elements_ignore;
3357
3358 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3359 1,
3360 &dwz->gdb_index, &dwz_map,
3361 &dwz_list, &dwz_list_elements,
3362 &dwz_types_ignore,
3363 &dwz_types_elements_ignore))
3364 {
3365 warning (_("could not read '.gdb_index' section from %s; skipping"),
3366 bfd_get_filename (dwz->dwz_bfd));
3367 return 0;
3368 }
3369 }
3370
3371 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3372 dwz_list_elements);
3373
3374 if (types_list_elements)
3375 {
3376 struct dwarf2_section_info *section;
3377
3378 /* We can only handle a single .debug_types when we have an
3379 index. */
3380 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3381 return 0;
3382
3383 section = VEC_index (dwarf2_section_info_def,
3384 dwarf2_per_objfile->types, 0);
3385
3386 create_signatured_type_table_from_index (objfile, section, types_list,
3387 types_list_elements);
3388 }
3389
3390 create_addrmap_from_index (objfile, &local_map);
3391
3392 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3393 *map = local_map;
3394
3395 dwarf2_per_objfile->index_table = map;
3396 dwarf2_per_objfile->using_index = 1;
3397 dwarf2_per_objfile->quick_file_names_table =
3398 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3399
3400 return 1;
3401 }
3402
3403 /* A helper for the "quick" functions which sets the global
3404 dwarf2_per_objfile according to OBJFILE. */
3405
3406 static void
3407 dw2_setup (struct objfile *objfile)
3408 {
3409 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3410 objfile_data (objfile, dwarf2_objfile_data_key));
3411 gdb_assert (dwarf2_per_objfile);
3412 }
3413
3414 /* die_reader_func for dw2_get_file_names. */
3415
3416 static void
3417 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3418 const gdb_byte *info_ptr,
3419 struct die_info *comp_unit_die,
3420 int has_children,
3421 void *data)
3422 {
3423 struct dwarf2_cu *cu = reader->cu;
3424 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3425 struct objfile *objfile = dwarf2_per_objfile->objfile;
3426 struct dwarf2_per_cu_data *lh_cu;
3427 struct attribute *attr;
3428 int i;
3429 void **slot;
3430 struct quick_file_names *qfn;
3431
3432 gdb_assert (! this_cu->is_debug_types);
3433
3434 /* Our callers never want to match partial units -- instead they
3435 will match the enclosing full CU. */
3436 if (comp_unit_die->tag == DW_TAG_partial_unit)
3437 {
3438 this_cu->v.quick->no_file_data = 1;
3439 return;
3440 }
3441
3442 lh_cu = this_cu;
3443 slot = NULL;
3444
3445 line_header_up lh;
3446 sect_offset line_offset {};
3447
3448 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3449 if (attr)
3450 {
3451 struct quick_file_names find_entry;
3452
3453 line_offset = (sect_offset) DW_UNSND (attr);
3454
3455 /* We may have already read in this line header (TU line header sharing).
3456 If we have we're done. */
3457 find_entry.hash.dwo_unit = cu->dwo_unit;
3458 find_entry.hash.line_sect_off = line_offset;
3459 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3460 &find_entry, INSERT);
3461 if (*slot != NULL)
3462 {
3463 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3464 return;
3465 }
3466
3467 lh = dwarf_decode_line_header (line_offset, cu);
3468 }
3469 if (lh == NULL)
3470 {
3471 lh_cu->v.quick->no_file_data = 1;
3472 return;
3473 }
3474
3475 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3476 qfn->hash.dwo_unit = cu->dwo_unit;
3477 qfn->hash.line_sect_off = line_offset;
3478 gdb_assert (slot != NULL);
3479 *slot = qfn;
3480
3481 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3482
3483 qfn->num_file_names = lh->file_names.size ();
3484 qfn->file_names =
3485 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3486 for (i = 0; i < lh->file_names.size (); ++i)
3487 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3488 qfn->real_names = NULL;
3489
3490 lh_cu->v.quick->file_names = qfn;
3491 }
3492
3493 /* A helper for the "quick" functions which attempts to read the line
3494 table for THIS_CU. */
3495
3496 static struct quick_file_names *
3497 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3498 {
3499 /* This should never be called for TUs. */
3500 gdb_assert (! this_cu->is_debug_types);
3501 /* Nor type unit groups. */
3502 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3503
3504 if (this_cu->v.quick->file_names != NULL)
3505 return this_cu->v.quick->file_names;
3506 /* If we know there is no line data, no point in looking again. */
3507 if (this_cu->v.quick->no_file_data)
3508 return NULL;
3509
3510 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3511
3512 if (this_cu->v.quick->no_file_data)
3513 return NULL;
3514 return this_cu->v.quick->file_names;
3515 }
3516
3517 /* A helper for the "quick" functions which computes and caches the
3518 real path for a given file name from the line table. */
3519
3520 static const char *
3521 dw2_get_real_path (struct objfile *objfile,
3522 struct quick_file_names *qfn, int index)
3523 {
3524 if (qfn->real_names == NULL)
3525 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3526 qfn->num_file_names, const char *);
3527
3528 if (qfn->real_names[index] == NULL)
3529 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3530
3531 return qfn->real_names[index];
3532 }
3533
3534 static struct symtab *
3535 dw2_find_last_source_symtab (struct objfile *objfile)
3536 {
3537 struct compunit_symtab *cust;
3538 int index;
3539
3540 dw2_setup (objfile);
3541 index = dwarf2_per_objfile->n_comp_units - 1;
3542 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3543 if (cust == NULL)
3544 return NULL;
3545 return compunit_primary_filetab (cust);
3546 }
3547
3548 /* Traversal function for dw2_forget_cached_source_info. */
3549
3550 static int
3551 dw2_free_cached_file_names (void **slot, void *info)
3552 {
3553 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3554
3555 if (file_data->real_names)
3556 {
3557 int i;
3558
3559 for (i = 0; i < file_data->num_file_names; ++i)
3560 {
3561 xfree ((void*) file_data->real_names[i]);
3562 file_data->real_names[i] = NULL;
3563 }
3564 }
3565
3566 return 1;
3567 }
3568
3569 static void
3570 dw2_forget_cached_source_info (struct objfile *objfile)
3571 {
3572 dw2_setup (objfile);
3573
3574 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3575 dw2_free_cached_file_names, NULL);
3576 }
3577
3578 /* Helper function for dw2_map_symtabs_matching_filename that expands
3579 the symtabs and calls the iterator. */
3580
3581 static int
3582 dw2_map_expand_apply (struct objfile *objfile,
3583 struct dwarf2_per_cu_data *per_cu,
3584 const char *name, const char *real_path,
3585 gdb::function_view<bool (symtab *)> callback)
3586 {
3587 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3588
3589 /* Don't visit already-expanded CUs. */
3590 if (per_cu->v.quick->compunit_symtab)
3591 return 0;
3592
3593 /* This may expand more than one symtab, and we want to iterate over
3594 all of them. */
3595 dw2_instantiate_symtab (per_cu);
3596
3597 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3598 last_made, callback);
3599 }
3600
3601 /* Implementation of the map_symtabs_matching_filename method. */
3602
3603 static bool
3604 dw2_map_symtabs_matching_filename
3605 (struct objfile *objfile, const char *name, const char *real_path,
3606 gdb::function_view<bool (symtab *)> callback)
3607 {
3608 int i;
3609 const char *name_basename = lbasename (name);
3610
3611 dw2_setup (objfile);
3612
3613 /* The rule is CUs specify all the files, including those used by
3614 any TU, so there's no need to scan TUs here. */
3615
3616 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3617 {
3618 int j;
3619 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3620 struct quick_file_names *file_data;
3621
3622 /* We only need to look at symtabs not already expanded. */
3623 if (per_cu->v.quick->compunit_symtab)
3624 continue;
3625
3626 file_data = dw2_get_file_names (per_cu);
3627 if (file_data == NULL)
3628 continue;
3629
3630 for (j = 0; j < file_data->num_file_names; ++j)
3631 {
3632 const char *this_name = file_data->file_names[j];
3633 const char *this_real_name;
3634
3635 if (compare_filenames_for_search (this_name, name))
3636 {
3637 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3638 callback))
3639 return true;
3640 continue;
3641 }
3642
3643 /* Before we invoke realpath, which can get expensive when many
3644 files are involved, do a quick comparison of the basenames. */
3645 if (! basenames_may_differ
3646 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3647 continue;
3648
3649 this_real_name = dw2_get_real_path (objfile, file_data, j);
3650 if (compare_filenames_for_search (this_real_name, name))
3651 {
3652 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3653 callback))
3654 return true;
3655 continue;
3656 }
3657
3658 if (real_path != NULL)
3659 {
3660 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3661 gdb_assert (IS_ABSOLUTE_PATH (name));
3662 if (this_real_name != NULL
3663 && FILENAME_CMP (real_path, this_real_name) == 0)
3664 {
3665 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3666 callback))
3667 return true;
3668 continue;
3669 }
3670 }
3671 }
3672 }
3673
3674 return false;
3675 }
3676
3677 /* Struct used to manage iterating over all CUs looking for a symbol. */
3678
3679 struct dw2_symtab_iterator
3680 {
3681 /* The internalized form of .gdb_index. */
3682 struct mapped_index *index;
3683 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3684 int want_specific_block;
3685 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3686 Unused if !WANT_SPECIFIC_BLOCK. */
3687 int block_index;
3688 /* The kind of symbol we're looking for. */
3689 domain_enum domain;
3690 /* The list of CUs from the index entry of the symbol,
3691 or NULL if not found. */
3692 offset_type *vec;
3693 /* The next element in VEC to look at. */
3694 int next;
3695 /* The number of elements in VEC, or zero if there is no match. */
3696 int length;
3697 /* Have we seen a global version of the symbol?
3698 If so we can ignore all further global instances.
3699 This is to work around gold/15646, inefficient gold-generated
3700 indices. */
3701 int global_seen;
3702 };
3703
3704 /* Initialize the index symtab iterator ITER.
3705 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3706 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3707
3708 static void
3709 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3710 struct mapped_index *index,
3711 int want_specific_block,
3712 int block_index,
3713 domain_enum domain,
3714 const char *name)
3715 {
3716 iter->index = index;
3717 iter->want_specific_block = want_specific_block;
3718 iter->block_index = block_index;
3719 iter->domain = domain;
3720 iter->next = 0;
3721 iter->global_seen = 0;
3722
3723 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3724 iter->length = MAYBE_SWAP (*iter->vec);
3725 else
3726 {
3727 iter->vec = NULL;
3728 iter->length = 0;
3729 }
3730 }
3731
3732 /* Return the next matching CU or NULL if there are no more. */
3733
3734 static struct dwarf2_per_cu_data *
3735 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3736 {
3737 for ( ; iter->next < iter->length; ++iter->next)
3738 {
3739 offset_type cu_index_and_attrs =
3740 MAYBE_SWAP (iter->vec[iter->next + 1]);
3741 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3742 struct dwarf2_per_cu_data *per_cu;
3743 int want_static = iter->block_index != GLOBAL_BLOCK;
3744 /* This value is only valid for index versions >= 7. */
3745 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3746 gdb_index_symbol_kind symbol_kind =
3747 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3748 /* Only check the symbol attributes if they're present.
3749 Indices prior to version 7 don't record them,
3750 and indices >= 7 may elide them for certain symbols
3751 (gold does this). */
3752 int attrs_valid =
3753 (iter->index->version >= 7
3754 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3755
3756 /* Don't crash on bad data. */
3757 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3758 + dwarf2_per_objfile->n_type_units))
3759 {
3760 complaint (&symfile_complaints,
3761 _(".gdb_index entry has bad CU index"
3762 " [in module %s]"),
3763 objfile_name (dwarf2_per_objfile->objfile));
3764 continue;
3765 }
3766
3767 per_cu = dw2_get_cutu (cu_index);
3768
3769 /* Skip if already read in. */
3770 if (per_cu->v.quick->compunit_symtab)
3771 continue;
3772
3773 /* Check static vs global. */
3774 if (attrs_valid)
3775 {
3776 if (iter->want_specific_block
3777 && want_static != is_static)
3778 continue;
3779 /* Work around gold/15646. */
3780 if (!is_static && iter->global_seen)
3781 continue;
3782 if (!is_static)
3783 iter->global_seen = 1;
3784 }
3785
3786 /* Only check the symbol's kind if it has one. */
3787 if (attrs_valid)
3788 {
3789 switch (iter->domain)
3790 {
3791 case VAR_DOMAIN:
3792 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3793 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3794 /* Some types are also in VAR_DOMAIN. */
3795 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3796 continue;
3797 break;
3798 case STRUCT_DOMAIN:
3799 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3800 continue;
3801 break;
3802 case LABEL_DOMAIN:
3803 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3804 continue;
3805 break;
3806 default:
3807 break;
3808 }
3809 }
3810
3811 ++iter->next;
3812 return per_cu;
3813 }
3814
3815 return NULL;
3816 }
3817
3818 static struct compunit_symtab *
3819 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3820 const char *name, domain_enum domain)
3821 {
3822 struct compunit_symtab *stab_best = NULL;
3823 struct mapped_index *index;
3824
3825 dw2_setup (objfile);
3826
3827 index = dwarf2_per_objfile->index_table;
3828
3829 /* index is NULL if OBJF_READNOW. */
3830 if (index)
3831 {
3832 struct dw2_symtab_iterator iter;
3833 struct dwarf2_per_cu_data *per_cu;
3834
3835 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3836
3837 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3838 {
3839 struct symbol *sym, *with_opaque = NULL;
3840 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3841 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3842 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3843
3844 sym = block_find_symbol (block, name, domain,
3845 block_find_non_opaque_type_preferred,
3846 &with_opaque);
3847
3848 /* Some caution must be observed with overloaded functions
3849 and methods, since the index will not contain any overload
3850 information (but NAME might contain it). */
3851
3852 if (sym != NULL
3853 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3854 return stab;
3855 if (with_opaque != NULL
3856 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3857 stab_best = stab;
3858
3859 /* Keep looking through other CUs. */
3860 }
3861 }
3862
3863 return stab_best;
3864 }
3865
3866 static void
3867 dw2_print_stats (struct objfile *objfile)
3868 {
3869 int i, total, count;
3870
3871 dw2_setup (objfile);
3872 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3873 count = 0;
3874 for (i = 0; i < total; ++i)
3875 {
3876 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3877
3878 if (!per_cu->v.quick->compunit_symtab)
3879 ++count;
3880 }
3881 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3882 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3883 }
3884
3885 /* This dumps minimal information about the index.
3886 It is called via "mt print objfiles".
3887 One use is to verify .gdb_index has been loaded by the
3888 gdb.dwarf2/gdb-index.exp testcase. */
3889
3890 static void
3891 dw2_dump (struct objfile *objfile)
3892 {
3893 dw2_setup (objfile);
3894 gdb_assert (dwarf2_per_objfile->using_index);
3895 printf_filtered (".gdb_index:");
3896 if (dwarf2_per_objfile->index_table != NULL)
3897 {
3898 printf_filtered (" version %d\n",
3899 dwarf2_per_objfile->index_table->version);
3900 }
3901 else
3902 printf_filtered (" faked for \"readnow\"\n");
3903 printf_filtered ("\n");
3904 }
3905
3906 static void
3907 dw2_relocate (struct objfile *objfile,
3908 const struct section_offsets *new_offsets,
3909 const struct section_offsets *delta)
3910 {
3911 /* There's nothing to relocate here. */
3912 }
3913
3914 static void
3915 dw2_expand_symtabs_for_function (struct objfile *objfile,
3916 const char *func_name)
3917 {
3918 struct mapped_index *index;
3919
3920 dw2_setup (objfile);
3921
3922 index = dwarf2_per_objfile->index_table;
3923
3924 /* index is NULL if OBJF_READNOW. */
3925 if (index)
3926 {
3927 struct dw2_symtab_iterator iter;
3928 struct dwarf2_per_cu_data *per_cu;
3929
3930 /* Note: It doesn't matter what we pass for block_index here. */
3931 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3932 func_name);
3933
3934 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3935 dw2_instantiate_symtab (per_cu);
3936 }
3937 }
3938
3939 static void
3940 dw2_expand_all_symtabs (struct objfile *objfile)
3941 {
3942 int i;
3943
3944 dw2_setup (objfile);
3945
3946 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units); ++i)
3948 {
3949 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3950
3951 dw2_instantiate_symtab (per_cu);
3952 }
3953 }
3954
3955 static void
3956 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3957 const char *fullname)
3958 {
3959 int i;
3960
3961 dw2_setup (objfile);
3962
3963 /* We don't need to consider type units here.
3964 This is only called for examining code, e.g. expand_line_sal.
3965 There can be an order of magnitude (or more) more type units
3966 than comp units, and we avoid them if we can. */
3967
3968 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3969 {
3970 int j;
3971 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3972 struct quick_file_names *file_data;
3973
3974 /* We only need to look at symtabs not already expanded. */
3975 if (per_cu->v.quick->compunit_symtab)
3976 continue;
3977
3978 file_data = dw2_get_file_names (per_cu);
3979 if (file_data == NULL)
3980 continue;
3981
3982 for (j = 0; j < file_data->num_file_names; ++j)
3983 {
3984 const char *this_fullname = file_data->file_names[j];
3985
3986 if (filename_cmp (this_fullname, fullname) == 0)
3987 {
3988 dw2_instantiate_symtab (per_cu);
3989 break;
3990 }
3991 }
3992 }
3993 }
3994
3995 static void
3996 dw2_map_matching_symbols (struct objfile *objfile,
3997 const char * name, domain_enum domain,
3998 int global,
3999 int (*callback) (struct block *,
4000 struct symbol *, void *),
4001 void *data, symbol_compare_ftype *match,
4002 symbol_compare_ftype *ordered_compare)
4003 {
4004 /* Currently unimplemented; used for Ada. The function can be called if the
4005 current language is Ada for a non-Ada objfile using GNU index. As Ada
4006 does not look for non-Ada symbols this function should just return. */
4007 }
4008
4009 static void
4010 dw2_expand_symtabs_matching
4011 (struct objfile *objfile,
4012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4013 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4014 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4015 enum search_domain kind)
4016 {
4017 int i;
4018 offset_type iter;
4019 struct mapped_index *index;
4020
4021 dw2_setup (objfile);
4022
4023 /* index_table is NULL if OBJF_READNOW. */
4024 if (!dwarf2_per_objfile->index_table)
4025 return;
4026 index = dwarf2_per_objfile->index_table;
4027
4028 if (file_matcher != NULL)
4029 {
4030 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4031 htab_eq_pointer,
4032 NULL, xcalloc, xfree));
4033 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4034 htab_eq_pointer,
4035 NULL, xcalloc, xfree));
4036
4037 /* The rule is CUs specify all the files, including those used by
4038 any TU, so there's no need to scan TUs here. */
4039
4040 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4041 {
4042 int j;
4043 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4044 struct quick_file_names *file_data;
4045 void **slot;
4046
4047 QUIT;
4048
4049 per_cu->v.quick->mark = 0;
4050
4051 /* We only need to look at symtabs not already expanded. */
4052 if (per_cu->v.quick->compunit_symtab)
4053 continue;
4054
4055 file_data = dw2_get_file_names (per_cu);
4056 if (file_data == NULL)
4057 continue;
4058
4059 if (htab_find (visited_not_found.get (), file_data) != NULL)
4060 continue;
4061 else if (htab_find (visited_found.get (), file_data) != NULL)
4062 {
4063 per_cu->v.quick->mark = 1;
4064 continue;
4065 }
4066
4067 for (j = 0; j < file_data->num_file_names; ++j)
4068 {
4069 const char *this_real_name;
4070
4071 if (file_matcher (file_data->file_names[j], false))
4072 {
4073 per_cu->v.quick->mark = 1;
4074 break;
4075 }
4076
4077 /* Before we invoke realpath, which can get expensive when many
4078 files are involved, do a quick comparison of the basenames. */
4079 if (!basenames_may_differ
4080 && !file_matcher (lbasename (file_data->file_names[j]),
4081 true))
4082 continue;
4083
4084 this_real_name = dw2_get_real_path (objfile, file_data, j);
4085 if (file_matcher (this_real_name, false))
4086 {
4087 per_cu->v.quick->mark = 1;
4088 break;
4089 }
4090 }
4091
4092 slot = htab_find_slot (per_cu->v.quick->mark
4093 ? visited_found.get ()
4094 : visited_not_found.get (),
4095 file_data, INSERT);
4096 *slot = file_data;
4097 }
4098 }
4099
4100 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4101 {
4102 offset_type idx = 2 * iter;
4103 const char *name;
4104 offset_type *vec, vec_len, vec_idx;
4105 int global_seen = 0;
4106
4107 QUIT;
4108
4109 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4110 continue;
4111
4112 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4113
4114 if (!symbol_matcher (name))
4115 continue;
4116
4117 /* The name was matched, now expand corresponding CUs that were
4118 marked. */
4119 vec = (offset_type *) (index->constant_pool
4120 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4121 vec_len = MAYBE_SWAP (vec[0]);
4122 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4123 {
4124 struct dwarf2_per_cu_data *per_cu;
4125 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4126 /* This value is only valid for index versions >= 7. */
4127 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4128 gdb_index_symbol_kind symbol_kind =
4129 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4130 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4131 /* Only check the symbol attributes if they're present.
4132 Indices prior to version 7 don't record them,
4133 and indices >= 7 may elide them for certain symbols
4134 (gold does this). */
4135 int attrs_valid =
4136 (index->version >= 7
4137 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4138
4139 /* Work around gold/15646. */
4140 if (attrs_valid)
4141 {
4142 if (!is_static && global_seen)
4143 continue;
4144 if (!is_static)
4145 global_seen = 1;
4146 }
4147
4148 /* Only check the symbol's kind if it has one. */
4149 if (attrs_valid)
4150 {
4151 switch (kind)
4152 {
4153 case VARIABLES_DOMAIN:
4154 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4155 continue;
4156 break;
4157 case FUNCTIONS_DOMAIN:
4158 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4159 continue;
4160 break;
4161 case TYPES_DOMAIN:
4162 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4163 continue;
4164 break;
4165 default:
4166 break;
4167 }
4168 }
4169
4170 /* Don't crash on bad data. */
4171 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4172 + dwarf2_per_objfile->n_type_units))
4173 {
4174 complaint (&symfile_complaints,
4175 _(".gdb_index entry has bad CU index"
4176 " [in module %s]"), objfile_name (objfile));
4177 continue;
4178 }
4179
4180 per_cu = dw2_get_cutu (cu_index);
4181 if (file_matcher == NULL || per_cu->v.quick->mark)
4182 {
4183 int symtab_was_null =
4184 (per_cu->v.quick->compunit_symtab == NULL);
4185
4186 dw2_instantiate_symtab (per_cu);
4187
4188 if (expansion_notify != NULL
4189 && symtab_was_null
4190 && per_cu->v.quick->compunit_symtab != NULL)
4191 {
4192 expansion_notify (per_cu->v.quick->compunit_symtab);
4193 }
4194 }
4195 }
4196 }
4197 }
4198
4199 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4200 symtab. */
4201
4202 static struct compunit_symtab *
4203 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4204 CORE_ADDR pc)
4205 {
4206 int i;
4207
4208 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4209 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4210 return cust;
4211
4212 if (cust->includes == NULL)
4213 return NULL;
4214
4215 for (i = 0; cust->includes[i]; ++i)
4216 {
4217 struct compunit_symtab *s = cust->includes[i];
4218
4219 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4220 if (s != NULL)
4221 return s;
4222 }
4223
4224 return NULL;
4225 }
4226
4227 static struct compunit_symtab *
4228 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4229 struct bound_minimal_symbol msymbol,
4230 CORE_ADDR pc,
4231 struct obj_section *section,
4232 int warn_if_readin)
4233 {
4234 struct dwarf2_per_cu_data *data;
4235 struct compunit_symtab *result;
4236
4237 dw2_setup (objfile);
4238
4239 if (!objfile->psymtabs_addrmap)
4240 return NULL;
4241
4242 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4243 pc);
4244 if (!data)
4245 return NULL;
4246
4247 if (warn_if_readin && data->v.quick->compunit_symtab)
4248 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4249 paddress (get_objfile_arch (objfile), pc));
4250
4251 result
4252 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4253 pc);
4254 gdb_assert (result != NULL);
4255 return result;
4256 }
4257
4258 static void
4259 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4260 void *data, int need_fullname)
4261 {
4262 int i;
4263 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4264 NULL, xcalloc, xfree));
4265
4266 dw2_setup (objfile);
4267
4268 /* The rule is CUs specify all the files, including those used by
4269 any TU, so there's no need to scan TUs here.
4270 We can ignore file names coming from already-expanded CUs. */
4271
4272 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4273 {
4274 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4275
4276 if (per_cu->v.quick->compunit_symtab)
4277 {
4278 void **slot = htab_find_slot (visited.get (),
4279 per_cu->v.quick->file_names,
4280 INSERT);
4281
4282 *slot = per_cu->v.quick->file_names;
4283 }
4284 }
4285
4286 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4287 {
4288 int j;
4289 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4290 struct quick_file_names *file_data;
4291 void **slot;
4292
4293 /* We only need to look at symtabs not already expanded. */
4294 if (per_cu->v.quick->compunit_symtab)
4295 continue;
4296
4297 file_data = dw2_get_file_names (per_cu);
4298 if (file_data == NULL)
4299 continue;
4300
4301 slot = htab_find_slot (visited.get (), file_data, INSERT);
4302 if (*slot)
4303 {
4304 /* Already visited. */
4305 continue;
4306 }
4307 *slot = file_data;
4308
4309 for (j = 0; j < file_data->num_file_names; ++j)
4310 {
4311 const char *this_real_name;
4312
4313 if (need_fullname)
4314 this_real_name = dw2_get_real_path (objfile, file_data, j);
4315 else
4316 this_real_name = NULL;
4317 (*fun) (file_data->file_names[j], this_real_name, data);
4318 }
4319 }
4320 }
4321
4322 static int
4323 dw2_has_symbols (struct objfile *objfile)
4324 {
4325 return 1;
4326 }
4327
4328 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4329 {
4330 dw2_has_symbols,
4331 dw2_find_last_source_symtab,
4332 dw2_forget_cached_source_info,
4333 dw2_map_symtabs_matching_filename,
4334 dw2_lookup_symbol,
4335 dw2_print_stats,
4336 dw2_dump,
4337 dw2_relocate,
4338 dw2_expand_symtabs_for_function,
4339 dw2_expand_all_symtabs,
4340 dw2_expand_symtabs_with_fullname,
4341 dw2_map_matching_symbols,
4342 dw2_expand_symtabs_matching,
4343 dw2_find_pc_sect_compunit_symtab,
4344 dw2_map_symbol_filenames
4345 };
4346
4347 /* Initialize for reading DWARF for this objfile. Return 0 if this
4348 file will use psymtabs, or 1 if using the GNU index. */
4349
4350 int
4351 dwarf2_initialize_objfile (struct objfile *objfile)
4352 {
4353 /* If we're about to read full symbols, don't bother with the
4354 indices. In this case we also don't care if some other debug
4355 format is making psymtabs, because they are all about to be
4356 expanded anyway. */
4357 if ((objfile->flags & OBJF_READNOW))
4358 {
4359 int i;
4360
4361 dwarf2_per_objfile->using_index = 1;
4362 create_all_comp_units (objfile);
4363 create_all_type_units (objfile);
4364 dwarf2_per_objfile->quick_file_names_table =
4365 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4366
4367 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4368 + dwarf2_per_objfile->n_type_units); ++i)
4369 {
4370 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4371
4372 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4373 struct dwarf2_per_cu_quick_data);
4374 }
4375
4376 /* Return 1 so that gdb sees the "quick" functions. However,
4377 these functions will be no-ops because we will have expanded
4378 all symtabs. */
4379 return 1;
4380 }
4381
4382 if (dwarf2_read_index (objfile))
4383 return 1;
4384
4385 return 0;
4386 }
4387
4388 \f
4389
4390 /* Build a partial symbol table. */
4391
4392 void
4393 dwarf2_build_psymtabs (struct objfile *objfile)
4394 {
4395
4396 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4397 {
4398 init_psymbol_list (objfile, 1024);
4399 }
4400
4401 TRY
4402 {
4403 /* This isn't really ideal: all the data we allocate on the
4404 objfile's obstack is still uselessly kept around. However,
4405 freeing it seems unsafe. */
4406 psymtab_discarder psymtabs (objfile);
4407 dwarf2_build_psymtabs_hard (objfile);
4408 psymtabs.keep ();
4409 }
4410 CATCH (except, RETURN_MASK_ERROR)
4411 {
4412 exception_print (gdb_stderr, except);
4413 }
4414 END_CATCH
4415 }
4416
4417 /* Return the total length of the CU described by HEADER. */
4418
4419 static unsigned int
4420 get_cu_length (const struct comp_unit_head *header)
4421 {
4422 return header->initial_length_size + header->length;
4423 }
4424
4425 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4426
4427 static inline bool
4428 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4429 {
4430 sect_offset bottom = cu_header->sect_off;
4431 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4432
4433 return sect_off >= bottom && sect_off < top;
4434 }
4435
4436 /* Find the base address of the compilation unit for range lists and
4437 location lists. It will normally be specified by DW_AT_low_pc.
4438 In DWARF-3 draft 4, the base address could be overridden by
4439 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4440 compilation units with discontinuous ranges. */
4441
4442 static void
4443 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4444 {
4445 struct attribute *attr;
4446
4447 cu->base_known = 0;
4448 cu->base_address = 0;
4449
4450 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4451 if (attr)
4452 {
4453 cu->base_address = attr_value_as_address (attr);
4454 cu->base_known = 1;
4455 }
4456 else
4457 {
4458 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4459 if (attr)
4460 {
4461 cu->base_address = attr_value_as_address (attr);
4462 cu->base_known = 1;
4463 }
4464 }
4465 }
4466
4467 /* Read in the comp unit header information from the debug_info at info_ptr.
4468 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4469 NOTE: This leaves members offset, first_die_offset to be filled in
4470 by the caller. */
4471
4472 static const gdb_byte *
4473 read_comp_unit_head (struct comp_unit_head *cu_header,
4474 const gdb_byte *info_ptr,
4475 struct dwarf2_section_info *section,
4476 rcuh_kind section_kind)
4477 {
4478 int signed_addr;
4479 unsigned int bytes_read;
4480 const char *filename = get_section_file_name (section);
4481 bfd *abfd = get_section_bfd_owner (section);
4482
4483 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4484 cu_header->initial_length_size = bytes_read;
4485 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4486 info_ptr += bytes_read;
4487 cu_header->version = read_2_bytes (abfd, info_ptr);
4488 info_ptr += 2;
4489 if (cu_header->version < 5)
4490 switch (section_kind)
4491 {
4492 case rcuh_kind::COMPILE:
4493 cu_header->unit_type = DW_UT_compile;
4494 break;
4495 case rcuh_kind::TYPE:
4496 cu_header->unit_type = DW_UT_type;
4497 break;
4498 default:
4499 internal_error (__FILE__, __LINE__,
4500 _("read_comp_unit_head: invalid section_kind"));
4501 }
4502 else
4503 {
4504 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4505 (read_1_byte (abfd, info_ptr));
4506 info_ptr += 1;
4507 switch (cu_header->unit_type)
4508 {
4509 case DW_UT_compile:
4510 if (section_kind != rcuh_kind::COMPILE)
4511 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4512 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4513 filename);
4514 break;
4515 case DW_UT_type:
4516 section_kind = rcuh_kind::TYPE;
4517 break;
4518 default:
4519 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4520 "(is %d, should be %d or %d) [in module %s]"),
4521 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4522 }
4523
4524 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4525 info_ptr += 1;
4526 }
4527 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4528 cu_header,
4529 &bytes_read);
4530 info_ptr += bytes_read;
4531 if (cu_header->version < 5)
4532 {
4533 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4534 info_ptr += 1;
4535 }
4536 signed_addr = bfd_get_sign_extend_vma (abfd);
4537 if (signed_addr < 0)
4538 internal_error (__FILE__, __LINE__,
4539 _("read_comp_unit_head: dwarf from non elf file"));
4540 cu_header->signed_addr_p = signed_addr;
4541
4542 if (section_kind == rcuh_kind::TYPE)
4543 {
4544 LONGEST type_offset;
4545
4546 cu_header->signature = read_8_bytes (abfd, info_ptr);
4547 info_ptr += 8;
4548
4549 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4550 info_ptr += bytes_read;
4551 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4552 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4553 error (_("Dwarf Error: Too big type_offset in compilation unit "
4554 "header (is %s) [in module %s]"), plongest (type_offset),
4555 filename);
4556 }
4557
4558 return info_ptr;
4559 }
4560
4561 /* Helper function that returns the proper abbrev section for
4562 THIS_CU. */
4563
4564 static struct dwarf2_section_info *
4565 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4566 {
4567 struct dwarf2_section_info *abbrev;
4568
4569 if (this_cu->is_dwz)
4570 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4571 else
4572 abbrev = &dwarf2_per_objfile->abbrev;
4573
4574 return abbrev;
4575 }
4576
4577 /* Subroutine of read_and_check_comp_unit_head and
4578 read_and_check_type_unit_head to simplify them.
4579 Perform various error checking on the header. */
4580
4581 static void
4582 error_check_comp_unit_head (struct comp_unit_head *header,
4583 struct dwarf2_section_info *section,
4584 struct dwarf2_section_info *abbrev_section)
4585 {
4586 const char *filename = get_section_file_name (section);
4587
4588 if (header->version < 2 || header->version > 5)
4589 error (_("Dwarf Error: wrong version in compilation unit header "
4590 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4591 filename);
4592
4593 if (to_underlying (header->abbrev_sect_off)
4594 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4595 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4596 "(offset 0x%x + 6) [in module %s]"),
4597 to_underlying (header->abbrev_sect_off),
4598 to_underlying (header->sect_off),
4599 filename);
4600
4601 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4602 avoid potential 32-bit overflow. */
4603 if (((ULONGEST) header->sect_off + get_cu_length (header))
4604 > section->size)
4605 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4606 "(offset 0x%x + 0) [in module %s]"),
4607 header->length, to_underlying (header->sect_off),
4608 filename);
4609 }
4610
4611 /* Read in a CU/TU header and perform some basic error checking.
4612 The contents of the header are stored in HEADER.
4613 The result is a pointer to the start of the first DIE. */
4614
4615 static const gdb_byte *
4616 read_and_check_comp_unit_head (struct comp_unit_head *header,
4617 struct dwarf2_section_info *section,
4618 struct dwarf2_section_info *abbrev_section,
4619 const gdb_byte *info_ptr,
4620 rcuh_kind section_kind)
4621 {
4622 const gdb_byte *beg_of_comp_unit = info_ptr;
4623 bfd *abfd = get_section_bfd_owner (section);
4624
4625 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4626
4627 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4628
4629 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4630
4631 error_check_comp_unit_head (header, section, abbrev_section);
4632
4633 return info_ptr;
4634 }
4635
4636 /* Fetch the abbreviation table offset from a comp or type unit header. */
4637
4638 static sect_offset
4639 read_abbrev_offset (struct dwarf2_section_info *section,
4640 sect_offset sect_off)
4641 {
4642 bfd *abfd = get_section_bfd_owner (section);
4643 const gdb_byte *info_ptr;
4644 unsigned int initial_length_size, offset_size;
4645 uint16_t version;
4646
4647 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4648 info_ptr = section->buffer + to_underlying (sect_off);
4649 read_initial_length (abfd, info_ptr, &initial_length_size);
4650 offset_size = initial_length_size == 4 ? 4 : 8;
4651 info_ptr += initial_length_size;
4652
4653 version = read_2_bytes (abfd, info_ptr);
4654 info_ptr += 2;
4655 if (version >= 5)
4656 {
4657 /* Skip unit type and address size. */
4658 info_ptr += 2;
4659 }
4660
4661 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4662 }
4663
4664 /* Allocate a new partial symtab for file named NAME and mark this new
4665 partial symtab as being an include of PST. */
4666
4667 static void
4668 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4669 struct objfile *objfile)
4670 {
4671 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4672
4673 if (!IS_ABSOLUTE_PATH (subpst->filename))
4674 {
4675 /* It shares objfile->objfile_obstack. */
4676 subpst->dirname = pst->dirname;
4677 }
4678
4679 subpst->textlow = 0;
4680 subpst->texthigh = 0;
4681
4682 subpst->dependencies
4683 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4684 subpst->dependencies[0] = pst;
4685 subpst->number_of_dependencies = 1;
4686
4687 subpst->globals_offset = 0;
4688 subpst->n_global_syms = 0;
4689 subpst->statics_offset = 0;
4690 subpst->n_static_syms = 0;
4691 subpst->compunit_symtab = NULL;
4692 subpst->read_symtab = pst->read_symtab;
4693 subpst->readin = 0;
4694
4695 /* No private part is necessary for include psymtabs. This property
4696 can be used to differentiate between such include psymtabs and
4697 the regular ones. */
4698 subpst->read_symtab_private = NULL;
4699 }
4700
4701 /* Read the Line Number Program data and extract the list of files
4702 included by the source file represented by PST. Build an include
4703 partial symtab for each of these included files. */
4704
4705 static void
4706 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4707 struct die_info *die,
4708 struct partial_symtab *pst)
4709 {
4710 line_header_up lh;
4711 struct attribute *attr;
4712
4713 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4714 if (attr)
4715 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4716 if (lh == NULL)
4717 return; /* No linetable, so no includes. */
4718
4719 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4720 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4721 }
4722
4723 static hashval_t
4724 hash_signatured_type (const void *item)
4725 {
4726 const struct signatured_type *sig_type
4727 = (const struct signatured_type *) item;
4728
4729 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4730 return sig_type->signature;
4731 }
4732
4733 static int
4734 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4735 {
4736 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4737 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4738
4739 return lhs->signature == rhs->signature;
4740 }
4741
4742 /* Allocate a hash table for signatured types. */
4743
4744 static htab_t
4745 allocate_signatured_type_table (struct objfile *objfile)
4746 {
4747 return htab_create_alloc_ex (41,
4748 hash_signatured_type,
4749 eq_signatured_type,
4750 NULL,
4751 &objfile->objfile_obstack,
4752 hashtab_obstack_allocate,
4753 dummy_obstack_deallocate);
4754 }
4755
4756 /* A helper function to add a signatured type CU to a table. */
4757
4758 static int
4759 add_signatured_type_cu_to_table (void **slot, void *datum)
4760 {
4761 struct signatured_type *sigt = (struct signatured_type *) *slot;
4762 struct signatured_type ***datap = (struct signatured_type ***) datum;
4763
4764 **datap = sigt;
4765 ++*datap;
4766
4767 return 1;
4768 }
4769
4770 /* A helper for create_debug_types_hash_table. Read types from SECTION
4771 and fill them into TYPES_HTAB. It will process only type units,
4772 therefore DW_UT_type. */
4773
4774 static void
4775 create_debug_type_hash_table (struct dwo_file *dwo_file,
4776 dwarf2_section_info *section, htab_t &types_htab,
4777 rcuh_kind section_kind)
4778 {
4779 struct objfile *objfile = dwarf2_per_objfile->objfile;
4780 struct dwarf2_section_info *abbrev_section;
4781 bfd *abfd;
4782 const gdb_byte *info_ptr, *end_ptr;
4783
4784 abbrev_section = (dwo_file != NULL
4785 ? &dwo_file->sections.abbrev
4786 : &dwarf2_per_objfile->abbrev);
4787
4788 if (dwarf_read_debug)
4789 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4790 get_section_name (section),
4791 get_section_file_name (abbrev_section));
4792
4793 dwarf2_read_section (objfile, section);
4794 info_ptr = section->buffer;
4795
4796 if (info_ptr == NULL)
4797 return;
4798
4799 /* We can't set abfd until now because the section may be empty or
4800 not present, in which case the bfd is unknown. */
4801 abfd = get_section_bfd_owner (section);
4802
4803 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4804 because we don't need to read any dies: the signature is in the
4805 header. */
4806
4807 end_ptr = info_ptr + section->size;
4808 while (info_ptr < end_ptr)
4809 {
4810 struct signatured_type *sig_type;
4811 struct dwo_unit *dwo_tu;
4812 void **slot;
4813 const gdb_byte *ptr = info_ptr;
4814 struct comp_unit_head header;
4815 unsigned int length;
4816
4817 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4818
4819 /* Initialize it due to a false compiler warning. */
4820 header.signature = -1;
4821 header.type_cu_offset_in_tu = (cu_offset) -1;
4822
4823 /* We need to read the type's signature in order to build the hash
4824 table, but we don't need anything else just yet. */
4825
4826 ptr = read_and_check_comp_unit_head (&header, section,
4827 abbrev_section, ptr, section_kind);
4828
4829 length = get_cu_length (&header);
4830
4831 /* Skip dummy type units. */
4832 if (ptr >= info_ptr + length
4833 || peek_abbrev_code (abfd, ptr) == 0
4834 || header.unit_type != DW_UT_type)
4835 {
4836 info_ptr += length;
4837 continue;
4838 }
4839
4840 if (types_htab == NULL)
4841 {
4842 if (dwo_file)
4843 types_htab = allocate_dwo_unit_table (objfile);
4844 else
4845 types_htab = allocate_signatured_type_table (objfile);
4846 }
4847
4848 if (dwo_file)
4849 {
4850 sig_type = NULL;
4851 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4852 struct dwo_unit);
4853 dwo_tu->dwo_file = dwo_file;
4854 dwo_tu->signature = header.signature;
4855 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4856 dwo_tu->section = section;
4857 dwo_tu->sect_off = sect_off;
4858 dwo_tu->length = length;
4859 }
4860 else
4861 {
4862 /* N.B.: type_offset is not usable if this type uses a DWO file.
4863 The real type_offset is in the DWO file. */
4864 dwo_tu = NULL;
4865 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4866 struct signatured_type);
4867 sig_type->signature = header.signature;
4868 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4869 sig_type->per_cu.objfile = objfile;
4870 sig_type->per_cu.is_debug_types = 1;
4871 sig_type->per_cu.section = section;
4872 sig_type->per_cu.sect_off = sect_off;
4873 sig_type->per_cu.length = length;
4874 }
4875
4876 slot = htab_find_slot (types_htab,
4877 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4878 INSERT);
4879 gdb_assert (slot != NULL);
4880 if (*slot != NULL)
4881 {
4882 sect_offset dup_sect_off;
4883
4884 if (dwo_file)
4885 {
4886 const struct dwo_unit *dup_tu
4887 = (const struct dwo_unit *) *slot;
4888
4889 dup_sect_off = dup_tu->sect_off;
4890 }
4891 else
4892 {
4893 const struct signatured_type *dup_tu
4894 = (const struct signatured_type *) *slot;
4895
4896 dup_sect_off = dup_tu->per_cu.sect_off;
4897 }
4898
4899 complaint (&symfile_complaints,
4900 _("debug type entry at offset 0x%x is duplicate to"
4901 " the entry at offset 0x%x, signature %s"),
4902 to_underlying (sect_off), to_underlying (dup_sect_off),
4903 hex_string (header.signature));
4904 }
4905 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4906
4907 if (dwarf_read_debug > 1)
4908 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4909 to_underlying (sect_off),
4910 hex_string (header.signature));
4911
4912 info_ptr += length;
4913 }
4914 }
4915
4916 /* Create the hash table of all entries in the .debug_types
4917 (or .debug_types.dwo) section(s).
4918 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4919 otherwise it is NULL.
4920
4921 The result is a pointer to the hash table or NULL if there are no types.
4922
4923 Note: This function processes DWO files only, not DWP files. */
4924
4925 static void
4926 create_debug_types_hash_table (struct dwo_file *dwo_file,
4927 VEC (dwarf2_section_info_def) *types,
4928 htab_t &types_htab)
4929 {
4930 int ix;
4931 struct dwarf2_section_info *section;
4932
4933 if (VEC_empty (dwarf2_section_info_def, types))
4934 return;
4935
4936 for (ix = 0;
4937 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4938 ++ix)
4939 create_debug_type_hash_table (dwo_file, section, types_htab,
4940 rcuh_kind::TYPE);
4941 }
4942
4943 /* Create the hash table of all entries in the .debug_types section,
4944 and initialize all_type_units.
4945 The result is zero if there is an error (e.g. missing .debug_types section),
4946 otherwise non-zero. */
4947
4948 static int
4949 create_all_type_units (struct objfile *objfile)
4950 {
4951 htab_t types_htab = NULL;
4952 struct signatured_type **iter;
4953
4954 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
4955 rcuh_kind::COMPILE);
4956 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
4957 if (types_htab == NULL)
4958 {
4959 dwarf2_per_objfile->signatured_types = NULL;
4960 return 0;
4961 }
4962
4963 dwarf2_per_objfile->signatured_types = types_htab;
4964
4965 dwarf2_per_objfile->n_type_units
4966 = dwarf2_per_objfile->n_allocated_type_units
4967 = htab_elements (types_htab);
4968 dwarf2_per_objfile->all_type_units =
4969 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4970 iter = &dwarf2_per_objfile->all_type_units[0];
4971 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4972 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4973 == dwarf2_per_objfile->n_type_units);
4974
4975 return 1;
4976 }
4977
4978 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4979 If SLOT is non-NULL, it is the entry to use in the hash table.
4980 Otherwise we find one. */
4981
4982 static struct signatured_type *
4983 add_type_unit (ULONGEST sig, void **slot)
4984 {
4985 struct objfile *objfile = dwarf2_per_objfile->objfile;
4986 int n_type_units = dwarf2_per_objfile->n_type_units;
4987 struct signatured_type *sig_type;
4988
4989 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4990 ++n_type_units;
4991 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4992 {
4993 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4994 dwarf2_per_objfile->n_allocated_type_units = 1;
4995 dwarf2_per_objfile->n_allocated_type_units *= 2;
4996 dwarf2_per_objfile->all_type_units
4997 = XRESIZEVEC (struct signatured_type *,
4998 dwarf2_per_objfile->all_type_units,
4999 dwarf2_per_objfile->n_allocated_type_units);
5000 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5001 }
5002 dwarf2_per_objfile->n_type_units = n_type_units;
5003
5004 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5005 struct signatured_type);
5006 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5007 sig_type->signature = sig;
5008 sig_type->per_cu.is_debug_types = 1;
5009 if (dwarf2_per_objfile->using_index)
5010 {
5011 sig_type->per_cu.v.quick =
5012 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5013 struct dwarf2_per_cu_quick_data);
5014 }
5015
5016 if (slot == NULL)
5017 {
5018 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5019 sig_type, INSERT);
5020 }
5021 gdb_assert (*slot == NULL);
5022 *slot = sig_type;
5023 /* The rest of sig_type must be filled in by the caller. */
5024 return sig_type;
5025 }
5026
5027 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5028 Fill in SIG_ENTRY with DWO_ENTRY. */
5029
5030 static void
5031 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5032 struct signatured_type *sig_entry,
5033 struct dwo_unit *dwo_entry)
5034 {
5035 /* Make sure we're not clobbering something we don't expect to. */
5036 gdb_assert (! sig_entry->per_cu.queued);
5037 gdb_assert (sig_entry->per_cu.cu == NULL);
5038 if (dwarf2_per_objfile->using_index)
5039 {
5040 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5041 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5042 }
5043 else
5044 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5045 gdb_assert (sig_entry->signature == dwo_entry->signature);
5046 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5047 gdb_assert (sig_entry->type_unit_group == NULL);
5048 gdb_assert (sig_entry->dwo_unit == NULL);
5049
5050 sig_entry->per_cu.section = dwo_entry->section;
5051 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5052 sig_entry->per_cu.length = dwo_entry->length;
5053 sig_entry->per_cu.reading_dwo_directly = 1;
5054 sig_entry->per_cu.objfile = objfile;
5055 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5056 sig_entry->dwo_unit = dwo_entry;
5057 }
5058
5059 /* Subroutine of lookup_signatured_type.
5060 If we haven't read the TU yet, create the signatured_type data structure
5061 for a TU to be read in directly from a DWO file, bypassing the stub.
5062 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5063 using .gdb_index, then when reading a CU we want to stay in the DWO file
5064 containing that CU. Otherwise we could end up reading several other DWO
5065 files (due to comdat folding) to process the transitive closure of all the
5066 mentioned TUs, and that can be slow. The current DWO file will have every
5067 type signature that it needs.
5068 We only do this for .gdb_index because in the psymtab case we already have
5069 to read all the DWOs to build the type unit groups. */
5070
5071 static struct signatured_type *
5072 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5073 {
5074 struct objfile *objfile = dwarf2_per_objfile->objfile;
5075 struct dwo_file *dwo_file;
5076 struct dwo_unit find_dwo_entry, *dwo_entry;
5077 struct signatured_type find_sig_entry, *sig_entry;
5078 void **slot;
5079
5080 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5081
5082 /* If TU skeletons have been removed then we may not have read in any
5083 TUs yet. */
5084 if (dwarf2_per_objfile->signatured_types == NULL)
5085 {
5086 dwarf2_per_objfile->signatured_types
5087 = allocate_signatured_type_table (objfile);
5088 }
5089
5090 /* We only ever need to read in one copy of a signatured type.
5091 Use the global signatured_types array to do our own comdat-folding
5092 of types. If this is the first time we're reading this TU, and
5093 the TU has an entry in .gdb_index, replace the recorded data from
5094 .gdb_index with this TU. */
5095
5096 find_sig_entry.signature = sig;
5097 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5098 &find_sig_entry, INSERT);
5099 sig_entry = (struct signatured_type *) *slot;
5100
5101 /* We can get here with the TU already read, *or* in the process of being
5102 read. Don't reassign the global entry to point to this DWO if that's
5103 the case. Also note that if the TU is already being read, it may not
5104 have come from a DWO, the program may be a mix of Fission-compiled
5105 code and non-Fission-compiled code. */
5106
5107 /* Have we already tried to read this TU?
5108 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5109 needn't exist in the global table yet). */
5110 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5111 return sig_entry;
5112
5113 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5114 dwo_unit of the TU itself. */
5115 dwo_file = cu->dwo_unit->dwo_file;
5116
5117 /* Ok, this is the first time we're reading this TU. */
5118 if (dwo_file->tus == NULL)
5119 return NULL;
5120 find_dwo_entry.signature = sig;
5121 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5122 if (dwo_entry == NULL)
5123 return NULL;
5124
5125 /* If the global table doesn't have an entry for this TU, add one. */
5126 if (sig_entry == NULL)
5127 sig_entry = add_type_unit (sig, slot);
5128
5129 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5130 sig_entry->per_cu.tu_read = 1;
5131 return sig_entry;
5132 }
5133
5134 /* Subroutine of lookup_signatured_type.
5135 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5136 then try the DWP file. If the TU stub (skeleton) has been removed then
5137 it won't be in .gdb_index. */
5138
5139 static struct signatured_type *
5140 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5141 {
5142 struct objfile *objfile = dwarf2_per_objfile->objfile;
5143 struct dwp_file *dwp_file = get_dwp_file ();
5144 struct dwo_unit *dwo_entry;
5145 struct signatured_type find_sig_entry, *sig_entry;
5146 void **slot;
5147
5148 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5149 gdb_assert (dwp_file != NULL);
5150
5151 /* If TU skeletons have been removed then we may not have read in any
5152 TUs yet. */
5153 if (dwarf2_per_objfile->signatured_types == NULL)
5154 {
5155 dwarf2_per_objfile->signatured_types
5156 = allocate_signatured_type_table (objfile);
5157 }
5158
5159 find_sig_entry.signature = sig;
5160 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5161 &find_sig_entry, INSERT);
5162 sig_entry = (struct signatured_type *) *slot;
5163
5164 /* Have we already tried to read this TU?
5165 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5166 needn't exist in the global table yet). */
5167 if (sig_entry != NULL)
5168 return sig_entry;
5169
5170 if (dwp_file->tus == NULL)
5171 return NULL;
5172 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5173 sig, 1 /* is_debug_types */);
5174 if (dwo_entry == NULL)
5175 return NULL;
5176
5177 sig_entry = add_type_unit (sig, slot);
5178 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5179
5180 return sig_entry;
5181 }
5182
5183 /* Lookup a signature based type for DW_FORM_ref_sig8.
5184 Returns NULL if signature SIG is not present in the table.
5185 It is up to the caller to complain about this. */
5186
5187 static struct signatured_type *
5188 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5189 {
5190 if (cu->dwo_unit
5191 && dwarf2_per_objfile->using_index)
5192 {
5193 /* We're in a DWO/DWP file, and we're using .gdb_index.
5194 These cases require special processing. */
5195 if (get_dwp_file () == NULL)
5196 return lookup_dwo_signatured_type (cu, sig);
5197 else
5198 return lookup_dwp_signatured_type (cu, sig);
5199 }
5200 else
5201 {
5202 struct signatured_type find_entry, *entry;
5203
5204 if (dwarf2_per_objfile->signatured_types == NULL)
5205 return NULL;
5206 find_entry.signature = sig;
5207 entry = ((struct signatured_type *)
5208 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5209 return entry;
5210 }
5211 }
5212 \f
5213 /* Low level DIE reading support. */
5214
5215 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5216
5217 static void
5218 init_cu_die_reader (struct die_reader_specs *reader,
5219 struct dwarf2_cu *cu,
5220 struct dwarf2_section_info *section,
5221 struct dwo_file *dwo_file)
5222 {
5223 gdb_assert (section->readin && section->buffer != NULL);
5224 reader->abfd = get_section_bfd_owner (section);
5225 reader->cu = cu;
5226 reader->dwo_file = dwo_file;
5227 reader->die_section = section;
5228 reader->buffer = section->buffer;
5229 reader->buffer_end = section->buffer + section->size;
5230 reader->comp_dir = NULL;
5231 }
5232
5233 /* Subroutine of init_cutu_and_read_dies to simplify it.
5234 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5235 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5236 already.
5237
5238 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5239 from it to the DIE in the DWO. If NULL we are skipping the stub.
5240 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5241 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5242 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5243 STUB_COMP_DIR may be non-NULL.
5244 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5245 are filled in with the info of the DIE from the DWO file.
5246 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5247 provided an abbrev table to use.
5248 The result is non-zero if a valid (non-dummy) DIE was found. */
5249
5250 static int
5251 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5252 struct dwo_unit *dwo_unit,
5253 int abbrev_table_provided,
5254 struct die_info *stub_comp_unit_die,
5255 const char *stub_comp_dir,
5256 struct die_reader_specs *result_reader,
5257 const gdb_byte **result_info_ptr,
5258 struct die_info **result_comp_unit_die,
5259 int *result_has_children)
5260 {
5261 struct objfile *objfile = dwarf2_per_objfile->objfile;
5262 struct dwarf2_cu *cu = this_cu->cu;
5263 struct dwarf2_section_info *section;
5264 bfd *abfd;
5265 const gdb_byte *begin_info_ptr, *info_ptr;
5266 ULONGEST signature; /* Or dwo_id. */
5267 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5268 int i,num_extra_attrs;
5269 struct dwarf2_section_info *dwo_abbrev_section;
5270 struct attribute *attr;
5271 struct die_info *comp_unit_die;
5272
5273 /* At most one of these may be provided. */
5274 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5275
5276 /* These attributes aren't processed until later:
5277 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5278 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5279 referenced later. However, these attributes are found in the stub
5280 which we won't have later. In order to not impose this complication
5281 on the rest of the code, we read them here and copy them to the
5282 DWO CU/TU die. */
5283
5284 stmt_list = NULL;
5285 low_pc = NULL;
5286 high_pc = NULL;
5287 ranges = NULL;
5288 comp_dir = NULL;
5289
5290 if (stub_comp_unit_die != NULL)
5291 {
5292 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5293 DWO file. */
5294 if (! this_cu->is_debug_types)
5295 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5296 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5297 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5298 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5299 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5300
5301 /* There should be a DW_AT_addr_base attribute here (if needed).
5302 We need the value before we can process DW_FORM_GNU_addr_index. */
5303 cu->addr_base = 0;
5304 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5305 if (attr)
5306 cu->addr_base = DW_UNSND (attr);
5307
5308 /* There should be a DW_AT_ranges_base attribute here (if needed).
5309 We need the value before we can process DW_AT_ranges. */
5310 cu->ranges_base = 0;
5311 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5312 if (attr)
5313 cu->ranges_base = DW_UNSND (attr);
5314 }
5315 else if (stub_comp_dir != NULL)
5316 {
5317 /* Reconstruct the comp_dir attribute to simplify the code below. */
5318 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5319 comp_dir->name = DW_AT_comp_dir;
5320 comp_dir->form = DW_FORM_string;
5321 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5322 DW_STRING (comp_dir) = stub_comp_dir;
5323 }
5324
5325 /* Set up for reading the DWO CU/TU. */
5326 cu->dwo_unit = dwo_unit;
5327 section = dwo_unit->section;
5328 dwarf2_read_section (objfile, section);
5329 abfd = get_section_bfd_owner (section);
5330 begin_info_ptr = info_ptr = (section->buffer
5331 + to_underlying (dwo_unit->sect_off));
5332 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5333 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5334
5335 if (this_cu->is_debug_types)
5336 {
5337 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5338
5339 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5340 dwo_abbrev_section,
5341 info_ptr, rcuh_kind::TYPE);
5342 /* This is not an assert because it can be caused by bad debug info. */
5343 if (sig_type->signature != cu->header.signature)
5344 {
5345 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5346 " TU at offset 0x%x [in module %s]"),
5347 hex_string (sig_type->signature),
5348 hex_string (cu->header.signature),
5349 to_underlying (dwo_unit->sect_off),
5350 bfd_get_filename (abfd));
5351 }
5352 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5353 /* For DWOs coming from DWP files, we don't know the CU length
5354 nor the type's offset in the TU until now. */
5355 dwo_unit->length = get_cu_length (&cu->header);
5356 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5357
5358 /* Establish the type offset that can be used to lookup the type.
5359 For DWO files, we don't know it until now. */
5360 sig_type->type_offset_in_section
5361 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5362 }
5363 else
5364 {
5365 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5366 dwo_abbrev_section,
5367 info_ptr, rcuh_kind::COMPILE);
5368 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5369 /* For DWOs coming from DWP files, we don't know the CU length
5370 until now. */
5371 dwo_unit->length = get_cu_length (&cu->header);
5372 }
5373
5374 /* Replace the CU's original abbrev table with the DWO's.
5375 Reminder: We can't read the abbrev table until we've read the header. */
5376 if (abbrev_table_provided)
5377 {
5378 /* Don't free the provided abbrev table, the caller of
5379 init_cutu_and_read_dies owns it. */
5380 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5381 /* Ensure the DWO abbrev table gets freed. */
5382 make_cleanup (dwarf2_free_abbrev_table, cu);
5383 }
5384 else
5385 {
5386 dwarf2_free_abbrev_table (cu);
5387 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5388 /* Leave any existing abbrev table cleanup as is. */
5389 }
5390
5391 /* Read in the die, but leave space to copy over the attributes
5392 from the stub. This has the benefit of simplifying the rest of
5393 the code - all the work to maintain the illusion of a single
5394 DW_TAG_{compile,type}_unit DIE is done here. */
5395 num_extra_attrs = ((stmt_list != NULL)
5396 + (low_pc != NULL)
5397 + (high_pc != NULL)
5398 + (ranges != NULL)
5399 + (comp_dir != NULL));
5400 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5401 result_has_children, num_extra_attrs);
5402
5403 /* Copy over the attributes from the stub to the DIE we just read in. */
5404 comp_unit_die = *result_comp_unit_die;
5405 i = comp_unit_die->num_attrs;
5406 if (stmt_list != NULL)
5407 comp_unit_die->attrs[i++] = *stmt_list;
5408 if (low_pc != NULL)
5409 comp_unit_die->attrs[i++] = *low_pc;
5410 if (high_pc != NULL)
5411 comp_unit_die->attrs[i++] = *high_pc;
5412 if (ranges != NULL)
5413 comp_unit_die->attrs[i++] = *ranges;
5414 if (comp_dir != NULL)
5415 comp_unit_die->attrs[i++] = *comp_dir;
5416 comp_unit_die->num_attrs += num_extra_attrs;
5417
5418 if (dwarf_die_debug)
5419 {
5420 fprintf_unfiltered (gdb_stdlog,
5421 "Read die from %s@0x%x of %s:\n",
5422 get_section_name (section),
5423 (unsigned) (begin_info_ptr - section->buffer),
5424 bfd_get_filename (abfd));
5425 dump_die (comp_unit_die, dwarf_die_debug);
5426 }
5427
5428 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5429 TUs by skipping the stub and going directly to the entry in the DWO file.
5430 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5431 to get it via circuitous means. Blech. */
5432 if (comp_dir != NULL)
5433 result_reader->comp_dir = DW_STRING (comp_dir);
5434
5435 /* Skip dummy compilation units. */
5436 if (info_ptr >= begin_info_ptr + dwo_unit->length
5437 || peek_abbrev_code (abfd, info_ptr) == 0)
5438 return 0;
5439
5440 *result_info_ptr = info_ptr;
5441 return 1;
5442 }
5443
5444 /* Subroutine of init_cutu_and_read_dies to simplify it.
5445 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5446 Returns NULL if the specified DWO unit cannot be found. */
5447
5448 static struct dwo_unit *
5449 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5450 struct die_info *comp_unit_die)
5451 {
5452 struct dwarf2_cu *cu = this_cu->cu;
5453 struct attribute *attr;
5454 ULONGEST signature;
5455 struct dwo_unit *dwo_unit;
5456 const char *comp_dir, *dwo_name;
5457
5458 gdb_assert (cu != NULL);
5459
5460 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5461 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5462 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5463
5464 if (this_cu->is_debug_types)
5465 {
5466 struct signatured_type *sig_type;
5467
5468 /* Since this_cu is the first member of struct signatured_type,
5469 we can go from a pointer to one to a pointer to the other. */
5470 sig_type = (struct signatured_type *) this_cu;
5471 signature = sig_type->signature;
5472 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5473 }
5474 else
5475 {
5476 struct attribute *attr;
5477
5478 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5479 if (! attr)
5480 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5481 " [in module %s]"),
5482 dwo_name, objfile_name (this_cu->objfile));
5483 signature = DW_UNSND (attr);
5484 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5485 signature);
5486 }
5487
5488 return dwo_unit;
5489 }
5490
5491 /* Subroutine of init_cutu_and_read_dies to simplify it.
5492 See it for a description of the parameters.
5493 Read a TU directly from a DWO file, bypassing the stub.
5494
5495 Note: This function could be a little bit simpler if we shared cleanups
5496 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5497 to do, so we keep this function self-contained. Or we could move this
5498 into our caller, but it's complex enough already. */
5499
5500 static void
5501 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5502 int use_existing_cu, int keep,
5503 die_reader_func_ftype *die_reader_func,
5504 void *data)
5505 {
5506 struct dwarf2_cu *cu;
5507 struct signatured_type *sig_type;
5508 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5509 struct die_reader_specs reader;
5510 const gdb_byte *info_ptr;
5511 struct die_info *comp_unit_die;
5512 int has_children;
5513
5514 /* Verify we can do the following downcast, and that we have the
5515 data we need. */
5516 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5517 sig_type = (struct signatured_type *) this_cu;
5518 gdb_assert (sig_type->dwo_unit != NULL);
5519
5520 cleanups = make_cleanup (null_cleanup, NULL);
5521
5522 if (use_existing_cu && this_cu->cu != NULL)
5523 {
5524 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5525 cu = this_cu->cu;
5526 /* There's no need to do the rereading_dwo_cu handling that
5527 init_cutu_and_read_dies does since we don't read the stub. */
5528 }
5529 else
5530 {
5531 /* If !use_existing_cu, this_cu->cu must be NULL. */
5532 gdb_assert (this_cu->cu == NULL);
5533 cu = XNEW (struct dwarf2_cu);
5534 init_one_comp_unit (cu, this_cu);
5535 /* If an error occurs while loading, release our storage. */
5536 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5537 }
5538
5539 /* A future optimization, if needed, would be to use an existing
5540 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5541 could share abbrev tables. */
5542
5543 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5544 0 /* abbrev_table_provided */,
5545 NULL /* stub_comp_unit_die */,
5546 sig_type->dwo_unit->dwo_file->comp_dir,
5547 &reader, &info_ptr,
5548 &comp_unit_die, &has_children) == 0)
5549 {
5550 /* Dummy die. */
5551 do_cleanups (cleanups);
5552 return;
5553 }
5554
5555 /* All the "real" work is done here. */
5556 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5557
5558 /* This duplicates the code in init_cutu_and_read_dies,
5559 but the alternative is making the latter more complex.
5560 This function is only for the special case of using DWO files directly:
5561 no point in overly complicating the general case just to handle this. */
5562 if (free_cu_cleanup != NULL)
5563 {
5564 if (keep)
5565 {
5566 /* We've successfully allocated this compilation unit. Let our
5567 caller clean it up when finished with it. */
5568 discard_cleanups (free_cu_cleanup);
5569
5570 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5571 So we have to manually free the abbrev table. */
5572 dwarf2_free_abbrev_table (cu);
5573
5574 /* Link this CU into read_in_chain. */
5575 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5576 dwarf2_per_objfile->read_in_chain = this_cu;
5577 }
5578 else
5579 do_cleanups (free_cu_cleanup);
5580 }
5581
5582 do_cleanups (cleanups);
5583 }
5584
5585 /* Initialize a CU (or TU) and read its DIEs.
5586 If the CU defers to a DWO file, read the DWO file as well.
5587
5588 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5589 Otherwise the table specified in the comp unit header is read in and used.
5590 This is an optimization for when we already have the abbrev table.
5591
5592 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5593 Otherwise, a new CU is allocated with xmalloc.
5594
5595 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5596 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5597
5598 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5599 linker) then DIE_READER_FUNC will not get called. */
5600
5601 static void
5602 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5603 struct abbrev_table *abbrev_table,
5604 int use_existing_cu, int keep,
5605 die_reader_func_ftype *die_reader_func,
5606 void *data)
5607 {
5608 struct objfile *objfile = dwarf2_per_objfile->objfile;
5609 struct dwarf2_section_info *section = this_cu->section;
5610 bfd *abfd = get_section_bfd_owner (section);
5611 struct dwarf2_cu *cu;
5612 const gdb_byte *begin_info_ptr, *info_ptr;
5613 struct die_reader_specs reader;
5614 struct die_info *comp_unit_die;
5615 int has_children;
5616 struct attribute *attr;
5617 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5618 struct signatured_type *sig_type = NULL;
5619 struct dwarf2_section_info *abbrev_section;
5620 /* Non-zero if CU currently points to a DWO file and we need to
5621 reread it. When this happens we need to reread the skeleton die
5622 before we can reread the DWO file (this only applies to CUs, not TUs). */
5623 int rereading_dwo_cu = 0;
5624
5625 if (dwarf_die_debug)
5626 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5627 this_cu->is_debug_types ? "type" : "comp",
5628 to_underlying (this_cu->sect_off));
5629
5630 if (use_existing_cu)
5631 gdb_assert (keep);
5632
5633 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5634 file (instead of going through the stub), short-circuit all of this. */
5635 if (this_cu->reading_dwo_directly)
5636 {
5637 /* Narrow down the scope of possibilities to have to understand. */
5638 gdb_assert (this_cu->is_debug_types);
5639 gdb_assert (abbrev_table == NULL);
5640 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5641 die_reader_func, data);
5642 return;
5643 }
5644
5645 cleanups = make_cleanup (null_cleanup, NULL);
5646
5647 /* This is cheap if the section is already read in. */
5648 dwarf2_read_section (objfile, section);
5649
5650 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5651
5652 abbrev_section = get_abbrev_section_for_cu (this_cu);
5653
5654 if (use_existing_cu && this_cu->cu != NULL)
5655 {
5656 cu = this_cu->cu;
5657 /* If this CU is from a DWO file we need to start over, we need to
5658 refetch the attributes from the skeleton CU.
5659 This could be optimized by retrieving those attributes from when we
5660 were here the first time: the previous comp_unit_die was stored in
5661 comp_unit_obstack. But there's no data yet that we need this
5662 optimization. */
5663 if (cu->dwo_unit != NULL)
5664 rereading_dwo_cu = 1;
5665 }
5666 else
5667 {
5668 /* If !use_existing_cu, this_cu->cu must be NULL. */
5669 gdb_assert (this_cu->cu == NULL);
5670 cu = XNEW (struct dwarf2_cu);
5671 init_one_comp_unit (cu, this_cu);
5672 /* If an error occurs while loading, release our storage. */
5673 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5674 }
5675
5676 /* Get the header. */
5677 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5678 {
5679 /* We already have the header, there's no need to read it in again. */
5680 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5681 }
5682 else
5683 {
5684 if (this_cu->is_debug_types)
5685 {
5686 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5687 abbrev_section, info_ptr,
5688 rcuh_kind::TYPE);
5689
5690 /* Since per_cu is the first member of struct signatured_type,
5691 we can go from a pointer to one to a pointer to the other. */
5692 sig_type = (struct signatured_type *) this_cu;
5693 gdb_assert (sig_type->signature == cu->header.signature);
5694 gdb_assert (sig_type->type_offset_in_tu
5695 == cu->header.type_cu_offset_in_tu);
5696 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5697
5698 /* LENGTH has not been set yet for type units if we're
5699 using .gdb_index. */
5700 this_cu->length = get_cu_length (&cu->header);
5701
5702 /* Establish the type offset that can be used to lookup the type. */
5703 sig_type->type_offset_in_section =
5704 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5705
5706 this_cu->dwarf_version = cu->header.version;
5707 }
5708 else
5709 {
5710 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5711 abbrev_section,
5712 info_ptr,
5713 rcuh_kind::COMPILE);
5714
5715 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5716 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5717 this_cu->dwarf_version = cu->header.version;
5718 }
5719 }
5720
5721 /* Skip dummy compilation units. */
5722 if (info_ptr >= begin_info_ptr + this_cu->length
5723 || peek_abbrev_code (abfd, info_ptr) == 0)
5724 {
5725 do_cleanups (cleanups);
5726 return;
5727 }
5728
5729 /* If we don't have them yet, read the abbrevs for this compilation unit.
5730 And if we need to read them now, make sure they're freed when we're
5731 done. Note that it's important that if the CU had an abbrev table
5732 on entry we don't free it when we're done: Somewhere up the call stack
5733 it may be in use. */
5734 if (abbrev_table != NULL)
5735 {
5736 gdb_assert (cu->abbrev_table == NULL);
5737 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5738 cu->abbrev_table = abbrev_table;
5739 }
5740 else if (cu->abbrev_table == NULL)
5741 {
5742 dwarf2_read_abbrevs (cu, abbrev_section);
5743 make_cleanup (dwarf2_free_abbrev_table, cu);
5744 }
5745 else if (rereading_dwo_cu)
5746 {
5747 dwarf2_free_abbrev_table (cu);
5748 dwarf2_read_abbrevs (cu, abbrev_section);
5749 }
5750
5751 /* Read the top level CU/TU die. */
5752 init_cu_die_reader (&reader, cu, section, NULL);
5753 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5754
5755 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5756 from the DWO file.
5757 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5758 DWO CU, that this test will fail (the attribute will not be present). */
5759 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5760 if (attr)
5761 {
5762 struct dwo_unit *dwo_unit;
5763 struct die_info *dwo_comp_unit_die;
5764
5765 if (has_children)
5766 {
5767 complaint (&symfile_complaints,
5768 _("compilation unit with DW_AT_GNU_dwo_name"
5769 " has children (offset 0x%x) [in module %s]"),
5770 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5771 }
5772 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5773 if (dwo_unit != NULL)
5774 {
5775 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5776 abbrev_table != NULL,
5777 comp_unit_die, NULL,
5778 &reader, &info_ptr,
5779 &dwo_comp_unit_die, &has_children) == 0)
5780 {
5781 /* Dummy die. */
5782 do_cleanups (cleanups);
5783 return;
5784 }
5785 comp_unit_die = dwo_comp_unit_die;
5786 }
5787 else
5788 {
5789 /* Yikes, we couldn't find the rest of the DIE, we only have
5790 the stub. A complaint has already been logged. There's
5791 not much more we can do except pass on the stub DIE to
5792 die_reader_func. We don't want to throw an error on bad
5793 debug info. */
5794 }
5795 }
5796
5797 /* All of the above is setup for this call. Yikes. */
5798 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5799
5800 /* Done, clean up. */
5801 if (free_cu_cleanup != NULL)
5802 {
5803 if (keep)
5804 {
5805 /* We've successfully allocated this compilation unit. Let our
5806 caller clean it up when finished with it. */
5807 discard_cleanups (free_cu_cleanup);
5808
5809 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5810 So we have to manually free the abbrev table. */
5811 dwarf2_free_abbrev_table (cu);
5812
5813 /* Link this CU into read_in_chain. */
5814 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5815 dwarf2_per_objfile->read_in_chain = this_cu;
5816 }
5817 else
5818 do_cleanups (free_cu_cleanup);
5819 }
5820
5821 do_cleanups (cleanups);
5822 }
5823
5824 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5825 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5826 to have already done the lookup to find the DWO file).
5827
5828 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5829 THIS_CU->is_debug_types, but nothing else.
5830
5831 We fill in THIS_CU->length.
5832
5833 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5834 linker) then DIE_READER_FUNC will not get called.
5835
5836 THIS_CU->cu is always freed when done.
5837 This is done in order to not leave THIS_CU->cu in a state where we have
5838 to care whether it refers to the "main" CU or the DWO CU. */
5839
5840 static void
5841 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5842 struct dwo_file *dwo_file,
5843 die_reader_func_ftype *die_reader_func,
5844 void *data)
5845 {
5846 struct objfile *objfile = dwarf2_per_objfile->objfile;
5847 struct dwarf2_section_info *section = this_cu->section;
5848 bfd *abfd = get_section_bfd_owner (section);
5849 struct dwarf2_section_info *abbrev_section;
5850 struct dwarf2_cu cu;
5851 const gdb_byte *begin_info_ptr, *info_ptr;
5852 struct die_reader_specs reader;
5853 struct cleanup *cleanups;
5854 struct die_info *comp_unit_die;
5855 int has_children;
5856
5857 if (dwarf_die_debug)
5858 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5859 this_cu->is_debug_types ? "type" : "comp",
5860 to_underlying (this_cu->sect_off));
5861
5862 gdb_assert (this_cu->cu == NULL);
5863
5864 abbrev_section = (dwo_file != NULL
5865 ? &dwo_file->sections.abbrev
5866 : get_abbrev_section_for_cu (this_cu));
5867
5868 /* This is cheap if the section is already read in. */
5869 dwarf2_read_section (objfile, section);
5870
5871 init_one_comp_unit (&cu, this_cu);
5872
5873 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5874
5875 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5876 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5877 abbrev_section, info_ptr,
5878 (this_cu->is_debug_types
5879 ? rcuh_kind::TYPE
5880 : rcuh_kind::COMPILE));
5881
5882 this_cu->length = get_cu_length (&cu.header);
5883
5884 /* Skip dummy compilation units. */
5885 if (info_ptr >= begin_info_ptr + this_cu->length
5886 || peek_abbrev_code (abfd, info_ptr) == 0)
5887 {
5888 do_cleanups (cleanups);
5889 return;
5890 }
5891
5892 dwarf2_read_abbrevs (&cu, abbrev_section);
5893 make_cleanup (dwarf2_free_abbrev_table, &cu);
5894
5895 init_cu_die_reader (&reader, &cu, section, dwo_file);
5896 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5897
5898 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5899
5900 do_cleanups (cleanups);
5901 }
5902
5903 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5904 does not lookup the specified DWO file.
5905 This cannot be used to read DWO files.
5906
5907 THIS_CU->cu is always freed when done.
5908 This is done in order to not leave THIS_CU->cu in a state where we have
5909 to care whether it refers to the "main" CU or the DWO CU.
5910 We can revisit this if the data shows there's a performance issue. */
5911
5912 static void
5913 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5914 die_reader_func_ftype *die_reader_func,
5915 void *data)
5916 {
5917 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5918 }
5919 \f
5920 /* Type Unit Groups.
5921
5922 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5923 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5924 so that all types coming from the same compilation (.o file) are grouped
5925 together. A future step could be to put the types in the same symtab as
5926 the CU the types ultimately came from. */
5927
5928 static hashval_t
5929 hash_type_unit_group (const void *item)
5930 {
5931 const struct type_unit_group *tu_group
5932 = (const struct type_unit_group *) item;
5933
5934 return hash_stmt_list_entry (&tu_group->hash);
5935 }
5936
5937 static int
5938 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5939 {
5940 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5941 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5942
5943 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5944 }
5945
5946 /* Allocate a hash table for type unit groups. */
5947
5948 static htab_t
5949 allocate_type_unit_groups_table (void)
5950 {
5951 return htab_create_alloc_ex (3,
5952 hash_type_unit_group,
5953 eq_type_unit_group,
5954 NULL,
5955 &dwarf2_per_objfile->objfile->objfile_obstack,
5956 hashtab_obstack_allocate,
5957 dummy_obstack_deallocate);
5958 }
5959
5960 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5961 partial symtabs. We combine several TUs per psymtab to not let the size
5962 of any one psymtab grow too big. */
5963 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5964 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5965
5966 /* Helper routine for get_type_unit_group.
