gdb: Remove a use of VEC from dwarf2read.{c,h}
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When true, cross-check physname against demangler. */
106 static bool check_physname = false;
107
108 /* When true, do not reject deprecated .gdb_index sections. */
109 static bool use_deprecated_index_sections = false;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params,
183 enum language lang) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec == 0;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return dwarf2_objfile_data_key.get (objfile);
286 }
287
288 /* Default names of the debugging sections. */
289
290 /* Note that if the debugging section has been compressed, it might
291 have a name like .zdebug_info. */
292
293 static const struct dwarf2_debug_sections dwarf2_elf_names =
294 {
295 { ".debug_info", ".zdebug_info" },
296 { ".debug_abbrev", ".zdebug_abbrev" },
297 { ".debug_line", ".zdebug_line" },
298 { ".debug_loc", ".zdebug_loc" },
299 { ".debug_loclists", ".zdebug_loclists" },
300 { ".debug_macinfo", ".zdebug_macinfo" },
301 { ".debug_macro", ".zdebug_macro" },
302 { ".debug_str", ".zdebug_str" },
303 { ".debug_line_str", ".zdebug_line_str" },
304 { ".debug_ranges", ".zdebug_ranges" },
305 { ".debug_rnglists", ".zdebug_rnglists" },
306 { ".debug_types", ".zdebug_types" },
307 { ".debug_addr", ".zdebug_addr" },
308 { ".debug_frame", ".zdebug_frame" },
309 { ".eh_frame", NULL },
310 { ".gdb_index", ".zgdb_index" },
311 { ".debug_names", ".zdebug_names" },
312 { ".debug_aranges", ".zdebug_aranges" },
313 23
314 };
315
316 /* List of DWO/DWP sections. */
317
318 static const struct dwop_section_names
319 {
320 struct dwarf2_section_names abbrev_dwo;
321 struct dwarf2_section_names info_dwo;
322 struct dwarf2_section_names line_dwo;
323 struct dwarf2_section_names loc_dwo;
324 struct dwarf2_section_names loclists_dwo;
325 struct dwarf2_section_names macinfo_dwo;
326 struct dwarf2_section_names macro_dwo;
327 struct dwarf2_section_names str_dwo;
328 struct dwarf2_section_names str_offsets_dwo;
329 struct dwarf2_section_names types_dwo;
330 struct dwarf2_section_names cu_index;
331 struct dwarf2_section_names tu_index;
332 }
333 dwop_section_names =
334 {
335 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
336 { ".debug_info.dwo", ".zdebug_info.dwo" },
337 { ".debug_line.dwo", ".zdebug_line.dwo" },
338 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
339 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
340 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
341 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
342 { ".debug_str.dwo", ".zdebug_str.dwo" },
343 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
344 { ".debug_types.dwo", ".zdebug_types.dwo" },
345 { ".debug_cu_index", ".zdebug_cu_index" },
346 { ".debug_tu_index", ".zdebug_tu_index" },
347 };
348
349 /* local data types */
350
351 /* The data in a compilation unit header, after target2host
352 translation, looks like this. */
353 struct comp_unit_head
354 {
355 unsigned int length;
356 short version;
357 unsigned char addr_size;
358 unsigned char signed_addr_p;
359 sect_offset abbrev_sect_off;
360
361 /* Size of file offsets; either 4 or 8. */
362 unsigned int offset_size;
363
364 /* Size of the length field; either 4 or 12. */
365 unsigned int initial_length_size;
366
367 enum dwarf_unit_type unit_type;
368
369 /* Offset to the first byte of this compilation unit header in the
370 .debug_info section, for resolving relative reference dies. */
371 sect_offset sect_off;
372
373 /* Offset to first die in this cu from the start of the cu.
374 This will be the first byte following the compilation unit header. */
375 cu_offset first_die_cu_offset;
376
377
378 /* 64-bit signature of this unit. For type units, it denotes the signature of
379 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
380 Also used in DWARF 5, to denote the dwo id when the unit type is
381 DW_UT_skeleton or DW_UT_split_compile. */
382 ULONGEST signature;
383
384 /* For types, offset in the type's DIE of the type defined by this TU. */
385 cu_offset type_cu_offset_in_tu;
386 };
387
388 /* Type used for delaying computation of method physnames.
389 See comments for compute_delayed_physnames. */
390 struct delayed_method_info
391 {
392 /* The type to which the method is attached, i.e., its parent class. */
393 struct type *type;
394
395 /* The index of the method in the type's function fieldlists. */
396 int fnfield_index;
397
398 /* The index of the method in the fieldlist. */
399 int index;
400
401 /* The name of the DIE. */
402 const char *name;
403
404 /* The DIE associated with this method. */
405 struct die_info *die;
406 };
407
408 /* Internal state when decoding a particular compilation unit. */
409 struct dwarf2_cu
410 {
411 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
412 ~dwarf2_cu ();
413
414 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
415
416 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
417 Create the set of symtabs used by this TU, or if this TU is sharing
418 symtabs with another TU and the symtabs have already been created
419 then restore those symtabs in the line header.
420 We don't need the pc/line-number mapping for type units. */
421 void setup_type_unit_groups (struct die_info *die);
422
423 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
424 buildsym_compunit constructor. */
425 struct compunit_symtab *start_symtab (const char *name,
426 const char *comp_dir,
427 CORE_ADDR low_pc);
428
429 /* Reset the builder. */
430 void reset_builder () { m_builder.reset (); }
431
432 /* The header of the compilation unit. */
433 struct comp_unit_head header {};
434
435 /* Base address of this compilation unit. */
436 CORE_ADDR base_address = 0;
437
438 /* Non-zero if base_address has been set. */
439 int base_known = 0;
440
441 /* The language we are debugging. */
442 enum language language = language_unknown;
443 const struct language_defn *language_defn = nullptr;
444
445 const char *producer = nullptr;
446
447 private:
448 /* The symtab builder for this CU. This is only non-NULL when full
449 symbols are being read. */
450 std::unique_ptr<buildsym_compunit> m_builder;
451
452 public:
453 /* The generic symbol table building routines have separate lists for
454 file scope symbols and all all other scopes (local scopes). So
455 we need to select the right one to pass to add_symbol_to_list().
456 We do it by keeping a pointer to the correct list in list_in_scope.
457
458 FIXME: The original dwarf code just treated the file scope as the
459 first local scope, and all other local scopes as nested local
460 scopes, and worked fine. Check to see if we really need to
461 distinguish these in buildsym.c. */
462 struct pending **list_in_scope = nullptr;
463
464 /* Hash table holding all the loaded partial DIEs
465 with partial_die->offset.SECT_OFF as hash. */
466 htab_t partial_dies = nullptr;
467
468 /* Storage for things with the same lifetime as this read-in compilation
469 unit, including partial DIEs. */
470 auto_obstack comp_unit_obstack;
471
472 /* When multiple dwarf2_cu structures are living in memory, this field
473 chains them all together, so that they can be released efficiently.
474 We will probably also want a generation counter so that most-recently-used
475 compilation units are cached... */
476 struct dwarf2_per_cu_data *read_in_chain = nullptr;
477
478 /* Backlink to our per_cu entry. */
479 struct dwarf2_per_cu_data *per_cu;
480
481 /* How many compilation units ago was this CU last referenced? */
482 int last_used = 0;
483
484 /* A hash table of DIE cu_offset for following references with
485 die_info->offset.sect_off as hash. */
486 htab_t die_hash = nullptr;
487
488 /* Full DIEs if read in. */
489 struct die_info *dies = nullptr;
490
491 /* A set of pointers to dwarf2_per_cu_data objects for compilation
492 units referenced by this one. Only set during full symbol processing;
493 partial symbol tables do not have dependencies. */
494 htab_t dependencies = nullptr;
495
496 /* Header data from the line table, during full symbol processing. */
497 struct line_header *line_header = nullptr;
498 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
499 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
500 this is the DW_TAG_compile_unit die for this CU. We'll hold on
501 to the line header as long as this DIE is being processed. See
502 process_die_scope. */
503 die_info *line_header_die_owner = nullptr;
504
505 /* A list of methods which need to have physnames computed
506 after all type information has been read. */
507 std::vector<delayed_method_info> method_list;
508
509 /* To be copied to symtab->call_site_htab. */
510 htab_t call_site_htab = nullptr;
511
512 /* Non-NULL if this CU came from a DWO file.
513 There is an invariant here that is important to remember:
514 Except for attributes copied from the top level DIE in the "main"
515 (or "stub") file in preparation for reading the DWO file
516 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
517 Either there isn't a DWO file (in which case this is NULL and the point
518 is moot), or there is and either we're not going to read it (in which
519 case this is NULL) or there is and we are reading it (in which case this
520 is non-NULL). */
521 struct dwo_unit *dwo_unit = nullptr;
522
523 /* The DW_AT_addr_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE. */
526 ULONGEST addr_base = 0;
527
528 /* The DW_AT_ranges_base attribute if present, zero otherwise
529 (zero is a valid value though).
530 Note this value comes from the Fission stub CU/TU's DIE.
531 Also note that the value is zero in the non-DWO case so this value can
532 be used without needing to know whether DWO files are in use or not.
533 N.B. This does not apply to DW_AT_ranges appearing in
534 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
535 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
536 DW_AT_ranges_base *would* have to be applied, and we'd have to care
537 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
538 ULONGEST ranges_base = 0;
539
540 /* When reading debug info generated by older versions of rustc, we
541 have to rewrite some union types to be struct types with a
542 variant part. This rewriting must be done after the CU is fully
543 read in, because otherwise at the point of rewriting some struct
544 type might not have been fully processed. So, we keep a list of
545 all such types here and process them after expansion. */
546 std::vector<struct type *> rust_unions;
547
548 /* Mark used when releasing cached dies. */
549 bool mark : 1;
550
551 /* This CU references .debug_loc. See the symtab->locations_valid field.
552 This test is imperfect as there may exist optimized debug code not using
553 any location list and still facing inlining issues if handled as
554 unoptimized code. For a future better test see GCC PR other/32998. */
555 bool has_loclist : 1;
556
557 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
558 if all the producer_is_* fields are valid. This information is cached
559 because profiling CU expansion showed excessive time spent in
560 producer_is_gxx_lt_4_6. */
561 bool checked_producer : 1;
562 bool producer_is_gxx_lt_4_6 : 1;
563 bool producer_is_gcc_lt_4_3 : 1;
564 bool producer_is_icc : 1;
565 bool producer_is_icc_lt_14 : 1;
566 bool producer_is_codewarrior : 1;
567
568 /* When true, the file that we're processing is known to have
569 debugging info for C++ namespaces. GCC 3.3.x did not produce
570 this information, but later versions do. */
571
572 bool processing_has_namespace_info : 1;
573
574 struct partial_die_info *find_partial_die (sect_offset sect_off);
575
576 /* If this CU was inherited by another CU (via specification,
577 abstract_origin, etc), this is the ancestor CU. */
578 dwarf2_cu *ancestor;
579
580 /* Get the buildsym_compunit for this CU. */
581 buildsym_compunit *get_builder ()
582 {
583 /* If this CU has a builder associated with it, use that. */
584 if (m_builder != nullptr)
585 return m_builder.get ();
586
587 /* Otherwise, search ancestors for a valid builder. */
588 if (ancestor != nullptr)
589 return ancestor->get_builder ();
590
591 return nullptr;
592 }
593 };
594
595 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
596 This includes type_unit_group and quick_file_names. */
597
598 struct stmt_list_hash
599 {
600 /* The DWO unit this table is from or NULL if there is none. */
601 struct dwo_unit *dwo_unit;
602
603 /* Offset in .debug_line or .debug_line.dwo. */
604 sect_offset line_sect_off;
605 };
606
607 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
608 an object of this type. */
609
610 struct type_unit_group
611 {
612 /* dwarf2read.c's main "handle" on a TU symtab.
613 To simplify things we create an artificial CU that "includes" all the
614 type units using this stmt_list so that the rest of the code still has
615 a "per_cu" handle on the symtab.
616 This PER_CU is recognized by having no section. */
617 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
618 struct dwarf2_per_cu_data per_cu;
619
620 /* The TUs that share this DW_AT_stmt_list entry.
621 This is added to while parsing type units to build partial symtabs,
622 and is deleted afterwards and not used again. */
623 std::vector <signatured_type *> *tus;
624
625 /* The compunit symtab.
626 Type units in a group needn't all be defined in the same source file,
627 so we create an essentially anonymous symtab as the compunit symtab. */
628 struct compunit_symtab *compunit_symtab;
629
630 /* The data used to construct the hash key. */
631 struct stmt_list_hash hash;
632
633 /* The number of symtabs from the line header.
634 The value here must match line_header.num_file_names. */
635 unsigned int num_symtabs;
636
637 /* The symbol tables for this TU (obtained from the files listed in
638 DW_AT_stmt_list).
639 WARNING: The order of entries here must match the order of entries
640 in the line header. After the first TU using this type_unit_group, the
641 line header for the subsequent TUs is recreated from this. This is done
642 because we need to use the same symtabs for each TU using the same
643 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
644 there's no guarantee the line header doesn't have duplicate entries. */
645 struct symtab **symtabs;
646 };
647
648 /* These sections are what may appear in a (real or virtual) DWO file. */
649
650 struct dwo_sections
651 {
652 struct dwarf2_section_info abbrev;
653 struct dwarf2_section_info line;
654 struct dwarf2_section_info loc;
655 struct dwarf2_section_info loclists;
656 struct dwarf2_section_info macinfo;
657 struct dwarf2_section_info macro;
658 struct dwarf2_section_info str;
659 struct dwarf2_section_info str_offsets;
660 /* In the case of a virtual DWO file, these two are unused. */
661 struct dwarf2_section_info info;
662 std::vector<dwarf2_section_info> types;
663 };
664
665 /* CUs/TUs in DWP/DWO files. */
666
667 struct dwo_unit
668 {
669 /* Backlink to the containing struct dwo_file. */
670 struct dwo_file *dwo_file;
671
672 /* The "id" that distinguishes this CU/TU.
673 .debug_info calls this "dwo_id", .debug_types calls this "signature".
674 Since signatures came first, we stick with it for consistency. */
675 ULONGEST signature;
676
677 /* The section this CU/TU lives in, in the DWO file. */
678 struct dwarf2_section_info *section;
679
680 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
681 sect_offset sect_off;
682 unsigned int length;
683
684 /* For types, offset in the type's DIE of the type defined by this TU. */
685 cu_offset type_offset_in_tu;
686 };
687
688 /* include/dwarf2.h defines the DWP section codes.
689 It defines a max value but it doesn't define a min value, which we
690 use for error checking, so provide one. */
691
692 enum dwp_v2_section_ids
693 {
694 DW_SECT_MIN = 1
695 };
696
697 /* Data for one DWO file.
698
699 This includes virtual DWO files (a virtual DWO file is a DWO file as it
700 appears in a DWP file). DWP files don't really have DWO files per se -
701 comdat folding of types "loses" the DWO file they came from, and from
702 a high level view DWP files appear to contain a mass of random types.
703 However, to maintain consistency with the non-DWP case we pretend DWP
704 files contain virtual DWO files, and we assign each TU with one virtual
705 DWO file (generally based on the line and abbrev section offsets -
706 a heuristic that seems to work in practice). */
707
708 struct dwo_file
709 {
710 dwo_file () = default;
711 DISABLE_COPY_AND_ASSIGN (dwo_file);
712
713 /* The DW_AT_GNU_dwo_name attribute.
714 For virtual DWO files the name is constructed from the section offsets
715 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
716 from related CU+TUs. */
717 const char *dwo_name = nullptr;
718
719 /* The DW_AT_comp_dir attribute. */
720 const char *comp_dir = nullptr;
721
722 /* The bfd, when the file is open. Otherwise this is NULL.
723 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
724 gdb_bfd_ref_ptr dbfd;
725
726 /* The sections that make up this DWO file.
727 Remember that for virtual DWO files in DWP V2, these are virtual
728 sections (for lack of a better name). */
729 struct dwo_sections sections {};
730
731 /* The CUs in the file.
732 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
733 an extension to handle LLVM's Link Time Optimization output (where
734 multiple source files may be compiled into a single object/dwo pair). */
735 htab_t cus {};
736
737 /* Table of TUs in the file.
738 Each element is a struct dwo_unit. */
739 htab_t tus {};
740 };
741
742 /* These sections are what may appear in a DWP file. */
743
744 struct dwp_sections
745 {
746 /* These are used by both DWP version 1 and 2. */
747 struct dwarf2_section_info str;
748 struct dwarf2_section_info cu_index;
749 struct dwarf2_section_info tu_index;
750
751 /* These are only used by DWP version 2 files.
752 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
753 sections are referenced by section number, and are not recorded here.
754 In DWP version 2 there is at most one copy of all these sections, each
755 section being (effectively) comprised of the concatenation of all of the
756 individual sections that exist in the version 1 format.
757 To keep the code simple we treat each of these concatenated pieces as a
758 section itself (a virtual section?). */
759 struct dwarf2_section_info abbrev;
760 struct dwarf2_section_info info;
761 struct dwarf2_section_info line;
762 struct dwarf2_section_info loc;
763 struct dwarf2_section_info macinfo;
764 struct dwarf2_section_info macro;
765 struct dwarf2_section_info str_offsets;
766 struct dwarf2_section_info types;
767 };
768
769 /* These sections are what may appear in a virtual DWO file in DWP version 1.
770 A virtual DWO file is a DWO file as it appears in a DWP file. */
771
772 struct virtual_v1_dwo_sections
773 {
774 struct dwarf2_section_info abbrev;
775 struct dwarf2_section_info line;
776 struct dwarf2_section_info loc;
777 struct dwarf2_section_info macinfo;
778 struct dwarf2_section_info macro;
779 struct dwarf2_section_info str_offsets;
780 /* Each DWP hash table entry records one CU or one TU.
781 That is recorded here, and copied to dwo_unit.section. */
782 struct dwarf2_section_info info_or_types;
783 };
784
785 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
786 In version 2, the sections of the DWO files are concatenated together
787 and stored in one section of that name. Thus each ELF section contains
788 several "virtual" sections. */
789
790 struct virtual_v2_dwo_sections
791 {
792 bfd_size_type abbrev_offset;
793 bfd_size_type abbrev_size;
794
795 bfd_size_type line_offset;
796 bfd_size_type line_size;
797
798 bfd_size_type loc_offset;
799 bfd_size_type loc_size;
800
801 bfd_size_type macinfo_offset;
802 bfd_size_type macinfo_size;
803
804 bfd_size_type macro_offset;
805 bfd_size_type macro_size;
806
807 bfd_size_type str_offsets_offset;
808 bfd_size_type str_offsets_size;
809
810 /* Each DWP hash table entry records one CU or one TU.
811 That is recorded here, and copied to dwo_unit.section. */
812 bfd_size_type info_or_types_offset;
813 bfd_size_type info_or_types_size;
814 };
815
816 /* Contents of DWP hash tables. */
817
818 struct dwp_hash_table
819 {
820 uint32_t version, nr_columns;
821 uint32_t nr_units, nr_slots;
822 const gdb_byte *hash_table, *unit_table;
823 union
824 {
825 struct
826 {
827 const gdb_byte *indices;
828 } v1;
829 struct
830 {
831 /* This is indexed by column number and gives the id of the section
832 in that column. */
833 #define MAX_NR_V2_DWO_SECTIONS \
834 (1 /* .debug_info or .debug_types */ \
835 + 1 /* .debug_abbrev */ \
836 + 1 /* .debug_line */ \
837 + 1 /* .debug_loc */ \
838 + 1 /* .debug_str_offsets */ \
839 + 1 /* .debug_macro or .debug_macinfo */)
840 int section_ids[MAX_NR_V2_DWO_SECTIONS];
841 const gdb_byte *offsets;
842 const gdb_byte *sizes;
843 } v2;
844 } section_pool;
845 };
846
847 /* Data for one DWP file. */
848
849 struct dwp_file
850 {
851 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
852 : name (name_),
853 dbfd (std::move (abfd))
854 {
855 }
856
857 /* Name of the file. */
858 const char *name;
859
860 /* File format version. */
861 int version = 0;
862
863 /* The bfd. */
864 gdb_bfd_ref_ptr dbfd;
865
866 /* Section info for this file. */
867 struct dwp_sections sections {};
868
869 /* Table of CUs in the file. */
870 const struct dwp_hash_table *cus = nullptr;
871
872 /* Table of TUs in the file. */
873 const struct dwp_hash_table *tus = nullptr;
874
875 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
876 htab_t loaded_cus {};
877 htab_t loaded_tus {};
878
879 /* Table to map ELF section numbers to their sections.
880 This is only needed for the DWP V1 file format. */
881 unsigned int num_sections = 0;
882 asection **elf_sections = nullptr;
883 };
884
885 /* Struct used to pass misc. parameters to read_die_and_children, et
886 al. which are used for both .debug_info and .debug_types dies.
887 All parameters here are unchanging for the life of the call. This
888 struct exists to abstract away the constant parameters of die reading. */
889
890 struct die_reader_specs
891 {
892 /* The bfd of die_section. */
893 bfd* abfd;
894
895 /* The CU of the DIE we are parsing. */
896 struct dwarf2_cu *cu;
897
898 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
899 struct dwo_file *dwo_file;
900
901 /* The section the die comes from.
902 This is either .debug_info or .debug_types, or the .dwo variants. */
903 struct dwarf2_section_info *die_section;
904
905 /* die_section->buffer. */
906 const gdb_byte *buffer;
907
908 /* The end of the buffer. */
909 const gdb_byte *buffer_end;
910
911 /* The value of the DW_AT_comp_dir attribute. */
912 const char *comp_dir;
913
914 /* The abbreviation table to use when reading the DIEs. */
915 struct abbrev_table *abbrev_table;
916 };
917
918 /* Type of function passed to init_cutu_and_read_dies, et.al. */
919 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
920 const gdb_byte *info_ptr,
921 struct die_info *comp_unit_die,
922 int has_children,
923 void *data);
924
925 /* A 1-based directory index. This is a strong typedef to prevent
926 accidentally using a directory index as a 0-based index into an
927 array/vector. */
928 enum class dir_index : unsigned int {};
929
930 /* Likewise, a 1-based file name index. */
931 enum class file_name_index : unsigned int {};
932
933 struct file_entry
934 {
935 file_entry () = default;
936
937 file_entry (const char *name_, dir_index d_index_,
938 unsigned int mod_time_, unsigned int length_)
939 : name (name_),
940 d_index (d_index_),
941 mod_time (mod_time_),
942 length (length_)
943 {}
944
945 /* Return the include directory at D_INDEX stored in LH. Returns
946 NULL if D_INDEX is out of bounds. */
947 const char *include_dir (const line_header *lh) const;
948
949 /* The file name. Note this is an observing pointer. The memory is
950 owned by debug_line_buffer. */
951 const char *name {};
952
953 /* The directory index (1-based). */
954 dir_index d_index {};
955
956 unsigned int mod_time {};
957
958 unsigned int length {};
959
960 /* True if referenced by the Line Number Program. */
961 bool included_p {};
962
963 /* The associated symbol table, if any. */
964 struct symtab *symtab {};
965 };
966
967 /* The line number information for a compilation unit (found in the
968 .debug_line section) begins with a "statement program header",
969 which contains the following information. */
970 struct line_header
971 {
972 line_header ()
973 : offset_in_dwz {}
974 {}
975
976 /* Add an entry to the include directory table. */
977 void add_include_dir (const char *include_dir);
978
979 /* Add an entry to the file name table. */
980 void add_file_name (const char *name, dir_index d_index,
981 unsigned int mod_time, unsigned int length);
982
983 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
984 is out of bounds. */
985 const char *include_dir_at (dir_index index) const
986 {
987 /* Convert directory index number (1-based) to vector index
988 (0-based). */
989 size_t vec_index = to_underlying (index) - 1;
990
991 if (vec_index >= include_dirs.size ())
992 return NULL;
993 return include_dirs[vec_index];
994 }
995
996 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
997 is out of bounds. */
998 file_entry *file_name_at (file_name_index index)
999 {
1000 /* Convert file name index number (1-based) to vector index
1001 (0-based). */
1002 size_t vec_index = to_underlying (index) - 1;
1003
1004 if (vec_index >= file_names.size ())
1005 return NULL;
1006 return &file_names[vec_index];
1007 }
1008
1009 /* Offset of line number information in .debug_line section. */
1010 sect_offset sect_off {};
1011
1012 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1013 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1014
1015 unsigned int total_length {};
1016 unsigned short version {};
1017 unsigned int header_length {};
1018 unsigned char minimum_instruction_length {};
1019 unsigned char maximum_ops_per_instruction {};
1020 unsigned char default_is_stmt {};
1021 int line_base {};
1022 unsigned char line_range {};
1023 unsigned char opcode_base {};
1024
1025 /* standard_opcode_lengths[i] is the number of operands for the
1026 standard opcode whose value is i. This means that
1027 standard_opcode_lengths[0] is unused, and the last meaningful
1028 element is standard_opcode_lengths[opcode_base - 1]. */
1029 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1030
1031 /* The include_directories table. Note these are observing
1032 pointers. The memory is owned by debug_line_buffer. */
1033 std::vector<const char *> include_dirs;
1034
1035 /* The file_names table. */
1036 std::vector<file_entry> file_names;
1037
1038 /* The start and end of the statement program following this
1039 header. These point into dwarf2_per_objfile->line_buffer. */
1040 const gdb_byte *statement_program_start {}, *statement_program_end {};
1041 };
1042
1043 typedef std::unique_ptr<line_header> line_header_up;
1044
1045 const char *
1046 file_entry::include_dir (const line_header *lh) const
1047 {
1048 return lh->include_dir_at (d_index);
1049 }
1050
1051 /* When we construct a partial symbol table entry we only
1052 need this much information. */
1053 struct partial_die_info : public allocate_on_obstack
1054 {
1055 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1056
1057 /* Disable assign but still keep copy ctor, which is needed
1058 load_partial_dies. */
1059 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1060
1061 /* Adjust the partial die before generating a symbol for it. This
1062 function may set the is_external flag or change the DIE's
1063 name. */
1064 void fixup (struct dwarf2_cu *cu);
1065
1066 /* Read a minimal amount of information into the minimal die
1067 structure. */
1068 const gdb_byte *read (const struct die_reader_specs *reader,
1069 const struct abbrev_info &abbrev,
1070 const gdb_byte *info_ptr);
1071
1072 /* Offset of this DIE. */
1073 const sect_offset sect_off;
1074
1075 /* DWARF-2 tag for this DIE. */
1076 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1077
1078 /* Assorted flags describing the data found in this DIE. */
1079 const unsigned int has_children : 1;
1080
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* This DIE has been marked DW_AT_main_subprogram. */
1089 unsigned int main_subprogram : 1;
1090
1091 /* Flag set if the SCOPE field of this structure has been
1092 computed. */
1093 unsigned int scope_set : 1;
1094
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1097
1098 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1099 unsigned int has_const_value : 1;
1100
1101 /* Flag set if any of the DIE's children are template arguments. */
1102 unsigned int has_template_arguments : 1;
1103
1104 /* Flag set if fixup has been called on this die. */
1105 unsigned int fixup_called : 1;
1106
1107 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1108 unsigned int is_dwz : 1;
1109
1110 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1111 unsigned int spec_is_dwz : 1;
1112
1113 /* The name of this DIE. Normally the value of DW_AT_name, but
1114 sometimes a default name for unnamed DIEs. */
1115 const char *name = nullptr;
1116
1117 /* The linkage name, if present. */
1118 const char *linkage_name = nullptr;
1119
1120 /* The scope to prepend to our children. This is generally
1121 allocated on the comp_unit_obstack, so will disappear
1122 when this compilation unit leaves the cache. */
1123 const char *scope = nullptr;
1124
1125 /* Some data associated with the partial DIE. The tag determines
1126 which field is live. */
1127 union
1128 {
1129 /* The location description associated with this DIE, if any. */
1130 struct dwarf_block *locdesc;
1131 /* The offset of an import, for DW_TAG_imported_unit. */
1132 sect_offset sect_off;
1133 } d {};
1134
1135 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1136 CORE_ADDR lowpc = 0;
1137 CORE_ADDR highpc = 0;
1138
1139 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1140 DW_AT_sibling, if any. */
1141 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1142 could return DW_AT_sibling values to its caller load_partial_dies. */
1143 const gdb_byte *sibling = nullptr;
1144
1145 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1146 DW_AT_specification (or DW_AT_abstract_origin or
1147 DW_AT_extension). */
1148 sect_offset spec_offset {};
1149
1150 /* Pointers to this DIE's parent, first child, and next sibling,
1151 if any. */
1152 struct partial_die_info *die_parent = nullptr;
1153 struct partial_die_info *die_child = nullptr;
1154 struct partial_die_info *die_sibling = nullptr;
1155
1156 friend struct partial_die_info *
1157 dwarf2_cu::find_partial_die (sect_offset sect_off);
1158
1159 private:
1160 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1161 partial_die_info (sect_offset sect_off)
1162 : partial_die_info (sect_off, DW_TAG_padding, 0)
1163 {
1164 }
1165
1166 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1167 int has_children_)
1168 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1169 {
1170 is_external = 0;
1171 is_declaration = 0;
1172 has_type = 0;
1173 has_specification = 0;
1174 has_pc_info = 0;
1175 may_be_inlined = 0;
1176 main_subprogram = 0;
1177 scope_set = 0;
1178 has_byte_size = 0;
1179 has_const_value = 0;
1180 has_template_arguments = 0;
1181 fixup_called = 0;
1182 is_dwz = 0;
1183 spec_is_dwz = 0;
1184 }
1185 };
1186
1187 /* This data structure holds the information of an abbrev. */
1188 struct abbrev_info
1189 {
1190 unsigned int number; /* number identifying abbrev */
1191 enum dwarf_tag tag; /* dwarf tag */
1192 unsigned short has_children; /* boolean */
1193 unsigned short num_attrs; /* number of attributes */
1194 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1195 struct abbrev_info *next; /* next in chain */
1196 };
1197
1198 struct attr_abbrev
1199 {
1200 ENUM_BITFIELD(dwarf_attribute) name : 16;
1201 ENUM_BITFIELD(dwarf_form) form : 16;
1202
1203 /* It is valid only if FORM is DW_FORM_implicit_const. */
1204 LONGEST implicit_const;
1205 };
1206
1207 /* Size of abbrev_table.abbrev_hash_table. */
1208 #define ABBREV_HASH_SIZE 121
1209
1210 /* Top level data structure to contain an abbreviation table. */
1211
1212 struct abbrev_table
1213 {
1214 explicit abbrev_table (sect_offset off)
1215 : sect_off (off)
1216 {
1217 m_abbrevs =
1218 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1219 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1220 }
1221
1222 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1223
1224 /* Allocate space for a struct abbrev_info object in
1225 ABBREV_TABLE. */
1226 struct abbrev_info *alloc_abbrev ();
1227
1228 /* Add an abbreviation to the table. */
1229 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1230
1231 /* Look up an abbrev in the table.
1232 Returns NULL if the abbrev is not found. */
1233
1234 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1235
1236
1237 /* Where the abbrev table came from.
1238 This is used as a sanity check when the table is used. */
1239 const sect_offset sect_off;
1240
1241 /* Storage for the abbrev table. */
1242 auto_obstack abbrev_obstack;
1243
1244 private:
1245
1246 /* Hash table of abbrevs.
1247 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1248 It could be statically allocated, but the previous code didn't so we
1249 don't either. */
1250 struct abbrev_info **m_abbrevs;
1251 };
1252
1253 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1254
1255 /* Attributes have a name and a value. */
1256 struct attribute
1257 {
1258 ENUM_BITFIELD(dwarf_attribute) name : 16;
1259 ENUM_BITFIELD(dwarf_form) form : 15;
1260
1261 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1262 field should be in u.str (existing only for DW_STRING) but it is kept
1263 here for better struct attribute alignment. */
1264 unsigned int string_is_canonical : 1;
1265
1266 union
1267 {
1268 const char *str;
1269 struct dwarf_block *blk;
1270 ULONGEST unsnd;
1271 LONGEST snd;
1272 CORE_ADDR addr;
1273 ULONGEST signature;
1274 }
1275 u;
1276 };
1277
1278 /* This data structure holds a complete die structure. */
1279 struct die_info
1280 {
1281 /* DWARF-2 tag for this DIE. */
1282 ENUM_BITFIELD(dwarf_tag) tag : 16;
1283
1284 /* Number of attributes */
1285 unsigned char num_attrs;
1286
1287 /* True if we're presently building the full type name for the
1288 type derived from this DIE. */
1289 unsigned char building_fullname : 1;
1290
1291 /* True if this die is in process. PR 16581. */
1292 unsigned char in_process : 1;
1293
1294 /* Abbrev number */
1295 unsigned int abbrev;
1296
1297 /* Offset in .debug_info or .debug_types section. */
1298 sect_offset sect_off;
1299
1300 /* The dies in a compilation unit form an n-ary tree. PARENT
1301 points to this die's parent; CHILD points to the first child of
1302 this node; and all the children of a given node are chained
1303 together via their SIBLING fields. */
1304 struct die_info *child; /* Its first child, if any. */
1305 struct die_info *sibling; /* Its next sibling, if any. */
1306 struct die_info *parent; /* Its parent, if any. */
1307
1308 /* An array of attributes, with NUM_ATTRS elements. There may be
1309 zero, but it's not common and zero-sized arrays are not
1310 sufficiently portable C. */
1311 struct attribute attrs[1];
1312 };
1313
1314 /* Get at parts of an attribute structure. */
1315
1316 #define DW_STRING(attr) ((attr)->u.str)
1317 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1318 #define DW_UNSND(attr) ((attr)->u.unsnd)
1319 #define DW_BLOCK(attr) ((attr)->u.blk)
1320 #define DW_SND(attr) ((attr)->u.snd)
1321 #define DW_ADDR(attr) ((attr)->u.addr)
1322 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1323
1324 /* Blocks are a bunch of untyped bytes. */
1325 struct dwarf_block
1326 {
1327 size_t size;
1328
1329 /* Valid only if SIZE is not zero. */
1330 const gdb_byte *data;
1331 };
1332
1333 #ifndef ATTR_ALLOC_CHUNK
1334 #define ATTR_ALLOC_CHUNK 4
1335 #endif
1336
1337 /* Allocate fields for structs, unions and enums in this size. */
1338 #ifndef DW_FIELD_ALLOC_CHUNK
1339 #define DW_FIELD_ALLOC_CHUNK 4
1340 #endif
1341
1342 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1343 but this would require a corresponding change in unpack_field_as_long
1344 and friends. */
1345 static int bits_per_byte = 8;
1346
1347 /* When reading a variant or variant part, we track a bit more
1348 information about the field, and store it in an object of this
1349 type. */
1350
1351 struct variant_field
1352 {
1353 /* If we see a DW_TAG_variant, then this will be the discriminant
1354 value. */
1355 ULONGEST discriminant_value;
1356 /* If we see a DW_TAG_variant, then this will be set if this is the
1357 default branch. */
1358 bool default_branch;
1359 /* While reading a DW_TAG_variant_part, this will be set if this
1360 field is the discriminant. */
1361 bool is_discriminant;
1362 };
1363
1364 struct nextfield
1365 {
1366 int accessibility = 0;
1367 int virtuality = 0;
1368 /* Extra information to describe a variant or variant part. */
1369 struct variant_field variant {};
1370 struct field field {};
1371 };
1372
1373 struct fnfieldlist
1374 {
1375 const char *name = nullptr;
1376 std::vector<struct fn_field> fnfields;
1377 };
1378
1379 /* The routines that read and process dies for a C struct or C++ class
1380 pass lists of data member fields and lists of member function fields
1381 in an instance of a field_info structure, as defined below. */
1382 struct field_info
1383 {
1384 /* List of data member and baseclasses fields. */
1385 std::vector<struct nextfield> fields;
1386 std::vector<struct nextfield> baseclasses;
1387
1388 /* Number of fields (including baseclasses). */
1389 int nfields = 0;
1390
1391 /* Set if the accesibility of one of the fields is not public. */
1392 int non_public_fields = 0;
1393
1394 /* Member function fieldlist array, contains name of possibly overloaded
1395 member function, number of overloaded member functions and a pointer
1396 to the head of the member function field chain. */
1397 std::vector<struct fnfieldlist> fnfieldlists;
1398
1399 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1400 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1401 std::vector<struct decl_field> typedef_field_list;
1402
1403 /* Nested types defined by this class and the number of elements in this
1404 list. */
1405 std::vector<struct decl_field> nested_types_list;
1406 };
1407
1408 /* One item on the queue of compilation units to read in full symbols
1409 for. */
1410 struct dwarf2_queue_item
1411 {
1412 struct dwarf2_per_cu_data *per_cu;
1413 enum language pretend_language;
1414 struct dwarf2_queue_item *next;
1415 };
1416
1417 /* The current queue. */
1418 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1419
1420 /* Loaded secondary compilation units are kept in memory until they
1421 have not been referenced for the processing of this many
1422 compilation units. Set this to zero to disable caching. Cache
1423 sizes of up to at least twenty will improve startup time for
1424 typical inter-CU-reference binaries, at an obvious memory cost. */
1425 static int dwarf_max_cache_age = 5;
1426 static void
1427 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1428 struct cmd_list_element *c, const char *value)
1429 {
1430 fprintf_filtered (file, _("The upper bound on the age of cached "
1431 "DWARF compilation units is %s.\n"),
1432 value);
1433 }
1434 \f
1435 /* local function prototypes */
1436
1437 static const char *get_section_name (const struct dwarf2_section_info *);
1438
1439 static const char *get_section_file_name (const struct dwarf2_section_info *);
1440
1441 static void dwarf2_find_base_address (struct die_info *die,
1442 struct dwarf2_cu *cu);
1443
1444 static struct partial_symtab *create_partial_symtab
1445 (struct dwarf2_per_cu_data *per_cu, const char *name);
1446
1447 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1448 const gdb_byte *info_ptr,
1449 struct die_info *type_unit_die,
1450 int has_children, void *data);
1451
1452 static void dwarf2_build_psymtabs_hard
1453 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1454
1455 static void scan_partial_symbols (struct partial_die_info *,
1456 CORE_ADDR *, CORE_ADDR *,
1457 int, struct dwarf2_cu *);
1458
1459 static void add_partial_symbol (struct partial_die_info *,
1460 struct dwarf2_cu *);
1461
1462 static void add_partial_namespace (struct partial_die_info *pdi,
1463 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1464 int set_addrmap, struct dwarf2_cu *cu);
1465
1466 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1467 CORE_ADDR *highpc, int set_addrmap,
1468 struct dwarf2_cu *cu);
1469
1470 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1471 struct dwarf2_cu *cu);
1472
1473 static void add_partial_subprogram (struct partial_die_info *pdi,
1474 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1475 int need_pc, struct dwarf2_cu *cu);
1476
1477 static void dwarf2_read_symtab (struct partial_symtab *,
1478 struct objfile *);
1479
1480 static void psymtab_to_symtab_1 (struct partial_symtab *);
1481
1482 static abbrev_table_up abbrev_table_read_table
1483 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1484 sect_offset);
1485
1486 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1487
1488 static struct partial_die_info *load_partial_dies
1489 (const struct die_reader_specs *, const gdb_byte *, int);
1490
1491 /* A pair of partial_die_info and compilation unit. */
1492 struct cu_partial_die_info
1493 {
1494 /* The compilation unit of the partial_die_info. */
1495 struct dwarf2_cu *cu;
1496 /* A partial_die_info. */
1497 struct partial_die_info *pdi;
1498
1499 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1500 : cu (cu),
1501 pdi (pdi)
1502 { /* Nothhing. */ }
1503
1504 private:
1505 cu_partial_die_info () = delete;
1506 };
1507
1508 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1509 struct dwarf2_cu *);
1510
1511 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1512 struct attribute *, struct attr_abbrev *,
1513 const gdb_byte *);
1514
1515 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1516
1517 static int read_1_signed_byte (bfd *, const gdb_byte *);
1518
1519 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1520
1521 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1522 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1523
1524 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1525
1526 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1527
1528 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1529 unsigned int *);
1530
1531 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1532
1533 static LONGEST read_checked_initial_length_and_offset
1534 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1535 unsigned int *, unsigned int *);
1536
1537 static LONGEST read_offset (bfd *, const gdb_byte *,
1538 const struct comp_unit_head *,
1539 unsigned int *);
1540
1541 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1542
1543 static sect_offset read_abbrev_offset
1544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1545 struct dwarf2_section_info *, sect_offset);
1546
1547 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1548
1549 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static const char *read_indirect_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_line_string
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1557 const struct comp_unit_head *, unsigned int *);
1558
1559 static const char *read_indirect_string_at_offset
1560 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1561 LONGEST str_offset);
1562
1563 static const char *read_indirect_string_from_dwz
1564 (struct objfile *objfile, struct dwz_file *, LONGEST);
1565
1566 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1567
1568 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1569 const gdb_byte *,
1570 unsigned int *);
1571
1572 static const char *read_str_index (const struct die_reader_specs *reader,
1573 ULONGEST str_index);
1574
1575 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1576
1577 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1578 struct dwarf2_cu *);
1579
1580 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1581 unsigned int);
1582
1583 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1584 struct dwarf2_cu *cu);
1585
1586 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1587
1588 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1589 struct dwarf2_cu *cu);
1590
1591 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1592
1593 static struct die_info *die_specification (struct die_info *die,
1594 struct dwarf2_cu **);
1595
1596 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1597 struct dwarf2_cu *cu);
1598
1599 static void dwarf_decode_lines (struct line_header *, const char *,
1600 struct dwarf2_cu *, struct partial_symtab *,
1601 CORE_ADDR, int decode_mapping);
1602
1603 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1604 const char *);
1605
1606 static struct symbol *new_symbol (struct die_info *, struct type *,
1607 struct dwarf2_cu *, struct symbol * = NULL);
1608
1609 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1610 struct dwarf2_cu *);
1611
1612 static void dwarf2_const_value_attr (const struct attribute *attr,
1613 struct type *type,
1614 const char *name,
1615 struct obstack *obstack,
1616 struct dwarf2_cu *cu, LONGEST *value,
1617 const gdb_byte **bytes,
1618 struct dwarf2_locexpr_baton **baton);
1619
1620 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1621
1622 static int need_gnat_info (struct dwarf2_cu *);
1623
1624 static struct type *die_descriptive_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static void set_descriptive_type (struct type *, struct die_info *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *die_containing_type (struct die_info *,
1631 struct dwarf2_cu *);
1632
1633 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1634 struct dwarf2_cu *);
1635
1636 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1637
1638 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1639
1640 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1641
1642 static char *typename_concat (struct obstack *obs, const char *prefix,
1643 const char *suffix, int physname,
1644 struct dwarf2_cu *cu);
1645
1646 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1649
1650 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1651
1652 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1653
1654 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1655
1656 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1657
1658 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *, struct partial_symtab *);
1660
1661 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1662 values. Keep the items ordered with increasing constraints compliance. */
1663 enum pc_bounds_kind
1664 {
1665 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1666 PC_BOUNDS_NOT_PRESENT,
1667
1668 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1669 were present but they do not form a valid range of PC addresses. */
1670 PC_BOUNDS_INVALID,
1671
1672 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1673 PC_BOUNDS_RANGES,
1674
1675 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1676 PC_BOUNDS_HIGH_LOW,
1677 };
1678
1679 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1680 CORE_ADDR *, CORE_ADDR *,
1681 struct dwarf2_cu *,
1682 struct partial_symtab *);
1683
1684 static void get_scope_pc_bounds (struct die_info *,
1685 CORE_ADDR *, CORE_ADDR *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1689 CORE_ADDR, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_field (struct field_info *, struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static void dwarf2_attach_fields_to_type (struct field_info *,
1695 struct type *, struct dwarf2_cu *);
1696
1697 static void dwarf2_add_member_fn (struct field_info *,
1698 struct die_info *, struct type *,
1699 struct dwarf2_cu *);
1700
1701 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1702 struct type *,
1703 struct dwarf2_cu *);
1704
1705 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1706
1707 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1708
1709 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1710
1711 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1714
1715 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1716
1717 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1718
1719 static struct type *read_module_type (struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *namespace_name (struct die_info *die,
1723 int *is_anonymous, struct dwarf2_cu *);
1724
1725 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1726
1727 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1728
1729 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1730 struct dwarf2_cu *);
1731
1732 static struct die_info *read_die_and_siblings_1
1733 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1734 struct die_info *);
1735
1736 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1737 const gdb_byte *info_ptr,
1738 const gdb_byte **new_info_ptr,
1739 struct die_info *parent);
1740
1741 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1742 struct die_info **, const gdb_byte *,
1743 int *, int);
1744
1745 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1746 struct die_info **, const gdb_byte *,
1747 int *);
1748
1749 static void process_die (struct die_info *, struct dwarf2_cu *);
1750
1751 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1752 struct obstack *);
1753
1754 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1755
1756 static const char *dwarf2_full_name (const char *name,
1757 struct die_info *die,
1758 struct dwarf2_cu *cu);
1759
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1762
1763 static struct die_info *dwarf2_extension (struct die_info *die,
1764 struct dwarf2_cu **);
1765
1766 static const char *dwarf_tag_name (unsigned int);
1767
1768 static const char *dwarf_attr_name (unsigned int);
1769
1770 static const char *dwarf_unit_type_name (int unit_type);
1771
1772 static const char *dwarf_form_name (unsigned int);
1773
1774 static const char *dwarf_bool_name (unsigned int);
1775
1776 static const char *dwarf_type_encoding_name (unsigned int);
1777
1778 static struct die_info *sibling_die (struct die_info *);
1779
1780 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1781
1782 static void dump_die_for_error (struct die_info *);
1783
1784 static void dump_die_1 (struct ui_file *, int level, int max_level,
1785 struct die_info *);
1786
1787 /*static*/ void dump_die (struct die_info *, int max_level);
1788
1789 static void store_in_ref_table (struct die_info *,
1790 struct dwarf2_cu *);
1791
1792 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1793
1794 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1795
1796 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct die_info *follow_die_ref (struct die_info *,
1801 const struct attribute *,
1802 struct dwarf2_cu **);
1803
1804 static struct die_info *follow_die_sig (struct die_info *,
1805 const struct attribute *,
1806 struct dwarf2_cu **);
1807
1808 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1809 struct dwarf2_cu *);
1810
1811 static struct type *get_DW_AT_signature_type (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu *);
1814
1815 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1816
1817 static void read_signatured_type (struct signatured_type *);
1818
1819 static int attr_to_dynamic_prop (const struct attribute *attr,
1820 struct die_info *die, struct dwarf2_cu *cu,
1821 struct dynamic_prop *prop, struct type *type);
1822
1823 /* memory allocation interface */
1824
1825 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1826
1827 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1828
1829 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1830
1831 static int attr_form_is_block (const struct attribute *);
1832
1833 static int attr_form_is_section_offset (const struct attribute *);
1834
1835 static int attr_form_is_constant (const struct attribute *);
1836
1837 static int attr_form_is_ref (const struct attribute *);
1838
1839 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1840 struct dwarf2_loclist_baton *baton,
1841 const struct attribute *attr);
1842
1843 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1844 struct symbol *sym,
1845 struct dwarf2_cu *cu,
1846 int is_block);
1847
1848 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1849 const gdb_byte *info_ptr,
1850 struct abbrev_info *abbrev);
1851
1852 static hashval_t partial_die_hash (const void *item);
1853
1854 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1855
1856 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1857 (sect_offset sect_off, unsigned int offset_in_dwz,
1858 struct dwarf2_per_objfile *dwarf2_per_objfile);
1859
1860 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1861 struct die_info *comp_unit_die,
1862 enum language pretend_language);
1863
1864 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1865
1866 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1867
1868 static struct type *set_die_type (struct die_info *, struct type *,
1869 struct dwarf2_cu *);
1870
1871 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1872
1873 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1876 enum language);
1877
1878 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1879 enum language);
1880
1881 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1882 enum language);
1883
1884 static void dwarf2_add_dependence (struct dwarf2_cu *,
1885 struct dwarf2_per_cu_data *);
1886
1887 static void dwarf2_mark (struct dwarf2_cu *);
1888
1889 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1890
1891 static struct type *get_die_type_at_offset (sect_offset,
1892 struct dwarf2_per_cu_data *);
1893
1894 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1895
1896 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1897 enum language pretend_language);
1898
1899 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1900
1901 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1902 static struct type *dwarf2_per_cu_addr_sized_int_type
1903 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1904
1905 /* Class, the destructor of which frees all allocated queue entries. This
1906 will only have work to do if an error was thrown while processing the
1907 dwarf. If no error was thrown then the queue entries should have all
1908 been processed, and freed, as we went along. */
1909
1910 class dwarf2_queue_guard
1911 {
1912 public:
1913 dwarf2_queue_guard () = default;
1914
1915 /* Free any entries remaining on the queue. There should only be
1916 entries left if we hit an error while processing the dwarf. */
1917 ~dwarf2_queue_guard ()
1918 {
1919 struct dwarf2_queue_item *item, *last;
1920
1921 item = dwarf2_queue;
1922 while (item)
1923 {
1924 /* Anything still marked queued is likely to be in an
1925 inconsistent state, so discard it. */
1926 if (item->per_cu->queued)
1927 {
1928 if (item->per_cu->cu != NULL)
1929 free_one_cached_comp_unit (item->per_cu);
1930 item->per_cu->queued = 0;
1931 }
1932
1933 last = item;
1934 item = item->next;
1935 xfree (last);
1936 }
1937
1938 dwarf2_queue = dwarf2_queue_tail = NULL;
1939 }
1940 };
1941
1942 /* The return type of find_file_and_directory. Note, the enclosed
1943 string pointers are only valid while this object is valid. */
1944
1945 struct file_and_directory
1946 {
1947 /* The filename. This is never NULL. */
1948 const char *name;
1949
1950 /* The compilation directory. NULL if not known. If we needed to
1951 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1952 points directly to the DW_AT_comp_dir string attribute owned by
1953 the obstack that owns the DIE. */
1954 const char *comp_dir;
1955
1956 /* If we needed to build a new string for comp_dir, this is what
1957 owns the storage. */
1958 std::string comp_dir_storage;
1959 };
1960
1961 static file_and_directory find_file_and_directory (struct die_info *die,
1962 struct dwarf2_cu *cu);
1963
1964 static char *file_full_name (int file, struct line_header *lh,
1965 const char *comp_dir);
1966
1967 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1968 enum class rcuh_kind { COMPILE, TYPE };
1969
1970 static const gdb_byte *read_and_check_comp_unit_head
1971 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1972 struct comp_unit_head *header,
1973 struct dwarf2_section_info *section,
1974 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1975 rcuh_kind section_kind);
1976
1977 static void init_cutu_and_read_dies
1978 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1979 int use_existing_cu, int keep, bool skip_partial,
1980 die_reader_func_ftype *die_reader_func, void *data);
1981
1982 static void init_cutu_and_read_dies_simple
1983 (struct dwarf2_per_cu_data *this_cu,
1984 die_reader_func_ftype *die_reader_func, void *data);
1985
1986 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1987
1988 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1989
1990 static struct dwo_unit *lookup_dwo_unit_in_dwp
1991 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1992 struct dwp_file *dwp_file, const char *comp_dir,
1993 ULONGEST signature, int is_debug_types);
1994
1995 static struct dwp_file *get_dwp_file
1996 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1997
1998 static struct dwo_unit *lookup_dwo_comp_unit
1999 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2000
2001 static struct dwo_unit *lookup_dwo_type_unit
2002 (struct signatured_type *, const char *, const char *);
2003
2004 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2005
2006 /* A unique pointer to a dwo_file. */
2007
2008 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2009
2010 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2011
2012 static void check_producer (struct dwarf2_cu *cu);
2013
2014 static void free_line_header_voidp (void *arg);
2015 \f
2016 /* Various complaints about symbol reading that don't abort the process. */
2017
2018 static void
2019 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2020 {
2021 complaint (_("statement list doesn't fit in .debug_line section"));
2022 }
2023
2024 static void
2025 dwarf2_debug_line_missing_file_complaint (void)
2026 {
2027 complaint (_(".debug_line section has line data without a file"));
2028 }
2029
2030 static void
2031 dwarf2_debug_line_missing_end_sequence_complaint (void)
2032 {
2033 complaint (_(".debug_line section has line "
2034 "program sequence without an end"));
2035 }
2036
2037 static void
2038 dwarf2_complex_location_expr_complaint (void)
2039 {
2040 complaint (_("location expression too complex"));
2041 }
2042
2043 static void
2044 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2045 int arg3)
2046 {
2047 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2048 arg1, arg2, arg3);
2049 }
2050
2051 static void
2052 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2053 {
2054 complaint (_("debug info runs off end of %s section"
2055 " [in module %s]"),
2056 get_section_name (section),
2057 get_section_file_name (section));
2058 }
2059
2060 static void
2061 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2062 {
2063 complaint (_("macro debug info contains a "
2064 "malformed macro definition:\n`%s'"),
2065 arg1);
2066 }
2067
2068 static void
2069 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2070 {
2071 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2072 arg1, arg2);
2073 }
2074
2075 /* Hash function for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash (const struct line_header *ofs)
2079 {
2080 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2081 }
2082
2083 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2084
2085 static hashval_t
2086 line_header_hash_voidp (const void *item)
2087 {
2088 const struct line_header *ofs = (const struct line_header *) item;
2089
2090 return line_header_hash (ofs);
2091 }
2092
2093 /* Equality function for line_header_hash. */
2094
2095 static int
2096 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2097 {
2098 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2099 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2100
2101 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2102 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2103 }
2104
2105 \f
2106
2107 /* Read the given attribute value as an address, taking the attribute's
2108 form into account. */
2109
2110 static CORE_ADDR
2111 attr_value_as_address (struct attribute *attr)
2112 {
2113 CORE_ADDR addr;
2114
2115 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2116 && attr->form != DW_FORM_GNU_addr_index)
2117 {
2118 /* Aside from a few clearly defined exceptions, attributes that
2119 contain an address must always be in DW_FORM_addr form.
2120 Unfortunately, some compilers happen to be violating this
2121 requirement by encoding addresses using other forms, such
2122 as DW_FORM_data4 for example. For those broken compilers,
2123 we try to do our best, without any guarantee of success,
2124 to interpret the address correctly. It would also be nice
2125 to generate a complaint, but that would require us to maintain
2126 a list of legitimate cases where a non-address form is allowed,
2127 as well as update callers to pass in at least the CU's DWARF
2128 version. This is more overhead than what we're willing to
2129 expand for a pretty rare case. */
2130 addr = DW_UNSND (attr);
2131 }
2132 else
2133 addr = DW_ADDR (attr);
2134
2135 return addr;
2136 }
2137
2138 /* See declaration. */
2139
2140 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2141 const dwarf2_debug_sections *names)
2142 : objfile (objfile_)
2143 {
2144 if (names == NULL)
2145 names = &dwarf2_elf_names;
2146
2147 bfd *obfd = objfile->obfd;
2148
2149 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2150 locate_sections (obfd, sec, *names);
2151 }
2152
2153 dwarf2_per_objfile::~dwarf2_per_objfile ()
2154 {
2155 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2156 free_cached_comp_units ();
2157
2158 if (quick_file_names_table)
2159 htab_delete (quick_file_names_table);
2160
2161 if (line_header_hash)
2162 htab_delete (line_header_hash);
2163
2164 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2165 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2166
2167 for (signatured_type *sig_type : all_type_units)
2168 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2169
2170 /* Everything else should be on the objfile obstack. */
2171 }
2172
2173 /* See declaration. */
2174
2175 void
2176 dwarf2_per_objfile::free_cached_comp_units ()
2177 {
2178 dwarf2_per_cu_data *per_cu = read_in_chain;
2179 dwarf2_per_cu_data **last_chain = &read_in_chain;
2180 while (per_cu != NULL)
2181 {
2182 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2183
2184 delete per_cu->cu;
2185 *last_chain = next_cu;
2186 per_cu = next_cu;
2187 }
2188 }
2189
2190 /* A helper class that calls free_cached_comp_units on
2191 destruction. */
2192
2193 class free_cached_comp_units
2194 {
2195 public:
2196
2197 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2198 : m_per_objfile (per_objfile)
2199 {
2200 }
2201
2202 ~free_cached_comp_units ()
2203 {
2204 m_per_objfile->free_cached_comp_units ();
2205 }
2206
2207 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2208
2209 private:
2210
2211 dwarf2_per_objfile *m_per_objfile;
2212 };
2213
2214 /* Try to locate the sections we need for DWARF 2 debugging
2215 information and return true if we have enough to do something.
2216 NAMES points to the dwarf2 section names, or is NULL if the standard
2217 ELF names are used. */
2218
2219 int
2220 dwarf2_has_info (struct objfile *objfile,
2221 const struct dwarf2_debug_sections *names)
2222 {
2223 if (objfile->flags & OBJF_READNEVER)
2224 return 0;
2225
2226 struct dwarf2_per_objfile *dwarf2_per_objfile
2227 = get_dwarf2_per_objfile (objfile);
2228
2229 if (dwarf2_per_objfile == NULL)
2230 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2231 names);
2232
2233 return (!dwarf2_per_objfile->info.is_virtual
2234 && dwarf2_per_objfile->info.s.section != NULL
2235 && !dwarf2_per_objfile->abbrev.is_virtual
2236 && dwarf2_per_objfile->abbrev.s.section != NULL);
2237 }
2238
2239 /* Return the containing section of virtual section SECTION. */
2240
2241 static struct dwarf2_section_info *
2242 get_containing_section (const struct dwarf2_section_info *section)
2243 {
2244 gdb_assert (section->is_virtual);
2245 return section->s.containing_section;
2246 }
2247
2248 /* Return the bfd owner of SECTION. */
2249
2250 static struct bfd *
2251 get_section_bfd_owner (const struct dwarf2_section_info *section)
2252 {
2253 if (section->is_virtual)
2254 {
2255 section = get_containing_section (section);
2256 gdb_assert (!section->is_virtual);
2257 }
2258 return section->s.section->owner;
2259 }
2260
2261 /* Return the bfd section of SECTION.
2262 Returns NULL if the section is not present. */
2263
2264 static asection *
2265 get_section_bfd_section (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 {
2269 section = get_containing_section (section);
2270 gdb_assert (!section->is_virtual);
2271 }
2272 return section->s.section;
2273 }
2274
2275 /* Return the name of SECTION. */
2276
2277 static const char *
2278 get_section_name (const struct dwarf2_section_info *section)
2279 {
2280 asection *sectp = get_section_bfd_section (section);
2281
2282 gdb_assert (sectp != NULL);
2283 return bfd_section_name (sectp);
2284 }
2285
2286 /* Return the name of the file SECTION is in. */
2287
2288 static const char *
2289 get_section_file_name (const struct dwarf2_section_info *section)
2290 {
2291 bfd *abfd = get_section_bfd_owner (section);
2292
2293 return bfd_get_filename (abfd);
2294 }
2295
2296 /* Return the id of SECTION.
2297 Returns 0 if SECTION doesn't exist. */
2298
2299 static int
2300 get_section_id (const struct dwarf2_section_info *section)
2301 {
2302 asection *sectp = get_section_bfd_section (section);
2303
2304 if (sectp == NULL)
2305 return 0;
2306 return sectp->id;
2307 }
2308
2309 /* Return the flags of SECTION.
2310 SECTION (or containing section if this is a virtual section) must exist. */
2311
2312 static int
2313 get_section_flags (const struct dwarf2_section_info *section)
2314 {
2315 asection *sectp = get_section_bfd_section (section);
2316
2317 gdb_assert (sectp != NULL);
2318 return bfd_section_flags (sectp);
2319 }
2320
2321 /* When loading sections, we look either for uncompressed section or for
2322 compressed section names. */
2323
2324 static int
2325 section_is_p (const char *section_name,
2326 const struct dwarf2_section_names *names)
2327 {
2328 if (names->normal != NULL
2329 && strcmp (section_name, names->normal) == 0)
2330 return 1;
2331 if (names->compressed != NULL
2332 && strcmp (section_name, names->compressed) == 0)
2333 return 1;
2334 return 0;
2335 }
2336
2337 /* See declaration. */
2338
2339 void
2340 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2341 const dwarf2_debug_sections &names)
2342 {
2343 flagword aflag = bfd_section_flags (sectp);
2344
2345 if ((aflag & SEC_HAS_CONTENTS) == 0)
2346 {
2347 }
2348 else if (section_is_p (sectp->name, &names.info))
2349 {
2350 this->info.s.section = sectp;
2351 this->info.size = bfd_section_size (sectp);
2352 }
2353 else if (section_is_p (sectp->name, &names.abbrev))
2354 {
2355 this->abbrev.s.section = sectp;
2356 this->abbrev.size = bfd_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &names.line))
2359 {
2360 this->line.s.section = sectp;
2361 this->line.size = bfd_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &names.loc))
2364 {
2365 this->loc.s.section = sectp;
2366 this->loc.size = bfd_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &names.loclists))
2369 {
2370 this->loclists.s.section = sectp;
2371 this->loclists.size = bfd_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &names.macinfo))
2374 {
2375 this->macinfo.s.section = sectp;
2376 this->macinfo.size = bfd_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &names.macro))
2379 {
2380 this->macro.s.section = sectp;
2381 this->macro.size = bfd_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.str))
2384 {
2385 this->str.s.section = sectp;
2386 this->str.size = bfd_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line_str))
2389 {
2390 this->line_str.s.section = sectp;
2391 this->line_str.size = bfd_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.addr))
2394 {
2395 this->addr.s.section = sectp;
2396 this->addr.size = bfd_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.frame))
2399 {
2400 this->frame.s.section = sectp;
2401 this->frame.size = bfd_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.eh_frame))
2404 {
2405 this->eh_frame.s.section = sectp;
2406 this->eh_frame.size = bfd_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.ranges))
2409 {
2410 this->ranges.s.section = sectp;
2411 this->ranges.size = bfd_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.rnglists))
2414 {
2415 this->rnglists.s.section = sectp;
2416 this->rnglists.size = bfd_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.types))
2419 {
2420 struct dwarf2_section_info type_section;
2421
2422 memset (&type_section, 0, sizeof (type_section));
2423 type_section.s.section = sectp;
2424 type_section.size = bfd_section_size (sectp);
2425
2426 this->types.push_back (type_section);
2427 }
2428 else if (section_is_p (sectp->name, &names.gdb_index))
2429 {
2430 this->gdb_index.s.section = sectp;
2431 this->gdb_index.size = bfd_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.debug_names))
2434 {
2435 this->debug_names.s.section = sectp;
2436 this->debug_names.size = bfd_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.debug_aranges))
2439 {
2440 this->debug_aranges.s.section = sectp;
2441 this->debug_aranges.size = bfd_section_size (sectp);
2442 }
2443
2444 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2445 && bfd_section_vma (sectp) == 0)
2446 this->has_section_at_zero = true;
2447 }
2448
2449 /* A helper function that decides whether a section is empty,
2450 or not present. */
2451
2452 static int
2453 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2454 {
2455 if (section->is_virtual)
2456 return section->size == 0;
2457 return section->s.section == NULL || section->size == 0;
2458 }
2459
2460 /* See dwarf2read.h. */
2461
2462 void
2463 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2464 {
2465 asection *sectp;
2466 bfd *abfd;
2467 gdb_byte *buf, *retbuf;
2468
2469 if (info->readin)
2470 return;
2471 info->buffer = NULL;
2472 info->readin = true;
2473
2474 if (dwarf2_section_empty_p (info))
2475 return;
2476
2477 sectp = get_section_bfd_section (info);
2478
2479 /* If this is a virtual section we need to read in the real one first. */
2480 if (info->is_virtual)
2481 {
2482 struct dwarf2_section_info *containing_section =
2483 get_containing_section (info);
2484
2485 gdb_assert (sectp != NULL);
2486 if ((sectp->flags & SEC_RELOC) != 0)
2487 {
2488 error (_("Dwarf Error: DWP format V2 with relocations is not"
2489 " supported in section %s [in module %s]"),
2490 get_section_name (info), get_section_file_name (info));
2491 }
2492 dwarf2_read_section (objfile, containing_section);
2493 /* Other code should have already caught virtual sections that don't
2494 fit. */
2495 gdb_assert (info->virtual_offset + info->size
2496 <= containing_section->size);
2497 /* If the real section is empty or there was a problem reading the
2498 section we shouldn't get here. */
2499 gdb_assert (containing_section->buffer != NULL);
2500 info->buffer = containing_section->buffer + info->virtual_offset;
2501 return;
2502 }
2503
2504 /* If the section has relocations, we must read it ourselves.
2505 Otherwise we attach it to the BFD. */
2506 if ((sectp->flags & SEC_RELOC) == 0)
2507 {
2508 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2509 return;
2510 }
2511
2512 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2513 info->buffer = buf;
2514
2515 /* When debugging .o files, we may need to apply relocations; see
2516 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2517 We never compress sections in .o files, so we only need to
2518 try this when the section is not compressed. */
2519 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2520 if (retbuf != NULL)
2521 {
2522 info->buffer = retbuf;
2523 return;
2524 }
2525
2526 abfd = get_section_bfd_owner (info);
2527 gdb_assert (abfd != NULL);
2528
2529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2530 || bfd_bread (buf, info->size, abfd) != info->size)
2531 {
2532 error (_("Dwarf Error: Can't read DWARF data"
2533 " in section %s [in module %s]"),
2534 bfd_section_name (sectp), bfd_get_filename (abfd));
2535 }
2536 }
2537
2538 /* A helper function that returns the size of a section in a safe way.
2539 If you are positive that the section has been read before using the
2540 size, then it is safe to refer to the dwarf2_section_info object's
2541 "size" field directly. In other cases, you must call this
2542 function, because for compressed sections the size field is not set
2543 correctly until the section has been read. */
2544
2545 static bfd_size_type
2546 dwarf2_section_size (struct objfile *objfile,
2547 struct dwarf2_section_info *info)
2548 {
2549 if (!info->readin)
2550 dwarf2_read_section (objfile, info);
2551 return info->size;
2552 }
2553
2554 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2555 SECTION_NAME. */
2556
2557 void
2558 dwarf2_get_section_info (struct objfile *objfile,
2559 enum dwarf2_section_enum sect,
2560 asection **sectp, const gdb_byte **bufp,
2561 bfd_size_type *sizep)
2562 {
2563 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2564 struct dwarf2_section_info *info;
2565
2566 /* We may see an objfile without any DWARF, in which case we just
2567 return nothing. */
2568 if (data == NULL)
2569 {
2570 *sectp = NULL;
2571 *bufp = NULL;
2572 *sizep = 0;
2573 return;
2574 }
2575 switch (sect)
2576 {
2577 case DWARF2_DEBUG_FRAME:
2578 info = &data->frame;
2579 break;
2580 case DWARF2_EH_FRAME:
2581 info = &data->eh_frame;
2582 break;
2583 default:
2584 gdb_assert_not_reached ("unexpected section");
2585 }
2586
2587 dwarf2_read_section (objfile, info);
2588
2589 *sectp = get_section_bfd_section (info);
2590 *bufp = info->buffer;
2591 *sizep = info->size;
2592 }
2593
2594 /* A helper function to find the sections for a .dwz file. */
2595
2596 static void
2597 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2598 {
2599 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2600
2601 /* Note that we only support the standard ELF names, because .dwz
2602 is ELF-only (at the time of writing). */
2603 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2604 {
2605 dwz_file->abbrev.s.section = sectp;
2606 dwz_file->abbrev.size = bfd_section_size (sectp);
2607 }
2608 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2609 {
2610 dwz_file->info.s.section = sectp;
2611 dwz_file->info.size = bfd_section_size (sectp);
2612 }
2613 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2614 {
2615 dwz_file->str.s.section = sectp;
2616 dwz_file->str.size = bfd_section_size (sectp);
2617 }
2618 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2619 {
2620 dwz_file->line.s.section = sectp;
2621 dwz_file->line.size = bfd_section_size (sectp);
2622 }
2623 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2624 {
2625 dwz_file->macro.s.section = sectp;
2626 dwz_file->macro.size = bfd_section_size (sectp);
2627 }
2628 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2629 {
2630 dwz_file->gdb_index.s.section = sectp;
2631 dwz_file->gdb_index.size = bfd_section_size (sectp);
2632 }
2633 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2634 {
2635 dwz_file->debug_names.s.section = sectp;
2636 dwz_file->debug_names.size = bfd_section_size (sectp);
2637 }
2638 }
2639
2640 /* See dwarf2read.h. */
2641
2642 struct dwz_file *
2643 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2644 {
2645 const char *filename;
2646 bfd_size_type buildid_len_arg;
2647 size_t buildid_len;
2648 bfd_byte *buildid;
2649
2650 if (dwarf2_per_objfile->dwz_file != NULL)
2651 return dwarf2_per_objfile->dwz_file.get ();
2652
2653 bfd_set_error (bfd_error_no_error);
2654 gdb::unique_xmalloc_ptr<char> data
2655 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2656 &buildid_len_arg, &buildid));
2657 if (data == NULL)
2658 {
2659 if (bfd_get_error () == bfd_error_no_error)
2660 return NULL;
2661 error (_("could not read '.gnu_debugaltlink' section: %s"),
2662 bfd_errmsg (bfd_get_error ()));
2663 }
2664
2665 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2666
2667 buildid_len = (size_t) buildid_len_arg;
2668
2669 filename = data.get ();
2670
2671 std::string abs_storage;
2672 if (!IS_ABSOLUTE_PATH (filename))
2673 {
2674 gdb::unique_xmalloc_ptr<char> abs
2675 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2676
2677 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2678 filename = abs_storage.c_str ();
2679 }
2680
2681 /* First try the file name given in the section. If that doesn't
2682 work, try to use the build-id instead. */
2683 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2684 if (dwz_bfd != NULL)
2685 {
2686 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2687 dwz_bfd.reset (nullptr);
2688 }
2689
2690 if (dwz_bfd == NULL)
2691 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2692
2693 if (dwz_bfd == NULL)
2694 error (_("could not find '.gnu_debugaltlink' file for %s"),
2695 objfile_name (dwarf2_per_objfile->objfile));
2696
2697 std::unique_ptr<struct dwz_file> result
2698 (new struct dwz_file (std::move (dwz_bfd)));
2699
2700 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2701 result.get ());
2702
2703 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2704 result->dwz_bfd.get ());
2705 dwarf2_per_objfile->dwz_file = std::move (result);
2706 return dwarf2_per_objfile->dwz_file.get ();
2707 }
2708 \f
2709 /* DWARF quick_symbols_functions support. */
2710
2711 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2712 unique line tables, so we maintain a separate table of all .debug_line
2713 derived entries to support the sharing.
2714 All the quick functions need is the list of file names. We discard the
2715 line_header when we're done and don't need to record it here. */
2716 struct quick_file_names
2717 {
2718 /* The data used to construct the hash key. */
2719 struct stmt_list_hash hash;
2720
2721 /* The number of entries in file_names, real_names. */
2722 unsigned int num_file_names;
2723
2724 /* The file names from the line table, after being run through
2725 file_full_name. */
2726 const char **file_names;
2727
2728 /* The file names from the line table after being run through
2729 gdb_realpath. These are computed lazily. */
2730 const char **real_names;
2731 };
2732
2733 /* When using the index (and thus not using psymtabs), each CU has an
2734 object of this type. This is used to hold information needed by
2735 the various "quick" methods. */
2736 struct dwarf2_per_cu_quick_data
2737 {
2738 /* The file table. This can be NULL if there was no file table
2739 or it's currently not read in.
2740 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2741 struct quick_file_names *file_names;
2742
2743 /* The corresponding symbol table. This is NULL if symbols for this
2744 CU have not yet been read. */
2745 struct compunit_symtab *compunit_symtab;
2746
2747 /* A temporary mark bit used when iterating over all CUs in
2748 expand_symtabs_matching. */
2749 unsigned int mark : 1;
2750
2751 /* True if we've tried to read the file table and found there isn't one.
2752 There will be no point in trying to read it again next time. */
2753 unsigned int no_file_data : 1;
2754 };
2755
2756 /* Utility hash function for a stmt_list_hash. */
2757
2758 static hashval_t
2759 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2760 {
2761 hashval_t v = 0;
2762
2763 if (stmt_list_hash->dwo_unit != NULL)
2764 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2765 v += to_underlying (stmt_list_hash->line_sect_off);
2766 return v;
2767 }
2768
2769 /* Utility equality function for a stmt_list_hash. */
2770
2771 static int
2772 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2773 const struct stmt_list_hash *rhs)
2774 {
2775 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2776 return 0;
2777 if (lhs->dwo_unit != NULL
2778 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2779 return 0;
2780
2781 return lhs->line_sect_off == rhs->line_sect_off;
2782 }
2783
2784 /* Hash function for a quick_file_names. */
2785
2786 static hashval_t
2787 hash_file_name_entry (const void *e)
2788 {
2789 const struct quick_file_names *file_data
2790 = (const struct quick_file_names *) e;
2791
2792 return hash_stmt_list_entry (&file_data->hash);
2793 }
2794
2795 /* Equality function for a quick_file_names. */
2796
2797 static int
2798 eq_file_name_entry (const void *a, const void *b)
2799 {
2800 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2801 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2802
2803 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2804 }
2805
2806 /* Delete function for a quick_file_names. */
2807
2808 static void
2809 delete_file_name_entry (void *e)
2810 {
2811 struct quick_file_names *file_data = (struct quick_file_names *) e;
2812 int i;
2813
2814 for (i = 0; i < file_data->num_file_names; ++i)
2815 {
2816 xfree ((void*) file_data->file_names[i]);
2817 if (file_data->real_names)
2818 xfree ((void*) file_data->real_names[i]);
2819 }
2820
2821 /* The space for the struct itself lives on objfile_obstack,
2822 so we don't free it here. */
2823 }
2824
2825 /* Create a quick_file_names hash table. */
2826
2827 static htab_t
2828 create_quick_file_names_table (unsigned int nr_initial_entries)
2829 {
2830 return htab_create_alloc (nr_initial_entries,
2831 hash_file_name_entry, eq_file_name_entry,
2832 delete_file_name_entry, xcalloc, xfree);
2833 }
2834
2835 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2836 have to be created afterwards. You should call age_cached_comp_units after
2837 processing PER_CU->CU. dw2_setup must have been already called. */
2838
2839 static void
2840 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2841 {
2842 if (per_cu->is_debug_types)
2843 load_full_type_unit (per_cu);
2844 else
2845 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2846
2847 if (per_cu->cu == NULL)
2848 return; /* Dummy CU. */
2849
2850 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2851 }
2852
2853 /* Read in the symbols for PER_CU. */
2854
2855 static void
2856 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2857 {
2858 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2859
2860 /* Skip type_unit_groups, reading the type units they contain
2861 is handled elsewhere. */
2862 if (IS_TYPE_UNIT_GROUP (per_cu))
2863 return;
2864
2865 /* The destructor of dwarf2_queue_guard frees any entries left on
2866 the queue. After this point we're guaranteed to leave this function
2867 with the dwarf queue empty. */
2868 dwarf2_queue_guard q_guard;
2869
2870 if (dwarf2_per_objfile->using_index
2871 ? per_cu->v.quick->compunit_symtab == NULL
2872 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2873 {
2874 queue_comp_unit (per_cu, language_minimal);
2875 load_cu (per_cu, skip_partial);
2876
2877 /* If we just loaded a CU from a DWO, and we're working with an index
2878 that may badly handle TUs, load all the TUs in that DWO as well.
2879 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2880 if (!per_cu->is_debug_types
2881 && per_cu->cu != NULL
2882 && per_cu->cu->dwo_unit != NULL
2883 && dwarf2_per_objfile->index_table != NULL
2884 && dwarf2_per_objfile->index_table->version <= 7
2885 /* DWP files aren't supported yet. */
2886 && get_dwp_file (dwarf2_per_objfile) == NULL)
2887 queue_and_load_all_dwo_tus (per_cu);
2888 }
2889
2890 process_queue (dwarf2_per_objfile);
2891
2892 /* Age the cache, releasing compilation units that have not
2893 been used recently. */
2894 age_cached_comp_units (dwarf2_per_objfile);
2895 }
2896
2897 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2898 the objfile from which this CU came. Returns the resulting symbol
2899 table. */
2900
2901 static struct compunit_symtab *
2902 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2903 {
2904 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2905
2906 gdb_assert (dwarf2_per_objfile->using_index);
2907 if (!per_cu->v.quick->compunit_symtab)
2908 {
2909 free_cached_comp_units freer (dwarf2_per_objfile);
2910 scoped_restore decrementer = increment_reading_symtab ();
2911 dw2_do_instantiate_symtab (per_cu, skip_partial);
2912 process_cu_includes (dwarf2_per_objfile);
2913 }
2914
2915 return per_cu->v.quick->compunit_symtab;
2916 }
2917
2918 /* See declaration. */
2919
2920 dwarf2_per_cu_data *
2921 dwarf2_per_objfile::get_cutu (int index)
2922 {
2923 if (index >= this->all_comp_units.size ())
2924 {
2925 index -= this->all_comp_units.size ();
2926 gdb_assert (index < this->all_type_units.size ());
2927 return &this->all_type_units[index]->per_cu;
2928 }
2929
2930 return this->all_comp_units[index];
2931 }
2932
2933 /* See declaration. */
2934
2935 dwarf2_per_cu_data *
2936 dwarf2_per_objfile::get_cu (int index)
2937 {
2938 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2939
2940 return this->all_comp_units[index];
2941 }
2942
2943 /* See declaration. */
2944
2945 signatured_type *
2946 dwarf2_per_objfile::get_tu (int index)
2947 {
2948 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2949
2950 return this->all_type_units[index];
2951 }
2952
2953 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2954 objfile_obstack, and constructed with the specified field
2955 values. */
2956
2957 static dwarf2_per_cu_data *
2958 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2959 struct dwarf2_section_info *section,
2960 int is_dwz,
2961 sect_offset sect_off, ULONGEST length)
2962 {
2963 struct objfile *objfile = dwarf2_per_objfile->objfile;
2964 dwarf2_per_cu_data *the_cu
2965 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_data);
2967 the_cu->sect_off = sect_off;
2968 the_cu->length = length;
2969 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2970 the_cu->section = section;
2971 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_quick_data);
2973 the_cu->is_dwz = is_dwz;
2974 return the_cu;
2975 }
2976
2977 /* A helper for create_cus_from_index that handles a given list of
2978 CUs. */
2979
2980 static void
2981 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2982 const gdb_byte *cu_list, offset_type n_elements,
2983 struct dwarf2_section_info *section,
2984 int is_dwz)
2985 {
2986 for (offset_type i = 0; i < n_elements; i += 2)
2987 {
2988 gdb_static_assert (sizeof (ULONGEST) >= 8);
2989
2990 sect_offset sect_off
2991 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2992 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2993 cu_list += 2 * 8;
2994
2995 dwarf2_per_cu_data *per_cu
2996 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2997 sect_off, length);
2998 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2999 }
3000 }
3001
3002 /* Read the CU list from the mapped index, and use it to create all
3003 the CU objects for this objfile. */
3004
3005 static void
3006 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3007 const gdb_byte *cu_list, offset_type cu_list_elements,
3008 const gdb_byte *dwz_list, offset_type dwz_elements)
3009 {
3010 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3011 dwarf2_per_objfile->all_comp_units.reserve
3012 ((cu_list_elements + dwz_elements) / 2);
3013
3014 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3015 &dwarf2_per_objfile->info, 0);
3016
3017 if (dwz_elements == 0)
3018 return;
3019
3020 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3021 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3022 &dwz->info, 1);
3023 }
3024
3025 /* Create the signatured type hash table from the index. */
3026
3027 static void
3028 create_signatured_type_table_from_index
3029 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3030 struct dwarf2_section_info *section,
3031 const gdb_byte *bytes,
3032 offset_type elements)
3033 {
3034 struct objfile *objfile = dwarf2_per_objfile->objfile;
3035
3036 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3037 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3038
3039 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3040
3041 for (offset_type i = 0; i < elements; i += 3)
3042 {
3043 struct signatured_type *sig_type;
3044 ULONGEST signature;
3045 void **slot;
3046 cu_offset type_offset_in_tu;
3047
3048 gdb_static_assert (sizeof (ULONGEST) >= 8);
3049 sect_offset sect_off
3050 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3051 type_offset_in_tu
3052 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3053 BFD_ENDIAN_LITTLE);
3054 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3055 bytes += 3 * 8;
3056
3057 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3058 struct signatured_type);
3059 sig_type->signature = signature;
3060 sig_type->type_offset_in_tu = type_offset_in_tu;
3061 sig_type->per_cu.is_debug_types = 1;
3062 sig_type->per_cu.section = section;
3063 sig_type->per_cu.sect_off = sect_off;
3064 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3065 sig_type->per_cu.v.quick
3066 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3067 struct dwarf2_per_cu_quick_data);
3068
3069 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3070 *slot = sig_type;
3071
3072 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3073 }
3074
3075 dwarf2_per_objfile->signatured_types = sig_types_hash;
3076 }
3077
3078 /* Create the signatured type hash table from .debug_names. */
3079
3080 static void
3081 create_signatured_type_table_from_debug_names
3082 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3083 const mapped_debug_names &map,
3084 struct dwarf2_section_info *section,
3085 struct dwarf2_section_info *abbrev_section)
3086 {
3087 struct objfile *objfile = dwarf2_per_objfile->objfile;
3088
3089 dwarf2_read_section (objfile, section);
3090 dwarf2_read_section (objfile, abbrev_section);
3091
3092 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3093 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3094
3095 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3096
3097 for (uint32_t i = 0; i < map.tu_count; ++i)
3098 {
3099 struct signatured_type *sig_type;
3100 void **slot;
3101
3102 sect_offset sect_off
3103 = (sect_offset) (extract_unsigned_integer
3104 (map.tu_table_reordered + i * map.offset_size,
3105 map.offset_size,
3106 map.dwarf5_byte_order));
3107
3108 comp_unit_head cu_header;
3109 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3110 abbrev_section,
3111 section->buffer + to_underlying (sect_off),
3112 rcuh_kind::TYPE);
3113
3114 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3115 struct signatured_type);
3116 sig_type->signature = cu_header.signature;
3117 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3118 sig_type->per_cu.is_debug_types = 1;
3119 sig_type->per_cu.section = section;
3120 sig_type->per_cu.sect_off = sect_off;
3121 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3122 sig_type->per_cu.v.quick
3123 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3124 struct dwarf2_per_cu_quick_data);
3125
3126 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3127 *slot = sig_type;
3128
3129 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3130 }
3131
3132 dwarf2_per_objfile->signatured_types = sig_types_hash;
3133 }
3134
3135 /* Read the address map data from the mapped index, and use it to
3136 populate the objfile's psymtabs_addrmap. */
3137
3138 static void
3139 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3140 struct mapped_index *index)
3141 {
3142 struct objfile *objfile = dwarf2_per_objfile->objfile;
3143 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3144 const gdb_byte *iter, *end;
3145 struct addrmap *mutable_map;
3146 CORE_ADDR baseaddr;
3147
3148 auto_obstack temp_obstack;
3149
3150 mutable_map = addrmap_create_mutable (&temp_obstack);
3151
3152 iter = index->address_table.data ();
3153 end = iter + index->address_table.size ();
3154
3155 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3156
3157 while (iter < end)
3158 {
3159 ULONGEST hi, lo, cu_index;
3160 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3161 iter += 8;
3162 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3163 iter += 8;
3164 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3165 iter += 4;
3166
3167 if (lo > hi)
3168 {
3169 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3170 hex_string (lo), hex_string (hi));
3171 continue;
3172 }
3173
3174 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3175 {
3176 complaint (_(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3178 continue;
3179 }
3180
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3185 }
3186
3187 objfile->partial_symtabs->psymtabs_addrmap
3188 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3189 }
3190
3191 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3193
3194 static void
3195 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3197 {
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3203
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3206
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3212 {
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3216 {
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3220 return;
3221 }
3222 }
3223
3224 dwarf2_read_section (objfile, section);
3225
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3227
3228 const gdb_byte *addr = section->buffer;
3229
3230 while (addr < section->buffer + section->size)
3231 {
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3234
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3236 &bytes_read);
3237 addr += bytes_read;
3238
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3243 {
3244 warning (_("Section .debug_aranges in %s entry at offset %s "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile),
3248 plongest (entry_addr - section->buffer),
3249 plongest (bytes_read + entry_length),
3250 pulongest (section->size));
3251 return;
3252 }
3253
3254 /* The version number. */
3255 const uint16_t version = read_2_bytes (abfd, addr);
3256 addr += 2;
3257 if (version != 2)
3258 {
3259 warning (_("Section .debug_aranges in %s entry at offset %s "
3260 "has unsupported version %d, ignoring .debug_aranges."),
3261 objfile_name (objfile),
3262 plongest (entry_addr - section->buffer), version);
3263 return;
3264 }
3265
3266 const uint64_t debug_info_offset
3267 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3268 addr += offset_size;
3269 const auto per_cu_it
3270 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3271 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3272 {
3273 warning (_("Section .debug_aranges in %s entry at offset %s "
3274 "debug_info_offset %s does not exists, "
3275 "ignoring .debug_aranges."),
3276 objfile_name (objfile),
3277 plongest (entry_addr - section->buffer),
3278 pulongest (debug_info_offset));
3279 return;
3280 }
3281 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3282
3283 const uint8_t address_size = *addr++;
3284 if (address_size < 1 || address_size > 8)
3285 {
3286 warning (_("Section .debug_aranges in %s entry at offset %s "
3287 "address_size %u is invalid, ignoring .debug_aranges."),
3288 objfile_name (objfile),
3289 plongest (entry_addr - section->buffer), address_size);
3290 return;
3291 }
3292
3293 const uint8_t segment_selector_size = *addr++;
3294 if (segment_selector_size != 0)
3295 {
3296 warning (_("Section .debug_aranges in %s entry at offset %s "
3297 "segment_selector_size %u is not supported, "
3298 "ignoring .debug_aranges."),
3299 objfile_name (objfile),
3300 plongest (entry_addr - section->buffer),
3301 segment_selector_size);
3302 return;
3303 }
3304
3305 /* Must pad to an alignment boundary that is twice the address
3306 size. It is undocumented by the DWARF standard but GCC does
3307 use it. */
3308 for (size_t padding = ((-(addr - section->buffer))
3309 & (2 * address_size - 1));
3310 padding > 0; padding--)
3311 if (*addr++ != 0)
3312 {
3313 warning (_("Section .debug_aranges in %s entry at offset %s "
3314 "padding is not zero, ignoring .debug_aranges."),
3315 objfile_name (objfile),
3316 plongest (entry_addr - section->buffer));
3317 return;
3318 }
3319
3320 for (;;)
3321 {
3322 if (addr + 2 * address_size > entry_end)
3323 {
3324 warning (_("Section .debug_aranges in %s entry at offset %s "
3325 "address list is not properly terminated, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile),
3328 plongest (entry_addr - section->buffer));
3329 return;
3330 }
3331 ULONGEST start = extract_unsigned_integer (addr, address_size,
3332 dwarf5_byte_order);
3333 addr += address_size;
3334 ULONGEST length = extract_unsigned_integer (addr, address_size,
3335 dwarf5_byte_order);
3336 addr += address_size;
3337 if (start == 0 && length == 0)
3338 break;
3339 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3340 {
3341 /* Symbol was eliminated due to a COMDAT group. */
3342 continue;
3343 }
3344 ULONGEST end = start + length;
3345 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3346 - baseaddr);
3347 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3348 - baseaddr);
3349 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3350 }
3351 }
3352
3353 objfile->partial_symtabs->psymtabs_addrmap
3354 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3355 }
3356
3357 /* Find a slot in the mapped index INDEX for the object named NAME.
3358 If NAME is found, set *VEC_OUT to point to the CU vector in the
3359 constant pool and return true. If NAME cannot be found, return
3360 false. */
3361
3362 static bool
3363 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3364 offset_type **vec_out)
3365 {
3366 offset_type hash;
3367 offset_type slot, step;
3368 int (*cmp) (const char *, const char *);
3369
3370 gdb::unique_xmalloc_ptr<char> without_params;
3371 if (current_language->la_language == language_cplus
3372 || current_language->la_language == language_fortran
3373 || current_language->la_language == language_d)
3374 {
3375 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3376 not contain any. */
3377
3378 if (strchr (name, '(') != NULL)
3379 {
3380 without_params = cp_remove_params (name);
3381
3382 if (without_params != NULL)
3383 name = without_params.get ();
3384 }
3385 }
3386
3387 /* Index version 4 did not support case insensitive searches. But the
3388 indices for case insensitive languages are built in lowercase, therefore
3389 simulate our NAME being searched is also lowercased. */
3390 hash = mapped_index_string_hash ((index->version == 4
3391 && case_sensitivity == case_sensitive_off
3392 ? 5 : index->version),
3393 name);
3394
3395 slot = hash & (index->symbol_table.size () - 1);
3396 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3397 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3398
3399 for (;;)
3400 {
3401 const char *str;
3402
3403 const auto &bucket = index->symbol_table[slot];
3404 if (bucket.name == 0 && bucket.vec == 0)
3405 return false;
3406
3407 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3408 if (!cmp (name, str))
3409 {
3410 *vec_out = (offset_type *) (index->constant_pool
3411 + MAYBE_SWAP (bucket.vec));
3412 return true;
3413 }
3414
3415 slot = (slot + step) & (index->symbol_table.size () - 1);
3416 }
3417 }
3418
3419 /* A helper function that reads the .gdb_index from BUFFER and fills
3420 in MAP. FILENAME is the name of the file containing the data;
3421 it is used for error reporting. DEPRECATED_OK is true if it is
3422 ok to use deprecated sections.
3423
3424 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3425 out parameters that are filled in with information about the CU and
3426 TU lists in the section.
3427
3428 Returns true if all went well, false otherwise. */
3429
3430 static bool
3431 read_gdb_index_from_buffer (struct objfile *objfile,
3432 const char *filename,
3433 bool deprecated_ok,
3434 gdb::array_view<const gdb_byte> buffer,
3435 struct mapped_index *map,
3436 const gdb_byte **cu_list,
3437 offset_type *cu_list_elements,
3438 const gdb_byte **types_list,
3439 offset_type *types_list_elements)
3440 {
3441 const gdb_byte *addr = &buffer[0];
3442
3443 /* Version check. */
3444 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3445 /* Versions earlier than 3 emitted every copy of a psymbol. This
3446 causes the index to behave very poorly for certain requests. Version 3
3447 contained incomplete addrmap. So, it seems better to just ignore such
3448 indices. */
3449 if (version < 4)
3450 {
3451 static int warning_printed = 0;
3452 if (!warning_printed)
3453 {
3454 warning (_("Skipping obsolete .gdb_index section in %s."),
3455 filename);
3456 warning_printed = 1;
3457 }
3458 return 0;
3459 }
3460 /* Index version 4 uses a different hash function than index version
3461 5 and later.
3462
3463 Versions earlier than 6 did not emit psymbols for inlined
3464 functions. Using these files will cause GDB not to be able to
3465 set breakpoints on inlined functions by name, so we ignore these
3466 indices unless the user has done
3467 "set use-deprecated-index-sections on". */
3468 if (version < 6 && !deprecated_ok)
3469 {
3470 static int warning_printed = 0;
3471 if (!warning_printed)
3472 {
3473 warning (_("\
3474 Skipping deprecated .gdb_index section in %s.\n\
3475 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3476 to use the section anyway."),
3477 filename);
3478 warning_printed = 1;
3479 }
3480 return 0;
3481 }
3482 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3483 of the TU (for symbols coming from TUs),
3484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3485 Plus gold-generated indices can have duplicate entries for global symbols,
3486 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3487 These are just performance bugs, and we can't distinguish gdb-generated
3488 indices from gold-generated ones, so issue no warning here. */
3489
3490 /* Indexes with higher version than the one supported by GDB may be no
3491 longer backward compatible. */
3492 if (version > 8)
3493 return 0;
3494
3495 map->version = version;
3496
3497 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3498
3499 int i = 0;
3500 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3501 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3502 / 8);
3503 ++i;
3504
3505 *types_list = addr + MAYBE_SWAP (metadata[i]);
3506 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3507 - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3512 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3513 map->address_table
3514 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3515 ++i;
3516
3517 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->symbol_table
3520 = gdb::array_view<mapped_index::symbol_table_slot>
3521 ((mapped_index::symbol_table_slot *) symbol_table,
3522 (mapped_index::symbol_table_slot *) symbol_table_end);
3523
3524 ++i;
3525 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3526
3527 return 1;
3528 }
3529
3530 /* Callback types for dwarf2_read_gdb_index. */
3531
3532 typedef gdb::function_view
3533 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3534 get_gdb_index_contents_ftype;
3535 typedef gdb::function_view
3536 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3537 get_gdb_index_contents_dwz_ftype;
3538
3539 /* Read .gdb_index. If everything went ok, initialize the "quick"
3540 elements of all the CUs and return 1. Otherwise, return 0. */
3541
3542 static int
3543 dwarf2_read_gdb_index
3544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3545 get_gdb_index_contents_ftype get_gdb_index_contents,
3546 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3547 {
3548 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3549 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3550 struct dwz_file *dwz;
3551 struct objfile *objfile = dwarf2_per_objfile->objfile;
3552
3553 gdb::array_view<const gdb_byte> main_index_contents
3554 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3555
3556 if (main_index_contents.empty ())
3557 return 0;
3558
3559 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3560 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3561 use_deprecated_index_sections,
3562 main_index_contents, map.get (), &cu_list,
3563 &cu_list_elements, &types_list,
3564 &types_list_elements))
3565 return 0;
3566
3567 /* Don't use the index if it's empty. */
3568 if (map->symbol_table.empty ())
3569 return 0;
3570
3571 /* If there is a .dwz file, read it so we can get its CU list as
3572 well. */
3573 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3574 if (dwz != NULL)
3575 {
3576 struct mapped_index dwz_map;
3577 const gdb_byte *dwz_types_ignore;
3578 offset_type dwz_types_elements_ignore;
3579
3580 gdb::array_view<const gdb_byte> dwz_index_content
3581 = get_gdb_index_contents_dwz (objfile, dwz);
3582
3583 if (dwz_index_content.empty ())
3584 return 0;
3585
3586 if (!read_gdb_index_from_buffer (objfile,
3587 bfd_get_filename (dwz->dwz_bfd.get ()),
3588 1, dwz_index_content, &dwz_map,
3589 &dwz_list, &dwz_list_elements,
3590 &dwz_types_ignore,
3591 &dwz_types_elements_ignore))
3592 {
3593 warning (_("could not read '.gdb_index' section from %s; skipping"),
3594 bfd_get_filename (dwz->dwz_bfd.get ()));
3595 return 0;
3596 }
3597 }
3598
3599 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3600 dwz_list, dwz_list_elements);
3601
3602 if (types_list_elements)
3603 {
3604 /* We can only handle a single .debug_types when we have an
3605 index. */
3606 if (dwarf2_per_objfile->types.size () != 1)
3607 return 0;
3608
3609 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3610
3611 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3612 types_list, types_list_elements);
3613 }
3614
3615 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3616
3617 dwarf2_per_objfile->index_table = std::move (map);
3618 dwarf2_per_objfile->using_index = 1;
3619 dwarf2_per_objfile->quick_file_names_table =
3620 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3621
3622 return 1;
3623 }
3624
3625 /* die_reader_func for dw2_get_file_names. */
3626
3627 static void
3628 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3629 const gdb_byte *info_ptr,
3630 struct die_info *comp_unit_die,
3631 int has_children,
3632 void *data)
3633 {
3634 struct dwarf2_cu *cu = reader->cu;
3635 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3636 struct dwarf2_per_objfile *dwarf2_per_objfile
3637 = cu->per_cu->dwarf2_per_objfile;
3638 struct objfile *objfile = dwarf2_per_objfile->objfile;
3639 struct dwarf2_per_cu_data *lh_cu;
3640 struct attribute *attr;
3641 int i;
3642 void **slot;
3643 struct quick_file_names *qfn;
3644
3645 gdb_assert (! this_cu->is_debug_types);
3646
3647 /* Our callers never want to match partial units -- instead they
3648 will match the enclosing full CU. */
3649 if (comp_unit_die->tag == DW_TAG_partial_unit)
3650 {
3651 this_cu->v.quick->no_file_data = 1;
3652 return;
3653 }
3654
3655 lh_cu = this_cu;
3656 slot = NULL;
3657
3658 line_header_up lh;
3659 sect_offset line_offset {};
3660
3661 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3662 if (attr)
3663 {
3664 struct quick_file_names find_entry;
3665
3666 line_offset = (sect_offset) DW_UNSND (attr);
3667
3668 /* We may have already read in this line header (TU line header sharing).