5967 Create the type_unit_group object used to hold one or more TUs. */
5968
5969 static struct type_unit_group *
5970 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5971 {
5972 struct objfile *objfile = dwarf2_per_objfile->objfile;
5973 struct dwarf2_per_cu_data *per_cu;
5974 struct type_unit_group *tu_group;
5975
5976 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5977 struct type_unit_group);
5978 per_cu = &tu_group->per_cu;
5979 per_cu->objfile = objfile;
5980
5981 if (dwarf2_per_objfile->using_index)
5982 {
5983 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5984 struct dwarf2_per_cu_quick_data);
5985 }
5986 else
5987 {
5988 unsigned int line_offset = to_underlying (line_offset_struct);
5989 struct partial_symtab *pst;
5990 char *name;
5991
5992 /* Give the symtab a useful name for debug purposes. */
5993 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5994 name = xstrprintf ("<type_units_%d>",
5995 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5996 else
5997 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5998
5999 pst = create_partial_symtab (per_cu, name);
6000 pst->anonymous = 1;
6001
6002 xfree (name);
6003 }
6004
6005 tu_group->hash.dwo_unit = cu->dwo_unit;
6006 tu_group->hash.line_sect_off = line_offset_struct;
6007
6008 return tu_group;
6009 }
6010
6011 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6012 STMT_LIST is a DW_AT_stmt_list attribute. */
6013
6014 static struct type_unit_group *
6015 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6016 {
6017 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6018 struct type_unit_group *tu_group;
6019 void **slot;
6020 unsigned int line_offset;
6021 struct type_unit_group type_unit_group_for_lookup;
6022
6023 if (dwarf2_per_objfile->type_unit_groups == NULL)
6024 {
6025 dwarf2_per_objfile->type_unit_groups =
6026 allocate_type_unit_groups_table ();
6027 }
6028
6029 /* Do we need to create a new group, or can we use an existing one? */
6030
6031 if (stmt_list)
6032 {
6033 line_offset = DW_UNSND (stmt_list);
6034 ++tu_stats->nr_symtab_sharers;
6035 }
6036 else
6037 {
6038 /* Ugh, no stmt_list. Rare, but we have to handle it.
6039 We can do various things here like create one group per TU or
6040 spread them over multiple groups to split up the expansion work.
6041 To avoid worst case scenarios (too many groups or too large groups)
6042 we, umm, group them in bunches. */
6043 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6044 | (tu_stats->nr_stmt_less_type_units
6045 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6046 ++tu_stats->nr_stmt_less_type_units;
6047 }
6048
6049 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6050 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6051 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6052 &type_unit_group_for_lookup, INSERT);
6053 if (*slot != NULL)
6054 {
6055 tu_group = (struct type_unit_group *) *slot;
6056 gdb_assert (tu_group != NULL);
6057 }
6058 else
6059 {
6060 sect_offset line_offset_struct = (sect_offset) line_offset;
6061 tu_group = create_type_unit_group (cu, line_offset_struct);
6062 *slot = tu_group;
6063 ++tu_stats->nr_symtabs;
6064 }
6065
6066 return tu_group;
6067 }
6068 \f
6069 /* Partial symbol tables. */
6070
6071 /* Create a psymtab named NAME and assign it to PER_CU.
6072
6073 The caller must fill in the following details:
6074 dirname, textlow, texthigh. */
6075
6076 static struct partial_symtab *
6077 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6078 {
6079 struct objfile *objfile = per_cu->objfile;
6080 struct partial_symtab *pst;
6081
6082 pst = start_psymtab_common (objfile, name, 0,
6083 objfile->global_psymbols.next,
6084 objfile->static_psymbols.next);
6085
6086 pst->psymtabs_addrmap_supported = 1;
6087
6088 /* This is the glue that links PST into GDB's symbol API. */
6089 pst->read_symtab_private = per_cu;
6090 pst->read_symtab = dwarf2_read_symtab;
6091 per_cu->v.psymtab = pst;
6092
6093 return pst;
6094 }
6095
6096 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6097 type. */
6098
6099 struct process_psymtab_comp_unit_data
6100 {
6101 /* True if we are reading a DW_TAG_partial_unit. */
6102
6103 int want_partial_unit;
6104
6105 /* The "pretend" language that is used if the CU doesn't declare a
6106 language. */
6107
6108 enum language pretend_language;
6109 };
6110
6111 /* die_reader_func for process_psymtab_comp_unit. */
6112
6113 static void
6114 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6115 const gdb_byte *info_ptr,
6116 struct die_info *comp_unit_die,
6117 int has_children,
6118 void *data)
6119 {
6120 struct dwarf2_cu *cu = reader->cu;
6121 struct objfile *objfile = cu->objfile;
6122 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6123 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6124 CORE_ADDR baseaddr;
6125 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6126 struct partial_symtab *pst;
6127 enum pc_bounds_kind cu_bounds_kind;
6128 const char *filename;
6129 struct process_psymtab_comp_unit_data *info
6130 = (struct process_psymtab_comp_unit_data *) data;
6131
6132 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6133 return;
6134
6135 gdb_assert (! per_cu->is_debug_types);
6136
6137 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6138
6139 cu->list_in_scope = &file_symbols;
6140
6141 /* Allocate a new partial symbol table structure. */
6142 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6143 if (filename == NULL)
6144 filename = "";
6145
6146 pst = create_partial_symtab (per_cu, filename);
6147
6148 /* This must be done before calling dwarf2_build_include_psymtabs. */
6149 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6150
6151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6152
6153 dwarf2_find_base_address (comp_unit_die, cu);
6154
6155 /* Possibly set the default values of LOWPC and HIGHPC from
6156 `DW_AT_ranges'. */
6157 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6158 &best_highpc, cu, pst);
6159 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6160 /* Store the contiguous range if it is not empty; it can be empty for
6161 CUs with no code. */
6162 addrmap_set_empty (objfile->psymtabs_addrmap,
6163 gdbarch_adjust_dwarf2_addr (gdbarch,
6164 best_lowpc + baseaddr),
6165 gdbarch_adjust_dwarf2_addr (gdbarch,
6166 best_highpc + baseaddr) - 1,
6167 pst);
6168
6169 /* Check if comp unit has_children.
6170 If so, read the rest of the partial symbols from this comp unit.
6171 If not, there's no more debug_info for this comp unit. */
6172 if (has_children)
6173 {
6174 struct partial_die_info *first_die;
6175 CORE_ADDR lowpc, highpc;
6176
6177 lowpc = ((CORE_ADDR) -1);
6178 highpc = ((CORE_ADDR) 0);
6179
6180 first_die = load_partial_dies (reader, info_ptr, 1);
6181
6182 scan_partial_symbols (first_die, &lowpc, &highpc,
6183 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6184
6185 /* If we didn't find a lowpc, set it to highpc to avoid
6186 complaints from `maint check'. */
6187 if (lowpc == ((CORE_ADDR) -1))
6188 lowpc = highpc;
6189
6190 /* If the compilation unit didn't have an explicit address range,
6191 then use the information extracted from its child dies. */
6192 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6193 {
6194 best_lowpc = lowpc;
6195 best_highpc = highpc;
6196 }
6197 }
6198 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6199 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6200
6201 end_psymtab_common (objfile, pst);
6202
6203 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6204 {
6205 int i;
6206 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6207 struct dwarf2_per_cu_data *iter;
6208
6209 /* Fill in 'dependencies' here; we fill in 'users' in a
6210 post-pass. */
6211 pst->number_of_dependencies = len;
6212 pst->dependencies =
6213 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6214 for (i = 0;
6215 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6216 i, iter);
6217 ++i)
6218 pst->dependencies[i] = iter->v.psymtab;
6219
6220 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6221 }
6222
6223 /* Get the list of files included in the current compilation unit,
6224 and build a psymtab for each of them. */
6225 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6226
6227 if (dwarf_read_debug)
6228 {
6229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6230
6231 fprintf_unfiltered (gdb_stdlog,
6232 "Psymtab for %s unit @0x%x: %s - %s"
6233 ", %d global, %d static syms\n",
6234 per_cu->is_debug_types ? "type" : "comp",
6235 to_underlying (per_cu->sect_off),
6236 paddress (gdbarch, pst->textlow),
6237 paddress (gdbarch, pst->texthigh),
6238 pst->n_global_syms, pst->n_static_syms);
6239 }
6240 }
6241
6242 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6243 Process compilation unit THIS_CU for a psymtab. */
6244
6245 static void
6246 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6247 int want_partial_unit,
6248 enum language pretend_language)
6249 {
6250 struct process_psymtab_comp_unit_data info;
6251
6252 /* If this compilation unit was already read in, free the
6253 cached copy in order to read it in again. This is
6254 necessary because we skipped some symbols when we first
6255 read in the compilation unit (see load_partial_dies).
6256 This problem could be avoided, but the benefit is unclear. */
6257 if (this_cu->cu != NULL)
6258 free_one_cached_comp_unit (this_cu);
6259
6260 gdb_assert (! this_cu->is_debug_types);
6261 info.want_partial_unit = want_partial_unit;
6262 info.pretend_language = pretend_language;
6263 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6264 process_psymtab_comp_unit_reader,
6265 &info);
6266
6267 /* Age out any secondary CUs. */
6268 age_cached_comp_units ();
6269 }
6270
6271 /* Reader function for build_type_psymtabs. */
6272
6273 static void
6274 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6275 const gdb_byte *info_ptr,
6276 struct die_info *type_unit_die,
6277 int has_children,
6278 void *data)
6279 {
6280 struct objfile *objfile = dwarf2_per_objfile->objfile;
6281 struct dwarf2_cu *cu = reader->cu;
6282 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6283 struct signatured_type *sig_type;
6284 struct type_unit_group *tu_group;
6285 struct attribute *attr;
6286 struct partial_die_info *first_die;
6287 CORE_ADDR lowpc, highpc;
6288 struct partial_symtab *pst;
6289
6290 gdb_assert (data == NULL);
6291 gdb_assert (per_cu->is_debug_types);
6292 sig_type = (struct signatured_type *) per_cu;
6293
6294 if (! has_children)
6295 return;
6296
6297 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6298 tu_group = get_type_unit_group (cu, attr);
6299
6300 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6301
6302 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6303 cu->list_in_scope = &file_symbols;
6304 pst = create_partial_symtab (per_cu, "");
6305 pst->anonymous = 1;
6306
6307 first_die = load_partial_dies (reader, info_ptr, 1);
6308
6309 lowpc = (CORE_ADDR) -1;
6310 highpc = (CORE_ADDR) 0;
6311 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6312
6313 end_psymtab_common (objfile, pst);
6314 }
6315
6316 /* Struct used to sort TUs by their abbreviation table offset. */
6317
6318 struct tu_abbrev_offset
6319 {
6320 struct signatured_type *sig_type;
6321 sect_offset abbrev_offset;
6322 };
6323
6324 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6325
6326 static int
6327 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6328 {
6329 const struct tu_abbrev_offset * const *a
6330 = (const struct tu_abbrev_offset * const*) ap;
6331 const struct tu_abbrev_offset * const *b
6332 = (const struct tu_abbrev_offset * const*) bp;
6333 sect_offset aoff = (*a)->abbrev_offset;
6334 sect_offset boff = (*b)->abbrev_offset;
6335
6336 return (aoff > boff) - (aoff < boff);
6337 }
6338
6339 /* Efficiently read all the type units.
6340 This does the bulk of the work for build_type_psymtabs.
6341
6342 The efficiency is because we sort TUs by the abbrev table they use and
6343 only read each abbrev table once. In one program there are 200K TUs
6344 sharing 8K abbrev tables.
6345
6346 The main purpose of this function is to support building the
6347 dwarf2_per_objfile->type_unit_groups table.
6348 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6349 can collapse the search space by grouping them by stmt_list.
6350 The savings can be significant, in the same program from above the 200K TUs
6351 share 8K stmt_list tables.
6352
6353 FUNC is expected to call get_type_unit_group, which will create the
6354 struct type_unit_group if necessary and add it to
6355 dwarf2_per_objfile->type_unit_groups. */
6356
6357 static void
6358 build_type_psymtabs_1 (void)
6359 {
6360 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6361 struct cleanup *cleanups;
6362 struct abbrev_table *abbrev_table;
6363 sect_offset abbrev_offset;
6364 struct tu_abbrev_offset *sorted_by_abbrev;
6365 int i;
6366
6367 /* It's up to the caller to not call us multiple times. */
6368 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6369
6370 if (dwarf2_per_objfile->n_type_units == 0)
6371 return;
6372
6373 /* TUs typically share abbrev tables, and there can be way more TUs than
6374 abbrev tables. Sort by abbrev table to reduce the number of times we
6375 read each abbrev table in.
6376 Alternatives are to punt or to maintain a cache of abbrev tables.
6377 This is simpler and efficient enough for now.
6378
6379 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6380 symtab to use). Typically TUs with the same abbrev offset have the same
6381 stmt_list value too so in practice this should work well.
6382
6383 The basic algorithm here is:
6384
6385 sort TUs by abbrev table
6386 for each TU with same abbrev table:
6387 read abbrev table if first user
6388 read TU top level DIE
6389 [IWBN if DWO skeletons had DW_AT_stmt_list]
6390 call FUNC */
6391
6392 if (dwarf_read_debug)
6393 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6394
6395 /* Sort in a separate table to maintain the order of all_type_units
6396 for .gdb_index: TU indices directly index all_type_units. */
6397 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6398 dwarf2_per_objfile->n_type_units);
6399 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6400 {
6401 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6402
6403 sorted_by_abbrev[i].sig_type = sig_type;
6404 sorted_by_abbrev[i].abbrev_offset =
6405 read_abbrev_offset (sig_type->per_cu.section,
6406 sig_type->per_cu.sect_off);
6407 }
6408 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6409 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6410 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6411
6412 abbrev_offset = (sect_offset) ~(unsigned) 0;
6413 abbrev_table = NULL;
6414 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6415
6416 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6417 {
6418 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6419
6420 /* Switch to the next abbrev table if necessary. */
6421 if (abbrev_table == NULL
6422 || tu->abbrev_offset != abbrev_offset)
6423 {
6424 if (abbrev_table != NULL)
6425 {
6426 abbrev_table_free (abbrev_table);
6427 /* Reset to NULL in case abbrev_table_read_table throws
6428 an error: abbrev_table_free_cleanup will get called. */
6429 abbrev_table = NULL;
6430 }
6431 abbrev_offset = tu->abbrev_offset;
6432 abbrev_table =
6433 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6434 abbrev_offset);
6435 ++tu_stats->nr_uniq_abbrev_tables;
6436 }
6437
6438 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6439 build_type_psymtabs_reader, NULL);
6440 }
6441
6442 do_cleanups (cleanups);
6443 }
6444
6445 /* Print collected type unit statistics. */
6446
6447 static void
6448 print_tu_stats (void)
6449 {
6450 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6451
6452 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6453 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6454 dwarf2_per_objfile->n_type_units);
6455 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6456 tu_stats->nr_uniq_abbrev_tables);
6457 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6458 tu_stats->nr_symtabs);
6459 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6460 tu_stats->nr_symtab_sharers);
6461 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6462 tu_stats->nr_stmt_less_type_units);
6463 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6464 tu_stats->nr_all_type_units_reallocs);
6465 }
6466
6467 /* Traversal function for build_type_psymtabs. */
6468
6469 static int
6470 build_type_psymtab_dependencies (void **slot, void *info)
6471 {
6472 struct objfile *objfile = dwarf2_per_objfile->objfile;
6473 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6474 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6475 struct partial_symtab *pst = per_cu->v.psymtab;
6476 int len = VEC_length (sig_type_ptr, tu_group->tus);
6477 struct signatured_type *iter;
6478 int i;
6479
6480 gdb_assert (len > 0);
6481 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6482
6483 pst->number_of_dependencies = len;
6484 pst->dependencies =
6485 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6486 for (i = 0;
6487 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6488 ++i)
6489 {
6490 gdb_assert (iter->per_cu.is_debug_types);
6491 pst->dependencies[i] = iter->per_cu.v.psymtab;
6492 iter->type_unit_group = tu_group;
6493 }
6494
6495 VEC_free (sig_type_ptr, tu_group->tus);
6496
6497 return 1;
6498 }
6499
6500 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6501 Build partial symbol tables for the .debug_types comp-units. */
6502
6503 static void
6504 build_type_psymtabs (struct objfile *objfile)
6505 {
6506 if (! create_all_type_units (objfile))
6507 return;
6508
6509 build_type_psymtabs_1 ();
6510 }
6511
6512 /* Traversal function for process_skeletonless_type_unit.
6513 Read a TU in a DWO file and build partial symbols for it. */
6514
6515 static int
6516 process_skeletonless_type_unit (void **slot, void *info)
6517 {
6518 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6519 struct objfile *objfile = (struct objfile *) info;
6520 struct signatured_type find_entry, *entry;
6521
6522 /* If this TU doesn't exist in the global table, add it and read it in. */
6523
6524 if (dwarf2_per_objfile->signatured_types == NULL)
6525 {
6526 dwarf2_per_objfile->signatured_types
6527 = allocate_signatured_type_table (objfile);
6528 }
6529
6530 find_entry.signature = dwo_unit->signature;
6531 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6532 INSERT);
6533 /* If we've already seen this type there's nothing to do. What's happening
6534 is we're doing our own version of comdat-folding here. */
6535 if (*slot != NULL)
6536 return 1;
6537
6538 /* This does the job that create_all_type_units would have done for
6539 this TU. */
6540 entry = add_type_unit (dwo_unit->signature, slot);
6541 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6542 *slot = entry;
6543
6544 /* This does the job that build_type_psymtabs_1 would have done. */
6545 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6546 build_type_psymtabs_reader, NULL);
6547
6548 return 1;
6549 }
6550
6551 /* Traversal function for process_skeletonless_type_units. */
6552
6553 static int
6554 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6555 {
6556 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6557
6558 if (dwo_file->tus != NULL)
6559 {
6560 htab_traverse_noresize (dwo_file->tus,
6561 process_skeletonless_type_unit, info);
6562 }
6563
6564 return 1;
6565 }
6566
6567 /* Scan all TUs of DWO files, verifying we've processed them.
6568 This is needed in case a TU was emitted without its skeleton.
6569 Note: This can't be done until we know what all the DWO files are. */
6570
6571 static void
6572 process_skeletonless_type_units (struct objfile *objfile)
6573 {
6574 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6575 if (get_dwp_file () == NULL
6576 && dwarf2_per_objfile->dwo_files != NULL)
6577 {
6578 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6579 process_dwo_file_for_skeletonless_type_units,
6580 objfile);
6581 }
6582 }
6583
6584 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6585
6586 static void
6587 psymtabs_addrmap_cleanup (void *o)
6588 {
6589 struct objfile *objfile = (struct objfile *) o;
6590
6591 objfile->psymtabs_addrmap = NULL;
6592 }
6593
6594 /* Compute the 'user' field for each psymtab in OBJFILE. */
6595
6596 static void
6597 set_partial_user (struct objfile *objfile)
6598 {
6599 int i;
6600
6601 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6602 {
6603 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6604 struct partial_symtab *pst = per_cu->v.psymtab;
6605 int j;
6606
6607 if (pst == NULL)
6608 continue;
6609
6610 for (j = 0; j < pst->number_of_dependencies; ++j)
6611 {
6612 /* Set the 'user' field only if it is not already set. */
6613 if (pst->dependencies[j]->user == NULL)
6614 pst->dependencies[j]->user = pst;
6615 }
6616 }
6617 }
6618
6619 /* Build the partial symbol table by doing a quick pass through the
6620 .debug_info and .debug_abbrev sections. */
6621
6622 static void
6623 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6624 {
6625 struct cleanup *back_to, *addrmap_cleanup;
6626 int i;
6627
6628 if (dwarf_read_debug)
6629 {
6630 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6631 objfile_name (objfile));
6632 }
6633
6634 dwarf2_per_objfile->reading_partial_symbols = 1;
6635
6636 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6637
6638 /* Any cached compilation units will be linked by the per-objfile
6639 read_in_chain. Make sure to free them when we're done. */
6640 back_to = make_cleanup (free_cached_comp_units, NULL);
6641
6642 build_type_psymtabs (objfile);
6643
6644 create_all_comp_units (objfile);
6645
6646 /* Create a temporary address map on a temporary obstack. We later
6647 copy this to the final obstack. */
6648 auto_obstack temp_obstack;
6649 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6650 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6651
6652 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6653 {
6654 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6655
6656 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6657 }
6658
6659 /* This has to wait until we read the CUs, we need the list of DWOs. */
6660 process_skeletonless_type_units (objfile);
6661
6662 /* Now that all TUs have been processed we can fill in the dependencies. */
6663 if (dwarf2_per_objfile->type_unit_groups != NULL)
6664 {
6665 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6666 build_type_psymtab_dependencies, NULL);
6667 }
6668
6669 if (dwarf_read_debug)
6670 print_tu_stats ();
6671
6672 set_partial_user (objfile);
6673
6674 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6675 &objfile->objfile_obstack);
6676 discard_cleanups (addrmap_cleanup);
6677
6678 do_cleanups (back_to);
6679
6680 if (dwarf_read_debug)
6681 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6682 objfile_name (objfile));
6683 }
6684
6685 /* die_reader_func for load_partial_comp_unit. */
6686
6687 static void
6688 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6689 const gdb_byte *info_ptr,
6690 struct die_info *comp_unit_die,
6691 int has_children,
6692 void *data)
6693 {
6694 struct dwarf2_cu *cu = reader->cu;
6695
6696 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6697
6698 /* Check if comp unit has_children.
6699 If so, read the rest of the partial symbols from this comp unit.
6700 If not, there's no more debug_info for this comp unit. */
6701 if (has_children)
6702 load_partial_dies (reader, info_ptr, 0);
6703 }
6704
6705 /* Load the partial DIEs for a secondary CU into memory.
6706 This is also used when rereading a primary CU with load_all_dies. */
6707
6708 static void
6709 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6710 {
6711 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6712 load_partial_comp_unit_reader, NULL);
6713 }
6714
6715 static void
6716 read_comp_units_from_section (struct objfile *objfile,
6717 struct dwarf2_section_info *section,
6718 unsigned int is_dwz,
6719 int *n_allocated,
6720 int *n_comp_units,
6721 struct dwarf2_per_cu_data ***all_comp_units)
6722 {
6723 const gdb_byte *info_ptr;
6724 bfd *abfd = get_section_bfd_owner (section);
6725
6726 if (dwarf_read_debug)
6727 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6728 get_section_name (section),
6729 get_section_file_name (section));
6730
6731 dwarf2_read_section (objfile, section);
6732
6733 info_ptr = section->buffer;
6734
6735 while (info_ptr < section->buffer + section->size)
6736 {
6737 unsigned int length, initial_length_size;
6738 struct dwarf2_per_cu_data *this_cu;
6739
6740 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6741
6742 /* Read just enough information to find out where the next
6743 compilation unit is. */
6744 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6745
6746 /* Save the compilation unit for later lookup. */
6747 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6748 memset (this_cu, 0, sizeof (*this_cu));
6749 this_cu->sect_off = sect_off;
6750 this_cu->length = length + initial_length_size;
6751 this_cu->is_dwz = is_dwz;
6752 this_cu->objfile = objfile;
6753 this_cu->section = section;
6754
6755 if (*n_comp_units == *n_allocated)
6756 {
6757 *n_allocated *= 2;
6758 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6759 *all_comp_units, *n_allocated);
6760 }
6761 (*all_comp_units)[*n_comp_units] = this_cu;
6762 ++*n_comp_units;
6763
6764 info_ptr = info_ptr + this_cu->length;
6765 }
6766 }
6767
6768 /* Create a list of all compilation units in OBJFILE.
6769 This is only done for -readnow and building partial symtabs. */
6770
6771 static void
6772 create_all_comp_units (struct objfile *objfile)
6773 {
6774 int n_allocated;
6775 int n_comp_units;
6776 struct dwarf2_per_cu_data **all_comp_units;
6777 struct dwz_file *dwz;
6778
6779 n_comp_units = 0;
6780 n_allocated = 10;
6781 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6782
6783 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6784 &n_allocated, &n_comp_units, &all_comp_units);
6785
6786 dwz = dwarf2_get_dwz_file ();
6787 if (dwz != NULL)
6788 read_comp_units_from_section (objfile, &dwz->info, 1,
6789 &n_allocated, &n_comp_units,
6790 &all_comp_units);
6791
6792 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6793 struct dwarf2_per_cu_data *,
6794 n_comp_units);
6795 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6796 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6797 xfree (all_comp_units);
6798 dwarf2_per_objfile->n_comp_units = n_comp_units;
6799 }
6800
6801 /* Process all loaded DIEs for compilation unit CU, starting at
6802 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6803 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6804 DW_AT_ranges). See the comments of add_partial_subprogram on how
6805 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6806
6807 static void
6808 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6809 CORE_ADDR *highpc, int set_addrmap,
6810 struct dwarf2_cu *cu)
6811 {
6812 struct partial_die_info *pdi;
6813
6814 /* Now, march along the PDI's, descending into ones which have
6815 interesting children but skipping the children of the other ones,
6816 until we reach the end of the compilation unit. */
6817
6818 pdi = first_die;
6819
6820 while (pdi != NULL)
6821 {
6822 fixup_partial_die (pdi, cu);
6823
6824 /* Anonymous namespaces or modules have no name but have interesting
6825 children, so we need to look at them. Ditto for anonymous
6826 enums. */
6827
6828 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6829 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6830 || pdi->tag == DW_TAG_imported_unit)
6831 {
6832 switch (pdi->tag)
6833 {
6834 case DW_TAG_subprogram:
6835 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6836 break;
6837 case DW_TAG_constant:
6838 case DW_TAG_variable:
6839 case DW_TAG_typedef:
6840 case DW_TAG_union_type:
6841 if (!pdi->is_declaration)
6842 {
6843 add_partial_symbol (pdi, cu);
6844 }
6845 break;
6846 case DW_TAG_class_type:
6847 case DW_TAG_interface_type:
6848 case DW_TAG_structure_type:
6849 if (!pdi->is_declaration)
6850 {
6851 add_partial_symbol (pdi, cu);
6852 }
6853 if (cu->language == language_rust && pdi->has_children)
6854 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6855 set_addrmap, cu);
6856 break;
6857 case DW_TAG_enumeration_type:
6858 if (!pdi->is_declaration)
6859 add_partial_enumeration (pdi, cu);
6860 break;
6861 case DW_TAG_base_type:
6862 case DW_TAG_subrange_type:
6863 /* File scope base type definitions are added to the partial
6864 symbol table. */
6865 add_partial_symbol (pdi, cu);
6866 break;
6867 case DW_TAG_namespace:
6868 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6869 break;
6870 case DW_TAG_module:
6871 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6872 break;
6873 case DW_TAG_imported_unit:
6874 {
6875 struct dwarf2_per_cu_data *per_cu;
6876
6877 /* For now we don't handle imported units in type units. */
6878 if (cu->per_cu->is_debug_types)
6879 {
6880 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6881 " supported in type units [in module %s]"),
6882 objfile_name (cu->objfile));
6883 }
6884
6885 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6886 pdi->is_dwz,
6887 cu->objfile);
6888
6889 /* Go read the partial unit, if needed. */
6890 if (per_cu->v.psymtab == NULL)
6891 process_psymtab_comp_unit (per_cu, 1, cu->language);
6892
6893 VEC_safe_push (dwarf2_per_cu_ptr,
6894 cu->per_cu->imported_symtabs, per_cu);
6895 }
6896 break;
6897 case DW_TAG_imported_declaration:
6898 add_partial_symbol (pdi, cu);
6899 break;
6900 default:
6901 break;
6902 }
6903 }
6904
6905 /* If the die has a sibling, skip to the sibling. */
6906
6907 pdi = pdi->die_sibling;
6908 }
6909 }
6910
6911 /* Functions used to compute the fully scoped name of a partial DIE.
6912
6913 Normally, this is simple. For C++, the parent DIE's fully scoped
6914 name is concatenated with "::" and the partial DIE's name.
6915 Enumerators are an exception; they use the scope of their parent
6916 enumeration type, i.e. the name of the enumeration type is not
6917 prepended to the enumerator.
6918
6919 There are two complexities. One is DW_AT_specification; in this
6920 case "parent" means the parent of the target of the specification,
6921 instead of the direct parent of the DIE. The other is compilers
6922 which do not emit DW_TAG_namespace; in this case we try to guess
6923 the fully qualified name of structure types from their members'
6924 linkage names. This must be done using the DIE's children rather
6925 than the children of any DW_AT_specification target. We only need
6926 to do this for structures at the top level, i.e. if the target of
6927 any DW_AT_specification (if any; otherwise the DIE itself) does not
6928 have a parent. */
6929
6930 /* Compute the scope prefix associated with PDI's parent, in
6931 compilation unit CU. The result will be allocated on CU's
6932 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6933 field. NULL is returned if no prefix is necessary. */
6934 static const char *
6935 partial_die_parent_scope (struct partial_die_info *pdi,
6936 struct dwarf2_cu *cu)
6937 {
6938 const char *grandparent_scope;
6939 struct partial_die_info *parent, *real_pdi;
6940
6941 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6942 then this means the parent of the specification DIE. */
6943
6944 real_pdi = pdi;
6945 while (real_pdi->has_specification)
6946 real_pdi = find_partial_die (real_pdi->spec_offset,
6947 real_pdi->spec_is_dwz, cu);
6948
6949 parent = real_pdi->die_parent;
6950 if (parent == NULL)
6951 return NULL;
6952
6953 if (parent->scope_set)
6954 return parent->scope;
6955
6956 fixup_partial_die (parent, cu);
6957
6958 grandparent_scope = partial_die_parent_scope (parent, cu);
6959
6960 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6961 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6962 Work around this problem here. */
6963 if (cu->language == language_cplus
6964 && parent->tag == DW_TAG_namespace
6965 && strcmp (parent->name, "::") == 0
6966 && grandparent_scope == NULL)
6967 {
6968 parent->scope = NULL;
6969 parent->scope_set = 1;
6970 return NULL;
6971 }
6972
6973 if (pdi->tag == DW_TAG_enumerator)
6974 /* Enumerators should not get the name of the enumeration as a prefix. */
6975 parent->scope = grandparent_scope;
6976 else if (parent->tag == DW_TAG_namespace
6977 || parent->tag == DW_TAG_module
6978 || parent->tag == DW_TAG_structure_type
6979 || parent->tag == DW_TAG_class_type
6980 || parent->tag == DW_TAG_interface_type
6981 || parent->tag == DW_TAG_union_type
6982 || parent->tag == DW_TAG_enumeration_type)
6983 {
6984 if (grandparent_scope == NULL)
6985 parent->scope = parent->name;
6986 else
6987 parent->scope = typename_concat (&cu->comp_unit_obstack,
6988 grandparent_scope,
6989 parent->name, 0, cu);
6990 }
6991 else
6992 {
6993 /* FIXME drow/2004-04-01: What should we be doing with
6994 function-local names? For partial symbols, we should probably be
6995 ignoring them. */
6996 complaint (&symfile_complaints,
6997 _("unhandled containing DIE tag %d for DIE at %d"),
6998 parent->tag, to_underlying (pdi->sect_off));
6999 parent->scope = grandparent_scope;
7000 }
7001
7002 parent->scope_set = 1;
7003 return parent->scope;
7004 }
7005
7006 /* Return the fully scoped name associated with PDI, from compilation unit
7007 CU. The result will be allocated with malloc. */
7008
7009 static char *
7010 partial_die_full_name (struct partial_die_info *pdi,
7011 struct dwarf2_cu *cu)
7012 {
7013 const char *parent_scope;
7014
7015 /* If this is a template instantiation, we can not work out the
7016 template arguments from partial DIEs. So, unfortunately, we have
7017 to go through the full DIEs. At least any work we do building
7018 types here will be reused if full symbols are loaded later. */
7019 if (pdi->has_template_arguments)
7020 {
7021 fixup_partial_die (pdi, cu);
7022
7023 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7024 {
7025 struct die_info *die;
7026 struct attribute attr;
7027 struct dwarf2_cu *ref_cu = cu;
7028
7029 /* DW_FORM_ref_addr is using section offset. */
7030 attr.name = (enum dwarf_attribute) 0;
7031 attr.form = DW_FORM_ref_addr;
7032 attr.u.unsnd = to_underlying (pdi->sect_off);
7033 die = follow_die_ref (NULL, &attr, &ref_cu);
7034
7035 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7036 }
7037 }
7038
7039 parent_scope = partial_die_parent_scope (pdi, cu);
7040 if (parent_scope == NULL)
7041 return NULL;
7042 else
7043 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7044 }
7045
7046 static void
7047 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7048 {
7049 struct objfile *objfile = cu->objfile;
7050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7051 CORE_ADDR addr = 0;
7052 const char *actual_name = NULL;
7053 CORE_ADDR baseaddr;
7054 char *built_actual_name;
7055
7056 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7057
7058 built_actual_name = partial_die_full_name (pdi, cu);
7059 if (built_actual_name != NULL)
7060 actual_name = built_actual_name;
7061
7062 if (actual_name == NULL)
7063 actual_name = pdi->name;
7064
7065 switch (pdi->tag)
7066 {
7067 case DW_TAG_subprogram:
7068 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7069 if (pdi->is_external || cu->language == language_ada)
7070 {
7071 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7072 of the global scope. But in Ada, we want to be able to access
7073 nested procedures globally. So all Ada subprograms are stored
7074 in the global scope. */
7075 add_psymbol_to_list (actual_name, strlen (actual_name),
7076 built_actual_name != NULL,
7077 VAR_DOMAIN, LOC_BLOCK,
7078 &objfile->global_psymbols,
7079 addr, cu->language, objfile);
7080 }
7081 else
7082 {
7083 add_psymbol_to_list (actual_name, strlen (actual_name),
7084 built_actual_name != NULL,
7085 VAR_DOMAIN, LOC_BLOCK,
7086 &objfile->static_psymbols,
7087 addr, cu->language, objfile);
7088 }
7089
7090 if (pdi->main_subprogram && actual_name != NULL)
7091 set_objfile_main_name (objfile, actual_name, cu->language);
7092 break;
7093 case DW_TAG_constant:
7094 {
7095 struct psymbol_allocation_list *list;
7096
7097 if (pdi->is_external)
7098 list = &objfile->global_psymbols;
7099 else
7100 list = &objfile->static_psymbols;
7101 add_psymbol_to_list (actual_name, strlen (actual_name),
7102 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7103 list, 0, cu->language, objfile);
7104 }
7105 break;
7106 case DW_TAG_variable:
7107 if (pdi->d.locdesc)
7108 addr = decode_locdesc (pdi->d.locdesc, cu);
7109
7110 if (pdi->d.locdesc
7111 && addr == 0
7112 && !dwarf2_per_objfile->has_section_at_zero)
7113 {
7114 /* A global or static variable may also have been stripped
7115 out by the linker if unused, in which case its address
7116 will be nullified; do not add such variables into partial
7117 symbol table then. */
7118 }
7119 else if (pdi->is_external)
7120 {
7121 /* Global Variable.
7122 Don't enter into the minimal symbol tables as there is
7123 a minimal symbol table entry from the ELF symbols already.
7124 Enter into partial symbol table if it has a location
7125 descriptor or a type.
7126 If the location descriptor is missing, new_symbol will create
7127 a LOC_UNRESOLVED symbol, the address of the variable will then
7128 be determined from the minimal symbol table whenever the variable
7129 is referenced.
7130 The address for the partial symbol table entry is not
7131 used by GDB, but it comes in handy for debugging partial symbol
7132 table building. */
7133
7134 if (pdi->d.locdesc || pdi->has_type)
7135 add_psymbol_to_list (actual_name, strlen (actual_name),
7136 built_actual_name != NULL,
7137 VAR_DOMAIN, LOC_STATIC,
7138 &objfile->global_psymbols,
7139 addr + baseaddr,
7140 cu->language, objfile);
7141 }
7142 else
7143 {
7144 int has_loc = pdi->d.locdesc != NULL;
7145
7146 /* Static Variable. Skip symbols whose value we cannot know (those
7147 without location descriptors or constant values). */
7148 if (!has_loc && !pdi->has_const_value)
7149 {
7150 xfree (built_actual_name);
7151 return;
7152 }
7153
7154 add_psymbol_to_list (actual_name, strlen (actual_name),
7155 built_actual_name != NULL,
7156 VAR_DOMAIN, LOC_STATIC,
7157 &objfile->static_psymbols,
7158 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7159 cu->language, objfile);
7160 }
7161 break;
7162 case DW_TAG_typedef:
7163 case DW_TAG_base_type:
7164 case DW_TAG_subrange_type:
7165 add_psymbol_to_list (actual_name, strlen (actual_name),
7166 built_actual_name != NULL,
7167 VAR_DOMAIN, LOC_TYPEDEF,
7168 &objfile->static_psymbols,
7169 0, cu->language, objfile);
7170 break;
7171 case DW_TAG_imported_declaration:
7172 case DW_TAG_namespace:
7173 add_psymbol_to_list (actual_name, strlen (actual_name),
7174 built_actual_name != NULL,
7175 VAR_DOMAIN, LOC_TYPEDEF,
7176 &objfile->global_psymbols,
7177 0, cu->language, objfile);
7178 break;
7179 case DW_TAG_module:
7180 add_psymbol_to_list (actual_name, strlen (actual_name),
7181 built_actual_name != NULL,
7182 MODULE_DOMAIN, LOC_TYPEDEF,
7183 &objfile->global_psymbols,
7184 0, cu->language, objfile);
7185 break;
7186 case DW_TAG_class_type:
7187 case DW_TAG_interface_type:
7188 case DW_TAG_structure_type:
7189 case DW_TAG_union_type:
7190 case DW_TAG_enumeration_type:
7191 /* Skip external references. The DWARF standard says in the section
7192 about "Structure, Union, and Class Type Entries": "An incomplete
7193 structure, union or class type is represented by a structure,
7194 union or class entry that does not have a byte size attribute
7195 and that has a DW_AT_declaration attribute." */
7196 if (!pdi->has_byte_size && pdi->is_declaration)
7197 {
7198 xfree (built_actual_name);
7199 return;
7200 }
7201
7202 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7203 static vs. global. */
7204 add_psymbol_to_list (actual_name, strlen (actual_name),
7205 built_actual_name != NULL,
7206 STRUCT_DOMAIN, LOC_TYPEDEF,
7207 cu->language == language_cplus
7208 ? &objfile->global_psymbols
7209 : &objfile->static_psymbols,
7210 0, cu->language, objfile);
7211
7212 break;
7213 case DW_TAG_enumerator:
7214 add_psymbol_to_list (actual_name, strlen (actual_name),
7215 built_actual_name != NULL,
7216 VAR_DOMAIN, LOC_CONST,
7217 cu->language == language_cplus
7218 ? &objfile->global_psymbols
7219 : &objfile->static_psymbols,
7220 0, cu->language, objfile);
7221 break;
7222 default:
7223 break;
7224 }
7225
7226 xfree (built_actual_name);
7227 }
7228
7229 /* Read a partial die corresponding to a namespace; also, add a symbol
7230 corresponding to that namespace to the symbol table. NAMESPACE is
7231 the name of the enclosing namespace. */
7232
7233 static void
7234 add_partial_namespace (struct partial_die_info *pdi,
7235 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7236 int set_addrmap, struct dwarf2_cu *cu)
7237 {
7238 /* Add a symbol for the namespace. */
7239
7240 add_partial_symbol (pdi, cu);
7241
7242 /* Now scan partial symbols in that namespace. */
7243
7244 if (pdi->has_children)
7245 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7246 }
7247
7248 /* Read a partial die corresponding to a Fortran module. */
7249
7250 static void
7251 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7252 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7253 {
7254 /* Add a symbol for the namespace. */
7255
7256 add_partial_symbol (pdi, cu);
7257
7258 /* Now scan partial symbols in that module. */
7259
7260 if (pdi->has_children)
7261 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7262 }
7263
7264 /* Read a partial die corresponding to a subprogram and create a partial
7265 symbol for that subprogram. When the CU language allows it, this
7266 routine also defines a partial symbol for each nested subprogram
7267 that this subprogram contains. If SET_ADDRMAP is true, record the
7268 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7269 and highest PC values found in PDI.
7270
7271 PDI may also be a lexical block, in which case we simply search
7272 recursively for subprograms defined inside that lexical block.
7273 Again, this is only performed when the CU language allows this
7274 type of definitions. */
7275
7276 static void
7277 add_partial_subprogram (struct partial_die_info *pdi,
7278 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7279 int set_addrmap, struct dwarf2_cu *cu)
7280 {
7281 if (pdi->tag == DW_TAG_subprogram)
7282 {
7283 if (pdi->has_pc_info)
7284 {
7285 if (pdi->lowpc < *lowpc)
7286 *lowpc = pdi->lowpc;
7287 if (pdi->highpc > *highpc)
7288 *highpc = pdi->highpc;
7289 if (set_addrmap)
7290 {
7291 struct objfile *objfile = cu->objfile;
7292 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7293 CORE_ADDR baseaddr;
7294 CORE_ADDR highpc;
7295 CORE_ADDR lowpc;
7296
7297 baseaddr = ANOFFSET (objfile->section_offsets,
7298 SECT_OFF_TEXT (objfile));
7299 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7300 pdi->lowpc + baseaddr);
7301 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7302 pdi->highpc + baseaddr);
7303 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7304 cu->per_cu->v.psymtab);
7305 }
7306 }
7307
7308 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7309 {
7310 if (!pdi->is_declaration)
7311 /* Ignore subprogram DIEs that do not have a name, they are
7312 illegal. Do not emit a complaint at this point, we will
7313 do so when we convert this psymtab into a symtab. */
7314 if (pdi->name)
7315 add_partial_symbol (pdi, cu);
7316 }
7317 }
7318
7319 if (! pdi->has_children)
7320 return;
7321
7322 if (cu->language == language_ada)
7323 {
7324 pdi = pdi->die_child;
7325 while (pdi != NULL)
7326 {
7327 fixup_partial_die (pdi, cu);
7328 if (pdi->tag == DW_TAG_subprogram
7329 || pdi->tag == DW_TAG_lexical_block)
7330 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7331 pdi = pdi->die_sibling;
7332 }
7333 }
7334 }
7335
7336 /* Read a partial die corresponding to an enumeration type. */
7337
7338 static void
7339 add_partial_enumeration (struct partial_die_info *enum_pdi,
7340 struct dwarf2_cu *cu)
7341 {
7342 struct partial_die_info *pdi;
7343
7344 if (enum_pdi->name != NULL)
7345 add_partial_symbol (enum_pdi, cu);
7346
7347 pdi = enum_pdi->die_child;
7348 while (pdi)
7349 {
7350 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7351 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7352 else
7353 add_partial_symbol (pdi, cu);
7354 pdi = pdi->die_sibling;
7355 }
7356 }
7357
7358 /* Return the initial uleb128 in the die at INFO_PTR. */
7359
7360 static unsigned int
7361 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7362 {
7363 unsigned int bytes_read;
7364
7365 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7366 }
7367
7368 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7369 Return the corresponding abbrev, or NULL if the number is zero (indicating
7370 an empty DIE). In either case *BYTES_READ will be set to the length of
7371 the initial number. */
7372
7373 static struct abbrev_info *
7374 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7375 struct dwarf2_cu *cu)
7376 {
7377 bfd *abfd = cu->objfile->obfd;
7378 unsigned int abbrev_number;
7379 struct abbrev_info *abbrev;
7380
7381 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7382
7383 if (abbrev_number == 0)
7384 return NULL;
7385
7386 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7387 if (!abbrev)
7388 {
7389 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7390 " at offset 0x%x [in module %s]"),
7391 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7392 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7393 }
7394
7395 return abbrev;
7396 }
7397
7398 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7399 Returns a pointer to the end of a series of DIEs, terminated by an empty
7400 DIE. Any children of the skipped DIEs will also be skipped. */
7401
7402 static const gdb_byte *
7403 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7404 {
7405 struct dwarf2_cu *cu = reader->cu;
7406 struct abbrev_info *abbrev;
7407 unsigned int bytes_read;
7408
7409 while (1)
7410 {
7411 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7412 if (abbrev == NULL)
7413 return info_ptr + bytes_read;
7414 else
7415 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7416 }
7417 }
7418
7419 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7420 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7421 abbrev corresponding to that skipped uleb128 should be passed in
7422 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7423 children. */
7424
7425 static const gdb_byte *
7426 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7427 struct abbrev_info *abbrev)
7428 {
7429 unsigned int bytes_read;
7430 struct attribute attr;
7431 bfd *abfd = reader->abfd;
7432 struct dwarf2_cu *cu = reader->cu;
7433 const gdb_byte *buffer = reader->buffer;
7434 const gdb_byte *buffer_end = reader->buffer_end;
7435 unsigned int form, i;
7436
7437 for (i = 0; i < abbrev->num_attrs; i++)
7438 {
7439 /* The only abbrev we care about is DW_AT_sibling. */
7440 if (abbrev->attrs[i].name == DW_AT_sibling)
7441 {
7442 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7443 if (attr.form == DW_FORM_ref_addr)
7444 complaint (&symfile_complaints,
7445 _("ignoring absolute DW_AT_sibling"));
7446 else
7447 {
7448 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7449 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7450
7451 if (sibling_ptr < info_ptr)
7452 complaint (&symfile_complaints,
7453 _("DW_AT_sibling points backwards"));
7454 else if (sibling_ptr > reader->buffer_end)
7455 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7456 else
7457 return sibling_ptr;
7458 }
7459 }
7460
7461 /* If it isn't DW_AT_sibling, skip this attribute. */
7462 form = abbrev->attrs[i].form;
7463 skip_attribute:
7464 switch (form)
7465 {
7466 case DW_FORM_ref_addr:
7467 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7468 and later it is offset sized. */
7469 if (cu->header.version == 2)
7470 info_ptr += cu->header.addr_size;
7471 else
7472 info_ptr += cu->header.offset_size;
7473 break;
7474 case DW_FORM_GNU_ref_alt:
7475 info_ptr += cu->header.offset_size;
7476 break;
7477 case DW_FORM_addr:
7478 info_ptr += cu->header.addr_size;
7479 break;
7480 case DW_FORM_data1:
7481 case DW_FORM_ref1:
7482 case DW_FORM_flag:
7483 info_ptr += 1;
7484 break;
7485 case DW_FORM_flag_present:
7486 case DW_FORM_implicit_const:
7487 break;
7488 case DW_FORM_data2:
7489 case DW_FORM_ref2:
7490 info_ptr += 2;
7491 break;
7492 case DW_FORM_data4:
7493 case DW_FORM_ref4:
7494 info_ptr += 4;
7495 break;
7496 case DW_FORM_data8:
7497 case DW_FORM_ref8:
7498 case DW_FORM_ref_sig8:
7499 info_ptr += 8;
7500 break;
7501 case DW_FORM_data16:
7502 info_ptr += 16;
7503 break;
7504 case DW_FORM_string:
7505 read_direct_string (abfd, info_ptr, &bytes_read);
7506 info_ptr += bytes_read;
7507 break;
7508 case DW_FORM_sec_offset:
7509 case DW_FORM_strp:
7510 case DW_FORM_GNU_strp_alt:
7511 info_ptr += cu->header.offset_size;
7512 break;
7513 case DW_FORM_exprloc:
7514 case DW_FORM_block:
7515 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7516 info_ptr += bytes_read;
7517 break;
7518 case DW_FORM_block1:
7519 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7520 break;
7521 case DW_FORM_block2:
7522 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7523 break;
7524 case DW_FORM_block4:
7525 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7526 break;
7527 case DW_FORM_sdata:
7528 case DW_FORM_udata:
7529 case DW_FORM_ref_udata:
7530 case DW_FORM_GNU_addr_index:
7531 case DW_FORM_GNU_str_index:
7532 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7533 break;
7534 case DW_FORM_indirect:
7535 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7536 info_ptr += bytes_read;
7537 /* We need to continue parsing from here, so just go back to
7538 the top. */
7539 goto skip_attribute;
7540
7541 default:
7542 error (_("Dwarf Error: Cannot handle %s "
7543 "in DWARF reader [in module %s]"),
7544 dwarf_form_name (form),
7545 bfd_get_filename (abfd));
7546 }
7547 }
7548
7549 if (abbrev->has_children)
7550 return skip_children (reader, info_ptr);
7551 else
7552 return info_ptr;
7553 }
7554
7555 /* Locate ORIG_PDI's sibling.
7556 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7557
7558 static const gdb_byte *
7559 locate_pdi_sibling (const struct die_reader_specs *reader,
7560 struct partial_die_info *orig_pdi,
7561 const gdb_byte *info_ptr)
7562 {
7563 /* Do we know the sibling already? */
7564
7565 if (orig_pdi->sibling)
7566 return orig_pdi->sibling;
7567
7568 /* Are there any children to deal with? */
7569
7570 if (!orig_pdi->has_children)
7571 return info_ptr;
7572
7573 /* Skip the children the long way. */
7574
7575 return skip_children (reader, info_ptr);
7576 }
7577
7578 /* Expand this partial symbol table into a full symbol table. SELF is
7579 not NULL. */
7580
7581 static void
7582 dwarf2_read_symtab (struct partial_symtab *self,
7583 struct objfile *objfile)
7584 {
7585 if (self->readin)
7586 {
7587 warning (_("bug: psymtab for %s is already read in."),
7588 self->filename);
7589 }
7590 else
7591 {
7592 if (info_verbose)
7593 {
7594 printf_filtered (_("Reading in symbols for %s..."),
7595 self->filename);
7596 gdb_flush (gdb_stdout);
7597 }
7598
7599 /* Restore our global data. */
7600 dwarf2_per_objfile
7601 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7602 dwarf2_objfile_data_key);
7603
7604 /* If this psymtab is constructed from a debug-only objfile, the
7605 has_section_at_zero flag will not necessarily be correct. We
7606 can get the correct value for this flag by looking at the data
7607 associated with the (presumably stripped) associated objfile. */
7608 if (objfile->separate_debug_objfile_backlink)
7609 {
7610 struct dwarf2_per_objfile *dpo_backlink
7611 = ((struct dwarf2_per_objfile *)
7612 objfile_data (objfile->separate_debug_objfile_backlink,
7613 dwarf2_objfile_data_key));
7614
7615 dwarf2_per_objfile->has_section_at_zero
7616 = dpo_backlink->has_section_at_zero;
7617 }
7618
7619 dwarf2_per_objfile->reading_partial_symbols = 0;
7620
7621 psymtab_to_symtab_1 (self);
7622
7623 /* Finish up the debug error message. */
7624 if (info_verbose)
7625 printf_filtered (_("done.\n"));
7626 }
7627
7628 process_cu_includes ();
7629 }
7630 \f
7631 /* Reading in full CUs. */
7632
7633 /* Add PER_CU to the queue. */
7634
7635 static void
7636 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7637 enum language pretend_language)
7638 {
7639 struct dwarf2_queue_item *item;
7640
7641 per_cu->queued = 1;
7642 item = XNEW (struct dwarf2_queue_item);
7643 item->per_cu = per_cu;
7644 item->pretend_language = pretend_language;
7645 item->next = NULL;
7646
7647 if (dwarf2_queue == NULL)
7648 dwarf2_queue = item;
7649 else
7650 dwarf2_queue_tail->next = item;
7651
7652 dwarf2_queue_tail = item;
7653 }
7654
7655 /* If PER_CU is not yet queued, add it to the queue.
7656 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7657 dependency.
7658 The result is non-zero if PER_CU was queued, otherwise the result is zero
7659 meaning either PER_CU is already queued or it is already loaded.
7660
7661 N.B. There is an invariant here that if a CU is queued then it is loaded.
7662 The caller is required to load PER_CU if we return non-zero. */
7663
7664 static int
7665 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7666 struct dwarf2_per_cu_data *per_cu,
7667 enum language pretend_language)
7668 {
7669 /* We may arrive here during partial symbol reading, if we need full
7670 DIEs to process an unusual case (e.g. template arguments). Do
7671 not queue PER_CU, just tell our caller to load its DIEs. */
7672 if (dwarf2_per_objfile->reading_partial_symbols)
7673 {
7674 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7675 return 1;
7676 return 0;
7677 }
7678
7679 /* Mark the dependence relation so that we don't flush PER_CU
7680 too early. */
7681 if (dependent_cu != NULL)
7682 dwarf2_add_dependence (dependent_cu, per_cu);
7683
7684 /* If it's already on the queue, we have nothing to do. */
7685 if (per_cu->queued)
7686 return 0;
7687
7688 /* If the compilation unit is already loaded, just mark it as
7689 used. */
7690 if (per_cu->cu != NULL)
7691 {
7692 per_cu->cu->last_used = 0;
7693 return 0;
7694 }
7695
7696 /* Add it to the queue. */
7697 queue_comp_unit (per_cu, pretend_language);
7698
7699 return 1;
7700 }
7701
7702 /* Process the queue. */
7703
7704 static void
7705 process_queue (void)
7706 {
7707 struct dwarf2_queue_item *item, *next_item;
7708
7709 if (dwarf_read_debug)
7710 {
7711 fprintf_unfiltered (gdb_stdlog,
7712 "Expanding one or more symtabs of objfile %s ...\n",
7713 objfile_name (dwarf2_per_objfile->objfile));
7714 }
7715
7716 /* The queue starts out with one item, but following a DIE reference
7717 may load a new CU, adding it to the end of the queue. */
7718 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7719 {
7720 if ((dwarf2_per_objfile->using_index
7721 ? !item->per_cu->v.quick->compunit_symtab
7722 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7723 /* Skip dummy CUs. */
7724 && item->per_cu->cu != NULL)
7725 {
7726 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7727 unsigned int debug_print_threshold;
7728 char buf[100];
7729
7730 if (per_cu->is_debug_types)
7731 {
7732 struct signatured_type *sig_type =
7733 (struct signatured_type *) per_cu;
7734
7735 sprintf (buf, "TU %s at offset 0x%x",
7736 hex_string (sig_type->signature),
7737 to_underlying (per_cu->sect_off));
7738 /* There can be 100s of TUs.
7739 Only print them in verbose mode. */
7740 debug_print_threshold = 2;
7741 }
7742 else
7743 {
7744 sprintf (buf, "CU at offset 0x%x",
7745 to_underlying (per_cu->sect_off));
7746 debug_print_threshold = 1;
7747 }
7748
7749 if (dwarf_read_debug >= debug_print_threshold)
7750 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7751
7752 if (per_cu->is_debug_types)
7753 process_full_type_unit (per_cu, item->pretend_language);
7754 else
7755 process_full_comp_unit (per_cu, item->pretend_language);
7756
7757 if (dwarf_read_debug >= debug_print_threshold)
7758 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7759 }
7760
7761 item->per_cu->queued = 0;
7762 next_item = item->next;
7763 xfree (item);
7764 }
7765
7766 dwarf2_queue_tail = NULL;
7767
7768 if (dwarf_read_debug)
7769 {
7770 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7771 objfile_name (dwarf2_per_objfile->objfile));
7772 }
7773 }
7774
7775 /* Free all allocated queue entries. This function only releases anything if
7776 an error was thrown; if the queue was processed then it would have been
7777 freed as we went along. */
7778
7779 static void
7780 dwarf2_release_queue (void *dummy)
7781 {
7782 struct dwarf2_queue_item *item, *last;
7783
7784 item = dwarf2_queue;
7785 while (item)
7786 {
7787 /* Anything still marked queued is likely to be in an
7788 inconsistent state, so discard it. */
7789 if (item->per_cu->queued)
7790 {
7791 if (item->per_cu->cu != NULL)
7792 free_one_cached_comp_unit (item->per_cu);
7793 item->per_cu->queued = 0;
7794 }
7795
7796 last = item;
7797 item = item->next;
7798 xfree (last);
7799 }
7800
7801 dwarf2_queue = dwarf2_queue_tail = NULL;
7802 }
7803
7804 /* Read in full symbols for PST, and anything it depends on. */
7805
7806 static void
7807 psymtab_to_symtab_1 (struct partial_symtab *pst)
7808 {
7809 struct dwarf2_per_cu_data *per_cu;
7810 int i;
7811
7812 if (pst->readin)
7813 return;
7814
7815 for (i = 0; i < pst->number_of_dependencies; i++)
7816 if (!pst->dependencies[i]->readin
7817 && pst->dependencies[i]->user == NULL)
7818 {
7819 /* Inform about additional files that need to be read in. */
7820 if (info_verbose)
7821 {
7822 /* FIXME: i18n: Need to make this a single string. */
7823 fputs_filtered (" ", gdb_stdout);
7824 wrap_here ("");
7825 fputs_filtered ("and ", gdb_stdout);
7826 wrap_here ("");
7827 printf_filtered ("%s...", pst->dependencies[i]->filename);
7828 wrap_here (""); /* Flush output. */
7829 gdb_flush (gdb_stdout);
7830 }
7831 psymtab_to_symtab_1 (pst->dependencies[i]);
7832 }
7833
7834 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7835
7836 if (per_cu == NULL)
7837 {
7838 /* It's an include file, no symbols to read for it.
7839 Everything is in the parent symtab. */
7840 pst->readin = 1;
7841 return;
7842 }
7843
7844 dw2_do_instantiate_symtab (per_cu);
7845 }
7846
7847 /* Trivial hash function for die_info: the hash value of a DIE
7848 is its offset in .debug_info for this objfile. */
7849
7850 static hashval_t
7851 die_hash (const void *item)
7852 {
7853 const struct die_info *die = (const struct die_info *) item;
7854
7855 return to_underlying (die->sect_off);
7856 }
7857
7858 /* Trivial comparison function for die_info structures: two DIEs
7859 are equal if they have the same offset. */
7860
7861 static int
7862 die_eq (const void *item_lhs, const void *item_rhs)
7863 {
7864 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7865 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7866
7867 return die_lhs->sect_off == die_rhs->sect_off;
7868 }
7869
7870 /* die_reader_func for load_full_comp_unit.
7871 This is identical to read_signatured_type_reader,
7872 but is kept separate for now. */
7873
7874 static void
7875 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7876 const gdb_byte *info_ptr,
7877 struct die_info *comp_unit_die,
7878 int has_children,
7879 void *data)
7880 {
7881 struct dwarf2_cu *cu = reader->cu;
7882 enum language *language_ptr = (enum language *) data;
7883
7884 gdb_assert (cu->die_hash == NULL);
7885 cu->die_hash =
7886 htab_create_alloc_ex (cu->header.length / 12,
7887 die_hash,
7888 die_eq,
7889 NULL,
7890 &cu->comp_unit_obstack,
7891 hashtab_obstack_allocate,
7892 dummy_obstack_deallocate);
7893
7894 if (has_children)
7895 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7896 &info_ptr, comp_unit_die);
7897 cu->dies = comp_unit_die;
7898 /* comp_unit_die is not stored in die_hash, no need. */
7899
7900 /* We try not to read any attributes in this function, because not
7901 all CUs needed for references have been loaded yet, and symbol
7902 table processing isn't initialized. But we have to set the CU language,
7903 or we won't be able to build types correctly.
7904 Similarly, if we do not read the producer, we can not apply
7905 producer-specific interpretation. */
7906 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7907 }
7908
7909 /* Load the DIEs associated with PER_CU into memory. */
7910
7911 static void
7912 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7913 enum language pretend_language)
7914 {
7915 gdb_assert (! this_cu->is_debug_types);
7916
7917 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7918 load_full_comp_unit_reader, &pretend_language);
7919 }
7920
7921 /* Add a DIE to the delayed physname list. */
7922
7923 static void
7924 add_to_method_list (struct type *type, int fnfield_index, int index,
7925 const char *name, struct die_info *die,
7926 struct dwarf2_cu *cu)
7927 {
7928 struct delayed_method_info mi;
7929 mi.type = type;
7930 mi.fnfield_index = fnfield_index;
7931 mi.index = index;
7932 mi.name = name;
7933 mi.die = die;
7934 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7935 }
7936
7937 /* A cleanup for freeing the delayed method list. */
7938
7939 static void
7940 free_delayed_list (void *ptr)
7941 {
7942 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7943 if (cu->method_list != NULL)
7944 {
7945 VEC_free (delayed_method_info, cu->method_list);
7946 cu->method_list = NULL;
7947 }
7948 }
7949
7950 /* Compute the physnames of any methods on the CU's method list.
7951
7952 The computation of method physnames is delayed in order to avoid the
7953 (bad) condition that one of the method's formal parameters is of an as yet
7954 incomplete type. */
7955
7956 static void
7957 compute_delayed_physnames (struct dwarf2_cu *cu)
7958 {
7959 int i;
7960 struct delayed_method_info *mi;
7961 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7962 {
7963 const char *physname;
7964 struct fn_fieldlist *fn_flp
7965 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7966 physname = dwarf2_physname (mi->name, mi->die, cu);
7967 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7968 = physname ? physname : "";
7969 }
7970 }
7971
7972 /* Go objects should be embedded in a DW_TAG_module DIE,
7973 and it's not clear if/how imported objects will appear.
7974 To keep Go support simple until that's worked out,
7975 go back through what we've read and create something usable.
7976 We could do this while processing each DIE, and feels kinda cleaner,
7977 but that way is more invasive.
7978 This is to, for example, allow the user to type "p var" or "b main"
7979 without having to specify the package name, and allow lookups
7980 of module.object to work in contexts that use the expression
7981 parser. */
7982
7983 static void
7984 fixup_go_packaging (struct dwarf2_cu *cu)
7985 {
7986 char *package_name = NULL;
7987 struct pending *list;
7988 int i;
7989
7990 for (list = global_symbols; list != NULL; list = list->next)
7991 {
7992 for (i = 0; i < list->nsyms; ++i)
7993 {
7994 struct symbol *sym = list->symbol[i];
7995
7996 if (SYMBOL_LANGUAGE (sym) == language_go
7997 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7998 {
7999 char *this_package_name = go_symbol_package_name (sym);
8000
8001 if (this_package_name == NULL)
8002 continue;
8003 if (package_name == NULL)
8004 package_name = this_package_name;
8005 else
8006 {
8007 if (strcmp (package_name, this_package_name) != 0)
8008 complaint (&symfile_complaints,
8009 _("Symtab %s has objects from two different Go packages: %s and %s"),
8010 (symbol_symtab (sym) != NULL
8011 ? symtab_to_filename_for_display
8012 (symbol_symtab (sym))
8013 : objfile_name (cu->objfile)),
8014 this_package_name, package_name);
8015 xfree (this_package_name);
8016 }
8017 }
8018 }
8019 }
8020
8021 if (package_name != NULL)
8022 {
8023 struct objfile *objfile = cu->objfile;
8024 const char *saved_package_name
8025 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8026 package_name,
8027 strlen (package_name));
8028 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8029 saved_package_name);
8030 struct symbol *sym;
8031
8032 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8033
8034 sym = allocate_symbol (objfile);
8035 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8036 SYMBOL_SET_NAMES (sym, saved_package_name,
8037 strlen (saved_package_name), 0, objfile);
8038 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8039 e.g., "main" finds the "main" module and not C's main(). */
8040 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8041 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8042 SYMBOL_TYPE (sym) = type;
8043
8044 add_symbol_to_list (sym, &global_symbols);
8045
8046 xfree (package_name);
8047 }
8048 }
8049
8050 /* Return the symtab for PER_CU. This works properly regardless of
8051 whether we're using the index or psymtabs. */
8052
8053 static struct compunit_symtab *
8054 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8055 {
8056 return (dwarf2_per_objfile->using_index
8057 ? per_cu->v.quick->compunit_symtab
8058 : per_cu->v.psymtab->compunit_symtab);
8059 }
8060
8061 /* A helper function for computing the list of all symbol tables
8062 included by PER_CU. */
8063
8064 static void
8065 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8066 htab_t all_children, htab_t all_type_symtabs,
8067 struct dwarf2_per_cu_data *per_cu,
8068 struct compunit_symtab *immediate_parent)
8069 {
8070 void **slot;
8071 int ix;
8072 struct compunit_symtab *cust;
8073 struct dwarf2_per_cu_data *iter;
8074
8075 slot = htab_find_slot (all_children, per_cu, INSERT);
8076 if (*slot != NULL)
8077 {
8078 /* This inclusion and its children have been processed. */
8079 return;
8080 }
8081
8082 *slot = per_cu;
8083 /* Only add a CU if it has a symbol table. */
8084 cust = get_compunit_symtab (per_cu);
8085 if (cust != NULL)
8086 {
8087 /* If this is a type unit only add its symbol table if we haven't
8088 seen it yet (type unit per_cu's can share symtabs). */
8089 if (per_cu->is_debug_types)
8090 {
8091 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8092 if (*slot == NULL)
8093 {
8094 *slot = cust;
8095 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8096 if (cust->user == NULL)
8097 cust->user = immediate_parent;
8098 }
8099 }
8100 else
8101 {
8102 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8103 if (cust->user == NULL)
8104 cust->user = immediate_parent;
8105 }
8106 }
8107
8108 for (ix = 0;
8109 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8110 ++ix)
8111 {
8112 recursively_compute_inclusions (result, all_children,
8113 all_type_symtabs, iter, cust);
8114 }
8115 }
8116
8117 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8118 PER_CU. */
8119
8120 static void
8121 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8122 {
8123 gdb_assert (! per_cu->is_debug_types);
8124
8125 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8126 {
8127 int ix, len;
8128 struct dwarf2_per_cu_data *per_cu_iter;
8129 struct compunit_symtab *compunit_symtab_iter;
8130 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8131 htab_t all_children, all_type_symtabs;
8132 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8133
8134 /* If we don't have a symtab, we can just skip this case. */
8135 if (cust == NULL)
8136 return;
8137
8138 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8139 NULL, xcalloc, xfree);
8140 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8141 NULL, xcalloc, xfree);
8142
8143 for (ix = 0;
8144 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8145 ix, per_cu_iter);
8146 ++ix)
8147 {
8148 recursively_compute_inclusions (&result_symtabs, all_children,
8149 all_type_symtabs, per_cu_iter,
8150 cust);
8151 }
8152
8153 /* Now we have a transitive closure of all the included symtabs. */
8154 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8155 cust->includes
8156 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8157 struct compunit_symtab *, len + 1);
8158 for (ix = 0;
8159 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8160 compunit_symtab_iter);
8161 ++ix)
8162 cust->includes[ix] = compunit_symtab_iter;
8163 cust->includes[len] = NULL;
8164
8165 VEC_free (compunit_symtab_ptr, result_symtabs);
8166 htab_delete (all_children);
8167 htab_delete (all_type_symtabs);
8168 }
8169 }
8170
8171 /* Compute the 'includes' field for the symtabs of all the CUs we just
8172 read. */
8173
8174 static void
8175 process_cu_includes (void)
8176 {
8177 int ix;
8178 struct dwarf2_per_cu_data *iter;
8179
8180 for (ix = 0;
8181 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8182 ix, iter);
8183 ++ix)
8184 {
8185 if (! iter->is_debug_types)
8186 compute_compunit_symtab_includes (iter);
8187 }
8188
8189 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8190 }
8191
8192 /* Generate full symbol information for PER_CU, whose DIEs have
8193 already been loaded into memory. */
8194
8195 static void
8196 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8197 enum language pretend_language)
8198 {
8199 struct dwarf2_cu *cu = per_cu->cu;
8200 struct objfile *objfile = per_cu->objfile;
8201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8202 CORE_ADDR lowpc, highpc;
8203 struct compunit_symtab *cust;
8204 struct cleanup *back_to, *delayed_list_cleanup;
8205 CORE_ADDR baseaddr;
8206 struct block *static_block;
8207 CORE_ADDR addr;
8208
8209 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8210
8211 buildsym_init ();
8212 back_to = make_cleanup (really_free_pendings, NULL);
8213 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8214
8215 cu->list_in_scope = &file_symbols;
8216
8217 cu->language = pretend_language;
8218 cu->language_defn = language_def (cu->language);
8219
8220 /* Do line number decoding in read_file_scope () */
8221 process_die (cu->dies, cu);
8222
8223 /* For now fudge the Go package. */
8224 if (cu->language == language_go)
8225 fixup_go_packaging (cu);
8226
8227 /* Now that we have processed all the DIEs in the CU, all the types
8228 should be complete, and it should now be safe to compute all of the
8229 physnames. */
8230 compute_delayed_physnames (cu);
8231 do_cleanups (delayed_list_cleanup);
8232
8233 /* Some compilers don't define a DW_AT_high_pc attribute for the
8234 compilation unit. If the DW_AT_high_pc is missing, synthesize
8235 it, by scanning the DIE's below the compilation unit. */
8236 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8237
8238 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8239 static_block = end_symtab_get_static_block (addr, 0, 1);
8240
8241 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8242 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8243 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8244 addrmap to help ensure it has an accurate map of pc values belonging to
8245 this comp unit. */
8246 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8247
8248 cust = end_symtab_from_static_block (static_block,
8249 SECT_OFF_TEXT (objfile), 0);
8250
8251 if (cust != NULL)
8252 {
8253 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8254
8255 /* Set symtab language to language from DW_AT_language. If the
8256 compilation is from a C file generated by language preprocessors, do
8257 not set the language if it was already deduced by start_subfile. */
8258 if (!(cu->language == language_c
8259 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8260 COMPUNIT_FILETABS (cust)->language = cu->language;
8261
8262 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8263 produce DW_AT_location with location lists but it can be possibly
8264 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8265 there were bugs in prologue debug info, fixed later in GCC-4.5
8266 by "unwind info for epilogues" patch (which is not directly related).
8267
8268 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8269 needed, it would be wrong due to missing DW_AT_producer there.
8270
8271 Still one can confuse GDB by using non-standard GCC compilation
8272 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8273 */
8274 if (cu->has_loclist && gcc_4_minor >= 5)
8275 cust->locations_valid = 1;
8276
8277 if (gcc_4_minor >= 5)
8278 cust->epilogue_unwind_valid = 1;
8279
8280 cust->call_site_htab = cu->call_site_htab;
8281 }
8282
8283 if (dwarf2_per_objfile->using_index)
8284 per_cu->v.quick->compunit_symtab = cust;
8285 else
8286 {
8287 struct partial_symtab *pst = per_cu->v.psymtab;
8288 pst->compunit_symtab = cust;
8289 pst->readin = 1;
8290 }
8291
8292 /* Push it for inclusion processing later. */
8293 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8294
8295 do_cleanups (back_to);
8296 }
8297
8298 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8299 already been loaded into memory. */
8300
8301 static void
8302 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8303 enum language pretend_language)
8304 {
8305 struct dwarf2_cu *cu = per_cu->cu;
8306 struct objfile *objfile = per_cu->objfile;
8307 struct compunit_symtab *cust;
8308 struct cleanup *back_to, *delayed_list_cleanup;
8309 struct signatured_type *sig_type;
8310
8311 gdb_assert (per_cu->is_debug_types);
8312 sig_type = (struct signatured_type *) per_cu;
8313
8314 buildsym_init ();
8315 back_to = make_cleanup (really_free_pendings, NULL);
8316 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8317
8318 cu->list_in_scope = &file_symbols;
8319
8320 cu->language = pretend_language;
8321 cu->language_defn = language_def (cu->language);
8322
8323 /* The symbol tables are set up in read_type_unit_scope. */
8324 process_die (cu->dies, cu);
8325
8326 /* For now fudge the Go package. */
8327 if (cu->language == language_go)
8328 fixup_go_packaging (cu);
8329
8330 /* Now that we have processed all the DIEs in the CU, all the types
8331 should be complete, and it should now be safe to compute all of the
8332 physnames. */
8333 compute_delayed_physnames (cu);
8334 do_cleanups (delayed_list_cleanup);
8335
8336 /* TUs share symbol tables.
8337 If this is the first TU to use this symtab, complete the construction
8338 of it with end_expandable_symtab. Otherwise, complete the addition of
8339 this TU's symbols to the existing symtab. */
8340 if (sig_type->type_unit_group->compunit_symtab == NULL)
8341 {
8342 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8343 sig_type->type_unit_group->compunit_symtab = cust;
8344
8345 if (cust != NULL)
8346 {
8347 /* Set symtab language to language from DW_AT_language. If the
8348 compilation is from a C file generated by language preprocessors,
8349 do not set the language if it was already deduced by
8350 start_subfile. */
8351 if (!(cu->language == language_c
8352 && COMPUNIT_FILETABS (cust)->language != language_c))
8353 COMPUNIT_FILETABS (cust)->language = cu->language;
8354 }
8355 }
8356 else
8357 {
8358 augment_type_symtab ();
8359 cust = sig_type->type_unit_group->compunit_symtab;
8360 }
8361
8362 if (dwarf2_per_objfile->using_index)
8363 per_cu->v.quick->compunit_symtab = cust;
8364 else
8365 {
8366 struct partial_symtab *pst = per_cu->v.psymtab;
8367 pst->compunit_symtab = cust;
8368 pst->readin = 1;
8369 }
8370
8371 do_cleanups (back_to);
8372 }
8373
8374 /* Process an imported unit DIE. */
8375
8376 static void
8377 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8378 {
8379 struct attribute *attr;
8380
8381 /* For now we don't handle imported units in type units. */
8382 if (cu->per_cu->is_debug_types)
8383 {
8384 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8385 " supported in type units [in module %s]"),
8386 objfile_name (cu->objfile));
8387 }
8388
8389 attr = dwarf2_attr (die, DW_AT_import, cu);
8390 if (attr != NULL)
8391 {
8392 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8393 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8394 dwarf2_per_cu_data *per_cu
8395 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8396
8397 /* If necessary, add it to the queue and load its DIEs. */
8398 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8399 load_full_comp_unit (per_cu, cu->language);
8400
8401 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8402 per_cu);
8403 }
8404 }
8405
8406 /* Reset the in_process bit of a die. */
8407
8408 static void
8409 reset_die_in_process (void *arg)
8410 {
8411 struct die_info *die = (struct die_info *) arg;
8412
8413 die->in_process = 0;
8414 }
8415
8416 /* Process a die and its children. */
8417
8418 static void
8419 process_die (struct die_info *die, struct dwarf2_cu *cu)
8420 {
8421 struct cleanup *in_process;
8422
8423 /* We should only be processing those not already in process. */
8424 gdb_assert (!die->in_process);
8425
8426 die->in_process = 1;
8427 in_process = make_cleanup (reset_die_in_process,die);
8428
8429 switch (die->tag)
8430 {
8431 case DW_TAG_padding:
8432 break;
8433 case DW_TAG_compile_unit:
8434 case DW_TAG_partial_unit:
8435 read_file_scope (die, cu);
8436 break;
8437 case DW_TAG_type_unit:
8438 read_type_unit_scope (die, cu);
8439 break;
8440 case DW_TAG_subprogram:
8441 case DW_TAG_inlined_subroutine:
8442 read_func_scope (die, cu);
8443 break;
8444 case DW_TAG_lexical_block:
8445 case DW_TAG_try_block:
8446 case DW_TAG_catch_block:
8447 read_lexical_block_scope (die, cu);
8448 break;
8449 case DW_TAG_call_site:
8450 case DW_TAG_GNU_call_site:
8451 read_call_site_scope (die, cu);
8452 break;
8453 case DW_TAG_class_type:
8454 case DW_TAG_interface_type:
8455 case DW_TAG_structure_type:
8456 case DW_TAG_union_type:
8457 process_structure_scope (die, cu);
8458 break;
8459 case DW_TAG_enumeration_type:
8460 process_enumeration_scope (die, cu);
8461 break;
8462
8463 /* These dies have a type, but processing them does not create
8464 a symbol or recurse to process the children. Therefore we can
8465 read them on-demand through read_type_die. */
8466 case DW_TAG_subroutine_type:
8467 case DW_TAG_set_type:
8468 case DW_TAG_array_type:
8469 case DW_TAG_pointer_type:
8470 case DW_TAG_ptr_to_member_type:
8471 case DW_TAG_reference_type:
8472 case DW_TAG_rvalue_reference_type:
8473 case DW_TAG_string_type:
8474 break;
8475
8476 case DW_TAG_base_type:
8477 case DW_TAG_subrange_type:
8478 case DW_TAG_typedef:
8479 /* Add a typedef symbol for the type definition, if it has a
8480 DW_AT_name. */
8481 new_symbol (die, read_type_die (die, cu), cu);
8482 break;
8483 case DW_TAG_common_block:
8484 read_common_block (die, cu);
8485 break;
8486 case DW_TAG_common_inclusion:
8487 break;
8488 case DW_TAG_namespace:
8489 cu->processing_has_namespace_info = 1;
8490 read_namespace (die, cu);
8491 break;
8492 case DW_TAG_module:
8493 cu->processing_has_namespace_info = 1;
8494 read_module (die, cu);
8495 break;
8496 case DW_TAG_imported_declaration:
8497 cu->processing_has_namespace_info = 1;
8498 if (read_namespace_alias (die, cu))
8499 break;
8500 /* The declaration is not a global namespace alias: fall through. */
8501 case DW_TAG_imported_module:
8502 cu->processing_has_namespace_info = 1;
8503 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8504 || cu->language != language_fortran))
8505 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8506 dwarf_tag_name (die->tag));
8507 read_import_statement (die, cu);
8508 break;
8509
8510 case DW_TAG_imported_unit:
8511 process_imported_unit_die (die, cu);
8512 break;
8513
8514 default:
8515 new_symbol (die, NULL, cu);
8516 break;
8517 }
8518
8519 do_cleanups (in_process);
8520 }
8521 \f
8522 /* DWARF name computation. */
8523
8524 /* A helper function for dwarf2_compute_name which determines whether DIE
8525 needs to have the name of the scope prepended to the name listed in the
8526 die. */
8527
8528 static int
8529 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8530 {
8531 struct attribute *attr;
8532
8533 switch (die->tag)
8534 {
8535 case DW_TAG_namespace:
8536 case DW_TAG_typedef:
8537 case DW_TAG_class_type:
8538 case DW_TAG_interface_type:
8539 case DW_TAG_structure_type:
8540 case DW_TAG_union_type:
8541 case DW_TAG_enumeration_type:
8542 case DW_TAG_enumerator:
8543 case DW_TAG_subprogram:
8544 case DW_TAG_inlined_subroutine:
8545 case DW_TAG_member:
8546 case DW_TAG_imported_declaration:
8547 return 1;
8548
8549 case DW_TAG_variable:
8550 case DW_TAG_constant:
8551 /* We only need to prefix "globally" visible variables. These include
8552 any variable marked with DW_AT_external or any variable that
8553 lives in a namespace. [Variables in anonymous namespaces
8554 require prefixing, but they are not DW_AT_external.] */
8555
8556 if (dwarf2_attr (die, DW_AT_specification, cu))
8557 {
8558 struct dwarf2_cu *spec_cu = cu;
8559
8560 return die_needs_namespace (die_specification (die, &spec_cu),
8561 spec_cu);
8562 }
8563
8564 attr = dwarf2_attr (die, DW_AT_external, cu);
8565 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8566 && die->parent->tag != DW_TAG_module)
8567 return 0;
8568 /* A variable in a lexical block of some kind does not need a
8569 namespace, even though in C++ such variables may be external
8570 and have a mangled name. */
8571 if (die->parent->tag == DW_TAG_lexical_block
8572 || die->parent->tag == DW_TAG_try_block
8573 || die->parent->tag == DW_TAG_catch_block
8574 || die->parent->tag == DW_TAG_subprogram)
8575 return 0;
8576 return 1;
8577
8578 default:
8579 return 0;
8580 }
8581 }
8582
8583 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8584 compute the physname for the object, which include a method's:
8585 - formal parameters (C++),
8586 - receiver type (Go),
8587
8588 The term "physname" is a bit confusing.
8589 For C++, for example, it is the demangled name.
8590 For Go, for example, it's the mangled name.
8591
8592 For Ada, return the DIE's linkage name rather than the fully qualified
8593 name. PHYSNAME is ignored..
8594
8595 The result is allocated on the objfile_obstack and canonicalized. */
8596
8597 static const char *
8598 dwarf2_compute_name (const char *name,
8599 struct die_info *die, struct dwarf2_cu *cu,
8600 int physname)
8601 {
8602 struct objfile *objfile = cu->objfile;
8603
8604 if (name == NULL)
8605 name = dwarf2_name (die, cu);
8606
8607 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8608 but otherwise compute it by typename_concat inside GDB.
8609 FIXME: Actually this is not really true, or at least not always true.
8610 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8611 Fortran names because there is no mangling standard. So new_symbol_full
8612 will set the demangled name to the result of dwarf2_full_name, and it is
8613 the demangled name that GDB uses if it exists. */
8614 if (cu->language == language_ada
8615 || (cu->language == language_fortran && physname))
8616 {
8617 /* For Ada unit, we prefer the linkage name over the name, as
8618 the former contains the exported name, which the user expects
8619 to be able to reference. Ideally, we want the user to be able
8620 to reference this entity using either natural or linkage name,
8621 but we haven't started looking at this enhancement yet. */
8622 const char *linkage_name;
8623
8624 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8625 if (linkage_name == NULL)
8626 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8627 if (linkage_name != NULL)
8628 return linkage_name;
8629 }
8630
8631 /* These are the only languages we know how to qualify names in. */
8632 if (name != NULL
8633 && (cu->language == language_cplus
8634 || cu->language == language_fortran || cu->language == language_d
8635 || cu->language == language_rust))
8636 {
8637 if (die_needs_namespace (die, cu))
8638 {
8639 long length;
8640 const char *prefix;
8641 const char *canonical_name = NULL;
8642
8643 string_file buf;
8644
8645 prefix = determine_prefix (die, cu);
8646 if (*prefix != '\0')
8647 {
8648 char *prefixed_name = typename_concat (NULL, prefix, name,
8649 physname, cu);
8650
8651 buf.puts (prefixed_name);
8652 xfree (prefixed_name);
8653 }
8654 else
8655 buf.puts (name);
8656
8657 /* Template parameters may be specified in the DIE's DW_AT_name, or
8658 as children with DW_TAG_template_type_param or
8659 DW_TAG_value_type_param. If the latter, add them to the name
8660 here. If the name already has template parameters, then
8661 skip this step; some versions of GCC emit both, and
8662 it is more efficient to use the pre-computed name.
8663
8664 Something to keep in mind about this process: it is very
8665 unlikely, or in some cases downright impossible, to produce
8666 something that will match the mangled name of a function.
8667 If the definition of the function has the same debug info,
8668 we should be able to match up with it anyway. But fallbacks
8669 using the minimal symbol, for instance to find a method
8670 implemented in a stripped copy of libstdc++, will not work.
8671 If we do not have debug info for the definition, we will have to
8672 match them up some other way.
8673
8674 When we do name matching there is a related problem with function
8675 templates; two instantiated function templates are allowed to
8676 differ only by their return types, which we do not add here. */
8677
8678 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8679 {
8680 struct attribute *attr;
8681 struct die_info *child;
8682 int first = 1;
8683
8684 die->building_fullname = 1;
8685
8686 for (child = die->child; child != NULL; child = child->sibling)
8687 {
8688 struct type *type;
8689 LONGEST value;
8690 const gdb_byte *bytes;
8691 struct dwarf2_locexpr_baton *baton;
8692 struct value *v;
8693
8694 if (child->tag != DW_TAG_template_type_param
8695 && child->tag != DW_TAG_template_value_param)
8696 continue;
8697
8698 if (first)
8699 {
8700 buf.puts ("<");
8701 first = 0;
8702 }
8703 else
8704 buf.puts (", ");
8705
8706 attr = dwarf2_attr (child, DW_AT_type, cu);
8707 if (attr == NULL)
8708 {
8709 complaint (&symfile_complaints,
8710 _("template parameter missing DW_AT_type"));
8711 buf.puts ("UNKNOWN_TYPE");
8712 continue;
8713 }
8714 type = die_type (child, cu);
8715
8716 if (child->tag == DW_TAG_template_type_param)
8717 {
8718 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8719 continue;
8720 }
8721
8722 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8723 if (attr == NULL)
8724 {
8725 complaint (&symfile_complaints,
8726 _("template parameter missing "
8727 "DW_AT_const_value"));
8728 buf.puts ("UNKNOWN_VALUE");
8729 continue;
8730 }
8731
8732 dwarf2_const_value_attr (attr, type, name,
8733 &cu->comp_unit_obstack, cu,
8734 &value, &bytes, &baton);
8735
8736 if (TYPE_NOSIGN (type))
8737 /* GDB prints characters as NUMBER 'CHAR'. If that's
8738 changed, this can use value_print instead. */
8739 c_printchar (value, type, &buf);
8740 else
8741 {
8742 struct value_print_options opts;
8743
8744 if (baton != NULL)
8745 v = dwarf2_evaluate_loc_desc (type, NULL,
8746 baton->data,
8747 baton->size,
8748 baton->per_cu);
8749 else if (bytes != NULL)
8750 {
8751 v = allocate_value (type);
8752 memcpy (value_contents_writeable (v), bytes,
8753 TYPE_LENGTH (type));
8754 }
8755 else
8756 v = value_from_longest (type, value);
8757
8758 /* Specify decimal so that we do not depend on
8759 the radix. */
8760 get_formatted_print_options (&opts, 'd');
8761 opts.raw = 1;
8762 value_print (v, &buf, &opts);
8763 release_value (v);
8764 value_free (v);
8765 }
8766 }
8767
8768 die->building_fullname = 0;
8769
8770 if (!first)
8771 {
8772 /* Close the argument list, with a space if necessary
8773 (nested templates). */
8774 if (!buf.empty () && buf.string ().back () == '>')
8775 buf.puts (" >");
8776 else
8777 buf.puts (">");
8778 }
8779 }
8780
8781 /* For C++ methods, append formal parameter type
8782 information, if PHYSNAME. */
8783
8784 if (physname && die->tag == DW_TAG_subprogram
8785 && cu->language == language_cplus)
8786 {
8787 struct type *type = read_type_die (die, cu);
8788
8789 c_type_print_args (type, &buf, 1, cu->language,
8790 &type_print_raw_options);
8791
8792 if (cu->language == language_cplus)
8793 {
8794 /* Assume that an artificial first parameter is
8795 "this", but do not crash if it is not. RealView
8796 marks unnamed (and thus unused) parameters as
8797 artificial; there is no way to differentiate
8798 the two cases. */
8799 if (TYPE_NFIELDS (type) > 0
8800 && TYPE_FIELD_ARTIFICIAL (type, 0)
8801 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8802 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8803 0))))
8804 buf.puts (" const");
8805 }
8806 }
8807
8808 const std::string &intermediate_name = buf.string ();
8809
8810 if (cu->language == language_cplus)
8811 canonical_name
8812 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8813 &objfile->per_bfd->storage_obstack);
8814
8815 /* If we only computed INTERMEDIATE_NAME, or if
8816 INTERMEDIATE_NAME is already canonical, then we need to
8817 copy it to the appropriate obstack. */
8818 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8819 name = ((const char *)
8820 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8821 intermediate_name.c_str (),
8822 intermediate_name.length ()));
8823 else
8824 name = canonical_name;
8825 }
8826 }
8827
8828 return name;
8829 }
8830
8831 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8832 If scope qualifiers are appropriate they will be added. The result
8833 will be allocated on the storage_obstack, or NULL if the DIE does
8834 not have a name. NAME may either be from a previous call to
8835 dwarf2_name or NULL.
8836
8837 The output string will be canonicalized (if C++). */
8838
8839 static const char *
8840 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8841 {
8842 return dwarf2_compute_name (name, die, cu, 0);
8843 }
8844
8845 /* Construct a physname for the given DIE in CU. NAME may either be
8846 from a previous call to dwarf2_name or NULL. The result will be
8847 allocated on the objfile_objstack or NULL if the DIE does not have a
8848 name.
8849
8850 The output string will be canonicalized (if C++). */
8851
8852 static const char *
8853 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8854 {
8855 struct objfile *objfile = cu->objfile;
8856 const char *retval, *mangled = NULL, *canon = NULL;
8857 struct cleanup *back_to;
8858 int need_copy = 1;
8859
8860 /* In this case dwarf2_compute_name is just a shortcut not building anything
8861 on its own. */
8862 if (!die_needs_namespace (die, cu))
8863 return dwarf2_compute_name (name, die, cu, 1);
8864
8865 back_to = make_cleanup (null_cleanup, NULL);
8866
8867 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8868 if (mangled == NULL)
8869 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8870
8871 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8872 See https://github.com/rust-lang/rust/issues/32925. */
8873 if (cu->language == language_rust && mangled != NULL
8874 && strchr (mangled, '{') != NULL)
8875 mangled = NULL;
8876
8877 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8878 has computed. */
8879 if (mangled != NULL)
8880 {
8881 char *demangled;
8882
8883 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8884 type. It is easier for GDB users to search for such functions as
8885 `name(params)' than `long name(params)'. In such case the minimal
8886 symbol names do not match the full symbol names but for template
8887 functions there is never a need to look up their definition from their
8888 declaration so the only disadvantage remains the minimal symbol
8889 variant `long name(params)' does not have the proper inferior type.
8890 */
8891
8892 if (cu->language == language_go)
8893 {
8894 /* This is a lie, but we already lie to the caller new_symbol_full.
8895 new_symbol_full assumes we return the mangled name.
8896 This just undoes that lie until things are cleaned up. */
8897 demangled = NULL;
8898 }
8899 else
8900 {
8901 demangled = gdb_demangle (mangled,
8902 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8903 }
8904 if (demangled)
8905 {
8906 make_cleanup (xfree, demangled);
8907 canon = demangled;
8908 }
8909 else
8910 {
8911 canon = mangled;
8912 need_copy = 0;
8913 }
8914 }
8915
8916 if (canon == NULL || check_physname)
8917 {
8918 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8919
8920 if (canon != NULL && strcmp (physname, canon) != 0)
8921 {
8922 /* It may not mean a bug in GDB. The compiler could also
8923 compute DW_AT_linkage_name incorrectly. But in such case
8924 GDB would need to be bug-to-bug compatible. */
8925
8926 complaint (&symfile_complaints,
8927 _("Computed physname <%s> does not match demangled <%s> "
8928 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8929 physname, canon, mangled, to_underlying (die->sect_off),
8930 objfile_name (objfile));
8931
8932 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8933 is available here - over computed PHYSNAME. It is safer
8934 against both buggy GDB and buggy compilers. */
8935
8936 retval = canon;
8937 }
8938 else
8939 {
8940 retval = physname;
8941 need_copy = 0;
8942 }
8943 }
8944 else
8945 retval = canon;
8946
8947 if (need_copy)
8948 retval = ((const char *)
8949 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8950 retval, strlen (retval)));
8951
8952 do_cleanups (back_to);
8953 return retval;
8954 }
8955
8956 /* Inspect DIE in CU for a namespace alias. If one exists, record
8957 a new symbol for it.
8958
8959 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8960
8961 static int
8962 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8963 {
8964 struct attribute *attr;
8965
8966 /* If the die does not have a name, this is not a namespace
8967 alias. */
8968 attr = dwarf2_attr (die, DW_AT_name, cu);
8969 if (attr != NULL)
8970 {
8971 int num;
8972 struct die_info *d = die;
8973 struct dwarf2_cu *imported_cu = cu;
8974
8975 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8976 keep inspecting DIEs until we hit the underlying import. */
8977 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8978 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8979 {
8980 attr = dwarf2_attr (d, DW_AT_import, cu);
8981 if (attr == NULL)
8982 break;
8983
8984 d = follow_die_ref (d, attr, &imported_cu);
8985 if (d->tag != DW_TAG_imported_declaration)
8986 break;
8987 }
8988
8989 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8990 {
8991 complaint (&symfile_complaints,
8992 _("DIE at 0x%x has too many recursively imported "
8993 "declarations"), to_underlying (d->sect_off));
8994 return 0;
8995 }
8996
8997 if (attr != NULL)
8998 {
8999 struct type *type;
9000 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9001
9002 type = get_die_type_at_offset (sect_off, cu->per_cu);
9003 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9004 {
9005 /* This declaration is a global namespace alias. Add
9006 a symbol for it whose type is the aliased namespace. */
9007 new_symbol (die, type, cu);
9008 return 1;
9009 }
9010 }
9011 }
9012
9013 return 0;
9014 }
9015
9016 /* Return the using directives repository (global or local?) to use in the
9017 current context for LANGUAGE.
9018
9019 For Ada, imported declarations can materialize renamings, which *may* be
9020 global. However it is impossible (for now?) in DWARF to distinguish
9021 "external" imported declarations and "static" ones. As all imported
9022 declarations seem to be static in all other languages, make them all CU-wide
9023 global only in Ada. */
9024
9025 static struct using_direct **
9026 using_directives (enum language language)
9027 {
9028 if (language == language_ada && context_stack_depth == 0)
9029 return &global_using_directives;
9030 else
9031 return &local_using_directives;
9032 }
9033
9034 /* Read the import statement specified by the given die and record it. */
9035
9036 static void
9037 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9038 {
9039 struct objfile *objfile = cu->objfile;
9040 struct attribute *import_attr;
9041 struct die_info *imported_die, *child_die;
9042 struct dwarf2_cu *imported_cu;
9043 const char *imported_name;
9044 const char *imported_name_prefix;
9045 const char *canonical_name;
9046 const char *import_alias;
9047 const char *imported_declaration = NULL;
9048 const char *import_prefix;
9049 VEC (const_char_ptr) *excludes = NULL;
9050 struct cleanup *cleanups;
9051
9052 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9053 if (import_attr == NULL)
9054 {
9055 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9056 dwarf_tag_name (die->tag));
9057 return;
9058 }
9059
9060 imported_cu = cu;
9061 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9062 imported_name = dwarf2_name (imported_die, imported_cu);
9063 if (imported_name == NULL)
9064 {
9065 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9066
9067 The import in the following code:
9068 namespace A
9069 {
9070 typedef int B;
9071 }
9072
9073 int main ()
9074 {
9075 using A::B;
9076 B b;
9077 return b;
9078 }
9079
9080 ...
9081 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9082 <52> DW_AT_decl_file : 1
9083 <53> DW_AT_decl_line : 6
9084 <54> DW_AT_import : <0x75>
9085 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9086 <59> DW_AT_name : B
9087 <5b> DW_AT_decl_file : 1
9088 <5c> DW_AT_decl_line : 2
9089 <5d> DW_AT_type : <0x6e>
9090 ...
9091 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9092 <76> DW_AT_byte_size : 4
9093 <77> DW_AT_encoding : 5 (signed)
9094
9095 imports the wrong die ( 0x75 instead of 0x58 ).
9096 This case will be ignored until the gcc bug is fixed. */
9097 return;
9098 }
9099
9100 /* Figure out the local name after import. */
9101 import_alias = dwarf2_name (die, cu);
9102
9103 /* Figure out where the statement is being imported to. */
9104 import_prefix = determine_prefix (die, cu);
9105
9106 /* Figure out what the scope of the imported die is and prepend it
9107 to the name of the imported die. */
9108 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9109
9110 if (imported_die->tag != DW_TAG_namespace
9111 && imported_die->tag != DW_TAG_module)
9112 {
9113 imported_declaration = imported_name;
9114 canonical_name = imported_name_prefix;
9115 }
9116 else if (strlen (imported_name_prefix) > 0)
9117 canonical_name = obconcat (&objfile->objfile_obstack,
9118 imported_name_prefix,
9119 (cu->language == language_d ? "." : "::"),
9120 imported_name, (char *) NULL);
9121 else
9122 canonical_name = imported_name;
9123
9124 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9125
9126 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9127 for (child_die = die->child; child_die && child_die->tag;
9128 child_die = sibling_die (child_die))
9129 {
9130 /* DWARF-4: A Fortran use statement with a “rename list” may be
9131 represented by an imported module entry with an import attribute
9132 referring to the module and owned entries corresponding to those
9133 entities that are renamed as part of being imported. */
9134
9135 if (child_die->tag != DW_TAG_imported_declaration)
9136 {
9137 complaint (&symfile_complaints,
9138 _("child DW_TAG_imported_declaration expected "
9139 "- DIE at 0x%x [in module %s]"),
9140 to_underlying (child_die->sect_off), objfile_name (objfile));
9141 continue;
9142 }
9143
9144 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9145 if (import_attr == NULL)
9146 {
9147 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9148 dwarf_tag_name (child_die->tag));
9149 continue;
9150 }
9151
9152 imported_cu = cu;
9153 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9154 &imported_cu);
9155 imported_name = dwarf2_name (imported_die, imported_cu);
9156 if (imported_name == NULL)
9157 {
9158 complaint (&symfile_complaints,
9159 _("child DW_TAG_imported_declaration has unknown "
9160 "imported name - DIE at 0x%x [in module %s]"),
9161 to_underlying (child_die->sect_off), objfile_name (objfile));
9162 continue;
9163 }
9164
9165 VEC_safe_push (const_char_ptr, excludes, imported_name);
9166
9167 process_die (child_die, cu);
9168 }
9169
9170 add_using_directive (using_directives (cu->language),
9171 import_prefix,
9172 canonical_name,
9173 import_alias,
9174 imported_declaration,
9175 excludes,
9176 0,
9177 &objfile->objfile_obstack);
9178
9179 do_cleanups (cleanups);
9180 }
9181
9182 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9183 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9184 this, it was first present in GCC release 4.3.0. */
9185
9186 static int
9187 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9188 {
9189 if (!cu->checked_producer)
9190 check_producer (cu);
9191
9192 return cu->producer_is_gcc_lt_4_3;
9193 }
9194
9195 static file_and_directory
9196 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9197 {
9198 file_and_directory res;
9199
9200 /* Find the filename. Do not use dwarf2_name here, since the filename
9201 is not a source language identifier. */
9202 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9203 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9204
9205 if (res.comp_dir == NULL
9206 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9207 && IS_ABSOLUTE_PATH (res.name))
9208 {
9209 res.comp_dir_storage = ldirname (res.name);
9210 if (!res.comp_dir_storage.empty ())
9211 res.comp_dir = res.comp_dir_storage.c_str ();
9212 }
9213 if (res.comp_dir != NULL)
9214 {
9215 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9216 directory, get rid of it. */
9217 const char *cp = strchr (res.comp_dir, ':');
9218
9219 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9220 res.comp_dir = cp + 1;
9221 }
9222
9223 if (res.name == NULL)
9224 res.name = "<unknown>";
9225
9226 return res;
9227 }
9228
9229 /* Handle DW_AT_stmt_list for a compilation unit.
9230 DIE is the DW_TAG_compile_unit die for CU.
9231 COMP_DIR is the compilation directory. LOWPC is passed to
9232 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9233
9234 static void
9235 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9236 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9237 {
9238 struct objfile *objfile = dwarf2_per_objfile->objfile;
9239 struct attribute *attr;
9240 struct line_header line_header_local;
9241 hashval_t line_header_local_hash;
9242 unsigned u;
9243 void **slot;
9244 int decode_mapping;
9245
9246 gdb_assert (! cu->per_cu->is_debug_types);
9247
9248 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9249 if (attr == NULL)
9250 return;
9251
9252 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9253
9254 /* The line header hash table is only created if needed (it exists to
9255 prevent redundant reading of the line table for partial_units).
9256 If we're given a partial_unit, we'll need it. If we're given a
9257 compile_unit, then use the line header hash table if it's already
9258 created, but don't create one just yet. */
9259
9260 if (dwarf2_per_objfile->line_header_hash == NULL
9261 && die->tag == DW_TAG_partial_unit)
9262 {
9263 dwarf2_per_objfile->line_header_hash
9264 = htab_create_alloc_ex (127, line_header_hash_voidp,
9265 line_header_eq_voidp,
9266 free_line_header_voidp,
9267 &objfile->objfile_obstack,
9268 hashtab_obstack_allocate,
9269 dummy_obstack_deallocate);
9270 }
9271
9272 line_header_local.sect_off = line_offset;
9273 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9274 line_header_local_hash = line_header_hash (&line_header_local);
9275 if (dwarf2_per_objfile->line_header_hash != NULL)
9276 {
9277 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9278 &line_header_local,
9279 line_header_local_hash, NO_INSERT);
9280
9281 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9282 is not present in *SLOT (since if there is something in *SLOT then
9283 it will be for a partial_unit). */
9284 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9285 {
9286 gdb_assert (*slot != NULL);
9287 cu->line_header = (struct line_header *) *slot;
9288 return;
9289 }
9290 }
9291
9292 /* dwarf_decode_line_header does not yet provide sufficient information.
9293 We always have to call also dwarf_decode_lines for it. */
9294 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9295 if (lh == NULL)
9296 return;
9297 cu->line_header = lh.get ();
9298
9299 if (dwarf2_per_objfile->line_header_hash == NULL)
9300 slot = NULL;
9301 else
9302 {
9303 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9304 &line_header_local,
9305 line_header_local_hash, INSERT);
9306 gdb_assert (slot != NULL);
9307 }
9308 if (slot != NULL && *slot == NULL)
9309 {
9310 /* This newly decoded line number information unit will be owned
9311 by line_header_hash hash table. */
9312 *slot = cu->line_header;
9313 }
9314 else
9315 {
9316 /* We cannot free any current entry in (*slot) as that struct line_header
9317 may be already used by multiple CUs. Create only temporary decoded
9318 line_header for this CU - it may happen at most once for each line
9319 number information unit. And if we're not using line_header_hash
9320 then this is what we want as well. */
9321 gdb_assert (die->tag != DW_TAG_partial_unit);
9322 }
9323 decode_mapping = (die->tag != DW_TAG_partial_unit);
9324 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9325 decode_mapping);
9326
9327 lh.release ();
9328 }
9329
9330 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9331
9332 static void
9333 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9334 {
9335 struct objfile *objfile = dwarf2_per_objfile->objfile;
9336 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9337 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9338 CORE_ADDR highpc = ((CORE_ADDR) 0);
9339 struct attribute *attr;
9340 struct die_info *child_die;
9341 CORE_ADDR baseaddr;
9342
9343 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9344
9345 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9346
9347 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9348 from finish_block. */
9349 if (lowpc == ((CORE_ADDR) -1))
9350 lowpc = highpc;
9351 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9352
9353 file_and_directory fnd = find_file_and_directory (die, cu);
9354
9355 prepare_one_comp_unit (cu, die, cu->language);
9356
9357 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9358 standardised yet. As a workaround for the language detection we fall
9359 back to the DW_AT_producer string. */
9360 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9361 cu->language = language_opencl;
9362
9363 /* Similar hack for Go. */
9364 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9365 set_cu_language (DW_LANG_Go, cu);
9366
9367 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9368
9369 /* Decode line number information if present. We do this before
9370 processing child DIEs, so that the line header table is available
9371 for DW_AT_decl_file. */
9372 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9373
9374 /* Process all dies in compilation unit. */
9375 if (die->child != NULL)
9376 {
9377 child_die = die->child;
9378 while (child_die && child_die->tag)
9379 {
9380 process_die (child_die, cu);
9381 child_die = sibling_die (child_die);
9382 }
9383 }
9384
9385 /* Decode macro information, if present. Dwarf 2 macro information
9386 refers to information in the line number info statement program
9387 header, so we can only read it if we've read the header
9388 successfully. */
9389 attr = dwarf2_attr (die, DW_AT_macros, cu);
9390 if (attr == NULL)
9391 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9392 if (attr && cu->line_header)
9393 {
9394 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9395 complaint (&symfile_complaints,
9396 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9397
9398 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9399 }
9400 else
9401 {
9402 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9403 if (attr && cu->line_header)
9404 {
9405 unsigned int macro_offset = DW_UNSND (attr);
9406
9407 dwarf_decode_macros (cu, macro_offset, 0);
9408 }
9409 }
9410 }
9411
9412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9413 Create the set of symtabs used by this TU, or if this TU is sharing
9414 symtabs with another TU and the symtabs have already been created
9415 then restore those symtabs in the line header.
9416 We don't need the pc/line-number mapping for type units. */
9417
9418 static void
9419 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9420 {
9421 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9422 struct type_unit_group *tu_group;
9423 int first_time;
9424 struct attribute *attr;
9425 unsigned int i;
9426 struct signatured_type *sig_type;
9427
9428 gdb_assert (per_cu->is_debug_types);
9429 sig_type = (struct signatured_type *) per_cu;
9430
9431 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9432
9433 /* If we're using .gdb_index (includes -readnow) then
9434 per_cu->type_unit_group may not have been set up yet. */
9435 if (sig_type->type_unit_group == NULL)
9436 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9437 tu_group = sig_type->type_unit_group;
9438
9439 /* If we've already processed this stmt_list there's no real need to
9440 do it again, we could fake it and just recreate the part we need
9441 (file name,index -> symtab mapping). If data shows this optimization
9442 is useful we can do it then. */
9443 first_time = tu_group->compunit_symtab == NULL;
9444
9445 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9446 debug info. */
9447 line_header_up lh;
9448 if (attr != NULL)
9449 {
9450 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9451 lh = dwarf_decode_line_header (line_offset, cu);
9452 }
9453 if (lh == NULL)
9454 {
9455 if (first_time)
9456 dwarf2_start_symtab (cu, "", NULL, 0);
9457 else
9458 {
9459 gdb_assert (tu_group->symtabs == NULL);
9460 restart_symtab (tu_group->compunit_symtab, "", 0);
9461 }
9462 return;
9463 }
9464
9465 cu->line_header = lh.get ();
9466
9467 if (first_time)
9468 {
9469 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9470
9471 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9472 still initializing it, and our caller (a few levels up)
9473 process_full_type_unit still needs to know if this is the first
9474 time. */
9475
9476 tu_group->num_symtabs = lh->file_names.size ();
9477 tu_group->symtabs = XNEWVEC (struct symtab *, lh->file_names.size ());
9478
9479 for (i = 0; i < lh->file_names.size (); ++i)
9480 {
9481 file_entry &fe = lh->file_names[i];
9482
9483 dwarf2_start_subfile (fe.name, fe.include_dir (lh.get ()));
9484
9485 if (current_subfile->symtab == NULL)
9486 {
9487 /* NOTE: start_subfile will recognize when it's been passed
9488 a file it has already seen. So we can't assume there's a
9489 simple mapping from lh->file_names to subfiles, plus
9490 lh->file_names may contain dups. */
9491 current_subfile->symtab
9492 = allocate_symtab (cust, current_subfile->name);
9493 }
9494
9495 fe.symtab = current_subfile->symtab;
9496 tu_group->symtabs[i] = fe.symtab;
9497 }
9498 }
9499 else
9500 {
9501 restart_symtab (tu_group->compunit_symtab, "", 0);
9502
9503 for (i = 0; i < lh->file_names.size (); ++i)
9504 {
9505 struct file_entry *fe = &lh->file_names[i];
9506
9507 fe->symtab = tu_group->symtabs[i];
9508 }
9509 }
9510
9511 lh.release ();
9512
9513 /* The main symtab is allocated last. Type units don't have DW_AT_name
9514 so they don't have a "real" (so to speak) symtab anyway.
9515 There is later code that will assign the main symtab to all symbols
9516 that don't have one. We need to handle the case of a symbol with a
9517 missing symtab (DW_AT_decl_file) anyway. */
9518 }
9519
9520 /* Process DW_TAG_type_unit.
9521 For TUs we want to skip the first top level sibling if it's not the
9522 actual type being defined by this TU. In this case the first top
9523 level sibling is there to provide context only. */
9524
9525 static void
9526 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9527 {
9528 struct die_info *child_die;
9529
9530 prepare_one_comp_unit (cu, die, language_minimal);
9531
9532 /* Initialize (or reinitialize) the machinery for building symtabs.
9533 We do this before processing child DIEs, so that the line header table
9534 is available for DW_AT_decl_file. */
9535 setup_type_unit_groups (die, cu);
9536
9537 if (die->child != NULL)
9538 {
9539 child_die = die->child;
9540 while (child_die && child_die->tag)
9541 {
9542 process_die (child_die, cu);
9543 child_die = sibling_die (child_die);
9544 }
9545 }
9546 }
9547 \f
9548 /* DWO/DWP files.
9549
9550 http://gcc.gnu.org/wiki/DebugFission
9551 http://gcc.gnu.org/wiki/DebugFissionDWP
9552
9553 To simplify handling of both DWO files ("object" files with the DWARF info)
9554 and DWP files (a file with the DWOs packaged up into one file), we treat
9555 DWP files as having a collection of virtual DWO files. */
9556
9557 static hashval_t
9558 hash_dwo_file (const void *item)
9559 {
9560 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9561 hashval_t hash;
9562
9563 hash = htab_hash_string (dwo_file->dwo_name);
9564 if (dwo_file->comp_dir != NULL)
9565 hash += htab_hash_string (dwo_file->comp_dir);
9566 return hash;
9567 }
9568
9569 static int
9570 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9571 {
9572 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9573 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9574
9575 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9576 return 0;
9577 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9578 return lhs->comp_dir == rhs->comp_dir;
9579 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9580 }
9581
9582 /* Allocate a hash table for DWO files. */
9583
9584 static htab_t
9585 allocate_dwo_file_hash_table (void)
9586 {
9587 struct objfile *objfile = dwarf2_per_objfile->objfile;
9588
9589 return htab_create_alloc_ex (41,
9590 hash_dwo_file,
9591 eq_dwo_file,
9592 NULL,
9593 &objfile->objfile_obstack,
9594 hashtab_obstack_allocate,
9595 dummy_obstack_deallocate);
9596 }
9597
9598 /* Lookup DWO file DWO_NAME. */
9599
9600 static void **
9601 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9602 {
9603 struct dwo_file find_entry;
9604 void **slot;
9605
9606 if (dwarf2_per_objfile->dwo_files == NULL)
9607 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9608
9609 memset (&find_entry, 0, sizeof (find_entry));
9610 find_entry.dwo_name = dwo_name;
9611 find_entry.comp_dir = comp_dir;
9612 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9613
9614 return slot;
9615 }
9616
9617 static hashval_t
9618 hash_dwo_unit (const void *item)
9619 {
9620 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9621
9622 /* This drops the top 32 bits of the id, but is ok for a hash. */
9623 return dwo_unit->signature;
9624 }
9625
9626 static int
9627 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9628 {
9629 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9630 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9631
9632 /* The signature is assumed to be unique within the DWO file.
9633 So while object file CU dwo_id's always have the value zero,
9634 that's OK, assuming each object file DWO file has only one CU,
9635 and that's the rule for now. */
9636 return lhs->signature == rhs->signature;
9637 }
9638
9639 /* Allocate a hash table for DWO CUs,TUs.
9640 There is one of these tables for each of CUs,TUs for each DWO file. */
9641
9642 static htab_t
9643 allocate_dwo_unit_table (struct objfile *objfile)
9644 {
9645 /* Start out with a pretty small number.
9646 Generally DWO files contain only one CU and maybe some TUs. */
9647 return htab_create_alloc_ex (3,
9648 hash_dwo_unit,
9649 eq_dwo_unit,
9650 NULL,
9651 &objfile->objfile_obstack,
9652 hashtab_obstack_allocate,
9653 dummy_obstack_deallocate);
9654 }
9655
9656 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9657
9658 struct create_dwo_cu_data
9659 {
9660 struct dwo_file *dwo_file;
9661 struct dwo_unit dwo_unit;
9662 };
9663
9664 /* die_reader_func for create_dwo_cu. */
9665
9666 static void
9667 create_dwo_cu_reader (const struct die_reader_specs *reader,
9668 const gdb_byte *info_ptr,
9669 struct die_info *comp_unit_die,
9670 int has_children,
9671 void *datap)
9672 {
9673 struct dwarf2_cu *cu = reader->cu;
9674 sect_offset sect_off = cu->per_cu->sect_off;
9675 struct dwarf2_section_info *section = cu->per_cu->section;
9676 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9677 struct dwo_file *dwo_file = data->dwo_file;
9678 struct dwo_unit *dwo_unit = &data->dwo_unit;
9679 struct attribute *attr;
9680
9681 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9682 if (attr == NULL)
9683 {
9684 complaint (&symfile_complaints,
9685 _("Dwarf Error: debug entry at offset 0x%x is missing"
9686 " its dwo_id [in module %s]"),
9687 to_underlying (sect_off), dwo_file->dwo_name);
9688 return;
9689 }
9690
9691 dwo_unit->dwo_file = dwo_file;
9692 dwo_unit->signature = DW_UNSND (attr);
9693 dwo_unit->section = section;
9694 dwo_unit->sect_off = sect_off;
9695 dwo_unit->length = cu->per_cu->length;
9696
9697 if (dwarf_read_debug)
9698 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9699 to_underlying (sect_off),
9700 hex_string (dwo_unit->signature));
9701 }
9702
9703 /* Create the dwo_unit for the lone CU in DWO_FILE.
9704 Note: This function processes DWO files only, not DWP files. */
9705
9706 static struct dwo_unit *
9707 create_dwo_cu (struct dwo_file *dwo_file)
9708 {
9709 struct objfile *objfile = dwarf2_per_objfile->objfile;
9710 struct dwarf2_section_info *section = &dwo_file->sections.info;
9711 const gdb_byte *info_ptr, *end_ptr;
9712 struct create_dwo_cu_data create_dwo_cu_data;
9713 struct dwo_unit *dwo_unit;
9714
9715 dwarf2_read_section (objfile, section);
9716 info_ptr = section->buffer;
9717
9718 if (info_ptr == NULL)
9719 return NULL;
9720
9721 if (dwarf_read_debug)
9722 {
9723 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9724 get_section_name (section),
9725 get_section_file_name (section));
9726 }
9727
9728 create_dwo_cu_data.dwo_file = dwo_file;
9729 dwo_unit = NULL;
9730
9731 end_ptr = info_ptr + section->size;
9732 while (info_ptr < end_ptr)
9733 {
9734 struct dwarf2_per_cu_data per_cu;
9735
9736 memset (&create_dwo_cu_data.dwo_unit, 0,
9737 sizeof (create_dwo_cu_data.dwo_unit));
9738 memset (&per_cu, 0, sizeof (per_cu));
9739 per_cu.objfile = objfile;
9740 per_cu.is_debug_types = 0;
9741 per_cu.sect_off = sect_offset (info_ptr - section->buffer);
9742 per_cu.section = section;
9743
9744 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9745 create_dwo_cu_reader,
9746 &create_dwo_cu_data);
9747
9748 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9749 {
9750 /* If we've already found one, complain. We only support one
9751 because having more than one requires hacking the dwo_name of
9752 each to match, which is highly unlikely to happen. */
9753 if (dwo_unit != NULL)
9754 {
9755 complaint (&symfile_complaints,
9756 _("Multiple CUs in DWO file %s [in module %s]"),
9757 dwo_file->dwo_name, objfile_name (objfile));
9758 break;
9759 }
9760
9761 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9762 *dwo_unit = create_dwo_cu_data.dwo_unit;
9763 }
9764
9765 info_ptr += per_cu.length;
9766 }
9767
9768 return dwo_unit;
9769 }
9770
9771 /* DWP file .debug_{cu,tu}_index section format:
9772 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9773
9774 DWP Version 1:
9775
9776 Both index sections have the same format, and serve to map a 64-bit
9777 signature to a set of section numbers. Each section begins with a header,
9778 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9779 indexes, and a pool of 32-bit section numbers. The index sections will be
9780 aligned at 8-byte boundaries in the file.
9781
9782 The index section header consists of:
9783
9784 V, 32 bit version number
9785 -, 32 bits unused
9786 N, 32 bit number of compilation units or type units in the index
9787 M, 32 bit number of slots in the hash table
9788
9789 Numbers are recorded using the byte order of the application binary.
9790
9791 The hash table begins at offset 16 in the section, and consists of an array
9792 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9793 order of the application binary). Unused slots in the hash table are 0.
9794 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9795
9796 The parallel table begins immediately after the hash table
9797 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9798 array of 32-bit indexes (using the byte order of the application binary),
9799 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9800 table contains a 32-bit index into the pool of section numbers. For unused
9801 hash table slots, the corresponding entry in the parallel table will be 0.
9802
9803 The pool of section numbers begins immediately following the hash table
9804 (at offset 16 + 12 * M from the beginning of the section). The pool of
9805 section numbers consists of an array of 32-bit words (using the byte order
9806 of the application binary). Each item in the array is indexed starting
9807 from 0. The hash table entry provides the index of the first section
9808 number in the set. Additional section numbers in the set follow, and the
9809 set is terminated by a 0 entry (section number 0 is not used in ELF).
9810
9811 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9812 section must be the first entry in the set, and the .debug_abbrev.dwo must
9813 be the second entry. Other members of the set may follow in any order.
9814
9815 ---
9816
9817 DWP Version 2:
9818
9819 DWP Version 2 combines all the .debug_info, etc. sections into one,
9820 and the entries in the index tables are now offsets into these sections.
9821 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9822 section.
9823
9824 Index Section Contents:
9825 Header
9826 Hash Table of Signatures dwp_hash_table.hash_table
9827 Parallel Table of Indices dwp_hash_table.unit_table
9828 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9829 Table of Section Sizes dwp_hash_table.v2.sizes
9830
9831 The index section header consists of:
9832
9833 V, 32 bit version number
9834 L, 32 bit number of columns in the table of section offsets
9835 N, 32 bit number of compilation units or type units in the index
9836 M, 32 bit number of slots in the hash table
9837
9838 Numbers are recorded using the byte order of the application binary.
9839
9840 The hash table has the same format as version 1.
9841 The parallel table of indices has the same format as version 1,
9842 except that the entries are origin-1 indices into the table of sections
9843 offsets and the table of section sizes.
9844
9845 The table of offsets begins immediately following the parallel table
9846 (at offset 16 + 12 * M from the beginning of the section). The table is
9847 a two-dimensional array of 32-bit words (using the byte order of the
9848 application binary), with L columns and N+1 rows, in row-major order.
9849 Each row in the array is indexed starting from 0. The first row provides
9850 a key to the remaining rows: each column in this row provides an identifier
9851 for a debug section, and the offsets in the same column of subsequent rows
9852 refer to that section. The section identifiers are:
9853
9854 DW_SECT_INFO 1 .debug_info.dwo
9855 DW_SECT_TYPES 2 .debug_types.dwo
9856 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9857 DW_SECT_LINE 4 .debug_line.dwo
9858 DW_SECT_LOC 5 .debug_loc.dwo
9859 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9860 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9861 DW_SECT_MACRO 8 .debug_macro.dwo
9862
9863 The offsets provided by the CU and TU index sections are the base offsets
9864 for the contributions made by each CU or TU to the corresponding section
9865 in the package file. Each CU and TU header contains an abbrev_offset
9866 field, used to find the abbreviations table for that CU or TU within the
9867 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9868 be interpreted as relative to the base offset given in the index section.
9869 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9870 should be interpreted as relative to the base offset for .debug_line.dwo,
9871 and offsets into other debug sections obtained from DWARF attributes should
9872 also be interpreted as relative to the corresponding base offset.
9873
9874 The table of sizes begins immediately following the table of offsets.
9875 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9876 with L columns and N rows, in row-major order. Each row in the array is
9877 indexed starting from 1 (row 0 is shared by the two tables).
9878
9879 ---
9880
9881 Hash table lookup is handled the same in version 1 and 2:
9882
9883 We assume that N and M will not exceed 2^32 - 1.
9884 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9885
9886 Given a 64-bit compilation unit signature or a type signature S, an entry
9887 in the hash table is located as follows:
9888
9889 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9890 the low-order k bits all set to 1.
9891
9892 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9893
9894 3) If the hash table entry at index H matches the signature, use that
9895 entry. If the hash table entry at index H is unused (all zeroes),
9896 terminate the search: the signature is not present in the table.
9897
9898 4) Let H = (H + H') modulo M. Repeat at Step 3.
9899
9900 Because M > N and H' and M are relatively prime, the search is guaranteed
9901 to stop at an unused slot or find the match. */
9902
9903 /* Create a hash table to map DWO IDs to their CU/TU entry in
9904 .debug_{info,types}.dwo in DWP_FILE.
9905 Returns NULL if there isn't one.
9906 Note: This function processes DWP files only, not DWO files. */
9907
9908 static struct dwp_hash_table *
9909 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9910 {
9911 struct objfile *objfile = dwarf2_per_objfile->objfile;
9912 bfd *dbfd = dwp_file->dbfd;
9913 const gdb_byte *index_ptr, *index_end;
9914 struct dwarf2_section_info *index;
9915 uint32_t version, nr_columns, nr_units, nr_slots;
9916 struct dwp_hash_table *htab;
9917
9918 if (is_debug_types)
9919 index = &dwp_file->sections.tu_index;
9920 else
9921 index = &dwp_file->sections.cu_index;
9922
9923 if (dwarf2_section_empty_p (index))
9924 return NULL;
9925 dwarf2_read_section (objfile, index);
9926
9927 index_ptr = index->buffer;
9928 index_end = index_ptr + index->size;
9929
9930 version = read_4_bytes (dbfd, index_ptr);
9931 index_ptr += 4;
9932 if (version == 2)
9933 nr_columns = read_4_bytes (dbfd, index_ptr);
9934 else
9935 nr_columns = 0;
9936 index_ptr += 4;
9937 nr_units = read_4_bytes (dbfd, index_ptr);
9938 index_ptr += 4;
9939 nr_slots = read_4_bytes (dbfd, index_ptr);
9940 index_ptr += 4;
9941
9942 if (version != 1 && version != 2)
9943 {
9944 error (_("Dwarf Error: unsupported DWP file version (%s)"
9945 " [in module %s]"),
9946 pulongest (version), dwp_file->name);
9947 }
9948 if (nr_slots != (nr_slots & -nr_slots))
9949 {
9950 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9951 " is not power of 2 [in module %s]"),
9952 pulongest (nr_slots), dwp_file->name);
9953 }
9954
9955 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9956 htab->version = version;
9957 htab->nr_columns = nr_columns;
9958 htab->nr_units = nr_units;
9959 htab->nr_slots = nr_slots;
9960 htab->hash_table = index_ptr;
9961 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9962
9963 /* Exit early if the table is empty. */
9964 if (nr_slots == 0 || nr_units == 0
9965 || (version == 2 && nr_columns == 0))
9966 {
9967 /* All must be zero. */
9968 if (nr_slots != 0 || nr_units != 0
9969 || (version == 2 && nr_columns != 0))
9970 {
9971 complaint (&symfile_complaints,
9972 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9973 " all zero [in modules %s]"),
9974 dwp_file->name);
9975 }
9976 return htab;
9977 }
9978
9979 if (version == 1)
9980 {
9981 htab->section_pool.v1.indices =
9982 htab->unit_table + sizeof (uint32_t) * nr_slots;
9983 /* It's harder to decide whether the section is too small in v1.
9984 V1 is deprecated anyway so we punt. */
9985 }
9986 else
9987 {
9988 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9989 int *ids = htab->section_pool.v2.section_ids;
9990 /* Reverse map for error checking. */
9991 int ids_seen[DW_SECT_MAX + 1];
9992 int i;
9993
9994 if (nr_columns < 2)
9995 {
9996 error (_("Dwarf Error: bad DWP hash table, too few columns"
9997 " in section table [in module %s]"),
9998 dwp_file->name);
9999 }
10000 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10001 {
10002 error (_("Dwarf Error: bad DWP hash table, too many columns"
10003 " in section table [in module %s]"),
10004 dwp_file->name);
10005 }
10006 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10007 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10008 for (i = 0; i < nr_columns; ++i)
10009 {
10010 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10011
10012 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10013 {
10014 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10015 " in section table [in module %s]"),
10016 id, dwp_file->name);
10017 }
10018 if (ids_seen[id] != -1)
10019 {
10020 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10021 " id %d in section table [in module %s]"),
10022 id, dwp_file->name);
10023 }
10024 ids_seen[id] = i;
10025 ids[i] = id;
10026 }
10027 /* Must have exactly one info or types section. */
10028 if (((ids_seen[DW_SECT_INFO] != -1)
10029 + (ids_seen[DW_SECT_TYPES] != -1))
10030 != 1)
10031 {
10032 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10033 " DWO info/types section [in module %s]"),
10034 dwp_file->name);
10035 }
10036 /* Must have an abbrev section. */
10037 if (ids_seen[DW_SECT_ABBREV] == -1)
10038 {
10039 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10040 " section [in module %s]"),
10041 dwp_file->name);
10042 }
10043 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10044 htab->section_pool.v2.sizes =
10045 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10046 * nr_units * nr_columns);
10047 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10048 * nr_units * nr_columns))
10049 > index_end)
10050 {
10051 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10052 " [in module %s]"),
10053 dwp_file->name);
10054 }
10055 }
10056
10057 return htab;
10058 }
10059
10060 /* Update SECTIONS with the data from SECTP.
10061
10062 This function is like the other "locate" section routines that are
10063 passed to bfd_map_over_sections, but in this context the sections to
10064 read comes from the DWP V1 hash table, not the full ELF section table.
10065
10066 The result is non-zero for success, or zero if an error was found. */
10067
10068 static int
10069 locate_v1_virtual_dwo_sections (asection *sectp,
10070 struct virtual_v1_dwo_sections *sections)
10071 {
10072 const struct dwop_section_names *names = &dwop_section_names;
10073
10074 if (section_is_p (sectp->name, &names->abbrev_dwo))
10075 {
10076 /* There can be only one. */
10077 if (sections->abbrev.s.section != NULL)
10078 return 0;
10079 sections->abbrev.s.section = sectp;
10080 sections->abbrev.size = bfd_get_section_size (sectp);
10081 }
10082 else if (section_is_p (sectp->name, &names->info_dwo)
10083 || section_is_p (sectp->name, &names->types_dwo))
10084 {
10085 /* There can be only one. */
10086 if (sections->info_or_types.s.section != NULL)
10087 return 0;
10088 sections->info_or_types.s.section = sectp;
10089 sections->info_or_types.size = bfd_get_section_size (sectp);
10090 }
10091 else if (section_is_p (sectp->name, &names->line_dwo))
10092 {
10093 /* There can be only one. */
10094 if (sections->line.s.section != NULL)
10095 return 0;
10096 sections->line.s.section = sectp;
10097 sections->line.size = bfd_get_section_size (sectp);
10098 }
10099 else if (section_is_p (sectp->name, &names->loc_dwo))
10100 {
10101 /* There can be only one. */
10102 if (sections->loc.s.section != NULL)
10103 return 0;
10104 sections->loc.s.section = sectp;
10105 sections->loc.size = bfd_get_section_size (sectp);
10106 }
10107 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10108 {
10109 /* There can be only one. */
10110 if (sections->macinfo.s.section != NULL)
10111 return 0;
10112 sections->macinfo.s.section = sectp;
10113 sections->macinfo.size = bfd_get_section_size (sectp);
10114 }
10115 else if (section_is_p (sectp->name, &names->macro_dwo))
10116 {
10117 /* There can be only one. */
10118 if (sections->macro.s.section != NULL)
10119 return 0;
10120 sections->macro.s.section = sectp;
10121 sections->macro.size = bfd_get_section_size (sectp);
10122 }
10123 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10124 {
10125 /* There can be only one. */
10126 if (sections->str_offsets.s.section != NULL)
10127 return 0;
10128 sections->str_offsets.s.section = sectp;
10129 sections->str_offsets.size = bfd_get_section_size (sectp);
10130 }
10131 else
10132 {
10133 /* No other kind of section is valid. */
10134 return 0;
10135 }
10136
10137 return 1;
10138 }
10139
10140 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10141 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10142 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10143 This is for DWP version 1 files. */
10144
10145 static struct dwo_unit *
10146 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10147 uint32_t unit_index,
10148 const char *comp_dir,
10149 ULONGEST signature, int is_debug_types)
10150 {
10151 struct objfile *objfile = dwarf2_per_objfile->objfile;
10152 const struct dwp_hash_table *dwp_htab =
10153 is_debug_types ? dwp_file->tus : dwp_file->cus;
10154 bfd *dbfd = dwp_file->dbfd;
10155 const char *kind = is_debug_types ? "TU" : "CU";
10156 struct dwo_file *dwo_file;
10157 struct dwo_unit *dwo_unit;
10158 struct virtual_v1_dwo_sections sections;
10159 void **dwo_file_slot;
10160 char *virtual_dwo_name;
10161 struct cleanup *cleanups;
10162 int i;
10163
10164 gdb_assert (dwp_file->version == 1);
10165
10166 if (dwarf_read_debug)
10167 {
10168 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10169 kind,
10170 pulongest (unit_index), hex_string (signature),
10171 dwp_file->name);
10172 }
10173
10174 /* Fetch the sections of this DWO unit.
10175 Put a limit on the number of sections we look for so that bad data
10176 doesn't cause us to loop forever. */
10177
10178 #define MAX_NR_V1_DWO_SECTIONS \
10179 (1 /* .debug_info or .debug_types */ \
10180 + 1 /* .debug_abbrev */ \
10181 + 1 /* .debug_line */ \
10182 + 1 /* .debug_loc */ \
10183 + 1 /* .debug_str_offsets */ \
10184 + 1 /* .debug_macro or .debug_macinfo */ \
10185 + 1 /* trailing zero */)
10186
10187 memset (&sections, 0, sizeof (sections));
10188 cleanups = make_cleanup (null_cleanup, 0);
10189
10190 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10191 {
10192 asection *sectp;
10193 uint32_t section_nr =
10194 read_4_bytes (dbfd,
10195 dwp_htab->section_pool.v1.indices
10196 + (unit_index + i) * sizeof (uint32_t));
10197
10198 if (section_nr == 0)
10199 break;
10200 if (section_nr >= dwp_file->num_sections)
10201 {
10202 error (_("Dwarf Error: bad DWP hash table, section number too large"
10203 " [in module %s]"),
10204 dwp_file->name);
10205 }
10206
10207 sectp = dwp_file->elf_sections[section_nr];
10208 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10209 {
10210 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10211 " [in module %s]"),
10212 dwp_file->name);
10213 }
10214 }
10215
10216 if (i < 2
10217 || dwarf2_section_empty_p (&sections.info_or_types)
10218 || dwarf2_section_empty_p (&sections.abbrev))
10219 {
10220 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10221 " [in module %s]"),
10222 dwp_file->name);
10223 }
10224 if (i == MAX_NR_V1_DWO_SECTIONS)
10225 {
10226 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10227 " [in module %s]"),
10228 dwp_file->name);
10229 }
10230
10231 /* It's easier for the rest of the code if we fake a struct dwo_file and
10232 have dwo_unit "live" in that. At least for now.
10233
10234 The DWP file can be made up of a random collection of CUs and TUs.
10235 However, for each CU + set of TUs that came from the same original DWO
10236 file, we can combine them back into a virtual DWO file to save space
10237 (fewer struct dwo_file objects to allocate). Remember that for really
10238 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10239
10240 virtual_dwo_name =
10241 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10242 get_section_id (&sections.abbrev),
10243 get_section_id (&sections.line),
10244 get_section_id (&sections.loc),
10245 get_section_id (&sections.str_offsets));
10246 make_cleanup (xfree, virtual_dwo_name);
10247 /* Can we use an existing virtual DWO file? */
10248 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10249 /* Create one if necessary. */
10250 if (*dwo_file_slot == NULL)
10251 {
10252 if (dwarf_read_debug)
10253 {
10254 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10255 virtual_dwo_name);
10256 }
10257 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10258 dwo_file->dwo_name
10259 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10260 virtual_dwo_name,
10261 strlen (virtual_dwo_name));
10262 dwo_file->comp_dir = comp_dir;
10263 dwo_file->sections.abbrev = sections.abbrev;
10264 dwo_file->sections.line = sections.line;
10265 dwo_file->sections.loc = sections.loc;
10266 dwo_file->sections.macinfo = sections.macinfo;
10267 dwo_file->sections.macro = sections.macro;
10268 dwo_file->sections.str_offsets = sections.str_offsets;
10269 /* The "str" section is global to the entire DWP file. */
10270 dwo_file->sections.str = dwp_file->sections.str;
10271 /* The info or types section is assigned below to dwo_unit,
10272 there's no need to record it in dwo_file.
10273 Also, we can't simply record type sections in dwo_file because
10274 we record a pointer into the vector in dwo_unit. As we collect more
10275 types we'll grow the vector and eventually have to reallocate space
10276 for it, invalidating all copies of pointers into the previous
10277 contents. */
10278 *dwo_file_slot = dwo_file;
10279 }
10280 else
10281 {
10282 if (dwarf_read_debug)
10283 {
10284 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10285 virtual_dwo_name);
10286 }
10287 dwo_file = (struct dwo_file *) *dwo_file_slot;
10288 }
10289 do_cleanups (cleanups);
10290
10291 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10292 dwo_unit->dwo_file = dwo_file;
10293 dwo_unit->signature = signature;
10294 dwo_unit->section =
10295 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10296 *dwo_unit->section = sections.info_or_types;
10297 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10298
10299 return dwo_unit;
10300 }
10301
10302 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10303 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10304 piece within that section used by a TU/CU, return a virtual section
10305 of just that piece. */
10306
10307 static struct dwarf2_section_info
10308 create_dwp_v2_section (struct dwarf2_section_info *section,
10309 bfd_size_type offset, bfd_size_type size)
10310 {
10311 struct dwarf2_section_info result;
10312 asection *sectp;
10313
10314 gdb_assert (section != NULL);
10315 gdb_assert (!section->is_virtual);
10316
10317 memset (&result, 0, sizeof (result));
10318 result.s.containing_section = section;
10319 result.is_virtual = 1;
10320
10321 if (size == 0)
10322 return result;
10323
10324 sectp = get_section_bfd_section (section);
10325
10326 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10327 bounds of the real section. This is a pretty-rare event, so just
10328 flag an error (easier) instead of a warning and trying to cope. */
10329 if (sectp == NULL
10330 || offset + size > bfd_get_section_size (sectp))
10331 {
10332 bfd *abfd = sectp->owner;
10333
10334 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10335 " in section %s [in module %s]"),
10336 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10337 objfile_name (dwarf2_per_objfile->objfile));
10338 }
10339
10340 result.virtual_offset = offset;
10341 result.size = size;
10342 return result;
10343 }
10344
10345 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10346 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10347 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10348 This is for DWP version 2 files. */
10349
10350 static struct dwo_unit *
10351 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10352 uint32_t unit_index,
10353 const char *comp_dir,
10354 ULONGEST signature, int is_debug_types)
10355 {
10356 struct objfile *objfile = dwarf2_per_objfile->objfile;
10357 const struct dwp_hash_table *dwp_htab =
10358 is_debug_types ? dwp_file->tus : dwp_file->cus;
10359 bfd *dbfd = dwp_file->dbfd;
10360 const char *kind = is_debug_types ? "TU" : "CU";
10361 struct dwo_file *dwo_file;
10362 struct dwo_unit *dwo_unit;
10363 struct virtual_v2_dwo_sections sections;
10364 void **dwo_file_slot;
10365 char *virtual_dwo_name;
10366 struct cleanup *cleanups;
10367 int i;
10368
10369 gdb_assert (dwp_file->version == 2);
10370
10371 if (dwarf_read_debug)
10372 {
10373 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10374 kind,
10375 pulongest (unit_index), hex_string (signature),
10376 dwp_file->name);
10377 }
10378
10379 /* Fetch the section offsets of this DWO unit. */
10380
10381 memset (&sections, 0, sizeof (sections));
10382 cleanups = make_cleanup (null_cleanup, 0);
10383
10384 for (i = 0; i < dwp_htab->nr_columns; ++i)
10385 {
10386 uint32_t offset = read_4_bytes (dbfd,
10387 dwp_htab->section_pool.v2.offsets
10388 + (((unit_index - 1) * dwp_htab->nr_columns
10389 + i)
10390 * sizeof (uint32_t)));
10391 uint32_t size = read_4_bytes (dbfd,
10392 dwp_htab->section_pool.v2.sizes
10393 + (((unit_index - 1) * dwp_htab->nr_columns
10394 + i)
10395 * sizeof (uint32_t)));
10396
10397 switch (dwp_htab->section_pool.v2.section_ids[i])
10398 {
10399 case DW_SECT_INFO:
10400 case DW_SECT_TYPES:
10401 sections.info_or_types_offset = offset;
10402 sections.info_or_types_size = size;
10403 break;
10404 case DW_SECT_ABBREV:
10405 sections.abbrev_offset = offset;
10406 sections.abbrev_size = size;
10407 break;
10408 case DW_SECT_LINE:
10409 sections.line_offset = offset;
10410 sections.line_size = size;
10411 break;
10412 case DW_SECT_LOC:
10413 sections.loc_offset = offset;
10414 sections.loc_size = size;
10415 break;
10416 case DW_SECT_STR_OFFSETS:
10417 sections.str_offsets_offset = offset;
10418 sections.str_offsets_size = size;
10419 break;
10420 case DW_SECT_MACINFO:
10421 sections.macinfo_offset = offset;
10422 sections.macinfo_size = size;
10423 break;
10424 case DW_SECT_MACRO:
10425 sections.macro_offset = offset;
10426 sections.macro_size = size;
10427 break;
10428 }
10429 }
10430
10431 /* It's easier for the rest of the code if we fake a struct dwo_file and
10432 have dwo_unit "live" in that. At least for now.
10433
10434 The DWP file can be made up of a random collection of CUs and TUs.
10435 However, for each CU + set of TUs that came from the same original DWO
10436 file, we can combine them back into a virtual DWO file to save space
10437 (fewer struct dwo_file objects to allocate). Remember that for really
10438 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10439
10440 virtual_dwo_name =
10441 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10442 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10443 (long) (sections.line_size ? sections.line_offset : 0),
10444 (long) (sections.loc_size ? sections.loc_offset : 0),
10445 (long) (sections.str_offsets_size
10446 ? sections.str_offsets_offset : 0));
10447 make_cleanup (xfree, virtual_dwo_name);
10448 /* Can we use an existing virtual DWO file? */
10449 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10450 /* Create one if necessary. */
10451 if (*dwo_file_slot == NULL)
10452 {
10453 if (dwarf_read_debug)
10454 {
10455 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10456 virtual_dwo_name);
10457 }
10458 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10459 dwo_file->dwo_name
10460 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10461 virtual_dwo_name,
10462 strlen (virtual_dwo_name));
10463 dwo_file->comp_dir = comp_dir;
10464 dwo_file->sections.abbrev =
10465 create_dwp_v2_section (&dwp_file->sections.abbrev,
10466 sections.abbrev_offset, sections.abbrev_size);
10467 dwo_file->sections.line =
10468 create_dwp_v2_section (&dwp_file->sections.line,
10469 sections.line_offset, sections.line_size);
10470 dwo_file->sections.loc =
10471 create_dwp_v2_section (&dwp_file->sections.loc,
10472 sections.loc_offset, sections.loc_size);
10473 dwo_file->sections.macinfo =
10474 create_dwp_v2_section (&dwp_file->sections.macinfo,
10475 sections.macinfo_offset, sections.macinfo_size);
10476 dwo_file->sections.macro =
10477 create_dwp_v2_section (&dwp_file->sections.macro,
10478 sections.macro_offset, sections.macro_size);
10479 dwo_file->sections.str_offsets =
10480 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10481 sections.str_offsets_offset,
10482 sections.str_offsets_size);
10483 /* The "str" section is global to the entire DWP file. */
10484 dwo_file->sections.str = dwp_file->sections.str;
10485 /* The info or types section is assigned below to dwo_unit,
10486 there's no need to record it in dwo_file.
10487 Also, we can't simply record type sections in dwo_file because
10488 we record a pointer into the vector in dwo_unit. As we collect more
10489 types we'll grow the vector and eventually have to reallocate space
10490 for it, invalidating all copies of pointers into the previous
10491 contents. */
10492 *dwo_file_slot = dwo_file;
10493 }
10494 else
10495 {
10496 if (dwarf_read_debug)
10497 {
10498 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10499 virtual_dwo_name);
10500 }
10501 dwo_file = (struct dwo_file *) *dwo_file_slot;
10502 }
10503 do_cleanups (cleanups);
10504
10505 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10506 dwo_unit->dwo_file = dwo_file;
10507 dwo_unit->signature = signature;
10508 dwo_unit->section =
10509 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10510 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10511 ? &dwp_file->sections.types
10512 : &dwp_file->sections.info,
10513 sections.info_or_types_offset,
10514 sections.info_or_types_size);
10515 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10516
10517 return dwo_unit;
10518 }
10519
10520 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10521 Returns NULL if the signature isn't found. */
10522
10523 static struct dwo_unit *
10524 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10525 ULONGEST signature, int is_debug_types)
10526 {
10527 const struct dwp_hash_table *dwp_htab =
10528 is_debug_types ? dwp_file->tus : dwp_file->cus;
10529 bfd *dbfd = dwp_file->dbfd;
10530 uint32_t mask = dwp_htab->nr_slots - 1;
10531 uint32_t hash = signature & mask;
10532 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10533 unsigned int i;
10534 void **slot;
10535 struct dwo_unit find_dwo_cu;
10536
10537 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10538 find_dwo_cu.signature = signature;
10539 slot = htab_find_slot (is_debug_types
10540 ? dwp_file->loaded_tus
10541 : dwp_file->loaded_cus,
10542 &find_dwo_cu, INSERT);
10543
10544 if (*slot != NULL)
10545 return (struct dwo_unit *) *slot;
10546
10547 /* Use a for loop so that we don't loop forever on bad debug info. */
10548 for (i = 0; i < dwp_htab->nr_slots; ++i)
10549 {
10550 ULONGEST signature_in_table;
10551
10552 signature_in_table =
10553 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10554 if (signature_in_table == signature)
10555 {
10556 uint32_t unit_index =
10557 read_4_bytes (dbfd,
10558 dwp_htab->unit_table + hash * sizeof (uint32_t));
10559
10560 if (dwp_file->version == 1)
10561 {
10562 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10563 comp_dir, signature,
10564 is_debug_types);
10565 }
10566 else
10567 {
10568 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10569 comp_dir, signature,
10570 is_debug_types);
10571 }
10572 return (struct dwo_unit *) *slot;
10573 }
10574 if (signature_in_table == 0)
10575 return NULL;
10576 hash = (hash + hash2) & mask;
10577 }
10578
10579 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10580 " [in module %s]"),
10581 dwp_file->name);
10582 }
10583
10584 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10585 Open the file specified by FILE_NAME and hand it off to BFD for
10586 preliminary analysis. Return a newly initialized bfd *, which
10587 includes a canonicalized copy of FILE_NAME.
10588 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10589 SEARCH_CWD is true if the current directory is to be searched.
10590 It will be searched before debug-file-directory.
10591 If successful, the file is added to the bfd include table of the
10592 objfile's bfd (see gdb_bfd_record_inclusion).
10593 If unable to find/open the file, return NULL.
10594 NOTE: This function is derived from symfile_bfd_open. */
10595
10596 static gdb_bfd_ref_ptr
10597 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10598 {
10599 int desc, flags;
10600 char *absolute_name;
10601 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10602 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10603 to debug_file_directory. */
10604 char *search_path;
10605 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10606
10607 if (search_cwd)
10608 {
10609 if (*debug_file_directory != '\0')
10610 search_path = concat (".", dirname_separator_string,
10611 debug_file_directory, (char *) NULL);
10612 else
10613 search_path = xstrdup (".");
10614 }
10615 else
10616 search_path = xstrdup (debug_file_directory);
10617
10618 flags = OPF_RETURN_REALPATH;
10619 if (is_dwp)
10620 flags |= OPF_SEARCH_IN_PATH;
10621 desc = openp (search_path, flags, file_name,
10622 O_RDONLY | O_BINARY, &absolute_name);
10623 xfree (search_path);
10624 if (desc < 0)
10625 return NULL;
10626
10627 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10628 xfree (absolute_name);
10629 if (sym_bfd == NULL)
10630 return NULL;
10631 bfd_set_cacheable (sym_bfd.get (), 1);
10632
10633 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10634 return NULL;
10635
10636 /* Success. Record the bfd as having been included by the objfile's bfd.
10637 This is important because things like demangled_names_hash lives in the
10638 objfile's per_bfd space and may have references to things like symbol
10639 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10640 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10641
10642 return sym_bfd;
10643 }
10644
10645 /* Try to open DWO file FILE_NAME.
10646 COMP_DIR is the DW_AT_comp_dir attribute.
10647 The result is the bfd handle of the file.
10648 If there is a problem finding or opening the file, return NULL.
10649 Upon success, the canonicalized path of the file is stored in the bfd,
10650 same as symfile_bfd_open. */
10651
10652 static gdb_bfd_ref_ptr
10653 open_dwo_file (const char *file_name, const char *comp_dir)
10654 {
10655 if (IS_ABSOLUTE_PATH (file_name))
10656 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10657
10658 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10659
10660 if (comp_dir != NULL)
10661 {
10662 char *path_to_try = concat (comp_dir, SLASH_STRING,
10663 file_name, (char *) NULL);
10664
10665 /* NOTE: If comp_dir is a relative path, this will also try the
10666 search path, which seems useful. */
10667 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10668 1 /*search_cwd*/));
10669 xfree (path_to_try);
10670 if (abfd != NULL)
10671 return abfd;
10672 }
10673
10674 /* That didn't work, try debug-file-directory, which, despite its name,
10675 is a list of paths. */
10676
10677 if (*debug_file_directory == '\0')
10678 return NULL;
10679
10680 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10681 }
10682
10683 /* This function is mapped across the sections and remembers the offset and
10684 size of each of the DWO debugging sections we are interested in. */
10685
10686 static void
10687 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10688 {
10689 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10690 const struct dwop_section_names *names = &dwop_section_names;
10691
10692 if (section_is_p (sectp->name, &names->abbrev_dwo))
10693 {
10694 dwo_sections->abbrev.s.section = sectp;
10695 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10696 }
10697 else if (section_is_p (sectp->name, &names->info_dwo))
10698 {
10699 dwo_sections->info.s.section = sectp;
10700 dwo_sections->info.size = bfd_get_section_size (sectp);
10701 }
10702 else if (section_is_p (sectp->name, &names->line_dwo))
10703 {
10704 dwo_sections->line.s.section = sectp;
10705 dwo_sections->line.size = bfd_get_section_size (sectp);
10706 }
10707 else if (section_is_p (sectp->name, &names->loc_dwo))
10708 {
10709 dwo_sections->loc.s.section = sectp;
10710 dwo_sections->loc.size = bfd_get_section_size (sectp);
10711 }
10712 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10713 {
10714 dwo_sections->macinfo.s.section = sectp;
10715 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10716 }
10717 else if (section_is_p (sectp->name, &names->macro_dwo))
10718 {
10719 dwo_sections->macro.s.section = sectp;
10720 dwo_sections->macro.size = bfd_get_section_size (sectp);
10721 }
10722 else if (section_is_p (sectp->name, &names->str_dwo))
10723 {
10724 dwo_sections->str.s.section = sectp;
10725 dwo_sections->str.size = bfd_get_section_size (sectp);
10726 }
10727 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10728 {
10729 dwo_sections->str_offsets.s.section = sectp;
10730 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10731 }
10732 else if (section_is_p (sectp->name, &names->types_dwo))
10733 {
10734 struct dwarf2_section_info type_section;
10735
10736 memset (&type_section, 0, sizeof (type_section));
10737 type_section.s.section = sectp;
10738 type_section.size = bfd_get_section_size (sectp);
10739 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10740 &type_section);
10741 }
10742 }
10743
10744 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10745 by PER_CU. This is for the non-DWP case.
10746 The result is NULL if DWO_NAME can't be found. */
10747
10748 static struct dwo_file *
10749 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10750 const char *dwo_name, const char *comp_dir)
10751 {
10752 struct objfile *objfile = dwarf2_per_objfile->objfile;
10753 struct dwo_file *dwo_file;
10754 struct cleanup *cleanups;
10755
10756 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10757 if (dbfd == NULL)
10758 {
10759 if (dwarf_read_debug)
10760 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10761 return NULL;
10762 }
10763 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10764 dwo_file->dwo_name = dwo_name;
10765 dwo_file->comp_dir = comp_dir;
10766 dwo_file->dbfd = dbfd.release ();
10767
10768 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10769
10770 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10771 &dwo_file->sections);
10772
10773 dwo_file->cu = create_dwo_cu (dwo_file);
10774
10775 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10776 dwo_file->tus);
10777
10778 discard_cleanups (cleanups);
10779
10780 if (dwarf_read_debug)
10781 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10782
10783 return dwo_file;
10784 }
10785
10786 /* This function is mapped across the sections and remembers the offset and
10787 size of each of the DWP debugging sections common to version 1 and 2 that
10788 we are interested in. */
10789
10790 static void
10791 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10792 void *dwp_file_ptr)
10793 {
10794 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10795 const struct dwop_section_names *names = &dwop_section_names;
10796 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10797
10798 /* Record the ELF section number for later lookup: this is what the
10799 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10800 gdb_assert (elf_section_nr < dwp_file->num_sections);
10801 dwp_file->elf_sections[elf_section_nr] = sectp;
10802
10803 /* Look for specific sections that we need. */
10804 if (section_is_p (sectp->name, &names->str_dwo))
10805 {
10806 dwp_file->sections.str.s.section = sectp;
10807 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10808 }
10809 else if (section_is_p (sectp->name, &names->cu_index))
10810 {
10811 dwp_file->sections.cu_index.s.section = sectp;
10812 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10813 }
10814 else if (section_is_p (sectp->name, &names->tu_index))
10815 {
10816 dwp_file->sections.tu_index.s.section = sectp;
10817 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10818 }
10819 }
10820
10821 /* This function is mapped across the sections and remembers the offset and
10822 size of each of the DWP version 2 debugging sections that we are interested
10823 in. This is split into a separate function because we don't know if we
10824 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10825
10826 static void
10827 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10828 {
10829 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10830 const struct dwop_section_names *names = &dwop_section_names;
10831 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10832
10833 /* Record the ELF section number for later lookup: this is what the
10834 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10835 gdb_assert (elf_section_nr < dwp_file->num_sections);
10836 dwp_file->elf_sections[elf_section_nr] = sectp;
10837
10838 /* Look for specific sections that we need. */
10839 if (section_is_p (sectp->name, &names->abbrev_dwo))
10840 {
10841 dwp_file->sections.abbrev.s.section = sectp;
10842 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10843 }
10844 else if (section_is_p (sectp->name, &names->info_dwo))
10845 {
10846 dwp_file->sections.info.s.section = sectp;
10847 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10848 }
10849 else if (section_is_p (sectp->name, &names->line_dwo))
10850 {
10851 dwp_file->sections.line.s.section = sectp;
10852 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10853 }
10854 else if (section_is_p (sectp->name, &names->loc_dwo))
10855 {
10856 dwp_file->sections.loc.s.section = sectp;
10857 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10858 }
10859 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10860 {
10861 dwp_file->sections.macinfo.s.section = sectp;
10862 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10863 }
10864 else if (section_is_p (sectp->name, &names->macro_dwo))
10865 {
10866 dwp_file->sections.macro.s.section = sectp;
10867 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10868 }
10869 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10870 {
10871 dwp_file->sections.str_offsets.s.section = sectp;
10872 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10873 }
10874 else if (section_is_p (sectp->name, &names->types_dwo))
10875 {
10876 dwp_file->sections.types.s.section = sectp;
10877 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10878 }
10879 }
10880
10881 /* Hash function for dwp_file loaded CUs/TUs. */
10882
10883 static hashval_t
10884 hash_dwp_loaded_cutus (const void *item)
10885 {
10886 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10887
10888 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10889 return dwo_unit->signature;
10890 }
10891
10892 /* Equality function for dwp_file loaded CUs/TUs. */
10893
10894 static int
10895 eq_dwp_loaded_cutus (const void *a, const void *b)
10896 {
10897 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10898 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10899
10900 return dua->signature == dub->signature;
10901 }
10902
10903 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10904
10905 static htab_t
10906 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10907 {
10908 return htab_create_alloc_ex (3,
10909 hash_dwp_loaded_cutus,
10910 eq_dwp_loaded_cutus,
10911 NULL,
10912 &objfile->objfile_obstack,
10913 hashtab_obstack_allocate,
10914 dummy_obstack_deallocate);
10915 }
10916
10917 /* Try to open DWP file FILE_NAME.
10918 The result is the bfd handle of the file.
10919 If there is a problem finding or opening the file, return NULL.
10920 Upon success, the canonicalized path of the file is stored in the bfd,
10921 same as symfile_bfd_open. */
10922
10923 static gdb_bfd_ref_ptr
10924 open_dwp_file (const char *file_name)
10925 {
10926 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10927 1 /*search_cwd*/));
10928 if (abfd != NULL)
10929 return abfd;
10930
10931 /* Work around upstream bug 15652.
10932 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10933 [Whether that's a "bug" is debatable, but it is getting in our way.]
10934 We have no real idea where the dwp file is, because gdb's realpath-ing
10935 of the executable's path may have discarded the needed info.
10936 [IWBN if the dwp file name was recorded in the executable, akin to
10937 .gnu_debuglink, but that doesn't exist yet.]
10938 Strip the directory from FILE_NAME and search again. */
10939 if (*debug_file_directory != '\0')
10940 {
10941 /* Don't implicitly search the current directory here.
10942 If the user wants to search "." to handle this case,
10943 it must be added to debug-file-directory. */
10944 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10945 0 /*search_cwd*/);
10946 }
10947
10948 return NULL;
10949 }
10950
10951 /* Initialize the use of the DWP file for the current objfile.
10952 By convention the name of the DWP file is ${objfile}.dwp.
10953 The result is NULL if it can't be found. */
10954
10955 static struct dwp_file *
10956 open_and_init_dwp_file (void)
10957 {
10958 struct objfile *objfile = dwarf2_per_objfile->objfile;
10959 struct dwp_file *dwp_file;
10960
10961 /* Try to find first .dwp for the binary file before any symbolic links
10962 resolving. */
10963
10964 /* If the objfile is a debug file, find the name of the real binary
10965 file and get the name of dwp file from there. */
10966 std::string dwp_name;
10967 if (objfile->separate_debug_objfile_backlink != NULL)
10968 {
10969 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10970 const char *backlink_basename = lbasename (backlink->original_name);
10971
10972 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
10973 }
10974 else
10975 dwp_name = objfile->original_name;
10976
10977 dwp_name += ".dwp";
10978
10979 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
10980 if (dbfd == NULL
10981 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10982 {
10983 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10984 dwp_name = objfile_name (objfile);
10985 dwp_name += ".dwp";
10986 dbfd = open_dwp_file (dwp_name.c_str ());
10987 }
10988
10989 if (dbfd == NULL)
10990 {
10991 if (dwarf_read_debug)
10992 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
10993 return NULL;
10994 }
10995 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10996 dwp_file->name = bfd_get_filename (dbfd.get ());
10997 dwp_file->dbfd = dbfd.release ();
10998
10999 /* +1: section 0 is unused */
11000 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11001 dwp_file->elf_sections =
11002 OBSTACK_CALLOC (&objfile->objfile_obstack,
11003 dwp_file->num_sections, asection *);
11004
11005 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11006 dwp_file);
11007
11008 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11009
11010 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11011
11012 /* The DWP file version is stored in the hash table. Oh well. */
11013 if (dwp_file->cus->version != dwp_file->tus->version)
11014 {
11015 /* Technically speaking, we should try to limp along, but this is
11016 pretty bizarre. We use pulongest here because that's the established
11017 portability solution (e.g, we cannot use %u for uint32_t). */
11018 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11019 " TU version %s [in DWP file %s]"),
11020 pulongest (dwp_file->cus->version),
11021 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11022 }
11023 dwp_file->version = dwp_file->cus->version;
11024
11025 if (dwp_file->version == 2)
11026 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11027 dwp_file);
11028
11029 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11030 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11031
11032 if (dwarf_read_debug)
11033 {
11034 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11035 fprintf_unfiltered (gdb_stdlog,
11036 " %s CUs, %s TUs\n",
11037 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11038 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11039 }
11040
11041 return dwp_file;
11042 }
11043
11044 /* Wrapper around open_and_init_dwp_file, only open it once. */
11045
11046 static struct dwp_file *
11047 get_dwp_file (void)
11048 {
11049 if (! dwarf2_per_objfile->dwp_checked)
11050 {
11051 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11052 dwarf2_per_objfile->dwp_checked = 1;
11053 }
11054 return dwarf2_per_objfile->dwp_file;
11055 }
11056
11057 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11058 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11059 or in the DWP file for the objfile, referenced by THIS_UNIT.