3669 If we have we're done. */
3670 find_entry.hash.dwo_unit = cu->dwo_unit;
3671 find_entry.hash.line_sect_off = line_offset;
3672 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3673 &find_entry, INSERT);
3674 if (*slot != NULL)
3675 {
3676 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3677 return;
3678 }
3679
3680 lh = dwarf_decode_line_header (line_offset, cu);
3681 }
3682 if (lh == NULL)
3683 {
3684 lh_cu->v.quick->no_file_data = 1;
3685 return;
3686 }
3687
3688 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3689 qfn->hash.dwo_unit = cu->dwo_unit;
3690 qfn->hash.line_sect_off = line_offset;
3691 gdb_assert (slot != NULL);
3692 *slot = qfn;
3693
3694 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3695
3696 int offset = 0;
3697 if (strcmp (fnd.name, "<unknown>") != 0)
3698 ++offset;
3699
3700 qfn->num_file_names = offset + lh->file_names.size ();
3701 qfn->file_names =
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3703 if (offset != 0)
3704 qfn->file_names[0] = xstrdup (fnd.name);
3705 for (i = 0; i < lh->file_names.size (); ++i)
3706 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3707 qfn->real_names = NULL;
3708
3709 lh_cu->v.quick->file_names = qfn;
3710 }
3711
3712 /* A helper for the "quick" functions which attempts to read the line
3713 table for THIS_CU. */
3714
3715 static struct quick_file_names *
3716 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3717 {
3718 /* This should never be called for TUs. */
3719 gdb_assert (! this_cu->is_debug_types);
3720 /* Nor type unit groups. */
3721 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3722
3723 if (this_cu->v.quick->file_names != NULL)
3724 return this_cu->v.quick->file_names;
3725 /* If we know there is no line data, no point in looking again. */
3726 if (this_cu->v.quick->no_file_data)
3727 return NULL;
3728
3729 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3730
3731 if (this_cu->v.quick->no_file_data)
3732 return NULL;
3733 return this_cu->v.quick->file_names;
3734 }
3735
3736 /* A helper for the "quick" functions which computes and caches the
3737 real path for a given file name from the line table. */
3738
3739 static const char *
3740 dw2_get_real_path (struct objfile *objfile,
3741 struct quick_file_names *qfn, int index)
3742 {
3743 if (qfn->real_names == NULL)
3744 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3745 qfn->num_file_names, const char *);
3746
3747 if (qfn->real_names[index] == NULL)
3748 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3749
3750 return qfn->real_names[index];
3751 }
3752
3753 static struct symtab *
3754 dw2_find_last_source_symtab (struct objfile *objfile)
3755 {
3756 struct dwarf2_per_objfile *dwarf2_per_objfile
3757 = get_dwarf2_per_objfile (objfile);
3758 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3759 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3760
3761 if (cust == NULL)
3762 return NULL;
3763
3764 return compunit_primary_filetab (cust);
3765 }
3766
3767 /* Traversal function for dw2_forget_cached_source_info. */
3768
3769 static int
3770 dw2_free_cached_file_names (void **slot, void *info)
3771 {
3772 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3773
3774 if (file_data->real_names)
3775 {
3776 int i;
3777
3778 for (i = 0; i < file_data->num_file_names; ++i)
3779 {
3780 xfree ((void*) file_data->real_names[i]);
3781 file_data->real_names[i] = NULL;
3782 }
3783 }
3784
3785 return 1;
3786 }
3787
3788 static void
3789 dw2_forget_cached_source_info (struct objfile *objfile)
3790 {
3791 struct dwarf2_per_objfile *dwarf2_per_objfile
3792 = get_dwarf2_per_objfile (objfile);
3793
3794 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3795 dw2_free_cached_file_names, NULL);
3796 }
3797
3798 /* Helper function for dw2_map_symtabs_matching_filename that expands
3799 the symtabs and calls the iterator. */
3800
3801 static int
3802 dw2_map_expand_apply (struct objfile *objfile,
3803 struct dwarf2_per_cu_data *per_cu,
3804 const char *name, const char *real_path,
3805 gdb::function_view<bool (symtab *)> callback)
3806 {
3807 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3808
3809 /* Don't visit already-expanded CUs. */
3810 if (per_cu->v.quick->compunit_symtab)
3811 return 0;
3812
3813 /* This may expand more than one symtab, and we want to iterate over
3814 all of them. */
3815 dw2_instantiate_symtab (per_cu, false);
3816
3817 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3818 last_made, callback);
3819 }
3820
3821 /* Implementation of the map_symtabs_matching_filename method. */
3822
3823 static bool
3824 dw2_map_symtabs_matching_filename
3825 (struct objfile *objfile, const char *name, const char *real_path,
3826 gdb::function_view<bool (symtab *)> callback)
3827 {
3828 const char *name_basename = lbasename (name);
3829 struct dwarf2_per_objfile *dwarf2_per_objfile
3830 = get_dwarf2_per_objfile (objfile);
3831
3832 /* The rule is CUs specify all the files, including those used by
3833 any TU, so there's no need to scan TUs here. */
3834
3835 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3836 {
3837 /* We only need to look at symtabs not already expanded. */
3838 if (per_cu->v.quick->compunit_symtab)
3839 continue;
3840
3841 quick_file_names *file_data = dw2_get_file_names (per_cu);
3842 if (file_data == NULL)
3843 continue;
3844
3845 for (int j = 0; j < file_data->num_file_names; ++j)
3846 {
3847 const char *this_name = file_data->file_names[j];
3848 const char *this_real_name;
3849
3850 if (compare_filenames_for_search (this_name, name))
3851 {
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3853 callback))
3854 return true;
3855 continue;
3856 }
3857
3858 /* Before we invoke realpath, which can get expensive when many
3859 files are involved, do a quick comparison of the basenames. */
3860 if (! basenames_may_differ
3861 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3862 continue;
3863
3864 this_real_name = dw2_get_real_path (objfile, file_data, j);
3865 if (compare_filenames_for_search (this_real_name, name))
3866 {
3867 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3868 callback))
3869 return true;
3870 continue;
3871 }
3872
3873 if (real_path != NULL)
3874 {
3875 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3876 gdb_assert (IS_ABSOLUTE_PATH (name));
3877 if (this_real_name != NULL
3878 && FILENAME_CMP (real_path, this_real_name) == 0)
3879 {
3880 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3881 callback))
3882 return true;
3883 continue;
3884 }
3885 }
3886 }
3887 }
3888
3889 return false;
3890 }
3891
3892 /* Struct used to manage iterating over all CUs looking for a symbol. */
3893
3894 struct dw2_symtab_iterator
3895 {
3896 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3897 struct dwarf2_per_objfile *dwarf2_per_objfile;
3898 /* If set, only look for symbols that match that block. Valid values are
3899 GLOBAL_BLOCK and STATIC_BLOCK. */
3900 gdb::optional<block_enum> block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
3915 };
3916
3917 /* Initialize the index symtab iterator ITER. */
3918
3919 static void
3920 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3921 struct dwarf2_per_objfile *dwarf2_per_objfile,
3922 gdb::optional<block_enum> block_index,
3923 domain_enum domain,
3924 const char *name)
3925 {
3926 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3927 iter->block_index = block_index;
3928 iter->domain = domain;
3929 iter->next = 0;
3930 iter->global_seen = 0;
3931
3932 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3933
3934 /* index is NULL if OBJF_READNOW. */
3935 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3936 iter->length = MAYBE_SWAP (*iter->vec);
3937 else
3938 {
3939 iter->vec = NULL;
3940 iter->length = 0;
3941 }
3942 }
3943
3944 /* Return the next matching CU or NULL if there are no more. */
3945
3946 static struct dwarf2_per_cu_data *
3947 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3948 {
3949 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3950
3951 for ( ; iter->next < iter->length; ++iter->next)
3952 {
3953 offset_type cu_index_and_attrs =
3954 MAYBE_SWAP (iter->vec[iter->next + 1]);
3955 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3956 gdb_index_symbol_kind symbol_kind =
3957 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3958 /* Only check the symbol attributes if they're present.
3959 Indices prior to version 7 don't record them,
3960 and indices >= 7 may elide them for certain symbols
3961 (gold does this). */
3962 int attrs_valid =
3963 (dwarf2_per_objfile->index_table->version >= 7
3964 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3965
3966 /* Don't crash on bad data. */
3967 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3968 + dwarf2_per_objfile->all_type_units.size ()))
3969 {
3970 complaint (_(".gdb_index entry has bad CU index"
3971 " [in module %s]"),
3972 objfile_name (dwarf2_per_objfile->objfile));
3973 continue;
3974 }
3975
3976 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3977
3978 /* Skip if already read in. */
3979 if (per_cu->v.quick->compunit_symtab)
3980 continue;
3981
3982 /* Check static vs global. */
3983 if (attrs_valid)
3984 {
3985 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3986
3987 if (iter->block_index.has_value ())
3988 {
3989 bool want_static = *iter->block_index == STATIC_BLOCK;
3990
3991 if (is_static != want_static)
3992 continue;
3993 }
3994
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032 }
4033
4034 static struct compunit_symtab *
4035 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4036 const char *name, domain_enum domain)
4037 {
4038 struct compunit_symtab *stab_best = NULL;
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
4041
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
4046
4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4048
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4055
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
4059
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
4063
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
4070
4071 /* Keep looking through other CUs. */
4072 }
4073
4074 return stab_best;
4075 }
4076
4077 static void
4078 dw2_print_stats (struct objfile *objfile)
4079 {
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
4083 + dwarf2_per_objfile->all_type_units.size ());
4084 int count = 0;
4085
4086 for (int i = 0; i < total; ++i)
4087 {
4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4089
4090 if (!per_cu->v.quick->compunit_symtab)
4091 ++count;
4092 }
4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095 }
4096
4097 /* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
4102 static void
4103 dw2_dump (struct objfile *objfile)
4104 {
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
4118 }
4119
4120 static void
4121 dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123 {
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
4126
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
4129
4130 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4131
4132 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4133 dw2_instantiate_symtab (per_cu, false);
4134
4135 }
4136
4137 static void
4138 dw2_expand_all_symtabs (struct objfile *objfile)
4139 {
4140 struct dwarf2_per_objfile *dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile);
4142 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4143 + dwarf2_per_objfile->all_type_units.size ());
4144
4145 for (int i = 0; i < total_units; ++i)
4146 {
4147 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4148
4149 /* We don't want to directly expand a partial CU, because if we
4150 read it with the wrong language, then assertion failures can
4151 be triggered later on. See PR symtab/23010. So, tell
4152 dw2_instantiate_symtab to skip partial CUs -- any important
4153 partial CU will be read via DW_TAG_imported_unit anyway. */
4154 dw2_instantiate_symtab (per_cu, true);
4155 }
4156 }
4157
4158 static void
4159 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4160 const char *fullname)
4161 {
4162 struct dwarf2_per_objfile *dwarf2_per_objfile
4163 = get_dwarf2_per_objfile (objfile);
4164
4165 /* We don't need to consider type units here.
4166 This is only called for examining code, e.g. expand_line_sal.
4167 There can be an order of magnitude (or more) more type units
4168 than comp units, and we avoid them if we can. */
4169
4170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4171 {
4172 /* We only need to look at symtabs not already expanded. */
4173 if (per_cu->v.quick->compunit_symtab)
4174 continue;
4175
4176 quick_file_names *file_data = dw2_get_file_names (per_cu);
4177 if (file_data == NULL)
4178 continue;
4179
4180 for (int j = 0; j < file_data->num_file_names; ++j)
4181 {
4182 const char *this_fullname = file_data->file_names[j];
4183
4184 if (filename_cmp (this_fullname, fullname) == 0)
4185 {
4186 dw2_instantiate_symtab (per_cu, false);
4187 break;
4188 }
4189 }
4190 }
4191 }
4192
4193 static void
4194 dw2_map_matching_symbols
4195 (struct objfile *objfile,
4196 const lookup_name_info &name, domain_enum domain,
4197 int global,
4198 gdb::function_view<symbol_found_callback_ftype> callback,
4199 symbol_compare_ftype *ordered_compare)
4200 {
4201 /* Currently unimplemented; used for Ada. The function can be called if the
4202 current language is Ada for a non-Ada objfile using GNU index. As Ada
4203 does not look for non-Ada symbols this function should just return. */
4204 }
4205
4206 /* Starting from a search name, return the string that finds the upper
4207 bound of all strings that start with SEARCH_NAME in a sorted name
4208 list. Returns the empty string to indicate that the upper bound is
4209 the end of the list. */
4210
4211 static std::string
4212 make_sort_after_prefix_name (const char *search_name)
4213 {
4214 /* When looking to complete "func", we find the upper bound of all
4215 symbols that start with "func" by looking for where we'd insert
4216 the closest string that would follow "func" in lexicographical
4217 order. Usually, that's "func"-with-last-character-incremented,
4218 i.e. "fund". Mind non-ASCII characters, though. Usually those
4219 will be UTF-8 multi-byte sequences, but we can't be certain.
4220 Especially mind the 0xff character, which is a valid character in
4221 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4222 rule out compilers allowing it in identifiers. Note that
4223 conveniently, strcmp/strcasecmp are specified to compare
4224 characters interpreted as unsigned char. So what we do is treat
4225 the whole string as a base 256 number composed of a sequence of
4226 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4227 to 0, and carries 1 to the following more-significant position.
4228 If the very first character in SEARCH_NAME ends up incremented
4229 and carries/overflows, then the upper bound is the end of the
4230 list. The string after the empty string is also the empty
4231 string.
4232
4233 Some examples of this operation:
4234
4235 SEARCH_NAME => "+1" RESULT
4236
4237 "abc" => "abd"
4238 "ab\xff" => "ac"
4239 "\xff" "a" "\xff" => "\xff" "b"
4240 "\xff" => ""
4241 "\xff\xff" => ""
4242 "" => ""
4243
4244 Then, with these symbols for example:
4245
4246 func
4247 func1
4248 fund
4249
4250 completing "func" looks for symbols between "func" and
4251 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4252 which finds "func" and "func1", but not "fund".
4253
4254 And with:
4255
4256 funcÿ (Latin1 'ÿ' [0xff])
4257 funcÿ1
4258 fund
4259
4260 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4261 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4262
4263 And with:
4264
4265 ÿÿ (Latin1 'ÿ' [0xff])
4266 ÿÿ1
4267
4268 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4269 the end of the list.
4270 */
4271 std::string after = search_name;
4272 while (!after.empty () && (unsigned char) after.back () == 0xff)
4273 after.pop_back ();
4274 if (!after.empty ())
4275 after.back () = (unsigned char) after.back () + 1;
4276 return after;
4277 }
4278
4279 /* See declaration. */
4280
4281 std::pair<std::vector<name_component>::const_iterator,
4282 std::vector<name_component>::const_iterator>
4283 mapped_index_base::find_name_components_bounds
4284 (const lookup_name_info &lookup_name_without_params, language lang) const
4285 {
4286 auto *name_cmp
4287 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4288
4289 const char *lang_name
4290 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4291
4292 /* Comparison function object for lower_bound that matches against a
4293 given symbol name. */
4294 auto lookup_compare_lower = [&] (const name_component &elem,
4295 const char *name)
4296 {
4297 const char *elem_qualified = this->symbol_name_at (elem.idx);
4298 const char *elem_name = elem_qualified + elem.name_offset;
4299 return name_cmp (elem_name, name) < 0;
4300 };
4301
4302 /* Comparison function object for upper_bound that matches against a
4303 given symbol name. */
4304 auto lookup_compare_upper = [&] (const char *name,
4305 const name_component &elem)
4306 {
4307 const char *elem_qualified = this->symbol_name_at (elem.idx);
4308 const char *elem_name = elem_qualified + elem.name_offset;
4309 return name_cmp (name, elem_name) < 0;
4310 };
4311
4312 auto begin = this->name_components.begin ();
4313 auto end = this->name_components.end ();
4314
4315 /* Find the lower bound. */
4316 auto lower = [&] ()
4317 {
4318 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4319 return begin;
4320 else
4321 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4322 } ();
4323
4324 /* Find the upper bound. */
4325 auto upper = [&] ()
4326 {
4327 if (lookup_name_without_params.completion_mode ())
4328 {
4329 /* In completion mode, we want UPPER to point past all
4330 symbols names that have the same prefix. I.e., with
4331 these symbols, and completing "func":
4332
4333 function << lower bound
4334 function1
4335 other_function << upper bound
4336
4337 We find the upper bound by looking for the insertion
4338 point of "func"-with-last-character-incremented,
4339 i.e. "fund". */
4340 std::string after = make_sort_after_prefix_name (lang_name);
4341 if (after.empty ())
4342 return end;
4343 return std::lower_bound (lower, end, after.c_str (),
4344 lookup_compare_lower);
4345 }
4346 else
4347 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4348 } ();
4349
4350 return {lower, upper};
4351 }
4352
4353 /* See declaration. */
4354
4355 void
4356 mapped_index_base::build_name_components ()
4357 {
4358 if (!this->name_components.empty ())
4359 return;
4360
4361 this->name_components_casing = case_sensitivity;
4362 auto *name_cmp
4363 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4364
4365 /* The code below only knows how to break apart components of C++
4366 symbol names (and other languages that use '::' as
4367 namespace/module separator) and Ada symbol names. */
4368 auto count = this->symbol_name_count ();
4369 for (offset_type idx = 0; idx < count; idx++)
4370 {
4371 if (this->symbol_name_slot_invalid (idx))
4372 continue;
4373
4374 const char *name = this->symbol_name_at (idx);
4375
4376 /* Add each name component to the name component table. */
4377 unsigned int previous_len = 0;
4378
4379 if (strstr (name, "::") != nullptr)
4380 {
4381 for (unsigned int current_len = cp_find_first_component (name);
4382 name[current_len] != '\0';
4383 current_len += cp_find_first_component (name + current_len))
4384 {
4385 gdb_assert (name[current_len] == ':');
4386 this->name_components.push_back ({previous_len, idx});
4387 /* Skip the '::'. */
4388 current_len += 2;
4389 previous_len = current_len;
4390 }
4391 }
4392 else
4393 {
4394 /* Handle the Ada encoded (aka mangled) form here. */
4395 for (const char *iter = strstr (name, "__");
4396 iter != nullptr;
4397 iter = strstr (iter, "__"))
4398 {
4399 this->name_components.push_back ({previous_len, idx});
4400 iter += 2;
4401 previous_len = iter - name;
4402 }
4403 }
4404
4405 this->name_components.push_back ({previous_len, idx});
4406 }
4407
4408 /* Sort name_components elements by name. */
4409 auto name_comp_compare = [&] (const name_component &left,
4410 const name_component &right)
4411 {
4412 const char *left_qualified = this->symbol_name_at (left.idx);
4413 const char *right_qualified = this->symbol_name_at (right.idx);
4414
4415 const char *left_name = left_qualified + left.name_offset;
4416 const char *right_name = right_qualified + right.name_offset;
4417
4418 return name_cmp (left_name, right_name) < 0;
4419 };
4420
4421 std::sort (this->name_components.begin (),
4422 this->name_components.end (),
4423 name_comp_compare);
4424 }
4425
4426 /* Helper for dw2_expand_symtabs_matching that works with a
4427 mapped_index_base instead of the containing objfile. This is split
4428 to a separate function in order to be able to unit test the
4429 name_components matching using a mock mapped_index_base. For each
4430 symbol name that matches, calls MATCH_CALLBACK, passing it the
4431 symbol's index in the mapped_index_base symbol table. */
4432
4433 static void
4434 dw2_expand_symtabs_matching_symbol
4435 (mapped_index_base &index,
4436 const lookup_name_info &lookup_name_in,
4437 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4438 enum search_domain kind,
4439 gdb::function_view<bool (offset_type)> match_callback)
4440 {
4441 lookup_name_info lookup_name_without_params
4442 = lookup_name_in.make_ignore_params ();
4443
4444 /* Build the symbol name component sorted vector, if we haven't
4445 yet. */
4446 index.build_name_components ();
4447
4448 /* The same symbol may appear more than once in the range though.
4449 E.g., if we're looking for symbols that complete "w", and we have
4450 a symbol named "w1::w2", we'll find the two name components for
4451 that same symbol in the range. To be sure we only call the
4452 callback once per symbol, we first collect the symbol name
4453 indexes that matched in a temporary vector and ignore
4454 duplicates. */
4455 std::vector<offset_type> matches;
4456
4457 struct name_and_matcher
4458 {
4459 symbol_name_matcher_ftype *matcher;
4460 const std::string &name;
4461
4462 bool operator== (const name_and_matcher &other) const
4463 {
4464 return matcher == other.matcher && name == other.name;
4465 }
4466 };
4467
4468 /* A vector holding all the different symbol name matchers, for all
4469 languages. */
4470 std::vector<name_and_matcher> matchers;
4471
4472 for (int i = 0; i < nr_languages; i++)
4473 {
4474 enum language lang_e = (enum language) i;
4475
4476 const language_defn *lang = language_def (lang_e);
4477 symbol_name_matcher_ftype *name_matcher
4478 = get_symbol_name_matcher (lang, lookup_name_without_params);
4479
4480 name_and_matcher key {
4481 name_matcher,
4482 lookup_name_without_params.language_lookup_name (lang_e)
4483 };
4484
4485 /* Don't insert the same comparison routine more than once.
4486 Note that we do this linear walk. This is not a problem in
4487 practice because the number of supported languages is
4488 low. */
4489 if (std::find (matchers.begin (), matchers.end (), key)
4490 != matchers.end ())
4491 continue;
4492 matchers.push_back (std::move (key));
4493
4494 auto bounds
4495 = index.find_name_components_bounds (lookup_name_without_params,
4496 lang_e);
4497
4498 /* Now for each symbol name in range, check to see if we have a name
4499 match, and if so, call the MATCH_CALLBACK callback. */
4500
4501 for (; bounds.first != bounds.second; ++bounds.first)
4502 {
4503 const char *qualified = index.symbol_name_at (bounds.first->idx);
4504
4505 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4506 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4507 continue;
4508
4509 matches.push_back (bounds.first->idx);
4510 }
4511 }
4512
4513 std::sort (matches.begin (), matches.end ());
4514
4515 /* Finally call the callback, once per match. */
4516 ULONGEST prev = -1;
4517 for (offset_type idx : matches)
4518 {
4519 if (prev != idx)
4520 {
4521 if (!match_callback (idx))
4522 break;
4523 prev = idx;
4524 }
4525 }
4526
4527 /* Above we use a type wider than idx's for 'prev', since 0 and
4528 (offset_type)-1 are both possible values. */
4529 static_assert (sizeof (prev) > sizeof (offset_type), "");
4530 }
4531
4532 #if GDB_SELF_TEST
4533
4534 namespace selftests { namespace dw2_expand_symtabs_matching {
4535
4536 /* A mock .gdb_index/.debug_names-like name index table, enough to
4537 exercise dw2_expand_symtabs_matching_symbol, which works with the
4538 mapped_index_base interface. Builds an index from the symbol list
4539 passed as parameter to the constructor. */
4540 class mock_mapped_index : public mapped_index_base
4541 {
4542 public:
4543 mock_mapped_index (gdb::array_view<const char *> symbols)
4544 : m_symbol_table (symbols)
4545 {}
4546
4547 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4548
4549 /* Return the number of names in the symbol table. */
4550 size_t symbol_name_count () const override
4551 {
4552 return m_symbol_table.size ();
4553 }
4554
4555 /* Get the name of the symbol at IDX in the symbol table. */
4556 const char *symbol_name_at (offset_type idx) const override
4557 {
4558 return m_symbol_table[idx];
4559 }
4560
4561 private:
4562 gdb::array_view<const char *> m_symbol_table;
4563 };
4564
4565 /* Convenience function that converts a NULL pointer to a "<null>"
4566 string, to pass to print routines. */
4567
4568 static const char *
4569 string_or_null (const char *str)
4570 {
4571 return str != NULL ? str : "<null>";
4572 }
4573
4574 /* Check if a lookup_name_info built from
4575 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4576 index. EXPECTED_LIST is the list of expected matches, in expected
4577 matching order. If no match expected, then an empty list is
4578 specified. Returns true on success. On failure prints a warning
4579 indicating the file:line that failed, and returns false. */
4580
4581 static bool
4582 check_match (const char *file, int line,
4583 mock_mapped_index &mock_index,
4584 const char *name, symbol_name_match_type match_type,
4585 bool completion_mode,
4586 std::initializer_list<const char *> expected_list)
4587 {
4588 lookup_name_info lookup_name (name, match_type, completion_mode);
4589
4590 bool matched = true;
4591
4592 auto mismatch = [&] (const char *expected_str,
4593 const char *got)
4594 {
4595 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4596 "expected=\"%s\", got=\"%s\"\n"),
4597 file, line,
4598 (match_type == symbol_name_match_type::FULL
4599 ? "FULL" : "WILD"),
4600 name, string_or_null (expected_str), string_or_null (got));
4601 matched = false;
4602 };
4603
4604 auto expected_it = expected_list.begin ();
4605 auto expected_end = expected_list.end ();
4606
4607 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4608 NULL, ALL_DOMAIN,
4609 [&] (offset_type idx)
4610 {
4611 const char *matched_name = mock_index.symbol_name_at (idx);
4612 const char *expected_str
4613 = expected_it == expected_end ? NULL : *expected_it++;
4614
4615 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4616 mismatch (expected_str, matched_name);
4617 return true;
4618 });
4619
4620 const char *expected_str
4621 = expected_it == expected_end ? NULL : *expected_it++;
4622 if (expected_str != NULL)
4623 mismatch (expected_str, NULL);
4624
4625 return matched;
4626 }
4627
4628 /* The symbols added to the mock mapped_index for testing (in
4629 canonical form). */
4630 static const char *test_symbols[] = {
4631 "function",
4632 "std::bar",
4633 "std::zfunction",
4634 "std::zfunction2",
4635 "w1::w2",
4636 "ns::foo<char*>",
4637 "ns::foo<int>",
4638 "ns::foo<long>",
4639 "ns2::tmpl<int>::foo2",
4640 "(anonymous namespace)::A::B::C",
4641
4642 /* These are used to check that the increment-last-char in the
4643 matching algorithm for completion doesn't match "t1_fund" when
4644 completing "t1_func". */
4645 "t1_func",
4646 "t1_func1",
4647 "t1_fund",
4648 "t1_fund1",
4649
4650 /* A UTF-8 name with multi-byte sequences to make sure that
4651 cp-name-parser understands this as a single identifier ("função"
4652 is "function" in PT). */
4653 u8"u8função",
4654
4655 /* \377 (0xff) is Latin1 'ÿ'. */
4656 "yfunc\377",
4657
4658 /* \377 (0xff) is Latin1 'ÿ'. */
4659 "\377",
4660 "\377\377123",
4661
4662 /* A name with all sorts of complications. Starts with "z" to make
4663 it easier for the completion tests below. */
4664 #define Z_SYM_NAME \
4665 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4666 "::tuple<(anonymous namespace)::ui*, " \
4667 "std::default_delete<(anonymous namespace)::ui>, void>"
4668
4669 Z_SYM_NAME
4670 };
4671
4672 /* Returns true if the mapped_index_base::find_name_component_bounds
4673 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4674 in completion mode. */
4675
4676 static bool
4677 check_find_bounds_finds (mapped_index_base &index,
4678 const char *search_name,
4679 gdb::array_view<const char *> expected_syms)
4680 {
4681 lookup_name_info lookup_name (search_name,
4682 symbol_name_match_type::FULL, true);
4683
4684 auto bounds = index.find_name_components_bounds (lookup_name,
4685 language_cplus);
4686
4687 size_t distance = std::distance (bounds.first, bounds.second);
4688 if (distance != expected_syms.size ())
4689 return false;
4690
4691 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4692 {
4693 auto nc_elem = bounds.first + exp_elem;
4694 const char *qualified = index.symbol_name_at (nc_elem->idx);
4695 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4696 return false;
4697 }
4698
4699 return true;
4700 }
4701
4702 /* Test the lower-level mapped_index::find_name_component_bounds
4703 method. */
4704
4705 static void
4706 test_mapped_index_find_name_component_bounds ()
4707 {
4708 mock_mapped_index mock_index (test_symbols);
4709
4710 mock_index.build_name_components ();
4711
4712 /* Test the lower-level mapped_index::find_name_component_bounds
4713 method in completion mode. */
4714 {
4715 static const char *expected_syms[] = {
4716 "t1_func",
4717 "t1_func1",
4718 };
4719
4720 SELF_CHECK (check_find_bounds_finds (mock_index,
4721 "t1_func", expected_syms));
4722 }
4723
4724 /* Check that the increment-last-char in the name matching algorithm
4725 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4726 {
4727 static const char *expected_syms1[] = {
4728 "\377",
4729 "\377\377123",
4730 };
4731 SELF_CHECK (check_find_bounds_finds (mock_index,
4732 "\377", expected_syms1));
4733
4734 static const char *expected_syms2[] = {
4735 "\377\377123",
4736 };
4737 SELF_CHECK (check_find_bounds_finds (mock_index,
4738 "\377\377", expected_syms2));
4739 }
4740 }
4741
4742 /* Test dw2_expand_symtabs_matching_symbol. */
4743
4744 static void
4745 test_dw2_expand_symtabs_matching_symbol ()
4746 {
4747 mock_mapped_index mock_index (test_symbols);
4748
4749 /* We let all tests run until the end even if some fails, for debug
4750 convenience. */
4751 bool any_mismatch = false;
4752
4753 /* Create the expected symbols list (an initializer_list). Needed
4754 because lists have commas, and we need to pass them to CHECK,
4755 which is a macro. */
4756 #define EXPECT(...) { __VA_ARGS__ }
4757
4758 /* Wrapper for check_match that passes down the current
4759 __FILE__/__LINE__. */
4760 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4761 any_mismatch |= !check_match (__FILE__, __LINE__, \
4762 mock_index, \
4763 NAME, MATCH_TYPE, COMPLETION_MODE, \
4764 EXPECTED_LIST)
4765
4766 /* Identity checks. */
4767 for (const char *sym : test_symbols)
4768 {
4769 /* Should be able to match all existing symbols. */
4770 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4771 EXPECT (sym));
4772
4773 /* Should be able to match all existing symbols with
4774 parameters. */
4775 std::string with_params = std::string (sym) + "(int)";
4776 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4777 EXPECT (sym));
4778
4779 /* Should be able to match all existing symbols with
4780 parameters and qualifiers. */
4781 with_params = std::string (sym) + " ( int ) const";
4782 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4783 EXPECT (sym));
4784
4785 /* This should really find sym, but cp-name-parser.y doesn't
4786 know about lvalue/rvalue qualifiers yet. */
4787 with_params = std::string (sym) + " ( int ) &&";
4788 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4789 {});
4790 }
4791
4792 /* Check that the name matching algorithm for completion doesn't get
4793 confused with Latin1 'ÿ' / 0xff. */
4794 {
4795 static const char str[] = "\377";
4796 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4797 EXPECT ("\377", "\377\377123"));
4798 }
4799
4800 /* Check that the increment-last-char in the matching algorithm for
4801 completion doesn't match "t1_fund" when completing "t1_func". */
4802 {
4803 static const char str[] = "t1_func";
4804 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4805 EXPECT ("t1_func", "t1_func1"));
4806 }
4807
4808 /* Check that completion mode works at each prefix of the expected
4809 symbol name. */
4810 {
4811 static const char str[] = "function(int)";
4812 size_t len = strlen (str);
4813 std::string lookup;
4814
4815 for (size_t i = 1; i < len; i++)
4816 {
4817 lookup.assign (str, i);
4818 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4819 EXPECT ("function"));
4820 }
4821 }
4822
4823 /* While "w" is a prefix of both components, the match function
4824 should still only be called once. */
4825 {
4826 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4827 EXPECT ("w1::w2"));
4828 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4829 EXPECT ("w1::w2"));
4830 }
4831
4832 /* Same, with a "complicated" symbol. */
4833 {
4834 static const char str[] = Z_SYM_NAME;
4835 size_t len = strlen (str);
4836 std::string lookup;
4837
4838 for (size_t i = 1; i < len; i++)
4839 {
4840 lookup.assign (str, i);
4841 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4842 EXPECT (Z_SYM_NAME));
4843 }
4844 }
4845
4846 /* In FULL mode, an incomplete symbol doesn't match. */
4847 {
4848 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4849 {});
4850 }
4851
4852 /* A complete symbol with parameters matches any overload, since the
4853 index has no overload info. */
4854 {
4855 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4856 EXPECT ("std::zfunction", "std::zfunction2"));
4857 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4858 EXPECT ("std::zfunction", "std::zfunction2"));
4859 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4860 EXPECT ("std::zfunction", "std::zfunction2"));
4861 }
4862
4863 /* Check that whitespace is ignored appropriately. A symbol with a
4864 template argument list. */
4865 {
4866 static const char expected[] = "ns::foo<int>";
4867 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4868 EXPECT (expected));
4869 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4870 EXPECT (expected));
4871 }
4872
4873 /* Check that whitespace is ignored appropriately. A symbol with a
4874 template argument list that includes a pointer. */
4875 {
4876 static const char expected[] = "ns::foo<char*>";
4877 /* Try both completion and non-completion modes. */
4878 static const bool completion_mode[2] = {false, true};
4879 for (size_t i = 0; i < 2; i++)
4880 {
4881 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4882 completion_mode[i], EXPECT (expected));
4883 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4884 completion_mode[i], EXPECT (expected));
4885
4886 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4887 completion_mode[i], EXPECT (expected));
4888 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4889 completion_mode[i], EXPECT (expected));
4890 }
4891 }
4892
4893 {
4894 /* Check method qualifiers are ignored. */
4895 static const char expected[] = "ns::foo<char*>";
4896 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4897 symbol_name_match_type::FULL, true, EXPECT (expected));
4898 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4899 symbol_name_match_type::FULL, true, EXPECT (expected));
4900 CHECK_MATCH ("foo < char * > ( int ) const",
4901 symbol_name_match_type::WILD, true, EXPECT (expected));
4902 CHECK_MATCH ("foo < char * > ( int ) &&",
4903 symbol_name_match_type::WILD, true, EXPECT (expected));
4904 }
4905
4906 /* Test lookup names that don't match anything. */
4907 {
4908 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4909 {});
4910
4911 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4912 {});
4913 }
4914
4915 /* Some wild matching tests, exercising "(anonymous namespace)",
4916 which should not be confused with a parameter list. */
4917 {
4918 static const char *syms[] = {
4919 "A::B::C",
4920 "B::C",
4921 "C",
4922 "A :: B :: C ( int )",
4923 "B :: C ( int )",
4924 "C ( int )",
4925 };
4926
4927 for (const char *s : syms)
4928 {
4929 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4930 EXPECT ("(anonymous namespace)::A::B::C"));
4931 }
4932 }
4933
4934 {
4935 static const char expected[] = "ns2::tmpl<int>::foo2";
4936 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4937 EXPECT (expected));
4938 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4939 EXPECT (expected));
4940 }
4941
4942 SELF_CHECK (!any_mismatch);
4943
4944 #undef EXPECT
4945 #undef CHECK_MATCH
4946 }
4947
4948 static void
4949 run_test ()
4950 {
4951 test_mapped_index_find_name_component_bounds ();
4952 test_dw2_expand_symtabs_matching_symbol ();
4953 }
4954
4955 }} // namespace selftests::dw2_expand_symtabs_matching
4956
4957 #endif /* GDB_SELF_TEST */
4958
4959 /* If FILE_MATCHER is NULL or if PER_CU has
4960 dwarf2_per_cu_quick_data::MARK set (see
4961 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4962 EXPANSION_NOTIFY on it. */
4963
4964 static void
4965 dw2_expand_symtabs_matching_one
4966 (struct dwarf2_per_cu_data *per_cu,
4967 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4968 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4969 {
4970 if (file_matcher == NULL || per_cu->v.quick->mark)
4971 {
4972 bool symtab_was_null
4973 = (per_cu->v.quick->compunit_symtab == NULL);
4974
4975 dw2_instantiate_symtab (per_cu, false);
4976
4977 if (expansion_notify != NULL
4978 && symtab_was_null
4979 && per_cu->v.quick->compunit_symtab != NULL)
4980 expansion_notify (per_cu->v.quick->compunit_symtab);
4981 }
4982 }
4983
4984 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4985 matched, to expand corresponding CUs that were marked. IDX is the
4986 index of the symbol name that matched. */
4987
4988 static void
4989 dw2_expand_marked_cus
4990 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4991 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4992 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4993 search_domain kind)
4994 {
4995 offset_type *vec, vec_len, vec_idx;
4996 bool global_seen = false;
4997 mapped_index &index = *dwarf2_per_objfile->index_table;
4998
4999 vec = (offset_type *) (index.constant_pool
5000 + MAYBE_SWAP (index.symbol_table[idx].vec));
5001 vec_len = MAYBE_SWAP (vec[0]);
5002 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5003 {
5004 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5005 /* This value is only valid for index versions >= 7. */
5006 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5007 gdb_index_symbol_kind symbol_kind =
5008 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5009 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5010 /* Only check the symbol attributes if they're present.
5011 Indices prior to version 7 don't record them,
5012 and indices >= 7 may elide them for certain symbols
5013 (gold does this). */
5014 int attrs_valid =
5015 (index.version >= 7
5016 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5017
5018 /* Work around gold/15646. */
5019 if (attrs_valid)
5020 {
5021 if (!is_static && global_seen)
5022 continue;
5023 if (!is_static)
5024 global_seen = true;
5025 }
5026
5027 /* Only check the symbol's kind if it has one. */
5028 if (attrs_valid)
5029 {
5030 switch (kind)
5031 {
5032 case VARIABLES_DOMAIN:
5033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5034 continue;
5035 break;
5036 case FUNCTIONS_DOMAIN:
5037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5038 continue;
5039 break;
5040 case TYPES_DOMAIN:
5041 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5042 continue;
5043 break;
5044 default:
5045 break;
5046 }
5047 }
5048
5049 /* Don't crash on bad data. */
5050 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5051 + dwarf2_per_objfile->all_type_units.size ()))
5052 {
5053 complaint (_(".gdb_index entry has bad CU index"
5054 " [in module %s]"),
5055 objfile_name (dwarf2_per_objfile->objfile));
5056 continue;
5057 }
5058
5059 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5060 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5061 expansion_notify);
5062 }
5063 }
5064
5065 /* If FILE_MATCHER is non-NULL, set all the
5066 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5067 that match FILE_MATCHER. */
5068
5069 static void
5070 dw_expand_symtabs_matching_file_matcher
5071 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5072 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5073 {
5074 if (file_matcher == NULL)
5075 return;
5076
5077 objfile *const objfile = dwarf2_per_objfile->objfile;
5078
5079 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5080 htab_eq_pointer,
5081 NULL, xcalloc, xfree));
5082 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5083 htab_eq_pointer,
5084 NULL, xcalloc, xfree));
5085
5086 /* The rule is CUs specify all the files, including those used by
5087 any TU, so there's no need to scan TUs here. */
5088
5089 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5090 {
5091 QUIT;
5092
5093 per_cu->v.quick->mark = 0;
5094
5095 /* We only need to look at symtabs not already expanded. */
5096 if (per_cu->v.quick->compunit_symtab)
5097 continue;
5098
5099 quick_file_names *file_data = dw2_get_file_names (per_cu);
5100 if (file_data == NULL)
5101 continue;
5102
5103 if (htab_find (visited_not_found.get (), file_data) != NULL)
5104 continue;
5105 else if (htab_find (visited_found.get (), file_data) != NULL)
5106 {
5107 per_cu->v.quick->mark = 1;
5108 continue;
5109 }
5110
5111 for (int j = 0; j < file_data->num_file_names; ++j)
5112 {
5113 const char *this_real_name;
5114
5115 if (file_matcher (file_data->file_names[j], false))
5116 {
5117 per_cu->v.quick->mark = 1;
5118 break;
5119 }
5120
5121 /* Before we invoke realpath, which can get expensive when many
5122 files are involved, do a quick comparison of the basenames. */
5123 if (!basenames_may_differ
5124 && !file_matcher (lbasename (file_data->file_names[j]),
5125 true))
5126 continue;
5127
5128 this_real_name = dw2_get_real_path (objfile, file_data, j);
5129 if (file_matcher (this_real_name, false))
5130 {
5131 per_cu->v.quick->mark = 1;
5132 break;
5133 }
5134 }
5135
5136 void **slot = htab_find_slot (per_cu->v.quick->mark
5137 ? visited_found.get ()
5138 : visited_not_found.get (),
5139 file_data, INSERT);
5140 *slot = file_data;
5141 }
5142 }
5143
5144 static void
5145 dw2_expand_symtabs_matching
5146 (struct objfile *objfile,
5147 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5148 const lookup_name_info &lookup_name,
5149 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5150 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5151 enum search_domain kind)
5152 {
5153 struct dwarf2_per_objfile *dwarf2_per_objfile
5154 = get_dwarf2_per_objfile (objfile);
5155
5156 /* index_table is NULL if OBJF_READNOW. */
5157 if (!dwarf2_per_objfile->index_table)
5158 return;
5159
5160 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5161
5162 mapped_index &index = *dwarf2_per_objfile->index_table;
5163
5164 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5165 symbol_matcher,
5166 kind, [&] (offset_type idx)
5167 {
5168 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5169 expansion_notify, kind);
5170 return true;
5171 });
5172 }
5173
5174 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5175 symtab. */
5176
5177 static struct compunit_symtab *
5178 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5179 CORE_ADDR pc)
5180 {
5181 int i;
5182
5183 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5184 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5185 return cust;
5186
5187 if (cust->includes == NULL)
5188 return NULL;
5189
5190 for (i = 0; cust->includes[i]; ++i)
5191 {
5192 struct compunit_symtab *s = cust->includes[i];
5193
5194 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5195 if (s != NULL)
5196 return s;
5197 }
5198
5199 return NULL;
5200 }
5201
5202 static struct compunit_symtab *
5203 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5204 struct bound_minimal_symbol msymbol,
5205 CORE_ADDR pc,
5206 struct obj_section *section,
5207 int warn_if_readin)
5208 {
5209 struct dwarf2_per_cu_data *data;
5210 struct compunit_symtab *result;
5211
5212 if (!objfile->partial_symtabs->psymtabs_addrmap)
5213 return NULL;
5214
5215 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5216 SECT_OFF_TEXT (objfile));
5217 data = (struct dwarf2_per_cu_data *) addrmap_find
5218 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5219 if (!data)
5220 return NULL;
5221
5222 if (warn_if_readin && data->v.quick->compunit_symtab)
5223 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5224 paddress (get_objfile_arch (objfile), pc));
5225
5226 result
5227 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5228 false),
5229 pc);
5230 gdb_assert (result != NULL);
5231 return result;
5232 }
5233
5234 static void
5235 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5236 void *data, int need_fullname)
5237 {
5238 struct dwarf2_per_objfile *dwarf2_per_objfile
5239 = get_dwarf2_per_objfile (objfile);
5240
5241 if (!dwarf2_per_objfile->filenames_cache)
5242 {
5243 dwarf2_per_objfile->filenames_cache.emplace ();
5244
5245 htab_up visited (htab_create_alloc (10,
5246 htab_hash_pointer, htab_eq_pointer,
5247 NULL, xcalloc, xfree));
5248
5249 /* The rule is CUs specify all the files, including those used
5250 by any TU, so there's no need to scan TUs here. We can
5251 ignore file names coming from already-expanded CUs. */
5252
5253 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5254 {
5255 if (per_cu->v.quick->compunit_symtab)
5256 {
5257 void **slot = htab_find_slot (visited.get (),
5258 per_cu->v.quick->file_names,
5259 INSERT);
5260
5261 *slot = per_cu->v.quick->file_names;
5262 }
5263 }
5264
5265 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5266 {
5267 /* We only need to look at symtabs not already expanded. */
5268 if (per_cu->v.quick->compunit_symtab)
5269 continue;
5270
5271 quick_file_names *file_data = dw2_get_file_names (per_cu);
5272 if (file_data == NULL)
5273 continue;
5274
5275 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5276 if (*slot)
5277 {
5278 /* Already visited. */
5279 continue;
5280 }
5281 *slot = file_data;
5282
5283 for (int j = 0; j < file_data->num_file_names; ++j)
5284 {
5285 const char *filename = file_data->file_names[j];
5286 dwarf2_per_objfile->filenames_cache->seen (filename);
5287 }
5288 }
5289 }
5290
5291 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5292 {
5293 gdb::unique_xmalloc_ptr<char> this_real_name;
5294
5295 if (need_fullname)
5296 this_real_name = gdb_realpath (filename);
5297 (*fun) (filename, this_real_name.get (), data);
5298 });
5299 }
5300
5301 static int
5302 dw2_has_symbols (struct objfile *objfile)
5303 {
5304 return 1;
5305 }
5306
5307 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5308 {
5309 dw2_has_symbols,
5310 dw2_find_last_source_symtab,
5311 dw2_forget_cached_source_info,
5312 dw2_map_symtabs_matching_filename,
5313 dw2_lookup_symbol,
5314 dw2_print_stats,
5315 dw2_dump,
5316 dw2_expand_symtabs_for_function,
5317 dw2_expand_all_symtabs,
5318 dw2_expand_symtabs_with_fullname,
5319 dw2_map_matching_symbols,
5320 dw2_expand_symtabs_matching,
5321 dw2_find_pc_sect_compunit_symtab,
5322 NULL,
5323 dw2_map_symbol_filenames
5324 };
5325
5326 /* DWARF-5 debug_names reader. */
5327
5328 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5329 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5330
5331 /* A helper function that reads the .debug_names section in SECTION
5332 and fills in MAP. FILENAME is the name of the file containing the
5333 section; it is used for error reporting.
5334
5335 Returns true if all went well, false otherwise. */
5336
5337 static bool
5338 read_debug_names_from_section (struct objfile *objfile,
5339 const char *filename,
5340 struct dwarf2_section_info *section,
5341 mapped_debug_names &map)
5342 {
5343 if (dwarf2_section_empty_p (section))
5344 return false;
5345
5346 /* Older elfutils strip versions could keep the section in the main
5347 executable while splitting it for the separate debug info file. */
5348 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5349 return false;
5350
5351 dwarf2_read_section (objfile, section);
5352
5353 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5354
5355 const gdb_byte *addr = section->buffer;
5356
5357 bfd *const abfd = get_section_bfd_owner (section);
5358
5359 unsigned int bytes_read;
5360 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5361 addr += bytes_read;
5362
5363 map.dwarf5_is_dwarf64 = bytes_read != 4;
5364 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5365 if (bytes_read + length != section->size)
5366 {
5367 /* There may be multiple per-CU indices. */
5368 warning (_("Section .debug_names in %s length %s does not match "
5369 "section length %s, ignoring .debug_names."),
5370 filename, plongest (bytes_read + length),
5371 pulongest (section->size));
5372 return false;
5373 }
5374
5375 /* The version number. */
5376 uint16_t version = read_2_bytes (abfd, addr);
5377 addr += 2;
5378 if (version != 5)
5379 {
5380 warning (_("Section .debug_names in %s has unsupported version %d, "
5381 "ignoring .debug_names."),
5382 filename, version);
5383 return false;
5384 }
5385
5386 /* Padding. */
5387 uint16_t padding = read_2_bytes (abfd, addr);
5388 addr += 2;
5389 if (padding != 0)
5390 {
5391 warning (_("Section .debug_names in %s has unsupported padding %d, "
5392 "ignoring .debug_names."),
5393 filename, padding);
5394 return false;
5395 }
5396
5397 /* comp_unit_count - The number of CUs in the CU list. */
5398 map.cu_count = read_4_bytes (abfd, addr);
5399 addr += 4;
5400
5401 /* local_type_unit_count - The number of TUs in the local TU
5402 list. */
5403 map.tu_count = read_4_bytes (abfd, addr);
5404 addr += 4;
5405
5406 /* foreign_type_unit_count - The number of TUs in the foreign TU
5407 list. */
5408 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5409 addr += 4;
5410 if (foreign_tu_count != 0)
5411 {
5412 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5413 "ignoring .debug_names."),
5414 filename, static_cast<unsigned long> (foreign_tu_count));
5415 return false;
5416 }
5417
5418 /* bucket_count - The number of hash buckets in the hash lookup
5419 table. */
5420 map.bucket_count = read_4_bytes (abfd, addr);
5421 addr += 4;
5422
5423 /* name_count - The number of unique names in the index. */
5424 map.name_count = read_4_bytes (abfd, addr);
5425 addr += 4;
5426
5427 /* abbrev_table_size - The size in bytes of the abbreviations
5428 table. */
5429 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* augmentation_string_size - The size in bytes of the augmentation
5433 string. This value is rounded up to a multiple of 4. */
5434 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5435 addr += 4;
5436 map.augmentation_is_gdb = ((augmentation_string_size
5437 == sizeof (dwarf5_augmentation))
5438 && memcmp (addr, dwarf5_augmentation,
5439 sizeof (dwarf5_augmentation)) == 0);
5440 augmentation_string_size += (-augmentation_string_size) & 3;
5441 addr += augmentation_string_size;
5442
5443 /* List of CUs */
5444 map.cu_table_reordered = addr;
5445 addr += map.cu_count * map.offset_size;
5446
5447 /* List of Local TUs */
5448 map.tu_table_reordered = addr;
5449 addr += map.tu_count * map.offset_size;
5450
5451 /* Hash Lookup Table */
5452 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5453 addr += map.bucket_count * 4;
5454 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5455 addr += map.name_count * 4;
5456
5457 /* Name Table */
5458 map.name_table_string_offs_reordered = addr;
5459 addr += map.name_count * map.offset_size;
5460 map.name_table_entry_offs_reordered = addr;
5461 addr += map.name_count * map.offset_size;
5462
5463 const gdb_byte *abbrev_table_start = addr;
5464 for (;;)
5465 {
5466 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5467 addr += bytes_read;
5468 if (index_num == 0)
5469 break;
5470
5471 const auto insertpair
5472 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5473 if (!insertpair.second)
5474 {
5475 warning (_("Section .debug_names in %s has duplicate index %s, "
5476 "ignoring .debug_names."),
5477 filename, pulongest (index_num));
5478 return false;
5479 }
5480 mapped_debug_names::index_val &indexval = insertpair.first->second;
5481 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5482 addr += bytes_read;
5483
5484 for (;;)
5485 {
5486 mapped_debug_names::index_val::attr attr;
5487 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5488 addr += bytes_read;
5489 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5490 addr += bytes_read;
5491 if (attr.form == DW_FORM_implicit_const)
5492 {
5493 attr.implicit_const = read_signed_leb128 (abfd, addr,
5494 &bytes_read);
5495 addr += bytes_read;
5496 }
5497 if (attr.dw_idx == 0 && attr.form == 0)
5498 break;
5499 indexval.attr_vec.push_back (std::move (attr));
5500 }
5501 }
5502 if (addr != abbrev_table_start + abbrev_table_size)
5503 {
5504 warning (_("Section .debug_names in %s has abbreviation_table "
5505 "of size %s vs. written as %u, ignoring .debug_names."),
5506 filename, plongest (addr - abbrev_table_start),
5507 abbrev_table_size);
5508 return false;
5509 }
5510 map.entry_pool = addr;
5511
5512 return true;
5513 }
5514
5515 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5516 list. */
5517
5518 static void
5519 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5520 const mapped_debug_names &map,
5521 dwarf2_section_info &section,
5522 bool is_dwz)
5523 {
5524 sect_offset sect_off_prev;
5525 for (uint32_t i = 0; i <= map.cu_count; ++i)
5526 {
5527 sect_offset sect_off_next;
5528 if (i < map.cu_count)
5529 {
5530 sect_off_next
5531 = (sect_offset) (extract_unsigned_integer
5532 (map.cu_table_reordered + i * map.offset_size,
5533 map.offset_size,
5534 map.dwarf5_byte_order));
5535 }
5536 else
5537 sect_off_next = (sect_offset) section.size;
5538 if (i >= 1)
5539 {
5540 const ULONGEST length = sect_off_next - sect_off_prev;
5541 dwarf2_per_cu_data *per_cu
5542 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5543 sect_off_prev, length);
5544 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5545 }
5546 sect_off_prev = sect_off_next;
5547 }
5548 }
5549
5550 /* Read the CU list from the mapped index, and use it to create all
5551 the CU objects for this dwarf2_per_objfile. */
5552
5553 static void
5554 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5555 const mapped_debug_names &map,
5556 const mapped_debug_names &dwz_map)
5557 {
5558 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5559 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5560
5561 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5562 dwarf2_per_objfile->info,
5563 false /* is_dwz */);
5564
5565 if (dwz_map.cu_count == 0)
5566 return;
5567
5568 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5569 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5570 true /* is_dwz */);
5571 }
5572
5573 /* Read .debug_names. If everything went ok, initialize the "quick"
5574 elements of all the CUs and return true. Otherwise, return false. */
5575
5576 static bool
5577 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5578 {
5579 std::unique_ptr<mapped_debug_names> map
5580 (new mapped_debug_names (dwarf2_per_objfile));
5581 mapped_debug_names dwz_map (dwarf2_per_objfile);
5582 struct objfile *objfile = dwarf2_per_objfile->objfile;
5583
5584 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5585 &dwarf2_per_objfile->debug_names,
5586 *map))
5587 return false;
5588
5589 /* Don't use the index if it's empty. */
5590 if (map->name_count == 0)
5591 return false;
5592
5593 /* If there is a .dwz file, read it so we can get its CU list as
5594 well. */
5595 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5596 if (dwz != NULL)
5597 {
5598 if (!read_debug_names_from_section (objfile,
5599 bfd_get_filename (dwz->dwz_bfd.get ()),
5600 &dwz->debug_names, dwz_map))
5601 {
5602 warning (_("could not read '.debug_names' section from %s; skipping"),
5603 bfd_get_filename (dwz->dwz_bfd.get ()));
5604 return false;
5605 }
5606 }
5607
5608 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5609
5610 if (map->tu_count != 0)
5611 {
5612 /* We can only handle a single .debug_types when we have an
5613 index. */
5614 if (dwarf2_per_objfile->types.size () != 1)
5615 return false;
5616
5617 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5618
5619 create_signatured_type_table_from_debug_names
5620 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5621 }
5622
5623 create_addrmap_from_aranges (dwarf2_per_objfile,
5624 &dwarf2_per_objfile->debug_aranges);
5625
5626 dwarf2_per_objfile->debug_names_table = std::move (map);
5627 dwarf2_per_objfile->using_index = 1;
5628 dwarf2_per_objfile->quick_file_names_table =
5629 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5630
5631 return true;
5632 }
5633
5634 /* Type used to manage iterating over all CUs looking for a symbol for
5635 .debug_names. */
5636
5637 class dw2_debug_names_iterator
5638 {
5639 public:
5640 dw2_debug_names_iterator (const mapped_debug_names &map,
5641 gdb::optional<block_enum> block_index,
5642 domain_enum domain,
5643 const char *name)
5644 : m_map (map), m_block_index (block_index), m_domain (domain),
5645 m_addr (find_vec_in_debug_names (map, name))
5646 {}
5647
5648 dw2_debug_names_iterator (const mapped_debug_names &map,
5649 search_domain search, uint32_t namei)
5650 : m_map (map),
5651 m_search (search),
5652 m_addr (find_vec_in_debug_names (map, namei))
5653 {}
5654
5655 dw2_debug_names_iterator (const mapped_debug_names &map,
5656 block_enum block_index, domain_enum domain,
5657 uint32_t namei)
5658 : m_map (map), m_block_index (block_index), m_domain (domain),
5659 m_addr (find_vec_in_debug_names (map, namei))
5660 {}
5661
5662 /* Return the next matching CU or NULL if there are no more. */
5663 dwarf2_per_cu_data *next ();
5664
5665 private:
5666 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5667 const char *name);
5668 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5669 uint32_t namei);
5670
5671 /* The internalized form of .debug_names. */
5672 const mapped_debug_names &m_map;
5673
5674 /* If set, only look for symbols that match that block. Valid values are
5675 GLOBAL_BLOCK and STATIC_BLOCK. */
5676 const gdb::optional<block_enum> m_block_index;
5677
5678 /* The kind of symbol we're looking for. */
5679 const domain_enum m_domain = UNDEF_DOMAIN;
5680 const search_domain m_search = ALL_DOMAIN;
5681
5682 /* The list of CUs from the index entry of the symbol, or NULL if
5683 not found. */
5684 const gdb_byte *m_addr;
5685 };
5686
5687 const char *
5688 mapped_debug_names::namei_to_name (uint32_t namei) const
5689 {
5690 const ULONGEST namei_string_offs
5691 = extract_unsigned_integer ((name_table_string_offs_reordered
5692 + namei * offset_size),
5693 offset_size,
5694 dwarf5_byte_order);
5695 return read_indirect_string_at_offset
5696 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5697 }
5698
5699 /* Find a slot in .debug_names for the object named NAME. If NAME is
5700 found, return pointer to its pool data. If NAME cannot be found,
5701 return NULL. */
5702
5703 const gdb_byte *
5704 dw2_debug_names_iterator::find_vec_in_debug_names
5705 (const mapped_debug_names &map, const char *name)
5706 {
5707 int (*cmp) (const char *, const char *);
5708
5709 gdb::unique_xmalloc_ptr<char> without_params;
5710 if (current_language->la_language == language_cplus
5711 || current_language->la_language == language_fortran
5712 || current_language->la_language == language_d)
5713 {
5714 /* NAME is already canonical. Drop any qualifiers as
5715 .debug_names does not contain any. */
5716
5717 if (strchr (name, '(') != NULL)
5718 {
5719 without_params = cp_remove_params (name);
5720 if (without_params != NULL)
5721 name = without_params.get ();
5722 }
5723 }
5724
5725 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5726
5727 const uint32_t full_hash = dwarf5_djb_hash (name);
5728 uint32_t namei
5729 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5730 (map.bucket_table_reordered
5731 + (full_hash % map.bucket_count)), 4,
5732 map.dwarf5_byte_order);
5733 if (namei == 0)
5734 return NULL;
5735 --namei;
5736 if (namei >= map.name_count)
5737 {
5738 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5739 "[in module %s]"),
5740 namei, map.name_count,
5741 objfile_name (map.dwarf2_per_objfile->objfile));
5742 return NULL;
5743 }
5744
5745 for (;;)
5746 {
5747 const uint32_t namei_full_hash
5748 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5749 (map.hash_table_reordered + namei), 4,
5750 map.dwarf5_byte_order);
5751 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5752 return NULL;
5753
5754 if (full_hash == namei_full_hash)
5755 {
5756 const char *const namei_string = map.namei_to_name (namei);
5757
5758 #if 0 /* An expensive sanity check. */
5759 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5760 {
5761 complaint (_("Wrong .debug_names hash for string at index %u "
5762 "[in module %s]"),
5763 namei, objfile_name (dwarf2_per_objfile->objfile));
5764 return NULL;
5765 }
5766 #endif
5767
5768 if (cmp (namei_string, name) == 0)
5769 {
5770 const ULONGEST namei_entry_offs
5771 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5772 + namei * map.offset_size),
5773 map.offset_size, map.dwarf5_byte_order);
5774 return map.entry_pool + namei_entry_offs;
5775 }
5776 }
5777
5778 ++namei;
5779 if (namei >= map.name_count)
5780 return NULL;
5781 }
5782 }
5783
5784 const gdb_byte *
5785 dw2_debug_names_iterator::find_vec_in_debug_names
5786 (const mapped_debug_names &map, uint32_t namei)
5787 {
5788 if (namei >= map.name_count)
5789 {
5790 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5791 "[in module %s]"),
5792 namei, map.name_count,
5793 objfile_name (map.dwarf2_per_objfile->objfile));
5794 return NULL;
5795 }
5796
5797 const ULONGEST namei_entry_offs
5798 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5799 + namei * map.offset_size),
5800 map.offset_size, map.dwarf5_byte_order);
5801 return map.entry_pool + namei_entry_offs;
5802 }
5803
5804 /* See dw2_debug_names_iterator. */
5805
5806 dwarf2_per_cu_data *
5807 dw2_debug_names_iterator::next ()
5808 {
5809 if (m_addr == NULL)
5810 return NULL;
5811
5812 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5813 struct objfile *objfile = dwarf2_per_objfile->objfile;
5814 bfd *const abfd = objfile->obfd;
5815
5816 again:
5817
5818 unsigned int bytes_read;
5819 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5820 m_addr += bytes_read;
5821 if (abbrev == 0)
5822 return NULL;
5823
5824 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5825 if (indexval_it == m_map.abbrev_map.cend ())
5826 {
5827 complaint (_("Wrong .debug_names undefined abbrev code %s "
5828 "[in module %s]"),
5829 pulongest (abbrev), objfile_name (objfile));
5830 return NULL;
5831 }
5832 const mapped_debug_names::index_val &indexval = indexval_it->second;
5833 enum class symbol_linkage {
5834 unknown,
5835 static_,
5836 extern_,
5837 } symbol_linkage_ = symbol_linkage::unknown;
5838 dwarf2_per_cu_data *per_cu = NULL;
5839 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5840 {
5841 ULONGEST ull;
5842 switch (attr.form)
5843 {
5844 case DW_FORM_implicit_const:
5845 ull = attr.implicit_const;
5846 break;
5847 case DW_FORM_flag_present:
5848 ull = 1;
5849 break;
5850 case DW_FORM_udata:
5851 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5852 m_addr += bytes_read;
5853 break;
5854 default:
5855 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5856 dwarf_form_name (attr.form),
5857 objfile_name (objfile));
5858 return NULL;
5859 }
5860 switch (attr.dw_idx)
5861 {
5862 case DW_IDX_compile_unit:
5863 /* Don't crash on bad data. */
5864 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5865 {
5866 complaint (_(".debug_names entry has bad CU index %s"
5867 " [in module %s]"),
5868 pulongest (ull),
5869 objfile_name (dwarf2_per_objfile->objfile));
5870 continue;
5871 }
5872 per_cu = dwarf2_per_objfile->get_cutu (ull);
5873 break;
5874 case DW_IDX_type_unit:
5875 /* Don't crash on bad data. */
5876 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5877 {
5878 complaint (_(".debug_names entry has bad TU index %s"
5879 " [in module %s]"),
5880 pulongest (ull),
5881 objfile_name (dwarf2_per_objfile->objfile));
5882 continue;
5883 }
5884 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5885 break;
5886 case DW_IDX_GNU_internal:
5887 if (!m_map.augmentation_is_gdb)
5888 break;
5889 symbol_linkage_ = symbol_linkage::static_;
5890 break;
5891 case DW_IDX_GNU_external:
5892 if (!m_map.augmentation_is_gdb)
5893 break;
5894 symbol_linkage_ = symbol_linkage::extern_;
5895 break;
5896 }
5897 }
5898
5899 /* Skip if already read in. */
5900 if (per_cu->v.quick->compunit_symtab)
5901 goto again;
5902
5903 /* Check static vs global. */
5904 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5905 {
5906 const bool want_static = *m_block_index == STATIC_BLOCK;
5907 const bool symbol_is_static =
5908 symbol_linkage_ == symbol_linkage::static_;
5909 if (want_static != symbol_is_static)
5910 goto again;
5911 }
5912
5913 /* Match dw2_symtab_iter_next, symbol_kind
5914 and debug_names::psymbol_tag. */
5915 switch (m_domain)
5916 {
5917 case VAR_DOMAIN:
5918 switch (indexval.dwarf_tag)
5919 {
5920 case DW_TAG_variable:
5921 case DW_TAG_subprogram:
5922 /* Some types are also in VAR_DOMAIN. */
5923 case DW_TAG_typedef:
5924 case DW_TAG_structure_type:
5925 break;
5926 default:
5927 goto again;
5928 }
5929 break;
5930 case STRUCT_DOMAIN:
5931 switch (indexval.dwarf_tag)
5932 {
5933 case DW_TAG_typedef:
5934 case DW_TAG_structure_type:
5935 break;
5936 default:
5937 goto again;
5938 }
5939 break;
5940 case LABEL_DOMAIN:
5941 switch (indexval.dwarf_tag)
5942 {
5943 case 0:
5944 case DW_TAG_variable:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 default:
5951 break;
5952 }
5953
5954 /* Match dw2_expand_symtabs_matching, symbol_kind and
5955 debug_names::psymbol_tag. */
5956 switch (m_search)
5957 {
5958 case VARIABLES_DOMAIN:
5959 switch (indexval.dwarf_tag)
5960 {
5961 case DW_TAG_variable:
5962 break;
5963 default:
5964 goto again;
5965 }
5966 break;
5967 case FUNCTIONS_DOMAIN:
5968 switch (indexval.dwarf_tag)
5969 {
5970 case DW_TAG_subprogram:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case TYPES_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case DW_TAG_typedef:
5980 case DW_TAG_structure_type:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 return per_cu;
5991 }
5992
5993 static struct compunit_symtab *
5994 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5995 const char *name, domain_enum domain)
5996 {
5997 struct dwarf2_per_objfile *dwarf2_per_objfile
5998 = get_dwarf2_per_objfile (objfile);
5999
6000 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6001 if (!mapp)
6002 {
6003 /* index is NULL if OBJF_READNOW. */
6004 return NULL;
6005 }
6006 const auto &map = *mapp;
6007
6008 dw2_debug_names_iterator iter (map, block_index, domain, name);
6009
6010 struct compunit_symtab *stab_best = NULL;
6011 struct dwarf2_per_cu_data *per_cu;
6012 while ((per_cu = iter.next ()) != NULL)
6013 {
6014 struct symbol *sym, *with_opaque = NULL;
6015 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6016 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6017 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6018
6019 sym = block_find_symbol (block, name, domain,
6020 block_find_non_opaque_type_preferred,
6021 &with_opaque);
6022
6023 /* Some caution must be observed with overloaded functions and
6024 methods, since the index will not contain any overload
6025 information (but NAME might contain it). */
6026
6027 if (sym != NULL
6028 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6029 return stab;
6030 if (with_opaque != NULL
6031 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6032 stab_best = stab;
6033
6034 /* Keep looking through other CUs. */
6035 }
6036
6037 return stab_best;
6038 }
6039
6040 /* This dumps minimal information about .debug_names. It is called
6041 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6042 uses this to verify that .debug_names has been loaded. */
6043
6044 static void
6045 dw2_debug_names_dump (struct objfile *objfile)
6046 {
6047 struct dwarf2_per_objfile *dwarf2_per_objfile
6048 = get_dwarf2_per_objfile (objfile);
6049
6050 gdb_assert (dwarf2_per_objfile->using_index);
6051 printf_filtered (".debug_names:");
6052 if (dwarf2_per_objfile->debug_names_table)
6053 printf_filtered (" exists\n");
6054 else
6055 printf_filtered (" faked for \"readnow\"\n");
6056 printf_filtered ("\n");
6057 }
6058
6059 static void
6060 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6061 const char *func_name)
6062 {
6063 struct dwarf2_per_objfile *dwarf2_per_objfile
6064 = get_dwarf2_per_objfile (objfile);
6065
6066 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6067 if (dwarf2_per_objfile->debug_names_table)
6068 {
6069 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6070
6071 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6072
6073 struct dwarf2_per_cu_data *per_cu;
6074 while ((per_cu = iter.next ()) != NULL)
6075 dw2_instantiate_symtab (per_cu, false);
6076 }
6077 }
6078
6079 static void
6080 dw2_debug_names_map_matching_symbols
6081 (struct objfile *objfile,
6082 const lookup_name_info &name, domain_enum domain,
6083 int global,
6084 gdb::function_view<symbol_found_callback_ftype> callback,
6085 symbol_compare_ftype *ordered_compare)
6086 {
6087 struct dwarf2_per_objfile *dwarf2_per_objfile
6088 = get_dwarf2_per_objfile (objfile);
6089
6090 /* debug_names_table is NULL if OBJF_READNOW. */
6091 if (!dwarf2_per_objfile->debug_names_table)
6092 return;
6093
6094 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6095 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6096
6097 const char *match_name = name.ada ().lookup_name ().c_str ();
6098 auto matcher = [&] (const char *symname)
6099 {
6100 if (ordered_compare == nullptr)
6101 return true;
6102 return ordered_compare (symname, match_name) == 0;
6103 };
6104
6105 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6106 [&] (offset_type namei)
6107 {
6108 /* The name was matched, now expand corresponding CUs that were
6109 marked. */
6110 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6115 return true;
6116 });
6117
6118 /* It's a shame we couldn't do this inside the
6119 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6120 that have already been expanded. Instead, this loop matches what
6121 the psymtab code does. */
6122 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6123 {
6124 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6125 if (cust != nullptr)
6126 {
6127 const struct block *block
6128 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6129 if (!iterate_over_symbols_terminated (block, name,
6130 domain, callback))
6131 break;
6132 }
6133 }
6134 }
6135
6136 static void
6137 dw2_debug_names_expand_symtabs_matching
6138 (struct objfile *objfile,
6139 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6140 const lookup_name_info &lookup_name,
6141 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6142 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6143 enum search_domain kind)
6144 {
6145 struct dwarf2_per_objfile *dwarf2_per_objfile
6146 = get_dwarf2_per_objfile (objfile);
6147
6148 /* debug_names_table is NULL if OBJF_READNOW. */
6149 if (!dwarf2_per_objfile->debug_names_table)
6150 return;
6151
6152 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6153
6154 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6155
6156 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6157 symbol_matcher,
6158 kind, [&] (offset_type namei)
6159 {
6160 /* The name was matched, now expand corresponding CUs that were
6161 marked. */
6162 dw2_debug_names_iterator iter (map, kind, namei);
6163
6164 struct dwarf2_per_cu_data *per_cu;
6165 while ((per_cu = iter.next ()) != NULL)
6166 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6167 expansion_notify);
6168 return true;
6169 });
6170 }
6171
6172 const struct quick_symbol_functions dwarf2_debug_names_functions =
6173 {
6174 dw2_has_symbols,
6175 dw2_find_last_source_symtab,
6176 dw2_forget_cached_source_info,
6177 dw2_map_symtabs_matching_filename,
6178 dw2_debug_names_lookup_symbol,
6179 dw2_print_stats,
6180 dw2_debug_names_dump,
6181 dw2_debug_names_expand_symtabs_for_function,
6182 dw2_expand_all_symtabs,
6183 dw2_expand_symtabs_with_fullname,
6184 dw2_debug_names_map_matching_symbols,
6185 dw2_debug_names_expand_symtabs_matching,
6186 dw2_find_pc_sect_compunit_symtab,
6187 NULL,
6188 dw2_map_symbol_filenames
6189 };
6190
6191 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6192 to either a dwarf2_per_objfile or dwz_file object. */
6193
6194 template <typename T>
6195 static gdb::array_view<const gdb_byte>
6196 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6197 {
6198 dwarf2_section_info *section = &section_owner->gdb_index;
6199
6200 if (dwarf2_section_empty_p (section))
6201 return {};
6202
6203 /* Older elfutils strip versions could keep the section in the main
6204 executable while splitting it for the separate debug info file. */
6205 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6206 return {};
6207
6208 dwarf2_read_section (obj, section);
6209
6210 /* dwarf2_section_info::size is a bfd_size_type, while
6211 gdb::array_view works with size_t. On 32-bit hosts, with
6212 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6213 is 32-bit. So we need an explicit narrowing conversion here.
6214 This is fine, because it's impossible to allocate or mmap an
6215 array/buffer larger than what size_t can represent. */
6216 return gdb::make_array_view (section->buffer, section->size);
6217 }
6218
6219 /* Lookup the index cache for the contents of the index associated to
6220 DWARF2_OBJ. */
6221
6222 static gdb::array_view<const gdb_byte>
6223 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6224 {
6225 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6226 if (build_id == nullptr)
6227 return {};
6228
6229 return global_index_cache.lookup_gdb_index (build_id,
6230 &dwarf2_obj->index_cache_res);
6231 }
6232
6233 /* Same as the above, but for DWZ. */
6234
6235 static gdb::array_view<const gdb_byte>
6236 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6237 {
6238 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6239 if (build_id == nullptr)
6240 return {};
6241
6242 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6243 }
6244
6245 /* See symfile.h. */
6246
6247 bool
6248 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6249 {
6250 struct dwarf2_per_objfile *dwarf2_per_objfile
6251 = get_dwarf2_per_objfile (objfile);
6252
6253 /* If we're about to read full symbols, don't bother with the
6254 indices. In this case we also don't care if some other debug
6255 format is making psymtabs, because they are all about to be
6256 expanded anyway. */
6257 if ((objfile->flags & OBJF_READNOW))
6258 {
6259 dwarf2_per_objfile->using_index = 1;
6260 create_all_comp_units (dwarf2_per_objfile);
6261 create_all_type_units (dwarf2_per_objfile);
6262 dwarf2_per_objfile->quick_file_names_table
6263 = create_quick_file_names_table
6264 (dwarf2_per_objfile->all_comp_units.size ());
6265
6266 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6267 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6268 {
6269 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6270
6271 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6272 struct dwarf2_per_cu_quick_data);
6273 }
6274
6275 /* Return 1 so that gdb sees the "quick" functions. However,
6276 these functions will be no-ops because we will have expanded
6277 all symtabs. */
6278 *index_kind = dw_index_kind::GDB_INDEX;
6279 return true;
6280 }
6281
6282 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6283 {
6284 *index_kind = dw_index_kind::DEBUG_NAMES;
6285 return true;
6286 }
6287
6288 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6289 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6290 get_gdb_index_contents_from_section<dwz_file>))
6291 {
6292 *index_kind = dw_index_kind::GDB_INDEX;
6293 return true;
6294 }
6295
6296 /* ... otherwise, try to find the index in the index cache. */
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_cache,
6299 get_gdb_index_contents_from_cache_dwz))
6300 {
6301 global_index_cache.hit ();
6302 *index_kind = dw_index_kind::GDB_INDEX;
6303 return true;
6304 }
6305
6306 global_index_cache.miss ();
6307 return false;
6308 }
6309
6310 \f
6311
6312 /* Build a partial symbol table. */
6313
6314 void
6315 dwarf2_build_psymtabs (struct objfile *objfile)
6316 {
6317 struct dwarf2_per_objfile *dwarf2_per_objfile
6318 = get_dwarf2_per_objfile (objfile);
6319
6320 init_psymbol_list (objfile, 1024);
6321
6322 try
6323 {
6324 /* This isn't really ideal: all the data we allocate on the
6325 objfile's obstack is still uselessly kept around. However,
6326 freeing it seems unsafe. */
6327 psymtab_discarder psymtabs (objfile);
6328 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6329 psymtabs.keep ();
6330
6331 /* (maybe) store an index in the cache. */
6332 global_index_cache.store (dwarf2_per_objfile);
6333 }
6334 catch (const gdb_exception_error &except)
6335 {
6336 exception_print (gdb_stderr, except);
6337 }
6338 }
6339
6340 /* Return the total length of the CU described by HEADER. */
6341
6342 static unsigned int
6343 get_cu_length (const struct comp_unit_head *header)
6344 {
6345 return header->initial_length_size + header->length;
6346 }
6347
6348 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6349
6350 static inline bool
6351 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6352 {
6353 sect_offset bottom = cu_header->sect_off;
6354 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6355
6356 return sect_off >= bottom && sect_off < top;
6357 }
6358
6359 /* Find the base address of the compilation unit for range lists and
6360 location lists. It will normally be specified by DW_AT_low_pc.
6361 In DWARF-3 draft 4, the base address could be overridden by
6362 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6363 compilation units with discontinuous ranges. */
6364
6365 static void
6366 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6367 {
6368 struct attribute *attr;
6369
6370 cu->base_known = 0;
6371 cu->base_address = 0;
6372
6373 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6374 if (attr)
6375 {
6376 cu->base_address = attr_value_as_address (attr);
6377 cu->base_known = 1;
6378 }
6379 else
6380 {
6381 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6382 if (attr)
6383 {
6384 cu->base_address = attr_value_as_address (attr);
6385 cu->base_known = 1;
6386 }
6387 }
6388 }
6389
6390 /* Read in the comp unit header information from the debug_info at info_ptr.
6391 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6392 NOTE: This leaves members offset, first_die_offset to be filled in
6393 by the caller. */
6394
6395 static const gdb_byte *
6396 read_comp_unit_head (struct comp_unit_head *cu_header,
6397 const gdb_byte *info_ptr,
6398 struct dwarf2_section_info *section,
6399 rcuh_kind section_kind)
6400 {
6401 int signed_addr;
6402 unsigned int bytes_read;
6403 const char *filename = get_section_file_name (section);
6404 bfd *abfd = get_section_bfd_owner (section);
6405
6406 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6407 cu_header->initial_length_size = bytes_read;
6408 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6409 info_ptr += bytes_read;
6410 cu_header->version = read_2_bytes (abfd, info_ptr);
6411 if (cu_header->version < 2 || cu_header->version > 5)
6412 error (_("Dwarf Error: wrong version in compilation unit header "
6413 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6414 cu_header->version, filename);
6415 info_ptr += 2;
6416 if (cu_header->version < 5)
6417 switch (section_kind)
6418 {
6419 case rcuh_kind::COMPILE:
6420 cu_header->unit_type = DW_UT_compile;
6421 break;
6422 case rcuh_kind::TYPE:
6423 cu_header->unit_type = DW_UT_type;
6424 break;
6425 default:
6426 internal_error (__FILE__, __LINE__,
6427 _("read_comp_unit_head: invalid section_kind"));
6428 }
6429 else
6430 {
6431 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6432 (read_1_byte (abfd, info_ptr));
6433 info_ptr += 1;
6434 switch (cu_header->unit_type)
6435 {
6436 case DW_UT_compile:
6437 case DW_UT_partial:
6438 case DW_UT_skeleton:
6439 case DW_UT_split_compile:
6440 if (section_kind != rcuh_kind::COMPILE)
6441 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6442 "(is %s, should be %s) [in module %s]"),
6443 dwarf_unit_type_name (cu_header->unit_type),
6444 dwarf_unit_type_name (DW_UT_type), filename);
6445 break;
6446 case DW_UT_type:
6447 case DW_UT_split_type:
6448 section_kind = rcuh_kind::TYPE;
6449 break;
6450 default:
6451 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6452 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6453 "[in module %s]"), cu_header->unit_type,
6454 dwarf_unit_type_name (DW_UT_compile),
6455 dwarf_unit_type_name (DW_UT_skeleton),
6456 dwarf_unit_type_name (DW_UT_split_compile),
6457 dwarf_unit_type_name (DW_UT_type),
6458 dwarf_unit_type_name (DW_UT_split_type), filename);
6459 }
6460
6461 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6462 info_ptr += 1;
6463 }
6464 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6465 cu_header,
6466 &bytes_read);
6467 info_ptr += bytes_read;
6468 if (cu_header->version < 5)
6469 {
6470 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6471 info_ptr += 1;
6472 }
6473 signed_addr = bfd_get_sign_extend_vma (abfd);
6474 if (signed_addr < 0)
6475 internal_error (__FILE__, __LINE__,
6476 _("read_comp_unit_head: dwarf from non elf file"));
6477 cu_header->signed_addr_p = signed_addr;
6478
6479 bool header_has_signature = section_kind == rcuh_kind::TYPE
6480 || cu_header->unit_type == DW_UT_skeleton
6481 || cu_header->unit_type == DW_UT_split_compile;
6482
6483 if (header_has_signature)
6484 {
6485 cu_header->signature = read_8_bytes (abfd, info_ptr);
6486 info_ptr += 8;
6487 }
6488
6489 if (section_kind == rcuh_kind::TYPE)
6490 {
6491 LONGEST type_offset;
6492 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6493 info_ptr += bytes_read;
6494 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6495 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6496 error (_("Dwarf Error: Too big type_offset in compilation unit "
6497 "header (is %s) [in module %s]"), plongest (type_offset),
6498 filename);
6499 }
6500
6501 return info_ptr;
6502 }
6503
6504 /* Helper function that returns the proper abbrev section for
6505 THIS_CU. */
6506
6507 static struct dwarf2_section_info *
6508 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6509 {
6510 struct dwarf2_section_info *abbrev;
6511 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6512
6513 if (this_cu->is_dwz)
6514 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6515 else
6516 abbrev = &dwarf2_per_objfile->abbrev;
6517
6518 return abbrev;
6519 }
6520
6521 /* Subroutine of read_and_check_comp_unit_head and
6522 read_and_check_type_unit_head to simplify them.
6523 Perform various error checking on the header. */
6524
6525 static void
6526 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6527 struct comp_unit_head *header,
6528 struct dwarf2_section_info *section,
6529 struct dwarf2_section_info *abbrev_section)
6530 {
6531 const char *filename = get_section_file_name (section);
6532
6533 if (to_underlying (header->abbrev_sect_off)
6534 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6535 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6536 "(offset %s + 6) [in module %s]"),
6537 sect_offset_str (header->abbrev_sect_off),
6538 sect_offset_str (header->sect_off),
6539 filename);
6540
6541 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6542 avoid potential 32-bit overflow. */
6543 if (((ULONGEST) header->sect_off + get_cu_length (header))
6544 > section->size)
6545 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6546 "(offset %s + 0) [in module %s]"),
6547 header->length, sect_offset_str (header->sect_off),
6548 filename);
6549 }
6550
6551 /* Read in a CU/TU header and perform some basic error checking.
6552 The contents of the header are stored in HEADER.
6553 The result is a pointer to the start of the first DIE. */
6554
6555 static const gdb_byte *
6556 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6557 struct comp_unit_head *header,
6558 struct dwarf2_section_info *section,
6559 struct dwarf2_section_info *abbrev_section,
6560 const gdb_byte *info_ptr,
6561 rcuh_kind section_kind)
6562 {
6563 const gdb_byte *beg_of_comp_unit = info_ptr;
6564
6565 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6566
6567 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6568
6569 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6570
6571 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6572 abbrev_section);
6573
6574 return info_ptr;
6575 }
6576
6577 /* Fetch the abbreviation table offset from a comp or type unit header. */
6578
6579 static sect_offset
6580 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6581 struct dwarf2_section_info *section,
6582 sect_offset sect_off)
6583 {
6584 bfd *abfd = get_section_bfd_owner (section);
6585 const gdb_byte *info_ptr;
6586 unsigned int initial_length_size, offset_size;
6587 uint16_t version;
6588
6589 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6590 info_ptr = section->buffer + to_underlying (sect_off);
6591 read_initial_length (abfd, info_ptr, &initial_length_size);
6592 offset_size = initial_length_size == 4 ? 4 : 8;
6593 info_ptr += initial_length_size;
6594
6595 version = read_2_bytes (abfd, info_ptr);
6596 info_ptr += 2;
6597 if (version >= 5)
6598 {
6599 /* Skip unit type and address size. */
6600 info_ptr += 2;
6601 }
6602
6603 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6604 }
6605
6606 /* Allocate a new partial symtab for file named NAME and mark this new
6607 partial symtab as being an include of PST. */
6608
6609 static void
6610 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6611 struct objfile *objfile)
6612 {
6613 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6614
6615 if (!IS_ABSOLUTE_PATH (subpst->filename))
6616 {
6617 /* It shares objfile->objfile_obstack. */
6618 subpst->dirname = pst->dirname;
6619 }
6620
6621 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6622 subpst->dependencies[0] = pst;
6623 subpst->number_of_dependencies = 1;
6624
6625 subpst->read_symtab = pst->read_symtab;
6626
6627 /* No private part is necessary for include psymtabs. This property
6628 can be used to differentiate between such include psymtabs and
6629 the regular ones. */
6630 subpst->read_symtab_private = NULL;
6631 }
6632
6633 /* Read the Line Number Program data and extract the list of files
6634 included by the source file represented by PST. Build an include
6635 partial symtab for each of these included files. */
6636
6637 static void
6638 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6639 struct die_info *die,
6640 struct partial_symtab *pst)
6641 {
6642 line_header_up lh;
6643 struct attribute *attr;
6644
6645 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6646 if (attr)
6647 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6648 if (lh == NULL)
6649 return; /* No linetable, so no includes. */
6650
6651 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6652 that we pass in the raw text_low here; that is ok because we're
6653 only decoding the line table to make include partial symtabs, and
6654 so the addresses aren't really used. */
6655 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6656 pst->raw_text_low (), 1);
6657 }
6658
6659 static hashval_t
6660 hash_signatured_type (const void *item)
6661 {
6662 const struct signatured_type *sig_type
6663 = (const struct signatured_type *) item;
6664
6665 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6666 return sig_type->signature;
6667 }
6668
6669 static int
6670 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6671 {
6672 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6673 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6674
6675 return lhs->signature == rhs->signature;
6676 }
6677
6678 /* Allocate a hash table for signatured types. */
6679
6680 static htab_t
6681 allocate_signatured_type_table (struct objfile *objfile)
6682 {
6683 return htab_create_alloc_ex (41,
6684 hash_signatured_type,
6685 eq_signatured_type,
6686 NULL,
6687 &objfile->objfile_obstack,
6688 hashtab_obstack_allocate,
6689 dummy_obstack_deallocate);
6690 }
6691
6692 /* A helper function to add a signatured type CU to a table. */
6693
6694 static int
6695 add_signatured_type_cu_to_table (void **slot, void *datum)
6696 {
6697 struct signatured_type *sigt = (struct signatured_type *) *slot;
6698 std::vector<signatured_type *> *all_type_units
6699 = (std::vector<signatured_type *> *) datum;
6700
6701 all_type_units->push_back (sigt);
6702
6703 return 1;
6704 }
6705
6706 /* A helper for create_debug_types_hash_table. Read types from SECTION
6707 and fill them into TYPES_HTAB. It will process only type units,
6708 therefore DW_UT_type. */
6709
6710 static void
6711 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6712 struct dwo_file *dwo_file,
6713 dwarf2_section_info *section, htab_t &types_htab,
6714 rcuh_kind section_kind)
6715 {
6716 struct objfile *objfile = dwarf2_per_objfile->objfile;
6717 struct dwarf2_section_info *abbrev_section;
6718 bfd *abfd;
6719 const gdb_byte *info_ptr, *end_ptr;
6720
6721 abbrev_section = (dwo_file != NULL
6722 ? &dwo_file->sections.abbrev
6723 : &dwarf2_per_objfile->abbrev);
6724
6725 if (dwarf_read_debug)
6726 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6727 get_section_name (section),
6728 get_section_file_name (abbrev_section));
6729
6730 dwarf2_read_section (objfile, section);
6731 info_ptr = section->buffer;
6732
6733 if (info_ptr == NULL)
6734 return;
6735
6736 /* We can't set abfd until now because the section may be empty or
6737 not present, in which case the bfd is unknown. */
6738 abfd = get_section_bfd_owner (section);
6739
6740 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6741 because we don't need to read any dies: the signature is in the
6742 header. */
6743
6744 end_ptr = info_ptr + section->size;
6745 while (info_ptr < end_ptr)
6746 {
6747 struct signatured_type *sig_type;
6748 struct dwo_unit *dwo_tu;
6749 void **slot;
6750 const gdb_byte *ptr = info_ptr;
6751 struct comp_unit_head header;
6752 unsigned int length;
6753
6754 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6755
6756 /* Initialize it due to a false compiler warning. */
6757 header.signature = -1;
6758 header.type_cu_offset_in_tu = (cu_offset) -1;
6759
6760 /* We need to read the type's signature in order to build the hash
6761 table, but we don't need anything else just yet. */
6762
6763 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6764 abbrev_section, ptr, section_kind);
6765
6766 length = get_cu_length (&header);
6767
6768 /* Skip dummy type units. */
6769 if (ptr >= info_ptr + length
6770 || peek_abbrev_code (abfd, ptr) == 0
6771 || header.unit_type != DW_UT_type)
6772 {
6773 info_ptr += length;
6774 continue;
6775 }
6776
6777 if (types_htab == NULL)
6778 {
6779 if (dwo_file)
6780 types_htab = allocate_dwo_unit_table (objfile);
6781 else
6782 types_htab = allocate_signatured_type_table (objfile);
6783 }
6784
6785 if (dwo_file)
6786 {
6787 sig_type = NULL;
6788 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6789 struct dwo_unit);
6790 dwo_tu->dwo_file = dwo_file;
6791 dwo_tu->signature = header.signature;
6792 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6793 dwo_tu->section = section;
6794 dwo_tu->sect_off = sect_off;
6795 dwo_tu->length = length;
6796 }
6797 else
6798 {
6799 /* N.B.: type_offset is not usable if this type uses a DWO file.
6800 The real type_offset is in the DWO file. */
6801 dwo_tu = NULL;
6802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6803 struct signatured_type);
6804 sig_type->signature = header.signature;
6805 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6806 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6807 sig_type->per_cu.is_debug_types = 1;
6808 sig_type->per_cu.section = section;
6809 sig_type->per_cu.sect_off = sect_off;
6810 sig_type->per_cu.length = length;
6811 }
6812
6813 slot = htab_find_slot (types_htab,
6814 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6815 INSERT);
6816 gdb_assert (slot != NULL);
6817 if (*slot != NULL)
6818 {
6819 sect_offset dup_sect_off;
6820
6821 if (dwo_file)
6822 {
6823 const struct dwo_unit *dup_tu
6824 = (const struct dwo_unit *) *slot;
6825
6826 dup_sect_off = dup_tu->sect_off;
6827 }
6828 else
6829 {
6830 const struct signatured_type *dup_tu
6831 = (const struct signatured_type *) *slot;
6832
6833 dup_sect_off = dup_tu->per_cu.sect_off;
6834 }
6835
6836 complaint (_("debug type entry at offset %s is duplicate to"
6837 " the entry at offset %s, signature %s"),
6838 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6839 hex_string (header.signature));
6840 }
6841 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6842
6843 if (dwarf_read_debug > 1)
6844 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6845 sect_offset_str (sect_off),
6846 hex_string (header.signature));
6847
6848 info_ptr += length;
6849 }
6850 }
6851
6852 /* Create the hash table of all entries in the .debug_types
6853 (or .debug_types.dwo) section(s).
6854 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6855 otherwise it is NULL.
6856
6857 The result is a pointer to the hash table or NULL if there are no types.
6858
6859 Note: This function processes DWO files only, not DWP files. */
6860
6861 static void
6862 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6863 struct dwo_file *dwo_file,
6864 gdb::array_view<dwarf2_section_info> type_sections,
6865 htab_t &types_htab)
6866 {
6867 for (dwarf2_section_info &section : type_sections)
6868 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6869 types_htab, rcuh_kind::TYPE);
6870 }
6871
6872 /* Create the hash table of all entries in the .debug_types section,
6873 and initialize all_type_units.
6874 The result is zero if there is an error (e.g. missing .debug_types section),
6875 otherwise non-zero. */
6876
6877 static int
6878 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6879 {
6880 htab_t types_htab = NULL;
6881
6882 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6883 &dwarf2_per_objfile->info, types_htab,
6884 rcuh_kind::COMPILE);
6885 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6886 dwarf2_per_objfile->types, types_htab);
6887 if (types_htab == NULL)
6888 {
6889 dwarf2_per_objfile->signatured_types = NULL;
6890 return 0;
6891 }
6892
6893 dwarf2_per_objfile->signatured_types = types_htab;
6894
6895 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6896 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6897
6898 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6899 &dwarf2_per_objfile->all_type_units);
6900
6901 return 1;
6902 }
6903
6904 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6905 If SLOT is non-NULL, it is the entry to use in the hash table.
6906 Otherwise we find one. */
6907
6908 static struct signatured_type *
6909 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6910 void **slot)
6911 {
6912 struct objfile *objfile = dwarf2_per_objfile->objfile;
6913
6914 if (dwarf2_per_objfile->all_type_units.size ()
6915 == dwarf2_per_objfile->all_type_units.capacity ())
6916 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6917
6918 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6919 struct signatured_type);
6920
6921 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6922 sig_type->signature = sig;
6923 sig_type->per_cu.is_debug_types = 1;
6924 if (dwarf2_per_objfile->using_index)
6925 {
6926 sig_type->per_cu.v.quick =
6927 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6928 struct dwarf2_per_cu_quick_data);
6929 }
6930
6931 if (slot == NULL)
6932 {
6933 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6934 sig_type, INSERT);
6935 }
6936 gdb_assert (*slot == NULL);
6937 *slot = sig_type;
6938 /* The rest of sig_type must be filled in by the caller. */
6939 return sig_type;
6940 }
6941
6942 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6943 Fill in SIG_ENTRY with DWO_ENTRY. */
6944
6945 static void
6946 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6947 struct signatured_type *sig_entry,
6948 struct dwo_unit *dwo_entry)
6949 {
6950 /* Make sure we're not clobbering something we don't expect to. */
6951 gdb_assert (! sig_entry->per_cu.queued);
6952 gdb_assert (sig_entry->per_cu.cu == NULL);
6953 if (dwarf2_per_objfile->using_index)
6954 {
6955 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6956 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6957 }
6958 else
6959 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6960 gdb_assert (sig_entry->signature == dwo_entry->signature);
6961 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6962 gdb_assert (sig_entry->type_unit_group == NULL);
6963 gdb_assert (sig_entry->dwo_unit == NULL);
6964
6965 sig_entry->per_cu.section = dwo_entry->section;
6966 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6967 sig_entry->per_cu.length = dwo_entry->length;
6968 sig_entry->per_cu.reading_dwo_directly = 1;
6969 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6970 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6971 sig_entry->dwo_unit = dwo_entry;
6972 }
6973
6974 /* Subroutine of lookup_signatured_type.