11060 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11061 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11062
11063 This is called, for example, when wanting to read a variable with a
11064 complex location. Therefore we don't want to do file i/o for every call.
11065 Therefore we don't want to look for a DWO file on every call.
11066 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11067 then we check if we've already seen DWO_NAME, and only THEN do we check
11068 for a DWO file.
11069
11070 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11071 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11072
11073 static struct dwo_unit *
11074 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11075 const char *dwo_name, const char *comp_dir,
11076 ULONGEST signature, int is_debug_types)
11077 {
11078 struct objfile *objfile = dwarf2_per_objfile->objfile;
11079 const char *kind = is_debug_types ? "TU" : "CU";
11080 void **dwo_file_slot;
11081 struct dwo_file *dwo_file;
11082 struct dwp_file *dwp_file;
11083
11084 /* First see if there's a DWP file.
11085 If we have a DWP file but didn't find the DWO inside it, don't
11086 look for the original DWO file. It makes gdb behave differently
11087 depending on whether one is debugging in the build tree. */
11088
11089 dwp_file = get_dwp_file ();
11090 if (dwp_file != NULL)
11091 {
11092 const struct dwp_hash_table *dwp_htab =
11093 is_debug_types ? dwp_file->tus : dwp_file->cus;
11094
11095 if (dwp_htab != NULL)
11096 {
11097 struct dwo_unit *dwo_cutu =
11098 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11099 signature, is_debug_types);
11100
11101 if (dwo_cutu != NULL)
11102 {
11103 if (dwarf_read_debug)
11104 {
11105 fprintf_unfiltered (gdb_stdlog,
11106 "Virtual DWO %s %s found: @%s\n",
11107 kind, hex_string (signature),
11108 host_address_to_string (dwo_cutu));
11109 }
11110 return dwo_cutu;
11111 }
11112 }
11113 }
11114 else
11115 {
11116 /* No DWP file, look for the DWO file. */
11117
11118 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11119 if (*dwo_file_slot == NULL)
11120 {
11121 /* Read in the file and build a table of the CUs/TUs it contains. */
11122 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11123 }
11124 /* NOTE: This will be NULL if unable to open the file. */
11125 dwo_file = (struct dwo_file *) *dwo_file_slot;
11126
11127 if (dwo_file != NULL)
11128 {
11129 struct dwo_unit *dwo_cutu = NULL;
11130
11131 if (is_debug_types && dwo_file->tus)
11132 {
11133 struct dwo_unit find_dwo_cutu;
11134
11135 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11136 find_dwo_cutu.signature = signature;
11137 dwo_cutu
11138 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11139 }
11140 else if (!is_debug_types && dwo_file->cu)
11141 {
11142 if (signature == dwo_file->cu->signature)
11143 dwo_cutu = dwo_file->cu;
11144 }
11145
11146 if (dwo_cutu != NULL)
11147 {
11148 if (dwarf_read_debug)
11149 {
11150 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11151 kind, dwo_name, hex_string (signature),
11152 host_address_to_string (dwo_cutu));
11153 }
11154 return dwo_cutu;
11155 }
11156 }
11157 }
11158
11159 /* We didn't find it. This could mean a dwo_id mismatch, or
11160 someone deleted the DWO/DWP file, or the search path isn't set up
11161 correctly to find the file. */
11162
11163 if (dwarf_read_debug)
11164 {
11165 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11166 kind, dwo_name, hex_string (signature));
11167 }
11168
11169 /* This is a warning and not a complaint because it can be caused by
11170 pilot error (e.g., user accidentally deleting the DWO). */
11171 {
11172 /* Print the name of the DWP file if we looked there, helps the user
11173 better diagnose the problem. */
11174 char *dwp_text = NULL;
11175 struct cleanup *cleanups;
11176
11177 if (dwp_file != NULL)
11178 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11179 cleanups = make_cleanup (xfree, dwp_text);
11180
11181 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11182 " [in module %s]"),
11183 kind, dwo_name, hex_string (signature),
11184 dwp_text != NULL ? dwp_text : "",
11185 this_unit->is_debug_types ? "TU" : "CU",
11186 to_underlying (this_unit->sect_off), objfile_name (objfile));
11187
11188 do_cleanups (cleanups);
11189 }
11190 return NULL;
11191 }
11192
11193 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11194 See lookup_dwo_cutu_unit for details. */
11195
11196 static struct dwo_unit *
11197 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11198 const char *dwo_name, const char *comp_dir,
11199 ULONGEST signature)
11200 {
11201 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11202 }
11203
11204 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11205 See lookup_dwo_cutu_unit for details. */
11206
11207 static struct dwo_unit *
11208 lookup_dwo_type_unit (struct signatured_type *this_tu,
11209 const char *dwo_name, const char *comp_dir)
11210 {
11211 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11212 }
11213
11214 /* Traversal function for queue_and_load_all_dwo_tus. */
11215
11216 static int
11217 queue_and_load_dwo_tu (void **slot, void *info)
11218 {
11219 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11220 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11221 ULONGEST signature = dwo_unit->signature;
11222 struct signatured_type *sig_type =
11223 lookup_dwo_signatured_type (per_cu->cu, signature);
11224
11225 if (sig_type != NULL)
11226 {
11227 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11228
11229 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11230 a real dependency of PER_CU on SIG_TYPE. That is detected later
11231 while processing PER_CU. */
11232 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11233 load_full_type_unit (sig_cu);
11234 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11235 }
11236
11237 return 1;
11238 }
11239
11240 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11241 The DWO may have the only definition of the type, though it may not be
11242 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11243 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11244
11245 static void
11246 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11247 {
11248 struct dwo_unit *dwo_unit;
11249 struct dwo_file *dwo_file;
11250
11251 gdb_assert (!per_cu->is_debug_types);
11252 gdb_assert (get_dwp_file () == NULL);
11253 gdb_assert (per_cu->cu != NULL);
11254
11255 dwo_unit = per_cu->cu->dwo_unit;
11256 gdb_assert (dwo_unit != NULL);
11257
11258 dwo_file = dwo_unit->dwo_file;
11259 if (dwo_file->tus != NULL)
11260 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11261 }
11262
11263 /* Free all resources associated with DWO_FILE.
11264 Close the DWO file and munmap the sections.
11265 All memory should be on the objfile obstack. */
11266
11267 static void
11268 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11269 {
11270
11271 /* Note: dbfd is NULL for virtual DWO files. */
11272 gdb_bfd_unref (dwo_file->dbfd);
11273
11274 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11275 }
11276
11277 /* Wrapper for free_dwo_file for use in cleanups. */
11278
11279 static void
11280 free_dwo_file_cleanup (void *arg)
11281 {
11282 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11283 struct objfile *objfile = dwarf2_per_objfile->objfile;
11284
11285 free_dwo_file (dwo_file, objfile);
11286 }
11287
11288 /* Traversal function for free_dwo_files. */
11289
11290 static int
11291 free_dwo_file_from_slot (void **slot, void *info)
11292 {
11293 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11294 struct objfile *objfile = (struct objfile *) info;
11295
11296 free_dwo_file (dwo_file, objfile);
11297
11298 return 1;
11299 }
11300
11301 /* Free all resources associated with DWO_FILES. */
11302
11303 static void
11304 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11305 {
11306 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11307 }
11308 \f
11309 /* Read in various DIEs. */
11310
11311 /* qsort helper for inherit_abstract_dies. */
11312
11313 static int
11314 unsigned_int_compar (const void *ap, const void *bp)
11315 {
11316 unsigned int a = *(unsigned int *) ap;
11317 unsigned int b = *(unsigned int *) bp;
11318
11319 return (a > b) - (b > a);
11320 }
11321
11322 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11323 Inherit only the children of the DW_AT_abstract_origin DIE not being
11324 already referenced by DW_AT_abstract_origin from the children of the
11325 current DIE. */
11326
11327 static void
11328 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11329 {
11330 struct die_info *child_die;
11331 unsigned die_children_count;
11332 /* CU offsets which were referenced by children of the current DIE. */
11333 sect_offset *offsets;
11334 sect_offset *offsets_end, *offsetp;
11335 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11336 struct die_info *origin_die;
11337 /* Iterator of the ORIGIN_DIE children. */
11338 struct die_info *origin_child_die;
11339 struct cleanup *cleanups;
11340 struct attribute *attr;
11341 struct dwarf2_cu *origin_cu;
11342 struct pending **origin_previous_list_in_scope;
11343
11344 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11345 if (!attr)
11346 return;
11347
11348 /* Note that following die references may follow to a die in a
11349 different cu. */
11350
11351 origin_cu = cu;
11352 origin_die = follow_die_ref (die, attr, &origin_cu);
11353
11354 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11355 symbols in. */
11356 origin_previous_list_in_scope = origin_cu->list_in_scope;
11357 origin_cu->list_in_scope = cu->list_in_scope;
11358
11359 if (die->tag != origin_die->tag
11360 && !(die->tag == DW_TAG_inlined_subroutine
11361 && origin_die->tag == DW_TAG_subprogram))
11362 complaint (&symfile_complaints,
11363 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11364 to_underlying (die->sect_off),
11365 to_underlying (origin_die->sect_off));
11366
11367 child_die = die->child;
11368 die_children_count = 0;
11369 while (child_die && child_die->tag)
11370 {
11371 child_die = sibling_die (child_die);
11372 die_children_count++;
11373 }
11374 offsets = XNEWVEC (sect_offset, die_children_count);
11375 cleanups = make_cleanup (xfree, offsets);
11376
11377 offsets_end = offsets;
11378 for (child_die = die->child;
11379 child_die && child_die->tag;
11380 child_die = sibling_die (child_die))
11381 {
11382 struct die_info *child_origin_die;
11383 struct dwarf2_cu *child_origin_cu;
11384
11385 /* We are trying to process concrete instance entries:
11386 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11387 it's not relevant to our analysis here. i.e. detecting DIEs that are
11388 present in the abstract instance but not referenced in the concrete
11389 one. */
11390 if (child_die->tag == DW_TAG_call_site
11391 || child_die->tag == DW_TAG_GNU_call_site)
11392 continue;
11393
11394 /* For each CHILD_DIE, find the corresponding child of
11395 ORIGIN_DIE. If there is more than one layer of
11396 DW_AT_abstract_origin, follow them all; there shouldn't be,
11397 but GCC versions at least through 4.4 generate this (GCC PR
11398 40573). */
11399 child_origin_die = child_die;
11400 child_origin_cu = cu;
11401 while (1)
11402 {
11403 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11404 child_origin_cu);
11405 if (attr == NULL)
11406 break;
11407 child_origin_die = follow_die_ref (child_origin_die, attr,
11408 &child_origin_cu);
11409 }
11410
11411 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11412 counterpart may exist. */
11413 if (child_origin_die != child_die)
11414 {
11415 if (child_die->tag != child_origin_die->tag
11416 && !(child_die->tag == DW_TAG_inlined_subroutine
11417 && child_origin_die->tag == DW_TAG_subprogram))
11418 complaint (&symfile_complaints,
11419 _("Child DIE 0x%x and its abstract origin 0x%x have "
11420 "different tags"),
11421 to_underlying (child_die->sect_off),
11422 to_underlying (child_origin_die->sect_off));
11423 if (child_origin_die->parent != origin_die)
11424 complaint (&symfile_complaints,
11425 _("Child DIE 0x%x and its abstract origin 0x%x have "
11426 "different parents"),
11427 to_underlying (child_die->sect_off),
11428 to_underlying (child_origin_die->sect_off));
11429 else
11430 *offsets_end++ = child_origin_die->sect_off;
11431 }
11432 }
11433 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11434 unsigned_int_compar);
11435 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11436 if (offsetp[-1] == *offsetp)
11437 complaint (&symfile_complaints,
11438 _("Multiple children of DIE 0x%x refer "
11439 "to DIE 0x%x as their abstract origin"),
11440 to_underlying (die->sect_off), to_underlying (*offsetp));
11441
11442 offsetp = offsets;
11443 origin_child_die = origin_die->child;
11444 while (origin_child_die && origin_child_die->tag)
11445 {
11446 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11447 while (offsetp < offsets_end
11448 && *offsetp < origin_child_die->sect_off)
11449 offsetp++;
11450 if (offsetp >= offsets_end
11451 || *offsetp > origin_child_die->sect_off)
11452 {
11453 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11454 Check whether we're already processing ORIGIN_CHILD_DIE.
11455 This can happen with mutually referenced abstract_origins.
11456 PR 16581. */
11457 if (!origin_child_die->in_process)
11458 process_die (origin_child_die, origin_cu);
11459 }
11460 origin_child_die = sibling_die (origin_child_die);
11461 }
11462 origin_cu->list_in_scope = origin_previous_list_in_scope;
11463
11464 do_cleanups (cleanups);
11465 }
11466
11467 static void
11468 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11469 {
11470 struct objfile *objfile = cu->objfile;
11471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11472 struct context_stack *newobj;
11473 CORE_ADDR lowpc;
11474 CORE_ADDR highpc;
11475 struct die_info *child_die;
11476 struct attribute *attr, *call_line, *call_file;
11477 const char *name;
11478 CORE_ADDR baseaddr;
11479 struct block *block;
11480 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11481 VEC (symbolp) *template_args = NULL;
11482 struct template_symbol *templ_func = NULL;
11483
11484 if (inlined_func)
11485 {
11486 /* If we do not have call site information, we can't show the
11487 caller of this inlined function. That's too confusing, so
11488 only use the scope for local variables. */
11489 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11490 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11491 if (call_line == NULL || call_file == NULL)
11492 {
11493 read_lexical_block_scope (die, cu);
11494 return;
11495 }
11496 }
11497
11498 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11499
11500 name = dwarf2_name (die, cu);
11501
11502 /* Ignore functions with missing or empty names. These are actually
11503 illegal according to the DWARF standard. */
11504 if (name == NULL)
11505 {
11506 complaint (&symfile_complaints,
11507 _("missing name for subprogram DIE at %d"),
11508 to_underlying (die->sect_off));
11509 return;
11510 }
11511
11512 /* Ignore functions with missing or invalid low and high pc attributes. */
11513 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11514 <= PC_BOUNDS_INVALID)
11515 {
11516 attr = dwarf2_attr (die, DW_AT_external, cu);
11517 if (!attr || !DW_UNSND (attr))
11518 complaint (&symfile_complaints,
11519 _("cannot get low and high bounds "
11520 "for subprogram DIE at %d"),
11521 to_underlying (die->sect_off));
11522 return;
11523 }
11524
11525 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11526 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11527
11528 /* If we have any template arguments, then we must allocate a
11529 different sort of symbol. */
11530 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11531 {
11532 if (child_die->tag == DW_TAG_template_type_param
11533 || child_die->tag == DW_TAG_template_value_param)
11534 {
11535 templ_func = allocate_template_symbol (objfile);
11536 templ_func->base.is_cplus_template_function = 1;
11537 break;
11538 }
11539 }
11540
11541 newobj = push_context (0, lowpc);
11542 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11543 (struct symbol *) templ_func);
11544
11545 /* If there is a location expression for DW_AT_frame_base, record
11546 it. */
11547 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11548 if (attr)
11549 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11550
11551 /* If there is a location for the static link, record it. */
11552 newobj->static_link = NULL;
11553 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11554 if (attr)
11555 {
11556 newobj->static_link
11557 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11558 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11559 }
11560
11561 cu->list_in_scope = &local_symbols;
11562
11563 if (die->child != NULL)
11564 {
11565 child_die = die->child;
11566 while (child_die && child_die->tag)
11567 {
11568 if (child_die->tag == DW_TAG_template_type_param
11569 || child_die->tag == DW_TAG_template_value_param)
11570 {
11571 struct symbol *arg = new_symbol (child_die, NULL, cu);
11572
11573 if (arg != NULL)
11574 VEC_safe_push (symbolp, template_args, arg);
11575 }
11576 else
11577 process_die (child_die, cu);
11578 child_die = sibling_die (child_die);
11579 }
11580 }
11581
11582 inherit_abstract_dies (die, cu);
11583
11584 /* If we have a DW_AT_specification, we might need to import using
11585 directives from the context of the specification DIE. See the
11586 comment in determine_prefix. */
11587 if (cu->language == language_cplus
11588 && dwarf2_attr (die, DW_AT_specification, cu))
11589 {
11590 struct dwarf2_cu *spec_cu = cu;
11591 struct die_info *spec_die = die_specification (die, &spec_cu);
11592
11593 while (spec_die)
11594 {
11595 child_die = spec_die->child;
11596 while (child_die && child_die->tag)
11597 {
11598 if (child_die->tag == DW_TAG_imported_module)
11599 process_die (child_die, spec_cu);
11600 child_die = sibling_die (child_die);
11601 }
11602
11603 /* In some cases, GCC generates specification DIEs that
11604 themselves contain DW_AT_specification attributes. */
11605 spec_die = die_specification (spec_die, &spec_cu);
11606 }
11607 }
11608
11609 newobj = pop_context ();
11610 /* Make a block for the local symbols within. */
11611 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11612 newobj->static_link, lowpc, highpc);
11613
11614 /* For C++, set the block's scope. */
11615 if ((cu->language == language_cplus
11616 || cu->language == language_fortran
11617 || cu->language == language_d
11618 || cu->language == language_rust)
11619 && cu->processing_has_namespace_info)
11620 block_set_scope (block, determine_prefix (die, cu),
11621 &objfile->objfile_obstack);
11622
11623 /* If we have address ranges, record them. */
11624 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11625
11626 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11627
11628 /* Attach template arguments to function. */
11629 if (! VEC_empty (symbolp, template_args))
11630 {
11631 gdb_assert (templ_func != NULL);
11632
11633 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11634 templ_func->template_arguments
11635 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11636 templ_func->n_template_arguments);
11637 memcpy (templ_func->template_arguments,
11638 VEC_address (symbolp, template_args),
11639 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11640 VEC_free (symbolp, template_args);
11641 }
11642
11643 /* In C++, we can have functions nested inside functions (e.g., when
11644 a function declares a class that has methods). This means that
11645 when we finish processing a function scope, we may need to go
11646 back to building a containing block's symbol lists. */
11647 local_symbols = newobj->locals;
11648 local_using_directives = newobj->local_using_directives;
11649
11650 /* If we've finished processing a top-level function, subsequent
11651 symbols go in the file symbol list. */
11652 if (outermost_context_p ())
11653 cu->list_in_scope = &file_symbols;
11654 }
11655
11656 /* Process all the DIES contained within a lexical block scope. Start
11657 a new scope, process the dies, and then close the scope. */
11658
11659 static void
11660 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11661 {
11662 struct objfile *objfile = cu->objfile;
11663 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11664 struct context_stack *newobj;
11665 CORE_ADDR lowpc, highpc;
11666 struct die_info *child_die;
11667 CORE_ADDR baseaddr;
11668
11669 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11670
11671 /* Ignore blocks with missing or invalid low and high pc attributes. */
11672 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11673 as multiple lexical blocks? Handling children in a sane way would
11674 be nasty. Might be easier to properly extend generic blocks to
11675 describe ranges. */
11676 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11677 {
11678 case PC_BOUNDS_NOT_PRESENT:
11679 /* DW_TAG_lexical_block has no attributes, process its children as if
11680 there was no wrapping by that DW_TAG_lexical_block.
11681 GCC does no longer produces such DWARF since GCC r224161. */
11682 for (child_die = die->child;
11683 child_die != NULL && child_die->tag;
11684 child_die = sibling_die (child_die))
11685 process_die (child_die, cu);
11686 return;
11687 case PC_BOUNDS_INVALID:
11688 return;
11689 }
11690 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11691 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11692
11693 push_context (0, lowpc);
11694 if (die->child != NULL)
11695 {
11696 child_die = die->child;
11697 while (child_die && child_die->tag)
11698 {
11699 process_die (child_die, cu);
11700 child_die = sibling_die (child_die);
11701 }
11702 }
11703 inherit_abstract_dies (die, cu);
11704 newobj = pop_context ();
11705
11706 if (local_symbols != NULL || local_using_directives != NULL)
11707 {
11708 struct block *block
11709 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11710 newobj->start_addr, highpc);
11711
11712 /* Note that recording ranges after traversing children, as we
11713 do here, means that recording a parent's ranges entails
11714 walking across all its children's ranges as they appear in
11715 the address map, which is quadratic behavior.
11716
11717 It would be nicer to record the parent's ranges before
11718 traversing its children, simply overriding whatever you find
11719 there. But since we don't even decide whether to create a
11720 block until after we've traversed its children, that's hard
11721 to do. */
11722 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11723 }
11724 local_symbols = newobj->locals;
11725 local_using_directives = newobj->local_using_directives;
11726 }
11727
11728 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11729
11730 static void
11731 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11732 {
11733 struct objfile *objfile = cu->objfile;
11734 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11735 CORE_ADDR pc, baseaddr;
11736 struct attribute *attr;
11737 struct call_site *call_site, call_site_local;
11738 void **slot;
11739 int nparams;
11740 struct die_info *child_die;
11741
11742 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11743
11744 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11745 if (attr == NULL)
11746 {
11747 /* This was a pre-DWARF-5 GNU extension alias
11748 for DW_AT_call_return_pc. */
11749 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11750 }
11751 if (!attr)
11752 {
11753 complaint (&symfile_complaints,
11754 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11755 "DIE 0x%x [in module %s]"),
11756 to_underlying (die->sect_off), objfile_name (objfile));
11757 return;
11758 }
11759 pc = attr_value_as_address (attr) + baseaddr;
11760 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11761
11762 if (cu->call_site_htab == NULL)
11763 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11764 NULL, &objfile->objfile_obstack,
11765 hashtab_obstack_allocate, NULL);
11766 call_site_local.pc = pc;
11767 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11768 if (*slot != NULL)
11769 {
11770 complaint (&symfile_complaints,
11771 _("Duplicate PC %s for DW_TAG_call_site "
11772 "DIE 0x%x [in module %s]"),
11773 paddress (gdbarch, pc), to_underlying (die->sect_off),
11774 objfile_name (objfile));
11775 return;
11776 }
11777
11778 /* Count parameters at the caller. */
11779
11780 nparams = 0;
11781 for (child_die = die->child; child_die && child_die->tag;
11782 child_die = sibling_die (child_die))
11783 {
11784 if (child_die->tag != DW_TAG_call_site_parameter
11785 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11786 {
11787 complaint (&symfile_complaints,
11788 _("Tag %d is not DW_TAG_call_site_parameter in "
11789 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11790 child_die->tag, to_underlying (child_die->sect_off),
11791 objfile_name (objfile));
11792 continue;
11793 }
11794
11795 nparams++;
11796 }
11797
11798 call_site
11799 = ((struct call_site *)
11800 obstack_alloc (&objfile->objfile_obstack,
11801 sizeof (*call_site)
11802 + (sizeof (*call_site->parameter) * (nparams - 1))));
11803 *slot = call_site;
11804 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11805 call_site->pc = pc;
11806
11807 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11808 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11809 {
11810 struct die_info *func_die;
11811
11812 /* Skip also over DW_TAG_inlined_subroutine. */
11813 for (func_die = die->parent;
11814 func_die && func_die->tag != DW_TAG_subprogram
11815 && func_die->tag != DW_TAG_subroutine_type;
11816 func_die = func_die->parent);
11817
11818 /* DW_AT_call_all_calls is a superset
11819 of DW_AT_call_all_tail_calls. */
11820 if (func_die
11821 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11822 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11823 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11824 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11825 {
11826 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11827 not complete. But keep CALL_SITE for look ups via call_site_htab,
11828 both the initial caller containing the real return address PC and
11829 the final callee containing the current PC of a chain of tail
11830 calls do not need to have the tail call list complete. But any
11831 function candidate for a virtual tail call frame searched via
11832 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11833 determined unambiguously. */
11834 }
11835 else
11836 {
11837 struct type *func_type = NULL;
11838
11839 if (func_die)
11840 func_type = get_die_type (func_die, cu);
11841 if (func_type != NULL)
11842 {
11843 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11844
11845 /* Enlist this call site to the function. */
11846 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11847 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11848 }
11849 else
11850 complaint (&symfile_complaints,
11851 _("Cannot find function owning DW_TAG_call_site "
11852 "DIE 0x%x [in module %s]"),
11853 to_underlying (die->sect_off), objfile_name (objfile));
11854 }
11855 }
11856
11857 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11858 if (attr == NULL)
11859 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11860 if (attr == NULL)
11861 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11862 if (attr == NULL)
11863 {
11864 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11865 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11866 }
11867 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11868 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11869 /* Keep NULL DWARF_BLOCK. */;
11870 else if (attr_form_is_block (attr))
11871 {
11872 struct dwarf2_locexpr_baton *dlbaton;
11873
11874 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11875 dlbaton->data = DW_BLOCK (attr)->data;
11876 dlbaton->size = DW_BLOCK (attr)->size;
11877 dlbaton->per_cu = cu->per_cu;
11878
11879 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11880 }
11881 else if (attr_form_is_ref (attr))
11882 {
11883 struct dwarf2_cu *target_cu = cu;
11884 struct die_info *target_die;
11885
11886 target_die = follow_die_ref (die, attr, &target_cu);
11887 gdb_assert (target_cu->objfile == objfile);
11888 if (die_is_declaration (target_die, target_cu))
11889 {
11890 const char *target_physname;
11891
11892 /* Prefer the mangled name; otherwise compute the demangled one. */
11893 target_physname = dwarf2_string_attr (target_die,
11894 DW_AT_linkage_name,
11895 target_cu);
11896 if (target_physname == NULL)
11897 target_physname = dwarf2_string_attr (target_die,
11898 DW_AT_MIPS_linkage_name,
11899 target_cu);
11900 if (target_physname == NULL)
11901 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11902 if (target_physname == NULL)
11903 complaint (&symfile_complaints,
11904 _("DW_AT_call_target target DIE has invalid "
11905 "physname, for referencing DIE 0x%x [in module %s]"),
11906 to_underlying (die->sect_off), objfile_name (objfile));
11907 else
11908 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11909 }
11910 else
11911 {
11912 CORE_ADDR lowpc;
11913
11914 /* DW_AT_entry_pc should be preferred. */
11915 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11916 <= PC_BOUNDS_INVALID)
11917 complaint (&symfile_complaints,
11918 _("DW_AT_call_target target DIE has invalid "
11919 "low pc, for referencing DIE 0x%x [in module %s]"),
11920 to_underlying (die->sect_off), objfile_name (objfile));
11921 else
11922 {
11923 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11924 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11925 }
11926 }
11927 }
11928 else
11929 complaint (&symfile_complaints,
11930 _("DW_TAG_call_site DW_AT_call_target is neither "
11931 "block nor reference, for DIE 0x%x [in module %s]"),
11932 to_underlying (die->sect_off), objfile_name (objfile));
11933
11934 call_site->per_cu = cu->per_cu;
11935
11936 for (child_die = die->child;
11937 child_die && child_die->tag;
11938 child_die = sibling_die (child_die))
11939 {
11940 struct call_site_parameter *parameter;
11941 struct attribute *loc, *origin;
11942
11943 if (child_die->tag != DW_TAG_call_site_parameter
11944 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11945 {
11946 /* Already printed the complaint above. */
11947 continue;
11948 }
11949
11950 gdb_assert (call_site->parameter_count < nparams);
11951 parameter = &call_site->parameter[call_site->parameter_count];
11952
11953 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11954 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11955 register is contained in DW_AT_call_value. */
11956
11957 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11958 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
11959 if (origin == NULL)
11960 {
11961 /* This was a pre-DWARF-5 GNU extension alias
11962 for DW_AT_call_parameter. */
11963 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11964 }
11965 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11966 {
11967 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11968
11969 sect_offset sect_off
11970 = (sect_offset) dwarf2_get_ref_die_offset (origin);
11971 if (!offset_in_cu_p (&cu->header, sect_off))
11972 {
11973 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11974 binding can be done only inside one CU. Such referenced DIE
11975 therefore cannot be even moved to DW_TAG_partial_unit. */
11976 complaint (&symfile_complaints,
11977 _("DW_AT_call_parameter offset is not in CU for "
11978 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11979 to_underlying (child_die->sect_off),
11980 objfile_name (objfile));
11981 continue;
11982 }
11983 parameter->u.param_cu_off
11984 = (cu_offset) (sect_off - cu->header.sect_off);
11985 }
11986 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11987 {
11988 complaint (&symfile_complaints,
11989 _("No DW_FORM_block* DW_AT_location for "
11990 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11991 to_underlying (child_die->sect_off), objfile_name (objfile));
11992 continue;
11993 }
11994 else
11995 {
11996 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11997 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11998 if (parameter->u.dwarf_reg != -1)
11999 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12000 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12001 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12002 &parameter->u.fb_offset))
12003 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12004 else
12005 {
12006 complaint (&symfile_complaints,
12007 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12008 "for DW_FORM_block* DW_AT_location is supported for "
12009 "DW_TAG_call_site child DIE 0x%x "
12010 "[in module %s]"),
12011 to_underlying (child_die->sect_off),
12012 objfile_name (objfile));
12013 continue;
12014 }
12015 }
12016
12017 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12018 if (attr == NULL)
12019 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12020 if (!attr_form_is_block (attr))
12021 {
12022 complaint (&symfile_complaints,
12023 _("No DW_FORM_block* DW_AT_call_value for "
12024 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12025 to_underlying (child_die->sect_off),
12026 objfile_name (objfile));
12027 continue;
12028 }
12029 parameter->value = DW_BLOCK (attr)->data;
12030 parameter->value_size = DW_BLOCK (attr)->size;
12031
12032 /* Parameters are not pre-cleared by memset above. */
12033 parameter->data_value = NULL;
12034 parameter->data_value_size = 0;
12035 call_site->parameter_count++;
12036
12037 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12038 if (attr == NULL)
12039 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12040 if (attr)
12041 {
12042 if (!attr_form_is_block (attr))
12043 complaint (&symfile_complaints,
12044 _("No DW_FORM_block* DW_AT_call_data_value for "
12045 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12046 to_underlying (child_die->sect_off),
12047 objfile_name (objfile));
12048 else
12049 {
12050 parameter->data_value = DW_BLOCK (attr)->data;
12051 parameter->data_value_size = DW_BLOCK (attr)->size;
12052 }
12053 }
12054 }
12055 }
12056
12057 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12058 reading .debug_rnglists.
12059 Callback's type should be:
12060 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12061 Return true if the attributes are present and valid, otherwise,
12062 return false. */
12063
12064 template <typename Callback>
12065 static bool
12066 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12067 Callback &&callback)
12068 {
12069 struct objfile *objfile = cu->objfile;
12070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12071 struct comp_unit_head *cu_header = &cu->header;
12072 bfd *obfd = objfile->obfd;
12073 unsigned int addr_size = cu_header->addr_size;
12074 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12075 /* Base address selection entry. */
12076 CORE_ADDR base;
12077 int found_base;
12078 unsigned int dummy;
12079 const gdb_byte *buffer;
12080 CORE_ADDR low = 0;
12081 CORE_ADDR high = 0;
12082 CORE_ADDR baseaddr;
12083 bool overflow = false;
12084
12085 found_base = cu->base_known;
12086 base = cu->base_address;
12087
12088 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12089 if (offset >= dwarf2_per_objfile->rnglists.size)
12090 {
12091 complaint (&symfile_complaints,
12092 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12093 offset);
12094 return false;
12095 }
12096 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12097
12098 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12099
12100 while (1)
12101 {
12102 /* Initialize it due to a false compiler warning. */
12103 CORE_ADDR range_beginning = 0, range_end = 0;
12104 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12105 + dwarf2_per_objfile->rnglists.size);
12106 unsigned int bytes_read;
12107
12108 if (buffer == buf_end)
12109 {
12110 overflow = true;
12111 break;
12112 }
12113 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12114 switch (rlet)
12115 {
12116 case DW_RLE_end_of_list:
12117 break;
12118 case DW_RLE_base_address:
12119 if (buffer + cu->header.addr_size > buf_end)
12120 {
12121 overflow = true;
12122 break;
12123 }
12124 base = read_address (obfd, buffer, cu, &bytes_read);
12125 found_base = 1;
12126 buffer += bytes_read;
12127 break;
12128 case DW_RLE_start_length:
12129 if (buffer + cu->header.addr_size > buf_end)
12130 {
12131 overflow = true;
12132 break;
12133 }
12134 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12135 buffer += bytes_read;
12136 range_end = (range_beginning
12137 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12138 buffer += bytes_read;
12139 if (buffer > buf_end)
12140 {
12141 overflow = true;
12142 break;
12143 }
12144 break;
12145 case DW_RLE_offset_pair:
12146 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12147 buffer += bytes_read;
12148 if (buffer > buf_end)
12149 {
12150 overflow = true;
12151 break;
12152 }
12153 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12154 buffer += bytes_read;
12155 if (buffer > buf_end)
12156 {
12157 overflow = true;
12158 break;
12159 }
12160 break;
12161 case DW_RLE_start_end:
12162 if (buffer + 2 * cu->header.addr_size > buf_end)
12163 {
12164 overflow = true;
12165 break;
12166 }
12167 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12168 buffer += bytes_read;
12169 range_end = read_address (obfd, buffer, cu, &bytes_read);
12170 buffer += bytes_read;
12171 break;
12172 default:
12173 complaint (&symfile_complaints,
12174 _("Invalid .debug_rnglists data (no base address)"));
12175 return false;
12176 }
12177 if (rlet == DW_RLE_end_of_list || overflow)
12178 break;
12179 if (rlet == DW_RLE_base_address)
12180 continue;
12181
12182 if (!found_base)
12183 {
12184 /* We have no valid base address for the ranges
12185 data. */
12186 complaint (&symfile_complaints,
12187 _("Invalid .debug_rnglists data (no base address)"));
12188 return false;
12189 }
12190
12191 if (range_beginning > range_end)
12192 {
12193 /* Inverted range entries are invalid. */
12194 complaint (&symfile_complaints,
12195 _("Invalid .debug_rnglists data (inverted range)"));
12196 return false;
12197 }
12198
12199 /* Empty range entries have no effect. */
12200 if (range_beginning == range_end)
12201 continue;
12202
12203 range_beginning += base;
12204 range_end += base;
12205
12206 /* A not-uncommon case of bad debug info.
12207 Don't pollute the addrmap with bad data. */
12208 if (range_beginning + baseaddr == 0
12209 && !dwarf2_per_objfile->has_section_at_zero)
12210 {
12211 complaint (&symfile_complaints,
12212 _(".debug_rnglists entry has start address of zero"
12213 " [in module %s]"), objfile_name (objfile));
12214 continue;
12215 }
12216
12217 callback (range_beginning, range_end);
12218 }
12219
12220 if (overflow)
12221 {
12222 complaint (&symfile_complaints,
12223 _("Offset %d is not terminated "
12224 "for DW_AT_ranges attribute"),
12225 offset);
12226 return false;
12227 }
12228
12229 return true;
12230 }
12231
12232 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12233 Callback's type should be:
12234 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12235 Return 1 if the attributes are present and valid, otherwise, return 0. */
12236
12237 template <typename Callback>
12238 static int
12239 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12240 Callback &&callback)
12241 {
12242 struct objfile *objfile = cu->objfile;
12243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12244 struct comp_unit_head *cu_header = &cu->header;
12245 bfd *obfd = objfile->obfd;
12246 unsigned int addr_size = cu_header->addr_size;
12247 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12248 /* Base address selection entry. */
12249 CORE_ADDR base;
12250 int found_base;
12251 unsigned int dummy;
12252 const gdb_byte *buffer;
12253 CORE_ADDR baseaddr;
12254
12255 if (cu_header->version >= 5)
12256 return dwarf2_rnglists_process (offset, cu, callback);
12257
12258 found_base = cu->base_known;
12259 base = cu->base_address;
12260
12261 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12262 if (offset >= dwarf2_per_objfile->ranges.size)
12263 {
12264 complaint (&symfile_complaints,
12265 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12266 offset);
12267 return 0;
12268 }
12269 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12270
12271 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12272
12273 while (1)
12274 {
12275 CORE_ADDR range_beginning, range_end;
12276
12277 range_beginning = read_address (obfd, buffer, cu, &dummy);
12278 buffer += addr_size;
12279 range_end = read_address (obfd, buffer, cu, &dummy);
12280 buffer += addr_size;
12281 offset += 2 * addr_size;
12282
12283 /* An end of list marker is a pair of zero addresses. */
12284 if (range_beginning == 0 && range_end == 0)
12285 /* Found the end of list entry. */
12286 break;
12287
12288 /* Each base address selection entry is a pair of 2 values.
12289 The first is the largest possible address, the second is
12290 the base address. Check for a base address here. */
12291 if ((range_beginning & mask) == mask)
12292 {
12293 /* If we found the largest possible address, then we already
12294 have the base address in range_end. */
12295 base = range_end;
12296 found_base = 1;
12297 continue;
12298 }
12299
12300 if (!found_base)
12301 {
12302 /* We have no valid base address for the ranges
12303 data. */
12304 complaint (&symfile_complaints,
12305 _("Invalid .debug_ranges data (no base address)"));
12306 return 0;
12307 }
12308
12309 if (range_beginning > range_end)
12310 {
12311 /* Inverted range entries are invalid. */
12312 complaint (&symfile_complaints,
12313 _("Invalid .debug_ranges data (inverted range)"));
12314 return 0;
12315 }
12316
12317 /* Empty range entries have no effect. */
12318 if (range_beginning == range_end)
12319 continue;
12320
12321 range_beginning += base;
12322 range_end += base;
12323
12324 /* A not-uncommon case of bad debug info.
12325 Don't pollute the addrmap with bad data. */
12326 if (range_beginning + baseaddr == 0
12327 && !dwarf2_per_objfile->has_section_at_zero)
12328 {
12329 complaint (&symfile_complaints,
12330 _(".debug_ranges entry has start address of zero"
12331 " [in module %s]"), objfile_name (objfile));
12332 continue;
12333 }
12334
12335 callback (range_beginning, range_end);
12336 }
12337
12338 return 1;
12339 }
12340
12341 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12342 Return 1 if the attributes are present and valid, otherwise, return 0.
12343 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12344
12345 static int
12346 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12347 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12348 struct partial_symtab *ranges_pst)
12349 {
12350 struct objfile *objfile = cu->objfile;
12351 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12352 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12353 SECT_OFF_TEXT (objfile));
12354 int low_set = 0;
12355 CORE_ADDR low = 0;
12356 CORE_ADDR high = 0;
12357 int retval;
12358
12359 retval = dwarf2_ranges_process (offset, cu,
12360 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12361 {
12362 if (ranges_pst != NULL)
12363 {
12364 CORE_ADDR lowpc;
12365 CORE_ADDR highpc;
12366
12367 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12368 range_beginning + baseaddr);
12369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12370 range_end + baseaddr);
12371 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12372 ranges_pst);
12373 }
12374
12375 /* FIXME: This is recording everything as a low-high
12376 segment of consecutive addresses. We should have a
12377 data structure for discontiguous block ranges
12378 instead. */
12379 if (! low_set)
12380 {
12381 low = range_beginning;
12382 high = range_end;
12383 low_set = 1;
12384 }
12385 else
12386 {
12387 if (range_beginning < low)
12388 low = range_beginning;
12389 if (range_end > high)
12390 high = range_end;
12391 }
12392 });
12393 if (!retval)
12394 return 0;
12395
12396 if (! low_set)
12397 /* If the first entry is an end-of-list marker, the range
12398 describes an empty scope, i.e. no instructions. */
12399 return 0;
12400
12401 if (low_return)
12402 *low_return = low;
12403 if (high_return)
12404 *high_return = high;
12405 return 1;
12406 }
12407
12408 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12409 definition for the return value. *LOWPC and *HIGHPC are set iff
12410 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12411
12412 static enum pc_bounds_kind
12413 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12414 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12415 struct partial_symtab *pst)
12416 {
12417 struct attribute *attr;
12418 struct attribute *attr_high;
12419 CORE_ADDR low = 0;
12420 CORE_ADDR high = 0;
12421 enum pc_bounds_kind ret;
12422
12423 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12424 if (attr_high)
12425 {
12426 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12427 if (attr)
12428 {
12429 low = attr_value_as_address (attr);
12430 high = attr_value_as_address (attr_high);
12431 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12432 high += low;
12433 }
12434 else
12435 /* Found high w/o low attribute. */
12436 return PC_BOUNDS_INVALID;
12437
12438 /* Found consecutive range of addresses. */
12439 ret = PC_BOUNDS_HIGH_LOW;
12440 }
12441 else
12442 {
12443 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12444 if (attr != NULL)
12445 {
12446 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12447 We take advantage of the fact that DW_AT_ranges does not appear
12448 in DW_TAG_compile_unit of DWO files. */
12449 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12450 unsigned int ranges_offset = (DW_UNSND (attr)
12451 + (need_ranges_base
12452 ? cu->ranges_base
12453 : 0));
12454
12455 /* Value of the DW_AT_ranges attribute is the offset in the
12456 .debug_ranges section. */
12457 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12458 return PC_BOUNDS_INVALID;
12459 /* Found discontinuous range of addresses. */
12460 ret = PC_BOUNDS_RANGES;
12461 }
12462 else
12463 return PC_BOUNDS_NOT_PRESENT;
12464 }
12465
12466 /* read_partial_die has also the strict LOW < HIGH requirement. */
12467 if (high <= low)
12468 return PC_BOUNDS_INVALID;
12469
12470 /* When using the GNU linker, .gnu.linkonce. sections are used to
12471 eliminate duplicate copies of functions and vtables and such.
12472 The linker will arbitrarily choose one and discard the others.
12473 The AT_*_pc values for such functions refer to local labels in
12474 these sections. If the section from that file was discarded, the
12475 labels are not in the output, so the relocs get a value of 0.
12476 If this is a discarded function, mark the pc bounds as invalid,
12477 so that GDB will ignore it. */
12478 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12479 return PC_BOUNDS_INVALID;
12480
12481 *lowpc = low;
12482 if (highpc)
12483 *highpc = high;
12484 return ret;
12485 }
12486
12487 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12488 its low and high PC addresses. Do nothing if these addresses could not
12489 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12490 and HIGHPC to the high address if greater than HIGHPC. */
12491
12492 static void
12493 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12494 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12495 struct dwarf2_cu *cu)
12496 {
12497 CORE_ADDR low, high;
12498 struct die_info *child = die->child;
12499
12500 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12501 {
12502 *lowpc = std::min (*lowpc, low);
12503 *highpc = std::max (*highpc, high);
12504 }
12505
12506 /* If the language does not allow nested subprograms (either inside
12507 subprograms or lexical blocks), we're done. */
12508 if (cu->language != language_ada)
12509 return;
12510
12511 /* Check all the children of the given DIE. If it contains nested
12512 subprograms, then check their pc bounds. Likewise, we need to
12513 check lexical blocks as well, as they may also contain subprogram
12514 definitions. */
12515 while (child && child->tag)
12516 {
12517 if (child->tag == DW_TAG_subprogram
12518 || child->tag == DW_TAG_lexical_block)
12519 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12520 child = sibling_die (child);
12521 }
12522 }
12523
12524 /* Get the low and high pc's represented by the scope DIE, and store
12525 them in *LOWPC and *HIGHPC. If the correct values can't be
12526 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12527
12528 static void
12529 get_scope_pc_bounds (struct die_info *die,
12530 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12531 struct dwarf2_cu *cu)
12532 {
12533 CORE_ADDR best_low = (CORE_ADDR) -1;
12534 CORE_ADDR best_high = (CORE_ADDR) 0;
12535 CORE_ADDR current_low, current_high;
12536
12537 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12538 >= PC_BOUNDS_RANGES)
12539 {
12540 best_low = current_low;
12541 best_high = current_high;
12542 }
12543 else
12544 {
12545 struct die_info *child = die->child;
12546
12547 while (child && child->tag)
12548 {
12549 switch (child->tag) {
12550 case DW_TAG_subprogram:
12551 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12552 break;
12553 case DW_TAG_namespace:
12554 case DW_TAG_module:
12555 /* FIXME: carlton/2004-01-16: Should we do this for
12556 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12557 that current GCC's always emit the DIEs corresponding
12558 to definitions of methods of classes as children of a
12559 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12560 the DIEs giving the declarations, which could be
12561 anywhere). But I don't see any reason why the
12562 standards says that they have to be there. */
12563 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12564
12565 if (current_low != ((CORE_ADDR) -1))
12566 {
12567 best_low = std::min (best_low, current_low);
12568 best_high = std::max (best_high, current_high);
12569 }
12570 break;
12571 default:
12572 /* Ignore. */
12573 break;
12574 }
12575
12576 child = sibling_die (child);
12577 }
12578 }
12579
12580 *lowpc = best_low;
12581 *highpc = best_high;
12582 }
12583
12584 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12585 in DIE. */
12586
12587 static void
12588 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12589 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12590 {
12591 struct objfile *objfile = cu->objfile;
12592 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12593 struct attribute *attr;
12594 struct attribute *attr_high;
12595
12596 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12597 if (attr_high)
12598 {
12599 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12600 if (attr)
12601 {
12602 CORE_ADDR low = attr_value_as_address (attr);
12603 CORE_ADDR high = attr_value_as_address (attr_high);
12604
12605 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12606 high += low;
12607
12608 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12609 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12610 record_block_range (block, low, high - 1);
12611 }
12612 }
12613
12614 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12615 if (attr)
12616 {
12617 bfd *obfd = objfile->obfd;
12618 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12619 We take advantage of the fact that DW_AT_ranges does not appear
12620 in DW_TAG_compile_unit of DWO files. */
12621 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12622
12623 /* The value of the DW_AT_ranges attribute is the offset of the
12624 address range list in the .debug_ranges section. */
12625 unsigned long offset = (DW_UNSND (attr)
12626 + (need_ranges_base ? cu->ranges_base : 0));
12627 const gdb_byte *buffer;
12628
12629 /* For some target architectures, but not others, the
12630 read_address function sign-extends the addresses it returns.
12631 To recognize base address selection entries, we need a
12632 mask. */
12633 unsigned int addr_size = cu->header.addr_size;
12634 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12635
12636 /* The base address, to which the next pair is relative. Note
12637 that this 'base' is a DWARF concept: most entries in a range
12638 list are relative, to reduce the number of relocs against the
12639 debugging information. This is separate from this function's
12640 'baseaddr' argument, which GDB uses to relocate debugging
12641 information from a shared library based on the address at
12642 which the library was loaded. */
12643 CORE_ADDR base = cu->base_address;
12644 int base_known = cu->base_known;
12645
12646 dwarf2_ranges_process (offset, cu,
12647 [&] (CORE_ADDR start, CORE_ADDR end)
12648 {
12649 start += baseaddr;
12650 end += baseaddr;
12651 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12652 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12653 record_block_range (block, start, end - 1);
12654 });
12655 }
12656 }
12657
12658 /* Check whether the producer field indicates either of GCC < 4.6, or the
12659 Intel C/C++ compiler, and cache the result in CU. */
12660
12661 static void
12662 check_producer (struct dwarf2_cu *cu)
12663 {
12664 int major, minor;
12665
12666 if (cu->producer == NULL)
12667 {
12668 /* For unknown compilers expect their behavior is DWARF version
12669 compliant.
12670
12671 GCC started to support .debug_types sections by -gdwarf-4 since
12672 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12673 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12674 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12675 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12676 }
12677 else if (producer_is_gcc (cu->producer, &major, &minor))
12678 {
12679 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12680 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12681 }
12682 else if (startswith (cu->producer, "Intel(R) C"))
12683 cu->producer_is_icc = 1;
12684 else
12685 {
12686 /* For other non-GCC compilers, expect their behavior is DWARF version
12687 compliant. */
12688 }
12689
12690 cu->checked_producer = 1;
12691 }
12692
12693 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12694 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12695 during 4.6.0 experimental. */
12696
12697 static int
12698 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12699 {
12700 if (!cu->checked_producer)
12701 check_producer (cu);
12702
12703 return cu->producer_is_gxx_lt_4_6;
12704 }
12705
12706 /* Return the default accessibility type if it is not overriden by
12707 DW_AT_accessibility. */
12708
12709 static enum dwarf_access_attribute
12710 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12711 {
12712 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12713 {
12714 /* The default DWARF 2 accessibility for members is public, the default
12715 accessibility for inheritance is private. */
12716
12717 if (die->tag != DW_TAG_inheritance)
12718 return DW_ACCESS_public;
12719 else
12720 return DW_ACCESS_private;
12721 }
12722 else
12723 {
12724 /* DWARF 3+ defines the default accessibility a different way. The same
12725 rules apply now for DW_TAG_inheritance as for the members and it only
12726 depends on the container kind. */
12727
12728 if (die->parent->tag == DW_TAG_class_type)
12729 return DW_ACCESS_private;
12730 else
12731 return DW_ACCESS_public;
12732 }
12733 }
12734
12735 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12736 offset. If the attribute was not found return 0, otherwise return
12737 1. If it was found but could not properly be handled, set *OFFSET
12738 to 0. */
12739
12740 static int
12741 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12742 LONGEST *offset)
12743 {
12744 struct attribute *attr;
12745
12746 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12747 if (attr != NULL)
12748 {
12749 *offset = 0;
12750
12751 /* Note that we do not check for a section offset first here.
12752 This is because DW_AT_data_member_location is new in DWARF 4,
12753 so if we see it, we can assume that a constant form is really
12754 a constant and not a section offset. */
12755 if (attr_form_is_constant (attr))
12756 *offset = dwarf2_get_attr_constant_value (attr, 0);
12757 else if (attr_form_is_section_offset (attr))
12758 dwarf2_complex_location_expr_complaint ();
12759 else if (attr_form_is_block (attr))
12760 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12761 else
12762 dwarf2_complex_location_expr_complaint ();
12763
12764 return 1;
12765 }
12766
12767 return 0;
12768 }
12769
12770 /* Add an aggregate field to the field list. */
12771
12772 static void
12773 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12774 struct dwarf2_cu *cu)
12775 {
12776 struct objfile *objfile = cu->objfile;
12777 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12778 struct nextfield *new_field;
12779 struct attribute *attr;
12780 struct field *fp;
12781 const char *fieldname = "";
12782
12783 /* Allocate a new field list entry and link it in. */
12784 new_field = XNEW (struct nextfield);
12785 make_cleanup (xfree, new_field);
12786 memset (new_field, 0, sizeof (struct nextfield));
12787
12788 if (die->tag == DW_TAG_inheritance)
12789 {
12790 new_field->next = fip->baseclasses;
12791 fip->baseclasses = new_field;
12792 }
12793 else
12794 {
12795 new_field->next = fip->fields;
12796 fip->fields = new_field;
12797 }
12798 fip->nfields++;
12799
12800 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12801 if (attr)
12802 new_field->accessibility = DW_UNSND (attr);
12803 else
12804 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12805 if (new_field->accessibility != DW_ACCESS_public)
12806 fip->non_public_fields = 1;
12807
12808 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12809 if (attr)
12810 new_field->virtuality = DW_UNSND (attr);
12811 else
12812 new_field->virtuality = DW_VIRTUALITY_none;
12813
12814 fp = &new_field->field;
12815
12816 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12817 {
12818 LONGEST offset;
12819
12820 /* Data member other than a C++ static data member. */
12821
12822 /* Get type of field. */
12823 fp->type = die_type (die, cu);
12824
12825 SET_FIELD_BITPOS (*fp, 0);
12826
12827 /* Get bit size of field (zero if none). */
12828 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12829 if (attr)
12830 {
12831 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12832 }
12833 else
12834 {
12835 FIELD_BITSIZE (*fp) = 0;
12836 }
12837
12838 /* Get bit offset of field. */
12839 if (handle_data_member_location (die, cu, &offset))
12840 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12841 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12842 if (attr)
12843 {
12844 if (gdbarch_bits_big_endian (gdbarch))
12845 {
12846 /* For big endian bits, the DW_AT_bit_offset gives the
12847 additional bit offset from the MSB of the containing
12848 anonymous object to the MSB of the field. We don't
12849 have to do anything special since we don't need to
12850 know the size of the anonymous object. */
12851 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12852 }
12853 else
12854 {
12855 /* For little endian bits, compute the bit offset to the
12856 MSB of the anonymous object, subtract off the number of
12857 bits from the MSB of the field to the MSB of the
12858 object, and then subtract off the number of bits of
12859 the field itself. The result is the bit offset of
12860 the LSB of the field. */
12861 int anonymous_size;
12862 int bit_offset = DW_UNSND (attr);
12863
12864 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12865 if (attr)
12866 {
12867 /* The size of the anonymous object containing
12868 the bit field is explicit, so use the
12869 indicated size (in bytes). */
12870 anonymous_size = DW_UNSND (attr);
12871 }
12872 else
12873 {
12874 /* The size of the anonymous object containing
12875 the bit field must be inferred from the type
12876 attribute of the data member containing the
12877 bit field. */
12878 anonymous_size = TYPE_LENGTH (fp->type);
12879 }
12880 SET_FIELD_BITPOS (*fp,
12881 (FIELD_BITPOS (*fp)
12882 + anonymous_size * bits_per_byte
12883 - bit_offset - FIELD_BITSIZE (*fp)));
12884 }
12885 }
12886 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12887 if (attr != NULL)
12888 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12889 + dwarf2_get_attr_constant_value (attr, 0)));
12890
12891 /* Get name of field. */
12892 fieldname = dwarf2_name (die, cu);
12893 if (fieldname == NULL)
12894 fieldname = "";
12895
12896 /* The name is already allocated along with this objfile, so we don't
12897 need to duplicate it for the type. */
12898 fp->name = fieldname;
12899
12900 /* Change accessibility for artificial fields (e.g. virtual table
12901 pointer or virtual base class pointer) to private. */
12902 if (dwarf2_attr (die, DW_AT_artificial, cu))
12903 {
12904 FIELD_ARTIFICIAL (*fp) = 1;
12905 new_field->accessibility = DW_ACCESS_private;
12906 fip->non_public_fields = 1;
12907 }
12908 }
12909 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12910 {
12911 /* C++ static member. */
12912
12913 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12914 is a declaration, but all versions of G++ as of this writing
12915 (so through at least 3.2.1) incorrectly generate
12916 DW_TAG_variable tags. */
12917
12918 const char *physname;
12919
12920 /* Get name of field. */
12921 fieldname = dwarf2_name (die, cu);
12922 if (fieldname == NULL)
12923 return;
12924
12925 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12926 if (attr
12927 /* Only create a symbol if this is an external value.
12928 new_symbol checks this and puts the value in the global symbol
12929 table, which we want. If it is not external, new_symbol
12930 will try to put the value in cu->list_in_scope which is wrong. */
12931 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12932 {
12933 /* A static const member, not much different than an enum as far as
12934 we're concerned, except that we can support more types. */
12935 new_symbol (die, NULL, cu);
12936 }
12937
12938 /* Get physical name. */
12939 physname = dwarf2_physname (fieldname, die, cu);
12940
12941 /* The name is already allocated along with this objfile, so we don't
12942 need to duplicate it for the type. */
12943 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12944 FIELD_TYPE (*fp) = die_type (die, cu);
12945 FIELD_NAME (*fp) = fieldname;
12946 }
12947 else if (die->tag == DW_TAG_inheritance)
12948 {
12949 LONGEST offset;
12950
12951 /* C++ base class field. */
12952 if (handle_data_member_location (die, cu, &offset))
12953 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12954 FIELD_BITSIZE (*fp) = 0;
12955 FIELD_TYPE (*fp) = die_type (die, cu);
12956 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12957 fip->nbaseclasses++;
12958 }
12959 }
12960
12961 /* Add a typedef defined in the scope of the FIP's class. */
12962
12963 static void
12964 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12965 struct dwarf2_cu *cu)
12966 {
12967 struct typedef_field_list *new_field;
12968 struct typedef_field *fp;
12969
12970 /* Allocate a new field list entry and link it in. */
12971 new_field = XCNEW (struct typedef_field_list);
12972 make_cleanup (xfree, new_field);
12973
12974 gdb_assert (die->tag == DW_TAG_typedef);
12975
12976 fp = &new_field->field;
12977
12978 /* Get name of field. */
12979 fp->name = dwarf2_name (die, cu);
12980 if (fp->name == NULL)
12981 return;
12982
12983 fp->type = read_type_die (die, cu);
12984
12985 new_field->next = fip->typedef_field_list;
12986 fip->typedef_field_list = new_field;
12987 fip->typedef_field_list_count++;
12988 }
12989
12990 /* Create the vector of fields, and attach it to the type. */
12991
12992 static void
12993 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12994 struct dwarf2_cu *cu)
12995 {
12996 int nfields = fip->nfields;
12997
12998 /* Record the field count, allocate space for the array of fields,
12999 and create blank accessibility bitfields if necessary. */
13000 TYPE_NFIELDS (type) = nfields;
13001 TYPE_FIELDS (type) = (struct field *)
13002 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13003 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13004
13005 if (fip->non_public_fields && cu->language != language_ada)
13006 {
13007 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13008
13009 TYPE_FIELD_PRIVATE_BITS (type) =
13010 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13011 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13012
13013 TYPE_FIELD_PROTECTED_BITS (type) =
13014 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13015 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13016
13017 TYPE_FIELD_IGNORE_BITS (type) =
13018 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13019 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13020 }
13021
13022 /* If the type has baseclasses, allocate and clear a bit vector for
13023 TYPE_FIELD_VIRTUAL_BITS. */
13024 if (fip->nbaseclasses && cu->language != language_ada)
13025 {
13026 int num_bytes = B_BYTES (fip->nbaseclasses);
13027 unsigned char *pointer;
13028
13029 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13030 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13031 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13032 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13033 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13034 }
13035
13036 /* Copy the saved-up fields into the field vector. Start from the head of
13037 the list, adding to the tail of the field array, so that they end up in
13038 the same order in the array in which they were added to the list. */
13039 while (nfields-- > 0)
13040 {
13041 struct nextfield *fieldp;
13042
13043 if (fip->fields)
13044 {
13045 fieldp = fip->fields;
13046 fip->fields = fieldp->next;
13047 }
13048 else
13049 {
13050 fieldp = fip->baseclasses;
13051 fip->baseclasses = fieldp->next;
13052 }
13053
13054 TYPE_FIELD (type, nfields) = fieldp->field;
13055 switch (fieldp->accessibility)
13056 {
13057 case DW_ACCESS_private:
13058 if (cu->language != language_ada)
13059 SET_TYPE_FIELD_PRIVATE (type, nfields);
13060 break;
13061
13062 case DW_ACCESS_protected:
13063 if (cu->language != language_ada)
13064 SET_TYPE_FIELD_PROTECTED (type, nfields);
13065 break;
13066
13067 case DW_ACCESS_public:
13068 break;
13069
13070 default:
13071 /* Unknown accessibility. Complain and treat it as public. */
13072 {
13073 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13074 fieldp->accessibility);
13075 }
13076 break;
13077 }
13078 if (nfields < fip->nbaseclasses)
13079 {
13080 switch (fieldp->virtuality)
13081 {
13082 case DW_VIRTUALITY_virtual:
13083 case DW_VIRTUALITY_pure_virtual:
13084 if (cu->language == language_ada)
13085 error (_("unexpected virtuality in component of Ada type"));
13086 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13087 break;
13088 }
13089 }
13090 }
13091 }
13092
13093 /* Return true if this member function is a constructor, false
13094 otherwise. */
13095
13096 static int
13097 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13098 {
13099 const char *fieldname;
13100 const char *type_name;
13101 int len;
13102
13103 if (die->parent == NULL)
13104 return 0;
13105
13106 if (die->parent->tag != DW_TAG_structure_type
13107 && die->parent->tag != DW_TAG_union_type
13108 && die->parent->tag != DW_TAG_class_type)
13109 return 0;
13110
13111 fieldname = dwarf2_name (die, cu);
13112 type_name = dwarf2_name (die->parent, cu);
13113 if (fieldname == NULL || type_name == NULL)
13114 return 0;
13115
13116 len = strlen (fieldname);
13117 return (strncmp (fieldname, type_name, len) == 0
13118 && (type_name[len] == '\0' || type_name[len] == '<'));
13119 }
13120
13121 /* Add a member function to the proper fieldlist. */
13122
13123 static void
13124 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13125 struct type *type, struct dwarf2_cu *cu)
13126 {
13127 struct objfile *objfile = cu->objfile;
13128 struct attribute *attr;
13129 struct fnfieldlist *flp;
13130 int i;
13131 struct fn_field *fnp;
13132 const char *fieldname;
13133 struct nextfnfield *new_fnfield;
13134 struct type *this_type;
13135 enum dwarf_access_attribute accessibility;
13136
13137 if (cu->language == language_ada)
13138 error (_("unexpected member function in Ada type"));
13139
13140 /* Get name of member function. */
13141 fieldname = dwarf2_name (die, cu);
13142 if (fieldname == NULL)
13143 return;
13144
13145 /* Look up member function name in fieldlist. */
13146 for (i = 0; i < fip->nfnfields; i++)
13147 {
13148 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13149 break;
13150 }
13151
13152 /* Create new list element if necessary. */
13153 if (i < fip->nfnfields)
13154 flp = &fip->fnfieldlists[i];
13155 else
13156 {
13157 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13158 {
13159 fip->fnfieldlists = (struct fnfieldlist *)
13160 xrealloc (fip->fnfieldlists,
13161 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13162 * sizeof (struct fnfieldlist));
13163 if (fip->nfnfields == 0)
13164 make_cleanup (free_current_contents, &fip->fnfieldlists);
13165 }
13166 flp = &fip->fnfieldlists[fip->nfnfields];
13167 flp->name = fieldname;
13168 flp->length = 0;
13169 flp->head = NULL;
13170 i = fip->nfnfields++;
13171 }
13172
13173 /* Create a new member function field and chain it to the field list
13174 entry. */
13175 new_fnfield = XNEW (struct nextfnfield);
13176 make_cleanup (xfree, new_fnfield);
13177 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13178 new_fnfield->next = flp->head;
13179 flp->head = new_fnfield;
13180 flp->length++;
13181
13182 /* Fill in the member function field info. */
13183 fnp = &new_fnfield->fnfield;
13184
13185 /* Delay processing of the physname until later. */
13186 if (cu->language == language_cplus)
13187 {
13188 add_to_method_list (type, i, flp->length - 1, fieldname,
13189 die, cu);
13190 }
13191 else
13192 {
13193 const char *physname = dwarf2_physname (fieldname, die, cu);
13194 fnp->physname = physname ? physname : "";
13195 }
13196
13197 fnp->type = alloc_type (objfile);
13198 this_type = read_type_die (die, cu);
13199 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13200 {
13201 int nparams = TYPE_NFIELDS (this_type);
13202
13203 /* TYPE is the domain of this method, and THIS_TYPE is the type
13204 of the method itself (TYPE_CODE_METHOD). */
13205 smash_to_method_type (fnp->type, type,
13206 TYPE_TARGET_TYPE (this_type),
13207 TYPE_FIELDS (this_type),
13208 TYPE_NFIELDS (this_type),
13209 TYPE_VARARGS (this_type));
13210
13211 /* Handle static member functions.
13212 Dwarf2 has no clean way to discern C++ static and non-static
13213 member functions. G++ helps GDB by marking the first
13214 parameter for non-static member functions (which is the this
13215 pointer) as artificial. We obtain this information from
13216 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13217 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13218 fnp->voffset = VOFFSET_STATIC;
13219 }
13220 else
13221 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13222 dwarf2_full_name (fieldname, die, cu));
13223
13224 /* Get fcontext from DW_AT_containing_type if present. */
13225 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13226 fnp->fcontext = die_containing_type (die, cu);
13227
13228 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13229 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13230
13231 /* Get accessibility. */
13232 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13233 if (attr)
13234 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13235 else
13236 accessibility = dwarf2_default_access_attribute (die, cu);
13237 switch (accessibility)
13238 {
13239 case DW_ACCESS_private:
13240 fnp->is_private = 1;
13241 break;
13242 case DW_ACCESS_protected:
13243 fnp->is_protected = 1;
13244 break;
13245 }
13246
13247 /* Check for artificial methods. */
13248 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13249 if (attr && DW_UNSND (attr) != 0)
13250 fnp->is_artificial = 1;
13251
13252 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13253
13254 /* Get index in virtual function table if it is a virtual member
13255 function. For older versions of GCC, this is an offset in the
13256 appropriate virtual table, as specified by DW_AT_containing_type.
13257 For everyone else, it is an expression to be evaluated relative
13258 to the object address. */
13259
13260 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13261 if (attr)
13262 {
13263 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13264 {
13265 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13266 {
13267 /* Old-style GCC. */
13268 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13269 }
13270 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13271 || (DW_BLOCK (attr)->size > 1
13272 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13273 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13274 {
13275 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13276 if ((fnp->voffset % cu->header.addr_size) != 0)
13277 dwarf2_complex_location_expr_complaint ();
13278 else
13279 fnp->voffset /= cu->header.addr_size;
13280 fnp->voffset += 2;
13281 }
13282 else
13283 dwarf2_complex_location_expr_complaint ();
13284
13285 if (!fnp->fcontext)
13286 {
13287 /* If there is no `this' field and no DW_AT_containing_type,
13288 we cannot actually find a base class context for the
13289 vtable! */
13290 if (TYPE_NFIELDS (this_type) == 0
13291 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13292 {
13293 complaint (&symfile_complaints,
13294 _("cannot determine context for virtual member "
13295 "function \"%s\" (offset %d)"),
13296 fieldname, to_underlying (die->sect_off));
13297 }
13298 else
13299 {
13300 fnp->fcontext
13301 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13302 }
13303 }
13304 }
13305 else if (attr_form_is_section_offset (attr))
13306 {
13307 dwarf2_complex_location_expr_complaint ();
13308 }
13309 else
13310 {
13311 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13312 fieldname);
13313 }
13314 }
13315 else
13316 {
13317 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13318 if (attr && DW_UNSND (attr))
13319 {
13320 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13321 complaint (&symfile_complaints,
13322 _("Member function \"%s\" (offset %d) is virtual "
13323 "but the vtable offset is not specified"),
13324 fieldname, to_underlying (die->sect_off));
13325 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13326 TYPE_CPLUS_DYNAMIC (type) = 1;
13327 }
13328 }
13329 }
13330
13331 /* Create the vector of member function fields, and attach it to the type. */
13332
13333 static void
13334 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13335 struct dwarf2_cu *cu)
13336 {
13337 struct fnfieldlist *flp;
13338 int i;
13339
13340 if (cu->language == language_ada)
13341 error (_("unexpected member functions in Ada type"));
13342
13343 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13344 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13345 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13346
13347 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13348 {
13349 struct nextfnfield *nfp = flp->head;
13350 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13351 int k;
13352
13353 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13354 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13355 fn_flp->fn_fields = (struct fn_field *)
13356 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13357 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13358 fn_flp->fn_fields[k] = nfp->fnfield;
13359 }
13360
13361 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13362 }
13363
13364 /* Returns non-zero if NAME is the name of a vtable member in CU's
13365 language, zero otherwise. */
13366 static int
13367 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13368 {
13369 static const char vptr[] = "_vptr";
13370 static const char vtable[] = "vtable";
13371
13372 /* Look for the C++ form of the vtable. */
13373 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13374 return 1;
13375
13376 return 0;
13377 }
13378
13379 /* GCC outputs unnamed structures that are really pointers to member
13380 functions, with the ABI-specified layout. If TYPE describes
13381 such a structure, smash it into a member function type.
13382
13383 GCC shouldn't do this; it should just output pointer to member DIEs.
13384 This is GCC PR debug/28767. */
13385
13386 static void
13387 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13388 {
13389 struct type *pfn_type, *self_type, *new_type;
13390
13391 /* Check for a structure with no name and two children. */
13392 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13393 return;
13394
13395 /* Check for __pfn and __delta members. */
13396 if (TYPE_FIELD_NAME (type, 0) == NULL
13397 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13398 || TYPE_FIELD_NAME (type, 1) == NULL
13399 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13400 return;
13401
13402 /* Find the type of the method. */
13403 pfn_type = TYPE_FIELD_TYPE (type, 0);
13404 if (pfn_type == NULL
13405 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13406 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13407 return;
13408
13409 /* Look for the "this" argument. */
13410 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13411 if (TYPE_NFIELDS (pfn_type) == 0
13412 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13413 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13414 return;
13415
13416 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13417 new_type = alloc_type (objfile);
13418 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13419 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13420 TYPE_VARARGS (pfn_type));
13421 smash_to_methodptr_type (type, new_type);
13422 }
13423
13424 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13425 (icc). */
13426
13427 static int
13428 producer_is_icc (struct dwarf2_cu *cu)
13429 {
13430 if (!cu->checked_producer)
13431 check_producer (cu);
13432
13433 return cu->producer_is_icc;
13434 }
13435
13436 /* Called when we find the DIE that starts a structure or union scope
13437 (definition) to create a type for the structure or union. Fill in
13438 the type's name and general properties; the members will not be
13439 processed until process_structure_scope. A symbol table entry for
13440 the type will also not be done until process_structure_scope (assuming
13441 the type has a name).
13442
13443 NOTE: we need to call these functions regardless of whether or not the
13444 DIE has a DW_AT_name attribute, since it might be an anonymous
13445 structure or union. This gets the type entered into our set of
13446 user defined types. */
13447
13448 static struct type *
13449 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13450 {
13451 struct objfile *objfile = cu->objfile;
13452 struct type *type;
13453 struct attribute *attr;
13454 const char *name;
13455
13456 /* If the definition of this type lives in .debug_types, read that type.
13457 Don't follow DW_AT_specification though, that will take us back up
13458 the chain and we want to go down. */
13459 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13460 if (attr)
13461 {
13462 type = get_DW_AT_signature_type (die, attr, cu);
13463
13464 /* The type's CU may not be the same as CU.
13465 Ensure TYPE is recorded with CU in die_type_hash. */
13466 return set_die_type (die, type, cu);
13467 }
13468
13469 type = alloc_type (objfile);
13470 INIT_CPLUS_SPECIFIC (type);
13471
13472 name = dwarf2_name (die, cu);
13473 if (name != NULL)
13474 {
13475 if (cu->language == language_cplus
13476 || cu->language == language_d
13477 || cu->language == language_rust)
13478 {
13479 const char *full_name = dwarf2_full_name (name, die, cu);
13480
13481 /* dwarf2_full_name might have already finished building the DIE's
13482 type. If so, there is no need to continue. */
13483 if (get_die_type (die, cu) != NULL)
13484 return get_die_type (die, cu);
13485
13486 TYPE_TAG_NAME (type) = full_name;
13487 if (die->tag == DW_TAG_structure_type
13488 || die->tag == DW_TAG_class_type)
13489 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13490 }
13491 else
13492 {
13493 /* The name is already allocated along with this objfile, so
13494 we don't need to duplicate it for the type. */
13495 TYPE_TAG_NAME (type) = name;
13496 if (die->tag == DW_TAG_class_type)
13497 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13498 }
13499 }
13500
13501 if (die->tag == DW_TAG_structure_type)
13502 {
13503 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13504 }
13505 else if (die->tag == DW_TAG_union_type)
13506 {
13507 TYPE_CODE (type) = TYPE_CODE_UNION;
13508 }
13509 else
13510 {
13511 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13512 }
13513
13514 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13515 TYPE_DECLARED_CLASS (type) = 1;
13516
13517 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13518 if (attr)
13519 {
13520 if (attr_form_is_constant (attr))
13521 TYPE_LENGTH (type) = DW_UNSND (attr);
13522 else
13523 {
13524 /* For the moment, dynamic type sizes are not supported
13525 by GDB's struct type. The actual size is determined
13526 on-demand when resolving the type of a given object,
13527 so set the type's length to zero for now. Otherwise,
13528 we record an expression as the length, and that expression
13529 could lead to a very large value, which could eventually
13530 lead to us trying to allocate that much memory when creating
13531 a value of that type. */
13532 TYPE_LENGTH (type) = 0;
13533 }
13534 }
13535 else
13536 {
13537 TYPE_LENGTH (type) = 0;
13538 }
13539
13540 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13541 {
13542 /* ICC does not output the required DW_AT_declaration
13543 on incomplete types, but gives them a size of zero. */
13544 TYPE_STUB (type) = 1;
13545 }
13546 else
13547 TYPE_STUB_SUPPORTED (type) = 1;
13548
13549 if (die_is_declaration (die, cu))
13550 TYPE_STUB (type) = 1;
13551 else if (attr == NULL && die->child == NULL
13552 && producer_is_realview (cu->producer))
13553 /* RealView does not output the required DW_AT_declaration
13554 on incomplete types. */
13555 TYPE_STUB (type) = 1;
13556
13557 /* We need to add the type field to the die immediately so we don't
13558 infinitely recurse when dealing with pointers to the structure
13559 type within the structure itself. */
13560 set_die_type (die, type, cu);
13561
13562 /* set_die_type should be already done. */
13563 set_descriptive_type (type, die, cu);
13564
13565 return type;
13566 }
13567
13568 /* Finish creating a structure or union type, including filling in
13569 its members and creating a symbol for it. */
13570
13571 static void
13572 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13573 {
13574 struct objfile *objfile = cu->objfile;
13575 struct die_info *child_die;
13576 struct type *type;
13577
13578 type = get_die_type (die, cu);
13579 if (type == NULL)
13580 type = read_structure_type (die, cu);
13581
13582 if (die->child != NULL && ! die_is_declaration (die, cu))
13583 {
13584 struct field_info fi;
13585 VEC (symbolp) *template_args = NULL;
13586 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13587
13588 memset (&fi, 0, sizeof (struct field_info));
13589
13590 child_die = die->child;
13591
13592 while (child_die && child_die->tag)
13593 {
13594 if (child_die->tag == DW_TAG_member
13595 || child_die->tag == DW_TAG_variable)
13596 {
13597 /* NOTE: carlton/2002-11-05: A C++ static data member
13598 should be a DW_TAG_member that is a declaration, but
13599 all versions of G++ as of this writing (so through at
13600 least 3.2.1) incorrectly generate DW_TAG_variable
13601 tags for them instead. */
13602 dwarf2_add_field (&fi, child_die, cu);
13603 }
13604 else if (child_die->tag == DW_TAG_subprogram)
13605 {
13606 /* Rust doesn't have member functions in the C++ sense.
13607 However, it does emit ordinary functions as children
13608 of a struct DIE. */
13609 if (cu->language == language_rust)
13610 read_func_scope (child_die, cu);
13611 else
13612 {
13613 /* C++ member function. */
13614 dwarf2_add_member_fn (&fi, child_die, type, cu);
13615 }
13616 }
13617 else if (child_die->tag == DW_TAG_inheritance)
13618 {
13619 /* C++ base class field. */
13620 dwarf2_add_field (&fi, child_die, cu);
13621 }
13622 else if (child_die->tag == DW_TAG_typedef)
13623 dwarf2_add_typedef (&fi, child_die, cu);
13624 else if (child_die->tag == DW_TAG_template_type_param
13625 || child_die->tag == DW_TAG_template_value_param)
13626 {
13627 struct symbol *arg = new_symbol (child_die, NULL, cu);
13628
13629 if (arg != NULL)
13630 VEC_safe_push (symbolp, template_args, arg);
13631 }
13632
13633 child_die = sibling_die (child_die);
13634 }
13635
13636 /* Attach template arguments to type. */
13637 if (! VEC_empty (symbolp, template_args))
13638 {
13639 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13640 TYPE_N_TEMPLATE_ARGUMENTS (type)
13641 = VEC_length (symbolp, template_args);
13642 TYPE_TEMPLATE_ARGUMENTS (type)
13643 = XOBNEWVEC (&objfile->objfile_obstack,
13644 struct symbol *,
13645 TYPE_N_TEMPLATE_ARGUMENTS (type));
13646 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13647 VEC_address (symbolp, template_args),
13648 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13649 * sizeof (struct symbol *)));
13650 VEC_free (symbolp, template_args);
13651 }
13652
13653 /* Attach fields and member functions to the type. */
13654 if (fi.nfields)
13655 dwarf2_attach_fields_to_type (&fi, type, cu);
13656 if (fi.nfnfields)
13657 {
13658 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13659
13660 /* Get the type which refers to the base class (possibly this
13661 class itself) which contains the vtable pointer for the current
13662 class from the DW_AT_containing_type attribute. This use of
13663 DW_AT_containing_type is a GNU extension. */
13664
13665 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13666 {
13667 struct type *t = die_containing_type (die, cu);
13668
13669 set_type_vptr_basetype (type, t);
13670 if (type == t)
13671 {
13672 int i;
13673
13674 /* Our own class provides vtbl ptr. */
13675 for (i = TYPE_NFIELDS (t) - 1;
13676 i >= TYPE_N_BASECLASSES (t);
13677 --i)
13678 {
13679 const char *fieldname = TYPE_FIELD_NAME (t, i);
13680
13681 if (is_vtable_name (fieldname, cu))
13682 {
13683 set_type_vptr_fieldno (type, i);
13684 break;
13685 }
13686 }
13687
13688 /* Complain if virtual function table field not found. */
13689 if (i < TYPE_N_BASECLASSES (t))
13690 complaint (&symfile_complaints,
13691 _("virtual function table pointer "
13692 "not found when defining class '%s'"),
13693 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13694 "");
13695 }
13696 else
13697 {
13698 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13699 }
13700 }
13701 else if (cu->producer
13702 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13703 {
13704 /* The IBM XLC compiler does not provide direct indication
13705 of the containing type, but the vtable pointer is
13706 always named __vfp. */
13707
13708 int i;
13709
13710 for (i = TYPE_NFIELDS (type) - 1;
13711 i >= TYPE_N_BASECLASSES (type);
13712 --i)
13713 {
13714 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13715 {
13716 set_type_vptr_fieldno (type, i);
13717 set_type_vptr_basetype (type, type);
13718 break;
13719 }
13720 }
13721 }
13722 }
13723
13724 /* Copy fi.typedef_field_list linked list elements content into the
13725 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13726 if (fi.typedef_field_list)
13727 {
13728 int i = fi.typedef_field_list_count;
13729
13730 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13731 TYPE_TYPEDEF_FIELD_ARRAY (type)
13732 = ((struct typedef_field *)
13733 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13734 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13735
13736 /* Reverse the list order to keep the debug info elements order. */
13737 while (--i >= 0)
13738 {
13739 struct typedef_field *dest, *src;
13740
13741 dest = &TYPE_TYPEDEF_FIELD (type, i);
13742 src = &fi.typedef_field_list->field;
13743 fi.typedef_field_list = fi.typedef_field_list->next;
13744 *dest = *src;
13745 }
13746 }
13747
13748 do_cleanups (back_to);
13749 }
13750
13751 quirk_gcc_member_function_pointer (type, objfile);
13752
13753 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13754 snapshots) has been known to create a die giving a declaration
13755 for a class that has, as a child, a die giving a definition for a
13756 nested class. So we have to process our children even if the
13757 current die is a declaration. Normally, of course, a declaration
13758 won't have any children at all. */
13759
13760 child_die = die->child;
13761
13762 while (child_die != NULL && child_die->tag)
13763 {
13764 if (child_die->tag == DW_TAG_member
13765 || child_die->tag == DW_TAG_variable
13766 || child_die->tag == DW_TAG_inheritance
13767 || child_die->tag == DW_TAG_template_value_param
13768 || child_die->tag == DW_TAG_template_type_param)
13769 {
13770 /* Do nothing. */
13771 }
13772 else
13773 process_die (child_die, cu);
13774
13775 child_die = sibling_die (child_die);
13776 }
13777
13778 /* Do not consider external references. According to the DWARF standard,
13779 these DIEs are identified by the fact that they have no byte_size
13780 attribute, and a declaration attribute. */
13781 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13782 || !die_is_declaration (die, cu))
13783 new_symbol (die, type, cu);
13784 }
13785
13786 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13787 update TYPE using some information only available in DIE's children. */
13788
13789 static void
13790 update_enumeration_type_from_children (struct die_info *die,
13791 struct type *type,
13792 struct dwarf2_cu *cu)
13793 {
13794 struct die_info *child_die;
13795 int unsigned_enum = 1;
13796 int flag_enum = 1;
13797 ULONGEST mask = 0;
13798
13799 auto_obstack obstack;
13800
13801 for (child_die = die->child;
13802 child_die != NULL && child_die->tag;
13803 child_die = sibling_die (child_die))
13804 {
13805 struct attribute *attr;
13806 LONGEST value;
13807 const gdb_byte *bytes;
13808 struct dwarf2_locexpr_baton *baton;
13809 const char *name;
13810
13811 if (child_die->tag != DW_TAG_enumerator)
13812 continue;
13813
13814 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13815 if (attr == NULL)
13816 continue;
13817
13818 name = dwarf2_name (child_die, cu);
13819 if (name == NULL)
13820 name = "<anonymous enumerator>";
13821
13822 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13823 &value, &bytes, &baton);
13824 if (value < 0)
13825 {
13826 unsigned_enum = 0;
13827 flag_enum = 0;
13828 }
13829 else if ((mask & value) != 0)
13830 flag_enum = 0;
13831 else
13832 mask |= value;
13833
13834 /* If we already know that the enum type is neither unsigned, nor
13835 a flag type, no need to look at the rest of the enumerates. */
13836 if (!unsigned_enum && !flag_enum)
13837 break;
13838 }
13839
13840 if (unsigned_enum)
13841 TYPE_UNSIGNED (type) = 1;
13842 if (flag_enum)
13843 TYPE_FLAG_ENUM (type) = 1;
13844 }
13845
13846 /* Given a DW_AT_enumeration_type die, set its type. We do not
13847 complete the type's fields yet, or create any symbols. */
13848
13849 static struct type *
13850 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13851 {
13852 struct objfile *objfile = cu->objfile;
13853 struct type *type;
13854 struct attribute *attr;
13855 const char *name;
13856
13857 /* If the definition of this type lives in .debug_types, read that type.
13858 Don't follow DW_AT_specification though, that will take us back up
13859 the chain and we want to go down. */
13860 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13861 if (attr)
13862 {
13863 type = get_DW_AT_signature_type (die, attr, cu);
13864
13865 /* The type's CU may not be the same as CU.
13866 Ensure TYPE is recorded with CU in die_type_hash. */
13867 return set_die_type (die, type, cu);
13868 }
13869
13870 type = alloc_type (objfile);
13871
13872 TYPE_CODE (type) = TYPE_CODE_ENUM;
13873 name = dwarf2_full_name (NULL, die, cu);
13874 if (name != NULL)
13875 TYPE_TAG_NAME (type) = name;
13876
13877 attr = dwarf2_attr (die, DW_AT_type, cu);
13878 if (attr != NULL)
13879 {
13880 struct type *underlying_type = die_type (die, cu);
13881
13882 TYPE_TARGET_TYPE (type) = underlying_type;
13883 }
13884
13885 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13886 if (attr)
13887 {
13888 TYPE_LENGTH (type) = DW_UNSND (attr);
13889 }
13890 else
13891 {
13892 TYPE_LENGTH (type) = 0;
13893 }
13894
13895 /* The enumeration DIE can be incomplete. In Ada, any type can be
13896 declared as private in the package spec, and then defined only
13897 inside the package body. Such types are known as Taft Amendment
13898 Types. When another package uses such a type, an incomplete DIE
13899 may be generated by the compiler. */
13900 if (die_is_declaration (die, cu))
13901 TYPE_STUB (type) = 1;
13902
13903 /* Finish the creation of this type by using the enum's children.
13904 We must call this even when the underlying type has been provided
13905 so that we can determine if we're looking at a "flag" enum. */
13906 update_enumeration_type_from_children (die, type, cu);
13907
13908 /* If this type has an underlying type that is not a stub, then we
13909 may use its attributes. We always use the "unsigned" attribute
13910 in this situation, because ordinarily we guess whether the type
13911 is unsigned -- but the guess can be wrong and the underlying type
13912 can tell us the reality. However, we defer to a local size
13913 attribute if one exists, because this lets the compiler override
13914 the underlying type if needed. */
13915 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13916 {
13917 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13918 if (TYPE_LENGTH (type) == 0)
13919 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13920 }
13921
13922 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13923
13924 return set_die_type (die, type, cu);
13925 }
13926
13927 /* Given a pointer to a die which begins an enumeration, process all
13928 the dies that define the members of the enumeration, and create the
13929 symbol for the enumeration type.
13930
13931 NOTE: We reverse the order of the element list. */
13932
13933 static void
13934 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13935 {
13936 struct type *this_type;
13937
13938 this_type = get_die_type (die, cu);
13939 if (this_type == NULL)
13940 this_type = read_enumeration_type (die, cu);
13941
13942 if (die->child != NULL)
13943 {
13944 struct die_info *child_die;
13945 struct symbol *sym;
13946 struct field *fields = NULL;
13947 int num_fields = 0;
13948 const char *name;
13949
13950 child_die = die->child;
13951 while (child_die && child_die->tag)
13952 {
13953 if (child_die->tag != DW_TAG_enumerator)
13954 {
13955 process_die (child_die, cu);
13956 }
13957 else
13958 {
13959 name = dwarf2_name (child_die, cu);
13960 if (name)
13961 {
13962 sym = new_symbol (child_die, this_type, cu);
13963
13964 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13965 {
13966 fields = (struct field *)
13967 xrealloc (fields,
13968 (num_fields + DW_FIELD_ALLOC_CHUNK)
13969 * sizeof (struct field));
13970 }
13971
13972 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13973 FIELD_TYPE (fields[num_fields]) = NULL;
13974 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13975 FIELD_BITSIZE (fields[num_fields]) = 0;
13976
13977 num_fields++;
13978 }
13979 }
13980
13981 child_die = sibling_die (child_die);
13982 }
13983
13984 if (num_fields)
13985 {
13986 TYPE_NFIELDS (this_type) = num_fields;
13987 TYPE_FIELDS (this_type) = (struct field *)
13988 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13989 memcpy (TYPE_FIELDS (this_type), fields,
13990 sizeof (struct field) * num_fields);
13991 xfree (fields);
13992 }
13993 }
13994
13995 /* If we are reading an enum from a .debug_types unit, and the enum
13996 is a declaration, and the enum is not the signatured type in the
13997 unit, then we do not want to add a symbol for it. Adding a
13998 symbol would in some cases obscure the true definition of the
13999 enum, giving users an incomplete type when the definition is
14000 actually available. Note that we do not want to do this for all
14001 enums which are just declarations, because C++0x allows forward
14002 enum declarations. */
14003 if (cu->per_cu->is_debug_types
14004 && die_is_declaration (die, cu))
14005 {
14006 struct signatured_type *sig_type;
14007
14008 sig_type = (struct signatured_type *) cu->per_cu;
14009 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14010 if (sig_type->type_offset_in_section != die->sect_off)
14011 return;
14012 }
14013
14014 new_symbol (die, this_type, cu);
14015 }
14016
14017 /* Extract all information from a DW_TAG_array_type DIE and put it in
14018 the DIE's type field. For now, this only handles one dimensional
14019 arrays. */
14020
14021 static struct type *
14022 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14023 {
14024 struct objfile *objfile = cu->objfile;
14025 struct die_info *child_die;
14026 struct type *type;
14027 struct type *element_type, *range_type, *index_type;
14028 struct type **range_types = NULL;
14029 struct attribute *attr;
14030 int ndim = 0;
14031 struct cleanup *back_to;
14032 const char *name;
14033 unsigned int bit_stride = 0;
14034
14035 element_type = die_type (die, cu);
14036
14037 /* The die_type call above may have already set the type for this DIE. */
14038 type = get_die_type (die, cu);
14039 if (type)
14040 return type;
14041
14042 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14043 if (attr != NULL)
14044 bit_stride = DW_UNSND (attr) * 8;
14045
14046 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14047 if (attr != NULL)
14048 bit_stride = DW_UNSND (attr);
14049
14050 /* Irix 6.2 native cc creates array types without children for
14051 arrays with unspecified length. */
14052 if (die->child == NULL)
14053 {
14054 index_type = objfile_type (objfile)->builtin_int;
14055 range_type = create_static_range_type (NULL, index_type, 0, -1);
14056 type = create_array_type_with_stride (NULL, element_type, range_type,
14057 bit_stride);
14058 return set_die_type (die, type, cu);
14059 }
14060
14061 back_to = make_cleanup (null_cleanup, NULL);
14062 child_die = die->child;
14063 while (child_die && child_die->tag)
14064 {
14065 if (child_die->tag == DW_TAG_subrange_type)
14066 {
14067 struct type *child_type = read_type_die (child_die, cu);
14068
14069 if (child_type != NULL)
14070 {
14071 /* The range type was succesfully read. Save it for the
14072 array type creation. */
14073 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14074 {
14075 range_types = (struct type **)
14076 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14077 * sizeof (struct type *));
14078 if (ndim == 0)
14079 make_cleanup (free_current_contents, &range_types);
14080 }
14081 range_types[ndim++] = child_type;
14082 }
14083 }
14084 child_die = sibling_die (child_die);
14085 }
14086
14087 /* Dwarf2 dimensions are output from left to right, create the
14088 necessary array types in backwards order. */
14089
14090 type = element_type;
14091
14092 if (read_array_order (die, cu) == DW_ORD_col_major)
14093 {
14094 int i = 0;
14095
14096 while (i < ndim)
14097 type = create_array_type_with_stride (NULL, type, range_types[i++],
14098 bit_stride);
14099 }
14100 else
14101 {
14102 while (ndim-- > 0)
14103 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14104 bit_stride);
14105 }
14106
14107 /* Understand Dwarf2 support for vector types (like they occur on
14108 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14109 array type. This is not part of the Dwarf2/3 standard yet, but a
14110 custom vendor extension. The main difference between a regular
14111 array and the vector variant is that vectors are passed by value
14112 to functions. */
14113 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14114 if (attr)
14115 make_vector_type (type);
14116
14117 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14118 implementation may choose to implement triple vectors using this
14119 attribute. */
14120 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14121 if (attr)
14122 {
14123 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14124 TYPE_LENGTH (type) = DW_UNSND (attr);
14125 else
14126 complaint (&symfile_complaints,
14127 _("DW_AT_byte_size for array type smaller "
14128 "than the total size of elements"));
14129 }
14130
14131 name = dwarf2_name (die, cu);
14132 if (name)
14133 TYPE_NAME (type) = name;
14134
14135 /* Install the type in the die. */
14136 set_die_type (die, type, cu);
14137
14138 /* set_die_type should be already done. */
14139 set_descriptive_type (type, die, cu);
14140
14141 do_cleanups (back_to);
14142
14143 return type;
14144 }
14145
14146 static enum dwarf_array_dim_ordering
14147 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14148 {
14149 struct attribute *attr;
14150
14151 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14152
14153 if (attr)
14154 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14155
14156 /* GNU F77 is a special case, as at 08/2004 array type info is the
14157 opposite order to the dwarf2 specification, but data is still
14158 laid out as per normal fortran.
14159
14160 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14161 version checking. */
14162
14163 if (cu->language == language_fortran
14164 && cu->producer && strstr (cu->producer, "GNU F77"))
14165 {
14166 return DW_ORD_row_major;
14167 }
14168
14169 switch (cu->language_defn->la_array_ordering)
14170 {
14171 case array_column_major:
14172 return DW_ORD_col_major;
14173 case array_row_major:
14174 default:
14175 return DW_ORD_row_major;
14176 };
14177 }
14178
14179 /* Extract all information from a DW_TAG_set_type DIE and put it in
14180 the DIE's type field. */
14181
14182 static struct type *
14183 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14184 {
14185 struct type *domain_type, *set_type;
14186 struct attribute *attr;
14187
14188 domain_type = die_type (die, cu);
14189
14190 /* The die_type call above may have already set the type for this DIE. */
14191 set_type = get_die_type (die, cu);
14192 if (set_type)
14193 return set_type;
14194
14195 set_type = create_set_type (NULL, domain_type);
14196
14197 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14198 if (attr)
14199 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14200
14201 return set_die_type (die, set_type, cu);
14202 }
14203
14204 /* A helper for read_common_block that creates a locexpr baton.
14205 SYM is the symbol which we are marking as computed.
14206 COMMON_DIE is the DIE for the common block.
14207 COMMON_LOC is the location expression attribute for the common
14208 block itself.
14209 MEMBER_LOC is the location expression attribute for the particular
14210 member of the common block that we are processing.
14211 CU is the CU from which the above come. */
14212
14213 static void
14214 mark_common_block_symbol_computed (struct symbol *sym,
14215 struct die_info *common_die,
14216 struct attribute *common_loc,
14217 struct attribute *member_loc,
14218 struct dwarf2_cu *cu)
14219 {
14220 struct objfile *objfile = dwarf2_per_objfile->objfile;
14221 struct dwarf2_locexpr_baton *baton;
14222 gdb_byte *ptr;
14223 unsigned int cu_off;
14224 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14225 LONGEST offset = 0;
14226
14227 gdb_assert (common_loc && member_loc);
14228 gdb_assert (attr_form_is_block (common_loc));
14229 gdb_assert (attr_form_is_block (member_loc)
14230 || attr_form_is_constant (member_loc));
14231
14232 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14233 baton->per_cu = cu->per_cu;
14234 gdb_assert (baton->per_cu);
14235
14236 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14237
14238 if (attr_form_is_constant (member_loc))
14239 {
14240 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14241 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14242 }
14243 else
14244 baton->size += DW_BLOCK (member_loc)->size;
14245
14246 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14247 baton->data = ptr;
14248
14249 *ptr++ = DW_OP_call4;
14250 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14251 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14252 ptr += 4;
14253
14254 if (attr_form_is_constant (member_loc))
14255 {
14256 *ptr++ = DW_OP_addr;
14257 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14258 ptr += cu->header.addr_size;
14259 }
14260 else
14261 {
14262 /* We have to copy the data here, because DW_OP_call4 will only
14263 use a DW_AT_location attribute. */
14264 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14265 ptr += DW_BLOCK (member_loc)->size;
14266 }
14267
14268 *ptr++ = DW_OP_plus;
14269 gdb_assert (ptr - baton->data == baton->size);
14270
14271 SYMBOL_LOCATION_BATON (sym) = baton;
14272 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14273 }
14274
14275 /* Create appropriate locally-scoped variables for all the
14276 DW_TAG_common_block entries. Also create a struct common_block
14277 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14278 is used to sepate the common blocks name namespace from regular
14279 variable names. */
14280
14281 static void
14282 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14283 {
14284 struct attribute *attr;
14285
14286 attr = dwarf2_attr (die, DW_AT_location, cu);
14287 if (attr)
14288 {
14289 /* Support the .debug_loc offsets. */
14290 if (attr_form_is_block (attr))
14291 {
14292 /* Ok. */
14293 }
14294 else if (attr_form_is_section_offset (attr))
14295 {
14296 dwarf2_complex_location_expr_complaint ();
14297 attr = NULL;
14298 }
14299 else
14300 {
14301 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14302 "common block member");
14303 attr = NULL;
14304 }
14305 }
14306
14307 if (die->child != NULL)
14308 {
14309 struct objfile *objfile = cu->objfile;
14310 struct die_info *child_die;
14311 size_t n_entries = 0, size;
14312 struct common_block *common_block;
14313 struct symbol *sym;
14314
14315 for (child_die = die->child;
14316 child_die && child_die->tag;
14317 child_die = sibling_die (child_die))
14318 ++n_entries;
14319
14320 size = (sizeof (struct common_block)
14321 + (n_entries - 1) * sizeof (struct symbol *));
14322 common_block
14323 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14324 size);
14325 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14326 common_block->n_entries = 0;
14327
14328 for (child_die = die->child;
14329 child_die && child_die->tag;
14330 child_die = sibling_die (child_die))
14331 {
14332 /* Create the symbol in the DW_TAG_common_block block in the current
14333 symbol scope. */
14334 sym = new_symbol (child_die, NULL, cu);
14335 if (sym != NULL)
14336 {
14337 struct attribute *member_loc;
14338
14339 common_block->contents[common_block->n_entries++] = sym;
14340
14341 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14342 cu);
14343 if (member_loc)
14344 {
14345 /* GDB has handled this for a long time, but it is
14346 not specified by DWARF. It seems to have been
14347 emitted by gfortran at least as recently as:
14348 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14349 complaint (&symfile_complaints,
14350 _("Variable in common block has "
14351 "DW_AT_data_member_location "
14352 "- DIE at 0x%x [in module %s]"),
14353 to_underlying (child_die->sect_off),
14354 objfile_name (cu->objfile));
14355
14356 if (attr_form_is_section_offset (member_loc))
14357 dwarf2_complex_location_expr_complaint ();
14358 else if (attr_form_is_constant (member_loc)
14359 || attr_form_is_block (member_loc))
14360 {
14361 if (attr)
14362 mark_common_block_symbol_computed (sym, die, attr,
14363 member_loc, cu);
14364 }
14365 else
14366 dwarf2_complex_location_expr_complaint ();
14367 }
14368 }
14369 }
14370
14371 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14372 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14373 }
14374 }
14375
14376 /* Create a type for a C++ namespace. */
14377
14378 static struct type *
14379 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14380 {
14381 struct objfile *objfile = cu->objfile;
14382 const char *previous_prefix, *name;
14383 int is_anonymous;
14384 struct type *type;
14385
14386 /* For extensions, reuse the type of the original namespace. */
14387 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14388 {
14389 struct die_info *ext_die;
14390 struct dwarf2_cu *ext_cu = cu;
14391
14392 ext_die = dwarf2_extension (die, &ext_cu);
14393 type = read_type_die (ext_die, ext_cu);
14394
14395 /* EXT_CU may not be the same as CU.
14396 Ensure TYPE is recorded with CU in die_type_hash. */
14397 return set_die_type (die, type, cu);
14398 }
14399
14400 name = namespace_name (die, &is_anonymous, cu);
14401
14402 /* Now build the name of the current namespace. */
14403
14404 previous_prefix = determine_prefix (die, cu);
14405 if (previous_prefix[0] != '\0')
14406 name = typename_concat (&objfile->objfile_obstack,
14407 previous_prefix, name, 0, cu);
14408
14409 /* Create the type. */
14410 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14411 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14412
14413 return set_die_type (die, type, cu);
14414 }
14415
14416 /* Read a namespace scope. */
14417
14418 static void
14419 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14420 {
14421 struct objfile *objfile = cu->objfile;
14422 int is_anonymous;
14423
14424 /* Add a symbol associated to this if we haven't seen the namespace
14425 before. Also, add a using directive if it's an anonymous
14426 namespace. */
14427
14428 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14429 {
14430 struct type *type;
14431
14432 type = read_type_die (die, cu);
14433 new_symbol (die, type, cu);
14434
14435 namespace_name (die, &is_anonymous, cu);
14436 if (is_anonymous)
14437 {
14438 const char *previous_prefix = determine_prefix (die, cu);
14439
14440 add_using_directive (using_directives (cu->language),
14441 previous_prefix, TYPE_NAME (type), NULL,
14442 NULL, NULL, 0, &objfile->objfile_obstack);
14443 }
14444 }
14445
14446 if (die->child != NULL)
14447 {
14448 struct die_info *child_die = die->child;
14449
14450 while (child_die && child_die->tag)
14451 {
14452 process_die (child_die, cu);
14453 child_die = sibling_die (child_die);
14454 }
14455 }
14456 }
14457
14458 /* Read a Fortran module as type. This DIE can be only a declaration used for
14459 imported module. Still we need that type as local Fortran "use ... only"
14460 declaration imports depend on the created type in determine_prefix. */
14461
14462 static struct type *
14463 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14464 {
14465 struct objfile *objfile = cu->objfile;
14466 const char *module_name;
14467 struct type *type;
14468
14469 module_name = dwarf2_name (die, cu);
14470 if (!module_name)
14471 complaint (&symfile_complaints,
14472 _("DW_TAG_module has no name, offset 0x%x"),
14473 to_underlying (die->sect_off));
14474 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14475
14476 /* determine_prefix uses TYPE_TAG_NAME. */
14477 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14478
14479 return set_die_type (die, type, cu);
14480 }
14481
14482 /* Read a Fortran module. */
14483
14484 static void
14485 read_module (struct die_info *die, struct dwarf2_cu *cu)
14486 {
14487 struct die_info *child_die = die->child;
14488 struct type *type;
14489
14490 type = read_type_die (die, cu);
14491 new_symbol (die, type, cu);
14492
14493 while (child_die && child_die->tag)
14494 {
14495 process_die (child_die, cu);
14496 child_die = sibling_die (child_die);
14497 }
14498 }
14499
14500 /* Return the name of the namespace represented by DIE. Set
14501 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14502 namespace. */
14503
14504 static const char *
14505 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14506 {
14507 struct die_info *current_die;
14508 const char *name = NULL;
14509
14510 /* Loop through the extensions until we find a name. */
14511
14512 for (current_die = die;
14513 current_die != NULL;
14514 current_die = dwarf2_extension (die, &cu))
14515 {
14516 /* We don't use dwarf2_name here so that we can detect the absence
14517 of a name -> anonymous namespace. */
14518 name = dwarf2_string_attr (die, DW_AT_name, cu);
14519
14520 if (name != NULL)
14521 break;
14522 }
14523
14524 /* Is it an anonymous namespace? */
14525
14526 *is_anonymous = (name == NULL);
14527 if (*is_anonymous)
14528 name = CP_ANONYMOUS_NAMESPACE_STR;
14529
14530 return name;
14531 }
14532
14533 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14534 the user defined type vector. */
14535
14536 static struct type *
14537 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14538 {
14539 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14540 struct comp_unit_head *cu_header = &cu->header;
14541 struct type *type;
14542 struct attribute *attr_byte_size;
14543 struct attribute *attr_address_class;
14544 int byte_size, addr_class;
14545 struct type *target_type;
14546
14547 target_type = die_type (die, cu);
14548
14549 /* The die_type call above may have already set the type for this DIE. */
14550 type = get_die_type (die, cu);
14551 if (type)
14552 return type;
14553
14554 type = lookup_pointer_type (target_type);
14555
14556 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14557 if (attr_byte_size)
14558 byte_size = DW_UNSND (attr_byte_size);
14559 else
14560 byte_size = cu_header->addr_size;
14561
14562 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14563 if (attr_address_class)
14564 addr_class = DW_UNSND (attr_address_class);
14565 else
14566 addr_class = DW_ADDR_none;
14567
14568 /* If the pointer size or address class is different than the
14569 default, create a type variant marked as such and set the
14570 length accordingly. */
14571 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14572 {
14573 if (gdbarch_address_class_type_flags_p (gdbarch))
14574 {
14575 int type_flags;
14576
14577 type_flags = gdbarch_address_class_type_flags
14578 (gdbarch, byte_size, addr_class);
14579 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14580 == 0);
14581 type = make_type_with_address_space (type, type_flags);
14582 }
14583 else if (TYPE_LENGTH (type) != byte_size)
14584 {
14585 complaint (&symfile_complaints,
14586 _("invalid pointer size %d"), byte_size);
14587 }
14588 else
14589 {
14590 /* Should we also complain about unhandled address classes? */
14591 }
14592 }
14593
14594 TYPE_LENGTH (type) = byte_size;
14595 return set_die_type (die, type, cu);
14596 }
14597
14598 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14599 the user defined type vector. */
14600
14601 static struct type *
14602 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14603 {
14604 struct type *type;
14605 struct type *to_type;
14606 struct type *domain;
14607
14608 to_type = die_type (die, cu);
14609 domain = die_containing_type (die, cu);
14610
14611 /* The calls above may have already set the type for this DIE. */
14612 type = get_die_type (die, cu);
14613 if (type)
14614 return type;
14615
14616 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14617 type = lookup_methodptr_type (to_type);
14618 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14619 {
14620 struct type *new_type = alloc_type (cu->objfile);
14621
14622 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14623 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14624 TYPE_VARARGS (to_type));
14625 type = lookup_methodptr_type (new_type);
14626 }
14627 else
14628 type = lookup_memberptr_type (to_type, domain);
14629
14630 return set_die_type (die, type, cu);
14631 }
14632
14633 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14634 the user defined type vector. */
14635
14636 static struct type *
14637 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14638 enum type_code refcode)
14639 {
14640 struct comp_unit_head *cu_header = &cu->header;
14641 struct type *type, *target_type;
14642 struct attribute *attr;
14643
14644 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14645
14646 target_type = die_type (die, cu);
14647
14648 /* The die_type call above may have already set the type for this DIE. */
14649 type = get_die_type (die, cu);
14650 if (type)
14651 return type;
14652
14653 type = lookup_reference_type (target_type, refcode);
14654 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14655 if (attr)
14656 {
14657 TYPE_LENGTH (type) = DW_UNSND (attr);
14658 }
14659 else
14660 {
14661 TYPE_LENGTH (type) = cu_header->addr_size;
14662 }
14663 return set_die_type (die, type, cu);
14664 }
14665
14666 /* Add the given cv-qualifiers to the element type of the array. GCC
14667 outputs DWARF type qualifiers that apply to an array, not the
14668 element type. But GDB relies on the array element type to carry
14669 the cv-qualifiers. This mimics section 6.7.3 of the C99
14670 specification. */
14671
14672 static struct type *
14673 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14674 struct type *base_type, int cnst, int voltl)
14675 {
14676 struct type *el_type, *inner_array;
14677
14678 base_type = copy_type (base_type);
14679 inner_array = base_type;
14680
14681 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14682 {
14683 TYPE_TARGET_TYPE (inner_array) =
14684 copy_type (TYPE_TARGET_TYPE (inner_array));
14685 inner_array = TYPE_TARGET_TYPE (inner_array);
14686 }
14687
14688 el_type = TYPE_TARGET_TYPE (inner_array);
14689 cnst |= TYPE_CONST (el_type);
14690 voltl |= TYPE_VOLATILE (el_type);
14691 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14692
14693 return set_die_type (die, base_type, cu);
14694 }
14695
14696 static struct type *
14697 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14698 {
14699 struct type *base_type, *cv_type;
14700
14701 base_type = die_type (die, cu);
14702
14703 /* The die_type call above may have already set the type for this DIE. */
14704 cv_type = get_die_type (die, cu);
14705 if (cv_type)
14706 return cv_type;
14707
14708 /* In case the const qualifier is applied to an array type, the element type
14709 is so qualified, not the array type (section 6.7.3 of C99). */
14710 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14711 return add_array_cv_type (die, cu, base_type, 1, 0);
14712
14713 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14714 return set_die_type (die, cv_type, cu);
14715 }
14716
14717 static struct type *
14718 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14719 {
14720 struct type *base_type, *cv_type;
14721
14722 base_type = die_type (die, cu);
14723
14724 /* The die_type call above may have already set the type for this DIE. */
14725 cv_type = get_die_type (die, cu);
14726 if (cv_type)
14727 return cv_type;
14728
14729 /* In case the volatile qualifier is applied to an array type, the
14730 element type is so qualified, not the array type (section 6.7.3
14731 of C99). */
14732 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14733 return add_array_cv_type (die, cu, base_type, 0, 1);
14734
14735 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14736 return set_die_type (die, cv_type, cu);
14737 }
14738
14739 /* Handle DW_TAG_restrict_type. */
14740
14741 static struct type *
14742 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14743 {
14744 struct type *base_type, *cv_type;
14745
14746 base_type = die_type (die, cu);
14747
14748 /* The die_type call above may have already set the type for this DIE. */
14749 cv_type = get_die_type (die, cu);
14750 if (cv_type)
14751 return cv_type;
14752
14753 cv_type = make_restrict_type (base_type);
14754 return set_die_type (die, cv_type, cu);
14755 }
14756
14757 /* Handle DW_TAG_atomic_type. */
14758
14759 static struct type *
14760 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14761 {
14762 struct type *base_type, *cv_type;
14763
14764 base_type = die_type (die, cu);
14765
14766 /* The die_type call above may have already set the type for this DIE. */
14767 cv_type = get_die_type (die, cu);
14768 if (cv_type)
14769 return cv_type;
14770
14771 cv_type = make_atomic_type (base_type);
14772 return set_die_type (die, cv_type, cu);
14773 }
14774
14775 /* Extract all information from a DW_TAG_string_type DIE and add to
14776 the user defined type vector. It isn't really a user defined type,
14777 but it behaves like one, with other DIE's using an AT_user_def_type
14778 attribute to reference it. */
14779
14780 static struct type *
14781 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14782 {
14783 struct objfile *objfile = cu->objfile;
14784 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14785 struct type *type, *range_type, *index_type, *char_type;
14786 struct attribute *attr;
14787 unsigned int length;
14788
14789 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14790 if (attr)
14791 {
14792 length = DW_UNSND (attr);
14793 }
14794 else
14795 {
14796 /* Check for the DW_AT_byte_size attribute. */
14797 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14798 if (attr)
14799 {
14800 length = DW_UNSND (attr);
14801 }
14802 else
14803 {
14804 length = 1;
14805 }
14806 }
14807
14808 index_type = objfile_type (objfile)->builtin_int;
14809 range_type = create_static_range_type (NULL, index_type, 1, length);
14810 char_type = language_string_char_type (cu->language_defn, gdbarch);
14811 type = create_string_type (NULL, char_type, range_type);
14812
14813 return set_die_type (die, type, cu);
14814 }
14815
14816 /* Assuming that DIE corresponds to a function, returns nonzero
14817 if the function is prototyped. */
14818
14819 static int
14820 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14821 {
14822 struct attribute *attr;
14823
14824 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14825 if (attr && (DW_UNSND (attr) != 0))
14826 return 1;
14827
14828 /* The DWARF standard implies that the DW_AT_prototyped attribute
14829 is only meaninful for C, but the concept also extends to other
14830 languages that allow unprototyped functions (Eg: Objective C).
14831 For all other languages, assume that functions are always
14832 prototyped. */
14833 if (cu->language != language_c
14834 && cu->language != language_objc
14835 && cu->language != language_opencl)
14836 return 1;
14837
14838 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14839 prototyped and unprototyped functions; default to prototyped,
14840 since that is more common in modern code (and RealView warns
14841 about unprototyped functions). */
14842 if (producer_is_realview (cu->producer))
14843 return 1;
14844
14845 return 0;
14846 }
14847
14848 /* Handle DIES due to C code like:
14849
14850 struct foo
14851 {
14852 int (*funcp)(int a, long l);
14853 int b;
14854 };
14855
14856 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14857
14858 static struct type *
14859 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14860 {
14861 struct objfile *objfile = cu->objfile;
14862 struct type *type; /* Type that this function returns. */
14863 struct type *ftype; /* Function that returns above type. */
14864 struct attribute *attr;
14865
14866 type = die_type (die, cu);
14867
14868 /* The die_type call above may have already set the type for this DIE. */
14869 ftype = get_die_type (die, cu);
14870 if (ftype)
14871 return ftype;
14872
14873 ftype = lookup_function_type (type);
14874
14875 if (prototyped_function_p (die, cu))
14876 TYPE_PROTOTYPED (ftype) = 1;
14877
14878 /* Store the calling convention in the type if it's available in
14879 the subroutine die. Otherwise set the calling convention to
14880 the default value DW_CC_normal. */
14881 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14882 if (attr)
14883 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14884 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14885 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14886 else
14887 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14888
14889 /* Record whether the function returns normally to its caller or not
14890 if the DWARF producer set that information. */
14891 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14892 if (attr && (DW_UNSND (attr) != 0))
14893 TYPE_NO_RETURN (ftype) = 1;
14894
14895 /* We need to add the subroutine type to the die immediately so
14896 we don't infinitely recurse when dealing with parameters
14897 declared as the same subroutine type. */
14898 set_die_type (die, ftype, cu);
14899
14900 if (die->child != NULL)
14901 {
14902 struct type *void_type = objfile_type (objfile)->builtin_void;
14903 struct die_info *child_die;
14904 int nparams, iparams;
14905
14906 /* Count the number of parameters.
14907 FIXME: GDB currently ignores vararg functions, but knows about
14908 vararg member functions. */
14909 nparams = 0;
14910 child_die = die->child;
14911 while (child_die && child_die->tag)
14912 {
14913 if (child_die->tag == DW_TAG_formal_parameter)
14914 nparams++;
14915 else if (child_die->tag == DW_TAG_unspecified_parameters)
14916 TYPE_VARARGS (ftype) = 1;
14917 child_die = sibling_die (child_die);
14918 }
14919
14920 /* Allocate storage for parameters and fill them in. */
14921 TYPE_NFIELDS (ftype) = nparams;
14922 TYPE_FIELDS (ftype) = (struct field *)
14923 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14924
14925 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14926 even if we error out during the parameters reading below. */
14927 for (iparams = 0; iparams < nparams; iparams++)
14928 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14929
14930 iparams = 0;
14931 child_die = die->child;
14932 while (child_die && child_die->tag)
14933 {
14934 if (child_die->tag == DW_TAG_formal_parameter)
14935 {
14936 struct type *arg_type;
14937
14938 /* DWARF version 2 has no clean way to discern C++
14939 static and non-static member functions. G++ helps
14940 GDB by marking the first parameter for non-static
14941 member functions (which is the this pointer) as
14942 artificial. We pass this information to
14943 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14944
14945 DWARF version 3 added DW_AT_object_pointer, which GCC
14946 4.5 does not yet generate. */
14947 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14948 if (attr)
14949 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14950 else
14951 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14952 arg_type = die_type (child_die, cu);
14953
14954 /* RealView does not mark THIS as const, which the testsuite
14955 expects. GCC marks THIS as const in method definitions,
14956 but not in the class specifications (GCC PR 43053). */
14957 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14958 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14959 {
14960 int is_this = 0;
14961 struct dwarf2_cu *arg_cu = cu;
14962 const char *name = dwarf2_name (child_die, cu);
14963
14964 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14965 if (attr)
14966 {
14967 /* If the compiler emits this, use it. */
14968 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14969 is_this = 1;
14970 }
14971 else if (name && strcmp (name, "this") == 0)
14972 /* Function definitions will have the argument names. */
14973 is_this = 1;
14974 else if (name == NULL && iparams == 0)
14975 /* Declarations may not have the names, so like
14976 elsewhere in GDB, assume an artificial first
14977 argument is "this". */
14978 is_this = 1;
14979
14980 if (is_this)
14981 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14982 arg_type, 0);
14983 }
14984
14985 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14986 iparams++;
14987 }
14988 child_die = sibling_die (child_die);
14989 }
14990 }
14991
14992 return ftype;
14993 }
14994
14995 static struct type *
14996 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14997 {
14998 struct objfile *objfile = cu->objfile;
14999 const char *name = NULL;
15000 struct type *this_type, *target_type;
15001
15002 name = dwarf2_full_name (NULL, die, cu);
15003 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15004 TYPE_TARGET_STUB (this_type) = 1;
15005 set_die_type (die, this_type, cu);
15006 target_type = die_type (die, cu);
15007 if (target_type != this_type)
15008 TYPE_TARGET_TYPE (this_type) = target_type;
15009 else
15010 {
15011 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15012 spec and cause infinite loops in GDB. */
15013 complaint (&symfile_complaints,
15014 _("Self-referential DW_TAG_typedef "
15015 "- DIE at 0x%x [in module %s]"),
15016 to_underlying (die->sect_off), objfile_name (objfile));
15017 TYPE_TARGET_TYPE (this_type) = NULL;
15018 }
15019 return this_type;
15020 }
15021
15022 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15023 (which may be different from NAME) to the architecture back-end to allow
15024 it to guess the correct format if necessary. */
15025
15026 static struct type *
15027 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15028 const char *name_hint)
15029 {
15030 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15031 const struct floatformat **format;
15032 struct type *type;
15033
15034 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15035 if (format)
15036 type = init_float_type (objfile, bits, name, format);
15037 else
15038 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15039
15040 return type;
15041 }
15042
15043 /* Find a representation of a given base type and install
15044 it in the TYPE field of the die. */
15045
15046 static struct type *
15047 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15048 {
15049 struct objfile *objfile = cu->objfile;
15050 struct type *type;
15051 struct attribute *attr;
15052 int encoding = 0, bits = 0;
15053 const char *name;
15054
15055 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15056 if (attr)
15057 {
15058 encoding = DW_UNSND (attr);
15059 }
15060 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15061 if (attr)
15062 {
15063 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15064 }
15065 name = dwarf2_name (die, cu);
15066 if (!name)
15067 {
15068 complaint (&symfile_complaints,
15069 _("DW_AT_name missing from DW_TAG_base_type"));
15070 }
15071
15072 switch (encoding)
15073 {
15074 case DW_ATE_address:
15075 /* Turn DW_ATE_address into a void * pointer. */
15076 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15077 type = init_pointer_type (objfile, bits, name, type);
15078 break;
15079 case DW_ATE_boolean:
15080 type = init_boolean_type (objfile, bits, 1, name);
15081 break;
15082 case DW_ATE_complex_float:
15083 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15084 type = init_complex_type (objfile, name, type);
15085 break;
15086 case DW_ATE_decimal_float:
15087 type = init_decfloat_type (objfile, bits, name);
15088 break;
15089 case DW_ATE_float:
15090 type = dwarf2_init_float_type (objfile, bits, name, name);
15091 break;
15092 case DW_ATE_signed:
15093 type = init_integer_type (objfile, bits, 0, name);
15094 break;
15095 case DW_ATE_unsigned:
15096 if (cu->language == language_fortran
15097 && name
15098 && startswith (name, "character("))
15099 type = init_character_type (objfile, bits, 1, name);
15100 else
15101 type = init_integer_type (objfile, bits, 1, name);
15102 break;
15103 case DW_ATE_signed_char:
15104 if (cu->language == language_ada || cu->language == language_m2
15105 || cu->language == language_pascal
15106 || cu->language == language_fortran)
15107 type = init_character_type (objfile, bits, 0, name);
15108 else
15109 type = init_integer_type (objfile, bits, 0, name);
15110 break;
15111 case DW_ATE_unsigned_char:
15112 if (cu->language == language_ada || cu->language == language_m2
15113 || cu->language == language_pascal
15114 || cu->language == language_fortran
15115 || cu->language == language_rust)
15116 type = init_character_type (objfile, bits, 1, name);
15117 else
15118 type = init_integer_type (objfile, bits, 1, name);
15119 break;
15120 case DW_ATE_UTF:
15121 {
15122 gdbarch *arch = get_objfile_arch (objfile);
15123
15124 if (bits == 16)
15125 type = builtin_type (arch)->builtin_char16;
15126 else if (bits == 32)
15127 type = builtin_type (arch)->builtin_char32;
15128 else
15129 {
15130 complaint (&symfile_complaints,
15131 _("unsupported DW_ATE_UTF bit size: '%d'"),
15132 bits);
15133 type = init_integer_type (objfile, bits, 1, name);
15134 }
15135 return set_die_type (die, type, cu);
15136 }
15137 break;
15138
15139 default:
15140 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15141 dwarf_type_encoding_name (encoding));
15142 type = init_type (objfile, TYPE_CODE_ERROR,
15143 bits / TARGET_CHAR_BIT, name);
15144 break;
15145 }
15146
15147 if (name && strcmp (name, "char") == 0)
15148 TYPE_NOSIGN (type) = 1;
15149
15150 return set_die_type (die, type, cu);
15151 }
15152
15153 /* Parse dwarf attribute if it's a block, reference or constant and put the
15154 resulting value of the attribute into struct bound_prop.
15155 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15156
15157 static int
15158 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15159 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15160 {
15161 struct dwarf2_property_baton *baton;
15162 struct obstack *obstack = &cu->objfile->objfile_obstack;
15163
15164 if (attr == NULL || prop == NULL)
15165 return 0;
15166
15167 if (attr_form_is_block (attr))
15168 {
15169 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15170 baton->referenced_type = NULL;
15171 baton->locexpr.per_cu = cu->per_cu;
15172 baton->locexpr.size = DW_BLOCK (attr)->size;
15173 baton->locexpr.data = DW_BLOCK (attr)->data;
15174 prop->data.baton = baton;
15175 prop->kind = PROP_LOCEXPR;
15176 gdb_assert (prop->data.baton != NULL);
15177 }
15178 else if (attr_form_is_ref (attr))
15179 {
15180 struct dwarf2_cu *target_cu = cu;
15181 struct die_info *target_die;
15182 struct attribute *target_attr;
15183
15184 target_die = follow_die_ref (die, attr, &target_cu);
15185 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15186 if (target_attr == NULL)
15187 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15188 target_cu);
15189 if (target_attr == NULL)
15190 return 0;
15191
15192 switch (target_attr->name)
15193 {
15194 case DW_AT_location:
15195 if (attr_form_is_section_offset (target_attr))
15196 {
15197 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15198 baton->referenced_type = die_type (target_die, target_cu);
15199 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15200 prop->data.baton = baton;
15201 prop->kind = PROP_LOCLIST;
15202 gdb_assert (prop->data.baton != NULL);
15203 }
15204 else if (attr_form_is_block (target_attr))
15205 {
15206 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15207 baton->referenced_type = die_type (target_die, target_cu);
15208 baton->locexpr.per_cu = cu->per_cu;
15209 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15210 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15211 prop->data.baton = baton;
15212 prop->kind = PROP_LOCEXPR;
15213 gdb_assert (prop->data.baton != NULL);
15214 }
15215 else
15216 {
15217 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15218 "dynamic property");
15219 return 0;
15220 }
15221 break;
15222 case DW_AT_data_member_location:
15223 {
15224 LONGEST offset;
15225
15226 if (!handle_data_member_location (target_die, target_cu,
15227 &offset))
15228 return 0;
15229
15230 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15231 baton->referenced_type = read_type_die (target_die->parent,
15232 target_cu);
15233 baton->offset_info.offset = offset;
15234 baton->offset_info.type = die_type (target_die, target_cu);
15235 prop->data.baton = baton;
15236 prop->kind = PROP_ADDR_OFFSET;
15237 break;
15238 }
15239 }
15240 }
15241 else if (attr_form_is_constant (attr))
15242 {
15243 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15244 prop->kind = PROP_CONST;
15245 }
15246 else
15247 {
15248 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15249 dwarf2_name (die, cu));
15250 return 0;
15251 }
15252
15253 return 1;
15254 }
15255
15256 /* Read the given DW_AT_subrange DIE. */
15257
15258 static struct type *
15259 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15260 {
15261 struct type *base_type, *orig_base_type;
15262 struct type *range_type;
15263 struct attribute *attr;
15264 struct dynamic_prop low, high;
15265 int low_default_is_valid;
15266 int high_bound_is_count = 0;
15267 const char *name;
15268 LONGEST negative_mask;
15269
15270 orig_base_type = die_type (die, cu);
15271 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15272 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15273 creating the range type, but we use the result of check_typedef
15274 when examining properties of the type. */
15275 base_type = check_typedef (orig_base_type);
15276
15277 /* The die_type call above may have already set the type for this DIE. */
15278 range_type = get_die_type (die, cu);
15279 if (range_type)
15280 return range_type;
15281
15282 low.kind = PROP_CONST;
15283 high.kind = PROP_CONST;
15284 high.data.const_val = 0;
15285
15286 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15287 omitting DW_AT_lower_bound. */
15288 switch (cu->language)
15289 {
15290 case language_c:
15291 case language_cplus:
15292 low.data.const_val = 0;
15293 low_default_is_valid = 1;
15294 break;
15295 case language_fortran:
15296 low.data.const_val = 1;
15297 low_default_is_valid = 1;
15298 break;
15299 case language_d:
15300 case language_objc:
15301 case language_rust:
15302 low.data.const_val = 0;
15303 low_default_is_valid = (cu->header.version >= 4);
15304 break;
15305 case language_ada:
15306 case language_m2:
15307 case language_pascal:
15308 low.data.const_val = 1;
15309 low_default_is_valid = (cu->header.version >= 4);
15310 break;
15311 default:
15312 low.data.const_val = 0;
15313 low_default_is_valid = 0;
15314 break;
15315 }
15316
15317 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15318 if (attr)
15319 attr_to_dynamic_prop (attr, die, cu, &low);
15320 else if (!low_default_is_valid)
15321 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15322 "- DIE at 0x%x [in module %s]"),
15323 to_underlying (die->sect_off), objfile_name (cu->objfile));
15324
15325 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15326 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15327 {
15328 attr = dwarf2_attr (die, DW_AT_count, cu);
15329 if (attr_to_dynamic_prop (attr, die, cu, &high))
15330 {
15331 /* If bounds are constant do the final calculation here. */
15332 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15333 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15334 else
15335 high_bound_is_count = 1;
15336 }
15337 }
15338
15339 /* Dwarf-2 specifications explicitly allows to create subrange types
15340 without specifying a base type.
15341 In that case, the base type must be set to the type of
15342 the lower bound, upper bound or count, in that order, if any of these
15343 three attributes references an object that has a type.
15344 If no base type is found, the Dwarf-2 specifications say that
15345 a signed integer type of size equal to the size of an address should
15346 be used.
15347 For the following C code: `extern char gdb_int [];'
15348 GCC produces an empty range DIE.
15349 FIXME: muller/2010-05-28: Possible references to object for low bound,
15350 high bound or count are not yet handled by this code. */
15351 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15352 {
15353 struct objfile *objfile = cu->objfile;
15354 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15355 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15356 struct type *int_type = objfile_type (objfile)->builtin_int;
15357
15358 /* Test "int", "long int", and "long long int" objfile types,
15359 and select the first one having a size above or equal to the
15360 architecture address size. */
15361 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15362 base_type = int_type;
15363 else
15364 {
15365 int_type = objfile_type (objfile)->builtin_long;
15366 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15367 base_type = int_type;
15368 else
15369 {
15370 int_type = objfile_type (objfile)->builtin_long_long;
15371 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15372 base_type = int_type;
15373 }
15374 }
15375 }
15376
15377 /* Normally, the DWARF producers are expected to use a signed
15378 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15379 But this is unfortunately not always the case, as witnessed
15380 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15381 is used instead. To work around that ambiguity, we treat
15382 the bounds as signed, and thus sign-extend their values, when
15383 the base type is signed. */
15384 negative_mask =
15385 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15386 if (low.kind == PROP_CONST
15387 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15388 low.data.const_val |= negative_mask;
15389 if (high.kind == PROP_CONST
15390 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15391 high.data.const_val |= negative_mask;
15392
15393 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15394
15395 if (high_bound_is_count)
15396 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15397
15398 /* Ada expects an empty array on no boundary attributes. */
15399 if (attr == NULL && cu->language != language_ada)
15400 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15401
15402 name = dwarf2_name (die, cu);
15403 if (name)
15404 TYPE_NAME (range_type) = name;
15405
15406 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15407 if (attr)
15408 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15409
15410 set_die_type (die, range_type, cu);
15411
15412 /* set_die_type should be already done. */
15413 set_descriptive_type (range_type, die, cu);
15414
15415 return range_type;
15416 }
15417
15418 static struct type *
15419 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15420 {
15421 struct type *type;
15422
15423 /* For now, we only support the C meaning of an unspecified type: void. */
15424
15425 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15426 TYPE_NAME (type) = dwarf2_name (die, cu);
15427
15428 return set_die_type (die, type, cu);
15429 }
15430
15431 /* Read a single die and all its descendents. Set the die's sibling
15432 field to NULL; set other fields in the die correctly, and set all
15433 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15434 location of the info_ptr after reading all of those dies. PARENT
15435 is the parent of the die in question. */
15436
15437 static struct die_info *
15438 read_die_and_children (const struct die_reader_specs *reader,
15439 const gdb_byte *info_ptr,
15440 const gdb_byte **new_info_ptr,
15441 struct die_info *parent)
15442 {
15443 struct die_info *die;
15444 const gdb_byte *cur_ptr;
15445 int has_children;
15446
15447 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15448 if (die == NULL)
15449 {
15450 *new_info_ptr = cur_ptr;
15451 return NULL;
15452 }
15453 store_in_ref_table (die, reader->cu);
15454
15455 if (has_children)
15456 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15457 else
15458 {
15459 die->child = NULL;
15460 *new_info_ptr = cur_ptr;
15461 }
15462
15463 die->sibling = NULL;
15464 die->parent = parent;
15465 return die;
15466 }
15467
15468 /* Read a die, all of its descendents, and all of its siblings; set
15469 all of the fields of all of the dies correctly. Arguments are as
15470 in read_die_and_children. */
15471
15472 static struct die_info *
15473 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15474 const gdb_byte *info_ptr,
15475 const gdb_byte **new_info_ptr,
15476 struct die_info *parent)
15477 {
15478 struct die_info *first_die, *last_sibling;
15479 const gdb_byte *cur_ptr;
15480
15481 cur_ptr = info_ptr;
15482 first_die = last_sibling = NULL;
15483
15484 while (1)
15485 {
15486 struct die_info *die
15487 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15488
15489 if (die == NULL)
15490 {
15491 *new_info_ptr = cur_ptr;
15492 return first_die;
15493 }
15494
15495 if (!first_die)
15496 first_die = die;
15497 else
15498 last_sibling->sibling = die;
15499
15500 last_sibling = die;
15501 }
15502 }
15503
15504 /* Read a die, all of its descendents, and all of its siblings; set
15505 all of the fields of all of the dies correctly. Arguments are as
15506 in read_die_and_children.
15507 This the main entry point for reading a DIE and all its children. */
15508
15509 static struct die_info *
15510 read_die_and_siblings (const struct die_reader_specs *reader,
15511 const gdb_byte *info_ptr,
15512 const gdb_byte **new_info_ptr,
15513 struct die_info *parent)
15514 {
15515 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15516 new_info_ptr, parent);
15517
15518 if (dwarf_die_debug)
15519 {
15520 fprintf_unfiltered (gdb_stdlog,
15521 "Read die from %s@0x%x of %s:\n",
15522 get_section_name (reader->die_section),
15523 (unsigned) (info_ptr - reader->die_section->buffer),
15524 bfd_get_filename (reader->abfd));
15525 dump_die (die, dwarf_die_debug);
15526 }
15527
15528 return die;
15529 }
15530
15531 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15532 attributes.
15533 The caller is responsible for filling in the extra attributes
15534 and updating (*DIEP)->num_attrs.
15535 Set DIEP to point to a newly allocated die with its information,
15536 except for its child, sibling, and parent fields.
15537 Set HAS_CHILDREN to tell whether the die has children or not. */
15538
15539 static const gdb_byte *
15540 read_full_die_1 (const struct die_reader_specs *reader,
15541 struct die_info **diep, const gdb_byte *info_ptr,
15542 int *has_children, int num_extra_attrs)
15543 {
15544 unsigned int abbrev_number, bytes_read, i;
15545 struct abbrev_info *abbrev;
15546 struct die_info *die;
15547 struct dwarf2_cu *cu = reader->cu;
15548 bfd *abfd = reader->abfd;
15549
15550 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15551 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15552 info_ptr += bytes_read;
15553 if (!abbrev_number)
15554 {
15555 *diep = NULL;
15556 *has_children = 0;
15557 return info_ptr;
15558 }
15559
15560 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15561 if (!abbrev)
15562 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15563 abbrev_number,
15564 bfd_get_filename (abfd));
15565
15566 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15567 die->sect_off = sect_off;
15568 die->tag = abbrev->tag;
15569 die->abbrev = abbrev_number;
15570
15571 /* Make the result usable.
15572 The caller needs to update num_attrs after adding the extra
15573 attributes. */
15574 die->num_attrs = abbrev->num_attrs;
15575
15576 for (i = 0; i < abbrev->num_attrs; ++i)
15577 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15578 info_ptr);
15579
15580 *diep = die;
15581 *has_children = abbrev->has_children;
15582 return info_ptr;
15583 }
15584
15585 /* Read a die and all its attributes.
15586 Set DIEP to point to a newly allocated die with its information,
15587 except for its child, sibling, and parent fields.
15588 Set HAS_CHILDREN to tell whether the die has children or not. */
15589
15590 static const gdb_byte *
15591 read_full_die (const struct die_reader_specs *reader,
15592 struct die_info **diep, const gdb_byte *info_ptr,
15593 int *has_children)
15594 {
15595 const gdb_byte *result;
15596
15597 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15598
15599 if (dwarf_die_debug)
15600 {
15601 fprintf_unfiltered (gdb_stdlog,
15602 "Read die from %s@0x%x of %s:\n",
15603 get_section_name (reader->die_section),
15604 (unsigned) (info_ptr - reader->die_section->buffer),
15605 bfd_get_filename (reader->abfd));
15606 dump_die (*diep, dwarf_die_debug);
15607 }
15608
15609 return result;
15610 }
15611 \f
15612 /* Abbreviation tables.
15613
15614 In DWARF version 2, the description of the debugging information is
15615 stored in a separate .debug_abbrev section. Before we read any
15616 dies from a section we read in all abbreviations and install them
15617 in a hash table. */
15618
15619 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15620
15621 static struct abbrev_info *
15622 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15623 {
15624 struct abbrev_info *abbrev;
15625
15626 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15627 memset (abbrev, 0, sizeof (struct abbrev_info));
15628
15629 return abbrev;
15630 }
15631
15632 /* Add an abbreviation to the table. */
15633
15634 static void
15635 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15636 unsigned int abbrev_number,
15637 struct abbrev_info *abbrev)
15638 {
15639 unsigned int hash_number;
15640
15641 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15642 abbrev->next = abbrev_table->abbrevs[hash_number];
15643 abbrev_table->abbrevs[hash_number] = abbrev;
15644 }
15645
15646 /* Look up an abbrev in the table.
15647 Returns NULL if the abbrev is not found. */
15648
15649 static struct abbrev_info *
15650 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15651 unsigned int abbrev_number)
15652 {
15653 unsigned int hash_number;
15654 struct abbrev_info *abbrev;
15655
15656 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15657 abbrev = abbrev_table->abbrevs[hash_number];
15658
15659 while (abbrev)
15660 {
15661 if (abbrev->number == abbrev_number)
15662 return abbrev;
15663 abbrev = abbrev->next;
15664 }
15665 return NULL;
15666 }
15667
15668 /* Read in an abbrev table. */
15669
15670 static struct abbrev_table *
15671 abbrev_table_read_table (struct dwarf2_section_info *section,
15672 sect_offset sect_off)
15673 {
15674 struct objfile *objfile = dwarf2_per_objfile->objfile;
15675 bfd *abfd = get_section_bfd_owner (section);
15676 struct abbrev_table *abbrev_table;
15677 const gdb_byte *abbrev_ptr;
15678 struct abbrev_info *cur_abbrev;
15679 unsigned int abbrev_number, bytes_read, abbrev_name;
15680 unsigned int abbrev_form;
15681 struct attr_abbrev *cur_attrs;
15682 unsigned int allocated_attrs;
15683
15684 abbrev_table = XNEW (struct abbrev_table);
15685 abbrev_table->sect_off = sect_off;
15686 obstack_init (&abbrev_table->abbrev_obstack);
15687 abbrev_table->abbrevs =
15688 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15689 ABBREV_HASH_SIZE);
15690 memset (abbrev_table->abbrevs, 0,
15691 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15692
15693 dwarf2_read_section (objfile, section);
15694 abbrev_ptr = section->buffer + to_underlying (sect_off);
15695 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15696 abbrev_ptr += bytes_read;
15697
15698 allocated_attrs = ATTR_ALLOC_CHUNK;
15699 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15700
15701 /* Loop until we reach an abbrev number of 0. */
15702 while (abbrev_number)
15703 {
15704 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15705
15706 /* read in abbrev header */
15707 cur_abbrev->number = abbrev_number;
15708 cur_abbrev->tag
15709 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15710 abbrev_ptr += bytes_read;
15711 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15712 abbrev_ptr += 1;
15713
15714 /* now read in declarations */
15715 for (;;)
15716 {
15717 LONGEST implicit_const;
15718
15719 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15720 abbrev_ptr += bytes_read;
15721 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15722 abbrev_ptr += bytes_read;
15723 if (abbrev_form == DW_FORM_implicit_const)
15724 {
15725 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15726 &bytes_read);
15727 abbrev_ptr += bytes_read;
15728 }
15729 else
15730 {
15731 /* Initialize it due to a false compiler warning. */
15732 implicit_const = -1;
15733 }
15734
15735 if (abbrev_name == 0)
15736 break;
15737
15738 if (cur_abbrev->num_attrs == allocated_attrs)
15739 {
15740 allocated_attrs += ATTR_ALLOC_CHUNK;
15741 cur_attrs
15742 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15743 }
15744
15745 cur_attrs[cur_abbrev->num_attrs].name
15746 = (enum dwarf_attribute) abbrev_name;
15747 cur_attrs[cur_abbrev->num_attrs].form
15748 = (enum dwarf_form) abbrev_form;
15749 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15750 ++cur_abbrev->num_attrs;
15751 }
15752
15753 cur_abbrev->attrs =
15754 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15755 cur_abbrev->num_attrs);
15756 memcpy (cur_abbrev->attrs, cur_attrs,
15757 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15758
15759 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15760
15761 /* Get next abbreviation.
15762 Under Irix6 the abbreviations for a compilation unit are not
15763 always properly terminated with an abbrev number of 0.
15764 Exit loop if we encounter an abbreviation which we have
15765 already read (which means we are about to read the abbreviations
15766 for the next compile unit) or if the end of the abbreviation
15767 table is reached. */
15768 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15769 break;
15770 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15771 abbrev_ptr += bytes_read;
15772 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15773 break;
15774 }
15775
15776 xfree (cur_attrs);
15777 return abbrev_table;
15778 }
15779
15780 /* Free the resources held by ABBREV_TABLE. */
15781
15782 static void
15783 abbrev_table_free (struct abbrev_table *abbrev_table)
15784 {
15785 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15786 xfree (abbrev_table);
15787 }
15788
15789 /* Same as abbrev_table_free but as a cleanup.
15790 We pass in a pointer to the pointer to the table so that we can
15791 set the pointer to NULL when we're done. It also simplifies
15792 build_type_psymtabs_1. */
15793
15794 static void
15795 abbrev_table_free_cleanup (void *table_ptr)
15796 {
15797 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15798
15799 if (*abbrev_table_ptr != NULL)
15800 abbrev_table_free (*abbrev_table_ptr);
15801 *abbrev_table_ptr = NULL;
15802 }
15803
15804 /* Read the abbrev table for CU from ABBREV_SECTION. */
15805
15806 static void
15807 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15808 struct dwarf2_section_info *abbrev_section)
15809 {
15810 cu->abbrev_table =
15811 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15812 }
15813
15814 /* Release the memory used by the abbrev table for a compilation unit. */
15815
15816 static void
15817 dwarf2_free_abbrev_table (void *ptr_to_cu)
15818 {
15819 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15820
15821 if (cu->abbrev_table != NULL)
15822 abbrev_table_free (cu->abbrev_table);
15823 /* Set this to NULL so that we SEGV if we try to read it later,
15824 and also because free_comp_unit verifies this is NULL. */
15825 cu->abbrev_table = NULL;
15826 }
15827 \f
15828 /* Returns nonzero if TAG represents a type that we might generate a partial
15829 symbol for. */
15830
15831 static int
15832 is_type_tag_for_partial (int tag)
15833 {
15834 switch (tag)
15835 {
15836 #if 0
15837 /* Some types that would be reasonable to generate partial symbols for,
15838 that we don't at present. */
15839 case DW_TAG_array_type:
15840 case DW_TAG_file_type:
15841 case DW_TAG_ptr_to_member_type:
15842 case DW_TAG_set_type:
15843 case DW_TAG_string_type:
15844 case DW_TAG_subroutine_type:
15845 #endif
15846 case DW_TAG_base_type:
15847 case DW_TAG_class_type:
15848 case DW_TAG_interface_type:
15849 case DW_TAG_enumeration_type:
15850 case DW_TAG_structure_type:
15851 case DW_TAG_subrange_type:
15852 case DW_TAG_typedef:
15853 case DW_TAG_union_type:
15854 return 1;
15855 default:
15856 return 0;
15857 }
15858 }
15859
15860 /* Load all DIEs that are interesting for partial symbols into memory. */
15861
15862 static struct partial_die_info *
15863 load_partial_dies (const struct die_reader_specs *reader,
15864 const gdb_byte *info_ptr, int building_psymtab)
15865 {
15866 struct dwarf2_cu *cu = reader->cu;
15867 struct objfile *objfile = cu->objfile;
15868 struct partial_die_info *part_die;
15869 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15870 struct abbrev_info *abbrev;
15871 unsigned int bytes_read;
15872 unsigned int load_all = 0;
15873 int nesting_level = 1;
15874
15875 parent_die = NULL;
15876 last_die = NULL;
15877
15878 gdb_assert (cu->per_cu != NULL);
15879 if (cu->per_cu->load_all_dies)
15880 load_all = 1;
15881
15882 cu->partial_dies
15883 = htab_create_alloc_ex (cu->header.length / 12,
15884 partial_die_hash,
15885 partial_die_eq,
15886 NULL,
15887 &cu->comp_unit_obstack,
15888 hashtab_obstack_allocate,
15889 dummy_obstack_deallocate);
15890
15891 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15892
15893 while (1)
15894 {
15895 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15896
15897 /* A NULL abbrev means the end of a series of children. */
15898 if (abbrev == NULL)
15899 {
15900 if (--nesting_level == 0)
15901 {
15902 /* PART_DIE was probably the last thing allocated on the
15903 comp_unit_obstack, so we could call obstack_free
15904 here. We don't do that because the waste is small,
15905 and will be cleaned up when we're done with this
15906 compilation unit. This way, we're also more robust
15907 against other users of the comp_unit_obstack. */
15908 return first_die;
15909 }
15910 info_ptr += bytes_read;
15911 last_die = parent_die;
15912 parent_die = parent_die->die_parent;
15913 continue;
15914 }
15915
15916 /* Check for template arguments. We never save these; if
15917 they're seen, we just mark the parent, and go on our way. */
15918 if (parent_die != NULL
15919 && cu->language == language_cplus
15920 && (abbrev->tag == DW_TAG_template_type_param
15921 || abbrev->tag == DW_TAG_template_value_param))
15922 {
15923 parent_die->has_template_arguments = 1;
15924
15925 if (!load_all)
15926 {
15927 /* We don't need a partial DIE for the template argument. */
15928 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15929 continue;
15930 }
15931 }
15932
15933 /* We only recurse into c++ subprograms looking for template arguments.
15934 Skip their other children. */
15935 if (!load_all
15936 && cu->language == language_cplus
15937 && parent_die != NULL
15938 && parent_die->tag == DW_TAG_subprogram)
15939 {
15940 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15941 continue;
15942 }
15943
15944 /* Check whether this DIE is interesting enough to save. Normally
15945 we would not be interested in members here, but there may be
15946 later variables referencing them via DW_AT_specification (for
15947 static members). */
15948 if (!load_all
15949 && !is_type_tag_for_partial (abbrev->tag)
15950 && abbrev->tag != DW_TAG_constant
15951 && abbrev->tag != DW_TAG_enumerator
15952 && abbrev->tag != DW_TAG_subprogram
15953 && abbrev->tag != DW_TAG_lexical_block
15954 && abbrev->tag != DW_TAG_variable
15955 && abbrev->tag != DW_TAG_namespace
15956 && abbrev->tag != DW_TAG_module
15957 && abbrev->tag != DW_TAG_member
15958 && abbrev->tag != DW_TAG_imported_unit
15959 && abbrev->tag != DW_TAG_imported_declaration)
15960 {
15961 /* Otherwise we skip to the next sibling, if any. */
15962 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15963 continue;
15964 }
15965
15966 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15967 info_ptr);
15968
15969 /* This two-pass algorithm for processing partial symbols has a
15970 high cost in cache pressure. Thus, handle some simple cases
15971 here which cover the majority of C partial symbols. DIEs
15972 which neither have specification tags in them, nor could have
15973 specification tags elsewhere pointing at them, can simply be
15974 processed and discarded.
15975
15976 This segment is also optional; scan_partial_symbols and
15977 add_partial_symbol will handle these DIEs if we chain
15978 them in normally. When compilers which do not emit large
15979 quantities of duplicate debug information are more common,
15980 this code can probably be removed. */
15981
15982 /* Any complete simple types at the top level (pretty much all
15983 of them, for a language without namespaces), can be processed
15984 directly. */
15985 if (parent_die == NULL
15986 && part_die->has_specification == 0
15987 && part_die->is_declaration == 0
15988 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15989 || part_die->tag == DW_TAG_base_type
15990 || part_die->tag == DW_TAG_subrange_type))
15991 {
15992 if (building_psymtab && part_die->name != NULL)
15993 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15994 VAR_DOMAIN, LOC_TYPEDEF,
15995 &objfile->static_psymbols,
15996 0, cu->language, objfile);
15997 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15998 continue;
15999 }
16000
16001 /* The exception for DW_TAG_typedef with has_children above is
16002 a workaround of GCC PR debug/47510. In the case of this complaint
16003 type_name_no_tag_or_error will error on such types later.
16004
16005 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16006 it could not find the child DIEs referenced later, this is checked
16007 above. In correct DWARF DW_TAG_typedef should have no children. */
16008
16009 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16010 complaint (&symfile_complaints,
16011 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16012 "- DIE at 0x%x [in module %s]"),
16013 to_underlying (part_die->sect_off), objfile_name (objfile));
16014
16015 /* If we're at the second level, and we're an enumerator, and
16016 our parent has no specification (meaning possibly lives in a
16017 namespace elsewhere), then we can add the partial symbol now
16018 instead of queueing it. */
16019 if (part_die->tag == DW_TAG_enumerator
16020 && parent_die != NULL
16021 && parent_die->die_parent == NULL
16022 && parent_die->tag == DW_TAG_enumeration_type
16023 && parent_die->has_specification == 0)
16024 {
16025 if (part_die->name == NULL)
16026 complaint (&symfile_complaints,
16027 _("malformed enumerator DIE ignored"));
16028 else if (building_psymtab)
16029 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16030 VAR_DOMAIN, LOC_CONST,
16031 cu->language == language_cplus
16032 ? &objfile->global_psymbols
16033 : &objfile->static_psymbols,
16034 0, cu->language, objfile);
16035
16036 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16037 continue;
16038 }
16039
16040 /* We'll save this DIE so link it in. */
16041 part_die->die_parent = parent_die;
16042 part_die->die_sibling = NULL;
16043 part_die->die_child = NULL;
16044
16045 if (last_die && last_die == parent_die)
16046 last_die->die_child = part_die;
16047 else if (last_die)
16048 last_die->die_sibling = part_die;
16049
16050 last_die = part_die;
16051
16052 if (first_die == NULL)
16053 first_die = part_die;
16054
16055 /* Maybe add the DIE to the hash table. Not all DIEs that we
16056 find interesting need to be in the hash table, because we
16057 also have the parent/sibling/child chains; only those that we
16058 might refer to by offset later during partial symbol reading.
16059
16060 For now this means things that might have be the target of a
16061 DW_AT_specification, DW_AT_abstract_origin, or
16062 DW_AT_extension. DW_AT_extension will refer only to
16063 namespaces; DW_AT_abstract_origin refers to functions (and
16064 many things under the function DIE, but we do not recurse
16065 into function DIEs during partial symbol reading) and
16066 possibly variables as well; DW_AT_specification refers to
16067 declarations. Declarations ought to have the DW_AT_declaration
16068 flag. It happens that GCC forgets to put it in sometimes, but
16069 only for functions, not for types.
16070
16071 Adding more things than necessary to the hash table is harmless
16072 except for the performance cost. Adding too few will result in
16073 wasted time in find_partial_die, when we reread the compilation
16074 unit with load_all_dies set. */
16075
16076 if (load_all
16077 || abbrev->tag == DW_TAG_constant
16078 || abbrev->tag == DW_TAG_subprogram
16079 || abbrev->tag == DW_TAG_variable
16080 || abbrev->tag == DW_TAG_namespace
16081 || part_die->is_declaration)
16082 {
16083 void **slot;
16084
16085 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16086 to_underlying (part_die->sect_off),
16087 INSERT);
16088 *slot = part_die;
16089 }
16090
16091 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16092
16093 /* For some DIEs we want to follow their children (if any). For C
16094 we have no reason to follow the children of structures; for other
16095 languages we have to, so that we can get at method physnames
16096 to infer fully qualified class names, for DW_AT_specification,
16097 and for C++ template arguments. For C++, we also look one level
16098 inside functions to find template arguments (if the name of the
16099 function does not already contain the template arguments).
16100
16101 For Ada, we need to scan the children of subprograms and lexical
16102 blocks as well because Ada allows the definition of nested
16103 entities that could be interesting for the debugger, such as
16104 nested subprograms for instance. */
16105 if (last_die->has_children
16106 && (load_all
16107 || last_die->tag == DW_TAG_namespace
16108 || last_die->tag == DW_TAG_module
16109 || last_die->tag == DW_TAG_enumeration_type
16110 || (cu->language == language_cplus
16111 && last_die->tag == DW_TAG_subprogram
16112 && (last_die->name == NULL
16113 || strchr (last_die->name, '<') == NULL))
16114 || (cu->language != language_c
16115 && (last_die->tag == DW_TAG_class_type
16116 || last_die->tag == DW_TAG_interface_type
16117 || last_die->tag == DW_TAG_structure_type
16118 || last_die->tag == DW_TAG_union_type))
16119 || (cu->language == language_ada
16120 && (last_die->tag == DW_TAG_subprogram
16121 || last_die->tag == DW_TAG_lexical_block))))
16122 {
16123 nesting_level++;
16124 parent_die = last_die;
16125 continue;
16126 }
16127
16128 /* Otherwise we skip to the next sibling, if any. */
16129 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16130
16131 /* Back to the top, do it again. */
16132 }
16133 }
16134
16135 /* Read a minimal amount of information into the minimal die structure. */
16136
16137 static const gdb_byte *
16138 read_partial_die (const struct die_reader_specs *reader,
16139 struct partial_die_info *part_die,
16140 struct abbrev_info *abbrev, unsigned int abbrev_len,
16141 const gdb_byte *info_ptr)
16142 {
16143 struct dwarf2_cu *cu = reader->cu;
16144 struct objfile *objfile = cu->objfile;
16145 const gdb_byte *buffer = reader->buffer;
16146 unsigned int i;
16147 struct attribute attr;
16148 int has_low_pc_attr = 0;
16149 int has_high_pc_attr = 0;
16150 int high_pc_relative = 0;
16151
16152 memset (part_die, 0, sizeof (struct partial_die_info));
16153
16154 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16155
16156 info_ptr += abbrev_len;
16157
16158 if (abbrev == NULL)
16159 return info_ptr;
16160
16161 part_die->tag = abbrev->tag;
16162 part_die->has_children = abbrev->has_children;
16163
16164 for (i = 0; i < abbrev->num_attrs; ++i)
16165 {
16166 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16167
16168 /* Store the data if it is of an attribute we want to keep in a
16169 partial symbol table. */
16170 switch (attr.name)
16171 {
16172 case DW_AT_name:
16173 switch (part_die->tag)
16174 {
16175 case DW_TAG_compile_unit:
16176 case DW_TAG_partial_unit:
16177 case DW_TAG_type_unit:
16178 /* Compilation units have a DW_AT_name that is a filename, not
16179 a source language identifier. */
16180 case DW_TAG_enumeration_type:
16181 case DW_TAG_enumerator:
16182 /* These tags always have simple identifiers already; no need
16183 to canonicalize them. */
16184 part_die->name = DW_STRING (&attr);
16185 break;
16186 default:
16187 part_die->name
16188 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16189 &objfile->per_bfd->storage_obstack);
16190 break;
16191 }
16192 break;
16193 case DW_AT_linkage_name:
16194 case DW_AT_MIPS_linkage_name:
16195 /* Note that both forms of linkage name might appear. We
16196 assume they will be the same, and we only store the last
16197 one we see. */
16198 if (cu->language == language_ada)
16199 part_die->name = DW_STRING (&attr);
16200 part_die->linkage_name = DW_STRING (&attr);
16201 break;
16202 case DW_AT_low_pc:
16203 has_low_pc_attr = 1;
16204 part_die->lowpc = attr_value_as_address (&attr);
16205 break;
16206 case DW_AT_high_pc:
16207 has_high_pc_attr = 1;
16208 part_die->highpc = attr_value_as_address (&attr);
16209 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16210 high_pc_relative = 1;
16211 break;
16212 case DW_AT_location:
16213 /* Support the .debug_loc offsets. */
16214 if (attr_form_is_block (&attr))
16215 {
16216 part_die->d.locdesc = DW_BLOCK (&attr);
16217 }
16218 else if (attr_form_is_section_offset (&attr))
16219 {
16220 dwarf2_complex_location_expr_complaint ();
16221 }
16222 else
16223 {
16224 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16225 "partial symbol information");
16226 }
16227 break;
16228 case DW_AT_external:
16229 part_die->is_external = DW_UNSND (&attr);
16230 break;
16231 case DW_AT_declaration:
16232 part_die->is_declaration = DW_UNSND (&attr);
16233 break;
16234 case DW_AT_type:
16235 part_die->has_type = 1;
16236 break;
16237 case DW_AT_abstract_origin:
16238 case DW_AT_specification:
16239 case DW_AT_extension:
16240 part_die->has_specification = 1;
16241 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16242 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16243 || cu->per_cu->is_dwz);
16244 break;
16245 case DW_AT_sibling:
16246 /* Ignore absolute siblings, they might point outside of
16247 the current compile unit. */
16248 if (attr.form == DW_FORM_ref_addr)
16249 complaint (&symfile_complaints,
16250 _("ignoring absolute DW_AT_sibling"));
16251 else
16252 {
16253 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16254 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16255
16256 if (sibling_ptr < info_ptr)
16257 complaint (&symfile_complaints,
16258 _("DW_AT_sibling points backwards"));
16259 else if (sibling_ptr > reader->buffer_end)
16260 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16261 else
16262 part_die->sibling = sibling_ptr;
16263 }
16264 break;
16265 case DW_AT_byte_size:
16266 part_die->has_byte_size = 1;
16267 break;
16268 case DW_AT_const_value:
16269 part_die->has_const_value = 1;
16270 break;
16271 case DW_AT_calling_convention:
16272 /* DWARF doesn't provide a way to identify a program's source-level
16273 entry point. DW_AT_calling_convention attributes are only meant
16274 to describe functions' calling conventions.
16275
16276 However, because it's a necessary piece of information in
16277 Fortran, and before DWARF 4 DW_CC_program was the only
16278 piece of debugging information whose definition refers to
16279 a 'main program' at all, several compilers marked Fortran
16280 main programs with DW_CC_program --- even when those
16281 functions use the standard calling conventions.