6975 If we haven't read the TU yet, create the signatured_type data structure
6976 for a TU to be read in directly from a DWO file, bypassing the stub.
6977 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6978 using .gdb_index, then when reading a CU we want to stay in the DWO file
6979 containing that CU. Otherwise we could end up reading several other DWO
6980 files (due to comdat folding) to process the transitive closure of all the
6981 mentioned TUs, and that can be slow. The current DWO file will have every
6982 type signature that it needs.
6983 We only do this for .gdb_index because in the psymtab case we already have
6984 to read all the DWOs to build the type unit groups. */
6985
6986 static struct signatured_type *
6987 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6988 {
6989 struct dwarf2_per_objfile *dwarf2_per_objfile
6990 = cu->per_cu->dwarf2_per_objfile;
6991 struct objfile *objfile = dwarf2_per_objfile->objfile;
6992 struct dwo_file *dwo_file;
6993 struct dwo_unit find_dwo_entry, *dwo_entry;
6994 struct signatured_type find_sig_entry, *sig_entry;
6995 void **slot;
6996
6997 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6998
6999 /* If TU skeletons have been removed then we may not have read in any
7000 TUs yet. */
7001 if (dwarf2_per_objfile->signatured_types == NULL)
7002 {
7003 dwarf2_per_objfile->signatured_types
7004 = allocate_signatured_type_table (objfile);
7005 }
7006
7007 /* We only ever need to read in one copy of a signatured type.
7008 Use the global signatured_types array to do our own comdat-folding
7009 of types. If this is the first time we're reading this TU, and
7010 the TU has an entry in .gdb_index, replace the recorded data from
7011 .gdb_index with this TU. */
7012
7013 find_sig_entry.signature = sig;
7014 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7015 &find_sig_entry, INSERT);
7016 sig_entry = (struct signatured_type *) *slot;
7017
7018 /* We can get here with the TU already read, *or* in the process of being
7019 read. Don't reassign the global entry to point to this DWO if that's
7020 the case. Also note that if the TU is already being read, it may not
7021 have come from a DWO, the program may be a mix of Fission-compiled
7022 code and non-Fission-compiled code. */
7023
7024 /* Have we already tried to read this TU?
7025 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7026 needn't exist in the global table yet). */
7027 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7028 return sig_entry;
7029
7030 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7031 dwo_unit of the TU itself. */
7032 dwo_file = cu->dwo_unit->dwo_file;
7033
7034 /* Ok, this is the first time we're reading this TU. */
7035 if (dwo_file->tus == NULL)
7036 return NULL;
7037 find_dwo_entry.signature = sig;
7038 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7039 if (dwo_entry == NULL)
7040 return NULL;
7041
7042 /* If the global table doesn't have an entry for this TU, add one. */
7043 if (sig_entry == NULL)
7044 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7045
7046 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7047 sig_entry->per_cu.tu_read = 1;
7048 return sig_entry;
7049 }
7050
7051 /* Subroutine of lookup_signatured_type.
7052 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7053 then try the DWP file. If the TU stub (skeleton) has been removed then
7054 it won't be in .gdb_index. */
7055
7056 static struct signatured_type *
7057 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7058 {
7059 struct dwarf2_per_objfile *dwarf2_per_objfile
7060 = cu->per_cu->dwarf2_per_objfile;
7061 struct objfile *objfile = dwarf2_per_objfile->objfile;
7062 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7063 struct dwo_unit *dwo_entry;
7064 struct signatured_type find_sig_entry, *sig_entry;
7065 void **slot;
7066
7067 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7068 gdb_assert (dwp_file != NULL);
7069
7070 /* If TU skeletons have been removed then we may not have read in any
7071 TUs yet. */
7072 if (dwarf2_per_objfile->signatured_types == NULL)
7073 {
7074 dwarf2_per_objfile->signatured_types
7075 = allocate_signatured_type_table (objfile);
7076 }
7077
7078 find_sig_entry.signature = sig;
7079 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7080 &find_sig_entry, INSERT);
7081 sig_entry = (struct signatured_type *) *slot;
7082
7083 /* Have we already tried to read this TU?
7084 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7085 needn't exist in the global table yet). */
7086 if (sig_entry != NULL)
7087 return sig_entry;
7088
7089 if (dwp_file->tus == NULL)
7090 return NULL;
7091 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7092 sig, 1 /* is_debug_types */);
7093 if (dwo_entry == NULL)
7094 return NULL;
7095
7096 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7097 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7098
7099 return sig_entry;
7100 }
7101
7102 /* Lookup a signature based type for DW_FORM_ref_sig8.
7103 Returns NULL if signature SIG is not present in the table.
7104 It is up to the caller to complain about this. */
7105
7106 static struct signatured_type *
7107 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7108 {
7109 struct dwarf2_per_objfile *dwarf2_per_objfile
7110 = cu->per_cu->dwarf2_per_objfile;
7111
7112 if (cu->dwo_unit
7113 && dwarf2_per_objfile->using_index)
7114 {
7115 /* We're in a DWO/DWP file, and we're using .gdb_index.
7116 These cases require special processing. */
7117 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7118 return lookup_dwo_signatured_type (cu, sig);
7119 else
7120 return lookup_dwp_signatured_type (cu, sig);
7121 }
7122 else
7123 {
7124 struct signatured_type find_entry, *entry;
7125
7126 if (dwarf2_per_objfile->signatured_types == NULL)
7127 return NULL;
7128 find_entry.signature = sig;
7129 entry = ((struct signatured_type *)
7130 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7131 return entry;
7132 }
7133 }
7134 \f
7135 /* Low level DIE reading support. */
7136
7137 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7138
7139 static void
7140 init_cu_die_reader (struct die_reader_specs *reader,
7141 struct dwarf2_cu *cu,
7142 struct dwarf2_section_info *section,
7143 struct dwo_file *dwo_file,
7144 struct abbrev_table *abbrev_table)
7145 {
7146 gdb_assert (section->readin && section->buffer != NULL);
7147 reader->abfd = get_section_bfd_owner (section);
7148 reader->cu = cu;
7149 reader->dwo_file = dwo_file;
7150 reader->die_section = section;
7151 reader->buffer = section->buffer;
7152 reader->buffer_end = section->buffer + section->size;
7153 reader->comp_dir = NULL;
7154 reader->abbrev_table = abbrev_table;
7155 }
7156
7157 /* Subroutine of init_cutu_and_read_dies to simplify it.
7158 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7159 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7160 already.
7161
7162 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7163 from it to the DIE in the DWO. If NULL we are skipping the stub.
7164 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7165 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7166 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7167 STUB_COMP_DIR may be non-NULL.
7168 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7169 are filled in with the info of the DIE from the DWO file.
7170 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7171 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7172 kept around for at least as long as *RESULT_READER.
7173
7174 The result is non-zero if a valid (non-dummy) DIE was found. */
7175
7176 static int
7177 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7178 struct dwo_unit *dwo_unit,
7179 struct die_info *stub_comp_unit_die,
7180 const char *stub_comp_dir,
7181 struct die_reader_specs *result_reader,
7182 const gdb_byte **result_info_ptr,
7183 struct die_info **result_comp_unit_die,
7184 int *result_has_children,
7185 abbrev_table_up *result_dwo_abbrev_table)
7186 {
7187 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7188 struct objfile *objfile = dwarf2_per_objfile->objfile;
7189 struct dwarf2_cu *cu = this_cu->cu;
7190 bfd *abfd;
7191 const gdb_byte *begin_info_ptr, *info_ptr;
7192 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7193 int i,num_extra_attrs;
7194 struct dwarf2_section_info *dwo_abbrev_section;
7195 struct attribute *attr;
7196 struct die_info *comp_unit_die;
7197
7198 /* At most one of these may be provided. */
7199 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7200
7201 /* These attributes aren't processed until later:
7202 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7203 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7204 referenced later. However, these attributes are found in the stub
7205 which we won't have later. In order to not impose this complication
7206 on the rest of the code, we read them here and copy them to the
7207 DWO CU/TU die. */
7208
7209 stmt_list = NULL;
7210 low_pc = NULL;
7211 high_pc = NULL;
7212 ranges = NULL;
7213 comp_dir = NULL;
7214
7215 if (stub_comp_unit_die != NULL)
7216 {
7217 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7218 DWO file. */
7219 if (! this_cu->is_debug_types)
7220 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7221 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7222 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7223 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7224 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7225
7226 /* There should be a DW_AT_addr_base attribute here (if needed).
7227 We need the value before we can process DW_FORM_GNU_addr_index
7228 or DW_FORM_addrx. */
7229 cu->addr_base = 0;
7230 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7231 if (attr)
7232 cu->addr_base = DW_UNSND (attr);
7233
7234 /* There should be a DW_AT_ranges_base attribute here (if needed).
7235 We need the value before we can process DW_AT_ranges. */
7236 cu->ranges_base = 0;
7237 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7238 if (attr)
7239 cu->ranges_base = DW_UNSND (attr);
7240 }
7241 else if (stub_comp_dir != NULL)
7242 {
7243 /* Reconstruct the comp_dir attribute to simplify the code below. */
7244 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7245 comp_dir->name = DW_AT_comp_dir;
7246 comp_dir->form = DW_FORM_string;
7247 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7248 DW_STRING (comp_dir) = stub_comp_dir;
7249 }
7250
7251 /* Set up for reading the DWO CU/TU. */
7252 cu->dwo_unit = dwo_unit;
7253 dwarf2_section_info *section = dwo_unit->section;
7254 dwarf2_read_section (objfile, section);
7255 abfd = get_section_bfd_owner (section);
7256 begin_info_ptr = info_ptr = (section->buffer
7257 + to_underlying (dwo_unit->sect_off));
7258 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7259
7260 if (this_cu->is_debug_types)
7261 {
7262 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7263
7264 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7265 &cu->header, section,
7266 dwo_abbrev_section,
7267 info_ptr, rcuh_kind::TYPE);
7268 /* This is not an assert because it can be caused by bad debug info. */
7269 if (sig_type->signature != cu->header.signature)
7270 {
7271 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7272 " TU at offset %s [in module %s]"),
7273 hex_string (sig_type->signature),
7274 hex_string (cu->header.signature),
7275 sect_offset_str (dwo_unit->sect_off),
7276 bfd_get_filename (abfd));
7277 }
7278 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7279 /* For DWOs coming from DWP files, we don't know the CU length
7280 nor the type's offset in the TU until now. */
7281 dwo_unit->length = get_cu_length (&cu->header);
7282 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7283
7284 /* Establish the type offset that can be used to lookup the type.
7285 For DWO files, we don't know it until now. */
7286 sig_type->type_offset_in_section
7287 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7288 }
7289 else
7290 {
7291 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7292 &cu->header, section,
7293 dwo_abbrev_section,
7294 info_ptr, rcuh_kind::COMPILE);
7295 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7296 /* For DWOs coming from DWP files, we don't know the CU length
7297 until now. */
7298 dwo_unit->length = get_cu_length (&cu->header);
7299 }
7300
7301 *result_dwo_abbrev_table
7302 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7303 cu->header.abbrev_sect_off);
7304 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7305 result_dwo_abbrev_table->get ());
7306
7307 /* Read in the die, but leave space to copy over the attributes
7308 from the stub. This has the benefit of simplifying the rest of
7309 the code - all the work to maintain the illusion of a single
7310 DW_TAG_{compile,type}_unit DIE is done here. */
7311 num_extra_attrs = ((stmt_list != NULL)
7312 + (low_pc != NULL)
7313 + (high_pc != NULL)
7314 + (ranges != NULL)
7315 + (comp_dir != NULL));
7316 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7317 result_has_children, num_extra_attrs);
7318
7319 /* Copy over the attributes from the stub to the DIE we just read in. */
7320 comp_unit_die = *result_comp_unit_die;
7321 i = comp_unit_die->num_attrs;
7322 if (stmt_list != NULL)
7323 comp_unit_die->attrs[i++] = *stmt_list;
7324 if (low_pc != NULL)
7325 comp_unit_die->attrs[i++] = *low_pc;
7326 if (high_pc != NULL)
7327 comp_unit_die->attrs[i++] = *high_pc;
7328 if (ranges != NULL)
7329 comp_unit_die->attrs[i++] = *ranges;
7330 if (comp_dir != NULL)
7331 comp_unit_die->attrs[i++] = *comp_dir;
7332 comp_unit_die->num_attrs += num_extra_attrs;
7333
7334 if (dwarf_die_debug)
7335 {
7336 fprintf_unfiltered (gdb_stdlog,
7337 "Read die from %s@0x%x of %s:\n",
7338 get_section_name (section),
7339 (unsigned) (begin_info_ptr - section->buffer),
7340 bfd_get_filename (abfd));
7341 dump_die (comp_unit_die, dwarf_die_debug);
7342 }
7343
7344 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7345 TUs by skipping the stub and going directly to the entry in the DWO file.
7346 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7347 to get it via circuitous means. Blech. */
7348 if (comp_dir != NULL)
7349 result_reader->comp_dir = DW_STRING (comp_dir);
7350
7351 /* Skip dummy compilation units. */
7352 if (info_ptr >= begin_info_ptr + dwo_unit->length
7353 || peek_abbrev_code (abfd, info_ptr) == 0)
7354 return 0;
7355
7356 *result_info_ptr = info_ptr;
7357 return 1;
7358 }
7359
7360 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7361 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7362 signature is part of the header. */
7363 static gdb::optional<ULONGEST>
7364 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7365 {
7366 if (cu->header.version >= 5)
7367 return cu->header.signature;
7368 struct attribute *attr;
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (attr == nullptr)
7371 return gdb::optional<ULONGEST> ();
7372 return DW_UNSND (attr);
7373 }
7374
7375 /* Subroutine of init_cutu_and_read_dies to simplify it.
7376 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7377 Returns NULL if the specified DWO unit cannot be found. */
7378
7379 static struct dwo_unit *
7380 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7381 struct die_info *comp_unit_die)
7382 {
7383 struct dwarf2_cu *cu = this_cu->cu;
7384 struct dwo_unit *dwo_unit;
7385 const char *comp_dir, *dwo_name;
7386
7387 gdb_assert (cu != NULL);
7388
7389 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7390 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7391 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7392
7393 if (this_cu->is_debug_types)
7394 {
7395 struct signatured_type *sig_type;
7396
7397 /* Since this_cu is the first member of struct signatured_type,
7398 we can go from a pointer to one to a pointer to the other. */
7399 sig_type = (struct signatured_type *) this_cu;
7400 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7401 }
7402 else
7403 {
7404 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7405 if (!signature.has_value ())
7406 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7407 " [in module %s]"),
7408 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7409 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7410 *signature);
7411 }
7412
7413 return dwo_unit;
7414 }
7415
7416 /* Subroutine of init_cutu_and_read_dies to simplify it.
7417 See it for a description of the parameters.
7418 Read a TU directly from a DWO file, bypassing the stub. */
7419
7420 static void
7421 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7422 int use_existing_cu, int keep,
7423 die_reader_func_ftype *die_reader_func,
7424 void *data)
7425 {
7426 std::unique_ptr<dwarf2_cu> new_cu;
7427 struct signatured_type *sig_type;
7428 struct die_reader_specs reader;
7429 const gdb_byte *info_ptr;
7430 struct die_info *comp_unit_die;
7431 int has_children;
7432 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7433
7434 /* Verify we can do the following downcast, and that we have the
7435 data we need. */
7436 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7437 sig_type = (struct signatured_type *) this_cu;
7438 gdb_assert (sig_type->dwo_unit != NULL);
7439
7440 if (use_existing_cu && this_cu->cu != NULL)
7441 {
7442 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7443 /* There's no need to do the rereading_dwo_cu handling that
7444 init_cutu_and_read_dies does since we don't read the stub. */
7445 }
7446 else
7447 {
7448 /* If !use_existing_cu, this_cu->cu must be NULL. */
7449 gdb_assert (this_cu->cu == NULL);
7450 new_cu.reset (new dwarf2_cu (this_cu));
7451 }
7452
7453 /* A future optimization, if needed, would be to use an existing
7454 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7455 could share abbrev tables. */
7456
7457 /* The abbreviation table used by READER, this must live at least as long as
7458 READER. */
7459 abbrev_table_up dwo_abbrev_table;
7460
7461 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7462 NULL /* stub_comp_unit_die */,
7463 sig_type->dwo_unit->dwo_file->comp_dir,
7464 &reader, &info_ptr,
7465 &comp_unit_die, &has_children,
7466 &dwo_abbrev_table) == 0)
7467 {
7468 /* Dummy die. */
7469 return;
7470 }
7471
7472 /* All the "real" work is done here. */
7473 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7474
7475 /* This duplicates the code in init_cutu_and_read_dies,
7476 but the alternative is making the latter more complex.
7477 This function is only for the special case of using DWO files directly:
7478 no point in overly complicating the general case just to handle this. */
7479 if (new_cu != NULL && keep)
7480 {
7481 /* Link this CU into read_in_chain. */
7482 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7483 dwarf2_per_objfile->read_in_chain = this_cu;
7484 /* The chain owns it now. */
7485 new_cu.release ();
7486 }
7487 }
7488
7489 /* Initialize a CU (or TU) and read its DIEs.
7490 If the CU defers to a DWO file, read the DWO file as well.
7491
7492 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7493 Otherwise the table specified in the comp unit header is read in and used.
7494 This is an optimization for when we already have the abbrev table.
7495
7496 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7497 Otherwise, a new CU is allocated with xmalloc.
7498
7499 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7500 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7501
7502 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7503 linker) then DIE_READER_FUNC will not get called. */
7504
7505 static void
7506 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7507 struct abbrev_table *abbrev_table,
7508 int use_existing_cu, int keep,
7509 bool skip_partial,
7510 die_reader_func_ftype *die_reader_func,
7511 void *data)
7512 {
7513 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7514 struct objfile *objfile = dwarf2_per_objfile->objfile;
7515 struct dwarf2_section_info *section = this_cu->section;
7516 bfd *abfd = get_section_bfd_owner (section);
7517 struct dwarf2_cu *cu;
7518 const gdb_byte *begin_info_ptr, *info_ptr;
7519 struct die_reader_specs reader;
7520 struct die_info *comp_unit_die;
7521 int has_children;
7522 struct signatured_type *sig_type = NULL;
7523 struct dwarf2_section_info *abbrev_section;
7524 /* Non-zero if CU currently points to a DWO file and we need to
7525 reread it. When this happens we need to reread the skeleton die
7526 before we can reread the DWO file (this only applies to CUs, not TUs). */
7527 int rereading_dwo_cu = 0;
7528
7529 if (dwarf_die_debug)
7530 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7531 this_cu->is_debug_types ? "type" : "comp",
7532 sect_offset_str (this_cu->sect_off));
7533
7534 if (use_existing_cu)
7535 gdb_assert (keep);
7536
7537 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7538 file (instead of going through the stub), short-circuit all of this. */
7539 if (this_cu->reading_dwo_directly)
7540 {
7541 /* Narrow down the scope of possibilities to have to understand. */
7542 gdb_assert (this_cu->is_debug_types);
7543 gdb_assert (abbrev_table == NULL);
7544 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7545 die_reader_func, data);
7546 return;
7547 }
7548
7549 /* This is cheap if the section is already read in. */
7550 dwarf2_read_section (objfile, section);
7551
7552 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7553
7554 abbrev_section = get_abbrev_section_for_cu (this_cu);
7555
7556 std::unique_ptr<dwarf2_cu> new_cu;
7557 if (use_existing_cu && this_cu->cu != NULL)
7558 {
7559 cu = this_cu->cu;
7560 /* If this CU is from a DWO file we need to start over, we need to
7561 refetch the attributes from the skeleton CU.
7562 This could be optimized by retrieving those attributes from when we
7563 were here the first time: the previous comp_unit_die was stored in
7564 comp_unit_obstack. But there's no data yet that we need this
7565 optimization. */
7566 if (cu->dwo_unit != NULL)
7567 rereading_dwo_cu = 1;
7568 }
7569 else
7570 {
7571 /* If !use_existing_cu, this_cu->cu must be NULL. */
7572 gdb_assert (this_cu->cu == NULL);
7573 new_cu.reset (new dwarf2_cu (this_cu));
7574 cu = new_cu.get ();
7575 }
7576
7577 /* Get the header. */
7578 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7579 {
7580 /* We already have the header, there's no need to read it in again. */
7581 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7582 }
7583 else
7584 {
7585 if (this_cu->is_debug_types)
7586 {
7587 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7588 &cu->header, section,
7589 abbrev_section, info_ptr,
7590 rcuh_kind::TYPE);
7591
7592 /* Since per_cu is the first member of struct signatured_type,
7593 we can go from a pointer to one to a pointer to the other. */
7594 sig_type = (struct signatured_type *) this_cu;
7595 gdb_assert (sig_type->signature == cu->header.signature);
7596 gdb_assert (sig_type->type_offset_in_tu
7597 == cu->header.type_cu_offset_in_tu);
7598 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7599
7600 /* LENGTH has not been set yet for type units if we're
7601 using .gdb_index. */
7602 this_cu->length = get_cu_length (&cu->header);
7603
7604 /* Establish the type offset that can be used to lookup the type. */
7605 sig_type->type_offset_in_section =
7606 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7607
7608 this_cu->dwarf_version = cu->header.version;
7609 }
7610 else
7611 {
7612 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7613 &cu->header, section,
7614 abbrev_section,
7615 info_ptr,
7616 rcuh_kind::COMPILE);
7617
7618 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7619 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7620 this_cu->dwarf_version = cu->header.version;
7621 }
7622 }
7623
7624 /* Skip dummy compilation units. */
7625 if (info_ptr >= begin_info_ptr + this_cu->length
7626 || peek_abbrev_code (abfd, info_ptr) == 0)
7627 return;
7628
7629 /* If we don't have them yet, read the abbrevs for this compilation unit.
7630 And if we need to read them now, make sure they're freed when we're
7631 done (own the table through ABBREV_TABLE_HOLDER). */
7632 abbrev_table_up abbrev_table_holder;
7633 if (abbrev_table != NULL)
7634 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7635 else
7636 {
7637 abbrev_table_holder
7638 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7639 cu->header.abbrev_sect_off);
7640 abbrev_table = abbrev_table_holder.get ();
7641 }
7642
7643 /* Read the top level CU/TU die. */
7644 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7645 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7646
7647 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7648 return;
7649
7650 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7651 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7652 table from the DWO file and pass the ownership over to us. It will be
7653 referenced from READER, so we must make sure to free it after we're done
7654 with READER.
7655
7656 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7657 DWO CU, that this test will fail (the attribute will not be present). */
7658 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7659 abbrev_table_up dwo_abbrev_table;
7660 if (dwo_name != nullptr)
7661 {
7662 struct dwo_unit *dwo_unit;
7663 struct die_info *dwo_comp_unit_die;
7664
7665 if (has_children)
7666 {
7667 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7668 " has children (offset %s) [in module %s]"),
7669 sect_offset_str (this_cu->sect_off),
7670 bfd_get_filename (abfd));
7671 }
7672 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7673 if (dwo_unit != NULL)
7674 {
7675 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7676 comp_unit_die, NULL,
7677 &reader, &info_ptr,
7678 &dwo_comp_unit_die, &has_children,
7679 &dwo_abbrev_table) == 0)
7680 {
7681 /* Dummy die. */
7682 return;
7683 }
7684 comp_unit_die = dwo_comp_unit_die;
7685 }
7686 else
7687 {
7688 /* Yikes, we couldn't find the rest of the DIE, we only have
7689 the stub. A complaint has already been logged. There's
7690 not much more we can do except pass on the stub DIE to
7691 die_reader_func. We don't want to throw an error on bad
7692 debug info. */
7693 }
7694 }
7695
7696 /* All of the above is setup for this call. Yikes. */
7697 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7698
7699 /* Done, clean up. */
7700 if (new_cu != NULL && keep)
7701 {
7702 /* Link this CU into read_in_chain. */
7703 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7704 dwarf2_per_objfile->read_in_chain = this_cu;
7705 /* The chain owns it now. */
7706 new_cu.release ();
7707 }
7708 }
7709
7710 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7711 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7712 to have already done the lookup to find the DWO file).
7713
7714 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7715 THIS_CU->is_debug_types, but nothing else.
7716
7717 We fill in THIS_CU->length.
7718
7719 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7720 linker) then DIE_READER_FUNC will not get called.
7721
7722 THIS_CU->cu is always freed when done.
7723 This is done in order to not leave THIS_CU->cu in a state where we have
7724 to care whether it refers to the "main" CU or the DWO CU. */
7725
7726 static void
7727 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7728 struct dwo_file *dwo_file,
7729 die_reader_func_ftype *die_reader_func,
7730 void *data)
7731 {
7732 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7733 struct objfile *objfile = dwarf2_per_objfile->objfile;
7734 struct dwarf2_section_info *section = this_cu->section;
7735 bfd *abfd = get_section_bfd_owner (section);
7736 struct dwarf2_section_info *abbrev_section;
7737 const gdb_byte *begin_info_ptr, *info_ptr;
7738 struct die_reader_specs reader;
7739 struct die_info *comp_unit_die;
7740 int has_children;
7741
7742 if (dwarf_die_debug)
7743 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7744 this_cu->is_debug_types ? "type" : "comp",
7745 sect_offset_str (this_cu->sect_off));
7746
7747 gdb_assert (this_cu->cu == NULL);
7748
7749 abbrev_section = (dwo_file != NULL
7750 ? &dwo_file->sections.abbrev
7751 : get_abbrev_section_for_cu (this_cu));
7752
7753 /* This is cheap if the section is already read in. */
7754 dwarf2_read_section (objfile, section);
7755
7756 struct dwarf2_cu cu (this_cu);
7757
7758 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7759 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7760 &cu.header, section,
7761 abbrev_section, info_ptr,
7762 (this_cu->is_debug_types
7763 ? rcuh_kind::TYPE
7764 : rcuh_kind::COMPILE));
7765
7766 this_cu->length = get_cu_length (&cu.header);
7767
7768 /* Skip dummy compilation units. */
7769 if (info_ptr >= begin_info_ptr + this_cu->length
7770 || peek_abbrev_code (abfd, info_ptr) == 0)
7771 return;
7772
7773 abbrev_table_up abbrev_table
7774 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7775 cu.header.abbrev_sect_off);
7776
7777 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7778 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7779
7780 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7781 }
7782
7783 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7784 does not lookup the specified DWO file.
7785 This cannot be used to read DWO files.
7786
7787 THIS_CU->cu is always freed when done.
7788 This is done in order to not leave THIS_CU->cu in a state where we have
7789 to care whether it refers to the "main" CU or the DWO CU.
7790 We can revisit this if the data shows there's a performance issue. */
7791
7792 static void
7793 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7794 die_reader_func_ftype *die_reader_func,
7795 void *data)
7796 {
7797 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7798 }
7799 \f
7800 /* Type Unit Groups.
7801
7802 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7803 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7804 so that all types coming from the same compilation (.o file) are grouped
7805 together. A future step could be to put the types in the same symtab as
7806 the CU the types ultimately came from. */
7807
7808 static hashval_t
7809 hash_type_unit_group (const void *item)
7810 {
7811 const struct type_unit_group *tu_group
7812 = (const struct type_unit_group *) item;
7813
7814 return hash_stmt_list_entry (&tu_group->hash);
7815 }
7816
7817 static int
7818 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7819 {
7820 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7821 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7822
7823 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7824 }
7825
7826 /* Allocate a hash table for type unit groups. */
7827
7828 static htab_t
7829 allocate_type_unit_groups_table (struct objfile *objfile)
7830 {
7831 return htab_create_alloc_ex (3,
7832 hash_type_unit_group,
7833 eq_type_unit_group,
7834 NULL,
7835 &objfile->objfile_obstack,
7836 hashtab_obstack_allocate,
7837 dummy_obstack_deallocate);
7838 }
7839
7840 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7841 partial symtabs. We combine several TUs per psymtab to not let the size
7842 of any one psymtab grow too big. */
7843 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7844 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7845
7846 /* Helper routine for get_type_unit_group.
7847 Create the type_unit_group object used to hold one or more TUs. */
7848
7849 static struct type_unit_group *
7850 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7851 {
7852 struct dwarf2_per_objfile *dwarf2_per_objfile
7853 = cu->per_cu->dwarf2_per_objfile;
7854 struct objfile *objfile = dwarf2_per_objfile->objfile;
7855 struct dwarf2_per_cu_data *per_cu;
7856 struct type_unit_group *tu_group;
7857
7858 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7859 struct type_unit_group);
7860 per_cu = &tu_group->per_cu;
7861 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7862
7863 if (dwarf2_per_objfile->using_index)
7864 {
7865 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7866 struct dwarf2_per_cu_quick_data);
7867 }
7868 else
7869 {
7870 unsigned int line_offset = to_underlying (line_offset_struct);
7871 struct partial_symtab *pst;
7872 std::string name;
7873
7874 /* Give the symtab a useful name for debug purposes. */
7875 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7876 name = string_printf ("<type_units_%d>",
7877 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7878 else
7879 name = string_printf ("<type_units_at_0x%x>", line_offset);
7880
7881 pst = create_partial_symtab (per_cu, name.c_str ());
7882 pst->anonymous = 1;
7883 }
7884
7885 tu_group->hash.dwo_unit = cu->dwo_unit;
7886 tu_group->hash.line_sect_off = line_offset_struct;
7887
7888 return tu_group;
7889 }
7890
7891 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7892 STMT_LIST is a DW_AT_stmt_list attribute. */
7893
7894 static struct type_unit_group *
7895 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7896 {
7897 struct dwarf2_per_objfile *dwarf2_per_objfile
7898 = cu->per_cu->dwarf2_per_objfile;
7899 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7900 struct type_unit_group *tu_group;
7901 void **slot;
7902 unsigned int line_offset;
7903 struct type_unit_group type_unit_group_for_lookup;
7904
7905 if (dwarf2_per_objfile->type_unit_groups == NULL)
7906 {
7907 dwarf2_per_objfile->type_unit_groups =
7908 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7909 }
7910
7911 /* Do we need to create a new group, or can we use an existing one? */
7912
7913 if (stmt_list)
7914 {
7915 line_offset = DW_UNSND (stmt_list);
7916 ++tu_stats->nr_symtab_sharers;
7917 }
7918 else
7919 {
7920 /* Ugh, no stmt_list. Rare, but we have to handle it.
7921 We can do various things here like create one group per TU or
7922 spread them over multiple groups to split up the expansion work.
7923 To avoid worst case scenarios (too many groups or too large groups)
7924 we, umm, group them in bunches. */
7925 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7926 | (tu_stats->nr_stmt_less_type_units
7927 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7928 ++tu_stats->nr_stmt_less_type_units;
7929 }
7930
7931 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7932 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7933 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7934 &type_unit_group_for_lookup, INSERT);
7935 if (*slot != NULL)
7936 {
7937 tu_group = (struct type_unit_group *) *slot;
7938 gdb_assert (tu_group != NULL);
7939 }
7940 else
7941 {
7942 sect_offset line_offset_struct = (sect_offset) line_offset;
7943 tu_group = create_type_unit_group (cu, line_offset_struct);
7944 *slot = tu_group;
7945 ++tu_stats->nr_symtabs;
7946 }
7947
7948 return tu_group;
7949 }
7950 \f
7951 /* Partial symbol tables. */
7952
7953 /* Create a psymtab named NAME and assign it to PER_CU.
7954
7955 The caller must fill in the following details:
7956 dirname, textlow, texthigh. */
7957
7958 static struct partial_symtab *
7959 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7960 {
7961 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7962 struct partial_symtab *pst;
7963
7964 pst = start_psymtab_common (objfile, name, 0);
7965
7966 pst->psymtabs_addrmap_supported = 1;
7967
7968 /* This is the glue that links PST into GDB's symbol API. */
7969 pst->read_symtab_private = per_cu;
7970 pst->read_symtab = dwarf2_read_symtab;
7971 per_cu->v.psymtab = pst;
7972
7973 return pst;
7974 }
7975
7976 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7977 type. */
7978
7979 struct process_psymtab_comp_unit_data
7980 {
7981 /* True if we are reading a DW_TAG_partial_unit. */
7982
7983 int want_partial_unit;
7984
7985 /* The "pretend" language that is used if the CU doesn't declare a
7986 language. */
7987
7988 enum language pretend_language;
7989 };
7990
7991 /* die_reader_func for process_psymtab_comp_unit. */
7992
7993 static void
7994 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7995 const gdb_byte *info_ptr,
7996 struct die_info *comp_unit_die,
7997 int has_children,
7998 void *data)
7999 {
8000 struct dwarf2_cu *cu = reader->cu;
8001 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8003 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8004 CORE_ADDR baseaddr;
8005 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8006 struct partial_symtab *pst;
8007 enum pc_bounds_kind cu_bounds_kind;
8008 const char *filename;
8009 struct process_psymtab_comp_unit_data *info
8010 = (struct process_psymtab_comp_unit_data *) data;
8011
8012 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8013 return;
8014
8015 gdb_assert (! per_cu->is_debug_types);
8016
8017 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8018
8019 /* Allocate a new partial symbol table structure. */
8020 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8021 if (filename == NULL)
8022 filename = "";
8023
8024 pst = create_partial_symtab (per_cu, filename);
8025
8026 /* This must be done before calling dwarf2_build_include_psymtabs. */
8027 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8028
8029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8030
8031 dwarf2_find_base_address (comp_unit_die, cu);
8032
8033 /* Possibly set the default values of LOWPC and HIGHPC from
8034 `DW_AT_ranges'. */
8035 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8036 &best_highpc, cu, pst);
8037 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8038 {
8039 CORE_ADDR low
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8041 - baseaddr);
8042 CORE_ADDR high
8043 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8044 - baseaddr - 1);
8045 /* Store the contiguous range if it is not empty; it can be
8046 empty for CUs with no code. */
8047 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8048 low, high, pst);
8049 }
8050
8051 /* Check if comp unit has_children.
8052 If so, read the rest of the partial symbols from this comp unit.
8053 If not, there's no more debug_info for this comp unit. */
8054 if (has_children)
8055 {
8056 struct partial_die_info *first_die;
8057 CORE_ADDR lowpc, highpc;
8058
8059 lowpc = ((CORE_ADDR) -1);
8060 highpc = ((CORE_ADDR) 0);
8061
8062 first_die = load_partial_dies (reader, info_ptr, 1);
8063
8064 scan_partial_symbols (first_die, &lowpc, &highpc,
8065 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8066
8067 /* If we didn't find a lowpc, set it to highpc to avoid
8068 complaints from `maint check'. */
8069 if (lowpc == ((CORE_ADDR) -1))
8070 lowpc = highpc;
8071
8072 /* If the compilation unit didn't have an explicit address range,
8073 then use the information extracted from its child dies. */
8074 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8075 {
8076 best_lowpc = lowpc;
8077 best_highpc = highpc;
8078 }
8079 }
8080 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_lowpc + baseaddr)
8082 - baseaddr);
8083 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8084 best_highpc + baseaddr)
8085 - baseaddr);
8086
8087 end_psymtab_common (objfile, pst);
8088
8089 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8090 {
8091 int i;
8092 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8093 struct dwarf2_per_cu_data *iter;
8094
8095 /* Fill in 'dependencies' here; we fill in 'users' in a
8096 post-pass. */
8097 pst->number_of_dependencies = len;
8098 pst->dependencies
8099 = objfile->partial_symtabs->allocate_dependencies (len);
8100 for (i = 0;
8101 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8102 i, iter);
8103 ++i)
8104 pst->dependencies[i] = iter->v.psymtab;
8105
8106 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8107 }
8108
8109 /* Get the list of files included in the current compilation unit,
8110 and build a psymtab for each of them. */
8111 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8112
8113 if (dwarf_read_debug)
8114 fprintf_unfiltered (gdb_stdlog,
8115 "Psymtab for %s unit @%s: %s - %s"
8116 ", %d global, %d static syms\n",
8117 per_cu->is_debug_types ? "type" : "comp",
8118 sect_offset_str (per_cu->sect_off),
8119 paddress (gdbarch, pst->text_low (objfile)),
8120 paddress (gdbarch, pst->text_high (objfile)),
8121 pst->n_global_syms, pst->n_static_syms);
8122 }
8123
8124 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8125 Process compilation unit THIS_CU for a psymtab. */
8126
8127 static void
8128 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8129 int want_partial_unit,
8130 enum language pretend_language)
8131 {
8132 /* If this compilation unit was already read in, free the
8133 cached copy in order to read it in again. This is
8134 necessary because we skipped some symbols when we first
8135 read in the compilation unit (see load_partial_dies).
8136 This problem could be avoided, but the benefit is unclear. */
8137 if (this_cu->cu != NULL)
8138 free_one_cached_comp_unit (this_cu);
8139
8140 if (this_cu->is_debug_types)
8141 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8142 build_type_psymtabs_reader, NULL);
8143 else
8144 {
8145 process_psymtab_comp_unit_data info;
8146 info.want_partial_unit = want_partial_unit;
8147 info.pretend_language = pretend_language;
8148 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8149 process_psymtab_comp_unit_reader, &info);
8150 }
8151
8152 /* Age out any secondary CUs. */
8153 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8154 }
8155
8156 /* Reader function for build_type_psymtabs. */
8157
8158 static void
8159 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8160 const gdb_byte *info_ptr,
8161 struct die_info *type_unit_die,
8162 int has_children,
8163 void *data)
8164 {
8165 struct dwarf2_per_objfile *dwarf2_per_objfile
8166 = reader->cu->per_cu->dwarf2_per_objfile;
8167 struct objfile *objfile = dwarf2_per_objfile->objfile;
8168 struct dwarf2_cu *cu = reader->cu;
8169 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8170 struct signatured_type *sig_type;
8171 struct type_unit_group *tu_group;
8172 struct attribute *attr;
8173 struct partial_die_info *first_die;
8174 CORE_ADDR lowpc, highpc;
8175 struct partial_symtab *pst;
8176
8177 gdb_assert (data == NULL);
8178 gdb_assert (per_cu->is_debug_types);
8179 sig_type = (struct signatured_type *) per_cu;
8180
8181 if (! has_children)
8182 return;
8183
8184 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8185 tu_group = get_type_unit_group (cu, attr);
8186
8187 if (tu_group->tus == nullptr)
8188 tu_group->tus = new std::vector <signatured_type *>;
8189 tu_group->tus->push_back (sig_type);
8190
8191 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8192 pst = create_partial_symtab (per_cu, "");
8193 pst->anonymous = 1;
8194
8195 first_die = load_partial_dies (reader, info_ptr, 1);
8196
8197 lowpc = (CORE_ADDR) -1;
8198 highpc = (CORE_ADDR) 0;
8199 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8200
8201 end_psymtab_common (objfile, pst);
8202 }
8203
8204 /* Struct used to sort TUs by their abbreviation table offset. */
8205
8206 struct tu_abbrev_offset
8207 {
8208 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8209 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8210 {}
8211
8212 signatured_type *sig_type;
8213 sect_offset abbrev_offset;
8214 };
8215
8216 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8217
8218 static bool
8219 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8220 const struct tu_abbrev_offset &b)
8221 {
8222 return a.abbrev_offset < b.abbrev_offset;
8223 }
8224
8225 /* Efficiently read all the type units.
8226 This does the bulk of the work for build_type_psymtabs.
8227
8228 The efficiency is because we sort TUs by the abbrev table they use and
8229 only read each abbrev table once. In one program there are 200K TUs
8230 sharing 8K abbrev tables.
8231
8232 The main purpose of this function is to support building the
8233 dwarf2_per_objfile->type_unit_groups table.
8234 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8235 can collapse the search space by grouping them by stmt_list.
8236 The savings can be significant, in the same program from above the 200K TUs
8237 share 8K stmt_list tables.
8238
8239 FUNC is expected to call get_type_unit_group, which will create the
8240 struct type_unit_group if necessary and add it to
8241 dwarf2_per_objfile->type_unit_groups. */
8242
8243 static void
8244 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8245 {
8246 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8247 abbrev_table_up abbrev_table;
8248 sect_offset abbrev_offset;
8249
8250 /* It's up to the caller to not call us multiple times. */
8251 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8252
8253 if (dwarf2_per_objfile->all_type_units.empty ())
8254 return;
8255
8256 /* TUs typically share abbrev tables, and there can be way more TUs than
8257 abbrev tables. Sort by abbrev table to reduce the number of times we
8258 read each abbrev table in.
8259 Alternatives are to punt or to maintain a cache of abbrev tables.
8260 This is simpler and efficient enough for now.
8261
8262 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8263 symtab to use). Typically TUs with the same abbrev offset have the same
8264 stmt_list value too so in practice this should work well.
8265
8266 The basic algorithm here is:
8267
8268 sort TUs by abbrev table
8269 for each TU with same abbrev table:
8270 read abbrev table if first user
8271 read TU top level DIE
8272 [IWBN if DWO skeletons had DW_AT_stmt_list]
8273 call FUNC */
8274
8275 if (dwarf_read_debug)
8276 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8277
8278 /* Sort in a separate table to maintain the order of all_type_units
8279 for .gdb_index: TU indices directly index all_type_units. */
8280 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8281 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8282
8283 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8284 sorted_by_abbrev.emplace_back
8285 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8286 sig_type->per_cu.section,
8287 sig_type->per_cu.sect_off));
8288
8289 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8290 sort_tu_by_abbrev_offset);
8291
8292 abbrev_offset = (sect_offset) ~(unsigned) 0;
8293
8294 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8295 {
8296 /* Switch to the next abbrev table if necessary. */
8297 if (abbrev_table == NULL
8298 || tu.abbrev_offset != abbrev_offset)
8299 {
8300 abbrev_offset = tu.abbrev_offset;
8301 abbrev_table =
8302 abbrev_table_read_table (dwarf2_per_objfile,
8303 &dwarf2_per_objfile->abbrev,
8304 abbrev_offset);
8305 ++tu_stats->nr_uniq_abbrev_tables;
8306 }
8307
8308 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8309 0, 0, false, build_type_psymtabs_reader, NULL);
8310 }
8311 }
8312
8313 /* Print collected type unit statistics. */
8314
8315 static void
8316 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8317 {
8318 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8319
8320 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8321 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8322 dwarf2_per_objfile->all_type_units.size ());
8323 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8324 tu_stats->nr_uniq_abbrev_tables);
8325 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8326 tu_stats->nr_symtabs);
8327 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8328 tu_stats->nr_symtab_sharers);
8329 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8330 tu_stats->nr_stmt_less_type_units);
8331 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8332 tu_stats->nr_all_type_units_reallocs);
8333 }
8334
8335 /* Traversal function for build_type_psymtabs. */
8336
8337 static int
8338 build_type_psymtab_dependencies (void **slot, void *info)
8339 {
8340 struct dwarf2_per_objfile *dwarf2_per_objfile
8341 = (struct dwarf2_per_objfile *) info;
8342 struct objfile *objfile = dwarf2_per_objfile->objfile;
8343 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8344 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8345 struct partial_symtab *pst = per_cu->v.psymtab;
8346 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8347 int i;
8348
8349 gdb_assert (len > 0);
8350 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8351
8352 pst->number_of_dependencies = len;
8353 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8354 for (i = 0; i < len; ++i)
8355 {
8356 struct signatured_type *iter = tu_group->tus->at (i);
8357 gdb_assert (iter->per_cu.is_debug_types);
8358 pst->dependencies[i] = iter->per_cu.v.psymtab;
8359 iter->type_unit_group = tu_group;
8360 }
8361
8362 delete tu_group->tus;
8363 tu_group->tus = nullptr;
8364
8365 return 1;
8366 }
8367
8368 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8369 Build partial symbol tables for the .debug_types comp-units. */
8370
8371 static void
8372 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8373 {
8374 if (! create_all_type_units (dwarf2_per_objfile))
8375 return;
8376
8377 build_type_psymtabs_1 (dwarf2_per_objfile);
8378 }
8379
8380 /* Traversal function for process_skeletonless_type_unit.
8381 Read a TU in a DWO file and build partial symbols for it. */
8382
8383 static int
8384 process_skeletonless_type_unit (void **slot, void *info)
8385 {
8386 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8387 struct dwarf2_per_objfile *dwarf2_per_objfile
8388 = (struct dwarf2_per_objfile *) info;
8389 struct signatured_type find_entry, *entry;
8390
8391 /* If this TU doesn't exist in the global table, add it and read it in. */
8392
8393 if (dwarf2_per_objfile->signatured_types == NULL)
8394 {
8395 dwarf2_per_objfile->signatured_types
8396 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8397 }
8398
8399 find_entry.signature = dwo_unit->signature;
8400 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8401 INSERT);
8402 /* If we've already seen this type there's nothing to do. What's happening
8403 is we're doing our own version of comdat-folding here. */
8404 if (*slot != NULL)
8405 return 1;
8406
8407 /* This does the job that create_all_type_units would have done for
8408 this TU. */
8409 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8410 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8411 *slot = entry;
8412
8413 /* This does the job that build_type_psymtabs_1 would have done. */
8414 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8415 build_type_psymtabs_reader, NULL);
8416
8417 return 1;
8418 }
8419
8420 /* Traversal function for process_skeletonless_type_units. */
8421
8422 static int
8423 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8424 {
8425 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8426
8427 if (dwo_file->tus != NULL)
8428 {
8429 htab_traverse_noresize (dwo_file->tus,
8430 process_skeletonless_type_unit, info);
8431 }
8432
8433 return 1;
8434 }
8435
8436 /* Scan all TUs of DWO files, verifying we've processed them.
8437 This is needed in case a TU was emitted without its skeleton.
8438 Note: This can't be done until we know what all the DWO files are. */
8439
8440 static void
8441 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8442 {
8443 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8444 if (get_dwp_file (dwarf2_per_objfile) == NULL
8445 && dwarf2_per_objfile->dwo_files != NULL)
8446 {
8447 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8448 process_dwo_file_for_skeletonless_type_units,
8449 dwarf2_per_objfile);
8450 }
8451 }
8452
8453 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8454
8455 static void
8456 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8457 {
8458 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8459 {
8460 struct partial_symtab *pst = per_cu->v.psymtab;
8461
8462 if (pst == NULL)
8463 continue;
8464
8465 for (int j = 0; j < pst->number_of_dependencies; ++j)
8466 {
8467 /* Set the 'user' field only if it is not already set. */
8468 if (pst->dependencies[j]->user == NULL)
8469 pst->dependencies[j]->user = pst;
8470 }
8471 }
8472 }
8473
8474 /* Build the partial symbol table by doing a quick pass through the
8475 .debug_info and .debug_abbrev sections. */
8476
8477 static void
8478 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8479 {
8480 struct objfile *objfile = dwarf2_per_objfile->objfile;
8481
8482 if (dwarf_read_debug)
8483 {
8484 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8485 objfile_name (objfile));
8486 }
8487
8488 dwarf2_per_objfile->reading_partial_symbols = 1;
8489
8490 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8491
8492 /* Any cached compilation units will be linked by the per-objfile
8493 read_in_chain. Make sure to free them when we're done. */
8494 free_cached_comp_units freer (dwarf2_per_objfile);
8495
8496 build_type_psymtabs (dwarf2_per_objfile);
8497
8498 create_all_comp_units (dwarf2_per_objfile);
8499
8500 /* Create a temporary address map on a temporary obstack. We later
8501 copy this to the final obstack. */
8502 auto_obstack temp_obstack;
8503
8504 scoped_restore save_psymtabs_addrmap
8505 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8506 addrmap_create_mutable (&temp_obstack));
8507
8508 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8509 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8510
8511 /* This has to wait until we read the CUs, we need the list of DWOs. */
8512 process_skeletonless_type_units (dwarf2_per_objfile);
8513
8514 /* Now that all TUs have been processed we can fill in the dependencies. */
8515 if (dwarf2_per_objfile->type_unit_groups != NULL)
8516 {
8517 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8518 build_type_psymtab_dependencies, dwarf2_per_objfile);
8519 }
8520
8521 if (dwarf_read_debug)
8522 print_tu_stats (dwarf2_per_objfile);
8523
8524 set_partial_user (dwarf2_per_objfile);
8525
8526 objfile->partial_symtabs->psymtabs_addrmap
8527 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8528 objfile->partial_symtabs->obstack ());
8529 /* At this point we want to keep the address map. */
8530 save_psymtabs_addrmap.release ();
8531
8532 if (dwarf_read_debug)
8533 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8534 objfile_name (objfile));
8535 }
8536
8537 /* die_reader_func for load_partial_comp_unit. */
8538
8539 static void
8540 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8541 const gdb_byte *info_ptr,
8542 struct die_info *comp_unit_die,
8543 int has_children,
8544 void *data)
8545 {
8546 struct dwarf2_cu *cu = reader->cu;
8547
8548 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8549
8550 /* Check if comp unit has_children.
8551 If so, read the rest of the partial symbols from this comp unit.
8552 If not, there's no more debug_info for this comp unit. */
8553 if (has_children)
8554 load_partial_dies (reader, info_ptr, 0);
8555 }
8556
8557 /* Load the partial DIEs for a secondary CU into memory.
8558 This is also used when rereading a primary CU with load_all_dies. */
8559
8560 static void
8561 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8562 {
8563 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8564 load_partial_comp_unit_reader, NULL);
8565 }
8566
8567 static void
8568 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8569 struct dwarf2_section_info *section,
8570 struct dwarf2_section_info *abbrev_section,
8571 unsigned int is_dwz)
8572 {
8573 const gdb_byte *info_ptr;
8574 struct objfile *objfile = dwarf2_per_objfile->objfile;
8575
8576 if (dwarf_read_debug)
8577 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8578 get_section_name (section),
8579 get_section_file_name (section));
8580
8581 dwarf2_read_section (objfile, section);
8582
8583 info_ptr = section->buffer;
8584
8585 while (info_ptr < section->buffer + section->size)
8586 {
8587 struct dwarf2_per_cu_data *this_cu;
8588
8589 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8590
8591 comp_unit_head cu_header;
8592 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8593 abbrev_section, info_ptr,
8594 rcuh_kind::COMPILE);
8595
8596 /* Save the compilation unit for later lookup. */
8597 if (cu_header.unit_type != DW_UT_type)
8598 {
8599 this_cu = XOBNEW (&objfile->objfile_obstack,
8600 struct dwarf2_per_cu_data);
8601 memset (this_cu, 0, sizeof (*this_cu));
8602 }
8603 else
8604 {
8605 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8606 struct signatured_type);
8607 memset (sig_type, 0, sizeof (*sig_type));
8608 sig_type->signature = cu_header.signature;
8609 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8610 this_cu = &sig_type->per_cu;
8611 }
8612 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8613 this_cu->sect_off = sect_off;
8614 this_cu->length = cu_header.length + cu_header.initial_length_size;
8615 this_cu->is_dwz = is_dwz;
8616 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8617 this_cu->section = section;
8618
8619 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8620
8621 info_ptr = info_ptr + this_cu->length;
8622 }
8623 }
8624
8625 /* Create a list of all compilation units in OBJFILE.
8626 This is only done for -readnow and building partial symtabs. */
8627
8628 static void
8629 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8630 {
8631 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8632 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8633 &dwarf2_per_objfile->abbrev, 0);
8634
8635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8636 if (dwz != NULL)
8637 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8638 1);
8639 }
8640
8641 /* Process all loaded DIEs for compilation unit CU, starting at
8642 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8643 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8644 DW_AT_ranges). See the comments of add_partial_subprogram on how
8645 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8646
8647 static void
8648 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8649 CORE_ADDR *highpc, int set_addrmap,
8650 struct dwarf2_cu *cu)
8651 {
8652 struct partial_die_info *pdi;
8653
8654 /* Now, march along the PDI's, descending into ones which have
8655 interesting children but skipping the children of the other ones,
8656 until we reach the end of the compilation unit. */
8657
8658 pdi = first_die;
8659
8660 while (pdi != NULL)
8661 {
8662 pdi->fixup (cu);
8663
8664 /* Anonymous namespaces or modules have no name but have interesting
8665 children, so we need to look at them. Ditto for anonymous
8666 enums. */
8667
8668 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8669 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8670 || pdi->tag == DW_TAG_imported_unit
8671 || pdi->tag == DW_TAG_inlined_subroutine)
8672 {
8673 switch (pdi->tag)
8674 {
8675 case DW_TAG_subprogram:
8676 case DW_TAG_inlined_subroutine:
8677 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8678 break;
8679 case DW_TAG_constant:
8680 case DW_TAG_variable:
8681 case DW_TAG_typedef:
8682 case DW_TAG_union_type:
8683 if (!pdi->is_declaration)
8684 {
8685 add_partial_symbol (pdi, cu);
8686 }
8687 break;
8688 case DW_TAG_class_type:
8689 case DW_TAG_interface_type:
8690 case DW_TAG_structure_type:
8691 if (!pdi->is_declaration)
8692 {
8693 add_partial_symbol (pdi, cu);
8694 }
8695 if ((cu->language == language_rust
8696 || cu->language == language_cplus) && pdi->has_children)
8697 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8698 set_addrmap, cu);
8699 break;
8700 case DW_TAG_enumeration_type:
8701 if (!pdi->is_declaration)
8702 add_partial_enumeration (pdi, cu);
8703 break;
8704 case DW_TAG_base_type:
8705 case DW_TAG_subrange_type:
8706 /* File scope base type definitions are added to the partial
8707 symbol table. */
8708 add_partial_symbol (pdi, cu);
8709 break;
8710 case DW_TAG_namespace:
8711 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8712 break;
8713 case DW_TAG_module:
8714 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8715 break;
8716 case DW_TAG_imported_unit:
8717 {
8718 struct dwarf2_per_cu_data *per_cu;
8719
8720 /* For now we don't handle imported units in type units. */
8721 if (cu->per_cu->is_debug_types)
8722 {
8723 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8724 " supported in type units [in module %s]"),
8725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8726 }
8727
8728 per_cu = dwarf2_find_containing_comp_unit
8729 (pdi->d.sect_off, pdi->is_dwz,
8730 cu->per_cu->dwarf2_per_objfile);
8731
8732 /* Go read the partial unit, if needed. */
8733 if (per_cu->v.psymtab == NULL)
8734 process_psymtab_comp_unit (per_cu, 1, cu->language);
8735
8736 VEC_safe_push (dwarf2_per_cu_ptr,
8737 cu->per_cu->imported_symtabs, per_cu);
8738 }
8739 break;
8740 case DW_TAG_imported_declaration:
8741 add_partial_symbol (pdi, cu);
8742 break;
8743 default:
8744 break;
8745 }
8746 }
8747
8748 /* If the die has a sibling, skip to the sibling. */
8749
8750 pdi = pdi->die_sibling;
8751 }
8752 }
8753
8754 /* Functions used to compute the fully scoped name of a partial DIE.
8755
8756 Normally, this is simple. For C++, the parent DIE's fully scoped
8757 name is concatenated with "::" and the partial DIE's name.
8758 Enumerators are an exception; they use the scope of their parent
8759 enumeration type, i.e. the name of the enumeration type is not
8760 prepended to the enumerator.
8761
8762 There are two complexities. One is DW_AT_specification; in this
8763 case "parent" means the parent of the target of the specification,
8764 instead of the direct parent of the DIE. The other is compilers
8765 which do not emit DW_TAG_namespace; in this case we try to guess
8766 the fully qualified name of structure types from their members'
8767 linkage names. This must be done using the DIE's children rather
8768 than the children of any DW_AT_specification target. We only need
8769 to do this for structures at the top level, i.e. if the target of
8770 any DW_AT_specification (if any; otherwise the DIE itself) does not
8771 have a parent. */
8772
8773 /* Compute the scope prefix associated with PDI's parent, in
8774 compilation unit CU. The result will be allocated on CU's
8775 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8776 field. NULL is returned if no prefix is necessary. */
8777 static const char *
8778 partial_die_parent_scope (struct partial_die_info *pdi,
8779 struct dwarf2_cu *cu)
8780 {
8781 const char *grandparent_scope;
8782 struct partial_die_info *parent, *real_pdi;
8783
8784 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8785 then this means the parent of the specification DIE. */
8786
8787 real_pdi = pdi;
8788 while (real_pdi->has_specification)
8789 {
8790 auto res = find_partial_die (real_pdi->spec_offset,
8791 real_pdi->spec_is_dwz, cu);
8792 real_pdi = res.pdi;
8793 cu = res.cu;
8794 }
8795
8796 parent = real_pdi->die_parent;
8797 if (parent == NULL)
8798 return NULL;
8799
8800 if (parent->scope_set)
8801 return parent->scope;
8802
8803 parent->fixup (cu);
8804
8805 grandparent_scope = partial_die_parent_scope (parent, cu);
8806
8807 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8808 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8809 Work around this problem here. */
8810 if (cu->language == language_cplus
8811 && parent->tag == DW_TAG_namespace
8812 && strcmp (parent->name, "::") == 0
8813 && grandparent_scope == NULL)
8814 {
8815 parent->scope = NULL;
8816 parent->scope_set = 1;
8817 return NULL;
8818 }
8819
8820 if (pdi->tag == DW_TAG_enumerator)
8821 /* Enumerators should not get the name of the enumeration as a prefix. */
8822 parent->scope = grandparent_scope;
8823 else if (parent->tag == DW_TAG_namespace
8824 || parent->tag == DW_TAG_module
8825 || parent->tag == DW_TAG_structure_type
8826 || parent->tag == DW_TAG_class_type
8827 || parent->tag == DW_TAG_interface_type
8828 || parent->tag == DW_TAG_union_type
8829 || parent->tag == DW_TAG_enumeration_type)
8830 {
8831 if (grandparent_scope == NULL)
8832 parent->scope = parent->name;
8833 else
8834 parent->scope = typename_concat (&cu->comp_unit_obstack,
8835 grandparent_scope,
8836 parent->name, 0, cu);
8837 }
8838 else
8839 {
8840 /* FIXME drow/2004-04-01: What should we be doing with
8841 function-local names? For partial symbols, we should probably be
8842 ignoring them. */
8843 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8844 dwarf_tag_name (parent->tag),
8845 sect_offset_str (pdi->sect_off));
8846 parent->scope = grandparent_scope;
8847 }
8848
8849 parent->scope_set = 1;
8850 return parent->scope;
8851 }
8852
8853 /* Return the fully scoped name associated with PDI, from compilation unit
8854 CU. The result will be allocated with malloc. */
8855
8856 static char *
8857 partial_die_full_name (struct partial_die_info *pdi,
8858 struct dwarf2_cu *cu)
8859 {
8860 const char *parent_scope;
8861
8862 /* If this is a template instantiation, we can not work out the
8863 template arguments from partial DIEs. So, unfortunately, we have
8864 to go through the full DIEs. At least any work we do building
8865 types here will be reused if full symbols are loaded later. */
8866 if (pdi->has_template_arguments)
8867 {
8868 pdi->fixup (cu);
8869
8870 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8871 {
8872 struct die_info *die;
8873 struct attribute attr;
8874 struct dwarf2_cu *ref_cu = cu;
8875
8876 /* DW_FORM_ref_addr is using section offset. */
8877 attr.name = (enum dwarf_attribute) 0;
8878 attr.form = DW_FORM_ref_addr;
8879 attr.u.unsnd = to_underlying (pdi->sect_off);
8880 die = follow_die_ref (NULL, &attr, &ref_cu);
8881
8882 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8883 }
8884 }
8885
8886 parent_scope = partial_die_parent_scope (pdi, cu);
8887 if (parent_scope == NULL)
8888 return NULL;
8889 else
8890 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8891 }
8892
8893 static void
8894 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8895 {
8896 struct dwarf2_per_objfile *dwarf2_per_objfile
8897 = cu->per_cu->dwarf2_per_objfile;
8898 struct objfile *objfile = dwarf2_per_objfile->objfile;
8899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8900 CORE_ADDR addr = 0;
8901 const char *actual_name = NULL;
8902 CORE_ADDR baseaddr;
8903 char *built_actual_name;
8904
8905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8906
8907 built_actual_name = partial_die_full_name (pdi, cu);
8908 if (built_actual_name != NULL)
8909 actual_name = built_actual_name;
8910
8911 if (actual_name == NULL)
8912 actual_name = pdi->name;
8913
8914 switch (pdi->tag)
8915 {
8916 case DW_TAG_inlined_subroutine:
8917 case DW_TAG_subprogram:
8918 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8919 - baseaddr);
8920 if (pdi->is_external || cu->language == language_ada)
8921 {
8922 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8923 of the global scope. But in Ada, we want to be able to access
8924 nested procedures globally. So all Ada subprograms are stored
8925 in the global scope. */
8926 add_psymbol_to_list (actual_name, strlen (actual_name),
8927 built_actual_name != NULL,
8928 VAR_DOMAIN, LOC_BLOCK,
8929 SECT_OFF_TEXT (objfile),
8930 psymbol_placement::GLOBAL,
8931 addr,
8932 cu->language, objfile);
8933 }
8934 else
8935 {
8936 add_psymbol_to_list (actual_name, strlen (actual_name),
8937 built_actual_name != NULL,
8938 VAR_DOMAIN, LOC_BLOCK,
8939 SECT_OFF_TEXT (objfile),
8940 psymbol_placement::STATIC,
8941 addr, cu->language, objfile);
8942 }
8943
8944 if (pdi->main_subprogram && actual_name != NULL)
8945 set_objfile_main_name (objfile, actual_name, cu->language);
8946 break;
8947 case DW_TAG_constant:
8948 add_psymbol_to_list (actual_name, strlen (actual_name),
8949 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8950 -1, (pdi->is_external
8951 ? psymbol_placement::GLOBAL
8952 : psymbol_placement::STATIC),
8953 0, cu->language, objfile);
8954 break;
8955 case DW_TAG_variable:
8956 if (pdi->d.locdesc)
8957 addr = decode_locdesc (pdi->d.locdesc, cu);
8958
8959 if (pdi->d.locdesc
8960 && addr == 0
8961 && !dwarf2_per_objfile->has_section_at_zero)
8962 {
8963 /* A global or static variable may also have been stripped
8964 out by the linker if unused, in which case its address
8965 will be nullified; do not add such variables into partial
8966 symbol table then. */
8967 }
8968 else if (pdi->is_external)
8969 {
8970 /* Global Variable.
8971 Don't enter into the minimal symbol tables as there is
8972 a minimal symbol table entry from the ELF symbols already.
8973 Enter into partial symbol table if it has a location
8974 descriptor or a type.
8975 If the location descriptor is missing, new_symbol will create
8976 a LOC_UNRESOLVED symbol, the address of the variable will then
8977 be determined from the minimal symbol table whenever the variable
8978 is referenced.
8979 The address for the partial symbol table entry is not
8980 used by GDB, but it comes in handy for debugging partial symbol
8981 table building. */
8982
8983 if (pdi->d.locdesc || pdi->has_type)
8984 add_psymbol_to_list (actual_name, strlen (actual_name),
8985 built_actual_name != NULL,
8986 VAR_DOMAIN, LOC_STATIC,
8987 SECT_OFF_TEXT (objfile),
8988 psymbol_placement::GLOBAL,
8989 addr, cu->language, objfile);
8990 }
8991 else
8992 {
8993 int has_loc = pdi->d.locdesc != NULL;
8994
8995 /* Static Variable. Skip symbols whose value we cannot know (those
8996 without location descriptors or constant values). */
8997 if (!has_loc && !pdi->has_const_value)
8998 {
8999 xfree (built_actual_name);
9000 return;
9001 }
9002
9003 add_psymbol_to_list (actual_name, strlen (actual_name),
9004 built_actual_name != NULL,
9005 VAR_DOMAIN, LOC_STATIC,
9006 SECT_OFF_TEXT (objfile),
9007 psymbol_placement::STATIC,
9008 has_loc ? addr : 0,
9009 cu->language, objfile);
9010 }
9011 break;
9012 case DW_TAG_typedef:
9013 case DW_TAG_base_type:
9014 case DW_TAG_subrange_type:
9015 add_psymbol_to_list (actual_name, strlen (actual_name),
9016 built_actual_name != NULL,
9017 VAR_DOMAIN, LOC_TYPEDEF, -1,
9018 psymbol_placement::STATIC,
9019 0, cu->language, objfile);
9020 break;
9021 case DW_TAG_imported_declaration:
9022 case DW_TAG_namespace:
9023 add_psymbol_to_list (actual_name, strlen (actual_name),
9024 built_actual_name != NULL,
9025 VAR_DOMAIN, LOC_TYPEDEF, -1,
9026 psymbol_placement::GLOBAL,
9027 0, cu->language, objfile);
9028 break;
9029 case DW_TAG_module:
9030 /* With Fortran 77 there might be a "BLOCK DATA" module
9031 available without any name. If so, we skip the module as it
9032 doesn't bring any value. */
9033 if (actual_name != nullptr)
9034 add_psymbol_to_list (actual_name, strlen (actual_name),
9035 built_actual_name != NULL,
9036 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9037 psymbol_placement::GLOBAL,
9038 0, cu->language, objfile);
9039 break;
9040 case DW_TAG_class_type:
9041 case DW_TAG_interface_type:
9042 case DW_TAG_structure_type:
9043 case DW_TAG_union_type:
9044 case DW_TAG_enumeration_type:
9045 /* Skip external references. The DWARF standard says in the section
9046 about "Structure, Union, and Class Type Entries": "An incomplete
9047 structure, union or class type is represented by a structure,
9048 union or class entry that does not have a byte size attribute
9049 and that has a DW_AT_declaration attribute." */
9050 if (!pdi->has_byte_size && pdi->is_declaration)
9051 {
9052 xfree (built_actual_name);
9053 return;
9054 }
9055
9056 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9057 static vs. global. */
9058 add_psymbol_to_list (actual_name, strlen (actual_name),
9059 built_actual_name != NULL,
9060 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9061 cu->language == language_cplus
9062 ? psymbol_placement::GLOBAL
9063 : psymbol_placement::STATIC,
9064 0, cu->language, objfile);
9065
9066 break;
9067 case DW_TAG_enumerator:
9068 add_psymbol_to_list (actual_name, strlen (actual_name),
9069 built_actual_name != NULL,
9070 VAR_DOMAIN, LOC_CONST, -1,
9071 cu->language == language_cplus
9072 ? psymbol_placement::GLOBAL
9073 : psymbol_placement::STATIC,
9074 0, cu->language, objfile);
9075 break;
9076 default:
9077 break;
9078 }
9079
9080 xfree (built_actual_name);
9081 }
9082
9083 /* Read a partial die corresponding to a namespace; also, add a symbol
9084 corresponding to that namespace to the symbol table. NAMESPACE is
9085 the name of the enclosing namespace. */
9086
9087 static void
9088 add_partial_namespace (struct partial_die_info *pdi,
9089 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9090 int set_addrmap, struct dwarf2_cu *cu)
9091 {
9092 /* Add a symbol for the namespace. */
9093
9094 add_partial_symbol (pdi, cu);
9095
9096 /* Now scan partial symbols in that namespace. */
9097
9098 if (pdi->has_children)
9099 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9100 }
9101
9102 /* Read a partial die corresponding to a Fortran module. */
9103
9104 static void
9105 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9106 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9107 {
9108 /* Add a symbol for the namespace. */
9109
9110 add_partial_symbol (pdi, cu);
9111
9112 /* Now scan partial symbols in that module. */
9113
9114 if (pdi->has_children)
9115 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9116 }
9117
9118 /* Read a partial die corresponding to a subprogram or an inlined
9119 subprogram and create a partial symbol for that subprogram.
9120 When the CU language allows it, this routine also defines a partial
9121 symbol for each nested subprogram that this subprogram contains.
9122 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9123 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9124
9125 PDI may also be a lexical block, in which case we simply search
9126 recursively for subprograms defined inside that lexical block.
9127 Again, this is only performed when the CU language allows this
9128 type of definitions. */
9129
9130 static void
9131 add_partial_subprogram (struct partial_die_info *pdi,
9132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9133 int set_addrmap, struct dwarf2_cu *cu)
9134 {
9135 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9136 {
9137 if (pdi->has_pc_info)
9138 {
9139 if (pdi->lowpc < *lowpc)
9140 *lowpc = pdi->lowpc;
9141 if (pdi->highpc > *highpc)
9142 *highpc = pdi->highpc;
9143 if (set_addrmap)
9144 {
9145 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9146 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9147 CORE_ADDR baseaddr;
9148 CORE_ADDR this_highpc;
9149 CORE_ADDR this_lowpc;
9150
9151 baseaddr = ANOFFSET (objfile->section_offsets,
9152 SECT_OFF_TEXT (objfile));
9153 this_lowpc
9154 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9155 pdi->lowpc + baseaddr)
9156 - baseaddr);
9157 this_highpc
9158 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9159 pdi->highpc + baseaddr)
9160 - baseaddr);
9161 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9162 this_lowpc, this_highpc - 1,
9163 cu->per_cu->v.psymtab);
9164 }
9165 }
9166
9167 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9168 {
9169 if (!pdi->is_declaration)
9170 /* Ignore subprogram DIEs that do not have a name, they are
9171 illegal. Do not emit a complaint at this point, we will
9172 do so when we convert this psymtab into a symtab. */
9173 if (pdi->name)
9174 add_partial_symbol (pdi, cu);
9175 }
9176 }
9177
9178 if (! pdi->has_children)
9179 return;
9180
9181 if (cu->language == language_ada)
9182 {
9183 pdi = pdi->die_child;
9184 while (pdi != NULL)
9185 {
9186 pdi->fixup (cu);
9187 if (pdi->tag == DW_TAG_subprogram
9188 || pdi->tag == DW_TAG_inlined_subroutine
9189 || pdi->tag == DW_TAG_lexical_block)
9190 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9191 pdi = pdi->die_sibling;
9192 }
9193 }
9194 }
9195
9196 /* Read a partial die corresponding to an enumeration type. */
9197
9198 static void
9199 add_partial_enumeration (struct partial_die_info *enum_pdi,
9200 struct dwarf2_cu *cu)
9201 {
9202 struct partial_die_info *pdi;
9203
9204 if (enum_pdi->name != NULL)
9205 add_partial_symbol (enum_pdi, cu);
9206
9207 pdi = enum_pdi->die_child;
9208 while (pdi)
9209 {
9210 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9211 complaint (_("malformed enumerator DIE ignored"));
9212 else
9213 add_partial_symbol (pdi, cu);
9214 pdi = pdi->die_sibling;
9215 }
9216 }
9217
9218 /* Return the initial uleb128 in the die at INFO_PTR. */
9219
9220 static unsigned int
9221 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9222 {
9223 unsigned int bytes_read;
9224
9225 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9226 }
9227
9228 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9229 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9230
9231 Return the corresponding abbrev, or NULL if the number is zero (indicating
9232 an empty DIE). In either case *BYTES_READ will be set to the length of
9233 the initial number. */
9234
9235 static struct abbrev_info *
9236 peek_die_abbrev (const die_reader_specs &reader,
9237 const gdb_byte *info_ptr, unsigned int *bytes_read)
9238 {
9239 dwarf2_cu *cu = reader.cu;
9240 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9241 unsigned int abbrev_number
9242 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9243
9244 if (abbrev_number == 0)
9245 return NULL;
9246
9247 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9248 if (!abbrev)
9249 {
9250 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9251 " at offset %s [in module %s]"),
9252 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9253 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9254 }
9255
9256 return abbrev;
9257 }
9258
9259 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9260 Returns a pointer to the end of a series of DIEs, terminated by an empty
9261 DIE. Any children of the skipped DIEs will also be skipped. */
9262
9263 static const gdb_byte *
9264 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9265 {
9266 while (1)
9267 {
9268 unsigned int bytes_read;
9269 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9270
9271 if (abbrev == NULL)
9272 return info_ptr + bytes_read;
9273 else
9274 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9275 }
9276 }
9277
9278 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9279 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9280 abbrev corresponding to that skipped uleb128 should be passed in
9281 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9282 children. */
9283
9284 static const gdb_byte *
9285 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9286 struct abbrev_info *abbrev)
9287 {
9288 unsigned int bytes_read;
9289 struct attribute attr;
9290 bfd *abfd = reader->abfd;
9291 struct dwarf2_cu *cu = reader->cu;
9292 const gdb_byte *buffer = reader->buffer;
9293 const gdb_byte *buffer_end = reader->buffer_end;
9294 unsigned int form, i;
9295
9296 for (i = 0; i < abbrev->num_attrs; i++)
9297 {
9298 /* The only abbrev we care about is DW_AT_sibling. */
9299 if (abbrev->attrs[i].name == DW_AT_sibling)
9300 {
9301 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9302 if (attr.form == DW_FORM_ref_addr)
9303 complaint (_("ignoring absolute DW_AT_sibling"));
9304 else
9305 {
9306 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9307 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9308
9309 if (sibling_ptr < info_ptr)
9310 complaint (_("DW_AT_sibling points backwards"));
9311 else if (sibling_ptr > reader->buffer_end)
9312 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9313 else
9314 return sibling_ptr;
9315 }
9316 }
9317
9318 /* If it isn't DW_AT_sibling, skip this attribute. */
9319 form = abbrev->attrs[i].form;
9320 skip_attribute:
9321 switch (form)
9322 {
9323 case DW_FORM_ref_addr:
9324 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9325 and later it is offset sized. */
9326 if (cu->header.version == 2)
9327 info_ptr += cu->header.addr_size;
9328 else
9329 info_ptr += cu->header.offset_size;
9330 break;
9331 case DW_FORM_GNU_ref_alt:
9332 info_ptr += cu->header.offset_size;
9333 break;
9334 case DW_FORM_addr:
9335 info_ptr += cu->header.addr_size;
9336 break;
9337 case DW_FORM_data1:
9338 case DW_FORM_ref1:
9339 case DW_FORM_flag:
9340 case DW_FORM_strx1:
9341 info_ptr += 1;
9342 break;
9343 case DW_FORM_flag_present:
9344 case DW_FORM_implicit_const:
9345 break;
9346 case DW_FORM_data2:
9347 case DW_FORM_ref2:
9348 case DW_FORM_strx2:
9349 info_ptr += 2;
9350 break;
9351 case DW_FORM_strx3:
9352 info_ptr += 3;
9353 break;
9354 case DW_FORM_data4:
9355 case DW_FORM_ref4:
9356 case DW_FORM_strx4:
9357 info_ptr += 4;
9358 break;
9359 case DW_FORM_data8:
9360 case DW_FORM_ref8:
9361 case DW_FORM_ref_sig8:
9362 info_ptr += 8;
9363 break;
9364 case DW_FORM_data16:
9365 info_ptr += 16;
9366 break;
9367 case DW_FORM_string:
9368 read_direct_string (abfd, info_ptr, &bytes_read);
9369 info_ptr += bytes_read;
9370 break;
9371 case DW_FORM_sec_offset:
9372 case DW_FORM_strp:
9373 case DW_FORM_GNU_strp_alt:
9374 info_ptr += cu->header.offset_size;
9375 break;
9376 case DW_FORM_exprloc:
9377 case DW_FORM_block:
9378 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9379 info_ptr += bytes_read;
9380 break;
9381 case DW_FORM_block1:
9382 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9383 break;
9384 case DW_FORM_block2:
9385 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9386 break;
9387 case DW_FORM_block4:
9388 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9389 break;
9390 case DW_FORM_addrx:
9391 case DW_FORM_strx:
9392 case DW_FORM_sdata:
9393 case DW_FORM_udata:
9394 case DW_FORM_ref_udata:
9395 case DW_FORM_GNU_addr_index:
9396 case DW_FORM_GNU_str_index:
9397 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9398 break;
9399 case DW_FORM_indirect:
9400 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9401 info_ptr += bytes_read;
9402 /* We need to continue parsing from here, so just go back to
9403 the top. */
9404 goto skip_attribute;
9405
9406 default:
9407 error (_("Dwarf Error: Cannot handle %s "
9408 "in DWARF reader [in module %s]"),
9409 dwarf_form_name (form),
9410 bfd_get_filename (abfd));
9411 }
9412 }
9413
9414 if (abbrev->has_children)
9415 return skip_children (reader, info_ptr);
9416 else
9417 return info_ptr;
9418 }
9419
9420 /* Locate ORIG_PDI's sibling.
9421 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9422
9423 static const gdb_byte *
9424 locate_pdi_sibling (const struct die_reader_specs *reader,
9425 struct partial_die_info *orig_pdi,
9426 const gdb_byte *info_ptr)
9427 {
9428 /* Do we know the sibling already? */
9429
9430 if (orig_pdi->sibling)
9431 return orig_pdi->sibling;
9432
9433 /* Are there any children to deal with? */
9434
9435 if (!orig_pdi->has_children)
9436 return info_ptr;
9437
9438 /* Skip the children the long way. */
9439
9440 return skip_children (reader, info_ptr);
9441 }
9442
9443 /* Expand this partial symbol table into a full symbol table. SELF is
9444 not NULL. */
9445
9446 static void
9447 dwarf2_read_symtab (struct partial_symtab *self,
9448 struct objfile *objfile)
9449 {
9450 struct dwarf2_per_objfile *dwarf2_per_objfile
9451 = get_dwarf2_per_objfile (objfile);
9452
9453 if (self->readin)
9454 {
9455 warning (_("bug: psymtab for %s is already read in."),
9456 self->filename);
9457 }
9458 else
9459 {
9460 if (info_verbose)
9461 {
9462 printf_filtered (_("Reading in symbols for %s..."),
9463 self->filename);
9464 gdb_flush (gdb_stdout);
9465 }
9466
9467 /* If this psymtab is constructed from a debug-only objfile, the
9468 has_section_at_zero flag will not necessarily be correct. We
9469 can get the correct value for this flag by looking at the data
9470 associated with the (presumably stripped) associated objfile. */
9471 if (objfile->separate_debug_objfile_backlink)
9472 {
9473 struct dwarf2_per_objfile *dpo_backlink
9474 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9475
9476 dwarf2_per_objfile->has_section_at_zero
9477 = dpo_backlink->has_section_at_zero;
9478 }
9479
9480 dwarf2_per_objfile->reading_partial_symbols = 0;
9481
9482 psymtab_to_symtab_1 (self);
9483
9484 /* Finish up the debug error message. */
9485 if (info_verbose)
9486 printf_filtered (_("done.\n"));
9487 }
9488
9489 process_cu_includes (dwarf2_per_objfile);
9490 }
9491 \f
9492 /* Reading in full CUs. */
9493
9494 /* Add PER_CU to the queue. */
9495
9496 static void
9497 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9498 enum language pretend_language)
9499 {
9500 struct dwarf2_queue_item *item;
9501
9502 per_cu->queued = 1;
9503 item = XNEW (struct dwarf2_queue_item);
9504 item->per_cu = per_cu;
9505 item->pretend_language = pretend_language;
9506 item->next = NULL;
9507
9508 if (dwarf2_queue == NULL)
9509 dwarf2_queue = item;
9510 else
9511 dwarf2_queue_tail->next = item;
9512
9513 dwarf2_queue_tail = item;
9514 }
9515
9516 /* If PER_CU is not yet queued, add it to the queue.
9517 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9518 dependency.
9519 The result is non-zero if PER_CU was queued, otherwise the result is zero
9520 meaning either PER_CU is already queued or it is already loaded.
9521
9522 N.B. There is an invariant here that if a CU is queued then it is loaded.
9523 The caller is required to load PER_CU if we return non-zero. */
9524
9525 static int
9526 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9527 struct dwarf2_per_cu_data *per_cu,
9528 enum language pretend_language)
9529 {
9530 /* We may arrive here during partial symbol reading, if we need full
9531 DIEs to process an unusual case (e.g. template arguments). Do
9532 not queue PER_CU, just tell our caller to load its DIEs. */
9533 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9534 {
9535 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9536 return 1;
9537 return 0;
9538 }
9539
9540 /* Mark the dependence relation so that we don't flush PER_CU
9541 too early. */
9542 if (dependent_cu != NULL)
9543 dwarf2_add_dependence (dependent_cu, per_cu);
9544
9545 /* If it's already on the queue, we have nothing to do. */
9546 if (per_cu->queued)
9547 return 0;
9548
9549 /* If the compilation unit is already loaded, just mark it as
9550 used. */
9551 if (per_cu->cu != NULL)
9552 {
9553 per_cu->cu->last_used = 0;
9554 return 0;
9555 }
9556
9557 /* Add it to the queue. */
9558 queue_comp_unit (per_cu, pretend_language);
9559
9560 return 1;
9561 }
9562
9563 /* Process the queue. */
9564
9565 static void
9566 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9567 {
9568 struct dwarf2_queue_item *item, *next_item;
9569
9570 if (dwarf_read_debug)
9571 {
9572 fprintf_unfiltered (gdb_stdlog,
9573 "Expanding one or more symtabs of objfile %s ...\n",
9574 objfile_name (dwarf2_per_objfile->objfile));
9575 }
9576
9577 /* The queue starts out with one item, but following a DIE reference
9578 may load a new CU, adding it to the end of the queue. */
9579 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9580 {
9581 if ((dwarf2_per_objfile->using_index
9582 ? !item->per_cu->v.quick->compunit_symtab
9583 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9584 /* Skip dummy CUs. */
9585 && item->per_cu->cu != NULL)
9586 {
9587 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9588 unsigned int debug_print_threshold;
9589 char buf[100];
9590
9591 if (per_cu->is_debug_types)
9592 {
9593 struct signatured_type *sig_type =
9594 (struct signatured_type *) per_cu;
9595
9596 sprintf (buf, "TU %s at offset %s",
9597 hex_string (sig_type->signature),
9598 sect_offset_str (per_cu->sect_off));
9599 /* There can be 100s of TUs.
9600 Only print them in verbose mode. */
9601 debug_print_threshold = 2;
9602 }
9603 else
9604 {
9605 sprintf (buf, "CU at offset %s",
9606 sect_offset_str (per_cu->sect_off));
9607 debug_print_threshold = 1;
9608 }
9609
9610 if (dwarf_read_debug >= debug_print_threshold)
9611 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9612
9613 if (per_cu->is_debug_types)
9614 process_full_type_unit (per_cu, item->pretend_language);
9615 else
9616 process_full_comp_unit (per_cu, item->pretend_language);
9617
9618 if (dwarf_read_debug >= debug_print_threshold)
9619 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9620 }
9621
9622 item->per_cu->queued = 0;
9623 next_item = item->next;
9624 xfree (item);
9625 }
9626
9627 dwarf2_queue_tail = NULL;
9628
9629 if (dwarf_read_debug)
9630 {
9631 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9632 objfile_name (dwarf2_per_objfile->objfile));
9633 }
9634 }
9635
9636 /* Read in full symbols for PST, and anything it depends on. */
9637
9638 static void
9639 psymtab_to_symtab_1 (struct partial_symtab *pst)
9640 {
9641 struct dwarf2_per_cu_data *per_cu;
9642 int i;
9643
9644 if (pst->readin)
9645 return;
9646
9647 for (i = 0; i < pst->number_of_dependencies; i++)
9648 if (!pst->dependencies[i]->readin
9649 && pst->dependencies[i]->user == NULL)
9650 {
9651 /* Inform about additional files that need to be read in. */
9652 if (info_verbose)
9653 {
9654 /* FIXME: i18n: Need to make this a single string. */
9655 fputs_filtered (" ", gdb_stdout);
9656 wrap_here ("");
9657 fputs_filtered ("and ", gdb_stdout);
9658 wrap_here ("");
9659 printf_filtered ("%s...", pst->dependencies[i]->filename);
9660 wrap_here (""); /* Flush output. */
9661 gdb_flush (gdb_stdout);
9662 }
9663 psymtab_to_symtab_1 (pst->dependencies[i]);
9664 }
9665
9666 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9667
9668 if (per_cu == NULL)
9669 {
9670 /* It's an include file, no symbols to read for it.
9671 Everything is in the parent symtab. */
9672 pst->readin = 1;
9673 return;
9674 }
9675
9676 dw2_do_instantiate_symtab (per_cu, false);
9677 }
9678
9679 /* Trivial hash function for die_info: the hash value of a DIE
9680 is its offset in .debug_info for this objfile. */
9681
9682 static hashval_t
9683 die_hash (const void *item)
9684 {
9685 const struct die_info *die = (const struct die_info *) item;
9686
9687 return to_underlying (die->sect_off);
9688 }
9689
9690 /* Trivial comparison function for die_info structures: two DIEs
9691 are equal if they have the same offset. */
9692
9693 static int
9694 die_eq (const void *item_lhs, const void *item_rhs)
9695 {
9696 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9697 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9698
9699 return die_lhs->sect_off == die_rhs->sect_off;
9700 }
9701
9702 /* die_reader_func for load_full_comp_unit.
9703 This is identical to read_signatured_type_reader,
9704 but is kept separate for now. */
9705
9706 static void
9707 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9708 const gdb_byte *info_ptr,
9709 struct die_info *comp_unit_die,
9710 int has_children,
9711 void *data)
9712 {
9713 struct dwarf2_cu *cu = reader->cu;
9714 enum language *language_ptr = (enum language *) data;
9715
9716 gdb_assert (cu->die_hash == NULL);
9717 cu->die_hash =
9718 htab_create_alloc_ex (cu->header.length / 12,
9719 die_hash,
9720 die_eq,
9721 NULL,
9722 &cu->comp_unit_obstack,
9723 hashtab_obstack_allocate,
9724 dummy_obstack_deallocate);
9725
9726 if (has_children)
9727 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9728 &info_ptr, comp_unit_die);
9729 cu->dies = comp_unit_die;
9730 /* comp_unit_die is not stored in die_hash, no need. */
9731
9732 /* We try not to read any attributes in this function, because not
9733 all CUs needed for references have been loaded yet, and symbol
9734 table processing isn't initialized. But we have to set the CU language,
9735 or we won't be able to build types correctly.
9736 Similarly, if we do not read the producer, we can not apply
9737 producer-specific interpretation. */
9738 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9739 }
9740
9741 /* Load the DIEs associated with PER_CU into memory. */
9742
9743 static void
9744 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9745 bool skip_partial,
9746 enum language pretend_language)
9747 {
9748 gdb_assert (! this_cu->is_debug_types);
9749
9750 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9751 load_full_comp_unit_reader, &pretend_language);
9752 }
9753
9754 /* Add a DIE to the delayed physname list. */
9755
9756 static void
9757 add_to_method_list (struct type *type, int fnfield_index, int index,
9758 const char *name, struct die_info *die,
9759 struct dwarf2_cu *cu)
9760 {
9761 struct delayed_method_info mi;
9762 mi.type = type;
9763 mi.fnfield_index = fnfield_index;
9764 mi.index = index;
9765 mi.name = name;
9766 mi.die = die;
9767 cu->method_list.push_back (mi);
9768 }
9769
9770 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9771 "const" / "volatile". If so, decrements LEN by the length of the
9772 modifier and return true. Otherwise return false. */
9773
9774 template<size_t N>
9775 static bool
9776 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9777 {
9778 size_t mod_len = sizeof (mod) - 1;
9779 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9780 {
9781 len -= mod_len;
9782 return true;
9783 }
9784 return false;
9785 }
9786
9787 /* Compute the physnames of any methods on the CU's method list.
9788
9789 The computation of method physnames is delayed in order to avoid the
9790 (bad) condition that one of the method's formal parameters is of an as yet
9791 incomplete type. */
9792
9793 static void
9794 compute_delayed_physnames (struct dwarf2_cu *cu)
9795 {
9796 /* Only C++ delays computing physnames. */
9797 if (cu->method_list.empty ())
9798 return;
9799 gdb_assert (cu->language == language_cplus);
9800
9801 for (const delayed_method_info &mi : cu->method_list)
9802 {
9803 const char *physname;
9804 struct fn_fieldlist *fn_flp
9805 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9806 physname = dwarf2_physname (mi.name, mi.die, cu);
9807 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9808 = physname ? physname : "";
9809
9810 /* Since there's no tag to indicate whether a method is a
9811 const/volatile overload, extract that information out of the
9812 demangled name. */
9813 if (physname != NULL)
9814 {
9815 size_t len = strlen (physname);
9816
9817 while (1)
9818 {
9819 if (physname[len] == ')') /* shortcut */
9820 break;
9821 else if (check_modifier (physname, len, " const"))
9822 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9823 else if (check_modifier (physname, len, " volatile"))
9824 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9825 else
9826 break;
9827 }
9828 }
9829 }
9830
9831 /* The list is no longer needed. */
9832 cu->method_list.clear ();
9833 }
9834
9835 /* Go objects should be embedded in a DW_TAG_module DIE,
9836 and it's not clear if/how imported objects will appear.
9837 To keep Go support simple until that's worked out,
9838 go back through what we've read and create something usable.
9839 We could do this while processing each DIE, and feels kinda cleaner,
9840 but that way is more invasive.
9841 This is to, for example, allow the user to type "p var" or "b main"
9842 without having to specify the package name, and allow lookups
9843 of module.object to work in contexts that use the expression
9844 parser. */
9845
9846 static void
9847 fixup_go_packaging (struct dwarf2_cu *cu)
9848 {
9849 char *package_name = NULL;
9850 struct pending *list;
9851 int i;
9852
9853 for (list = *cu->get_builder ()->get_global_symbols ();
9854 list != NULL;
9855 list = list->next)
9856 {
9857 for (i = 0; i < list->nsyms; ++i)
9858 {
9859 struct symbol *sym = list->symbol[i];
9860
9861 if (SYMBOL_LANGUAGE (sym) == language_go
9862 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9863 {
9864 char *this_package_name = go_symbol_package_name (sym);
9865
9866 if (this_package_name == NULL)
9867 continue;
9868 if (package_name == NULL)
9869 package_name = this_package_name;
9870 else
9871 {
9872 struct objfile *objfile
9873 = cu->per_cu->dwarf2_per_objfile->objfile;
9874 if (strcmp (package_name, this_package_name) != 0)
9875 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9876 (symbol_symtab (sym) != NULL
9877 ? symtab_to_filename_for_display
9878 (symbol_symtab (sym))
9879 : objfile_name (objfile)),
9880 this_package_name, package_name);
9881 xfree (this_package_name);
9882 }
9883 }
9884 }
9885 }
9886
9887 if (package_name != NULL)
9888 {
9889 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9890 const char *saved_package_name
9891 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9892 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9893 saved_package_name);
9894 struct symbol *sym;
9895
9896 sym = allocate_symbol (objfile);
9897 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9898 SYMBOL_SET_NAMES (sym, saved_package_name,
9899 strlen (saved_package_name), 0, objfile);
9900 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9901 e.g., "main" finds the "main" module and not C's main(). */
9902 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9903 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9904 SYMBOL_TYPE (sym) = type;
9905
9906 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9907
9908 xfree (package_name);
9909 }
9910 }
9911
9912 /* Allocate a fully-qualified name consisting of the two parts on the
9913 obstack. */
9914
9915 static const char *
9916 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9917 {
9918 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9919 }
9920
9921 /* A helper that allocates a struct discriminant_info to attach to a
9922 union type. */
9923
9924 static struct discriminant_info *
9925 alloc_discriminant_info (struct type *type, int discriminant_index,
9926 int default_index)
9927 {
9928 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9929 gdb_assert (discriminant_index == -1
9930 || (discriminant_index >= 0
9931 && discriminant_index < TYPE_NFIELDS (type)));
9932 gdb_assert (default_index == -1
9933 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9934
9935 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9936
9937 struct discriminant_info *disc
9938 = ((struct discriminant_info *)
9939 TYPE_ZALLOC (type,
9940 offsetof (struct discriminant_info, discriminants)
9941 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9942 disc->default_index = default_index;
9943 disc->discriminant_index = discriminant_index;
9944
9945 struct dynamic_prop prop;
9946 prop.kind = PROP_UNDEFINED;
9947 prop.data.baton = disc;
9948
9949 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9950
9951 return disc;
9952 }
9953
9954 /* Some versions of rustc emitted enums in an unusual way.
9955
9956 Ordinary enums were emitted as unions. The first element of each
9957 structure in the union was named "RUST$ENUM$DISR". This element
9958 held the discriminant.
9959
9960 These versions of Rust also implemented the "non-zero"
9961 optimization. When the enum had two values, and one is empty and
9962 the other holds a pointer that cannot be zero, the pointer is used
9963 as the discriminant, with a zero value meaning the empty variant.
9964 Here, the union's first member is of the form
9965 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9966 where the fieldnos are the indices of the fields that should be
9967 traversed in order to find the field (which may be several fields deep)
9968 and the variantname is the name of the variant of the case when the
9969 field is zero.