16282
16283 Although DWARF now specifies a way to provide this
16284 information, we support this practice for backward
16285 compatibility. */
16286 if (DW_UNSND (&attr) == DW_CC_program
16287 && cu->language == language_fortran)
16288 part_die->main_subprogram = 1;
16289 break;
16290 case DW_AT_inline:
16291 if (DW_UNSND (&attr) == DW_INL_inlined
16292 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16293 part_die->may_be_inlined = 1;
16294 break;
16295
16296 case DW_AT_import:
16297 if (part_die->tag == DW_TAG_imported_unit)
16298 {
16299 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16300 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16301 || cu->per_cu->is_dwz);
16302 }
16303 break;
16304
16305 case DW_AT_main_subprogram:
16306 part_die->main_subprogram = DW_UNSND (&attr);
16307 break;
16308
16309 default:
16310 break;
16311 }
16312 }
16313
16314 if (high_pc_relative)
16315 part_die->highpc += part_die->lowpc;
16316
16317 if (has_low_pc_attr && has_high_pc_attr)
16318 {
16319 /* When using the GNU linker, .gnu.linkonce. sections are used to
16320 eliminate duplicate copies of functions and vtables and such.
16321 The linker will arbitrarily choose one and discard the others.
16322 The AT_*_pc values for such functions refer to local labels in
16323 these sections. If the section from that file was discarded, the
16324 labels are not in the output, so the relocs get a value of 0.
16325 If this is a discarded function, mark the pc bounds as invalid,
16326 so that GDB will ignore it. */
16327 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16328 {
16329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16330
16331 complaint (&symfile_complaints,
16332 _("DW_AT_low_pc %s is zero "
16333 "for DIE at 0x%x [in module %s]"),
16334 paddress (gdbarch, part_die->lowpc),
16335 to_underlying (part_die->sect_off), objfile_name (objfile));
16336 }
16337 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16338 else if (part_die->lowpc >= part_die->highpc)
16339 {
16340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16341
16342 complaint (&symfile_complaints,
16343 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16344 "for DIE at 0x%x [in module %s]"),
16345 paddress (gdbarch, part_die->lowpc),
16346 paddress (gdbarch, part_die->highpc),
16347 to_underlying (part_die->sect_off),
16348 objfile_name (objfile));
16349 }
16350 else
16351 part_die->has_pc_info = 1;
16352 }
16353
16354 return info_ptr;
16355 }
16356
16357 /* Find a cached partial DIE at OFFSET in CU. */
16358
16359 static struct partial_die_info *
16360 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16361 {
16362 struct partial_die_info *lookup_die = NULL;
16363 struct partial_die_info part_die;
16364
16365 part_die.sect_off = sect_off;
16366 lookup_die = ((struct partial_die_info *)
16367 htab_find_with_hash (cu->partial_dies, &part_die,
16368 to_underlying (sect_off)));
16369
16370 return lookup_die;
16371 }
16372
16373 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16374 except in the case of .debug_types DIEs which do not reference
16375 outside their CU (they do however referencing other types via
16376 DW_FORM_ref_sig8). */
16377
16378 static struct partial_die_info *
16379 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16380 {
16381 struct objfile *objfile = cu->objfile;
16382 struct dwarf2_per_cu_data *per_cu = NULL;
16383 struct partial_die_info *pd = NULL;
16384
16385 if (offset_in_dwz == cu->per_cu->is_dwz
16386 && offset_in_cu_p (&cu->header, sect_off))
16387 {
16388 pd = find_partial_die_in_comp_unit (sect_off, cu);
16389 if (pd != NULL)
16390 return pd;
16391 /* We missed recording what we needed.
16392 Load all dies and try again. */
16393 per_cu = cu->per_cu;
16394 }
16395 else
16396 {
16397 /* TUs don't reference other CUs/TUs (except via type signatures). */
16398 if (cu->per_cu->is_debug_types)
16399 {
16400 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16401 " external reference to offset 0x%x [in module %s].\n"),
16402 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16403 bfd_get_filename (objfile->obfd));
16404 }
16405 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16406 objfile);
16407
16408 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16409 load_partial_comp_unit (per_cu);
16410
16411 per_cu->cu->last_used = 0;
16412 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16413 }
16414
16415 /* If we didn't find it, and not all dies have been loaded,
16416 load them all and try again. */
16417
16418 if (pd == NULL && per_cu->load_all_dies == 0)
16419 {
16420 per_cu->load_all_dies = 1;
16421
16422 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16423 THIS_CU->cu may already be in use. So we can't just free it and
16424 replace its DIEs with the ones we read in. Instead, we leave those
16425 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16426 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16427 set. */
16428 load_partial_comp_unit (per_cu);
16429
16430 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16431 }
16432
16433 if (pd == NULL)
16434 internal_error (__FILE__, __LINE__,
16435 _("could not find partial DIE 0x%x "
16436 "in cache [from module %s]\n"),
16437 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16438 return pd;
16439 }
16440
16441 /* See if we can figure out if the class lives in a namespace. We do
16442 this by looking for a member function; its demangled name will
16443 contain namespace info, if there is any. */
16444
16445 static void
16446 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16447 struct dwarf2_cu *cu)
16448 {
16449 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16450 what template types look like, because the demangler
16451 frequently doesn't give the same name as the debug info. We
16452 could fix this by only using the demangled name to get the
16453 prefix (but see comment in read_structure_type). */
16454
16455 struct partial_die_info *real_pdi;
16456 struct partial_die_info *child_pdi;
16457
16458 /* If this DIE (this DIE's specification, if any) has a parent, then
16459 we should not do this. We'll prepend the parent's fully qualified
16460 name when we create the partial symbol. */
16461
16462 real_pdi = struct_pdi;
16463 while (real_pdi->has_specification)
16464 real_pdi = find_partial_die (real_pdi->spec_offset,
16465 real_pdi->spec_is_dwz, cu);
16466
16467 if (real_pdi->die_parent != NULL)
16468 return;
16469
16470 for (child_pdi = struct_pdi->die_child;
16471 child_pdi != NULL;
16472 child_pdi = child_pdi->die_sibling)
16473 {
16474 if (child_pdi->tag == DW_TAG_subprogram
16475 && child_pdi->linkage_name != NULL)
16476 {
16477 char *actual_class_name
16478 = language_class_name_from_physname (cu->language_defn,
16479 child_pdi->linkage_name);
16480 if (actual_class_name != NULL)
16481 {
16482 struct_pdi->name
16483 = ((const char *)
16484 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16485 actual_class_name,
16486 strlen (actual_class_name)));
16487 xfree (actual_class_name);
16488 }
16489 break;
16490 }
16491 }
16492 }
16493
16494 /* Adjust PART_DIE before generating a symbol for it. This function
16495 may set the is_external flag or change the DIE's name. */
16496
16497 static void
16498 fixup_partial_die (struct partial_die_info *part_die,
16499 struct dwarf2_cu *cu)
16500 {
16501 /* Once we've fixed up a die, there's no point in doing so again.
16502 This also avoids a memory leak if we were to call
16503 guess_partial_die_structure_name multiple times. */
16504 if (part_die->fixup_called)
16505 return;
16506
16507 /* If we found a reference attribute and the DIE has no name, try
16508 to find a name in the referred to DIE. */
16509
16510 if (part_die->name == NULL && part_die->has_specification)
16511 {
16512 struct partial_die_info *spec_die;
16513
16514 spec_die = find_partial_die (part_die->spec_offset,
16515 part_die->spec_is_dwz, cu);
16516
16517 fixup_partial_die (spec_die, cu);
16518
16519 if (spec_die->name)
16520 {
16521 part_die->name = spec_die->name;
16522
16523 /* Copy DW_AT_external attribute if it is set. */
16524 if (spec_die->is_external)
16525 part_die->is_external = spec_die->is_external;
16526 }
16527 }
16528
16529 /* Set default names for some unnamed DIEs. */
16530
16531 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16532 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16533
16534 /* If there is no parent die to provide a namespace, and there are
16535 children, see if we can determine the namespace from their linkage
16536 name. */
16537 if (cu->language == language_cplus
16538 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16539 && part_die->die_parent == NULL
16540 && part_die->has_children
16541 && (part_die->tag == DW_TAG_class_type
16542 || part_die->tag == DW_TAG_structure_type
16543 || part_die->tag == DW_TAG_union_type))
16544 guess_partial_die_structure_name (part_die, cu);
16545
16546 /* GCC might emit a nameless struct or union that has a linkage
16547 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16548 if (part_die->name == NULL
16549 && (part_die->tag == DW_TAG_class_type
16550 || part_die->tag == DW_TAG_interface_type
16551 || part_die->tag == DW_TAG_structure_type
16552 || part_die->tag == DW_TAG_union_type)
16553 && part_die->linkage_name != NULL)
16554 {
16555 char *demangled;
16556
16557 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16558 if (demangled)
16559 {
16560 const char *base;
16561
16562 /* Strip any leading namespaces/classes, keep only the base name.
16563 DW_AT_name for named DIEs does not contain the prefixes. */
16564 base = strrchr (demangled, ':');
16565 if (base && base > demangled && base[-1] == ':')
16566 base++;
16567 else
16568 base = demangled;
16569
16570 part_die->name
16571 = ((const char *)
16572 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16573 base, strlen (base)));
16574 xfree (demangled);
16575 }
16576 }
16577
16578 part_die->fixup_called = 1;
16579 }
16580
16581 /* Read an attribute value described by an attribute form. */
16582
16583 static const gdb_byte *
16584 read_attribute_value (const struct die_reader_specs *reader,
16585 struct attribute *attr, unsigned form,
16586 LONGEST implicit_const, const gdb_byte *info_ptr)
16587 {
16588 struct dwarf2_cu *cu = reader->cu;
16589 struct objfile *objfile = cu->objfile;
16590 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16591 bfd *abfd = reader->abfd;
16592 struct comp_unit_head *cu_header = &cu->header;
16593 unsigned int bytes_read;
16594 struct dwarf_block *blk;
16595
16596 attr->form = (enum dwarf_form) form;
16597 switch (form)
16598 {
16599 case DW_FORM_ref_addr:
16600 if (cu->header.version == 2)
16601 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16602 else
16603 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16604 &cu->header, &bytes_read);
16605 info_ptr += bytes_read;
16606 break;
16607 case DW_FORM_GNU_ref_alt:
16608 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16609 info_ptr += bytes_read;
16610 break;
16611 case DW_FORM_addr:
16612 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16613 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16614 info_ptr += bytes_read;
16615 break;
16616 case DW_FORM_block2:
16617 blk = dwarf_alloc_block (cu);
16618 blk->size = read_2_bytes (abfd, info_ptr);
16619 info_ptr += 2;
16620 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16621 info_ptr += blk->size;
16622 DW_BLOCK (attr) = blk;
16623 break;
16624 case DW_FORM_block4:
16625 blk = dwarf_alloc_block (cu);
16626 blk->size = read_4_bytes (abfd, info_ptr);
16627 info_ptr += 4;
16628 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16629 info_ptr += blk->size;
16630 DW_BLOCK (attr) = blk;
16631 break;
16632 case DW_FORM_data2:
16633 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16634 info_ptr += 2;
16635 break;
16636 case DW_FORM_data4:
16637 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16638 info_ptr += 4;
16639 break;
16640 case DW_FORM_data8:
16641 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16642 info_ptr += 8;
16643 break;
16644 case DW_FORM_data16:
16645 blk = dwarf_alloc_block (cu);
16646 blk->size = 16;
16647 blk->data = read_n_bytes (abfd, info_ptr, 16);
16648 info_ptr += 16;
16649 DW_BLOCK (attr) = blk;
16650 break;
16651 case DW_FORM_sec_offset:
16652 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16653 info_ptr += bytes_read;
16654 break;
16655 case DW_FORM_string:
16656 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16657 DW_STRING_IS_CANONICAL (attr) = 0;
16658 info_ptr += bytes_read;
16659 break;
16660 case DW_FORM_strp:
16661 if (!cu->per_cu->is_dwz)
16662 {
16663 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16664 &bytes_read);
16665 DW_STRING_IS_CANONICAL (attr) = 0;
16666 info_ptr += bytes_read;
16667 break;
16668 }
16669 /* FALLTHROUGH */
16670 case DW_FORM_line_strp:
16671 if (!cu->per_cu->is_dwz)
16672 {
16673 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16674 cu_header, &bytes_read);
16675 DW_STRING_IS_CANONICAL (attr) = 0;
16676 info_ptr += bytes_read;
16677 break;
16678 }
16679 /* FALLTHROUGH */
16680 case DW_FORM_GNU_strp_alt:
16681 {
16682 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16683 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16684 &bytes_read);
16685
16686 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16687 DW_STRING_IS_CANONICAL (attr) = 0;
16688 info_ptr += bytes_read;
16689 }
16690 break;
16691 case DW_FORM_exprloc:
16692 case DW_FORM_block:
16693 blk = dwarf_alloc_block (cu);
16694 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16695 info_ptr += bytes_read;
16696 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16697 info_ptr += blk->size;
16698 DW_BLOCK (attr) = blk;
16699 break;
16700 case DW_FORM_block1:
16701 blk = dwarf_alloc_block (cu);
16702 blk->size = read_1_byte (abfd, info_ptr);
16703 info_ptr += 1;
16704 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16705 info_ptr += blk->size;
16706 DW_BLOCK (attr) = blk;
16707 break;
16708 case DW_FORM_data1:
16709 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16710 info_ptr += 1;
16711 break;
16712 case DW_FORM_flag:
16713 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16714 info_ptr += 1;
16715 break;
16716 case DW_FORM_flag_present:
16717 DW_UNSND (attr) = 1;
16718 break;
16719 case DW_FORM_sdata:
16720 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16721 info_ptr += bytes_read;
16722 break;
16723 case DW_FORM_udata:
16724 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16725 info_ptr += bytes_read;
16726 break;
16727 case DW_FORM_ref1:
16728 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16729 + read_1_byte (abfd, info_ptr));
16730 info_ptr += 1;
16731 break;
16732 case DW_FORM_ref2:
16733 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16734 + read_2_bytes (abfd, info_ptr));
16735 info_ptr += 2;
16736 break;
16737 case DW_FORM_ref4:
16738 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16739 + read_4_bytes (abfd, info_ptr));
16740 info_ptr += 4;
16741 break;
16742 case DW_FORM_ref8:
16743 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16744 + read_8_bytes (abfd, info_ptr));
16745 info_ptr += 8;
16746 break;
16747 case DW_FORM_ref_sig8:
16748 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16749 info_ptr += 8;
16750 break;
16751 case DW_FORM_ref_udata:
16752 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16753 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16754 info_ptr += bytes_read;
16755 break;
16756 case DW_FORM_indirect:
16757 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16758 info_ptr += bytes_read;
16759 if (form == DW_FORM_implicit_const)
16760 {
16761 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16762 info_ptr += bytes_read;
16763 }
16764 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16765 info_ptr);
16766 break;
16767 case DW_FORM_implicit_const:
16768 DW_SND (attr) = implicit_const;
16769 break;
16770 case DW_FORM_GNU_addr_index:
16771 if (reader->dwo_file == NULL)
16772 {
16773 /* For now flag a hard error.
16774 Later we can turn this into a complaint. */
16775 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16776 dwarf_form_name (form),
16777 bfd_get_filename (abfd));
16778 }
16779 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16780 info_ptr += bytes_read;
16781 break;
16782 case DW_FORM_GNU_str_index:
16783 if (reader->dwo_file == NULL)
16784 {
16785 /* For now flag a hard error.
16786 Later we can turn this into a complaint if warranted. */
16787 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16788 dwarf_form_name (form),
16789 bfd_get_filename (abfd));
16790 }
16791 {
16792 ULONGEST str_index =
16793 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16794
16795 DW_STRING (attr) = read_str_index (reader, str_index);
16796 DW_STRING_IS_CANONICAL (attr) = 0;
16797 info_ptr += bytes_read;
16798 }
16799 break;
16800 default:
16801 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16802 dwarf_form_name (form),
16803 bfd_get_filename (abfd));
16804 }
16805
16806 /* Super hack. */
16807 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16808 attr->form = DW_FORM_GNU_ref_alt;
16809
16810 /* We have seen instances where the compiler tried to emit a byte
16811 size attribute of -1 which ended up being encoded as an unsigned
16812 0xffffffff. Although 0xffffffff is technically a valid size value,
16813 an object of this size seems pretty unlikely so we can relatively
16814 safely treat these cases as if the size attribute was invalid and
16815 treat them as zero by default. */
16816 if (attr->name == DW_AT_byte_size
16817 && form == DW_FORM_data4
16818 && DW_UNSND (attr) >= 0xffffffff)
16819 {
16820 complaint
16821 (&symfile_complaints,
16822 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16823 hex_string (DW_UNSND (attr)));
16824 DW_UNSND (attr) = 0;
16825 }
16826
16827 return info_ptr;
16828 }
16829
16830 /* Read an attribute described by an abbreviated attribute. */
16831
16832 static const gdb_byte *
16833 read_attribute (const struct die_reader_specs *reader,
16834 struct attribute *attr, struct attr_abbrev *abbrev,
16835 const gdb_byte *info_ptr)
16836 {
16837 attr->name = abbrev->name;
16838 return read_attribute_value (reader, attr, abbrev->form,
16839 abbrev->implicit_const, info_ptr);
16840 }
16841
16842 /* Read dwarf information from a buffer. */
16843
16844 static unsigned int
16845 read_1_byte (bfd *abfd, const gdb_byte *buf)
16846 {
16847 return bfd_get_8 (abfd, buf);
16848 }
16849
16850 static int
16851 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16852 {
16853 return bfd_get_signed_8 (abfd, buf);
16854 }
16855
16856 static unsigned int
16857 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16858 {
16859 return bfd_get_16 (abfd, buf);
16860 }
16861
16862 static int
16863 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16864 {
16865 return bfd_get_signed_16 (abfd, buf);
16866 }
16867
16868 static unsigned int
16869 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16870 {
16871 return bfd_get_32 (abfd, buf);
16872 }
16873
16874 static int
16875 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16876 {
16877 return bfd_get_signed_32 (abfd, buf);
16878 }
16879
16880 static ULONGEST
16881 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16882 {
16883 return bfd_get_64 (abfd, buf);
16884 }
16885
16886 static CORE_ADDR
16887 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16888 unsigned int *bytes_read)
16889 {
16890 struct comp_unit_head *cu_header = &cu->header;
16891 CORE_ADDR retval = 0;
16892
16893 if (cu_header->signed_addr_p)
16894 {
16895 switch (cu_header->addr_size)
16896 {
16897 case 2:
16898 retval = bfd_get_signed_16 (abfd, buf);
16899 break;
16900 case 4:
16901 retval = bfd_get_signed_32 (abfd, buf);
16902 break;
16903 case 8:
16904 retval = bfd_get_signed_64 (abfd, buf);
16905 break;
16906 default:
16907 internal_error (__FILE__, __LINE__,
16908 _("read_address: bad switch, signed [in module %s]"),
16909 bfd_get_filename (abfd));
16910 }
16911 }
16912 else
16913 {
16914 switch (cu_header->addr_size)
16915 {
16916 case 2:
16917 retval = bfd_get_16 (abfd, buf);
16918 break;
16919 case 4:
16920 retval = bfd_get_32 (abfd, buf);
16921 break;
16922 case 8:
16923 retval = bfd_get_64 (abfd, buf);
16924 break;
16925 default:
16926 internal_error (__FILE__, __LINE__,
16927 _("read_address: bad switch, "
16928 "unsigned [in module %s]"),
16929 bfd_get_filename (abfd));
16930 }
16931 }
16932
16933 *bytes_read = cu_header->addr_size;
16934 return retval;
16935 }
16936
16937 /* Read the initial length from a section. The (draft) DWARF 3
16938 specification allows the initial length to take up either 4 bytes
16939 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16940 bytes describe the length and all offsets will be 8 bytes in length
16941 instead of 4.
16942
16943 An older, non-standard 64-bit format is also handled by this
16944 function. The older format in question stores the initial length
16945 as an 8-byte quantity without an escape value. Lengths greater
16946 than 2^32 aren't very common which means that the initial 4 bytes
16947 is almost always zero. Since a length value of zero doesn't make
16948 sense for the 32-bit format, this initial zero can be considered to
16949 be an escape value which indicates the presence of the older 64-bit
16950 format. As written, the code can't detect (old format) lengths
16951 greater than 4GB. If it becomes necessary to handle lengths
16952 somewhat larger than 4GB, we could allow other small values (such
16953 as the non-sensical values of 1, 2, and 3) to also be used as
16954 escape values indicating the presence of the old format.
16955
16956 The value returned via bytes_read should be used to increment the
16957 relevant pointer after calling read_initial_length().
16958
16959 [ Note: read_initial_length() and read_offset() are based on the
16960 document entitled "DWARF Debugging Information Format", revision
16961 3, draft 8, dated November 19, 2001. This document was obtained
16962 from:
16963
16964 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16965
16966 This document is only a draft and is subject to change. (So beware.)
16967
16968 Details regarding the older, non-standard 64-bit format were
16969 determined empirically by examining 64-bit ELF files produced by
16970 the SGI toolchain on an IRIX 6.5 machine.
16971
16972 - Kevin, July 16, 2002
16973 ] */
16974
16975 static LONGEST
16976 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16977 {
16978 LONGEST length = bfd_get_32 (abfd, buf);
16979
16980 if (length == 0xffffffff)
16981 {
16982 length = bfd_get_64 (abfd, buf + 4);
16983 *bytes_read = 12;
16984 }
16985 else if (length == 0)
16986 {
16987 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16988 length = bfd_get_64 (abfd, buf);
16989 *bytes_read = 8;
16990 }
16991 else
16992 {
16993 *bytes_read = 4;
16994 }
16995
16996 return length;
16997 }
16998
16999 /* Cover function for read_initial_length.
17000 Returns the length of the object at BUF, and stores the size of the
17001 initial length in *BYTES_READ and stores the size that offsets will be in
17002 *OFFSET_SIZE.
17003 If the initial length size is not equivalent to that specified in
17004 CU_HEADER then issue a complaint.
17005 This is useful when reading non-comp-unit headers. */
17006
17007 static LONGEST
17008 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17009 const struct comp_unit_head *cu_header,
17010 unsigned int *bytes_read,
17011 unsigned int *offset_size)
17012 {
17013 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17014
17015 gdb_assert (cu_header->initial_length_size == 4
17016 || cu_header->initial_length_size == 8
17017 || cu_header->initial_length_size == 12);
17018
17019 if (cu_header->initial_length_size != *bytes_read)
17020 complaint (&symfile_complaints,
17021 _("intermixed 32-bit and 64-bit DWARF sections"));
17022
17023 *offset_size = (*bytes_read == 4) ? 4 : 8;
17024 return length;
17025 }
17026
17027 /* Read an offset from the data stream. The size of the offset is
17028 given by cu_header->offset_size. */
17029
17030 static LONGEST
17031 read_offset (bfd *abfd, const gdb_byte *buf,
17032 const struct comp_unit_head *cu_header,
17033 unsigned int *bytes_read)
17034 {
17035 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17036
17037 *bytes_read = cu_header->offset_size;
17038 return offset;
17039 }
17040
17041 /* Read an offset from the data stream. */
17042
17043 static LONGEST
17044 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17045 {
17046 LONGEST retval = 0;
17047
17048 switch (offset_size)
17049 {
17050 case 4:
17051 retval = bfd_get_32 (abfd, buf);
17052 break;
17053 case 8:
17054 retval = bfd_get_64 (abfd, buf);
17055 break;
17056 default:
17057 internal_error (__FILE__, __LINE__,
17058 _("read_offset_1: bad switch [in module %s]"),
17059 bfd_get_filename (abfd));
17060 }
17061
17062 return retval;
17063 }
17064
17065 static const gdb_byte *
17066 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17067 {
17068 /* If the size of a host char is 8 bits, we can return a pointer
17069 to the buffer, otherwise we have to copy the data to a buffer
17070 allocated on the temporary obstack. */
17071 gdb_assert (HOST_CHAR_BIT == 8);
17072 return buf;
17073 }
17074
17075 static const char *
17076 read_direct_string (bfd *abfd, const gdb_byte *buf,
17077 unsigned int *bytes_read_ptr)
17078 {
17079 /* If the size of a host char is 8 bits, we can return a pointer
17080 to the string, otherwise we have to copy the string to a buffer
17081 allocated on the temporary obstack. */
17082 gdb_assert (HOST_CHAR_BIT == 8);
17083 if (*buf == '\0')
17084 {
17085 *bytes_read_ptr = 1;
17086 return NULL;
17087 }
17088 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17089 return (const char *) buf;
17090 }
17091
17092 /* Return pointer to string at section SECT offset STR_OFFSET with error
17093 reporting strings FORM_NAME and SECT_NAME. */
17094
17095 static const char *
17096 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17097 struct dwarf2_section_info *sect,
17098 const char *form_name,
17099 const char *sect_name)
17100 {
17101 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17102 if (sect->buffer == NULL)
17103 error (_("%s used without %s section [in module %s]"),
17104 form_name, sect_name, bfd_get_filename (abfd));
17105 if (str_offset >= sect->size)
17106 error (_("%s pointing outside of %s section [in module %s]"),
17107 form_name, sect_name, bfd_get_filename (abfd));
17108 gdb_assert (HOST_CHAR_BIT == 8);
17109 if (sect->buffer[str_offset] == '\0')
17110 return NULL;
17111 return (const char *) (sect->buffer + str_offset);
17112 }
17113
17114 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17115
17116 static const char *
17117 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17118 {
17119 return read_indirect_string_at_offset_from (abfd, str_offset,
17120 &dwarf2_per_objfile->str,
17121 "DW_FORM_strp", ".debug_str");
17122 }
17123
17124 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17125
17126 static const char *
17127 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17128 {
17129 return read_indirect_string_at_offset_from (abfd, str_offset,
17130 &dwarf2_per_objfile->line_str,
17131 "DW_FORM_line_strp",
17132 ".debug_line_str");
17133 }
17134
17135 /* Read a string at offset STR_OFFSET in the .debug_str section from
17136 the .dwz file DWZ. Throw an error if the offset is too large. If
17137 the string consists of a single NUL byte, return NULL; otherwise
17138 return a pointer to the string. */
17139
17140 static const char *
17141 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17142 {
17143 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17144
17145 if (dwz->str.buffer == NULL)
17146 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17147 "section [in module %s]"),
17148 bfd_get_filename (dwz->dwz_bfd));
17149 if (str_offset >= dwz->str.size)
17150 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17151 ".debug_str section [in module %s]"),
17152 bfd_get_filename (dwz->dwz_bfd));
17153 gdb_assert (HOST_CHAR_BIT == 8);
17154 if (dwz->str.buffer[str_offset] == '\0')
17155 return NULL;
17156 return (const char *) (dwz->str.buffer + str_offset);
17157 }
17158
17159 /* Return pointer to string at .debug_str offset as read from BUF.
17160 BUF is assumed to be in a compilation unit described by CU_HEADER.
17161 Return *BYTES_READ_PTR count of bytes read from BUF. */
17162
17163 static const char *
17164 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17165 const struct comp_unit_head *cu_header,
17166 unsigned int *bytes_read_ptr)
17167 {
17168 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17169
17170 return read_indirect_string_at_offset (abfd, str_offset);
17171 }
17172
17173 /* Return pointer to string at .debug_line_str offset as read from BUF.
17174 BUF is assumed to be in a compilation unit described by CU_HEADER.
17175 Return *BYTES_READ_PTR count of bytes read from BUF. */
17176
17177 static const char *
17178 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17179 const struct comp_unit_head *cu_header,
17180 unsigned int *bytes_read_ptr)
17181 {
17182 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17183
17184 return read_indirect_line_string_at_offset (abfd, str_offset);
17185 }
17186
17187 ULONGEST
17188 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17189 unsigned int *bytes_read_ptr)
17190 {
17191 ULONGEST result;
17192 unsigned int num_read;
17193 int shift;
17194 unsigned char byte;
17195
17196 result = 0;
17197 shift = 0;
17198 num_read = 0;
17199 while (1)
17200 {
17201 byte = bfd_get_8 (abfd, buf);
17202 buf++;
17203 num_read++;
17204 result |= ((ULONGEST) (byte & 127) << shift);
17205 if ((byte & 128) == 0)
17206 {
17207 break;
17208 }
17209 shift += 7;
17210 }
17211 *bytes_read_ptr = num_read;
17212 return result;
17213 }
17214
17215 static LONGEST
17216 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17217 unsigned int *bytes_read_ptr)
17218 {
17219 LONGEST result;
17220 int shift, num_read;
17221 unsigned char byte;
17222
17223 result = 0;
17224 shift = 0;
17225 num_read = 0;
17226 while (1)
17227 {
17228 byte = bfd_get_8 (abfd, buf);
17229 buf++;
17230 num_read++;
17231 result |= ((LONGEST) (byte & 127) << shift);
17232 shift += 7;
17233 if ((byte & 128) == 0)
17234 {
17235 break;
17236 }
17237 }
17238 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17239 result |= -(((LONGEST) 1) << shift);
17240 *bytes_read_ptr = num_read;
17241 return result;
17242 }
17243
17244 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17245 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17246 ADDR_SIZE is the size of addresses from the CU header. */
17247
17248 static CORE_ADDR
17249 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17250 {
17251 struct objfile *objfile = dwarf2_per_objfile->objfile;
17252 bfd *abfd = objfile->obfd;
17253 const gdb_byte *info_ptr;
17254
17255 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17256 if (dwarf2_per_objfile->addr.buffer == NULL)
17257 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17258 objfile_name (objfile));
17259 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17260 error (_("DW_FORM_addr_index pointing outside of "
17261 ".debug_addr section [in module %s]"),
17262 objfile_name (objfile));
17263 info_ptr = (dwarf2_per_objfile->addr.buffer
17264 + addr_base + addr_index * addr_size);
17265 if (addr_size == 4)
17266 return bfd_get_32 (abfd, info_ptr);
17267 else
17268 return bfd_get_64 (abfd, info_ptr);
17269 }
17270
17271 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17272
17273 static CORE_ADDR
17274 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17275 {
17276 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17277 }
17278
17279 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17280
17281 static CORE_ADDR
17282 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17283 unsigned int *bytes_read)
17284 {
17285 bfd *abfd = cu->objfile->obfd;
17286 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17287
17288 return read_addr_index (cu, addr_index);
17289 }
17290
17291 /* Data structure to pass results from dwarf2_read_addr_index_reader
17292 back to dwarf2_read_addr_index. */
17293
17294 struct dwarf2_read_addr_index_data
17295 {
17296 ULONGEST addr_base;
17297 int addr_size;
17298 };
17299
17300 /* die_reader_func for dwarf2_read_addr_index. */
17301
17302 static void
17303 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17304 const gdb_byte *info_ptr,
17305 struct die_info *comp_unit_die,
17306 int has_children,
17307 void *data)
17308 {
17309 struct dwarf2_cu *cu = reader->cu;
17310 struct dwarf2_read_addr_index_data *aidata =
17311 (struct dwarf2_read_addr_index_data *) data;
17312
17313 aidata->addr_base = cu->addr_base;
17314 aidata->addr_size = cu->header.addr_size;
17315 }
17316
17317 /* Given an index in .debug_addr, fetch the value.
17318 NOTE: This can be called during dwarf expression evaluation,
17319 long after the debug information has been read, and thus per_cu->cu
17320 may no longer exist. */
17321
17322 CORE_ADDR
17323 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17324 unsigned int addr_index)
17325 {
17326 struct objfile *objfile = per_cu->objfile;
17327 struct dwarf2_cu *cu = per_cu->cu;
17328 ULONGEST addr_base;
17329 int addr_size;
17330
17331 /* This is intended to be called from outside this file. */
17332 dw2_setup (objfile);
17333
17334 /* We need addr_base and addr_size.
17335 If we don't have PER_CU->cu, we have to get it.
17336 Nasty, but the alternative is storing the needed info in PER_CU,
17337 which at this point doesn't seem justified: it's not clear how frequently
17338 it would get used and it would increase the size of every PER_CU.
17339 Entry points like dwarf2_per_cu_addr_size do a similar thing
17340 so we're not in uncharted territory here.
17341 Alas we need to be a bit more complicated as addr_base is contained
17342 in the DIE.
17343
17344 We don't need to read the entire CU(/TU).
17345 We just need the header and top level die.
17346
17347 IWBN to use the aging mechanism to let us lazily later discard the CU.
17348 For now we skip this optimization. */
17349
17350 if (cu != NULL)
17351 {
17352 addr_base = cu->addr_base;
17353 addr_size = cu->header.addr_size;
17354 }
17355 else
17356 {
17357 struct dwarf2_read_addr_index_data aidata;
17358
17359 /* Note: We can't use init_cutu_and_read_dies_simple here,
17360 we need addr_base. */
17361 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17362 dwarf2_read_addr_index_reader, &aidata);
17363 addr_base = aidata.addr_base;
17364 addr_size = aidata.addr_size;
17365 }
17366
17367 return read_addr_index_1 (addr_index, addr_base, addr_size);
17368 }
17369
17370 /* Given a DW_FORM_GNU_str_index, fetch the string.
17371 This is only used by the Fission support. */
17372
17373 static const char *
17374 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17375 {
17376 struct objfile *objfile = dwarf2_per_objfile->objfile;
17377 const char *objf_name = objfile_name (objfile);
17378 bfd *abfd = objfile->obfd;
17379 struct dwarf2_cu *cu = reader->cu;
17380 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17381 struct dwarf2_section_info *str_offsets_section =
17382 &reader->dwo_file->sections.str_offsets;
17383 const gdb_byte *info_ptr;
17384 ULONGEST str_offset;
17385 static const char form_name[] = "DW_FORM_GNU_str_index";
17386
17387 dwarf2_read_section (objfile, str_section);
17388 dwarf2_read_section (objfile, str_offsets_section);
17389 if (str_section->buffer == NULL)
17390 error (_("%s used without .debug_str.dwo section"
17391 " in CU at offset 0x%x [in module %s]"),
17392 form_name, to_underlying (cu->header.sect_off), objf_name);
17393 if (str_offsets_section->buffer == NULL)
17394 error (_("%s used without .debug_str_offsets.dwo section"
17395 " in CU at offset 0x%x [in module %s]"),
17396 form_name, to_underlying (cu->header.sect_off), objf_name);
17397 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17398 error (_("%s pointing outside of .debug_str_offsets.dwo"
17399 " section in CU at offset 0x%x [in module %s]"),
17400 form_name, to_underlying (cu->header.sect_off), objf_name);
17401 info_ptr = (str_offsets_section->buffer
17402 + str_index * cu->header.offset_size);
17403 if (cu->header.offset_size == 4)
17404 str_offset = bfd_get_32 (abfd, info_ptr);
17405 else
17406 str_offset = bfd_get_64 (abfd, info_ptr);
17407 if (str_offset >= str_section->size)
17408 error (_("Offset from %s pointing outside of"
17409 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17410 form_name, to_underlying (cu->header.sect_off), objf_name);
17411 return (const char *) (str_section->buffer + str_offset);
17412 }
17413
17414 /* Return the length of an LEB128 number in BUF. */
17415
17416 static int
17417 leb128_size (const gdb_byte *buf)
17418 {
17419 const gdb_byte *begin = buf;
17420 gdb_byte byte;
17421
17422 while (1)
17423 {
17424 byte = *buf++;
17425 if ((byte & 128) == 0)
17426 return buf - begin;
17427 }
17428 }
17429
17430 static void
17431 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17432 {
17433 switch (lang)
17434 {
17435 case DW_LANG_C89:
17436 case DW_LANG_C99:
17437 case DW_LANG_C11:
17438 case DW_LANG_C:
17439 case DW_LANG_UPC:
17440 cu->language = language_c;
17441 break;
17442 case DW_LANG_Java:
17443 case DW_LANG_C_plus_plus:
17444 case DW_LANG_C_plus_plus_11:
17445 case DW_LANG_C_plus_plus_14:
17446 cu->language = language_cplus;
17447 break;
17448 case DW_LANG_D:
17449 cu->language = language_d;
17450 break;
17451 case DW_LANG_Fortran77:
17452 case DW_LANG_Fortran90:
17453 case DW_LANG_Fortran95:
17454 case DW_LANG_Fortran03:
17455 case DW_LANG_Fortran08:
17456 cu->language = language_fortran;
17457 break;
17458 case DW_LANG_Go:
17459 cu->language = language_go;
17460 break;
17461 case DW_LANG_Mips_Assembler:
17462 cu->language = language_asm;
17463 break;
17464 case DW_LANG_Ada83:
17465 case DW_LANG_Ada95:
17466 cu->language = language_ada;
17467 break;
17468 case DW_LANG_Modula2:
17469 cu->language = language_m2;
17470 break;
17471 case DW_LANG_Pascal83:
17472 cu->language = language_pascal;
17473 break;
17474 case DW_LANG_ObjC:
17475 cu->language = language_objc;
17476 break;
17477 case DW_LANG_Rust:
17478 case DW_LANG_Rust_old:
17479 cu->language = language_rust;
17480 break;
17481 case DW_LANG_Cobol74:
17482 case DW_LANG_Cobol85:
17483 default:
17484 cu->language = language_minimal;
17485 break;
17486 }
17487 cu->language_defn = language_def (cu->language);
17488 }
17489
17490 /* Return the named attribute or NULL if not there. */
17491
17492 static struct attribute *
17493 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17494 {
17495 for (;;)
17496 {
17497 unsigned int i;
17498 struct attribute *spec = NULL;
17499
17500 for (i = 0; i < die->num_attrs; ++i)
17501 {
17502 if (die->attrs[i].name == name)
17503 return &die->attrs[i];
17504 if (die->attrs[i].name == DW_AT_specification
17505 || die->attrs[i].name == DW_AT_abstract_origin)
17506 spec = &die->attrs[i];
17507 }
17508
17509 if (!spec)
17510 break;
17511
17512 die = follow_die_ref (die, spec, &cu);
17513 }
17514
17515 return NULL;
17516 }
17517
17518 /* Return the named attribute or NULL if not there,
17519 but do not follow DW_AT_specification, etc.
17520 This is for use in contexts where we're reading .debug_types dies.
17521 Following DW_AT_specification, DW_AT_abstract_origin will take us
17522 back up the chain, and we want to go down. */
17523
17524 static struct attribute *
17525 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17526 {
17527 unsigned int i;
17528
17529 for (i = 0; i < die->num_attrs; ++i)
17530 if (die->attrs[i].name == name)
17531 return &die->attrs[i];
17532
17533 return NULL;
17534 }
17535
17536 /* Return the string associated with a string-typed attribute, or NULL if it
17537 is either not found or is of an incorrect type. */
17538
17539 static const char *
17540 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17541 {
17542 struct attribute *attr;
17543 const char *str = NULL;
17544
17545 attr = dwarf2_attr (die, name, cu);
17546
17547 if (attr != NULL)
17548 {
17549 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17550 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
17551 str = DW_STRING (attr);
17552 else
17553 complaint (&symfile_complaints,
17554 _("string type expected for attribute %s for "
17555 "DIE at 0x%x in module %s"),
17556 dwarf_attr_name (name), to_underlying (die->sect_off),
17557 objfile_name (cu->objfile));
17558 }
17559
17560 return str;
17561 }
17562
17563 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17564 and holds a non-zero value. This function should only be used for
17565 DW_FORM_flag or DW_FORM_flag_present attributes. */
17566
17567 static int
17568 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17569 {
17570 struct attribute *attr = dwarf2_attr (die, name, cu);
17571
17572 return (attr && DW_UNSND (attr));
17573 }
17574
17575 static int
17576 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17577 {
17578 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17579 which value is non-zero. However, we have to be careful with
17580 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17581 (via dwarf2_flag_true_p) follows this attribute. So we may
17582 end up accidently finding a declaration attribute that belongs
17583 to a different DIE referenced by the specification attribute,
17584 even though the given DIE does not have a declaration attribute. */
17585 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17586 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17587 }
17588
17589 /* Return the die giving the specification for DIE, if there is
17590 one. *SPEC_CU is the CU containing DIE on input, and the CU
17591 containing the return value on output. If there is no
17592 specification, but there is an abstract origin, that is
17593 returned. */
17594
17595 static struct die_info *
17596 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17597 {
17598 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17599 *spec_cu);
17600
17601 if (spec_attr == NULL)
17602 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17603
17604 if (spec_attr == NULL)
17605 return NULL;
17606 else
17607 return follow_die_ref (die, spec_attr, spec_cu);
17608 }
17609
17610 /* Stub for free_line_header to match void * callback types. */
17611
17612 static void
17613 free_line_header_voidp (void *arg)
17614 {
17615 struct line_header *lh = (struct line_header *) arg;
17616
17617 delete lh;
17618 }
17619
17620 void
17621 line_header::add_include_dir (const char *include_dir)
17622 {
17623 if (dwarf_line_debug >= 2)
17624 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17625 include_dirs.size () + 1, include_dir);
17626
17627 include_dirs.push_back (include_dir);
17628 }
17629
17630 void
17631 line_header::add_file_name (const char *name,
17632 dir_index d_index,
17633 unsigned int mod_time,
17634 unsigned int length)
17635 {
17636 if (dwarf_line_debug >= 2)
17637 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17638 (unsigned) file_names.size () + 1, name);
17639
17640 file_names.emplace_back (name, d_index, mod_time, length);
17641 }
17642
17643 /* A convenience function to find the proper .debug_line section for a CU. */
17644
17645 static struct dwarf2_section_info *
17646 get_debug_line_section (struct dwarf2_cu *cu)
17647 {
17648 struct dwarf2_section_info *section;
17649
17650 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17651 DWO file. */
17652 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17653 section = &cu->dwo_unit->dwo_file->sections.line;
17654 else if (cu->per_cu->is_dwz)
17655 {
17656 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17657
17658 section = &dwz->line;
17659 }
17660 else
17661 section = &dwarf2_per_objfile->line;
17662
17663 return section;
17664 }
17665
17666 /* Read directory or file name entry format, starting with byte of
17667 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17668 entries count and the entries themselves in the described entry
17669 format. */
17670
17671 static void
17672 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17673 struct line_header *lh,
17674 const struct comp_unit_head *cu_header,
17675 void (*callback) (struct line_header *lh,
17676 const char *name,
17677 dir_index d_index,
17678 unsigned int mod_time,
17679 unsigned int length))
17680 {
17681 gdb_byte format_count, formati;
17682 ULONGEST data_count, datai;
17683 const gdb_byte *buf = *bufp;
17684 const gdb_byte *format_header_data;
17685 int i;
17686 unsigned int bytes_read;
17687
17688 format_count = read_1_byte (abfd, buf);
17689 buf += 1;
17690 format_header_data = buf;
17691 for (formati = 0; formati < format_count; formati++)
17692 {
17693 read_unsigned_leb128 (abfd, buf, &bytes_read);
17694 buf += bytes_read;
17695 read_unsigned_leb128 (abfd, buf, &bytes_read);
17696 buf += bytes_read;
17697 }
17698
17699 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17700 buf += bytes_read;
17701 for (datai = 0; datai < data_count; datai++)
17702 {
17703 const gdb_byte *format = format_header_data;
17704 struct file_entry fe;
17705
17706 for (formati = 0; formati < format_count; formati++)
17707 {
17708 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17709 format += bytes_read;
17710
17711 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17712 format += bytes_read;
17713
17714 gdb::optional<const char *> string;
17715 gdb::optional<unsigned int> uint;
17716
17717 switch (form)
17718 {
17719 case DW_FORM_string:
17720 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17721 buf += bytes_read;
17722 break;
17723
17724 case DW_FORM_line_strp:
17725 string.emplace (read_indirect_line_string (abfd, buf,
17726 cu_header,
17727 &bytes_read));
17728 buf += bytes_read;
17729 break;
17730
17731 case DW_FORM_data1:
17732 uint.emplace (read_1_byte (abfd, buf));
17733 buf += 1;
17734 break;
17735
17736 case DW_FORM_data2:
17737 uint.emplace (read_2_bytes (abfd, buf));
17738 buf += 2;
17739 break;
17740
17741 case DW_FORM_data4:
17742 uint.emplace (read_4_bytes (abfd, buf));
17743 buf += 4;
17744 break;
17745
17746 case DW_FORM_data8:
17747 uint.emplace (read_8_bytes (abfd, buf));
17748 buf += 8;
17749 break;
17750
17751 case DW_FORM_udata:
17752 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17753 buf += bytes_read;
17754 break;
17755
17756 case DW_FORM_block:
17757 /* It is valid only for DW_LNCT_timestamp which is ignored by
17758 current GDB. */
17759 break;
17760 }
17761
17762 switch (content_type)
17763 {
17764 case DW_LNCT_path:
17765 if (string.has_value ())
17766 fe.name = *string;
17767 break;
17768 case DW_LNCT_directory_index:
17769 if (uint.has_value ())
17770 fe.d_index = (dir_index) *uint;
17771 break;
17772 case DW_LNCT_timestamp:
17773 if (uint.has_value ())
17774 fe.mod_time = *uint;
17775 break;
17776 case DW_LNCT_size:
17777 if (uint.has_value ())
17778 fe.length = *uint;
17779 break;
17780 case DW_LNCT_MD5:
17781 break;
17782 default:
17783 complaint (&symfile_complaints,
17784 _("Unknown format content type %s"),
17785 pulongest (content_type));
17786 }
17787 }
17788
17789 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17790 }
17791
17792 *bufp = buf;
17793 }
17794
17795 /* Read the statement program header starting at OFFSET in
17796 .debug_line, or .debug_line.dwo. Return a pointer
17797 to a struct line_header, allocated using xmalloc.
17798 Returns NULL if there is a problem reading the header, e.g., if it
17799 has a version we don't understand.
17800
17801 NOTE: the strings in the include directory and file name tables of
17802 the returned object point into the dwarf line section buffer,
17803 and must not be freed. */
17804
17805 static line_header_up
17806 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17807 {
17808 const gdb_byte *line_ptr;
17809 unsigned int bytes_read, offset_size;
17810 int i;
17811 const char *cur_dir, *cur_file;
17812 struct dwarf2_section_info *section;
17813 bfd *abfd;
17814
17815 section = get_debug_line_section (cu);
17816 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17817 if (section->buffer == NULL)
17818 {
17819 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17820 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17821 else
17822 complaint (&symfile_complaints, _("missing .debug_line section"));
17823 return 0;
17824 }
17825
17826 /* We can't do this until we know the section is non-empty.
17827 Only then do we know we have such a section. */
17828 abfd = get_section_bfd_owner (section);
17829
17830 /* Make sure that at least there's room for the total_length field.
17831 That could be 12 bytes long, but we're just going to fudge that. */
17832 if (to_underlying (sect_off) + 4 >= section->size)
17833 {
17834 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17835 return 0;
17836 }
17837
17838 line_header_up lh (new line_header ());
17839
17840 lh->sect_off = sect_off;
17841 lh->offset_in_dwz = cu->per_cu->is_dwz;
17842
17843 line_ptr = section->buffer + to_underlying (sect_off);
17844
17845 /* Read in the header. */
17846 lh->total_length =
17847 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17848 &bytes_read, &offset_size);
17849 line_ptr += bytes_read;
17850 if (line_ptr + lh->total_length > (section->buffer + section->size))
17851 {
17852 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17853 return 0;
17854 }
17855 lh->statement_program_end = line_ptr + lh->total_length;
17856 lh->version = read_2_bytes (abfd, line_ptr);
17857 line_ptr += 2;
17858 if (lh->version > 5)
17859 {
17860 /* This is a version we don't understand. The format could have
17861 changed in ways we don't handle properly so just punt. */
17862 complaint (&symfile_complaints,
17863 _("unsupported version in .debug_line section"));
17864 return NULL;
17865 }
17866 if (lh->version >= 5)
17867 {
17868 gdb_byte segment_selector_size;
17869
17870 /* Skip address size. */
17871 read_1_byte (abfd, line_ptr);
17872 line_ptr += 1;
17873
17874 segment_selector_size = read_1_byte (abfd, line_ptr);
17875 line_ptr += 1;
17876 if (segment_selector_size != 0)
17877 {
17878 complaint (&symfile_complaints,
17879 _("unsupported segment selector size %u "
17880 "in .debug_line section"),
17881 segment_selector_size);
17882 return NULL;
17883 }
17884 }
17885 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17886 line_ptr += offset_size;
17887 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17888 line_ptr += 1;
17889 if (lh->version >= 4)
17890 {
17891 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17892 line_ptr += 1;
17893 }
17894 else
17895 lh->maximum_ops_per_instruction = 1;
17896
17897 if (lh->maximum_ops_per_instruction == 0)
17898 {
17899 lh->maximum_ops_per_instruction = 1;
17900 complaint (&symfile_complaints,
17901 _("invalid maximum_ops_per_instruction "
17902 "in `.debug_line' section"));
17903 }
17904
17905 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17906 line_ptr += 1;
17907 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17908 line_ptr += 1;
17909 lh->line_range = read_1_byte (abfd, line_ptr);
17910 line_ptr += 1;
17911 lh->opcode_base = read_1_byte (abfd, line_ptr);
17912 line_ptr += 1;
17913 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
17914
17915 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17916 for (i = 1; i < lh->opcode_base; ++i)
17917 {
17918 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17919 line_ptr += 1;
17920 }
17921
17922 if (lh->version >= 5)
17923 {
17924 /* Read directory table. */
17925 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
17926 [] (struct line_header *lh, const char *name,
17927 dir_index d_index, unsigned int mod_time,
17928 unsigned int length)
17929 {
17930 lh->add_include_dir (name);
17931 });
17932
17933 /* Read file name table. */
17934 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
17935 [] (struct line_header *lh, const char *name,
17936 dir_index d_index, unsigned int mod_time,
17937 unsigned int length)
17938 {
17939 lh->add_file_name (name, d_index, mod_time, length);
17940 });
17941 }
17942 else
17943 {
17944 /* Read directory table. */
17945 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17946 {
17947 line_ptr += bytes_read;
17948 lh->add_include_dir (cur_dir);
17949 }
17950 line_ptr += bytes_read;
17951
17952 /* Read file name table. */
17953 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17954 {
17955 unsigned int mod_time, length;
17956 dir_index d_index;
17957
17958 line_ptr += bytes_read;
17959 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17960 line_ptr += bytes_read;
17961 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17962 line_ptr += bytes_read;
17963 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17964 line_ptr += bytes_read;
17965
17966 lh->add_file_name (cur_file, d_index, mod_time, length);
17967 }
17968 line_ptr += bytes_read;
17969 }
17970 lh->statement_program_start = line_ptr;
17971
17972 if (line_ptr > (section->buffer + section->size))
17973 complaint (&symfile_complaints,
17974 _("line number info header doesn't "
17975 "fit in `.debug_line' section"));
17976
17977 return lh;
17978 }
17979
17980 /* Subroutine of dwarf_decode_lines to simplify it.
17981 Return the file name of the psymtab for included file FILE_INDEX
17982 in line header LH of PST.
17983 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17984 If space for the result is malloc'd, it will be freed by a cleanup.
17985 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17986
17987 The function creates dangling cleanup registration. */
17988
17989 static const char *
17990 psymtab_include_file_name (const struct line_header *lh, int file_index,
17991 const struct partial_symtab *pst,
17992 const char *comp_dir)
17993 {
17994 const file_entry &fe = lh->file_names[file_index];
17995 const char *include_name = fe.name;
17996 const char *include_name_to_compare = include_name;
17997 const char *pst_filename;
17998 char *copied_name = NULL;
17999 int file_is_pst;
18000
18001 const char *dir_name = fe.include_dir (lh);
18002
18003 if (!IS_ABSOLUTE_PATH (include_name)
18004 && (dir_name != NULL || comp_dir != NULL))
18005 {
18006 /* Avoid creating a duplicate psymtab for PST.
18007 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18008 Before we do the comparison, however, we need to account
18009 for DIR_NAME and COMP_DIR.
18010 First prepend dir_name (if non-NULL). If we still don't
18011 have an absolute path prepend comp_dir (if non-NULL).
18012 However, the directory we record in the include-file's
18013 psymtab does not contain COMP_DIR (to match the
18014 corresponding symtab(s)).
18015
18016 Example:
18017
18018 bash$ cd /tmp
18019 bash$ gcc -g ./hello.c
18020 include_name = "hello.c"
18021 dir_name = "."
18022 DW_AT_comp_dir = comp_dir = "/tmp"
18023 DW_AT_name = "./hello.c"
18024
18025 */
18026
18027 if (dir_name != NULL)
18028 {
18029 char *tem = concat (dir_name, SLASH_STRING,
18030 include_name, (char *)NULL);
18031
18032 make_cleanup (xfree, tem);
18033 include_name = tem;
18034 include_name_to_compare = include_name;
18035 }
18036 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18037 {
18038 char *tem = concat (comp_dir, SLASH_STRING,
18039 include_name, (char *)NULL);
18040
18041 make_cleanup (xfree, tem);
18042 include_name_to_compare = tem;
18043 }
18044 }
18045
18046 pst_filename = pst->filename;
18047 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18048 {
18049 copied_name = concat (pst->dirname, SLASH_STRING,
18050 pst_filename, (char *)NULL);
18051 pst_filename = copied_name;
18052 }
18053
18054 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18055
18056 if (copied_name != NULL)
18057 xfree (copied_name);
18058
18059 if (file_is_pst)
18060 return NULL;
18061 return include_name;
18062 }
18063
18064 /* State machine to track the state of the line number program. */
18065
18066 class lnp_state_machine
18067 {
18068 public:
18069 /* Initialize a machine state for the start of a line number
18070 program. */
18071 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18072
18073 file_entry *current_file ()
18074 {
18075 /* lh->file_names is 0-based, but the file name numbers in the
18076 statement program are 1-based. */
18077 return m_line_header->file_name_at (m_file);
18078 }
18079
18080 /* Record the line in the state machine. END_SEQUENCE is true if
18081 we're processing the end of a sequence. */
18082 void record_line (bool end_sequence);
18083
18084 /* Check address and if invalid nop-out the rest of the lines in this
18085 sequence. */
18086 void check_line_address (struct dwarf2_cu *cu,
18087 const gdb_byte *line_ptr,
18088 CORE_ADDR lowpc, CORE_ADDR address);
18089
18090 void handle_set_discriminator (unsigned int discriminator)
18091 {
18092 m_discriminator = discriminator;
18093 m_line_has_non_zero_discriminator |= discriminator != 0;
18094 }
18095
18096 /* Handle DW_LNE_set_address. */
18097 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18098 {
18099 m_op_index = 0;
18100 address += baseaddr;
18101 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18102 }
18103
18104 /* Handle DW_LNS_advance_pc. */
18105 void handle_advance_pc (CORE_ADDR adjust);
18106
18107 /* Handle a special opcode. */
18108 void handle_special_opcode (unsigned char op_code);
18109
18110 /* Handle DW_LNS_advance_line. */
18111 void handle_advance_line (int line_delta)
18112 {
18113 advance_line (line_delta);
18114 }
18115
18116 /* Handle DW_LNS_set_file. */
18117 void handle_set_file (file_name_index file);
18118
18119 /* Handle DW_LNS_negate_stmt. */
18120 void handle_negate_stmt ()
18121 {
18122 m_is_stmt = !m_is_stmt;
18123 }
18124
18125 /* Handle DW_LNS_const_add_pc. */
18126 void handle_const_add_pc ();
18127
18128 /* Handle DW_LNS_fixed_advance_pc. */
18129 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18130 {
18131 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18132 m_op_index = 0;
18133 }
18134
18135 /* Handle DW_LNS_copy. */
18136 void handle_copy ()
18137 {
18138 record_line (false);
18139 m_discriminator = 0;
18140 }
18141
18142 /* Handle DW_LNE_end_sequence. */
18143 void handle_end_sequence ()
18144 {
18145 m_record_line_callback = ::record_line;
18146 }
18147
18148 private:
18149 /* Advance the line by LINE_DELTA. */
18150 void advance_line (int line_delta)
18151 {
18152 m_line += line_delta;
18153
18154 if (line_delta != 0)
18155 m_line_has_non_zero_discriminator = m_discriminator != 0;
18156 }
18157
18158 gdbarch *m_gdbarch;
18159
18160 /* True if we're recording lines.
18161 Otherwise we're building partial symtabs and are just interested in
18162 finding include files mentioned by the line number program. */
18163 bool m_record_lines_p;
18164
18165 /* The line number header. */
18166 line_header *m_line_header;
18167
18168 /* These are part of the standard DWARF line number state machine,
18169 and initialized according to the DWARF spec. */
18170
18171 unsigned char m_op_index = 0;
18172 /* The line table index (1-based) of the current file. */
18173 file_name_index m_file = (file_name_index) 1;
18174 unsigned int m_line = 1;
18175
18176 /* These are initialized in the constructor. */
18177
18178 CORE_ADDR m_address;
18179 bool m_is_stmt;
18180 unsigned int m_discriminator;
18181
18182 /* Additional bits of state we need to track. */
18183
18184 /* The last file that we called dwarf2_start_subfile for.
18185 This is only used for TLLs. */
18186 unsigned int m_last_file = 0;
18187 /* The last file a line number was recorded for. */
18188 struct subfile *m_last_subfile = NULL;
18189
18190 /* The function to call to record a line. */
18191 record_line_ftype *m_record_line_callback = NULL;
18192
18193 /* The last line number that was recorded, used to coalesce
18194 consecutive entries for the same line. This can happen, for
18195 example, when discriminators are present. PR 17276. */
18196 unsigned int m_last_line = 0;
18197 bool m_line_has_non_zero_discriminator = false;
18198 };
18199
18200 void
18201 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18202 {
18203 CORE_ADDR addr_adj = (((m_op_index + adjust)
18204 / m_line_header->maximum_ops_per_instruction)
18205 * m_line_header->minimum_instruction_length);
18206 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18207 m_op_index = ((m_op_index + adjust)
18208 % m_line_header->maximum_ops_per_instruction);
18209 }
18210
18211 void
18212 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18213 {
18214 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18215 CORE_ADDR addr_adj = (((m_op_index
18216 + (adj_opcode / m_line_header->line_range))
18217 / m_line_header->maximum_ops_per_instruction)
18218 * m_line_header->minimum_instruction_length);
18219 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18220 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18221 % m_line_header->maximum_ops_per_instruction);
18222
18223 int line_delta = (m_line_header->line_base
18224 + (adj_opcode % m_line_header->line_range));
18225 advance_line (line_delta);
18226 record_line (false);
18227 m_discriminator = 0;
18228 }
18229
18230 void
18231 lnp_state_machine::handle_set_file (file_name_index file)
18232 {
18233 m_file = file;
18234
18235 const file_entry *fe = current_file ();
18236 if (fe == NULL)
18237 dwarf2_debug_line_missing_file_complaint ();
18238 else if (m_record_lines_p)
18239 {
18240 const char *dir = fe->include_dir (m_line_header);
18241
18242 m_last_subfile = current_subfile;
18243 m_line_has_non_zero_discriminator = m_discriminator != 0;
18244 dwarf2_start_subfile (fe->name, dir);
18245 }
18246 }
18247
18248 void
18249 lnp_state_machine::handle_const_add_pc ()
18250 {
18251 CORE_ADDR adjust
18252 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18253
18254 CORE_ADDR addr_adj
18255 = (((m_op_index + adjust)
18256 / m_line_header->maximum_ops_per_instruction)
18257 * m_line_header->minimum_instruction_length);
18258
18259 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18260 m_op_index = ((m_op_index + adjust)
18261 % m_line_header->maximum_ops_per_instruction);
18262 }
18263
18264 /* Ignore this record_line request. */
18265
18266 static void
18267 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18268 {
18269 return;
18270 }
18271
18272 /* Return non-zero if we should add LINE to the line number table.
18273 LINE is the line to add, LAST_LINE is the last line that was added,
18274 LAST_SUBFILE is the subfile for LAST_LINE.
18275 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18276 had a non-zero discriminator.
18277
18278 We have to be careful in the presence of discriminators.
18279 E.g., for this line:
18280
18281 for (i = 0; i < 100000; i++);
18282
18283 clang can emit four line number entries for that one line,
18284 each with a different discriminator.
18285 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18286
18287 However, we want gdb to coalesce all four entries into one.
18288 Otherwise the user could stepi into the middle of the line and
18289 gdb would get confused about whether the pc really was in the
18290 middle of the line.
18291
18292 Things are further complicated by the fact that two consecutive
18293 line number entries for the same line is a heuristic used by gcc
18294 to denote the end of the prologue. So we can't just discard duplicate
18295 entries, we have to be selective about it. The heuristic we use is
18296 that we only collapse consecutive entries for the same line if at least
18297 one of those entries has a non-zero discriminator. PR 17276.
18298
18299 Note: Addresses in the line number state machine can never go backwards
18300 within one sequence, thus this coalescing is ok. */
18301
18302 static int
18303 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18304 int line_has_non_zero_discriminator,
18305 struct subfile *last_subfile)
18306 {
18307 if (current_subfile != last_subfile)
18308 return 1;
18309 if (line != last_line)
18310 return 1;
18311 /* Same line for the same file that we've seen already.
18312 As a last check, for pr 17276, only record the line if the line
18313 has never had a non-zero discriminator. */
18314 if (!line_has_non_zero_discriminator)
18315 return 1;
18316 return 0;
18317 }
18318
18319 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18320 in the line table of subfile SUBFILE. */
18321
18322 static void
18323 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18324 unsigned int line, CORE_ADDR address,
18325 record_line_ftype p_record_line)
18326 {
18327 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18328
18329 if (dwarf_line_debug)
18330 {
18331 fprintf_unfiltered (gdb_stdlog,
18332 "Recording line %u, file %s, address %s\n",
18333 line, lbasename (subfile->name),
18334 paddress (gdbarch, address));
18335 }
18336
18337 (*p_record_line) (subfile, line, addr);
18338 }
18339
18340 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18341 Mark the end of a set of line number records.
18342 The arguments are the same as for dwarf_record_line_1.
18343 If SUBFILE is NULL the request is ignored. */
18344
18345 static void
18346 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18347 CORE_ADDR address, record_line_ftype p_record_line)
18348 {
18349 if (subfile == NULL)
18350 return;
18351
18352 if (dwarf_line_debug)
18353 {
18354 fprintf_unfiltered (gdb_stdlog,
18355 "Finishing current line, file %s, address %s\n",
18356 lbasename (subfile->name),
18357 paddress (gdbarch, address));
18358 }
18359
18360 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18361 }
18362
18363 void
18364 lnp_state_machine::record_line (bool end_sequence)
18365 {
18366 if (dwarf_line_debug)
18367 {
18368 fprintf_unfiltered (gdb_stdlog,
18369 "Processing actual line %u: file %u,"
18370 " address %s, is_stmt %u, discrim %u\n",
18371 m_line, to_underlying (m_file),
18372 paddress (m_gdbarch, m_address),
18373 m_is_stmt, m_discriminator);
18374 }
18375
18376 file_entry *fe = current_file ();
18377
18378 if (fe == NULL)
18379 dwarf2_debug_line_missing_file_complaint ();
18380 /* For now we ignore lines not starting on an instruction boundary.
18381 But not when processing end_sequence for compatibility with the
18382 previous version of the code. */
18383 else if (m_op_index == 0 || end_sequence)
18384 {
18385 fe->included_p = 1;
18386 if (m_record_lines_p && m_is_stmt)
18387 {
18388 if (m_last_subfile != current_subfile || end_sequence)
18389 {
18390 dwarf_finish_line (m_gdbarch, m_last_subfile,
18391 m_address, m_record_line_callback);
18392 }
18393
18394 if (!end_sequence)
18395 {
18396 if (dwarf_record_line_p (m_line, m_last_line,
18397 m_line_has_non_zero_discriminator,
18398 m_last_subfile))
18399 {
18400 dwarf_record_line_1 (m_gdbarch, current_subfile,
18401 m_line, m_address,
18402 m_record_line_callback);
18403 }
18404 m_last_subfile = current_subfile;
18405 m_last_line = m_line;
18406 }
18407 }
18408 }
18409 }
18410
18411 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18412 bool record_lines_p)
18413 {
18414 m_gdbarch = arch;
18415 m_record_lines_p = record_lines_p;
18416 m_line_header = lh;
18417
18418 m_record_line_callback = ::record_line;
18419
18420 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18421 was a line entry for it so that the backend has a chance to adjust it
18422 and also record it in case it needs it. This is currently used by MIPS
18423 code, cf. `mips_adjust_dwarf2_line'. */
18424 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18425 m_is_stmt = lh->default_is_stmt;
18426 m_discriminator = 0;
18427 }
18428
18429 void
18430 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18431 const gdb_byte *line_ptr,
18432 CORE_ADDR lowpc, CORE_ADDR address)
18433 {
18434 /* If address < lowpc then it's not a usable value, it's outside the
18435 pc range of the CU. However, we restrict the test to only address
18436 values of zero to preserve GDB's previous behaviour which is to
18437 handle the specific case of a function being GC'd by the linker. */
18438
18439 if (address == 0 && address < lowpc)
18440 {
18441 /* This line table is for a function which has been
18442 GCd by the linker. Ignore it. PR gdb/12528 */
18443
18444 struct objfile *objfile = cu->objfile;
18445 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18446
18447 complaint (&symfile_complaints,
18448 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18449 line_offset, objfile_name (objfile));
18450 m_record_line_callback = noop_record_line;
18451 /* Note: record_line_callback is left as noop_record_line until
18452 we see DW_LNE_end_sequence. */
18453 }
18454 }
18455
18456 /* Subroutine of dwarf_decode_lines to simplify it.
18457 Process the line number information in LH.
18458 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18459 program in order to set included_p for every referenced header. */
18460
18461 static void
18462 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18463 const int decode_for_pst_p, CORE_ADDR lowpc)
18464 {
18465 const gdb_byte *line_ptr, *extended_end;
18466 const gdb_byte *line_end;
18467 unsigned int bytes_read, extended_len;
18468 unsigned char op_code, extended_op;
18469 CORE_ADDR baseaddr;
18470 struct objfile *objfile = cu->objfile;
18471 bfd *abfd = objfile->obfd;
18472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18473 /* True if we're recording line info (as opposed to building partial
18474 symtabs and just interested in finding include files mentioned by
18475 the line number program). */
18476 bool record_lines_p = !decode_for_pst_p;
18477
18478 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18479
18480 line_ptr = lh->statement_program_start;
18481 line_end = lh->statement_program_end;
18482
18483 /* Read the statement sequences until there's nothing left. */
18484 while (line_ptr < line_end)
18485 {
18486 /* The DWARF line number program state machine. Reset the state
18487 machine at the start of each sequence. */
18488 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18489 bool end_sequence = false;
18490
18491 if (record_lines_p)
18492 {
18493 /* Start a subfile for the current file of the state
18494 machine. */
18495 const file_entry *fe = state_machine.current_file ();
18496
18497 if (fe != NULL)
18498 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18499 }
18500
18501 /* Decode the table. */
18502 while (line_ptr < line_end && !end_sequence)
18503 {
18504 op_code = read_1_byte (abfd, line_ptr);
18505 line_ptr += 1;
18506
18507 if (op_code >= lh->opcode_base)
18508 {
18509 /* Special opcode. */
18510 state_machine.handle_special_opcode (op_code);
18511 }
18512 else switch (op_code)
18513 {
18514 case DW_LNS_extended_op:
18515 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18516 &bytes_read);
18517 line_ptr += bytes_read;
18518 extended_end = line_ptr + extended_len;
18519 extended_op = read_1_byte (abfd, line_ptr);
18520 line_ptr += 1;
18521 switch (extended_op)
18522 {
18523 case DW_LNE_end_sequence:
18524 state_machine.handle_end_sequence ();
18525 end_sequence = true;
18526 break;
18527 case DW_LNE_set_address:
18528 {
18529 CORE_ADDR address
18530 = read_address (abfd, line_ptr, cu, &bytes_read);
18531 line_ptr += bytes_read;
18532
18533 state_machine.check_line_address (cu, line_ptr,
18534 lowpc, address);
18535 state_machine.handle_set_address (baseaddr, address);
18536 }
18537 break;
18538 case DW_LNE_define_file:
18539 {
18540 const char *cur_file;
18541 unsigned int mod_time, length;
18542 dir_index dindex;
18543
18544 cur_file = read_direct_string (abfd, line_ptr,
18545 &bytes_read);
18546 line_ptr += bytes_read;
18547 dindex = (dir_index)
18548 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18549 line_ptr += bytes_read;
18550 mod_time =
18551 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18552 line_ptr += bytes_read;
18553 length =
18554 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18555 line_ptr += bytes_read;
18556 lh->add_file_name (cur_file, dindex, mod_time, length);
18557 }
18558 break;
18559 case DW_LNE_set_discriminator:
18560 {
18561 /* The discriminator is not interesting to the
18562 debugger; just ignore it. We still need to
18563 check its value though:
18564 if there are consecutive entries for the same
18565 (non-prologue) line we want to coalesce them.
18566 PR 17276. */
18567 unsigned int discr
18568 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18569 line_ptr += bytes_read;
18570
18571 state_machine.handle_set_discriminator (discr);
18572 }
18573 break;
18574 default:
18575 complaint (&symfile_complaints,
18576 _("mangled .debug_line section"));
18577 return;
18578 }
18579 /* Make sure that we parsed the extended op correctly. If e.g.
18580 we expected a different address size than the producer used,
18581 we may have read the wrong number of bytes. */
18582 if (line_ptr != extended_end)
18583 {
18584 complaint (&symfile_complaints,
18585 _("mangled .debug_line section"));
18586 return;
18587 }
18588 break;
18589 case DW_LNS_copy:
18590 state_machine.handle_copy ();
18591 break;
18592 case DW_LNS_advance_pc:
18593 {
18594 CORE_ADDR adjust
18595 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18596 line_ptr += bytes_read;
18597
18598 state_machine.handle_advance_pc (adjust);
18599 }
18600 break;
18601 case DW_LNS_advance_line:
18602 {
18603 int line_delta
18604 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18605 line_ptr += bytes_read;
18606
18607 state_machine.handle_advance_line (line_delta);
18608 }
18609 break;
18610 case DW_LNS_set_file:
18611 {
18612 file_name_index file
18613 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18614 &bytes_read);
18615 line_ptr += bytes_read;
18616
18617 state_machine.handle_set_file (file);
18618 }
18619 break;
18620 case DW_LNS_set_column:
18621 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18622 line_ptr += bytes_read;
18623 break;
18624 case DW_LNS_negate_stmt:
18625 state_machine.handle_negate_stmt ();
18626 break;
18627 case DW_LNS_set_basic_block:
18628 break;
18629 /* Add to the address register of the state machine the
18630 address increment value corresponding to special opcode
18631 255. I.e., this value is scaled by the minimum
18632 instruction length since special opcode 255 would have
18633 scaled the increment. */
18634 case DW_LNS_const_add_pc:
18635 state_machine.handle_const_add_pc ();
18636 break;
18637 case DW_LNS_fixed_advance_pc:
18638 {
18639 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18640 line_ptr += 2;
18641
18642 state_machine.handle_fixed_advance_pc (addr_adj);
18643 }
18644 break;
18645 default:
18646 {
18647 /* Unknown standard opcode, ignore it. */
18648 int i;
18649
18650 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18651 {
18652 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18653 line_ptr += bytes_read;
18654 }
18655 }
18656 }
18657 }
18658
18659 if (!end_sequence)
18660 dwarf2_debug_line_missing_end_sequence_complaint ();
18661
18662 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18663 in which case we still finish recording the last line). */
18664 state_machine.record_line (true);
18665 }
18666 }
18667
18668 /* Decode the Line Number Program (LNP) for the given line_header
18669 structure and CU. The actual information extracted and the type
18670 of structures created from the LNP depends on the value of PST.
18671
18672 1. If PST is NULL, then this procedure uses the data from the program
18673 to create all necessary symbol tables, and their linetables.
18674
18675 2. If PST is not NULL, this procedure reads the program to determine
18676 the list of files included by the unit represented by PST, and
18677 builds all the associated partial symbol tables.
18678
18679 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18680 It is used for relative paths in the line table.
18681 NOTE: When processing partial symtabs (pst != NULL),
18682 comp_dir == pst->dirname.
18683
18684 NOTE: It is important that psymtabs have the same file name (via strcmp)
18685 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18686 symtab we don't use it in the name of the psymtabs we create.
18687 E.g. expand_line_sal requires this when finding psymtabs to expand.
18688 A good testcase for this is mb-inline.exp.
18689
18690 LOWPC is the lowest address in CU (or 0 if not known).
18691
18692 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18693 for its PC<->lines mapping information. Otherwise only the filename
18694 table is read in. */
18695
18696 static void
18697 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18698 struct dwarf2_cu *cu, struct partial_symtab *pst,
18699 CORE_ADDR lowpc, int decode_mapping)
18700 {
18701 struct objfile *objfile = cu->objfile;
18702 const int decode_for_pst_p = (pst != NULL);
18703
18704 if (decode_mapping)
18705 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18706
18707 if (decode_for_pst_p)
18708 {
18709 int file_index;
18710
18711 /* Now that we're done scanning the Line Header Program, we can
18712 create the psymtab of each included file. */
18713 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18714 if (lh->file_names[file_index].included_p == 1)
18715 {
18716 const char *include_name =
18717 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18718 if (include_name != NULL)
18719 dwarf2_create_include_psymtab (include_name, pst, objfile);
18720 }
18721 }
18722 else
18723 {
18724 /* Make sure a symtab is created for every file, even files
18725 which contain only variables (i.e. no code with associated
18726 line numbers). */
18727 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18728 int i;
18729
18730 for (i = 0; i < lh->file_names.size (); i++)
18731 {
18732 file_entry &fe = lh->file_names[i];
18733
18734 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18735
18736 if (current_subfile->symtab == NULL)
18737 {
18738 current_subfile->symtab
18739 = allocate_symtab (cust, current_subfile->name);
18740 }
18741 fe.symtab = current_subfile->symtab;
18742 }
18743 }
18744 }
18745
18746 /* Start a subfile for DWARF. FILENAME is the name of the file and
18747 DIRNAME the name of the source directory which contains FILENAME
18748 or NULL if not known.
18749 This routine tries to keep line numbers from identical absolute and
18750 relative file names in a common subfile.
18751
18752 Using the `list' example from the GDB testsuite, which resides in
18753 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18754 of /srcdir/list0.c yields the following debugging information for list0.c:
18755
18756 DW_AT_name: /srcdir/list0.c
18757 DW_AT_comp_dir: /compdir
18758 files.files[0].name: list0.h
18759 files.files[0].dir: /srcdir
18760 files.files[1].name: list0.c
18761 files.files[1].dir: /srcdir
18762
18763 The line number information for list0.c has to end up in a single
18764 subfile, so that `break /srcdir/list0.c:1' works as expected.
18765 start_subfile will ensure that this happens provided that we pass the
18766 concatenation of files.files[1].dir and files.files[1].name as the
18767 subfile's name. */
18768
18769 static void
18770 dwarf2_start_subfile (const char *filename, const char *dirname)
18771 {
18772 char *copy = NULL;
18773
18774 /* In order not to lose the line information directory,
18775 we concatenate it to the filename when it makes sense.
18776 Note that the Dwarf3 standard says (speaking of filenames in line
18777 information): ``The directory index is ignored for file names
18778 that represent full path names''. Thus ignoring dirname in the
18779 `else' branch below isn't an issue. */
18780
18781 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18782 {
18783 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18784 filename = copy;
18785 }
18786
18787 start_subfile (filename);
18788
18789 if (copy != NULL)
18790 xfree (copy);
18791 }
18792
18793 /* Start a symtab for DWARF.
18794 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18795
18796 static struct compunit_symtab *
18797 dwarf2_start_symtab (struct dwarf2_cu *cu,
18798 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18799 {
18800 struct compunit_symtab *cust
18801 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18802
18803 record_debugformat ("DWARF 2");
18804 record_producer (cu->producer);
18805
18806 /* We assume that we're processing GCC output. */
18807 processing_gcc_compilation = 2;
18808
18809 cu->processing_has_namespace_info = 0;
18810
18811 return cust;
18812 }
18813
18814 static void
18815 var_decode_location (struct attribute *attr, struct symbol *sym,
18816 struct dwarf2_cu *cu)
18817 {
18818 struct objfile *objfile = cu->objfile;
18819 struct comp_unit_head *cu_header = &cu->header;
18820
18821 /* NOTE drow/2003-01-30: There used to be a comment and some special
18822 code here to turn a symbol with DW_AT_external and a
18823 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18824 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18825 with some versions of binutils) where shared libraries could have
18826 relocations against symbols in their debug information - the
18827 minimal symbol would have the right address, but the debug info
18828 would not. It's no longer necessary, because we will explicitly
18829 apply relocations when we read in the debug information now. */
18830
18831 /* A DW_AT_location attribute with no contents indicates that a
18832 variable has been optimized away. */
18833 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18834 {
18835 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18836 return;
18837 }
18838
18839 /* Handle one degenerate form of location expression specially, to
18840 preserve GDB's previous behavior when section offsets are
18841 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18842 then mark this symbol as LOC_STATIC. */
18843
18844 if (attr_form_is_block (attr)
18845 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18846 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18847 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18848 && (DW_BLOCK (attr)->size
18849 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18850 {
18851 unsigned int dummy;
18852
18853 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18854 SYMBOL_VALUE_ADDRESS (sym) =
18855 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18856 else
18857 SYMBOL_VALUE_ADDRESS (sym) =
18858 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18859 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18860 fixup_symbol_section (sym, objfile);
18861 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18862 SYMBOL_SECTION (sym));
18863 return;
18864 }
18865
18866 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18867 expression evaluator, and use LOC_COMPUTED only when necessary
18868 (i.e. when the value of a register or memory location is
18869 referenced, or a thread-local block, etc.). Then again, it might
18870 not be worthwhile. I'm assuming that it isn't unless performance
18871 or memory numbers show me otherwise. */
18872
18873 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18874
18875 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18876 cu->has_loclist = 1;
18877 }
18878
18879 /* Given a pointer to a DWARF information entry, figure out if we need
18880 to make a symbol table entry for it, and if so, create a new entry
18881 and return a pointer to it.
18882 If TYPE is NULL, determine symbol type from the die, otherwise
18883 used the passed type.
18884 If SPACE is not NULL, use it to hold the new symbol. If it is
18885 NULL, allocate a new symbol on the objfile's obstack. */
18886
18887 static struct symbol *
18888 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18889 struct symbol *space)
18890 {
18891 struct objfile *objfile = cu->objfile;
18892 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18893 struct symbol *sym = NULL;
18894 const char *name;
18895 struct attribute *attr = NULL;
18896 struct attribute *attr2 = NULL;
18897 CORE_ADDR baseaddr;
18898 struct pending **list_to_add = NULL;
18899
18900 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18901
18902 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18903
18904 name = dwarf2_name (die, cu);
18905 if (name)
18906 {
18907 const char *linkagename;
18908 int suppress_add = 0;
18909
18910 if (space)
18911 sym = space;
18912 else
18913 sym = allocate_symbol (objfile);
18914 OBJSTAT (objfile, n_syms++);
18915
18916 /* Cache this symbol's name and the name's demangled form (if any). */
18917 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18918 linkagename = dwarf2_physname (name, die, cu);
18919 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18920
18921 /* Fortran does not have mangling standard and the mangling does differ
18922 between gfortran, iFort etc. */
18923 if (cu->language == language_fortran
18924 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18925 symbol_set_demangled_name (&(sym->ginfo),
18926 dwarf2_full_name (name, die, cu),
18927 NULL);
18928
18929 /* Default assumptions.
18930 Use the passed type or decode it from the die. */
18931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18932 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18933 if (type != NULL)
18934 SYMBOL_TYPE (sym) = type;
18935 else
18936 SYMBOL_TYPE (sym) = die_type (die, cu);
18937 attr = dwarf2_attr (die,
18938 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18939 cu);
18940 if (attr)
18941 {
18942 SYMBOL_LINE (sym) = DW_UNSND (attr);
18943 }
18944
18945 attr = dwarf2_attr (die,
18946 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18947 cu);
18948 if (attr)
18949 {
18950 file_name_index file_index = (file_name_index) DW_UNSND (attr);
18951 struct file_entry *fe;
18952
18953 if (cu->line_header != NULL)
18954 fe = cu->line_header->file_name_at (file_index);
18955 else
18956 fe = NULL;
18957
18958 if (fe == NULL)
18959 complaint (&symfile_complaints,
18960 _("file index out of range"));
18961 else
18962 symbol_set_symtab (sym, fe->symtab);
18963 }
18964
18965 switch (die->tag)
18966 {
18967 case DW_TAG_label:
18968 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18969 if (attr)
18970 {
18971 CORE_ADDR addr;
18972
18973 addr = attr_value_as_address (attr);
18974 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18975 SYMBOL_VALUE_ADDRESS (sym) = addr;
18976 }
18977 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18978 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18979 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18980 add_symbol_to_list (sym, cu->list_in_scope);
18981 break;
18982 case DW_TAG_subprogram:
18983 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18984 finish_block. */
18985 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18986 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18987 if ((attr2 && (DW_UNSND (attr2) != 0))
18988 || cu->language == language_ada)
18989 {
18990 /* Subprograms marked external are stored as a global symbol.
18991 Ada subprograms, whether marked external or not, are always
18992 stored as a global symbol, because we want to be able to
18993 access them globally. For instance, we want to be able
18994 to break on a nested subprogram without having to
18995 specify the context. */
18996 list_to_add = &global_symbols;
18997 }
18998 else
18999 {
19000 list_to_add = cu->list_in_scope;
19001 }
19002 break;
19003 case DW_TAG_inlined_subroutine:
19004 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19005 finish_block. */
19006 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19007 SYMBOL_INLINED (sym) = 1;
19008 list_to_add = cu->list_in_scope;
19009 break;
19010 case DW_TAG_template_value_param:
19011 suppress_add = 1;
19012 /* Fall through. */
19013 case DW_TAG_constant:
19014 case DW_TAG_variable:
19015 case DW_TAG_member:
19016 /* Compilation with minimal debug info may result in
19017 variables with missing type entries. Change the
19018 misleading `void' type to something sensible. */
19019 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19020 SYMBOL_TYPE (sym)
19021 = objfile_type (objfile)->nodebug_data_symbol;
19022
19023 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19024 /* In the case of DW_TAG_member, we should only be called for
19025 static const members. */
19026 if (die->tag == DW_TAG_member)
19027 {
19028 /* dwarf2_add_field uses die_is_declaration,
19029 so we do the same. */
19030 gdb_assert (die_is_declaration (die, cu));
19031 gdb_assert (attr);
19032 }
19033 if (attr)
19034 {
19035 dwarf2_const_value (attr, sym, cu);
19036 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19037 if (!suppress_add)
19038 {
19039 if (attr2 && (DW_UNSND (attr2) != 0))
19040 list_to_add = &global_symbols;
19041 else
19042 list_to_add = cu->list_in_scope;
19043 }
19044 break;
19045 }
19046 attr = dwarf2_attr (die, DW_AT_location, cu);
19047 if (attr)
19048 {
19049 var_decode_location (attr, sym, cu);
19050 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19051
19052 /* Fortran explicitly imports any global symbols to the local
19053 scope by DW_TAG_common_block. */
19054 if (cu->language == language_fortran && die->parent
19055 && die->parent->tag == DW_TAG_common_block)
19056 attr2 = NULL;
19057
19058 if (SYMBOL_CLASS (sym) == LOC_STATIC
19059 && SYMBOL_VALUE_ADDRESS (sym) == 0
19060 && !dwarf2_per_objfile->has_section_at_zero)
19061 {
19062 /* When a static variable is eliminated by the linker,
19063 the corresponding debug information is not stripped
19064 out, but the variable address is set to null;
19065 do not add such variables into symbol table. */
19066 }
19067 else if (attr2 && (DW_UNSND (attr2) != 0))
19068 {
19069 /* Workaround gfortran PR debug/40040 - it uses
19070 DW_AT_location for variables in -fPIC libraries which may
19071 get overriden by other libraries/executable and get
19072 a different address. Resolve it by the minimal symbol
19073 which may come from inferior's executable using copy
19074 relocation. Make this workaround only for gfortran as for
19075 other compilers GDB cannot guess the minimal symbol
19076 Fortran mangling kind. */
19077 if (cu->language == language_fortran && die->parent
19078 && die->parent->tag == DW_TAG_module
19079 && cu->producer
19080 && startswith (cu->producer, "GNU Fortran"))
19081 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19082
19083 /* A variable with DW_AT_external is never static,
19084 but it may be block-scoped. */
19085 list_to_add = (cu->list_in_scope == &file_symbols
19086 ? &global_symbols : cu->list_in_scope);
19087 }
19088 else
19089 list_to_add = cu->list_in_scope;
19090 }
19091 else
19092 {
19093 /* We do not know the address of this symbol.
19094 If it is an external symbol and we have type information
19095 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19096 The address of the variable will then be determined from
19097 the minimal symbol table whenever the variable is
19098 referenced. */
19099 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19100
19101 /* Fortran explicitly imports any global symbols to the local
19102 scope by DW_TAG_common_block. */
19103 if (cu->language == language_fortran && die->parent
19104 && die->parent->tag == DW_TAG_common_block)
19105 {
19106 /* SYMBOL_CLASS doesn't matter here because
19107 read_common_block is going to reset it. */
19108 if (!suppress_add)
19109 list_to_add = cu->list_in_scope;
19110 }
19111 else if (attr2 && (DW_UNSND (attr2) != 0)
19112 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19113 {
19114 /* A variable with DW_AT_external is never static, but it
19115 may be block-scoped. */
19116 list_to_add = (cu->list_in_scope == &file_symbols
19117 ? &global_symbols : cu->list_in_scope);
19118
19119 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19120 }
19121 else if (!die_is_declaration (die, cu))
19122 {
19123 /* Use the default LOC_OPTIMIZED_OUT class. */
19124 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19125 if (!suppress_add)
19126 list_to_add = cu->list_in_scope;
19127 }
19128 }
19129 break;
19130 case DW_TAG_formal_parameter:
19131 /* If we are inside a function, mark this as an argument. If
19132 not, we might be looking at an argument to an inlined function
19133 when we do not have enough information to show inlined frames;
19134 pretend it's a local variable in that case so that the user can
19135 still see it. */
19136 if (context_stack_depth > 0
19137 && context_stack[context_stack_depth - 1].name != NULL)
19138 SYMBOL_IS_ARGUMENT (sym) = 1;
19139 attr = dwarf2_attr (die, DW_AT_location, cu);
19140 if (attr)
19141 {
19142 var_decode_location (attr, sym, cu);
19143 }
19144 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19145 if (attr)
19146 {
19147 dwarf2_const_value (attr, sym, cu);
19148 }
19149
19150 list_to_add = cu->list_in_scope;
19151 break;
19152 case DW_TAG_unspecified_parameters:
19153 /* From varargs functions; gdb doesn't seem to have any
19154 interest in this information, so just ignore it for now.
19155 (FIXME?) */
19156 break;
19157 case DW_TAG_template_type_param:
19158 suppress_add = 1;
19159 /* Fall through. */
19160 case DW_TAG_class_type:
19161 case DW_TAG_interface_type:
19162 case DW_TAG_structure_type:
19163 case DW_TAG_union_type:
19164 case DW_TAG_set_type:
19165 case DW_TAG_enumeration_type:
19166 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19167 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19168
19169 {
19170 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19171 really ever be static objects: otherwise, if you try
19172 to, say, break of a class's method and you're in a file
19173 which doesn't mention that class, it won't work unless
19174 the check for all static symbols in lookup_symbol_aux
19175 saves you. See the OtherFileClass tests in
19176 gdb.c++/namespace.exp. */
19177
19178 if (!suppress_add)
19179 {
19180 list_to_add = (cu->list_in_scope == &file_symbols
19181 && cu->language == language_cplus
19182 ? &global_symbols : cu->list_in_scope);
19183
19184 /* The semantics of C++ state that "struct foo {
19185 ... }" also defines a typedef for "foo". */
19186 if (cu->language == language_cplus
19187 || cu->language == language_ada
19188 || cu->language == language_d
19189 || cu->language == language_rust)
19190 {
19191 /* The symbol's name is already allocated along
19192 with this objfile, so we don't need to
19193 duplicate it for the type. */
19194 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19195 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19196 }
19197 }
19198 }
19199 break;
19200 case DW_TAG_typedef:
19201 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19202 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19203 list_to_add = cu->list_in_scope;
19204 break;
19205 case DW_TAG_base_type:
19206 case DW_TAG_subrange_type:
19207 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19208 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19209 list_to_add = cu->list_in_scope;
19210 break;
19211 case DW_TAG_enumerator:
19212 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19213 if (attr)
19214 {
19215 dwarf2_const_value (attr, sym, cu);
19216 }
19217 {
19218 /* NOTE: carlton/2003-11-10: See comment above in the
19219 DW_TAG_class_type, etc. block. */
19220
19221 list_to_add = (cu->list_in_scope == &file_symbols
19222 && cu->language == language_cplus
19223 ? &global_symbols : cu->list_in_scope);
19224 }
19225 break;
19226 case DW_TAG_imported_declaration:
19227 case DW_TAG_namespace:
19228 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19229 list_to_add = &global_symbols;
19230 break;
19231 case DW_TAG_module:
19232 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19233 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19234 list_to_add = &global_symbols;
19235 break;
19236 case DW_TAG_common_block:
19237 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19238 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19239 add_symbol_to_list (sym, cu->list_in_scope);
19240 break;
19241 default:
19242 /* Not a tag we recognize. Hopefully we aren't processing
19243 trash data, but since we must specifically ignore things
19244 we don't recognize, there is nothing else we should do at
19245 this point. */
19246 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19247 dwarf_tag_name (die->tag));
19248 break;
19249 }
19250
19251 if (suppress_add)
19252 {
19253 sym->hash_next = objfile->template_symbols;
19254 objfile->template_symbols = sym;
19255 list_to_add = NULL;
19256 }
19257
19258 if (list_to_add != NULL)
19259 add_symbol_to_list (sym, list_to_add);
19260
19261 /* For the benefit of old versions of GCC, check for anonymous
19262 namespaces based on the demangled name. */
19263 if (!cu->processing_has_namespace_info
19264 && cu->language == language_cplus)
19265 cp_scan_for_anonymous_namespaces (sym, objfile);
19266 }
19267 return (sym);
19268 }
19269
19270 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19271
19272 static struct symbol *
19273 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19274 {
19275 return new_symbol_full (die, type, cu, NULL);
19276 }
19277
19278 /* Given an attr with a DW_FORM_dataN value in host byte order,
19279 zero-extend it as appropriate for the symbol's type. The DWARF
19280 standard (v4) is not entirely clear about the meaning of using
19281 DW_FORM_dataN for a constant with a signed type, where the type is
19282 wider than the data. The conclusion of a discussion on the DWARF
19283 list was that this is unspecified. We choose to always zero-extend
19284 because that is the interpretation long in use by GCC. */
19285
19286 static gdb_byte *
19287 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19288 struct dwarf2_cu *cu, LONGEST *value, int bits)
19289 {
19290 struct objfile *objfile = cu->objfile;
19291 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19292 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19293 LONGEST l = DW_UNSND (attr);
19294
19295 if (bits < sizeof (*value) * 8)
19296 {
19297 l &= ((LONGEST) 1 << bits) - 1;
19298 *value = l;
19299 }
19300 else if (bits == sizeof (*value) * 8)
19301 *value = l;
19302 else
19303 {
19304 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19305 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19306 return bytes;
19307 }
19308
19309 return NULL;
19310 }
19311
19312 /* Read a constant value from an attribute. Either set *VALUE, or if
19313 the value does not fit in *VALUE, set *BYTES - either already
19314 allocated on the objfile obstack, or newly allocated on OBSTACK,
19315 or, set *BATON, if we translated the constant to a location
19316 expression. */
19317
19318 static void
19319 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19320 const char *name, struct obstack *obstack,
19321 struct dwarf2_cu *cu,
19322 LONGEST *value, const gdb_byte **bytes,
19323 struct dwarf2_locexpr_baton **baton)
19324 {
19325 struct objfile *objfile = cu->objfile;
19326 struct comp_unit_head *cu_header = &cu->header;
19327 struct dwarf_block *blk;
19328 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19329 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19330
19331 *value = 0;
19332 *bytes = NULL;
19333 *baton = NULL;
19334
19335 switch (attr->form)
19336 {
19337 case DW_FORM_addr:
19338 case DW_FORM_GNU_addr_index:
19339 {
19340 gdb_byte *data;
19341
19342 if (TYPE_LENGTH (type) != cu_header->addr_size)
19343 dwarf2_const_value_length_mismatch_complaint (name,
19344 cu_header->addr_size,
19345 TYPE_LENGTH (type));
19346 /* Symbols of this form are reasonably rare, so we just
19347 piggyback on the existing location code rather than writing
19348 a new implementation of symbol_computed_ops. */
19349 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19350 (*baton)->per_cu = cu->per_cu;
19351 gdb_assert ((*baton)->per_cu);
19352
19353 (*baton)->size = 2 + cu_header->addr_size;
19354 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19355 (*baton)->data = data;
19356
19357 data[0] = DW_OP_addr;
19358 store_unsigned_integer (&data[1], cu_header->addr_size,
19359 byte_order, DW_ADDR (attr));
19360 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19361 }
19362 break;
19363 case DW_FORM_string:
19364 case DW_FORM_strp:
19365 case DW_FORM_GNU_str_index:
19366 case DW_FORM_GNU_strp_alt:
19367 /* DW_STRING is already allocated on the objfile obstack, point
19368 directly to it. */
19369 *bytes = (const gdb_byte *) DW_STRING (attr);
19370 break;
19371 case DW_FORM_block1:
19372 case DW_FORM_block2:
19373 case DW_FORM_block4:
19374 case DW_FORM_block:
19375 case DW_FORM_exprloc:
19376 case DW_FORM_data16:
19377 blk = DW_BLOCK (attr);
19378 if (TYPE_LENGTH (type) != blk->size)
19379 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19380 TYPE_LENGTH (type));
19381 *bytes = blk->data;
19382 break;
19383
19384 /* The DW_AT_const_value attributes are supposed to carry the
19385 symbol's value "represented as it would be on the target
19386 architecture." By the time we get here, it's already been
19387 converted to host endianness, so we just need to sign- or
19388 zero-extend it as appropriate. */
19389 case DW_FORM_data1:
19390 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19391 break;
19392 case DW_FORM_data2:
19393 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19394 break;
19395 case DW_FORM_data4:
19396 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19397 break;
19398 case DW_FORM_data8:
19399 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19400 break;
19401
19402 case DW_FORM_sdata:
19403 *value = DW_SND (attr);
19404 break;
19405
19406 case DW_FORM_udata:
19407 *value = DW_UNSND (attr);
19408 break;
19409
19410 default:
19411 complaint (&symfile_complaints,
19412 _("unsupported const value attribute form: '%s'"),
19413 dwarf_form_name (attr->form));
19414 *value = 0;
19415 break;
19416 }
19417 }
19418
19419
19420 /* Copy constant value from an attribute to a symbol. */
19421
19422 static void
19423 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19424 struct dwarf2_cu *cu)
19425 {
19426 struct objfile *objfile = cu->objfile;
19427 LONGEST value;
19428 const gdb_byte *bytes;
19429 struct dwarf2_locexpr_baton *baton;
19430
19431 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19432 SYMBOL_PRINT_NAME (sym),
19433 &objfile->objfile_obstack, cu,
19434 &value, &bytes, &baton);
19435
19436 if (baton != NULL)
19437 {
19438 SYMBOL_LOCATION_BATON (sym) = baton;
19439 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19440 }
19441 else if (bytes != NULL)
19442 {
19443 SYMBOL_VALUE_BYTES (sym) = bytes;
19444 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19445 }
19446 else
19447 {
19448 SYMBOL_VALUE (sym) = value;
19449 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19450 }
19451 }
19452
19453 /* Return the type of the die in question using its DW_AT_type attribute. */
19454
19455 static struct type *
19456 die_type (struct die_info *die, struct dwarf2_cu *cu)
19457 {
19458 struct attribute *type_attr;
19459
19460 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19461 if (!type_attr)
19462 {
19463 /* A missing DW_AT_type represents a void type. */
19464 return objfile_type (cu->objfile)->builtin_void;
19465 }
19466
19467 return lookup_die_type (die, type_attr, cu);
19468 }
19469
19470 /* True iff CU's producer generates GNAT Ada auxiliary information
19471 that allows to find parallel types through that information instead
19472 of having to do expensive parallel lookups by type name. */
19473
19474 static int
19475 need_gnat_info (struct dwarf2_cu *cu)
19476 {
19477 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19478 of GNAT produces this auxiliary information, without any indication
19479 that it is produced. Part of enhancing the FSF version of GNAT
19480 to produce that information will be to put in place an indicator
19481 that we can use in order to determine whether the descriptive type
19482 info is available or not. One suggestion that has been made is
19483 to use a new attribute, attached to the CU die. For now, assume
19484 that the descriptive type info is not available. */
19485 return 0;
19486 }
19487
19488 /* Return the auxiliary type of the die in question using its
19489 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19490 attribute is not present. */
19491
19492 static struct type *
19493 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19494 {
19495 struct attribute *type_attr;
19496
19497 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19498 if (!type_attr)
19499 return NULL;
19500
19501 return lookup_die_type (die, type_attr, cu);
19502 }
19503
19504 /* If DIE has a descriptive_type attribute, then set the TYPE's
19505 descriptive type accordingly. */
19506
19507 static void
19508 set_descriptive_type (struct type *type, struct die_info *die,
19509 struct dwarf2_cu *cu)
19510 {
19511 struct type *descriptive_type = die_descriptive_type (die, cu);
19512
19513 if (descriptive_type)
19514 {
19515 ALLOCATE_GNAT_AUX_TYPE (type);
19516 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19517 }
19518 }
19519
19520 /* Return the containing type of the die in question using its
19521 DW_AT_containing_type attribute. */
19522
19523 static struct type *
19524 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19525 {
19526 struct attribute *type_attr;
19527
19528 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19529 if (!type_attr)
19530 error (_("Dwarf Error: Problem turning containing type into gdb type "
19531 "[in module %s]"), objfile_name (cu->objfile));
19532
19533 return lookup_die_type (die, type_attr, cu);
19534 }
19535
19536 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19537
19538 static struct type *
19539 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19540 {
19541 struct objfile *objfile = dwarf2_per_objfile->objfile;
19542 char *message, *saved;
19543
19544 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19545 objfile_name (objfile),
19546 to_underlying (cu->header.sect_off),
19547 to_underlying (die->sect_off));
19548 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19549 message, strlen (message));
19550 xfree (message);
19551
19552 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19553 }
19554
19555 /* Look up the type of DIE in CU using its type attribute ATTR.
19556 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19557 DW_AT_containing_type.
19558 If there is no type substitute an error marker. */
19559
19560 static struct type *
19561 lookup_die_type (struct die_info *die, const struct attribute *attr,
19562 struct dwarf2_cu *cu)
19563 {
19564 struct objfile *objfile = cu->objfile;
19565 struct type *this_type;
19566
19567 gdb_assert (attr->name == DW_AT_type
19568 || attr->name == DW_AT_GNAT_descriptive_type
19569 || attr->name == DW_AT_containing_type);
19570
19571 /* First see if we have it cached. */
19572
19573 if (attr->form == DW_FORM_GNU_ref_alt)
19574 {
19575 struct dwarf2_per_cu_data *per_cu;
19576 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19577
19578 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19579 this_type = get_die_type_at_offset (sect_off, per_cu);
19580 }
19581 else if (attr_form_is_ref (attr))
19582 {
19583 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19584
19585 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19586 }
19587 else if (attr->form == DW_FORM_ref_sig8)
19588 {
19589 ULONGEST signature = DW_SIGNATURE (attr);
19590
19591 return get_signatured_type (die, signature, cu);
19592 }
19593 else
19594 {
19595 complaint (&symfile_complaints,
19596 _("Dwarf Error: Bad type attribute %s in DIE"
19597 " at 0x%x [in module %s]"),
19598 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19599 objfile_name (objfile));
19600 return build_error_marker_type (cu, die);
19601 }
19602
19603 /* If not cached we need to read it in. */
19604
19605 if (this_type == NULL)
19606 {
19607 struct die_info *type_die = NULL;
19608 struct dwarf2_cu *type_cu = cu;
19609
19610 if (attr_form_is_ref (attr))
19611 type_die = follow_die_ref (die, attr, &type_cu);
19612 if (type_die == NULL)
19613 return build_error_marker_type (cu, die);
19614 /* If we find the type now, it's probably because the type came
19615 from an inter-CU reference and the type's CU got expanded before
19616 ours. */
19617 this_type = read_type_die (type_die, type_cu);
19618 }
19619
19620 /* If we still don't have a type use an error marker. */
19621
19622 if (this_type == NULL)
19623 return build_error_marker_type (cu, die);
19624
19625 return this_type;
19626 }
19627
19628 /* Return the type in DIE, CU.
19629 Returns NULL for invalid types.
19630
19631 This first does a lookup in die_type_hash,
19632 and only reads the die in if necessary.
19633
19634 NOTE: This can be called when reading in partial or full symbols. */
19635
19636 static struct type *
19637 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19638 {
19639 struct type *this_type;
19640
19641 this_type = get_die_type (die, cu);
19642 if (this_type)
19643 return this_type;
19644
19645 return read_type_die_1 (die, cu);
19646 }
19647
19648 /* Read the type in DIE, CU.
19649 Returns NULL for invalid types. */
19650
19651 static struct type *
19652 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19653 {
19654 struct type *this_type = NULL;
19655
19656 switch (die->tag)
19657 {
19658 case DW_TAG_class_type:
19659 case DW_TAG_interface_type:
19660 case DW_TAG_structure_type:
19661 case DW_TAG_union_type:
19662 this_type = read_structure_type (die, cu);
19663 break;
19664 case DW_TAG_enumeration_type:
19665 this_type = read_enumeration_type (die, cu);
19666 break;
19667 case DW_TAG_subprogram:
19668 case DW_TAG_subroutine_type:
19669 case DW_TAG_inlined_subroutine:
19670 this_type = read_subroutine_type (die, cu);
19671 break;
19672 case DW_TAG_array_type:
19673 this_type = read_array_type (die, cu);
19674 break;
19675 case DW_TAG_set_type:
19676 this_type = read_set_type (die, cu);
19677 break;
19678 case DW_TAG_pointer_type:
19679 this_type = read_tag_pointer_type (die, cu);
19680 break;
19681 case DW_TAG_ptr_to_member_type:
19682 this_type = read_tag_ptr_to_member_type (die, cu);
19683 break;
19684 case DW_TAG_reference_type:
19685 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19686 break;
19687 case DW_TAG_rvalue_reference_type:
19688 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19689 break;
19690 case DW_TAG_const_type:
19691 this_type = read_tag_const_type (die, cu);
19692 break;
19693 case DW_TAG_volatile_type:
19694 this_type = read_tag_volatile_type (die, cu);
19695 break;
19696 case DW_TAG_restrict_type:
19697 this_type = read_tag_restrict_type (die, cu);
19698 break;
19699 case DW_TAG_string_type:
19700 this_type = read_tag_string_type (die, cu);
19701 break;
19702 case DW_TAG_typedef:
19703 this_type = read_typedef (die, cu);
19704 break;
19705 case DW_TAG_subrange_type:
19706 this_type = read_subrange_type (die, cu);
19707 break;
19708 case DW_TAG_base_type:
19709 this_type = read_base_type (die, cu);
19710 break;
19711 case DW_TAG_unspecified_type:
19712 this_type = read_unspecified_type (die, cu);
19713 break;
19714 case DW_TAG_namespace:
19715 this_type = read_namespace_type (die, cu);
19716 break;
19717 case DW_TAG_module:
19718 this_type = read_module_type (die, cu);
19719 break;
19720 case DW_TAG_atomic_type:
19721 this_type = read_tag_atomic_type (die, cu);
19722 break;
19723 default:
19724 complaint (&symfile_complaints,
19725 _("unexpected tag in read_type_die: '%s'"),
19726 dwarf_tag_name (die->tag));
19727 break;
19728 }
19729
19730 return this_type;
19731 }
19732
19733 /* See if we can figure out if the class lives in a namespace. We do
19734 this by looking for a member function; its demangled name will
19735 contain namespace info, if there is any.
19736 Return the computed name or NULL.
19737 Space for the result is allocated on the objfile's obstack.
19738 This is the full-die version of guess_partial_die_structure_name.
19739 In this case we know DIE has no useful parent. */
19740
19741 static char *
19742 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19743 {
19744 struct die_info *spec_die;
19745 struct dwarf2_cu *spec_cu;
19746 struct die_info *child;
19747
19748 spec_cu = cu;
19749 spec_die = die_specification (die, &spec_cu);
19750 if (spec_die != NULL)
19751 {
19752 die = spec_die;
19753 cu = spec_cu;
19754 }
19755
19756 for (child = die->child;
19757 child != NULL;
19758 child = child->sibling)
19759 {
19760 if (child->tag == DW_TAG_subprogram)
19761 {
19762 const char *linkage_name;
19763
19764 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19765 if (linkage_name == NULL)
19766 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19767 cu);
19768 if (linkage_name != NULL)
19769 {
19770 char *actual_name
19771 = language_class_name_from_physname (cu->language_defn,
19772 linkage_name);
19773 char *name = NULL;
19774
19775 if (actual_name != NULL)
19776 {
19777 const char *die_name = dwarf2_name (die, cu);
19778
19779 if (die_name != NULL
19780 && strcmp (die_name, actual_name) != 0)
19781 {
19782 /* Strip off the class name from the full name.
19783 We want the prefix. */
19784 int die_name_len = strlen (die_name);
19785 int actual_name_len = strlen (actual_name);
19786
19787 /* Test for '::' as a sanity check. */
19788 if (actual_name_len > die_name_len + 2
19789 && actual_name[actual_name_len
19790 - die_name_len - 1] == ':')
19791 name = (char *) obstack_copy0 (
19792 &cu->objfile->per_bfd->storage_obstack,
19793 actual_name, actual_name_len - die_name_len - 2);
19794 }
19795 }
19796 xfree (actual_name);
19797 return name;
19798 }
19799 }
19800 }
19801
19802 return NULL;
19803 }
19804
19805 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19806 prefix part in such case. See
19807 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19808
19809 static const char *
19810 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19811 {
19812 struct attribute *attr;
19813 const char *base;
19814
19815 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19816 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19817 return NULL;
19818
19819 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19820 return NULL;
19821
19822 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19823 if (attr == NULL)
19824 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19825 if (attr == NULL || DW_STRING (attr) == NULL)
19826 return NULL;
19827
19828 /* dwarf2_name had to be already called. */
19829 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19830
19831 /* Strip the base name, keep any leading namespaces/classes. */
19832 base = strrchr (DW_STRING (attr), ':');
19833 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19834 return "";
19835
19836 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19837 DW_STRING (attr),
19838 &base[-1] - DW_STRING (attr));
19839 }
19840
19841 /* Return the name of the namespace/class that DIE is defined within,
19842 or "" if we can't tell. The caller should not xfree the result.
19843
19844 For example, if we're within the method foo() in the following
19845 code:
19846
19847 namespace N {
19848 class C {
19849 void foo () {
19850 }
19851 };
19852 }
19853
19854 then determine_prefix on foo's die will return "N::C". */
19855
19856 static const char *
19857 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19858 {
19859 struct die_info *parent, *spec_die;
19860 struct dwarf2_cu *spec_cu;
19861 struct type *parent_type;
19862 const char *retval;
19863
19864 if (cu->language != language_cplus
19865 && cu->language != language_fortran && cu->language != language_d
19866 && cu->language != language_rust)
19867 return "";
19868
19869 retval = anonymous_struct_prefix (die, cu);
19870 if (retval)
19871 return retval;
19872
19873 /* We have to be careful in the presence of DW_AT_specification.
19874 For example, with GCC 3.4, given the code
19875
19876 namespace N {
19877 void foo() {
19878 // Definition of N::foo.
19879 }
19880 }
19881
19882 then we'll have a tree of DIEs like this:
19883
19884 1: DW_TAG_compile_unit
19885 2: DW_TAG_namespace // N
19886 3: DW_TAG_subprogram // declaration of N::foo
19887 4: DW_TAG_subprogram // definition of N::foo
19888 DW_AT_specification // refers to die #3
19889
19890 Thus, when processing die #4, we have to pretend that we're in
19891 the context of its DW_AT_specification, namely the contex of die
19892 #3. */
19893 spec_cu = cu;
19894 spec_die = die_specification (die, &spec_cu);
19895 if (spec_die == NULL)
19896 parent = die->parent;
19897 else
19898 {
19899 parent = spec_die->parent;
19900 cu = spec_cu;
19901 }
19902
19903 if (parent == NULL)
19904 return "";
19905 else if (parent->building_fullname)
19906 {
19907 const char *name;
19908 const char *parent_name;
19909
19910 /* It has been seen on RealView 2.2 built binaries,
19911 DW_TAG_template_type_param types actually _defined_ as
19912 children of the parent class:
19913
19914 enum E {};
19915 template class <class Enum> Class{};
19916 Class<enum E> class_e;
19917
19918 1: DW_TAG_class_type (Class)
19919 2: DW_TAG_enumeration_type (E)
19920 3: DW_TAG_enumerator (enum1:0)
19921 3: DW_TAG_enumerator (enum2:1)
19922 ...
19923 2: DW_TAG_template_type_param
19924 DW_AT_type DW_FORM_ref_udata (E)
19925
19926 Besides being broken debug info, it can put GDB into an
19927 infinite loop. Consider:
19928
19929 When we're building the full name for Class<E>, we'll start
19930 at Class, and go look over its template type parameters,
19931 finding E. We'll then try to build the full name of E, and
19932 reach here. We're now trying to build the full name of E,
19933 and look over the parent DIE for containing scope. In the
19934 broken case, if we followed the parent DIE of E, we'd again
19935 find Class, and once again go look at its template type
19936 arguments, etc., etc. Simply don't consider such parent die
19937 as source-level parent of this die (it can't be, the language
19938 doesn't allow it), and break the loop here. */
19939 name = dwarf2_name (die, cu);
19940 parent_name = dwarf2_name (parent, cu);
19941 complaint (&symfile_complaints,
19942 _("template param type '%s' defined within parent '%s'"),
19943 name ? name : "<unknown>",
19944 parent_name ? parent_name : "<unknown>");
19945 return "";
19946 }
19947 else
19948 switch (parent->tag)
19949 {
19950 case DW_TAG_namespace:
19951 parent_type = read_type_die (parent, cu);
19952 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19953 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19954 Work around this problem here. */
19955 if (cu->language == language_cplus
19956 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19957 return "";
19958 /* We give a name to even anonymous namespaces. */
19959 return TYPE_TAG_NAME (parent_type);
19960 case DW_TAG_class_type:
19961 case DW_TAG_interface_type:
19962 case DW_TAG_structure_type:
19963 case DW_TAG_union_type:
19964 case DW_TAG_module:
19965 parent_type = read_type_die (parent, cu);
19966 if (TYPE_TAG_NAME (parent_type) != NULL)
19967 return TYPE_TAG_NAME (parent_type);
19968 else
19969 /* An anonymous structure is only allowed non-static data
19970 members; no typedefs, no member functions, et cetera.
19971 So it does not need a prefix. */
19972 return "";
19973 case DW_TAG_compile_unit:
19974 case DW_TAG_partial_unit:
19975 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19976 if (cu->language == language_cplus
19977 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19978 && die->child != NULL
19979 && (die->tag == DW_TAG_class_type
19980 || die->tag == DW_TAG_structure_type
19981 || die->tag == DW_TAG_union_type))
19982 {
19983 char *name = guess_full_die_structure_name (die, cu);
19984 if (name != NULL)
19985 return name;
19986 }
19987 return "";
19988 case DW_TAG_enumeration_type:
19989 parent_type = read_type_die (parent, cu);
19990 if (TYPE_DECLARED_CLASS (parent_type))
19991 {
19992 if (TYPE_TAG_NAME (parent_type) != NULL)
19993 return TYPE_TAG_NAME (parent_type);
19994 return "";
19995 }
19996 /* Fall through. */
19997 default:
19998 return determine_prefix (parent, cu);
19999 }
20000 }
20001
20002 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20003 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20004 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20005 an obconcat, otherwise allocate storage for the result. The CU argument is
20006 used to determine the language and hence, the appropriate separator. */
20007
20008 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20009
20010 static char *
20011 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20012 int physname, struct dwarf2_cu *cu)
20013 {
20014 const char *lead = "";
20015 const char *sep;
20016
20017 if (suffix == NULL || suffix[0] == '\0'
20018 || prefix == NULL || prefix[0] == '\0')
20019 sep = "";
20020 else if (cu->language == language_d)
20021 {
20022 /* For D, the 'main' function could be defined in any module, but it
20023 should never be prefixed. */
20024 if (strcmp (suffix, "D main") == 0)
20025 {
20026 prefix = "";
20027 sep = "";
20028 }
20029 else
20030 sep = ".";
20031 }
20032 else if (cu->language == language_fortran && physname)
20033 {
20034 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20035 DW_AT_MIPS_linkage_name is preferred and used instead. */
20036
20037 lead = "__";
20038 sep = "_MOD_";
20039 }
20040 else
20041 sep = "::";
20042
20043 if (prefix == NULL)
20044 prefix = "";
20045 if (suffix == NULL)
20046 suffix = "";
20047
20048 if (obs == NULL)
20049 {
20050 char *retval
20051 = ((char *)
20052 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20053
20054 strcpy (retval, lead);
20055 strcat (retval, prefix);
20056 strcat (retval, sep);
20057 strcat (retval, suffix);
20058 return retval;
20059 }
20060 else
20061 {
20062 /* We have an obstack. */
20063 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20064 }
20065 }
20066
20067 /* Return sibling of die, NULL if no sibling. */
20068
20069 static struct die_info *
20070 sibling_die (struct die_info *die)
20071 {
20072 return die->sibling;
20073 }
20074
20075 /* Get name of a die, return NULL if not found. */
20076
20077 static const char *
20078 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20079 struct obstack *obstack)
20080 {
20081 if (name && cu->language == language_cplus)
20082 {
20083 std::string canon_name = cp_canonicalize_string (name);
20084
20085 if (!canon_name.empty ())
20086 {
20087 if (canon_name != name)
20088 name = (const char *) obstack_copy0 (obstack,
20089 canon_name.c_str (),
20090 canon_name.length ());
20091 }
20092 }
20093
20094 return name;
20095 }
20096
20097 /* Get name of a die, return NULL if not found.
20098 Anonymous namespaces are converted to their magic string. */
20099
20100 static const char *
20101 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20102 {
20103 struct attribute *attr;
20104
20105 attr = dwarf2_attr (die, DW_AT_name, cu);
20106 if ((!attr || !DW_STRING (attr))
20107 && die->tag != DW_TAG_namespace
20108 && die->tag != DW_TAG_class_type
20109 && die->tag != DW_TAG_interface_type
20110 && die->tag != DW_TAG_structure_type
20111 && die->tag != DW_TAG_union_type)
20112 return NULL;
20113
20114 switch (die->tag)
20115 {
20116 case DW_TAG_compile_unit:
20117 case DW_TAG_partial_unit:
20118 /* Compilation units have a DW_AT_name that is a filename, not
20119 a source language identifier. */
20120 case DW_TAG_enumeration_type:
20121 case DW_TAG_enumerator:
20122 /* These tags always have simple identifiers already; no need
20123 to canonicalize them. */
20124 return DW_STRING (attr);
20125
20126 case DW_TAG_namespace:
20127 if (attr != NULL && DW_STRING (attr) != NULL)
20128 return DW_STRING (attr);
20129 return CP_ANONYMOUS_NAMESPACE_STR;
20130
20131 case DW_TAG_class_type:
20132 case DW_TAG_interface_type:
20133 case DW_TAG_structure_type:
20134 case DW_TAG_union_type:
20135 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20136 structures or unions. These were of the form "._%d" in GCC 4.1,
20137 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20138 and GCC 4.4. We work around this problem by ignoring these. */
20139 if (attr && DW_STRING (attr)
20140 && (startswith (DW_STRING (attr), "._")
20141 || startswith (DW_STRING (attr), "<anonymous")))
20142 return NULL;
20143
20144 /* GCC might emit a nameless typedef that has a linkage name. See
20145 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20146 if (!attr || DW_STRING (attr) == NULL)
20147 {
20148 char *demangled = NULL;
20149
20150 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20151 if (attr == NULL)
20152 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20153
20154 if (attr == NULL || DW_STRING (attr) == NULL)
20155 return NULL;
20156
20157 /* Avoid demangling DW_STRING (attr) the second time on a second
20158 call for the same DIE. */
20159 if (!DW_STRING_IS_CANONICAL (attr))
20160 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20161
20162 if (demangled)
20163 {
20164 const char *base;
20165
20166 /* FIXME: we already did this for the partial symbol... */
20167 DW_STRING (attr)
20168 = ((const char *)
20169 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20170 demangled, strlen (demangled)));
20171 DW_STRING_IS_CANONICAL (attr) = 1;
20172 xfree (demangled);
20173
20174 /* Strip any leading namespaces/classes, keep only the base name.
20175 DW_AT_name for named DIEs does not contain the prefixes. */
20176 base = strrchr (DW_STRING (attr), ':');
20177 if (base && base > DW_STRING (attr) && base[-1] == ':')
20178 return &base[1];
20179 else
20180 return DW_STRING (attr);
20181 }
20182 }
20183 break;
20184
20185 default:
20186 break;
20187 }
20188
20189 if (!DW_STRING_IS_CANONICAL (attr))
20190 {
20191 DW_STRING (attr)
20192 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20193 &cu->objfile->per_bfd->storage_obstack);
20194 DW_STRING_IS_CANONICAL (attr) = 1;
20195 }
20196 return DW_STRING (attr);
20197 }
20198
20199 /* Return the die that this die in an extension of, or NULL if there
20200 is none. *EXT_CU is the CU containing DIE on input, and the CU
20201 containing the return value on output. */
20202
20203 static struct die_info *
20204 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20205 {
20206 struct attribute *attr;
20207
20208 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20209 if (attr == NULL)
20210 return NULL;
20211
20212 return follow_die_ref (die, attr, ext_cu);
20213 }
20214
20215 /* Convert a DIE tag into its string name. */
20216
20217 static const char *
20218 dwarf_tag_name (unsigned tag)
20219 {
20220 const char *name = get_DW_TAG_name (tag);
20221
20222 if (name == NULL)
20223 return "DW_TAG_<unknown>";
20224
20225 return name;
20226 }
20227
20228 /* Convert a DWARF attribute code into its string name. */
20229
20230 static const char *
20231 dwarf_attr_name (unsigned attr)
20232 {
20233 const char *name;
20234
20235 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20236 if (attr == DW_AT_MIPS_fde)
20237 return "DW_AT_MIPS_fde";
20238 #else
20239 if (attr == DW_AT_HP_block_index)
20240 return "DW_AT_HP_block_index";
20241 #endif
20242
20243 name = get_DW_AT_name (attr);
20244
20245 if (name == NULL)
20246 return "DW_AT_<unknown>";
20247
20248 return name;
20249 }
20250
20251 /* Convert a DWARF value form code into its string name. */
20252
20253 static const char *
20254 dwarf_form_name (unsigned form)
20255 {
20256 const char *name = get_DW_FORM_name (form);
20257
20258 if (name == NULL)
20259 return "DW_FORM_<unknown>";
20260
20261 return name;
20262 }
20263
20264 static const char *
20265 dwarf_bool_name (unsigned mybool)
20266 {
20267 if (mybool)
20268 return "TRUE";
20269 else
20270 return "FALSE";
20271 }
20272
20273 /* Convert a DWARF type code into its string name. */
20274
20275 static const char *
20276 dwarf_type_encoding_name (unsigned enc)
20277 {
20278 const char *name = get_DW_ATE_name (enc);
20279
20280 if (name == NULL)
20281 return "DW_ATE_<unknown>";
20282
20283 return name;
20284 }
20285
20286 static void
20287 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20288 {
20289 unsigned int i;
20290
20291 print_spaces (indent, f);
20292 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20293 dwarf_tag_name (die->tag), die->abbrev,
20294 to_underlying (die->sect_off));
20295
20296 if (die->parent != NULL)
20297 {
20298 print_spaces (indent, f);
20299 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20300 to_underlying (die->parent->sect_off));
20301 }
20302
20303 print_spaces (indent, f);
20304 fprintf_unfiltered (f, " has children: %s\n",
20305 dwarf_bool_name (die->child != NULL));
20306
20307 print_spaces (indent, f);
20308 fprintf_unfiltered (f, " attributes:\n");
20309
20310 for (i = 0; i < die->num_attrs; ++i)
20311 {
20312 print_spaces (indent, f);
20313 fprintf_unfiltered (f, " %s (%s) ",
20314 dwarf_attr_name (die->attrs[i].name),
20315 dwarf_form_name (die->attrs[i].form));
20316
20317 switch (die->attrs[i].form)
20318 {
20319 case DW_FORM_addr:
20320 case DW_FORM_GNU_addr_index:
20321 fprintf_unfiltered (f, "address: ");
20322 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20323 break;
20324 case DW_FORM_block2:
20325 case DW_FORM_block4:
20326 case DW_FORM_block:
20327 case DW_FORM_block1:
20328 fprintf_unfiltered (f, "block: size %s",
20329 pulongest (DW_BLOCK (&die->attrs[i])->size));
20330 break;
20331 case DW_FORM_exprloc:
20332 fprintf_unfiltered (f, "expression: size %s",
20333 pulongest (DW_BLOCK (&die->attrs[i])->size));
20334 break;
20335 case DW_FORM_data16:
20336 fprintf_unfiltered (f, "constant of 16 bytes");
20337 break;
20338 case DW_FORM_ref_addr:
20339 fprintf_unfiltered (f, "ref address: ");
20340 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20341 break;
20342 case DW_FORM_GNU_ref_alt:
20343 fprintf_unfiltered (f, "alt ref address: ");
20344 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20345 break;
20346 case DW_FORM_ref1:
20347 case DW_FORM_ref2:
20348 case DW_FORM_ref4:
20349 case DW_FORM_ref8:
20350 case DW_FORM_ref_udata:
20351 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20352 (long) (DW_UNSND (&die->attrs[i])));
20353 break;
20354 case DW_FORM_data1:
20355 case DW_FORM_data2:
20356 case DW_FORM_data4:
20357 case DW_FORM_data8:
20358 case DW_FORM_udata:
20359 case DW_FORM_sdata:
20360 fprintf_unfiltered (f, "constant: %s",
20361 pulongest (DW_UNSND (&die->attrs[i])));
20362 break;
20363 case DW_FORM_sec_offset:
20364 fprintf_unfiltered (f, "section offset: %s",
20365 pulongest (DW_UNSND (&die->attrs[i])));
20366 break;
20367 case DW_FORM_ref_sig8:
20368 fprintf_unfiltered (f, "signature: %s",
20369 hex_string (DW_SIGNATURE (&die->attrs[i])));
20370 break;
20371 case DW_FORM_string:
20372 case DW_FORM_strp:
20373 case DW_FORM_line_strp:
20374 case DW_FORM_GNU_str_index:
20375 case DW_FORM_GNU_strp_alt:
20376 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20377 DW_STRING (&die->attrs[i])
20378 ? DW_STRING (&die->attrs[i]) : "",
20379 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20380 break;
20381 case DW_FORM_flag:
20382 if (DW_UNSND (&die->attrs[i]))
20383 fprintf_unfiltered (f, "flag: TRUE");
20384 else
20385 fprintf_unfiltered (f, "flag: FALSE");
20386 break;
20387 case DW_FORM_flag_present:
20388 fprintf_unfiltered (f, "flag: TRUE");
20389 break;
20390 case DW_FORM_indirect:
20391 /* The reader will have reduced the indirect form to
20392 the "base form" so this form should not occur. */
20393 fprintf_unfiltered (f,
20394 "unexpected attribute form: DW_FORM_indirect");
20395 break;
20396 default:
20397 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20398 die->attrs[i].form);
20399 break;
20400 }
20401 fprintf_unfiltered (f, "\n");
20402 }
20403 }
20404
20405 static void
20406 dump_die_for_error (struct die_info *die)
20407 {
20408 dump_die_shallow (gdb_stderr, 0, die);
20409 }
20410
20411 static void
20412 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20413 {
20414 int indent = level * 4;
20415
20416 gdb_assert (die != NULL);
20417
20418 if (level >= max_level)
20419 return;
20420
20421 dump_die_shallow (f, indent, die);
20422
20423 if (die->child != NULL)
20424 {
20425 print_spaces (indent, f);
20426 fprintf_unfiltered (f, " Children:");
20427 if (level + 1 < max_level)
20428 {
20429 fprintf_unfiltered (f, "\n");
20430 dump_die_1 (f, level + 1, max_level, die->child);
20431 }
20432 else
20433 {
20434 fprintf_unfiltered (f,
20435 " [not printed, max nesting level reached]\n");
20436 }
20437 }
20438
20439 if (die->sibling != NULL && level > 0)
20440 {
20441 dump_die_1 (f, level, max_level, die->sibling);
20442 }
20443 }
20444
20445 /* This is called from the pdie macro in gdbinit.in.
20446 It's not static so gcc will keep a copy callable from gdb. */
20447
20448 void
20449 dump_die (struct die_info *die, int max_level)
20450 {
20451 dump_die_1 (gdb_stdlog, 0, max_level, die);
20452 }
20453
20454 static void
20455 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20456 {
20457 void **slot;
20458
20459 slot = htab_find_slot_with_hash (cu->die_hash, die,
20460 to_underlying (die->sect_off),
20461 INSERT);
20462
20463 *slot = die;
20464 }
20465
20466 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20467 required kind. */
20468
20469 static sect_offset
20470 dwarf2_get_ref_die_offset (const struct attribute *attr)
20471 {
20472 if (attr_form_is_ref (attr))
20473 return (sect_offset) DW_UNSND (attr);
20474
20475 complaint (&symfile_complaints,
20476 _("unsupported die ref attribute form: '%s'"),
20477 dwarf_form_name (attr->form));
20478 return {};
20479 }
20480
20481 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20482 * the value held by the attribute is not constant. */
20483
20484 static LONGEST
20485 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20486 {
20487 if (attr->form == DW_FORM_sdata)
20488 return DW_SND (attr);
20489 else if (attr->form == DW_FORM_udata
20490 || attr->form == DW_FORM_data1
20491 || attr->form == DW_FORM_data2
20492 || attr->form == DW_FORM_data4
20493 || attr->form == DW_FORM_data8)
20494 return DW_UNSND (attr);
20495 else
20496 {
20497 /* For DW_FORM_data16 see attr_form_is_constant. */
20498 complaint (&symfile_complaints,
20499 _("Attribute value is not a constant (%s)"),
20500 dwarf_form_name (attr->form));
20501 return default_value;
20502 }
20503 }
20504
20505 /* Follow reference or signature attribute ATTR of SRC_DIE.
20506 On entry *REF_CU is the CU of SRC_DIE.
20507 On exit *REF_CU is the CU of the result. */
20508
20509 static struct die_info *
20510 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20511 struct dwarf2_cu **ref_cu)
20512 {
20513 struct die_info *die;
20514
20515 if (attr_form_is_ref (attr))
20516 die = follow_die_ref (src_die, attr, ref_cu);
20517 else if (attr->form == DW_FORM_ref_sig8)
20518 die = follow_die_sig (src_die, attr, ref_cu);
20519 else
20520 {
20521 dump_die_for_error (src_die);
20522 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20523 objfile_name ((*ref_cu)->objfile));
20524 }
20525
20526 return die;
20527 }
20528
20529 /* Follow reference OFFSET.
20530 On entry *REF_CU is the CU of the source die referencing OFFSET.
20531 On exit *REF_CU is the CU of the result.
20532 Returns NULL if OFFSET is invalid. */
20533
20534 static struct die_info *
20535 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20536 struct dwarf2_cu **ref_cu)
20537 {
20538 struct die_info temp_die;
20539 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20540
20541 gdb_assert (cu->per_cu != NULL);
20542
20543 target_cu = cu;
20544
20545 if (cu->per_cu->is_debug_types)
20546 {
20547 /* .debug_types CUs cannot reference anything outside their CU.
20548 If they need to, they have to reference a signatured type via
20549 DW_FORM_ref_sig8. */
20550 if (!offset_in_cu_p (&cu->header, sect_off))
20551 return NULL;
20552 }
20553 else if (offset_in_dwz != cu->per_cu->is_dwz
20554 || !offset_in_cu_p (&cu->header, sect_off))
20555 {
20556 struct dwarf2_per_cu_data *per_cu;
20557
20558 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20559 cu->objfile);
20560
20561 /* If necessary, add it to the queue and load its DIEs. */
20562 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20563 load_full_comp_unit (per_cu, cu->language);
20564
20565 target_cu = per_cu->cu;
20566 }
20567 else if (cu->dies == NULL)
20568 {
20569 /* We're loading full DIEs during partial symbol reading. */
20570 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20571 load_full_comp_unit (cu->per_cu, language_minimal);
20572 }
20573
20574 *ref_cu = target_cu;
20575 temp_die.sect_off = sect_off;
20576 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20577 &temp_die,
20578 to_underlying (sect_off));
20579 }
20580
20581 /* Follow reference attribute ATTR of SRC_DIE.
20582 On entry *REF_CU is the CU of SRC_DIE.
20583 On exit *REF_CU is the CU of the result. */
20584
20585 static struct die_info *
20586 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20587 struct dwarf2_cu **ref_cu)
20588 {
20589 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20590 struct dwarf2_cu *cu = *ref_cu;
20591 struct die_info *die;
20592
20593 die = follow_die_offset (sect_off,
20594 (attr->form == DW_FORM_GNU_ref_alt
20595 || cu->per_cu->is_dwz),
20596 ref_cu);
20597 if (!die)
20598 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20599 "at 0x%x [in module %s]"),
20600 to_underlying (sect_off), to_underlying (src_die->sect_off),
20601 objfile_name (cu->objfile));
20602
20603 return die;
20604 }
20605
20606 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20607 Returned value is intended for DW_OP_call*. Returned
20608 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20609
20610 struct dwarf2_locexpr_baton
20611 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20612 struct dwarf2_per_cu_data *per_cu,
20613 CORE_ADDR (*get_frame_pc) (void *baton),
20614 void *baton)
20615 {
20616 struct dwarf2_cu *cu;
20617 struct die_info *die;
20618 struct attribute *attr;
20619 struct dwarf2_locexpr_baton retval;
20620
20621 dw2_setup (per_cu->objfile);
20622
20623 if (per_cu->cu == NULL)
20624 load_cu (per_cu);
20625 cu = per_cu->cu;
20626 if (cu == NULL)
20627 {
20628 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20629 Instead just throw an error, not much else we can do. */
20630 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20631 to_underlying (sect_off), objfile_name (per_cu->objfile));
20632 }
20633
20634 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20635 if (!die)
20636 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20637 to_underlying (sect_off), objfile_name (per_cu->objfile));
20638
20639 attr = dwarf2_attr (die, DW_AT_location, cu);
20640 if (!attr)
20641 {
20642 /* DWARF: "If there is no such attribute, then there is no effect.".
20643 DATA is ignored if SIZE is 0. */
20644
20645 retval.data = NULL;
20646 retval.size = 0;
20647 }
20648 else if (attr_form_is_section_offset (attr))
20649 {
20650 struct dwarf2_loclist_baton loclist_baton;
20651 CORE_ADDR pc = (*get_frame_pc) (baton);
20652 size_t size;
20653
20654 fill_in_loclist_baton (cu, &loclist_baton, attr);
20655
20656 retval.data = dwarf2_find_location_expression (&loclist_baton,
20657 &size, pc);
20658 retval.size = size;
20659 }
20660 else
20661 {
20662 if (!attr_form_is_block (attr))
20663 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20664 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20665 to_underlying (sect_off), objfile_name (per_cu->objfile));
20666
20667 retval.data = DW_BLOCK (attr)->data;
20668 retval.size = DW_BLOCK (attr)->size;
20669 }
20670 retval.per_cu = cu->per_cu;
20671
20672 age_cached_comp_units ();
20673
20674 return retval;
20675 }
20676
20677 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20678 offset. */
20679
20680 struct dwarf2_locexpr_baton
20681 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20682 struct dwarf2_per_cu_data *per_cu,
20683 CORE_ADDR (*get_frame_pc) (void *baton),
20684 void *baton)
20685 {
20686 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20687
20688 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20689 }
20690
20691 /* Write a constant of a given type as target-ordered bytes into
20692 OBSTACK. */
20693
20694 static const gdb_byte *
20695 write_constant_as_bytes (struct obstack *obstack,
20696 enum bfd_endian byte_order,
20697 struct type *type,
20698 ULONGEST value,
20699 LONGEST *len)
20700 {
20701 gdb_byte *result;
20702
20703 *len = TYPE_LENGTH (type);
20704 result = (gdb_byte *) obstack_alloc (obstack, *len);
20705 store_unsigned_integer (result, *len, byte_order, value);
20706
20707 return result;
20708 }
20709
20710 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20711 pointer to the constant bytes and set LEN to the length of the
20712 data. If memory is needed, allocate it on OBSTACK. If the DIE
20713 does not have a DW_AT_const_value, return NULL. */
20714
20715 const gdb_byte *
20716 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20717 struct dwarf2_per_cu_data *per_cu,
20718 struct obstack *obstack,
20719 LONGEST *len)
20720 {
20721 struct dwarf2_cu *cu;
20722 struct die_info *die;
20723 struct attribute *attr;
20724 const gdb_byte *result = NULL;
20725 struct type *type;
20726 LONGEST value;
20727 enum bfd_endian byte_order;
20728
20729 dw2_setup (per_cu->objfile);
20730
20731 if (per_cu->cu == NULL)
20732 load_cu (per_cu);
20733 cu = per_cu->cu;
20734 if (cu == NULL)
20735 {
20736 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20737 Instead just throw an error, not much else we can do. */
20738 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20739 to_underlying (sect_off), objfile_name (per_cu->objfile));
20740 }
20741
20742 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20743 if (!die)
20744 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20745 to_underlying (sect_off), objfile_name (per_cu->objfile));
20746
20747
20748 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20749 if (attr == NULL)
20750 return NULL;
20751
20752 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20753 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20754
20755 switch (attr->form)
20756 {
20757 case DW_FORM_addr:
20758 case DW_FORM_GNU_addr_index:
20759 {
20760 gdb_byte *tem;
20761
20762 *len = cu->header.addr_size;
20763 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20764 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20765 result = tem;
20766 }
20767 break;
20768 case DW_FORM_string:
20769 case DW_FORM_strp:
20770 case DW_FORM_GNU_str_index:
20771 case DW_FORM_GNU_strp_alt:
20772 /* DW_STRING is already allocated on the objfile obstack, point
20773 directly to it. */
20774 result = (const gdb_byte *) DW_STRING (attr);
20775 *len = strlen (DW_STRING (attr));
20776 break;
20777 case DW_FORM_block1:
20778 case DW_FORM_block2:
20779 case DW_FORM_block4:
20780 case DW_FORM_block:
20781 case DW_FORM_exprloc:
20782 case DW_FORM_data16:
20783 result = DW_BLOCK (attr)->data;
20784 *len = DW_BLOCK (attr)->size;
20785 break;
20786
20787 /* The DW_AT_const_value attributes are supposed to carry the
20788 symbol's value "represented as it would be on the target
20789 architecture." By the time we get here, it's already been
20790 converted to host endianness, so we just need to sign- or
20791 zero-extend it as appropriate. */
20792 case DW_FORM_data1:
20793 type = die_type (die, cu);
20794 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20795 if (result == NULL)
20796 result = write_constant_as_bytes (obstack, byte_order,
20797 type, value, len);
20798 break;
20799 case DW_FORM_data2:
20800 type = die_type (die, cu);
20801 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20802 if (result == NULL)
20803 result = write_constant_as_bytes (obstack, byte_order,
20804 type, value, len);
20805 break;
20806 case DW_FORM_data4:
20807 type = die_type (die, cu);
20808 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20809 if (result == NULL)
20810 result = write_constant_as_bytes (obstack, byte_order,
20811 type, value, len);
20812 break;
20813 case DW_FORM_data8:
20814 type = die_type (die, cu);
20815 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20816 if (result == NULL)
20817 result = write_constant_as_bytes (obstack, byte_order,
20818 type, value, len);
20819 break;
20820
20821 case DW_FORM_sdata:
20822 type = die_type (die, cu);
20823 result = write_constant_as_bytes (obstack, byte_order,
20824 type, DW_SND (attr), len);
20825 break;
20826
20827 case DW_FORM_udata:
20828 type = die_type (die, cu);
20829 result = write_constant_as_bytes (obstack, byte_order,
20830 type, DW_UNSND (attr), len);
20831 break;
20832
20833 default:
20834 complaint (&symfile_complaints,
20835 _("unsupported const value attribute form: '%s'"),
20836 dwarf_form_name (attr->form));
20837 break;
20838 }
20839
20840 return result;
20841 }
20842
20843 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20844 valid type for this die is found. */
20845
20846 struct type *
20847 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20848 struct dwarf2_per_cu_data *per_cu)
20849 {
20850 struct dwarf2_cu *cu;
20851 struct die_info *die;
20852
20853 dw2_setup (per_cu->objfile);
20854
20855 if (per_cu->cu == NULL)
20856 load_cu (per_cu);
20857 cu = per_cu->cu;
20858 if (!cu)
20859 return NULL;
20860
20861 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20862 if (!die)
20863 return NULL;
20864
20865 return die_type (die, cu);
20866 }
20867
20868 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20869 PER_CU. */
20870
20871 struct type *
20872 dwarf2_get_die_type (cu_offset die_offset,
20873 struct dwarf2_per_cu_data *per_cu)
20874 {
20875 dw2_setup (per_cu->objfile);
20876
20877 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
20878 return get_die_type_at_offset (die_offset_sect, per_cu);
20879 }
20880
20881 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20882 On entry *REF_CU is the CU of SRC_DIE.
20883 On exit *REF_CU is the CU of the result.
20884 Returns NULL if the referenced DIE isn't found. */
20885
20886 static struct die_info *
20887 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20888 struct dwarf2_cu **ref_cu)
20889 {
20890 struct die_info temp_die;
20891 struct dwarf2_cu *sig_cu;
20892 struct die_info *die;
20893
20894 /* While it might be nice to assert sig_type->type == NULL here,
20895 we can get here for DW_AT_imported_declaration where we need
20896 the DIE not the type. */
20897
20898 /* If necessary, add it to the queue and load its DIEs. */
20899
20900 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20901 read_signatured_type (sig_type);
20902
20903 sig_cu = sig_type->per_cu.cu;
20904 gdb_assert (sig_cu != NULL);
20905 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
20906 temp_die.sect_off = sig_type->type_offset_in_section;
20907 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20908 to_underlying (temp_die.sect_off));
20909 if (die)
20910 {
20911 /* For .gdb_index version 7 keep track of included TUs.
20912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20913 if (dwarf2_per_objfile->index_table != NULL
20914 && dwarf2_per_objfile->index_table->version <= 7)
20915 {
20916 VEC_safe_push (dwarf2_per_cu_ptr,
20917 (*ref_cu)->per_cu->imported_symtabs,
20918 sig_cu->per_cu);
20919 }
20920
20921 *ref_cu = sig_cu;
20922 return die;
20923 }
20924
20925 return NULL;
20926 }
20927
20928 /* Follow signatured type referenced by ATTR in SRC_DIE.
20929 On entry *REF_CU is the CU of SRC_DIE.
20930 On exit *REF_CU is the CU of the result.
20931 The result is the DIE of the type.
20932 If the referenced type cannot be found an error is thrown. */
20933
20934 static struct die_info *
20935 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20936 struct dwarf2_cu **ref_cu)
20937 {
20938 ULONGEST signature = DW_SIGNATURE (attr);
20939 struct signatured_type *sig_type;
20940 struct die_info *die;
20941
20942 gdb_assert (attr->form == DW_FORM_ref_sig8);
20943
20944 sig_type = lookup_signatured_type (*ref_cu, signature);
20945 /* sig_type will be NULL if the signatured type is missing from
20946 the debug info. */
20947 if (sig_type == NULL)
20948 {
20949 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20950 " from DIE at 0x%x [in module %s]"),
20951 hex_string (signature), to_underlying (src_die->sect_off),
20952 objfile_name ((*ref_cu)->objfile));
20953 }
20954
20955 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20956 if (die == NULL)
20957 {
20958 dump_die_for_error (src_die);
20959 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20960 " from DIE at 0x%x [in module %s]"),
20961 hex_string (signature), to_underlying (src_die->sect_off),
20962 objfile_name ((*ref_cu)->objfile));
20963 }
20964
20965 return die;
20966 }
20967
20968 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20969 reading in and processing the type unit if necessary. */
20970
20971 static struct type *
20972 get_signatured_type (struct die_info *die, ULONGEST signature,
20973 struct dwarf2_cu *cu)
20974 {
20975 struct signatured_type *sig_type;
20976 struct dwarf2_cu *type_cu;
20977 struct die_info *type_die;
20978 struct type *type;
20979
20980 sig_type = lookup_signatured_type (cu, signature);
20981 /* sig_type will be NULL if the signatured type is missing from
20982 the debug info. */
20983 if (sig_type == NULL)
20984 {
20985 complaint (&symfile_complaints,
20986 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20987 " from DIE at 0x%x [in module %s]"),
20988 hex_string (signature), to_underlying (die->sect_off),
20989 objfile_name (dwarf2_per_objfile->objfile));
20990 return build_error_marker_type (cu, die);
20991 }
20992
20993 /* If we already know the type we're done. */
20994 if (sig_type->type != NULL)
20995 return sig_type->type;
20996
20997 type_cu = cu;
20998 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20999 if (type_die != NULL)
21000 {
21001 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21002 is created. This is important, for example, because for c++ classes
21003 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21004 type = read_type_die (type_die, type_cu);
21005 if (type == NULL)
21006 {
21007 complaint (&symfile_complaints,
21008 _("Dwarf Error: Cannot build signatured type %s"
21009 " referenced from DIE at 0x%x [in module %s]"),
21010 hex_string (signature), to_underlying (die->sect_off),
21011 objfile_name (dwarf2_per_objfile->objfile));
21012 type = build_error_marker_type (cu, die);
21013 }
21014 }
21015 else
21016 {
21017 complaint (&symfile_complaints,
21018 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21019 " from DIE at 0x%x [in module %s]"),
21020 hex_string (signature), to_underlying (die->sect_off),
21021 objfile_name (dwarf2_per_objfile->objfile));
21022 type = build_error_marker_type (cu, die);
21023 }
21024 sig_type->type = type;
21025
21026 return type;
21027 }
21028
21029 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21030 reading in and processing the type unit if necessary. */
21031
21032 static struct type *
21033 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21034 struct dwarf2_cu *cu) /* ARI: editCase function */
21035 {
21036 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21037 if (attr_form_is_ref (attr))
21038 {
21039 struct dwarf2_cu *type_cu = cu;
21040 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21041
21042 return read_type_die (type_die, type_cu);
21043 }
21044 else if (attr->form == DW_FORM_ref_sig8)
21045 {
21046 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21047 }
21048 else
21049 {
21050 complaint (&symfile_complaints,
21051 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21052 " at 0x%x [in module %s]"),
21053 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21054 objfile_name (dwarf2_per_objfile->objfile));
21055 return build_error_marker_type (cu, die);
21056 }
21057 }
21058
21059 /* Load the DIEs associated with type unit PER_CU into memory. */
21060
21061 static void
21062 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21063 {
21064 struct signatured_type *sig_type;
21065
21066 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21067 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21068
21069 /* We have the per_cu, but we need the signatured_type.
21070 Fortunately this is an easy translation. */
21071 gdb_assert (per_cu->is_debug_types);
21072 sig_type = (struct signatured_type *) per_cu;
21073
21074 gdb_assert (per_cu->cu == NULL);
21075
21076 read_signatured_type (sig_type);
21077
21078 gdb_assert (per_cu->cu != NULL);
21079 }
21080
21081 /* die_reader_func for read_signatured_type.
21082 This is identical to load_full_comp_unit_reader,
21083 but is kept separate for now. */
21084
21085 static void
21086 read_signatured_type_reader (const struct die_reader_specs *reader,
21087 const gdb_byte *info_ptr,
21088 struct die_info *comp_unit_die,
21089 int has_children,
21090 void *data)
21091 {
21092 struct dwarf2_cu *cu = reader->cu;
21093
21094 gdb_assert (cu->die_hash == NULL);
21095 cu->die_hash =
21096 htab_create_alloc_ex (cu->header.length / 12,
21097 die_hash,
21098 die_eq,
21099 NULL,
21100 &cu->comp_unit_obstack,
21101 hashtab_obstack_allocate,
21102 dummy_obstack_deallocate);
21103
21104 if (has_children)
21105 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21106 &info_ptr, comp_unit_die);
21107 cu->dies = comp_unit_die;
21108 /* comp_unit_die is not stored in die_hash, no need. */
21109
21110 /* We try not to read any attributes in this function, because not
21111 all CUs needed for references have been loaded yet, and symbol
21112 table processing isn't initialized. But we have to set the CU language,
21113 or we won't be able to build types correctly.
21114 Similarly, if we do not read the producer, we can not apply
21115 producer-specific interpretation. */
21116 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21117 }
21118
21119 /* Read in a signatured type and build its CU and DIEs.
21120 If the type is a stub for the real type in a DWO file,
21121 read in the real type from the DWO file as well. */
21122
21123 static void
21124 read_signatured_type (struct signatured_type *sig_type)
21125 {
21126 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21127
21128 gdb_assert (per_cu->is_debug_types);
21129 gdb_assert (per_cu->cu == NULL);
21130
21131 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21132 read_signatured_type_reader, NULL);
21133 sig_type->per_cu.tu_read = 1;
21134 }
21135
21136 /* Decode simple location descriptions.
21137 Given a pointer to a dwarf block that defines a location, compute
21138 the location and return the value.
21139
21140 NOTE drow/2003-11-18: This function is called in two situations
21141 now: for the address of static or global variables (partial symbols
21142 only) and for offsets into structures which are expected to be
21143 (more or less) constant. The partial symbol case should go away,
21144 and only the constant case should remain. That will let this
21145 function complain more accurately. A few special modes are allowed
21146 without complaint for global variables (for instance, global
21147 register values and thread-local values).
21148
21149 A location description containing no operations indicates that the
21150 object is optimized out. The return value is 0 for that case.
21151 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21152 callers will only want a very basic result and this can become a
21153 complaint.
21154
21155 Note that stack[0] is unused except as a default error return. */
21156
21157 static CORE_ADDR
21158 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21159 {
21160 struct objfile *objfile = cu->objfile;
21161 size_t i;
21162 size_t size = blk->size;
21163 const gdb_byte *data = blk->data;
21164 CORE_ADDR stack[64];
21165 int stacki;
21166 unsigned int bytes_read, unsnd;
21167 gdb_byte op;
21168
21169 i = 0;
21170 stacki = 0;
21171 stack[stacki] = 0;
21172 stack[++stacki] = 0;
21173
21174 while (i < size)
21175 {
21176 op = data[i++];
21177 switch (op)
21178 {
21179 case DW_OP_lit0:
21180 case DW_OP_lit1:
21181 case DW_OP_lit2:
21182 case DW_OP_lit3:
21183 case DW_OP_lit4:
21184 case DW_OP_lit5:
21185 case DW_OP_lit6:
21186 case DW_OP_lit7:
21187 case DW_OP_lit8:
21188 case DW_OP_lit9:
21189 case DW_OP_lit10:
21190 case DW_OP_lit11:
21191 case DW_OP_lit12:
21192 case DW_OP_lit13:
21193 case DW_OP_lit14:
21194 case DW_OP_lit15:
21195 case DW_OP_lit16:
21196 case DW_OP_lit17:
21197 case DW_OP_lit18:
21198 case DW_OP_lit19:
21199 case DW_OP_lit20:
21200 case DW_OP_lit21:
21201 case DW_OP_lit22:
21202 case DW_OP_lit23:
21203 case DW_OP_lit24:
21204 case DW_OP_lit25:
21205 case DW_OP_lit26:
21206 case DW_OP_lit27:
21207 case DW_OP_lit28:
21208 case DW_OP_lit29:
21209 case DW_OP_lit30:
21210 case DW_OP_lit31:
21211 stack[++stacki] = op - DW_OP_lit0;
21212 break;
21213
21214 case DW_OP_reg0:
21215 case DW_OP_reg1:
21216 case DW_OP_reg2:
21217 case DW_OP_reg3:
21218 case DW_OP_reg4:
21219 case DW_OP_reg5:
21220 case DW_OP_reg6:
21221 case DW_OP_reg7:
21222 case DW_OP_reg8:
21223 case DW_OP_reg9:
21224 case DW_OP_reg10:
21225 case DW_OP_reg11:
21226 case DW_OP_reg12:
21227 case DW_OP_reg13:
21228 case DW_OP_reg14:
21229 case DW_OP_reg15:
21230 case DW_OP_reg16:
21231 case DW_OP_reg17:
21232 case DW_OP_reg18:
21233 case DW_OP_reg19:
21234 case DW_OP_reg20:
21235 case DW_OP_reg21:
21236 case DW_OP_reg22:
21237 case DW_OP_reg23:
21238 case DW_OP_reg24:
21239 case DW_OP_reg25:
21240 case DW_OP_reg26:
21241 case DW_OP_reg27:
21242 case DW_OP_reg28:
21243 case DW_OP_reg29:
21244 case DW_OP_reg30:
21245 case DW_OP_reg31:
21246 stack[++stacki] = op - DW_OP_reg0;
21247 if (i < size)
21248 dwarf2_complex_location_expr_complaint ();
21249 break;
21250
21251 case DW_OP_regx:
21252 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21253 i += bytes_read;
21254 stack[++stacki] = unsnd;
21255 if (i < size)
21256 dwarf2_complex_location_expr_complaint ();
21257 break;
21258
21259 case DW_OP_addr:
21260 stack[++stacki] = read_address (objfile->obfd, &data[i],
21261 cu, &bytes_read);
21262 i += bytes_read;
21263 break;
21264
21265 case DW_OP_const1u:
21266 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21267 i += 1;
21268 break;
21269
21270 case DW_OP_const1s:
21271 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21272 i += 1;
21273 break;
21274
21275 case DW_OP_const2u:
21276 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21277 i += 2;
21278 break;
21279
21280 case DW_OP_const2s:
21281 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21282 i += 2;
21283 break;
21284
21285 case DW_OP_const4u:
21286 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21287 i += 4;
21288 break;
21289
21290 case DW_OP_const4s:
21291 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21292 i += 4;
21293 break;
21294
21295 case DW_OP_const8u:
21296 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21297 i += 8;
21298 break;
21299
21300 case DW_OP_constu:
21301 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21302 &bytes_read);
21303 i += bytes_read;
21304 break;
21305
21306 case DW_OP_consts:
21307 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21308 i += bytes_read;
21309 break;
21310
21311 case DW_OP_dup:
21312 stack[stacki + 1] = stack[stacki];
21313 stacki++;
21314 break;
21315
21316 case DW_OP_plus:
21317 stack[stacki - 1] += stack[stacki];
21318 stacki--;
21319 break;
21320
21321 case DW_OP_plus_uconst:
21322 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21323 &bytes_read);
21324 i += bytes_read;
21325 break;
21326
21327 case DW_OP_minus:
21328 stack[stacki - 1] -= stack[stacki];
21329 stacki--;
21330 break;
21331
21332 case DW_OP_deref:
21333 /* If we're not the last op, then we definitely can't encode
21334 this using GDB's address_class enum. This is valid for partial
21335 global symbols, although the variable's address will be bogus
21336 in the psymtab. */
21337 if (i < size)
21338 dwarf2_complex_location_expr_complaint ();
21339 break;
21340
21341 case DW_OP_GNU_push_tls_address:
21342 case DW_OP_form_tls_address:
21343 /* The top of the stack has the offset from the beginning
21344 of the thread control block at which the variable is located. */
21345 /* Nothing should follow this operator, so the top of stack would
21346 be returned. */
21347 /* This is valid for partial global symbols, but the variable's
21348 address will be bogus in the psymtab. Make it always at least
21349 non-zero to not look as a variable garbage collected by linker
21350 which have DW_OP_addr 0. */
21351 if (i < size)
21352 dwarf2_complex_location_expr_complaint ();
21353 stack[stacki]++;
21354 break;
21355
21356 case DW_OP_GNU_uninit:
21357 break;
21358
21359 case DW_OP_GNU_addr_index:
21360 case DW_OP_GNU_const_index:
21361 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21362 &bytes_read);
21363 i += bytes_read;
21364 break;
21365
21366 default:
21367 {
21368 const char *name = get_DW_OP_name (op);
21369
21370 if (name)
21371 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21372 name);
21373 else
21374 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21375 op);
21376 }
21377
21378 return (stack[stacki]);
21379 }
21380
21381 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21382 outside of the allocated space. Also enforce minimum>0. */
21383 if (stacki >= ARRAY_SIZE (stack) - 1)
21384 {
21385 complaint (&symfile_complaints,
21386 _("location description stack overflow"));
21387 return 0;
21388 }
21389
21390 if (stacki <= 0)
21391 {
21392 complaint (&symfile_complaints,
21393 _("location description stack underflow"));
21394 return 0;
21395 }
21396 }
21397 return (stack[stacki]);
21398 }
21399
21400 /* memory allocation interface */
21401
21402 static struct dwarf_block *
21403 dwarf_alloc_block (struct dwarf2_cu *cu)
21404 {
21405 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21406 }
21407
21408 static struct die_info *
21409 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21410 {
21411 struct die_info *die;
21412 size_t size = sizeof (struct die_info);
21413
21414 if (num_attrs > 1)
21415 size += (num_attrs - 1) * sizeof (struct attribute);
21416
21417 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21418 memset (die, 0, sizeof (struct die_info));
21419 return (die);
21420 }
21421
21422 \f
21423 /* Macro support. */
21424
21425 /* Return file name relative to the compilation directory of file number I in
21426 *LH's file name table. The result is allocated using xmalloc; the caller is
21427 responsible for freeing it. */
21428
21429 static char *
21430 file_file_name (int file, struct line_header *lh)
21431 {
21432 /* Is the file number a valid index into the line header's file name
21433 table? Remember that file numbers start with one, not zero. */
21434 if (1 <= file && file <= lh->file_names.size ())
21435 {
21436 const file_entry &fe = lh->file_names[file - 1];
21437
21438 if (!IS_ABSOLUTE_PATH (fe.name))
21439 {
21440 const char *dir = fe.include_dir (lh);
21441 if (dir != NULL)
21442 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21443 }
21444 return xstrdup (fe.name);
21445 }
21446 else
21447 {
21448 /* The compiler produced a bogus file number. We can at least
21449 record the macro definitions made in the file, even if we
21450 won't be able to find the file by name. */
21451 char fake_name[80];
21452
21453 xsnprintf (fake_name, sizeof (fake_name),
21454 "<bad macro file number %d>", file);
21455
21456 complaint (&symfile_complaints,
21457 _("bad file number in macro information (%d)"),
21458 file);
21459
21460 return xstrdup (fake_name);
21461 }
21462 }
21463
21464 /* Return the full name of file number I in *LH's file name table.