9970
9971 This function recognizes whether TYPE is of one of these forms,
9972 and, if so, smashes it to be a variant type. */
9973
9974 static void
9975 quirk_rust_enum (struct type *type, struct objfile *objfile)
9976 {
9977 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9978
9979 /* We don't need to deal with empty enums. */
9980 if (TYPE_NFIELDS (type) == 0)
9981 return;
9982
9983 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9984 if (TYPE_NFIELDS (type) == 1
9985 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9986 {
9987 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9988
9989 /* Decode the field name to find the offset of the
9990 discriminant. */
9991 ULONGEST bit_offset = 0;
9992 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9993 while (name[0] >= '0' && name[0] <= '9')
9994 {
9995 char *tail;
9996 unsigned long index = strtoul (name, &tail, 10);
9997 name = tail;
9998 if (*name != '$'
9999 || index >= TYPE_NFIELDS (field_type)
10000 || (TYPE_FIELD_LOC_KIND (field_type, index)
10001 != FIELD_LOC_KIND_BITPOS))
10002 {
10003 complaint (_("Could not parse Rust enum encoding string \"%s\""
10004 "[in module %s]"),
10005 TYPE_FIELD_NAME (type, 0),
10006 objfile_name (objfile));
10007 return;
10008 }
10009 ++name;
10010
10011 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10012 field_type = TYPE_FIELD_TYPE (field_type, index);
10013 }
10014
10015 /* Make a union to hold the variants. */
10016 struct type *union_type = alloc_type (objfile);
10017 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10018 TYPE_NFIELDS (union_type) = 3;
10019 TYPE_FIELDS (union_type)
10020 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10021 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10022 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10023
10024 /* Put the discriminant must at index 0. */
10025 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10026 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10027 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10028 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10029
10030 /* The order of fields doesn't really matter, so put the real
10031 field at index 1 and the data-less field at index 2. */
10032 struct discriminant_info *disc
10033 = alloc_discriminant_info (union_type, 0, 1);
10034 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10035 TYPE_FIELD_NAME (union_type, 1)
10036 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10037 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10038 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10039 TYPE_FIELD_NAME (union_type, 1));
10040
10041 const char *dataless_name
10042 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10043 name);
10044 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10045 dataless_name);
10046 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10047 /* NAME points into the original discriminant name, which
10048 already has the correct lifetime. */
10049 TYPE_FIELD_NAME (union_type, 2) = name;
10050 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10051 disc->discriminants[2] = 0;
10052
10053 /* Smash this type to be a structure type. We have to do this
10054 because the type has already been recorded. */
10055 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10056 TYPE_NFIELDS (type) = 1;
10057 TYPE_FIELDS (type)
10058 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10059
10060 /* Install the variant part. */
10061 TYPE_FIELD_TYPE (type, 0) = union_type;
10062 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10063 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10064 }
10065 else if (TYPE_NFIELDS (type) == 1)
10066 {
10067 /* We assume that a union with a single field is a univariant
10068 enum. */
10069 /* Smash this type to be a structure type. We have to do this
10070 because the type has already been recorded. */
10071 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10072
10073 /* Make a union to hold the variants. */
10074 struct type *union_type = alloc_type (objfile);
10075 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10076 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10077 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10078 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10079 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10080
10081 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10082 const char *variant_name
10083 = rust_last_path_segment (TYPE_NAME (field_type));
10084 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10085 TYPE_NAME (field_type)
10086 = rust_fully_qualify (&objfile->objfile_obstack,
10087 TYPE_NAME (type), variant_name);
10088
10089 /* Install the union in the outer struct type. */
10090 TYPE_NFIELDS (type) = 1;
10091 TYPE_FIELDS (type)
10092 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10093 TYPE_FIELD_TYPE (type, 0) = union_type;
10094 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10095 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10096
10097 alloc_discriminant_info (union_type, -1, 0);
10098 }
10099 else
10100 {
10101 struct type *disr_type = nullptr;
10102 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10103 {
10104 disr_type = TYPE_FIELD_TYPE (type, i);
10105
10106 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10107 {
10108 /* All fields of a true enum will be structs. */
10109 return;
10110 }
10111 else if (TYPE_NFIELDS (disr_type) == 0)
10112 {
10113 /* Could be data-less variant, so keep going. */
10114 disr_type = nullptr;
10115 }
10116 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10117 "RUST$ENUM$DISR") != 0)
10118 {
10119 /* Not a Rust enum. */
10120 return;
10121 }
10122 else
10123 {
10124 /* Found one. */
10125 break;
10126 }
10127 }
10128
10129 /* If we got here without a discriminant, then it's probably
10130 just a union. */
10131 if (disr_type == nullptr)
10132 return;
10133
10134 /* Smash this type to be a structure type. We have to do this
10135 because the type has already been recorded. */
10136 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10137
10138 /* Make a union to hold the variants. */
10139 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10140 struct type *union_type = alloc_type (objfile);
10141 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10142 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10143 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10144 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10145 TYPE_FIELDS (union_type)
10146 = (struct field *) TYPE_ZALLOC (union_type,
10147 (TYPE_NFIELDS (union_type)
10148 * sizeof (struct field)));
10149
10150 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10151 TYPE_NFIELDS (type) * sizeof (struct field));
10152
10153 /* Install the discriminant at index 0 in the union. */
10154 TYPE_FIELD (union_type, 0) = *disr_field;
10155 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10156 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10157
10158 /* Install the union in the outer struct type. */
10159 TYPE_FIELD_TYPE (type, 0) = union_type;
10160 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10161 TYPE_NFIELDS (type) = 1;
10162
10163 /* Set the size and offset of the union type. */
10164 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10165
10166 /* We need a way to find the correct discriminant given a
10167 variant name. For convenience we build a map here. */
10168 struct type *enum_type = FIELD_TYPE (*disr_field);
10169 std::unordered_map<std::string, ULONGEST> discriminant_map;
10170 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10171 {
10172 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10173 {
10174 const char *name
10175 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10176 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10177 }
10178 }
10179
10180 int n_fields = TYPE_NFIELDS (union_type);
10181 struct discriminant_info *disc
10182 = alloc_discriminant_info (union_type, 0, -1);
10183 /* Skip the discriminant here. */
10184 for (int i = 1; i < n_fields; ++i)
10185 {
10186 /* Find the final word in the name of this variant's type.
10187 That name can be used to look up the correct
10188 discriminant. */
10189 const char *variant_name
10190 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10191 i)));
10192
10193 auto iter = discriminant_map.find (variant_name);
10194 if (iter != discriminant_map.end ())
10195 disc->discriminants[i] = iter->second;
10196
10197 /* Remove the discriminant field, if it exists. */
10198 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10199 if (TYPE_NFIELDS (sub_type) > 0)
10200 {
10201 --TYPE_NFIELDS (sub_type);
10202 ++TYPE_FIELDS (sub_type);
10203 }
10204 TYPE_FIELD_NAME (union_type, i) = variant_name;
10205 TYPE_NAME (sub_type)
10206 = rust_fully_qualify (&objfile->objfile_obstack,
10207 TYPE_NAME (type), variant_name);
10208 }
10209 }
10210 }
10211
10212 /* Rewrite some Rust unions to be structures with variants parts. */
10213
10214 static void
10215 rust_union_quirks (struct dwarf2_cu *cu)
10216 {
10217 gdb_assert (cu->language == language_rust);
10218 for (type *type_ : cu->rust_unions)
10219 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10220 /* We don't need this any more. */
10221 cu->rust_unions.clear ();
10222 }
10223
10224 /* Return the symtab for PER_CU. This works properly regardless of
10225 whether we're using the index or psymtabs. */
10226
10227 static struct compunit_symtab *
10228 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10229 {
10230 return (per_cu->dwarf2_per_objfile->using_index
10231 ? per_cu->v.quick->compunit_symtab
10232 : per_cu->v.psymtab->compunit_symtab);
10233 }
10234
10235 /* A helper function for computing the list of all symbol tables
10236 included by PER_CU. */
10237
10238 static void
10239 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10240 htab_t all_children, htab_t all_type_symtabs,
10241 struct dwarf2_per_cu_data *per_cu,
10242 struct compunit_symtab *immediate_parent)
10243 {
10244 void **slot;
10245 int ix;
10246 struct compunit_symtab *cust;
10247 struct dwarf2_per_cu_data *iter;
10248
10249 slot = htab_find_slot (all_children, per_cu, INSERT);
10250 if (*slot != NULL)
10251 {
10252 /* This inclusion and its children have been processed. */
10253 return;
10254 }
10255
10256 *slot = per_cu;
10257 /* Only add a CU if it has a symbol table. */
10258 cust = get_compunit_symtab (per_cu);
10259 if (cust != NULL)
10260 {
10261 /* If this is a type unit only add its symbol table if we haven't
10262 seen it yet (type unit per_cu's can share symtabs). */
10263 if (per_cu->is_debug_types)
10264 {
10265 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10266 if (*slot == NULL)
10267 {
10268 *slot = cust;
10269 result->push_back (cust);
10270 if (cust->user == NULL)
10271 cust->user = immediate_parent;
10272 }
10273 }
10274 else
10275 {
10276 result->push_back (cust);
10277 if (cust->user == NULL)
10278 cust->user = immediate_parent;
10279 }
10280 }
10281
10282 for (ix = 0;
10283 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10284 ++ix)
10285 {
10286 recursively_compute_inclusions (result, all_children,
10287 all_type_symtabs, iter, cust);
10288 }
10289 }
10290
10291 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10292 PER_CU. */
10293
10294 static void
10295 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10296 {
10297 gdb_assert (! per_cu->is_debug_types);
10298
10299 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10300 {
10301 int ix, len;
10302 struct dwarf2_per_cu_data *per_cu_iter;
10303 std::vector<compunit_symtab *> result_symtabs;
10304 htab_t all_children, all_type_symtabs;
10305 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10306
10307 /* If we don't have a symtab, we can just skip this case. */
10308 if (cust == NULL)
10309 return;
10310
10311 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10312 NULL, xcalloc, xfree);
10313 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10314 NULL, xcalloc, xfree);
10315
10316 for (ix = 0;
10317 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10318 ix, per_cu_iter);
10319 ++ix)
10320 {
10321 recursively_compute_inclusions (&result_symtabs, all_children,
10322 all_type_symtabs, per_cu_iter,
10323 cust);
10324 }
10325
10326 /* Now we have a transitive closure of all the included symtabs. */
10327 len = result_symtabs.size ();
10328 cust->includes
10329 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10330 struct compunit_symtab *, len + 1);
10331 memcpy (cust->includes, result_symtabs.data (),
10332 len * sizeof (compunit_symtab *));
10333 cust->includes[len] = NULL;
10334
10335 htab_delete (all_children);
10336 htab_delete (all_type_symtabs);
10337 }
10338 }
10339
10340 /* Compute the 'includes' field for the symtabs of all the CUs we just
10341 read. */
10342
10343 static void
10344 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10345 {
10346 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10347 {
10348 if (! iter->is_debug_types)
10349 compute_compunit_symtab_includes (iter);
10350 }
10351
10352 dwarf2_per_objfile->just_read_cus.clear ();
10353 }
10354
10355 /* Generate full symbol information for PER_CU, whose DIEs have
10356 already been loaded into memory. */
10357
10358 static void
10359 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10360 enum language pretend_language)
10361 {
10362 struct dwarf2_cu *cu = per_cu->cu;
10363 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10364 struct objfile *objfile = dwarf2_per_objfile->objfile;
10365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10366 CORE_ADDR lowpc, highpc;
10367 struct compunit_symtab *cust;
10368 CORE_ADDR baseaddr;
10369 struct block *static_block;
10370 CORE_ADDR addr;
10371
10372 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10373
10374 /* Clear the list here in case something was left over. */
10375 cu->method_list.clear ();
10376
10377 cu->language = pretend_language;
10378 cu->language_defn = language_def (cu->language);
10379
10380 /* Do line number decoding in read_file_scope () */
10381 process_die (cu->dies, cu);
10382
10383 /* For now fudge the Go package. */
10384 if (cu->language == language_go)
10385 fixup_go_packaging (cu);
10386
10387 /* Now that we have processed all the DIEs in the CU, all the types
10388 should be complete, and it should now be safe to compute all of the
10389 physnames. */
10390 compute_delayed_physnames (cu);
10391
10392 if (cu->language == language_rust)
10393 rust_union_quirks (cu);
10394
10395 /* Some compilers don't define a DW_AT_high_pc attribute for the
10396 compilation unit. If the DW_AT_high_pc is missing, synthesize
10397 it, by scanning the DIE's below the compilation unit. */
10398 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10399
10400 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10401 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10402
10403 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10404 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10405 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10406 addrmap to help ensure it has an accurate map of pc values belonging to
10407 this comp unit. */
10408 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10409
10410 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10411 SECT_OFF_TEXT (objfile),
10412 0);
10413
10414 if (cust != NULL)
10415 {
10416 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10417
10418 /* Set symtab language to language from DW_AT_language. If the
10419 compilation is from a C file generated by language preprocessors, do
10420 not set the language if it was already deduced by start_subfile. */
10421 if (!(cu->language == language_c
10422 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10423 COMPUNIT_FILETABS (cust)->language = cu->language;
10424
10425 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10426 produce DW_AT_location with location lists but it can be possibly
10427 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10428 there were bugs in prologue debug info, fixed later in GCC-4.5
10429 by "unwind info for epilogues" patch (which is not directly related).
10430
10431 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10432 needed, it would be wrong due to missing DW_AT_producer there.
10433
10434 Still one can confuse GDB by using non-standard GCC compilation
10435 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10436 */
10437 if (cu->has_loclist && gcc_4_minor >= 5)
10438 cust->locations_valid = 1;
10439
10440 if (gcc_4_minor >= 5)
10441 cust->epilogue_unwind_valid = 1;
10442
10443 cust->call_site_htab = cu->call_site_htab;
10444 }
10445
10446 if (dwarf2_per_objfile->using_index)
10447 per_cu->v.quick->compunit_symtab = cust;
10448 else
10449 {
10450 struct partial_symtab *pst = per_cu->v.psymtab;
10451 pst->compunit_symtab = cust;
10452 pst->readin = 1;
10453 }
10454
10455 /* Push it for inclusion processing later. */
10456 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10457
10458 /* Not needed any more. */
10459 cu->reset_builder ();
10460 }
10461
10462 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10463 already been loaded into memory. */
10464
10465 static void
10466 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10467 enum language pretend_language)
10468 {
10469 struct dwarf2_cu *cu = per_cu->cu;
10470 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10471 struct objfile *objfile = dwarf2_per_objfile->objfile;
10472 struct compunit_symtab *cust;
10473 struct signatured_type *sig_type;
10474
10475 gdb_assert (per_cu->is_debug_types);
10476 sig_type = (struct signatured_type *) per_cu;
10477
10478 /* Clear the list here in case something was left over. */
10479 cu->method_list.clear ();
10480
10481 cu->language = pretend_language;
10482 cu->language_defn = language_def (cu->language);
10483
10484 /* The symbol tables are set up in read_type_unit_scope. */
10485 process_die (cu->dies, cu);
10486
10487 /* For now fudge the Go package. */
10488 if (cu->language == language_go)
10489 fixup_go_packaging (cu);
10490
10491 /* Now that we have processed all the DIEs in the CU, all the types
10492 should be complete, and it should now be safe to compute all of the
10493 physnames. */
10494 compute_delayed_physnames (cu);
10495
10496 if (cu->language == language_rust)
10497 rust_union_quirks (cu);
10498
10499 /* TUs share symbol tables.
10500 If this is the first TU to use this symtab, complete the construction
10501 of it with end_expandable_symtab. Otherwise, complete the addition of
10502 this TU's symbols to the existing symtab. */
10503 if (sig_type->type_unit_group->compunit_symtab == NULL)
10504 {
10505 buildsym_compunit *builder = cu->get_builder ();
10506 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10507 sig_type->type_unit_group->compunit_symtab = cust;
10508
10509 if (cust != NULL)
10510 {
10511 /* Set symtab language to language from DW_AT_language. If the
10512 compilation is from a C file generated by language preprocessors,
10513 do not set the language if it was already deduced by
10514 start_subfile. */
10515 if (!(cu->language == language_c
10516 && COMPUNIT_FILETABS (cust)->language != language_c))
10517 COMPUNIT_FILETABS (cust)->language = cu->language;
10518 }
10519 }
10520 else
10521 {
10522 cu->get_builder ()->augment_type_symtab ();
10523 cust = sig_type->type_unit_group->compunit_symtab;
10524 }
10525
10526 if (dwarf2_per_objfile->using_index)
10527 per_cu->v.quick->compunit_symtab = cust;
10528 else
10529 {
10530 struct partial_symtab *pst = per_cu->v.psymtab;
10531 pst->compunit_symtab = cust;
10532 pst->readin = 1;
10533 }
10534
10535 /* Not needed any more. */
10536 cu->reset_builder ();
10537 }
10538
10539 /* Process an imported unit DIE. */
10540
10541 static void
10542 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10543 {
10544 struct attribute *attr;
10545
10546 /* For now we don't handle imported units in type units. */
10547 if (cu->per_cu->is_debug_types)
10548 {
10549 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10550 " supported in type units [in module %s]"),
10551 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10552 }
10553
10554 attr = dwarf2_attr (die, DW_AT_import, cu);
10555 if (attr != NULL)
10556 {
10557 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10558 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10559 dwarf2_per_cu_data *per_cu
10560 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10561 cu->per_cu->dwarf2_per_objfile);
10562
10563 /* If necessary, add it to the queue and load its DIEs. */
10564 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10565 load_full_comp_unit (per_cu, false, cu->language);
10566
10567 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10568 per_cu);
10569 }
10570 }
10571
10572 /* RAII object that represents a process_die scope: i.e.,
10573 starts/finishes processing a DIE. */
10574 class process_die_scope
10575 {
10576 public:
10577 process_die_scope (die_info *die, dwarf2_cu *cu)
10578 : m_die (die), m_cu (cu)
10579 {
10580 /* We should only be processing DIEs not already in process. */
10581 gdb_assert (!m_die->in_process);
10582 m_die->in_process = true;
10583 }
10584
10585 ~process_die_scope ()
10586 {
10587 m_die->in_process = false;
10588
10589 /* If we're done processing the DIE for the CU that owns the line
10590 header, we don't need the line header anymore. */
10591 if (m_cu->line_header_die_owner == m_die)
10592 {
10593 delete m_cu->line_header;
10594 m_cu->line_header = NULL;
10595 m_cu->line_header_die_owner = NULL;
10596 }
10597 }
10598
10599 private:
10600 die_info *m_die;
10601 dwarf2_cu *m_cu;
10602 };
10603
10604 /* Process a die and its children. */
10605
10606 static void
10607 process_die (struct die_info *die, struct dwarf2_cu *cu)
10608 {
10609 process_die_scope scope (die, cu);
10610
10611 switch (die->tag)
10612 {
10613 case DW_TAG_padding:
10614 break;
10615 case DW_TAG_compile_unit:
10616 case DW_TAG_partial_unit:
10617 read_file_scope (die, cu);
10618 break;
10619 case DW_TAG_type_unit:
10620 read_type_unit_scope (die, cu);
10621 break;
10622 case DW_TAG_subprogram:
10623 case DW_TAG_inlined_subroutine:
10624 read_func_scope (die, cu);
10625 break;
10626 case DW_TAG_lexical_block:
10627 case DW_TAG_try_block:
10628 case DW_TAG_catch_block:
10629 read_lexical_block_scope (die, cu);
10630 break;
10631 case DW_TAG_call_site:
10632 case DW_TAG_GNU_call_site:
10633 read_call_site_scope (die, cu);
10634 break;
10635 case DW_TAG_class_type:
10636 case DW_TAG_interface_type:
10637 case DW_TAG_structure_type:
10638 case DW_TAG_union_type:
10639 process_structure_scope (die, cu);
10640 break;
10641 case DW_TAG_enumeration_type:
10642 process_enumeration_scope (die, cu);
10643 break;
10644
10645 /* These dies have a type, but processing them does not create
10646 a symbol or recurse to process the children. Therefore we can
10647 read them on-demand through read_type_die. */
10648 case DW_TAG_subroutine_type:
10649 case DW_TAG_set_type:
10650 case DW_TAG_array_type:
10651 case DW_TAG_pointer_type:
10652 case DW_TAG_ptr_to_member_type:
10653 case DW_TAG_reference_type:
10654 case DW_TAG_rvalue_reference_type:
10655 case DW_TAG_string_type:
10656 break;
10657
10658 case DW_TAG_base_type:
10659 case DW_TAG_subrange_type:
10660 case DW_TAG_typedef:
10661 /* Add a typedef symbol for the type definition, if it has a
10662 DW_AT_name. */
10663 new_symbol (die, read_type_die (die, cu), cu);
10664 break;
10665 case DW_TAG_common_block:
10666 read_common_block (die, cu);
10667 break;
10668 case DW_TAG_common_inclusion:
10669 break;
10670 case DW_TAG_namespace:
10671 cu->processing_has_namespace_info = true;
10672 read_namespace (die, cu);
10673 break;
10674 case DW_TAG_module:
10675 cu->processing_has_namespace_info = true;
10676 read_module (die, cu);
10677 break;
10678 case DW_TAG_imported_declaration:
10679 cu->processing_has_namespace_info = true;
10680 if (read_namespace_alias (die, cu))
10681 break;
10682 /* The declaration is not a global namespace alias. */
10683 /* Fall through. */
10684 case DW_TAG_imported_module:
10685 cu->processing_has_namespace_info = true;
10686 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10687 || cu->language != language_fortran))
10688 complaint (_("Tag '%s' has unexpected children"),
10689 dwarf_tag_name (die->tag));
10690 read_import_statement (die, cu);
10691 break;
10692
10693 case DW_TAG_imported_unit:
10694 process_imported_unit_die (die, cu);
10695 break;
10696
10697 case DW_TAG_variable:
10698 read_variable (die, cu);
10699 break;
10700
10701 default:
10702 new_symbol (die, NULL, cu);
10703 break;
10704 }
10705 }
10706 \f
10707 /* DWARF name computation. */
10708
10709 /* A helper function for dwarf2_compute_name which determines whether DIE
10710 needs to have the name of the scope prepended to the name listed in the
10711 die. */
10712
10713 static int
10714 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10715 {
10716 struct attribute *attr;
10717
10718 switch (die->tag)
10719 {
10720 case DW_TAG_namespace:
10721 case DW_TAG_typedef:
10722 case DW_TAG_class_type:
10723 case DW_TAG_interface_type:
10724 case DW_TAG_structure_type:
10725 case DW_TAG_union_type:
10726 case DW_TAG_enumeration_type:
10727 case DW_TAG_enumerator:
10728 case DW_TAG_subprogram:
10729 case DW_TAG_inlined_subroutine:
10730 case DW_TAG_member:
10731 case DW_TAG_imported_declaration:
10732 return 1;
10733
10734 case DW_TAG_variable:
10735 case DW_TAG_constant:
10736 /* We only need to prefix "globally" visible variables. These include
10737 any variable marked with DW_AT_external or any variable that
10738 lives in a namespace. [Variables in anonymous namespaces
10739 require prefixing, but they are not DW_AT_external.] */
10740
10741 if (dwarf2_attr (die, DW_AT_specification, cu))
10742 {
10743 struct dwarf2_cu *spec_cu = cu;
10744
10745 return die_needs_namespace (die_specification (die, &spec_cu),
10746 spec_cu);
10747 }
10748
10749 attr = dwarf2_attr (die, DW_AT_external, cu);
10750 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10751 && die->parent->tag != DW_TAG_module)
10752 return 0;
10753 /* A variable in a lexical block of some kind does not need a
10754 namespace, even though in C++ such variables may be external
10755 and have a mangled name. */
10756 if (die->parent->tag == DW_TAG_lexical_block
10757 || die->parent->tag == DW_TAG_try_block
10758 || die->parent->tag == DW_TAG_catch_block
10759 || die->parent->tag == DW_TAG_subprogram)
10760 return 0;
10761 return 1;
10762
10763 default:
10764 return 0;
10765 }
10766 }
10767
10768 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10769 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10770 defined for the given DIE. */
10771
10772 static struct attribute *
10773 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10774 {
10775 struct attribute *attr;
10776
10777 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10778 if (attr == NULL)
10779 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10780
10781 return attr;
10782 }
10783
10784 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10785 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10786 defined for the given DIE. */
10787
10788 static const char *
10789 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10790 {
10791 const char *linkage_name;
10792
10793 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10794 if (linkage_name == NULL)
10795 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10796
10797 return linkage_name;
10798 }
10799
10800 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10801 compute the physname for the object, which include a method's:
10802 - formal parameters (C++),
10803 - receiver type (Go),
10804
10805 The term "physname" is a bit confusing.
10806 For C++, for example, it is the demangled name.
10807 For Go, for example, it's the mangled name.
10808
10809 For Ada, return the DIE's linkage name rather than the fully qualified
10810 name. PHYSNAME is ignored..
10811
10812 The result is allocated on the objfile_obstack and canonicalized. */
10813
10814 static const char *
10815 dwarf2_compute_name (const char *name,
10816 struct die_info *die, struct dwarf2_cu *cu,
10817 int physname)
10818 {
10819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10820
10821 if (name == NULL)
10822 name = dwarf2_name (die, cu);
10823
10824 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10825 but otherwise compute it by typename_concat inside GDB.
10826 FIXME: Actually this is not really true, or at least not always true.
10827 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10828 Fortran names because there is no mangling standard. So new_symbol
10829 will set the demangled name to the result of dwarf2_full_name, and it is
10830 the demangled name that GDB uses if it exists. */
10831 if (cu->language == language_ada
10832 || (cu->language == language_fortran && physname))
10833 {
10834 /* For Ada unit, we prefer the linkage name over the name, as
10835 the former contains the exported name, which the user expects
10836 to be able to reference. Ideally, we want the user to be able
10837 to reference this entity using either natural or linkage name,
10838 but we haven't started looking at this enhancement yet. */
10839 const char *linkage_name = dw2_linkage_name (die, cu);
10840
10841 if (linkage_name != NULL)
10842 return linkage_name;
10843 }
10844
10845 /* These are the only languages we know how to qualify names in. */
10846 if (name != NULL
10847 && (cu->language == language_cplus
10848 || cu->language == language_fortran || cu->language == language_d
10849 || cu->language == language_rust))
10850 {
10851 if (die_needs_namespace (die, cu))
10852 {
10853 const char *prefix;
10854 const char *canonical_name = NULL;
10855
10856 string_file buf;
10857
10858 prefix = determine_prefix (die, cu);
10859 if (*prefix != '\0')
10860 {
10861 char *prefixed_name = typename_concat (NULL, prefix, name,
10862 physname, cu);
10863
10864 buf.puts (prefixed_name);
10865 xfree (prefixed_name);
10866 }
10867 else
10868 buf.puts (name);
10869
10870 /* Template parameters may be specified in the DIE's DW_AT_name, or
10871 as children with DW_TAG_template_type_param or
10872 DW_TAG_value_type_param. If the latter, add them to the name
10873 here. If the name already has template parameters, then
10874 skip this step; some versions of GCC emit both, and
10875 it is more efficient to use the pre-computed name.
10876
10877 Something to keep in mind about this process: it is very
10878 unlikely, or in some cases downright impossible, to produce
10879 something that will match the mangled name of a function.
10880 If the definition of the function has the same debug info,
10881 we should be able to match up with it anyway. But fallbacks
10882 using the minimal symbol, for instance to find a method
10883 implemented in a stripped copy of libstdc++, will not work.
10884 If we do not have debug info for the definition, we will have to
10885 match them up some other way.
10886
10887 When we do name matching there is a related problem with function
10888 templates; two instantiated function templates are allowed to
10889 differ only by their return types, which we do not add here. */
10890
10891 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10892 {
10893 struct attribute *attr;
10894 struct die_info *child;
10895 int first = 1;
10896
10897 die->building_fullname = 1;
10898
10899 for (child = die->child; child != NULL; child = child->sibling)
10900 {
10901 struct type *type;
10902 LONGEST value;
10903 const gdb_byte *bytes;
10904 struct dwarf2_locexpr_baton *baton;
10905 struct value *v;
10906
10907 if (child->tag != DW_TAG_template_type_param
10908 && child->tag != DW_TAG_template_value_param)
10909 continue;
10910
10911 if (first)
10912 {
10913 buf.puts ("<");
10914 first = 0;
10915 }
10916 else
10917 buf.puts (", ");
10918
10919 attr = dwarf2_attr (child, DW_AT_type, cu);
10920 if (attr == NULL)
10921 {
10922 complaint (_("template parameter missing DW_AT_type"));
10923 buf.puts ("UNKNOWN_TYPE");
10924 continue;
10925 }
10926 type = die_type (child, cu);
10927
10928 if (child->tag == DW_TAG_template_type_param)
10929 {
10930 c_print_type (type, "", &buf, -1, 0, cu->language,
10931 &type_print_raw_options);
10932 continue;
10933 }
10934
10935 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10936 if (attr == NULL)
10937 {
10938 complaint (_("template parameter missing "
10939 "DW_AT_const_value"));
10940 buf.puts ("UNKNOWN_VALUE");
10941 continue;
10942 }
10943
10944 dwarf2_const_value_attr (attr, type, name,
10945 &cu->comp_unit_obstack, cu,
10946 &value, &bytes, &baton);
10947
10948 if (TYPE_NOSIGN (type))
10949 /* GDB prints characters as NUMBER 'CHAR'. If that's
10950 changed, this can use value_print instead. */
10951 c_printchar (value, type, &buf);
10952 else
10953 {
10954 struct value_print_options opts;
10955
10956 if (baton != NULL)
10957 v = dwarf2_evaluate_loc_desc (type, NULL,
10958 baton->data,
10959 baton->size,
10960 baton->per_cu);
10961 else if (bytes != NULL)
10962 {
10963 v = allocate_value (type);
10964 memcpy (value_contents_writeable (v), bytes,
10965 TYPE_LENGTH (type));
10966 }
10967 else
10968 v = value_from_longest (type, value);
10969
10970 /* Specify decimal so that we do not depend on
10971 the radix. */
10972 get_formatted_print_options (&opts, 'd');
10973 opts.raw = 1;
10974 value_print (v, &buf, &opts);
10975 release_value (v);
10976 }
10977 }
10978
10979 die->building_fullname = 0;
10980
10981 if (!first)
10982 {
10983 /* Close the argument list, with a space if necessary
10984 (nested templates). */
10985 if (!buf.empty () && buf.string ().back () == '>')
10986 buf.puts (" >");
10987 else
10988 buf.puts (">");
10989 }
10990 }
10991
10992 /* For C++ methods, append formal parameter type
10993 information, if PHYSNAME. */
10994
10995 if (physname && die->tag == DW_TAG_subprogram
10996 && cu->language == language_cplus)
10997 {
10998 struct type *type = read_type_die (die, cu);
10999
11000 c_type_print_args (type, &buf, 1, cu->language,
11001 &type_print_raw_options);
11002
11003 if (cu->language == language_cplus)
11004 {
11005 /* Assume that an artificial first parameter is
11006 "this", but do not crash if it is not. RealView
11007 marks unnamed (and thus unused) parameters as
11008 artificial; there is no way to differentiate
11009 the two cases. */
11010 if (TYPE_NFIELDS (type) > 0
11011 && TYPE_FIELD_ARTIFICIAL (type, 0)
11012 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11013 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11014 0))))
11015 buf.puts (" const");
11016 }
11017 }
11018
11019 const std::string &intermediate_name = buf.string ();
11020
11021 if (cu->language == language_cplus)
11022 canonical_name
11023 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11024 &objfile->per_bfd->storage_obstack);
11025
11026 /* If we only computed INTERMEDIATE_NAME, or if
11027 INTERMEDIATE_NAME is already canonical, then we need to
11028 copy it to the appropriate obstack. */
11029 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11030 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11031 intermediate_name);
11032 else
11033 name = canonical_name;
11034 }
11035 }
11036
11037 return name;
11038 }
11039
11040 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11041 If scope qualifiers are appropriate they will be added. The result
11042 will be allocated on the storage_obstack, or NULL if the DIE does
11043 not have a name. NAME may either be from a previous call to
11044 dwarf2_name or NULL.
11045
11046 The output string will be canonicalized (if C++). */
11047
11048 static const char *
11049 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11050 {
11051 return dwarf2_compute_name (name, die, cu, 0);
11052 }
11053
11054 /* Construct a physname for the given DIE in CU. NAME may either be
11055 from a previous call to dwarf2_name or NULL. The result will be
11056 allocated on the objfile_objstack or NULL if the DIE does not have a
11057 name.
11058
11059 The output string will be canonicalized (if C++). */
11060
11061 static const char *
11062 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11063 {
11064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11065 const char *retval, *mangled = NULL, *canon = NULL;
11066 int need_copy = 1;
11067
11068 /* In this case dwarf2_compute_name is just a shortcut not building anything
11069 on its own. */
11070 if (!die_needs_namespace (die, cu))
11071 return dwarf2_compute_name (name, die, cu, 1);
11072
11073 mangled = dw2_linkage_name (die, cu);
11074
11075 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11076 See https://github.com/rust-lang/rust/issues/32925. */
11077 if (cu->language == language_rust && mangled != NULL
11078 && strchr (mangled, '{') != NULL)
11079 mangled = NULL;
11080
11081 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11082 has computed. */
11083 gdb::unique_xmalloc_ptr<char> demangled;
11084 if (mangled != NULL)
11085 {
11086
11087 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11088 {
11089 /* Do nothing (do not demangle the symbol name). */
11090 }
11091 else if (cu->language == language_go)
11092 {
11093 /* This is a lie, but we already lie to the caller new_symbol.
11094 new_symbol assumes we return the mangled name.
11095 This just undoes that lie until things are cleaned up. */
11096 }
11097 else
11098 {
11099 /* Use DMGL_RET_DROP for C++ template functions to suppress
11100 their return type. It is easier for GDB users to search
11101 for such functions as `name(params)' than `long name(params)'.
11102 In such case the minimal symbol names do not match the full
11103 symbol names but for template functions there is never a need
11104 to look up their definition from their declaration so
11105 the only disadvantage remains the minimal symbol variant
11106 `long name(params)' does not have the proper inferior type. */
11107 demangled.reset (gdb_demangle (mangled,
11108 (DMGL_PARAMS | DMGL_ANSI
11109 | DMGL_RET_DROP)));
11110 }
11111 if (demangled)
11112 canon = demangled.get ();
11113 else
11114 {
11115 canon = mangled;
11116 need_copy = 0;
11117 }
11118 }
11119
11120 if (canon == NULL || check_physname)
11121 {
11122 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11123
11124 if (canon != NULL && strcmp (physname, canon) != 0)
11125 {
11126 /* It may not mean a bug in GDB. The compiler could also
11127 compute DW_AT_linkage_name incorrectly. But in such case
11128 GDB would need to be bug-to-bug compatible. */
11129
11130 complaint (_("Computed physname <%s> does not match demangled <%s> "
11131 "(from linkage <%s>) - DIE at %s [in module %s]"),
11132 physname, canon, mangled, sect_offset_str (die->sect_off),
11133 objfile_name (objfile));
11134
11135 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11136 is available here - over computed PHYSNAME. It is safer
11137 against both buggy GDB and buggy compilers. */
11138
11139 retval = canon;
11140 }
11141 else
11142 {
11143 retval = physname;
11144 need_copy = 0;
11145 }
11146 }
11147 else
11148 retval = canon;
11149
11150 if (need_copy)
11151 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11152
11153 return retval;
11154 }
11155
11156 /* Inspect DIE in CU for a namespace alias. If one exists, record
11157 a new symbol for it.
11158
11159 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11160
11161 static int
11162 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11163 {
11164 struct attribute *attr;
11165
11166 /* If the die does not have a name, this is not a namespace
11167 alias. */
11168 attr = dwarf2_attr (die, DW_AT_name, cu);
11169 if (attr != NULL)
11170 {
11171 int num;
11172 struct die_info *d = die;
11173 struct dwarf2_cu *imported_cu = cu;
11174
11175 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11176 keep inspecting DIEs until we hit the underlying import. */
11177 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11178 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11179 {
11180 attr = dwarf2_attr (d, DW_AT_import, cu);
11181 if (attr == NULL)
11182 break;
11183
11184 d = follow_die_ref (d, attr, &imported_cu);
11185 if (d->tag != DW_TAG_imported_declaration)
11186 break;
11187 }
11188
11189 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11190 {
11191 complaint (_("DIE at %s has too many recursively imported "
11192 "declarations"), sect_offset_str (d->sect_off));
11193 return 0;
11194 }
11195
11196 if (attr != NULL)
11197 {
11198 struct type *type;
11199 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11200
11201 type = get_die_type_at_offset (sect_off, cu->per_cu);
11202 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11203 {
11204 /* This declaration is a global namespace alias. Add
11205 a symbol for it whose type is the aliased namespace. */
11206 new_symbol (die, type, cu);
11207 return 1;
11208 }
11209 }
11210 }
11211
11212 return 0;
11213 }
11214
11215 /* Return the using directives repository (global or local?) to use in the
11216 current context for CU.
11217
11218 For Ada, imported declarations can materialize renamings, which *may* be
11219 global. However it is impossible (for now?) in DWARF to distinguish
11220 "external" imported declarations and "static" ones. As all imported
11221 declarations seem to be static in all other languages, make them all CU-wide
11222 global only in Ada. */
11223
11224 static struct using_direct **
11225 using_directives (struct dwarf2_cu *cu)
11226 {
11227 if (cu->language == language_ada
11228 && cu->get_builder ()->outermost_context_p ())
11229 return cu->get_builder ()->get_global_using_directives ();
11230 else
11231 return cu->get_builder ()->get_local_using_directives ();
11232 }
11233
11234 /* Read the import statement specified by the given die and record it. */
11235
11236 static void
11237 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11238 {
11239 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11240 struct attribute *import_attr;
11241 struct die_info *imported_die, *child_die;
11242 struct dwarf2_cu *imported_cu;
11243 const char *imported_name;
11244 const char *imported_name_prefix;
11245 const char *canonical_name;
11246 const char *import_alias;
11247 const char *imported_declaration = NULL;
11248 const char *import_prefix;
11249 std::vector<const char *> excludes;
11250
11251 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11252 if (import_attr == NULL)
11253 {
11254 complaint (_("Tag '%s' has no DW_AT_import"),
11255 dwarf_tag_name (die->tag));
11256 return;
11257 }
11258
11259 imported_cu = cu;
11260 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11261 imported_name = dwarf2_name (imported_die, imported_cu);
11262 if (imported_name == NULL)
11263 {
11264 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11265
11266 The import in the following code:
11267 namespace A
11268 {
11269 typedef int B;
11270 }
11271
11272 int main ()
11273 {
11274 using A::B;
11275 B b;
11276 return b;
11277 }
11278
11279 ...
11280 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11281 <52> DW_AT_decl_file : 1
11282 <53> DW_AT_decl_line : 6
11283 <54> DW_AT_import : <0x75>
11284 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11285 <59> DW_AT_name : B
11286 <5b> DW_AT_decl_file : 1
11287 <5c> DW_AT_decl_line : 2
11288 <5d> DW_AT_type : <0x6e>
11289 ...
11290 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11291 <76> DW_AT_byte_size : 4
11292 <77> DW_AT_encoding : 5 (signed)
11293
11294 imports the wrong die ( 0x75 instead of 0x58 ).
11295 This case will be ignored until the gcc bug is fixed. */
11296 return;
11297 }
11298
11299 /* Figure out the local name after import. */
11300 import_alias = dwarf2_name (die, cu);
11301
11302 /* Figure out where the statement is being imported to. */
11303 import_prefix = determine_prefix (die, cu);
11304
11305 /* Figure out what the scope of the imported die is and prepend it
11306 to the name of the imported die. */
11307 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11308
11309 if (imported_die->tag != DW_TAG_namespace
11310 && imported_die->tag != DW_TAG_module)
11311 {
11312 imported_declaration = imported_name;
11313 canonical_name = imported_name_prefix;
11314 }
11315 else if (strlen (imported_name_prefix) > 0)
11316 canonical_name = obconcat (&objfile->objfile_obstack,
11317 imported_name_prefix,
11318 (cu->language == language_d ? "." : "::"),
11319 imported_name, (char *) NULL);
11320 else
11321 canonical_name = imported_name;
11322
11323 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11324 for (child_die = die->child; child_die && child_die->tag;
11325 child_die = sibling_die (child_die))
11326 {
11327 /* DWARF-4: A Fortran use statement with a “rename list” may be
11328 represented by an imported module entry with an import attribute
11329 referring to the module and owned entries corresponding to those
11330 entities that are renamed as part of being imported. */
11331
11332 if (child_die->tag != DW_TAG_imported_declaration)
11333 {
11334 complaint (_("child DW_TAG_imported_declaration expected "
11335 "- DIE at %s [in module %s]"),
11336 sect_offset_str (child_die->sect_off),
11337 objfile_name (objfile));
11338 continue;
11339 }
11340
11341 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11342 if (import_attr == NULL)
11343 {
11344 complaint (_("Tag '%s' has no DW_AT_import"),
11345 dwarf_tag_name (child_die->tag));
11346 continue;
11347 }
11348
11349 imported_cu = cu;
11350 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11351 &imported_cu);
11352 imported_name = dwarf2_name (imported_die, imported_cu);
11353 if (imported_name == NULL)
11354 {
11355 complaint (_("child DW_TAG_imported_declaration has unknown "
11356 "imported name - DIE at %s [in module %s]"),
11357 sect_offset_str (child_die->sect_off),
11358 objfile_name (objfile));
11359 continue;
11360 }
11361
11362 excludes.push_back (imported_name);
11363
11364 process_die (child_die, cu);
11365 }
11366
11367 add_using_directive (using_directives (cu),
11368 import_prefix,
11369 canonical_name,
11370 import_alias,
11371 imported_declaration,
11372 excludes,
11373 0,
11374 &objfile->objfile_obstack);
11375 }
11376
11377 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11378 types, but gives them a size of zero. Starting with version 14,
11379 ICC is compatible with GCC. */
11380
11381 static bool
11382 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11383 {
11384 if (!cu->checked_producer)
11385 check_producer (cu);
11386
11387 return cu->producer_is_icc_lt_14;
11388 }
11389
11390 /* ICC generates a DW_AT_type for C void functions. This was observed on
11391 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11392 which says that void functions should not have a DW_AT_type. */
11393
11394 static bool
11395 producer_is_icc (struct dwarf2_cu *cu)
11396 {
11397 if (!cu->checked_producer)
11398 check_producer (cu);
11399
11400 return cu->producer_is_icc;
11401 }
11402
11403 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11404 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11405 this, it was first present in GCC release 4.3.0. */
11406
11407 static bool
11408 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11409 {
11410 if (!cu->checked_producer)
11411 check_producer (cu);
11412
11413 return cu->producer_is_gcc_lt_4_3;
11414 }
11415
11416 static file_and_directory
11417 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11418 {
11419 file_and_directory res;
11420
11421 /* Find the filename. Do not use dwarf2_name here, since the filename
11422 is not a source language identifier. */
11423 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11424 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11425
11426 if (res.comp_dir == NULL
11427 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11428 && IS_ABSOLUTE_PATH (res.name))
11429 {
11430 res.comp_dir_storage = ldirname (res.name);
11431 if (!res.comp_dir_storage.empty ())
11432 res.comp_dir = res.comp_dir_storage.c_str ();
11433 }
11434 if (res.comp_dir != NULL)
11435 {
11436 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11437 directory, get rid of it. */
11438 const char *cp = strchr (res.comp_dir, ':');
11439
11440 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11441 res.comp_dir = cp + 1;
11442 }
11443
11444 if (res.name == NULL)
11445 res.name = "<unknown>";
11446
11447 return res;
11448 }
11449
11450 /* Handle DW_AT_stmt_list for a compilation unit.
11451 DIE is the DW_TAG_compile_unit die for CU.
11452 COMP_DIR is the compilation directory. LOWPC is passed to
11453 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11454
11455 static void
11456 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11457 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11458 {
11459 struct dwarf2_per_objfile *dwarf2_per_objfile
11460 = cu->per_cu->dwarf2_per_objfile;
11461 struct objfile *objfile = dwarf2_per_objfile->objfile;
11462 struct attribute *attr;
11463 struct line_header line_header_local;
11464 hashval_t line_header_local_hash;
11465 void **slot;
11466 int decode_mapping;
11467
11468 gdb_assert (! cu->per_cu->is_debug_types);
11469
11470 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11471 if (attr == NULL)
11472 return;
11473
11474 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11475
11476 /* The line header hash table is only created if needed (it exists to
11477 prevent redundant reading of the line table for partial_units).
11478 If we're given a partial_unit, we'll need it. If we're given a
11479 compile_unit, then use the line header hash table if it's already
11480 created, but don't create one just yet. */
11481
11482 if (dwarf2_per_objfile->line_header_hash == NULL
11483 && die->tag == DW_TAG_partial_unit)
11484 {
11485 dwarf2_per_objfile->line_header_hash
11486 = htab_create_alloc_ex (127, line_header_hash_voidp,
11487 line_header_eq_voidp,
11488 free_line_header_voidp,
11489 &objfile->objfile_obstack,
11490 hashtab_obstack_allocate,
11491 dummy_obstack_deallocate);
11492 }
11493
11494 line_header_local.sect_off = line_offset;
11495 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11496 line_header_local_hash = line_header_hash (&line_header_local);
11497 if (dwarf2_per_objfile->line_header_hash != NULL)
11498 {
11499 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11500 &line_header_local,
11501 line_header_local_hash, NO_INSERT);
11502
11503 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11504 is not present in *SLOT (since if there is something in *SLOT then
11505 it will be for a partial_unit). */
11506 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11507 {
11508 gdb_assert (*slot != NULL);
11509 cu->line_header = (struct line_header *) *slot;
11510 return;
11511 }
11512 }
11513
11514 /* dwarf_decode_line_header does not yet provide sufficient information.
11515 We always have to call also dwarf_decode_lines for it. */
11516 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11517 if (lh == NULL)
11518 return;
11519
11520 cu->line_header = lh.release ();
11521 cu->line_header_die_owner = die;
11522
11523 if (dwarf2_per_objfile->line_header_hash == NULL)
11524 slot = NULL;
11525 else
11526 {
11527 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11528 &line_header_local,
11529 line_header_local_hash, INSERT);
11530 gdb_assert (slot != NULL);
11531 }
11532 if (slot != NULL && *slot == NULL)
11533 {
11534 /* This newly decoded line number information unit will be owned
11535 by line_header_hash hash table. */
11536 *slot = cu->line_header;
11537 cu->line_header_die_owner = NULL;
11538 }
11539 else
11540 {
11541 /* We cannot free any current entry in (*slot) as that struct line_header
11542 may be already used by multiple CUs. Create only temporary decoded
11543 line_header for this CU - it may happen at most once for each line
11544 number information unit. And if we're not using line_header_hash
11545 then this is what we want as well. */
11546 gdb_assert (die->tag != DW_TAG_partial_unit);
11547 }
11548 decode_mapping = (die->tag != DW_TAG_partial_unit);
11549 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11550 decode_mapping);
11551
11552 }
11553
11554 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11555
11556 static void
11557 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11558 {
11559 struct dwarf2_per_objfile *dwarf2_per_objfile
11560 = cu->per_cu->dwarf2_per_objfile;
11561 struct objfile *objfile = dwarf2_per_objfile->objfile;
11562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11563 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11564 CORE_ADDR highpc = ((CORE_ADDR) 0);
11565 struct attribute *attr;
11566 struct die_info *child_die;
11567 CORE_ADDR baseaddr;
11568
11569 prepare_one_comp_unit (cu, die, cu->language);
11570 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11571
11572 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11573
11574 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11575 from finish_block. */
11576 if (lowpc == ((CORE_ADDR) -1))
11577 lowpc = highpc;
11578 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11579
11580 file_and_directory fnd = find_file_and_directory (die, cu);
11581
11582 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11583 standardised yet. As a workaround for the language detection we fall
11584 back to the DW_AT_producer string. */
11585 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11586 cu->language = language_opencl;
11587
11588 /* Similar hack for Go. */
11589 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11590 set_cu_language (DW_LANG_Go, cu);
11591
11592 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11593
11594 /* Decode line number information if present. We do this before
11595 processing child DIEs, so that the line header table is available
11596 for DW_AT_decl_file. */
11597 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11598
11599 /* Process all dies in compilation unit. */
11600 if (die->child != NULL)
11601 {
11602 child_die = die->child;
11603 while (child_die && child_die->tag)
11604 {
11605 process_die (child_die, cu);
11606 child_die = sibling_die (child_die);
11607 }
11608 }
11609
11610 /* Decode macro information, if present. Dwarf 2 macro information
11611 refers to information in the line number info statement program
11612 header, so we can only read it if we've read the header
11613 successfully. */
11614 attr = dwarf2_attr (die, DW_AT_macros, cu);
11615 if (attr == NULL)
11616 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11617 if (attr && cu->line_header)
11618 {
11619 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11620 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11621
11622 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11623 }
11624 else
11625 {
11626 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11627 if (attr && cu->line_header)
11628 {
11629 unsigned int macro_offset = DW_UNSND (attr);
11630
11631 dwarf_decode_macros (cu, macro_offset, 0);
11632 }
11633 }
11634 }
11635
11636 void
11637 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11638 {
11639 struct type_unit_group *tu_group;
11640 int first_time;
11641 struct attribute *attr;
11642 unsigned int i;
11643 struct signatured_type *sig_type;
11644
11645 gdb_assert (per_cu->is_debug_types);
11646 sig_type = (struct signatured_type *) per_cu;
11647
11648 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11649
11650 /* If we're using .gdb_index (includes -readnow) then
11651 per_cu->type_unit_group may not have been set up yet. */
11652 if (sig_type->type_unit_group == NULL)
11653 sig_type->type_unit_group = get_type_unit_group (this, attr);
11654 tu_group = sig_type->type_unit_group;
11655
11656 /* If we've already processed this stmt_list there's no real need to
11657 do it again, we could fake it and just recreate the part we need
11658 (file name,index -> symtab mapping). If data shows this optimization
11659 is useful we can do it then. */
11660 first_time = tu_group->compunit_symtab == NULL;
11661
11662 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11663 debug info. */
11664 line_header_up lh;
11665 if (attr != NULL)
11666 {
11667 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11668 lh = dwarf_decode_line_header (line_offset, this);
11669 }
11670 if (lh == NULL)
11671 {
11672 if (first_time)
11673 start_symtab ("", NULL, 0);
11674 else
11675 {
11676 gdb_assert (tu_group->symtabs == NULL);
11677 gdb_assert (m_builder == nullptr);
11678 struct compunit_symtab *cust = tu_group->compunit_symtab;
11679 m_builder.reset (new struct buildsym_compunit
11680 (COMPUNIT_OBJFILE (cust), "",
11681 COMPUNIT_DIRNAME (cust),
11682 compunit_language (cust),
11683 0, cust));
11684 }
11685 return;
11686 }
11687
11688 line_header = lh.release ();
11689 line_header_die_owner = die;
11690
11691 if (first_time)
11692 {
11693 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11694
11695 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11696 still initializing it, and our caller (a few levels up)
11697 process_full_type_unit still needs to know if this is the first
11698 time. */
11699
11700 tu_group->num_symtabs = line_header->file_names.size ();
11701 tu_group->symtabs = XNEWVEC (struct symtab *,
11702 line_header->file_names.size ());
11703
11704 for (i = 0; i < line_header->file_names.size (); ++i)
11705 {
11706 file_entry &fe = line_header->file_names[i];
11707
11708 dwarf2_start_subfile (this, fe.name,
11709 fe.include_dir (line_header));
11710 buildsym_compunit *b = get_builder ();
11711 if (b->get_current_subfile ()->symtab == NULL)
11712 {
11713 /* NOTE: start_subfile will recognize when it's been
11714 passed a file it has already seen. So we can't
11715 assume there's a simple mapping from
11716 cu->line_header->file_names to subfiles, plus
11717 cu->line_header->file_names may contain dups. */
11718 b->get_current_subfile ()->symtab
11719 = allocate_symtab (cust, b->get_current_subfile ()->name);
11720 }
11721
11722 fe.symtab = b->get_current_subfile ()->symtab;
11723 tu_group->symtabs[i] = fe.symtab;
11724 }
11725 }
11726 else
11727 {
11728 gdb_assert (m_builder == nullptr);
11729 struct compunit_symtab *cust = tu_group->compunit_symtab;
11730 m_builder.reset (new struct buildsym_compunit
11731 (COMPUNIT_OBJFILE (cust), "",
11732 COMPUNIT_DIRNAME (cust),
11733 compunit_language (cust),
11734 0, cust));
11735
11736 for (i = 0; i < line_header->file_names.size (); ++i)
11737 {
11738 file_entry &fe = line_header->file_names[i];
11739
11740 fe.symtab = tu_group->symtabs[i];
11741 }
11742 }
11743
11744 /* The main symtab is allocated last. Type units don't have DW_AT_name
11745 so they don't have a "real" (so to speak) symtab anyway.
11746 There is later code that will assign the main symtab to all symbols
11747 that don't have one. We need to handle the case of a symbol with a
11748 missing symtab (DW_AT_decl_file) anyway. */
11749 }
11750
11751 /* Process DW_TAG_type_unit.
11752 For TUs we want to skip the first top level sibling if it's not the
11753 actual type being defined by this TU. In this case the first top
11754 level sibling is there to provide context only. */
11755
11756 static void
11757 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11758 {
11759 struct die_info *child_die;
11760
11761 prepare_one_comp_unit (cu, die, language_minimal);
11762
11763 /* Initialize (or reinitialize) the machinery for building symtabs.
11764 We do this before processing child DIEs, so that the line header table
11765 is available for DW_AT_decl_file. */
11766 cu->setup_type_unit_groups (die);
11767
11768 if (die->child != NULL)
11769 {
11770 child_die = die->child;
11771 while (child_die && child_die->tag)
11772 {
11773 process_die (child_die, cu);
11774 child_die = sibling_die (child_die);
11775 }
11776 }
11777 }
11778 \f
11779 /* DWO/DWP files.
11780
11781 http://gcc.gnu.org/wiki/DebugFission
11782 http://gcc.gnu.org/wiki/DebugFissionDWP
11783
11784 To simplify handling of both DWO files ("object" files with the DWARF info)
11785 and DWP files (a file with the DWOs packaged up into one file), we treat
11786 DWP files as having a collection of virtual DWO files. */
11787
11788 static hashval_t
11789 hash_dwo_file (const void *item)
11790 {
11791 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11792 hashval_t hash;
11793
11794 hash = htab_hash_string (dwo_file->dwo_name);
11795 if (dwo_file->comp_dir != NULL)
11796 hash += htab_hash_string (dwo_file->comp_dir);
11797 return hash;
11798 }
11799
11800 static int
11801 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11802 {
11803 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11804 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11805
11806 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11807 return 0;
11808 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11809 return lhs->comp_dir == rhs->comp_dir;
11810 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11811 }
11812
11813 /* Allocate a hash table for DWO files. */
11814
11815 static htab_up
11816 allocate_dwo_file_hash_table (struct objfile *objfile)
11817 {
11818 auto delete_dwo_file = [] (void *item)
11819 {
11820 struct dwo_file *dwo_file = (struct dwo_file *) item;
11821
11822 delete dwo_file;
11823 };
11824
11825 return htab_up (htab_create_alloc_ex (41,
11826 hash_dwo_file,
11827 eq_dwo_file,
11828 delete_dwo_file,
11829 &objfile->objfile_obstack,
11830 hashtab_obstack_allocate,
11831 dummy_obstack_deallocate));
11832 }
11833
11834 /* Lookup DWO file DWO_NAME. */
11835
11836 static void **
11837 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11838 const char *dwo_name,
11839 const char *comp_dir)
11840 {
11841 struct dwo_file find_entry;
11842 void **slot;
11843
11844 if (dwarf2_per_objfile->dwo_files == NULL)
11845 dwarf2_per_objfile->dwo_files
11846 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11847
11848 find_entry.dwo_name = dwo_name;
11849 find_entry.comp_dir = comp_dir;
11850 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11851 INSERT);
11852
11853 return slot;
11854 }
11855
11856 static hashval_t
11857 hash_dwo_unit (const void *item)
11858 {
11859 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11860
11861 /* This drops the top 32 bits of the id, but is ok for a hash. */
11862 return dwo_unit->signature;
11863 }
11864
11865 static int
11866 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11867 {
11868 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11869 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11870
11871 /* The signature is assumed to be unique within the DWO file.
11872 So while object file CU dwo_id's always have the value zero,
11873 that's OK, assuming each object file DWO file has only one CU,
11874 and that's the rule for now. */
11875 return lhs->signature == rhs->signature;
11876 }
11877
11878 /* Allocate a hash table for DWO CUs,TUs.
11879 There is one of these tables for each of CUs,TUs for each DWO file. */
11880
11881 static htab_t
11882 allocate_dwo_unit_table (struct objfile *objfile)
11883 {
11884 /* Start out with a pretty small number.
11885 Generally DWO files contain only one CU and maybe some TUs. */
11886 return htab_create_alloc_ex (3,
11887 hash_dwo_unit,
11888 eq_dwo_unit,
11889 NULL,
11890 &objfile->objfile_obstack,
11891 hashtab_obstack_allocate,
11892 dummy_obstack_deallocate);
11893 }
11894
11895 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11896
11897 struct create_dwo_cu_data
11898 {
11899 struct dwo_file *dwo_file;
11900 struct dwo_unit dwo_unit;
11901 };
11902
11903 /* die_reader_func for create_dwo_cu. */
11904
11905 static void
11906 create_dwo_cu_reader (const struct die_reader_specs *reader,
11907 const gdb_byte *info_ptr,
11908 struct die_info *comp_unit_die,
11909 int has_children,
11910 void *datap)
11911 {
11912 struct dwarf2_cu *cu = reader->cu;
11913 sect_offset sect_off = cu->per_cu->sect_off;
11914 struct dwarf2_section_info *section = cu->per_cu->section;
11915 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11916 struct dwo_file *dwo_file = data->dwo_file;
11917 struct dwo_unit *dwo_unit = &data->dwo_unit;
11918
11919 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11920 if (!signature.has_value ())
11921 {
11922 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11923 " its dwo_id [in module %s]"),
11924 sect_offset_str (sect_off), dwo_file->dwo_name);
11925 return;
11926 }
11927
11928 dwo_unit->dwo_file = dwo_file;
11929 dwo_unit->signature = *signature;
11930 dwo_unit->section = section;
11931 dwo_unit->sect_off = sect_off;
11932 dwo_unit->length = cu->per_cu->length;
11933
11934 if (dwarf_read_debug)
11935 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11936 sect_offset_str (sect_off),
11937 hex_string (dwo_unit->signature));
11938 }
11939
11940 /* Create the dwo_units for the CUs in a DWO_FILE.
11941 Note: This function processes DWO files only, not DWP files. */
11942
11943 static void
11944 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11945 struct dwo_file &dwo_file, dwarf2_section_info &section,
11946 htab_t &cus_htab)
11947 {
11948 struct objfile *objfile = dwarf2_per_objfile->objfile;
11949 const gdb_byte *info_ptr, *end_ptr;
11950
11951 dwarf2_read_section (objfile, &section);
11952 info_ptr = section.buffer;
11953
11954 if (info_ptr == NULL)
11955 return;
11956
11957 if (dwarf_read_debug)
11958 {
11959 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11960 get_section_name (&section),
11961 get_section_file_name (&section));
11962 }
11963
11964 end_ptr = info_ptr + section.size;
11965 while (info_ptr < end_ptr)
11966 {
11967 struct dwarf2_per_cu_data per_cu;
11968 struct create_dwo_cu_data create_dwo_cu_data;
11969 struct dwo_unit *dwo_unit;
11970 void **slot;
11971 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11972
11973 memset (&create_dwo_cu_data.dwo_unit, 0,
11974 sizeof (create_dwo_cu_data.dwo_unit));
11975 memset (&per_cu, 0, sizeof (per_cu));
11976 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11977 per_cu.is_debug_types = 0;
11978 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11979 per_cu.section = &section;
11980 create_dwo_cu_data.dwo_file = &dwo_file;
11981
11982 init_cutu_and_read_dies_no_follow (
11983 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11984 info_ptr += per_cu.length;
11985
11986 // If the unit could not be parsed, skip it.
11987 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11988 continue;
11989
11990 if (cus_htab == NULL)
11991 cus_htab = allocate_dwo_unit_table (objfile);
11992
11993 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11994 *dwo_unit = create_dwo_cu_data.dwo_unit;
11995 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11996 gdb_assert (slot != NULL);
11997 if (*slot != NULL)
11998 {
11999 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12000 sect_offset dup_sect_off = dup_cu->sect_off;
12001
12002 complaint (_("debug cu entry at offset %s is duplicate to"
12003 " the entry at offset %s, signature %s"),
12004 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12005 hex_string (dwo_unit->signature));
12006 }
12007 *slot = (void *)dwo_unit;
12008 }
12009 }
12010
12011 /* DWP file .debug_{cu,tu}_index section format:
12012 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12013
12014 DWP Version 1:
12015
12016 Both index sections have the same format, and serve to map a 64-bit
12017 signature to a set of section numbers. Each section begins with a header,
12018 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12019 indexes, and a pool of 32-bit section numbers. The index sections will be
12020 aligned at 8-byte boundaries in the file.
12021
12022 The index section header consists of:
12023
12024 V, 32 bit version number
12025 -, 32 bits unused
12026 N, 32 bit number of compilation units or type units in the index
12027 M, 32 bit number of slots in the hash table
12028
12029 Numbers are recorded using the byte order of the application binary.
12030
12031 The hash table begins at offset 16 in the section, and consists of an array
12032 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12033 order of the application binary). Unused slots in the hash table are 0.
12034 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12035
12036 The parallel table begins immediately after the hash table
12037 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12038 array of 32-bit indexes (using the byte order of the application binary),
12039 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12040 table contains a 32-bit index into the pool of section numbers. For unused
12041 hash table slots, the corresponding entry in the parallel table will be 0.
12042
12043 The pool of section numbers begins immediately following the hash table
12044 (at offset 16 + 12 * M from the beginning of the section). The pool of
12045 section numbers consists of an array of 32-bit words (using the byte order
12046 of the application binary). Each item in the array is indexed starting
12047 from 0. The hash table entry provides the index of the first section
12048 number in the set. Additional section numbers in the set follow, and the
12049 set is terminated by a 0 entry (section number 0 is not used in ELF).
12050
12051 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12052 section must be the first entry in the set, and the .debug_abbrev.dwo must
12053 be the second entry. Other members of the set may follow in any order.
12054
12055 ---
12056
12057 DWP Version 2:
12058
12059 DWP Version 2 combines all the .debug_info, etc. sections into one,
12060 and the entries in the index tables are now offsets into these sections.
12061 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12062 section.
12063
12064 Index Section Contents:
12065 Header
12066 Hash Table of Signatures dwp_hash_table.hash_table
12067 Parallel Table of Indices dwp_hash_table.unit_table
12068 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12069 Table of Section Sizes dwp_hash_table.v2.sizes
12070
12071 The index section header consists of:
12072
12073 V, 32 bit version number
12074 L, 32 bit number of columns in the table of section offsets
12075 N, 32 bit number of compilation units or type units in the index
12076 M, 32 bit number of slots in the hash table
12077
12078 Numbers are recorded using the byte order of the application binary.
12079
12080 The hash table has the same format as version 1.
12081 The parallel table of indices has the same format as version 1,
12082 except that the entries are origin-1 indices into the table of sections
12083 offsets and the table of section sizes.
12084
12085 The table of offsets begins immediately following the parallel table
12086 (at offset 16 + 12 * M from the beginning of the section). The table is
12087 a two-dimensional array of 32-bit words (using the byte order of the
12088 application binary), with L columns and N+1 rows, in row-major order.
12089 Each row in the array is indexed starting from 0. The first row provides
12090 a key to the remaining rows: each column in this row provides an identifier
12091 for a debug section, and the offsets in the same column of subsequent rows
12092 refer to that section. The section identifiers are:
12093
12094 DW_SECT_INFO 1 .debug_info.dwo
12095 DW_SECT_TYPES 2 .debug_types.dwo
12096 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12097 DW_SECT_LINE 4 .debug_line.dwo
12098 DW_SECT_LOC 5 .debug_loc.dwo
12099 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12100 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12101 DW_SECT_MACRO 8 .debug_macro.dwo
12102
12103 The offsets provided by the CU and TU index sections are the base offsets
12104 for the contributions made by each CU or TU to the corresponding section
12105 in the package file. Each CU and TU header contains an abbrev_offset
12106 field, used to find the abbreviations table for that CU or TU within the
12107 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12108 be interpreted as relative to the base offset given in the index section.
12109 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12110 should be interpreted as relative to the base offset for .debug_line.dwo,
12111 and offsets into other debug sections obtained from DWARF attributes should
12112 also be interpreted as relative to the corresponding base offset.
12113
12114 The table of sizes begins immediately following the table of offsets.
12115 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12116 with L columns and N rows, in row-major order. Each row in the array is
12117 indexed starting from 1 (row 0 is shared by the two tables).
12118
12119 ---
12120
12121 Hash table lookup is handled the same in version 1 and 2:
12122
12123 We assume that N and M will not exceed 2^32 - 1.
12124 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12125
12126 Given a 64-bit compilation unit signature or a type signature S, an entry
12127 in the hash table is located as follows:
12128
12129 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12130 the low-order k bits all set to 1.
12131
12132 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12133
12134 3) If the hash table entry at index H matches the signature, use that
12135 entry. If the hash table entry at index H is unused (all zeroes),
12136 terminate the search: the signature is not present in the table.
12137
12138 4) Let H = (H + H') modulo M. Repeat at Step 3.
12139
12140 Because M > N and H' and M are relatively prime, the search is guaranteed
12141 to stop at an unused slot or find the match. */
12142
12143 /* Create a hash table to map DWO IDs to their CU/TU entry in
12144 .debug_{info,types}.dwo in DWP_FILE.
12145 Returns NULL if there isn't one.
12146 Note: This function processes DWP files only, not DWO files. */
12147
12148 static struct dwp_hash_table *
12149 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12150 struct dwp_file *dwp_file, int is_debug_types)
12151 {
12152 struct objfile *objfile = dwarf2_per_objfile->objfile;
12153 bfd *dbfd = dwp_file->dbfd.get ();
12154 const gdb_byte *index_ptr, *index_end;
12155 struct dwarf2_section_info *index;
12156 uint32_t version, nr_columns, nr_units, nr_slots;
12157 struct dwp_hash_table *htab;
12158
12159 if (is_debug_types)
12160 index = &dwp_file->sections.tu_index;
12161 else
12162 index = &dwp_file->sections.cu_index;
12163
12164 if (dwarf2_section_empty_p (index))
12165 return NULL;
12166 dwarf2_read_section (objfile, index);
12167
12168 index_ptr = index->buffer;
12169 index_end = index_ptr + index->size;
12170
12171 version = read_4_bytes (dbfd, index_ptr);
12172 index_ptr += 4;
12173 if (version == 2)
12174 nr_columns = read_4_bytes (dbfd, index_ptr);
12175 else
12176 nr_columns = 0;
12177 index_ptr += 4;
12178 nr_units = read_4_bytes (dbfd, index_ptr);
12179 index_ptr += 4;
12180 nr_slots = read_4_bytes (dbfd, index_ptr);
12181 index_ptr += 4;
12182
12183 if (version != 1 && version != 2)
12184 {
12185 error (_("Dwarf Error: unsupported DWP file version (%s)"
12186 " [in module %s]"),
12187 pulongest (version), dwp_file->name);
12188 }
12189 if (nr_slots != (nr_slots & -nr_slots))
12190 {
12191 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12192 " is not power of 2 [in module %s]"),
12193 pulongest (nr_slots), dwp_file->name);
12194 }
12195
12196 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12197 htab->version = version;
12198 htab->nr_columns = nr_columns;
12199 htab->nr_units = nr_units;
12200 htab->nr_slots = nr_slots;
12201 htab->hash_table = index_ptr;
12202 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12203
12204 /* Exit early if the table is empty. */
12205 if (nr_slots == 0 || nr_units == 0
12206 || (version == 2 && nr_columns == 0))
12207 {
12208 /* All must be zero. */
12209 if (nr_slots != 0 || nr_units != 0
12210 || (version == 2 && nr_columns != 0))
12211 {
12212 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12213 " all zero [in modules %s]"),
12214 dwp_file->name);
12215 }
12216 return htab;
12217 }
12218
12219 if (version == 1)
12220 {
12221 htab->section_pool.v1.indices =
12222 htab->unit_table + sizeof (uint32_t) * nr_slots;
12223 /* It's harder to decide whether the section is too small in v1.
12224 V1 is deprecated anyway so we punt. */
12225 }
12226 else
12227 {
12228 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12229 int *ids = htab->section_pool.v2.section_ids;
12230 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12231 /* Reverse map for error checking. */
12232 int ids_seen[DW_SECT_MAX + 1];
12233 int i;
12234
12235 if (nr_columns < 2)
12236 {
12237 error (_("Dwarf Error: bad DWP hash table, too few columns"
12238 " in section table [in module %s]"),
12239 dwp_file->name);
12240 }
12241 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12242 {
12243 error (_("Dwarf Error: bad DWP hash table, too many columns"
12244 " in section table [in module %s]"),
12245 dwp_file->name);
12246 }
12247 memset (ids, 255, sizeof_ids);
12248 memset (ids_seen, 255, sizeof (ids_seen));
12249 for (i = 0; i < nr_columns; ++i)
12250 {
12251 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12252
12253 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12254 {
12255 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12256 " in section table [in module %s]"),
12257 id, dwp_file->name);
12258 }
12259 if (ids_seen[id] != -1)
12260 {
12261 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12262 " id %d in section table [in module %s]"),
12263 id, dwp_file->name);
12264 }
12265 ids_seen[id] = i;
12266 ids[i] = id;
12267 }
12268 /* Must have exactly one info or types section. */
12269 if (((ids_seen[DW_SECT_INFO] != -1)
12270 + (ids_seen[DW_SECT_TYPES] != -1))
12271 != 1)
12272 {
12273 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12274 " DWO info/types section [in module %s]"),
12275 dwp_file->name);
12276 }
12277 /* Must have an abbrev section. */
12278 if (ids_seen[DW_SECT_ABBREV] == -1)
12279 {
12280 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12281 " section [in module %s]"),
12282 dwp_file->name);
12283 }
12284 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12285 htab->section_pool.v2.sizes =
12286 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12287 * nr_units * nr_columns);
12288 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12289 * nr_units * nr_columns))
12290 > index_end)
12291 {
12292 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12293 " [in module %s]"),
12294 dwp_file->name);
12295 }
12296 }
12297
12298 return htab;
12299 }
12300
12301 /* Update SECTIONS with the data from SECTP.
12302
12303 This function is like the other "locate" section routines that are
12304 passed to bfd_map_over_sections, but in this context the sections to
12305 read comes from the DWP V1 hash table, not the full ELF section table.
12306
12307 The result is non-zero for success, or zero if an error was found. */
12308
12309 static int
12310 locate_v1_virtual_dwo_sections (asection *sectp,
12311 struct virtual_v1_dwo_sections *sections)
12312 {
12313 const struct dwop_section_names *names = &dwop_section_names;
12314
12315 if (section_is_p (sectp->name, &names->abbrev_dwo))
12316 {
12317 /* There can be only one. */
12318 if (sections->abbrev.s.section != NULL)
12319 return 0;
12320 sections->abbrev.s.section = sectp;
12321 sections->abbrev.size = bfd_section_size (sectp);
12322 }
12323 else if (section_is_p (sectp->name, &names->info_dwo)
12324 || section_is_p (sectp->name, &names->types_dwo))
12325 {
12326 /* There can be only one. */
12327 if (sections->info_or_types.s.section != NULL)
12328 return 0;
12329 sections->info_or_types.s.section = sectp;
12330 sections->info_or_types.size = bfd_section_size (sectp);
12331 }
12332 else if (section_is_p (sectp->name, &names->line_dwo))
12333 {
12334 /* There can be only one. */
12335 if (sections->line.s.section != NULL)
12336 return 0;
12337 sections->line.s.section = sectp;
12338 sections->line.size = bfd_section_size (sectp);
12339 }
12340 else if (section_is_p (sectp->name, &names->loc_dwo))
12341 {
12342 /* There can be only one. */
12343 if (sections->loc.s.section != NULL)
12344 return 0;
12345 sections->loc.s.section = sectp;
12346 sections->loc.size = bfd_section_size (sectp);
12347 }
12348 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12349 {
12350 /* There can be only one. */
12351 if (sections->macinfo.s.section != NULL)
12352 return 0;
12353 sections->macinfo.s.section = sectp;
12354 sections->macinfo.size = bfd_section_size (sectp);
12355 }
12356 else if (section_is_p (sectp->name, &names->macro_dwo))
12357 {
12358 /* There can be only one. */
12359 if (sections->macro.s.section != NULL)
12360 return 0;
12361 sections->macro.s.section = sectp;
12362 sections->macro.size = bfd_section_size (sectp);
12363 }
12364 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12365 {
12366 /* There can be only one. */
12367 if (sections->str_offsets.s.section != NULL)
12368 return 0;
12369 sections->str_offsets.s.section = sectp;
12370 sections->str_offsets.size = bfd_section_size (sectp);
12371 }
12372 else
12373 {
12374 /* No other kind of section is valid. */
12375 return 0;
12376 }
12377
12378 return 1;
12379 }
12380
12381 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12382 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12383 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12384 This is for DWP version 1 files. */
12385
12386 static struct dwo_unit *
12387 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12388 struct dwp_file *dwp_file,
12389 uint32_t unit_index,
12390 const char *comp_dir,
12391 ULONGEST signature, int is_debug_types)
12392 {
12393 struct objfile *objfile = dwarf2_per_objfile->objfile;
12394 const struct dwp_hash_table *dwp_htab =
12395 is_debug_types ? dwp_file->tus : dwp_file->cus;
12396 bfd *dbfd = dwp_file->dbfd.get ();
12397 const char *kind = is_debug_types ? "TU" : "CU";
12398 struct dwo_file *dwo_file;
12399 struct dwo_unit *dwo_unit;
12400 struct virtual_v1_dwo_sections sections;
12401 void **dwo_file_slot;
12402 int i;
12403
12404 gdb_assert (dwp_file->version == 1);
12405
12406 if (dwarf_read_debug)
12407 {
12408 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12409 kind,
12410 pulongest (unit_index), hex_string (signature),
12411 dwp_file->name);
12412 }
12413
12414 /* Fetch the sections of this DWO unit.
12415 Put a limit on the number of sections we look for so that bad data
12416 doesn't cause us to loop forever. */
12417
12418 #define MAX_NR_V1_DWO_SECTIONS \
12419 (1 /* .debug_info or .debug_types */ \
12420 + 1 /* .debug_abbrev */ \
12421 + 1 /* .debug_line */ \
12422 + 1 /* .debug_loc */ \
12423 + 1 /* .debug_str_offsets */ \
12424 + 1 /* .debug_macro or .debug_macinfo */ \
12425 + 1 /* trailing zero */)
12426
12427 memset (&sections, 0, sizeof (sections));
12428
12429 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12430 {
12431 asection *sectp;
12432 uint32_t section_nr =
12433 read_4_bytes (dbfd,
12434 dwp_htab->section_pool.v1.indices
12435 + (unit_index + i) * sizeof (uint32_t));
12436
12437 if (section_nr == 0)
12438 break;
12439 if (section_nr >= dwp_file->num_sections)
12440 {
12441 error (_("Dwarf Error: bad DWP hash table, section number too large"
12442 " [in module %s]"),
12443 dwp_file->name);
12444 }
12445
12446 sectp = dwp_file->elf_sections[section_nr];
12447 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12448 {
12449 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12450 " [in module %s]"),
12451 dwp_file->name);
12452 }
12453 }
12454
12455 if (i < 2
12456 || dwarf2_section_empty_p (&sections.info_or_types)
12457 || dwarf2_section_empty_p (&sections.abbrev))
12458 {
12459 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12460 " [in module %s]"),
12461 dwp_file->name);
12462 }
12463 if (i == MAX_NR_V1_DWO_SECTIONS)
12464 {
12465 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12466 " [in module %s]"),
12467 dwp_file->name);
12468 }
12469
12470 /* It's easier for the rest of the code if we fake a struct dwo_file and
12471 have dwo_unit "live" in that. At least for now.
12472
12473 The DWP file can be made up of a random collection of CUs and TUs.
12474 However, for each CU + set of TUs that came from the same original DWO
12475 file, we can combine them back into a virtual DWO file to save space
12476 (fewer struct dwo_file objects to allocate). Remember that for really
12477 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12478
12479 std::string virtual_dwo_name =
12480 string_printf ("virtual-dwo/%d-%d-%d-%d",
12481 get_section_id (&sections.abbrev),
12482 get_section_id (&sections.line),
12483 get_section_id (&sections.loc),
12484 get_section_id (&sections.str_offsets));
12485 /* Can we use an existing virtual DWO file? */
12486 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12487 virtual_dwo_name.c_str (),
12488 comp_dir);
12489 /* Create one if necessary. */
12490 if (*dwo_file_slot == NULL)
12491 {
12492 if (dwarf_read_debug)
12493 {
12494 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12495 virtual_dwo_name.c_str ());
12496 }
12497 dwo_file = new struct dwo_file;
12498 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12499 virtual_dwo_name);
12500 dwo_file->comp_dir = comp_dir;
12501 dwo_file->sections.abbrev = sections.abbrev;
12502 dwo_file->sections.line = sections.line;
12503 dwo_file->sections.loc = sections.loc;
12504 dwo_file->sections.macinfo = sections.macinfo;
12505 dwo_file->sections.macro = sections.macro;
12506 dwo_file->sections.str_offsets = sections.str_offsets;
12507 /* The "str" section is global to the entire DWP file. */
12508 dwo_file->sections.str = dwp_file->sections.str;
12509 /* The info or types section is assigned below to dwo_unit,
12510 there's no need to record it in dwo_file.
12511 Also, we can't simply record type sections in dwo_file because
12512 we record a pointer into the vector in dwo_unit. As we collect more
12513 types we'll grow the vector and eventually have to reallocate space
12514 for it, invalidating all copies of pointers into the previous
12515 contents. */
12516 *dwo_file_slot = dwo_file;
12517 }
12518 else
12519 {
12520 if (dwarf_read_debug)
12521 {
12522 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12523 virtual_dwo_name.c_str ());
12524 }
12525 dwo_file = (struct dwo_file *) *dwo_file_slot;
12526 }
12527
12528 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12529 dwo_unit->dwo_file = dwo_file;
12530 dwo_unit->signature = signature;
12531 dwo_unit->section =
12532 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12533 *dwo_unit->section = sections.info_or_types;
12534 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12535
12536 return dwo_unit;
12537 }
12538
12539 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12540 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12541 piece within that section used by a TU/CU, return a virtual section
12542 of just that piece. */
12543
12544 static struct dwarf2_section_info
12545 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12546 struct dwarf2_section_info *section,
12547 bfd_size_type offset, bfd_size_type size)
12548 {
12549 struct dwarf2_section_info result;
12550 asection *sectp;
12551
12552 gdb_assert (section != NULL);
12553 gdb_assert (!section->is_virtual);
12554
12555 memset (&result, 0, sizeof (result));
12556 result.s.containing_section = section;
12557 result.is_virtual = true;
12558
12559 if (size == 0)
12560 return result;
12561
12562 sectp = get_section_bfd_section (section);
12563
12564 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12565 bounds of the real section. This is a pretty-rare event, so just
12566 flag an error (easier) instead of a warning and trying to cope. */
12567 if (sectp == NULL
12568 || offset + size > bfd_section_size (sectp))
12569 {
12570 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12571 " in section %s [in module %s]"),
12572 sectp ? bfd_section_name (sectp) : "<unknown>",
12573 objfile_name (dwarf2_per_objfile->objfile));
12574 }
12575
12576 result.virtual_offset = offset;
12577 result.size = size;
12578 return result;
12579 }
12580
12581 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12582 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12583 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12584 This is for DWP version 2 files. */
12585
12586 static struct dwo_unit *
12587 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12588 struct dwp_file *dwp_file,
12589 uint32_t unit_index,
12590 const char *comp_dir,
12591 ULONGEST signature, int is_debug_types)
12592 {
12593 struct objfile *objfile = dwarf2_per_objfile->objfile;
12594 const struct dwp_hash_table *dwp_htab =
12595 is_debug_types ? dwp_file->tus : dwp_file->cus;
12596 bfd *dbfd = dwp_file->dbfd.get ();
12597 const char *kind = is_debug_types ? "TU" : "CU";
12598 struct dwo_file *dwo_file;
12599 struct dwo_unit *dwo_unit;
12600 struct virtual_v2_dwo_sections sections;
12601 void **dwo_file_slot;
12602 int i;
12603
12604 gdb_assert (dwp_file->version == 2);
12605
12606 if (dwarf_read_debug)
12607 {
12608 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12609 kind,
12610 pulongest (unit_index), hex_string (signature),
12611 dwp_file->name);
12612 }
12613
12614 /* Fetch the section offsets of this DWO unit. */
12615
12616 memset (&sections, 0, sizeof (sections));
12617
12618 for (i = 0; i < dwp_htab->nr_columns; ++i)
12619 {
12620 uint32_t offset = read_4_bytes (dbfd,
12621 dwp_htab->section_pool.v2.offsets
12622 + (((unit_index - 1) * dwp_htab->nr_columns
12623 + i)
12624 * sizeof (uint32_t)));
12625 uint32_t size = read_4_bytes (dbfd,
12626 dwp_htab->section_pool.v2.sizes
12627 + (((unit_index - 1) * dwp_htab->nr_columns
12628 + i)
12629 * sizeof (uint32_t)));
12630
12631 switch (dwp_htab->section_pool.v2.section_ids[i])
12632 {
12633 case DW_SECT_INFO:
12634 case DW_SECT_TYPES:
12635 sections.info_or_types_offset = offset;
12636 sections.info_or_types_size = size;
12637 break;
12638 case DW_SECT_ABBREV:
12639 sections.abbrev_offset = offset;
12640 sections.abbrev_size = size;
12641 break;
12642 case DW_SECT_LINE:
12643 sections.line_offset = offset;
12644 sections.line_size = size;
12645 break;
12646 case DW_SECT_LOC:
12647 sections.loc_offset = offset;
12648 sections.loc_size = size;
12649 break;
12650 case DW_SECT_STR_OFFSETS:
12651 sections.str_offsets_offset = offset;
12652 sections.str_offsets_size = size;
12653 break;
12654 case DW_SECT_MACINFO:
12655 sections.macinfo_offset = offset;
12656 sections.macinfo_size = size;
12657 break;
12658 case DW_SECT_MACRO:
12659 sections.macro_offset = offset;
12660 sections.macro_size = size;
12661 break;
12662 }
12663 }
12664
12665 /* It's easier for the rest of the code if we fake a struct dwo_file and
12666 have dwo_unit "live" in that. At least for now.
12667
12668 The DWP file can be made up of a random collection of CUs and TUs.
12669 However, for each CU + set of TUs that came from the same original DWO
12670 file, we can combine them back into a virtual DWO file to save space
12671 (fewer struct dwo_file objects to allocate). Remember that for really
12672 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12673
12674 std::string virtual_dwo_name =
12675 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12676 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12677 (long) (sections.line_size ? sections.line_offset : 0),
12678 (long) (sections.loc_size ? sections.loc_offset : 0),
12679 (long) (sections.str_offsets_size
12680 ? sections.str_offsets_offset : 0));
12681 /* Can we use an existing virtual DWO file? */
12682 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12683 virtual_dwo_name.c_str (),
12684 comp_dir);
12685 /* Create one if necessary. */
12686 if (*dwo_file_slot == NULL)
12687 {
12688 if (dwarf_read_debug)
12689 {
12690 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12691 virtual_dwo_name.c_str ());
12692 }
12693 dwo_file = new struct dwo_file;
12694 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12695 virtual_dwo_name);
12696 dwo_file->comp_dir = comp_dir;
12697 dwo_file->sections.abbrev =
12698 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12699 sections.abbrev_offset, sections.abbrev_size);
12700 dwo_file->sections.line =
12701 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12702 sections.line_offset, sections.line_size);
12703 dwo_file->sections.loc =
12704 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12705 sections.loc_offset, sections.loc_size);
12706 dwo_file->sections.macinfo =
12707 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12708 sections.macinfo_offset, sections.macinfo_size);
12709 dwo_file->sections.macro =
12710 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12711 sections.macro_offset, sections.macro_size);
12712 dwo_file->sections.str_offsets =
12713 create_dwp_v2_section (dwarf2_per_objfile,
12714 &dwp_file->sections.str_offsets,
12715 sections.str_offsets_offset,
12716 sections.str_offsets_size);
12717 /* The "str" section is global to the entire DWP file. */
12718 dwo_file->sections.str = dwp_file->sections.str;
12719 /* The info or types section is assigned below to dwo_unit,
12720 there's no need to record it in dwo_file.
12721 Also, we can't simply record type sections in dwo_file because
12722 we record a pointer into the vector in dwo_unit. As we collect more
12723 types we'll grow the vector and eventually have to reallocate space
12724 for it, invalidating all copies of pointers into the previous
12725 contents. */
12726 *dwo_file_slot = dwo_file;
12727 }
12728 else
12729 {
12730 if (dwarf_read_debug)
12731 {
12732 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12733 virtual_dwo_name.c_str ());
12734 }
12735 dwo_file = (struct dwo_file *) *dwo_file_slot;
12736 }
12737
12738 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12739 dwo_unit->dwo_file = dwo_file;
12740 dwo_unit->signature = signature;
12741 dwo_unit->section =
12742 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12743 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12744 is_debug_types
12745 ? &dwp_file->sections.types
12746 : &dwp_file->sections.info,
12747 sections.info_or_types_offset,
12748 sections.info_or_types_size);
12749 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12750
12751 return dwo_unit;
12752 }
12753
12754 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12755 Returns NULL if the signature isn't found. */
12756
12757 static struct dwo_unit *
12758 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12759 struct dwp_file *dwp_file, const char *comp_dir,
12760 ULONGEST signature, int is_debug_types)
12761 {
12762 const struct dwp_hash_table *dwp_htab =
12763 is_debug_types ? dwp_file->tus : dwp_file->cus;
12764 bfd *dbfd = dwp_file->dbfd.get ();
12765 uint32_t mask = dwp_htab->nr_slots - 1;
12766 uint32_t hash = signature & mask;
12767 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12768 unsigned int i;
12769 void **slot;
12770 struct dwo_unit find_dwo_cu;
12771
12772 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12773 find_dwo_cu.signature = signature;
12774 slot = htab_find_slot (is_debug_types
12775 ? dwp_file->loaded_tus
12776 : dwp_file->loaded_cus,
12777 &find_dwo_cu, INSERT);
12778
12779 if (*slot != NULL)
12780 return (struct dwo_unit *) *slot;
12781
12782 /* Use a for loop so that we don't loop forever on bad debug info. */
12783 for (i = 0; i < dwp_htab->nr_slots; ++i)
12784 {
12785 ULONGEST signature_in_table;
12786
12787 signature_in_table =
12788 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12789 if (signature_in_table == signature)
12790 {
12791 uint32_t unit_index =
12792 read_4_bytes (dbfd,
12793 dwp_htab->unit_table + hash * sizeof (uint32_t));
12794
12795 if (dwp_file->version == 1)
12796 {
12797 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12798 dwp_file, unit_index,
12799 comp_dir, signature,
12800 is_debug_types);
12801 }
12802 else
12803 {
12804 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12805 dwp_file, unit_index,
12806 comp_dir, signature,
12807 is_debug_types);
12808 }
12809 return (struct dwo_unit *) *slot;
12810 }
12811 if (signature_in_table == 0)
12812 return NULL;
12813 hash = (hash + hash2) & mask;
12814 }
12815
12816 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12817 " [in module %s]"),
12818 dwp_file->name);
12819 }
12820
12821 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12822 Open the file specified by FILE_NAME and hand it off to BFD for
12823 preliminary analysis. Return a newly initialized bfd *, which
12824 includes a canonicalized copy of FILE_NAME.
12825 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12826 SEARCH_CWD is true if the current directory is to be searched.
12827 It will be searched before debug-file-directory.
12828 If successful, the file is added to the bfd include table of the
12829 objfile's bfd (see gdb_bfd_record_inclusion).
12830 If unable to find/open the file, return NULL.
12831 NOTE: This function is derived from symfile_bfd_open. */
12832
12833 static gdb_bfd_ref_ptr
12834 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12835 const char *file_name, int is_dwp, int search_cwd)
12836 {
12837 int desc;
12838 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12839 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12840 to debug_file_directory. */
12841 const char *search_path;
12842 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12843
12844 gdb::unique_xmalloc_ptr<char> search_path_holder;
12845 if (search_cwd)
12846 {
12847 if (*debug_file_directory != '\0')
12848 {
12849 search_path_holder.reset (concat (".", dirname_separator_string,
12850 debug_file_directory,
12851 (char *) NULL));
12852 search_path = search_path_holder.get ();
12853 }
12854 else
12855 search_path = ".";
12856 }
12857 else
12858 search_path = debug_file_directory;
12859
12860 openp_flags flags = OPF_RETURN_REALPATH;
12861 if (is_dwp)
12862 flags |= OPF_SEARCH_IN_PATH;
12863
12864 gdb::unique_xmalloc_ptr<char> absolute_name;
12865 desc = openp (search_path, flags, file_name,
12866 O_RDONLY | O_BINARY, &absolute_name);
12867 if (desc < 0)
12868 return NULL;
12869
12870 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12871 gnutarget, desc));
12872 if (sym_bfd == NULL)
12873 return NULL;
12874 bfd_set_cacheable (sym_bfd.get (), 1);
12875
12876 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12877 return NULL;
12878
12879 /* Success. Record the bfd as having been included by the objfile's bfd.
12880 This is important because things like demangled_names_hash lives in the
12881 objfile's per_bfd space and may have references to things like symbol
12882 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12883 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12884
12885 return sym_bfd;
12886 }
12887
12888 /* Try to open DWO file FILE_NAME.
12889 COMP_DIR is the DW_AT_comp_dir attribute.
12890 The result is the bfd handle of the file.
12891 If there is a problem finding or opening the file, return NULL.
12892 Upon success, the canonicalized path of the file is stored in the bfd,
12893 same as symfile_bfd_open. */
12894
12895 static gdb_bfd_ref_ptr
12896 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12897 const char *file_name, const char *comp_dir)
12898 {
12899 if (IS_ABSOLUTE_PATH (file_name))
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 0 /*search_cwd*/);
12902
12903 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12904
12905 if (comp_dir != NULL)
12906 {
12907 char *path_to_try = concat (comp_dir, SLASH_STRING,
12908 file_name, (char *) NULL);
12909
12910 /* NOTE: If comp_dir is a relative path, this will also try the
12911 search path, which seems useful. */
12912 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12913 path_to_try,
12914 0 /*is_dwp*/,
12915 1 /*search_cwd*/));
12916 xfree (path_to_try);
12917 if (abfd != NULL)
12918 return abfd;
12919 }
12920
12921 /* That didn't work, try debug-file-directory, which, despite its name,
12922 is a list of paths. */
12923
12924 if (*debug_file_directory == '\0')
12925 return NULL;
12926
12927 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12928 0 /*is_dwp*/, 1 /*search_cwd*/);
12929 }
12930
12931 /* This function is mapped across the sections and remembers the offset and
12932 size of each of the DWO debugging sections we are interested in. */
12933
12934 static void
12935 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12936 {
12937 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12938 const struct dwop_section_names *names = &dwop_section_names;
12939
12940 if (section_is_p (sectp->name, &names->abbrev_dwo))
12941 {
12942 dwo_sections->abbrev.s.section = sectp;
12943 dwo_sections->abbrev.size = bfd_section_size (sectp);
12944 }
12945 else if (section_is_p (sectp->name, &names->info_dwo))
12946 {
12947 dwo_sections->info.s.section = sectp;
12948 dwo_sections->info.size = bfd_section_size (sectp);
12949 }
12950 else if (section_is_p (sectp->name, &names->line_dwo))
12951 {
12952 dwo_sections->line.s.section = sectp;
12953 dwo_sections->line.size = bfd_section_size (sectp);
12954 }
12955 else if (section_is_p (sectp->name, &names->loc_dwo))
12956 {
12957 dwo_sections->loc.s.section = sectp;
12958 dwo_sections->loc.size = bfd_section_size (sectp);
12959 }
12960 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12961 {
12962 dwo_sections->macinfo.s.section = sectp;
12963 dwo_sections->macinfo.size = bfd_section_size (sectp);
12964 }
12965 else if (section_is_p (sectp->name, &names->macro_dwo))
12966 {
12967 dwo_sections->macro.s.section = sectp;
12968 dwo_sections->macro.size = bfd_section_size (sectp);
12969 }
12970 else if (section_is_p (sectp->name, &names->str_dwo))
12971 {
12972 dwo_sections->str.s.section = sectp;
12973 dwo_sections->str.size = bfd_section_size (sectp);
12974 }
12975 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12976 {
12977 dwo_sections->str_offsets.s.section = sectp;
12978 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12979 }
12980 else if (section_is_p (sectp->name, &names->types_dwo))
12981 {
12982 struct dwarf2_section_info type_section;
12983
12984 memset (&type_section, 0, sizeof (type_section));
12985 type_section.s.section = sectp;
12986 type_section.size = bfd_section_size (sectp);
12987 dwo_sections->types.push_back (type_section);
12988 }
12989 }
12990
12991 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12992 by PER_CU. This is for the non-DWP case.
12993 The result is NULL if DWO_NAME can't be found. */
12994
12995 static struct dwo_file *
12996 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12997 const char *dwo_name, const char *comp_dir)
12998 {
12999 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13000
13001 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
13002 if (dbfd == NULL)
13003 {
13004 if (dwarf_read_debug)
13005 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13006 return NULL;
13007 }
13008
13009 dwo_file_up dwo_file (new struct dwo_file);
13010 dwo_file->dwo_name = dwo_name;
13011 dwo_file->comp_dir = comp_dir;
13012 dwo_file->dbfd = std::move (dbfd);
13013
13014 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
13015 &dwo_file->sections);
13016
13017 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13018 dwo_file->cus);
13019
13020 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13021 dwo_file->sections.types, dwo_file->tus);
13022
13023 if (dwarf_read_debug)
13024 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13025
13026 return dwo_file.release ();
13027 }
13028
13029 /* This function is mapped across the sections and remembers the offset and
13030 size of each of the DWP debugging sections common to version 1 and 2 that
13031 we are interested in. */
13032
13033 static void
13034 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13035 void *dwp_file_ptr)
13036 {
13037 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13038 const struct dwop_section_names *names = &dwop_section_names;
13039 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13040
13041 /* Record the ELF section number for later lookup: this is what the
13042 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13043 gdb_assert (elf_section_nr < dwp_file->num_sections);
13044 dwp_file->elf_sections[elf_section_nr] = sectp;
13045
13046 /* Look for specific sections that we need. */
13047 if (section_is_p (sectp->name, &names->str_dwo))
13048 {
13049 dwp_file->sections.str.s.section = sectp;
13050 dwp_file->sections.str.size = bfd_section_size (sectp);
13051 }
13052 else if (section_is_p (sectp->name, &names->cu_index))
13053 {
13054 dwp_file->sections.cu_index.s.section = sectp;
13055 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
13056 }
13057 else if (section_is_p (sectp->name, &names->tu_index))
13058 {
13059 dwp_file->sections.tu_index.s.section = sectp;
13060 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
13061 }
13062 }
13063
13064 /* This function is mapped across the sections and remembers the offset and
13065 size of each of the DWP version 2 debugging sections that we are interested
13066 in. This is split into a separate function because we don't know if we
13067 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13068
13069 static void
13070 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13071 {
13072 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13073 const struct dwop_section_names *names = &dwop_section_names;
13074 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13075
13076 /* Record the ELF section number for later lookup: this is what the
13077 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13078 gdb_assert (elf_section_nr < dwp_file->num_sections);
13079 dwp_file->elf_sections[elf_section_nr] = sectp;
13080
13081 /* Look for specific sections that we need. */
13082 if (section_is_p (sectp->name, &names->abbrev_dwo))
13083 {
13084 dwp_file->sections.abbrev.s.section = sectp;
13085 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
13086 }
13087 else if (section_is_p (sectp->name, &names->info_dwo))
13088 {
13089 dwp_file->sections.info.s.section = sectp;
13090 dwp_file->sections.info.size = bfd_section_size (sectp);
13091 }
13092 else if (section_is_p (sectp->name, &names->line_dwo))
13093 {
13094 dwp_file->sections.line.s.section = sectp;
13095 dwp_file->sections.line.size = bfd_section_size (sectp);
13096 }
13097 else if (section_is_p (sectp->name, &names->loc_dwo))
13098 {
13099 dwp_file->sections.loc.s.section = sectp;
13100 dwp_file->sections.loc.size = bfd_section_size (sectp);
13101 }
13102 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13103 {
13104 dwp_file->sections.macinfo.s.section = sectp;
13105 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
13106 }
13107 else if (section_is_p (sectp->name, &names->macro_dwo))
13108 {
13109 dwp_file->sections.macro.s.section = sectp;
13110 dwp_file->sections.macro.size = bfd_section_size (sectp);
13111 }
13112 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13113 {
13114 dwp_file->sections.str_offsets.s.section = sectp;
13115 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
13116 }
13117 else if (section_is_p (sectp->name, &names->types_dwo))
13118 {
13119 dwp_file->sections.types.s.section = sectp;
13120 dwp_file->sections.types.size = bfd_section_size (sectp);
13121 }
13122 }
13123
13124 /* Hash function for dwp_file loaded CUs/TUs. */
13125
13126 static hashval_t
13127 hash_dwp_loaded_cutus (const void *item)
13128 {
13129 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13130
13131 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13132 return dwo_unit->signature;
13133 }
13134
13135 /* Equality function for dwp_file loaded CUs/TUs. */
13136
13137 static int
13138 eq_dwp_loaded_cutus (const void *a, const void *b)
13139 {
13140 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13141 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13142
13143 return dua->signature == dub->signature;
13144 }
13145
13146 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13147
13148 static htab_t
13149 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13150 {
13151 return htab_create_alloc_ex (3,
13152 hash_dwp_loaded_cutus,
13153 eq_dwp_loaded_cutus,
13154 NULL,
13155 &objfile->objfile_obstack,
13156 hashtab_obstack_allocate,
13157 dummy_obstack_deallocate);
13158 }
13159
13160 /* Try to open DWP file FILE_NAME.
13161 The result is the bfd handle of the file.
13162 If there is a problem finding or opening the file, return NULL.
13163 Upon success, the canonicalized path of the file is stored in the bfd,
13164 same as symfile_bfd_open. */
13165
13166 static gdb_bfd_ref_ptr
13167 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13168 const char *file_name)
13169 {
13170 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13171 1 /*is_dwp*/,
13172 1 /*search_cwd*/));
13173 if (abfd != NULL)
13174 return abfd;
13175
13176 /* Work around upstream bug 15652.
13177 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13178 [Whether that's a "bug" is debatable, but it is getting in our way.]
13179 We have no real idea where the dwp file is, because gdb's realpath-ing
13180 of the executable's path may have discarded the needed info.
13181 [IWBN if the dwp file name was recorded in the executable, akin to
13182 .gnu_debuglink, but that doesn't exist yet.]
13183 Strip the directory from FILE_NAME and search again. */
13184 if (*debug_file_directory != '\0')
13185 {
13186 /* Don't implicitly search the current directory here.
13187 If the user wants to search "." to handle this case,
13188 it must be added to debug-file-directory. */
13189 return try_open_dwop_file (dwarf2_per_objfile,
13190 lbasename (file_name), 1 /*is_dwp*/,
13191 0 /*search_cwd*/);
13192 }
13193
13194 return NULL;
13195 }
13196
13197 /* Initialize the use of the DWP file for the current objfile.
13198 By convention the name of the DWP file is ${objfile}.dwp.
13199 The result is NULL if it can't be found. */
13200
13201 static std::unique_ptr<struct dwp_file>
13202 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13203 {
13204 struct objfile *objfile = dwarf2_per_objfile->objfile;
13205
13206 /* Try to find first .dwp for the binary file before any symbolic links
13207 resolving. */
13208
13209 /* If the objfile is a debug file, find the name of the real binary
13210 file and get the name of dwp file from there. */
13211 std::string dwp_name;
13212 if (objfile->separate_debug_objfile_backlink != NULL)
13213 {
13214 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13215 const char *backlink_basename = lbasename (backlink->original_name);
13216
13217 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13218 }
13219 else
13220 dwp_name = objfile->original_name;
13221
13222 dwp_name += ".dwp";
13223
13224 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13225 if (dbfd == NULL
13226 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13227 {
13228 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13229 dwp_name = objfile_name (objfile);
13230 dwp_name += ".dwp";
13231 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13232 }
13233
13234 if (dbfd == NULL)
13235 {
13236 if (dwarf_read_debug)
13237 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13238 return std::unique_ptr<dwp_file> ();
13239 }
13240
13241 const char *name = bfd_get_filename (dbfd.get ());
13242 std::unique_ptr<struct dwp_file> dwp_file
13243 (new struct dwp_file (name, std::move (dbfd)));
13244
13245 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13246 dwp_file->elf_sections =
13247 OBSTACK_CALLOC (&objfile->objfile_obstack,
13248 dwp_file->num_sections, asection *);
13249
13250 bfd_map_over_sections (dwp_file->dbfd.get (),
13251 dwarf2_locate_common_dwp_sections,
13252 dwp_file.get ());
13253
13254 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13255 0);
13256
13257 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13258 1);
13259
13260 /* The DWP file version is stored in the hash table. Oh well. */
13261 if (dwp_file->cus && dwp_file->tus
13262 && dwp_file->cus->version != dwp_file->tus->version)
13263 {
13264 /* Technically speaking, we should try to limp along, but this is
13265 pretty bizarre. We use pulongest here because that's the established
13266 portability solution (e.g, we cannot use %u for uint32_t). */
13267 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13268 " TU version %s [in DWP file %s]"),
13269 pulongest (dwp_file->cus->version),
13270 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13271 }
13272
13273 if (dwp_file->cus)
13274 dwp_file->version = dwp_file->cus->version;
13275 else if (dwp_file->tus)
13276 dwp_file->version = dwp_file->tus->version;
13277 else
13278 dwp_file->version = 2;
13279
13280 if (dwp_file->version == 2)
13281 bfd_map_over_sections (dwp_file->dbfd.get (),
13282 dwarf2_locate_v2_dwp_sections,
13283 dwp_file.get ());
13284
13285 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13286 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13287
13288 if (dwarf_read_debug)
13289 {
13290 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13291 fprintf_unfiltered (gdb_stdlog,
13292 " %s CUs, %s TUs\n",
13293 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13294 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13295 }
13296
13297 return dwp_file;
13298 }
13299
13300 /* Wrapper around open_and_init_dwp_file, only open it once. */
13301
13302 static struct dwp_file *
13303 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13304 {
13305 if (! dwarf2_per_objfile->dwp_checked)
13306 {
13307 dwarf2_per_objfile->dwp_file
13308 = open_and_init_dwp_file (dwarf2_per_objfile);
13309 dwarf2_per_objfile->dwp_checked = 1;
13310 }
13311 return dwarf2_per_objfile->dwp_file.get ();
13312 }
13313
13314 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13315 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13316 or in the DWP file for the objfile, referenced by THIS_UNIT.
13317 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13318 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13319
13320 This is called, for example, when wanting to read a variable with a
13321 complex location. Therefore we don't want to do file i/o for every call.
13322 Therefore we don't want to look for a DWO file on every call.
13323 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13324 then we check if we've already seen DWO_NAME, and only THEN do we check
13325 for a DWO file.
13326
13327 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13328 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13329
13330 static struct dwo_unit *
13331 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13332 const char *dwo_name, const char *comp_dir,
13333 ULONGEST signature, int is_debug_types)
13334 {
13335 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13336 struct objfile *objfile = dwarf2_per_objfile->objfile;
13337 const char *kind = is_debug_types ? "TU" : "CU";
13338 void **dwo_file_slot;
13339 struct dwo_file *dwo_file;
13340 struct dwp_file *dwp_file;
13341
13342 /* First see if there's a DWP file.
13343 If we have a DWP file but didn't find the DWO inside it, don't
13344 look for the original DWO file. It makes gdb behave differently
13345 depending on whether one is debugging in the build tree. */
13346
13347 dwp_file = get_dwp_file (dwarf2_per_objfile);
13348 if (dwp_file != NULL)
13349 {
13350 const struct dwp_hash_table *dwp_htab =
13351 is_debug_types ? dwp_file->tus : dwp_file->cus;
13352
13353 if (dwp_htab != NULL)
13354 {
13355 struct dwo_unit *dwo_cutu =
13356 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13357 signature, is_debug_types);
13358
13359 if (dwo_cutu != NULL)
13360 {
13361 if (dwarf_read_debug)
13362 {
13363 fprintf_unfiltered (gdb_stdlog,
13364 "Virtual DWO %s %s found: @%s\n",
13365 kind, hex_string (signature),
13366 host_address_to_string (dwo_cutu));
13367 }
13368 return dwo_cutu;
13369 }
13370 }
13371 }
13372 else
13373 {
13374 /* No DWP file, look for the DWO file. */
13375
13376 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13377 dwo_name, comp_dir);
13378 if (*dwo_file_slot == NULL)
13379 {
13380 /* Read in the file and build a table of the CUs/TUs it contains. */
13381 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13382 }
13383 /* NOTE: This will be NULL if unable to open the file. */
13384 dwo_file = (struct dwo_file *) *dwo_file_slot;
13385
13386 if (dwo_file != NULL)
13387 {
13388 struct dwo_unit *dwo_cutu = NULL;
13389
13390 if (is_debug_types && dwo_file->tus)
13391 {
13392 struct dwo_unit find_dwo_cutu;
13393
13394 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13395 find_dwo_cutu.signature = signature;
13396 dwo_cutu
13397 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13398 }
13399 else if (!is_debug_types && dwo_file->cus)
13400 {
13401 struct dwo_unit find_dwo_cutu;
13402
13403 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13404 find_dwo_cutu.signature = signature;
13405 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13406 &find_dwo_cutu);
13407 }
13408
13409 if (dwo_cutu != NULL)
13410 {
13411 if (dwarf_read_debug)
13412 {
13413 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13414 kind, dwo_name, hex_string (signature),
13415 host_address_to_string (dwo_cutu));
13416 }
13417 return dwo_cutu;
13418 }
13419 }
13420 }
13421
13422 /* We didn't find it. This could mean a dwo_id mismatch, or
13423 someone deleted the DWO/DWP file, or the search path isn't set up
13424 correctly to find the file. */
13425
13426 if (dwarf_read_debug)
13427 {
13428 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13429 kind, dwo_name, hex_string (signature));
13430 }
13431
13432 /* This is a warning and not a complaint because it can be caused by
13433 pilot error (e.g., user accidentally deleting the DWO). */
13434 {
13435 /* Print the name of the DWP file if we looked there, helps the user
13436 better diagnose the problem. */
13437 std::string dwp_text;
13438
13439 if (dwp_file != NULL)
13440 dwp_text = string_printf (" [in DWP file %s]",
13441 lbasename (dwp_file->name));
13442
13443 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13444 " [in module %s]"),
13445 kind, dwo_name, hex_string (signature),
13446 dwp_text.c_str (),
13447 this_unit->is_debug_types ? "TU" : "CU",
13448 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13449 }
13450 return NULL;
13451 }
13452
13453 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13454 See lookup_dwo_cutu_unit for details. */
13455
13456 static struct dwo_unit *
13457 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13458 const char *dwo_name, const char *comp_dir,
13459 ULONGEST signature)
13460 {
13461 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13462 }
13463
13464 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13465 See lookup_dwo_cutu_unit for details. */
13466
13467 static struct dwo_unit *
13468 lookup_dwo_type_unit (struct signatured_type *this_tu,
13469 const char *dwo_name, const char *comp_dir)
13470 {
13471 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13472 }
13473
13474 /* Traversal function for queue_and_load_all_dwo_tus. */
13475
13476 static int
13477 queue_and_load_dwo_tu (void **slot, void *info)
13478 {
13479 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13480 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13481 ULONGEST signature = dwo_unit->signature;
13482 struct signatured_type *sig_type =
13483 lookup_dwo_signatured_type (per_cu->cu, signature);
13484
13485 if (sig_type != NULL)
13486 {
13487 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13488
13489 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13490 a real dependency of PER_CU on SIG_TYPE. That is detected later
13491 while processing PER_CU. */
13492 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13493 load_full_type_unit (sig_cu);
13494 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13495 }
13496
13497 return 1;
13498 }
13499
13500 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13501 The DWO may have the only definition of the type, though it may not be
13502 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13503 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13504
13505 static void
13506 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13507 {
13508 struct dwo_unit *dwo_unit;
13509 struct dwo_file *dwo_file;
13510
13511 gdb_assert (!per_cu->is_debug_types);
13512 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13513 gdb_assert (per_cu->cu != NULL);
13514
13515 dwo_unit = per_cu->cu->dwo_unit;
13516 gdb_assert (dwo_unit != NULL);
13517
13518 dwo_file = dwo_unit->dwo_file;
13519 if (dwo_file->tus != NULL)
13520 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13521 }
13522
13523 /* Read in various DIEs. */
13524
13525 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13526 Inherit only the children of the DW_AT_abstract_origin DIE not being
13527 already referenced by DW_AT_abstract_origin from the children of the
13528 current DIE. */
13529
13530 static void
13531 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13532 {
13533 struct die_info *child_die;
13534 sect_offset *offsetp;
13535 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13536 struct die_info *origin_die;
13537 /* Iterator of the ORIGIN_DIE children. */
13538 struct die_info *origin_child_die;
13539 struct attribute *attr;
13540 struct dwarf2_cu *origin_cu;
13541 struct pending **origin_previous_list_in_scope;
13542
13543 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13544 if (!attr)
13545 return;
13546
13547 /* Note that following die references may follow to a die in a
13548 different cu. */
13549
13550 origin_cu = cu;
13551 origin_die = follow_die_ref (die, attr, &origin_cu);
13552
13553 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13554 symbols in. */
13555 origin_previous_list_in_scope = origin_cu->list_in_scope;
13556 origin_cu->list_in_scope = cu->list_in_scope;
13557
13558 if (die->tag != origin_die->tag
13559 && !(die->tag == DW_TAG_inlined_subroutine
13560 && origin_die->tag == DW_TAG_subprogram))
13561 complaint (_("DIE %s and its abstract origin %s have different tags"),
13562 sect_offset_str (die->sect_off),
13563 sect_offset_str (origin_die->sect_off));
13564
13565 std::vector<sect_offset> offsets;
13566
13567 for (child_die = die->child;
13568 child_die && child_die->tag;
13569 child_die = sibling_die (child_die))
13570 {
13571 struct die_info *child_origin_die;
13572 struct dwarf2_cu *child_origin_cu;
13573
13574 /* We are trying to process concrete instance entries:
13575 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13576 it's not relevant to our analysis here. i.e. detecting DIEs that are
13577 present in the abstract instance but not referenced in the concrete
13578 one. */
13579 if (child_die->tag == DW_TAG_call_site
13580 || child_die->tag == DW_TAG_GNU_call_site)
13581 continue;
13582
13583 /* For each CHILD_DIE, find the corresponding child of
13584 ORIGIN_DIE. If there is more than one layer of
13585 DW_AT_abstract_origin, follow them all; there shouldn't be,
13586 but GCC versions at least through 4.4 generate this (GCC PR
13587 40573). */
13588 child_origin_die = child_die;
13589 child_origin_cu = cu;
13590 while (1)
13591 {
13592 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13593 child_origin_cu);
13594 if (attr == NULL)
13595 break;
13596 child_origin_die = follow_die_ref (child_origin_die, attr,
13597 &child_origin_cu);
13598 }
13599
13600 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13601 counterpart may exist. */
13602 if (child_origin_die != child_die)
13603 {
13604 if (child_die->tag != child_origin_die->tag
13605 && !(child_die->tag == DW_TAG_inlined_subroutine
13606 && child_origin_die->tag == DW_TAG_subprogram))
13607 complaint (_("Child DIE %s and its abstract origin %s have "
13608 "different tags"),
13609 sect_offset_str (child_die->sect_off),
13610 sect_offset_str (child_origin_die->sect_off));
13611 if (child_origin_die->parent != origin_die)
13612 complaint (_("Child DIE %s and its abstract origin %s have "
13613 "different parents"),
13614 sect_offset_str (child_die->sect_off),
13615 sect_offset_str (child_origin_die->sect_off));
13616 else
13617 offsets.push_back (child_origin_die->sect_off);
13618 }
13619 }
13620 std::sort (offsets.begin (), offsets.end ());
13621 sect_offset *offsets_end = offsets.data () + offsets.size ();
13622 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13623 if (offsetp[-1] == *offsetp)
13624 complaint (_("Multiple children of DIE %s refer "
13625 "to DIE %s as their abstract origin"),
13626 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13627
13628 offsetp = offsets.data ();
13629 origin_child_die = origin_die->child;
13630 while (origin_child_die && origin_child_die->tag)
13631 {
13632 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13633 while (offsetp < offsets_end
13634 && *offsetp < origin_child_die->sect_off)
13635 offsetp++;
13636 if (offsetp >= offsets_end
13637 || *offsetp > origin_child_die->sect_off)
13638 {
13639 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13640 Check whether we're already processing ORIGIN_CHILD_DIE.
13641 This can happen with mutually referenced abstract_origins.
13642 PR 16581. */
13643 if (!origin_child_die->in_process)
13644 process_die (origin_child_die, origin_cu);
13645 }
13646 origin_child_die = sibling_die (origin_child_die);
13647 }
13648 origin_cu->list_in_scope = origin_previous_list_in_scope;
13649 }
13650
13651 static void
13652 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13653 {
13654 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13655 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13656 struct context_stack *newobj;
13657 CORE_ADDR lowpc;
13658 CORE_ADDR highpc;
13659 struct die_info *child_die;
13660 struct attribute *attr, *call_line, *call_file;
13661 const char *name;
13662 CORE_ADDR baseaddr;
13663 struct block *block;
13664 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13665 std::vector<struct symbol *> template_args;
13666 struct template_symbol *templ_func = NULL;
13667
13668 if (inlined_func)
13669 {
13670 /* If we do not have call site information, we can't show the
13671 caller of this inlined function. That's too confusing, so
13672 only use the scope for local variables. */
13673 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13674 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13675 if (call_line == NULL || call_file == NULL)
13676 {
13677 read_lexical_block_scope (die, cu);
13678 return;
13679 }
13680 }
13681
13682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13683
13684 name = dwarf2_name (die, cu);
13685
13686 /* Ignore functions with missing or empty names. These are actually
13687 illegal according to the DWARF standard. */
13688 if (name == NULL)
13689 {
13690 complaint (_("missing name for subprogram DIE at %s"),
13691 sect_offset_str (die->sect_off));
13692 return;
13693 }
13694
13695 /* Ignore functions with missing or invalid low and high pc attributes. */
13696 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13697 <= PC_BOUNDS_INVALID)
13698 {
13699 attr = dwarf2_attr (die, DW_AT_external, cu);
13700 if (!attr || !DW_UNSND (attr))
13701 complaint (_("cannot get low and high bounds "
13702 "for subprogram DIE at %s"),
13703 sect_offset_str (die->sect_off));
13704 return;
13705 }
13706
13707 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13708 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13709
13710 /* If we have any template arguments, then we must allocate a
13711 different sort of symbol. */
13712 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13713 {
13714 if (child_die->tag == DW_TAG_template_type_param
13715 || child_die->tag == DW_TAG_template_value_param)
13716 {
13717 templ_func = allocate_template_symbol (objfile);
13718 templ_func->subclass = SYMBOL_TEMPLATE;
13719 break;
13720 }
13721 }
13722
13723 newobj = cu->get_builder ()->push_context (0, lowpc);
13724 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13725 (struct symbol *) templ_func);
13726
13727 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13728 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13729 cu->language);
13730
13731 /* If there is a location expression for DW_AT_frame_base, record
13732 it. */
13733 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13734 if (attr)
13735 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13736
13737 /* If there is a location for the static link, record it. */
13738 newobj->static_link = NULL;
13739 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13740 if (attr)
13741 {
13742 newobj->static_link
13743 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13744 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13745 dwarf2_per_cu_addr_type (cu->per_cu));
13746 }
13747
13748 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13749
13750 if (die->child != NULL)
13751 {
13752 child_die = die->child;
13753 while (child_die && child_die->tag)
13754 {
13755 if (child_die->tag == DW_TAG_template_type_param
13756 || child_die->tag == DW_TAG_template_value_param)
13757 {
13758 struct symbol *arg = new_symbol (child_die, NULL, cu);
13759
13760 if (arg != NULL)
13761 template_args.push_back (arg);
13762 }
13763 else
13764 process_die (child_die, cu);
13765 child_die = sibling_die (child_die);
13766 }
13767 }
13768
13769 inherit_abstract_dies (die, cu);
13770
13771 /* If we have a DW_AT_specification, we might need to import using
13772 directives from the context of the specification DIE. See the
13773 comment in determine_prefix. */
13774 if (cu->language == language_cplus
13775 && dwarf2_attr (die, DW_AT_specification, cu))
13776 {
13777 struct dwarf2_cu *spec_cu = cu;
13778 struct die_info *spec_die = die_specification (die, &spec_cu);
13779
13780 while (spec_die)
13781 {
13782 child_die = spec_die->child;
13783 while (child_die && child_die->tag)
13784 {
13785 if (child_die->tag == DW_TAG_imported_module)
13786 process_die (child_die, spec_cu);
13787 child_die = sibling_die (child_die);
13788 }
13789
13790 /* In some cases, GCC generates specification DIEs that
13791 themselves contain DW_AT_specification attributes. */
13792 spec_die = die_specification (spec_die, &spec_cu);
13793 }
13794 }
13795
13796 struct context_stack cstk = cu->get_builder ()->pop_context ();
13797 /* Make a block for the local symbols within. */
13798 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13799 cstk.static_link, lowpc, highpc);
13800
13801 /* For C++, set the block's scope. */
13802 if ((cu->language == language_cplus
13803 || cu->language == language_fortran
13804 || cu->language == language_d
13805 || cu->language == language_rust)
13806 && cu->processing_has_namespace_info)
13807 block_set_scope (block, determine_prefix (die, cu),
13808 &objfile->objfile_obstack);
13809
13810 /* If we have address ranges, record them. */
13811 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13812
13813 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13814
13815 /* Attach template arguments to function. */
13816 if (!template_args.empty ())
13817 {
13818 gdb_assert (templ_func != NULL);
13819
13820 templ_func->n_template_arguments = template_args.size ();
13821 templ_func->template_arguments
13822 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13823 templ_func->n_template_arguments);
13824 memcpy (templ_func->template_arguments,
13825 template_args.data (),
13826 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13827
13828 /* Make sure that the symtab is set on the new symbols. Even
13829 though they don't appear in this symtab directly, other parts
13830 of gdb assume that symbols do, and this is reasonably
13831 true. */
13832 for (symbol *sym : template_args)
13833 symbol_set_symtab (sym, symbol_symtab (templ_func));
13834 }
13835
13836 /* In C++, we can have functions nested inside functions (e.g., when
13837 a function declares a class that has methods). This means that
13838 when we finish processing a function scope, we may need to go
13839 back to building a containing block's symbol lists. */
13840 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13841 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13842
13843 /* If we've finished processing a top-level function, subsequent
13844 symbols go in the file symbol list. */
13845 if (cu->get_builder ()->outermost_context_p ())
13846 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13847 }
13848
13849 /* Process all the DIES contained within a lexical block scope. Start
13850 a new scope, process the dies, and then close the scope. */
13851
13852 static void
13853 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13854 {
13855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13857 CORE_ADDR lowpc, highpc;
13858 struct die_info *child_die;
13859 CORE_ADDR baseaddr;
13860
13861 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13862
13863 /* Ignore blocks with missing or invalid low and high pc attributes. */
13864 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13865 as multiple lexical blocks? Handling children in a sane way would
13866 be nasty. Might be easier to properly extend generic blocks to
13867 describe ranges. */
13868 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13869 {
13870 case PC_BOUNDS_NOT_PRESENT:
13871 /* DW_TAG_lexical_block has no attributes, process its children as if
13872 there was no wrapping by that DW_TAG_lexical_block.
13873 GCC does no longer produces such DWARF since GCC r224161. */
13874 for (child_die = die->child;
13875 child_die != NULL && child_die->tag;
13876 child_die = sibling_die (child_die))
13877 process_die (child_die, cu);
13878 return;
13879 case PC_BOUNDS_INVALID:
13880 return;
13881 }
13882 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13883 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13884
13885 cu->get_builder ()->push_context (0, lowpc);
13886 if (die->child != NULL)
13887 {
13888 child_die = die->child;
13889 while (child_die && child_die->tag)
13890 {
13891 process_die (child_die, cu);
13892 child_die = sibling_die (child_die);
13893 }
13894 }
13895 inherit_abstract_dies (die, cu);
13896 struct context_stack cstk = cu->get_builder ()->pop_context ();
13897
13898 if (*cu->get_builder ()->get_local_symbols () != NULL
13899 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13900 {
13901 struct block *block
13902 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13903 cstk.start_addr, highpc);
13904
13905 /* Note that recording ranges after traversing children, as we
13906 do here, means that recording a parent's ranges entails
13907 walking across all its children's ranges as they appear in
13908 the address map, which is quadratic behavior.
13909
13910 It would be nicer to record the parent's ranges before
13911 traversing its children, simply overriding whatever you find
13912 there. But since we don't even decide whether to create a
13913 block until after we've traversed its children, that's hard
13914 to do. */
13915 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13916 }
13917 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13918 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13919 }
13920
13921 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13922
13923 static void
13924 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13925 {
13926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13928 CORE_ADDR pc, baseaddr;
13929 struct attribute *attr;
13930 struct call_site *call_site, call_site_local;
13931 void **slot;
13932 int nparams;
13933 struct die_info *child_die;
13934
13935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13936
13937 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13938 if (attr == NULL)
13939 {
13940 /* This was a pre-DWARF-5 GNU extension alias
13941 for DW_AT_call_return_pc. */
13942 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13943 }
13944 if (!attr)
13945 {
13946 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13947 "DIE %s [in module %s]"),
13948 sect_offset_str (die->sect_off), objfile_name (objfile));
13949 return;
13950 }
13951 pc = attr_value_as_address (attr) + baseaddr;
13952 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13953
13954 if (cu->call_site_htab == NULL)
13955 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13956 NULL, &objfile->objfile_obstack,
13957 hashtab_obstack_allocate, NULL);
13958 call_site_local.pc = pc;
13959 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13960 if (*slot != NULL)
13961 {
13962 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13965 objfile_name (objfile));
13966 return;
13967 }
13968
13969 /* Count parameters at the caller. */
13970
13971 nparams = 0;
13972 for (child_die = die->child; child_die && child_die->tag;
13973 child_die = sibling_die (child_die))
13974 {
13975 if (child_die->tag != DW_TAG_call_site_parameter
13976 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13977 {
13978 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13979 "DW_TAG_call_site child DIE %s [in module %s]"),
13980 child_die->tag, sect_offset_str (child_die->sect_off),
13981 objfile_name (objfile));
13982 continue;
13983 }
13984
13985 nparams++;
13986 }
13987
13988 call_site
13989 = ((struct call_site *)
13990 obstack_alloc (&objfile->objfile_obstack,
13991 sizeof (*call_site)
13992 + (sizeof (*call_site->parameter) * (nparams - 1))));
13993 *slot = call_site;
13994 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13995 call_site->pc = pc;
13996
13997 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13998 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13999 {
14000 struct die_info *func_die;
14001
14002 /* Skip also over DW_TAG_inlined_subroutine. */
14003 for (func_die = die->parent;
14004 func_die && func_die->tag != DW_TAG_subprogram
14005 && func_die->tag != DW_TAG_subroutine_type;
14006 func_die = func_die->parent);
14007
14008 /* DW_AT_call_all_calls is a superset
14009 of DW_AT_call_all_tail_calls. */
14010 if (func_die
14011 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14012 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14013 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14014 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14015 {
14016 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14017 not complete. But keep CALL_SITE for look ups via call_site_htab,
14018 both the initial caller containing the real return address PC and
14019 the final callee containing the current PC of a chain of tail
14020 calls do not need to have the tail call list complete. But any
14021 function candidate for a virtual tail call frame searched via
14022 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14023 determined unambiguously. */
14024 }
14025 else
14026 {
14027 struct type *func_type = NULL;
14028
14029 if (func_die)
14030 func_type = get_die_type (func_die, cu);
14031 if (func_type != NULL)
14032 {
14033 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14034
14035 /* Enlist this call site to the function. */
14036 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14037 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14038 }
14039 else
14040 complaint (_("Cannot find function owning DW_TAG_call_site "
14041 "DIE %s [in module %s]"),
14042 sect_offset_str (die->sect_off), objfile_name (objfile));
14043 }
14044 }
14045
14046 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14047 if (attr == NULL)
14048 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14049 if (attr == NULL)
14050 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14051 if (attr == NULL)
14052 {
14053 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14054 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14055 }
14056 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14057 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14058 /* Keep NULL DWARF_BLOCK. */;
14059 else if (attr_form_is_block (attr))
14060 {
14061 struct dwarf2_locexpr_baton *dlbaton;
14062
14063 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14064 dlbaton->data = DW_BLOCK (attr)->data;
14065 dlbaton->size = DW_BLOCK (attr)->size;
14066 dlbaton->per_cu = cu->per_cu;
14067
14068 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14069 }
14070 else if (attr_form_is_ref (attr))
14071 {
14072 struct dwarf2_cu *target_cu = cu;
14073 struct die_info *target_die;
14074
14075 target_die = follow_die_ref (die, attr, &target_cu);
14076 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14077 if (die_is_declaration (target_die, target_cu))
14078 {
14079 const char *target_physname;
14080
14081 /* Prefer the mangled name; otherwise compute the demangled one. */
14082 target_physname = dw2_linkage_name (target_die, target_cu);
14083 if (target_physname == NULL)
14084 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14085 if (target_physname == NULL)
14086 complaint (_("DW_AT_call_target target DIE has invalid "
14087 "physname, for referencing DIE %s [in module %s]"),
14088 sect_offset_str (die->sect_off), objfile_name (objfile));
14089 else
14090 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14091 }
14092 else
14093 {
14094 CORE_ADDR lowpc;
14095
14096 /* DW_AT_entry_pc should be preferred. */
14097 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14098 <= PC_BOUNDS_INVALID)
14099 complaint (_("DW_AT_call_target target DIE has invalid "
14100 "low pc, for referencing DIE %s [in module %s]"),
14101 sect_offset_str (die->sect_off), objfile_name (objfile));
14102 else
14103 {
14104 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14105 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14106 }
14107 }
14108 }
14109 else
14110 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14111 "block nor reference, for DIE %s [in module %s]"),
14112 sect_offset_str (die->sect_off), objfile_name (objfile));
14113
14114 call_site->per_cu = cu->per_cu;
14115
14116 for (child_die = die->child;
14117 child_die && child_die->tag;
14118 child_die = sibling_die (child_die))
14119 {
14120 struct call_site_parameter *parameter;
14121 struct attribute *loc, *origin;
14122
14123 if (child_die->tag != DW_TAG_call_site_parameter
14124 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14125 {
14126 /* Already printed the complaint above. */
14127 continue;
14128 }
14129
14130 gdb_assert (call_site->parameter_count < nparams);
14131 parameter = &call_site->parameter[call_site->parameter_count];
14132
14133 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14134 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14135 register is contained in DW_AT_call_value. */
14136
14137 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14138 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14139 if (origin == NULL)
14140 {
14141 /* This was a pre-DWARF-5 GNU extension alias
14142 for DW_AT_call_parameter. */
14143 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14144 }
14145 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14146 {
14147 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14148
14149 sect_offset sect_off
14150 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14151 if (!offset_in_cu_p (&cu->header, sect_off))
14152 {
14153 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14154 binding can be done only inside one CU. Such referenced DIE
14155 therefore cannot be even moved to DW_TAG_partial_unit. */
14156 complaint (_("DW_AT_call_parameter offset is not in CU for "
14157 "DW_TAG_call_site child DIE %s [in module %s]"),
14158 sect_offset_str (child_die->sect_off),
14159 objfile_name (objfile));
14160 continue;
14161 }
14162 parameter->u.param_cu_off
14163 = (cu_offset) (sect_off - cu->header.sect_off);
14164 }
14165 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14166 {
14167 complaint (_("No DW_FORM_block* DW_AT_location for "
14168 "DW_TAG_call_site child DIE %s [in module %s]"),
14169 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14170 continue;
14171 }
14172 else
14173 {
14174 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14175 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14176 if (parameter->u.dwarf_reg != -1)
14177 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14178 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14179 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14180 &parameter->u.fb_offset))
14181 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14182 else
14183 {
14184 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14185 "for DW_FORM_block* DW_AT_location is supported for "
14186 "DW_TAG_call_site child DIE %s "
14187 "[in module %s]"),
14188 sect_offset_str (child_die->sect_off),
14189 objfile_name (objfile));
14190 continue;
14191 }
14192 }
14193
14194 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14195 if (attr == NULL)
14196 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14197 if (!attr_form_is_block (attr))
14198 {
14199 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14200 "DW_TAG_call_site child DIE %s [in module %s]"),
14201 sect_offset_str (child_die->sect_off),
14202 objfile_name (objfile));
14203 continue;
14204 }
14205 parameter->value = DW_BLOCK (attr)->data;
14206 parameter->value_size = DW_BLOCK (attr)->size;
14207
14208 /* Parameters are not pre-cleared by memset above. */
14209 parameter->data_value = NULL;
14210 parameter->data_value_size = 0;
14211 call_site->parameter_count++;
14212
14213 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14214 if (attr == NULL)
14215 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14216 if (attr)
14217 {
14218 if (!attr_form_is_block (attr))
14219 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14220 "DW_TAG_call_site child DIE %s [in module %s]"),
14221 sect_offset_str (child_die->sect_off),
14222 objfile_name (objfile));
14223 else
14224 {
14225 parameter->data_value = DW_BLOCK (attr)->data;
14226 parameter->data_value_size = DW_BLOCK (attr)->size;
14227 }
14228 }
14229 }
14230 }
14231
14232 /* Helper function for read_variable. If DIE represents a virtual
14233 table, then return the type of the concrete object that is
14234 associated with the virtual table. Otherwise, return NULL. */
14235
14236 static struct type *
14237 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14238 {
14239 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14240 if (attr == NULL)
14241 return NULL;
14242
14243 /* Find the type DIE. */
14244 struct die_info *type_die = NULL;
14245 struct dwarf2_cu *type_cu = cu;
14246
14247 if (attr_form_is_ref (attr))
14248 type_die = follow_die_ref (die, attr, &type_cu);
14249 if (type_die == NULL)
14250 return NULL;
14251
14252 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14253 return NULL;
14254 return die_containing_type (type_die, type_cu);
14255 }
14256
14257 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14258
14259 static void
14260 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14261 {
14262 struct rust_vtable_symbol *storage = NULL;
14263
14264 if (cu->language == language_rust)
14265 {
14266 struct type *containing_type = rust_containing_type (die, cu);
14267
14268 if (containing_type != NULL)
14269 {
14270 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14271
14272 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14273 struct rust_vtable_symbol);
14274 initialize_objfile_symbol (storage);
14275 storage->concrete_type = containing_type;
14276 storage->subclass = SYMBOL_RUST_VTABLE;
14277 }
14278 }
14279
14280 struct symbol *res = new_symbol (die, NULL, cu, storage);
14281 struct attribute *abstract_origin
14282 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14283 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14284 if (res == NULL && loc && abstract_origin)
14285 {
14286 /* We have a variable without a name, but with a location and an abstract
14287 origin. This may be a concrete instance of an abstract variable
14288 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14289 later. */
14290 struct dwarf2_cu *origin_cu = cu;
14291 struct die_info *origin_die
14292 = follow_die_ref (die, abstract_origin, &origin_cu);
14293 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14294 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14295 }
14296 }
14297
14298 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14299 reading .debug_rnglists.
14300 Callback's type should be:
14301 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14302 Return true if the attributes are present and valid, otherwise,
14303 return false. */
14304
14305 template <typename Callback>
14306 static bool
14307 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14308 Callback &&callback)
14309 {
14310 struct dwarf2_per_objfile *dwarf2_per_objfile
14311 = cu->per_cu->dwarf2_per_objfile;
14312 struct objfile *objfile = dwarf2_per_objfile->objfile;
14313 bfd *obfd = objfile->obfd;
14314 /* Base address selection entry. */
14315 CORE_ADDR base;
14316 int found_base;
14317 const gdb_byte *buffer;
14318 CORE_ADDR baseaddr;
14319 bool overflow = false;
14320
14321 found_base = cu->base_known;
14322 base = cu->base_address;
14323
14324 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14325 if (offset >= dwarf2_per_objfile->rnglists.size)
14326 {
14327 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14328 offset);
14329 return false;
14330 }
14331 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14332
14333 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14334
14335 while (1)
14336 {
14337 /* Initialize it due to a false compiler warning. */
14338 CORE_ADDR range_beginning = 0, range_end = 0;
14339 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14340 + dwarf2_per_objfile->rnglists.size);
14341 unsigned int bytes_read;
14342
14343 if (buffer == buf_end)
14344 {
14345 overflow = true;
14346 break;
14347 }
14348 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14349 switch (rlet)
14350 {
14351 case DW_RLE_end_of_list:
14352 break;
14353 case DW_RLE_base_address:
14354 if (buffer + cu->header.addr_size > buf_end)
14355 {
14356 overflow = true;
14357 break;
14358 }
14359 base = read_address (obfd, buffer, cu, &bytes_read);
14360 found_base = 1;
14361 buffer += bytes_read;
14362 break;
14363 case DW_RLE_start_length:
14364 if (buffer + cu->header.addr_size > buf_end)
14365 {
14366 overflow = true;
14367 break;
14368 }
14369 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14370 buffer += bytes_read;
14371 range_end = (range_beginning
14372 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14373 buffer += bytes_read;
14374 if (buffer > buf_end)
14375 {
14376 overflow = true;
14377 break;
14378 }
14379 break;
14380 case DW_RLE_offset_pair:
14381 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14382 buffer += bytes_read;
14383 if (buffer > buf_end)
14384 {
14385 overflow = true;
14386 break;
14387 }
14388 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14391 {
14392 overflow = true;
14393 break;
14394 }
14395 break;
14396 case DW_RLE_start_end:
14397 if (buffer + 2 * cu->header.addr_size > buf_end)
14398 {
14399 overflow = true;
14400 break;
14401 }
14402 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14403 buffer += bytes_read;
14404 range_end = read_address (obfd, buffer, cu, &bytes_read);
14405 buffer += bytes_read;
14406 break;
14407 default:
14408 complaint (_("Invalid .debug_rnglists data (no base address)"));
14409 return false;
14410 }
14411 if (rlet == DW_RLE_end_of_list || overflow)
14412 break;
14413 if (rlet == DW_RLE_base_address)
14414 continue;
14415
14416 if (!found_base)
14417 {
14418 /* We have no valid base address for the ranges
14419 data. */
14420 complaint (_("Invalid .debug_rnglists data (no base address)"));
14421 return false;
14422 }
14423
14424 if (range_beginning > range_end)
14425 {
14426 /* Inverted range entries are invalid. */
14427 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14428 return false;
14429 }
14430
14431 /* Empty range entries have no effect. */
14432 if (range_beginning == range_end)
14433 continue;
14434
14435 range_beginning += base;
14436 range_end += base;
14437
14438 /* A not-uncommon case of bad debug info.
14439 Don't pollute the addrmap with bad data. */
14440 if (range_beginning + baseaddr == 0
14441 && !dwarf2_per_objfile->has_section_at_zero)
14442 {
14443 complaint (_(".debug_rnglists entry has start address of zero"
14444 " [in module %s]"), objfile_name (objfile));
14445 continue;
14446 }
14447
14448 callback (range_beginning, range_end);
14449 }
14450
14451 if (overflow)
14452 {
14453 complaint (_("Offset %d is not terminated "
14454 "for DW_AT_ranges attribute"),
14455 offset);
14456 return false;
14457 }
14458
14459 return true;
14460 }
14461
14462 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14463 Callback's type should be:
14464 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14465 Return 1 if the attributes are present and valid, otherwise, return 0. */
14466
14467 template <typename Callback>
14468 static int
14469 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14470 Callback &&callback)
14471 {
14472 struct dwarf2_per_objfile *dwarf2_per_objfile
14473 = cu->per_cu->dwarf2_per_objfile;
14474 struct objfile *objfile = dwarf2_per_objfile->objfile;
14475 struct comp_unit_head *cu_header = &cu->header;
14476 bfd *obfd = objfile->obfd;
14477 unsigned int addr_size = cu_header->addr_size;
14478 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14479 /* Base address selection entry. */
14480 CORE_ADDR base;
14481 int found_base;
14482 unsigned int dummy;
14483 const gdb_byte *buffer;
14484 CORE_ADDR baseaddr;
14485
14486 if (cu_header->version >= 5)
14487 return dwarf2_rnglists_process (offset, cu, callback);
14488
14489 found_base = cu->base_known;
14490 base = cu->base_address;
14491
14492 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14493 if (offset >= dwarf2_per_objfile->ranges.size)
14494 {
14495 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14496 offset);
14497 return 0;
14498 }
14499 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14500
14501 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14502
14503 while (1)
14504 {
14505 CORE_ADDR range_beginning, range_end;
14506
14507 range_beginning = read_address (obfd, buffer, cu, &dummy);
14508 buffer += addr_size;
14509 range_end = read_address (obfd, buffer, cu, &dummy);
14510 buffer += addr_size;
14511 offset += 2 * addr_size;
14512
14513 /* An end of list marker is a pair of zero addresses. */
14514 if (range_beginning == 0 && range_end == 0)
14515 /* Found the end of list entry. */
14516 break;
14517
14518 /* Each base address selection entry is a pair of 2 values.
14519 The first is the largest possible address, the second is
14520 the base address. Check for a base address here. */
14521 if ((range_beginning & mask) == mask)
14522 {
14523 /* If we found the largest possible address, then we already
14524 have the base address in range_end. */
14525 base = range_end;
14526 found_base = 1;
14527 continue;
14528 }
14529
14530 if (!found_base)
14531 {
14532 /* We have no valid base address for the ranges
14533 data. */
14534 complaint (_("Invalid .debug_ranges data (no base address)"));
14535 return 0;
14536 }
14537
14538 if (range_beginning > range_end)
14539 {
14540 /* Inverted range entries are invalid. */
14541 complaint (_("Invalid .debug_ranges data (inverted range)"));
14542 return 0;
14543 }
14544
14545 /* Empty range entries have no effect. */
14546 if (range_beginning == range_end)
14547 continue;
14548
14549 range_beginning += base;
14550 range_end += base;
14551
14552 /* A not-uncommon case of bad debug info.
14553 Don't pollute the addrmap with bad data. */
14554 if (range_beginning + baseaddr == 0
14555 && !dwarf2_per_objfile->has_section_at_zero)
14556 {
14557 complaint (_(".debug_ranges entry has start address of zero"
14558 " [in module %s]"), objfile_name (objfile));
14559 continue;
14560 }
14561
14562 callback (range_beginning, range_end);
14563 }
14564
14565 return 1;
14566 }
14567
14568 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14569 Return 1 if the attributes are present and valid, otherwise, return 0.
14570 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14571
14572 static int
14573 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14574 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14575 struct partial_symtab *ranges_pst)
14576 {
14577 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14578 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14579 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14580 SECT_OFF_TEXT (objfile));
14581 int low_set = 0;
14582 CORE_ADDR low = 0;
14583 CORE_ADDR high = 0;
14584 int retval;
14585
14586 retval = dwarf2_ranges_process (offset, cu,
14587 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14588 {
14589 if (ranges_pst != NULL)
14590 {
14591 CORE_ADDR lowpc;
14592 CORE_ADDR highpc;
14593
14594 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14595 range_beginning + baseaddr)
14596 - baseaddr);
14597 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14598 range_end + baseaddr)
14599 - baseaddr);
14600 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14601 lowpc, highpc - 1, ranges_pst);
14602 }
14603
14604 /* FIXME: This is recording everything as a low-high
14605 segment of consecutive addresses. We should have a
14606 data structure for discontiguous block ranges
14607 instead. */
14608 if (! low_set)
14609 {
14610 low = range_beginning;
14611 high = range_end;
14612 low_set = 1;
14613 }
14614 else
14615 {
14616 if (range_beginning < low)
14617 low = range_beginning;
14618 if (range_end > high)
14619 high = range_end;
14620 }
14621 });
14622 if (!retval)
14623 return 0;
14624
14625 if (! low_set)
14626 /* If the first entry is an end-of-list marker, the range
14627 describes an empty scope, i.e. no instructions. */
14628 return 0;
14629
14630 if (low_return)
14631 *low_return = low;
14632 if (high_return)
14633 *high_return = high;
14634 return 1;
14635 }
14636
14637 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14638 definition for the return value. *LOWPC and *HIGHPC are set iff
14639 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14640
14641 static enum pc_bounds_kind
14642 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14643 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14644 struct partial_symtab *pst)
14645 {
14646 struct dwarf2_per_objfile *dwarf2_per_objfile
14647 = cu->per_cu->dwarf2_per_objfile;
14648 struct attribute *attr;
14649 struct attribute *attr_high;
14650 CORE_ADDR low = 0;
14651 CORE_ADDR high = 0;
14652 enum pc_bounds_kind ret;
14653
14654 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14655 if (attr_high)
14656 {
14657 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14658 if (attr)
14659 {
14660 low = attr_value_as_address (attr);
14661 high = attr_value_as_address (attr_high);
14662 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14663 high += low;
14664 }
14665 else
14666 /* Found high w/o low attribute. */
14667 return PC_BOUNDS_INVALID;
14668
14669 /* Found consecutive range of addresses. */
14670 ret = PC_BOUNDS_HIGH_LOW;
14671 }
14672 else
14673 {
14674 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14675 if (attr != NULL)
14676 {
14677 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14678 We take advantage of the fact that DW_AT_ranges does not appear
14679 in DW_TAG_compile_unit of DWO files. */
14680 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14681 unsigned int ranges_offset = (DW_UNSND (attr)
14682 + (need_ranges_base
14683 ? cu->ranges_base
14684 : 0));
14685
14686 /* Value of the DW_AT_ranges attribute is the offset in the
14687 .debug_ranges section. */
14688 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14689 return PC_BOUNDS_INVALID;
14690 /* Found discontinuous range of addresses. */
14691 ret = PC_BOUNDS_RANGES;
14692 }
14693 else
14694 return PC_BOUNDS_NOT_PRESENT;
14695 }
14696
14697 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14698 if (high <= low)
14699 return PC_BOUNDS_INVALID;
14700
14701 /* When using the GNU linker, .gnu.linkonce. sections are used to
14702 eliminate duplicate copies of functions and vtables and such.
14703 The linker will arbitrarily choose one and discard the others.
14704 The AT_*_pc values for such functions refer to local labels in
14705 these sections. If the section from that file was discarded, the
14706 labels are not in the output, so the relocs get a value of 0.
14707 If this is a discarded function, mark the pc bounds as invalid,
14708 so that GDB will ignore it. */
14709 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14710 return PC_BOUNDS_INVALID;
14711
14712 *lowpc = low;
14713 if (highpc)
14714 *highpc = high;
14715 return ret;
14716 }
14717
14718 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14719 its low and high PC addresses. Do nothing if these addresses could not
14720 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14721 and HIGHPC to the high address if greater than HIGHPC. */
14722
14723 static void
14724 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14725 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14726 struct dwarf2_cu *cu)
14727 {
14728 CORE_ADDR low, high;
14729 struct die_info *child = die->child;
14730
14731 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14732 {
14733 *lowpc = std::min (*lowpc, low);
14734 *highpc = std::max (*highpc, high);
14735 }
14736
14737 /* If the language does not allow nested subprograms (either inside
14738 subprograms or lexical blocks), we're done. */
14739 if (cu->language != language_ada)
14740 return;
14741
14742 /* Check all the children of the given DIE. If it contains nested
14743 subprograms, then check their pc bounds. Likewise, we need to
14744 check lexical blocks as well, as they may also contain subprogram
14745 definitions. */
14746 while (child && child->tag)
14747 {
14748 if (child->tag == DW_TAG_subprogram
14749 || child->tag == DW_TAG_lexical_block)
14750 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14751 child = sibling_die (child);
14752 }
14753 }
14754
14755 /* Get the low and high pc's represented by the scope DIE, and store
14756 them in *LOWPC and *HIGHPC. If the correct values can't be
14757 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14758
14759 static void
14760 get_scope_pc_bounds (struct die_info *die,
14761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14762 struct dwarf2_cu *cu)
14763 {
14764 CORE_ADDR best_low = (CORE_ADDR) -1;
14765 CORE_ADDR best_high = (CORE_ADDR) 0;
14766 CORE_ADDR current_low, current_high;
14767
14768 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14769 >= PC_BOUNDS_RANGES)
14770 {
14771 best_low = current_low;
14772 best_high = current_high;
14773 }
14774 else
14775 {
14776 struct die_info *child = die->child;
14777
14778 while (child && child->tag)
14779 {
14780 switch (child->tag) {
14781 case DW_TAG_subprogram:
14782 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14783 break;
14784 case DW_TAG_namespace:
14785 case DW_TAG_module:
14786 /* FIXME: carlton/2004-01-16: Should we do this for
14787 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14788 that current GCC's always emit the DIEs corresponding
14789 to definitions of methods of classes as children of a
14790 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14791 the DIEs giving the declarations, which could be
14792 anywhere). But I don't see any reason why the
14793 standards says that they have to be there. */
14794 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14795
14796 if (current_low != ((CORE_ADDR) -1))
14797 {
14798 best_low = std::min (best_low, current_low);
14799 best_high = std::max (best_high, current_high);
14800 }
14801 break;
14802 default:
14803 /* Ignore. */
14804 break;
14805 }
14806
14807 child = sibling_die (child);
14808 }
14809 }
14810
14811 *lowpc = best_low;
14812 *highpc = best_high;
14813 }
14814
14815 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14816 in DIE. */
14817
14818 static void
14819 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14820 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14821 {
14822 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14823 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14824 struct attribute *attr;
14825 struct attribute *attr_high;
14826
14827 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14828 if (attr_high)
14829 {
14830 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14831 if (attr)
14832 {
14833 CORE_ADDR low = attr_value_as_address (attr);
14834 CORE_ADDR high = attr_value_as_address (attr_high);
14835
14836 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14837 high += low;
14838
14839 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14840 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14841 cu->get_builder ()->record_block_range (block, low, high - 1);
14842 }
14843 }
14844
14845 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14846 if (attr)
14847 {
14848 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14849 We take advantage of the fact that DW_AT_ranges does not appear
14850 in DW_TAG_compile_unit of DWO files. */
14851 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14852
14853 /* The value of the DW_AT_ranges attribute is the offset of the
14854 address range list in the .debug_ranges section. */
14855 unsigned long offset = (DW_UNSND (attr)
14856 + (need_ranges_base ? cu->ranges_base : 0));
14857
14858 std::vector<blockrange> blockvec;
14859 dwarf2_ranges_process (offset, cu,
14860 [&] (CORE_ADDR start, CORE_ADDR end)
14861 {
14862 start += baseaddr;
14863 end += baseaddr;
14864 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14865 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14866 cu->get_builder ()->record_block_range (block, start, end - 1);
14867 blockvec.emplace_back (start, end);
14868 });
14869
14870 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14871 }
14872 }
14873
14874 /* Check whether the producer field indicates either of GCC < 4.6, or the
14875 Intel C/C++ compiler, and cache the result in CU. */
14876
14877 static void
14878 check_producer (struct dwarf2_cu *cu)
14879 {
14880 int major, minor;
14881
14882 if (cu->producer == NULL)
14883 {
14884 /* For unknown compilers expect their behavior is DWARF version
14885 compliant.
14886
14887 GCC started to support .debug_types sections by -gdwarf-4 since
14888 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14889 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14890 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14891 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14892 }
14893 else if (producer_is_gcc (cu->producer, &major, &minor))
14894 {
14895 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14896 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14897 }
14898 else if (producer_is_icc (cu->producer, &major, &minor))
14899 {
14900 cu->producer_is_icc = true;
14901 cu->producer_is_icc_lt_14 = major < 14;
14902 }
14903 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14904 cu->producer_is_codewarrior = true;
14905 else
14906 {
14907 /* For other non-GCC compilers, expect their behavior is DWARF version
14908 compliant. */
14909 }
14910
14911 cu->checked_producer = true;
14912 }
14913
14914 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14915 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14916 during 4.6.0 experimental. */
14917
14918 static bool
14919 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14920 {
14921 if (!cu->checked_producer)
14922 check_producer (cu);
14923
14924 return cu->producer_is_gxx_lt_4_6;
14925 }
14926
14927
14928 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14929 with incorrect is_stmt attributes. */
14930
14931 static bool
14932 producer_is_codewarrior (struct dwarf2_cu *cu)
14933 {
14934 if (!cu->checked_producer)
14935 check_producer (cu);
14936
14937 return cu->producer_is_codewarrior;
14938 }
14939
14940 /* Return the default accessibility type if it is not overriden by
14941 DW_AT_accessibility. */
14942
14943 static enum dwarf_access_attribute
14944 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14945 {
14946 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14947 {
14948 /* The default DWARF 2 accessibility for members is public, the default
14949 accessibility for inheritance is private. */
14950
14951 if (die->tag != DW_TAG_inheritance)
14952 return DW_ACCESS_public;
14953 else
14954 return DW_ACCESS_private;
14955 }
14956 else
14957 {
14958 /* DWARF 3+ defines the default accessibility a different way. The same
14959 rules apply now for DW_TAG_inheritance as for the members and it only
14960 depends on the container kind. */
14961
14962 if (die->parent->tag == DW_TAG_class_type)
14963 return DW_ACCESS_private;
14964 else
14965 return DW_ACCESS_public;
14966 }
14967 }
14968
14969 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14970 offset. If the attribute was not found return 0, otherwise return
14971 1. If it was found but could not properly be handled, set *OFFSET
14972 to 0. */
14973
14974 static int
14975 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14976 LONGEST *offset)
14977 {
14978 struct attribute *attr;
14979
14980 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14981 if (attr != NULL)
14982 {
14983 *offset = 0;
14984
14985 /* Note that we do not check for a section offset first here.
14986 This is because DW_AT_data_member_location is new in DWARF 4,
14987 so if we see it, we can assume that a constant form is really
14988 a constant and not a section offset. */
14989 if (attr_form_is_constant (attr))
14990 *offset = dwarf2_get_attr_constant_value (attr, 0);
14991 else if (attr_form_is_section_offset (attr))
14992 dwarf2_complex_location_expr_complaint ();
14993 else if (attr_form_is_block (attr))
14994 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14995 else
14996 dwarf2_complex_location_expr_complaint ();
14997
14998 return 1;
14999 }
15000
15001 return 0;
15002 }
15003
15004 /* Add an aggregate field to the field list. */
15005
15006 static void
15007 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15008 struct dwarf2_cu *cu)
15009 {
15010 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15012 struct nextfield *new_field;
15013 struct attribute *attr;
15014 struct field *fp;
15015 const char *fieldname = "";
15016
15017 if (die->tag == DW_TAG_inheritance)
15018 {
15019 fip->baseclasses.emplace_back ();
15020 new_field = &fip->baseclasses.back ();
15021 }
15022 else
15023 {
15024 fip->fields.emplace_back ();
15025 new_field = &fip->fields.back ();
15026 }
15027
15028 fip->nfields++;
15029
15030 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15031 if (attr)
15032 new_field->accessibility = DW_UNSND (attr);
15033 else
15034 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15035 if (new_field->accessibility != DW_ACCESS_public)
15036 fip->non_public_fields = 1;
15037
15038 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15039 if (attr)
15040 new_field->virtuality = DW_UNSND (attr);
15041 else
15042 new_field->virtuality = DW_VIRTUALITY_none;
15043
15044 fp = &new_field->field;
15045
15046 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15047 {
15048 LONGEST offset;
15049
15050 /* Data member other than a C++ static data member. */
15051
15052 /* Get type of field. */
15053 fp->type = die_type (die, cu);
15054
15055 SET_FIELD_BITPOS (*fp, 0);
15056
15057 /* Get bit size of field (zero if none). */
15058 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15059 if (attr)
15060 {
15061 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15062 }
15063 else
15064 {
15065 FIELD_BITSIZE (*fp) = 0;
15066 }
15067
15068 /* Get bit offset of field. */
15069 if (handle_data_member_location (die, cu, &offset))
15070 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15071 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15072 if (attr)
15073 {
15074 if (gdbarch_bits_big_endian (gdbarch))
15075 {
15076 /* For big endian bits, the DW_AT_bit_offset gives the
15077 additional bit offset from the MSB of the containing
15078 anonymous object to the MSB of the field. We don't
15079 have to do anything special since we don't need to
15080 know the size of the anonymous object. */
15081 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15082 }
15083 else
15084 {
15085 /* For little endian bits, compute the bit offset to the
15086 MSB of the anonymous object, subtract off the number of
15087 bits from the MSB of the field to the MSB of the
15088 object, and then subtract off the number of bits of
15089 the field itself. The result is the bit offset of
15090 the LSB of the field. */
15091 int anonymous_size;
15092 int bit_offset = DW_UNSND (attr);
15093
15094 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15095 if (attr)
15096 {
15097 /* The size of the anonymous object containing
15098 the bit field is explicit, so use the
15099 indicated size (in bytes). */
15100 anonymous_size = DW_UNSND (attr);
15101 }
15102 else
15103 {
15104 /* The size of the anonymous object containing
15105 the bit field must be inferred from the type
15106 attribute of the data member containing the
15107 bit field. */
15108 anonymous_size = TYPE_LENGTH (fp->type);
15109 }
15110 SET_FIELD_BITPOS (*fp,
15111 (FIELD_BITPOS (*fp)
15112 + anonymous_size * bits_per_byte
15113 - bit_offset - FIELD_BITSIZE (*fp)));
15114 }
15115 }
15116 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15117 if (attr != NULL)
15118 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15119 + dwarf2_get_attr_constant_value (attr, 0)));
15120
15121 /* Get name of field. */
15122 fieldname = dwarf2_name (die, cu);
15123 if (fieldname == NULL)
15124 fieldname = "";
15125
15126 /* The name is already allocated along with this objfile, so we don't
15127 need to duplicate it for the type. */
15128 fp->name = fieldname;
15129
15130 /* Change accessibility for artificial fields (e.g. virtual table
15131 pointer or virtual base class pointer) to private. */
15132 if (dwarf2_attr (die, DW_AT_artificial, cu))
15133 {
15134 FIELD_ARTIFICIAL (*fp) = 1;
15135 new_field->accessibility = DW_ACCESS_private;
15136 fip->non_public_fields = 1;
15137 }
15138 }
15139 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15140 {
15141 /* C++ static member. */
15142
15143 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15144 is a declaration, but all versions of G++ as of this writing
15145 (so through at least 3.2.1) incorrectly generate
15146 DW_TAG_variable tags. */
15147
15148 const char *physname;
15149
15150 /* Get name of field. */
15151 fieldname = dwarf2_name (die, cu);
15152 if (fieldname == NULL)
15153 return;
15154
15155 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15156 if (attr
15157 /* Only create a symbol if this is an external value.
15158 new_symbol checks this and puts the value in the global symbol
15159 table, which we want. If it is not external, new_symbol
15160 will try to put the value in cu->list_in_scope which is wrong. */
15161 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15162 {
15163 /* A static const member, not much different than an enum as far as
15164 we're concerned, except that we can support more types. */
15165 new_symbol (die, NULL, cu);
15166 }
15167
15168 /* Get physical name. */
15169 physname = dwarf2_physname (fieldname, die, cu);
15170
15171 /* The name is already allocated along with this objfile, so we don't
15172 need to duplicate it for the type. */
15173 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15174 FIELD_TYPE (*fp) = die_type (die, cu);
15175 FIELD_NAME (*fp) = fieldname;
15176 }
15177 else if (die->tag == DW_TAG_inheritance)
15178 {
15179 LONGEST offset;
15180
15181 /* C++ base class field. */
15182 if (handle_data_member_location (die, cu, &offset))
15183 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15184 FIELD_BITSIZE (*fp) = 0;
15185 FIELD_TYPE (*fp) = die_type (die, cu);
15186 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15187 }
15188 else if (die->tag == DW_TAG_variant_part)
15189 {
15190 /* process_structure_scope will treat this DIE as a union. */
15191 process_structure_scope (die, cu);
15192
15193 /* The variant part is relative to the start of the enclosing
15194 structure. */
15195 SET_FIELD_BITPOS (*fp, 0);
15196 fp->type = get_die_type (die, cu);
15197 fp->artificial = 1;
15198 fp->name = "<<variant>>";
15199
15200 /* Normally a DW_TAG_variant_part won't have a size, but our
15201 representation requires one, so set it to the maximum of the
15202 child sizes. */
15203 if (TYPE_LENGTH (fp->type) == 0)
15204 {
15205 unsigned max = 0;
15206 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15207 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15208 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15209 TYPE_LENGTH (fp->type) = max;
15210 }
15211 }
15212 else
15213 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15214 }
15215
15216 /* Can the type given by DIE define another type? */
15217
15218 static bool
15219 type_can_define_types (const struct die_info *die)
15220 {
15221 switch (die->tag)
15222 {
15223 case DW_TAG_typedef:
15224 case DW_TAG_class_type:
15225 case DW_TAG_structure_type:
15226 case DW_TAG_union_type:
15227 case DW_TAG_enumeration_type:
15228 return true;
15229
15230 default:
15231 return false;
15232 }
15233 }
15234
15235 /* Add a type definition defined in the scope of the FIP's class. */
15236
15237 static void
15238 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15239 struct dwarf2_cu *cu)
15240 {
15241 struct decl_field fp;
15242 memset (&fp, 0, sizeof (fp));
15243
15244 gdb_assert (type_can_define_types (die));
15245
15246 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15247 fp.name = dwarf2_name (die, cu);
15248 fp.type = read_type_die (die, cu);
15249
15250 /* Save accessibility. */
15251 enum dwarf_access_attribute accessibility;
15252 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15253 if (attr != NULL)
15254 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15255 else
15256 accessibility = dwarf2_default_access_attribute (die, cu);
15257 switch (accessibility)
15258 {
15259 case DW_ACCESS_public:
15260 /* The assumed value if neither private nor protected. */
15261 break;
15262 case DW_ACCESS_private:
15263 fp.is_private = 1;
15264 break;
15265 case DW_ACCESS_protected:
15266 fp.is_protected = 1;
15267 break;
15268 default:
15269 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15270 }
15271
15272 if (die->tag == DW_TAG_typedef)
15273 fip->typedef_field_list.push_back (fp);
15274 else
15275 fip->nested_types_list.push_back (fp);
15276 }
15277
15278 /* Create the vector of fields, and attach it to the type. */
15279
15280 static void
15281 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15282 struct dwarf2_cu *cu)
15283 {
15284 int nfields = fip->nfields;
15285
15286 /* Record the field count, allocate space for the array of fields,
15287 and create blank accessibility bitfields if necessary. */
15288 TYPE_NFIELDS (type) = nfields;
15289 TYPE_FIELDS (type) = (struct field *)
15290 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15291
15292 if (fip->non_public_fields && cu->language != language_ada)
15293 {
15294 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15295
15296 TYPE_FIELD_PRIVATE_BITS (type) =
15297 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15298 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15299
15300 TYPE_FIELD_PROTECTED_BITS (type) =
15301 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15302 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15303
15304 TYPE_FIELD_IGNORE_BITS (type) =
15305 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15306 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15307 }
15308
15309 /* If the type has baseclasses, allocate and clear a bit vector for
15310 TYPE_FIELD_VIRTUAL_BITS. */
15311 if (!fip->baseclasses.empty () && cu->language != language_ada)
15312 {
15313 int num_bytes = B_BYTES (fip->baseclasses.size ());
15314 unsigned char *pointer;
15315
15316 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15317 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15318 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15319 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15320 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15321 }
15322
15323 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15324 {
15325 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15326
15327 for (int index = 0; index < nfields; ++index)
15328 {
15329 struct nextfield &field = fip->fields[index];
15330
15331 if (field.variant.is_discriminant)
15332 di->discriminant_index = index;
15333 else if (field.variant.default_branch)
15334 di->default_index = index;
15335 else
15336 di->discriminants[index] = field.variant.discriminant_value;
15337 }
15338 }
15339
15340 /* Copy the saved-up fields into the field vector. */
15341 for (int i = 0; i < nfields; ++i)
15342 {
15343 struct nextfield &field
15344 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15345 : fip->fields[i - fip->baseclasses.size ()]);
15346
15347 TYPE_FIELD (type, i) = field.field;
15348 switch (field.accessibility)
15349 {
15350 case DW_ACCESS_private:
15351 if (cu->language != language_ada)
15352 SET_TYPE_FIELD_PRIVATE (type, i);
15353 break;
15354
15355 case DW_ACCESS_protected:
15356 if (cu->language != language_ada)
15357 SET_TYPE_FIELD_PROTECTED (type, i);
15358 break;
15359
15360 case DW_ACCESS_public:
15361 break;
15362
15363 default:
15364 /* Unknown accessibility. Complain and treat it as public. */
15365 {
15366 complaint (_("unsupported accessibility %d"),
15367 field.accessibility);
15368 }
15369 break;
15370 }
15371 if (i < fip->baseclasses.size ())
15372 {
15373 switch (field.virtuality)
15374 {
15375 case DW_VIRTUALITY_virtual:
15376 case DW_VIRTUALITY_pure_virtual:
15377 if (cu->language == language_ada)
15378 error (_("unexpected virtuality in component of Ada type"));
15379 SET_TYPE_FIELD_VIRTUAL (type, i);
15380 break;
15381 }
15382 }
15383 }
15384 }
15385
15386 /* Return true if this member function is a constructor, false
15387 otherwise. */
15388
15389 static int
15390 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15391 {
15392 const char *fieldname;
15393 const char *type_name;
15394 int len;
15395
15396 if (die->parent == NULL)
15397 return 0;
15398
15399 if (die->parent->tag != DW_TAG_structure_type
15400 && die->parent->tag != DW_TAG_union_type
15401 && die->parent->tag != DW_TAG_class_type)
15402 return 0;
15403
15404 fieldname = dwarf2_name (die, cu);
15405 type_name = dwarf2_name (die->parent, cu);
15406 if (fieldname == NULL || type_name == NULL)
15407 return 0;
15408
15409 len = strlen (fieldname);
15410 return (strncmp (fieldname, type_name, len) == 0
15411 && (type_name[len] == '\0' || type_name[len] == '<'));
15412 }
15413
15414 /* Add a member function to the proper fieldlist. */
15415
15416 static void
15417 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15418 struct type *type, struct dwarf2_cu *cu)
15419 {
15420 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15421 struct attribute *attr;
15422 int i;
15423 struct fnfieldlist *flp = nullptr;
15424 struct fn_field *fnp;
15425 const char *fieldname;
15426 struct type *this_type;
15427 enum dwarf_access_attribute accessibility;
15428
15429 if (cu->language == language_ada)
15430 error (_("unexpected member function in Ada type"));
15431
15432 /* Get name of member function. */
15433 fieldname = dwarf2_name (die, cu);
15434 if (fieldname == NULL)
15435 return;
15436
15437 /* Look up member function name in fieldlist. */
15438 for (i = 0; i < fip->fnfieldlists.size (); i++)
15439 {
15440 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15441 {
15442 flp = &fip->fnfieldlists[i];
15443 break;
15444 }
15445 }
15446
15447 /* Create a new fnfieldlist if necessary. */
15448 if (flp == nullptr)
15449 {
15450 fip->fnfieldlists.emplace_back ();
15451 flp = &fip->fnfieldlists.back ();
15452 flp->name = fieldname;
15453 i = fip->fnfieldlists.size () - 1;
15454 }
15455
15456 /* Create a new member function field and add it to the vector of
15457 fnfieldlists. */
15458 flp->fnfields.emplace_back ();
15459 fnp = &flp->fnfields.back ();
15460
15461 /* Delay processing of the physname until later. */
15462 if (cu->language == language_cplus)
15463 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15464 die, cu);
15465 else
15466 {
15467 const char *physname = dwarf2_physname (fieldname, die, cu);
15468 fnp->physname = physname ? physname : "";
15469 }
15470
15471 fnp->type = alloc_type (objfile);
15472 this_type = read_type_die (die, cu);
15473 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15474 {
15475 int nparams = TYPE_NFIELDS (this_type);
15476
15477 /* TYPE is the domain of this method, and THIS_TYPE is the type
15478 of the method itself (TYPE_CODE_METHOD). */
15479 smash_to_method_type (fnp->type, type,
15480 TYPE_TARGET_TYPE (this_type),
15481 TYPE_FIELDS (this_type),
15482 TYPE_NFIELDS (this_type),
15483 TYPE_VARARGS (this_type));
15484
15485 /* Handle static member functions.
15486 Dwarf2 has no clean way to discern C++ static and non-static
15487 member functions. G++ helps GDB by marking the first
15488 parameter for non-static member functions (which is the this
15489 pointer) as artificial. We obtain this information from
15490 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15491 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15492 fnp->voffset = VOFFSET_STATIC;
15493 }
15494 else
15495 complaint (_("member function type missing for '%s'"),
15496 dwarf2_full_name (fieldname, die, cu));
15497
15498 /* Get fcontext from DW_AT_containing_type if present. */
15499 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15500 fnp->fcontext = die_containing_type (die, cu);
15501
15502 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15503 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15504
15505 /* Get accessibility. */
15506 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15507 if (attr)
15508 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15509 else
15510 accessibility = dwarf2_default_access_attribute (die, cu);
15511 switch (accessibility)
15512 {
15513 case DW_ACCESS_private:
15514 fnp->is_private = 1;
15515 break;
15516 case DW_ACCESS_protected:
15517 fnp->is_protected = 1;
15518 break;
15519 }
15520
15521 /* Check for artificial methods. */
15522 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15523 if (attr && DW_UNSND (attr) != 0)
15524 fnp->is_artificial = 1;
15525
15526 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15527
15528 /* Get index in virtual function table if it is a virtual member
15529 function. For older versions of GCC, this is an offset in the
15530 appropriate virtual table, as specified by DW_AT_containing_type.
15531 For everyone else, it is an expression to be evaluated relative
15532 to the object address. */
15533
15534 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15535 if (attr)
15536 {
15537 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15538 {
15539 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15540 {
15541 /* Old-style GCC. */
15542 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15543 }
15544 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15545 || (DW_BLOCK (attr)->size > 1
15546 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15547 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15548 {
15549 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15550 if ((fnp->voffset % cu->header.addr_size) != 0)
15551 dwarf2_complex_location_expr_complaint ();
15552 else
15553 fnp->voffset /= cu->header.addr_size;
15554 fnp->voffset += 2;
15555 }
15556 else
15557 dwarf2_complex_location_expr_complaint ();
15558
15559 if (!fnp->fcontext)
15560 {
15561 /* If there is no `this' field and no DW_AT_containing_type,
15562 we cannot actually find a base class context for the
15563 vtable! */
15564 if (TYPE_NFIELDS (this_type) == 0
15565 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15566 {
15567 complaint (_("cannot determine context for virtual member "
15568 "function \"%s\" (offset %s)"),
15569 fieldname, sect_offset_str (die->sect_off));
15570 }
15571 else
15572 {
15573 fnp->fcontext
15574 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15575 }
15576 }
15577 }
15578 else if (attr_form_is_section_offset (attr))
15579 {
15580 dwarf2_complex_location_expr_complaint ();
15581 }
15582 else
15583 {
15584 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15585 fieldname);
15586 }
15587 }
15588 else
15589 {
15590 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15591 if (attr && DW_UNSND (attr))
15592 {
15593 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15594 complaint (_("Member function \"%s\" (offset %s) is virtual "
15595 "but the vtable offset is not specified"),
15596 fieldname, sect_offset_str (die->sect_off));
15597 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15598 TYPE_CPLUS_DYNAMIC (type) = 1;
15599 }
15600 }
15601 }
15602
15603 /* Create the vector of member function fields, and attach it to the type. */
15604
15605 static void
15606 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15607 struct dwarf2_cu *cu)
15608 {
15609 if (cu->language == language_ada)
15610 error (_("unexpected member functions in Ada type"));
15611
15612 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15613 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15614 TYPE_ALLOC (type,
15615 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15616
15617 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15618 {
15619 struct fnfieldlist &nf = fip->fnfieldlists[i];
15620 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15621
15622 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15623 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15624 fn_flp->fn_fields = (struct fn_field *)
15625 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15626
15627 for (int k = 0; k < nf.fnfields.size (); ++k)
15628 fn_flp->fn_fields[k] = nf.fnfields[k];
15629 }
15630
15631 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15632 }
15633
15634 /* Returns non-zero if NAME is the name of a vtable member in CU's
15635 language, zero otherwise. */
15636 static int
15637 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15638 {
15639 static const char vptr[] = "_vptr";
15640
15641 /* Look for the C++ form of the vtable. */
15642 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15643 return 1;
15644
15645 return 0;
15646 }
15647
15648 /* GCC outputs unnamed structures that are really pointers to member
15649 functions, with the ABI-specified layout. If TYPE describes
15650 such a structure, smash it into a member function type.
15651
15652 GCC shouldn't do this; it should just output pointer to member DIEs.
15653 This is GCC PR debug/28767. */
15654
15655 static void
15656 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15657 {
15658 struct type *pfn_type, *self_type, *new_type;
15659
15660 /* Check for a structure with no name and two children. */
15661 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15662 return;
15663
15664 /* Check for __pfn and __delta members. */
15665 if (TYPE_FIELD_NAME (type, 0) == NULL
15666 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15667 || TYPE_FIELD_NAME (type, 1) == NULL
15668 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15669 return;
15670
15671 /* Find the type of the method. */
15672 pfn_type = TYPE_FIELD_TYPE (type, 0);
15673 if (pfn_type == NULL
15674 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15675 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15676 return;
15677
15678 /* Look for the "this" argument. */
15679 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15680 if (TYPE_NFIELDS (pfn_type) == 0
15681 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15682 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15683 return;
15684
15685 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15686 new_type = alloc_type (objfile);
15687 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15688 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15689 TYPE_VARARGS (pfn_type));
15690 smash_to_methodptr_type (type, new_type);
15691 }
15692
15693 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15694 appropriate error checking and issuing complaints if there is a
15695 problem. */
15696
15697 static ULONGEST
15698 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15699 {
15700 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15701
15702 if (attr == nullptr)
15703 return 0;
15704
15705 if (!attr_form_is_constant (attr))
15706 {
15707 complaint (_("DW_AT_alignment must have constant form"
15708 " - DIE at %s [in module %s]"),
15709 sect_offset_str (die->sect_off),
15710 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15711 return 0;
15712 }
15713
15714 ULONGEST align;
15715 if (attr->form == DW_FORM_sdata)
15716 {
15717 LONGEST val = DW_SND (attr);
15718 if (val < 0)
15719 {
15720 complaint (_("DW_AT_alignment value must not be negative"
15721 " - DIE at %s [in module %s]"),
15722 sect_offset_str (die->sect_off),
15723 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15724 return 0;
15725 }
15726 align = val;
15727 }
15728 else
15729 align = DW_UNSND (attr);
15730
15731 if (align == 0)
15732 {
15733 complaint (_("DW_AT_alignment value must not be zero"
15734 " - DIE at %s [in module %s]"),
15735 sect_offset_str (die->sect_off),
15736 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15737 return 0;
15738 }
15739 if ((align & (align - 1)) != 0)
15740 {
15741 complaint (_("DW_AT_alignment value must be a power of 2"
15742 " - DIE at %s [in module %s]"),
15743 sect_offset_str (die->sect_off),
15744 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15745 return 0;
15746 }
15747
15748 return align;
15749 }
15750
15751 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15752 the alignment for TYPE. */
15753
15754 static void
15755 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15756 struct type *type)
15757 {
15758 if (!set_type_align (type, get_alignment (cu, die)))
15759 complaint (_("DW_AT_alignment value too large"
15760 " - DIE at %s [in module %s]"),
15761 sect_offset_str (die->sect_off),
15762 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15763 }
15764
15765 /* Called when we find the DIE that starts a structure or union scope
15766 (definition) to create a type for the structure or union. Fill in
15767 the type's name and general properties; the members will not be
15768 processed until process_structure_scope. A symbol table entry for
15769 the type will also not be done until process_structure_scope (assuming
15770 the type has a name).
15771
15772 NOTE: we need to call these functions regardless of whether or not the
15773 DIE has a DW_AT_name attribute, since it might be an anonymous
15774 structure or union. This gets the type entered into our set of
15775 user defined types. */
15776
15777 static struct type *
15778 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15779 {
15780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15781 struct type *type;
15782 struct attribute *attr;
15783 const char *name;
15784
15785 /* If the definition of this type lives in .debug_types, read that type.
15786 Don't follow DW_AT_specification though, that will take us back up
15787 the chain and we want to go down. */
15788 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15789 if (attr)
15790 {
15791 type = get_DW_AT_signature_type (die, attr, cu);
15792
15793 /* The type's CU may not be the same as CU.
15794 Ensure TYPE is recorded with CU in die_type_hash. */
15795 return set_die_type (die, type, cu);
15796 }
15797
15798 type = alloc_type (objfile);
15799 INIT_CPLUS_SPECIFIC (type);
15800
15801 name = dwarf2_name (die, cu);
15802 if (name != NULL)
15803 {
15804 if (cu->language == language_cplus
15805 || cu->language == language_d
15806 || cu->language == language_rust)
15807 {
15808 const char *full_name = dwarf2_full_name (name, die, cu);
15809
15810 /* dwarf2_full_name might have already finished building the DIE's
15811 type. If so, there is no need to continue. */
15812 if (get_die_type (die, cu) != NULL)
15813 return get_die_type (die, cu);
15814
15815 TYPE_NAME (type) = full_name;
15816 }
15817 else
15818 {
15819 /* The name is already allocated along with this objfile, so
15820 we don't need to duplicate it for the type. */
15821 TYPE_NAME (type) = name;
15822 }
15823 }
15824
15825 if (die->tag == DW_TAG_structure_type)
15826 {
15827 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15828 }
15829 else if (die->tag == DW_TAG_union_type)
15830 {
15831 TYPE_CODE (type) = TYPE_CODE_UNION;
15832 }
15833 else if (die->tag == DW_TAG_variant_part)
15834 {
15835 TYPE_CODE (type) = TYPE_CODE_UNION;
15836 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15837 }
15838 else
15839 {
15840 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15841 }
15842
15843 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15844 TYPE_DECLARED_CLASS (type) = 1;
15845
15846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15847 if (attr)
15848 {
15849 if (attr_form_is_constant (attr))
15850 TYPE_LENGTH (type) = DW_UNSND (attr);
15851 else
15852 {
15853 /* For the moment, dynamic type sizes are not supported
15854 by GDB's struct type. The actual size is determined
15855 on-demand when resolving the type of a given object,
15856 so set the type's length to zero for now. Otherwise,
15857 we record an expression as the length, and that expression
15858 could lead to a very large value, which could eventually
15859 lead to us trying to allocate that much memory when creating
15860 a value of that type. */
15861 TYPE_LENGTH (type) = 0;
15862 }
15863 }
15864 else
15865 {
15866 TYPE_LENGTH (type) = 0;
15867 }
15868
15869 maybe_set_alignment (cu, die, type);
15870
15871 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15872 {
15873 /* ICC<14 does not output the required DW_AT_declaration on
15874 incomplete types, but gives them a size of zero. */
15875 TYPE_STUB (type) = 1;
15876 }
15877 else
15878 TYPE_STUB_SUPPORTED (type) = 1;
15879
15880 if (die_is_declaration (die, cu))
15881 TYPE_STUB (type) = 1;
15882 else if (attr == NULL && die->child == NULL
15883 && producer_is_realview (cu->producer))
15884 /* RealView does not output the required DW_AT_declaration
15885 on incomplete types. */
15886 TYPE_STUB (type) = 1;
15887
15888 /* We need to add the type field to the die immediately so we don't
15889 infinitely recurse when dealing with pointers to the structure
15890 type within the structure itself. */
15891 set_die_type (die, type, cu);
15892
15893 /* set_die_type should be already done. */
15894 set_descriptive_type (type, die, cu);
15895
15896 return type;
15897 }
15898
15899 /* A helper for process_structure_scope that handles a single member
15900 DIE. */
15901
15902 static void
15903 handle_struct_member_die (struct die_info *child_die, struct type *type,
15904 struct field_info *fi,
15905 std::vector<struct symbol *> *template_args,
15906 struct dwarf2_cu *cu)
15907 {
15908 if (child_die->tag == DW_TAG_member
15909 || child_die->tag == DW_TAG_variable
15910 || child_die->tag == DW_TAG_variant_part)
15911 {
15912 /* NOTE: carlton/2002-11-05: A C++ static data member
15913 should be a DW_TAG_member that is a declaration, but
15914 all versions of G++ as of this writing (so through at
15915 least 3.2.1) incorrectly generate DW_TAG_variable
15916 tags for them instead. */
15917 dwarf2_add_field (fi, child_die, cu);
15918 }
15919 else if (child_die->tag == DW_TAG_subprogram)
15920 {
15921 /* Rust doesn't have member functions in the C++ sense.
15922 However, it does emit ordinary functions as children
15923 of a struct DIE. */
15924 if (cu->language == language_rust)
15925 read_func_scope (child_die, cu);
15926 else
15927 {
15928 /* C++ member function. */
15929 dwarf2_add_member_fn (fi, child_die, type, cu);
15930 }
15931 }
15932 else if (child_die->tag == DW_TAG_inheritance)
15933 {
15934 /* C++ base class field. */
15935 dwarf2_add_field (fi, child_die, cu);
15936 }
15937 else if (type_can_define_types (child_die))
15938 dwarf2_add_type_defn (fi, child_die, cu);
15939 else if (child_die->tag == DW_TAG_template_type_param
15940 || child_die->tag == DW_TAG_template_value_param)
15941 {
15942 struct symbol *arg = new_symbol (child_die, NULL, cu);
15943
15944 if (arg != NULL)
15945 template_args->push_back (arg);
15946 }
15947 else if (child_die->tag == DW_TAG_variant)
15948 {
15949 /* In a variant we want to get the discriminant and also add a
15950 field for our sole member child. */
15951 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15952
15953 for (die_info *variant_child = child_die->child;
15954 variant_child != NULL;
15955 variant_child = sibling_die (variant_child))
15956 {
15957 if (variant_child->tag == DW_TAG_member)
15958 {
15959 handle_struct_member_die (variant_child, type, fi,
15960 template_args, cu);
15961 /* Only handle the one. */
15962 break;
15963 }
15964 }
15965
15966 /* We don't handle this but we might as well report it if we see
15967 it. */
15968 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15969 complaint (_("DW_AT_discr_list is not supported yet"
15970 " - DIE at %s [in module %s]"),
15971 sect_offset_str (child_die->sect_off),
15972 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15973
15974 /* The first field was just added, so we can stash the
15975 discriminant there. */
15976 gdb_assert (!fi->fields.empty ());
15977 if (discr == NULL)
15978 fi->fields.back ().variant.default_branch = true;
15979 else
15980 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15981 }
15982 }
15983
15984 /* Finish creating a structure or union type, including filling in
15985 its members and creating a symbol for it. */
15986
15987 static void
15988 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15989 {
15990 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15991 struct die_info *child_die;
15992 struct type *type;
15993
15994 type = get_die_type (die, cu);
15995 if (type == NULL)
15996 type = read_structure_type (die, cu);
15997
15998 /* When reading a DW_TAG_variant_part, we need to notice when we
15999 read the discriminant member, so we can record it later in the
16000 discriminant_info. */
16001 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16002 sect_offset discr_offset;
16003 bool has_template_parameters = false;
16004
16005 if (is_variant_part)
16006 {
16007 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16008 if (discr == NULL)
16009 {
16010 /* Maybe it's a univariant form, an extension we support.
16011 In this case arrange not to check the offset. */
16012 is_variant_part = false;
16013 }
16014 else if (attr_form_is_ref (discr))
16015 {
16016 struct dwarf2_cu *target_cu = cu;
16017 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16018
16019 discr_offset = target_die->sect_off;
16020 }
16021 else
16022 {
16023 complaint (_("DW_AT_discr does not have DIE reference form"
16024 " - DIE at %s [in module %s]"),
16025 sect_offset_str (die->sect_off),
16026 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16027 is_variant_part = false;
16028 }
16029 }
16030
16031 if (die->child != NULL && ! die_is_declaration (die, cu))
16032 {
16033 struct field_info fi;
16034 std::vector<struct symbol *> template_args;
16035
16036 child_die = die->child;
16037
16038 while (child_die && child_die->tag)
16039 {
16040 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16041
16042 if (is_variant_part && discr_offset == child_die->sect_off)
16043 fi.fields.back ().variant.is_discriminant = true;
16044
16045 child_die = sibling_die (child_die);
16046 }
16047
16048 /* Attach template arguments to type. */
16049 if (!template_args.empty ())
16050 {
16051 has_template_parameters = true;
16052 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16053 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16054 TYPE_TEMPLATE_ARGUMENTS (type)
16055 = XOBNEWVEC (&objfile->objfile_obstack,
16056 struct symbol *,
16057 TYPE_N_TEMPLATE_ARGUMENTS (type));
16058 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16059 template_args.data (),
16060 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16061 * sizeof (struct symbol *)));
16062 }
16063
16064 /* Attach fields and member functions to the type. */
16065 if (fi.nfields)
16066 dwarf2_attach_fields_to_type (&fi, type, cu);
16067 if (!fi.fnfieldlists.empty ())
16068 {
16069 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16070
16071 /* Get the type which refers to the base class (possibly this
16072 class itself) which contains the vtable pointer for the current
16073 class from the DW_AT_containing_type attribute. This use of
16074 DW_AT_containing_type is a GNU extension. */
16075
16076 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16077 {
16078 struct type *t = die_containing_type (die, cu);
16079
16080 set_type_vptr_basetype (type, t);
16081 if (type == t)
16082 {
16083 int i;
16084
16085 /* Our own class provides vtbl ptr. */
16086 for (i = TYPE_NFIELDS (t) - 1;
16087 i >= TYPE_N_BASECLASSES (t);
16088 --i)
16089 {
16090 const char *fieldname = TYPE_FIELD_NAME (t, i);
16091
16092 if (is_vtable_name (fieldname, cu))
16093 {
16094 set_type_vptr_fieldno (type, i);
16095 break;
16096 }
16097 }
16098
16099 /* Complain if virtual function table field not found. */
16100 if (i < TYPE_N_BASECLASSES (t))
16101 complaint (_("virtual function table pointer "
16102 "not found when defining class '%s'"),
16103 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16104 }
16105 else
16106 {
16107 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16108 }
16109 }
16110 else if (cu->producer
16111 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16112 {
16113 /* The IBM XLC compiler does not provide direct indication
16114 of the containing type, but the vtable pointer is
16115 always named __vfp. */
16116
16117 int i;
16118
16119 for (i = TYPE_NFIELDS (type) - 1;
16120 i >= TYPE_N_BASECLASSES (type);
16121 --i)
16122 {
16123 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16124 {
16125 set_type_vptr_fieldno (type, i);
16126 set_type_vptr_basetype (type, type);
16127 break;
16128 }
16129 }
16130 }
16131 }
16132
16133 /* Copy fi.typedef_field_list linked list elements content into the
16134 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16135 if (!fi.typedef_field_list.empty ())
16136 {
16137 int count = fi.typedef_field_list.size ();
16138
16139 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16140 TYPE_TYPEDEF_FIELD_ARRAY (type)
16141 = ((struct decl_field *)
16142 TYPE_ALLOC (type,
16143 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16144 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16145
16146 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16147 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16148 }
16149
16150 /* Copy fi.nested_types_list linked list elements content into the
16151 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16152 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16153 {
16154 int count = fi.nested_types_list.size ();
16155
16156 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16157 TYPE_NESTED_TYPES_ARRAY (type)
16158 = ((struct decl_field *)
16159 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16160 TYPE_NESTED_TYPES_COUNT (type) = count;
16161
16162 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16163 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16164 }
16165 }
16166
16167 quirk_gcc_member_function_pointer (type, objfile);
16168 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16169 cu->rust_unions.push_back (type);
16170
16171 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16172 snapshots) has been known to create a die giving a declaration
16173 for a class that has, as a child, a die giving a definition for a
16174 nested class. So we have to process our children even if the
16175 current die is a declaration. Normally, of course, a declaration
16176 won't have any children at all. */
16177
16178 child_die = die->child;
16179
16180 while (child_die != NULL && child_die->tag)
16181 {
16182 if (child_die->tag == DW_TAG_member
16183 || child_die->tag == DW_TAG_variable
16184 || child_die->tag == DW_TAG_inheritance
16185 || child_die->tag == DW_TAG_template_value_param
16186 || child_die->tag == DW_TAG_template_type_param)
16187 {
16188 /* Do nothing. */
16189 }
16190 else
16191 process_die (child_die, cu);
16192
16193 child_die = sibling_die (child_die);
16194 }
16195
16196 /* Do not consider external references. According to the DWARF standard,
16197 these DIEs are identified by the fact that they have no byte_size
16198 attribute, and a declaration attribute. */
16199 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16200 || !die_is_declaration (die, cu))
16201 {
16202 struct symbol *sym = new_symbol (die, type, cu);
16203
16204 if (has_template_parameters)
16205 {
16206 struct symtab *symtab;
16207 if (sym != nullptr)
16208 symtab = symbol_symtab (sym);
16209 else if (cu->line_header != nullptr)
16210 {
16211 /* Any related symtab will do. */
16212 symtab
16213 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16214 }
16215 else
16216 {
16217 symtab = nullptr;
16218 complaint (_("could not find suitable "
16219 "symtab for template parameter"
16220 " - DIE at %s [in module %s]"),
16221 sect_offset_str (die->sect_off),
16222 objfile_name (objfile));
16223 }
16224
16225 if (symtab != nullptr)
16226 {
16227 /* Make sure that the symtab is set on the new symbols.
16228 Even though they don't appear in this symtab directly,
16229 other parts of gdb assume that symbols do, and this is
16230 reasonably true. */
16231 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16232 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16233 }
16234 }
16235 }
16236 }
16237
16238 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16239 update TYPE using some information only available in DIE's children. */
16240
16241 static void
16242 update_enumeration_type_from_children (struct die_info *die,
16243 struct type *type,
16244 struct dwarf2_cu *cu)
16245 {
16246 struct die_info *child_die;
16247 int unsigned_enum = 1;
16248 int flag_enum = 1;
16249 ULONGEST mask = 0;
16250
16251 auto_obstack obstack;
16252
16253 for (child_die = die->child;
16254 child_die != NULL && child_die->tag;
16255 child_die = sibling_die (child_die))
16256 {
16257 struct attribute *attr;
16258 LONGEST value;
16259 const gdb_byte *bytes;
16260 struct dwarf2_locexpr_baton *baton;
16261 const char *name;
16262
16263 if (child_die->tag != DW_TAG_enumerator)
16264 continue;
16265
16266 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16267 if (attr == NULL)
16268 continue;
16269
16270 name = dwarf2_name (child_die, cu);
16271 if (name == NULL)
16272 name = "<anonymous enumerator>";
16273
16274 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16275 &value, &bytes, &baton);
16276 if (value < 0)
16277 {
16278 unsigned_enum = 0;
16279 flag_enum = 0;
16280 }
16281 else if ((mask & value) != 0)
16282 flag_enum = 0;
16283 else
16284 mask |= value;
16285
16286 /* If we already know that the enum type is neither unsigned, nor
16287 a flag type, no need to look at the rest of the enumerates. */
16288 if (!unsigned_enum && !flag_enum)
16289 break;
16290 }
16291
16292 if (unsigned_enum)
16293 TYPE_UNSIGNED (type) = 1;
16294 if (flag_enum)
16295 TYPE_FLAG_ENUM (type) = 1;
16296 }
16297
16298 /* Given a DW_AT_enumeration_type die, set its type. We do not
16299 complete the type's fields yet, or create any symbols. */
16300
16301 static struct type *
16302 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16303 {
16304 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16305 struct type *type;
16306 struct attribute *attr;
16307 const char *name;
16308
16309 /* If the definition of this type lives in .debug_types, read that type.
16310 Don't follow DW_AT_specification though, that will take us back up
16311 the chain and we want to go down. */
16312 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16313 if (attr)
16314 {
16315 type = get_DW_AT_signature_type (die, attr, cu);
16316
16317 /* The type's CU may not be the same as CU.
16318 Ensure TYPE is recorded with CU in die_type_hash. */
16319 return set_die_type (die, type, cu);
16320 }
16321
16322 type = alloc_type (objfile);
16323
16324 TYPE_CODE (type) = TYPE_CODE_ENUM;
16325 name = dwarf2_full_name (NULL, die, cu);
16326 if (name != NULL)
16327 TYPE_NAME (type) = name;
16328
16329 attr = dwarf2_attr (die, DW_AT_type, cu);
16330 if (attr != NULL)
16331 {
16332 struct type *underlying_type = die_type (die, cu);
16333
16334 TYPE_TARGET_TYPE (type) = underlying_type;
16335 }
16336
16337 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16338 if (attr)
16339 {
16340 TYPE_LENGTH (type) = DW_UNSND (attr);
16341 }
16342 else
16343 {
16344 TYPE_LENGTH (type) = 0;
16345 }
16346
16347 maybe_set_alignment (cu, die, type);
16348
16349 /* The enumeration DIE can be incomplete. In Ada, any type can be
16350 declared as private in the package spec, and then defined only
16351 inside the package body. Such types are known as Taft Amendment
16352 Types. When another package uses such a type, an incomplete DIE
16353 may be generated by the compiler. */
16354 if (die_is_declaration (die, cu))
16355 TYPE_STUB (type) = 1;
16356
16357 /* Finish the creation of this type by using the enum's children.
16358 We must call this even when the underlying type has been provided
16359 so that we can determine if we're looking at a "flag" enum. */
16360 update_enumeration_type_from_children (die, type, cu);
16361
16362 /* If this type has an underlying type that is not a stub, then we
16363 may use its attributes. We always use the "unsigned" attribute
16364 in this situation, because ordinarily we guess whether the type
16365 is unsigned -- but the guess can be wrong and the underlying type
16366 can tell us the reality. However, we defer to a local size
16367 attribute if one exists, because this lets the compiler override
16368 the underlying type if needed. */
16369 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16370 {
16371 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16372 if (TYPE_LENGTH (type) == 0)
16373 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16374 if (TYPE_RAW_ALIGN (type) == 0
16375 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16376 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16377 }
16378
16379 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16380
16381 return set_die_type (die, type, cu);
16382 }
16383
16384 /* Given a pointer to a die which begins an enumeration, process all
16385 the dies that define the members of the enumeration, and create the
16386 symbol for the enumeration type.