21465 Use COMP_DIR as the name of the current directory of the
21466 compilation. The result is allocated using xmalloc; the caller is
21467 responsible for freeing it. */
21468 static char *
21469 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21470 {
21471 /* Is the file number a valid index into the line header's file name
21472 table? Remember that file numbers start with one, not zero. */
21473 if (1 <= file && file <= lh->file_names.size ())
21474 {
21475 char *relative = file_file_name (file, lh);
21476
21477 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21478 return relative;
21479 return reconcat (relative, comp_dir, SLASH_STRING,
21480 relative, (char *) NULL);
21481 }
21482 else
21483 return file_file_name (file, lh);
21484 }
21485
21486
21487 static struct macro_source_file *
21488 macro_start_file (int file, int line,
21489 struct macro_source_file *current_file,
21490 struct line_header *lh)
21491 {
21492 /* File name relative to the compilation directory of this source file. */
21493 char *file_name = file_file_name (file, lh);
21494
21495 if (! current_file)
21496 {
21497 /* Note: We don't create a macro table for this compilation unit
21498 at all until we actually get a filename. */
21499 struct macro_table *macro_table = get_macro_table ();
21500
21501 /* If we have no current file, then this must be the start_file
21502 directive for the compilation unit's main source file. */
21503 current_file = macro_set_main (macro_table, file_name);
21504 macro_define_special (macro_table);
21505 }
21506 else
21507 current_file = macro_include (current_file, line, file_name);
21508
21509 xfree (file_name);
21510
21511 return current_file;
21512 }
21513
21514
21515 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21516 followed by a null byte. */
21517 static char *
21518 copy_string (const char *buf, int len)
21519 {
21520 char *s = (char *) xmalloc (len + 1);
21521
21522 memcpy (s, buf, len);
21523 s[len] = '\0';
21524 return s;
21525 }
21526
21527
21528 static const char *
21529 consume_improper_spaces (const char *p, const char *body)
21530 {
21531 if (*p == ' ')
21532 {
21533 complaint (&symfile_complaints,
21534 _("macro definition contains spaces "
21535 "in formal argument list:\n`%s'"),
21536 body);
21537
21538 while (*p == ' ')
21539 p++;
21540 }
21541
21542 return p;
21543 }
21544
21545
21546 static void
21547 parse_macro_definition (struct macro_source_file *file, int line,
21548 const char *body)
21549 {
21550 const char *p;
21551
21552 /* The body string takes one of two forms. For object-like macro
21553 definitions, it should be:
21554
21555 <macro name> " " <definition>
21556
21557 For function-like macro definitions, it should be:
21558
21559 <macro name> "() " <definition>
21560 or
21561 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21562
21563 Spaces may appear only where explicitly indicated, and in the
21564 <definition>.
21565
21566 The Dwarf 2 spec says that an object-like macro's name is always
21567 followed by a space, but versions of GCC around March 2002 omit
21568 the space when the macro's definition is the empty string.
21569
21570 The Dwarf 2 spec says that there should be no spaces between the
21571 formal arguments in a function-like macro's formal argument list,
21572 but versions of GCC around March 2002 include spaces after the
21573 commas. */
21574
21575
21576 /* Find the extent of the macro name. The macro name is terminated
21577 by either a space or null character (for an object-like macro) or
21578 an opening paren (for a function-like macro). */
21579 for (p = body; *p; p++)
21580 if (*p == ' ' || *p == '(')
21581 break;
21582
21583 if (*p == ' ' || *p == '\0')
21584 {
21585 /* It's an object-like macro. */
21586 int name_len = p - body;
21587 char *name = copy_string (body, name_len);
21588 const char *replacement;
21589
21590 if (*p == ' ')
21591 replacement = body + name_len + 1;
21592 else
21593 {
21594 dwarf2_macro_malformed_definition_complaint (body);
21595 replacement = body + name_len;
21596 }
21597
21598 macro_define_object (file, line, name, replacement);
21599
21600 xfree (name);
21601 }
21602 else if (*p == '(')
21603 {
21604 /* It's a function-like macro. */
21605 char *name = copy_string (body, p - body);
21606 int argc = 0;
21607 int argv_size = 1;
21608 char **argv = XNEWVEC (char *, argv_size);
21609
21610 p++;
21611
21612 p = consume_improper_spaces (p, body);
21613
21614 /* Parse the formal argument list. */
21615 while (*p && *p != ')')
21616 {
21617 /* Find the extent of the current argument name. */
21618 const char *arg_start = p;
21619
21620 while (*p && *p != ',' && *p != ')' && *p != ' ')
21621 p++;
21622
21623 if (! *p || p == arg_start)
21624 dwarf2_macro_malformed_definition_complaint (body);
21625 else
21626 {
21627 /* Make sure argv has room for the new argument. */
21628 if (argc >= argv_size)
21629 {
21630 argv_size *= 2;
21631 argv = XRESIZEVEC (char *, argv, argv_size);
21632 }
21633
21634 argv[argc++] = copy_string (arg_start, p - arg_start);
21635 }
21636
21637 p = consume_improper_spaces (p, body);
21638
21639 /* Consume the comma, if present. */
21640 if (*p == ',')
21641 {
21642 p++;
21643
21644 p = consume_improper_spaces (p, body);
21645 }
21646 }
21647
21648 if (*p == ')')
21649 {
21650 p++;
21651
21652 if (*p == ' ')
21653 /* Perfectly formed definition, no complaints. */
21654 macro_define_function (file, line, name,
21655 argc, (const char **) argv,
21656 p + 1);
21657 else if (*p == '\0')
21658 {
21659 /* Complain, but do define it. */
21660 dwarf2_macro_malformed_definition_complaint (body);
21661 macro_define_function (file, line, name,
21662 argc, (const char **) argv,
21663 p);
21664 }
21665 else
21666 /* Just complain. */
21667 dwarf2_macro_malformed_definition_complaint (body);
21668 }
21669 else
21670 /* Just complain. */
21671 dwarf2_macro_malformed_definition_complaint (body);
21672
21673 xfree (name);
21674 {
21675 int i;
21676
21677 for (i = 0; i < argc; i++)
21678 xfree (argv[i]);
21679 }
21680 xfree (argv);
21681 }
21682 else
21683 dwarf2_macro_malformed_definition_complaint (body);
21684 }
21685
21686 /* Skip some bytes from BYTES according to the form given in FORM.
21687 Returns the new pointer. */
21688
21689 static const gdb_byte *
21690 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21691 enum dwarf_form form,
21692 unsigned int offset_size,
21693 struct dwarf2_section_info *section)
21694 {
21695 unsigned int bytes_read;
21696
21697 switch (form)
21698 {
21699 case DW_FORM_data1:
21700 case DW_FORM_flag:
21701 ++bytes;
21702 break;
21703
21704 case DW_FORM_data2:
21705 bytes += 2;
21706 break;
21707
21708 case DW_FORM_data4:
21709 bytes += 4;
21710 break;
21711
21712 case DW_FORM_data8:
21713 bytes += 8;
21714 break;
21715
21716 case DW_FORM_data16:
21717 bytes += 16;
21718 break;
21719
21720 case DW_FORM_string:
21721 read_direct_string (abfd, bytes, &bytes_read);
21722 bytes += bytes_read;
21723 break;
21724
21725 case DW_FORM_sec_offset:
21726 case DW_FORM_strp:
21727 case DW_FORM_GNU_strp_alt:
21728 bytes += offset_size;
21729 break;
21730
21731 case DW_FORM_block:
21732 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21733 bytes += bytes_read;
21734 break;
21735
21736 case DW_FORM_block1:
21737 bytes += 1 + read_1_byte (abfd, bytes);
21738 break;
21739 case DW_FORM_block2:
21740 bytes += 2 + read_2_bytes (abfd, bytes);
21741 break;
21742 case DW_FORM_block4:
21743 bytes += 4 + read_4_bytes (abfd, bytes);
21744 break;
21745
21746 case DW_FORM_sdata:
21747 case DW_FORM_udata:
21748 case DW_FORM_GNU_addr_index:
21749 case DW_FORM_GNU_str_index:
21750 bytes = gdb_skip_leb128 (bytes, buffer_end);
21751 if (bytes == NULL)
21752 {
21753 dwarf2_section_buffer_overflow_complaint (section);
21754 return NULL;
21755 }
21756 break;
21757
21758 default:
21759 {
21760 complain:
21761 complaint (&symfile_complaints,
21762 _("invalid form 0x%x in `%s'"),
21763 form, get_section_name (section));
21764 return NULL;
21765 }
21766 }
21767
21768 return bytes;
21769 }
21770
21771 /* A helper for dwarf_decode_macros that handles skipping an unknown
21772 opcode. Returns an updated pointer to the macro data buffer; or,
21773 on error, issues a complaint and returns NULL. */
21774
21775 static const gdb_byte *
21776 skip_unknown_opcode (unsigned int opcode,
21777 const gdb_byte **opcode_definitions,
21778 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21779 bfd *abfd,
21780 unsigned int offset_size,
21781 struct dwarf2_section_info *section)
21782 {
21783 unsigned int bytes_read, i;
21784 unsigned long arg;
21785 const gdb_byte *defn;
21786
21787 if (opcode_definitions[opcode] == NULL)
21788 {
21789 complaint (&symfile_complaints,
21790 _("unrecognized DW_MACFINO opcode 0x%x"),
21791 opcode);
21792 return NULL;
21793 }
21794
21795 defn = opcode_definitions[opcode];
21796 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21797 defn += bytes_read;
21798
21799 for (i = 0; i < arg; ++i)
21800 {
21801 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21802 (enum dwarf_form) defn[i], offset_size,
21803 section);
21804 if (mac_ptr == NULL)
21805 {
21806 /* skip_form_bytes already issued the complaint. */
21807 return NULL;
21808 }
21809 }
21810
21811 return mac_ptr;
21812 }
21813
21814 /* A helper function which parses the header of a macro section.
21815 If the macro section is the extended (for now called "GNU") type,
21816 then this updates *OFFSET_SIZE. Returns a pointer to just after
21817 the header, or issues a complaint and returns NULL on error. */
21818
21819 static const gdb_byte *
21820 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21821 bfd *abfd,
21822 const gdb_byte *mac_ptr,
21823 unsigned int *offset_size,
21824 int section_is_gnu)
21825 {
21826 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21827
21828 if (section_is_gnu)
21829 {
21830 unsigned int version, flags;
21831
21832 version = read_2_bytes (abfd, mac_ptr);
21833 if (version != 4 && version != 5)
21834 {
21835 complaint (&symfile_complaints,
21836 _("unrecognized version `%d' in .debug_macro section"),
21837 version);
21838 return NULL;
21839 }
21840 mac_ptr += 2;
21841
21842 flags = read_1_byte (abfd, mac_ptr);
21843 ++mac_ptr;
21844 *offset_size = (flags & 1) ? 8 : 4;
21845
21846 if ((flags & 2) != 0)
21847 /* We don't need the line table offset. */
21848 mac_ptr += *offset_size;
21849
21850 /* Vendor opcode descriptions. */
21851 if ((flags & 4) != 0)
21852 {
21853 unsigned int i, count;
21854
21855 count = read_1_byte (abfd, mac_ptr);
21856 ++mac_ptr;
21857 for (i = 0; i < count; ++i)
21858 {
21859 unsigned int opcode, bytes_read;
21860 unsigned long arg;
21861
21862 opcode = read_1_byte (abfd, mac_ptr);
21863 ++mac_ptr;
21864 opcode_definitions[opcode] = mac_ptr;
21865 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21866 mac_ptr += bytes_read;
21867 mac_ptr += arg;
21868 }
21869 }
21870 }
21871
21872 return mac_ptr;
21873 }
21874
21875 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21876 including DW_MACRO_import. */
21877
21878 static void
21879 dwarf_decode_macro_bytes (bfd *abfd,
21880 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21881 struct macro_source_file *current_file,
21882 struct line_header *lh,
21883 struct dwarf2_section_info *section,
21884 int section_is_gnu, int section_is_dwz,
21885 unsigned int offset_size,
21886 htab_t include_hash)
21887 {
21888 struct objfile *objfile = dwarf2_per_objfile->objfile;
21889 enum dwarf_macro_record_type macinfo_type;
21890 int at_commandline;
21891 const gdb_byte *opcode_definitions[256];
21892
21893 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21894 &offset_size, section_is_gnu);
21895 if (mac_ptr == NULL)
21896 {
21897 /* We already issued a complaint. */
21898 return;
21899 }
21900
21901 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21902 GDB is still reading the definitions from command line. First
21903 DW_MACINFO_start_file will need to be ignored as it was already executed
21904 to create CURRENT_FILE for the main source holding also the command line
21905 definitions. On first met DW_MACINFO_start_file this flag is reset to
21906 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21907
21908 at_commandline = 1;
21909
21910 do
21911 {
21912 /* Do we at least have room for a macinfo type byte? */
21913 if (mac_ptr >= mac_end)
21914 {
21915 dwarf2_section_buffer_overflow_complaint (section);
21916 break;
21917 }
21918
21919 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21920 mac_ptr++;
21921
21922 /* Note that we rely on the fact that the corresponding GNU and
21923 DWARF constants are the same. */
21924 switch (macinfo_type)
21925 {
21926 /* A zero macinfo type indicates the end of the macro
21927 information. */
21928 case 0:
21929 break;
21930
21931 case DW_MACRO_define:
21932 case DW_MACRO_undef:
21933 case DW_MACRO_define_strp:
21934 case DW_MACRO_undef_strp:
21935 case DW_MACRO_define_sup:
21936 case DW_MACRO_undef_sup:
21937 {
21938 unsigned int bytes_read;
21939 int line;
21940 const char *body;
21941 int is_define;
21942
21943 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21944 mac_ptr += bytes_read;
21945
21946 if (macinfo_type == DW_MACRO_define
21947 || macinfo_type == DW_MACRO_undef)
21948 {
21949 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21950 mac_ptr += bytes_read;
21951 }
21952 else
21953 {
21954 LONGEST str_offset;
21955
21956 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21957 mac_ptr += offset_size;
21958
21959 if (macinfo_type == DW_MACRO_define_sup
21960 || macinfo_type == DW_MACRO_undef_sup
21961 || section_is_dwz)
21962 {
21963 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21964
21965 body = read_indirect_string_from_dwz (dwz, str_offset);
21966 }
21967 else
21968 body = read_indirect_string_at_offset (abfd, str_offset);
21969 }
21970
21971 is_define = (macinfo_type == DW_MACRO_define
21972 || macinfo_type == DW_MACRO_define_strp
21973 || macinfo_type == DW_MACRO_define_sup);
21974 if (! current_file)
21975 {
21976 /* DWARF violation as no main source is present. */
21977 complaint (&symfile_complaints,
21978 _("debug info with no main source gives macro %s "
21979 "on line %d: %s"),
21980 is_define ? _("definition") : _("undefinition"),
21981 line, body);
21982 break;
21983 }
21984 if ((line == 0 && !at_commandline)
21985 || (line != 0 && at_commandline))
21986 complaint (&symfile_complaints,
21987 _("debug info gives %s macro %s with %s line %d: %s"),
21988 at_commandline ? _("command-line") : _("in-file"),
21989 is_define ? _("definition") : _("undefinition"),
21990 line == 0 ? _("zero") : _("non-zero"), line, body);
21991
21992 if (is_define)
21993 parse_macro_definition (current_file, line, body);
21994 else
21995 {
21996 gdb_assert (macinfo_type == DW_MACRO_undef
21997 || macinfo_type == DW_MACRO_undef_strp
21998 || macinfo_type == DW_MACRO_undef_sup);
21999 macro_undef (current_file, line, body);
22000 }
22001 }
22002 break;
22003
22004 case DW_MACRO_start_file:
22005 {
22006 unsigned int bytes_read;
22007 int line, file;
22008
22009 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22010 mac_ptr += bytes_read;
22011 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22012 mac_ptr += bytes_read;
22013
22014 if ((line == 0 && !at_commandline)
22015 || (line != 0 && at_commandline))
22016 complaint (&symfile_complaints,
22017 _("debug info gives source %d included "
22018 "from %s at %s line %d"),
22019 file, at_commandline ? _("command-line") : _("file"),
22020 line == 0 ? _("zero") : _("non-zero"), line);
22021
22022 if (at_commandline)
22023 {
22024 /* This DW_MACRO_start_file was executed in the
22025 pass one. */
22026 at_commandline = 0;
22027 }
22028 else
22029 current_file = macro_start_file (file, line, current_file, lh);
22030 }
22031 break;
22032
22033 case DW_MACRO_end_file:
22034 if (! current_file)
22035 complaint (&symfile_complaints,
22036 _("macro debug info has an unmatched "
22037 "`close_file' directive"));
22038 else
22039 {
22040 current_file = current_file->included_by;
22041 if (! current_file)
22042 {
22043 enum dwarf_macro_record_type next_type;
22044
22045 /* GCC circa March 2002 doesn't produce the zero
22046 type byte marking the end of the compilation
22047 unit. Complain if it's not there, but exit no
22048 matter what. */
22049
22050 /* Do we at least have room for a macinfo type byte? */
22051 if (mac_ptr >= mac_end)
22052 {
22053 dwarf2_section_buffer_overflow_complaint (section);
22054 return;
22055 }
22056
22057 /* We don't increment mac_ptr here, so this is just
22058 a look-ahead. */
22059 next_type
22060 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22061 mac_ptr);
22062 if (next_type != 0)
22063 complaint (&symfile_complaints,
22064 _("no terminating 0-type entry for "
22065 "macros in `.debug_macinfo' section"));
22066
22067 return;
22068 }
22069 }
22070 break;
22071
22072 case DW_MACRO_import:
22073 case DW_MACRO_import_sup:
22074 {
22075 LONGEST offset;
22076 void **slot;
22077 bfd *include_bfd = abfd;
22078 struct dwarf2_section_info *include_section = section;
22079 const gdb_byte *include_mac_end = mac_end;
22080 int is_dwz = section_is_dwz;
22081 const gdb_byte *new_mac_ptr;
22082
22083 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22084 mac_ptr += offset_size;
22085
22086 if (macinfo_type == DW_MACRO_import_sup)
22087 {
22088 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22089
22090 dwarf2_read_section (objfile, &dwz->macro);
22091
22092 include_section = &dwz->macro;
22093 include_bfd = get_section_bfd_owner (include_section);
22094 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22095 is_dwz = 1;
22096 }
22097
22098 new_mac_ptr = include_section->buffer + offset;
22099 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22100
22101 if (*slot != NULL)
22102 {
22103 /* This has actually happened; see
22104 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22105 complaint (&symfile_complaints,
22106 _("recursive DW_MACRO_import in "
22107 ".debug_macro section"));
22108 }
22109 else
22110 {
22111 *slot = (void *) new_mac_ptr;
22112
22113 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22114 include_mac_end, current_file, lh,
22115 section, section_is_gnu, is_dwz,
22116 offset_size, include_hash);
22117
22118 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22119 }
22120 }
22121 break;
22122
22123 case DW_MACINFO_vendor_ext:
22124 if (!section_is_gnu)
22125 {
22126 unsigned int bytes_read;
22127
22128 /* This reads the constant, but since we don't recognize
22129 any vendor extensions, we ignore it. */
22130 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22131 mac_ptr += bytes_read;
22132 read_direct_string (abfd, mac_ptr, &bytes_read);
22133 mac_ptr += bytes_read;
22134
22135 /* We don't recognize any vendor extensions. */
22136 break;
22137 }
22138 /* FALLTHROUGH */
22139
22140 default:
22141 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22142 mac_ptr, mac_end, abfd, offset_size,
22143 section);
22144 if (mac_ptr == NULL)
22145 return;
22146 break;
22147 }
22148 } while (macinfo_type != 0);
22149 }
22150
22151 static void
22152 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22153 int section_is_gnu)
22154 {
22155 struct objfile *objfile = dwarf2_per_objfile->objfile;
22156 struct line_header *lh = cu->line_header;
22157 bfd *abfd;
22158 const gdb_byte *mac_ptr, *mac_end;
22159 struct macro_source_file *current_file = 0;
22160 enum dwarf_macro_record_type macinfo_type;
22161 unsigned int offset_size = cu->header.offset_size;
22162 const gdb_byte *opcode_definitions[256];
22163 struct cleanup *cleanup;
22164 void **slot;
22165 struct dwarf2_section_info *section;
22166 const char *section_name;
22167
22168 if (cu->dwo_unit != NULL)
22169 {
22170 if (section_is_gnu)
22171 {
22172 section = &cu->dwo_unit->dwo_file->sections.macro;
22173 section_name = ".debug_macro.dwo";
22174 }
22175 else
22176 {
22177 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22178 section_name = ".debug_macinfo.dwo";
22179 }
22180 }
22181 else
22182 {
22183 if (section_is_gnu)
22184 {
22185 section = &dwarf2_per_objfile->macro;
22186 section_name = ".debug_macro";
22187 }
22188 else
22189 {
22190 section = &dwarf2_per_objfile->macinfo;
22191 section_name = ".debug_macinfo";
22192 }
22193 }
22194
22195 dwarf2_read_section (objfile, section);
22196 if (section->buffer == NULL)
22197 {
22198 complaint (&symfile_complaints, _("missing %s section"), section_name);
22199 return;
22200 }
22201 abfd = get_section_bfd_owner (section);
22202
22203 /* First pass: Find the name of the base filename.
22204 This filename is needed in order to process all macros whose definition
22205 (or undefinition) comes from the command line. These macros are defined
22206 before the first DW_MACINFO_start_file entry, and yet still need to be
22207 associated to the base file.
22208
22209 To determine the base file name, we scan the macro definitions until we
22210 reach the first DW_MACINFO_start_file entry. We then initialize
22211 CURRENT_FILE accordingly so that any macro definition found before the
22212 first DW_MACINFO_start_file can still be associated to the base file. */
22213
22214 mac_ptr = section->buffer + offset;
22215 mac_end = section->buffer + section->size;
22216
22217 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22218 &offset_size, section_is_gnu);
22219 if (mac_ptr == NULL)
22220 {
22221 /* We already issued a complaint. */
22222 return;
22223 }
22224
22225 do
22226 {
22227 /* Do we at least have room for a macinfo type byte? */
22228 if (mac_ptr >= mac_end)
22229 {
22230 /* Complaint is printed during the second pass as GDB will probably
22231 stop the first pass earlier upon finding
22232 DW_MACINFO_start_file. */
22233 break;
22234 }
22235
22236 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22237 mac_ptr++;
22238
22239 /* Note that we rely on the fact that the corresponding GNU and
22240 DWARF constants are the same. */
22241 switch (macinfo_type)
22242 {
22243 /* A zero macinfo type indicates the end of the macro
22244 information. */
22245 case 0:
22246 break;
22247
22248 case DW_MACRO_define:
22249 case DW_MACRO_undef:
22250 /* Only skip the data by MAC_PTR. */
22251 {
22252 unsigned int bytes_read;
22253
22254 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22255 mac_ptr += bytes_read;
22256 read_direct_string (abfd, mac_ptr, &bytes_read);
22257 mac_ptr += bytes_read;
22258 }
22259 break;
22260
22261 case DW_MACRO_start_file:
22262 {
22263 unsigned int bytes_read;
22264 int line, file;
22265
22266 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22267 mac_ptr += bytes_read;
22268 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22269 mac_ptr += bytes_read;
22270
22271 current_file = macro_start_file (file, line, current_file, lh);
22272 }
22273 break;
22274
22275 case DW_MACRO_end_file:
22276 /* No data to skip by MAC_PTR. */
22277 break;
22278
22279 case DW_MACRO_define_strp:
22280 case DW_MACRO_undef_strp:
22281 case DW_MACRO_define_sup:
22282 case DW_MACRO_undef_sup:
22283 {
22284 unsigned int bytes_read;
22285
22286 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22287 mac_ptr += bytes_read;
22288 mac_ptr += offset_size;
22289 }
22290 break;
22291
22292 case DW_MACRO_import:
22293 case DW_MACRO_import_sup:
22294 /* Note that, according to the spec, a transparent include
22295 chain cannot call DW_MACRO_start_file. So, we can just
22296 skip this opcode. */
22297 mac_ptr += offset_size;
22298 break;
22299
22300 case DW_MACINFO_vendor_ext:
22301 /* Only skip the data by MAC_PTR. */
22302 if (!section_is_gnu)
22303 {
22304 unsigned int bytes_read;
22305
22306 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22307 mac_ptr += bytes_read;
22308 read_direct_string (abfd, mac_ptr, &bytes_read);
22309 mac_ptr += bytes_read;
22310 }
22311 /* FALLTHROUGH */
22312
22313 default:
22314 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22315 mac_ptr, mac_end, abfd, offset_size,
22316 section);
22317 if (mac_ptr == NULL)
22318 return;
22319 break;
22320 }
22321 } while (macinfo_type != 0 && current_file == NULL);
22322
22323 /* Second pass: Process all entries.
22324
22325 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22326 command-line macro definitions/undefinitions. This flag is unset when we
22327 reach the first DW_MACINFO_start_file entry. */
22328
22329 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22330 htab_eq_pointer,
22331 NULL, xcalloc, xfree));
22332 mac_ptr = section->buffer + offset;
22333 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22334 *slot = (void *) mac_ptr;
22335 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22336 current_file, lh, section,
22337 section_is_gnu, 0, offset_size,
22338 include_hash.get ());
22339 }
22340
22341 /* Check if the attribute's form is a DW_FORM_block*
22342 if so return true else false. */
22343
22344 static int
22345 attr_form_is_block (const struct attribute *attr)
22346 {
22347 return (attr == NULL ? 0 :
22348 attr->form == DW_FORM_block1
22349 || attr->form == DW_FORM_block2
22350 || attr->form == DW_FORM_block4
22351 || attr->form == DW_FORM_block
22352 || attr->form == DW_FORM_exprloc);
22353 }
22354
22355 /* Return non-zero if ATTR's value is a section offset --- classes
22356 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22357 You may use DW_UNSND (attr) to retrieve such offsets.
22358
22359 Section 7.5.4, "Attribute Encodings", explains that no attribute
22360 may have a value that belongs to more than one of these classes; it
22361 would be ambiguous if we did, because we use the same forms for all
22362 of them. */
22363
22364 static int
22365 attr_form_is_section_offset (const struct attribute *attr)
22366 {
22367 return (attr->form == DW_FORM_data4
22368 || attr->form == DW_FORM_data8
22369 || attr->form == DW_FORM_sec_offset);
22370 }
22371
22372 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22373 zero otherwise. When this function returns true, you can apply
22374 dwarf2_get_attr_constant_value to it.
22375
22376 However, note that for some attributes you must check
22377 attr_form_is_section_offset before using this test. DW_FORM_data4
22378 and DW_FORM_data8 are members of both the constant class, and of
22379 the classes that contain offsets into other debug sections
22380 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22381 that, if an attribute's can be either a constant or one of the
22382 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22383 taken as section offsets, not constants.
22384
22385 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22386 cannot handle that. */
22387
22388 static int
22389 attr_form_is_constant (const struct attribute *attr)
22390 {
22391 switch (attr->form)
22392 {
22393 case DW_FORM_sdata:
22394 case DW_FORM_udata:
22395 case DW_FORM_data1:
22396 case DW_FORM_data2:
22397 case DW_FORM_data4:
22398 case DW_FORM_data8:
22399 return 1;
22400 default:
22401 return 0;
22402 }
22403 }
22404
22405
22406 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22407 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22408
22409 static int
22410 attr_form_is_ref (const struct attribute *attr)
22411 {
22412 switch (attr->form)
22413 {
22414 case DW_FORM_ref_addr:
22415 case DW_FORM_ref1:
22416 case DW_FORM_ref2:
22417 case DW_FORM_ref4:
22418 case DW_FORM_ref8:
22419 case DW_FORM_ref_udata:
22420 case DW_FORM_GNU_ref_alt:
22421 return 1;
22422 default:
22423 return 0;
22424 }
22425 }
22426
22427 /* Return the .debug_loc section to use for CU.
22428 For DWO files use .debug_loc.dwo. */
22429
22430 static struct dwarf2_section_info *
22431 cu_debug_loc_section (struct dwarf2_cu *cu)
22432 {
22433 if (cu->dwo_unit)
22434 {
22435 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22436
22437 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22438 }
22439 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22440 : &dwarf2_per_objfile->loc);
22441 }
22442
22443 /* A helper function that fills in a dwarf2_loclist_baton. */
22444
22445 static void
22446 fill_in_loclist_baton (struct dwarf2_cu *cu,
22447 struct dwarf2_loclist_baton *baton,
22448 const struct attribute *attr)
22449 {
22450 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22451
22452 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22453
22454 baton->per_cu = cu->per_cu;
22455 gdb_assert (baton->per_cu);
22456 /* We don't know how long the location list is, but make sure we
22457 don't run off the edge of the section. */
22458 baton->size = section->size - DW_UNSND (attr);
22459 baton->data = section->buffer + DW_UNSND (attr);
22460 baton->base_address = cu->base_address;
22461 baton->from_dwo = cu->dwo_unit != NULL;
22462 }
22463
22464 static void
22465 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22466 struct dwarf2_cu *cu, int is_block)
22467 {
22468 struct objfile *objfile = dwarf2_per_objfile->objfile;
22469 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22470
22471 if (attr_form_is_section_offset (attr)
22472 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22473 the section. If so, fall through to the complaint in the
22474 other branch. */
22475 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22476 {
22477 struct dwarf2_loclist_baton *baton;
22478
22479 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22480
22481 fill_in_loclist_baton (cu, baton, attr);
22482
22483 if (cu->base_known == 0)
22484 complaint (&symfile_complaints,
22485 _("Location list used without "
22486 "specifying the CU base address."));
22487
22488 SYMBOL_ACLASS_INDEX (sym) = (is_block
22489 ? dwarf2_loclist_block_index
22490 : dwarf2_loclist_index);
22491 SYMBOL_LOCATION_BATON (sym) = baton;
22492 }
22493 else
22494 {
22495 struct dwarf2_locexpr_baton *baton;
22496
22497 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22498 baton->per_cu = cu->per_cu;
22499 gdb_assert (baton->per_cu);
22500
22501 if (attr_form_is_block (attr))
22502 {
22503 /* Note that we're just copying the block's data pointer
22504 here, not the actual data. We're still pointing into the
22505 info_buffer for SYM's objfile; right now we never release
22506 that buffer, but when we do clean up properly this may
22507 need to change. */
22508 baton->size = DW_BLOCK (attr)->size;
22509 baton->data = DW_BLOCK (attr)->data;
22510 }
22511 else
22512 {
22513 dwarf2_invalid_attrib_class_complaint ("location description",
22514 SYMBOL_NATURAL_NAME (sym));
22515 baton->size = 0;
22516 }
22517
22518 SYMBOL_ACLASS_INDEX (sym) = (is_block
22519 ? dwarf2_locexpr_block_index
22520 : dwarf2_locexpr_index);
22521 SYMBOL_LOCATION_BATON (sym) = baton;
22522 }
22523 }
22524
22525 /* Return the OBJFILE associated with the compilation unit CU. If CU
22526 came from a separate debuginfo file, then the master objfile is
22527 returned. */
22528
22529 struct objfile *
22530 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22531 {
22532 struct objfile *objfile = per_cu->objfile;
22533
22534 /* Return the master objfile, so that we can report and look up the
22535 correct file containing this variable. */
22536 if (objfile->separate_debug_objfile_backlink)
22537 objfile = objfile->separate_debug_objfile_backlink;
22538
22539 return objfile;
22540 }
22541
22542 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22543 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22544 CU_HEADERP first. */
22545
22546 static const struct comp_unit_head *
22547 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22548 struct dwarf2_per_cu_data *per_cu)
22549 {
22550 const gdb_byte *info_ptr;
22551
22552 if (per_cu->cu)
22553 return &per_cu->cu->header;
22554
22555 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22556
22557 memset (cu_headerp, 0, sizeof (*cu_headerp));
22558 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22559 rcuh_kind::COMPILE);
22560
22561 return cu_headerp;
22562 }
22563
22564 /* Return the address size given in the compilation unit header for CU. */
22565
22566 int
22567 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22568 {
22569 struct comp_unit_head cu_header_local;
22570 const struct comp_unit_head *cu_headerp;
22571
22572 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22573
22574 return cu_headerp->addr_size;
22575 }
22576
22577 /* Return the offset size given in the compilation unit header for CU. */
22578
22579 int
22580 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22581 {
22582 struct comp_unit_head cu_header_local;
22583 const struct comp_unit_head *cu_headerp;
22584
22585 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22586
22587 return cu_headerp->offset_size;
22588 }
22589
22590 /* See its dwarf2loc.h declaration. */
22591
22592 int
22593 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22594 {
22595 struct comp_unit_head cu_header_local;
22596 const struct comp_unit_head *cu_headerp;
22597
22598 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22599
22600 if (cu_headerp->version == 2)
22601 return cu_headerp->addr_size;
22602 else
22603 return cu_headerp->offset_size;
22604 }
22605
22606 /* Return the text offset of the CU. The returned offset comes from
22607 this CU's objfile. If this objfile came from a separate debuginfo
22608 file, then the offset may be different from the corresponding
22609 offset in the parent objfile. */
22610
22611 CORE_ADDR
22612 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22613 {
22614 struct objfile *objfile = per_cu->objfile;
22615
22616 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22617 }
22618
22619 /* Return DWARF version number of PER_CU. */
22620
22621 short
22622 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22623 {
22624 return per_cu->dwarf_version;
22625 }
22626
22627 /* Locate the .debug_info compilation unit from CU's objfile which contains
22628 the DIE at OFFSET. Raises an error on failure. */
22629
22630 static struct dwarf2_per_cu_data *
22631 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22632 unsigned int offset_in_dwz,
22633 struct objfile *objfile)
22634 {
22635 struct dwarf2_per_cu_data *this_cu;
22636 int low, high;
22637 const sect_offset *cu_off;
22638
22639 low = 0;
22640 high = dwarf2_per_objfile->n_comp_units - 1;
22641 while (high > low)
22642 {
22643 struct dwarf2_per_cu_data *mid_cu;
22644 int mid = low + (high - low) / 2;
22645
22646 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22647 cu_off = &mid_cu->sect_off;
22648 if (mid_cu->is_dwz > offset_in_dwz
22649 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22650 high = mid;
22651 else
22652 low = mid + 1;
22653 }
22654 gdb_assert (low == high);
22655 this_cu = dwarf2_per_objfile->all_comp_units[low];
22656 cu_off = &this_cu->sect_off;
22657 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22658 {
22659 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22660 error (_("Dwarf Error: could not find partial DIE containing "
22661 "offset 0x%x [in module %s]"),
22662 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22663
22664 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22665 <= sect_off);
22666 return dwarf2_per_objfile->all_comp_units[low-1];
22667 }
22668 else
22669 {
22670 this_cu = dwarf2_per_objfile->all_comp_units[low];
22671 if (low == dwarf2_per_objfile->n_comp_units - 1
22672 && sect_off >= this_cu->sect_off + this_cu->length)
22673 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22674 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22675 return this_cu;
22676 }
22677 }
22678
22679 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22680
22681 static void
22682 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22683 {
22684 memset (cu, 0, sizeof (*cu));
22685 per_cu->cu = cu;
22686 cu->per_cu = per_cu;
22687 cu->objfile = per_cu->objfile;
22688 obstack_init (&cu->comp_unit_obstack);
22689 }
22690
22691 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22692
22693 static void
22694 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22695 enum language pretend_language)
22696 {
22697 struct attribute *attr;
22698
22699 /* Set the language we're debugging. */
22700 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22701 if (attr)
22702 set_cu_language (DW_UNSND (attr), cu);
22703 else
22704 {
22705 cu->language = pretend_language;
22706 cu->language_defn = language_def (cu->language);
22707 }
22708
22709 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22710 }
22711
22712 /* Release one cached compilation unit, CU. We unlink it from the tree
22713 of compilation units, but we don't remove it from the read_in_chain;
22714 the caller is responsible for that.
22715 NOTE: DATA is a void * because this function is also used as a
22716 cleanup routine. */
22717
22718 static void
22719 free_heap_comp_unit (void *data)
22720 {
22721 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22722
22723 gdb_assert (cu->per_cu != NULL);
22724 cu->per_cu->cu = NULL;
22725 cu->per_cu = NULL;
22726
22727 obstack_free (&cu->comp_unit_obstack, NULL);
22728
22729 xfree (cu);
22730 }
22731
22732 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22733 when we're finished with it. We can't free the pointer itself, but be
22734 sure to unlink it from the cache. Also release any associated storage. */
22735
22736 static void
22737 free_stack_comp_unit (void *data)
22738 {
22739 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22740
22741 gdb_assert (cu->per_cu != NULL);
22742 cu->per_cu->cu = NULL;
22743 cu->per_cu = NULL;
22744
22745 obstack_free (&cu->comp_unit_obstack, NULL);
22746 cu->partial_dies = NULL;
22747 }
22748
22749 /* Free all cached compilation units. */
22750
22751 static void
22752 free_cached_comp_units (void *data)
22753 {
22754 struct dwarf2_per_cu_data *per_cu, **last_chain;
22755
22756 per_cu = dwarf2_per_objfile->read_in_chain;
22757 last_chain = &dwarf2_per_objfile->read_in_chain;
22758 while (per_cu != NULL)
22759 {
22760 struct dwarf2_per_cu_data *next_cu;
22761
22762 next_cu = per_cu->cu->read_in_chain;
22763
22764 free_heap_comp_unit (per_cu->cu);
22765 *last_chain = next_cu;
22766
22767 per_cu = next_cu;
22768 }
22769 }
22770
22771 /* Increase the age counter on each cached compilation unit, and free
22772 any that are too old. */
22773
22774 static void
22775 age_cached_comp_units (void)
22776 {
22777 struct dwarf2_per_cu_data *per_cu, **last_chain;
22778
22779 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22780 per_cu = dwarf2_per_objfile->read_in_chain;
22781 while (per_cu != NULL)
22782 {
22783 per_cu->cu->last_used ++;
22784 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22785 dwarf2_mark (per_cu->cu);
22786 per_cu = per_cu->cu->read_in_chain;
22787 }
22788
22789 per_cu = dwarf2_per_objfile->read_in_chain;
22790 last_chain = &dwarf2_per_objfile->read_in_chain;
22791 while (per_cu != NULL)
22792 {
22793 struct dwarf2_per_cu_data *next_cu;
22794
22795 next_cu = per_cu->cu->read_in_chain;
22796
22797 if (!per_cu->cu->mark)
22798 {
22799 free_heap_comp_unit (per_cu->cu);
22800 *last_chain = next_cu;
22801 }
22802 else
22803 last_chain = &per_cu->cu->read_in_chain;
22804
22805 per_cu = next_cu;
22806 }
22807 }
22808
22809 /* Remove a single compilation unit from the cache. */
22810
22811 static void
22812 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22813 {
22814 struct dwarf2_per_cu_data *per_cu, **last_chain;
22815
22816 per_cu = dwarf2_per_objfile->read_in_chain;
22817 last_chain = &dwarf2_per_objfile->read_in_chain;
22818 while (per_cu != NULL)
22819 {
22820 struct dwarf2_per_cu_data *next_cu;
22821
22822 next_cu = per_cu->cu->read_in_chain;
22823
22824 if (per_cu == target_per_cu)
22825 {
22826 free_heap_comp_unit (per_cu->cu);
22827 per_cu->cu = NULL;
22828 *last_chain = next_cu;
22829 break;
22830 }
22831 else
22832 last_chain = &per_cu->cu->read_in_chain;
22833
22834 per_cu = next_cu;
22835 }
22836 }
22837
22838 /* Release all extra memory associated with OBJFILE. */
22839
22840 void
22841 dwarf2_free_objfile (struct objfile *objfile)
22842 {
22843 dwarf2_per_objfile
22844 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22845 dwarf2_objfile_data_key);
22846
22847 if (dwarf2_per_objfile == NULL)
22848 return;
22849
22850 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22851 free_cached_comp_units (NULL);
22852
22853 if (dwarf2_per_objfile->quick_file_names_table)
22854 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22855
22856 if (dwarf2_per_objfile->line_header_hash)
22857 htab_delete (dwarf2_per_objfile->line_header_hash);
22858
22859 /* Everything else should be on the objfile obstack. */
22860 }
22861
22862 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22863 We store these in a hash table separate from the DIEs, and preserve them
22864 when the DIEs are flushed out of cache.
22865
22866 The CU "per_cu" pointer is needed because offset alone is not enough to
22867 uniquely identify the type. A file may have multiple .debug_types sections,
22868 or the type may come from a DWO file. Furthermore, while it's more logical
22869 to use per_cu->section+offset, with Fission the section with the data is in
22870 the DWO file but we don't know that section at the point we need it.
22871 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22872 because we can enter the lookup routine, get_die_type_at_offset, from
22873 outside this file, and thus won't necessarily have PER_CU->cu.
22874 Fortunately, PER_CU is stable for the life of the objfile. */
22875
22876 struct dwarf2_per_cu_offset_and_type
22877 {
22878 const struct dwarf2_per_cu_data *per_cu;
22879 sect_offset sect_off;
22880 struct type *type;
22881 };
22882
22883 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22884
22885 static hashval_t
22886 per_cu_offset_and_type_hash (const void *item)
22887 {
22888 const struct dwarf2_per_cu_offset_and_type *ofs
22889 = (const struct dwarf2_per_cu_offset_and_type *) item;
22890
22891 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22892 }
22893
22894 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22895
22896 static int
22897 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22898 {
22899 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22900 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22901 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22902 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22903
22904 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22905 && ofs_lhs->sect_off == ofs_rhs->sect_off);
22906 }
22907
22908 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22909 table if necessary. For convenience, return TYPE.
22910
22911 The DIEs reading must have careful ordering to:
22912 * Not cause infite loops trying to read in DIEs as a prerequisite for
22913 reading current DIE.
22914 * Not trying to dereference contents of still incompletely read in types
22915 while reading in other DIEs.
22916 * Enable referencing still incompletely read in types just by a pointer to
22917 the type without accessing its fields.
22918
22919 Therefore caller should follow these rules:
22920 * Try to fetch any prerequisite types we may need to build this DIE type
22921 before building the type and calling set_die_type.
22922 * After building type call set_die_type for current DIE as soon as
22923 possible before fetching more types to complete the current type.
22924 * Make the type as complete as possible before fetching more types. */
22925
22926 static struct type *
22927 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22928 {
22929 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22930 struct objfile *objfile = cu->objfile;
22931 struct attribute *attr;
22932 struct dynamic_prop prop;
22933
22934 /* For Ada types, make sure that the gnat-specific data is always
22935 initialized (if not already set). There are a few types where
22936 we should not be doing so, because the type-specific area is
22937 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22938 where the type-specific area is used to store the floatformat).
22939 But this is not a problem, because the gnat-specific information
22940 is actually not needed for these types. */
22941 if (need_gnat_info (cu)
22942 && TYPE_CODE (type) != TYPE_CODE_FUNC
22943 && TYPE_CODE (type) != TYPE_CODE_FLT
22944 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22945 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22946 && TYPE_CODE (type) != TYPE_CODE_METHOD
22947 && !HAVE_GNAT_AUX_INFO (type))
22948 INIT_GNAT_SPECIFIC (type);
22949
22950 /* Read DW_AT_allocated and set in type. */
22951 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22952 if (attr_form_is_block (attr))
22953 {
22954 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22955 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22956 }
22957 else if (attr != NULL)
22958 {
22959 complaint (&symfile_complaints,
22960 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22961 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22962 to_underlying (die->sect_off));
22963 }
22964
22965 /* Read DW_AT_associated and set in type. */
22966 attr = dwarf2_attr (die, DW_AT_associated, cu);
22967 if (attr_form_is_block (attr))
22968 {
22969 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22970 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22971 }
22972 else if (attr != NULL)
22973 {
22974 complaint (&symfile_complaints,
22975 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22976 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22977 to_underlying (die->sect_off));
22978 }
22979
22980 /* Read DW_AT_data_location and set in type. */
22981 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22982 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22983 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22984
22985 if (dwarf2_per_objfile->die_type_hash == NULL)
22986 {
22987 dwarf2_per_objfile->die_type_hash =
22988 htab_create_alloc_ex (127,
22989 per_cu_offset_and_type_hash,
22990 per_cu_offset_and_type_eq,
22991 NULL,
22992 &objfile->objfile_obstack,
22993 hashtab_obstack_allocate,
22994 dummy_obstack_deallocate);
22995 }
22996
22997 ofs.per_cu = cu->per_cu;
22998 ofs.sect_off = die->sect_off;
22999 ofs.type = type;
23000 slot = (struct dwarf2_per_cu_offset_and_type **)
23001 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23002 if (*slot)
23003 complaint (&symfile_complaints,
23004 _("A problem internal to GDB: DIE 0x%x has type already set"),
23005 to_underlying (die->sect_off));
23006 *slot = XOBNEW (&objfile->objfile_obstack,
23007 struct dwarf2_per_cu_offset_and_type);
23008 **slot = ofs;
23009 return type;
23010 }
23011
23012 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23013 or return NULL if the die does not have a saved type. */
23014
23015 static struct type *
23016 get_die_type_at_offset (sect_offset sect_off,
23017 struct dwarf2_per_cu_data *per_cu)
23018 {
23019 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23020
23021 if (dwarf2_per_objfile->die_type_hash == NULL)
23022 return NULL;
23023
23024 ofs.per_cu = per_cu;
23025 ofs.sect_off = sect_off;
23026 slot = ((struct dwarf2_per_cu_offset_and_type *)
23027 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23028 if (slot)
23029 return slot->type;
23030 else
23031 return NULL;
23032 }
23033
23034 /* Look up the type for DIE in CU in die_type_hash,
23035 or return NULL if DIE does not have a saved type. */
23036
23037 static struct type *
23038 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23039 {
23040 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23041 }
23042
23043 /* Add a dependence relationship from CU to REF_PER_CU. */
23044
23045 static void
23046 dwarf2_add_dependence (struct dwarf2_cu *cu,
23047 struct dwarf2_per_cu_data *ref_per_cu)
23048 {
23049 void **slot;
23050
23051 if (cu->dependencies == NULL)
23052 cu->dependencies
23053 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23054 NULL, &cu->comp_unit_obstack,
23055 hashtab_obstack_allocate,
23056 dummy_obstack_deallocate);
23057
23058 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23059 if (*slot == NULL)
23060 *slot = ref_per_cu;
23061 }
23062
23063 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23064 Set the mark field in every compilation unit in the
23065 cache that we must keep because we are keeping CU. */
23066
23067 static int
23068 dwarf2_mark_helper (void **slot, void *data)
23069 {
23070 struct dwarf2_per_cu_data *per_cu;
23071
23072 per_cu = (struct dwarf2_per_cu_data *) *slot;
23073
23074 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23075 reading of the chain. As such dependencies remain valid it is not much
23076 useful to track and undo them during QUIT cleanups. */
23077 if (per_cu->cu == NULL)
23078 return 1;
23079
23080 if (per_cu->cu->mark)
23081 return 1;
23082 per_cu->cu->mark = 1;
23083
23084 if (per_cu->cu->dependencies != NULL)
23085 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23086
23087 return 1;
23088 }
23089
23090 /* Set the mark field in CU and in every other compilation unit in the
23091 cache that we must keep because we are keeping CU. */
23092
23093 static void
23094 dwarf2_mark (struct dwarf2_cu *cu)
23095 {
23096 if (cu->mark)
23097 return;
23098 cu->mark = 1;
23099 if (cu->dependencies != NULL)
23100 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23101 }
23102
23103 static void
23104 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23105 {
23106 while (per_cu)
23107 {
23108 per_cu->cu->mark = 0;
23109 per_cu = per_cu->cu->read_in_chain;
23110 }
23111 }
23112
23113 /* Trivial hash function for partial_die_info: the hash value of a DIE
23114 is its offset in .debug_info for this objfile. */
23115
23116 static hashval_t
23117 partial_die_hash (const void *item)
23118 {
23119 const struct partial_die_info *part_die
23120 = (const struct partial_die_info *) item;
23121
23122 return to_underlying (part_die->sect_off);
23123 }
23124
23125 /* Trivial comparison function for partial_die_info structures: two DIEs
23126 are equal if they have the same offset. */
23127
23128 static int
23129 partial_die_eq (const void *item_lhs, const void *item_rhs)
23130 {
23131 const struct partial_die_info *part_die_lhs
23132 = (const struct partial_die_info *) item_lhs;
23133 const struct partial_die_info *part_die_rhs
23134 = (const struct partial_die_info *) item_rhs;
23135
23136 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23137 }
23138
23139 static struct cmd_list_element *set_dwarf_cmdlist;
23140 static struct cmd_list_element *show_dwarf_cmdlist;
23141
23142 static void
23143 set_dwarf_cmd (char *args, int from_tty)
23144 {
23145 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23146 gdb_stdout);
23147 }
23148
23149 static void
23150 show_dwarf_cmd (char *args, int from_tty)
23151 {
23152 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23153 }
23154
23155 /* Free data associated with OBJFILE, if necessary. */
23156
23157 static void
23158 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23159 {
23160 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23161 int ix;
23162
23163 /* Make sure we don't accidentally use dwarf2_per_objfile while
23164 cleaning up. */
23165 dwarf2_per_objfile = NULL;
23166
23167 for (ix = 0; ix < data->n_comp_units; ++ix)
23168 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23169
23170 for (ix = 0; ix < data->n_type_units; ++ix)
23171 VEC_free (dwarf2_per_cu_ptr,
23172 data->all_type_units[ix]->per_cu.imported_symtabs);
23173 xfree (data->all_type_units);
23174
23175 VEC_free (dwarf2_section_info_def, data->types);
23176
23177 if (data->dwo_files)
23178 free_dwo_files (data->dwo_files, objfile);
23179 if (data->dwp_file)
23180 gdb_bfd_unref (data->dwp_file->dbfd);
23181
23182 if (data->dwz_file && data->dwz_file->dwz_bfd)
23183 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23184 }
23185
23186 \f
23187 /* The "save gdb-index" command. */
23188
23189 /* In-memory buffer to prepare data to be written later to a file. */
23190 class data_buf
23191 {
23192 public:
23193 /* Copy DATA to the end of the buffer. */
23194 template<typename T>
23195 void append_data (const T &data)
23196 {
23197 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23198 reinterpret_cast<const gdb_byte *> (&data + 1),
23199 grow (sizeof (data)));
23200 }
23201
23202 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23203 terminating zero is appended too. */
23204 void append_cstr0 (const char *cstr)
23205 {
23206 const size_t size = strlen (cstr) + 1;
23207 std::copy (cstr, cstr + size, grow (size));
23208 }
23209
23210 /* Accept a host-format integer in VAL and append it to the buffer
23211 as a target-format integer which is LEN bytes long. */
23212 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23213 {
23214 ::store_unsigned_integer (grow (len), len, byte_order, val);
23215 }
23216
23217 /* Return the size of the buffer. */
23218 size_t size () const
23219 {
23220 return m_vec.size ();
23221 }
23222
23223 /* Write the buffer to FILE. */
23224 void file_write (FILE *file) const
23225 {
23226 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23227 error (_("couldn't write data to file"));
23228 }
23229
23230 private:
23231 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23232 the start of the new block. */
23233 gdb_byte *grow (size_t size)
23234 {
23235 m_vec.resize (m_vec.size () + size);
23236 return &*m_vec.end () - size;
23237 }
23238
23239 gdb::byte_vector m_vec;
23240 };
23241
23242 /* An entry in the symbol table. */
23243 struct symtab_index_entry
23244 {
23245 /* The name of the symbol. */
23246 const char *name;
23247 /* The offset of the name in the constant pool. */
23248 offset_type index_offset;
23249 /* A sorted vector of the indices of all the CUs that hold an object
23250 of this name. */
23251 std::vector<offset_type> cu_indices;
23252 };
23253
23254 /* The symbol table. This is a power-of-2-sized hash table. */
23255 struct mapped_symtab
23256 {
23257 mapped_symtab ()
23258 {
23259 data.resize (1024);
23260 }
23261
23262 offset_type n_elements = 0;
23263 std::vector<symtab_index_entry> data;
23264 };
23265
23266 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23267 the slot.
23268
23269 Function is used only during write_hash_table so no index format backward
23270 compatibility is needed. */
23271
23272 static symtab_index_entry &
23273 find_slot (struct mapped_symtab *symtab, const char *name)
23274 {
23275 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23276
23277 index = hash & (symtab->data.size () - 1);
23278 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23279
23280 for (;;)
23281 {
23282 if (symtab->data[index].name == NULL
23283 || strcmp (name, symtab->data[index].name) == 0)
23284 return symtab->data[index];
23285 index = (index + step) & (symtab->data.size () - 1);
23286 }
23287 }
23288
23289 /* Expand SYMTAB's hash table. */
23290
23291 static void
23292 hash_expand (struct mapped_symtab *symtab)
23293 {
23294 auto old_entries = std::move (symtab->data);
23295
23296 symtab->data.clear ();
23297 symtab->data.resize (old_entries.size () * 2);
23298
23299 for (auto &it : old_entries)
23300 if (it.name != NULL)
23301 {
23302 auto &ref = find_slot (symtab, it.name);
23303 ref = std::move (it);
23304 }
23305 }
23306
23307 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23308 CU_INDEX is the index of the CU in which the symbol appears.
23309 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23310
23311 static void
23312 add_index_entry (struct mapped_symtab *symtab, const char *name,
23313 int is_static, gdb_index_symbol_kind kind,
23314 offset_type cu_index)
23315 {
23316 offset_type cu_index_and_attrs;
23317
23318 ++symtab->n_elements;
23319 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23320 hash_expand (symtab);
23321
23322 symtab_index_entry &slot = find_slot (symtab, name);
23323 if (slot.name == NULL)
23324 {
23325 slot.name = name;
23326 /* index_offset is set later. */
23327 }
23328
23329 cu_index_and_attrs = 0;
23330 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23331 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23332 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23333
23334 /* We don't want to record an index value twice as we want to avoid the
23335 duplication.
23336 We process all global symbols and then all static symbols
23337 (which would allow us to avoid the duplication by only having to check
23338 the last entry pushed), but a symbol could have multiple kinds in one CU.
23339 To keep things simple we don't worry about the duplication here and
23340 sort and uniqufy the list after we've processed all symbols. */
23341 slot.cu_indices.push_back (cu_index_and_attrs);
23342 }
23343
23344 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23345
23346 static void
23347 uniquify_cu_indices (struct mapped_symtab *symtab)
23348 {
23349 for (auto &entry : symtab->data)
23350 {
23351 if (entry.name != NULL && !entry.cu_indices.empty ())
23352 {
23353 auto &cu_indices = entry.cu_indices;
23354 std::sort (cu_indices.begin (), cu_indices.end ());
23355 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23356 cu_indices.erase (from, cu_indices.end ());
23357 }
23358 }
23359 }
23360
23361 /* A form of 'const char *' suitable for container keys. Only the
23362 pointer is stored. The strings themselves are compared, not the
23363 pointers. */
23364 class c_str_view
23365 {
23366 public:
23367 c_str_view (const char *cstr)
23368 : m_cstr (cstr)
23369 {}
23370
23371 bool operator== (const c_str_view &other) const
23372 {
23373 return strcmp (m_cstr, other.m_cstr) == 0;
23374 }
23375
23376 private:
23377 friend class c_str_view_hasher;
23378 const char *const m_cstr;
23379 };
23380
23381 /* A std::unordered_map::hasher for c_str_view that uses the right
23382 hash function for strings in a mapped index. */
23383 class c_str_view_hasher
23384 {
23385 public:
23386 size_t operator () (const c_str_view &x) const
23387 {
23388 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23389 }
23390 };
23391
23392 /* A std::unordered_map::hasher for std::vector<>. */
23393 template<typename T>
23394 class vector_hasher
23395 {
23396 public:
23397 size_t operator () (const std::vector<T> &key) const
23398 {
23399 return iterative_hash (key.data (),
23400 sizeof (key.front ()) * key.size (), 0);
23401 }
23402 };
23403
23404 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23405 constant pool entries going into the data buffer CPOOL. */
23406
23407 static void
23408 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23409 {
23410 {
23411 /* Elements are sorted vectors of the indices of all the CUs that
23412 hold an object of this name. */
23413 std::unordered_map<std::vector<offset_type>, offset_type,
23414 vector_hasher<offset_type>>
23415 symbol_hash_table;
23416
23417 /* We add all the index vectors to the constant pool first, to
23418 ensure alignment is ok. */
23419 for (symtab_index_entry &entry : symtab->data)
23420 {
23421 if (entry.name == NULL)
23422 continue;
23423 gdb_assert (entry.index_offset == 0);
23424
23425 /* Finding before inserting is faster than always trying to
23426 insert, because inserting always allocates a node, does the
23427 lookup, and then destroys the new node if another node
23428 already had the same key. C++17 try_emplace will avoid
23429 this. */
23430 const auto found
23431 = symbol_hash_table.find (entry.cu_indices);
23432 if (found != symbol_hash_table.end ())
23433 {
23434 entry.index_offset = found->second;
23435 continue;
23436 }
23437
23438 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23439 entry.index_offset = cpool.size ();
23440 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23441 for (const auto index : entry.cu_indices)
23442 cpool.append_data (MAYBE_SWAP (index));
23443 }
23444 }
23445
23446 /* Now write out the hash table. */
23447 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23448 for (const auto &entry : symtab->data)
23449 {
23450 offset_type str_off, vec_off;
23451
23452 if (entry.name != NULL)
23453 {
23454 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23455 if (insertpair.second)
23456 cpool.append_cstr0 (entry.name);
23457 str_off = insertpair.first->second;
23458 vec_off = entry.index_offset;
23459 }
23460 else
23461 {
23462 /* While 0 is a valid constant pool index, it is not valid
23463 to have 0 for both offsets. */
23464 str_off = 0;
23465 vec_off = 0;
23466 }
23467
23468 output.append_data (MAYBE_SWAP (str_off));
23469 output.append_data (MAYBE_SWAP (vec_off));
23470 }
23471 }
23472
23473 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23474
23475 /* Helper struct for building the address table. */
23476 struct addrmap_index_data
23477 {
23478 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23479 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23480 {}
23481
23482 struct objfile *objfile;
23483 data_buf &addr_vec;
23484 psym_index_map &cu_index_htab;
23485
23486 /* Non-zero if the previous_* fields are valid.
23487 We can't write an entry until we see the next entry (since it is only then
23488 that we know the end of the entry). */
23489 int previous_valid;
23490 /* Index of the CU in the table of all CUs in the index file. */
23491 unsigned int previous_cu_index;
23492 /* Start address of the CU. */
23493 CORE_ADDR previous_cu_start;
23494 };
23495
23496 /* Write an address entry to ADDR_VEC. */
23497
23498 static void
23499 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23500 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23501 {
23502 CORE_ADDR baseaddr;
23503
23504 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23505
23506 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23507 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23508 addr_vec.append_data (MAYBE_SWAP (cu_index));
23509 }
23510
23511 /* Worker function for traversing an addrmap to build the address table. */
23512
23513 static int
23514 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23515 {
23516 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23517 struct partial_symtab *pst = (struct partial_symtab *) obj;
23518
23519 if (data->previous_valid)
23520 add_address_entry (data->objfile, data->addr_vec,
23521 data->previous_cu_start, start_addr,
23522 data->previous_cu_index);
23523
23524 data->previous_cu_start = start_addr;
23525 if (pst != NULL)
23526 {
23527 const auto it = data->cu_index_htab.find (pst);
23528 gdb_assert (it != data->cu_index_htab.cend ());
23529 data->previous_cu_index = it->second;
23530 data->previous_valid = 1;
23531 }
23532 else
23533 data->previous_valid = 0;
23534
23535 return 0;
23536 }
23537
23538 /* Write OBJFILE's address map to ADDR_VEC.
23539 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23540 in the index file. */
23541
23542 static void
23543 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23544 psym_index_map &cu_index_htab)
23545 {
23546 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23547
23548 /* When writing the address table, we have to cope with the fact that
23549 the addrmap iterator only provides the start of a region; we have to
23550 wait until the next invocation to get the start of the next region. */
23551
23552 addrmap_index_data.objfile = objfile;
23553 addrmap_index_data.previous_valid = 0;
23554
23555 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23556 &addrmap_index_data);
23557
23558 /* It's highly unlikely the last entry (end address = 0xff...ff)
23559 is valid, but we should still handle it.
23560 The end address is recorded as the start of the next region, but that
23561 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23562 anyway. */
23563 if (addrmap_index_data.previous_valid)
23564 add_address_entry (objfile, addr_vec,
23565 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23566 addrmap_index_data.previous_cu_index);
23567 }
23568
23569 /* Return the symbol kind of PSYM. */
23570
23571 static gdb_index_symbol_kind
23572 symbol_kind (struct partial_symbol *psym)
23573 {
23574 domain_enum domain = PSYMBOL_DOMAIN (psym);
23575 enum address_class aclass = PSYMBOL_CLASS (psym);
23576
23577 switch (domain)
23578 {
23579 case VAR_DOMAIN:
23580 switch (aclass)
23581 {
23582 case LOC_BLOCK:
23583 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23584 case LOC_TYPEDEF:
23585 return GDB_INDEX_SYMBOL_KIND_TYPE;
23586 case LOC_COMPUTED:
23587 case LOC_CONST_BYTES:
23588 case LOC_OPTIMIZED_OUT:
23589 case LOC_STATIC:
23590 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23591 case LOC_CONST:
23592 /* Note: It's currently impossible to recognize psyms as enum values
23593 short of reading the type info. For now punt. */
23594 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23595 default:
23596 /* There are other LOC_FOO values that one might want to classify
23597 as variables, but dwarf2read.c doesn't currently use them. */
23598 return GDB_INDEX_SYMBOL_KIND_OTHER;
23599 }
23600 case STRUCT_DOMAIN:
23601 return GDB_INDEX_SYMBOL_KIND_TYPE;
23602 default:
23603 return GDB_INDEX_SYMBOL_KIND_OTHER;
23604 }
23605 }
23606
23607 /* Add a list of partial symbols to SYMTAB. */
23608
23609 static void
23610 write_psymbols (struct mapped_symtab *symtab,
23611 std::unordered_set<partial_symbol *> &psyms_seen,
23612 struct partial_symbol **psymp,
23613 int count,
23614 offset_type cu_index,
23615 int is_static)
23616 {
23617 for (; count-- > 0; ++psymp)
23618 {
23619 struct partial_symbol *psym = *psymp;
23620
23621 if (SYMBOL_LANGUAGE (psym) == language_ada)
23622 error (_("Ada is not currently supported by the index"));
23623
23624 /* Only add a given psymbol once. */
23625 if (psyms_seen.insert (psym).second)
23626 {
23627 gdb_index_symbol_kind kind = symbol_kind (psym);
23628
23629 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23630 is_static, kind, cu_index);
23631 }
23632 }
23633 }
23634
23635 /* A helper struct used when iterating over debug_types. */
23636 struct signatured_type_index_data
23637 {
23638 signatured_type_index_data (data_buf &types_list_,
23639 std::unordered_set<partial_symbol *> &psyms_seen_)
23640 : types_list (types_list_), psyms_seen (psyms_seen_)
23641 {}
23642
23643 struct objfile *objfile;
23644 struct mapped_symtab *symtab;
23645 data_buf &types_list;
23646 std::unordered_set<partial_symbol *> &psyms_seen;
23647 int cu_index;
23648 };
23649
23650 /* A helper function that writes a single signatured_type to an
23651 obstack. */
23652
23653 static int
23654 write_one_signatured_type (void **slot, void *d)
23655 {
23656 struct signatured_type_index_data *info
23657 = (struct signatured_type_index_data *) d;
23658 struct signatured_type *entry = (struct signatured_type *) *slot;
23659 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23660
23661 write_psymbols (info->symtab,
23662 info->psyms_seen,
23663 info->objfile->global_psymbols.list
23664 + psymtab->globals_offset,
23665 psymtab->n_global_syms, info->cu_index,
23666 0);
23667 write_psymbols (info->symtab,
23668 info->psyms_seen,
23669 info->objfile->static_psymbols.list
23670 + psymtab->statics_offset,
23671 psymtab->n_static_syms, info->cu_index,
23672 1);
23673
23674 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23675 to_underlying (entry->per_cu.sect_off));
23676 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23677 to_underlying (entry->type_offset_in_tu));
23678 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23679
23680 ++info->cu_index;
23681
23682 return 1;
23683 }
23684
23685 /* Recurse into all "included" dependencies and count their symbols as
23686 if they appeared in this psymtab. */
23687
23688 static void
23689 recursively_count_psymbols (struct partial_symtab *psymtab,
23690 size_t &psyms_seen)
23691 {
23692 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23693 if (psymtab->dependencies[i]->user != NULL)
23694 recursively_count_psymbols (psymtab->dependencies[i],
23695 psyms_seen);
23696
23697 psyms_seen += psymtab->n_global_syms;
23698 psyms_seen += psymtab->n_static_syms;
23699 }
23700
23701 /* Recurse into all "included" dependencies and write their symbols as
23702 if they appeared in this psymtab. */
23703
23704 static void
23705 recursively_write_psymbols (struct objfile *objfile,
23706 struct partial_symtab *psymtab,
23707 struct mapped_symtab *symtab,
23708 std::unordered_set<partial_symbol *> &psyms_seen,
23709 offset_type cu_index)
23710 {
23711 int i;
23712
23713 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23714 if (psymtab->dependencies[i]->user != NULL)
23715 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23716 symtab, psyms_seen, cu_index);
23717
23718 write_psymbols (symtab,
23719 psyms_seen,
23720 objfile->global_psymbols.list + psymtab->globals_offset,
23721 psymtab->n_global_syms, cu_index,
23722 0);
23723 write_psymbols (symtab,
23724 psyms_seen,
23725 objfile->static_psymbols.list + psymtab->statics_offset,
23726 psymtab->n_static_syms, cu_index,
23727 1);
23728 }
23729
23730 /* Closes FILE on scope exit. */
23731 struct file_closer
23732 {
23733 explicit file_closer (FILE *file)
23734 : m_file (file)
23735 {}
23736
23737 ~file_closer ()
23738 { fclose (m_file); }
23739
23740 private:
23741 FILE *m_file;
23742 };
23743
23744 /* Create an index file for OBJFILE in the directory DIR. */
23745
23746 static void
23747 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23748 {
23749 if (dwarf2_per_objfile->using_index)
23750 error (_("Cannot use an index to create the index"));
23751
23752 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23753 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23754
23755 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23756 return;
23757
23758 struct stat st;
23759 if (stat (objfile_name (objfile), &st) < 0)
23760 perror_with_name (objfile_name (objfile));
23761
23762 std::string filename (std::string (dir) + SLASH_STRING
23763 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23764
23765 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb");
23766 if (!out_file)
23767 error (_("Can't open `%s' for writing"), filename.c_str ());
23768
23769 /* Order matters here; we want FILE to be closed before FILENAME is
23770 unlinked, because on MS-Windows one cannot delete a file that is
23771 still open. (Don't call anything here that might throw until
23772 file_closer is created.) */
23773 gdb::unlinker unlink_file (filename.c_str ());
23774 file_closer close_out_file (out_file);
23775
23776 mapped_symtab symtab;
23777 data_buf cu_list;
23778
23779 /* While we're scanning CU's create a table that maps a psymtab pointer
23780 (which is what addrmap records) to its index (which is what is recorded
23781 in the index file). This will later be needed to write the address
23782 table. */
23783 psym_index_map cu_index_htab;
23784 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23785
23786 /* The CU list is already sorted, so we don't need to do additional
23787 work here. Also, the debug_types entries do not appear in
23788 all_comp_units, but only in their own hash table. */
23789
23790 /* The psyms_seen set is potentially going to be largish (~40k
23791 elements when indexing a -g3 build of GDB itself). Estimate the
23792 number of elements in order to avoid too many rehashes, which
23793 require rebuilding buckets and thus many trips to
23794 malloc/free. */
23795 size_t psyms_count = 0;
23796 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23797 {
23798 struct dwarf2_per_cu_data *per_cu
23799 = dwarf2_per_objfile->all_comp_units[i];
23800 struct partial_symtab *psymtab = per_cu->v.psymtab;
23801
23802 if (psymtab != NULL && psymtab->user == NULL)
23803 recursively_count_psymbols (psymtab, psyms_count);
23804 }
23805 /* Generating an index for gdb itself shows a ratio of
23806 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23807 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23808 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23809 {
23810 struct dwarf2_per_cu_data *per_cu
23811 = dwarf2_per_objfile->all_comp_units[i];
23812 struct partial_symtab *psymtab = per_cu->v.psymtab;
23813
23814 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23815 It may be referenced from a local scope but in such case it does not
23816 need to be present in .gdb_index. */
23817 if (psymtab == NULL)
23818 continue;
23819
23820 if (psymtab->user == NULL)
23821 recursively_write_psymbols (objfile, psymtab, &symtab,
23822 psyms_seen, i);
23823
23824 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23825 gdb_assert (insertpair.second);
23826
23827 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23828 to_underlying (per_cu->sect_off));
23829 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23830 }
23831
23832 /* Dump the address map. */
23833 data_buf addr_vec;
23834 write_address_map (objfile, addr_vec, cu_index_htab);
23835
23836 /* Write out the .debug_type entries, if any. */
23837 data_buf types_cu_list;
23838 if (dwarf2_per_objfile->signatured_types)
23839 {
23840 signatured_type_index_data sig_data (types_cu_list,
23841 psyms_seen);
23842
23843 sig_data.objfile = objfile;
23844 sig_data.symtab = &symtab;
23845 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23846 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23847 write_one_signatured_type, &sig_data);
23848 }
23849
23850 /* Now that we've processed all symbols we can shrink their cu_indices
23851 lists. */
23852 uniquify_cu_indices (&symtab);
23853
23854 data_buf symtab_vec, constant_pool;
23855 write_hash_table (&symtab, symtab_vec, constant_pool);
23856
23857 data_buf contents;
23858 const offset_type size_of_contents = 6 * sizeof (offset_type);
23859 offset_type total_len = size_of_contents;
23860
23861 /* The version number. */
23862 contents.append_data (MAYBE_SWAP (8));
23863
23864 /* The offset of the CU list from the start of the file. */
23865 contents.append_data (MAYBE_SWAP (total_len));
23866 total_len += cu_list.size ();
23867
23868 /* The offset of the types CU list from the start of the file. */
23869 contents.append_data (MAYBE_SWAP (total_len));
23870 total_len += types_cu_list.size ();
23871
23872 /* The offset of the address table from the start of the file. */
23873 contents.append_data (MAYBE_SWAP (total_len));
23874 total_len += addr_vec.size ();
23875
23876 /* The offset of the symbol table from the start of the file. */
23877 contents.append_data (MAYBE_SWAP (total_len));
23878 total_len += symtab_vec.size ();
23879
23880 /* The offset of the constant pool from the start of the file. */
23881 contents.append_data (MAYBE_SWAP (total_len));
23882 total_len += constant_pool.size ();
23883
23884 gdb_assert (contents.size () == size_of_contents);
23885
23886 contents.file_write (out_file);
23887 cu_list.file_write (out_file);
23888 types_cu_list.file_write (out_file);
23889 addr_vec.file_write (out_file);
23890 symtab_vec.file_write (out_file);
23891 constant_pool.file_write (out_file);
23892
23893 /* We want to keep the file. */
23894 unlink_file.keep ();
23895 }
23896
23897 /* Implementation of the `save gdb-index' command.
23898
23899 Note that the file format used by this command is documented in the
23900 GDB manual. Any changes here must be documented there. */
23901
23902 static void
23903 save_gdb_index_command (char *arg, int from_tty)
23904 {
23905 struct objfile *objfile;
23906
23907 if (!arg || !*arg)
23908 error (_("usage: save gdb-index DIRECTORY"));
23909
23910 ALL_OBJFILES (objfile)
23911 {
23912 struct stat st;
23913
23914 /* If the objfile does not correspond to an actual file, skip it. */
23915 if (stat (objfile_name (objfile), &st) < 0)
23916 continue;
23917
23918 dwarf2_per_objfile
23919 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23920 dwarf2_objfile_data_key);
23921 if (dwarf2_per_objfile)
23922 {
23923
23924 TRY
23925 {
23926 write_psymtabs_to_index (objfile, arg);
23927 }
23928 CATCH (except, RETURN_MASK_ERROR)
23929 {
23930 exception_fprintf (gdb_stderr, except,
23931 _("Error while writing index for `%s': "),
23932 objfile_name (objfile));
23933 }
23934 END_CATCH
23935 }
23936 }
23937 }
23938
23939 \f
23940
23941 int dwarf_always_disassemble;
23942
23943 static void
23944 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23945 struct cmd_list_element *c, const char *value)
23946 {
23947 fprintf_filtered (file,
23948 _("Whether to always disassemble "
23949 "DWARF expressions is %s.\n"),
23950 value);
23951 }
23952
23953 static void
23954 show_check_physname (struct ui_file *file, int from_tty,
23955 struct cmd_list_element *c, const char *value)
23956 {
23957 fprintf_filtered (file,
23958 _("Whether to check \"physname\" is %s.\n"),
23959 value);
23960 }
23961
23962 void _initialize_dwarf2_read (void);
23963
23964 void
23965 _initialize_dwarf2_read (void)
23966 {
23967 struct cmd_list_element *c;
23968
23969 dwarf2_objfile_data_key
23970 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23971
23972 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23973 Set DWARF specific variables.\n\
23974 Configure DWARF variables such as the cache size"),
23975 &set_dwarf_cmdlist, "maintenance set dwarf ",
23976 0/*allow-unknown*/, &maintenance_set_cmdlist);
23977
23978 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23979 Show DWARF specific variables\n\
23980 Show DWARF variables such as the cache size"),
23981 &show_dwarf_cmdlist, "maintenance show dwarf ",
23982 0/*allow-unknown*/, &maintenance_show_cmdlist);
23983
23984 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23985 &dwarf_max_cache_age, _("\
23986 Set the upper bound on the age of cached DWARF compilation units."), _("\
23987 Show the upper bound on the age of cached DWARF compilation units."), _("\
23988 A higher limit means that cached compilation units will be stored\n\
23989 in memory longer, and more total memory will be used. Zero disables\n\
23990 caching, which can slow down startup."),
23991 NULL,
23992 show_dwarf_max_cache_age,
23993 &set_dwarf_cmdlist,
23994 &show_dwarf_cmdlist);
23995
23996 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23997 &dwarf_always_disassemble, _("\
23998 Set whether `info address' always disassembles DWARF expressions."), _("\
23999 Show whether `info address' always disassembles DWARF expressions."), _("\
24000 When enabled, DWARF expressions are always printed in an assembly-like\n\
24001 syntax. When disabled, expressions will be printed in a more\n\
24002 conversational style, when possible."),
24003 NULL,
24004 show_dwarf_always_disassemble,
24005 &set_dwarf_cmdlist,
24006 &show_dwarf_cmdlist);
24007
24008 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24009 Set debugging of the DWARF reader."), _("\
24010 Show debugging of the DWARF reader."), _("\
24011 When enabled (non-zero), debugging messages are printed during DWARF\n\
24012 reading and symtab expansion. A value of 1 (one) provides basic\n\
24013 information. A value greater than 1 provides more verbose information."),
24014 NULL,
24015 NULL,
24016 &setdebuglist, &showdebuglist);
24017
24018 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24019 Set debugging of the DWARF DIE reader."), _("\
24020 Show debugging of the DWARF DIE reader."), _("\
24021 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24022 The value is the maximum depth to print."),
24023 NULL,
24024 NULL,
24025 &setdebuglist, &showdebuglist);
24026
24027 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24028 Set debugging of the dwarf line reader."), _("\
24029 Show debugging of the dwarf line reader."), _("\
24030 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24031 A value of 1 (one) provides basic information.\n\
24032 A value greater than 1 provides more verbose information."),
24033 NULL,
24034 NULL,
24035 &setdebuglist, &showdebuglist);
24036
24037 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24038 Set cross-checking of \"physname\" code against demangler."), _("\
24039 Show cross-checking of \"physname\" code against demangler."), _("\
24040 When enabled, GDB's internal \"physname\" code is checked against\n\
24041 the demangler."),
24042 NULL, show_check_physname,
24043 &setdebuglist, &showdebuglist);
24044
24045 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24046 no_class, &use_deprecated_index_sections, _("\
24047 Set whether to use deprecated gdb_index sections."), _("\
24048 Show whether to use deprecated gdb_index sections."), _("\
24049 When enabled, deprecated .gdb_index sections are used anyway.\n\
24050 Normally they are ignored either because of a missing feature or\n\
24051 performance issue.\n\
24052 Warning: This option must be enabled before gdb reads the file."),
24053 NULL,
24054 NULL,
24055 &setlist, &showlist);
24056
24057 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24058 _("\
24059 Save a gdb-index file.\n\
24060 Usage: save gdb-index DIRECTORY"),
24061 &save_cmdlist);
24062 set_cmd_completer (c, filename_completer);
24063
24064 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24065 &dwarf2_locexpr_funcs);
24066 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24067 &dwarf2_loclist_funcs);
24068
24069 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24070 &dwarf2_block_frame_base_locexpr_funcs);
24071 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24072 &dwarf2_block_frame_base_loclist_funcs);
24073 }
This page took 1.058396 seconds and 4 git commands to generate.