16387
16388 NOTE: We reverse the order of the element list. */
16389
16390 static void
16391 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16392 {
16393 struct type *this_type;
16394
16395 this_type = get_die_type (die, cu);
16396 if (this_type == NULL)
16397 this_type = read_enumeration_type (die, cu);
16398
16399 if (die->child != NULL)
16400 {
16401 struct die_info *child_die;
16402 struct symbol *sym;
16403 struct field *fields = NULL;
16404 int num_fields = 0;
16405 const char *name;
16406
16407 child_die = die->child;
16408 while (child_die && child_die->tag)
16409 {
16410 if (child_die->tag != DW_TAG_enumerator)
16411 {
16412 process_die (child_die, cu);
16413 }
16414 else
16415 {
16416 name = dwarf2_name (child_die, cu);
16417 if (name)
16418 {
16419 sym = new_symbol (child_die, this_type, cu);
16420
16421 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16422 {
16423 fields = (struct field *)
16424 xrealloc (fields,
16425 (num_fields + DW_FIELD_ALLOC_CHUNK)
16426 * sizeof (struct field));
16427 }
16428
16429 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16430 FIELD_TYPE (fields[num_fields]) = NULL;
16431 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16432 FIELD_BITSIZE (fields[num_fields]) = 0;
16433
16434 num_fields++;
16435 }
16436 }
16437
16438 child_die = sibling_die (child_die);
16439 }
16440
16441 if (num_fields)
16442 {
16443 TYPE_NFIELDS (this_type) = num_fields;
16444 TYPE_FIELDS (this_type) = (struct field *)
16445 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16446 memcpy (TYPE_FIELDS (this_type), fields,
16447 sizeof (struct field) * num_fields);
16448 xfree (fields);
16449 }
16450 }
16451
16452 /* If we are reading an enum from a .debug_types unit, and the enum
16453 is a declaration, and the enum is not the signatured type in the
16454 unit, then we do not want to add a symbol for it. Adding a
16455 symbol would in some cases obscure the true definition of the
16456 enum, giving users an incomplete type when the definition is
16457 actually available. Note that we do not want to do this for all
16458 enums which are just declarations, because C++0x allows forward
16459 enum declarations. */
16460 if (cu->per_cu->is_debug_types
16461 && die_is_declaration (die, cu))
16462 {
16463 struct signatured_type *sig_type;
16464
16465 sig_type = (struct signatured_type *) cu->per_cu;
16466 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16467 if (sig_type->type_offset_in_section != die->sect_off)
16468 return;
16469 }
16470
16471 new_symbol (die, this_type, cu);
16472 }
16473
16474 /* Extract all information from a DW_TAG_array_type DIE and put it in
16475 the DIE's type field. For now, this only handles one dimensional
16476 arrays. */
16477
16478 static struct type *
16479 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16480 {
16481 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16482 struct die_info *child_die;
16483 struct type *type;
16484 struct type *element_type, *range_type, *index_type;
16485 struct attribute *attr;
16486 const char *name;
16487 struct dynamic_prop *byte_stride_prop = NULL;
16488 unsigned int bit_stride = 0;
16489
16490 element_type = die_type (die, cu);
16491
16492 /* The die_type call above may have already set the type for this DIE. */
16493 type = get_die_type (die, cu);
16494 if (type)
16495 return type;
16496
16497 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16498 if (attr != NULL)
16499 {
16500 int stride_ok;
16501 struct type *prop_type
16502 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16503
16504 byte_stride_prop
16505 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16506 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16507 prop_type);
16508 if (!stride_ok)
16509 {
16510 complaint (_("unable to read array DW_AT_byte_stride "
16511 " - DIE at %s [in module %s]"),
16512 sect_offset_str (die->sect_off),
16513 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16514 /* Ignore this attribute. We will likely not be able to print
16515 arrays of this type correctly, but there is little we can do
16516 to help if we cannot read the attribute's value. */
16517 byte_stride_prop = NULL;
16518 }
16519 }
16520
16521 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16522 if (attr != NULL)
16523 bit_stride = DW_UNSND (attr);
16524
16525 /* Irix 6.2 native cc creates array types without children for
16526 arrays with unspecified length. */
16527 if (die->child == NULL)
16528 {
16529 index_type = objfile_type (objfile)->builtin_int;
16530 range_type = create_static_range_type (NULL, index_type, 0, -1);
16531 type = create_array_type_with_stride (NULL, element_type, range_type,
16532 byte_stride_prop, bit_stride);
16533 return set_die_type (die, type, cu);
16534 }
16535
16536 std::vector<struct type *> range_types;
16537 child_die = die->child;
16538 while (child_die && child_die->tag)
16539 {
16540 if (child_die->tag == DW_TAG_subrange_type)
16541 {
16542 struct type *child_type = read_type_die (child_die, cu);
16543
16544 if (child_type != NULL)
16545 {
16546 /* The range type was succesfully read. Save it for the
16547 array type creation. */
16548 range_types.push_back (child_type);
16549 }
16550 }
16551 child_die = sibling_die (child_die);
16552 }
16553
16554 /* Dwarf2 dimensions are output from left to right, create the
16555 necessary array types in backwards order. */
16556
16557 type = element_type;
16558
16559 if (read_array_order (die, cu) == DW_ORD_col_major)
16560 {
16561 int i = 0;
16562
16563 while (i < range_types.size ())
16564 type = create_array_type_with_stride (NULL, type, range_types[i++],
16565 byte_stride_prop, bit_stride);
16566 }
16567 else
16568 {
16569 size_t ndim = range_types.size ();
16570 while (ndim-- > 0)
16571 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16572 byte_stride_prop, bit_stride);
16573 }
16574
16575 /* Understand Dwarf2 support for vector types (like they occur on
16576 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16577 array type. This is not part of the Dwarf2/3 standard yet, but a
16578 custom vendor extension. The main difference between a regular
16579 array and the vector variant is that vectors are passed by value
16580 to functions. */
16581 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16582 if (attr)
16583 make_vector_type (type);
16584
16585 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16586 implementation may choose to implement triple vectors using this
16587 attribute. */
16588 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16589 if (attr)
16590 {
16591 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16592 TYPE_LENGTH (type) = DW_UNSND (attr);
16593 else
16594 complaint (_("DW_AT_byte_size for array type smaller "
16595 "than the total size of elements"));
16596 }
16597
16598 name = dwarf2_name (die, cu);
16599 if (name)
16600 TYPE_NAME (type) = name;
16601
16602 maybe_set_alignment (cu, die, type);
16603
16604 /* Install the type in the die. */
16605 set_die_type (die, type, cu);
16606
16607 /* set_die_type should be already done. */
16608 set_descriptive_type (type, die, cu);
16609
16610 return type;
16611 }
16612
16613 static enum dwarf_array_dim_ordering
16614 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16615 {
16616 struct attribute *attr;
16617
16618 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16619
16620 if (attr)
16621 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16622
16623 /* GNU F77 is a special case, as at 08/2004 array type info is the
16624 opposite order to the dwarf2 specification, but data is still
16625 laid out as per normal fortran.
16626
16627 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16628 version checking. */
16629
16630 if (cu->language == language_fortran
16631 && cu->producer && strstr (cu->producer, "GNU F77"))
16632 {
16633 return DW_ORD_row_major;
16634 }
16635
16636 switch (cu->language_defn->la_array_ordering)
16637 {
16638 case array_column_major:
16639 return DW_ORD_col_major;
16640 case array_row_major:
16641 default:
16642 return DW_ORD_row_major;
16643 };
16644 }
16645
16646 /* Extract all information from a DW_TAG_set_type DIE and put it in
16647 the DIE's type field. */
16648
16649 static struct type *
16650 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16651 {
16652 struct type *domain_type, *set_type;
16653 struct attribute *attr;
16654
16655 domain_type = die_type (die, cu);
16656
16657 /* The die_type call above may have already set the type for this DIE. */
16658 set_type = get_die_type (die, cu);
16659 if (set_type)
16660 return set_type;
16661
16662 set_type = create_set_type (NULL, domain_type);
16663
16664 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16665 if (attr)
16666 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16667
16668 maybe_set_alignment (cu, die, set_type);
16669
16670 return set_die_type (die, set_type, cu);
16671 }
16672
16673 /* A helper for read_common_block that creates a locexpr baton.
16674 SYM is the symbol which we are marking as computed.
16675 COMMON_DIE is the DIE for the common block.
16676 COMMON_LOC is the location expression attribute for the common
16677 block itself.
16678 MEMBER_LOC is the location expression attribute for the particular
16679 member of the common block that we are processing.
16680 CU is the CU from which the above come. */
16681
16682 static void
16683 mark_common_block_symbol_computed (struct symbol *sym,
16684 struct die_info *common_die,
16685 struct attribute *common_loc,
16686 struct attribute *member_loc,
16687 struct dwarf2_cu *cu)
16688 {
16689 struct dwarf2_per_objfile *dwarf2_per_objfile
16690 = cu->per_cu->dwarf2_per_objfile;
16691 struct objfile *objfile = dwarf2_per_objfile->objfile;
16692 struct dwarf2_locexpr_baton *baton;
16693 gdb_byte *ptr;
16694 unsigned int cu_off;
16695 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16696 LONGEST offset = 0;
16697
16698 gdb_assert (common_loc && member_loc);
16699 gdb_assert (attr_form_is_block (common_loc));
16700 gdb_assert (attr_form_is_block (member_loc)
16701 || attr_form_is_constant (member_loc));
16702
16703 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16704 baton->per_cu = cu->per_cu;
16705 gdb_assert (baton->per_cu);
16706
16707 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16708
16709 if (attr_form_is_constant (member_loc))
16710 {
16711 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16712 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16713 }
16714 else
16715 baton->size += DW_BLOCK (member_loc)->size;
16716
16717 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16718 baton->data = ptr;
16719
16720 *ptr++ = DW_OP_call4;
16721 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16722 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16723 ptr += 4;
16724
16725 if (attr_form_is_constant (member_loc))
16726 {
16727 *ptr++ = DW_OP_addr;
16728 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16729 ptr += cu->header.addr_size;
16730 }
16731 else
16732 {
16733 /* We have to copy the data here, because DW_OP_call4 will only
16734 use a DW_AT_location attribute. */
16735 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16736 ptr += DW_BLOCK (member_loc)->size;
16737 }
16738
16739 *ptr++ = DW_OP_plus;
16740 gdb_assert (ptr - baton->data == baton->size);
16741
16742 SYMBOL_LOCATION_BATON (sym) = baton;
16743 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16744 }
16745
16746 /* Create appropriate locally-scoped variables for all the
16747 DW_TAG_common_block entries. Also create a struct common_block
16748 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16749 is used to sepate the common blocks name namespace from regular
16750 variable names. */
16751
16752 static void
16753 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16754 {
16755 struct attribute *attr;
16756
16757 attr = dwarf2_attr (die, DW_AT_location, cu);
16758 if (attr)
16759 {
16760 /* Support the .debug_loc offsets. */
16761 if (attr_form_is_block (attr))
16762 {
16763 /* Ok. */
16764 }
16765 else if (attr_form_is_section_offset (attr))
16766 {
16767 dwarf2_complex_location_expr_complaint ();
16768 attr = NULL;
16769 }
16770 else
16771 {
16772 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16773 "common block member");
16774 attr = NULL;
16775 }
16776 }
16777
16778 if (die->child != NULL)
16779 {
16780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16781 struct die_info *child_die;
16782 size_t n_entries = 0, size;
16783 struct common_block *common_block;
16784 struct symbol *sym;
16785
16786 for (child_die = die->child;
16787 child_die && child_die->tag;
16788 child_die = sibling_die (child_die))
16789 ++n_entries;
16790
16791 size = (sizeof (struct common_block)
16792 + (n_entries - 1) * sizeof (struct symbol *));
16793 common_block
16794 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16795 size);
16796 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16797 common_block->n_entries = 0;
16798
16799 for (child_die = die->child;
16800 child_die && child_die->tag;
16801 child_die = sibling_die (child_die))
16802 {
16803 /* Create the symbol in the DW_TAG_common_block block in the current
16804 symbol scope. */
16805 sym = new_symbol (child_die, NULL, cu);
16806 if (sym != NULL)
16807 {
16808 struct attribute *member_loc;
16809
16810 common_block->contents[common_block->n_entries++] = sym;
16811
16812 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16813 cu);
16814 if (member_loc)
16815 {
16816 /* GDB has handled this for a long time, but it is
16817 not specified by DWARF. It seems to have been
16818 emitted by gfortran at least as recently as:
16819 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16820 complaint (_("Variable in common block has "
16821 "DW_AT_data_member_location "
16822 "- DIE at %s [in module %s]"),
16823 sect_offset_str (child_die->sect_off),
16824 objfile_name (objfile));
16825
16826 if (attr_form_is_section_offset (member_loc))
16827 dwarf2_complex_location_expr_complaint ();
16828 else if (attr_form_is_constant (member_loc)
16829 || attr_form_is_block (member_loc))
16830 {
16831 if (attr)
16832 mark_common_block_symbol_computed (sym, die, attr,
16833 member_loc, cu);
16834 }
16835 else
16836 dwarf2_complex_location_expr_complaint ();
16837 }
16838 }
16839 }
16840
16841 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16842 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16843 }
16844 }
16845
16846 /* Create a type for a C++ namespace. */
16847
16848 static struct type *
16849 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16850 {
16851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16852 const char *previous_prefix, *name;
16853 int is_anonymous;
16854 struct type *type;
16855
16856 /* For extensions, reuse the type of the original namespace. */
16857 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16858 {
16859 struct die_info *ext_die;
16860 struct dwarf2_cu *ext_cu = cu;
16861
16862 ext_die = dwarf2_extension (die, &ext_cu);
16863 type = read_type_die (ext_die, ext_cu);
16864
16865 /* EXT_CU may not be the same as CU.
16866 Ensure TYPE is recorded with CU in die_type_hash. */
16867 return set_die_type (die, type, cu);
16868 }
16869
16870 name = namespace_name (die, &is_anonymous, cu);
16871
16872 /* Now build the name of the current namespace. */
16873
16874 previous_prefix = determine_prefix (die, cu);
16875 if (previous_prefix[0] != '\0')
16876 name = typename_concat (&objfile->objfile_obstack,
16877 previous_prefix, name, 0, cu);
16878
16879 /* Create the type. */
16880 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16881
16882 return set_die_type (die, type, cu);
16883 }
16884
16885 /* Read a namespace scope. */
16886
16887 static void
16888 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16889 {
16890 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16891 int is_anonymous;
16892
16893 /* Add a symbol associated to this if we haven't seen the namespace
16894 before. Also, add a using directive if it's an anonymous
16895 namespace. */
16896
16897 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16898 {
16899 struct type *type;
16900
16901 type = read_type_die (die, cu);
16902 new_symbol (die, type, cu);
16903
16904 namespace_name (die, &is_anonymous, cu);
16905 if (is_anonymous)
16906 {
16907 const char *previous_prefix = determine_prefix (die, cu);
16908
16909 std::vector<const char *> excludes;
16910 add_using_directive (using_directives (cu),
16911 previous_prefix, TYPE_NAME (type), NULL,
16912 NULL, excludes, 0, &objfile->objfile_obstack);
16913 }
16914 }
16915
16916 if (die->child != NULL)
16917 {
16918 struct die_info *child_die = die->child;
16919
16920 while (child_die && child_die->tag)
16921 {
16922 process_die (child_die, cu);
16923 child_die = sibling_die (child_die);
16924 }
16925 }
16926 }
16927
16928 /* Read a Fortran module as type. This DIE can be only a declaration used for
16929 imported module. Still we need that type as local Fortran "use ... only"
16930 declaration imports depend on the created type in determine_prefix. */
16931
16932 static struct type *
16933 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16934 {
16935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16936 const char *module_name;
16937 struct type *type;
16938
16939 module_name = dwarf2_name (die, cu);
16940 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16941
16942 return set_die_type (die, type, cu);
16943 }
16944
16945 /* Read a Fortran module. */
16946
16947 static void
16948 read_module (struct die_info *die, struct dwarf2_cu *cu)
16949 {
16950 struct die_info *child_die = die->child;
16951 struct type *type;
16952
16953 type = read_type_die (die, cu);
16954 new_symbol (die, type, cu);
16955
16956 while (child_die && child_die->tag)
16957 {
16958 process_die (child_die, cu);
16959 child_die = sibling_die (child_die);
16960 }
16961 }
16962
16963 /* Return the name of the namespace represented by DIE. Set
16964 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16965 namespace. */
16966
16967 static const char *
16968 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16969 {
16970 struct die_info *current_die;
16971 const char *name = NULL;
16972
16973 /* Loop through the extensions until we find a name. */
16974
16975 for (current_die = die;
16976 current_die != NULL;
16977 current_die = dwarf2_extension (die, &cu))
16978 {
16979 /* We don't use dwarf2_name here so that we can detect the absence
16980 of a name -> anonymous namespace. */
16981 name = dwarf2_string_attr (die, DW_AT_name, cu);
16982
16983 if (name != NULL)
16984 break;
16985 }
16986
16987 /* Is it an anonymous namespace? */
16988
16989 *is_anonymous = (name == NULL);
16990 if (*is_anonymous)
16991 name = CP_ANONYMOUS_NAMESPACE_STR;
16992
16993 return name;
16994 }
16995
16996 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16997 the user defined type vector. */
16998
16999 static struct type *
17000 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17001 {
17002 struct gdbarch *gdbarch
17003 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17004 struct comp_unit_head *cu_header = &cu->header;
17005 struct type *type;
17006 struct attribute *attr_byte_size;
17007 struct attribute *attr_address_class;
17008 int byte_size, addr_class;
17009 struct type *target_type;
17010
17011 target_type = die_type (die, cu);
17012
17013 /* The die_type call above may have already set the type for this DIE. */
17014 type = get_die_type (die, cu);
17015 if (type)
17016 return type;
17017
17018 type = lookup_pointer_type (target_type);
17019
17020 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17021 if (attr_byte_size)
17022 byte_size = DW_UNSND (attr_byte_size);
17023 else
17024 byte_size = cu_header->addr_size;
17025
17026 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17027 if (attr_address_class)
17028 addr_class = DW_UNSND (attr_address_class);
17029 else
17030 addr_class = DW_ADDR_none;
17031
17032 ULONGEST alignment = get_alignment (cu, die);
17033
17034 /* If the pointer size, alignment, or address class is different
17035 than the default, create a type variant marked as such and set
17036 the length accordingly. */
17037 if (TYPE_LENGTH (type) != byte_size
17038 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17039 && alignment != TYPE_RAW_ALIGN (type))
17040 || addr_class != DW_ADDR_none)
17041 {
17042 if (gdbarch_address_class_type_flags_p (gdbarch))
17043 {
17044 int type_flags;
17045
17046 type_flags = gdbarch_address_class_type_flags
17047 (gdbarch, byte_size, addr_class);
17048 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17049 == 0);
17050 type = make_type_with_address_space (type, type_flags);
17051 }
17052 else if (TYPE_LENGTH (type) != byte_size)
17053 {
17054 complaint (_("invalid pointer size %d"), byte_size);
17055 }
17056 else if (TYPE_RAW_ALIGN (type) != alignment)
17057 {
17058 complaint (_("Invalid DW_AT_alignment"
17059 " - DIE at %s [in module %s]"),
17060 sect_offset_str (die->sect_off),
17061 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17062 }
17063 else
17064 {
17065 /* Should we also complain about unhandled address classes? */
17066 }
17067 }
17068
17069 TYPE_LENGTH (type) = byte_size;
17070 set_type_align (type, alignment);
17071 return set_die_type (die, type, cu);
17072 }
17073
17074 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17075 the user defined type vector. */
17076
17077 static struct type *
17078 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17079 {
17080 struct type *type;
17081 struct type *to_type;
17082 struct type *domain;
17083
17084 to_type = die_type (die, cu);
17085 domain = die_containing_type (die, cu);
17086
17087 /* The calls above may have already set the type for this DIE. */
17088 type = get_die_type (die, cu);
17089 if (type)
17090 return type;
17091
17092 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17093 type = lookup_methodptr_type (to_type);
17094 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17095 {
17096 struct type *new_type
17097 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17098
17099 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17100 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17101 TYPE_VARARGS (to_type));
17102 type = lookup_methodptr_type (new_type);
17103 }
17104 else
17105 type = lookup_memberptr_type (to_type, domain);
17106
17107 return set_die_type (die, type, cu);
17108 }
17109
17110 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17111 the user defined type vector. */
17112
17113 static struct type *
17114 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17115 enum type_code refcode)
17116 {
17117 struct comp_unit_head *cu_header = &cu->header;
17118 struct type *type, *target_type;
17119 struct attribute *attr;
17120
17121 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17122
17123 target_type = die_type (die, cu);
17124
17125 /* The die_type call above may have already set the type for this DIE. */
17126 type = get_die_type (die, cu);
17127 if (type)
17128 return type;
17129
17130 type = lookup_reference_type (target_type, refcode);
17131 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17132 if (attr)
17133 {
17134 TYPE_LENGTH (type) = DW_UNSND (attr);
17135 }
17136 else
17137 {
17138 TYPE_LENGTH (type) = cu_header->addr_size;
17139 }
17140 maybe_set_alignment (cu, die, type);
17141 return set_die_type (die, type, cu);
17142 }
17143
17144 /* Add the given cv-qualifiers to the element type of the array. GCC
17145 outputs DWARF type qualifiers that apply to an array, not the
17146 element type. But GDB relies on the array element type to carry
17147 the cv-qualifiers. This mimics section 6.7.3 of the C99
17148 specification. */
17149
17150 static struct type *
17151 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17152 struct type *base_type, int cnst, int voltl)
17153 {
17154 struct type *el_type, *inner_array;
17155
17156 base_type = copy_type (base_type);
17157 inner_array = base_type;
17158
17159 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17160 {
17161 TYPE_TARGET_TYPE (inner_array) =
17162 copy_type (TYPE_TARGET_TYPE (inner_array));
17163 inner_array = TYPE_TARGET_TYPE (inner_array);
17164 }
17165
17166 el_type = TYPE_TARGET_TYPE (inner_array);
17167 cnst |= TYPE_CONST (el_type);
17168 voltl |= TYPE_VOLATILE (el_type);
17169 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17170
17171 return set_die_type (die, base_type, cu);
17172 }
17173
17174 static struct type *
17175 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17176 {
17177 struct type *base_type, *cv_type;
17178
17179 base_type = die_type (die, cu);
17180
17181 /* The die_type call above may have already set the type for this DIE. */
17182 cv_type = get_die_type (die, cu);
17183 if (cv_type)
17184 return cv_type;
17185
17186 /* In case the const qualifier is applied to an array type, the element type
17187 is so qualified, not the array type (section 6.7.3 of C99). */
17188 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17189 return add_array_cv_type (die, cu, base_type, 1, 0);
17190
17191 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17192 return set_die_type (die, cv_type, cu);
17193 }
17194
17195 static struct type *
17196 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17197 {
17198 struct type *base_type, *cv_type;
17199
17200 base_type = die_type (die, cu);
17201
17202 /* The die_type call above may have already set the type for this DIE. */
17203 cv_type = get_die_type (die, cu);
17204 if (cv_type)
17205 return cv_type;
17206
17207 /* In case the volatile qualifier is applied to an array type, the
17208 element type is so qualified, not the array type (section 6.7.3
17209 of C99). */
17210 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17211 return add_array_cv_type (die, cu, base_type, 0, 1);
17212
17213 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17214 return set_die_type (die, cv_type, cu);
17215 }
17216
17217 /* Handle DW_TAG_restrict_type. */
17218
17219 static struct type *
17220 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17221 {
17222 struct type *base_type, *cv_type;
17223
17224 base_type = die_type (die, cu);
17225
17226 /* The die_type call above may have already set the type for this DIE. */
17227 cv_type = get_die_type (die, cu);
17228 if (cv_type)
17229 return cv_type;
17230
17231 cv_type = make_restrict_type (base_type);
17232 return set_die_type (die, cv_type, cu);
17233 }
17234
17235 /* Handle DW_TAG_atomic_type. */
17236
17237 static struct type *
17238 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17239 {
17240 struct type *base_type, *cv_type;
17241
17242 base_type = die_type (die, cu);
17243
17244 /* The die_type call above may have already set the type for this DIE. */
17245 cv_type = get_die_type (die, cu);
17246 if (cv_type)
17247 return cv_type;
17248
17249 cv_type = make_atomic_type (base_type);
17250 return set_die_type (die, cv_type, cu);
17251 }
17252
17253 /* Extract all information from a DW_TAG_string_type DIE and add to
17254 the user defined type vector. It isn't really a user defined type,
17255 but it behaves like one, with other DIE's using an AT_user_def_type
17256 attribute to reference it. */
17257
17258 static struct type *
17259 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17260 {
17261 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17263 struct type *type, *range_type, *index_type, *char_type;
17264 struct attribute *attr;
17265 unsigned int length;
17266
17267 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17268 if (attr)
17269 {
17270 length = DW_UNSND (attr);
17271 }
17272 else
17273 {
17274 /* Check for the DW_AT_byte_size attribute. */
17275 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17276 if (attr)
17277 {
17278 length = DW_UNSND (attr);
17279 }
17280 else
17281 {
17282 length = 1;
17283 }
17284 }
17285
17286 index_type = objfile_type (objfile)->builtin_int;
17287 range_type = create_static_range_type (NULL, index_type, 1, length);
17288 char_type = language_string_char_type (cu->language_defn, gdbarch);
17289 type = create_string_type (NULL, char_type, range_type);
17290
17291 return set_die_type (die, type, cu);
17292 }
17293
17294 /* Assuming that DIE corresponds to a function, returns nonzero
17295 if the function is prototyped. */
17296
17297 static int
17298 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17299 {
17300 struct attribute *attr;
17301
17302 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17303 if (attr && (DW_UNSND (attr) != 0))
17304 return 1;
17305
17306 /* The DWARF standard implies that the DW_AT_prototyped attribute
17307 is only meaninful for C, but the concept also extends to other
17308 languages that allow unprototyped functions (Eg: Objective C).
17309 For all other languages, assume that functions are always
17310 prototyped. */
17311 if (cu->language != language_c
17312 && cu->language != language_objc
17313 && cu->language != language_opencl)
17314 return 1;
17315
17316 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17317 prototyped and unprototyped functions; default to prototyped,
17318 since that is more common in modern code (and RealView warns
17319 about unprototyped functions). */
17320 if (producer_is_realview (cu->producer))
17321 return 1;
17322
17323 return 0;
17324 }
17325
17326 /* Handle DIES due to C code like:
17327
17328 struct foo
17329 {
17330 int (*funcp)(int a, long l);
17331 int b;
17332 };
17333
17334 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17335
17336 static struct type *
17337 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17338 {
17339 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17340 struct type *type; /* Type that this function returns. */
17341 struct type *ftype; /* Function that returns above type. */
17342 struct attribute *attr;
17343
17344 type = die_type (die, cu);
17345
17346 /* The die_type call above may have already set the type for this DIE. */
17347 ftype = get_die_type (die, cu);
17348 if (ftype)
17349 return ftype;
17350
17351 ftype = lookup_function_type (type);
17352
17353 if (prototyped_function_p (die, cu))
17354 TYPE_PROTOTYPED (ftype) = 1;
17355
17356 /* Store the calling convention in the type if it's available in
17357 the subroutine die. Otherwise set the calling convention to
17358 the default value DW_CC_normal. */
17359 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17360 if (attr)
17361 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17362 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17363 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17364 else
17365 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17366
17367 /* Record whether the function returns normally to its caller or not
17368 if the DWARF producer set that information. */
17369 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17370 if (attr && (DW_UNSND (attr) != 0))
17371 TYPE_NO_RETURN (ftype) = 1;
17372
17373 /* We need to add the subroutine type to the die immediately so
17374 we don't infinitely recurse when dealing with parameters
17375 declared as the same subroutine type. */
17376 set_die_type (die, ftype, cu);
17377
17378 if (die->child != NULL)
17379 {
17380 struct type *void_type = objfile_type (objfile)->builtin_void;
17381 struct die_info *child_die;
17382 int nparams, iparams;
17383
17384 /* Count the number of parameters.
17385 FIXME: GDB currently ignores vararg functions, but knows about
17386 vararg member functions. */
17387 nparams = 0;
17388 child_die = die->child;
17389 while (child_die && child_die->tag)
17390 {
17391 if (child_die->tag == DW_TAG_formal_parameter)
17392 nparams++;
17393 else if (child_die->tag == DW_TAG_unspecified_parameters)
17394 TYPE_VARARGS (ftype) = 1;
17395 child_die = sibling_die (child_die);
17396 }
17397
17398 /* Allocate storage for parameters and fill them in. */
17399 TYPE_NFIELDS (ftype) = nparams;
17400 TYPE_FIELDS (ftype) = (struct field *)
17401 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17402
17403 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17404 even if we error out during the parameters reading below. */
17405 for (iparams = 0; iparams < nparams; iparams++)
17406 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17407
17408 iparams = 0;
17409 child_die = die->child;
17410 while (child_die && child_die->tag)
17411 {
17412 if (child_die->tag == DW_TAG_formal_parameter)
17413 {
17414 struct type *arg_type;
17415
17416 /* DWARF version 2 has no clean way to discern C++
17417 static and non-static member functions. G++ helps
17418 GDB by marking the first parameter for non-static
17419 member functions (which is the this pointer) as
17420 artificial. We pass this information to
17421 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17422
17423 DWARF version 3 added DW_AT_object_pointer, which GCC
17424 4.5 does not yet generate. */
17425 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17426 if (attr)
17427 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17428 else
17429 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17430 arg_type = die_type (child_die, cu);
17431
17432 /* RealView does not mark THIS as const, which the testsuite
17433 expects. GCC marks THIS as const in method definitions,
17434 but not in the class specifications (GCC PR 43053). */
17435 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17436 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17437 {
17438 int is_this = 0;
17439 struct dwarf2_cu *arg_cu = cu;
17440 const char *name = dwarf2_name (child_die, cu);
17441
17442 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17443 if (attr)
17444 {
17445 /* If the compiler emits this, use it. */
17446 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17447 is_this = 1;
17448 }
17449 else if (name && strcmp (name, "this") == 0)
17450 /* Function definitions will have the argument names. */
17451 is_this = 1;
17452 else if (name == NULL && iparams == 0)
17453 /* Declarations may not have the names, so like
17454 elsewhere in GDB, assume an artificial first
17455 argument is "this". */
17456 is_this = 1;
17457
17458 if (is_this)
17459 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17460 arg_type, 0);
17461 }
17462
17463 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17464 iparams++;
17465 }
17466 child_die = sibling_die (child_die);
17467 }
17468 }
17469
17470 return ftype;
17471 }
17472
17473 static struct type *
17474 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17475 {
17476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17477 const char *name = NULL;
17478 struct type *this_type, *target_type;
17479
17480 name = dwarf2_full_name (NULL, die, cu);
17481 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17482 TYPE_TARGET_STUB (this_type) = 1;
17483 set_die_type (die, this_type, cu);
17484 target_type = die_type (die, cu);
17485 if (target_type != this_type)
17486 TYPE_TARGET_TYPE (this_type) = target_type;
17487 else
17488 {
17489 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17490 spec and cause infinite loops in GDB. */
17491 complaint (_("Self-referential DW_TAG_typedef "
17492 "- DIE at %s [in module %s]"),
17493 sect_offset_str (die->sect_off), objfile_name (objfile));
17494 TYPE_TARGET_TYPE (this_type) = NULL;
17495 }
17496 return this_type;
17497 }
17498
17499 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17500 (which may be different from NAME) to the architecture back-end to allow
17501 it to guess the correct format if necessary. */
17502
17503 static struct type *
17504 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17505 const char *name_hint)
17506 {
17507 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17508 const struct floatformat **format;
17509 struct type *type;
17510
17511 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17512 if (format)
17513 type = init_float_type (objfile, bits, name, format);
17514 else
17515 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17516
17517 return type;
17518 }
17519
17520 /* Allocate an integer type of size BITS and name NAME. */
17521
17522 static struct type *
17523 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17524 int bits, int unsigned_p, const char *name)
17525 {
17526 struct type *type;
17527
17528 /* Versions of Intel's C Compiler generate an integer type called "void"
17529 instead of using DW_TAG_unspecified_type. This has been seen on
17530 at least versions 14, 17, and 18. */
17531 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17532 && strcmp (name, "void") == 0)
17533 type = objfile_type (objfile)->builtin_void;
17534 else
17535 type = init_integer_type (objfile, bits, unsigned_p, name);
17536
17537 return type;
17538 }
17539
17540 /* Initialise and return a floating point type of size BITS suitable for
17541 use as a component of a complex number. The NAME_HINT is passed through
17542 when initialising the floating point type and is the name of the complex
17543 type.
17544
17545 As DWARF doesn't currently provide an explicit name for the components
17546 of a complex number, but it can be helpful to have these components
17547 named, we try to select a suitable name based on the size of the
17548 component. */
17549 static struct type *
17550 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17551 struct objfile *objfile,
17552 int bits, const char *name_hint)
17553 {
17554 gdbarch *gdbarch = get_objfile_arch (objfile);
17555 struct type *tt = nullptr;
17556
17557 /* Try to find a suitable floating point builtin type of size BITS.
17558 We're going to use the name of this type as the name for the complex
17559 target type that we are about to create. */
17560 switch (cu->language)
17561 {
17562 case language_fortran:
17563 switch (bits)
17564 {
17565 case 32:
17566 tt = builtin_f_type (gdbarch)->builtin_real;
17567 break;
17568 case 64:
17569 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17570 break;
17571 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17572 case 128:
17573 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17574 break;
17575 }
17576 break;
17577 default:
17578 switch (bits)
17579 {
17580 case 32:
17581 tt = builtin_type (gdbarch)->builtin_float;
17582 break;
17583 case 64:
17584 tt = builtin_type (gdbarch)->builtin_double;
17585 break;
17586 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17587 case 128:
17588 tt = builtin_type (gdbarch)->builtin_long_double;
17589 break;
17590 }
17591 break;
17592 }
17593
17594 /* If the type we found doesn't match the size we were looking for, then
17595 pretend we didn't find a type at all, the complex target type we
17596 create will then be nameless. */
17597 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17598 tt = nullptr;
17599
17600 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17601 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17602 }
17603
17604 /* Find a representation of a given base type and install
17605 it in the TYPE field of the die. */
17606
17607 static struct type *
17608 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17609 {
17610 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17611 struct type *type;
17612 struct attribute *attr;
17613 int encoding = 0, bits = 0;
17614 const char *name;
17615
17616 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17617 if (attr)
17618 {
17619 encoding = DW_UNSND (attr);
17620 }
17621 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17622 if (attr)
17623 {
17624 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17625 }
17626 name = dwarf2_name (die, cu);
17627 if (!name)
17628 {
17629 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17630 }
17631
17632 switch (encoding)
17633 {
17634 case DW_ATE_address:
17635 /* Turn DW_ATE_address into a void * pointer. */
17636 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17637 type = init_pointer_type (objfile, bits, name, type);
17638 break;
17639 case DW_ATE_boolean:
17640 type = init_boolean_type (objfile, bits, 1, name);
17641 break;
17642 case DW_ATE_complex_float:
17643 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17644 type = init_complex_type (objfile, name, type);
17645 break;
17646 case DW_ATE_decimal_float:
17647 type = init_decfloat_type (objfile, bits, name);
17648 break;
17649 case DW_ATE_float:
17650 type = dwarf2_init_float_type (objfile, bits, name, name);
17651 break;
17652 case DW_ATE_signed:
17653 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17654 break;
17655 case DW_ATE_unsigned:
17656 if (cu->language == language_fortran
17657 && name
17658 && startswith (name, "character("))
17659 type = init_character_type (objfile, bits, 1, name);
17660 else
17661 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17662 break;
17663 case DW_ATE_signed_char:
17664 if (cu->language == language_ada || cu->language == language_m2
17665 || cu->language == language_pascal
17666 || cu->language == language_fortran)
17667 type = init_character_type (objfile, bits, 0, name);
17668 else
17669 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17670 break;
17671 case DW_ATE_unsigned_char:
17672 if (cu->language == language_ada || cu->language == language_m2
17673 || cu->language == language_pascal
17674 || cu->language == language_fortran
17675 || cu->language == language_rust)
17676 type = init_character_type (objfile, bits, 1, name);
17677 else
17678 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17679 break;
17680 case DW_ATE_UTF:
17681 {
17682 gdbarch *arch = get_objfile_arch (objfile);
17683
17684 if (bits == 16)
17685 type = builtin_type (arch)->builtin_char16;
17686 else if (bits == 32)
17687 type = builtin_type (arch)->builtin_char32;
17688 else
17689 {
17690 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17691 bits);
17692 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17693 }
17694 return set_die_type (die, type, cu);
17695 }
17696 break;
17697
17698 default:
17699 complaint (_("unsupported DW_AT_encoding: '%s'"),
17700 dwarf_type_encoding_name (encoding));
17701 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17702 break;
17703 }
17704
17705 if (name && strcmp (name, "char") == 0)
17706 TYPE_NOSIGN (type) = 1;
17707
17708 maybe_set_alignment (cu, die, type);
17709
17710 return set_die_type (die, type, cu);
17711 }
17712
17713 /* Parse dwarf attribute if it's a block, reference or constant and put the
17714 resulting value of the attribute into struct bound_prop.
17715 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17716
17717 static int
17718 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17719 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17720 struct type *default_type)
17721 {
17722 struct dwarf2_property_baton *baton;
17723 struct obstack *obstack
17724 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17725
17726 gdb_assert (default_type != NULL);
17727
17728 if (attr == NULL || prop == NULL)
17729 return 0;
17730
17731 if (attr_form_is_block (attr))
17732 {
17733 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17734 baton->property_type = default_type;
17735 baton->locexpr.per_cu = cu->per_cu;
17736 baton->locexpr.size = DW_BLOCK (attr)->size;
17737 baton->locexpr.data = DW_BLOCK (attr)->data;
17738 baton->locexpr.is_reference = false;
17739 prop->data.baton = baton;
17740 prop->kind = PROP_LOCEXPR;
17741 gdb_assert (prop->data.baton != NULL);
17742 }
17743 else if (attr_form_is_ref (attr))
17744 {
17745 struct dwarf2_cu *target_cu = cu;
17746 struct die_info *target_die;
17747 struct attribute *target_attr;
17748
17749 target_die = follow_die_ref (die, attr, &target_cu);
17750 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17751 if (target_attr == NULL)
17752 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17753 target_cu);
17754 if (target_attr == NULL)
17755 return 0;
17756
17757 switch (target_attr->name)
17758 {
17759 case DW_AT_location:
17760 if (attr_form_is_section_offset (target_attr))
17761 {
17762 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17763 baton->property_type = die_type (target_die, target_cu);
17764 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17765 prop->data.baton = baton;
17766 prop->kind = PROP_LOCLIST;
17767 gdb_assert (prop->data.baton != NULL);
17768 }
17769 else if (attr_form_is_block (target_attr))
17770 {
17771 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17772 baton->property_type = die_type (target_die, target_cu);
17773 baton->locexpr.per_cu = cu->per_cu;
17774 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17775 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17776 baton->locexpr.is_reference = true;
17777 prop->data.baton = baton;
17778 prop->kind = PROP_LOCEXPR;
17779 gdb_assert (prop->data.baton != NULL);
17780 }
17781 else
17782 {
17783 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17784 "dynamic property");
17785 return 0;
17786 }
17787 break;
17788 case DW_AT_data_member_location:
17789 {
17790 LONGEST offset;
17791
17792 if (!handle_data_member_location (target_die, target_cu,
17793 &offset))
17794 return 0;
17795
17796 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17797 baton->property_type = read_type_die (target_die->parent,
17798 target_cu);
17799 baton->offset_info.offset = offset;
17800 baton->offset_info.type = die_type (target_die, target_cu);
17801 prop->data.baton = baton;
17802 prop->kind = PROP_ADDR_OFFSET;
17803 break;
17804 }
17805 }
17806 }
17807 else if (attr_form_is_constant (attr))
17808 {
17809 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17810 prop->kind = PROP_CONST;
17811 }
17812 else
17813 {
17814 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17815 dwarf2_name (die, cu));
17816 return 0;
17817 }
17818
17819 return 1;
17820 }
17821
17822 /* Find an integer type the same size as the address size given in the
17823 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17824 is unsigned or not. */
17825
17826 static struct type *
17827 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17828 bool unsigned_p)
17829 {
17830 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17831 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17832 struct type *int_type;
17833
17834 /* Helper macro to examine the various builtin types. */
17835 #define TRY_TYPE(F) \
17836 int_type = (unsigned_p \
17837 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17838 : objfile_type (objfile)->builtin_ ## F); \
17839 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17840 return int_type
17841
17842 TRY_TYPE (char);
17843 TRY_TYPE (short);
17844 TRY_TYPE (int);
17845 TRY_TYPE (long);
17846 TRY_TYPE (long_long);
17847
17848 #undef TRY_TYPE
17849
17850 gdb_assert_not_reached ("unable to find suitable integer type");
17851 }
17852
17853 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17854 present (which is valid) then compute the default type based on the
17855 compilation units address size. */
17856
17857 static struct type *
17858 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17859 {
17860 struct type *index_type = die_type (die, cu);
17861
17862 /* Dwarf-2 specifications explicitly allows to create subrange types
17863 without specifying a base type.
17864 In that case, the base type must be set to the type of
17865 the lower bound, upper bound or count, in that order, if any of these
17866 three attributes references an object that has a type.
17867 If no base type is found, the Dwarf-2 specifications say that
17868 a signed integer type of size equal to the size of an address should
17869 be used.
17870 For the following C code: `extern char gdb_int [];'
17871 GCC produces an empty range DIE.
17872 FIXME: muller/2010-05-28: Possible references to object for low bound,
17873 high bound or count are not yet handled by this code. */
17874 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17875 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17876
17877 return index_type;
17878 }
17879
17880 /* Read the given DW_AT_subrange DIE. */
17881
17882 static struct type *
17883 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17884 {
17885 struct type *base_type, *orig_base_type;
17886 struct type *range_type;
17887 struct attribute *attr;
17888 struct dynamic_prop low, high;
17889 int low_default_is_valid;
17890 int high_bound_is_count = 0;
17891 const char *name;
17892 ULONGEST negative_mask;
17893
17894 orig_base_type = read_subrange_index_type (die, cu);
17895
17896 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17897 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17898 creating the range type, but we use the result of check_typedef
17899 when examining properties of the type. */
17900 base_type = check_typedef (orig_base_type);
17901
17902 /* The die_type call above may have already set the type for this DIE. */
17903 range_type = get_die_type (die, cu);
17904 if (range_type)
17905 return range_type;
17906
17907 low.kind = PROP_CONST;
17908 high.kind = PROP_CONST;
17909 high.data.const_val = 0;
17910
17911 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17912 omitting DW_AT_lower_bound. */
17913 switch (cu->language)
17914 {
17915 case language_c:
17916 case language_cplus:
17917 low.data.const_val = 0;
17918 low_default_is_valid = 1;
17919 break;
17920 case language_fortran:
17921 low.data.const_val = 1;
17922 low_default_is_valid = 1;
17923 break;
17924 case language_d:
17925 case language_objc:
17926 case language_rust:
17927 low.data.const_val = 0;
17928 low_default_is_valid = (cu->header.version >= 4);
17929 break;
17930 case language_ada:
17931 case language_m2:
17932 case language_pascal:
17933 low.data.const_val = 1;
17934 low_default_is_valid = (cu->header.version >= 4);
17935 break;
17936 default:
17937 low.data.const_val = 0;
17938 low_default_is_valid = 0;
17939 break;
17940 }
17941
17942 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17943 if (attr)
17944 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17945 else if (!low_default_is_valid)
17946 complaint (_("Missing DW_AT_lower_bound "
17947 "- DIE at %s [in module %s]"),
17948 sect_offset_str (die->sect_off),
17949 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17950
17951 struct attribute *attr_ub, *attr_count;
17952 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17953 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17954 {
17955 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17956 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17957 {
17958 /* If bounds are constant do the final calculation here. */
17959 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17960 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17961 else
17962 high_bound_is_count = 1;
17963 }
17964 else
17965 {
17966 if (attr_ub != NULL)
17967 complaint (_("Unresolved DW_AT_upper_bound "
17968 "- DIE at %s [in module %s]"),
17969 sect_offset_str (die->sect_off),
17970 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17971 if (attr_count != NULL)
17972 complaint (_("Unresolved DW_AT_count "
17973 "- DIE at %s [in module %s]"),
17974 sect_offset_str (die->sect_off),
17975 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17976 }
17977 }
17978
17979 LONGEST bias = 0;
17980 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17981 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
17982 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17983
17984 /* Normally, the DWARF producers are expected to use a signed
17985 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17986 But this is unfortunately not always the case, as witnessed
17987 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17988 is used instead. To work around that ambiguity, we treat
17989 the bounds as signed, and thus sign-extend their values, when
17990 the base type is signed. */
17991 negative_mask =
17992 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17993 if (low.kind == PROP_CONST
17994 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17995 low.data.const_val |= negative_mask;
17996 if (high.kind == PROP_CONST
17997 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17998 high.data.const_val |= negative_mask;
17999
18000 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18001
18002 if (high_bound_is_count)
18003 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18004
18005 /* Ada expects an empty array on no boundary attributes. */
18006 if (attr == NULL && cu->language != language_ada)
18007 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18008
18009 name = dwarf2_name (die, cu);
18010 if (name)
18011 TYPE_NAME (range_type) = name;
18012
18013 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18014 if (attr)
18015 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18016
18017 maybe_set_alignment (cu, die, range_type);
18018
18019 set_die_type (die, range_type, cu);
18020
18021 /* set_die_type should be already done. */
18022 set_descriptive_type (range_type, die, cu);
18023
18024 return range_type;
18025 }
18026
18027 static struct type *
18028 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18029 {
18030 struct type *type;
18031
18032 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18033 NULL);
18034 TYPE_NAME (type) = dwarf2_name (die, cu);
18035
18036 /* In Ada, an unspecified type is typically used when the description
18037 of the type is defered to a different unit. When encountering
18038 such a type, we treat it as a stub, and try to resolve it later on,
18039 when needed. */
18040 if (cu->language == language_ada)
18041 TYPE_STUB (type) = 1;
18042
18043 return set_die_type (die, type, cu);
18044 }
18045
18046 /* Read a single die and all its descendents. Set the die's sibling
18047 field to NULL; set other fields in the die correctly, and set all
18048 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18049 location of the info_ptr after reading all of those dies. PARENT
18050 is the parent of the die in question. */
18051
18052 static struct die_info *
18053 read_die_and_children (const struct die_reader_specs *reader,
18054 const gdb_byte *info_ptr,
18055 const gdb_byte **new_info_ptr,
18056 struct die_info *parent)
18057 {
18058 struct die_info *die;
18059 const gdb_byte *cur_ptr;
18060 int has_children;
18061
18062 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18063 if (die == NULL)
18064 {
18065 *new_info_ptr = cur_ptr;
18066 return NULL;
18067 }
18068 store_in_ref_table (die, reader->cu);
18069
18070 if (has_children)
18071 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18072 else
18073 {
18074 die->child = NULL;
18075 *new_info_ptr = cur_ptr;
18076 }
18077
18078 die->sibling = NULL;
18079 die->parent = parent;
18080 return die;
18081 }
18082
18083 /* Read a die, all of its descendents, and all of its siblings; set
18084 all of the fields of all of the dies correctly. Arguments are as
18085 in read_die_and_children. */
18086
18087 static struct die_info *
18088 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18089 const gdb_byte *info_ptr,
18090 const gdb_byte **new_info_ptr,
18091 struct die_info *parent)
18092 {
18093 struct die_info *first_die, *last_sibling;
18094 const gdb_byte *cur_ptr;
18095
18096 cur_ptr = info_ptr;
18097 first_die = last_sibling = NULL;
18098
18099 while (1)
18100 {
18101 struct die_info *die
18102 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18103
18104 if (die == NULL)
18105 {
18106 *new_info_ptr = cur_ptr;
18107 return first_die;
18108 }
18109
18110 if (!first_die)
18111 first_die = die;
18112 else
18113 last_sibling->sibling = die;
18114
18115 last_sibling = die;
18116 }
18117 }
18118
18119 /* Read a die, all of its descendents, and all of its siblings; set
18120 all of the fields of all of the dies correctly. Arguments are as
18121 in read_die_and_children.
18122 This the main entry point for reading a DIE and all its children. */
18123
18124 static struct die_info *
18125 read_die_and_siblings (const struct die_reader_specs *reader,
18126 const gdb_byte *info_ptr,
18127 const gdb_byte **new_info_ptr,
18128 struct die_info *parent)
18129 {
18130 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18131 new_info_ptr, parent);
18132
18133 if (dwarf_die_debug)
18134 {
18135 fprintf_unfiltered (gdb_stdlog,
18136 "Read die from %s@0x%x of %s:\n",
18137 get_section_name (reader->die_section),
18138 (unsigned) (info_ptr - reader->die_section->buffer),
18139 bfd_get_filename (reader->abfd));
18140 dump_die (die, dwarf_die_debug);
18141 }
18142
18143 return die;
18144 }
18145
18146 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18147 attributes.
18148 The caller is responsible for filling in the extra attributes
18149 and updating (*DIEP)->num_attrs.
18150 Set DIEP to point to a newly allocated die with its information,
18151 except for its child, sibling, and parent fields.
18152 Set HAS_CHILDREN to tell whether the die has children or not. */
18153
18154 static const gdb_byte *
18155 read_full_die_1 (const struct die_reader_specs *reader,
18156 struct die_info **diep, const gdb_byte *info_ptr,
18157 int *has_children, int num_extra_attrs)
18158 {
18159 unsigned int abbrev_number, bytes_read, i;
18160 struct abbrev_info *abbrev;
18161 struct die_info *die;
18162 struct dwarf2_cu *cu = reader->cu;
18163 bfd *abfd = reader->abfd;
18164
18165 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18166 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18167 info_ptr += bytes_read;
18168 if (!abbrev_number)
18169 {
18170 *diep = NULL;
18171 *has_children = 0;
18172 return info_ptr;
18173 }
18174
18175 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18176 if (!abbrev)
18177 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18178 abbrev_number,
18179 bfd_get_filename (abfd));
18180
18181 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18182 die->sect_off = sect_off;
18183 die->tag = abbrev->tag;
18184 die->abbrev = abbrev_number;
18185
18186 /* Make the result usable.
18187 The caller needs to update num_attrs after adding the extra
18188 attributes. */
18189 die->num_attrs = abbrev->num_attrs;
18190
18191 for (i = 0; i < abbrev->num_attrs; ++i)
18192 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18193 info_ptr);
18194
18195 *diep = die;
18196 *has_children = abbrev->has_children;
18197 return info_ptr;
18198 }
18199
18200 /* Read a die and all its attributes.
18201 Set DIEP to point to a newly allocated die with its information,
18202 except for its child, sibling, and parent fields.
18203 Set HAS_CHILDREN to tell whether the die has children or not. */
18204
18205 static const gdb_byte *
18206 read_full_die (const struct die_reader_specs *reader,
18207 struct die_info **diep, const gdb_byte *info_ptr,
18208 int *has_children)
18209 {
18210 const gdb_byte *result;
18211
18212 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18213
18214 if (dwarf_die_debug)
18215 {
18216 fprintf_unfiltered (gdb_stdlog,
18217 "Read die from %s@0x%x of %s:\n",
18218 get_section_name (reader->die_section),
18219 (unsigned) (info_ptr - reader->die_section->buffer),
18220 bfd_get_filename (reader->abfd));
18221 dump_die (*diep, dwarf_die_debug);
18222 }
18223
18224 return result;
18225 }
18226 \f
18227 /* Abbreviation tables.
18228
18229 In DWARF version 2, the description of the debugging information is
18230 stored in a separate .debug_abbrev section. Before we read any
18231 dies from a section we read in all abbreviations and install them
18232 in a hash table. */
18233
18234 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18235
18236 struct abbrev_info *
18237 abbrev_table::alloc_abbrev ()
18238 {
18239 struct abbrev_info *abbrev;
18240
18241 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18242 memset (abbrev, 0, sizeof (struct abbrev_info));
18243
18244 return abbrev;
18245 }
18246
18247 /* Add an abbreviation to the table. */
18248
18249 void
18250 abbrev_table::add_abbrev (unsigned int abbrev_number,
18251 struct abbrev_info *abbrev)
18252 {
18253 unsigned int hash_number;
18254
18255 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18256 abbrev->next = m_abbrevs[hash_number];
18257 m_abbrevs[hash_number] = abbrev;
18258 }
18259
18260 /* Look up an abbrev in the table.
18261 Returns NULL if the abbrev is not found. */
18262
18263 struct abbrev_info *
18264 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18265 {
18266 unsigned int hash_number;
18267 struct abbrev_info *abbrev;
18268
18269 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18270 abbrev = m_abbrevs[hash_number];
18271
18272 while (abbrev)
18273 {
18274 if (abbrev->number == abbrev_number)
18275 return abbrev;
18276 abbrev = abbrev->next;
18277 }
18278 return NULL;
18279 }
18280
18281 /* Read in an abbrev table. */
18282
18283 static abbrev_table_up
18284 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18285 struct dwarf2_section_info *section,
18286 sect_offset sect_off)
18287 {
18288 struct objfile *objfile = dwarf2_per_objfile->objfile;
18289 bfd *abfd = get_section_bfd_owner (section);
18290 const gdb_byte *abbrev_ptr;
18291 struct abbrev_info *cur_abbrev;
18292 unsigned int abbrev_number, bytes_read, abbrev_name;
18293 unsigned int abbrev_form;
18294 struct attr_abbrev *cur_attrs;
18295 unsigned int allocated_attrs;
18296
18297 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18298
18299 dwarf2_read_section (objfile, section);
18300 abbrev_ptr = section->buffer + to_underlying (sect_off);
18301 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18302 abbrev_ptr += bytes_read;
18303
18304 allocated_attrs = ATTR_ALLOC_CHUNK;
18305 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18306
18307 /* Loop until we reach an abbrev number of 0. */
18308 while (abbrev_number)
18309 {
18310 cur_abbrev = abbrev_table->alloc_abbrev ();
18311
18312 /* read in abbrev header */
18313 cur_abbrev->number = abbrev_number;
18314 cur_abbrev->tag
18315 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18316 abbrev_ptr += bytes_read;
18317 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18318 abbrev_ptr += 1;
18319
18320 /* now read in declarations */
18321 for (;;)
18322 {
18323 LONGEST implicit_const;
18324
18325 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18326 abbrev_ptr += bytes_read;
18327 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18328 abbrev_ptr += bytes_read;
18329 if (abbrev_form == DW_FORM_implicit_const)
18330 {
18331 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18332 &bytes_read);
18333 abbrev_ptr += bytes_read;
18334 }
18335 else
18336 {
18337 /* Initialize it due to a false compiler warning. */
18338 implicit_const = -1;
18339 }
18340
18341 if (abbrev_name == 0)
18342 break;
18343
18344 if (cur_abbrev->num_attrs == allocated_attrs)
18345 {
18346 allocated_attrs += ATTR_ALLOC_CHUNK;
18347 cur_attrs
18348 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18349 }
18350
18351 cur_attrs[cur_abbrev->num_attrs].name
18352 = (enum dwarf_attribute) abbrev_name;
18353 cur_attrs[cur_abbrev->num_attrs].form
18354 = (enum dwarf_form) abbrev_form;
18355 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18356 ++cur_abbrev->num_attrs;
18357 }
18358
18359 cur_abbrev->attrs =
18360 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18361 cur_abbrev->num_attrs);
18362 memcpy (cur_abbrev->attrs, cur_attrs,
18363 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18364
18365 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18366
18367 /* Get next abbreviation.
18368 Under Irix6 the abbreviations for a compilation unit are not
18369 always properly terminated with an abbrev number of 0.
18370 Exit loop if we encounter an abbreviation which we have
18371 already read (which means we are about to read the abbreviations
18372 for the next compile unit) or if the end of the abbreviation
18373 table is reached. */
18374 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18375 break;
18376 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18377 abbrev_ptr += bytes_read;
18378 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18379 break;
18380 }
18381
18382 xfree (cur_attrs);
18383 return abbrev_table;
18384 }
18385
18386 /* Returns nonzero if TAG represents a type that we might generate a partial
18387 symbol for. */
18388
18389 static int
18390 is_type_tag_for_partial (int tag)
18391 {
18392 switch (tag)
18393 {
18394 #if 0
18395 /* Some types that would be reasonable to generate partial symbols for,
18396 that we don't at present. */
18397 case DW_TAG_array_type:
18398 case DW_TAG_file_type:
18399 case DW_TAG_ptr_to_member_type:
18400 case DW_TAG_set_type:
18401 case DW_TAG_string_type:
18402 case DW_TAG_subroutine_type:
18403 #endif
18404 case DW_TAG_base_type:
18405 case DW_TAG_class_type:
18406 case DW_TAG_interface_type:
18407 case DW_TAG_enumeration_type:
18408 case DW_TAG_structure_type:
18409 case DW_TAG_subrange_type:
18410 case DW_TAG_typedef:
18411 case DW_TAG_union_type:
18412 return 1;
18413 default:
18414 return 0;
18415 }
18416 }
18417
18418 /* Load all DIEs that are interesting for partial symbols into memory. */
18419
18420 static struct partial_die_info *
18421 load_partial_dies (const struct die_reader_specs *reader,
18422 const gdb_byte *info_ptr, int building_psymtab)
18423 {
18424 struct dwarf2_cu *cu = reader->cu;
18425 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18426 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18427 unsigned int bytes_read;
18428 unsigned int load_all = 0;
18429 int nesting_level = 1;
18430
18431 parent_die = NULL;
18432 last_die = NULL;
18433
18434 gdb_assert (cu->per_cu != NULL);
18435 if (cu->per_cu->load_all_dies)
18436 load_all = 1;
18437
18438 cu->partial_dies
18439 = htab_create_alloc_ex (cu->header.length / 12,
18440 partial_die_hash,
18441 partial_die_eq,
18442 NULL,
18443 &cu->comp_unit_obstack,
18444 hashtab_obstack_allocate,
18445 dummy_obstack_deallocate);
18446
18447 while (1)
18448 {
18449 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18450
18451 /* A NULL abbrev means the end of a series of children. */
18452 if (abbrev == NULL)
18453 {
18454 if (--nesting_level == 0)
18455 return first_die;
18456
18457 info_ptr += bytes_read;
18458 last_die = parent_die;
18459 parent_die = parent_die->die_parent;
18460 continue;
18461 }
18462
18463 /* Check for template arguments. We never save these; if
18464 they're seen, we just mark the parent, and go on our way. */
18465 if (parent_die != NULL
18466 && cu->language == language_cplus
18467 && (abbrev->tag == DW_TAG_template_type_param
18468 || abbrev->tag == DW_TAG_template_value_param))
18469 {
18470 parent_die->has_template_arguments = 1;
18471
18472 if (!load_all)
18473 {
18474 /* We don't need a partial DIE for the template argument. */
18475 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18476 continue;
18477 }
18478 }
18479
18480 /* We only recurse into c++ subprograms looking for template arguments.
18481 Skip their other children. */
18482 if (!load_all
18483 && cu->language == language_cplus
18484 && parent_die != NULL
18485 && parent_die->tag == DW_TAG_subprogram)
18486 {
18487 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18488 continue;
18489 }
18490
18491 /* Check whether this DIE is interesting enough to save. Normally
18492 we would not be interested in members here, but there may be
18493 later variables referencing them via DW_AT_specification (for
18494 static members). */
18495 if (!load_all
18496 && !is_type_tag_for_partial (abbrev->tag)
18497 && abbrev->tag != DW_TAG_constant
18498 && abbrev->tag != DW_TAG_enumerator
18499 && abbrev->tag != DW_TAG_subprogram
18500 && abbrev->tag != DW_TAG_inlined_subroutine
18501 && abbrev->tag != DW_TAG_lexical_block
18502 && abbrev->tag != DW_TAG_variable
18503 && abbrev->tag != DW_TAG_namespace
18504 && abbrev->tag != DW_TAG_module
18505 && abbrev->tag != DW_TAG_member
18506 && abbrev->tag != DW_TAG_imported_unit
18507 && abbrev->tag != DW_TAG_imported_declaration)
18508 {
18509 /* Otherwise we skip to the next sibling, if any. */
18510 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18511 continue;
18512 }
18513
18514 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18515 abbrev);
18516
18517 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18518
18519 /* This two-pass algorithm for processing partial symbols has a
18520 high cost in cache pressure. Thus, handle some simple cases
18521 here which cover the majority of C partial symbols. DIEs
18522 which neither have specification tags in them, nor could have
18523 specification tags elsewhere pointing at them, can simply be
18524 processed and discarded.
18525
18526 This segment is also optional; scan_partial_symbols and
18527 add_partial_symbol will handle these DIEs if we chain
18528 them in normally. When compilers which do not emit large
18529 quantities of duplicate debug information are more common,
18530 this code can probably be removed. */
18531
18532 /* Any complete simple types at the top level (pretty much all
18533 of them, for a language without namespaces), can be processed
18534 directly. */
18535 if (parent_die == NULL
18536 && pdi.has_specification == 0
18537 && pdi.is_declaration == 0
18538 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18539 || pdi.tag == DW_TAG_base_type
18540 || pdi.tag == DW_TAG_subrange_type))
18541 {
18542 if (building_psymtab && pdi.name != NULL)
18543 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18544 VAR_DOMAIN, LOC_TYPEDEF, -1,
18545 psymbol_placement::STATIC,
18546 0, cu->language, objfile);
18547 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18548 continue;
18549 }
18550
18551 /* The exception for DW_TAG_typedef with has_children above is
18552 a workaround of GCC PR debug/47510. In the case of this complaint
18553 type_name_or_error will error on such types later.
18554
18555 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18556 it could not find the child DIEs referenced later, this is checked
18557 above. In correct DWARF DW_TAG_typedef should have no children. */
18558
18559 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18560 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18561 "- DIE at %s [in module %s]"),
18562 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18563
18564 /* If we're at the second level, and we're an enumerator, and
18565 our parent has no specification (meaning possibly lives in a
18566 namespace elsewhere), then we can add the partial symbol now
18567 instead of queueing it. */
18568 if (pdi.tag == DW_TAG_enumerator
18569 && parent_die != NULL
18570 && parent_die->die_parent == NULL
18571 && parent_die->tag == DW_TAG_enumeration_type
18572 && parent_die->has_specification == 0)
18573 {
18574 if (pdi.name == NULL)
18575 complaint (_("malformed enumerator DIE ignored"));
18576 else if (building_psymtab)
18577 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18578 VAR_DOMAIN, LOC_CONST, -1,
18579 cu->language == language_cplus
18580 ? psymbol_placement::GLOBAL
18581 : psymbol_placement::STATIC,
18582 0, cu->language, objfile);
18583
18584 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18585 continue;
18586 }
18587
18588 struct partial_die_info *part_die
18589 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18590
18591 /* We'll save this DIE so link it in. */
18592 part_die->die_parent = parent_die;
18593 part_die->die_sibling = NULL;
18594 part_die->die_child = NULL;
18595
18596 if (last_die && last_die == parent_die)
18597 last_die->die_child = part_die;
18598 else if (last_die)
18599 last_die->die_sibling = part_die;
18600
18601 last_die = part_die;
18602
18603 if (first_die == NULL)
18604 first_die = part_die;
18605
18606 /* Maybe add the DIE to the hash table. Not all DIEs that we
18607 find interesting need to be in the hash table, because we
18608 also have the parent/sibling/child chains; only those that we
18609 might refer to by offset later during partial symbol reading.
18610
18611 For now this means things that might have be the target of a
18612 DW_AT_specification, DW_AT_abstract_origin, or
18613 DW_AT_extension. DW_AT_extension will refer only to
18614 namespaces; DW_AT_abstract_origin refers to functions (and
18615 many things under the function DIE, but we do not recurse
18616 into function DIEs during partial symbol reading) and
18617 possibly variables as well; DW_AT_specification refers to
18618 declarations. Declarations ought to have the DW_AT_declaration
18619 flag. It happens that GCC forgets to put it in sometimes, but
18620 only for functions, not for types.
18621
18622 Adding more things than necessary to the hash table is harmless
18623 except for the performance cost. Adding too few will result in
18624 wasted time in find_partial_die, when we reread the compilation
18625 unit with load_all_dies set. */
18626
18627 if (load_all
18628 || abbrev->tag == DW_TAG_constant
18629 || abbrev->tag == DW_TAG_subprogram
18630 || abbrev->tag == DW_TAG_variable
18631 || abbrev->tag == DW_TAG_namespace
18632 || part_die->is_declaration)
18633 {
18634 void **slot;
18635
18636 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18637 to_underlying (part_die->sect_off),
18638 INSERT);
18639 *slot = part_die;
18640 }
18641
18642 /* For some DIEs we want to follow their children (if any). For C
18643 we have no reason to follow the children of structures; for other
18644 languages we have to, so that we can get at method physnames
18645 to infer fully qualified class names, for DW_AT_specification,
18646 and for C++ template arguments. For C++, we also look one level
18647 inside functions to find template arguments (if the name of the
18648 function does not already contain the template arguments).
18649
18650 For Ada, we need to scan the children of subprograms and lexical
18651 blocks as well because Ada allows the definition of nested
18652 entities that could be interesting for the debugger, such as
18653 nested subprograms for instance. */
18654 if (last_die->has_children
18655 && (load_all
18656 || last_die->tag == DW_TAG_namespace
18657 || last_die->tag == DW_TAG_module
18658 || last_die->tag == DW_TAG_enumeration_type
18659 || (cu->language == language_cplus
18660 && last_die->tag == DW_TAG_subprogram
18661 && (last_die->name == NULL
18662 || strchr (last_die->name, '<') == NULL))
18663 || (cu->language != language_c
18664 && (last_die->tag == DW_TAG_class_type
18665 || last_die->tag == DW_TAG_interface_type
18666 || last_die->tag == DW_TAG_structure_type
18667 || last_die->tag == DW_TAG_union_type))
18668 || (cu->language == language_ada
18669 && (last_die->tag == DW_TAG_subprogram
18670 || last_die->tag == DW_TAG_lexical_block))))
18671 {
18672 nesting_level++;
18673 parent_die = last_die;
18674 continue;
18675 }
18676
18677 /* Otherwise we skip to the next sibling, if any. */
18678 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18679
18680 /* Back to the top, do it again. */
18681 }
18682 }
18683
18684 partial_die_info::partial_die_info (sect_offset sect_off_,
18685 struct abbrev_info *abbrev)
18686 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18687 {
18688 }
18689
18690 /* Read a minimal amount of information into the minimal die structure.
18691 INFO_PTR should point just after the initial uleb128 of a DIE. */
18692
18693 const gdb_byte *
18694 partial_die_info::read (const struct die_reader_specs *reader,
18695 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18696 {
18697 struct dwarf2_cu *cu = reader->cu;
18698 struct dwarf2_per_objfile *dwarf2_per_objfile
18699 = cu->per_cu->dwarf2_per_objfile;
18700 unsigned int i;
18701 int has_low_pc_attr = 0;
18702 int has_high_pc_attr = 0;
18703 int high_pc_relative = 0;
18704
18705 for (i = 0; i < abbrev.num_attrs; ++i)
18706 {
18707 struct attribute attr;
18708
18709 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18710
18711 /* Store the data if it is of an attribute we want to keep in a
18712 partial symbol table. */
18713 switch (attr.name)
18714 {
18715 case DW_AT_name:
18716 switch (tag)
18717 {
18718 case DW_TAG_compile_unit:
18719 case DW_TAG_partial_unit:
18720 case DW_TAG_type_unit:
18721 /* Compilation units have a DW_AT_name that is a filename, not
18722 a source language identifier. */
18723 case DW_TAG_enumeration_type:
18724 case DW_TAG_enumerator:
18725 /* These tags always have simple identifiers already; no need
18726 to canonicalize them. */
18727 name = DW_STRING (&attr);
18728 break;
18729 default:
18730 {
18731 struct objfile *objfile = dwarf2_per_objfile->objfile;
18732
18733 name
18734 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18735 &objfile->per_bfd->storage_obstack);
18736 }
18737 break;
18738 }
18739 break;
18740 case DW_AT_linkage_name:
18741 case DW_AT_MIPS_linkage_name:
18742 /* Note that both forms of linkage name might appear. We
18743 assume they will be the same, and we only store the last
18744 one we see. */
18745 linkage_name = DW_STRING (&attr);
18746 break;
18747 case DW_AT_low_pc:
18748 has_low_pc_attr = 1;
18749 lowpc = attr_value_as_address (&attr);
18750 break;
18751 case DW_AT_high_pc:
18752 has_high_pc_attr = 1;
18753 highpc = attr_value_as_address (&attr);
18754 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18755 high_pc_relative = 1;
18756 break;
18757 case DW_AT_location:
18758 /* Support the .debug_loc offsets. */
18759 if (attr_form_is_block (&attr))
18760 {
18761 d.locdesc = DW_BLOCK (&attr);
18762 }
18763 else if (attr_form_is_section_offset (&attr))
18764 {
18765 dwarf2_complex_location_expr_complaint ();
18766 }
18767 else
18768 {
18769 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18770 "partial symbol information");
18771 }
18772 break;
18773 case DW_AT_external:
18774 is_external = DW_UNSND (&attr);
18775 break;
18776 case DW_AT_declaration:
18777 is_declaration = DW_UNSND (&attr);
18778 break;
18779 case DW_AT_type:
18780 has_type = 1;
18781 break;
18782 case DW_AT_abstract_origin:
18783 case DW_AT_specification:
18784 case DW_AT_extension:
18785 has_specification = 1;
18786 spec_offset = dwarf2_get_ref_die_offset (&attr);
18787 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18788 || cu->per_cu->is_dwz);
18789 break;
18790 case DW_AT_sibling:
18791 /* Ignore absolute siblings, they might point outside of
18792 the current compile unit. */
18793 if (attr.form == DW_FORM_ref_addr)
18794 complaint (_("ignoring absolute DW_AT_sibling"));
18795 else
18796 {
18797 const gdb_byte *buffer = reader->buffer;
18798 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18799 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18800
18801 if (sibling_ptr < info_ptr)
18802 complaint (_("DW_AT_sibling points backwards"));
18803 else if (sibling_ptr > reader->buffer_end)
18804 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18805 else
18806 sibling = sibling_ptr;
18807 }
18808 break;
18809 case DW_AT_byte_size:
18810 has_byte_size = 1;
18811 break;
18812 case DW_AT_const_value:
18813 has_const_value = 1;
18814 break;
18815 case DW_AT_calling_convention:
18816 /* DWARF doesn't provide a way to identify a program's source-level
18817 entry point. DW_AT_calling_convention attributes are only meant
18818 to describe functions' calling conventions.
18819
18820 However, because it's a necessary piece of information in
18821 Fortran, and before DWARF 4 DW_CC_program was the only
18822 piece of debugging information whose definition refers to
18823 a 'main program' at all, several compilers marked Fortran
18824 main programs with DW_CC_program --- even when those
18825 functions use the standard calling conventions.
18826
18827 Although DWARF now specifies a way to provide this
18828 information, we support this practice for backward
18829 compatibility. */
18830 if (DW_UNSND (&attr) == DW_CC_program
18831 && cu->language == language_fortran)
18832 main_subprogram = 1;
18833 break;
18834 case DW_AT_inline:
18835 if (DW_UNSND (&attr) == DW_INL_inlined
18836 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18837 may_be_inlined = 1;
18838 break;
18839
18840 case DW_AT_import:
18841 if (tag == DW_TAG_imported_unit)
18842 {
18843 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18844 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18845 || cu->per_cu->is_dwz);
18846 }
18847 break;
18848
18849 case DW_AT_main_subprogram:
18850 main_subprogram = DW_UNSND (&attr);
18851 break;
18852
18853 case DW_AT_ranges:
18854 {
18855 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18856 but that requires a full DIE, so instead we just
18857 reimplement it. */
18858 int need_ranges_base = tag != DW_TAG_compile_unit;
18859 unsigned int ranges_offset = (DW_UNSND (&attr)
18860 + (need_ranges_base
18861 ? cu->ranges_base
18862 : 0));
18863
18864 /* Value of the DW_AT_ranges attribute is the offset in the
18865 .debug_ranges section. */
18866 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18867 nullptr))
18868 has_pc_info = 1;
18869 }
18870 break;
18871
18872 default:
18873 break;
18874 }
18875 }
18876
18877 /* For Ada, if both the name and the linkage name appear, we prefer
18878 the latter. This lets "catch exception" work better, regardless
18879 of the order in which the name and linkage name were emitted.
18880 Really, though, this is just a workaround for the fact that gdb
18881 doesn't store both the name and the linkage name. */
18882 if (cu->language == language_ada && linkage_name != nullptr)
18883 name = linkage_name;
18884
18885 if (high_pc_relative)
18886 highpc += lowpc;
18887
18888 if (has_low_pc_attr && has_high_pc_attr)
18889 {
18890 /* When using the GNU linker, .gnu.linkonce. sections are used to
18891 eliminate duplicate copies of functions and vtables and such.
18892 The linker will arbitrarily choose one and discard the others.
18893 The AT_*_pc values for such functions refer to local labels in
18894 these sections. If the section from that file was discarded, the
18895 labels are not in the output, so the relocs get a value of 0.
18896 If this is a discarded function, mark the pc bounds as invalid,
18897 so that GDB will ignore it. */
18898 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18899 {
18900 struct objfile *objfile = dwarf2_per_objfile->objfile;
18901 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18902
18903 complaint (_("DW_AT_low_pc %s is zero "
18904 "for DIE at %s [in module %s]"),
18905 paddress (gdbarch, lowpc),
18906 sect_offset_str (sect_off),
18907 objfile_name (objfile));
18908 }
18909 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18910 else if (lowpc >= highpc)
18911 {
18912 struct objfile *objfile = dwarf2_per_objfile->objfile;
18913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18914
18915 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18916 "for DIE at %s [in module %s]"),
18917 paddress (gdbarch, lowpc),
18918 paddress (gdbarch, highpc),
18919 sect_offset_str (sect_off),
18920 objfile_name (objfile));
18921 }
18922 else
18923 has_pc_info = 1;
18924 }
18925
18926 return info_ptr;
18927 }
18928
18929 /* Find a cached partial DIE at OFFSET in CU. */
18930
18931 struct partial_die_info *
18932 dwarf2_cu::find_partial_die (sect_offset sect_off)
18933 {
18934 struct partial_die_info *lookup_die = NULL;
18935 struct partial_die_info part_die (sect_off);
18936
18937 lookup_die = ((struct partial_die_info *)
18938 htab_find_with_hash (partial_dies, &part_die,
18939 to_underlying (sect_off)));
18940
18941 return lookup_die;
18942 }
18943
18944 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18945 except in the case of .debug_types DIEs which do not reference
18946 outside their CU (they do however referencing other types via
18947 DW_FORM_ref_sig8). */
18948
18949 static const struct cu_partial_die_info
18950 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18951 {
18952 struct dwarf2_per_objfile *dwarf2_per_objfile
18953 = cu->per_cu->dwarf2_per_objfile;
18954 struct objfile *objfile = dwarf2_per_objfile->objfile;
18955 struct dwarf2_per_cu_data *per_cu = NULL;
18956 struct partial_die_info *pd = NULL;
18957
18958 if (offset_in_dwz == cu->per_cu->is_dwz
18959 && offset_in_cu_p (&cu->header, sect_off))
18960 {
18961 pd = cu->find_partial_die (sect_off);
18962 if (pd != NULL)
18963 return { cu, pd };
18964 /* We missed recording what we needed.
18965 Load all dies and try again. */
18966 per_cu = cu->per_cu;
18967 }
18968 else
18969 {
18970 /* TUs don't reference other CUs/TUs (except via type signatures). */
18971 if (cu->per_cu->is_debug_types)
18972 {
18973 error (_("Dwarf Error: Type Unit at offset %s contains"
18974 " external reference to offset %s [in module %s].\n"),
18975 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18976 bfd_get_filename (objfile->obfd));
18977 }
18978 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18979 dwarf2_per_objfile);
18980
18981 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18982 load_partial_comp_unit (per_cu);
18983
18984 per_cu->cu->last_used = 0;
18985 pd = per_cu->cu->find_partial_die (sect_off);
18986 }
18987
18988 /* If we didn't find it, and not all dies have been loaded,
18989 load them all and try again. */
18990
18991 if (pd == NULL && per_cu->load_all_dies == 0)
18992 {
18993 per_cu->load_all_dies = 1;
18994
18995 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18996 THIS_CU->cu may already be in use. So we can't just free it and
18997 replace its DIEs with the ones we read in. Instead, we leave those
18998 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18999 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19000 set. */
19001 load_partial_comp_unit (per_cu);
19002
19003 pd = per_cu->cu->find_partial_die (sect_off);
19004 }
19005
19006 if (pd == NULL)
19007 internal_error (__FILE__, __LINE__,
19008 _("could not find partial DIE %s "
19009 "in cache [from module %s]\n"),
19010 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19011 return { per_cu->cu, pd };
19012 }
19013
19014 /* See if we can figure out if the class lives in a namespace. We do
19015 this by looking for a member function; its demangled name will
19016 contain namespace info, if there is any. */
19017
19018 static void
19019 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19020 struct dwarf2_cu *cu)
19021 {
19022 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19023 what template types look like, because the demangler
19024 frequently doesn't give the same name as the debug info. We
19025 could fix this by only using the demangled name to get the
19026 prefix (but see comment in read_structure_type). */
19027
19028 struct partial_die_info *real_pdi;
19029 struct partial_die_info *child_pdi;
19030
19031 /* If this DIE (this DIE's specification, if any) has a parent, then
19032 we should not do this. We'll prepend the parent's fully qualified
19033 name when we create the partial symbol. */
19034
19035 real_pdi = struct_pdi;
19036 while (real_pdi->has_specification)
19037 {
19038 auto res = find_partial_die (real_pdi->spec_offset,
19039 real_pdi->spec_is_dwz, cu);
19040 real_pdi = res.pdi;
19041 cu = res.cu;
19042 }
19043
19044 if (real_pdi->die_parent != NULL)
19045 return;
19046
19047 for (child_pdi = struct_pdi->die_child;
19048 child_pdi != NULL;
19049 child_pdi = child_pdi->die_sibling)
19050 {
19051 if (child_pdi->tag == DW_TAG_subprogram
19052 && child_pdi->linkage_name != NULL)
19053 {
19054 char *actual_class_name
19055 = language_class_name_from_physname (cu->language_defn,
19056 child_pdi->linkage_name);
19057 if (actual_class_name != NULL)
19058 {
19059 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19060 struct_pdi->name
19061 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19062 actual_class_name);
19063 xfree (actual_class_name);
19064 }
19065 break;
19066 }
19067 }
19068 }
19069
19070 void
19071 partial_die_info::fixup (struct dwarf2_cu *cu)
19072 {
19073 /* Once we've fixed up a die, there's no point in doing so again.
19074 This also avoids a memory leak if we were to call
19075 guess_partial_die_structure_name multiple times. */
19076 if (fixup_called)
19077 return;
19078
19079 /* If we found a reference attribute and the DIE has no name, try
19080 to find a name in the referred to DIE. */
19081
19082 if (name == NULL && has_specification)
19083 {
19084 struct partial_die_info *spec_die;
19085
19086 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19087 spec_die = res.pdi;
19088 cu = res.cu;
19089
19090 spec_die->fixup (cu);
19091
19092 if (spec_die->name)
19093 {
19094 name = spec_die->name;
19095
19096 /* Copy DW_AT_external attribute if it is set. */
19097 if (spec_die->is_external)
19098 is_external = spec_die->is_external;
19099 }
19100 }
19101
19102 /* Set default names for some unnamed DIEs. */
19103
19104 if (name == NULL && tag == DW_TAG_namespace)
19105 name = CP_ANONYMOUS_NAMESPACE_STR;
19106
19107 /* If there is no parent die to provide a namespace, and there are
19108 children, see if we can determine the namespace from their linkage
19109 name. */
19110 if (cu->language == language_cplus
19111 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19112 && die_parent == NULL
19113 && has_children
19114 && (tag == DW_TAG_class_type
19115 || tag == DW_TAG_structure_type
19116 || tag == DW_TAG_union_type))
19117 guess_partial_die_structure_name (this, cu);
19118
19119 /* GCC might emit a nameless struct or union that has a linkage
19120 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19121 if (name == NULL
19122 && (tag == DW_TAG_class_type
19123 || tag == DW_TAG_interface_type
19124 || tag == DW_TAG_structure_type
19125 || tag == DW_TAG_union_type)
19126 && linkage_name != NULL)
19127 {
19128 char *demangled;
19129
19130 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19131 if (demangled)
19132 {
19133 const char *base;
19134
19135 /* Strip any leading namespaces/classes, keep only the base name.
19136 DW_AT_name for named DIEs does not contain the prefixes. */
19137 base = strrchr (demangled, ':');
19138 if (base && base > demangled && base[-1] == ':')
19139 base++;
19140 else
19141 base = demangled;
19142
19143 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19144 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19145 xfree (demangled);
19146 }
19147 }
19148
19149 fixup_called = 1;
19150 }
19151
19152 /* Read an attribute value described by an attribute form. */
19153
19154 static const gdb_byte *
19155 read_attribute_value (const struct die_reader_specs *reader,
19156 struct attribute *attr, unsigned form,
19157 LONGEST implicit_const, const gdb_byte *info_ptr)
19158 {
19159 struct dwarf2_cu *cu = reader->cu;
19160 struct dwarf2_per_objfile *dwarf2_per_objfile
19161 = cu->per_cu->dwarf2_per_objfile;
19162 struct objfile *objfile = dwarf2_per_objfile->objfile;
19163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19164 bfd *abfd = reader->abfd;
19165 struct comp_unit_head *cu_header = &cu->header;
19166 unsigned int bytes_read;
19167 struct dwarf_block *blk;
19168
19169 attr->form = (enum dwarf_form) form;
19170 switch (form)
19171 {
19172 case DW_FORM_ref_addr:
19173 if (cu->header.version == 2)
19174 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19175 else
19176 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19177 &cu->header, &bytes_read);
19178 info_ptr += bytes_read;
19179 break;
19180 case DW_FORM_GNU_ref_alt:
19181 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19182 info_ptr += bytes_read;
19183 break;
19184 case DW_FORM_addr:
19185 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19186 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19187 info_ptr += bytes_read;
19188 break;
19189 case DW_FORM_block2:
19190 blk = dwarf_alloc_block (cu);
19191 blk->size = read_2_bytes (abfd, info_ptr);
19192 info_ptr += 2;
19193 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19194 info_ptr += blk->size;
19195 DW_BLOCK (attr) = blk;
19196 break;
19197 case DW_FORM_block4:
19198 blk = dwarf_alloc_block (cu);
19199 blk->size = read_4_bytes (abfd, info_ptr);
19200 info_ptr += 4;
19201 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19202 info_ptr += blk->size;
19203 DW_BLOCK (attr) = blk;
19204 break;
19205 case DW_FORM_data2:
19206 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19207 info_ptr += 2;
19208 break;
19209 case DW_FORM_data4:
19210 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19211 info_ptr += 4;
19212 break;
19213 case DW_FORM_data8:
19214 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19215 info_ptr += 8;
19216 break;
19217 case DW_FORM_data16:
19218 blk = dwarf_alloc_block (cu);
19219 blk->size = 16;
19220 blk->data = read_n_bytes (abfd, info_ptr, 16);
19221 info_ptr += 16;
19222 DW_BLOCK (attr) = blk;
19223 break;
19224 case DW_FORM_sec_offset:
19225 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19226 info_ptr += bytes_read;
19227 break;
19228 case DW_FORM_string:
19229 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19230 DW_STRING_IS_CANONICAL (attr) = 0;
19231 info_ptr += bytes_read;
19232 break;
19233 case DW_FORM_strp:
19234 if (!cu->per_cu->is_dwz)
19235 {
19236 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19237 abfd, info_ptr, cu_header,
19238 &bytes_read);
19239 DW_STRING_IS_CANONICAL (attr) = 0;
19240 info_ptr += bytes_read;
19241 break;
19242 }
19243 /* FALLTHROUGH */
19244 case DW_FORM_line_strp:
19245 if (!cu->per_cu->is_dwz)
19246 {
19247 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19248 abfd, info_ptr,
19249 cu_header, &bytes_read);
19250 DW_STRING_IS_CANONICAL (attr) = 0;
19251 info_ptr += bytes_read;
19252 break;
19253 }
19254 /* FALLTHROUGH */
19255 case DW_FORM_GNU_strp_alt:
19256 {
19257 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19258 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19259 &bytes_read);
19260
19261 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19262 dwz, str_offset);
19263 DW_STRING_IS_CANONICAL (attr) = 0;
19264 info_ptr += bytes_read;
19265 }
19266 break;
19267 case DW_FORM_exprloc:
19268 case DW_FORM_block:
19269 blk = dwarf_alloc_block (cu);
19270 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19271 info_ptr += bytes_read;
19272 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19273 info_ptr += blk->size;
19274 DW_BLOCK (attr) = blk;
19275 break;
19276 case DW_FORM_block1:
19277 blk = dwarf_alloc_block (cu);
19278 blk->size = read_1_byte (abfd, info_ptr);
19279 info_ptr += 1;
19280 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19281 info_ptr += blk->size;
19282 DW_BLOCK (attr) = blk;
19283 break;
19284 case DW_FORM_data1:
19285 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19286 info_ptr += 1;
19287 break;
19288 case DW_FORM_flag:
19289 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19290 info_ptr += 1;
19291 break;
19292 case DW_FORM_flag_present:
19293 DW_UNSND (attr) = 1;
19294 break;
19295 case DW_FORM_sdata:
19296 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19297 info_ptr += bytes_read;
19298 break;
19299 case DW_FORM_udata:
19300 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19301 info_ptr += bytes_read;
19302 break;
19303 case DW_FORM_ref1:
19304 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19305 + read_1_byte (abfd, info_ptr));
19306 info_ptr += 1;
19307 break;
19308 case DW_FORM_ref2:
19309 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19310 + read_2_bytes (abfd, info_ptr));
19311 info_ptr += 2;
19312 break;
19313 case DW_FORM_ref4:
19314 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19315 + read_4_bytes (abfd, info_ptr));
19316 info_ptr += 4;
19317 break;
19318 case DW_FORM_ref8:
19319 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19320 + read_8_bytes (abfd, info_ptr));
19321 info_ptr += 8;
19322 break;
19323 case DW_FORM_ref_sig8:
19324 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19325 info_ptr += 8;
19326 break;
19327 case DW_FORM_ref_udata:
19328 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19329 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19330 info_ptr += bytes_read;
19331 break;
19332 case DW_FORM_indirect:
19333 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19334 info_ptr += bytes_read;
19335 if (form == DW_FORM_implicit_const)
19336 {
19337 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19338 info_ptr += bytes_read;
19339 }
19340 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19341 info_ptr);
19342 break;
19343 case DW_FORM_implicit_const:
19344 DW_SND (attr) = implicit_const;
19345 break;
19346 case DW_FORM_addrx:
19347 case DW_FORM_GNU_addr_index:
19348 if (reader->dwo_file == NULL)
19349 {
19350 /* For now flag a hard error.
19351 Later we can turn this into a complaint. */
19352 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19353 dwarf_form_name (form),
19354 bfd_get_filename (abfd));
19355 }
19356 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19357 info_ptr += bytes_read;
19358 break;
19359 case DW_FORM_strx:
19360 case DW_FORM_strx1:
19361 case DW_FORM_strx2:
19362 case DW_FORM_strx3:
19363 case DW_FORM_strx4:
19364 case DW_FORM_GNU_str_index:
19365 if (reader->dwo_file == NULL)
19366 {
19367 /* For now flag a hard error.
19368 Later we can turn this into a complaint if warranted. */
19369 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19370 dwarf_form_name (form),
19371 bfd_get_filename (abfd));
19372 }
19373 {
19374 ULONGEST str_index;
19375 if (form == DW_FORM_strx1)
19376 {
19377 str_index = read_1_byte (abfd, info_ptr);
19378 info_ptr += 1;
19379 }
19380 else if (form == DW_FORM_strx2)
19381 {
19382 str_index = read_2_bytes (abfd, info_ptr);
19383 info_ptr += 2;
19384 }
19385 else if (form == DW_FORM_strx3)
19386 {
19387 str_index = read_3_bytes (abfd, info_ptr);
19388 info_ptr += 3;
19389 }
19390 else if (form == DW_FORM_strx4)
19391 {
19392 str_index = read_4_bytes (abfd, info_ptr);
19393 info_ptr += 4;
19394 }
19395 else
19396 {
19397 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19398 info_ptr += bytes_read;
19399 }
19400 DW_STRING (attr) = read_str_index (reader, str_index);
19401 DW_STRING_IS_CANONICAL (attr) = 0;
19402 }
19403 break;
19404 default:
19405 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19406 dwarf_form_name (form),
19407 bfd_get_filename (abfd));
19408 }
19409
19410 /* Super hack. */
19411 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19412 attr->form = DW_FORM_GNU_ref_alt;
19413
19414 /* We have seen instances where the compiler tried to emit a byte
19415 size attribute of -1 which ended up being encoded as an unsigned
19416 0xffffffff. Although 0xffffffff is technically a valid size value,
19417 an object of this size seems pretty unlikely so we can relatively
19418 safely treat these cases as if the size attribute was invalid and
19419 treat them as zero by default. */
19420 if (attr->name == DW_AT_byte_size
19421 && form == DW_FORM_data4
19422 && DW_UNSND (attr) >= 0xffffffff)
19423 {
19424 complaint
19425 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19426 hex_string (DW_UNSND (attr)));
19427 DW_UNSND (attr) = 0;
19428 }
19429
19430 return info_ptr;
19431 }
19432
19433 /* Read an attribute described by an abbreviated attribute. */
19434
19435 static const gdb_byte *
19436 read_attribute (const struct die_reader_specs *reader,
19437 struct attribute *attr, struct attr_abbrev *abbrev,
19438 const gdb_byte *info_ptr)
19439 {
19440 attr->name = abbrev->name;
19441 return read_attribute_value (reader, attr, abbrev->form,
19442 abbrev->implicit_const, info_ptr);
19443 }
19444
19445 /* Read dwarf information from a buffer. */
19446
19447 static unsigned int
19448 read_1_byte (bfd *abfd, const gdb_byte *buf)
19449 {
19450 return bfd_get_8 (abfd, buf);
19451 }
19452
19453 static int
19454 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19455 {
19456 return bfd_get_signed_8 (abfd, buf);
19457 }
19458
19459 static unsigned int
19460 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19461 {
19462 return bfd_get_16 (abfd, buf);
19463 }
19464
19465 static int
19466 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19467 {
19468 return bfd_get_signed_16 (abfd, buf);
19469 }
19470
19471 static unsigned int
19472 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19473 {
19474 unsigned int result = 0;
19475 for (int i = 0; i < 3; ++i)
19476 {
19477 unsigned char byte = bfd_get_8 (abfd, buf);
19478 buf++;
19479 result |= ((unsigned int) byte << (i * 8));
19480 }
19481 return result;
19482 }
19483
19484 static unsigned int
19485 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19486 {
19487 return bfd_get_32 (abfd, buf);
19488 }
19489
19490 static int
19491 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19492 {
19493 return bfd_get_signed_32 (abfd, buf);
19494 }
19495
19496 static ULONGEST
19497 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19498 {
19499 return bfd_get_64 (abfd, buf);
19500 }
19501
19502 static CORE_ADDR
19503 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19504 unsigned int *bytes_read)
19505 {
19506 struct comp_unit_head *cu_header = &cu->header;
19507 CORE_ADDR retval = 0;
19508
19509 if (cu_header->signed_addr_p)
19510 {
19511 switch (cu_header->addr_size)
19512 {
19513 case 2:
19514 retval = bfd_get_signed_16 (abfd, buf);
19515 break;
19516 case 4:
19517 retval = bfd_get_signed_32 (abfd, buf);
19518 break;
19519 case 8:
19520 retval = bfd_get_signed_64 (abfd, buf);
19521 break;
19522 default:
19523 internal_error (__FILE__, __LINE__,
19524 _("read_address: bad switch, signed [in module %s]"),
19525 bfd_get_filename (abfd));
19526 }
19527 }
19528 else
19529 {
19530 switch (cu_header->addr_size)
19531 {
19532 case 2:
19533 retval = bfd_get_16 (abfd, buf);
19534 break;
19535 case 4:
19536 retval = bfd_get_32 (abfd, buf);
19537 break;
19538 case 8:
19539 retval = bfd_get_64 (abfd, buf);
19540 break;
19541 default:
19542 internal_error (__FILE__, __LINE__,
19543 _("read_address: bad switch, "
19544 "unsigned [in module %s]"),
19545 bfd_get_filename (abfd));
19546 }
19547 }
19548
19549 *bytes_read = cu_header->addr_size;
19550 return retval;
19551 }
19552
19553 /* Read the initial length from a section. The (draft) DWARF 3
19554 specification allows the initial length to take up either 4 bytes
19555 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19556 bytes describe the length and all offsets will be 8 bytes in length
19557 instead of 4.
19558
19559 An older, non-standard 64-bit format is also handled by this
19560 function. The older format in question stores the initial length
19561 as an 8-byte quantity without an escape value. Lengths greater
19562 than 2^32 aren't very common which means that the initial 4 bytes
19563 is almost always zero. Since a length value of zero doesn't make
19564 sense for the 32-bit format, this initial zero can be considered to
19565 be an escape value which indicates the presence of the older 64-bit
19566 format. As written, the code can't detect (old format) lengths
19567 greater than 4GB. If it becomes necessary to handle lengths
19568 somewhat larger than 4GB, we could allow other small values (such
19569 as the non-sensical values of 1, 2, and 3) to also be used as
19570 escape values indicating the presence of the old format.
19571
19572 The value returned via bytes_read should be used to increment the
19573 relevant pointer after calling read_initial_length().
19574
19575 [ Note: read_initial_length() and read_offset() are based on the
19576 document entitled "DWARF Debugging Information Format", revision
19577 3, draft 8, dated November 19, 2001. This document was obtained
19578 from:
19579
19580 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19581
19582 This document is only a draft and is subject to change. (So beware.)
19583
19584 Details regarding the older, non-standard 64-bit format were
19585 determined empirically by examining 64-bit ELF files produced by
19586 the SGI toolchain on an IRIX 6.5 machine.
19587
19588 - Kevin, July 16, 2002
19589 ] */
19590
19591 static LONGEST
19592 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19593 {
19594 LONGEST length = bfd_get_32 (abfd, buf);
19595
19596 if (length == 0xffffffff)
19597 {
19598 length = bfd_get_64 (abfd, buf + 4);
19599 *bytes_read = 12;
19600 }
19601 else if (length == 0)
19602 {
19603 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19604 length = bfd_get_64 (abfd, buf);
19605 *bytes_read = 8;
19606 }
19607 else
19608 {
19609 *bytes_read = 4;
19610 }
19611
19612 return length;
19613 }
19614
19615 /* Cover function for read_initial_length.
19616 Returns the length of the object at BUF, and stores the size of the
19617 initial length in *BYTES_READ and stores the size that offsets will be in
19618 *OFFSET_SIZE.
19619 If the initial length size is not equivalent to that specified in
19620 CU_HEADER then issue a complaint.
19621 This is useful when reading non-comp-unit headers. */
19622
19623 static LONGEST
19624 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19625 const struct comp_unit_head *cu_header,
19626 unsigned int *bytes_read,
19627 unsigned int *offset_size)
19628 {
19629 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19630
19631 gdb_assert (cu_header->initial_length_size == 4
19632 || cu_header->initial_length_size == 8
19633 || cu_header->initial_length_size == 12);
19634
19635 if (cu_header->initial_length_size != *bytes_read)
19636 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19637
19638 *offset_size = (*bytes_read == 4) ? 4 : 8;
19639 return length;
19640 }
19641
19642 /* Read an offset from the data stream. The size of the offset is
19643 given by cu_header->offset_size. */
19644
19645 static LONGEST
19646 read_offset (bfd *abfd, const gdb_byte *buf,
19647 const struct comp_unit_head *cu_header,
19648 unsigned int *bytes_read)
19649 {
19650 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19651
19652 *bytes_read = cu_header->offset_size;
19653 return offset;
19654 }
19655
19656 /* Read an offset from the data stream. */
19657
19658 static LONGEST
19659 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19660 {
19661 LONGEST retval = 0;
19662
19663 switch (offset_size)
19664 {
19665 case 4:
19666 retval = bfd_get_32 (abfd, buf);
19667 break;
19668 case 8:
19669 retval = bfd_get_64 (abfd, buf);
19670 break;
19671 default:
19672 internal_error (__FILE__, __LINE__,
19673 _("read_offset_1: bad switch [in module %s]"),
19674 bfd_get_filename (abfd));
19675 }
19676
19677 return retval;
19678 }
19679
19680 static const gdb_byte *
19681 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19682 {
19683 /* If the size of a host char is 8 bits, we can return a pointer
19684 to the buffer, otherwise we have to copy the data to a buffer
19685 allocated on the temporary obstack. */
19686 gdb_assert (HOST_CHAR_BIT == 8);
19687 return buf;
19688 }
19689
19690 static const char *
19691 read_direct_string (bfd *abfd, const gdb_byte *buf,
19692 unsigned int *bytes_read_ptr)
19693 {
19694 /* If the size of a host char is 8 bits, we can return a pointer
19695 to the string, otherwise we have to copy the string to a buffer
19696 allocated on the temporary obstack. */
19697 gdb_assert (HOST_CHAR_BIT == 8);
19698 if (*buf == '\0')
19699 {
19700 *bytes_read_ptr = 1;
19701 return NULL;
19702 }
19703 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19704 return (const char *) buf;
19705 }
19706
19707 /* Return pointer to string at section SECT offset STR_OFFSET with error
19708 reporting strings FORM_NAME and SECT_NAME. */
19709
19710 static const char *
19711 read_indirect_string_at_offset_from (struct objfile *objfile,
19712 bfd *abfd, LONGEST str_offset,
19713 struct dwarf2_section_info *sect,
19714 const char *form_name,
19715 const char *sect_name)
19716 {
19717 dwarf2_read_section (objfile, sect);
19718 if (sect->buffer == NULL)
19719 error (_("%s used without %s section [in module %s]"),
19720 form_name, sect_name, bfd_get_filename (abfd));
19721 if (str_offset >= sect->size)
19722 error (_("%s pointing outside of %s section [in module %s]"),
19723 form_name, sect_name, bfd_get_filename (abfd));
19724 gdb_assert (HOST_CHAR_BIT == 8);
19725 if (sect->buffer[str_offset] == '\0')
19726 return NULL;
19727 return (const char *) (sect->buffer + str_offset);
19728 }
19729
19730 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19731
19732 static const char *
19733 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19734 bfd *abfd, LONGEST str_offset)
19735 {
19736 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19737 abfd, str_offset,
19738 &dwarf2_per_objfile->str,
19739 "DW_FORM_strp", ".debug_str");
19740 }
19741
19742 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19743
19744 static const char *
19745 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19746 bfd *abfd, LONGEST str_offset)
19747 {
19748 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19749 abfd, str_offset,
19750 &dwarf2_per_objfile->line_str,
19751 "DW_FORM_line_strp",
19752 ".debug_line_str");
19753 }
19754
19755 /* Read a string at offset STR_OFFSET in the .debug_str section from
19756 the .dwz file DWZ. Throw an error if the offset is too large. If
19757 the string consists of a single NUL byte, return NULL; otherwise
19758 return a pointer to the string. */
19759
19760 static const char *
19761 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19762 LONGEST str_offset)
19763 {
19764 dwarf2_read_section (objfile, &dwz->str);
19765
19766 if (dwz->str.buffer == NULL)
19767 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19768 "section [in module %s]"),
19769 bfd_get_filename (dwz->dwz_bfd.get ()));
19770 if (str_offset >= dwz->str.size)
19771 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19772 ".debug_str section [in module %s]"),
19773 bfd_get_filename (dwz->dwz_bfd.get ()));
19774 gdb_assert (HOST_CHAR_BIT == 8);
19775 if (dwz->str.buffer[str_offset] == '\0')
19776 return NULL;
19777 return (const char *) (dwz->str.buffer + str_offset);
19778 }
19779
19780 /* Return pointer to string at .debug_str offset as read from BUF.
19781 BUF is assumed to be in a compilation unit described by CU_HEADER.
19782 Return *BYTES_READ_PTR count of bytes read from BUF. */
19783
19784 static const char *
19785 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19786 const gdb_byte *buf,
19787 const struct comp_unit_head *cu_header,
19788 unsigned int *bytes_read_ptr)
19789 {
19790 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19791
19792 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19793 }
19794
19795 /* Return pointer to string at .debug_line_str offset as read from BUF.
19796 BUF is assumed to be in a compilation unit described by CU_HEADER.
19797 Return *BYTES_READ_PTR count of bytes read from BUF. */
19798
19799 static const char *
19800 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19801 bfd *abfd, const gdb_byte *buf,
19802 const struct comp_unit_head *cu_header,
19803 unsigned int *bytes_read_ptr)
19804 {
19805 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19806
19807 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19808 str_offset);
19809 }
19810
19811 ULONGEST
19812 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19813 unsigned int *bytes_read_ptr)
19814 {
19815 ULONGEST result;
19816 unsigned int num_read;
19817 int shift;
19818 unsigned char byte;
19819
19820 result = 0;
19821 shift = 0;
19822 num_read = 0;
19823 while (1)
19824 {
19825 byte = bfd_get_8 (abfd, buf);
19826 buf++;
19827 num_read++;
19828 result |= ((ULONGEST) (byte & 127) << shift);
19829 if ((byte & 128) == 0)
19830 {
19831 break;
19832 }
19833 shift += 7;
19834 }
19835 *bytes_read_ptr = num_read;
19836 return result;
19837 }
19838
19839 static LONGEST
19840 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19841 unsigned int *bytes_read_ptr)
19842 {
19843 ULONGEST result;
19844 int shift, num_read;
19845 unsigned char byte;
19846
19847 result = 0;
19848 shift = 0;
19849 num_read = 0;
19850 while (1)
19851 {
19852 byte = bfd_get_8 (abfd, buf);
19853 buf++;
19854 num_read++;
19855 result |= ((ULONGEST) (byte & 127) << shift);
19856 shift += 7;
19857 if ((byte & 128) == 0)
19858 {
19859 break;
19860 }
19861 }
19862 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19863 result |= -(((ULONGEST) 1) << shift);
19864 *bytes_read_ptr = num_read;
19865 return result;
19866 }
19867
19868 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19869 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19870 ADDR_SIZE is the size of addresses from the CU header. */
19871
19872 static CORE_ADDR
19873 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19874 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19875 {
19876 struct objfile *objfile = dwarf2_per_objfile->objfile;
19877 bfd *abfd = objfile->obfd;
19878 const gdb_byte *info_ptr;
19879
19880 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19881 if (dwarf2_per_objfile->addr.buffer == NULL)
19882 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19883 objfile_name (objfile));
19884 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19885 error (_("DW_FORM_addr_index pointing outside of "
19886 ".debug_addr section [in module %s]"),
19887 objfile_name (objfile));
19888 info_ptr = (dwarf2_per_objfile->addr.buffer
19889 + addr_base + addr_index * addr_size);
19890 if (addr_size == 4)
19891 return bfd_get_32 (abfd, info_ptr);
19892 else
19893 return bfd_get_64 (abfd, info_ptr);
19894 }
19895
19896 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19897
19898 static CORE_ADDR
19899 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19900 {
19901 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19902 cu->addr_base, cu->header.addr_size);
19903 }
19904
19905 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19906
19907 static CORE_ADDR
19908 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19909 unsigned int *bytes_read)
19910 {
19911 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19912 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19913
19914 return read_addr_index (cu, addr_index);
19915 }
19916
19917 /* Data structure to pass results from dwarf2_read_addr_index_reader
19918 back to dwarf2_read_addr_index. */
19919
19920 struct dwarf2_read_addr_index_data
19921 {
19922 ULONGEST addr_base;
19923 int addr_size;
19924 };
19925
19926 /* die_reader_func for dwarf2_read_addr_index. */
19927
19928 static void
19929 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19930 const gdb_byte *info_ptr,
19931 struct die_info *comp_unit_die,
19932 int has_children,
19933 void *data)
19934 {
19935 struct dwarf2_cu *cu = reader->cu;
19936 struct dwarf2_read_addr_index_data *aidata =
19937 (struct dwarf2_read_addr_index_data *) data;
19938
19939 aidata->addr_base = cu->addr_base;
19940 aidata->addr_size = cu->header.addr_size;
19941 }
19942
19943 /* Given an index in .debug_addr, fetch the value.
19944 NOTE: This can be called during dwarf expression evaluation,
19945 long after the debug information has been read, and thus per_cu->cu
19946 may no longer exist. */
19947
19948 CORE_ADDR
19949 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19950 unsigned int addr_index)
19951 {
19952 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19953 struct dwarf2_cu *cu = per_cu->cu;
19954 ULONGEST addr_base;
19955 int addr_size;
19956
19957 /* We need addr_base and addr_size.
19958 If we don't have PER_CU->cu, we have to get it.
19959 Nasty, but the alternative is storing the needed info in PER_CU,
19960 which at this point doesn't seem justified: it's not clear how frequently
19961 it would get used and it would increase the size of every PER_CU.
19962 Entry points like dwarf2_per_cu_addr_size do a similar thing
19963 so we're not in uncharted territory here.
19964 Alas we need to be a bit more complicated as addr_base is contained
19965 in the DIE.
19966
19967 We don't need to read the entire CU(/TU).
19968 We just need the header and top level die.
19969
19970 IWBN to use the aging mechanism to let us lazily later discard the CU.
19971 For now we skip this optimization. */
19972
19973 if (cu != NULL)
19974 {
19975 addr_base = cu->addr_base;
19976 addr_size = cu->header.addr_size;
19977 }
19978 else
19979 {
19980 struct dwarf2_read_addr_index_data aidata;
19981
19982 /* Note: We can't use init_cutu_and_read_dies_simple here,
19983 we need addr_base. */
19984 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19985 dwarf2_read_addr_index_reader, &aidata);
19986 addr_base = aidata.addr_base;
19987 addr_size = aidata.addr_size;
19988 }
19989
19990 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19991 addr_size);
19992 }
19993
19994 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19995 This is only used by the Fission support. */
19996
19997 static const char *
19998 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19999 {
20000 struct dwarf2_cu *cu = reader->cu;
20001 struct dwarf2_per_objfile *dwarf2_per_objfile
20002 = cu->per_cu->dwarf2_per_objfile;
20003 struct objfile *objfile = dwarf2_per_objfile->objfile;
20004 const char *objf_name = objfile_name (objfile);
20005 bfd *abfd = objfile->obfd;
20006 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20007 struct dwarf2_section_info *str_offsets_section =
20008 &reader->dwo_file->sections.str_offsets;
20009 const gdb_byte *info_ptr;
20010 ULONGEST str_offset;
20011 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20012
20013 dwarf2_read_section (objfile, str_section);
20014 dwarf2_read_section (objfile, str_offsets_section);
20015 if (str_section->buffer == NULL)
20016 error (_("%s used without .debug_str.dwo section"
20017 " in CU at offset %s [in module %s]"),
20018 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20019 if (str_offsets_section->buffer == NULL)
20020 error (_("%s used without .debug_str_offsets.dwo section"
20021 " in CU at offset %s [in module %s]"),
20022 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20023 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20024 error (_("%s pointing outside of .debug_str_offsets.dwo"
20025 " section in CU at offset %s [in module %s]"),
20026 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20027 info_ptr = (str_offsets_section->buffer
20028 + str_index * cu->header.offset_size);
20029 if (cu->header.offset_size == 4)
20030 str_offset = bfd_get_32 (abfd, info_ptr);
20031 else
20032 str_offset = bfd_get_64 (abfd, info_ptr);
20033 if (str_offset >= str_section->size)
20034 error (_("Offset from %s pointing outside of"
20035 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20036 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20037 return (const char *) (str_section->buffer + str_offset);
20038 }
20039
20040 /* Return the length of an LEB128 number in BUF. */
20041
20042 static int
20043 leb128_size (const gdb_byte *buf)
20044 {
20045 const gdb_byte *begin = buf;
20046 gdb_byte byte;
20047
20048 while (1)
20049 {
20050 byte = *buf++;
20051 if ((byte & 128) == 0)
20052 return buf - begin;
20053 }
20054 }
20055
20056 static void
20057 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20058 {
20059 switch (lang)
20060 {
20061 case DW_LANG_C89:
20062 case DW_LANG_C99:
20063 case DW_LANG_C11:
20064 case DW_LANG_C:
20065 case DW_LANG_UPC:
20066 cu->language = language_c;
20067 break;
20068 case DW_LANG_Java:
20069 case DW_LANG_C_plus_plus:
20070 case DW_LANG_C_plus_plus_11:
20071 case DW_LANG_C_plus_plus_14:
20072 cu->language = language_cplus;
20073 break;
20074 case DW_LANG_D:
20075 cu->language = language_d;
20076 break;
20077 case DW_LANG_Fortran77:
20078 case DW_LANG_Fortran90:
20079 case DW_LANG_Fortran95:
20080 case DW_LANG_Fortran03:
20081 case DW_LANG_Fortran08:
20082 cu->language = language_fortran;
20083 break;
20084 case DW_LANG_Go:
20085 cu->language = language_go;
20086 break;
20087 case DW_LANG_Mips_Assembler:
20088 cu->language = language_asm;
20089 break;
20090 case DW_LANG_Ada83:
20091 case DW_LANG_Ada95:
20092 cu->language = language_ada;
20093 break;
20094 case DW_LANG_Modula2:
20095 cu->language = language_m2;
20096 break;
20097 case DW_LANG_Pascal83:
20098 cu->language = language_pascal;
20099 break;
20100 case DW_LANG_ObjC:
20101 cu->language = language_objc;
20102 break;
20103 case DW_LANG_Rust:
20104 case DW_LANG_Rust_old:
20105 cu->language = language_rust;
20106 break;
20107 case DW_LANG_Cobol74:
20108 case DW_LANG_Cobol85:
20109 default:
20110 cu->language = language_minimal;
20111 break;
20112 }
20113 cu->language_defn = language_def (cu->language);
20114 }
20115
20116 /* Return the named attribute or NULL if not there. */
20117
20118 static struct attribute *
20119 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20120 {
20121 for (;;)
20122 {
20123 unsigned int i;
20124 struct attribute *spec = NULL;
20125
20126 for (i = 0; i < die->num_attrs; ++i)
20127 {
20128 if (die->attrs[i].name == name)
20129 return &die->attrs[i];
20130 if (die->attrs[i].name == DW_AT_specification
20131 || die->attrs[i].name == DW_AT_abstract_origin)
20132 spec = &die->attrs[i];
20133 }
20134
20135 if (!spec)
20136 break;
20137
20138 die = follow_die_ref (die, spec, &cu);
20139 }
20140
20141 return NULL;
20142 }
20143
20144 /* Return the named attribute or NULL if not there,
20145 but do not follow DW_AT_specification, etc.
20146 This is for use in contexts where we're reading .debug_types dies.
20147 Following DW_AT_specification, DW_AT_abstract_origin will take us
20148 back up the chain, and we want to go down. */
20149
20150 static struct attribute *
20151 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20152 {
20153 unsigned int i;
20154
20155 for (i = 0; i < die->num_attrs; ++i)
20156 if (die->attrs[i].name == name)
20157 return &die->attrs[i];
20158
20159 return NULL;
20160 }
20161
20162 /* Return the string associated with a string-typed attribute, or NULL if it
20163 is either not found or is of an incorrect type. */
20164
20165 static const char *
20166 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20167 {
20168 struct attribute *attr;
20169 const char *str = NULL;
20170
20171 attr = dwarf2_attr (die, name, cu);
20172
20173 if (attr != NULL)
20174 {
20175 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20176 || attr->form == DW_FORM_string
20177 || attr->form == DW_FORM_strx
20178 || attr->form == DW_FORM_strx1
20179 || attr->form == DW_FORM_strx2
20180 || attr->form == DW_FORM_strx3
20181 || attr->form == DW_FORM_strx4
20182 || attr->form == DW_FORM_GNU_str_index
20183 || attr->form == DW_FORM_GNU_strp_alt)
20184 str = DW_STRING (attr);
20185 else
20186 complaint (_("string type expected for attribute %s for "
20187 "DIE at %s in module %s"),
20188 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20189 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20190 }
20191
20192 return str;
20193 }
20194
20195 /* Return the dwo name or NULL if not present. If present, it is in either
20196 DW_AT_GNU_dwo_name or DW_AT_dwo_name atrribute. */
20197 static const char *
20198 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20199 {
20200 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20201 if (dwo_name == nullptr)
20202 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20203 return dwo_name;
20204 }
20205
20206 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20207 and holds a non-zero value. This function should only be used for
20208 DW_FORM_flag or DW_FORM_flag_present attributes. */
20209
20210 static int
20211 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20212 {
20213 struct attribute *attr = dwarf2_attr (die, name, cu);
20214
20215 return (attr && DW_UNSND (attr));
20216 }
20217
20218 static int
20219 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20220 {
20221 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20222 which value is non-zero. However, we have to be careful with
20223 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20224 (via dwarf2_flag_true_p) follows this attribute. So we may
20225 end up accidently finding a declaration attribute that belongs
20226 to a different DIE referenced by the specification attribute,
20227 even though the given DIE does not have a declaration attribute. */
20228 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20229 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20230 }
20231
20232 /* Return the die giving the specification for DIE, if there is
20233 one. *SPEC_CU is the CU containing DIE on input, and the CU
20234 containing the return value on output. If there is no
20235 specification, but there is an abstract origin, that is
20236 returned. */
20237
20238 static struct die_info *
20239 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20240 {
20241 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20242 *spec_cu);
20243
20244 if (spec_attr == NULL)
20245 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20246
20247 if (spec_attr == NULL)
20248 return NULL;
20249 else
20250 return follow_die_ref (die, spec_attr, spec_cu);
20251 }
20252
20253 /* Stub for free_line_header to match void * callback types. */
20254
20255 static void
20256 free_line_header_voidp (void *arg)
20257 {
20258 struct line_header *lh = (struct line_header *) arg;
20259
20260 delete lh;
20261 }
20262
20263 void
20264 line_header::add_include_dir (const char *include_dir)
20265 {
20266 if (dwarf_line_debug >= 2)
20267 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20268 include_dirs.size () + 1, include_dir);
20269
20270 include_dirs.push_back (include_dir);
20271 }
20272
20273 void
20274 line_header::add_file_name (const char *name,
20275 dir_index d_index,
20276 unsigned int mod_time,
20277 unsigned int length)
20278 {
20279 if (dwarf_line_debug >= 2)
20280 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20281 (unsigned) file_names.size () + 1, name);
20282
20283 file_names.emplace_back (name, d_index, mod_time, length);
20284 }
20285
20286 /* A convenience function to find the proper .debug_line section for a CU. */
20287
20288 static struct dwarf2_section_info *
20289 get_debug_line_section (struct dwarf2_cu *cu)
20290 {
20291 struct dwarf2_section_info *section;
20292 struct dwarf2_per_objfile *dwarf2_per_objfile
20293 = cu->per_cu->dwarf2_per_objfile;
20294
20295 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20296 DWO file. */
20297 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20298 section = &cu->dwo_unit->dwo_file->sections.line;
20299 else if (cu->per_cu->is_dwz)
20300 {
20301 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20302
20303 section = &dwz->line;
20304 }
20305 else
20306 section = &dwarf2_per_objfile->line;
20307
20308 return section;
20309 }
20310
20311 /* Read directory or file name entry format, starting with byte of
20312 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20313 entries count and the entries themselves in the described entry
20314 format. */
20315
20316 static void
20317 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20318 bfd *abfd, const gdb_byte **bufp,
20319 struct line_header *lh,
20320 const struct comp_unit_head *cu_header,
20321 void (*callback) (struct line_header *lh,
20322 const char *name,
20323 dir_index d_index,
20324 unsigned int mod_time,
20325 unsigned int length))
20326 {
20327 gdb_byte format_count, formati;
20328 ULONGEST data_count, datai;
20329 const gdb_byte *buf = *bufp;
20330 const gdb_byte *format_header_data;
20331 unsigned int bytes_read;
20332
20333 format_count = read_1_byte (abfd, buf);
20334 buf += 1;
20335 format_header_data = buf;
20336 for (formati = 0; formati < format_count; formati++)
20337 {
20338 read_unsigned_leb128 (abfd, buf, &bytes_read);
20339 buf += bytes_read;
20340 read_unsigned_leb128 (abfd, buf, &bytes_read);
20341 buf += bytes_read;
20342 }
20343
20344 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20345 buf += bytes_read;
20346 for (datai = 0; datai < data_count; datai++)
20347 {
20348 const gdb_byte *format = format_header_data;
20349 struct file_entry fe;
20350
20351 for (formati = 0; formati < format_count; formati++)
20352 {
20353 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20354 format += bytes_read;
20355
20356 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20357 format += bytes_read;
20358
20359 gdb::optional<const char *> string;
20360 gdb::optional<unsigned int> uint;
20361
20362 switch (form)
20363 {
20364 case DW_FORM_string:
20365 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20366 buf += bytes_read;
20367 break;
20368
20369 case DW_FORM_line_strp:
20370 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20371 abfd, buf,
20372 cu_header,
20373 &bytes_read));
20374 buf += bytes_read;
20375 break;
20376
20377 case DW_FORM_data1:
20378 uint.emplace (read_1_byte (abfd, buf));
20379 buf += 1;
20380 break;
20381
20382 case DW_FORM_data2:
20383 uint.emplace (read_2_bytes (abfd, buf));
20384 buf += 2;
20385 break;
20386
20387 case DW_FORM_data4:
20388 uint.emplace (read_4_bytes (abfd, buf));
20389 buf += 4;
20390 break;
20391
20392 case DW_FORM_data8:
20393 uint.emplace (read_8_bytes (abfd, buf));
20394 buf += 8;
20395 break;
20396
20397 case DW_FORM_udata:
20398 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20399 buf += bytes_read;
20400 break;
20401
20402 case DW_FORM_block:
20403 /* It is valid only for DW_LNCT_timestamp which is ignored by
20404 current GDB. */
20405 break;
20406 }
20407
20408 switch (content_type)
20409 {
20410 case DW_LNCT_path:
20411 if (string.has_value ())
20412 fe.name = *string;
20413 break;
20414 case DW_LNCT_directory_index:
20415 if (uint.has_value ())
20416 fe.d_index = (dir_index) *uint;
20417 break;
20418 case DW_LNCT_timestamp:
20419 if (uint.has_value ())
20420 fe.mod_time = *uint;
20421 break;
20422 case DW_LNCT_size:
20423 if (uint.has_value ())
20424 fe.length = *uint;
20425 break;
20426 case DW_LNCT_MD5:
20427 break;
20428 default:
20429 complaint (_("Unknown format content type %s"),
20430 pulongest (content_type));
20431 }
20432 }
20433
20434 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20435 }
20436
20437 *bufp = buf;
20438 }
20439
20440 /* Read the statement program header starting at OFFSET in
20441 .debug_line, or .debug_line.dwo. Return a pointer
20442 to a struct line_header, allocated using xmalloc.
20443 Returns NULL if there is a problem reading the header, e.g., if it
20444 has a version we don't understand.
20445
20446 NOTE: the strings in the include directory and file name tables of
20447 the returned object point into the dwarf line section buffer,
20448 and must not be freed. */
20449
20450 static line_header_up
20451 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20452 {
20453 const gdb_byte *line_ptr;
20454 unsigned int bytes_read, offset_size;
20455 int i;
20456 const char *cur_dir, *cur_file;
20457 struct dwarf2_section_info *section;
20458 bfd *abfd;
20459 struct dwarf2_per_objfile *dwarf2_per_objfile
20460 = cu->per_cu->dwarf2_per_objfile;
20461
20462 section = get_debug_line_section (cu);
20463 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20464 if (section->buffer == NULL)
20465 {
20466 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20467 complaint (_("missing .debug_line.dwo section"));
20468 else
20469 complaint (_("missing .debug_line section"));
20470 return 0;
20471 }
20472
20473 /* We can't do this until we know the section is non-empty.
20474 Only then do we know we have such a section. */
20475 abfd = get_section_bfd_owner (section);
20476
20477 /* Make sure that at least there's room for the total_length field.
20478 That could be 12 bytes long, but we're just going to fudge that. */
20479 if (to_underlying (sect_off) + 4 >= section->size)
20480 {
20481 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20482 return 0;
20483 }
20484
20485 line_header_up lh (new line_header ());
20486
20487 lh->sect_off = sect_off;
20488 lh->offset_in_dwz = cu->per_cu->is_dwz;
20489
20490 line_ptr = section->buffer + to_underlying (sect_off);
20491
20492 /* Read in the header. */
20493 lh->total_length =
20494 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20495 &bytes_read, &offset_size);
20496 line_ptr += bytes_read;
20497 if (line_ptr + lh->total_length > (section->buffer + section->size))
20498 {
20499 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20500 return 0;
20501 }
20502 lh->statement_program_end = line_ptr + lh->total_length;
20503 lh->version = read_2_bytes (abfd, line_ptr);
20504 line_ptr += 2;
20505 if (lh->version > 5)
20506 {
20507 /* This is a version we don't understand. The format could have
20508 changed in ways we don't handle properly so just punt. */
20509 complaint (_("unsupported version in .debug_line section"));
20510 return NULL;
20511 }
20512 if (lh->version >= 5)
20513 {
20514 gdb_byte segment_selector_size;
20515
20516 /* Skip address size. */
20517 read_1_byte (abfd, line_ptr);
20518 line_ptr += 1;
20519
20520 segment_selector_size = read_1_byte (abfd, line_ptr);
20521 line_ptr += 1;
20522 if (segment_selector_size != 0)
20523 {
20524 complaint (_("unsupported segment selector size %u "
20525 "in .debug_line section"),
20526 segment_selector_size);
20527 return NULL;
20528 }
20529 }
20530 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20531 line_ptr += offset_size;
20532 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20533 line_ptr += 1;
20534 if (lh->version >= 4)
20535 {
20536 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20537 line_ptr += 1;
20538 }
20539 else
20540 lh->maximum_ops_per_instruction = 1;
20541
20542 if (lh->maximum_ops_per_instruction == 0)
20543 {
20544 lh->maximum_ops_per_instruction = 1;
20545 complaint (_("invalid maximum_ops_per_instruction "
20546 "in `.debug_line' section"));
20547 }
20548
20549 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20550 line_ptr += 1;
20551 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20552 line_ptr += 1;
20553 lh->line_range = read_1_byte (abfd, line_ptr);
20554 line_ptr += 1;
20555 lh->opcode_base = read_1_byte (abfd, line_ptr);
20556 line_ptr += 1;
20557 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20558
20559 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20560 for (i = 1; i < lh->opcode_base; ++i)
20561 {
20562 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20563 line_ptr += 1;
20564 }
20565
20566 if (lh->version >= 5)
20567 {
20568 /* Read directory table. */
20569 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20570 &cu->header,
20571 [] (struct line_header *header, const char *name,
20572 dir_index d_index, unsigned int mod_time,
20573 unsigned int length)
20574 {
20575 header->add_include_dir (name);
20576 });
20577
20578 /* Read file name table. */
20579 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20580 &cu->header,
20581 [] (struct line_header *header, const char *name,
20582 dir_index d_index, unsigned int mod_time,
20583 unsigned int length)
20584 {
20585 header->add_file_name (name, d_index, mod_time, length);
20586 });
20587 }
20588 else
20589 {
20590 /* Read directory table. */
20591 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20592 {
20593 line_ptr += bytes_read;
20594 lh->add_include_dir (cur_dir);
20595 }
20596 line_ptr += bytes_read;
20597
20598 /* Read file name table. */
20599 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20600 {
20601 unsigned int mod_time, length;
20602 dir_index d_index;
20603
20604 line_ptr += bytes_read;
20605 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20606 line_ptr += bytes_read;
20607 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20608 line_ptr += bytes_read;
20609 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20610 line_ptr += bytes_read;
20611
20612 lh->add_file_name (cur_file, d_index, mod_time, length);
20613 }
20614 line_ptr += bytes_read;
20615 }
20616 lh->statement_program_start = line_ptr;
20617
20618 if (line_ptr > (section->buffer + section->size))
20619 complaint (_("line number info header doesn't "
20620 "fit in `.debug_line' section"));
20621
20622 return lh;
20623 }
20624
20625 /* Subroutine of dwarf_decode_lines to simplify it.
20626 Return the file name of the psymtab for included file FILE_INDEX
20627 in line header LH of PST.
20628 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20629 If space for the result is malloc'd, *NAME_HOLDER will be set.
20630 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20631
20632 static const char *
20633 psymtab_include_file_name (const struct line_header *lh, int file_index,
20634 const struct partial_symtab *pst,
20635 const char *comp_dir,
20636 gdb::unique_xmalloc_ptr<char> *name_holder)
20637 {
20638 const file_entry &fe = lh->file_names[file_index];
20639 const char *include_name = fe.name;
20640 const char *include_name_to_compare = include_name;
20641 const char *pst_filename;
20642 int file_is_pst;
20643
20644 const char *dir_name = fe.include_dir (lh);
20645
20646 gdb::unique_xmalloc_ptr<char> hold_compare;
20647 if (!IS_ABSOLUTE_PATH (include_name)
20648 && (dir_name != NULL || comp_dir != NULL))
20649 {
20650 /* Avoid creating a duplicate psymtab for PST.
20651 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20652 Before we do the comparison, however, we need to account
20653 for DIR_NAME and COMP_DIR.
20654 First prepend dir_name (if non-NULL). If we still don't
20655 have an absolute path prepend comp_dir (if non-NULL).
20656 However, the directory we record in the include-file's
20657 psymtab does not contain COMP_DIR (to match the
20658 corresponding symtab(s)).
20659
20660 Example:
20661
20662 bash$ cd /tmp
20663 bash$ gcc -g ./hello.c
20664 include_name = "hello.c"
20665 dir_name = "."
20666 DW_AT_comp_dir = comp_dir = "/tmp"
20667 DW_AT_name = "./hello.c"
20668
20669 */
20670
20671 if (dir_name != NULL)
20672 {
20673 name_holder->reset (concat (dir_name, SLASH_STRING,
20674 include_name, (char *) NULL));
20675 include_name = name_holder->get ();
20676 include_name_to_compare = include_name;
20677 }
20678 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20679 {
20680 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20681 include_name, (char *) NULL));
20682 include_name_to_compare = hold_compare.get ();
20683 }
20684 }
20685
20686 pst_filename = pst->filename;
20687 gdb::unique_xmalloc_ptr<char> copied_name;
20688 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20689 {
20690 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20691 pst_filename, (char *) NULL));
20692 pst_filename = copied_name.get ();
20693 }
20694
20695 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20696
20697 if (file_is_pst)
20698 return NULL;
20699 return include_name;
20700 }
20701
20702 /* State machine to track the state of the line number program. */
20703
20704 class lnp_state_machine
20705 {
20706 public:
20707 /* Initialize a machine state for the start of a line number
20708 program. */
20709 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20710 bool record_lines_p);
20711
20712 file_entry *current_file ()
20713 {
20714 /* lh->file_names is 0-based, but the file name numbers in the
20715 statement program are 1-based. */
20716 return m_line_header->file_name_at (m_file);
20717 }
20718
20719 /* Record the line in the state machine. END_SEQUENCE is true if
20720 we're processing the end of a sequence. */
20721 void record_line (bool end_sequence);
20722
20723 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20724 nop-out rest of the lines in this sequence. */
20725 void check_line_address (struct dwarf2_cu *cu,
20726 const gdb_byte *line_ptr,
20727 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20728
20729 void handle_set_discriminator (unsigned int discriminator)
20730 {
20731 m_discriminator = discriminator;
20732 m_line_has_non_zero_discriminator |= discriminator != 0;
20733 }
20734
20735 /* Handle DW_LNE_set_address. */
20736 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20737 {
20738 m_op_index = 0;
20739 address += baseaddr;
20740 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20741 }
20742
20743 /* Handle DW_LNS_advance_pc. */
20744 void handle_advance_pc (CORE_ADDR adjust);
20745
20746 /* Handle a special opcode. */
20747 void handle_special_opcode (unsigned char op_code);
20748
20749 /* Handle DW_LNS_advance_line. */
20750 void handle_advance_line (int line_delta)
20751 {
20752 advance_line (line_delta);
20753 }
20754
20755 /* Handle DW_LNS_set_file. */
20756 void handle_set_file (file_name_index file);
20757
20758 /* Handle DW_LNS_negate_stmt. */
20759 void handle_negate_stmt ()
20760 {
20761 m_is_stmt = !m_is_stmt;
20762 }
20763
20764 /* Handle DW_LNS_const_add_pc. */
20765 void handle_const_add_pc ();
20766
20767 /* Handle DW_LNS_fixed_advance_pc. */
20768 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20769 {
20770 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20771 m_op_index = 0;
20772 }
20773
20774 /* Handle DW_LNS_copy. */
20775 void handle_copy ()
20776 {
20777 record_line (false);
20778 m_discriminator = 0;
20779 }
20780
20781 /* Handle DW_LNE_end_sequence. */
20782 void handle_end_sequence ()
20783 {
20784 m_currently_recording_lines = true;
20785 }
20786
20787 private:
20788 /* Advance the line by LINE_DELTA. */
20789 void advance_line (int line_delta)
20790 {
20791 m_line += line_delta;
20792
20793 if (line_delta != 0)
20794 m_line_has_non_zero_discriminator = m_discriminator != 0;
20795 }
20796
20797 struct dwarf2_cu *m_cu;
20798
20799 gdbarch *m_gdbarch;
20800
20801 /* True if we're recording lines.
20802 Otherwise we're building partial symtabs and are just interested in
20803 finding include files mentioned by the line number program. */
20804 bool m_record_lines_p;
20805
20806 /* The line number header. */
20807 line_header *m_line_header;
20808
20809 /* These are part of the standard DWARF line number state machine,
20810 and initialized according to the DWARF spec. */
20811
20812 unsigned char m_op_index = 0;
20813 /* The line table index (1-based) of the current file. */
20814 file_name_index m_file = (file_name_index) 1;
20815 unsigned int m_line = 1;
20816
20817 /* These are initialized in the constructor. */
20818
20819 CORE_ADDR m_address;
20820 bool m_is_stmt;
20821 unsigned int m_discriminator;
20822
20823 /* Additional bits of state we need to track. */
20824
20825 /* The last file that we called dwarf2_start_subfile for.
20826 This is only used for TLLs. */
20827 unsigned int m_last_file = 0;
20828 /* The last file a line number was recorded for. */
20829 struct subfile *m_last_subfile = NULL;
20830
20831 /* When true, record the lines we decode. */
20832 bool m_currently_recording_lines = false;
20833
20834 /* The last line number that was recorded, used to coalesce
20835 consecutive entries for the same line. This can happen, for
20836 example, when discriminators are present. PR 17276. */
20837 unsigned int m_last_line = 0;
20838 bool m_line_has_non_zero_discriminator = false;
20839 };
20840
20841 void
20842 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20843 {
20844 CORE_ADDR addr_adj = (((m_op_index + adjust)
20845 / m_line_header->maximum_ops_per_instruction)
20846 * m_line_header->minimum_instruction_length);
20847 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20848 m_op_index = ((m_op_index + adjust)
20849 % m_line_header->maximum_ops_per_instruction);
20850 }
20851
20852 void
20853 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20854 {
20855 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20856 CORE_ADDR addr_adj = (((m_op_index
20857 + (adj_opcode / m_line_header->line_range))
20858 / m_line_header->maximum_ops_per_instruction)
20859 * m_line_header->minimum_instruction_length);
20860 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20861 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20862 % m_line_header->maximum_ops_per_instruction);
20863
20864 int line_delta = (m_line_header->line_base
20865 + (adj_opcode % m_line_header->line_range));
20866 advance_line (line_delta);
20867 record_line (false);
20868 m_discriminator = 0;
20869 }
20870
20871 void
20872 lnp_state_machine::handle_set_file (file_name_index file)
20873 {
20874 m_file = file;
20875
20876 const file_entry *fe = current_file ();
20877 if (fe == NULL)
20878 dwarf2_debug_line_missing_file_complaint ();
20879 else if (m_record_lines_p)
20880 {
20881 const char *dir = fe->include_dir (m_line_header);
20882
20883 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20884 m_line_has_non_zero_discriminator = m_discriminator != 0;
20885 dwarf2_start_subfile (m_cu, fe->name, dir);
20886 }
20887 }
20888
20889 void
20890 lnp_state_machine::handle_const_add_pc ()
20891 {
20892 CORE_ADDR adjust
20893 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20894
20895 CORE_ADDR addr_adj
20896 = (((m_op_index + adjust)
20897 / m_line_header->maximum_ops_per_instruction)
20898 * m_line_header->minimum_instruction_length);
20899
20900 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20901 m_op_index = ((m_op_index + adjust)
20902 % m_line_header->maximum_ops_per_instruction);
20903 }
20904
20905 /* Return non-zero if we should add LINE to the line number table.
20906 LINE is the line to add, LAST_LINE is the last line that was added,
20907 LAST_SUBFILE is the subfile for LAST_LINE.
20908 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20909 had a non-zero discriminator.
20910
20911 We have to be careful in the presence of discriminators.
20912 E.g., for this line:
20913
20914 for (i = 0; i < 100000; i++);
20915
20916 clang can emit four line number entries for that one line,
20917 each with a different discriminator.
20918 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20919
20920 However, we want gdb to coalesce all four entries into one.
20921 Otherwise the user could stepi into the middle of the line and
20922 gdb would get confused about whether the pc really was in the
20923 middle of the line.
20924
20925 Things are further complicated by the fact that two consecutive
20926 line number entries for the same line is a heuristic used by gcc
20927 to denote the end of the prologue. So we can't just discard duplicate
20928 entries, we have to be selective about it. The heuristic we use is
20929 that we only collapse consecutive entries for the same line if at least
20930 one of those entries has a non-zero discriminator. PR 17276.
20931
20932 Note: Addresses in the line number state machine can never go backwards
20933 within one sequence, thus this coalescing is ok. */
20934
20935 static int
20936 dwarf_record_line_p (struct dwarf2_cu *cu,
20937 unsigned int line, unsigned int last_line,
20938 int line_has_non_zero_discriminator,
20939 struct subfile *last_subfile)
20940 {
20941 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20942 return 1;
20943 if (line != last_line)
20944 return 1;
20945 /* Same line for the same file that we've seen already.
20946 As a last check, for pr 17276, only record the line if the line
20947 has never had a non-zero discriminator. */
20948 if (!line_has_non_zero_discriminator)
20949 return 1;
20950 return 0;
20951 }
20952
20953 /* Use the CU's builder to record line number LINE beginning at
20954 address ADDRESS in the line table of subfile SUBFILE. */
20955
20956 static void
20957 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20958 unsigned int line, CORE_ADDR address,
20959 struct dwarf2_cu *cu)
20960 {
20961 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20962
20963 if (dwarf_line_debug)
20964 {
20965 fprintf_unfiltered (gdb_stdlog,
20966 "Recording line %u, file %s, address %s\n",
20967 line, lbasename (subfile->name),
20968 paddress (gdbarch, address));
20969 }
20970
20971 if (cu != nullptr)
20972 cu->get_builder ()->record_line (subfile, line, addr);
20973 }
20974
20975 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20976 Mark the end of a set of line number records.
20977 The arguments are the same as for dwarf_record_line_1.
20978 If SUBFILE is NULL the request is ignored. */
20979
20980 static void
20981 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20982 CORE_ADDR address, struct dwarf2_cu *cu)
20983 {
20984 if (subfile == NULL)
20985 return;
20986
20987 if (dwarf_line_debug)
20988 {
20989 fprintf_unfiltered (gdb_stdlog,
20990 "Finishing current line, file %s, address %s\n",
20991 lbasename (subfile->name),
20992 paddress (gdbarch, address));
20993 }
20994
20995 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20996 }
20997
20998 void
20999 lnp_state_machine::record_line (bool end_sequence)
21000 {
21001 if (dwarf_line_debug)
21002 {
21003 fprintf_unfiltered (gdb_stdlog,
21004 "Processing actual line %u: file %u,"
21005 " address %s, is_stmt %u, discrim %u\n",
21006 m_line, to_underlying (m_file),
21007 paddress (m_gdbarch, m_address),
21008 m_is_stmt, m_discriminator);
21009 }
21010
21011 file_entry *fe = current_file ();
21012
21013 if (fe == NULL)
21014 dwarf2_debug_line_missing_file_complaint ();
21015 /* For now we ignore lines not starting on an instruction boundary.
21016 But not when processing end_sequence for compatibility with the
21017 previous version of the code. */
21018 else if (m_op_index == 0 || end_sequence)
21019 {
21020 fe->included_p = 1;
21021 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21022 {
21023 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21024 || end_sequence)
21025 {
21026 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21027 m_currently_recording_lines ? m_cu : nullptr);
21028 }
21029
21030 if (!end_sequence)
21031 {
21032 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21033 m_line_has_non_zero_discriminator,
21034 m_last_subfile))
21035 {
21036 buildsym_compunit *builder = m_cu->get_builder ();
21037 dwarf_record_line_1 (m_gdbarch,
21038 builder->get_current_subfile (),
21039 m_line, m_address,
21040 m_currently_recording_lines ? m_cu : nullptr);
21041 }
21042 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21043 m_last_line = m_line;
21044 }
21045 }
21046 }
21047 }
21048
21049 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21050 line_header *lh, bool record_lines_p)
21051 {
21052 m_cu = cu;
21053 m_gdbarch = arch;
21054 m_record_lines_p = record_lines_p;
21055 m_line_header = lh;
21056
21057 m_currently_recording_lines = true;
21058
21059 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21060 was a line entry for it so that the backend has a chance to adjust it
21061 and also record it in case it needs it. This is currently used by MIPS
21062 code, cf. `mips_adjust_dwarf2_line'. */
21063 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21064 m_is_stmt = lh->default_is_stmt;
21065 m_discriminator = 0;
21066 }
21067
21068 void
21069 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21070 const gdb_byte *line_ptr,
21071 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21072 {
21073 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21074 the pc range of the CU. However, we restrict the test to only ADDRESS
21075 values of zero to preserve GDB's previous behaviour which is to handle
21076 the specific case of a function being GC'd by the linker. */
21077
21078 if (address == 0 && address < unrelocated_lowpc)
21079 {
21080 /* This line table is for a function which has been
21081 GCd by the linker. Ignore it. PR gdb/12528 */
21082
21083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21084 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21085
21086 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21087 line_offset, objfile_name (objfile));
21088 m_currently_recording_lines = false;
21089 /* Note: m_currently_recording_lines is left as false until we see
21090 DW_LNE_end_sequence. */
21091 }
21092 }
21093
21094 /* Subroutine of dwarf_decode_lines to simplify it.
21095 Process the line number information in LH.
21096 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21097 program in order to set included_p for every referenced header. */
21098
21099 static void
21100 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21101 const int decode_for_pst_p, CORE_ADDR lowpc)
21102 {
21103 const gdb_byte *line_ptr, *extended_end;
21104 const gdb_byte *line_end;
21105 unsigned int bytes_read, extended_len;
21106 unsigned char op_code, extended_op;
21107 CORE_ADDR baseaddr;
21108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21109 bfd *abfd = objfile->obfd;
21110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21111 /* True if we're recording line info (as opposed to building partial
21112 symtabs and just interested in finding include files mentioned by
21113 the line number program). */
21114 bool record_lines_p = !decode_for_pst_p;
21115
21116 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21117
21118 line_ptr = lh->statement_program_start;
21119 line_end = lh->statement_program_end;
21120
21121 /* Read the statement sequences until there's nothing left. */
21122 while (line_ptr < line_end)
21123 {
21124 /* The DWARF line number program state machine. Reset the state
21125 machine at the start of each sequence. */
21126 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21127 bool end_sequence = false;
21128
21129 if (record_lines_p)
21130 {
21131 /* Start a subfile for the current file of the state
21132 machine. */
21133 const file_entry *fe = state_machine.current_file ();
21134
21135 if (fe != NULL)
21136 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21137 }
21138
21139 /* Decode the table. */
21140 while (line_ptr < line_end && !end_sequence)
21141 {
21142 op_code = read_1_byte (abfd, line_ptr);
21143 line_ptr += 1;
21144
21145 if (op_code >= lh->opcode_base)
21146 {
21147 /* Special opcode. */
21148 state_machine.handle_special_opcode (op_code);
21149 }
21150 else switch (op_code)
21151 {
21152 case DW_LNS_extended_op:
21153 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21154 &bytes_read);
21155 line_ptr += bytes_read;
21156 extended_end = line_ptr + extended_len;
21157 extended_op = read_1_byte (abfd, line_ptr);
21158 line_ptr += 1;
21159 switch (extended_op)
21160 {
21161 case DW_LNE_end_sequence:
21162 state_machine.handle_end_sequence ();
21163 end_sequence = true;
21164 break;
21165 case DW_LNE_set_address:
21166 {
21167 CORE_ADDR address
21168 = read_address (abfd, line_ptr, cu, &bytes_read);
21169 line_ptr += bytes_read;
21170
21171 state_machine.check_line_address (cu, line_ptr,
21172 lowpc - baseaddr, address);
21173 state_machine.handle_set_address (baseaddr, address);
21174 }
21175 break;
21176 case DW_LNE_define_file:
21177 {
21178 const char *cur_file;
21179 unsigned int mod_time, length;
21180 dir_index dindex;
21181
21182 cur_file = read_direct_string (abfd, line_ptr,
21183 &bytes_read);
21184 line_ptr += bytes_read;
21185 dindex = (dir_index)
21186 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21187 line_ptr += bytes_read;
21188 mod_time =
21189 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21190 line_ptr += bytes_read;
21191 length =
21192 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21193 line_ptr += bytes_read;
21194 lh->add_file_name (cur_file, dindex, mod_time, length);
21195 }
21196 break;
21197 case DW_LNE_set_discriminator:
21198 {
21199 /* The discriminator is not interesting to the
21200 debugger; just ignore it. We still need to
21201 check its value though:
21202 if there are consecutive entries for the same
21203 (non-prologue) line we want to coalesce them.
21204 PR 17276. */
21205 unsigned int discr
21206 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21207 line_ptr += bytes_read;
21208
21209 state_machine.handle_set_discriminator (discr);
21210 }
21211 break;
21212 default:
21213 complaint (_("mangled .debug_line section"));
21214 return;
21215 }
21216 /* Make sure that we parsed the extended op correctly. If e.g.
21217 we expected a different address size than the producer used,
21218 we may have read the wrong number of bytes. */
21219 if (line_ptr != extended_end)
21220 {
21221 complaint (_("mangled .debug_line section"));
21222 return;
21223 }
21224 break;
21225 case DW_LNS_copy:
21226 state_machine.handle_copy ();
21227 break;
21228 case DW_LNS_advance_pc:
21229 {
21230 CORE_ADDR adjust
21231 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21232 line_ptr += bytes_read;
21233
21234 state_machine.handle_advance_pc (adjust);
21235 }
21236 break;
21237 case DW_LNS_advance_line:
21238 {
21239 int line_delta
21240 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21241 line_ptr += bytes_read;
21242
21243 state_machine.handle_advance_line (line_delta);
21244 }
21245 break;
21246 case DW_LNS_set_file:
21247 {
21248 file_name_index file
21249 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21250 &bytes_read);
21251 line_ptr += bytes_read;
21252
21253 state_machine.handle_set_file (file);
21254 }
21255 break;
21256 case DW_LNS_set_column:
21257 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21258 line_ptr += bytes_read;
21259 break;
21260 case DW_LNS_negate_stmt:
21261 state_machine.handle_negate_stmt ();
21262 break;
21263 case DW_LNS_set_basic_block:
21264 break;
21265 /* Add to the address register of the state machine the
21266 address increment value corresponding to special opcode
21267 255. I.e., this value is scaled by the minimum
21268 instruction length since special opcode 255 would have
21269 scaled the increment. */
21270 case DW_LNS_const_add_pc:
21271 state_machine.handle_const_add_pc ();
21272 break;
21273 case DW_LNS_fixed_advance_pc:
21274 {
21275 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21276 line_ptr += 2;
21277
21278 state_machine.handle_fixed_advance_pc (addr_adj);
21279 }
21280 break;
21281 default:
21282 {
21283 /* Unknown standard opcode, ignore it. */
21284 int i;
21285
21286 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21287 {
21288 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21289 line_ptr += bytes_read;
21290 }
21291 }
21292 }
21293 }
21294
21295 if (!end_sequence)
21296 dwarf2_debug_line_missing_end_sequence_complaint ();
21297
21298 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21299 in which case we still finish recording the last line). */
21300 state_machine.record_line (true);
21301 }
21302 }
21303
21304 /* Decode the Line Number Program (LNP) for the given line_header
21305 structure and CU. The actual information extracted and the type
21306 of structures created from the LNP depends on the value of PST.
21307
21308 1. If PST is NULL, then this procedure uses the data from the program
21309 to create all necessary symbol tables, and their linetables.
21310
21311 2. If PST is not NULL, this procedure reads the program to determine
21312 the list of files included by the unit represented by PST, and
21313 builds all the associated partial symbol tables.
21314
21315 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21316 It is used for relative paths in the line table.
21317 NOTE: When processing partial symtabs (pst != NULL),
21318 comp_dir == pst->dirname.
21319
21320 NOTE: It is important that psymtabs have the same file name (via strcmp)
21321 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21322 symtab we don't use it in the name of the psymtabs we create.
21323 E.g. expand_line_sal requires this when finding psymtabs to expand.
21324 A good testcase for this is mb-inline.exp.
21325
21326 LOWPC is the lowest address in CU (or 0 if not known).
21327
21328 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21329 for its PC<->lines mapping information. Otherwise only the filename
21330 table is read in. */
21331
21332 static void
21333 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21334 struct dwarf2_cu *cu, struct partial_symtab *pst,
21335 CORE_ADDR lowpc, int decode_mapping)
21336 {
21337 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21338 const int decode_for_pst_p = (pst != NULL);
21339
21340 if (decode_mapping)
21341 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21342
21343 if (decode_for_pst_p)
21344 {
21345 int file_index;
21346
21347 /* Now that we're done scanning the Line Header Program, we can
21348 create the psymtab of each included file. */
21349 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21350 if (lh->file_names[file_index].included_p == 1)
21351 {
21352 gdb::unique_xmalloc_ptr<char> name_holder;
21353 const char *include_name =
21354 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21355 &name_holder);
21356 if (include_name != NULL)
21357 dwarf2_create_include_psymtab (include_name, pst, objfile);
21358 }
21359 }
21360 else
21361 {
21362 /* Make sure a symtab is created for every file, even files
21363 which contain only variables (i.e. no code with associated
21364 line numbers). */
21365 buildsym_compunit *builder = cu->get_builder ();
21366 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21367 int i;
21368
21369 for (i = 0; i < lh->file_names.size (); i++)
21370 {
21371 file_entry &fe = lh->file_names[i];
21372
21373 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21374
21375 if (builder->get_current_subfile ()->symtab == NULL)
21376 {
21377 builder->get_current_subfile ()->symtab
21378 = allocate_symtab (cust,
21379 builder->get_current_subfile ()->name);
21380 }
21381 fe.symtab = builder->get_current_subfile ()->symtab;
21382 }
21383 }
21384 }
21385
21386 /* Start a subfile for DWARF. FILENAME is the name of the file and
21387 DIRNAME the name of the source directory which contains FILENAME
21388 or NULL if not known.
21389 This routine tries to keep line numbers from identical absolute and
21390 relative file names in a common subfile.
21391
21392 Using the `list' example from the GDB testsuite, which resides in
21393 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21394 of /srcdir/list0.c yields the following debugging information for list0.c:
21395
21396 DW_AT_name: /srcdir/list0.c
21397 DW_AT_comp_dir: /compdir
21398 files.files[0].name: list0.h
21399 files.files[0].dir: /srcdir
21400 files.files[1].name: list0.c
21401 files.files[1].dir: /srcdir
21402
21403 The line number information for list0.c has to end up in a single
21404 subfile, so that `break /srcdir/list0.c:1' works as expected.
21405 start_subfile will ensure that this happens provided that we pass the
21406 concatenation of files.files[1].dir and files.files[1].name as the
21407 subfile's name. */
21408
21409 static void
21410 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21411 const char *dirname)
21412 {
21413 char *copy = NULL;
21414
21415 /* In order not to lose the line information directory,
21416 we concatenate it to the filename when it makes sense.
21417 Note that the Dwarf3 standard says (speaking of filenames in line
21418 information): ``The directory index is ignored for file names
21419 that represent full path names''. Thus ignoring dirname in the
21420 `else' branch below isn't an issue. */
21421
21422 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21423 {
21424 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21425 filename = copy;
21426 }
21427
21428 cu->get_builder ()->start_subfile (filename);
21429
21430 if (copy != NULL)
21431 xfree (copy);
21432 }
21433
21434 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21435 buildsym_compunit constructor. */
21436
21437 struct compunit_symtab *
21438 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21439 CORE_ADDR low_pc)
21440 {
21441 gdb_assert (m_builder == nullptr);
21442
21443 m_builder.reset (new struct buildsym_compunit
21444 (per_cu->dwarf2_per_objfile->objfile,
21445 name, comp_dir, language, low_pc));
21446
21447 list_in_scope = get_builder ()->get_file_symbols ();
21448
21449 get_builder ()->record_debugformat ("DWARF 2");
21450 get_builder ()->record_producer (producer);
21451
21452 processing_has_namespace_info = false;
21453
21454 return get_builder ()->get_compunit_symtab ();
21455 }
21456
21457 static void
21458 var_decode_location (struct attribute *attr, struct symbol *sym,
21459 struct dwarf2_cu *cu)
21460 {
21461 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21462 struct comp_unit_head *cu_header = &cu->header;
21463
21464 /* NOTE drow/2003-01-30: There used to be a comment and some special
21465 code here to turn a symbol with DW_AT_external and a
21466 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21467 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21468 with some versions of binutils) where shared libraries could have
21469 relocations against symbols in their debug information - the
21470 minimal symbol would have the right address, but the debug info
21471 would not. It's no longer necessary, because we will explicitly
21472 apply relocations when we read in the debug information now. */
21473
21474 /* A DW_AT_location attribute with no contents indicates that a
21475 variable has been optimized away. */
21476 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21477 {
21478 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21479 return;
21480 }
21481
21482 /* Handle one degenerate form of location expression specially, to
21483 preserve GDB's previous behavior when section offsets are
21484 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21485 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21486
21487 if (attr_form_is_block (attr)
21488 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21489 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21490 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21491 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21492 && (DW_BLOCK (attr)->size
21493 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21494 {
21495 unsigned int dummy;
21496
21497 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21498 SYMBOL_VALUE_ADDRESS (sym) =
21499 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21500 else
21501 SYMBOL_VALUE_ADDRESS (sym) =
21502 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21503 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21504 fixup_symbol_section (sym, objfile);
21505 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21506 SYMBOL_SECTION (sym));
21507 return;
21508 }
21509
21510 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21511 expression evaluator, and use LOC_COMPUTED only when necessary
21512 (i.e. when the value of a register or memory location is
21513 referenced, or a thread-local block, etc.). Then again, it might
21514 not be worthwhile. I'm assuming that it isn't unless performance
21515 or memory numbers show me otherwise. */
21516
21517 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21518
21519 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21520 cu->has_loclist = true;
21521 }
21522
21523 /* Given a pointer to a DWARF information entry, figure out if we need
21524 to make a symbol table entry for it, and if so, create a new entry
21525 and return a pointer to it.
21526 If TYPE is NULL, determine symbol type from the die, otherwise
21527 used the passed type.
21528 If SPACE is not NULL, use it to hold the new symbol. If it is
21529 NULL, allocate a new symbol on the objfile's obstack. */
21530
21531 static struct symbol *
21532 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21533 struct symbol *space)
21534 {
21535 struct dwarf2_per_objfile *dwarf2_per_objfile
21536 = cu->per_cu->dwarf2_per_objfile;
21537 struct objfile *objfile = dwarf2_per_objfile->objfile;
21538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21539 struct symbol *sym = NULL;
21540 const char *name;
21541 struct attribute *attr = NULL;
21542 struct attribute *attr2 = NULL;
21543 CORE_ADDR baseaddr;
21544 struct pending **list_to_add = NULL;
21545
21546 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21547
21548 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21549
21550 name = dwarf2_name (die, cu);
21551 if (name)
21552 {
21553 const char *linkagename;
21554 int suppress_add = 0;
21555
21556 if (space)
21557 sym = space;
21558 else
21559 sym = allocate_symbol (objfile);
21560 OBJSTAT (objfile, n_syms++);
21561
21562 /* Cache this symbol's name and the name's demangled form (if any). */
21563 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21564 linkagename = dwarf2_physname (name, die, cu);
21565 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21566
21567 /* Fortran does not have mangling standard and the mangling does differ
21568 between gfortran, iFort etc. */
21569 if (cu->language == language_fortran
21570 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21571 symbol_set_demangled_name (&(sym->ginfo),
21572 dwarf2_full_name (name, die, cu),
21573 NULL);
21574
21575 /* Default assumptions.
21576 Use the passed type or decode it from the die. */
21577 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21578 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21579 if (type != NULL)
21580 SYMBOL_TYPE (sym) = type;
21581 else
21582 SYMBOL_TYPE (sym) = die_type (die, cu);
21583 attr = dwarf2_attr (die,
21584 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21585 cu);
21586 if (attr)
21587 {
21588 SYMBOL_LINE (sym) = DW_UNSND (attr);
21589 }
21590
21591 attr = dwarf2_attr (die,
21592 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21593 cu);
21594 if (attr)
21595 {
21596 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21597 struct file_entry *fe;
21598
21599 if (cu->line_header != NULL)
21600 fe = cu->line_header->file_name_at (file_index);
21601 else
21602 fe = NULL;
21603
21604 if (fe == NULL)
21605 complaint (_("file index out of range"));
21606 else
21607 symbol_set_symtab (sym, fe->symtab);
21608 }
21609
21610 switch (die->tag)
21611 {
21612 case DW_TAG_label:
21613 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21614 if (attr)
21615 {
21616 CORE_ADDR addr;
21617
21618 addr = attr_value_as_address (attr);
21619 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21620 SYMBOL_VALUE_ADDRESS (sym) = addr;
21621 }
21622 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21623 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21624 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21625 add_symbol_to_list (sym, cu->list_in_scope);
21626 break;
21627 case DW_TAG_subprogram:
21628 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21629 finish_block. */
21630 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21631 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21632 if ((attr2 && (DW_UNSND (attr2) != 0))
21633 || cu->language == language_ada)
21634 {
21635 /* Subprograms marked external are stored as a global symbol.
21636 Ada subprograms, whether marked external or not, are always
21637 stored as a global symbol, because we want to be able to
21638 access them globally. For instance, we want to be able
21639 to break on a nested subprogram without having to
21640 specify the context. */
21641 list_to_add = cu->get_builder ()->get_global_symbols ();
21642 }
21643 else
21644 {
21645 list_to_add = cu->list_in_scope;
21646 }
21647 break;
21648 case DW_TAG_inlined_subroutine:
21649 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21650 finish_block. */
21651 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21652 SYMBOL_INLINED (sym) = 1;
21653 list_to_add = cu->list_in_scope;
21654 break;
21655 case DW_TAG_template_value_param:
21656 suppress_add = 1;
21657 /* Fall through. */
21658 case DW_TAG_constant:
21659 case DW_TAG_variable:
21660 case DW_TAG_member:
21661 /* Compilation with minimal debug info may result in
21662 variables with missing type entries. Change the
21663 misleading `void' type to something sensible. */
21664 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21665 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21666
21667 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21668 /* In the case of DW_TAG_member, we should only be called for
21669 static const members. */
21670 if (die->tag == DW_TAG_member)
21671 {
21672 /* dwarf2_add_field uses die_is_declaration,
21673 so we do the same. */
21674 gdb_assert (die_is_declaration (die, cu));
21675 gdb_assert (attr);
21676 }
21677 if (attr)
21678 {
21679 dwarf2_const_value (attr, sym, cu);
21680 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21681 if (!suppress_add)
21682 {
21683 if (attr2 && (DW_UNSND (attr2) != 0))
21684 list_to_add = cu->get_builder ()->get_global_symbols ();
21685 else
21686 list_to_add = cu->list_in_scope;
21687 }
21688 break;
21689 }
21690 attr = dwarf2_attr (die, DW_AT_location, cu);
21691 if (attr)
21692 {
21693 var_decode_location (attr, sym, cu);
21694 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21695
21696 /* Fortran explicitly imports any global symbols to the local
21697 scope by DW_TAG_common_block. */
21698 if (cu->language == language_fortran && die->parent
21699 && die->parent->tag == DW_TAG_common_block)
21700 attr2 = NULL;
21701
21702 if (SYMBOL_CLASS (sym) == LOC_STATIC
21703 && SYMBOL_VALUE_ADDRESS (sym) == 0
21704 && !dwarf2_per_objfile->has_section_at_zero)
21705 {
21706 /* When a static variable is eliminated by the linker,
21707 the corresponding debug information is not stripped
21708 out, but the variable address is set to null;
21709 do not add such variables into symbol table. */
21710 }
21711 else if (attr2 && (DW_UNSND (attr2) != 0))
21712 {
21713 /* Workaround gfortran PR debug/40040 - it uses
21714 DW_AT_location for variables in -fPIC libraries which may
21715 get overriden by other libraries/executable and get
21716 a different address. Resolve it by the minimal symbol
21717 which may come from inferior's executable using copy
21718 relocation. Make this workaround only for gfortran as for
21719 other compilers GDB cannot guess the minimal symbol
21720 Fortran mangling kind. */
21721 if (cu->language == language_fortran && die->parent
21722 && die->parent->tag == DW_TAG_module
21723 && cu->producer
21724 && startswith (cu->producer, "GNU Fortran"))
21725 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21726
21727 /* A variable with DW_AT_external is never static,
21728 but it may be block-scoped. */
21729 list_to_add
21730 = ((cu->list_in_scope
21731 == cu->get_builder ()->get_file_symbols ())
21732 ? cu->get_builder ()->get_global_symbols ()
21733 : cu->list_in_scope);
21734 }
21735 else
21736 list_to_add = cu->list_in_scope;
21737 }
21738 else
21739 {
21740 /* We do not know the address of this symbol.
21741 If it is an external symbol and we have type information
21742 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21743 The address of the variable will then be determined from
21744 the minimal symbol table whenever the variable is
21745 referenced. */
21746 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21747
21748 /* Fortran explicitly imports any global symbols to the local
21749 scope by DW_TAG_common_block. */
21750 if (cu->language == language_fortran && die->parent
21751 && die->parent->tag == DW_TAG_common_block)
21752 {
21753 /* SYMBOL_CLASS doesn't matter here because
21754 read_common_block is going to reset it. */
21755 if (!suppress_add)
21756 list_to_add = cu->list_in_scope;
21757 }
21758 else if (attr2 && (DW_UNSND (attr2) != 0)
21759 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21760 {
21761 /* A variable with DW_AT_external is never static, but it
21762 may be block-scoped. */
21763 list_to_add
21764 = ((cu->list_in_scope
21765 == cu->get_builder ()->get_file_symbols ())
21766 ? cu->get_builder ()->get_global_symbols ()
21767 : cu->list_in_scope);
21768
21769 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21770 }
21771 else if (!die_is_declaration (die, cu))
21772 {
21773 /* Use the default LOC_OPTIMIZED_OUT class. */
21774 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21775 if (!suppress_add)
21776 list_to_add = cu->list_in_scope;
21777 }
21778 }
21779 break;
21780 case DW_TAG_formal_parameter:
21781 {
21782 /* If we are inside a function, mark this as an argument. If
21783 not, we might be looking at an argument to an inlined function
21784 when we do not have enough information to show inlined frames;
21785 pretend it's a local variable in that case so that the user can
21786 still see it. */
21787 struct context_stack *curr
21788 = cu->get_builder ()->get_current_context_stack ();
21789 if (curr != nullptr && curr->name != nullptr)
21790 SYMBOL_IS_ARGUMENT (sym) = 1;
21791 attr = dwarf2_attr (die, DW_AT_location, cu);
21792 if (attr)
21793 {
21794 var_decode_location (attr, sym, cu);
21795 }
21796 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21797 if (attr)
21798 {
21799 dwarf2_const_value (attr, sym, cu);
21800 }
21801
21802 list_to_add = cu->list_in_scope;
21803 }
21804 break;
21805 case DW_TAG_unspecified_parameters:
21806 /* From varargs functions; gdb doesn't seem to have any
21807 interest in this information, so just ignore it for now.
21808 (FIXME?) */
21809 break;
21810 case DW_TAG_template_type_param:
21811 suppress_add = 1;
21812 /* Fall through. */
21813 case DW_TAG_class_type:
21814 case DW_TAG_interface_type:
21815 case DW_TAG_structure_type:
21816 case DW_TAG_union_type:
21817 case DW_TAG_set_type:
21818 case DW_TAG_enumeration_type:
21819 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21820 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21821
21822 {
21823 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21824 really ever be static objects: otherwise, if you try
21825 to, say, break of a class's method and you're in a file
21826 which doesn't mention that class, it won't work unless
21827 the check for all static symbols in lookup_symbol_aux
21828 saves you. See the OtherFileClass tests in
21829 gdb.c++/namespace.exp. */
21830
21831 if (!suppress_add)
21832 {
21833 buildsym_compunit *builder = cu->get_builder ();
21834 list_to_add
21835 = (cu->list_in_scope == builder->get_file_symbols ()
21836 && cu->language == language_cplus
21837 ? builder->get_global_symbols ()
21838 : cu->list_in_scope);
21839
21840 /* The semantics of C++ state that "struct foo {
21841 ... }" also defines a typedef for "foo". */
21842 if (cu->language == language_cplus
21843 || cu->language == language_ada
21844 || cu->language == language_d
21845 || cu->language == language_rust)
21846 {
21847 /* The symbol's name is already allocated along
21848 with this objfile, so we don't need to
21849 duplicate it for the type. */
21850 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21851 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21852 }
21853 }
21854 }
21855 break;
21856 case DW_TAG_typedef:
21857 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21859 list_to_add = cu->list_in_scope;
21860 break;
21861 case DW_TAG_base_type:
21862 case DW_TAG_subrange_type:
21863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21864 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21865 list_to_add = cu->list_in_scope;
21866 break;
21867 case DW_TAG_enumerator:
21868 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21869 if (attr)
21870 {
21871 dwarf2_const_value (attr, sym, cu);
21872 }
21873 {
21874 /* NOTE: carlton/2003-11-10: See comment above in the
21875 DW_TAG_class_type, etc. block. */
21876
21877 list_to_add
21878 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21879 && cu->language == language_cplus
21880 ? cu->get_builder ()->get_global_symbols ()
21881 : cu->list_in_scope);
21882 }
21883 break;
21884 case DW_TAG_imported_declaration:
21885 case DW_TAG_namespace:
21886 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21887 list_to_add = cu->get_builder ()->get_global_symbols ();
21888 break;
21889 case DW_TAG_module:
21890 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21891 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21892 list_to_add = cu->get_builder ()->get_global_symbols ();
21893 break;
21894 case DW_TAG_common_block:
21895 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21896 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21897 add_symbol_to_list (sym, cu->list_in_scope);
21898 break;
21899 default:
21900 /* Not a tag we recognize. Hopefully we aren't processing
21901 trash data, but since we must specifically ignore things
21902 we don't recognize, there is nothing else we should do at
21903 this point. */
21904 complaint (_("unsupported tag: '%s'"),
21905 dwarf_tag_name (die->tag));
21906 break;
21907 }
21908
21909 if (suppress_add)
21910 {
21911 sym->hash_next = objfile->template_symbols;
21912 objfile->template_symbols = sym;
21913 list_to_add = NULL;
21914 }
21915
21916 if (list_to_add != NULL)
21917 add_symbol_to_list (sym, list_to_add);
21918
21919 /* For the benefit of old versions of GCC, check for anonymous
21920 namespaces based on the demangled name. */
21921 if (!cu->processing_has_namespace_info
21922 && cu->language == language_cplus)
21923 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21924 }
21925 return (sym);
21926 }
21927
21928 /* Given an attr with a DW_FORM_dataN value in host byte order,
21929 zero-extend it as appropriate for the symbol's type. The DWARF
21930 standard (v4) is not entirely clear about the meaning of using
21931 DW_FORM_dataN for a constant with a signed type, where the type is
21932 wider than the data. The conclusion of a discussion on the DWARF
21933 list was that this is unspecified. We choose to always zero-extend
21934 because that is the interpretation long in use by GCC. */
21935
21936 static gdb_byte *
21937 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21938 struct dwarf2_cu *cu, LONGEST *value, int bits)
21939 {
21940 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21941 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21942 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21943 LONGEST l = DW_UNSND (attr);
21944
21945 if (bits < sizeof (*value) * 8)
21946 {
21947 l &= ((LONGEST) 1 << bits) - 1;
21948 *value = l;
21949 }
21950 else if (bits == sizeof (*value) * 8)
21951 *value = l;
21952 else
21953 {
21954 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21955 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21956 return bytes;
21957 }
21958
21959 return NULL;
21960 }
21961
21962 /* Read a constant value from an attribute. Either set *VALUE, or if
21963 the value does not fit in *VALUE, set *BYTES - either already
21964 allocated on the objfile obstack, or newly allocated on OBSTACK,
21965 or, set *BATON, if we translated the constant to a location
21966 expression. */
21967
21968 static void
21969 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21970 const char *name, struct obstack *obstack,
21971 struct dwarf2_cu *cu,
21972 LONGEST *value, const gdb_byte **bytes,
21973 struct dwarf2_locexpr_baton **baton)
21974 {
21975 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21976 struct comp_unit_head *cu_header = &cu->header;
21977 struct dwarf_block *blk;
21978 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21979 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21980
21981 *value = 0;
21982 *bytes = NULL;
21983 *baton = NULL;
21984
21985 switch (attr->form)
21986 {
21987 case DW_FORM_addr:
21988 case DW_FORM_addrx:
21989 case DW_FORM_GNU_addr_index:
21990 {
21991 gdb_byte *data;
21992
21993 if (TYPE_LENGTH (type) != cu_header->addr_size)
21994 dwarf2_const_value_length_mismatch_complaint (name,
21995 cu_header->addr_size,
21996 TYPE_LENGTH (type));
21997 /* Symbols of this form are reasonably rare, so we just
21998 piggyback on the existing location code rather than writing
21999 a new implementation of symbol_computed_ops. */
22000 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22001 (*baton)->per_cu = cu->per_cu;
22002 gdb_assert ((*baton)->per_cu);
22003
22004 (*baton)->size = 2 + cu_header->addr_size;
22005 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22006 (*baton)->data = data;
22007
22008 data[0] = DW_OP_addr;
22009 store_unsigned_integer (&data[1], cu_header->addr_size,
22010 byte_order, DW_ADDR (attr));
22011 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22012 }
22013 break;
22014 case DW_FORM_string:
22015 case DW_FORM_strp:
22016 case DW_FORM_strx:
22017 case DW_FORM_GNU_str_index:
22018 case DW_FORM_GNU_strp_alt:
22019 /* DW_STRING is already allocated on the objfile obstack, point
22020 directly to it. */
22021 *bytes = (const gdb_byte *) DW_STRING (attr);
22022 break;
22023 case DW_FORM_block1:
22024 case DW_FORM_block2:
22025 case DW_FORM_block4:
22026 case DW_FORM_block:
22027 case DW_FORM_exprloc:
22028 case DW_FORM_data16:
22029 blk = DW_BLOCK (attr);
22030 if (TYPE_LENGTH (type) != blk->size)
22031 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22032 TYPE_LENGTH (type));
22033 *bytes = blk->data;
22034 break;
22035
22036 /* The DW_AT_const_value attributes are supposed to carry the
22037 symbol's value "represented as it would be on the target
22038 architecture." By the time we get here, it's already been
22039 converted to host endianness, so we just need to sign- or
22040 zero-extend it as appropriate. */
22041 case DW_FORM_data1:
22042 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22043 break;
22044 case DW_FORM_data2:
22045 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22046 break;
22047 case DW_FORM_data4:
22048 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22049 break;
22050 case DW_FORM_data8:
22051 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22052 break;
22053
22054 case DW_FORM_sdata:
22055 case DW_FORM_implicit_const:
22056 *value = DW_SND (attr);
22057 break;
22058
22059 case DW_FORM_udata:
22060 *value = DW_UNSND (attr);
22061 break;
22062
22063 default:
22064 complaint (_("unsupported const value attribute form: '%s'"),
22065 dwarf_form_name (attr->form));
22066 *value = 0;
22067 break;
22068 }
22069 }
22070
22071
22072 /* Copy constant value from an attribute to a symbol. */
22073
22074 static void
22075 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22076 struct dwarf2_cu *cu)
22077 {
22078 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22079 LONGEST value;
22080 const gdb_byte *bytes;
22081 struct dwarf2_locexpr_baton *baton;
22082
22083 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22084 SYMBOL_PRINT_NAME (sym),
22085 &objfile->objfile_obstack, cu,
22086 &value, &bytes, &baton);
22087
22088 if (baton != NULL)
22089 {
22090 SYMBOL_LOCATION_BATON (sym) = baton;
22091 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22092 }
22093 else if (bytes != NULL)
22094 {
22095 SYMBOL_VALUE_BYTES (sym) = bytes;
22096 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22097 }
22098 else
22099 {
22100 SYMBOL_VALUE (sym) = value;
22101 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22102 }
22103 }
22104
22105 /* Return the type of the die in question using its DW_AT_type attribute. */
22106
22107 static struct type *
22108 die_type (struct die_info *die, struct dwarf2_cu *cu)
22109 {
22110 struct attribute *type_attr;
22111
22112 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22113 if (!type_attr)
22114 {
22115 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22116 /* A missing DW_AT_type represents a void type. */
22117 return objfile_type (objfile)->builtin_void;
22118 }
22119
22120 return lookup_die_type (die, type_attr, cu);
22121 }
22122
22123 /* True iff CU's producer generates GNAT Ada auxiliary information
22124 that allows to find parallel types through that information instead
22125 of having to do expensive parallel lookups by type name. */
22126
22127 static int
22128 need_gnat_info (struct dwarf2_cu *cu)
22129 {
22130 /* Assume that the Ada compiler was GNAT, which always produces
22131 the auxiliary information. */
22132 return (cu->language == language_ada);
22133 }
22134
22135 /* Return the auxiliary type of the die in question using its
22136 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22137 attribute is not present. */
22138
22139 static struct type *
22140 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22141 {
22142 struct attribute *type_attr;
22143
22144 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22145 if (!type_attr)
22146 return NULL;
22147
22148 return lookup_die_type (die, type_attr, cu);
22149 }
22150
22151 /* If DIE has a descriptive_type attribute, then set the TYPE's
22152 descriptive type accordingly. */
22153
22154 static void
22155 set_descriptive_type (struct type *type, struct die_info *die,
22156 struct dwarf2_cu *cu)
22157 {
22158 struct type *descriptive_type = die_descriptive_type (die, cu);
22159
22160 if (descriptive_type)
22161 {
22162 ALLOCATE_GNAT_AUX_TYPE (type);
22163 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22164 }
22165 }
22166
22167 /* Return the containing type of the die in question using its
22168 DW_AT_containing_type attribute. */
22169
22170 static struct type *
22171 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22172 {
22173 struct attribute *type_attr;
22174 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22175
22176 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22177 if (!type_attr)
22178 error (_("Dwarf Error: Problem turning containing type into gdb type "
22179 "[in module %s]"), objfile_name (objfile));
22180
22181 return lookup_die_type (die, type_attr, cu);
22182 }
22183
22184 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22185
22186 static struct type *
22187 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22188 {
22189 struct dwarf2_per_objfile *dwarf2_per_objfile
22190 = cu->per_cu->dwarf2_per_objfile;
22191 struct objfile *objfile = dwarf2_per_objfile->objfile;
22192 char *saved;
22193
22194 std::string message
22195 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22196 objfile_name (objfile),
22197 sect_offset_str (cu->header.sect_off),
22198 sect_offset_str (die->sect_off));
22199 saved = obstack_strdup (&objfile->objfile_obstack, message);
22200
22201 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22202 }
22203
22204 /* Look up the type of DIE in CU using its type attribute ATTR.
22205 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22206 DW_AT_containing_type.
22207 If there is no type substitute an error marker. */
22208
22209 static struct type *
22210 lookup_die_type (struct die_info *die, const struct attribute *attr,
22211 struct dwarf2_cu *cu)
22212 {
22213 struct dwarf2_per_objfile *dwarf2_per_objfile
22214 = cu->per_cu->dwarf2_per_objfile;
22215 struct objfile *objfile = dwarf2_per_objfile->objfile;
22216 struct type *this_type;
22217
22218 gdb_assert (attr->name == DW_AT_type
22219 || attr->name == DW_AT_GNAT_descriptive_type
22220 || attr->name == DW_AT_containing_type);
22221
22222 /* First see if we have it cached. */
22223
22224 if (attr->form == DW_FORM_GNU_ref_alt)
22225 {
22226 struct dwarf2_per_cu_data *per_cu;
22227 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22228
22229 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22230 dwarf2_per_objfile);
22231 this_type = get_die_type_at_offset (sect_off, per_cu);
22232 }
22233 else if (attr_form_is_ref (attr))
22234 {
22235 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22236
22237 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22238 }
22239 else if (attr->form == DW_FORM_ref_sig8)
22240 {
22241 ULONGEST signature = DW_SIGNATURE (attr);
22242
22243 return get_signatured_type (die, signature, cu);
22244 }
22245 else
22246 {
22247 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22248 " at %s [in module %s]"),
22249 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22250 objfile_name (objfile));
22251 return build_error_marker_type (cu, die);
22252 }
22253
22254 /* If not cached we need to read it in. */
22255
22256 if (this_type == NULL)
22257 {
22258 struct die_info *type_die = NULL;
22259 struct dwarf2_cu *type_cu = cu;
22260
22261 if (attr_form_is_ref (attr))
22262 type_die = follow_die_ref (die, attr, &type_cu);
22263 if (type_die == NULL)
22264 return build_error_marker_type (cu, die);
22265 /* If we find the type now, it's probably because the type came
22266 from an inter-CU reference and the type's CU got expanded before
22267 ours. */
22268 this_type = read_type_die (type_die, type_cu);
22269 }
22270
22271 /* If we still don't have a type use an error marker. */
22272
22273 if (this_type == NULL)
22274 return build_error_marker_type (cu, die);
22275
22276 return this_type;
22277 }
22278
22279 /* Return the type in DIE, CU.
22280 Returns NULL for invalid types.
22281
22282 This first does a lookup in die_type_hash,
22283 and only reads the die in if necessary.
22284
22285 NOTE: This can be called when reading in partial or full symbols. */
22286
22287 static struct type *
22288 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22289 {
22290 struct type *this_type;
22291
22292 this_type = get_die_type (die, cu);
22293 if (this_type)
22294 return this_type;
22295
22296 return read_type_die_1 (die, cu);
22297 }
22298
22299 /* Read the type in DIE, CU.
22300 Returns NULL for invalid types. */
22301
22302 static struct type *
22303 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22304 {
22305 struct type *this_type = NULL;
22306
22307 switch (die->tag)
22308 {
22309 case DW_TAG_class_type:
22310 case DW_TAG_interface_type:
22311 case DW_TAG_structure_type:
22312 case DW_TAG_union_type:
22313 this_type = read_structure_type (die, cu);
22314 break;
22315 case DW_TAG_enumeration_type:
22316 this_type = read_enumeration_type (die, cu);
22317 break;
22318 case DW_TAG_subprogram:
22319 case DW_TAG_subroutine_type:
22320 case DW_TAG_inlined_subroutine:
22321 this_type = read_subroutine_type (die, cu);
22322 break;
22323 case DW_TAG_array_type:
22324 this_type = read_array_type (die, cu);
22325 break;
22326 case DW_TAG_set_type:
22327 this_type = read_set_type (die, cu);
22328 break;
22329 case DW_TAG_pointer_type:
22330 this_type = read_tag_pointer_type (die, cu);
22331 break;
22332 case DW_TAG_ptr_to_member_type:
22333 this_type = read_tag_ptr_to_member_type (die, cu);
22334 break;
22335 case DW_TAG_reference_type:
22336 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22337 break;
22338 case DW_TAG_rvalue_reference_type:
22339 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22340 break;
22341 case DW_TAG_const_type:
22342 this_type = read_tag_const_type (die, cu);
22343 break;
22344 case DW_TAG_volatile_type:
22345 this_type = read_tag_volatile_type (die, cu);
22346 break;
22347 case DW_TAG_restrict_type:
22348 this_type = read_tag_restrict_type (die, cu);
22349 break;
22350 case DW_TAG_string_type:
22351 this_type = read_tag_string_type (die, cu);
22352 break;
22353 case DW_TAG_typedef:
22354 this_type = read_typedef (die, cu);
22355 break;
22356 case DW_TAG_subrange_type:
22357 this_type = read_subrange_type (die, cu);
22358 break;
22359 case DW_TAG_base_type:
22360 this_type = read_base_type (die, cu);
22361 break;
22362 case DW_TAG_unspecified_type:
22363 this_type = read_unspecified_type (die, cu);
22364 break;
22365 case DW_TAG_namespace:
22366 this_type = read_namespace_type (die, cu);
22367 break;
22368 case DW_TAG_module:
22369 this_type = read_module_type (die, cu);
22370 break;
22371 case DW_TAG_atomic_type:
22372 this_type = read_tag_atomic_type (die, cu);
22373 break;
22374 default:
22375 complaint (_("unexpected tag in read_type_die: '%s'"),
22376 dwarf_tag_name (die->tag));
22377 break;
22378 }
22379
22380 return this_type;
22381 }
22382
22383 /* See if we can figure out if the class lives in a namespace. We do
22384 this by looking for a member function; its demangled name will
22385 contain namespace info, if there is any.
22386 Return the computed name or NULL.
22387 Space for the result is allocated on the objfile's obstack.
22388 This is the full-die version of guess_partial_die_structure_name.
22389 In this case we know DIE has no useful parent. */
22390
22391 static char *
22392 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22393 {
22394 struct die_info *spec_die;
22395 struct dwarf2_cu *spec_cu;
22396 struct die_info *child;
22397 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22398
22399 spec_cu = cu;
22400 spec_die = die_specification (die, &spec_cu);
22401 if (spec_die != NULL)
22402 {
22403 die = spec_die;
22404 cu = spec_cu;
22405 }
22406
22407 for (child = die->child;
22408 child != NULL;
22409 child = child->sibling)
22410 {
22411 if (child->tag == DW_TAG_subprogram)
22412 {
22413 const char *linkage_name = dw2_linkage_name (child, cu);
22414
22415 if (linkage_name != NULL)
22416 {
22417 char *actual_name
22418 = language_class_name_from_physname (cu->language_defn,
22419 linkage_name);
22420 char *name = NULL;
22421
22422 if (actual_name != NULL)
22423 {
22424 const char *die_name = dwarf2_name (die, cu);
22425
22426 if (die_name != NULL
22427 && strcmp (die_name, actual_name) != 0)
22428 {
22429 /* Strip off the class name from the full name.
22430 We want the prefix. */
22431 int die_name_len = strlen (die_name);
22432 int actual_name_len = strlen (actual_name);
22433
22434 /* Test for '::' as a sanity check. */
22435 if (actual_name_len > die_name_len + 2
22436 && actual_name[actual_name_len
22437 - die_name_len - 1] == ':')
22438 name = obstack_strndup (
22439 &objfile->per_bfd->storage_obstack,
22440 actual_name, actual_name_len - die_name_len - 2);
22441 }
22442 }
22443 xfree (actual_name);
22444 return name;
22445 }
22446 }
22447 }
22448
22449 return NULL;
22450 }
22451
22452 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22453 prefix part in such case. See
22454 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22455
22456 static const char *
22457 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22458 {
22459 struct attribute *attr;
22460 const char *base;
22461
22462 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22463 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22464 return NULL;
22465
22466 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22467 return NULL;
22468
22469 attr = dw2_linkage_name_attr (die, cu);
22470 if (attr == NULL || DW_STRING (attr) == NULL)
22471 return NULL;
22472
22473 /* dwarf2_name had to be already called. */
22474 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22475
22476 /* Strip the base name, keep any leading namespaces/classes. */
22477 base = strrchr (DW_STRING (attr), ':');
22478 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22479 return "";
22480
22481 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22482 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22483 DW_STRING (attr),
22484 &base[-1] - DW_STRING (attr));
22485 }
22486
22487 /* Return the name of the namespace/class that DIE is defined within,
22488 or "" if we can't tell. The caller should not xfree the result.
22489
22490 For example, if we're within the method foo() in the following
22491 code:
22492
22493 namespace N {
22494 class C {
22495 void foo () {
22496 }
22497 };
22498 }
22499
22500 then determine_prefix on foo's die will return "N::C". */
22501
22502 static const char *
22503 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22504 {
22505 struct dwarf2_per_objfile *dwarf2_per_objfile
22506 = cu->per_cu->dwarf2_per_objfile;
22507 struct die_info *parent, *spec_die;
22508 struct dwarf2_cu *spec_cu;
22509 struct type *parent_type;
22510 const char *retval;
22511
22512 if (cu->language != language_cplus
22513 && cu->language != language_fortran && cu->language != language_d
22514 && cu->language != language_rust)
22515 return "";
22516
22517 retval = anonymous_struct_prefix (die, cu);
22518 if (retval)
22519 return retval;
22520
22521 /* We have to be careful in the presence of DW_AT_specification.
22522 For example, with GCC 3.4, given the code
22523
22524 namespace N {
22525 void foo() {
22526 // Definition of N::foo.
22527 }
22528 }
22529
22530 then we'll have a tree of DIEs like this:
22531
22532 1: DW_TAG_compile_unit
22533 2: DW_TAG_namespace // N
22534 3: DW_TAG_subprogram // declaration of N::foo
22535 4: DW_TAG_subprogram // definition of N::foo
22536 DW_AT_specification // refers to die #3
22537
22538 Thus, when processing die #4, we have to pretend that we're in
22539 the context of its DW_AT_specification, namely the contex of die
22540 #3. */
22541 spec_cu = cu;
22542 spec_die = die_specification (die, &spec_cu);
22543 if (spec_die == NULL)
22544 parent = die->parent;
22545 else
22546 {
22547 parent = spec_die->parent;
22548 cu = spec_cu;
22549 }
22550
22551 if (parent == NULL)
22552 return "";
22553 else if (parent->building_fullname)
22554 {
22555 const char *name;
22556 const char *parent_name;
22557
22558 /* It has been seen on RealView 2.2 built binaries,
22559 DW_TAG_template_type_param types actually _defined_ as
22560 children of the parent class:
22561
22562 enum E {};
22563 template class <class Enum> Class{};
22564 Class<enum E> class_e;
22565
22566 1: DW_TAG_class_type (Class)
22567 2: DW_TAG_enumeration_type (E)
22568 3: DW_TAG_enumerator (enum1:0)
22569 3: DW_TAG_enumerator (enum2:1)
22570 ...
22571 2: DW_TAG_template_type_param
22572 DW_AT_type DW_FORM_ref_udata (E)
22573
22574 Besides being broken debug info, it can put GDB into an
22575 infinite loop. Consider:
22576
22577 When we're building the full name for Class<E>, we'll start
22578 at Class, and go look over its template type parameters,
22579 finding E. We'll then try to build the full name of E, and
22580 reach here. We're now trying to build the full name of E,
22581 and look over the parent DIE for containing scope. In the
22582 broken case, if we followed the parent DIE of E, we'd again
22583 find Class, and once again go look at its template type
22584 arguments, etc., etc. Simply don't consider such parent die
22585 as source-level parent of this die (it can't be, the language
22586 doesn't allow it), and break the loop here. */
22587 name = dwarf2_name (die, cu);
22588 parent_name = dwarf2_name (parent, cu);
22589 complaint (_("template param type '%s' defined within parent '%s'"),
22590 name ? name : "<unknown>",
22591 parent_name ? parent_name : "<unknown>");
22592 return "";
22593 }
22594 else
22595 switch (parent->tag)
22596 {
22597 case DW_TAG_namespace:
22598 parent_type = read_type_die (parent, cu);
22599 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22600 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22601 Work around this problem here. */
22602 if (cu->language == language_cplus
22603 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22604 return "";
22605 /* We give a name to even anonymous namespaces. */
22606 return TYPE_NAME (parent_type);
22607 case DW_TAG_class_type:
22608 case DW_TAG_interface_type:
22609 case DW_TAG_structure_type:
22610 case DW_TAG_union_type:
22611 case DW_TAG_module:
22612 parent_type = read_type_die (parent, cu);
22613 if (TYPE_NAME (parent_type) != NULL)
22614 return TYPE_NAME (parent_type);
22615 else
22616 /* An anonymous structure is only allowed non-static data
22617 members; no typedefs, no member functions, et cetera.
22618 So it does not need a prefix. */
22619 return "";
22620 case DW_TAG_compile_unit:
22621 case DW_TAG_partial_unit:
22622 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22623 if (cu->language == language_cplus
22624 && !dwarf2_per_objfile->types.empty ()
22625 && die->child != NULL
22626 && (die->tag == DW_TAG_class_type
22627 || die->tag == DW_TAG_structure_type
22628 || die->tag == DW_TAG_union_type))
22629 {
22630 char *name = guess_full_die_structure_name (die, cu);
22631 if (name != NULL)
22632 return name;
22633 }
22634 return "";
22635 case DW_TAG_enumeration_type:
22636 parent_type = read_type_die (parent, cu);
22637 if (TYPE_DECLARED_CLASS (parent_type))
22638 {
22639 if (TYPE_NAME (parent_type) != NULL)
22640 return TYPE_NAME (parent_type);
22641 return "";
22642 }
22643 /* Fall through. */
22644 default:
22645 return determine_prefix (parent, cu);
22646 }
22647 }
22648
22649 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22650 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22651 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22652 an obconcat, otherwise allocate storage for the result. The CU argument is
22653 used to determine the language and hence, the appropriate separator. */
22654
22655 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22656
22657 static char *
22658 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22659 int physname, struct dwarf2_cu *cu)
22660 {
22661 const char *lead = "";
22662 const char *sep;
22663
22664 if (suffix == NULL || suffix[0] == '\0'
22665 || prefix == NULL || prefix[0] == '\0')
22666 sep = "";
22667 else if (cu->language == language_d)
22668 {
22669 /* For D, the 'main' function could be defined in any module, but it
22670 should never be prefixed. */
22671 if (strcmp (suffix, "D main") == 0)
22672 {
22673 prefix = "";
22674 sep = "";
22675 }
22676 else
22677 sep = ".";
22678 }
22679 else if (cu->language == language_fortran && physname)
22680 {
22681 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22682 DW_AT_MIPS_linkage_name is preferred and used instead. */
22683
22684 lead = "__";
22685 sep = "_MOD_";
22686 }
22687 else
22688 sep = "::";
22689
22690 if (prefix == NULL)
22691 prefix = "";
22692 if (suffix == NULL)
22693 suffix = "";
22694
22695 if (obs == NULL)
22696 {
22697 char *retval
22698 = ((char *)
22699 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22700
22701 strcpy (retval, lead);
22702 strcat (retval, prefix);
22703 strcat (retval, sep);
22704 strcat (retval, suffix);
22705 return retval;
22706 }
22707 else
22708 {
22709 /* We have an obstack. */
22710 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22711 }
22712 }
22713
22714 /* Return sibling of die, NULL if no sibling. */
22715
22716 static struct die_info *
22717 sibling_die (struct die_info *die)
22718 {
22719 return die->sibling;
22720 }
22721
22722 /* Get name of a die, return NULL if not found. */
22723
22724 static const char *
22725 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22726 struct obstack *obstack)
22727 {
22728 if (name && cu->language == language_cplus)
22729 {
22730 std::string canon_name = cp_canonicalize_string (name);
22731
22732 if (!canon_name.empty ())
22733 {
22734 if (canon_name != name)
22735 name = obstack_strdup (obstack, canon_name);
22736 }
22737 }
22738
22739 return name;
22740 }
22741
22742 /* Get name of a die, return NULL if not found.
22743 Anonymous namespaces are converted to their magic string. */
22744
22745 static const char *
22746 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22747 {
22748 struct attribute *attr;
22749 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22750
22751 attr = dwarf2_attr (die, DW_AT_name, cu);
22752 if ((!attr || !DW_STRING (attr))
22753 && die->tag != DW_TAG_namespace
22754 && die->tag != DW_TAG_class_type
22755 && die->tag != DW_TAG_interface_type
22756 && die->tag != DW_TAG_structure_type
22757 && die->tag != DW_TAG_union_type)
22758 return NULL;
22759
22760 switch (die->tag)
22761 {
22762 case DW_TAG_compile_unit:
22763 case DW_TAG_partial_unit:
22764 /* Compilation units have a DW_AT_name that is a filename, not
22765 a source language identifier. */
22766 case DW_TAG_enumeration_type:
22767 case DW_TAG_enumerator:
22768 /* These tags always have simple identifiers already; no need
22769 to canonicalize them. */
22770 return DW_STRING (attr);
22771
22772 case DW_TAG_namespace:
22773 if (attr != NULL && DW_STRING (attr) != NULL)
22774 return DW_STRING (attr);
22775 return CP_ANONYMOUS_NAMESPACE_STR;
22776
22777 case DW_TAG_class_type:
22778 case DW_TAG_interface_type:
22779 case DW_TAG_structure_type:
22780 case DW_TAG_union_type:
22781 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22782 structures or unions. These were of the form "._%d" in GCC 4.1,
22783 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22784 and GCC 4.4. We work around this problem by ignoring these. */
22785 if (attr && DW_STRING (attr)
22786 && (startswith (DW_STRING (attr), "._")
22787 || startswith (DW_STRING (attr), "<anonymous")))
22788 return NULL;
22789
22790 /* GCC might emit a nameless typedef that has a linkage name. See
22791 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22792 if (!attr || DW_STRING (attr) == NULL)
22793 {
22794 char *demangled = NULL;
22795
22796 attr = dw2_linkage_name_attr (die, cu);
22797 if (attr == NULL || DW_STRING (attr) == NULL)
22798 return NULL;
22799
22800 /* Avoid demangling DW_STRING (attr) the second time on a second
22801 call for the same DIE. */
22802 if (!DW_STRING_IS_CANONICAL (attr))
22803 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22804
22805 if (demangled)
22806 {
22807 const char *base;
22808
22809 /* FIXME: we already did this for the partial symbol... */
22810 DW_STRING (attr)
22811 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22812 demangled);
22813 DW_STRING_IS_CANONICAL (attr) = 1;
22814 xfree (demangled);
22815
22816 /* Strip any leading namespaces/classes, keep only the base name.
22817 DW_AT_name for named DIEs does not contain the prefixes. */
22818 base = strrchr (DW_STRING (attr), ':');
22819 if (base && base > DW_STRING (attr) && base[-1] == ':')
22820 return &base[1];
22821 else
22822 return DW_STRING (attr);
22823 }
22824 }
22825 break;
22826
22827 default:
22828 break;
22829 }
22830
22831 if (!DW_STRING_IS_CANONICAL (attr))
22832 {
22833 DW_STRING (attr)
22834 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22835 &objfile->per_bfd->storage_obstack);
22836 DW_STRING_IS_CANONICAL (attr) = 1;
22837 }
22838 return DW_STRING (attr);
22839 }
22840
22841 /* Return the die that this die in an extension of, or NULL if there
22842 is none. *EXT_CU is the CU containing DIE on input, and the CU
22843 containing the return value on output. */
22844
22845 static struct die_info *
22846 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22847 {
22848 struct attribute *attr;
22849
22850 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22851 if (attr == NULL)
22852 return NULL;
22853
22854 return follow_die_ref (die, attr, ext_cu);
22855 }
22856
22857 /* A convenience function that returns an "unknown" DWARF name,
22858 including the value of V. STR is the name of the entity being
22859 printed, e.g., "TAG". */
22860
22861 static const char *
22862 dwarf_unknown (const char *str, unsigned v)
22863 {
22864 char *cell = get_print_cell ();
22865 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22866 return cell;
22867 }
22868
22869 /* Convert a DIE tag into its string name. */
22870
22871 static const char *
22872 dwarf_tag_name (unsigned tag)
22873 {
22874 const char *name = get_DW_TAG_name (tag);
22875
22876 if (name == NULL)
22877 return dwarf_unknown ("TAG", tag);
22878
22879 return name;
22880 }
22881
22882 /* Convert a DWARF attribute code into its string name. */
22883
22884 static const char *
22885 dwarf_attr_name (unsigned attr)
22886 {
22887 const char *name;
22888
22889 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22890 if (attr == DW_AT_MIPS_fde)
22891 return "DW_AT_MIPS_fde";
22892 #else
22893 if (attr == DW_AT_HP_block_index)
22894 return "DW_AT_HP_block_index";
22895 #endif
22896
22897 name = get_DW_AT_name (attr);
22898
22899 if (name == NULL)
22900 return dwarf_unknown ("AT", attr);
22901
22902 return name;
22903 }
22904
22905 /* Convert a unit type to corresponding DW_UT name. */
22906
22907 static const char *
22908 dwarf_unit_type_name (int unit_type) {
22909 switch (unit_type)
22910 {
22911 case 0x01:
22912 return "DW_UT_compile (0x01)";
22913 case 0x02:
22914 return "DW_UT_type (0x02)";
22915 case 0x03:
22916 return "DW_UT_partial (0x03)";
22917 case 0x04:
22918 return "DW_UT_skeleton (0x04)";
22919 case 0x05:
22920 return "DW_UT_split_compile (0x05)";
22921 case 0x06:
22922 return "DW_UT_split_type (0x06)";
22923 case 0x80:
22924 return "DW_UT_lo_user (0x80)";
22925 case 0xff:
22926 return "DW_UT_hi_user (0xff)";
22927 default:
22928 return nullptr;
22929 }
22930 }
22931
22932 /* Convert a DWARF value form code into its string name. */
22933
22934 static const char *
22935 dwarf_form_name (unsigned form)
22936 {
22937 const char *name = get_DW_FORM_name (form);
22938
22939 if (name == NULL)
22940 return dwarf_unknown ("FORM", form);
22941
22942 return name;
22943 }
22944
22945 static const char *
22946 dwarf_bool_name (unsigned mybool)
22947 {
22948 if (mybool)
22949 return "TRUE";
22950 else
22951 return "FALSE";
22952 }
22953
22954 /* Convert a DWARF type code into its string name. */
22955
22956 static const char *
22957 dwarf_type_encoding_name (unsigned enc)
22958 {
22959 const char *name = get_DW_ATE_name (enc);
22960
22961 if (name == NULL)
22962 return dwarf_unknown ("ATE", enc);
22963
22964 return name;
22965 }
22966
22967 static void
22968 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22969 {
22970 unsigned int i;
22971
22972 print_spaces (indent, f);
22973 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22974 dwarf_tag_name (die->tag), die->abbrev,
22975 sect_offset_str (die->sect_off));
22976
22977 if (die->parent != NULL)
22978 {
22979 print_spaces (indent, f);
22980 fprintf_unfiltered (f, " parent at offset: %s\n",
22981 sect_offset_str (die->parent->sect_off));
22982 }
22983
22984 print_spaces (indent, f);
22985 fprintf_unfiltered (f, " has children: %s\n",
22986 dwarf_bool_name (die->child != NULL));
22987
22988 print_spaces (indent, f);
22989 fprintf_unfiltered (f, " attributes:\n");
22990
22991 for (i = 0; i < die->num_attrs; ++i)
22992 {
22993 print_spaces (indent, f);
22994 fprintf_unfiltered (f, " %s (%s) ",
22995 dwarf_attr_name (die->attrs[i].name),
22996 dwarf_form_name (die->attrs[i].form));
22997
22998 switch (die->attrs[i].form)
22999 {
23000 case DW_FORM_addr:
23001 case DW_FORM_addrx:
23002 case DW_FORM_GNU_addr_index:
23003 fprintf_unfiltered (f, "address: ");
23004 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23005 break;
23006 case DW_FORM_block2:
23007 case DW_FORM_block4:
23008 case DW_FORM_block:
23009 case DW_FORM_block1:
23010 fprintf_unfiltered (f, "block: size %s",
23011 pulongest (DW_BLOCK (&die->attrs[i])->size));
23012 break;
23013 case DW_FORM_exprloc:
23014 fprintf_unfiltered (f, "expression: size %s",
23015 pulongest (DW_BLOCK (&die->attrs[i])->size));
23016 break;
23017 case DW_FORM_data16:
23018 fprintf_unfiltered (f, "constant of 16 bytes");
23019 break;
23020 case DW_FORM_ref_addr:
23021 fprintf_unfiltered (f, "ref address: ");
23022 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23023 break;
23024 case DW_FORM_GNU_ref_alt:
23025 fprintf_unfiltered (f, "alt ref address: ");
23026 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23027 break;
23028 case DW_FORM_ref1:
23029 case DW_FORM_ref2:
23030 case DW_FORM_ref4:
23031 case DW_FORM_ref8:
23032 case DW_FORM_ref_udata:
23033 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23034 (long) (DW_UNSND (&die->attrs[i])));
23035 break;
23036 case DW_FORM_data1:
23037 case DW_FORM_data2:
23038 case DW_FORM_data4:
23039 case DW_FORM_data8:
23040 case DW_FORM_udata:
23041 case DW_FORM_sdata:
23042 fprintf_unfiltered (f, "constant: %s",
23043 pulongest (DW_UNSND (&die->attrs[i])));
23044 break;
23045 case DW_FORM_sec_offset:
23046 fprintf_unfiltered (f, "section offset: %s",
23047 pulongest (DW_UNSND (&die->attrs[i])));
23048 break;
23049 case DW_FORM_ref_sig8:
23050 fprintf_unfiltered (f, "signature: %s",
23051 hex_string (DW_SIGNATURE (&die->attrs[i])));
23052 break;
23053 case DW_FORM_string:
23054 case DW_FORM_strp:
23055 case DW_FORM_line_strp:
23056 case DW_FORM_strx:
23057 case DW_FORM_GNU_str_index:
23058 case DW_FORM_GNU_strp_alt:
23059 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23060 DW_STRING (&die->attrs[i])
23061 ? DW_STRING (&die->attrs[i]) : "",
23062 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23063 break;
23064 case DW_FORM_flag:
23065 if (DW_UNSND (&die->attrs[i]))
23066 fprintf_unfiltered (f, "flag: TRUE");
23067 else
23068 fprintf_unfiltered (f, "flag: FALSE");
23069 break;
23070 case DW_FORM_flag_present:
23071 fprintf_unfiltered (f, "flag: TRUE");
23072 break;
23073 case DW_FORM_indirect:
23074 /* The reader will have reduced the indirect form to
23075 the "base form" so this form should not occur. */
23076 fprintf_unfiltered (f,
23077 "unexpected attribute form: DW_FORM_indirect");
23078 break;
23079 case DW_FORM_implicit_const:
23080 fprintf_unfiltered (f, "constant: %s",
23081 plongest (DW_SND (&die->attrs[i])));
23082 break;
23083 default:
23084 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23085 die->attrs[i].form);
23086 break;
23087 }
23088 fprintf_unfiltered (f, "\n");
23089 }
23090 }
23091
23092 static void
23093 dump_die_for_error (struct die_info *die)
23094 {
23095 dump_die_shallow (gdb_stderr, 0, die);
23096 }
23097
23098 static void
23099 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23100 {
23101 int indent = level * 4;
23102
23103 gdb_assert (die != NULL);
23104
23105 if (level >= max_level)
23106 return;
23107
23108 dump_die_shallow (f, indent, die);
23109
23110 if (die->child != NULL)
23111 {
23112 print_spaces (indent, f);
23113 fprintf_unfiltered (f, " Children:");
23114 if (level + 1 < max_level)
23115 {
23116 fprintf_unfiltered (f, "\n");
23117 dump_die_1 (f, level + 1, max_level, die->child);
23118 }
23119 else
23120 {
23121 fprintf_unfiltered (f,
23122 " [not printed, max nesting level reached]\n");
23123 }
23124 }
23125
23126 if (die->sibling != NULL && level > 0)
23127 {
23128 dump_die_1 (f, level, max_level, die->sibling);
23129 }
23130 }
23131
23132 /* This is called from the pdie macro in gdbinit.in.
23133 It's not static so gcc will keep a copy callable from gdb. */
23134
23135 void
23136 dump_die (struct die_info *die, int max_level)
23137 {
23138 dump_die_1 (gdb_stdlog, 0, max_level, die);
23139 }
23140
23141 static void
23142 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23143 {
23144 void **slot;
23145
23146 slot = htab_find_slot_with_hash (cu->die_hash, die,
23147 to_underlying (die->sect_off),
23148 INSERT);
23149
23150 *slot = die;
23151 }
23152
23153 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23154 required kind. */
23155
23156 static sect_offset
23157 dwarf2_get_ref_die_offset (const struct attribute *attr)
23158 {
23159 if (attr_form_is_ref (attr))
23160 return (sect_offset) DW_UNSND (attr);
23161
23162 complaint (_("unsupported die ref attribute form: '%s'"),
23163 dwarf_form_name (attr->form));
23164 return {};
23165 }
23166
23167 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23168 * the value held by the attribute is not constant. */
23169
23170 static LONGEST
23171 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23172 {
23173 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23174 return DW_SND (attr);
23175 else if (attr->form == DW_FORM_udata
23176 || attr->form == DW_FORM_data1
23177 || attr->form == DW_FORM_data2
23178 || attr->form == DW_FORM_data4
23179 || attr->form == DW_FORM_data8)
23180 return DW_UNSND (attr);
23181 else
23182 {
23183 /* For DW_FORM_data16 see attr_form_is_constant. */
23184 complaint (_("Attribute value is not a constant (%s)"),
23185 dwarf_form_name (attr->form));
23186 return default_value;
23187 }
23188 }
23189
23190 /* Follow reference or signature attribute ATTR of SRC_DIE.
23191 On entry *REF_CU is the CU of SRC_DIE.
23192 On exit *REF_CU is the CU of the result. */
23193
23194 static struct die_info *
23195 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23196 struct dwarf2_cu **ref_cu)
23197 {
23198 struct die_info *die;
23199
23200 if (attr_form_is_ref (attr))
23201 die = follow_die_ref (src_die, attr, ref_cu);
23202 else if (attr->form == DW_FORM_ref_sig8)
23203 die = follow_die_sig (src_die, attr, ref_cu);
23204 else
23205 {
23206 dump_die_for_error (src_die);
23207 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23208 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23209 }
23210
23211 return die;
23212 }
23213
23214 /* Follow reference OFFSET.
23215 On entry *REF_CU is the CU of the source die referencing OFFSET.
23216 On exit *REF_CU is the CU of the result.
23217 Returns NULL if OFFSET is invalid. */
23218
23219 static struct die_info *
23220 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23221 struct dwarf2_cu **ref_cu)
23222 {
23223 struct die_info temp_die;
23224 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23225 struct dwarf2_per_objfile *dwarf2_per_objfile
23226 = cu->per_cu->dwarf2_per_objfile;
23227
23228 gdb_assert (cu->per_cu != NULL);
23229
23230 target_cu = cu;
23231
23232 if (cu->per_cu->is_debug_types)
23233 {
23234 /* .debug_types CUs cannot reference anything outside their CU.
23235 If they need to, they have to reference a signatured type via
23236 DW_FORM_ref_sig8. */
23237 if (!offset_in_cu_p (&cu->header, sect_off))
23238 return NULL;
23239 }
23240 else if (offset_in_dwz != cu->per_cu->is_dwz
23241 || !offset_in_cu_p (&cu->header, sect_off))
23242 {
23243 struct dwarf2_per_cu_data *per_cu;
23244
23245 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23246 dwarf2_per_objfile);
23247
23248 /* If necessary, add it to the queue and load its DIEs. */
23249 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23250 load_full_comp_unit (per_cu, false, cu->language);
23251
23252 target_cu = per_cu->cu;
23253 }
23254 else if (cu->dies == NULL)
23255 {
23256 /* We're loading full DIEs during partial symbol reading. */
23257 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23258 load_full_comp_unit (cu->per_cu, false, language_minimal);
23259 }
23260
23261 *ref_cu = target_cu;
23262 temp_die.sect_off = sect_off;
23263
23264 if (target_cu != cu)
23265 target_cu->ancestor = cu;
23266
23267 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23268 &temp_die,
23269 to_underlying (sect_off));
23270 }
23271
23272 /* Follow reference attribute ATTR of SRC_DIE.
23273 On entry *REF_CU is the CU of SRC_DIE.
23274 On exit *REF_CU is the CU of the result. */
23275
23276 static struct die_info *
23277 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23278 struct dwarf2_cu **ref_cu)
23279 {
23280 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23281 struct dwarf2_cu *cu = *ref_cu;
23282 struct die_info *die;
23283
23284 die = follow_die_offset (sect_off,
23285 (attr->form == DW_FORM_GNU_ref_alt
23286 || cu->per_cu->is_dwz),
23287 ref_cu);
23288 if (!die)
23289 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23290 "at %s [in module %s]"),
23291 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23292 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23293
23294 return die;
23295 }
23296
23297 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23298 Returned value is intended for DW_OP_call*. Returned
23299 dwarf2_locexpr_baton->data has lifetime of
23300 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23301
23302 struct dwarf2_locexpr_baton
23303 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23304 struct dwarf2_per_cu_data *per_cu,
23305 CORE_ADDR (*get_frame_pc) (void *baton),
23306 void *baton, bool resolve_abstract_p)
23307 {
23308 struct dwarf2_cu *cu;
23309 struct die_info *die;
23310 struct attribute *attr;
23311 struct dwarf2_locexpr_baton retval;
23312 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23313 struct objfile *objfile = dwarf2_per_objfile->objfile;
23314
23315 if (per_cu->cu == NULL)
23316 load_cu (per_cu, false);
23317 cu = per_cu->cu;
23318 if (cu == NULL)
23319 {
23320 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23321 Instead just throw an error, not much else we can do. */
23322 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23323 sect_offset_str (sect_off), objfile_name (objfile));
23324 }
23325
23326 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23327 if (!die)
23328 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23329 sect_offset_str (sect_off), objfile_name (objfile));
23330
23331 attr = dwarf2_attr (die, DW_AT_location, cu);
23332 if (!attr && resolve_abstract_p
23333 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23334 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23335 {
23336 CORE_ADDR pc = (*get_frame_pc) (baton);
23337 CORE_ADDR baseaddr
23338 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23340
23341 for (const auto &cand_off
23342 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23343 {
23344 struct dwarf2_cu *cand_cu = cu;
23345 struct die_info *cand
23346 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23347 if (!cand
23348 || !cand->parent
23349 || cand->parent->tag != DW_TAG_subprogram)
23350 continue;
23351
23352 CORE_ADDR pc_low, pc_high;
23353 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23354 if (pc_low == ((CORE_ADDR) -1))
23355 continue;
23356 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23357 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23358 if (!(pc_low <= pc && pc < pc_high))
23359 continue;
23360
23361 die = cand;
23362 attr = dwarf2_attr (die, DW_AT_location, cu);
23363 break;
23364 }
23365 }
23366
23367 if (!attr)
23368 {
23369 /* DWARF: "If there is no such attribute, then there is no effect.".
23370 DATA is ignored if SIZE is 0. */
23371
23372 retval.data = NULL;
23373 retval.size = 0;
23374 }
23375 else if (attr_form_is_section_offset (attr))
23376 {
23377 struct dwarf2_loclist_baton loclist_baton;
23378 CORE_ADDR pc = (*get_frame_pc) (baton);
23379 size_t size;
23380
23381 fill_in_loclist_baton (cu, &loclist_baton, attr);
23382
23383 retval.data = dwarf2_find_location_expression (&loclist_baton,
23384 &size, pc);
23385 retval.size = size;
23386 }
23387 else
23388 {
23389 if (!attr_form_is_block (attr))
23390 error (_("Dwarf Error: DIE at %s referenced in module %s "
23391 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23392 sect_offset_str (sect_off), objfile_name (objfile));
23393
23394 retval.data = DW_BLOCK (attr)->data;
23395 retval.size = DW_BLOCK (attr)->size;
23396 }
23397 retval.per_cu = cu->per_cu;
23398
23399 age_cached_comp_units (dwarf2_per_objfile);
23400
23401 return retval;
23402 }
23403
23404 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23405 offset. */
23406
23407 struct dwarf2_locexpr_baton
23408 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23409 struct dwarf2_per_cu_data *per_cu,
23410 CORE_ADDR (*get_frame_pc) (void *baton),
23411 void *baton)
23412 {
23413 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23414
23415 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23416 }
23417
23418 /* Write a constant of a given type as target-ordered bytes into
23419 OBSTACK. */
23420
23421 static const gdb_byte *
23422 write_constant_as_bytes (struct obstack *obstack,
23423 enum bfd_endian byte_order,
23424 struct type *type,
23425 ULONGEST value,
23426 LONGEST *len)
23427 {
23428 gdb_byte *result;
23429
23430 *len = TYPE_LENGTH (type);
23431 result = (gdb_byte *) obstack_alloc (obstack, *len);
23432 store_unsigned_integer (result, *len, byte_order, value);
23433
23434 return result;
23435 }
23436
23437 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23438 pointer to the constant bytes and set LEN to the length of the
23439 data. If memory is needed, allocate it on OBSTACK. If the DIE
23440 does not have a DW_AT_const_value, return NULL. */
23441
23442 const gdb_byte *
23443 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23444 struct dwarf2_per_cu_data *per_cu,
23445 struct obstack *obstack,
23446 LONGEST *len)
23447 {
23448 struct dwarf2_cu *cu;
23449 struct die_info *die;
23450 struct attribute *attr;
23451 const gdb_byte *result = NULL;
23452 struct type *type;
23453 LONGEST value;
23454 enum bfd_endian byte_order;
23455 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23456
23457 if (per_cu->cu == NULL)
23458 load_cu (per_cu, false);
23459 cu = per_cu->cu;
23460 if (cu == NULL)
23461 {
23462 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23463 Instead just throw an error, not much else we can do. */
23464 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23465 sect_offset_str (sect_off), objfile_name (objfile));
23466 }
23467
23468 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23469 if (!die)
23470 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23471 sect_offset_str (sect_off), objfile_name (objfile));
23472
23473 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23474 if (attr == NULL)
23475 return NULL;
23476
23477 byte_order = (bfd_big_endian (objfile->obfd)
23478 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23479
23480 switch (attr->form)
23481 {
23482 case DW_FORM_addr:
23483 case DW_FORM_addrx:
23484 case DW_FORM_GNU_addr_index:
23485 {
23486 gdb_byte *tem;
23487
23488 *len = cu->header.addr_size;
23489 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23490 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23491 result = tem;
23492 }
23493 break;
23494 case DW_FORM_string:
23495 case DW_FORM_strp:
23496 case DW_FORM_strx:
23497 case DW_FORM_GNU_str_index:
23498 case DW_FORM_GNU_strp_alt:
23499 /* DW_STRING is already allocated on the objfile obstack, point
23500 directly to it. */
23501 result = (const gdb_byte *) DW_STRING (attr);
23502 *len = strlen (DW_STRING (attr));
23503 break;
23504 case DW_FORM_block1:
23505 case DW_FORM_block2:
23506 case DW_FORM_block4:
23507 case DW_FORM_block:
23508 case DW_FORM_exprloc:
23509 case DW_FORM_data16:
23510 result = DW_BLOCK (attr)->data;
23511 *len = DW_BLOCK (attr)->size;
23512 break;
23513
23514 /* The DW_AT_const_value attributes are supposed to carry the
23515 symbol's value "represented as it would be on the target
23516 architecture." By the time we get here, it's already been
23517 converted to host endianness, so we just need to sign- or
23518 zero-extend it as appropriate. */
23519 case DW_FORM_data1:
23520 type = die_type (die, cu);
23521 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23522 if (result == NULL)
23523 result = write_constant_as_bytes (obstack, byte_order,
23524 type, value, len);
23525 break;
23526 case DW_FORM_data2:
23527 type = die_type (die, cu);
23528 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23529 if (result == NULL)
23530 result = write_constant_as_bytes (obstack, byte_order,
23531 type, value, len);
23532 break;
23533 case DW_FORM_data4:
23534 type = die_type (die, cu);
23535 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23536 if (result == NULL)
23537 result = write_constant_as_bytes (obstack, byte_order,
23538 type, value, len);
23539 break;
23540 case DW_FORM_data8:
23541 type = die_type (die, cu);
23542 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23543 if (result == NULL)
23544 result = write_constant_as_bytes (obstack, byte_order,
23545 type, value, len);
23546 break;
23547
23548 case DW_FORM_sdata:
23549 case DW_FORM_implicit_const:
23550 type = die_type (die, cu);
23551 result = write_constant_as_bytes (obstack, byte_order,
23552 type, DW_SND (attr), len);
23553 break;
23554
23555 case DW_FORM_udata:
23556 type = die_type (die, cu);
23557 result = write_constant_as_bytes (obstack, byte_order,
23558 type, DW_UNSND (attr), len);
23559 break;
23560
23561 default:
23562 complaint (_("unsupported const value attribute form: '%s'"),
23563 dwarf_form_name (attr->form));
23564 break;
23565 }
23566
23567 return result;
23568 }
23569
23570 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23571 valid type for this die is found. */
23572
23573 struct type *
23574 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23575 struct dwarf2_per_cu_data *per_cu)
23576 {
23577 struct dwarf2_cu *cu;
23578 struct die_info *die;
23579
23580 if (per_cu->cu == NULL)
23581 load_cu (per_cu, false);
23582 cu = per_cu->cu;
23583 if (!cu)
23584 return NULL;
23585
23586 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23587 if (!die)
23588 return NULL;
23589
23590 return die_type (die, cu);
23591 }
23592
23593 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23594 PER_CU. */
23595
23596 struct type *
23597 dwarf2_get_die_type (cu_offset die_offset,
23598 struct dwarf2_per_cu_data *per_cu)
23599 {
23600 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23601 return get_die_type_at_offset (die_offset_sect, per_cu);
23602 }
23603
23604 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23605 On entry *REF_CU is the CU of SRC_DIE.
23606 On exit *REF_CU is the CU of the result.
23607 Returns NULL if the referenced DIE isn't found. */
23608
23609 static struct die_info *
23610 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23611 struct dwarf2_cu **ref_cu)
23612 {
23613 struct die_info temp_die;
23614 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23615 struct die_info *die;
23616
23617 /* While it might be nice to assert sig_type->type == NULL here,
23618 we can get here for DW_AT_imported_declaration where we need
23619 the DIE not the type. */
23620
23621 /* If necessary, add it to the queue and load its DIEs. */
23622
23623 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23624 read_signatured_type (sig_type);
23625
23626 sig_cu = sig_type->per_cu.cu;
23627 gdb_assert (sig_cu != NULL);
23628 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23629 temp_die.sect_off = sig_type->type_offset_in_section;
23630 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23631 to_underlying (temp_die.sect_off));
23632 if (die)
23633 {
23634 struct dwarf2_per_objfile *dwarf2_per_objfile
23635 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23636
23637 /* For .gdb_index version 7 keep track of included TUs.
23638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23639 if (dwarf2_per_objfile->index_table != NULL
23640 && dwarf2_per_objfile->index_table->version <= 7)
23641 {
23642 VEC_safe_push (dwarf2_per_cu_ptr,
23643 (*ref_cu)->per_cu->imported_symtabs,
23644 sig_cu->per_cu);
23645 }
23646
23647 *ref_cu = sig_cu;
23648 if (sig_cu != cu)
23649 sig_cu->ancestor = cu;
23650
23651 return die;
23652 }
23653
23654 return NULL;
23655 }
23656
23657 /* Follow signatured type referenced by ATTR in SRC_DIE.
23658 On entry *REF_CU is the CU of SRC_DIE.
23659 On exit *REF_CU is the CU of the result.
23660 The result is the DIE of the type.
23661 If the referenced type cannot be found an error is thrown. */
23662
23663 static struct die_info *
23664 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23665 struct dwarf2_cu **ref_cu)
23666 {
23667 ULONGEST signature = DW_SIGNATURE (attr);
23668 struct signatured_type *sig_type;
23669 struct die_info *die;
23670
23671 gdb_assert (attr->form == DW_FORM_ref_sig8);
23672
23673 sig_type = lookup_signatured_type (*ref_cu, signature);
23674 /* sig_type will be NULL if the signatured type is missing from
23675 the debug info. */
23676 if (sig_type == NULL)
23677 {
23678 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23679 " from DIE at %s [in module %s]"),
23680 hex_string (signature), sect_offset_str (src_die->sect_off),
23681 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23682 }
23683
23684 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23685 if (die == NULL)
23686 {
23687 dump_die_for_error (src_die);
23688 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23689 " from DIE at %s [in module %s]"),
23690 hex_string (signature), sect_offset_str (src_die->sect_off),
23691 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23692 }
23693
23694 return die;
23695 }
23696
23697 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23698 reading in and processing the type unit if necessary. */
23699
23700 static struct type *
23701 get_signatured_type (struct die_info *die, ULONGEST signature,
23702 struct dwarf2_cu *cu)
23703 {
23704 struct dwarf2_per_objfile *dwarf2_per_objfile
23705 = cu->per_cu->dwarf2_per_objfile;
23706 struct signatured_type *sig_type;
23707 struct dwarf2_cu *type_cu;
23708 struct die_info *type_die;
23709 struct type *type;
23710
23711 sig_type = lookup_signatured_type (cu, signature);
23712 /* sig_type will be NULL if the signatured type is missing from
23713 the debug info. */
23714 if (sig_type == NULL)
23715 {
23716 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23717 " from DIE at %s [in module %s]"),
23718 hex_string (signature), sect_offset_str (die->sect_off),
23719 objfile_name (dwarf2_per_objfile->objfile));
23720 return build_error_marker_type (cu, die);
23721 }
23722
23723 /* If we already know the type we're done. */
23724 if (sig_type->type != NULL)
23725 return sig_type->type;
23726
23727 type_cu = cu;
23728 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23729 if (type_die != NULL)
23730 {
23731 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23732 is created. This is important, for example, because for c++ classes
23733 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23734 type = read_type_die (type_die, type_cu);
23735 if (type == NULL)
23736 {
23737 complaint (_("Dwarf Error: Cannot build signatured type %s"
23738 " referenced from DIE at %s [in module %s]"),
23739 hex_string (signature), sect_offset_str (die->sect_off),
23740 objfile_name (dwarf2_per_objfile->objfile));
23741 type = build_error_marker_type (cu, die);
23742 }
23743 }
23744 else
23745 {
23746 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23747 " from DIE at %s [in module %s]"),
23748 hex_string (signature), sect_offset_str (die->sect_off),
23749 objfile_name (dwarf2_per_objfile->objfile));
23750 type = build_error_marker_type (cu, die);
23751 }
23752 sig_type->type = type;
23753
23754 return type;
23755 }
23756
23757 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23758 reading in and processing the type unit if necessary. */
23759
23760 static struct type *
23761 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23762 struct dwarf2_cu *cu) /* ARI: editCase function */
23763 {
23764 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23765 if (attr_form_is_ref (attr))
23766 {
23767 struct dwarf2_cu *type_cu = cu;
23768 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23769
23770 return read_type_die (type_die, type_cu);
23771 }
23772 else if (attr->form == DW_FORM_ref_sig8)
23773 {
23774 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23775 }
23776 else
23777 {
23778 struct dwarf2_per_objfile *dwarf2_per_objfile
23779 = cu->per_cu->dwarf2_per_objfile;
23780
23781 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23782 " at %s [in module %s]"),
23783 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23784 objfile_name (dwarf2_per_objfile->objfile));
23785 return build_error_marker_type (cu, die);
23786 }
23787 }
23788
23789 /* Load the DIEs associated with type unit PER_CU into memory. */
23790
23791 static void
23792 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23793 {
23794 struct signatured_type *sig_type;
23795
23796 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23797 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23798
23799 /* We have the per_cu, but we need the signatured_type.
23800 Fortunately this is an easy translation. */
23801 gdb_assert (per_cu->is_debug_types);
23802 sig_type = (struct signatured_type *) per_cu;
23803
23804 gdb_assert (per_cu->cu == NULL);
23805
23806 read_signatured_type (sig_type);
23807
23808 gdb_assert (per_cu->cu != NULL);
23809 }
23810
23811 /* die_reader_func for read_signatured_type.
23812 This is identical to load_full_comp_unit_reader,
23813 but is kept separate for now. */
23814
23815 static void
23816 read_signatured_type_reader (const struct die_reader_specs *reader,
23817 const gdb_byte *info_ptr,
23818 struct die_info *comp_unit_die,
23819 int has_children,
23820 void *data)
23821 {
23822 struct dwarf2_cu *cu = reader->cu;
23823
23824 gdb_assert (cu->die_hash == NULL);
23825 cu->die_hash =
23826 htab_create_alloc_ex (cu->header.length / 12,
23827 die_hash,
23828 die_eq,
23829 NULL,
23830 &cu->comp_unit_obstack,
23831 hashtab_obstack_allocate,
23832 dummy_obstack_deallocate);
23833
23834 if (has_children)
23835 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23836 &info_ptr, comp_unit_die);
23837 cu->dies = comp_unit_die;
23838 /* comp_unit_die is not stored in die_hash, no need. */
23839
23840 /* We try not to read any attributes in this function, because not
23841 all CUs needed for references have been loaded yet, and symbol
23842 table processing isn't initialized. But we have to set the CU language,
23843 or we won't be able to build types correctly.
23844 Similarly, if we do not read the producer, we can not apply
23845 producer-specific interpretation. */
23846 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23847 }
23848
23849 /* Read in a signatured type and build its CU and DIEs.
23850 If the type is a stub for the real type in a DWO file,
23851 read in the real type from the DWO file as well. */
23852
23853 static void
23854 read_signatured_type (struct signatured_type *sig_type)
23855 {
23856 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23857
23858 gdb_assert (per_cu->is_debug_types);
23859 gdb_assert (per_cu->cu == NULL);
23860
23861 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23862 read_signatured_type_reader, NULL);
23863 sig_type->per_cu.tu_read = 1;
23864 }
23865
23866 /* Decode simple location descriptions.
23867 Given a pointer to a dwarf block that defines a location, compute
23868 the location and return the value.
23869
23870 NOTE drow/2003-11-18: This function is called in two situations
23871 now: for the address of static or global variables (partial symbols
23872 only) and for offsets into structures which are expected to be
23873 (more or less) constant. The partial symbol case should go away,
23874 and only the constant case should remain. That will let this
23875 function complain more accurately. A few special modes are allowed
23876 without complaint for global variables (for instance, global
23877 register values and thread-local values).
23878
23879 A location description containing no operations indicates that the
23880 object is optimized out. The return value is 0 for that case.
23881 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23882 callers will only want a very basic result and this can become a
23883 complaint.
23884
23885 Note that stack[0] is unused except as a default error return. */
23886
23887 static CORE_ADDR
23888 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23889 {
23890 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23891 size_t i;
23892 size_t size = blk->size;
23893 const gdb_byte *data = blk->data;
23894 CORE_ADDR stack[64];
23895 int stacki;
23896 unsigned int bytes_read, unsnd;
23897 gdb_byte op;
23898
23899 i = 0;
23900 stacki = 0;
23901 stack[stacki] = 0;
23902 stack[++stacki] = 0;
23903
23904 while (i < size)
23905 {
23906 op = data[i++];
23907 switch (op)
23908 {
23909 case DW_OP_lit0:
23910 case DW_OP_lit1:
23911 case DW_OP_lit2:
23912 case DW_OP_lit3:
23913 case DW_OP_lit4:
23914 case DW_OP_lit5:
23915 case DW_OP_lit6:
23916 case DW_OP_lit7:
23917 case DW_OP_lit8:
23918 case DW_OP_lit9:
23919 case DW_OP_lit10:
23920 case DW_OP_lit11:
23921 case DW_OP_lit12:
23922 case DW_OP_lit13:
23923 case DW_OP_lit14:
23924 case DW_OP_lit15:
23925 case DW_OP_lit16:
23926 case DW_OP_lit17:
23927 case DW_OP_lit18:
23928 case DW_OP_lit19:
23929 case DW_OP_lit20:
23930 case DW_OP_lit21:
23931 case DW_OP_lit22:
23932 case DW_OP_lit23:
23933 case DW_OP_lit24:
23934 case DW_OP_lit25:
23935 case DW_OP_lit26:
23936 case DW_OP_lit27:
23937 case DW_OP_lit28:
23938 case DW_OP_lit29:
23939 case DW_OP_lit30:
23940 case DW_OP_lit31:
23941 stack[++stacki] = op - DW_OP_lit0;
23942 break;
23943
23944 case DW_OP_reg0:
23945 case DW_OP_reg1:
23946 case DW_OP_reg2:
23947 case DW_OP_reg3:
23948 case DW_OP_reg4:
23949 case DW_OP_reg5:
23950 case DW_OP_reg6:
23951 case DW_OP_reg7:
23952 case DW_OP_reg8:
23953 case DW_OP_reg9:
23954 case DW_OP_reg10:
23955 case DW_OP_reg11:
23956 case DW_OP_reg12:
23957 case DW_OP_reg13:
23958 case DW_OP_reg14:
23959 case DW_OP_reg15:
23960 case DW_OP_reg16:
23961 case DW_OP_reg17:
23962 case DW_OP_reg18:
23963 case DW_OP_reg19:
23964 case DW_OP_reg20:
23965 case DW_OP_reg21:
23966 case DW_OP_reg22:
23967 case DW_OP_reg23:
23968 case DW_OP_reg24:
23969 case DW_OP_reg25:
23970 case DW_OP_reg26:
23971 case DW_OP_reg27:
23972 case DW_OP_reg28:
23973 case DW_OP_reg29:
23974 case DW_OP_reg30:
23975 case DW_OP_reg31:
23976 stack[++stacki] = op - DW_OP_reg0;
23977 if (i < size)
23978 dwarf2_complex_location_expr_complaint ();
23979 break;
23980
23981 case DW_OP_regx:
23982 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23983 i += bytes_read;
23984 stack[++stacki] = unsnd;
23985 if (i < size)
23986 dwarf2_complex_location_expr_complaint ();
23987 break;
23988
23989 case DW_OP_addr:
23990 stack[++stacki] = read_address (objfile->obfd, &data[i],
23991 cu, &bytes_read);
23992 i += bytes_read;
23993 break;
23994
23995 case DW_OP_const1u:
23996 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23997 i += 1;
23998 break;
23999
24000 case DW_OP_const1s:
24001 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24002 i += 1;
24003 break;
24004
24005 case DW_OP_const2u:
24006 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24007 i += 2;
24008 break;
24009
24010 case DW_OP_const2s:
24011 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24012 i += 2;
24013 break;
24014
24015 case DW_OP_const4u:
24016 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24017 i += 4;
24018 break;
24019
24020 case DW_OP_const4s:
24021 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24022 i += 4;
24023 break;
24024
24025 case DW_OP_const8u:
24026 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24027 i += 8;
24028 break;
24029
24030 case DW_OP_constu:
24031 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24032 &bytes_read);
24033 i += bytes_read;
24034 break;
24035
24036 case DW_OP_consts:
24037 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24038 i += bytes_read;
24039 break;
24040
24041 case DW_OP_dup:
24042 stack[stacki + 1] = stack[stacki];
24043 stacki++;
24044 break;
24045
24046 case DW_OP_plus:
24047 stack[stacki - 1] += stack[stacki];
24048 stacki--;
24049 break;
24050
24051 case DW_OP_plus_uconst:
24052 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24053 &bytes_read);
24054 i += bytes_read;
24055 break;
24056
24057 case DW_OP_minus:
24058 stack[stacki - 1] -= stack[stacki];
24059 stacki--;
24060 break;
24061
24062 case DW_OP_deref:
24063 /* If we're not the last op, then we definitely can't encode
24064 this using GDB's address_class enum. This is valid for partial
24065 global symbols, although the variable's address will be bogus
24066 in the psymtab. */
24067 if (i < size)
24068 dwarf2_complex_location_expr_complaint ();
24069 break;
24070
24071 case DW_OP_GNU_push_tls_address:
24072 case DW_OP_form_tls_address:
24073 /* The top of the stack has the offset from the beginning
24074 of the thread control block at which the variable is located. */
24075 /* Nothing should follow this operator, so the top of stack would
24076 be returned. */
24077 /* This is valid for partial global symbols, but the variable's
24078 address will be bogus in the psymtab. Make it always at least
24079 non-zero to not look as a variable garbage collected by linker
24080 which have DW_OP_addr 0. */
24081 if (i < size)
24082 dwarf2_complex_location_expr_complaint ();
24083 stack[stacki]++;
24084 break;
24085
24086 case DW_OP_GNU_uninit:
24087 break;
24088
24089 case DW_OP_addrx:
24090 case DW_OP_GNU_addr_index:
24091 case DW_OP_GNU_const_index:
24092 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24093 &bytes_read);
24094 i += bytes_read;
24095 break;
24096
24097 default:
24098 {
24099 const char *name = get_DW_OP_name (op);
24100
24101 if (name)
24102 complaint (_("unsupported stack op: '%s'"),
24103 name);
24104 else
24105 complaint (_("unsupported stack op: '%02x'"),
24106 op);
24107 }
24108
24109 return (stack[stacki]);
24110 }
24111
24112 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24113 outside of the allocated space. Also enforce minimum>0. */
24114 if (stacki >= ARRAY_SIZE (stack) - 1)
24115 {
24116 complaint (_("location description stack overflow"));
24117 return 0;
24118 }
24119
24120 if (stacki <= 0)
24121 {
24122 complaint (_("location description stack underflow"));
24123 return 0;
24124 }
24125 }
24126 return (stack[stacki]);
24127 }
24128
24129 /* memory allocation interface */
24130
24131 static struct dwarf_block *
24132 dwarf_alloc_block (struct dwarf2_cu *cu)
24133 {
24134 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24135 }
24136
24137 static struct die_info *
24138 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24139 {
24140 struct die_info *die;
24141 size_t size = sizeof (struct die_info);
24142
24143 if (num_attrs > 1)
24144 size += (num_attrs - 1) * sizeof (struct attribute);
24145
24146 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24147 memset (die, 0, sizeof (struct die_info));
24148 return (die);
24149 }
24150
24151 \f
24152 /* Macro support. */
24153
24154 /* Return file name relative to the compilation directory of file number I in
24155 *LH's file name table. The result is allocated using xmalloc; the caller is
24156 responsible for freeing it. */
24157
24158 static char *
24159 file_file_name (int file, struct line_header *lh)
24160 {
24161 /* Is the file number a valid index into the line header's file name
24162 table? Remember that file numbers start with one, not zero. */
24163 if (1 <= file && file <= lh->file_names.size ())
24164 {
24165 const file_entry &fe = lh->file_names[file - 1];
24166
24167 if (!IS_ABSOLUTE_PATH (fe.name))
24168 {
24169 const char *dir = fe.include_dir (lh);
24170 if (dir != NULL)
24171 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24172 }
24173 return xstrdup (fe.name);
24174 }
24175 else
24176 {
24177 /* The compiler produced a bogus file number. We can at least
24178 record the macro definitions made in the file, even if we
24179 won't be able to find the file by name. */
24180 char fake_name[80];
24181
24182 xsnprintf (fake_name, sizeof (fake_name),
24183 "<bad macro file number %d>", file);
24184
24185 complaint (_("bad file number in macro information (%d)"),
24186 file);
24187
24188 return xstrdup (fake_name);
24189 }
24190 }
24191
24192 /* Return the full name of file number I in *LH's file name table.
24193 Use COMP_DIR as the name of the current directory of the
24194 compilation. The result is allocated using xmalloc; the caller is
24195 responsible for freeing it. */
24196 static char *
24197 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24198 {
24199 /* Is the file number a valid index into the line header's file name
24200 table? Remember that file numbers start with one, not zero. */
24201 if (1 <= file && file <= lh->file_names.size ())
24202 {
24203 char *relative = file_file_name (file, lh);
24204
24205 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24206 return relative;
24207 return reconcat (relative, comp_dir, SLASH_STRING,
24208 relative, (char *) NULL);
24209 }
24210 else
24211 return file_file_name (file, lh);
24212 }
24213
24214
24215 static struct macro_source_file *
24216 macro_start_file (struct dwarf2_cu *cu,
24217 int file, int line,
24218 struct macro_source_file *current_file,
24219 struct line_header *lh)
24220 {
24221 /* File name relative to the compilation directory of this source file. */
24222 char *file_name = file_file_name (file, lh);
24223
24224 if (! current_file)
24225 {
24226 /* Note: We don't create a macro table for this compilation unit
24227 at all until we actually get a filename. */
24228 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24229
24230 /* If we have no current file, then this must be the start_file
24231 directive for the compilation unit's main source file. */
24232 current_file = macro_set_main (macro_table, file_name);
24233 macro_define_special (macro_table);
24234 }
24235 else
24236 current_file = macro_include (current_file, line, file_name);
24237
24238 xfree (file_name);
24239
24240 return current_file;
24241 }
24242
24243 static const char *
24244 consume_improper_spaces (const char *p, const char *body)
24245 {
24246 if (*p == ' ')
24247 {
24248 complaint (_("macro definition contains spaces "
24249 "in formal argument list:\n`%s'"),
24250 body);
24251
24252 while (*p == ' ')
24253 p++;
24254 }
24255
24256 return p;
24257 }
24258
24259
24260 static void
24261 parse_macro_definition (struct macro_source_file *file, int line,
24262 const char *body)
24263 {
24264 const char *p;
24265
24266 /* The body string takes one of two forms. For object-like macro
24267 definitions, it should be:
24268
24269 <macro name> " " <definition>
24270
24271 For function-like macro definitions, it should be:
24272
24273 <macro name> "() " <definition>
24274 or
24275 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24276
24277 Spaces may appear only where explicitly indicated, and in the
24278 <definition>.
24279
24280 The Dwarf 2 spec says that an object-like macro's name is always
24281 followed by a space, but versions of GCC around March 2002 omit
24282 the space when the macro's definition is the empty string.
24283
24284 The Dwarf 2 spec says that there should be no spaces between the
24285 formal arguments in a function-like macro's formal argument list,
24286 but versions of GCC around March 2002 include spaces after the
24287 commas. */
24288
24289
24290 /* Find the extent of the macro name. The macro name is terminated
24291 by either a space or null character (for an object-like macro) or
24292 an opening paren (for a function-like macro). */
24293 for (p = body; *p; p++)
24294 if (*p == ' ' || *p == '(')
24295 break;
24296
24297 if (*p == ' ' || *p == '\0')
24298 {
24299 /* It's an object-like macro. */
24300 int name_len = p - body;
24301 char *name = savestring (body, name_len);
24302 const char *replacement;
24303
24304 if (*p == ' ')
24305 replacement = body + name_len + 1;
24306 else
24307 {
24308 dwarf2_macro_malformed_definition_complaint (body);
24309 replacement = body + name_len;
24310 }
24311
24312 macro_define_object (file, line, name, replacement);
24313
24314 xfree (name);
24315 }
24316 else if (*p == '(')
24317 {
24318 /* It's a function-like macro. */
24319 char *name = savestring (body, p - body);
24320 int argc = 0;
24321 int argv_size = 1;
24322 char **argv = XNEWVEC (char *, argv_size);
24323
24324 p++;
24325
24326 p = consume_improper_spaces (p, body);
24327
24328 /* Parse the formal argument list. */
24329 while (*p && *p != ')')
24330 {
24331 /* Find the extent of the current argument name. */
24332 const char *arg_start = p;
24333
24334 while (*p && *p != ',' && *p != ')' && *p != ' ')
24335 p++;
24336
24337 if (! *p || p == arg_start)
24338 dwarf2_macro_malformed_definition_complaint (body);
24339 else
24340 {
24341 /* Make sure argv has room for the new argument. */
24342 if (argc >= argv_size)
24343 {
24344 argv_size *= 2;
24345 argv = XRESIZEVEC (char *, argv, argv_size);
24346 }
24347
24348 argv[argc++] = savestring (arg_start, p - arg_start);
24349 }
24350
24351 p = consume_improper_spaces (p, body);
24352
24353 /* Consume the comma, if present. */
24354 if (*p == ',')
24355 {
24356 p++;
24357
24358 p = consume_improper_spaces (p, body);
24359 }
24360 }
24361
24362 if (*p == ')')
24363 {
24364 p++;
24365
24366 if (*p == ' ')
24367 /* Perfectly formed definition, no complaints. */
24368 macro_define_function (file, line, name,
24369 argc, (const char **) argv,
24370 p + 1);
24371 else if (*p == '\0')
24372 {
24373 /* Complain, but do define it. */
24374 dwarf2_macro_malformed_definition_complaint (body);
24375 macro_define_function (file, line, name,
24376 argc, (const char **) argv,
24377 p);
24378 }
24379 else
24380 /* Just complain. */
24381 dwarf2_macro_malformed_definition_complaint (body);
24382 }
24383 else
24384 /* Just complain. */
24385 dwarf2_macro_malformed_definition_complaint (body);
24386
24387 xfree (name);
24388 {
24389 int i;
24390
24391 for (i = 0; i < argc; i++)
24392 xfree (argv[i]);
24393 }
24394 xfree (argv);
24395 }
24396 else
24397 dwarf2_macro_malformed_definition_complaint (body);
24398 }
24399
24400 /* Skip some bytes from BYTES according to the form given in FORM.
24401 Returns the new pointer. */
24402
24403 static const gdb_byte *
24404 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24405 enum dwarf_form form,
24406 unsigned int offset_size,
24407 struct dwarf2_section_info *section)
24408 {
24409 unsigned int bytes_read;
24410
24411 switch (form)
24412 {
24413 case DW_FORM_data1:
24414 case DW_FORM_flag:
24415 ++bytes;
24416 break;
24417
24418 case DW_FORM_data2:
24419 bytes += 2;
24420 break;
24421
24422 case DW_FORM_data4:
24423 bytes += 4;
24424 break;
24425
24426 case DW_FORM_data8:
24427 bytes += 8;
24428 break;
24429
24430 case DW_FORM_data16:
24431 bytes += 16;
24432 break;
24433
24434 case DW_FORM_string:
24435 read_direct_string (abfd, bytes, &bytes_read);
24436 bytes += bytes_read;
24437 break;
24438
24439 case DW_FORM_sec_offset:
24440 case DW_FORM_strp:
24441 case DW_FORM_GNU_strp_alt:
24442 bytes += offset_size;
24443 break;
24444
24445 case DW_FORM_block:
24446 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24447 bytes += bytes_read;
24448 break;
24449
24450 case DW_FORM_block1:
24451 bytes += 1 + read_1_byte (abfd, bytes);
24452 break;
24453 case DW_FORM_block2:
24454 bytes += 2 + read_2_bytes (abfd, bytes);
24455 break;
24456 case DW_FORM_block4:
24457 bytes += 4 + read_4_bytes (abfd, bytes);
24458 break;
24459
24460 case DW_FORM_addrx:
24461 case DW_FORM_sdata:
24462 case DW_FORM_strx:
24463 case DW_FORM_udata:
24464 case DW_FORM_GNU_addr_index:
24465 case DW_FORM_GNU_str_index:
24466 bytes = gdb_skip_leb128 (bytes, buffer_end);
24467 if (bytes == NULL)
24468 {
24469 dwarf2_section_buffer_overflow_complaint (section);
24470 return NULL;
24471 }
24472 break;
24473
24474 case DW_FORM_implicit_const:
24475 break;
24476
24477 default:
24478 {
24479 complaint (_("invalid form 0x%x in `%s'"),
24480 form, get_section_name (section));
24481 return NULL;
24482 }
24483 }
24484
24485 return bytes;
24486 }
24487
24488 /* A helper for dwarf_decode_macros that handles skipping an unknown
24489 opcode. Returns an updated pointer to the macro data buffer; or,
24490 on error, issues a complaint and returns NULL. */
24491
24492 static const gdb_byte *
24493 skip_unknown_opcode (unsigned int opcode,
24494 const gdb_byte **opcode_definitions,
24495 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24496 bfd *abfd,
24497 unsigned int offset_size,
24498 struct dwarf2_section_info *section)
24499 {
24500 unsigned int bytes_read, i;
24501 unsigned long arg;
24502 const gdb_byte *defn;
24503
24504 if (opcode_definitions[opcode] == NULL)
24505 {
24506 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24507 opcode);
24508 return NULL;
24509 }
24510
24511 defn = opcode_definitions[opcode];
24512 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24513 defn += bytes_read;
24514
24515 for (i = 0; i < arg; ++i)
24516 {
24517 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24518 (enum dwarf_form) defn[i], offset_size,
24519 section);
24520 if (mac_ptr == NULL)
24521 {
24522 /* skip_form_bytes already issued the complaint. */
24523 return NULL;
24524 }
24525 }
24526
24527 return mac_ptr;
24528 }
24529
24530 /* A helper function which parses the header of a macro section.
24531 If the macro section is the extended (for now called "GNU") type,
24532 then this updates *OFFSET_SIZE. Returns a pointer to just after
24533 the header, or issues a complaint and returns NULL on error. */
24534
24535 static const gdb_byte *
24536 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24537 bfd *abfd,
24538 const gdb_byte *mac_ptr,
24539 unsigned int *offset_size,
24540 int section_is_gnu)
24541 {
24542 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24543
24544 if (section_is_gnu)
24545 {
24546 unsigned int version, flags;
24547
24548 version = read_2_bytes (abfd, mac_ptr);
24549 if (version != 4 && version != 5)
24550 {
24551 complaint (_("unrecognized version `%d' in .debug_macro section"),
24552 version);
24553 return NULL;
24554 }
24555 mac_ptr += 2;
24556
24557 flags = read_1_byte (abfd, mac_ptr);
24558 ++mac_ptr;
24559 *offset_size = (flags & 1) ? 8 : 4;
24560
24561 if ((flags & 2) != 0)
24562 /* We don't need the line table offset. */
24563 mac_ptr += *offset_size;
24564
24565 /* Vendor opcode descriptions. */
24566 if ((flags & 4) != 0)
24567 {
24568 unsigned int i, count;
24569
24570 count = read_1_byte (abfd, mac_ptr);
24571 ++mac_ptr;
24572 for (i = 0; i < count; ++i)
24573 {
24574 unsigned int opcode, bytes_read;
24575 unsigned long arg;
24576
24577 opcode = read_1_byte (abfd, mac_ptr);
24578 ++mac_ptr;
24579 opcode_definitions[opcode] = mac_ptr;
24580 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24581 mac_ptr += bytes_read;
24582 mac_ptr += arg;
24583 }
24584 }
24585 }
24586
24587 return mac_ptr;
24588 }
24589
24590 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24591 including DW_MACRO_import. */
24592
24593 static void
24594 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24595 bfd *abfd,
24596 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24597 struct macro_source_file *current_file,
24598 struct line_header *lh,
24599 struct dwarf2_section_info *section,
24600 int section_is_gnu, int section_is_dwz,
24601 unsigned int offset_size,
24602 htab_t include_hash)
24603 {
24604 struct dwarf2_per_objfile *dwarf2_per_objfile
24605 = cu->per_cu->dwarf2_per_objfile;
24606 struct objfile *objfile = dwarf2_per_objfile->objfile;
24607 enum dwarf_macro_record_type macinfo_type;
24608 int at_commandline;
24609 const gdb_byte *opcode_definitions[256];
24610
24611 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24612 &offset_size, section_is_gnu);
24613 if (mac_ptr == NULL)
24614 {
24615 /* We already issued a complaint. */
24616 return;
24617 }
24618
24619 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24620 GDB is still reading the definitions from command line. First
24621 DW_MACINFO_start_file will need to be ignored as it was already executed
24622 to create CURRENT_FILE for the main source holding also the command line
24623 definitions. On first met DW_MACINFO_start_file this flag is reset to
24624 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24625
24626 at_commandline = 1;
24627
24628 do
24629 {
24630 /* Do we at least have room for a macinfo type byte? */
24631 if (mac_ptr >= mac_end)
24632 {
24633 dwarf2_section_buffer_overflow_complaint (section);
24634 break;
24635 }
24636
24637 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24638 mac_ptr++;
24639
24640 /* Note that we rely on the fact that the corresponding GNU and
24641 DWARF constants are the same. */
24642 DIAGNOSTIC_PUSH
24643 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24644 switch (macinfo_type)
24645 {
24646 /* A zero macinfo type indicates the end of the macro
24647 information. */
24648 case 0:
24649 break;
24650
24651 case DW_MACRO_define:
24652 case DW_MACRO_undef:
24653 case DW_MACRO_define_strp:
24654 case DW_MACRO_undef_strp:
24655 case DW_MACRO_define_sup:
24656 case DW_MACRO_undef_sup:
24657 {
24658 unsigned int bytes_read;
24659 int line;
24660 const char *body;
24661 int is_define;
24662
24663 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24664 mac_ptr += bytes_read;
24665
24666 if (macinfo_type == DW_MACRO_define
24667 || macinfo_type == DW_MACRO_undef)
24668 {
24669 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24670 mac_ptr += bytes_read;
24671 }
24672 else
24673 {
24674 LONGEST str_offset;
24675
24676 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24677 mac_ptr += offset_size;
24678
24679 if (macinfo_type == DW_MACRO_define_sup
24680 || macinfo_type == DW_MACRO_undef_sup
24681 || section_is_dwz)
24682 {
24683 struct dwz_file *dwz
24684 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24685
24686 body = read_indirect_string_from_dwz (objfile,
24687 dwz, str_offset);
24688 }
24689 else
24690 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24691 abfd, str_offset);
24692 }
24693
24694 is_define = (macinfo_type == DW_MACRO_define
24695 || macinfo_type == DW_MACRO_define_strp
24696 || macinfo_type == DW_MACRO_define_sup);
24697 if (! current_file)
24698 {
24699 /* DWARF violation as no main source is present. */
24700 complaint (_("debug info with no main source gives macro %s "
24701 "on line %d: %s"),
24702 is_define ? _("definition") : _("undefinition"),
24703 line, body);
24704 break;
24705 }
24706 if ((line == 0 && !at_commandline)
24707 || (line != 0 && at_commandline))
24708 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24709 at_commandline ? _("command-line") : _("in-file"),
24710 is_define ? _("definition") : _("undefinition"),
24711 line == 0 ? _("zero") : _("non-zero"), line, body);
24712
24713 if (body == NULL)
24714 {
24715 /* Fedora's rpm-build's "debugedit" binary
24716 corrupted .debug_macro sections.
24717
24718 For more info, see
24719 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24720 complaint (_("debug info gives %s invalid macro %s "
24721 "without body (corrupted?) at line %d "
24722 "on file %s"),
24723 at_commandline ? _("command-line") : _("in-file"),
24724 is_define ? _("definition") : _("undefinition"),
24725 line, current_file->filename);
24726 }
24727 else if (is_define)
24728 parse_macro_definition (current_file, line, body);
24729 else
24730 {
24731 gdb_assert (macinfo_type == DW_MACRO_undef
24732 || macinfo_type == DW_MACRO_undef_strp
24733 || macinfo_type == DW_MACRO_undef_sup);
24734 macro_undef (current_file, line, body);
24735 }
24736 }
24737 break;
24738
24739 case DW_MACRO_start_file:
24740 {
24741 unsigned int bytes_read;
24742 int line, file;
24743
24744 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24745 mac_ptr += bytes_read;
24746 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24747 mac_ptr += bytes_read;
24748
24749 if ((line == 0 && !at_commandline)
24750 || (line != 0 && at_commandline))
24751 complaint (_("debug info gives source %d included "
24752 "from %s at %s line %d"),
24753 file, at_commandline ? _("command-line") : _("file"),
24754 line == 0 ? _("zero") : _("non-zero"), line);
24755
24756 if (at_commandline)
24757 {
24758 /* This DW_MACRO_start_file was executed in the
24759 pass one. */
24760 at_commandline = 0;
24761 }
24762 else
24763 current_file = macro_start_file (cu, file, line, current_file,
24764 lh);
24765 }
24766 break;
24767
24768 case DW_MACRO_end_file:
24769 if (! current_file)
24770 complaint (_("macro debug info has an unmatched "
24771 "`close_file' directive"));
24772 else
24773 {
24774 current_file = current_file->included_by;
24775 if (! current_file)
24776 {
24777 enum dwarf_macro_record_type next_type;
24778
24779 /* GCC circa March 2002 doesn't produce the zero
24780 type byte marking the end of the compilation
24781 unit. Complain if it's not there, but exit no
24782 matter what. */
24783
24784 /* Do we at least have room for a macinfo type byte? */
24785 if (mac_ptr >= mac_end)
24786 {
24787 dwarf2_section_buffer_overflow_complaint (section);
24788 return;
24789 }
24790
24791 /* We don't increment mac_ptr here, so this is just
24792 a look-ahead. */
24793 next_type
24794 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24795 mac_ptr);
24796 if (next_type != 0)
24797 complaint (_("no terminating 0-type entry for "
24798 "macros in `.debug_macinfo' section"));
24799
24800 return;
24801 }
24802 }
24803 break;
24804
24805 case DW_MACRO_import:
24806 case DW_MACRO_import_sup:
24807 {
24808 LONGEST offset;
24809 void **slot;
24810 bfd *include_bfd = abfd;
24811 struct dwarf2_section_info *include_section = section;
24812 const gdb_byte *include_mac_end = mac_end;
24813 int is_dwz = section_is_dwz;
24814 const gdb_byte *new_mac_ptr;
24815
24816 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24817 mac_ptr += offset_size;
24818
24819 if (macinfo_type == DW_MACRO_import_sup)
24820 {
24821 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24822
24823 dwarf2_read_section (objfile, &dwz->macro);
24824
24825 include_section = &dwz->macro;
24826 include_bfd = get_section_bfd_owner (include_section);
24827 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24828 is_dwz = 1;
24829 }
24830
24831 new_mac_ptr = include_section->buffer + offset;
24832 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24833
24834 if (*slot != NULL)
24835 {
24836 /* This has actually happened; see
24837 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24838 complaint (_("recursive DW_MACRO_import in "
24839 ".debug_macro section"));
24840 }
24841 else
24842 {
24843 *slot = (void *) new_mac_ptr;
24844
24845 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24846 include_mac_end, current_file, lh,
24847 section, section_is_gnu, is_dwz,
24848 offset_size, include_hash);
24849
24850 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24851 }
24852 }
24853 break;
24854
24855 case DW_MACINFO_vendor_ext:
24856 if (!section_is_gnu)
24857 {
24858 unsigned int bytes_read;
24859
24860 /* This reads the constant, but since we don't recognize
24861 any vendor extensions, we ignore it. */
24862 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24863 mac_ptr += bytes_read;
24864 read_direct_string (abfd, mac_ptr, &bytes_read);
24865 mac_ptr += bytes_read;
24866
24867 /* We don't recognize any vendor extensions. */
24868 break;
24869 }
24870 /* FALLTHROUGH */
24871
24872 default:
24873 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24874 mac_ptr, mac_end, abfd, offset_size,
24875 section);
24876 if (mac_ptr == NULL)
24877 return;
24878 break;
24879 }
24880 DIAGNOSTIC_POP
24881 } while (macinfo_type != 0);
24882 }
24883
24884 static void
24885 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24886 int section_is_gnu)
24887 {
24888 struct dwarf2_per_objfile *dwarf2_per_objfile
24889 = cu->per_cu->dwarf2_per_objfile;
24890 struct objfile *objfile = dwarf2_per_objfile->objfile;
24891 struct line_header *lh = cu->line_header;
24892 bfd *abfd;
24893 const gdb_byte *mac_ptr, *mac_end;
24894 struct macro_source_file *current_file = 0;
24895 enum dwarf_macro_record_type macinfo_type;
24896 unsigned int offset_size = cu->header.offset_size;
24897 const gdb_byte *opcode_definitions[256];
24898 void **slot;
24899 struct dwarf2_section_info *section;
24900 const char *section_name;
24901
24902 if (cu->dwo_unit != NULL)
24903 {
24904 if (section_is_gnu)
24905 {
24906 section = &cu->dwo_unit->dwo_file->sections.macro;
24907 section_name = ".debug_macro.dwo";
24908 }
24909 else
24910 {
24911 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24912 section_name = ".debug_macinfo.dwo";
24913 }
24914 }
24915 else
24916 {
24917 if (section_is_gnu)
24918 {
24919 section = &dwarf2_per_objfile->macro;
24920 section_name = ".debug_macro";
24921 }
24922 else
24923 {
24924 section = &dwarf2_per_objfile->macinfo;
24925 section_name = ".debug_macinfo";
24926 }
24927 }
24928
24929 dwarf2_read_section (objfile, section);
24930 if (section->buffer == NULL)
24931 {
24932 complaint (_("missing %s section"), section_name);
24933 return;
24934 }
24935 abfd = get_section_bfd_owner (section);
24936
24937 /* First pass: Find the name of the base filename.
24938 This filename is needed in order to process all macros whose definition
24939 (or undefinition) comes from the command line. These macros are defined
24940 before the first DW_MACINFO_start_file entry, and yet still need to be
24941 associated to the base file.
24942
24943 To determine the base file name, we scan the macro definitions until we
24944 reach the first DW_MACINFO_start_file entry. We then initialize
24945 CURRENT_FILE accordingly so that any macro definition found before the
24946 first DW_MACINFO_start_file can still be associated to the base file. */
24947
24948 mac_ptr = section->buffer + offset;
24949 mac_end = section->buffer + section->size;
24950
24951 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24952 &offset_size, section_is_gnu);
24953 if (mac_ptr == NULL)
24954 {
24955 /* We already issued a complaint. */
24956 return;
24957 }
24958
24959 do
24960 {
24961 /* Do we at least have room for a macinfo type byte? */
24962 if (mac_ptr >= mac_end)
24963 {
24964 /* Complaint is printed during the second pass as GDB will probably
24965 stop the first pass earlier upon finding
24966 DW_MACINFO_start_file. */
24967 break;
24968 }
24969
24970 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24971 mac_ptr++;
24972
24973 /* Note that we rely on the fact that the corresponding GNU and
24974 DWARF constants are the same. */
24975 DIAGNOSTIC_PUSH
24976 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24977 switch (macinfo_type)
24978 {
24979 /* A zero macinfo type indicates the end of the macro
24980 information. */
24981 case 0:
24982 break;
24983
24984 case DW_MACRO_define:
24985 case DW_MACRO_undef:
24986 /* Only skip the data by MAC_PTR. */
24987 {
24988 unsigned int bytes_read;
24989
24990 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24991 mac_ptr += bytes_read;
24992 read_direct_string (abfd, mac_ptr, &bytes_read);
24993 mac_ptr += bytes_read;
24994 }
24995 break;
24996
24997 case DW_MACRO_start_file:
24998 {
24999 unsigned int bytes_read;
25000 int line, file;
25001
25002 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25003 mac_ptr += bytes_read;
25004 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25005 mac_ptr += bytes_read;
25006
25007 current_file = macro_start_file (cu, file, line, current_file, lh);
25008 }
25009 break;
25010
25011 case DW_MACRO_end_file:
25012 /* No data to skip by MAC_PTR. */
25013 break;
25014
25015 case DW_MACRO_define_strp:
25016 case DW_MACRO_undef_strp:
25017 case DW_MACRO_define_sup:
25018 case DW_MACRO_undef_sup:
25019 {
25020 unsigned int bytes_read;
25021
25022 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25023 mac_ptr += bytes_read;
25024 mac_ptr += offset_size;
25025 }
25026 break;
25027
25028 case DW_MACRO_import:
25029 case DW_MACRO_import_sup:
25030 /* Note that, according to the spec, a transparent include
25031 chain cannot call DW_MACRO_start_file. So, we can just
25032 skip this opcode. */
25033 mac_ptr += offset_size;
25034 break;
25035
25036 case DW_MACINFO_vendor_ext:
25037 /* Only skip the data by MAC_PTR. */
25038 if (!section_is_gnu)
25039 {
25040 unsigned int bytes_read;
25041
25042 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25043 mac_ptr += bytes_read;
25044 read_direct_string (abfd, mac_ptr, &bytes_read);
25045 mac_ptr += bytes_read;
25046 }
25047 /* FALLTHROUGH */
25048
25049 default:
25050 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25051 mac_ptr, mac_end, abfd, offset_size,
25052 section);
25053 if (mac_ptr == NULL)
25054 return;
25055 break;
25056 }
25057 DIAGNOSTIC_POP
25058 } while (macinfo_type != 0 && current_file == NULL);
25059
25060 /* Second pass: Process all entries.
25061
25062 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25063 command-line macro definitions/undefinitions. This flag is unset when we
25064 reach the first DW_MACINFO_start_file entry. */
25065
25066 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25067 htab_eq_pointer,
25068 NULL, xcalloc, xfree));
25069 mac_ptr = section->buffer + offset;
25070 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25071 *slot = (void *) mac_ptr;
25072 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25073 current_file, lh, section,
25074 section_is_gnu, 0, offset_size,
25075 include_hash.get ());
25076 }
25077
25078 /* Check if the attribute's form is a DW_FORM_block*
25079 if so return true else false. */
25080
25081 static int
25082 attr_form_is_block (const struct attribute *attr)
25083 {
25084 return (attr == NULL ? 0 :
25085 attr->form == DW_FORM_block1
25086 || attr->form == DW_FORM_block2
25087 || attr->form == DW_FORM_block4
25088 || attr->form == DW_FORM_block
25089 || attr->form == DW_FORM_exprloc);
25090 }
25091
25092 /* Return non-zero if ATTR's value is a section offset --- classes
25093 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25094 You may use DW_UNSND (attr) to retrieve such offsets.
25095
25096 Section 7.5.4, "Attribute Encodings", explains that no attribute
25097 may have a value that belongs to more than one of these classes; it
25098 would be ambiguous if we did, because we use the same forms for all
25099 of them. */
25100
25101 static int
25102 attr_form_is_section_offset (const struct attribute *attr)
25103 {
25104 return (attr->form == DW_FORM_data4
25105 || attr->form == DW_FORM_data8
25106 || attr->form == DW_FORM_sec_offset);
25107 }
25108
25109 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25110 zero otherwise. When this function returns true, you can apply
25111 dwarf2_get_attr_constant_value to it.
25112
25113 However, note that for some attributes you must check
25114 attr_form_is_section_offset before using this test. DW_FORM_data4
25115 and DW_FORM_data8 are members of both the constant class, and of
25116 the classes that contain offsets into other debug sections
25117 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25118 that, if an attribute's can be either a constant or one of the
25119 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25120 taken as section offsets, not constants.
25121
25122 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25123 cannot handle that. */
25124
25125 static int
25126 attr_form_is_constant (const struct attribute *attr)
25127 {
25128 switch (attr->form)
25129 {
25130 case DW_FORM_sdata:
25131 case DW_FORM_udata:
25132 case DW_FORM_data1:
25133 case DW_FORM_data2:
25134 case DW_FORM_data4:
25135 case DW_FORM_data8:
25136 case DW_FORM_implicit_const:
25137 return 1;
25138 default:
25139 return 0;
25140 }
25141 }
25142
25143
25144 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25145 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25146
25147 static int
25148 attr_form_is_ref (const struct attribute *attr)
25149 {
25150 switch (attr->form)
25151 {
25152 case DW_FORM_ref_addr:
25153 case DW_FORM_ref1:
25154 case DW_FORM_ref2:
25155 case DW_FORM_ref4:
25156 case DW_FORM_ref8:
25157 case DW_FORM_ref_udata:
25158 case DW_FORM_GNU_ref_alt:
25159 return 1;
25160 default:
25161 return 0;
25162 }
25163 }
25164
25165 /* Return the .debug_loc section to use for CU.
25166 For DWO files use .debug_loc.dwo. */
25167
25168 static struct dwarf2_section_info *
25169 cu_debug_loc_section (struct dwarf2_cu *cu)
25170 {
25171 struct dwarf2_per_objfile *dwarf2_per_objfile
25172 = cu->per_cu->dwarf2_per_objfile;
25173
25174 if (cu->dwo_unit)
25175 {
25176 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25177
25178 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25179 }
25180 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25181 : &dwarf2_per_objfile->loc);
25182 }
25183
25184 /* A helper function that fills in a dwarf2_loclist_baton. */
25185
25186 static void
25187 fill_in_loclist_baton (struct dwarf2_cu *cu,
25188 struct dwarf2_loclist_baton *baton,
25189 const struct attribute *attr)
25190 {
25191 struct dwarf2_per_objfile *dwarf2_per_objfile
25192 = cu->per_cu->dwarf2_per_objfile;
25193 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25194
25195 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25196
25197 baton->per_cu = cu->per_cu;
25198 gdb_assert (baton->per_cu);
25199 /* We don't know how long the location list is, but make sure we
25200 don't run off the edge of the section. */
25201 baton->size = section->size - DW_UNSND (attr);
25202 baton->data = section->buffer + DW_UNSND (attr);
25203 baton->base_address = cu->base_address;
25204 baton->from_dwo = cu->dwo_unit != NULL;
25205 }
25206
25207 static void
25208 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25209 struct dwarf2_cu *cu, int is_block)
25210 {
25211 struct dwarf2_per_objfile *dwarf2_per_objfile
25212 = cu->per_cu->dwarf2_per_objfile;
25213 struct objfile *objfile = dwarf2_per_objfile->objfile;
25214 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25215
25216 if (attr_form_is_section_offset (attr)
25217 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25218 the section. If so, fall through to the complaint in the
25219 other branch. */
25220 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25221 {
25222 struct dwarf2_loclist_baton *baton;
25223
25224 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25225
25226 fill_in_loclist_baton (cu, baton, attr);
25227
25228 if (cu->base_known == 0)
25229 complaint (_("Location list used without "
25230 "specifying the CU base address."));
25231
25232 SYMBOL_ACLASS_INDEX (sym) = (is_block
25233 ? dwarf2_loclist_block_index
25234 : dwarf2_loclist_index);
25235 SYMBOL_LOCATION_BATON (sym) = baton;
25236 }
25237 else
25238 {
25239 struct dwarf2_locexpr_baton *baton;
25240
25241 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25242 baton->per_cu = cu->per_cu;
25243 gdb_assert (baton->per_cu);
25244
25245 if (attr_form_is_block (attr))
25246 {
25247 /* Note that we're just copying the block's data pointer
25248 here, not the actual data. We're still pointing into the
25249 info_buffer for SYM's objfile; right now we never release
25250 that buffer, but when we do clean up properly this may
25251 need to change. */
25252 baton->size = DW_BLOCK (attr)->size;
25253 baton->data = DW_BLOCK (attr)->data;
25254 }
25255 else
25256 {
25257 dwarf2_invalid_attrib_class_complaint ("location description",
25258 SYMBOL_NATURAL_NAME (sym));
25259 baton->size = 0;
25260 }
25261
25262 SYMBOL_ACLASS_INDEX (sym) = (is_block
25263 ? dwarf2_locexpr_block_index
25264 : dwarf2_locexpr_index);
25265 SYMBOL_LOCATION_BATON (sym) = baton;
25266 }
25267 }
25268
25269 /* Return the OBJFILE associated with the compilation unit CU. If CU
25270 came from a separate debuginfo file, then the master objfile is
25271 returned. */
25272
25273 struct objfile *
25274 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25275 {
25276 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25277
25278 /* Return the master objfile, so that we can report and look up the
25279 correct file containing this variable. */
25280 if (objfile->separate_debug_objfile_backlink)
25281 objfile = objfile->separate_debug_objfile_backlink;
25282
25283 return objfile;
25284 }
25285
25286 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25287 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25288 CU_HEADERP first. */
25289
25290 static const struct comp_unit_head *
25291 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25292 struct dwarf2_per_cu_data *per_cu)
25293 {
25294 const gdb_byte *info_ptr;
25295
25296 if (per_cu->cu)
25297 return &per_cu->cu->header;
25298
25299 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25300
25301 memset (cu_headerp, 0, sizeof (*cu_headerp));
25302 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25303 rcuh_kind::COMPILE);
25304
25305 return cu_headerp;
25306 }
25307
25308 /* Return the address size given in the compilation unit header for CU. */
25309
25310 int
25311 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25312 {
25313 struct comp_unit_head cu_header_local;
25314 const struct comp_unit_head *cu_headerp;
25315
25316 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25317
25318 return cu_headerp->addr_size;
25319 }
25320
25321 /* Return the offset size given in the compilation unit header for CU. */
25322
25323 int
25324 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25325 {
25326 struct comp_unit_head cu_header_local;
25327 const struct comp_unit_head *cu_headerp;
25328
25329 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25330
25331 return cu_headerp->offset_size;
25332 }
25333
25334 /* See its dwarf2loc.h declaration. */
25335
25336 int
25337 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25338 {
25339 struct comp_unit_head cu_header_local;
25340 const struct comp_unit_head *cu_headerp;
25341
25342 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25343
25344 if (cu_headerp->version == 2)
25345 return cu_headerp->addr_size;
25346 else
25347 return cu_headerp->offset_size;
25348 }
25349
25350 /* Return the text offset of the CU. The returned offset comes from
25351 this CU's objfile. If this objfile came from a separate debuginfo
25352 file, then the offset may be different from the corresponding
25353 offset in the parent objfile. */
25354
25355 CORE_ADDR
25356 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25357 {
25358 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25359
25360 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25361 }
25362
25363 /* Return a type that is a generic pointer type, the size of which matches
25364 the address size given in the compilation unit header for PER_CU. */
25365 static struct type *
25366 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25367 {
25368 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25369 struct type *void_type = objfile_type (objfile)->builtin_void;
25370 struct type *addr_type = lookup_pointer_type (void_type);
25371 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25372
25373 if (TYPE_LENGTH (addr_type) == addr_size)
25374 return addr_type;
25375
25376 addr_type
25377 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25378 return addr_type;
25379 }
25380
25381 /* Return DWARF version number of PER_CU. */
25382
25383 short
25384 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25385 {
25386 return per_cu->dwarf_version;
25387 }
25388
25389 /* Locate the .debug_info compilation unit from CU's objfile which contains
25390 the DIE at OFFSET. Raises an error on failure. */
25391
25392 static struct dwarf2_per_cu_data *
25393 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25394 unsigned int offset_in_dwz,
25395 struct dwarf2_per_objfile *dwarf2_per_objfile)
25396 {
25397 struct dwarf2_per_cu_data *this_cu;
25398 int low, high;
25399
25400 low = 0;
25401 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25402 while (high > low)
25403 {
25404 struct dwarf2_per_cu_data *mid_cu;
25405 int mid = low + (high - low) / 2;
25406
25407 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25408 if (mid_cu->is_dwz > offset_in_dwz
25409 || (mid_cu->is_dwz == offset_in_dwz
25410 && mid_cu->sect_off + mid_cu->length >= sect_off))
25411 high = mid;
25412 else
25413 low = mid + 1;
25414 }
25415 gdb_assert (low == high);
25416 this_cu = dwarf2_per_objfile->all_comp_units[low];
25417 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25418 {
25419 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25420 error (_("Dwarf Error: could not find partial DIE containing "
25421 "offset %s [in module %s]"),
25422 sect_offset_str (sect_off),
25423 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25424
25425 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25426 <= sect_off);
25427 return dwarf2_per_objfile->all_comp_units[low-1];
25428 }
25429 else
25430 {
25431 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25432 && sect_off >= this_cu->sect_off + this_cu->length)
25433 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25434 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25435 return this_cu;
25436 }
25437 }
25438
25439 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25440
25441 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25442 : per_cu (per_cu_),
25443 mark (false),
25444 has_loclist (false),
25445 checked_producer (false),
25446 producer_is_gxx_lt_4_6 (false),
25447 producer_is_gcc_lt_4_3 (false),
25448 producer_is_icc (false),
25449 producer_is_icc_lt_14 (false),
25450 producer_is_codewarrior (false),
25451 processing_has_namespace_info (false)
25452 {
25453 per_cu->cu = this;
25454 }
25455
25456 /* Destroy a dwarf2_cu. */
25457
25458 dwarf2_cu::~dwarf2_cu ()
25459 {
25460 per_cu->cu = NULL;
25461 }
25462
25463 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25464
25465 static void
25466 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25467 enum language pretend_language)
25468 {
25469 struct attribute *attr;
25470
25471 /* Set the language we're debugging. */
25472 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25473 if (attr)
25474 set_cu_language (DW_UNSND (attr), cu);
25475 else
25476 {
25477 cu->language = pretend_language;
25478 cu->language_defn = language_def (cu->language);
25479 }
25480
25481 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25482 }
25483
25484 /* Increase the age counter on each cached compilation unit, and free
25485 any that are too old. */
25486
25487 static void
25488 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25489 {
25490 struct dwarf2_per_cu_data *per_cu, **last_chain;
25491
25492 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25493 per_cu = dwarf2_per_objfile->read_in_chain;
25494 while (per_cu != NULL)
25495 {
25496 per_cu->cu->last_used ++;
25497 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25498 dwarf2_mark (per_cu->cu);
25499 per_cu = per_cu->cu->read_in_chain;
25500 }
25501
25502 per_cu = dwarf2_per_objfile->read_in_chain;
25503 last_chain = &dwarf2_per_objfile->read_in_chain;
25504 while (per_cu != NULL)
25505 {
25506 struct dwarf2_per_cu_data *next_cu;
25507
25508 next_cu = per_cu->cu->read_in_chain;
25509
25510 if (!per_cu->cu->mark)
25511 {
25512 delete per_cu->cu;
25513 *last_chain = next_cu;
25514 }
25515 else
25516 last_chain = &per_cu->cu->read_in_chain;
25517
25518 per_cu = next_cu;
25519 }
25520 }
25521
25522 /* Remove a single compilation unit from the cache. */
25523
25524 static void
25525 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25526 {
25527 struct dwarf2_per_cu_data *per_cu, **last_chain;
25528 struct dwarf2_per_objfile *dwarf2_per_objfile
25529 = target_per_cu->dwarf2_per_objfile;
25530
25531 per_cu = dwarf2_per_objfile->read_in_chain;
25532 last_chain = &dwarf2_per_objfile->read_in_chain;
25533 while (per_cu != NULL)
25534 {
25535 struct dwarf2_per_cu_data *next_cu;
25536
25537 next_cu = per_cu->cu->read_in_chain;
25538
25539 if (per_cu == target_per_cu)
25540 {
25541 delete per_cu->cu;
25542 per_cu->cu = NULL;
25543 *last_chain = next_cu;
25544 break;
25545 }
25546 else
25547 last_chain = &per_cu->cu->read_in_chain;
25548
25549 per_cu = next_cu;
25550 }
25551 }
25552
25553 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25554 We store these in a hash table separate from the DIEs, and preserve them
25555 when the DIEs are flushed out of cache.
25556
25557 The CU "per_cu" pointer is needed because offset alone is not enough to
25558 uniquely identify the type. A file may have multiple .debug_types sections,
25559 or the type may come from a DWO file. Furthermore, while it's more logical
25560 to use per_cu->section+offset, with Fission the section with the data is in
25561 the DWO file but we don't know that section at the point we need it.
25562 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25563 because we can enter the lookup routine, get_die_type_at_offset, from
25564 outside this file, and thus won't necessarily have PER_CU->cu.
25565 Fortunately, PER_CU is stable for the life of the objfile. */
25566
25567 struct dwarf2_per_cu_offset_and_type
25568 {
25569 const struct dwarf2_per_cu_data *per_cu;
25570 sect_offset sect_off;
25571 struct type *type;
25572 };
25573
25574 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25575
25576 static hashval_t
25577 per_cu_offset_and_type_hash (const void *item)
25578 {
25579 const struct dwarf2_per_cu_offset_and_type *ofs
25580 = (const struct dwarf2_per_cu_offset_and_type *) item;
25581
25582 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25583 }
25584
25585 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25586
25587 static int
25588 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25589 {
25590 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25591 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25592 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25593 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25594
25595 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25596 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25597 }
25598
25599 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25600 table if necessary. For convenience, return TYPE.
25601
25602 The DIEs reading must have careful ordering to:
25603 * Not cause infite loops trying to read in DIEs as a prerequisite for
25604 reading current DIE.
25605 * Not trying to dereference contents of still incompletely read in types
25606 while reading in other DIEs.
25607 * Enable referencing still incompletely read in types just by a pointer to
25608 the type without accessing its fields.
25609
25610 Therefore caller should follow these rules:
25611 * Try to fetch any prerequisite types we may need to build this DIE type
25612 before building the type and calling set_die_type.
25613 * After building type call set_die_type for current DIE as soon as
25614 possible before fetching more types to complete the current type.
25615 * Make the type as complete as possible before fetching more types. */
25616
25617 static struct type *
25618 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25619 {
25620 struct dwarf2_per_objfile *dwarf2_per_objfile
25621 = cu->per_cu->dwarf2_per_objfile;
25622 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25623 struct objfile *objfile = dwarf2_per_objfile->objfile;
25624 struct attribute *attr;
25625 struct dynamic_prop prop;
25626
25627 /* For Ada types, make sure that the gnat-specific data is always
25628 initialized (if not already set). There are a few types where
25629 we should not be doing so, because the type-specific area is
25630 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25631 where the type-specific area is used to store the floatformat).
25632 But this is not a problem, because the gnat-specific information
25633 is actually not needed for these types. */
25634 if (need_gnat_info (cu)
25635 && TYPE_CODE (type) != TYPE_CODE_FUNC
25636 && TYPE_CODE (type) != TYPE_CODE_FLT
25637 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25638 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25639 && TYPE_CODE (type) != TYPE_CODE_METHOD
25640 && !HAVE_GNAT_AUX_INFO (type))
25641 INIT_GNAT_SPECIFIC (type);
25642
25643 /* Read DW_AT_allocated and set in type. */
25644 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25645 if (attr_form_is_block (attr))
25646 {
25647 struct type *prop_type
25648 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25649 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25650 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25651 }
25652 else if (attr != NULL)
25653 {
25654 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25655 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25656 sect_offset_str (die->sect_off));
25657 }
25658
25659 /* Read DW_AT_associated and set in type. */
25660 attr = dwarf2_attr (die, DW_AT_associated, cu);
25661 if (attr_form_is_block (attr))
25662 {
25663 struct type *prop_type
25664 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25665 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25666 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25667 }
25668 else if (attr != NULL)
25669 {
25670 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25671 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25672 sect_offset_str (die->sect_off));
25673 }
25674
25675 /* Read DW_AT_data_location and set in type. */
25676 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25677 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25678 dwarf2_per_cu_addr_type (cu->per_cu)))
25679 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25680
25681 if (dwarf2_per_objfile->die_type_hash == NULL)
25682 {
25683 dwarf2_per_objfile->die_type_hash =
25684 htab_create_alloc_ex (127,
25685 per_cu_offset_and_type_hash,
25686 per_cu_offset_and_type_eq,
25687 NULL,
25688 &objfile->objfile_obstack,
25689 hashtab_obstack_allocate,
25690 dummy_obstack_deallocate);
25691 }
25692
25693 ofs.per_cu = cu->per_cu;
25694 ofs.sect_off = die->sect_off;
25695 ofs.type = type;
25696 slot = (struct dwarf2_per_cu_offset_and_type **)
25697 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25698 if (*slot)
25699 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25700 sect_offset_str (die->sect_off));
25701 *slot = XOBNEW (&objfile->objfile_obstack,
25702 struct dwarf2_per_cu_offset_and_type);
25703 **slot = ofs;
25704 return type;
25705 }
25706
25707 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25708 or return NULL if the die does not have a saved type. */
25709
25710 static struct type *
25711 get_die_type_at_offset (sect_offset sect_off,
25712 struct dwarf2_per_cu_data *per_cu)
25713 {
25714 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25715 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25716
25717 if (dwarf2_per_objfile->die_type_hash == NULL)
25718 return NULL;
25719
25720 ofs.per_cu = per_cu;
25721 ofs.sect_off = sect_off;
25722 slot = ((struct dwarf2_per_cu_offset_and_type *)
25723 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25724 if (slot)
25725 return slot->type;
25726 else
25727 return NULL;
25728 }
25729
25730 /* Look up the type for DIE in CU in die_type_hash,
25731 or return NULL if DIE does not have a saved type. */
25732
25733 static struct type *
25734 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25735 {
25736 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25737 }
25738
25739 /* Add a dependence relationship from CU to REF_PER_CU. */
25740
25741 static void
25742 dwarf2_add_dependence (struct dwarf2_cu *cu,
25743 struct dwarf2_per_cu_data *ref_per_cu)
25744 {
25745 void **slot;
25746
25747 if (cu->dependencies == NULL)
25748 cu->dependencies
25749 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25750 NULL, &cu->comp_unit_obstack,
25751 hashtab_obstack_allocate,
25752 dummy_obstack_deallocate);
25753
25754 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25755 if (*slot == NULL)
25756 *slot = ref_per_cu;
25757 }
25758
25759 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25760 Set the mark field in every compilation unit in the
25761 cache that we must keep because we are keeping CU. */
25762
25763 static int
25764 dwarf2_mark_helper (void **slot, void *data)
25765 {
25766 struct dwarf2_per_cu_data *per_cu;
25767
25768 per_cu = (struct dwarf2_per_cu_data *) *slot;
25769
25770 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25771 reading of the chain. As such dependencies remain valid it is not much
25772 useful to track and undo them during QUIT cleanups. */
25773 if (per_cu->cu == NULL)
25774 return 1;
25775
25776 if (per_cu->cu->mark)
25777 return 1;
25778 per_cu->cu->mark = true;
25779
25780 if (per_cu->cu->dependencies != NULL)
25781 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25782
25783 return 1;
25784 }
25785
25786 /* Set the mark field in CU and in every other compilation unit in the
25787 cache that we must keep because we are keeping CU. */
25788
25789 static void
25790 dwarf2_mark (struct dwarf2_cu *cu)
25791 {
25792 if (cu->mark)
25793 return;
25794 cu->mark = true;
25795 if (cu->dependencies != NULL)
25796 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25797 }
25798
25799 static void
25800 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25801 {
25802 while (per_cu)
25803 {
25804 per_cu->cu->mark = false;
25805 per_cu = per_cu->cu->read_in_chain;
25806 }
25807 }
25808
25809 /* Trivial hash function for partial_die_info: the hash value of a DIE
25810 is its offset in .debug_info for this objfile. */
25811
25812 static hashval_t
25813 partial_die_hash (const void *item)
25814 {
25815 const struct partial_die_info *part_die
25816 = (const struct partial_die_info *) item;
25817
25818 return to_underlying (part_die->sect_off);
25819 }
25820
25821 /* Trivial comparison function for partial_die_info structures: two DIEs
25822 are equal if they have the same offset. */
25823
25824 static int
25825 partial_die_eq (const void *item_lhs, const void *item_rhs)
25826 {
25827 const struct partial_die_info *part_die_lhs
25828 = (const struct partial_die_info *) item_lhs;
25829 const struct partial_die_info *part_die_rhs
25830 = (const struct partial_die_info *) item_rhs;
25831
25832 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25833 }
25834
25835 struct cmd_list_element *set_dwarf_cmdlist;
25836 struct cmd_list_element *show_dwarf_cmdlist;
25837
25838 static void
25839 set_dwarf_cmd (const char *args, int from_tty)
25840 {
25841 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25842 gdb_stdout);
25843 }
25844
25845 static void
25846 show_dwarf_cmd (const char *args, int from_tty)
25847 {
25848 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25849 }
25850
25851 bool dwarf_always_disassemble;
25852
25853 static void
25854 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25855 struct cmd_list_element *c, const char *value)
25856 {
25857 fprintf_filtered (file,
25858 _("Whether to always disassemble "
25859 "DWARF expressions is %s.\n"),
25860 value);
25861 }
25862
25863 static void
25864 show_check_physname (struct ui_file *file, int from_tty,
25865 struct cmd_list_element *c, const char *value)
25866 {
25867 fprintf_filtered (file,
25868 _("Whether to check \"physname\" is %s.\n"),
25869 value);
25870 }
25871
25872 void
25873 _initialize_dwarf2_read (void)
25874 {
25875 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25876 Set DWARF specific variables.\n\
25877 Configure DWARF variables such as the cache size."),
25878 &set_dwarf_cmdlist, "maintenance set dwarf ",
25879 0/*allow-unknown*/, &maintenance_set_cmdlist);
25880
25881 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25882 Show DWARF specific variables.\n\
25883 Show DWARF variables such as the cache size."),
25884 &show_dwarf_cmdlist, "maintenance show dwarf ",
25885 0/*allow-unknown*/, &maintenance_show_cmdlist);
25886
25887 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25888 &dwarf_max_cache_age, _("\
25889 Set the upper bound on the age of cached DWARF compilation units."), _("\
25890 Show the upper bound on the age of cached DWARF compilation units."), _("\
25891 A higher limit means that cached compilation units will be stored\n\
25892 in memory longer, and more total memory will be used. Zero disables\n\
25893 caching, which can slow down startup."),
25894 NULL,
25895 show_dwarf_max_cache_age,
25896 &set_dwarf_cmdlist,
25897 &show_dwarf_cmdlist);
25898
25899 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25900 &dwarf_always_disassemble, _("\
25901 Set whether `info address' always disassembles DWARF expressions."), _("\
25902 Show whether `info address' always disassembles DWARF expressions."), _("\
25903 When enabled, DWARF expressions are always printed in an assembly-like\n\
25904 syntax. When disabled, expressions will be printed in a more\n\
25905 conversational style, when possible."),
25906 NULL,
25907 show_dwarf_always_disassemble,
25908 &set_dwarf_cmdlist,
25909 &show_dwarf_cmdlist);
25910
25911 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25912 Set debugging of the DWARF reader."), _("\
25913 Show debugging of the DWARF reader."), _("\
25914 When enabled (non-zero), debugging messages are printed during DWARF\n\
25915 reading and symtab expansion. A value of 1 (one) provides basic\n\
25916 information. A value greater than 1 provides more verbose information."),
25917 NULL,
25918 NULL,
25919 &setdebuglist, &showdebuglist);
25920
25921 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25922 Set debugging of the DWARF DIE reader."), _("\
25923 Show debugging of the DWARF DIE reader."), _("\
25924 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25925 The value is the maximum depth to print."),
25926 NULL,
25927 NULL,
25928 &setdebuglist, &showdebuglist);
25929
25930 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25931 Set debugging of the dwarf line reader."), _("\
25932 Show debugging of the dwarf line reader."), _("\
25933 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25934 A value of 1 (one) provides basic information.\n\
25935 A value greater than 1 provides more verbose information."),
25936 NULL,
25937 NULL,
25938 &setdebuglist, &showdebuglist);
25939
25940 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25941 Set cross-checking of \"physname\" code against demangler."), _("\
25942 Show cross-checking of \"physname\" code against demangler."), _("\
25943 When enabled, GDB's internal \"physname\" code is checked against\n\
25944 the demangler."),
25945 NULL, show_check_physname,
25946 &setdebuglist, &showdebuglist);
25947
25948 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25949 no_class, &use_deprecated_index_sections, _("\
25950 Set whether to use deprecated gdb_index sections."), _("\
25951 Show whether to use deprecated gdb_index sections."), _("\
25952 When enabled, deprecated .gdb_index sections are used anyway.\n\
25953 Normally they are ignored either because of a missing feature or\n\
25954 performance issue.\n\
25955 Warning: This option must be enabled before gdb reads the file."),
25956 NULL,
25957 NULL,
25958 &setlist, &showlist);
25959
25960 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25961 &dwarf2_locexpr_funcs);
25962 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25963 &dwarf2_loclist_funcs);
25964
25965 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25966 &dwarf2_block_frame_base_locexpr_funcs);
25967 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25968 &dwarf2_block_frame_base_loclist_funcs);
25969
25970 #if GDB_SELF_TEST
25971 selftests::register_test ("dw2_expand_symtabs_matching",
25972 selftests::dw2_expand_symtabs_matching::run_test);
25973 #endif
25974 }
This page took 1.026591 seconds and 4 git commands to generate.